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CONFINEMENT MODELS AT FINITE TEMPERATURE AND DENSITY

Pok Man Lo, PhD

University of Pittsburgh, 2011

This work presents a non-perturbative study of dynamical chiral symmetry breaking in

various confinement models at finite temperature and density. The tool of choice is the

Schwinger-Dyson equations. We shall discuss (i) the inadequacy of static confinement models

in explaining thermal properties of QCD (ii) dynamical chiral and parity symmetry breaking

of three dimensional QED with two-component fermions (iii) endemic infrared divergences

in QED3 at finite temperature and the attempt to solve the system self-consistently.
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1.0 OVERVIEW

Dynamical chiral symmetry breaking (DCSB) provides a natural theoretical framework for

the generation of masses for both the gauge bosons and the constituent fermions. In the

case of low energy Quantum Chromodynamics (QCD), it successfully explains the origin of

constituent-quark masses. It also establishes the connection between the partial conservation

of axial-vector current and the smallness of pion mass by identifying pions as the Goldstone

bosons of the hidden symmetry. The idea is also closely relevant in the building of Beyond

Standard Model (BSM) physics. For example, the extended technicolor (ETC) model, aiming

to solve the gauge hierarchy problem in the Standard Model, is based on the concept of

dynamical mass generation.

Given the non-perturbative nature of the problem, one must use an appropriate tool

to study DCSB. The tool of choice is the Schwinger-Dyson equations (SDEs), which forms

an infinite tower of coupled integral equations relating the various Green’s functions of the

theory. With a suitable choice of truncation scheme, which is usually designed under some

symmetry principles, one can extract non-perturbative information of the theory through

a self-consistent calculation. Particularly, information about chiral symmetry breaking is

encoded in the equation for the two-point function of the fermions, also known as the gap

equation.

It is widely believed that non-perturbative phenomena like the formation of relativistic

bound states from quarks and gluons (hadrons), confinement and DCSB can be adequately

explained in the present framework of QCD. Lattice gauge theory, which has evolved into a

powerful tool in the past decades with the advance of computing power, together with other

methods such as potential models, effective field theory and DSEs, are successfully applied

to QCD in the strong coupling regime. Through the combined efforts of different approaches,

1



valuable insights have been gained on various important topics such as the vacuum structure,

long range interaction, gluonics, quark matter and nucleon structure.

Armed with a reasonable theory of the strong interactions, it is natural to explore the

properties of quark and hadronic matter under extreme conditions: high temperature and

high density. Such novel environments may make their real-world appearances in

• the interior of neutron star, where the density can get several times higher than the

nuclear density,

• heavy-ion collision experiments at high energies, where the conditions of both high tem-

perature and density may be attained,

• the universe at 10−5 s after the Big Bang, where the temperature was of the same order

as the nucleon rest mass.

By extending the theory to explain phenomena in a setting which is far-removed from

that of its original creation, we can deepen our understanding of its theoretical structure,

test for its consistency and possibly refine and improve the existing model in cases where

discrepancy arises.

This work presents a non-perturbative study of dynamical chiral symmetry breaking in

various confinement models at finite temperature and density. With the Schwinger-Dyson

equations and the imaginary time formalism of finite temperature field theory, we study the

phase structure and compute the order parameter as a function of temperature and density.

In the next chapter we start with a review on some relevant theoretical topics. Based

on the functional method of quantum field theory we derive the Schwinger-Dyson equations

and demonstrate how symmetries relate the various Green’s functions with the example

of the Ward identity in Quantum Electrodynamics (QED). The calculation scheme will be

extended to finite temperature and density. We will then discuss symmetry and symmetry

breaking in detail, with special focus on the case of hidden symmetry. The familiar Higgs

mechanism for electroweak symmetry breaking and the extended technicolor model will be

covered to illustrate both spontaneous and dynamical aspects of symmetry breaking. Lastly,

we will introduce the basic notions of phase transitions such as order parameter, order of

phase transition and phase diagram. The connection between phase transition and symmetry
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breaking will be clarified.

Chapter 3 focuses on in-medium chiral symmetry breaking for static potential models

motivated by Coulomb gauge QCD. We shall examine the problem of infrared divergence

at finite temperature in the linear confinement model, and demonstrate how summing ring

diagrams resolves the issue. The phase diagrams for various models will be investigated

while paying special attention to how polarization effects alter observables and the phase

structure of the model systems.

In chapter 4, we study the dynamical chiral and parity symmetry breaking of quantum

electrodynamics in three dimensional spacetime (QED3). The theory is interesting in many

respects. First, it serves as a model for QCD at high temperature in the large Nf limit 1.

In addition, the capability of large scale dynamical masses generation makes it particularly

relevant in the modeling of beyond Standard Model physics. QED3 has also been used as

a model field theory for condensed matter systems such as high Tc superconductors and

graphene.

One interesting feature of the theory is that it is possible to dynamically generate a

topological photon mass, which breaks both time reversal and parity symmetries. We shall

examine the system with the Schwinger-Dyson equations and demonstrate the existence of a

parity-violating solution. Various truncation schemes will be employed, especially the Ball-

Chu vertex, which preserves the Ward identity. The efficacy of the truncation scheme is

checked with the Coleman-Hill theorem.

In chapter 5, we extend the study of QED3 to finite temperature and density. We shall see

that the theory suffers from an endemic infrared divergence. A full field-theoretical calcula-

tion, with frequency and momentum dependent gauge boson propagators, will be attempted.

The issue of non-perturbative renormalization associated with the electric screening mass will

be addressed. We present the first self-consistent solution of the system and display the phase

structure of dynamical chiral symmetry breaking.

Chapter 6 is our conclusion where we will summarize our key findings, and suggest

possible directions for further study.

1At high temperature, QCD can be represented as the dimensionally reduced QCD3. Furthermore, if
the number of quark flavors is large, the non-abelian nature of the theory is suppressed. These observations
justify the use of QED3 as an approximation to QCD at those limits.
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2.0 INTRODUCTION

In this chapter, we review the basics. Starting with functional methods in field theory,

we will derive the Schwinger-Dyson equations and demonstrate how symmetries dictate the

relations among various Green’s functions, as in the Ward identity in QED. The formalism

will be extended to finite temperature and density. The spontaneous and dynamical aspects

of symmetry breaking will be illustrated with the example of the Higgs mechanism and the

ETC model. Lastly, we will introduce the basic notions of phase transitions such as order

parameter and phase diagram, and highlight the connection between phase transitions and

symmetry breaking. These concepts lay the foundation for our subsequent studies.

2.1 FUNCTIONAL METHOD IN QFT AND SCHWINGER-DYSON

EQUATIONS

2.1.1 GENERATING FUNCTIONALS

The generating functional of a quantum field theory [1, 2, 3, 4, 5] is given by

Z =

∫
Dφei

∫
L+jφ (2.1)

where j(x) is the classical source coupled to field φ, L is the Lagrangian density1.

1When there is no danger of confusion, the spacetime differential symbol dNx in the integral is suppressed
to simplify notations.
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One can probe the theory by studying its response to the source. All the matrix elements

required to describe physical processes can be obtained by successive functional differentia-

tion

〈0 | T{φ1φ2...φn} | 0〉 =
1

Z[0]

(−i)nδn

δj1...δjn
Z

∣∣∣∣
j→0

. (2.2)

The amplitude above defines an n-point function, which includes both connected and dis-

connected contributions. For our study, it is more useful to define the generating functional

for connected Green’s functions

W [j] = −i lnZ. (2.3)

Through a functional Legendre transformation, we define

Γ[φ] = W [j[φ]]−
∫
j[φ]φ. (2.4)

Note that j[φ] is treated as a functional of φ related by

φ[j] =
δW

δj
, (2.5)

and the canonical relation

j[φ] = −δΓ
δφ
. (2.6)

Γ is the generating functional of the one particle irreducible (1PI) Green’s function. The 1PI

amplitudes are the minimal set of diagrams that generate the diversity of interactions in the

QFT. The Γ functional, together with the Schwinger-Dyson equations, provide a powerful

method to extract non-perturbative information from a given theory.
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2.1.2 SCHWINGER-DYSON EQUATIONS

The Schwinger-Dyson equations begin with the observation that

0 =

∫
Dφ

δ

δφ
ei

∫
L+jφ. (2.7)

From this, one obtains the master equation

{δS
δφ

[φ→ −i δ
δj

] + j}Z[j] = 0. (2.8)

The corresponding equation for the generating functional of the connected Green’s functions

W [j] is given by

{δS
δφ

[φ→ [−i δ
δj

+
δW

δj
]]}1 + j = 0. (2.9)

Note that to arrive at the above equation, we have used the identity

−i δ
δj

[FZ[j]] = Z(−iδF
δj

) + F(−iδZ
δj

)

= eiW{−i δ
δj

+
δW

δj
}F .

(2.10)

Effectively, any equation in the Z-picture of the form

F [−i δ
δj

]Z = 0 (2.11)

can be translated into the W -picture as

F [−i δ
δj

+
δW

δj
]1 = 0. (2.12)

Similarly, one can translate the above master equation into the Γ-picture by identifying
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j[φ]←→ −δΓ
δφ

φ[j]←→ δW

δj

(2.13)

and the use of the functional chain rule

δ

δj

δnΓ

δφ1δφ2...δφn
=

∫
δΦ′

δj

δ

δΦ′
δnΓ

δφ1δφ2...δφn

=

∫
(− δ2Γ

δφjδΦ′
)−1 δ

δΦ′
Γ(n),

(2.14)

where the second line follows from

δ =
δj

δj′
=

∫
δφ′

δj′
δ

δφ′
(− δΓ
δφj

) =

∫
δ2W

δj′δjφ′
(− δ2Γ

δφ′δφj
). (2.15)

As a simple illustration, consider the scalar field theory

L =
1

2
[(∂φ)2 −m2φ2]− V [φ]. (2.16)

The master equation of Schwinger-Dyson equation in Z-picture reads

{−(∂2 +m2)φ− δV

δφ
+ j}

∣∣∣∣
φ→−i δ

δj

Z = 0, (2.17)

or the corresponding W -picture expression

−(∂2 +m2)
δW

δj
− δV

δφ
[φ→ (−i δ

δj
+
δW

δj
)] + j = 0. (2.18)

For the case of free scalar field, performing another functional differentiation and setting the

sources to zero gives the Schwinger Dyson equations for the 2-point function
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(∂2 +m2)
1

Z[0]

δ2Z

δjδj
= iδ. (2.19)

This clearly establishes the connection to the free propagator

〈0 | T{φ, φ} | 0〉 = − 1

Z[0]

δ2Z

δjδj
= i∆F = i

∫
d4p

(2π)4

1

p2 −m2
e−ip·x. (2.20)

Similarly one finds

W (2) ←→ −1

p2 −m2

Γ(2) ←→ p2 −m2.

(2.21)

Generally, we interpret W (2) as the fully-dressed propagator and Γ(2) as the full inverse

propagator.

2.2 GAUGE SYMMETRY AND WARD IDENTITY

2.2.1 MASTER EQUATIONS FOR GAUGE TRANSFORMATION

The functional approach provides a systematic way to determine the effect of a symmetry

on the various N-point functions [3]. Consider a symmetry operation φ→ φ+ δφ

0 =

∫
Dφ [δL+ jδφ]ei

∫
L+jφ

= [δL[φ→ −i δ
δj

] + jδφ[φ→ −i δ
δj

]]Z.

(2.22)

By performing successive functional differentiation, one can derive various powerful non-

perturbative restrictions on the N-point functions imposed by the symmetry. We shall illus-

trate how the gauge symmetry leads directly to the Ward Identity in QED.
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Consider

LQED = ψ̄(i/∂ −m− g /A)ψ − 1

4
F 2 − 1

2ξ
(∂A)2, (2.23)

where Fµν = ∂µAν − ∂νAµ and we have included explicitly the gauge fixing term − 1
2ξ

(∂A)2.

Under the gauge transformation

ψ −→ e−igαψ ≈ ψ − igαψ

ψ̄ −→ ψ̄e+igα ≈ ψ̄ + ψ̄igα

A −→ A+ ∂α,

(2.24)

we obtain

δL = −1

ξ
(∂µA

µ)∂2α. (2.25)

As expected, the gauge fixing term is the only term that violates gauge invariance explicitly.

To study the effect of gauge symmetry in the functional approach, consider the generating

functional:

Z =

∫
Dψ̄DψDAei

∫
LQED+ψ̄η+η̄ψ+j·A (2.26)

where we have introduced the Grassmann valued sources η̄ and η for the lepton fields and

jµ for the photon field.

One obtains the master equation for the gauge symmetry transformation

0 =

∫
Dψ̄DψDA {−1

ξ
∂2(∂µA

µ)α + η̄(−igαψ) + ψ̄(igαη) + jµ∂
µα}ei

∫
LQED+ψ̄η+η̄ψ+j·A.

(2.27)

With the canonical relations
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η̄ −→ δΓ

δψ

η −→ − δΓ
δψ̄

j −→ − δΓ
δA

,

(2.28)

one obtains the equivalent master equation for gauge symmetry in Γ-picture at spacetime

point z

−1

ξ
∂2(∂µA

µ
z ) + (−ig)

(
δΓ

δψz
ψz + ψ̄z(−

δΓ

δψ̄z
)

)
= ∂µz (− δΓ

δAµz
). (2.29)

2.2.2 WARD IDENTITY FOR THE VERTEX FUNCTION

First, we investigate how the gauge symmetry imposes a non-trivial restriction on the longi-

tudinal part of the vertex function.

Performing two more functional differentiations ( δ2

δψ̄xIψyJ
) on both sides of the master

equations, and taking the zero field limit gives

−∂µz
δ3Γ

δAµz δψ̄xIδψyJ
= (−ig)

(
(− δ2Γ

δψ̄xIδψzJ
)δyz − (− δ2Γ

δψ̄zIδψyJ
)δxz

)
(2.30)

Introducing the momentum space one particle irreducible vertex function

Γ[x1, . . . , xn] =

∫
d4p1

(2π)4
· · · d

4pn
(2π)4

e−ip1·x1...−ipn·xn(2π)4δ[p1 + p2 . . . pn]Γ[p1, p2, . . . pn], (2.31)

one obtains

−(q − p) · Γ(3)

ψ̄ψA
[p, q] = g[S−1

p − S−1
q ]. (2.32)

The longitudinal piece of the fermion-photon vertex is related to the fermionic propagator,

as dictated by gauge symmetry.
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2.2.3 WARD IDENTITY FOR THE PHOTON PROPAGATOR

Secondly, starting with the master equation, if we perform the functional differentiation δ
δAν

and set the fields to zero, one obtains

−1

ξ
∂2(∂µδg

µν) = ∂µz (− δ2Γ

δAµδAν
). (2.33)

The gauge symmetry prevents the longitudinal part of the photon propagator from receiving

any contribution from the interaction.

2.3 INTRODUCTION TO FINITE TEMPERATURE FIELD THEORY

In finite temperature field theory [6, 7], one is concerned with the calculation of the thermal

average of an observable. The partition function is defined as

Z = Tr [e−βH ]. (2.34)

The imaginary time formalism allows one to write down the functional integral representation

of the partition function analogous to that for the generating function at zero temperature,

only that the time component is analytically continued to imaginary time τ = it with

restricted range [0, β = 1
kT

].

Z =

∫
B.C

Dφe−S

S =

∫ β

0

dτ

∫
d3xL[φ[τ, ~x], ∂φ[τ, ~x]].

(2.35)

The boundary condition is periodic for bosonic fields: φ[0, ~x] = φ[β, ~x], and anti-periodic for

fermionic fields: ψ[0, ~x] = −ψ[β, ~x]. This suggests the following Fourier expansion for the

fields:
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φ[τ, ~x] =
1

β

∑
ωn= 2nπ

β

∫
d3k

(2π)3
e−iωnτ+i~k·~xφ[ωn, ~k]

ψ[τ, ~x] =
1

β

∑
ωn=

(2n+1)π
β

∫
d3k

(2π)3
e−iωnτ+i~k·~xψ[ωn, ~k]

(2.36)

The thermal average of any operator O is defined as

〈〈O〉〉 =
Tr [O e−βH ]

Tr[ e−βH ]
. (2.37)

The various functional techniques at zero temperature is expected to apply similarly at finite

temperature field theory. Simply stated, the imaginary time formalism of finite temperature

field theory amounts to replacing

∫
dk0 → i

1

β

∑
ωn

k0 → iωn

(2.38)

with ωn being 2nπ
β

or (2n+1)π
β

, depending on the statistics of the particle, the Matsubara sum

then provides the required thermodynamics.

We can illustrate the above procedure using the case of free scalar field theory. The

propagator at zero temperature is

〈0 | T{φ, φ} | 0〉 =

∫
d4k

(2π)4

i

k2 −m2 + iε
e−ik·x

=

∫
d3k

(2π)3

1

2E[~k]
e−i(E[~k]t−~k·~x)

(2.39)

where E[~k] =
√
~k2 +m2, and we have assumed t > 0 when evaluating the k0 integral

analytically.

In the imaginary time formalism, the corresponding finite temperature expression reads

(τ = it)
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〈〈T{φ, φ}〉〉 =
i

β

∑
ωn= 2nπ

β

∫
d3k

(2π)3

−i
ω2
n + ~k2 +m2

e−iωnτ+i~k·~x

=

∫
d3k

(2π)3

1

2E[~k]
[ne−E[~k]τ + (1 + n)eE[~k]τ ]ei

~k·~x

(2.40)

where n = 1

eβE[~k]−1
is the expected thermal weight function. Notice how the two expressions

agree at the zero temperature limit 2.

In perturbation theory, the various Matsubara sums arise can usually be computed an-

alytically by means of residues theorem. An outline of the technique including the case for

finite temperature and density is presented in the Appendix C.

2.4 SYMMETRY BREAKING

2.4.1 CLASSICAL SYMMETRY AND NOETHER’S THEOREM

In a classical field theory, if a certain field transformation leaves the action unchanged, one

can associate a conserved Noether current with the corresponding symmetry:

φ −→ e−iT
aαaφ

δL
δαa

= 0 −→ ∂µ
δL

δ∂µαa
= 0.

(2.41)

The Noether current can be identified:

jµa =
δL

δ∂µαa
. (2.42)

With this, one can form the charge

2The final expression of the Matsubara sum depends crucially on the sign of τ . The result shown here is
for τ < 0. The relevant details can be found in Appendix C.
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Q =

∫
d3x j0 (2.43)

which is time independent, i.e conserved

dQ

dt
= 0. (2.44)

2.4.2 CONSEQUENCE OF SYMMETRY IN QUANTUM THEORY

Identifying the Noether current is only the first step towards understanding the consequence

of the symmetry in a quantum theory. Here we give a list of possible scenarios of how the

symmetry is actually realized in the quantum field theory:

• The symmetry remains exact at the quantum level.

Example: U(1)EM in QED.

• An anomaly induced at the quantum level breaks the symmetry explicitly.

Example: axial U(1)A.

• The symmetry is only approximate, and is explicitly broken by terms in the Lagrangian.

Example: the mass term −ψ̄Mψ, which is not invariant under the axial vector transfor-

mation

ψ → e−iα
aTaγ5ψ

where T a’s are the generator of the SU(Nf ) flavor transformation.

• The symmetry is hidden.

This can be further divided into the following two cases:

– Spontaneous breaking.

Typically it involves a scalar field taking on a non-trivial vacuum expectation value,

this is the case for the Higgs mechanism for electroweak symmetry breaking.
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– Dynamical breaking.

The dynamics itself generate the breaking without the need for a scalar particle, the

effect is usually not visible in perturbation theory. This is the case for SU(Nf )A

axial vector transformation in QCD

In both the spontaneous and dynamical symmetry breaking, the symmetry is actually

hidden instead of broken, in the sense that the vacuum does not respect the symmetry while

the Lagrangian does, this leads to the peculiar situation where the symmetry is not visible in

the mass spectrum of symmetry partners while the corresponding Noether current remains

conserved. The next few sections will be devoted to examining the various interesting features

of a hidden symmetry in a quantum theory.

2.4.3 GOLDSTONE BOSONS

2.4.3.1 NON-TRIVIAL VACUUM Recall the charge of the symmetry transforma-

tion is formed by

Q =

∫
d3x j0 (2.45)

which satisfies dQ
dt

= 0 and hence the commutation relation

[Q,H] = 0. (2.46)

Usually the vacuum is invariant under the unitary transformation e−iαQ | 0〉 =| 0〉, meaning

Q | 0〉 = 0. (2.47)

This leads to the normal degeneracy in the mass spectrum for the eigenstates of the symmetry

partners, for example, MN ≈MP is expected as the neutron and protons are related by the

isospin transformation.

In the case of hidden symmetry, on the contrary, we have
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Q | 0〉 6= 0 (2.48)

hence, we have | α〉 = e−iαQ | 0〉 6=| 0〉. Since [Q,H] = 0, it is clear that Q | 0〉 has the same

energy as the vacuum.

In some sense, | α〉 represents a kind of excitation that does not cost energy to create,

as we shall see. The massless excitations are the Goldstone bosons which carry the same

quantum number as Q.

2.4.3.2 FORMAL DERIVATION OF THE GOLDSTONE THEOREMS Con-

sider L[~φ, ∂~φ] and a transformation δ~φ→ ~∆[~φ] such that δL → 0, in the functional formalism,

it means

∫
D~φ~j · ~∆[~φ]ei

∫
L+~j·~φ = 0. (2.49)

In terms of the 1PI generating functional (Γ-picture),

−δΓ
δ~φ
· ~∆[~φ] = 0 (2.50)

Taking one more functional derivative with respect to the field ~φ, and noting δΓ

δ~φ
= 0 as ~φ

reaches its vacuum expectation value ~φ0, we arrive at the following:

∫
δ2Γ

δ ~φ0δ ~φ0

· ~∆[~φ] = 0 (2.51)

Recall the momentum space representation of the two point function is given by p2 −m2
φ,

the above equation suggests that

δ2Γ

δ ~φ0δ ~φ0

∣∣∣∣
p2→0

= −m2
φ = 0 (2.52)
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whenever ~∆[~φ] 6= 0, that is, the existence of a massless boson [3].

A simple illustration of the above is in the SU(2) linear sigma model. Consider ~φ = σ

~π

 and the symmetry transformation:

∆[σ] = εa5π
a

∆[πa] = −εa5σ
(2.53)

if the ~φ takes on non-trivial vacuum expectation value:

 σ0

~0

, then we see that

∆[πa] 6= 0 (2.54)

and the corresponding two point function

δ2Γ

δ~πiδ ~πj

∣∣∣∣
p2→0

= −m2
πδij = 0 (2.55)

The pions are the three massless Goldstone bosons associated with the non-trivial vacuum.

2.4.4 HIGGS MECHANISM IN ELECTROWEAK SPONTANEOUS SYM-

METRY BREAKING

We review the famous example of electroweak spontaneous symmetry breaking through Higgs

mechanism.

