IMPROVING COVERAGE OF RECTANGULAR
CONFIDENCE REGIONS

by
Hakan Gogtas

Submitted to the Graduate Faculty of
the Art and Sciences in partial fulfillment
of the requirements for the degree of
B.Sc.,Hacettepe University,1994
M.A. University of Michigan,1998

University of Pittsburgh
2004



UNIVERSITY OF PITTSBURGH

FACULTY OF ART AND SCIENCES

This dissertation was presented

by

Hakan Gogtas

It was defended on
July 6, 2004
and approved by
Professor Leon J. Gleser
Professor Satish Iyengar
Professor Ori Rosen
Professor John W. Wilson

Dissertation Director: Professor Leon J. Gleser

i



IMPROVING COVERAGE OF RECTANGULAR CONFIDENCE REGIONS
Hakan Gogtas, PhD

University of Pittsburgh, 2004

To find a better confidence region is always of interest in statistics. One way to find better
confidence regions is to uniformly improve coverage probability over the usual confidence
region while maintaining the same volume. Thus, the classical spherical confidence regions
for the mean vector of a multivariate normal distribution have been improved by changing

the point estimator for the parameter.

In 1961, James and Stein found a shrinkage estimator having total mean square error,
TMSE, smaller than that of the usual estimator. In 1982, Casella and Hwang gave an ana-
lytical proof of the dominance of the confidence sphere which uses the James Stein estimator
as its center over the usual confidence sphere centered at the sample mean vector. This

opened up new possibilities in multiple comparisons.

This dissertation will focus on simultaneous confidence intervals for treatment means
and for the differences between treatment means and the mean of a control in one-way and
two-way Analysis of Variance, ANOVA, studies. We make use of Stein-type shrinkage esti-
mators as centers to improve the simultaneous coverage of those confidence intervals. The
main obstacle to an analytic study is that the rectangular confidence regions are not rotation

invariant like the spherical confidence regions.

Therefore, we primarily use simulation to show dominance of the rectangular confidence

intervals centered around a shrinkage estimator over the usual rectangular confidence regions
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centered about the sample means. For the one-way ANOVA model, our simulation results
indicate that our confidence procedure has higher coverage probability than the usual confi-
dence procedure if the number of means is sufficiently large. We develop a lower bound for
the coverage probability of our rectangular confidence region which is a decreasing function
of the shrinkage constant for the estimator used as center and use this bound to prove that
the rectangular confidence intervals centered around a shrinkage estimator have coverage
probability uniformly exceeding that of the usual rectangular confidence regions up to an
arbitrarily small epsilon when the number of means is sufficiently large. We show that these
intervals have strictly greater coverage probability when all the parameters are zero, and
that the coverage probability of the two procedures converge to one another when at least

one of the parameters becomes arbitrarily large.

To check the reliability of our simulations for the one-way ANOVA model, we use numer-
ical integration to calculate the coverage probability for the rectangular confidence regions.
Gaussian quadrature making use of Hermite polynomials is used to approximate the cover-
age probability of our rectangular confidence regions for n=2, 3, 4. The difference in results
between numerical integration and simulations is negligible. However, numerical integration

yields values slightly higher than the simulations.

A similar approach is applied to develop improved simultaneous confidence intervals for
the comparison of treatment means with the mean of a control. We again develop a lower
bound for the coverage probability of our confidence procedure and prove results similar to

those that we proved for the one-way ANOVA model.

We also apply our approach to develop improved simultaneous confidence intervals for
the cell means for a two-way ANOVA model. We again primarily use simulation to show
dominance of the rectangular confidence intervals centered around an appropriate shrinkage
estimator over the usual rectangular confidence regions. We again develop a lower bound
for the coverage probabilities of our confidence procedure and prove the same results that

we proved for the one-way model.
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1.0 INTRODUCTION

After rejecting the null hypothesis in one way and two-way analysis of variance,(ANOVA),
or in other words, concluding that at least one of the cell means is different from all the other
cell means, the next step is to make an inference as to where this difference might be. This
is called multiple comparisons or simultaneous statistical inference.