For the SU(2)× U(1) symmetry, we introduce the bosonic gauge fields: W1,W2,W3, B,

and the Lagrangian in the gauge boson sector:

LG = −1

4
W̃ 2 − 1

4
B2 (2.56)

where
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Dµ = ∂µ + ig1Bµ
1

2
+ ig2W

i
µτ

i

W̃ i
µν = ∂µW

i
ν − ∂νW i

µ − g2εijkW
j
µW

k
ν

Bµν = ∂µBν − ∂νBµ.

(2.57)

Note that ~τ = 1
2
~σ, ~σ being the three Pauli’s matrices. Dµ can be written as

D = ∂ + i

 1
2
g1B + 1

2
g2W

3 1
2
g2(W 1 − iW 2)

1
2
g2(W 1 + iW 2) 1

2
g1B − 1

2
g2W

3

 . (2.58)

A complex scalar field φ =

 φ+

φ0

 is also introduced, interacting with the gauge fields

through the Lagrangian

LHG = |Dφ|2 − V [φ] (2.59)

with

V [φ] = −µ2|φ|2 + λ[|φ|2]2. (2.60)

The symmetry is spontaneously broken as the Higgs scalar field takes on the non-trivial

vacuum configuration 〈φ〉 =

 0

v√
2

, where

v =

√
µ2

λ
. (2.61)

One consequence is that some gauge bosons acquire a mass. To see this, investigate the

corresponding terms in the Lagrangian

|D〈φ〉|2 = (
vg2

2
)2W+W− +

1

8
v2(g2

1 + g2
2)[

g2√
g2

1 + g2
2

W 3 − g1√
g2

1 + g2
2

B]2 (2.62)
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where

W± =
1√
2

[W 1 ∓ iW 2]. (2.63)

We highlight two important observations. First, the spontaneous symmetry breaking leads

to the mixing of the bosons in the form of

[
g2√
g2

1 + g2
2

W 3 − g1√
g2

1 + g2
2

B], (2.64)

naturally defining the Weinberg angle

g1

g2

= tan θW , (2.65)

and we can associate Z0 and photon as the physical degrees of freedom:

Z0 ←→ cos θWW
3 − sin θWB

γ ←→ sin θWW
3 + cos θWB.

(2.66)

Second, the spontaneous symmetry breaking generates masses for the gauge bosons (as can

be read off from the Lagrangian)

MW = v
g2

2

MZ =
1

2
v
√
g2

1 + g2
2

MW

MZ

= cos θW

Mγ = 0.

(2.67)

The Fermi constant GF is related to g2 and MW through

GF√
2

=
g2

2

8M2
W

. (2.68)
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This identifies

v =

√
1√
2GF

≈ 246 GeV. (2.69)

As a by-product, fermions in the Standard Model also acquire masses fl
v√
2

from the symmetry

breaking, where fl is the Yukawa coupling for the fermions.

It is useful to compare the electroweak spontaneous SU(2) × U(1) breaking with the

QCD SU(3)A symmetry breaking. In the latter case, no scalar particle is required, and the

effect is generally not visible in perturbation theory.

2.4.5 A NOTE ON TECHNICOLOR

The Higgs mechanism fails to address the following issues. First, the potential for the Higgs

is put in by hand, there is no natural explanation for the negative sign of the µ2|φ|2 term.

Second, the resultant Higgs masses MH = 2λv2 are unstable against radiative corrections

from the much higher energy scales. This is the gauge hierarchy problem. Extreme fine

tuning is required to keep the Higgs mass to be within the electroweak scale. Third, the

mechanism also fails to provide a satisfactory explanation for the broad ratios of scales in the

masses of Standard Model fermions [8]. An attractive alternative is a dynamical approach

to the electroweak symmetry breaking.

If the electroweak gauge bosons consume Goldstone bosons from dynamical chiral sym-

metry breaking instead, the resulting masses would be of order gfπ. Basically everything

in the Higgs mechanism follows except v → fπ. However, since fπ ≈ 93 MeV, the resulting

MW would be 1000 times smaller than required. Therefore one cannot obtain the correct

phenomenology from QCD flavor dynamical chiral symmetry breaking.

The technicolor model adopts the same ideas from QCD to a different setting. Starting

with Weinberg’s model of hypercolor [9], which is a TeV-scale version of QCD, the dynamical

chiral symmetry breaking generates the hyper-Goldstone bosons that are then eaten by the

W ’s and Z electroweak bosons. However, the model suffers from the problem that there is no

mechanism to generate the fermion mass and the existence of light hyper-Goldstone bosons.
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Extended technicolor, postulated by Dimopoulos and Susskind [10] solves the above problems

by introducing extra gauge interactions SU(N)ETC , which is broken at ΛETC , to raise the

fermion and hyper-Goldstone boson masses. Unfortunately, ETC introduces the problem of

large flavor changing neutral currents, which are strongly suppressed in nature. This implies

ΛETC ∼ 1TeV, forcing the fermion masses generated to be smaller than expected. A possible

rescue to the situation suggested by Holdom [11] is the scenario of walking technicolor: if the

technicolor coupling ran sufficiently slowly it would enhance the value of condensate while

keeping the technipion decay constant stable. As illustrated above, it is fπ that set the EW

scale and controls the masses of W ’s and Z. A comprehensive review on this topic can be

found in Hill and Simmons [12].

It is clear that a more complete understanding of dynamical mass generation is essential

in the path to investigate Beyond Standard Model Physics [13].

2.4.6 VECTOR AND AXIAL VECTOR SYMMETRY IN QCD

This work will mainly focus on the dynamical breaking of the chiral symmetry. It is useful

to review the various related symmetries in QCD.

LQCD = ψ̄(i/∂ −M − g /A)ψ − 1

4
G2 (2.70)

with

M =


mu

md

ms

. . .


[T a, T b] = ifabcT c

A = T aAa

Ga
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν .

(2.71)
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• U(1)V

– Transformation: ψ → e−iαψ

– Noether current: jµV = ψ̄γµψ

– Conservation: ∂µj
µ = 0

• U(1)A

– Transformation: ψ → e−iαγ5ψ

– Noether current: jµA = ψ̄γµγ5ψ

– Conservation: broken explicitly by

mass term: −ψ̄Mψ,

axial anomaly.

∂µj
µ
A = 2iψ̄γ5Mψ +

Nfαs
8π

F a
µνF

a
ρσε

µνρσ

• SU(Nf )V

– Transformation: ψ → e−iα
aTaψ with T a’s being the generators satisfying [T a, T b] =

ifabcT c

– Noether current: V µ
a = ψ̄γµT aψ

– Conservation: broken explicitly by the mass term −ψ̄Mψ

∂µV
µ
a = −iψ̄[T a,M ]ψ

e.g for SU(2)V , if mu = md, then the vector current is conserved

• SU(Nf )A

– Transformation: ψ → e−iα
aTaγ5ψ

– Noether current: Aµa = ψ̄γµT aγ5ψ

– Conservation: broken explicitly by the mass term −ψ̄Mψ

∂µA
µ
a = −iψ̄{T a,M}ψ

e.g for SU(2)A, for a = 3, we get ∂µA
µ
3 = 2i[muūγ5u−mdd̄γ5d] only when mu,md → 0

we will have a conserved axial current.
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2.5 CHIRAL SYMMETRY IN QCD

2.5.1 PCAC

The axial vector symmetry in QCD is broken explicitly by the mass term in the Lagrangian.

Since the current quark masses for the light flavors are small relative to the hadronic scale,

we expect the axial vector symmetry is partially conserved. It turns out the symmetry is

hidden, meaning the vacuum does not realize the symmetry, while the axial vector current

remains conserved to high degree.

From the Noether current Aµa = ψ̄γ0γ5T
aψ, one can form the charge

Qa
5 =

∫
d3x ψ̄γ0γ5T

aψ, (2.72)

for which we expect

[Qa
5, H] ≈ 0 (2.73)

while

Qa
5 | 0〉 6= 0. (2.74)

The current algebra technique in partial conservation of the axial current (PCAC) [14] is

based on the direct identification of the pion field operator with the axial vector:

∂µA
µ
a [x] ∼ Φa

π (2.75)

such that

〈0 | Φa
π[x] | πb[p]〉 = δabe

−ip·x

〈0 | Aaµ | πb[p]〉 = −ipµfπδabe−ip·x

〈0 | ∂µAµa | πb[p]〉 = −m2
πfπδabe

−ip·x.

(2.76)
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We identify

Φa
π ←→

−∂µAµa
fπm2

π

Aaµ ←→ fπ∂µΦa
π.

(2.77)

The PCAC essentially relates the smallness of pion mass to the approximate conservation of

axial current.

2.5.2 SOFT PION THEOREM AND GELL-MANN-OAKES-RENNER RELA-

TIONS

Having identified the pion field from PCAC, one can derive the soft pion theorem, which

expresses the relation between a state | α〉 and the degenerate state | απ(q → 0)〉 due to

chiral symmetry.

The proof starts with the LSZ formula [15]:

〈πa(q)β | Ô[0] | α〉 = i[∂2 +m2
π]

∫
d4x′ eiq·x

′〈β | T{Φa
π, Ô[0]} | α〉

= i[∂2 +m2
π]

∫
d4x′ eiq·x

′〈β | T{−∂µA
µ
a

fπm2
π

, Ô[0]} | α〉

= i[−q2 +m2
π]

∫
d4x′ eiq·x

′ −1

m2
πfπ

[−iqµ〈β | T{Aµ[x′], Ô[0]} | α〉−

δ[x′
0
][A0

x′ , Ô[0]]]

at the soft momentum limit (q → 0):

〈πa(q)β | Ô[0] | α〉 =
i

fπ
〈β | [Qa

5, Ô[0]] | α〉 (2.78)

The Gell-Mann-Oakes-Renner relations (G.O.R) follows directly from the soft pion theorem

as will be recounted here.

Start with the observation:
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m2
π = 〈π | H | π〉 (2.79)

with the soft pion theorem, one obtains

m2
π =
−1

f 2
π

〈0 | [Qb
5, [Q

a
5,H]] | 0〉. (2.80)

Noting the fact that Qa
5 is the generator for the chiral transformation, for any local operator,

we can write

[Qa
5,O] = −i δ

δαa
O (2.81)

with the corresponding symmetry transformation

ψ → e−iα
aTaγ5ψ. (2.82)

This gives us a shortcut to perform the commutator: effecting the transformation on O and

extract the piece that is linear with αa !

One can then obtain, with relative ease,

[Qa
5,H] = [Qa

5, ψ̄Mψ]

= −ψ̄γ5{T a,M}ψ

[Qb
5, [Q

a
5,H]] = ψ̄{T b, {T a,M}}ψ

(2.83)

and finally reaches:

m2
π = − 1

f 2
π

〈0 | ψ̄{T b, {T a,M}}ψ | 0〉. (2.84)

For example, the case for SU(2)A, consider π0, we have

m2
π = − 1

f 2
π

(mu +md)〈0 | q̄q | 0〉 (2.85)

where q̄q is either ūu or d̄d
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2.5.3 GOLDBERGER-TREIMAN RELATION

Another application of PCAC is the derivation of Goldberger-Treiman relation [14].

Consider the axial current of the nucleon:

AaµN = gψ̄Nγµγ5τ
aψN (2.86)

where ψN =

 p

n

 is the iso-spinor representing proton and neutron.

With PCAC, the pionic contribution to the axial current can be written as:

Aaµ pion = fπ∂µΦa
π (2.87)

Assuming the total axial current is given by the sum of the above, we obtain:

∂µAaµ = −fπm2
πΦa

π = igψ̄Nγ5{τa,M}ψN + fπ∂
2Φa

π. (2.88)

In the case of identical nucleon masses MN :

(∂2 +m2
π)Φa

π = −i g
fπ
MN ψ̄Nγ5(2τa)ψN (2.89)

This formally identify gπNN = gMN

fπ
, commonly known as the Goldberger-Treiman relation.

In application, g = 1.25 instead of 1 due to the fact that the axial current of the nucleon

is renormalized, then

gπNN = g
MN

fπ
≈ 12.6, (2.90)

compared with the experimental value extracted from pion-nucleon scattering experiments

[16]
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g2
πNN

4π
= 14.11± 0.05(statistical)± 0.19(systematic)

⇒ gexpπNN ≈ 13.3

(2.91)

which is in remarkably close agreement.

We see that the equation relates the quantities of weak interaction to the coupling of the

strong pion nucleon interaction. The reason behind its success is due to the fact that the

two phenomena are related by a symmetry, namely, the chiral symmetry.

2.6 ORDER PARAMETER, PHASE TRANSITION AND SYMMETRY

BREAKING

2.6.1 ORDER PARAMETER

In a ferromagnetic system, in addition to temperature and external magnetic field, the state

of the system is characterized by a thermodynamic variable that is conjugate to the external

field: the magnetization. This useful variable specifies the phase of the system and is termed

the order parameter [2, 17]:

Definition: The order parameter for a phase transition is defined as a quantity which

vanishes in one phase (the disordered phase) while being non-zero in the other phase (the

ordered phase)

The order parameter, temperature and the external thermodynamic field together define

a surface of the equation of state of the system. Shown below is a typical graph for a

ferromagnetic system.
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B

T
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ferro.
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critical
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T< T>Tc

M = 0

Figure 1: Phase diagram for a ferromagnet. The surface of the equation of state is de-

fined by the magnetization M (the order parameter), the external magnetic field B and the

temperature T

.

As the system undergoes a phase transition, the order parameter changes along the way.

We call the phase transition

• first order if the change in order parameter is discontinuous,

• second order if the change is continuous.

In general, the definition of the order parameter is not unique. One can usually associate

it with the thermal average (or vacuum expectation value) of an observable. Famous exam-

ples include the magnetization per spin m in a ferromagnet, density difference ρliquid−ρgas in

the liquid-gas phase transition of a fluid, the condensate 〈ψ̄ψ〉 in the chiral phase transition,

etc.
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2.6.2 PHASE TRANSITION AND SYMMETRY BREAKING

A Phase transition usually manifests itself in the breaking of a symmetry3, for example, in the

case of zero field ferromagnetic system, it involves the spontaneous breaking of the rotational

symmetry: when the magnetization selects a certain direction in space. The breaking of the

symmetry, in turn, is reflected in the behavior of the order parameter. The magnitude of

the order parameter tells us how badly the symmetry is broken, while the sign or direction

of it tells us the nature of the breaking.

In this work we will focus on the study of dynamical chiral symmetry breaking at finite

temperature and density. The current mass of the fermion is the external thermodynamic

field variable, while the order parameter conjugate to the field is the quark condensate.

We are mainly interested in the zero current mass limit, which is analogous to the zero

magnetic field limit of a ferromagnetic system. We shall plot the condensate as a function

of temperature and chemical potential to study the nature of phase transition for various

systems at finite temperature and density.

2.6.3 LANDAU THEORY FORMULATION OF THE CHIRAL SYMMETRY

BREAKING

Here we make an attempt to illustrate the connection between the functional approach of

the quantum field theory and the Landau formulation in studying symmetry breaking. We

will restrict ourselves to consider the following Nambu-Jona-Lasinio-type model [18]:

Z =

∫
Dψ̄Dψ ei

∫
ψ̄(i/∂−m)ψ+G[(ψ̄ψ)2+(ψ̄iγ5ψ)2] (2.92)

In the Landau formulation, the order parameter is singled out as the collective variable

representing the degree of freedom of a phase transition.

Casting in the functional integral formalism:

3It is, however, not always the case. The liquid-gas phase transition, for example, is not associated with
spontaneous symmetry breaking.
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Z = e−βF [T,m] =

∫
dµ e−βLF [µ,T,m] (2.93)

where LF [µ, T,m] is the Landau function.

The state of the system is specified by

∂LF
∂µ

∣∣∣∣
µ→µc

= 0 (2.94)

with µc being the value of the order parameter of the system.

Observe that

eiG
∫

(ψ̄ψ)2 =

∫
Dσ ei

∫
[−σψ̄ψ− 1

4G
σ2]

eiG
∫

(ψ̄iγ5ψ)2 =

∫
Dπ ei

∫
[−πψ̄iγ5ψ− 1

4G
π2]

(2.95)

One can rewrite the original generating functional as:

Z =

∫
Dψ̄ψDσDπ ei

∫
ψ̄(i/∂−m−σ−iγ5π)ψ− 1

4G
[σ2+π2]

=

∫
DσDπ ei[−iT r ln[(i/∂−m−σ−iγ5π)]−

∫
1
4G

[σ2+π2]]

(2.96)

Assuming only σ has a non-vanishing vacuum expectation value σ0, and identify:

LF [σ,m] = −iT r ln[(i/∂ −m− σ)]−
∫

1

4G
σ2 (2.97)

We determine

−iT r −1

(i/∂ −m− σ0)
=

σ0

2G
(2.98)

In the vacuum limit: Z ≈ eiLF [σ0,m]

one gets:
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−iT r −1

(i/∂ −m− σ0)
=

σ0

2G
= − ∂

∂m
(−i lnZ) = 〈ψ̄ψ〉 (2.99)

The same result can be obtained from the Schwinger-Dyson equation or mean field method

under Hartree approximation. One can see how the condensate takes the role as an order

parameter and the non-perturbative feature (the existence of 1
G

factor) of the symmetry

breaking.
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3.0 QCD POTENTIAL MODELS

In this chapter 1, we will examine the in-medium chiral symmetry breaking in confining po-

tential models of QCD. The knowledge of QCD at finite temperature and density is essential

to understand physical systems such as neutron stars, the early universe and the heavy-ion

collision experiments at RHIC and LHC [20, 21]. Many of the interesting features are non-

perturbative, in fact, even the hope that QCD at large temperature is perturbative may be

misplaced as the resulting theory maps to a confining three dimensional version of QCD.

Therefore, it is important to develop non-perturbative methods for the analysis of QCD and

the relating models.

We shall mainly focus on two static potential models motivated by Coulomb gauge QCD:

contact and linear potential. The former is structurally similar to the Nambu-Jona-Lasinio

models [18], while the latter is more physically motivated as it incorporates the phenomenol-

ogy of confinement in the strong interactions. The infrared divergence problem in the linear

model will be discussed, and the inclusion of polarization effects is proposed as a resolu-

tion. Schwinger-Dyson equations will be employed to extract the phase diagrams of the

models; we are especially interested in how the observables and phase structures depend on

the truncation scheme one chooses. Results and discussions will be presented at the end of

the chapter.

1The research in this chapter is published in “Confinement models at finite temperature and density”
[19].
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3.1 CONFINEMENT MODELS

3.1.1 LINEAR AND CONTACT MODELS

As our starting point, we shall consider the Lagrangian density

L[x] = ψ̄x(i 6 ∂ −m)ψx −
1

2

∫
d4y δabVx,yψ̄xγ

0T aψxψ̄yγ
0T bψy (3.1)

with ψ, ψ̄ being the fermionic fields.

The form of the Lagrangian is motivated from QCD in Coulomb gauge 2, upon neglect-

ing the transverse gluons. The potential is formally identified as the generalized Coulomb

potential [22, 23]

δabVx,y ←→ 〈0 |
(
~x a

∣∣∣∣ 1

~∇ · ~D
(−~∇2)

1

~∇ · ~D

∣∣∣∣ ~y b) | 0〉 (3.2)

where Dacµ = ∂µδ
ac − gfabcAbµ is the adjoint covariant derivative, with a, b, c being color

indices.

For our study, we will consider the following two potentials

• the contact model:

V [~r] = λδ[~r] ←→ V [~k] = λ (3.3)

• the linear confinement model:

V [~r] = −3

4
br ←→ V [~k] =

6πb

k4
(3.4)

where b is the string tension, with its phenomenological value being approximately

0.2 GeV2.

2The derivation of the Lagrangian of QCD in Coulomb gauge is detailed in Appendix B.3.2.
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Note that for the linear potential, the Fourier transform is not well-defined:

V (r) =

∫
d3k

(2π)3

6πb

k4
eikr cos[θ]

=
3b

π

∫
dk k2 1

k4

sin[kr]

kr
.

(3.5)

The integral is infrared divergent. However, if we consider

dV (r)

dr
=

1

4π2

∫
dkdz k2ikz

6πb

k4
eikrz, (3.6)

The integral is finite and can be evaluated exactly as

dV (r)

dr
=

3b

2π

∫
dk ik3 1

k4

2i(−kr cos[kr] + sin[kr])

k2r2

= −3

4
b,

(3.7)

effectively one has

V̄ [r] = V [r]− V [0] = −3

4
br. (3.8)

It is in this context that we identify the Fourier transform pair for the linear potential.
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3.1.2 THE GAP EQUATION AT ZERO TEMPERATURE

Starting with the generating functional

Z =

∫
Dψ̄Dψ ei

∫
L+η̄ψ+ψ̄η, (3.9)

and recall Z = eiW , we can derive the Schwinger Dyson equation for the two point function:

δ2W
δη̄δη

=
1

i/∂ −m
δ+

−
∫
d4zd4z′ Vz,z′T

aT aγ0
IJγ

0
I′J ′S01I(x, z

′)[
δ4W

δη̄J(z′)δη̄J ′(z)δηI′(z)δη(y)

− i δ2W
δη̄J(z′)δηI′(z)

δ2W
δη̄J ′(z)δη(y)

+ i
δ2W

δη̄J(z′)δη(y)

δ2W
δη̄J ′(z)δηI′(z)

].

(3.10)

The diagrammatic representation [24] reads:

Figure 2: Schwinger-Dyson equation for the full fermion propagator. The instantaneous

potential is represented by the vertical gluon line.

For our purpose, we will begin with one simple truncation scheme: neglecting the vertex

correction (last diagram on the RHS). Moreover, the second diagram automatically vanishes

in the present case due to the fact that Tr[T ] → 0. Under this truncation scheme, the gap

equation can be written as: (with color factor explicitly shown)
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S−1
12 = S−1

0 12 − iVx,y
N2
c − 1

2Nc

[γ0Sxyγ
0]12 (3.11)

To solve this in a self-consistent manner, we introduce the following Ansätz for the 2 point

function

δ2W
δη̄δη

=

∫
d4k′

(2π)4

1

A0k′0γ
0 − A~k′ · ~γ −B

e−ik
′·(x−y). (3.12)

Substituting into the gap equation 3.11, one obtains

A0 → 1

M [~k] =
m+ 2

3

∫
d3k′

(2π)3
V~k−~k′

M~k′
ε~k′

1 + 2
3

∫
d3k′

(2π)3
V~k−~k′ k̂ · k̂′

|~k′|
ε~k′

1

|~k|

ε[~k] =

√
~k2 +M [k]2

(3.13)

where we have introduced the constituent mass function M(k) = B
A

, to be distinguished from

the current mass m. Observe that M [k] appears on both side of the equation, and should

be solved self-consistently.

3.1.3 DCSB AT T = 0

3.1.3.1 THE CONDENSATE The quark condensate is the order parameter for dy-

namical chiral symmetry breaking. With the Ansätz 3.12 for the propagator, we obtain the

expression

〈ψ̄ψ〉 =

∫
d3k′

(2π)3
(−2)

M [~k′]

ε~k′
Nc. (3.14)

The key observation in DCSB is that even at m→ 0, the condensate can attain a non-zero

vacuum expectation value due to non-perturbative effects.
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3.1.3.2 CONTACT MODEL AT T = 0 In the case of contact potential V [|~k|] = λ,

the gap equation simplifies to

M = m+
2

3

∫ Λ d3k′

(2π)3
λ
M~k′

ε~k′

= m+
1

3π2

∫ Λ

dk′ k′
2
λ
M

ε′
.