The general principles of multiple comparisons were formed by Duncan, Scheffé and
Tukey, creating its current structure. There is no agreement as to which method of multiple
comparisons is the best. Simultaneous confidence intervals can be given for the cell means,
for comparisons of each mean with with a control, for all pairwise comparisons of means, and
for all linear combinations of the cell means. Sample means X; are used as estimators for
population means 6; in the classical methods. For example, classical simultaneous confidence

intervals take the form:

0; € [XZ‘—CO'I', XZ'—FCO'Z'] ,t=1,...n

where o; is the standard deviation of X; and the half width, ¢, of the interval depends on
the method used (Duncan, Scheffé or Tukey).
Two types of confidence regions are often used:

1.The rectangular confidence regions

2.The spherical confidence regions



We are investigating rectangular confidence regions, but we are motivated by previous
results for spherical confidence regions. Rectangular confidence regions have the following

form:

O() = {@ = (91, '”79143) : |AXVZ - 01| S CO'i,i = ]_,TL}

and c is a tabled constant depending on the method used. Keep in mind that given the
confidence procedure, the coverage probabilities of rectangular confidence regions are same
as the coverage probabilities of the corresponding simultaneous confidence regions. The

spherical confidence regions have the following form:

!

C={||X—-0|<so}, X =(X1,Xs,...Xs), ©=(0,6,,....0,)

where || X — ©]| is the length of the vector, s is the radius of the sphere, and here all X/s
are assumed to have standard deviation o.

To find better simultaneous confidence intervals for the cell means is always of interest
in statistics. One way to find better simultaneous confidence intervals is to uniformly im-
prove the coverage probability of this confidence rectangle over the parameter space while
maintaining the same volume. We conjecture that this can be done by changing the point es-
timator for ©. Such an approach has been successful for improving the coverage probabilities
of the classical spherical confidence regions.

In 1961, James and Stein found a shrinkage point estimator for ©® having total mean
square error,(TMSE), smaller than that of the usual estimator, X. In 1982, Casella and
Hwang proved that the confidence sphere which uses this point estimator as its center has
uniformly higher coverage probability than the usual confidence sphere centered at X while
maintaining the same volume. This opened new possibilities in multiple comparisons.

This dissertation focuses on simultaneous confidence intervals for treatment means. We
also consider simultaneous confidence intervals for the differences between each of the treat-
ment means and the mean of a control in one-way and two-way ANOVA studies. We make
use of Stein-type shrinkage estimators as centers to improve the simultaneous coverage of
these confidence intervals. The main obstacle to an analytic demonstration of this improve-

ment in coverage probability is that the rectangular confidence regions are not invariant



under rotation, preventing the simplification of integral expressions for coverage probability

used in the study of the spherical confidence regions.

In Chapter 2, after introducing one-way and two-way ANOVA models and notations
for the models, we do a literature review for the simultaneous confidence regions for 6; for
one-way and two-way ANOVA models, and also for the simultaneous confidence regions for
comparisons of cell means with a control mean for one-way ANOVA model. Then, we will
outline the main ideas and result of Fabian’s (1991) paper. Finally, we will do a literature
review for the James Stein estimator and Lindley estimator and generalization of Lindley
estimator, and for spherical confidence region centered at the James-Stein estimator, and

pretest estimator.

In Chapter 3, we first introduce our confidence procedure for the simultaneous confidence
intervals for the cell means. We give a lower bound for the coverage probability of our
rectangular confidence region that is a decreasing function of the shrinkage constant used
for the point estimator that is the center of the region. We prove that the simultaneous
confidence intervals centered around a shrinkage estimator define a rectangular confidence
region that dominates the usual rectangular confidence regions up to an arbitrarily small
constant for a sufficiently large number of means, n. We show that these intervals have
strictly greater coverage probability when all the parameters are zero, and that the coverage
probabilities of the two confidence procedures converge to one another when at least one of
the parameters becomes arbitrarily large.

In Chapter 4, we introduce our improved simultaneous confidence intervals for the com-
parison of treatment means with the mean of a control. Since the simultaneous confidence
intervals for the comparison of treatment means with the mean of a control have form simi-
lar to that of the simultaneous confidence intervals for the cell means, we are able to prove

results similar to those that we proved in Chapter 3.

Because we extensively use simulation to demonstrate the domination of our confidence
regions over the usual ones, we want to make sure that our simulation results are reliable. To
check reliability of our simulations, in Chapter 5 we use numerical integration to calculate
the coverage probabilities for the simultaneous confidence regions for the cell means in a

one-way ANOVA model.



In Chapter 6, we introduce our rectangular confidence region for two-way ANOVA mod-
els. We obtain results for two-way ANOVA models similar to those that we proved for the
one-way ANOVA models.

In Chapter 7, we discuss possibilities for future research.



2.0 NOTATION AND LITERATURE REVIEW

For analysis of variance problems, we prefer use of the cell mean model, which has a more
straightforward interpretation. We will first introduce our notation for cell mean models
for one-way and two-way ANOVA models, then we will briefly review the literature dealing
with simultaneous confidence regions for the population means, 6;, for one-way and two-way
ANOVA models and with spherical confidence regions centered at the James Stein,(JS), and

Lindley estimators.

2.1 BALANCED ONE-WAY ANALYSIS OF VARIANCE MODEL

In one-way analysis of variance (also known as the one-way classification),we assume that

data Y;; are observed according to a model,

Yi=0itey j=1..ki=1..n, (2.1)

where the population means, 6;, are unknown parameters and ¢; are i.i.d N(0,02) error
random variables.

We will denote sample cell mean by X;; thus,

XiZVZZE, (2.2)

Jj=1

~

and we let X = L3 | X;, denote the average sample mean (often called Grand mean).



If 02 is known, the data can be reduced by sufficiency to X, X, ..., X,, which are indepen-

a2 o’

dent normally distributed random variables with means 6y, ..., ¢, and variances -, ..., %

In this dissertation, we consider the balanced one-way analysis of variance (ANOVA) model
with both known and unknown o2. In the Appendiz, we give a modification of our procedure

for the unbalanced one-way ANOVA models with known or unknown o2.

2.2 BALANCED TWO-WAY ANALYSIS OF VARIANCE MODEL

Suppose the data Y;;, are obtained from a balanced two-way classification design. In such
a two factor experiment, there are I levels of factor A and J levels of factor B and K
replications for each treatment combination of the ith level of factor A and jth level of

factor B. The model is given by
Yije = 0ij + €k = 0+ ai + b + ¢; + €5 (2.3)

where 6,; is the population mean for the (4, j) — th treatment combination, ¢ is a constant ,
a; is the main effect associated with the ith level of factor A, b; is the main effect associated
with factor B, ¢;; is the interaction of level i of factor A and level j of factor B, and ¢;;;, are

the error terms. The ¢;;;, are distributed independently and normally:
ek ~ N(0,02), 1<i<I, 1<j<J 1<k<K. (2.4)

The sample mean of all the observations from the (i,j)th treatment combination will be called

the 7, 7 sample cell mean and it is denoted as:

Ky

Y, = ik 2.5
Letting X;; be %7 then the reduced data consists of Xy;...X;;...X;, and we can represent
X;; in the form,

Xij = Xoij + Wij, (2.6)



In (2.6), Xo;; is the additive main effect and W;; is the interaction effect. Here

I+J-1 I-1)(J-1
+T)7 WZJNN<9U7( )( )

Xoij ~ N(0, )

and Y7 Wy =0,i=1,..L Y0 Wy =0,j=1,...J, X1 37 Xoi; =0
The usual confidence rectangle for the population means, 6,;, under the (i,j) treatment

combination is

D1 == {@ = (‘911, ...,6[J) . <|X2] — le S S,i = 1,[,] = 1, ceey J} (27)

1
where s = 5—%@‘1(5 =), N=IJK and @ is the standard normal cumulative distribution
function.

2.3 LITERATURE REVIEW

We will do a literature review for the simultaneous confidence regions for population cell
means (Treatment means) 6;, and also simultaneous confidence regions for comparisons of
the 6; with a control mean, in one-way ANOVA problems. Then, we will review the lit-
erature concerning simultaneous confidence intervals for the population cell means 6;; in
two-way ANOVA problems, and also outline the main ideas and result of Fabian’s (1991)
paper. Then, we review the literature on the James-Stein and Lindley point estimators and
their generalizations. Finally, we review results for spherical confidence regions centered at

the JS estimator.

2.3.1 One-Way ANOVA Model

As we mentioned in the Introduction, simultaneous inference methods are either for tests or

for confidence intervals. We only review the methods for simultaneous confidence regions.



2.3.1.1 The Usual Method If ¢ is known:

91‘ EXZ'ZECO'Z', 1= 1,...,71, (28)

gives exact 100(1 — )% simultaneous confidence intervals for ;, where

c=o (8" +1)/2,

and 0 =1— .

If o is unknown,

The Studentized Maximum Modulus (SMM) method, which gets its name because it is

based on the studentized maximum modulus statistic

Xi—

Vi

max |
1<i<n

provides exact 100(1 — a)% simultaneous confidence intervals for 6y, ...,0,, where k; is the

number of replications for the ith treatment. These intervals are

0, € X £ |mlamy—a=y i =1, (2.9)

where |m|qs,, is the 1 — a quantile of the student maximum modulus distribution, and is

computed as the solution of the equation
/ [D(|m|anss) — P(—|m|anys)] 1 (s)ds =1 — a. (2.10)
0

In (2.10), ® is the standard normal cdf, , is the density of £ and v =n — 1.