(3.15)

Similar to the case of NJL-model [18], the theory is non-renormalizable, meaning that a

regularization scheme is needed in order to define the model properly. We shall employ the

three-momentum noncovariant cutoff scheme by introducing the cutoff parameter Λ, which

serves as the energy scale of the problem. From now on, we shall express all quantities in

units of Λ within the discussion of contact model.

In the limit of vanishing current mass m = 0, M = 0 is always a solution, the system is

said to be in Wigner mode. However, by inspecting the gap equation 3.15, one can deduce

that non-trivial solution can exist if

λ > λc = 6π2, (3.16)

where we define λc as the critical coupling constant. With the non-trivial solution, the

system is said to be in the chiral broken phase 3.

The solution to the gap equation can be obtained by root-finding methods 4, the case

for λ = 3λc is presented:

3Strictly speaking, for every system considered, one needs to check whether the non-trivial solution
corresponds to a lower energy than the trivial one. Likewise, at finite temperature and density, the non-
trivial solution must be shown to lead to a lower value in the thermodynamic potential [18]. It is shown to
be true for a wide class of potentials [25]. For the various models we consider, we believe it is the case.

4In the case of contact potential, the constituent mass function is momentum independent. Given the
current mass m, one simple way to obtain the corresponding constituent mass M is by graphical method:
plotting both sides of the gap equation 3.15 as a function of M and looking for the intersection.
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Figure 3: Solution to the gap equation for contact potential at λ = 3λc. At m = 0, non-trivial

solution exists (M = 1.9). All quantities in units of Λ.

3.1.3.3 LINEAR MODEL AT T = 0 For the linear potential V [|~k|] = 6πb

|~k|4
, the solution

to the gap equation is momentum dependent 5:

5Generally, the integral equation can be solved by minimization. Other methods like iteration and
simulated annealing can be applied.
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Figure 4: Solution to the gap equation for linear potential. All quantities in units of GeV.

Current mass m is set to zero.

The constituent mass function M [k] approaches the perturbative limit (current quark

mass m) in the ultraviolet. The function is enhanced in the zero momentum limit, the value

of M(0) describes the dynamical breaking of the chiral symmetry. It can be used as a proxy

for the quark condensate, which is the conventional order parameter of choice for DCSB.

3.2 FINITE TEMPERATURE

3.2.1 GAP EQUATIONS AT FINITE TEMPERATURE

At finite temperature and density, the interesting quantity is the thermal average instead of

the vacuum expectation value. The imaginary time formalism amounts to replacing
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∫
dk0 → i

1

β
Σωn . (3.17)

The Schwinger Dyson equation for the two point function becomes

S−1
12 = S−1

0 12 +
1

β

∑
ω′n

∫
d3k′

(2π)3
V~k′−~k

N2
c − 1

2Nc

[γ0Sω′n,~k′γ
0]12 (3.18)

Again, we make the Ansätz for the two point function

S[ωn, ~k] =
1

(iωn + µ′)γ0 − A~k′ · ~γ −B
. (3.19)

In the case of static potential model, where V does not depend explicitly on the Matsubara

frequency, one can evaluate the sum analytically [6]. Performing the sum over ω′n = (n+ 1
2
)2π
β

,

we arrive at the gap equations:

B[~k] = m+
2

3

∫
d3k′

(2π)3
V~k−~k′

B~k′

E~k′
(1− n− n̄)

A[~k] = 1 +
2

3

∫
d3k′

(2π)3
V~k−~k′ k̂ · k̂′

A~k′|~k′|
E~k′

1

|~k|
(1− n− n̄)

µ′[~k] = µ+
2

3

∫
d3k′

(2π)3
V~k−~k′(n− n̄)

(3.20)

with

E~k =
√
A~k

2|~k|2 +B2
~k

n =
1

1 + eβ[E−µ′]

n̄ =
1

1 + eβ[E+µ′]
.

Note that the condensate at finite temperature is still given by

〈ψ̄ψ〉 =

∫
d3k′

(2π)3
(−2)

M [~k′]

ε~k′
. (3.21)

The system of coupled integral equations must be solved simultaneously. One can generally

solve it using iterative method. Other methods especially suitable for the contact model has

been developed and will be discussed in section 3.4.1.2.
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3.2.2 INFRARED DIVERGENCE IN THE GAP EQUATIONS

The gap equations for the linear model are infrared divergent due to the 1
k4

momentum de-

pendence of the potential. At zero temperature, it presents no problem since the constituent

mass function M = B
A

remains divergence-free although B and A are separately infrared

divergent. At finite temperature, as seen in the gap equation 3.20, the thermal weight func-

tions n and n̄ depends explicitly on the divergent A6. Thus, the infrared divergence forces

them to unity, and renders the finite temperature formalism useless.

Past attempts to resolve the issue include:

• replace E~k → E~k − E0 in the thermal weight functions, as suggested by Davis and

Matheson [26], who first noted the nonsensical result of the above,

• replace E~k →
√
~k2 + (B[~k]

A[~k]
)2 in the thermal weight functions, suggested by Alkofer et al.

[27], we shall denote this procedure as “AAL”,

• reformulate the thermodynamic trace to sum over only the color singlet states, suggested

by the Orsay group [28].

None of these resolutions seem satisfactory. For the first two cases, the substitutions

are completely ad hoc, although they may still be good approximations. The last approach

is physically motivated, however, one expects the non-singlet states to be automatically

removed by the Boltzmann factor instead of having to perform the projection explicitly.

In the next section, we demonstrate a simple resolution by suggesting an alternative

truncation scheme.

3.2.3 POLARIZATION EFFECTS

3.2.3.1 RING APPROXIMATION Infrared divergences can normally be removed by

incorporating additional physical effects (such as bremsstrahlung) or by summing additional

diagrams. In the present approach, the latter can be implemented by adapting a different

6The thermal weight functions depends on generalized energy function E[~k] =
√
A2~k2 +B2 =

A

√
~k2 +M [k]2, which is infrared divergent even if the constituent mass function is infrared safe.
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truncation scheme. Specifically, we consider the ring approximation to the full interaction

potential 7:

Figure 5: Gap equations with polarization insertions.

The above approximation can also be obtained by including the suitable set of diagrams

in the vertex correction (the four-point function) in SDEs. Shown below is a simple demon-

stration of how the ring diagrams enter the gap equations through a different truncation of

the 4 point functions:

7The approximation was first employed by Brueckner and Gell-Mann [29] as the resolution of infrared
divergence problem in the degenerate electron gas problem.
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Figure 6: The origin of ring contribution in the gap equations: the four-point function. For

comparison, see Figure 2.

Recall that in the present model, the potential is not dynamical, and hence can not have

an Schwinger-Dyson equation in the strictest sense. The dressing of the potential in Figure

5 serves only to illustrate our truncation scheme.

3.2.3.2 EXPRESSION OF THE RING To implement the new truncation scheme,

one needs to replace the bare potential with the dressed one

V [k] −→ Vring[k0, ~k] =
V [~k]

1 + i1
2
nfV [~k]Π[k0, ~k]

(3.22)

where Π[k] is the ring integral

Π[k0, ~k] =

∫
d4k′

(2π)4
Tr[γ0Sk′γ

0Sk′−k]. (3.23)

The factor of 1
2

comes from the color trace, and nf is the number of flavors.

In general, the dressing of the potential will make it k0 dependent (or equivalently time-

dependent), which in turns substantially complicating the solution of the gap equations.

However, the dominant infrared contribution to the ring potential is in the static limit:
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k0 → 0. We shall restrict our attention only to this limit. The resulting gap equations

remains the same as in equation 3.20, except V [~k]→ Vring[k0 = 0;~k].

At zero temperature, the ring integral is divergent and needs to be regulated. Here we

record the results in the perturbative limit under various regularization schemes:

• 4D regularization

Π = i
1

4π2

∫ 1

0

dx [
1

2
Λ2

4D − x(1− x)2~k2 ln
Λ2

4D

∆
] (3.24)

• Dimensional regularization

Π = i
1

4π2

∫ 1

0

dx − x(1− x)2~k2[ln
µDR
∆

+
2

ε
+ ln(4π)− γ] (3.25)

• 3D regularization

Π = −i 1

4π2

∫
dx x(1− x)2~k2 ln

4Λ2
3D

∆
(3.26)

where ∆ = M2 − x(1− x)k2

As expected, the integral depends on the regularization scheme.

For the case of a non-renormalizable theory (the contact potential), the specification of

regularization scheme becomes part of the model. One can simply treat Λ as a parameter of

the model.

For the linear case, we consider the renormalized integral:

Π[k0, ~k] = [
Ik0,~k
~k2
−
Iks0, ~ks
~ks

2 ](~k2) (3.27)

where ks0, ~ks is the subtraction point, note that the renormalized integral is scheme indepen-

dent.

Now we focus on the computation of the ring integral at finite temperature and density.

The relevant Matsubara sum is given by:
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Π =
i

β

∑
ω′n

∫
d3k′

(2π)3
Tr[γ0Sk′γ

0Sk′−k]. (3.28)

It is useful to separate the sum into the vacuum part and the matter part:

Π = Πvac + Πmat

with Πvac as given above.

For the matter piece, we again present the result in the perturbative limit:

Πmat =− i

π2

∫
dk′

k′2

ε′
(nε′ + n̄ε′)

[1 +
1

8k′|~k|
[(4ε′k0 − 4ε′

2 − k2)] ln
k2 − 2k0ε

′ + 2k′|~k|
k2 − 2k0ε′ − 2k′|~k|

+

1

8k′|~k|
[(−4ε′k0 − 4ε′

2 − k2)] ln
k2 + 2k0ε

′ + 2k′|~k|
k2 + 2k0ε′ − 2k′|~k|

]

(3.29)

where

n(E) =
1

1 + eβ(E−µ)

n̄(E) =
1

1 + eβ(E+µ)
.

Several interesting limits of the above include:

• k0 = 0, general |~k|

−i
π2

∫
dk′

k′2

ε′
[n+ n̄][1 +

1

8k′|~k|
(−4ε′

2
+ |~k|

2
) ln(
|~k| − 2k′

|~k|+ 2k′
)2] (3.30)
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• k0 = 0,|~k| → 0

−i
π2

∫
dk′

k′2

ε′
(n+ n̄)(1 +

ε′2

k′2
) (3.31)

Especially, at M → 0, we obtain the well known result

lim
|~k|→0

Imat[k0 = 0, |~k|,M → 0] = −i(1

3
T 2 +

µ2

π2
) (3.32)

• k0 6= 0, |~k| = 0

For this case, the integral becomes

Πmat →
i

π2

∫
dk′ (n+ n̄)

k′2

ε1
[
ε1(2ε1 − k0)

k0(k0 − 2ε1)
+ k0 → −k0], (3.33)

which is clearly zero.

As a simple illustration of how the ring can regulate the infrared divergence of the linear

potential, we consider only the matter part of the ring in the static, long wavelength and

massless limit (as shown in equation 3.32). The ring potential becomes

Vring =
V

1 + V 1
2
iΠ
−→ 6πb

k4 + (3πb)nf (
1
3
T 2 + µ2

π2 )
.

Clearly, the potential is no longer infrared divergent after the introduction of the ring integral.
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3.3 PHASE STRUCTURE OF QCD

QCD at finite temperature and density is a very active field of research [30]. The knowledge

of the equation of state of QCD, especially, the nature of chiral phase transition, is essential

for understanding experimental data. Mapping out the phase diagram of QCD is a gigantic

task. It demands a complete understanding of both the non-perturbative and perturbative

aspects of the strong interactions. In the meantime, competing theories, usually applicable

only in a small region of the phase diagram, are making various speculations on the properties

of QCD phase structures. The final settlement of issues , however, should await the discovery

in the experiments at RHIC, LHC and FAIR. [31, 32, 33].

The current consistent picture from lattice calculations seems to suggest that at µ = 0,

the phase transition is second order in nature for massless quarks. The agreed value of Tc is

170MeV [34].

At T = 0, while lattice study suffers from the notorious negative sign problem, many

models [18, 35] suggest that the chiral symmetry restoration at finite µ is first order in

nature. If this is true, it may be argued that a tricritical point exists in QCD: a change of

order of phase transition from second order to first order [36].

Here is an illustration for a possible phase diagram of QCD:

47



¹

Tc

T

P

Chiral symmetry
broken

Chiral symmetry 
restored

Figure 7: The schematic phase diagram of QCD with 2 massless quarks. The dashed line

(red) represents second order transition, the solid line (blue) is the first order transition.

The point P is tricritical. Tc ≈ 0.17GeV from lattice calculations.

Note that in real QCD with non-zero current quark masses, the second order phase

transition becomes a crossover. The tricritical point would then be a critical end-point for

the line of first order phase transition.

3.4 PHASE STRUCTURE OF POTENTIAL MODELS

In the following, we will study the phase structures for various potential models. We will

employ the zero momentum limit of the constituent mass function M0 = M [k → 0;T, µ]

as the proxy for the chiral condensate. By plotting M0 as a function of temperature and

chemical potential, we can determine the phase structures of the contact and potential
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models. We are especially interested in how the inclusion of polarization effects alters the

phase diagrams.

The coupled gap equations are solved with various approaches. Typically, we discretize

the equations on the momentum grids and employ minimization routine based on modified

Levenburg-Marquardt algorithm. We also attempt iterative methods and sometimes combi-

nations of both iteration and minimization. A variety of analytic approximations are applied

to the calculation of Π[k] as the full momentum dependence of the ring is usually the most

time-consuming part of the calculation. The results presented below are borne out of several

months of computer works.

3.4.1 RESULTS: CONTACT POTENTIAL AT T > 0

Recall that for the contact potential, one requires an UV cutoff Λ to regulate the integrals.

Also there is a critical coupling λc = 6π2, below which chiral symmetry breaking ceases to

exist 8.

For the purpose of discussion, we set λ = 1.5λc and fix the scale at Λ = 370 MeV. The

dynamical quark mass, chiral restoration temperature and the critical chemical potential are:

M [T = 0, µ = 0] ≈ 260 MeV, Tc ≈ 150 MeV and µc ≈ 300 MeV. The condensate works out

to be (−150 MeV)3, a factor of 2 too small compared to the physical value. The numerical

values of these observables shift slightly with other choices of the parameters.

Now we turn to the investigation of phase structure.

3.4.1.1 PHASE MAP Firstly, we present the phase map 9 for the case of bare contact
potential:

8Again we shall express all quantities in Λ.
9The term “phase map” refers to the three dimensional plot of the order parameter against temperature

and chemical potential. We reserve the term “phase diagram” to describe the plane of phase transitions: the
graph of transition temperature versus chemical potential.
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Figure 8: Dynamical mass versus temperature and density for bare contact model. λ = 3λc

We make the following important observations:

• The M0 = 0 plane of the phase map defines the phase diagram. At µ = 0, we observe

Tc = 0.38.

• The chiral symmetry phase transition is second order for all chemical potential below

µ?(λ = 1.5λc) ≈ 0.53. Afterward, the transition is first order.

• Multiple solutions (lower band) start to emerge for larger µ accompanying the first order

transition, they are expected to have higher free energy as demonstrated by their lack of

continuity with the well-behaved low-µ solutions.
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3.4.1.2 ORDER OF PHASE TRANSITION AND THE EXISTENCE OFMUL-

TIPLE SOLUTIONS For the case of bare contact potential, it becomes particularly

transparent to understand the order of phase transitions.

The solution to the gap equation in contact case is a constant function in momentum,

this allows easy extraction of solution using root-finding method.

Recall that the gap equation takes the form:

1 =
1

3π2
λ

∫ Λ

dk′k′
2 1

E ′
[1− n− n̄]

µ′ = µ+
1

3π2
λ

∫ Λ

dk′[n− n̄].

(3.34)

Define

F [T, µ,M ] =

∫ Λ

dk′k′
2 1

E ′
[1− n− n̄], (3.35)

given T and µ, the equation

FTµ[M ] = 1

defines the solution of the gap equation.

The study of F allows us to understand the order of the phase transition and the origin

of the multiple solutions in region of larger µ. As we shall see, depending on the value of µ,

the F function can behave very differently. We shall focus on the structure of F function in

both the small µ and large µ regions.

A typical F function for small µ looks like:
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Figure 9: Typical F [M ] function for small µ. The graph shows that the phase transition is

second order in nature.

Clearly, we see that only one solution exists for each T , µ. Also we see that the mass

goes to zero when T → Tc, signaling a second order phase transition.

Similarly, we look at a typical F function for large µ:
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Figure 10: Typical F [M ] function for large µ. The diagram shows that the phase transition

is first order in nature

We observe that two solutions exist. Also we see that the mass does not go to zero when

T → Tc, signifying a first order phase transition.

3.4.1.3 PHASE MAPPING BY DIFFERENTIAL EQUATION For reference

purpose, we present a completely different method to map out the phase diagram. We

illustrate this method for the contact case:

The gap equation reads:

1 =
1

3π2
λ

∫ Λ

dk′k′
2 1√

k′2 +M2
[1− n− n̄] (3.36)
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with

n =
1

1 + eβ(ε−µ′)

n̄ =
1

1 + eβ(ε+µ′)

ε =
√
k′2 +M2.

Differentiating with respect to β on both side, we get

0 =

∫ Λ

dk′k′
2 d

dβ
[
1

ε
(1− n− n̄)]

and with some algebra, we reach

dM

dβ
=

∫ 1

0
dk′k′2 1

ε
[n(1− n)(ε− µ′) + n̄(1− n̄)(ε+ µ′)]∫ 1

0
k′2 1

ε2
[(1− n− n̄)M

ε
− [n(1− n) + n̄(1− n̄)]βM ]

dM

dµ′
=

∫ 1

0
dk′k′2 1

ε
β[−n(1− n) + n̄(1− n̄)]

M
∫ 1

0
k′2 1

ε2
[(1− n− n̄)1

ε
− β[n(1− n) + n̄(1− n̄)]]

.

(3.37)

Given the initial conditions (the non-trivial solution of the gap equation at zero temperature

and zero density), we can evolve the equations and map out the phase diagram. This

approach is tested and gives identical solutions as presented above.
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3.4.1.4 THE EFFECT OF λ It is also interesting to see how the phase diagram de-

pends on the coupling λ. We define ξ = λ
6π2 and study the collection of phase diagrams:
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Figure 11: The phase diagram for bare contact interaction at various couplings. µ? signifies

the point at which the order of phase transition goes from second order to first order.

First order phase transitions become more and more prominent as λ increases (the

points to the right of µ?). Also, we observe an approximate linear scaling relations: (below

ξ = 1.2, first order phase transitions cease to exist, the phase transitions are all second order

in nature)

µc[λ] ≈ 2Tc[λ] ≈ 2µ?[λ] (3.38)
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3.4.1.5 EFFECTS OF RING Lastly we investigate the effect of ring inclusion by

plotting the phase map for the following three potential:

• V1 = λ

• V2 = λ
1+i 1

2
Π[0,0]λ

• V3 = λ

1+i 1
2

Π[0,~k]λ
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Figure 12: Dynamical mass versus temperature and density for the contact model with: (i)

bare potential (red) (ii) static, zero momentum ring (green) (iii) static, momentum dependent

ring (blue). For all cases, λ = 1.5λc

We observe that the critical temperature is strongly affected, in fact, it drops from 0.38

to 0.17 with the inclusion of static, zero momentum ringΠ[0, 0], even further to 0.06 with the

static, full momentum ring. Moreover, first order phase transitions become dominant once

we include the polarization effects.
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3.4.2 RESULTS: LINEAR POTENTIAL AT T > 0

For the linear potential, one faces the problem of infrared divergence. We shall illustrate

both the Alkofer’s prescription (AAL) and the ring approximation in the discussion. Within

AAL, we find: Tc ≈ 38 MeV, µc ≈ 75 MeV, M0 ≈ 80 MeV and the condensate (−110 MeV)3.

All these fall below the expected values. However, employing a string tension b ≈ 1.8 GeV

bring them all into reasonable agreement with the physical values. Unfortunately, such a

large value of string tension is in severe conflict with quark model phenomenology and lattice

data.

3.4.2.1 PHASE MAP AND PHASE DIAGRAM We will first study the phase map

in Alkofer’s prescription.
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Figure 13: Dynamical mass versus temperature and density for bare linear model (AAL).

All quantities in GeV.

58



 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

T
c

µ’

Figure 14: Phase diagram for bare linear model (AAL). The red and green dots correspond

to second and first order phase transition respectively. All quantities in GeV.

The phase map and phase diagram for the linear case display similar features to those

of the contact potential. Again, we observe a change of the order of phase transition from

second order to first order at µ? = 43 MeV. The existence of tricritical point is consistent

with the expectation for real QCD.

3.4.2.2 EFFECTS OF RING Next we investigate the ring approximation approach

to the infrared divergence problem. It is important to note that the vacuum part of the ring

Πvac is non-zero and can drastically alter the long range behavior of the potential. This will

in turn ruin the agreement with heavy quark spectroscopy. Hence, we shall treat Πvac as if

it has already been incorporated in the 1
k4

potential, and only consider the matter piece of
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the ring.

The polarization effect introduces explicit temperature and density dependence to the

potential Vring. In fact, within perturbation theory, one has

Vring =
6πb

k4 + (3πb)nf (
1
3
T 2 + µ2

π2 )
.

The resulting potential is linear in small distance, while approaching zero at large distance,

i.e the potential is no longer confining at finite temperature.

Shown below is the phase map for static, long wavelength ring approximation Πmat[k0 =

0, ~k → 0]:
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Figure 15: Dynamical mass versus temperature and density for linear potential with matter

part of ring function under static, long wavelength limit. All quantities in GeV.
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We observe that the critical temperature drops from 38 MeV in AAL to 10 MeV in

Πmat[0, 0] approximation while µc remains unchanged. Parallel to the contact case, first

order phase transitions become dominant as we include the ring, and the tricritical point

ceases to exist.

3.5 CONCLUSIONS

We have investigated two types of confinement models motivated by Coulomb gauge QCD:

contact and linear potentials.

For the contact potential, we present the phase map for both the bare and ring versions.

The bare contact model exhibits many interesting features such as the existence of tricritical

point and the approximate linear scaling of Tc, µc with the coupling. The numerical values of

the constituent mass, condensate, critical temperature and chemical potential can be brought

into rough agreement with the physical expectations in QCD by an appropriate choice of

parameters. However, the incorporation of polarization effects drastically affects the phase

structure. The most prominent effects are the substantial drop in the critical temperature

(ruining phenomenology) and the dominance of first order phase transition.

For the linear potential, both the AAL prescription for the bare potential and the ring

approximation yield a chiral phase transition, contrary to the expectation of Davis and

Matheson. Especially, given the fact that large Nc limit tends to suppresses quark loop

effects, one can argue the bare linear potential studied here is an implementation of the large

Nc scenario. Our results then support the idea of quarkyonic matter argued by Pisarski and

McLerran [37]: the existence of confining but chirally symmetric phase. The summation of

ring diagrams is motivated as the resolution of the infrared divergence problem in the linear

potential. The numerical values for the constituent mass, condensate, critical temperature

and density can attain reasonable QCD limit if the string tension b is increased to 1.8 GeV.