2.3.1.2 A Product Inequality Method The random variables

X, -0,

g

IT;| = ,i=1,...,n

e

are independent except for the common divisor &. If we assume that they are independent,
the appropriate simultaneous confidence intervals for 6y, ..., 8, would be same as (2.9), except
for replacing [m|an, by the 1 — a quantile t;__4)1/n)/2, of t-distribution with v degrees of
freedom. The resulting simultaneous confidence intervals are

o
—(l—a)l/"]/Q,Vﬁv 1=

The confidence interval (2.11) is conservative; That is,

P(@l € Xl + t[l_(l_a)l/n]/zy%,i = 1, ,n) 2 1— .

2.3.1.3 The Bonferroni Inequality Method The familiar Bonferroni inequality states,|]
for any events FEi,...E, that,

P(Up,E;) < ) P(E}) (2.12)

Applying the Bonferroni inequality to

&
vk

then the Bonferroni simultaneous confidence intervals are

E={6cb+q }

A

eiEXi:tta/gn’,/L 1< <n

Jp lsisn (2.13)

The Bonferroni confidence interval is always more conservative than the product inequality

confidence intervals because (1 — a)'/" < 1 —a/n for all @ > 0 and n > 1.



2.3.2 Simultaneous Confidence Regions for Comparisons with a Control

2.3.2.1 The Usual Method We are interested in simultaneous confidence regions for
comparisons of the 6; with a control mean in the balanced one-way ANOVA problems with
known o2. In the appendiz, we give modifications of our procedure for the balanced one-way
ANOVA model with unknown o2 and the unbalanced one-way ANOVA model with both
known or unknown o? .

If 02 is known, we can assume without loss of generality that variance is 1.

The sample cell means, X7, ..., X,,, defined in (2.2), are independent normally distributed
random variables with means 64, ..., 6, and variance 1. The sample control mean is normally
distributed with mean 6. and variance 1, independent of the sample cell means. The usual

confidence interval for multiple comparison with control is

Ey = {|IXi—X.—(0,-06,)] <c"i=1,..,n}.

where c¢* is defined by,

P(E)) = P{Y|<c,i=1,...,n}=0.95 (2.14)
Yy
Where V; = X, — X, —0,+0.,Y = : has a n-variate normal distribution N(0,3),
Y,
and
2 1 1 1
1 2 1 1
11 1 2

10



2.3.2.2 Dunnett’s Method Dunnett’s (1955) two sided method provides the following
simultaneous confidence intervals for the difference between each new treatment mean #; and

the control mean 6. when ¢? is unknown:

6 — 0, €0 — 0+ |d|8\/% forall i = 1,..n

where |g| is the solution to the equation

/ Oo /_Oo [ (2 + V2lqls) — (2 — V2lqls)]"gl(z)v(s)ds =1 — @

where ® is the standard normal distribution function, ¢ is the standard normal density func-

tion and 7 is the density of %

2.3.3 Two way analysis of variance

In the context of ANOVA studies, additive effects provide much simpler explanations of
the factor effects than do interacting effects. The presence of interacting effects complicates
the explanation of the factor effects because they must then be described in terms of the
combined effects of the two factors. The following strategy is suggested by most textbooks,

1. Examine whether the factors interact.

2. If they do not interact, examine whether the main effects are important.

3. If the factors do interact, examine if the interactions are important or unimportant.
4. If the interactions are unimportant, proceed as in step 2.

5. If the interactions are important, consider whether they can be made unimportant by a

meaningful simple transformation of scale.

6. For important interactions that can not be made unimportant by a simple transfor-

11



mation, analyze the two factor effects jointly in terms of treatment means 6;;.

2.3.3.1 Analysis of Factor effects when factors do not interact 100(1 — a)% si-

multaneous confidence intervals for 6; and Q_J

Y. £t[1 —a/2; (k—1)IJ]s{Y:.}

2
e

MSE

where o e

is unknown, s {W} =
Y, £l —a/2;(k—1)1J)s{Y; }}

where az is unknown, s {E} = ]\?—f(E t is the usual t distribution.

Fabian (1991) suggested a confidence rectangle for cell means 6;; that adapts to the
extent of interaction estimated by the data in that length of his confidence interval depends
on the largest interaction effect. Now, we will give the brief summary of the Fabian’s paper

(1991).