Unfortunately this is at odds with the well-established quark model phenomenology and

lattice data, which requires b = 0.2 GeV. Therefore, it appears that naive static potential

model fail to describe the thermal properties of QCD.
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One may speculate such failure is due to the negligence of the transverse gluon in the

model. However, the study by Kloker [38] suggested that in the context of Coulomb gauge,

no considerable increase in mass function can be found even when the transverse gluon

effects are incorporated. Also, improving the truncation by including ring diagrams leads to

a worse agreement with data. We therefore judge that the problem lies in the model itself:

one cannot fulfill the many-body aspects of the theory (obtaining the right dynamical mass)

without compromising its few-body aspects (significantly alter the string tension b, ruining

meson spectrum phenomenology).
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4.0 QED3 AT T = 0

In this chapter1, we will study dynamical chiral and parity symmetry breaking of three-

dimensional quantum electrodynamics (QED3). The theory is popular for many reasons.

First, the confining property motivates its use as a model of QCD at high temperature in

the large Nf limit, where the non-abelian nature of the theory is suppressed [40]. In addition,

the capability of large scale dynamical masses generation makes it particularly relevant in

the modeling of beyond Standard Model physics [41]. More recently, QED3 has also been

used as a model field theory for condensed matter systems such as high Tc superconductors

and graphene.

One interesting feature of QED3 is that it is possible to introduce a Chern-Simons-like

term in the Lagrangian, which corresponds to a topological photon mass, and hence will

break parity and time reversal symmetries. Within the two-component fermions formalism,

it is possible to generate such a term dynamically at one loop order. Hence, the theory

exhibits both chiral and parity symmetry breaking.

The term “chiral symmetry” requires some explanations. Strictly speaking, as we shall

see in later section, in the context of 2-spinor representation, there is nothing to generate a

chiral symmetry that would be broken by a fermion mass term mψ̄ψ. That is, the massless

theory has no more symmetry than the massive one. However, if we consider Nf fermions in

the usual 4-spinor formalism, the theory exhibits a global U(2Nf ) symmetry [41] that can

be broken by a fermion mass term into U(Nf )×U(Nf ). It is in this context that we use the

term “chiral symmetry” in the present discussion.

In the study, we shall employ a variety of truncation schemes for the Schwinger-Dyson

equations. Particularly interesting is the gauge symmetry preserving Ball-Chu vertex. The

1The research in this chapter is published in “Parity symmetry in QED3” [39].
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robustness of a truncation can be examined by a theorem due to Coleman and Hill [42],

on which we shall discuss further in the later section. Results for both parity and chiral

symmetry breaking will be presented, with comments and discussions follow towards the

end of the chapter.

4.1 LAGRANGIAN

QED3 is quantum electrodynamics in (2 + 1) spacetime. The Lagrangian is given by

LQED =

∫
d3x ψ̄(i/∂ −m− g /A)ψ − 1

4
F 2 − 1

2ξ
(∂A)2 (4.1)

where Fµν = ∂µAν − ∂νAµ.

One key feature of the theory is that in three dimensional spacetime, ψ has units of

energy E, the photon field A has units of
√
E and most importantly,

α =
g2

4π
∼ E. (4.2)

This fact corresponds to the theory being super-renormalizable. It also provides a natural

energy scale, through which we shall express all our physical quantities.

4.2 2-SPINOR FORMALISM

In QED3, the Dirac algebra can be realized by the three 2× 2 Pauli matrices [43].

Recall the Pauli matrices σ1, σ2 and σ3 satisfy

[σi, σj] = 2iεijkσk

{σi, σj} = 2δij.
(4.3)
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With the metric

gµν =


1 0 0

0 −1 0

0 0 −1


the Dirac algebra is realized once we identify:

γ0 → σ3

γ1, γ2 → iσ1, iσ2.

It is easy to check that:

{γµ, γν} = 2gµν

Operationally, in a quantum field theory, the main difference between a 2-spinor formal-

ism and the usual 4-spinor formalism is in the evaluation of traces. Through some Dirac

gymnastics, we obtain:

{γµ, γν} = 2gµν

[γµ, γν ] = −2iεµνργρ

γµγν = gµν − iεµνργρ.

(4.4)

From these, we can obtain the following useful identities:
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Tr[γµ] = 0.

T r[γµγν ] = 2gµν

Tr[γµγνγρ] = −2iεµνρ

Tr[γµγνγαγβ] = 2{gµνgαβ − gµαgνβ + gµβgνα}

. . .

(4.5)

Note that within the 2-spinor formalism, the trace of 3 gamma’s (and other odd #’s above

3) is not zero! This property directly leads to the existence of dynamical parity symmetry

breaking, a point which we shall discuss later.

4.3 SCHWINGER-DYSON EQUATIONS

4.3.1 WARD IDENTITY AND TRUNCATION

We will be working on the Schwinger Dyson equations of QED3 with the 2-spinor formalism.

To do that, we need a truncation scheme, we choose to perform it by employing a vertex that

satisfies the Ward identity: the Ball-Chu vertex, so that we can perform a non-perturbative

study of the gap equations in a gauge invariant setting.

The Ball-Chu vertex, expressed in terms of the fermion propagator functions, can be

written as:

ΓνB.C [p, q] =
Aq + Ap

2
γν +

(q + p)ν

q2 − p2
[(Aq − Ap)

(q + p)ργ
ρ

2
− (Bq −Bp)]

where p, q being the momenta of the incoming and outgoing fermion respectively.

One can verify easily that the Ball-Chu vertex satisfies the Ward identity:

(q − p)νΓνB.C [p, q] = S−1
q − S−1

p
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where

S−1
p = Ap/p−Bp

It is useful to define

Ω1 =
Aq + Ap

2

Ω2 =
1

q2 − p2

Aq − Ap
2

Ω3 = − 1

q2 − p2
(Bq −Bp)

Rν = (q + p)ν

such that the Ball-Chu vertex reads:

ΓνB.C [p, q] = Ω1γ
ν + Ω2R

νRργ
ρ + Ω3R

ν

The familiar rainbow ladder truncation is obtained by approximating the full vertex with

the bare one. It can be described in a unified manner in the current formalism by setting:

Ω1 = 1

Ω2 = Ω3 = 0

It should be made clear that the Ward identity only restrict the longitudinal part of the

fermion-photon interaction. The transverse piece, on the other hand, should be formally

determined by the Schwinger Dyson equations, or subjected to further modeling. For our

study (with the exception of Curtis-Pennington vertex), as an implicit assumption of the

truncation scheme, we shall neglect the transverse contribution of the vertex.
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4.3.2 GAP EQUATION FOR THE FERMIONS

We shall consider the following equation:

Figure 16: Schwinger-Dyson equations for fermions.

which translates into

−iS−1 = −iS−1
0 − [(−igΓµB.C)iS(−igγν)iDµν ]

S−1 = S−1
0 − ig2[ΓµB.CSγ

νDµν ].
(4.6)

With the Ansätz:

Sp =
1

Ap/p−Bp

(4.7)

we have

Ap/p−Bp = /p−m+−ig2

∫
d3l

(2π)3

1

Al
2l2 −B2

l

[ΓµB.C(Al/l +Bl)γ
ν [l, p]Dµν [p− l]]

Finally we reach 2

2The corresponding gap equations in the 4-spinor formalism are identical to those presented here except
F → 0 and F → 2F .
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B[p] = m− ig2

∫
d3l

(2π)3

−1

A2
l l

2 −B2
l

[Ω1[Blg
µν + Allβ(−iεµβν)]Dµν+

Ω2[BlR
µRν + AllβR

µRρ(−iερβν)]Dµν+

Ω3All
νRµDµν [p− l]]

(4.8)

A[p] = 1− ig2

∫
d3l

(2π)3

−1

A2
l l

2 −B2
l

−1

p2
{Ω1[Al[P

µlν + P νlµ − (p · l)gµν ]− iεαµνBlPα]Dµν [p− l]+

Ω2[Al[P
µRν(l ·R) + lµRν(P ·R)−RµRν(p · l)]− iεαρνRµRρBlPα]Dµν [p− l]+

Ω3[Bl[R
µP ν ]− iεαβνRµPαAllβ]Dµν [p− l]}

(4.9)

The full photon propagator takes the form

Dµν =
−1

[k2 + F ]− (µCS−F)2k2

[k2+F ]

[gµν −
kµkν
k2
− i(µCS −F)εµνσ

kσ

[k2 + F ]
] + ξ

kµkν
k2

(−1)

k2
(4.10)

Here we allow for an explicit topological photon mass term µCS in the propagator. Such a

parity-breaking term may be introduced to the theory via a Chern-Simons-like term in the

Lagrangian:

LCS = µCS
1

4
εµναF

µνAα.

Alternatively, the topological photon mass can be dynamically generated. As we shall see, the

infrared limit of F captures the contribution of photon mass from the dynamical fermions.

We will go through the derivations of the ring functions F and F in the full photon propagator

in the next section.
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Figure 17: Schwinger-Dyson equations for the photon.

4.3.3 PHOTON PROPAGATOR

4.3.3.1 INTRODUCTION We shall consider the following Schwinger Dyson equation

for photon:

Dµν
−1 [k] = D(0)

µν

−1
[k] + ig2Tr[(ΓB.C)µSγνS]. (4.11)

It is useful to define

Πµν [k] = g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

Tr[ΓµB.C [l; l − k](A1/l 1 +B1)γν(A2/l 2 +B2)]

(4.12)

where

lµ1 =lµ

lµ2 =lµ − kµ

and we have:

Dµν
−1 [k] = D(0)

µν

−1
[k] + iΠµν [k] (4.13)
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4.3.3.2 TENSOR PROPERTIES Now we focus on the various tensor properties of

the photon propagator.

Starting with the bare photon propagator

D(0)
µν

−1
= −k2[gµν − (1− ξ)kµkν

k2
]− iµCSεµνρkρ, (4.14)

inverting gives

D(0)
µν =

−1

k2 − µ2
CS

[gµν −
kµkν
k2
− iµCSεµνρkρ] + ξ

kµkν
k2

(−1)

k2
. (4.15)

For the full photon gap equation:

Dµν
−1 = D(0)

µν
−1

+ iΠµν (4.16)

with

Πµν [k] = g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

Tr[ΓµB.C [l; l − k](A1/l 1 +B1)γν(A2/l 2 +B2)]

(4.17)

where

lµ1 =lµ

lµ2 =lµ − kµ.

We define:

iΠµν = −[gµν −
kµkν
k2

]F + iεµνρk
ρF (4.18)

Here, F is the usual polarization scalar, while the existence of F originates from the trace

Tr[γγγ].
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It is useful to work out:

F [k] = −1

2
[gµν − 3

kµkν
k2

]iΠµν (4.19)

F [k] =
1

2k2
εµνρkρΠµν (4.20)

Hence, the Schwinger-Dyson equation for the photon propagator can be rewritten as

Dµν
−1 = −k2[gµν − (1− ξ)kµkν

k2
]− iµCSεµνσkσ +−[gµν −

kµkν
k2

]F + iεµνρk
ρF .

Inverting the above gives:

Dµν =
−1

[k2 + F ]− (µCS−F)2k2

[k2+F ]

[gµν −
kµkν
k2
− i(µCS −F)εµνσ

kσ

[k2 + F ]
] + ξ

kµkν
k2

(−1)

k2
(4.21)

F [k] thus defined is rendered finite by projection: the UV divergence in Πµν is automatically

projected out. In fact, gauge invariance ensures kµΠµν = 0, and hence all projections

F [k] = −1

2
[gµν − x

kµkν
k2

]iΠµν (4.22)

are equivalent for any choice of x 3 [44].

On the other hand, F plays the role of a topological photon mass (similar to the bare

breaking term µCS), and is dynamically generated in the 2-spinor formalism.

Now, plugging in the Ansätz of the fermionic propagator in equation 4.7, we obtain the

final form of the ring functions F and F :

F = −i1
2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(TrI)[Ω̃F1 + Ω̃F2 + Ω̃F3] (4.23)

3This is not true if Ward identity is violated, for example, employing the bare vertex as in the rainbow
ladder approximation with the full fermion propagator. For RL, one needs to absorb the violating piece
(fixing x = 3) into the definition of the truncation.
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Ω̃F1 = Ω12A1A2[l1 · l2 − 3
(k · l1)(k · l2)

k2
]

Ω̃F2 = Ω2[A1A2{[2(l1 ·R)(l2 ·R)− (l1 · l2)R2]+

− 3

k2
(R · k)[(l1 · k)(l2 ·R) + (l2 · k)(l1 ·R)− (R · k)(l1 · l2)]}+

B1B2[R2 − 3
(k ·R)2

k2
]]

Ω̃F3 = Ω3[A1B2[(l1 ·R)− 3
(k · l1)(k ·R)

k2
] + A2B1[(l2 ·R)− 3

(k · l2)(k ·R)

k2
]

Rµ =2lµ − kµ

l1
µ =lµ

l2
µ =lµ − kµ

Ω1 =
A2 + A1

2

Ω2 =
1

l22 − l21
A2 − A1

2

Ω3 =− 1

l22 − l21
(B2 −B1)

and similarly

F = i
1

2k2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(TrI)[Ω̃F1 + Ω̃F2 + Ω̃F3] (4.24)

Ω̃F1 = 2Ω1[A1B2l1 · k − A2B1l2 · k]

Ω̃F2 = Ω2{A1B2[R2(k · l1)− (R · l1)(R · k)]− A2B1[R2(k · l2)− (R · l2)(R · k)]}

Ω̃F3 = Ω3A1A2[(k · l1)(R · l2)− (k · l2)(R · l1)]

Rµ =2lµ − kµ

l1
µ =lµ

l2
µ =lµ − kµ

Ω1 =
A2 + A1

2

Ω2 =
1

l22 − l21
A2 − A1

2

Ω3 =− 1

l22 − l21
(B2 −B1)
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4.4 PERTURBATIVE LIMIT OF THE POLARIZATION SCALARS

It is a useful exercise to study the perturbative expression of the two polarization scalars

generated dynamically in one loop calculation of the photon propagator.

Πµν [k] = g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

Tr[Γµ[l; l − k](A1/l 1 +B1)γν(A2/l 2 +B2)] (4.25)

where

lµ1 =lµ

lµ2 =lµ − kµ

and we define:

iΠµν = −[gµν −
kµkν
k2

]F + iεµνρk
ρF

hence:

F [k] = −1

2
[gµν − 3

kµkν
k2

]iΠµν (4.26)

F [k] =
1

2k2
εµνρkρΠµν (4.27)

The perturbative limit refers to:

F = −i1
2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(TrI)[Ω̃F1 + Ω̃F2 + Ω̃F3] (4.28)
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Ω̃F1 =2A1A2[l1 · l2 − 3
(k · l1)(k · l2)

k2
]

Ω̃F2 =0.

Ω̃F3 =0.

A =1

B =M

(4.29)

and similarly for F

F = i
1

2k2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(TrI)[Ω̃F1 + Ω̃F2 + χ̃F2 + Ω̃F3] (4.30)

Ω̃F1 =2[A1B2l1 · k − A2B1l2 · k]

Ω̃F2 =0.

Ω̃F3 =0.

A =1

B =M.

Performing the integral using Feynman trick would result:

F [k] =− 2α

∫ 1

0

dx
x(1− x)k2

E√
M2 + x(1− x)k2

E

F [k] =− αM
∫ 1

0

dx
1√

M2 + x(1− x)k2
E

(4.31)

In particular, in the limit of k2 → 0:

lim
k2→0

F [k]/k2 =− α

3M

lim
k2→0
F [k] =− α M

|M |

(4.32)
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4.5 COLEMAN-HILL THEOREM

We see in section 4.4 that the one-loop perturbative expression of F is given by

lim
k2→0
F [k] = −α M

|M |
.

In the chiral limit (M −→ 0+):

lim
k2→0
F [k] = −α.

The Coleman-Hill theorem [42] states that the above result is exact, i.e the topological

photon mass will receive no contribution from higher loop diagrams nor from the dressing of

fermionic propagator. The theorem is based on gauge invariance and power counting, here

we briefly recount the main ideas in the proof.

Consider the effective action of the electromagnetic fields, obtained by integrating over

the fermion field. We denote the resulting n-point vertex function (Lorentz indices sup-

pressed)

Γ(n)[p1, p2, . . . , pn]

pn = −
n−1∑
j=1

pj
(4.33)

with the delta function for the conservation of momentum factored out.

Gauge invariance requires

p1 · Γ(n)[p1, p2, . . . , pn] = 0, (4.34)

then we obtain (by differentiating p1 on both sides)

Γ(n)[p1, p2, . . . , pn] + p1 · ∂p1Γ(n) = 0. (4.35)
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Hence, we observe that Γ(n)[p1 → 0, . . .] = 0, or

Γ(n)[p1, p2, . . . , pn] = O[p1]. (4.36)

The same argument holds true for pj for j = 1, 2, . . . , n− 1, in particular, we note

Γ(n)[p1, p2, . . . , pn] = O[p1p2]

n > 2
(4.37)

We shall focus on the photon self-energy term F [0]. Two external legs of momentum ±k

should be connected to the general n-point functions, for simplicity, we will pick them to be

p1 and p2. The key argument for the Coleman-Hill theorem is that:

• if the two external lines land on two separate fermion loops, from equation 4.36, one

concludes the contribution is O[k2],

• if the two external lines land on the same fermion loop, from equation 4.37, one concludes

again that the contribution is O[k2], except when n = 2.

Given (k)F [k] ≈ O[k] for small k, any contribution that is of order O[k2] cannot con-

tribute to it. We conclude that the only contribution to F [0] is from bare n = 2 loop

diagram: the fermion loop with no photon line attached, i.e no dressing. This finishes the

proof of the Coleman-Hill theorem.

Figure 18: Two-loop corrections to F [k]. By Coleman-Hill theorem, the sum of their contri-

butions to F [0] should be exactly zero.
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On passing, we note that an arbitrary truncation of the Schwinger-Dyson equations will

not be consistent with the Coleman-Hill theorem. However, it would serve as a good test to

gauge how good a given truncation scheme is.

4.6 NUMERICS AND RESULTS

We shall present the results for the dynamical parity and chiral symmetry breaking in QED3.

For our numerical study, we shall work exclusively in Euclidean space 4. The order parameter

for chiral symmetry breaking is the condensate, which is given by

〈ψ̄ψ〉 = 2

∫
d3kE
2π)3

B

A2k2
E +B2

. (4.38)

One can equally well pick B(0) as the order parameter, in fact, inspection of equation 4.8

reveals their relation:

B(p2
E) −→ 2πα

2 + ξ

p2
E

〈ψ̄ψ〉 (4.39)

for large p2
E. This result holds true regardless of the choice of vertex approximation and the

same expression can be derived with operator product expansion [45].

4.6.1 STRATEGY OF SOLVING SDES

We summarize the major steps in solving the SDEs for the current problem:

• Firstly, one derives the hierarchy of SDEs.

• Then, one decides on a truncation scheme, e.g Ward identity preserving vertex ΓB.C .

The vertex can usually be written as a functional of the fermion propagator: Γ[S].

4For the convention of the transformations between Minkowski and Euclidean spaces, see appendix A

78



• With the truncation, the photon propagator can also be written as a functional of the

fermion propagator (Π[S]). At this point, one can solve the gap equations in terms of

fermion propagator only. Non-perturbative calculation then becomes a self-consistent

calculation.

• One obtains the various interesting quantities, such as the condensate.

• The accuracy of the truncation scheme can be checked with Coleman-Hill theorem.

We shall employ a variety of truncation schemes in the study: the rainbow ladder approx-

imation (RL), the central Ball-Chu vertex (CBC), the Ball-Chu vertex (BC), the Ball-Chu

with the Curtis-Pennington vertex (CP)[46, 47]. Their definitions are listed below:

ΓνRL[p, q] =γν

ΓνCBC [p, q] =
Aq + Ap

2
γν

ΓνBC [p, q] =
Aq + Ap

2
γν +

(q + p)ν

q2 − p2
[(Aq − Ap)

(q + p)ργ
ρ

2
− (Bq −Bp)]

ΓνCP [p, q] =ΓνBC [p, q] +
Aq − Ap

2

q2 + p2

(q2 − p2)2 + [M2
q +M2

p ]2

[(q2 − p2)γν − (/q − /p)(q + p)ν ].

The definition of CP vertex is motivated by multiplicative renormalization for fermions,

hence we shall only apply the vertex to the fermionic gap equations but not the photonic

one.

Finally, we choose to work in Landau gauge as it is particularly reliable for the class of

truncations considered here [48, 49].

4.6.2 PARITY SYMMETRY BREAKING

To study parity symmetry breaking, we classify the fermions according to the sign of their

mass functions M . It is useful to introduce the asymmetry parameter

η =
N+ −N−
N+ +N−

(4.40)
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where N+ is the number of fermions with mass M while N− is that for mass −M . At η = 0,

one obtains a parity-preserving vacuum: a system with
Nf
2

fermions of mass M , and an equal

number of fermions with mass −M . For η = 1, parity is maximally violated (Nf fermions

of the same type).

Presenting below is the graph of B(0) versus η for RL and CBC truncations:

Figure 19: Parity-breaking solution vs η. Pluses are RL and Xs are CBC.

Here we record the most important observations:

• For η < 0.4, stable iterative solutions exist for RL truncation.

• With η ' 0.4 within RL scheme, the iterative method yields a limit cycle: the itera-

tion oscillates between (B,A) ↔ (−B,A). However on closer investigation with other

numerical methods such as minimization, only trivial solution (B = 0) can be found,

suggesting that the cycle itself is not a solution of SDEs.
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• Similar behavior is found for CBC truncation, except that the transition asymmetry

becomes η = 0.35. However, between η = 0.35 to η = 1, the iterative approach displays

chaotic behaviors, meaning there is no solution for SDEs.

4.6.3 CHIRAL SYMMETRY BREAKING

Now we turn to the study of chiral symmetry breaking. In this case, we consider η = 0,

i.e
Nf
2

fermions in each of the ±M states. The solutions of the Schwinger-Dyson equations

under various truncation schemes are collected:
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Figure 20: A vs. p for various Nf (L). These curves are obtained in the CBC truncation and

correspond to Nf = 1, 2, 3, 4, 5, and 5.75 from top to bottom.
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Figure 21: B vs. p for various Nf (R). These curves are obtained in the CBC truncation

and correspond to Nf = 1, 2, 3, 4, 5, and 5.75 from top to bottom.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.001  0.01  0.1  1  10  100  1000

-Π

p

Figure 22: Vacuum polarization (Π = F
k2

) vs. momentum for various Nf . These curves are

obtained in the CBC truncation and correspond to Nf = 1, 2, 3, 4, 5, and 5.75 from bottom

to top.
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The study of large Nf QED3 by Appelquist [41] motivates the following behavior of B(0):

B(0) ∝ Nfe

−2π√
NA? /Nf−1 (4.41)

with NA
? = 64

π2 .

We shall fit the condensates obtained in various truncations with the following Ansätz:

〈ψ̄ψ〉(Nf ) = aNfe

−2π√
N?/Nf−1

(4.42)

The best-fit parameters are found to be:

a = 1.8

N?[RL] = 1.10NA
?

N?[CBC] = 1.00NA
?

N?[BC] = N?[CP ] = 1.21NA
?

NA
? =

64

π2

(4.43)
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Figure 23: The condensate for (top to bottom) BC, CP, RL, and CBC models, with fit

functions (described in the text).

We remark on two important aspects of the chiral symmetry breaking in QED3.

Firstly, a large ratio of scales is dynamically generated as Nf changes. This property is

an important clue for the construction of BSM models in order to explain the large mass

hierarchies of the Standard Model fermions. In fact, the mass drops from O(α) at Nf = 1

to 10−8α at Nf = 6. This becomes the major hindrance for the lattice computation as

extremely large lattices is needed to achieve the continuum limit, especially for low mass

scale.

Secondly, we observe that generally there is a rapid drop in the value of condensate near

N?. However, the order parameter may or may not reach zero, in the case it does, we have a

genuine phase transition: a chiral restoration; in the case it does not, the condensate is only

exponentially suppressed [50]: we have a crossover. We shall briefly discuss the condition of

the two scenarios in the next section.
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4.6.3.1 NOTES ON CHIRAL PHASE RESTORATION QED3 is confining in

the sense that the quenched theory has a non-zero string tension [51], this property persists

if the photon is dressed by massive fermions. This fact can be illustrated easily with a

perturbative calculation.

Firstly, we consider the quenched case. For Landau gauge, the time component of bare

photon propagator reads

D00[k0 = 0, ~k] =
1

~k2
(4.44)

The corresponding potential in configuration space is defined as

V (r) = g2

∫
d2k

(2π)2
e−i

~k·~r 1

~k2

=
α

π

∫
dk k

1

k2
2πj0[kr]

(4.45)

This integral is infrared divergent 5, instead we consider

dV (r)

dr
=
α

π

∫
dkdφ (k)(−ik cos[φ])

1

k2
e−ikr cos[φ],

5If we pick the following regularization scheme:

V (r) =
α

π

∫
dk

1

k + λ
2πj0[kr]

Formally, we have:∫
dk

1

k + λ
j0[kr]→ −j0[rλ][ln[

r

2
] + ln[λ]] +

π

2
H0[λr]− F 1,0[1,−1

4
r2λ2]

where H0 is the Struve function of the zeroth order, F is the regularized hypergeometric function.
We expand in order of λ and obtain V̄ (r) = V (r) − V (r0) = −2α ln r + . . . We can easily pick another

regularization scheme:

V (r) =
α

π

∫
dk k

1

k2 + λ2
2πj0[kr]

The integral is formally V (r) = α
π

∫
dk k 1

k2+λ2 2πj0[kr] = 2αK0[λr], where K is the modified Bessel function
of the second kind. Expanding in order of λ again gives V (r) = −2α ln r + . . .. As expected, the definition
of V̄ is regularization independent.
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the integral is then perfectly finite and is given by

dV (r)

dr
→ −2α

r

and we obtain the logarithmic confining potential in the quenched case:

V̄ [r] = −2α ln[αr] + C. (4.46)

The theory loses its confining property if the potential is dressed by massless fermions, as

we will now illustrate.

The perturbative expression of F for massless fermions is given by

F P
M=0 = −απ

4
k

The potential becomes:

V (r)→ α

π

∫
dk k

1

k2 + απ
4
k

2πj0[kr]

The integral in this case is finite.

For long distance behavior, we focus on the small k region. Observe that the polarization

term dominates and the large r behavior is of the form 1
r
. (formally the α cancels and

V → 8
πr

)

If we are interested in the small r region, we need to look at the large k behavior, which

is the original bare photon k2 piece. The resultant configuration space potential of course

behaves as − ln[r]. Note that α is the only scale in the problem, and hence small r and large

r refers to rα << 1 and rα >> 1 respectively.

Hence we see that massless fermions in the theory completely screen the confining po-

tential 6.

6Formally the integral is given by

86



However, if the fermions are massive, the confining properties are restored. Consider the

perturbative polarization for massive fermions:

F P
M = −2α

∫ 1

0

dx
x(1− x)k2√

M2 + x(1− x)k2

Inspecting of the large k (small r) behavior of the above expression, we can immediately

infer that the potential is confining, only that the effective coupling is different by a factor

1
1+ α

3M
for the present case.

Hence, the massive fermion loops, in the infrared limit, serve only to rescale α, and the

potential remains confining.

The key idea is that whether the theory is confining depends crucially on the infrared

behavior of the vacuum polarization, more precisely, the limit of F
k2

: if it’s finite (dressed

with massive fermions) or zero (quenched calculation), the theory is confining; if it tends to

infinity (dressed by massless fermions), the theory is not confining.

For a confining theory, it can be argued that once DCSB occurs for oneNf , it occurs for all

Nf , as the changing of number of flavors amounts to the rescaling of the coupling. It follows

that no chiral phase restoration will occur. The mass is only exponentially suppressed,

as suggested by some authors [50]. However, Fischer et al. and Maris [46, 44] suggested

the feedback from the fermion propagator functions onto the vacuum polarization can be

important. By employing the full fermion propagator in the symmetric phase, i.e massless

propagators, in the dressing of the ring, phase restoration can be recovered. Our numerical

study generally agrees with this observation, and our results on the critical number of flavors

are fairly close to those obtained by the latter authors 7.

∫
dk

1

k + λ
j0[kr]→ −j0[rλ][ln[

r

2
] + ln[λ]] +

π

2
H0[λr]− F 1,0[1,−1

4
r2λ2],

where λ = απ
4 , H0 is the Struve function of the zeroth order, F is the regularized hypergeometric function.

The expansions in λr and 1
λr give the two limits described.

7Observe how the infrared limit of F
k2 develops into infinity as we approach the critical number of flavors

in Figure 22.
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4.6.4 THE COLEMAN-HILL CONSTRAINT

Last, but not least, we look at the Coleman-Hill constraint on the various truncation. Recall

that the Coleman-Hill theorem is motivated as a diagnostic for truncation accuracy. As

the constraint is based on gauge invariance, it is reasonable to expect that a Ward identity

preserving truncation (such as BC and CP) will perform better than an arbitrary truncation

(such as RL). The result below shows that it is indeed the case:

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6

Π̃
(0

)

Nf

Figure 24: Π̃(0) vs. Nf for various models. At Nf = 5, from top to bottom, these are: RL,

CBC, CP, BC.

4.6.5 NUMERICAL ASIDES

4.6.5.1 INTERPOLATOR The numerical study presented here is performed by dis-

cretizing the Schwinger-Dyson equations on a momentum grids. The occurrences of the

“off-grids” quantities in the integral equations necessitates the use of interpolators. It is

essential to minimize the interpolator dependence for the solutions obtained.

As an illustration, we consider the computation of ring function F [k] in the rainbow

ladder truncation scheme, for a given model fermion propagator:
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B[k] =
0.5

1 + k2

A[k] = 1− 0.3

1 + k2
.

The evaluation of the ring function involves the integral of B[k], A[k], and hence involves

the use of interpolators. For simplicity, we display the results of the computation using two

different interpolators:

• closest grid: the off-grid quantity is approximated by its value on the closest momentum

grid.

• 4-point difference: the off-grid quantity is obtained by Taylor expansion around the

closest grid up to second order, the derivatives are obtained by 4-point difference formula.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.001  0.01  0.1  1  10  100  1000

F

k

exact
nearest point

4-point difference

Figure 25: The computation of F for modeled B,A under various interpolating schemes.

It is apparent that the utilization of an improved interpolator scheme leads to a more

reliable result in the computation.
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4.6.5.2 NUMERICAL METHODS Various algorithms are employed to solve the

coupled integral equations in the study, which can be understood in the generic form of

~X = ~F [ ~X]. The main strategies include:

• natural iteration:

X(n+1) = F [X(n)]

• implicit iteration:

X(n) = F [X(n+1)]

• iteration with over-relaxation:

X(n+1) = (1− ω)X(n) + ωF [X(n)]

• Newton-Raphson iteration:

X(n+1) = (1− δF

δX
[X(n)])−1(F [X(n)]−X(n))

• minimization:

min||X(n) − F [X(n)]||
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We find that natural iteration works well for all truncations except for BC and CP.

Minimization is always stable, but can be quite time-consuming. Unfortunately, it can

easily converge to one of the many local minima instead of the targeted global minimum.

Extra care is required to select a suitable initial guess for the case of interest.

Mixed methods can be developed to deal with the feedback mechanism within the equa-

tions. For example, one can solve the fermionic part of the gap equations with an assumed

form of the polarization by means of minimization, the resultant fermions 2-point functions

can then be used to update the polarization, iterating this procedure allows one to enjoy

both the stability of the minimization method while taking the advantage of the faster com-

putation of the gap equations (by not computing the ring grid by grid in the integral). Of

course, such a method will suffer from more intense interpolating effects, and hence it is

essential to check the consistency of a given algorithm by comparing the results with the

other methods.

4.7 CONCLUSIONS

We have studied dynamical parity and chiral symmetry breaking in QED3 within 2-spinor

formalism. Schwinger-Dyson equations with various truncations, including the Ward identity

preserving BC and CP vertex. The Coleman-Hill theorem is employed to check the robustness

of the truncations.

Parity violating solutions are found for η . 0.4, while no solution can be found for the

case of maximal violation (η = 1). It is interesting to note that the possibility of any parity-

violating solution is at odds with the traditional view [52], this point certainly deserves

further investigation.

Large ratios of mass scales are dynamically generated as one varies Nf . Critical Nf for

chiral restoration are reasonably close to that obtained by Appelquist et al., which is given

by NA
? = 64

π2 .

Coleman-Hill theorem is used as a diagnostic for truncation accuracy. It verifies our

intuition that truncations which obey the Ward identity should perform better than those
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that are not.
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5.0 QED3 AT FINITE TEMPERATURE AND DENSITY

In this chapter1, we extend our study of QED3 to finite temperature and density. This

generalization presents several challenges:

First, with the full frequency and momentum dependent non-perturbative photon prop-

agators, the usual tricks to evaluate the Matsubara sums is no longer applicable. We must

resort to direct numerical summation which greatly complicates our numerical study.

Second, at finite temperature, new infrared divergences arise in the fermion self energy.

In the usual 4-spinor formalism, the divergence originates from the absence of the magnetic

mass, which in turn is inferred from the Ward identity. Nevertheless, we shall argue that

physical observables should be infrared safe.

Third, one needs to face the problem of non-perturbative renormalization at finite tem-

perature. In principle, finite temperature effects should induce no new UV divergences so

that one can simply renormalize at zero temperature. We shall see that the numerical im-

plementation of this is highly non-trivial.

Keeping these issues in mind, we attempt a full field-theoretical calculation for QED3 at

finite temperature. Our goal is to map out the phase structure and study the chiral phase

transition.

1The research in this chapter is published in “Endemic infrared divergences in QED3 at finite temperature”
[53].
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5.1 TENSOR STRUCTURES AND POLARIZATION SCALARS IN FINITE

TEMPERATURE FORMALISM

At finite temperature, both the polarization tensor and the photon propagator remain trans-

verse (up to a gauge term), while the presence of a 3-vector n̂ describing the heat bath allows

us to define:

k⊥ = k − n k2

n · k
, (5.1)

one can easily verify that:

k · k⊥ =0

k2
⊥ =

n2k2 − (n · k)2

(n · k)2
k2,

from this k̂⊥, one can define a set of six tensors:

P1 =k̂µ⊥k̂
ν
⊥

P2 =gµν − k̂µk̂ν − k̂µ⊥k̂ν⊥

P3 =iεµνρk̂ρ

P4 =k̂µ⊥iε
ναβk̂α ˆk⊥β

P5 =iεµαβk̂α ˆk⊥βk̂
ν
⊥

P6 =εµαβενα
′β′ k̂α ˆk⊥βk̂α′ ˆk⊥β′ .

(5.2)

This set of tensors form a closed space, and it is easily verified that

kµP
µν
I = 0,

for all six of them. It is important to note that:
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P1 + P2 =gµν − k̂µk̂ν

P4 =P1P3

P5 =− P3P1

P6 =− P5P4.

(5.3)

With these definitions, it is straight forward to work out the following multiplication relations

among the basis tensors:

Table 1: Multiplication relations for the set of tensors. The six transverse tensors form a

closed space.

. P1 P2 P3 P4 P5 P6

P1 P1 0 P4 P4 0 0

P2 0 P2 P3 − P4 0 P5 P6

P3 −P5 P3 + P5 P1 + P2 P6 −P1 P4

P4 = P1P3 0 P4 P1 0 −P1 P4

P5 = −P3P1 P5 0 −P6 −P6 0 0

P6 = −P5P4 0 P6 −P5 0 P5 P6

A note in using the table:

To compute PI · PJ read from left column for PI and the top row for PJ , for example, from

the table

P5 · P4 = −P6

while

P4 · P5 = −P1
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5.2 THE PHOTON PROPAGATOR

Let’s start with the bare photon propagator. The gap equation reads:

D(0)
µν

−1
= −k2[gµν − (1− ξ−1)

kµkν
k2

]− iµCSεµνσkσ. (5.4)

Inverting gives:

D(0)
µν =

−1

k2 − µ2
CS

[gµν −
kµkν
k2
− iµCSεµνσkσ] + ξ

kµkν
k2

(−1)

k2
. (5.5)

For the full photon propagator, we allow all transverse structures to arise in the vacuum

polarization. The gap equation reads:

Dµν
−1 = D(0)

µν
−1

+ iΠµν . (5.6)

We define:

iΠµν = ΠjPj (5.7)

with j = 1, 2, 3, . . . , 6, hence

Dµν
−1 =− k2(P1 + P2) + µkP3 +−ξ−1k2k̂k̂ + Π1P1 + Π2P2 + Π3P3 + Π4P4 + Π5P5 + Π6P6

=(−k2 + Π1)P1 + (−k2 + Π2)P2 + (µk + Π3)P3 +−ξ−1k2k̂k̂ + Π4P4 + Π5P5 + Π6P6.

(5.8)

At this stage, it is already obvious that one can define

Π̃3 = Π3 + µCSk,

which will be seen as the dynamical and bare contribution of the photon mass, respectively.
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Hence our photonic gap equation reads:

Dµν
−1 = (−k2 + Π1)P1 + (−k2 + Π2)P2 + (Π̃3)P3 +−ξ−1k2k̂k̂ + Π4P4 + Π5P5 + Π6P6

Our goal is to compute the form of full photon propagator. To do that, we expand

D = DjPj + Ck̂k̂, (5.9)

with j = 1, 2, 3, . . . , 6 to satisfy

(DD−1)µν = gµν = (P1 + P2 + k̂k̂)µν .

With explicit calculation, one reaches the following set of 6 equations:

(−k2 + Π1)D1 + (Π̃3 − Π5)D3 + (Π̃3 − Π5)D4 =1

(−k2 + Π2)D2 + (Π̃3)D3 =1

(Π̃3)D2 + (−k2 + Π2)D3 =0

(Π̃3 + Π4)D1 − (Π̃3)D2 + Π6D3 + (−k2 + Π2 + Π6)D4 =0

Π5D2 + (Π2 − Π1)D3 + (−k2 + Π1)D5 − (Π̃3 − Π5)D6 =0

Π6D2 + (Π4)D3 − (Π̃3 + Π4)D5 + (−k2 + Π2 + Π6)D6 =0.

(5.10)

The gauge term is trivially solved:

C =
−ξ
k2
. (5.11)

Another set of conventions that is commonly used in the literature reads:
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P1 =PL

Π1 =k2ΠL

P2 =P⊥

Π2 =k2Π⊥.

Also, to connect our previous discussion at zero temperature, we note that

F −→− Π1 = −Π2

kF −→Π3

In the current notation, all the Π’s have the dimension of k2.

We employ the following strategy to solve the above system of equations:

Use the second and the third equation to solve for D2, D3, then the first and fourth for

D1, D4, and finally fifth and sixth to reach for D5, D6.

The final results are:
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D1 =
−1

k2 − Π1 − (Π̃3+Π4)(Π̃3−Π5)
k2−Π2−Π6

D2 =
−1

k2 − Π2 − Π̃3
2

k2−Π2

D3 =
Π̃3

k2 − Π2

D2

=
Π̃3

k2 − Π2

−1

k2 − Π2 − Π̃3
2

k2−Π2

D4 =
Π̃3 + Π4

k2 − Π2 − Π6

D1 −
Π̃3

k2 − Π2

D2

D5 =
−D1D2

k2 − Π2 − Π6

[(k2 − Π2)Π5 + Π̃3(Π2 − Π1 − Π6)−

Π̃3

k2 − Π2

(Π6(Π2 − Π1) + Π4(Π̃3 − Π5))]

D6 =
Π6D2 + Π4D3 − (Π̃3 + Π4)D5

k2 − Π2 − Π6

C =
−ξ
k2
.

(5.12)

The results presented are completely general, further simplification is possible if one works

in a particular representation or imposes further assumptions.

5.2.1 QED3 IN 4-SPINOR REPRESENTATION

Within the 4-spinor representation, Πj (j = 3, 4, 5, 6) are not dynamically generated, hence

we have

Π̃3 = µCSk, (5.13)

and the above Dj’s reduce to:
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D1 =
−1

k2 − Π1 − (Π̃3)2

k2−Π2

D2 =
−1

k2 − Π2 − (Π̃3)2

k2−Π2

D3 =
Π̃3

k2 − Π2

D2

D4 =
Π̃3

k2 − Π2

[D1 −D2]

D5 =−D4

D6 =
−Π̃3

k2 − Π2

D5

C =
−ξ
k2
.

(5.14)

5.2.2 QED3 IN 2-SPINOR REPRESENTATION

Using the 2-spinor representation, Πj (j = 3, 4, 5, 6) are dynamically generated. In fact, at

one loop, Π3 is dynamically generated, it corresponds to a topological photon mass term

that breaks parity dynamically.

Whether or not Π3 vanishes depends crucially on the structure of the vacuum: if parity is

broken, it is non-zero; on the other hand, there exists systems of parity respecting solutions

which make Π3 = 0. This will be discussed below.

In the absence of Π̃3, the above Dj’s reduce to:
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D1 =
−1

k2 − Π1 + Π4Π5

k2−Π2−Π6

D2 =
−1

k2 − Π2

D3 =0

D4 =
Π4

k2 − Π2 − Π6

D1

D5 =
Π5

k2 − Π2 − Π6

D1

D6 =[
Π6

Π5

k2 − Π1

k2 − Π2

− Π4

k2 − Π2

]D5

C =
−ξ
k2

(5.15)

5.3 ENDEMIC INFRARED DIVERGENCE IN QED3

We shall turn to the study of the two especially important form factors for the polarization

tensor: Π1 and Π2.

Π1 is responsible for the electric screening, we shall see the matter part of Π1[0, 0],

defined as the electric mass square m2
el, is non-zero for QED3, while the corresponding

magnetic mass Π2[0, 0] = m2
mag, is zero. This is a general non-perturbative statement derived

from the Ward identities. The absence of the magnetic mass is the origin of the problem of

infrared divergence for QED3 at finite temperature.

This problem is absent in the zero temperature version of the theory: the finite temper-

ature theory is more divergent at zero Matsubara frequency. Previous attempts to address

this issue include the explicit inclusion of an infrared cutoff [54], or assuming that higher

order corrections would remove the divergence [55]. Many authors even try to evade the

problem by neglecting all the spatial components of the photon propagators [56, 57, 58], i.e.

Dµν [ω,~k] −→ D00[ω,~k].
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We shall argue that the problem of infrared divergence is endemic to QED3 at finite tem-

perature. However, observables are finite and the theory is expected to be well-defined. The

crucial observation is that the gauge term has the same form of infrared divergence, i.e.∫
d2k 1/k2. Hence the infrared divergence can be “gauged away”, in other words, physical

observables should be independent of this infrared divergence.

There is another rescue for the infrared divergence in QED3 in the 2-spinor formalism.

There, Π3 is dynamically generated, and hence may provide a natural infrared regulator for

the various Dj’s. However one has to be careful since the system of parity-breaking solution

seems to be unstable and difficult to obtain. The case requires separate consideration.

5.3.1 PERTURBATIVE STUDY OF THE POLARIZATION TENSOR

We shall turn to explicit calculations of Π1, Π2 and Π3 in perturbation theory. Recall that

we define:

iΠµν = ΠjP
µν
j

At one loop, only Π1, Π2 and Π3 are generated. (To be more specific, for QED3 in 4-spinor,

only Π1 and Π2, while in 2-spinor version, Π3 is also dynamically generated, the use of Ball-

Chu vertex does not help to generate Π4,5,6, but it includes their contribution non-trivially.)

For P1, P2 and P3, their traces do not mix, hence it’s easy to extract Π1,2,3 from the Πµν

(note that if Π6 is generated, one needs to be more careful, for example Tr[P2P6] = Tr[P6] =

1 hence Π2 6= Tr[P2iΠ].)

With the condition above, we obtain: (explicit calculation shows the best place to start

is from P2)

Π2 =Tr[P2iΠ]

Π1 =Tr[P1iΠ] = gµνiΠ
µν − Π2

Π3 =
1

2
Tr[P3iΠ] =

1

2
εµνρk̂

ρΠµν .
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Note that the order of µν is altered to absorb the minus sign from the product of two i’s to

extract Π3 Also, as we will see, F = Π3

k
would be a more stable quantity to study. If we pick

n = [1, 0, 0], and perform the calculation at one loop, we have

Π1 =− g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

8[A1A2[~l1 · ~l2 −
(~l1 · ~k)(~l2 · ~k)

~k2
] +B1B2]

Π2 =g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4[L0
1L

0
2 + A1A2[~l1 · ~l2 − 2

(~l1 · ~k)(~l2 · ~k)

~k2
]−B1B2]

Π3

k
=
−g2

2k2

1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4[B2L1 · k −B1L2 · k],

(5.16)

the perturbative expression can be obtained when we set

B = M

A = 1.

To obtain the electric and magnetic screening mass, we shall take the limit of k3 = 0 and

|~k| → 0 of Π1 and Π2 respectively. The explicit expression becomes:

Π1[0, 0] = −g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

[ω′n
2 + ε2l ]

2
8[l2(1− cos2[φ]) +M2] (5.17)

Π2[0, 0] = g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

[ω′n
2 + ε2l ]

2
4[−[ω′n

2
+ ε2l ]] + 2l2(1− cos2[φ])]. (5.18)

Also, we obtain the topological photon mass by taking the above limit for F = Π3

k

F [0, 0] = −g
2

2

1

β

∑
ω′n

∫
d2l

(2π)2

1

[ω′n
2 + ε2l ]

2
4[M ] (5.19)

or
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Π1[0, 0] =− α 1

β

∑
ω′n

∫
dl (l)8

1

[ω′n
2 + ε2l ]

2
[ε2l +M2]

Π2[0, 0] =α
1

β

∑
ω′n

∫
dl (l)8[

−1

[ω′n
2 + ε2l ]

+
ε2l −M2

[ω′n
2 + ε2l ]

2
]

F [0, 0] =− α 1

β

∑
ω′n

∫
dl (l)4

1

[ω′n
2 + ε2l ]

2
[M ].