2.3.3.2 Fabian’s Procedure As I mentioned above the usual recommendation is to
neglect interactions and do analysis. Fabian (1991) suggested the following recommenda-
tion: ignore interactions and do analysis but estimate the error involved in neglecting the
interactions from the power of the test. Then he gave the following (1 — )% simultaneous

confidence interval for all cell means;

Y;ij — S5 < 91-]- < Y;n'j + 89 fO?“ all (2% (215)

where so = Kg(D + €) + max |W;;| , D = |Z,;|,and € is a normal(0,(I-1)(J-1)/(1J)) random

variable independent of D.

12



He also stated that, one way method or usual recommendation for two way method,(1.18),
is substantially better than (2.15).

Gleser (1992) criticized the way Fabain constructed his simultaneous confidence interval.
He stated that the length of Fabian’s confidence interval constructed by triangular inequality
and has higher variance. He also argued the question that ”Can other methods be found
that preserve at least some of the benefits of (additive model) in saving variance,while still
accounting for possible interaction. He suggested the confidence rectangle centered at the

appropriate shrinkage estimator.

2.3.4 Stein Estimation Procedures in Spherical Confidence Intervals and Bayesian}]

Estimation

We will do literature review for point estimation results of the shrinkage estimator.
Then, we will do literature review for spherical confidence intervals centered at the shrinkage

estimator.

2.3.4.1 The Point Estimation Results for the Shrinkage Estimator
Stein (1956) showed that the usual maximum likelihood estimator for 8 = (64, ...,6,),
namely

X = (Xy,...,X,,)’, has larger expected loss or risk than the estimator

ac?

(X)) =(1- —2
(X)=(1 T

)X,
where || X||> = 327, X2, provided that a is sufficiently small and b is sufficiently large.

James and Stein (1961) showed that each member of the class of estimators

ac?

07 (X) = (1— —5)X 2.16
(X) = ( HXH2) (2.16)

depending on a > 0, has a smaller total mean squared error, TMSE, than X for 0 < a <

2(p—2) and that a=p-2 gives the uniformly best estimator in this class of estimators, p > 3.

13



Baranchik(1964,1970) showed that the James-Stein (JS) positive part estimator has uni-

formly smaller TMSE than the James-Stein estimator. The positive part estimator is

2

ao
where,
(1 ac? )+ 1_#12)(2 ,if YL XY > a0?
— —2 — = 1
] 0 iYL X < a0

Brown (1971) observed that the positive part estimator is also inadmissible. An explicit
estimator that dominates the JS positive part estimator in total mean squared error has
been given by Shao and Strawderman (1994).

Lindley (1962) showed that the estimator §(X) = (d1(X), ..., §,(X), where

J(X)=X+(1-———2 )X -X) (2.18)

and X = (1/n) Y., X;, has a uniformly smaller mean squared error than the usual estimator
X of @ for n > 4. This estimator shrinks toward an estimate of the average 6 of the population
means. We briefly explain the main idea of Lindley’s estimator. In the one way ANOVA
model, the usual estimator of the vector of population cell means is the vector of sample cell
means. It is desirable to find the best linear unbiased estimator of @ of the form 0 = a + bX ,
where a is a vector. The resulting least square line is § = X + (1 — Z&;}Y)Q)(X — X). This
estimator does not have a smaller total mean squared error, TMSE, than X. The estimator
with a smaller TMSE was obtained by Lindley by simply replacing n — 1 with n — 3.

Judge, Hill and Bock (1990) note that for shrinkage estimators to achieve significant risk
improvements as compared with MLEs, it is necessary to identify the region or subspace
where the location vector being estimated is either known or thought to lie as a result of
prior information. The best shrinkage estimators are those that shrink toward the correct
subspace or region.

Sclove (1968) considers the estimation of the coefficients of a linear model with an column

orthogonal design matrix at least three regression variables.He:

1. gives the form of the James-Stein estimator appropriate for this context;

14



2. observes that the mean square error of prediction(MSEP) when James-Stein estimator is
used to estimate model coefficient is uniformly smaller than that resulting from using the
Least Squares,LS;

3. observes that when the estimated regression coefficients are significantly different from
zero JS is very close to the LS.

The observation that the JS and LS are very close when regression coefficients differ signifi-
cantly from zero motivates the idea of a preliminary test estimator.This kind of estimator is
formulated as follows:

1. A test of hypothesis is performed to see which regression coefficients are significantly
different from zero.

2. Regression coefficients that are not significantly different from zero are estimated by JS.
3. Regression coefficients that are significantly different from zero are estimated by LS.
Sclove also;

1. mentions a positive part estimator;

2. gives an induction of how to extend his results to the case of non-orthogonal design

matrices.

Judge et al.(1980) explain how a JS estimator may be viewed as a pretest estimator that
combines the restricted and unrestricted least square estimators. They explain how a Stein
like estimator originally formulated by Scolve, Morris, and Radhakrishnan (1972) dominates

the usual pretest estimator.

Saleh et al.(1990) give four estimators:
1. the restirected least squares estimator (RLSE);
2. the unrestricted least squares estimator (URLSE);
3. the preliminary test least squares estimator (PTLSE);
4. the shrinkage leasts square estimator (SLSE) (a JS type estimator).
They derive and compare the risk functions. They find that:
1. The RLSE has the smallest risk if the true regression coefficients satisfies the restriction
imposed on the estimated coefficients, but is unbounded when parameters move away from
the subspace of the restriction.

2. The SLSE generally has the smallest risk, but not when the parameter is in or near the
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restriction subspace;in this case PTLSE is better.
The authors recommend the use of PTLSE when the restriction subspace has dimension less

than three ; otherwise they advocate the PTLSE and SLSE with the SLSE preferred.

2.3.4.2 Spherical Confidence Intervals Centered at the Shrinkage Estimator

Brown (1966) and Joshi (1967) independently demonstrated the existence of a confidence
region for n > 3 that dominates the usual confidence region C°(X) = {6 : | — X|| < x(n1-a) } ]
Joshi proved that the set

cl(z)={0: o - F )| < 2},

has higher coverage probability than C°(z) if a is sufficiently small and b is sufficiently large.
Olshen(1977) simulated the coverage probability of C for selected a,b and ||6]]. The results
indicated that large gains in coverage probability can be achieved.
AS Stein(1962) and others noted, the James-Stein estimator arises in a natural fashion
as an " Empirical Bayes Estimator”. This result can be seen by following argument:
Assume 6; are a sample from a prior distribution, where 6;, for i = 1,2, ..., n is normally
and independently distributed with mean zero and variance 72 with joint density in vector

form g(6/A\?). Then the Bayesian estimator of § under the squared error loss is (1 — ﬁ)@\

These Bayesian result assume that (1 — ﬁ) and 72 are known. If the investigator does
not know 72, he cannot use the Bayes rule. However, as Efron and Morris(1973) noted that
one can stop short of the Bayesian fold and attempt to estimate (1 — H%) from the data.
Morris (1977) also simulated coverage probabilities for certain generalized Bayes estimators
resulting in fairly simple confidence region and again, results were good.

Two other important works are those of Faith(1976) and Berger(1980).Faith derives
confidence sets from Bayes credible sets and shows, for p=3 or 5, that these sets have small
volume and higher coverage probability than C°(z) except for an interval of middle values
of ||8]|>. Unfortunately, his confidence regions are difficult to work with, having complicated

shape arising from their Bayesian derivation. Berger also proceeds in a Bayesian fashion, but

also uses the posterior covariance matrix to construct confidence ellipsoids. Resulting sets
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are shown to have uniformly smaller volume than C°(X) , and to dominate C° in coverage
probability for sufficiently large ||9||2

Casella (1980) extended the method of Faith and derived exact formulas for the cover-
age probability of spherical confidence regions centered at the James-Stein or positive-part
James-Stein estimators. Casella and Hwang (1982) proved that if the usual confidence sphere
is recentered at the positive-part James-Stein estimator, then the resulting confidence region
has a uniformly higher coverage probability for n > 4.

Casella and Hwang (1983) studied the spherical confidence set,

COM(X) = {6:10 —079"(X)| < V(X)} where 67*7(X) is defined in (2.17) and V(X) is
derived through the use of the empirical Bayes argument. They stated conditions on V(X)
for the set C“H(X) to have a uniformly higher coverage probability than the usual spherical
confidence set at § = 0. They failed to show numerical evidence for dominance in coverage
probabilities for the range of middle values of ||]|>.

Casella and Hwang (1987) derived exact formulas for the coverage probability of the
spherical confidence set, C“H1(X) = {@ 1@ — 6| < 30}, where A is n xn idempotent ma-
trix, k is the rank of A, 0 < a < n—k—2and 6 (X) = AX+(1=7%55) T (I-A)X. They
proved that C“H1(X) has uniformly higher coverage than the usual spherical confidence sets
for n > 4. Also, they noted that for A = (1/n)11" ,6)(X) becomes the positive-part Lind-
ley’s estimator,d”*F*(X). They gave a evidence based on design simulations that the spher-
ical confidence set centered at §755(X), COH2(X) = {6: |6 — 6755 (X)| < V(X) }where
V(X) is derived through the use of the empirical Bayes argument, has a uniformly higher

coverage probability than the usual spherical confidence set.
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3.0 ONE-WAY ANOVA MODEL

If the data Y;; are obtained from a balanced one-way classification design,

Yij=0i+e; j=1..k,i=1..n

where 6;’s are the population means and €;; are i.i.d N(0,0?) error random variables. We
first go over the known o? case, and then the unknown o2 case. We explain the modification

of our procedure for the unbalanced one-way and two-way ANOVA models in the appendiz.