(5.20)

We can compute the Matsubara sum analytically using the following formula:

1

β

∑
ω′n

1

ω′n
2 + ε2

=
1

2ε
[1− 2n] =

1

2ε
tanh[

1

2
βε] (5.21)

and

1

β

∑
ω′n

1

[ω′n
2 + ε2]2

=
tanh[1

2
βε]− 1

2
βε[1− tanh2[1

2
βε]

4ε3
. (5.22)

(generated easily from the first one by differentiating with respect to ε)

The matter piece of the Πj ’s are obtained by subtracting the corresponding T → 0 limit

of the sum, technically, it amounts to replacing the Matsubara sum back to the integral over

euclidean k3:

1

β

∑
ω′n

→
∫
dk3

2π

with k3 replacing ω′n

Finally we reach:

Πmat
1 [0, 0] = −αT [

∫ ∞
x0

dx
1

x2
(x2 + x2

0)[2(tanh[
1

2
x]− 1)− x[1− tanh2[

1

2
x]]] (5.23)

with
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x =βε

x0 =βM

which can be computed analytically:

m2
el = Πmat

1 [0, 0] = 8αT [
−x0e

x0

1 + ex0
+ ln[ex0 + 1]] (5.24)

with x0 = βM

Note that at M → 0, we obtain the famous result:

m2
el = 8 ln 2αT. (5.25)

Hence, there is a well defined electric mass in our system, it regulates the infrared divergence

for P1 piece. (the longitudinal piece)

Now we perform the same calculation for the transverse piece Π2:

Πmat
2 [0, 0] = −αT [

∫ ∞
x0

dx[2
x2 + x2

0

x2
(tanh[

1

2
x]− 1) +

x2 − x2
0

x
[1− tanh2[

1

2
x]]] (5.26)

with

x =βε

x0 =βM

which is analytically zero!

With gauge symmetry, it can be shown that the magnetic mass vanishes for all orders.

Hence, the transverse piece still has the problem of infrared divergence in the absence of

the topological photon mass, i.e Π̃3 = 0.

Lastly, and crucially, we perform the same calculation for F = Π3

k
:
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Fmat[0, 0] = −αx0

∫ ∞
x0

dx
1

x2
[(tanh[

1

2
x]− 1)− 1

2
x[1− tanh2[

1

2
x]]] (5.27)

with

x =βε

x0 =βM,

which, analytically, is given by

Fmat[0, 0] = −α[tanh[
x0

2
]− 1]. (5.28)

Note that for F , there is actually a vacuum piece given by:

Fvac[0, 0] = −α M

|M |
(5.29)

combining the two results gives

Ffull[0, 0] = −α[tanh[
M

2T
]], (5.30)

which is ill-defined at M → 0 and T → 0, but is otherwise an valid expression.
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5.3.2 ABSENCE OF MAGNETIC MASS IN QED3

It is useful to review the arguments used in showing that the magnetic mass vanishes for all

orders [59, 60].

Consider the polarization tensor:

Πµν(n, q) ∼ e2T
∑
ν

∫
d2` tr [γµS(`) Γν(q + `, `)S(q + `)]. (5.31)

From Ward identity, we have

Γν(`, `) =
∂S−1(`)

∂`ν
.

Noticing that:

∂S−1

∂`ν
= −S−1 ∂S

∂`ν
S−1,

we finally reach:

Πµν(0, q → 0) ∼ −e2T
∑
ν

∫
d2` tr [γµ

∂S

∂qν
]. (5.32)

Notice that the spatial part(i, j) of the tensor vanishes due to complete derivative, which is

exactly the contribution to magnetic mass.

107



5.3.3 ENDEMIC INFRARED DIVERGENCE

We are now in position to understand the existence of the infrared divergence problem in

the gap equations of QED3.

Consider

S−1
p = /p− Σ.

From the gap equation, we obtain:

−Σ = g2 1

β

∑∫
d2l

(2π)2
Γµ[l, p]Slγ

νDµν [p− l].

We define η = p− l, the relevant infrared divergence comes from η → 0 limit in the integral,

i.e

−Σdiv =g2 1

β

∑∫
div

d2~η

(2π)2
Γµ[p, p]Spγ

νDµν [η]

=g2 1

β
Γµ[p, p]Spγ

ν

∫
div

d2~η

(2π)2
Dµν [η],

(5.33)

where we focus on η0 = 0 part of the sum for it is the source of infrared divergence.

It is now clear that the key to understanding the infrared divergence is in the study of

the integral

∫
div

d2~η

(2π)2
Dµν [η]. (5.34)

Recall D[k] = DjPj and the definition of k⊥ as

k⊥ = k − nk2

n · k
,

then
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k2
⊥ =

n2k2 − (n · k)2

(n · k)2
k2

k−2
⊥ =

1

k2

(n · k)2

n2k2 − (n · k)2
.

We pick n = [1, 0, 0] and study k0 = 0 limit to study the IR divergence limit of the tensor,

that is, we pick n · k = 0, we obtain the following: (the integral is integrating over d2~k,

remember k0 = 0 with the current choice of n)

∫
k̂k̂ =

1

2
[g − nn]∫

P1 =

∫
nn∫

P2 =

∫
1

2
[g − nn]∫

P3 = 0∫
P4 = 0∫
P5 = 0∫
P6 =

∫
1

2
[g − nn],

with these limits, one obtain

∫
div

d2~η

(2π)2
Dµν [η] =

∫
div

d2~η

(2π)2
[nnD1 +

1

2
[g − nn][D2 +D6 +− ξ

η2
]]µν . (5.35)

Hence, we have the expression:

−Σdiv = g2 1

β
Γµ[p, p]Spγ

ν

∫
div

d2~η

(2π)2
[nnD1 +

1

2
[g − nn][D2 +D6 +− ξ

η2
]]µν (5.36)
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As we have motivated, for those Dj’s that are proportional to 1
η2

similar to the gauge

term, we will have an infrared divergence.

We have already shown that D1 is infrared safe, due to the existence of the electric mass,

let’s focus on D2 and D6.

Explicitly, for QED3 in 4-spinor without Π3:

D1 −→
−1

η2 − Π1[η]

D2 −→
−1

η2 − Π2[η]

D6 −→ 0

(5.37)

We have seen that Π2 does not have the magnetic mass, hence, we can write

Π2[η]→ c2η
2 (5.38)

hence we have (note that η2 = −~η2)

∫
div

d2~η

(2π)2
D[η]→

∫
div

d2~η

(2π)2

1

2
[g − nn][

1

1− c2

1

~η2
+

ξ

~η2
]. (5.39)

Finally we get:

−Σdiv = α
1

β
Γµ[p, p]Spγ

ν [g − nn]µν [− ln[εIR]][
1

1− c2

+ ξ], (5.40)

note that we regulate the integral and define
∫
dl 1

l
= − ln[εIR].

A similar study in 2-spinor formalism, defining Π6[η]→ c6η
2, leads to

−Σdiv = α
1

β
Γµ[p, p]Spγ

ν [g − nn]µν [− ln[εIR]][
1

1− c2

+
c6

(1− c2)(1− c2 − c6)
+ ξ] (5.41)

The key observation to resolve the issue is to recognize that the gauge term itself has the same

form of infrared divergence as the ones discussed above. Therefore, for physical quantities

to be gauge independent, they must be independent of this infrared divergence. In principle,
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we can regulate the various infrared divergences freely and be confident that the infrared

divergences can be “gauged away”.

Alternatively, the existence of Π̃3 and a parity breaking solution can also help to rescue

all Dj’s, leaving only the gauge term to be infrared divergent.

5.4 SCHWINGER-DYSON EQUATIONS

For simplicity, we shall confine our analysis of the gap equations in 4-spinor formalism, where

parity is not dynamically broken. Moreover, we shall employ the rainbow ladder truncation

in our study.

5.4.1 THE GAP EQUATIONS

5.4.1.1 FERMIONS Starting with the Ansätz:

S−1 = A0[p](iωn + µ)γ0 − A[p]~p · ~γ −B[p],

The gap equations read

A0[p](iωn + µ)γ0−A[p]~p · ~γ −B[p] = A0[p](iωn + µ)γ0 − ~p · ~γ −m+

g2 1

β

∑
ω′n

∫
d2l

(2π)2
γµ

1

A0[l](iω′n + µ)γ0 − A[l]~l · ~γ −B[l]
γνDµν [p− l],

we reach:
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B[p] = m+g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

A0[l]2(ω′n − iµ)2 + A[l]2~l2 +B[l]2
[BlgµνD

µν ]

A[p] = 1+g2 1

β

∑
ω′n

∫
d2l

(2π)2

−1

A0[l]2(ω′n − iµ)2 + A[l]2~l2 +B[l]2
1

~p2
[piLβ(Diβ +Dβi)

− piLigµνDµν ]

A0[p] = 1+g2 1

β

∑
ω′n

∫
d2l

(2π)2

−1

A0
2(ω′n − iµ)2 + A2

l
~l2 +B2

l

[Lβ(D0β +Dβ0)− L0gµνD
µν ]

(5.42)

where

L : [A0(iω′n + µ), Al~l]

p : [iωn, ~p]

l : [iω′n,
~l]

Dµν = Dµν [p− l]

As have been discussed in the previous sections, the photon propagator takes the form

Dµν [k] =
1

k2 + F
PLµν +

1

k2 +G
PT µν −

ξ

k2

kµkν
k2

=
1

k2 + F
− [gµν −

kµkν
k2

] +
F −G

(k2 + F )(k2 +G)
PT µν −

ξ

k2

kµkν
k2

with

P T
0ν = P T

ν0 = 0

P T
ij = −gij −

kikj
~k2

P T
µν + PL

µν = −[gµν −
kµkν
k2

].

We shall go through the derivation of F and G , the finite temperature polarization scalar

functions, in the next section.
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5.4.2 PHOTONS

Dµν
−1 [k] = D(0)

µν

−1
[k] + ig2Tr[γµSΓνS]

and under the ladder approximation, we have:

Dµν
−1 [k] = D(0)

µν

−1
[k] + ig2Tr[γµSγνS]

it is useful to define Πµν [k] such that:

Dµν
−1 [k] = D(0)

µν

−1
[k] + iΠµν [k]

with

Πµν [k] = ig2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

Tr[γµ( /L1 +B1)γν( /L2 +B2)]

performing the trace calculation we reach:

Πµν [k] = ig2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4[(Lµ1L
ν
2 + Lν1L

µ
2 − gµνL1 · L2) + gµνB1B2]

(5.43)

where

Lµ1 =[A0(iω′n + µ), Al~l1]

Lµ2 =[A0(iω′n − iνn + µ), A2
~l2]

k =[iνn, ~k]

and
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~l1 =~l

~l2 =~l − ~k

Now we focus on the various tensor properties of the photon propagator:

D(0)
µν [k] =

−[gµν − (1− ξ)kµkν
k2

]

k2

One can also work out the inverse bare photon propagator:

D(0)
µν

−1
[k] = −k2[gµν −

kµkν
k2

]− 1

ξ
kµkν

such that

D(0)
µα

−1
D(0)αν = g ν

µ

Now we define

iΠµν = FP µν
L +GP µν

T

with

P T
µν + PL

µν = −[gµν −
kµkν
k2

]

P T
µν satisfies:

P T
0ν = P T

ν0 = 0
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P T
ij = −gij −

kikj
~k2

One can check that

P µα
T P T

αν = −PT µν

P µα
L PL

αν = −PLµν

P µα
L P T

αν = 0

also observes that

kµP
µν
T = 0

kµP
µν
L = 0

yet another useful result is:

PT
µ
µ = −(d− 2)

PL
µ
µ = −1

Then, a direct substitution gives

Dµν
−1[k] = (k2 + F )PL

µν + (k2 +G)P T
µν −

1

ξ
kµkν

inverting gives:
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Dµν [k] =
1

k2 + F
PLµν +

1

k2 +G
PT µν −

ξ

k2

kµkν
k2

(5.44)

=
1

k2 + F
− [gµν −

kµkν
k2

] +
F −G

(k2 + F )(k2 +G)
PT µν −

ξ

k2

kµkν
k2

(5.45)

From the definition of Πµν :

iΠµν = FP µν
L +GP µν

T

one can fish out F and G:

G =
1

d− 2
[δij −

kikj
~k2

]iΠij (5.46)

and

F = −(gµν −
kµkν
k2

)iΠµν − (d− 2)G (5.47)

note that

kµΠµν = 0.

In QED3, we finally reach:

G = [δij −
kikj
~k2

]iΠij (5.48)

F = −igµνΠµν −G (5.49)

with the form of Πµν above, we have:

116



G[νn~k] = −g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4[L0
1L

0
2 + A1A2

~l1 · ~l2 −B1B2

− 2A1A2(~l1 · ~k)(~l2 · ~k)

~k2
]

F [νn~k] = g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4[−L1 · L2 + 3B1B2]−Gνn~k

= g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4(2)[A1A2(~l1 · ~l2 −
~l1 · ~k~l2 · ~k

~k2
) +B1B2]

(5.50)

with

Lµ1 =[A0(iω′n + µ), Al~l1]

Lµ2 =[A0(iω′n − iνn + µ), A2
~l2]

k =[iνn, ~k]

and

~l1 =~l

~l2 =~l − ~k

This is the ultimate form of the two polarization scalars at finite temperature of QED3.
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5.4.3 A NOTE FOR ZERO TEMPERATURE AND DENSITY

At zero temperature and density, one can show that

Πµν ∝ −[gµν − kµkν

k2
]

and hence

F = G (5.51)

iΠµν = −[gµν − kµkν

k2
]F

or

F = −1

2
[gµν − ηk

µkν

k2
]iΠµν . (5.52)

As discussed in section 4.3.3.2, we can exploit the freedom of transversality and pick η = 3,

so that the expression is automatically finite and renormalized.

With the explicit expression of Πµν , one can construct F [k;B,A]

F =− i1
2

[gµν − 3
kµkν
k2

]g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

Tr[I][A1A2[lµ1 l
ν
2+

lµ2 l
ν
1 − gµνl1 · l2] + gµνB1B2]

where

lµ1 =lµ

lµ2 =lµ − kµ.

A very useful limit to study is the perturbative result:
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Setting:

B = M

A = 1.

we would have: (Minkowski space result)

F = G = −1

2
Tr[I]

g2

4π
(−2k2)

∫ 1

0

dαα(1− α)
1√

M2 − α(1− α)k2
(5.53)

5.5 ASPECTS OF ELECTRIC SCREENING

In section 5.3, we have defined the electric screening mass mel as the zero momentum limit of

Π1 and presented its perturbative limit. It turns out that the non-perturbative computation

of this quantity is far from trivial.

5.5.1 DEFINITION

Recall that the electric screening mass is defined by:

m2
el = Πmat

1 [0, 0],

where the matter part of Π1 is obtained by subtracting the corresponding zero-temperature

piece away from the full expression.

In the non-perturbative case, Π1 is a functional of the full fermion propagator (within the

current truncation scheme). The notion of “subtracting the zero-temperature piece” leads

to the following confusion:

Π1
R[B,A,A0](0, 0)

?
= Π1[B,A,A0](0, 0)− Π1

T=0[B,A,A0](0, 0).
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Given the full fermion propagator, Π1[B,A,A0] reads

Π1[νn~k] = g2 1

β

∑
ω′n

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4(2)[A1A2(~l1 · ~l2 −
~l1 · ~k~l2 · ~k

~k2
+B1B2] (5.54)

with

Lµ1 =[A0(iω′n + µ), Al~l1]

Lµ2 =[A0(iω′n − iνn + µ), A2
~l2]

k =[iνn, ~k].

The tricky part is the subtraction of zero temperature piece. Naively, one would be

tempted to form the following expression:

ΠT=0
1 [νn~k] = g2

∫
dl3

2π

∫
d2l

(2π)2

1

L2
1 −B2

1

1

L2
2 −B2

2

4(2)[A1A2(~l1 · ~l2 −
~l1 · ~k~l2 · ~k

~k2
+B1B2]

(5.55)

with

Lµ1 =[A0(il3), Al~l1]

Lµ2 =[A0(il3 − iνn), A2
~l2]

k =[iνn, ~k],

that is, replace the above Matsubara sum back to an integral over Euclidean l3.

Of course, the above expression is intuitively true in the perturbative limit. However, we

observe the following two discrepancies in this definition of ΠT=0.

Firstly, the full fermion propagator is defined only on the discrete Matsubara frequency

grids:

B[ωn,~l], A[ωn,~l], A0[ωn,~l]

ωn =
(2n+ 1)π

β
.
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In order to compute the integral version of the expression, one has to perform an analytic

continuation for the full fermionic propagator.

The need for analytic continuation introduces the second layer of complexity: what limit

do we analytically continue to?

If we consider the functions that “connect” all points on the Matsubara frequency grids,

a deeper inspection would indicate that such a continuation does not correspond to the

solution at zero temperature, which violates what we set out to do, namely, renormalization

at zero temperature.

The correct expression for our purpose is given by:

Π1
R[B,A,A0](0, 0) = Π1[B,A,A0](0, 0)− Π1

T=0[BT=0, AT=0, AT=0
0 = AT=0](0, 0). (5.56)

where BT=0, AT=0, AT=0
0 = AT=0 are the solutions to the gap equation at zero temperature.

Given that we have already solved the systems at zero temperature, as detailed in the last

chapter, it may seem that the computation would be straight forward. This is unfortunately

not the case. Recall that the expression of Π1 alone is divergent, while the finite, renormalized

ΠR
1 depends on the cancellation of two divergences of the two full fermion propagators.

However, in the process of obtaining the solutions through iteration, the intermediate trial

solutions fail to honor this quality. At the present time, we can only proceed by imposing

further simplification, for example: setting the electric screening mass to its perturbative

expression. Even under this simplification, the gap equations still admit feedback between

photonic and fermionic sectors. To be concrete, recall the renormalized electric polarization

scalar Π1 is given by:

Π1
R[B,A,A0](ωn, ~k) =Π1[B,A,A0](ωn, ~k)− Π1

T=0[BT=0, AT=0, AT=0
0 = AT=0](0, 0)

=[Π1[B,A,A0](ωn, ~k)− Π1[B,A,A0](0, 0)]+

[Π1[B,A,A0](0, 0)− Π1
T=0[BT=0, AT=0, AT=0

0 = AT=0](0, 0)]

=[Π1[B,A,A0](ωn, ~k)− Π1[B,A,A0](0, 0)] +mR
el.

(5.57)

It is clear that even if one replaces mR
el −→ mP

el, the system of the integral equations is still

strongly coupled.
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5.6 NUMERICS AND RESULTS

The massless, perturbative limit of the electric screening mass at finite temperature is given

in section 5.3.1. The correspond sum at finite density and temperature can be analogously

computed, the result reads:

Π1
P
mat[0, 0] = mP

el = 2αT{[2 ln[2 cosh
x0 − xµ

2
]− x0 tanh[

x0 − xµ
2

]] + xµ → −xµ}, (5.58)

with

x0 = βM

xµ = βµ.

For our present study, we will pick the massless limit:

mP
el[T, µ] = 8αT{ln[e

xµ
2 + e−

xµ
2 ]}. (5.59)

Employing this expression in place of the full electric mass, we set out to compute the phase

map for the fully quenched system of QED3 2. The finite temperature expression for the

condensate reads:

〈ψ̄ψ〉 =
1

β

∑
ω′n

∫
d2k′

2π)2
(Tr[I])

−B
A0(iω′n + µ)2 − A2k′2 −B2

. (5.60)

where Tr[I] = 4 for 4-spinor representation.

The major numerical techniques employed are similar to the respective zero temperature

study, only that the Matsubara frequencies and the spatial momentums have to be treated

as independent degrees of freedom, which taxes heavily on the computer resources required

for a self-consistent calculation. The results below represent months of numerical efforts.

2We shall again work in Landau gauge, the infrared divergence from the magnetic polarization scalar is
regulated by an infrared cutoff εIR. The energy scale is measured in unit of α.
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5.6.1 QUENCHED CASE

For the quenched calculation, we neglect the contribution from the photon polarization. The

fermion self-energy equation should be regulated by an infrared cutoff, which we choose to

be εIR = 0.1 3. Shown below is the phase map for the quenched system of QED3 at finite

temperature and density:
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T

µ
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Figure 26: Phase diagram for quenched QED3 in RL approximation. The phase transitions

are 2nd order in nature. εIR = 0.1

3The infrared regulator enters the expression of propagator for photon as 1
k2+εIR

. It is measured in units

of α2
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5.6.2 UNQUENCHED CASE

Our first step of unquenching the gap equations involve the use of static, massless and

perturbative expression for the ring, namely:

Π1
R[ωn, k] = mP

el = 2αT{[2 ln[2 cosh
x0 − xµ

2
]− x0 tanh[

x0 − xµ
2

]] + xµ → −xµ}. (5.61)

The resulting phase map is shown below:
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 0.8
 0.9
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Figure 27: Phase diagram for QED3 with static perturbative ring. The phase transitions

are 2nd order in nature. εIR = 0.1
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We can improve the situation by including the momentum dependent non-perturbative

contributions, renormalized in the simplified limit motivated in the previous section:

Π1
R[B,A,A0](ωn, ~k) =Π1[B,A,A0](ωn, ~k)− Π1

T=0[BT=0, AT=0, AT=0
0 = AT=0](0, 0)

=[Π1[B,A,A0](ωn, ~k)− Π1[B,A,A0](0, 0)]+

[Π1[B,A,A0](0, 0)− Π1
T=0[BT=0, AT=0, AT=0

0 = AT=0](0, 0)]

=[Π1[B,A,A0](ωn, ~k)− Π1[B,A,A0](0, 0)] +mR
el,

with the simplification

mR
el ≈ mP

el.

This represents our most sophisticated truncation for the system, showing below is the
phase map for such system:
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Figure 28: Phase diagram for QED3 in RL approximation. The phase transitions are 2nd

order in nature. εIR = 0.1
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We observe a second order phase transition for the range of µ we studied.

It is worth remembering that the expected gauge invariance can only be imperfectly

realized in the above cases. The reasons are as follow: firstly, the rainbow ladder truncation

employed here does not respect the Ward identity: the transversality of the polarization

tensor is at stake because of the non-ideal truncation. Also, the simplification used in

the non-perturbative renormalization is expected to worsen the situation. Last, with any

truncation, even the gauge invariant one, the solution obtained would differ from the true

solution of the system. One possible diagnostic is the Coleman-Hill theorem, generalized

naturally to finite temperature. Progress along this line of thought is underway.

5.7 CONCLUSIONS

We have extended the study of dynamical chiral symmetry breaking in QED3 to finite

temperature and density.

The theory contains an endemic infrared divergence in the fermion self energy, which

is absent in the zero temperature version. The origin of this infrared divergence is closely

related to the absence of magnetic mass, true to all orders. However, with the observation

that the divergence takes the same form as the pure gauge term, we argue that physical

quantities should be safe from this infrared divergence.