3.1 KNOWN o2 CASE

The sample means, X1, ..., X,,, are independent normally distributed random variables

o2

with means 0y, ..., 0, and variances 4-. Then, the usual confidence rectangle for the vector
O of cell means is
X, — 6, |
Co=20=(01,...00): || <c—,i=1,...nyp. (3.1)
v/ VE

, where ¢ = @fl(w).

18



Let

o
o = — 3.2
Vi 82)
Xi— X
X! = (3.3)
o
0; —0
i = 3.4
U - (3.4)
. = X = (3.5)
X, —6;
Z; = (3.7)
o
_ X -0
7z = (3.8)
o
_ "o,
0 = Zzzl (39)
c = co
The confidence region we are proposing is
Ci(X) = {0=(1,...00): |RT(X; = X)+ X —my| < c,i=1,..,n}
= (0= (moeam)  IRX; +Z =] S i = 1on) (3.10)
where R* is the positive-part Lindley’s shrinkage factor defined by
ac? a
Rf = (- ) = (1 ) (3.11)
Zi:l (Xi - X)2 Zi:l X;Q
or equivalently,
ac? n Y2 2
RT 1 > (X —X)? szl(XZ X) 2 a0
0 > i (X — X)? < ao®

The quantity a is called the shrinkage constant.

Also observe that > U; =0 and ) ;'n; = 0.

One confidence region A is said to dominate another (B) if region A has uniformly higher

the coverage probability than B; while maintaining the same or smaller volume.

19



3.1.1 ANALYTICAL RESULTS

Keep in mind that the coverage probability of C;(X) is equal to that of Cy(X) when the

shrinkage constant a is zero.
Lemma 3.1.1. limy,—e P10, (U; +1m:)? < a) = 0.

Proof:
Let SS = >0 ((Ui+mn)? and 6 = > n?. SS has a non central chi-square distribution

with a non centrality parameter . Then,

a 53‘ exp—0.56 expfo.E)SSSSo.Eerjfl
lim P(SS <a)= lim / g . dSS
116]|— o0 ( ) 15]]—o0 /g ]ZO j! ['(0.5n + j5)205n

Since all the conditions are met for the dominated convergence theorem, we can take the

limit inside of the integration and summation sign. Therefore;

lim P(SS <a)

[[6]| =00

5J exp exp O.SSSSSO.5n+j—1
/ H6||—>oo ['(0.5n + j)20-5m

Lemma 3.1.2. plims|—oo(l — R*) max; |U;] =0

Proof:

This follows from the previous lemma 3.1.1.

The following lemma proves that the coverage probabilities of Cy and C converge to one

another when at least one of the 7; becomes arbitrarily large.
Lemma 3.1.3. if n'n — oo, P(C;) — P(Cy).

Proof:
Again let § = y/n'n. For arbitrary ¢ > 0, Let A, = {(1 — RT) max; |U;| < €}. Then from

lemma 3.1.1,

”61”1m P(AS) =0 (3.12)
Note that,

X, — 0, — (1 - R*)(X; — X)

nec Cl & —c< (313)

IN
o
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and n = 9"7_5. Thus

P(nECl) P{T]GclﬂAE}—FP{T]GClﬂAE}
P({—c—eﬁXi_ei §c+e}ﬂA€)+P{A§}
g

P{—c—e<Z <c+e}+ P{A}

IA

IN

= (2®(c+e€)—1)"+ P{A%}. (3.14)

Also

{ X, — 0,
P{—c+e<
ag

{-c+e<Z; <c—e}—P{AN—c+e< Z; <c—¢}

P(?]ECl)

Y]

gc—eﬂA5}+P{A§}

v

v

P{—c+e<Z, <c—e}—P{A%}

(2®(c — €) — 1) — P {A°} . (3.15)

It follows from (3.12)-(3.15) that,

(2P(c—¢e) —1)" < lignian(n € () <limsupP(n € Cy) < (2®(c+¢€) —1)"

d—00

However € > 0 is arbitrary. Taking ¢ — 0 and noting that ®(.) is a continuous function of

its argument, the assertion of the lemma follows.

The following lemma says that when all of the population treatment means are zero, our

procedure has larger coverage probability than the usual procedure.