The method of non-perturbative renormalization for the electric screening mass is pro-

posed. Unfortunately, implementation of the full expression to the system of coupled integral

equations presents serious numerical challenges. We discuss one further simplification as the

temporary resort, namely, the use of the perturbative expression for the screening mass, while

the momentum dependent part remains fully non-perturbative. An unquenched calculation,

with Matsubara frequency and momentum dependent photonic and fermionic propagators,

is then attempted.

The phase map for the chiral symmetry breaking in the simplified case is presented. It

is found that the phase transitions are second order. The study demonstrates the possibility

of solving a full Schwinger Dyson systems at finite temperature and density. However,
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gauge invariance can only be imperfectly realized due to the use of the rainbow ladder

truncation and the simplification made in the non-perturbative renormalization. Moreover,

from experience, the phase structure can change drastically if one considers the full non-

perturbative electric mass, such a study is currently underway.
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6.0 CONCLUSIONS

In this thesis we have studied various confinement models at finite temperature and density,

focusing on the aspects of dynamical chiral and parity symmetry breaking. Schwinger Dyson

equations, under various degrees of truncations, are employed as the tool to extract non-

perturbative information.

We started by investigating two types of static confinement models motivated by Coulomb

gauge QCD: contact and linear potentials.

For the contact potential, we present the phase map for both the bare and ring versions.

The bare contact model exhibits many interesting features such as the existence of tricritical

point and the approximate linear scaling of Tc, µc with the coupling. The numerical values of

the constituent mass, condensate, critical temperature and chemical potential can be brought

into rough agreement with the physical expectations in QCD by an appropriate choice of

parameters. However, the incorporation of polarization effects drastically affects the phase

structure. The most prominent effects are the substantial drop in the critical temperature

(ruining phenomenology) and the dominance of first order phase transition.

For the linear potential, both the AAL prescription for the bare potential and the ring

approximation yield a chiral phase transition, contrary to the expectation of Davis and

Matheson. Especially, given the fact that large Nc limit tends to suppress quark loop effects,

one can argue the bare linear potential studied here is an implementation of the large Nc

scenario. Our results then support the idea of quarkyonic matter argued by Pisarski and

McLerran [37]: the existence of confining but chirally symmetric phase. The summation of

ring diagrams is motivated as the resolution of the infrared divergence problem in the linear

potential. The numerical values for the constituent mass, condensate, critical temperature

and density can attain reasonable QCD limit if the string tension b is increased to 1.8 GeV.
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Unfortunately this is at odds with the well-established quark model phenomenology and

lattice data, which requires b = 0.2 GeV. Therefore, it appears that naive static potential

model fail to describe the thermal properties of QCD.

We then turned our attention to the study of QED3.

For the case of zero temperature QED3, we studied dynamical parity and chiral symmetry

breaking within 2-spinor formalism. Schwinger-Dyson equations with various truncations,

including the Ward identity preserving BC and CP vertex. The Coleman-Hill theorem is

employed to check the robustness of the truncations.

Parity violating solutions are found for η . 0.4, while no solution can be found for the

case of maximal violation (η = 1). It is interesting to note that the possibility of any parity-

violating solution is at odds with the traditional view [52], this point certainly deserves

further investigation.

Large ratios of mass scales are dynamically generated as one varies Nf . Critical Nf for

chiral restoration are reasonably close to that obtained by Appelquist et al., which is given

by NA
? = 64

π2 .

The Coleman-Hill theorem is used as a diagnostic for truncation accuracy. It verifies the

intuition that truncations which obey the Ward identity should perform better than those

that are not.

The study is extended to finite temperature and density. The theory contains an endemic

infrared divergence in the fermion self energy, which is absent in the zero temperature version.

The origin of this infrared divergence is closely related to the absence of magnetic mass, true

to all orders. However, with the observation that the divergence takes the same form as

the pure gauge term, we argue that physical quantities should be safe from this infrared

divergence.

The method of non-perturbative renormalization for the electric screening mass is pro-

posed. However, implementation of the full expression to the system of coupled integral

equations presents serious numerical challenges. We discuss one further simplification as the

temporary resort, namely, the use of the perturbative expression for the screening mass, while

the momentum dependent part remains fully non-perturbative. An unquenched calculation,

with Matsubara frequency and momentum dependent photonic and fermionic propagators,
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is then attempted.

The phase map for the chiral symmetry breaking in the simplified case is presented. It

is found that the phase transitions are second order. The study demonstrates the possibility

of solving a full Schwinger Dyson systems at finite temperature and density. However,

gauge invariance can only be imperfectly realized due to the use of the rainbow ladder

truncation and the simplification made in the non-perturbative renormalization. Moreover,

from experience, the phase structure can change drastically if one considers the full non-

perturbative electric mass, such a study is currently underway.

In studying the various models, we have employed a diversity of truncation schemes for

the Schwinger Dyson equations. One may reasonably question whether any truncation made

can be justified. After all, in a non-perturbative formulation, one does not have a controlled

expansion for physical quantity in series of a small parameter. Here we try to address this

issue in several levels.

Within the framework of Schwinger Dyson equations, one can study a specific problem

using different truncations and check for internal consistencies. One can also design some

benchmark tests (like the Coleman-Hill theorem) to gauge the efficacy of the method.

Another important justification is by cross-checking with alternative non-perturbative

methods. By studying a given model (like QED3) in parallel with other approaches (like

1/N expansion, lattice, etc), one can gain confidence in the method when the results obtained

are consistent with one another.

Finally, we stress that the ultimate judge on the merit of a calculation scheme should

be based on the comparison of its predictions with physical experiments. This reflects our

pragmatic stance on the issue, and in fact, on doing theoretical physics in general.
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APPENDIX A

CONVENTIONS

A.1 METRICS AND GAMMA MATRICES

Our convention for the signature of the metric is (1,−~I)

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

The Pauli matrices are defined by

σx =

 0 1

1 0



σy =

 0 −i

i 0



σz =

 1 0

0 −1

 .
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The gamma matrices are defined as

γ0 =

 0 ~I

~I 0



~γ =

 0 ~σ

−~σ 0



They satisfy the Dirac algebra

{γµ, γν} = 2gµν .

Note that γ5 can be defined for 4-spinor space as

γ5 =

 ~I 0

0 −~I



satisfying

{γµ, γ5} = 0
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A.2 EUCLIDEAN SPACE CONVENTIONS

To convert from Minkowski space to Euclidean space, we write

x0 −→ −ix4

k0 −→ ik4,

such that

∫
Minkowski

d4x f [x0, ~x] −→ −i
∫
Euclidean

d4xE f [−ix4, ~x]∫
Minkowski

d4k f [k0, ~k] −→ i

∫
Euclidean

d4kE f [ik4, ~k]

a · b −→ −aE · bE
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APPENDIX B

INTRODUCTION TO FUNCTIONAL METHODS IN QFT

Functional methods prove to be essential in the study of QFT [1, 3, 61]. Not only does it

provides an economical formalism for deriving familiar results, such as the Schwinger-Dyson

equations , it also yield valuable insight into the study of subtle properties like collective

phenomena and symmetry in QFT.

A functional maps a function in function space (the infinite dimensional space with each

“point” being a function on space time) into a c-number. As we move from function to

function, we get a different c-number through the functional, this motivates the definition

of functional differentiation

δF [f [x]]

δf(x)
= lim

ε→0

F [f [x] + ε]− F [x]

ε
(B.1)

In particular, note that

δφx
δφy

= δ[x− y] (B.2)
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B.1 CENTRAL IDENTITIES OF QFT

We define delta-functional δ[φ− φ0] to be
∏

x δ[φx − φ0x] so that

∫
DφF [φ]δ[φ− φ0] = F [φ0] (B.3)

for any functional F [φ].

We also note the relation

δ[φ0] =

∫
DAei

∫
Aφ0 . (B.4)

Next, we turn to functional integral involving quadratics. The results of Gaussian integral

in calculus have their counterparts in the Gaussian functional integral:

∫
dx e−ax

2±bx =

√
π

a
e
b2

4a∫
dzdz? e−a|z|

2

=
π

a

(B.5)

∫
Dφei[

∫
φDφ+jφ] =

√
π∞

(−i)∞Det[D]
e−i

1
4

∫
jD−1j∫

Dφ?Dφei[
∫
φ?Dφ+j?φ+jφ?] =

π∞

(−i)∞Det[D]
e−i

∫
j?D−1j

(B.6)

While for fermionic functional integral, one gets

∫
Dψ̄Dψei

∫
ψ̄Mψ+η̄ψ+ψ̄η = iN(N+2)Det[M ]e−i

∫
η̄M−1η (B.7)

where N is the dimension of the functional space, usually infinite

For all practical calculations, we will drop all uninteresting constant factors and use the

following:
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∫
Dφei[

∫
φDφ+jφ] =

√
1

Det[D]
e−i

1
4

∫
jD−1j

∫
Dφ?Dφei[

∫
φ?Dφ+j?φ+jφ?] =

1

Det[D]
e−i

∫
j?D−1j∫

Dψ̄Dψei
∫
ψ̄Mψ+η̄ψ+ψ̄η = Det[M ]e−i

∫
η̄M−1η

(B.8)

A useful identity to handle determinant is

Det[M ] = eTr lnM (B.9)

B.2 FUNCTIONAL APPROACH TO FREE FIELD THEORY

We shall illustrate the essence of functional methods with free fields calculations. Of course

the results should be familiar, nevertheless we take this chance to clarify our notation of the

various N-point functions.

B.2.1 SCALARS

The Lagrangian density is given by

L =
1

2
(∂φ)2 − 1

2
m2φ2. (B.10)

From this, one can construct the generating functional

Z[j] =

∫
Dφei

∫
− 1

2
φ(∂2+m2)φ+jφ (B.11)

Realizing D = −1
2
(∂2 +m2) and applying B.8:
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Z[j] =

√
1

Det[D]
e
i 1
2

∫
j 1
∂2+m2 j (B.12)

The generating functional for connected Green’s function is defined as W = −i lnZ. One

obtains

W [j] =
1

2

∫
j

1

∂2 +m2
j + Constant (B.13)

Finally the generating functional for 1PI Green’s function is defined as Γ = W −
∫
j[φ]φ,

where j[φ] = δW
δj

. In this case, we can invert φ from j[φ] easily

φ =
1

∂2 +m2
j. (B.14)

Therefore, one reaches an exact expression for Γ[φ]:

Γ[φ] = −1

2

∫
φ(∂2 +m2)φ =

∫
L. (B.15)

Performing the functional differentiation in this case is trivial:

(−i)2 δ2

δj δj

Z[j]

Z[0]

∣∣∣∣
j→0

=
−i

∂2 +m2
δ ↔ i

p2 −m2

δ2W

δj δj
=

1

∂2 +m2
δ ↔ −1

p2 −m2

δ2Γ

δφ δφ
= −(∂2 +m2)δ ↔ p2 −m2

(B.16)

In the standard notation [5], one associates

〈0 | T{φ, φ} | 0〉 = DF =

∫
d4p

(2π)4

i

p2 −m2 + iε
e−ip·x. (B.17)

Defining 〈0 | T{φ, φ} | 0〉 = i∆F , we identify
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(−i)2 δ2

δj δj

Z[j]

Z[0]

∣∣∣∣
j→0

= i∆F

δ2W

δj δj
= −∆F

δ2Γ

δφ δφ
= ∆−1

F

(B.18)

B.2.2 FERMIONS

Now we turn to the illustration with free fermions. To account for the anti-commuting nature

of the fermionic fields, one introduces the Grassmann numbers satisfying

{η, η′} = 0, (B.19)

while they are commuting with normal c-number.

In particular, we observe that η2 = 0, hence, a Taylor expansion of a Grassmannian

function F [η] can only contain two terms

F [η] = a+ bη (B.20)

where a, b are c-numbers.

The table for the Grassmannian integration is short, in fact, it has only two entries

∫
dη 1 = 0 (B.21)∫
dη η = 1, (B.22)

consistent with the condition

∫
dη

d

dη
F [η] = 0. (B.23)

With these properties, one can derive the result
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∫
Dψ̄Dψei

∫
ψ̄Mψ+η̄ψ+ψ̄η = Det[M ]e−i

∫
η̄M−1η. (B.24)

Consider the free fermion Lagrangian

L = ψ̄(i/∂ −m)ψ. (B.25)

With B.8, one immediately obtains

Z =

∫
Dψ̄Dψ ei

∫
L+η̄ψ+ψ̄η = Det[i/∂ −m]e

−i
∫
η̄ 1
(i/∂−m)

η
. (B.26)

A straight forward calculation gives

W = −i lnZ = −
∫
η̄

1

(i/∂ −m)
η + C (B.27)

Γ = S[ψ, ψ̄] =

∫
ψ̄(i/∂ −m)ψ. (B.28)

Again, the usual convention for the propagator reads

〈0 | T{ψ, ψ̄} | 0〉 = DF =

∫
d4p

(2π)4

i

/p−m+ iε
e−ip·x = i∆F . (B.29)

We identify

(−i)2 δ2

δj δj

Z[j]

Z[0]

∣∣∣∣
j→0

= i∆F

δ2W

δη̄ δη
= ∆F

δ2Γ

δψ̄ δψ
= −∆−1

F .

(B.30)
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B.2.3 GAUGE FIELDS

The abelian Yang-Mills Lagrangian density reads

LYM = −1

4
F 2 =

1

2
Aµ(∂2gµν − ∂µ∂ν)Aν . (B.31)

Writing Ô = 1
2
(∂2gµν − ∂µ∂ν), one may attempt to proceed as usual to define

Z[j] =

∫
DAei

∫
1
2
Aµ(∂2gµν−∂µ∂ν)Aν+j·A =

√
1

Det[Ô]
e
−i 1

2

∫
j 1
∂2gµν−∂µ∂ν

j
. (B.32)

However, due to the existence of zero eigenvalues for Ô, the inverse is ill-defined. In fact,

the inverse formally diverges. The divergence has its origin in gauge symmetry and we will

expand on the topic of gauge fixing in section B.3. For our present purpose, we just mention

the procedure of covariant gauge fixing involve the addition of the term − 1
2ξ

(∂µA
µ)2 to LYM

and hence the generating functional becomes

Z[j] =

∫
DAei

∫
1
2
Aµ(∂2gµν−(1−ξ−1)∂µ∂ν)Aν+j·A = Z[0]e

−i 1
2

∫
j 1
∂2gµν−(1−ξ−1)∂µ∂ν

j
. (B.33)

Now the inverse is well defined and one can work out the solution

[∂2gµρ − ∂µ∂ρ(1− ξ−1)]

∫
d4k

(2π)4
e−ik·x

−[gρν − (1− ξ)kρkν
k2

]

k2
= gµν δ. (B.34)

Denote

DA
µν =

∫
d4k

(2π)4
e−ik·x

−[gµν − (1− ξ)kµkν
k2

]

k2
, (B.35)

and again 〈0 | T{A,A} | 0〉 = iDA, we make the connections

(−i)2 δ2

δj δj

Z[j]

Z[0]

∣∣∣∣
j→0

= iDA

δ2W

δj δj
= −DA

δ2Γ

δA δA
= DA

−1.

(B.36)
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B.3 GAUGE FIXING FOR YANG-MILLS THEORY

The need for gauge fixing for Yang-Mills theory stems from the gauge symmetry. To see

this, consider the generating functional for the abelian case

Z =

∫
DAei

∫
L[A] (B.37)

where L is invariant under the gauge transformation A → A + ∂α. Then we can split the

functional integral into

Z =

∫
DA′Dα[A′] ei

∫
L[A′], (B.38)

with various A′ not related by the gauge transformation, corresponding to all physically

distinct configurations, while α being all possible gauge transformation. The integrand is

α-independent as dictated by gauge symmetry, it is now clear that

Z =

∫
DA′ ei

∫
L[A′]

∫
Dα[A′] (B.39)

is divergent due to the unphysical integral of gauge volume
∫
Dα.

Gauge fixing is the selection of a representative element A′ from the orbit of all configu-

rations related by the gauge transformation (the gauge orbit), it is performed by the gauge

condition

G[A′] = 0. (B.40)
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gauge orbit for a given configuration

the line of gauge condition: G[A] = 0

Figure 29: Illustration of gauge orbits and gauge condition: The gauge condition selects one

representative element from each gauge orbit.

Making use of the delta functional and the relation

δ[α− α[G]] = δ[G]

∣∣∣∣Det[δG[α]

δα
]

∣∣∣∣ , (B.41)

one obtains the refined version of the generating functional

ZGF =

∫
DA′Dα δ[α− α[G]] ei

∫
L[A′]

=

∫
DAδ[G]

∣∣∣∣Det[δGδα ]

∣∣∣∣ ei ∫ L[A].

(B.42)

The above implementation of gauge fixing is just a restatement to the Faddeev-Popov pro-

cedure.

Some famous gauge fixing conditions are:

• Coulomb gauge: G[A] = ~∇ · ~A

• Lorentz gauge: G[A] = ∂µA
µ

• General ξ-gauge: G[A] = ∂µA
µ − cξ
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In employing the ξ-gauge, it is helpful to consider a slightly modified version of the

generating functional

ZGF =

∫
DADc[x] δ[∂µA

µ − c[x]]

∣∣∣∣Det[δGδα ]

∣∣∣∣ e−i 1
2ξ

∫
c2ei

∫
L[A]

=

∫
DADet[∂2] ei

1
2

∫
A[∂2gµν−∂µ∂ν(1−ξ−1)]A

(B.43)

where on the second line, we have explicitly used the Lagrangian of the abelian Yang-Mills

theory. Also, Det[∂2] in this case is independent of the field A and hence may be dropped

for practical calculations.

B.3.1 COULOMB GAUGE IN QED

We now review the process of gauge fixing in Coulomb gauge QED. The absence of the term

∂tA
0 in the Lagrangian means that A0 is non-dynamical, and can be functionally integrated

away, as we shall see, this leads to the explicit appearance of the Coulomb potential in the

Lagrangian.

LQED = ψ̄(i/∂ −m− g /A)ψ − 1

4
F 2 (B.44)

where Fµν = ∂µAν − ∂νAµ.

The proper generating functional is given by

Z =

∫
Dψ̄DψDAδ[~∇ · A]Det[−~∇2]ei

∫
ψ̄(i/∂−m−g /A)ψ− 1

4
F 2

. (B.45)

Noting the definition of electric field and magnetic field

Ei = F i0 = ∂iA0 − ∂tAi (B.46)

Bi = −1

2
εijkFjk, (B.47)

one can work out
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−1

4
F 2 =

1

2
( ~E2 − ~B2). (B.48)

Focus on the term

ei
∫

1
2
F i0F i0 =

∫
D~Π ei

∫
− 1

2
ΠiΠi+ΠiF i0 , (B.49)

the generating functional is rewritten as

Z =

∫
Dψ̄DψD ~ADA0D~Π δ[~∇ · A]Det[−~∇2]

ei
∫
ψ̄(i/∂−m)ψ+gψ̄~γψ· ~A+~Π·[∂t ~A]− 1

2
~B2− 1

2
~Π2+[−~Π·~∇−gψ̄γ0ψ]A0

.

(B.50)

One can remove the explicit A0-degree of freedom by the functional integration:

∫
DA0 ei

∫
[−~Π·~∇−gψ̄γ0ψ]A0

= δ[~∇ · ~Π− gψ̄γ0ψ] (B.51)

Rewriting ~Π as

~Π = −~∇φ+ ~Π⊥ (B.52)

where ~∇ · ~Π⊥ = 0. Note that 1
2
~Π2 = 1

2
~Π⊥

2
+ 1

2
φ(−~∇2)φ.

The functional integral of ~Π can be decomposed into

D~Π −→ D ~Π⊥Dφ, (B.53)

so the related delta functional becomes

Det[−~∇2]δ[~∇ · ~Π− gψ̄γ0ψ] −→ Det[−~∇2]δ[−~∇2φ− gψ̄γ0ψ] = δ[φ− −1

~∇2
(gψ̄γ0ψ)]. (B.54)

Performing all the delta functional integration, one obtains
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Z =

∫
Dψ̄DψD ~Π⊥D ~A⊥ ei

∫
ψ̄iγ0∂tψ+ ~Π⊥·[−∂t ~A⊥]−HCoulomb (B.55)

with

HCoulomb = ψ̄(−i~γ · ~∇+m)ψ − gψ̄~γψ · ~A⊥ +
1

2
~Π⊥

2
+

1

2
~B2 +

1

2
g2(ψ̄γ0ψ)

−1

~∇2
(ψ̄γ0ψ).

(B.56)

Equivalently, in terms of Lagrangian:

Z =

∫
Dψ̄DψD ~A⊥ ei

∫
LCoulomb (B.57)

where

LCoulomb = ψ̄(i/∂ −m)ψ + gψ̄~γψ · ~A⊥ +
1

2
(∂t ~A⊥

2
)2 − 1

2
(~∇× ~A⊥)2 − 1

2
g2(ψ̄γ0ψ)

−1

~∇2
(ψ̄γ0ψ).

(B.58)

Here, we have ψ̄, ψ and ~A⊥ as the fields degrees of freedom. Note that −1
~∇2

has the spatial

representation 1

4π|~x−~x′| .

As advertised, the Coulomb potential makes its appearance explicitly in the Lagrangian,

and hence will appear in any tree level calculations.
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B.3.2 COULOMB GAUGE IN QCD

We now turn to the discussion of Coulomb gauge fixing in QCD [22, 62]. The non-abelian na-

ture of the theory introduces several complications. Firstly, the Faddeev-Popov determinant

is no longer field independent. In other gauge, this is usually handled by the introduction of

auxiliary ghost fields. As we shall see, being a physical gauge, there is no need to introduce

the ghost degrees of freedom in Coulomb gauge. Again, one integrates away A0 and obtains

a generalized Coulomb potential in the Lagrangian. We will also discuss the Gribov problem,

which originates from the inability of the gauge condition to fix the gauge uniquely.

The Lagrangian density of QCD reads

LQCD = ψ̄(i/∂ −M − g /A)ψ − 1

4
G2 (B.59)

with

[T a, T b] = ifabcT c

A = T aAa

Ga
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν .

(B.60)

The Lagrangian is invariant under the gauge transformation:

ψ −→ e−igα
aTaψ

Aaµ −→ Aaµ
′ ≈ Aaµ + ∂µα

a − gfabcAbµαc
(B.61)

It is useful to define the operator

Dacµ = ∂µδ
ac − gfabcAbµ, (B.62)

so that the gauge transformation for photon fields can be conveniently written as
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Aaµ
′ ≈ Aaµ +Dacµ αc. (B.63)

Again, we define the electric and magnetic fields:

Ei
a = Gi0

a = ∂iA0
a − ∂tAia − gfabcAibA0

c (B.64)

Bi = −1

2
εijkGjk (B.65)

Parallel to the discussion in QED, we note

ei
∫

1
2
Gi0a G

i0
a =

∫
D~Π ei

∫
− 1

2
ΠiΠi+ΠiGi0a , (B.66)

the generating functional is rewritten as

Z =

∫
Dψ̄DψD ~ADA0D~Π δ[~∇ · ~A]Det[−~∇ · ~D]

ei
∫
ψ̄(i/∂−m)ψ+gψ̄~γTaψ· ~Aa+ ~Πa·[∂t ~Aa]− 1

2
~B2− 1

2
~Π2+[−gψ̄γ0Taψ+Πia∂

i+gfabcA
i
bΠ

i
c]A

0
a .

(B.67)

Integrating out A0

∫
DA0 ei

∫
[−gψ̄γ0Taψ+Πia∂

i+gfabcA
i
bΠ

i
c]A

0

= δ[ ~D · ~Π− gψ̄γ0T aψ] (B.68)

Rewriting ~Π as

~Π = −~∇φ+ ~Π⊥

~∇ · ~Π⊥ = 0

1

2
~Π2 =

1

2
~Π⊥

2
+

1

2
φ(−~∇2)φ

(B.69)

The functional integral of ~Π can be decomposed into
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D~Π −→ D ~Π⊥Dφ. (B.70)

The related delta functional reads

Det[−~∇ · D]δ[ ~D · Π− gψ̄γ0T aψ] −→ Det[−~∇ · D]δ[− ~D · ~∇φ− (gψ̄γ0T aψ + gfabcA
b
iΠ
⊥
c

i
)].

(B.71)

We identify the non-abelian version of the density of the source

ρatot = gψ̄γ0T aψ + gfabcA
b
iΠ
⊥
c

i
, (B.72)

hence the delta functional becomes (within Coulomb gauge)

Det[−~∇ · D]δ[− ~D · ~∇φ− ρtot] = δ[φ− −1

~∇ · D
ρtot] (B.73)

Finally, we reach

Z =

∫
Dψ̄DψD ~Π⊥D ~A⊥ ei

∫
ψ̄iγ0∂tψ+ ~Π⊥a ·[−∂t ~A⊥a ]−HCoulomb (B.74)

with

HCoulomb =
1

2
~Π⊥

2
+

1

2
~B2 + ψ̄(−i~γ · ~∇+m)ψ − gψ̄~γψ · ~A⊥ +

1

2
g2ρtot

1

~∇ · ~D
(−~∇2)

1

~∇ · ~D
ρtot

(B.75)

ρatot = gψ̄γ0T aψ + gfabcA
b
iΠ
⊥
c

i
. (B.76)

The non-abelian Coulomb gauge condition introduces a generalized Coulomb potential in

the Hamiltonian level.

Lastly we turn to a brief discussion of Gribov problem in the context of coulomb gauge

[63].
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For the gauge condition to select the representative uniquely, one commands that the

solution for

~∇ · ~Aα = 0 (B.77)

to be unique.

In QED, it presents no problem as the solution to −~∇2α = 0 is unique for a given

boundary condition.

For the non-abelian case, however, one has

(−~∇ · ~D[ ~A⊥])α = 0 (B.78)

−~∇2αa − gfabc ~Ab · ~∇αc = 0. (B.79)

Gribov pointed out the equation admits non-trivial solutions in this case. A resolution

suggested by Zwanziger[64] is to restrict the configuration space to the fundamental modular

region, which consists of the global minimum of the functional

∫
Tr [ ~Aα · ~Aα] (B.80)

along a given gauge orbit.

The study of the operator −~∇ · ~D in Gribov problem is deeply related to the color

confinement problem. The Gribov confinement scenario states that the Coulomb potential

1
~∇· ~D

(−~∇2) 1
~∇· ~D

is long range due to the fact that 1
~∇· ~D

is infrared-enhanced. At large quark

separation, the configuration corresponds to zero-eigenvalue mode of −~∇· ~D dominates, such

configurations are believed to be located near the boundary of fundamental modular region

and are related to center vortexes picture of the confinement [65, 66, 23].

This concludes our review on functional methods in QFT.
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APPENDIX C

NOTES ON PERFORMING MATSUBARA SUM

We will illustrate the techniques of Matsubara sum through the computation of propagators:

Firstly for bosonic propagator:

Gk0,~k =
1

k02 − ε~k2 + iε
(C.1)

and hence

∫
dk0

2π
e−ik

0tGk0~k =
−i
2ε~k

e−iε~kt t > 0

=
−i
2ε~k

e+iε~kt t < 0

Consider

Gωn,~k
=

1

(iωn + µ)2 − ε~k2

and we are interested in the Matsubara sum:

G~k[τ ] =
1

β

∑
ωn

1

(iωn + µ)2 − ε~k2
e−iωnτ

where ωn = 2nπ
β
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We will evaluate the Matsubara sum using the method of pole generation:

The method of pole generation is a trick that helps to evaluate the sum by considering

an integral.

consider

I =

∮
dz

2πi
n(z)

1

(z + µ)2 + ε2~k
e−zτ

where n(z) has poles at iωn

The choice of this n(z) is not unique, and must be chosen such that the integral I gives

0.

If τ > 0.

we need to pick:

n(z) =
−1

e−βz − 1

so that the integral I is zero.

Observing the fact that the integral is given by its residues, we have

0 = I =
−1

eβ(−ε~k−µ)− 1
(

1

2ε~k
)e−(ε~k−µ)τ +

−1

eβ(ε~k+µ) − 1
(

1

2ε~k
)e(ε~k+µ)τ +

∑
ωn

1

(iωn + µ)2 − ε2~k

giving

∑
ωn

1

(iωn + µ)2 − ε2~k
e−iωnτ =

−1

2ε~k
[(n~k + 1)e−(ε~k−µ)τ + n̄~ke

(ε~k+µ)τ ]

with

n~k =
1

eβ(E~k−µ) − 1

n̄~k =
1

eβ(E~k+µ) − 1

On the other hand, if τ < 0.

we need to pick n(z) = 1
eβz−1

and the corresponding Matsubara sum is given by
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∑
other poles

Res[n(z)
1

(z + µ)2 + ε2~k
e−zτ ]

which gives

∑
ωn

1

(iωn + µ)2 − ε2~k
e−iωnτ =

−1

2ε~k
[n~ke

−(ε~k−µ)τ + (1 + n̄~k)e
(ε~k+µ)τ ]

The τ → 0. limit of the sum is well defined, as we can clearly seen above, however, it is a

useful practice to consider

∑
ωn

1

(iωn + µ)2 − ε2~k
by itself.

In this case, we pick n(z) = 1
2

coth[1
2
βz], which is bounded everywhere,∑

ωn

1

(iωn + µ)2 − ε2~k
=
−1

2ε~k
[1 + n~k + n̄~k]

It is also essential to observe that at T, µ→ 0., we can identify

GQFT (t) = i lim
T,µ→0.

GFT (τ = it)

The three pole generators will give different results if the sum is not well defined. For

example, consider the sum

∑
ωn

ωn
(ωn)2 + ε2~k

The sum can be obtained by i d
dτ
G|τ→0+ or i d

dτ
G|τ→0− , the two sums are different, while the

third pole generator gives zero, which is the average of the above two. This comes from

the fact that the sum is not well defined, as d
dτ
G is not a well defined function at τ → 0.

However an intuitive answer for the above sum is 0, and the third pole generator gives a

sensible answer by computing the average of the relevant function:
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1

2
[f(τ → 0+) + f(τ → 0−)]

The corresponding sum for fermionic frequencies can be constructed similarly, here we list

the various useful result for reference:

• bosonic propagator:

Gk0,~k =
1

k02 − ε~k2 + iε

∫
dk0

2π
e−ik

0tGk0~k =
−i
2ε~k

e−iε~kt t > 0

=
−i
2ε~k

e+iε~kt t < 0

Gωn,~k
=

1

(iωn + µ)2 − ε~k2

∑
ωn

1

(iωn + µ)2 − ε2~k
e−iωnτ =

−1

2ε~k
[(n~k + 1)e−(ε~k−µ)τ + n̄~ke

(ε~k+µ)τ ] τ > 0

=
−1

2ε~k
[n~ke

−(ε~k−µ)τ + (n̄~k + 1)e(ε~k+µ)τ ] τ < 0

=
−1

2ε~k
[1 + n~k + n̄~k] τ = 0

with pole generator

n(z) =
−1

e−βz − 1
τ > 0

=
1

eβz − 1
τ < 0

=
1

2
coth[

1

2
βz] τ = 0
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• fermionic propagator

Sk0,~k =
1

6 k −M + iε

it is useful to define:

∑
u~kū~k =

ε~kγ
0 − ~k · ~γ +M

2ε~k

∑
v−~kv̄−~k =

ε~kγ
0 + ~k · ~γ −M

2ε~k

then

∫
dk0

2π
e−ik

0tSk0~k = −i(
∑

u~kū~k)e
−iε~kt t > 0

= −i(−1)(
∑

v−~kv̄−~k)e
iε~kt t < 0

Sωn,~k =
1

(iωn + µ)γ0 − ~k · ~γ −M

∑
ωn

1

(iωn + µ)γ0 − ~k · ~γ −M
e−iωnτ

= (−1)[(1− n~k)e
−(ε~k−µ)τ

∑
u~kū~k + n̄~ke

(ε~k+µ)τ
∑

v−~kv̄−~k] τ > 0

= (+1)[n~ke
−(ε~k−µ)τ

∑
u~kū~k + (1− n̄~k)e

(ε~k+µ)τ
∑

v−~kv̄−~k] τ < 0

with pole generator

n(z) =
1

e−βz + 1
τ > 0

=
−1

eβz + 1
τ < 0

=
1

2
tanh[

1

2
βz] τ = 0
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note that our key result is:

∑
ωn

1

(iωn + µ)γ0 − ~k · ~γ −M
=

1

2
(n~k − n̄~k)γ

0 + (−1)(1− n~k − n̄~k)
−~k · ~γ +M

2ε~k
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APPENDIX D

FINAL FORM OF THE GAP EQUATIONS FOR QED3 AT T = 0

We record the final form of the gap equations for QED3 in 2-spinor formalism at T = 0.

D.1 BALL-CHU VERTEX

• formula for B[p]:

Bp = m− ig2

∫
d3l

(2π)3

−1

A2
l l

2 −B2
l

[Ω̃B1 + Ω̃B2 + Ω̃B3] (D.1)

Ω̃B1 = Ω̃B1sym + Ω̃B1anti−sym

Ω̃B1sym = Ω1Bl[
−2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2
]

Ω̃B1anti−sym =
−2Ω1Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(l · k)(µCS −F)

k2 + F
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Ω̃B2 = Ω̃B2sym + Ω̃B2anti−sym

Ω̃B2sym = Ω2Bl[
−R2 + (k ·R)2 1

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2

(k ·R)2

k2
]

Ω̃B2anti−sym =
Ω2Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(R · k)(R · l)−R2(l · k)]

Ω̃B3 = Ω3Al[
−l ·R + (l·k)(k·R)

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2

(l · k)(k ·R)

k2
]

Rµ =lµ + pµ

kµ =pµ − lµ

Ω1 =
Ap + Al

2

Ω2 =
1

p2 − l2
Ap − Al

2

Ω3 =− 1

p2 − l2
(Bp −Bl)
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• formula for A[p]:

Ap = 1− ig2

∫
d3l

(2π)3

−1

A2
l l

2 −B2
l

−1

p2
[Ω̃A1 + Ω̃A2 + Ω̃A3]

Ω̃A1 = Ω̃A1sym + Ω̃A1anti−sym

Ω̃A1sym = Ω1Al[
2p·kl·k

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2
[
2p · kl · k

k2
− p · l]]

Ω̃A1anti−sym =
2Ω1Bl

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(p · k)(µCS −F)

k2 + F

Ω̃A2 = Ω̃A2sym + Ω̃A2anti−sym

Ω̃A2sym = Ω2Al[
−2(p ·R)(l ·R) +R2(p · l) + (k ·R) [(p·k)(l·R)+(l·k)(p·R)−(R·k)(p·l)]

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

−

ξ

k2

(R · k)[(p · k)(l ·R) + (l · k)(p ·R)− (R · k)(p · l)]
k2

]

Ω̃A2anti−sym =
Ω2Bl

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(p · k)R2 − (p ·R)(k ·R)]

Ω̃A3 = Ω̃A3sym + Ω̃A3anti−sym

Ω̃A3sym = Ω3Bl[
−p ·R + (p·k)(k·R)

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2

p · kk ·R
k2

]
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Ω̃A3anti−sym =
Ω3Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(p · k)(R · l)− (p ·R)(l · k)]

Rµ =lµ + pµ

kµ =pµ − lµ

Ω1 =
Ap + Al

2

Ω2 =
1

p2 − l2
Ap − Al

2

Ω3 =− 1

p2 − l2
(Bp −Bl)

• formula for F [k]:

F [k] = −i1
2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(trI)[Ω̃F1 + Ω̃F2 + Ω̃F3] (D.2)

Ω̃F1 = Ω12A1A2[l1 · l2 − 3
(k · l1)(k · l2)

k2
]

Ω̃F2 = Ω2[A1A2{[2(l1 ·R)(l2 ·R)− (l1 · l2)R2]+

−3

k2
(R · k)[(l1 · k)(l2 ·R) + (l2 · k)(l1 ·R)− (R · k)(l1 · l2)]}

+B1B2[R2 − 3
(k ·R)2

k2
]]

Ω̃F3 = Ω3[A1B2[(l1 ·R)− 3
(k · l1)(k ·R)

k2
] + A2B1[(l2 ·R)− 3

(k · l2)(k ·R)

k2
]]

159



Rµ =2lµ − kµ

l1
µ =lµ

l2
µ =lµ − kµ

Ω1 =
A2 + A1

2

Ω2 =
1

l22 − l21
A2 − A1

2

Ω3 =− 1

l22 − l21
(B2 −B1)

• formula for F [k]:

F = i
1

2k2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(trI)[Ω̃F1 + Ω̃F2 + Ω̃F3] (D.3)

Ω̃F1 = 2Ω1[A1B2l1 · k − A2B1l2 · k]

Ω̃F2 = Ω2{A1B2[R2(k · l1)− (R · l1)(R · k)]− A2B1[R2(k · l2)− (R · l2)(R · k)]}

Ω̃F3 = Ω3A1A2[(k · l1)(R · l2)− (k · l2)(R · l1)]

Rµ =2lµ − kµ

l1
µ =lµ

l2
µ =lµ − kµ

Ω1 =
A2 + A1

2

Ω2 =
1

l22 − l21
A2 − A1

2

Ω3 =− 1

l22 − l21
(B2 −B1)
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D.2 CURTIS-PENNINGTON VERTEX

The Ball-Chu vertex only specify the longitudinal part of a vertex. The CP truncation

scheme is defined as:

ΓνC.P [p, q] = ΓνB.C [p, q] +
Aq − Ap

2

q2 + p2

(q2 − p2)2 + [M2
q +M2

p ]2
[(q2 − p2)γν − (/q − /p)(q + p)ν ]

It is useful to define:

χ1 =
Aq − Ap

2

q4 − p4

(q2 − p2)2 + [M2
q +M2

p ]2

χ2 = −Aq − Ap
2

q2 + p2

(q2 − p2)2 + [M2
q +M2

p ]2

Rν = (q + p)ν

Lν = (q − p)ν

such that the CP vertex reads:

ΓνC.P [p, q] = Ω′1γ
ν + [Ω2R

νRργ
ρ + χ2Lργ

ρRν ] + Ω3R
ν

with

Ω′1 = Ω1 + χ1
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Ω1 =
Aq + Ap

2

Ω2 =
1

q2 − p2

Aq − Ap
2

Ω3 = − 1

q2 − p2
(Bq −Bp)

χ1 =
Aq − Ap

2

q4 − p4

(q2 − p2)2 + [M2
q +M2

p ]2

χ2 = −Aq − Ap
2

q2 + p2

(q2 − p2)2 + [M2
q +M2

p ]2

Rν = (q + p)ν

Lν = (q − p)ν

M =
B

A

The corresponding gap equations read:
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• formula for B[p]:

Bp = m− ig2

∫
d3l

(2π)3

−1

A2
l l

2 −B2
l

[Ω̃B1 + Ω̃B2 + χ̃B2 + Ω̃B3] (D.4)

Ω̃B1 = Ω̃B1sym + Ω̃B1anti−sym

Ω̃B1sym = Ω′1Bl[
−2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2
]

Ω̃B1anti−sym =
−2Ω′1Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(l · k)(µCS −F)

k2 + F

Ω̃B2 = Ω̃B2sym + Ω̃B2anti−sym

Ω̃B2sym = Ω2Bl[
−R2 + (k ·R)2 1

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2

(k ·R)2

k2
]

Ω̃B2anti−sym =
Ω2Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(R · k)(R · l)−R2(l · k)]

χ̃B2 = χ̃B2sym + χ̃B2anti−sym

χ̃B2sym = χ2Bl[−
ξ

k2
(R · k)]
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χ̃B2anti−sym =
χ2Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[k2(R · l)− (R · k)(l · k)]

Ω̃B3 = Ω3Al[
−l ·R + (l·k)(k·R)

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2

(l · k)(k ·R)

k2
]

Rµ =lµ + pµ

kµ =pµ − lµ

Ω′1 =Ω1 + χ1

Ω1 =
Ap + Al

2

Ω2 =
1

p2 − l2
Ap − Al

2

Ω3 =− 1

p2 − l2
(Bp −Bl)

χ1 =
Ap − Al

2

p4 − l4

(p2 − l2)2 + [M2
p +M2

l ]2

χ2 =− Ap − Al
2

p2 + l2

(p2 − l2)2 + [M2
p +M2

l ]2

M =
B

A

• formula for A[p]:

Ap = 1− ig2

∫
d3l

(2π)3

−1

A2
l l

2 −B2
l

−1

p2
[Ω̃A1 + Ω̃A2 + χ̃A2 + Ω̃A3] (D.5)

Ω̃A1 = Ω̃A1sym + Ω̃A1anti−sym

Ω̃A1sym = Ω′1Al[
2 (p·k)(l·k)

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2
[
2(p · k)(l · k)

k2
− p · l]]
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Ω̃A1anti−sym =
2Ω′1Bl

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(p · k)(µCS −F)

k2 + F

Ω̃A2 = Ω̃A2sym + Ω̃A2anti−sym

Ω̃A2sym = Ω2Al[
−2(p ·R)(l ·R) +R2(p · l) + (k ·R) [(p·k)(l·R)+(l·k)(p·R)−(R·k)(p·l)]

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

−

ξ

k2

(R · k)[(p · k)(l ·R) + (l · k)(p ·R)− (R · k)(p · l)]
k2

]

Ω̃A2anti−sym =
Ω2Bl

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(p · k)R2 − (p ·R)(k ·R)]

χ̃A2 = χ̃A2sym + χ̃A2anti−sym

χ̃A2sym = χ2Al[
−(R · l)(k · p)− (R · p)(k · l) + 1

k2
2(p · k)(l · k)(R · k)

[k2 + F ]− (µCS−F)2k2

[k2+F ]

−

ξ

k2

1

k2
[
2(p · k)(R · k)(l · k)

k2
− (p · l)(R · k)]]

χ̃A2anti−sym =
χ2Bl

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(p · k)(R · k)− (R · p)k2]

Ω̃A3 = Ω̃A3sym + Ω̃A3anti−sym
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Ω̃A3sym = Ω3Bl[
−p ·R + (p·k)(k·R)

k2

[k2 + F ]− (µCS−F)2k2

[k2+F ]

− ξ

k2

(p · k)(k ·R)

k2
]

Ω̃A3anti−sym =
Ω3Al

[k2 + F ]− (µCS−F)2k2

[k2+F ]

(µCS −F)

k2 + F
[(p · k)(R · l)− (p ·R)(l · k)]

with

Rµ =lµ + pµ

kµ =pµ − lµ

Ω′1 =Ω1 + χ1

Ω1 =
Ap + Al

2

Ω2 =
1

p2 − l2
Ap − Al

2

Ω3 =− 1

p2 − l2
(Bp −Bl)

χ1 =
Ap − Al

2

p4 − l4

(p2 − l2)2 + [M2
p +M2

l ]2

χ2 =− Ap − Al
2

p2 + l2

(p2 − l2)2 + [M2
p +M2

l ]2

M =
B

A

• formula for F [k]:

F = −i1
2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(trI)[Ω̃F1 + Ω̃F2 + χ̃F2 + Ω̃F3] (D.6)

Ω̃F1 = Ω′12A1A2[l1 · l2 − 3
(k · l1)(k · l2)

k2
]
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Ω̃F2 = Ω2[A1A2{[2(l1 ·R)(l2 ·R)− (l1 · l2)R2]+

−3

k2
(R · k)[(l1 · k)(l2 ·R) + (l2 · k)(l1 ·R)− (R · k)(l1 · l2)]}

+B1B2[R2 − 3
(k ·R)2

k2
]]

χ̃F2 = χ2[A1A2{[−(k · l1)(R · l2)− (k · l2)(R · l1) + (l1 · l2)(R · k)]+

−3

k2
[−2(k ·R)(k · l1)(k · l2) + (l1 · l2)(R · k)k2]}

+B1B2[2(R · k)]]

Ω̃F3 = Ω3[A1B2[(l1 ·R)− 3
(k · l1)(k ·R)

k2
] + A2B1[(l2 ·R)− 3

(k · l2)(k ·R)

k2
]]

Rµ =2lµ − kµ

l1
µ =lµ

l2
µ =lµ − kµ

Ω′1 =Ω1 + χ1

Ω1 =
A2 + A1

2

Ω2 =
1

l22 − l21
A2 − A1

2

Ω3 =− 1

l22 − l21
(B2 −B1)

χ1 =
A2 − A1

2

l2
4 − l14

(l2
2 − l12)2 + [M2

2 +M2
1 ]2

χ2 =− A2 − A1

2

l2
2 + l1

2

(l2
2 − l12)2 + [M2

2 +M2
1 ]2

M =
B

A
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• formula for F :

F = i
1

2k2
g2

∫
d3l

(2π)3

1

A2
1l

2
1 −B2

1

1

A2
2l

2
2 −B2

2

(trI)[Ω̃F1 + Ω̃F2 + χ̃F2 + Ω̃F3] (D.7)

Ω̃F1 = 2Ω′1[A1B2l1 · k − A2B1l2 · k]

Ω̃F2 = Ω2{A1B2[R2(k · l1)− (R · l1)(R · k)]− A2B1[R2(k · l2)− (R · l2)(R · k)]}

χ̃F2 = χ2{A1B2[−(R · k)(k · l1) + (R · l1)k2]− A2B1[−(R · k)(k · l2) + (R · l2)k2]}

Ω̃F3 = Ω3A1A2[(k · l1)(R · l2)− (k · l2)(R · l1)]

with

Rµ =2lµ − kµ

l1
µ =lµ

l2
µ =lµ − kµ

Ω′1 =Ω1 + χ1

Ω1 =
A2 + A1

2

Ω2 =
1

l22 − l21
A2 − A1

2

Ω3 =− 1

l22 − l21
(B2 −B1)

χ1 =
A2 − A1

2

l2
4 − l14

(l2
2 − l12)2 + [M2

2 +M2
1 ]2

χ2 =− A2 − A1

2

l2
2 + l1

2

(l2
2 − l12)2 + [M2

2 +M2
1 ]2

M =
B

A
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