Lemma 3.1.4. For n'n =0, or equivalently for each n; =0 ,i=1,...,n, P(Cy) > P(Cy)
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Proof:

For each 7; = 0, R* becomes RT = (1 — )Tand P(C}) becomes

ST, 07

P(C)) = P{n:|RU;+Z| <ci=1,.n}

(vn(c—R1Up) o
_ fo0) e (Z)dZa0

(Ut,eUn) J (VA(—c—RTU,)

where Upy) = max;— ., U; and Up,) = min—;, , U;. Also, P(Cy) can be written in a similar

way:

P(Cy) = P{n:|ZZ-—7—|—7|Sc,izl,...,n}
= P{n'|U-+7|<c i=1,..,n}

o

.....

NI

)dZdU

Note that Uy must be > 0 and Up,) must be < 0 since ), U; = 0 because 0 < RT < 1. It
follows that Uy > R Upy and Up,) < R*Uj,, and hence

(vVn(c—R1Up)) o (vn(c=Upy) .
[ ooy @izav= [ o (V)e7(D)AZ4U
(Ut,sUn) o (VA(—e=RFUp) (Ut Un) J (Vi =e=Up))

which proves that P(C}) > P(Cj). The following lemma and theorem state that for n=2,
there is not an universal domination. In other words, our confidence procedure can not

dominate the usual confidence region in every region for a common shrinkage constant.
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Lemma 3.1.5. For n=2, the coverage probability of C is

fﬁ " (28(v/E(e — m])) — 1) fu (U)dU+

2 m
va/2—m
f*(771+6)*\/(0 n1)2+2a gUmca< )fU(U>dU

(e— n1>+\/m
+f\/ﬁfm 2 gUm ea(U) fu(U)dU D 0<m < al2

Py = | IV @o(VEe D) - D (0)iU+ (3.16)

2 m
Va/2—m
J -t iz Smee OV (U)A0

(e— n1)+\/(c+n1)2+2a
+f\/ﬁfm ? U .c.a(U) fu(U)dU : o Wa/2<m<c

—(m =)t/ (e+m)?+2a
2
) - ysorss e SvmeaU)fo()AU
\ 2

where gu, ca(U) = 20(v/2(c — |u — sl — b

Proof: See appendizx.

Theorem 3.1.1. For n=2, there exist a for each 6; such that P(Cy) > P(Cy).

Proof: See appendizx.

We use the following lemma to develop a lower bound for P(CY).

Lemma 3.1.6. If a < SS, then |(1 — RY)(X; — X)| = yaégi
SS =3""V2 and V; is defined in 3.6.

< /el < Va, where

Proof:

SS=3"Viand V,=—-> iz Vi Consequently, by the Cauchy-Scharwtz inequality

N | n—1

2
ZV2>(Z”§ZV _ ¥

JFi
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Moreover,

V2
2 2 7 2 2
SS = Y VPHViz o=V,

—1
i "

Hence,
i < /San—l‘
n
Then for a < S5,
a|Vi
1—RYHV)l =
a-rHE)| = 4
SSx(n—1
S TL
< a [a X n—l)

a>< n—l
S\

completes the proof.

The following theorem states the our lower bound for P(CY).

Theorem 3.1.2. The lower bound P(Cy) is
P(Cry)=P(—c++va<Z; <c—+ai=1,..,na<5085).

Proof:



Z; and Z are defined in 3.7 and 3.8, V; is defined in 3.6.

P(C)) = P{Z-m|<ci=1,...n,a<SS}+
P{{R*U;+Z - (1—=R")n;| <c,i=1,..,n,a> 55}

> P{|R+UZ~+7— (1—-Rn| <ec,i=1,..,n,a < SS}

> P{|Ui—%Ui+7—%m|Sc,izl,...,n,aSSS}

> P{|Z¢-Z—%Ui+7—%m|Sc,izl,...,n,aSSS}
> P{|Zi— SiS(UZ-quﬂ <ci=1,...n,a< SS}

> P{|Zi—SiSV;|Sc,izl,...,n,aSSS}

> P{-H%Vi < 7 gc—l—%\/i,z': 1,.na< SS}.

Then from Lemma 3.1.6,

P(Cy)

v

P{—c—ksis\/; <Z;<c+ %Vi,izl,...,n,ag&g}

> P{-c+vVa<Z <c—+ai=1,.,na<S5}

Keep in mind that from Lemma 3.1.6 also implies that

P(Cr) S P{—c+ /220 < 7, <o\ 221 i =1, na < S5} < P(C)).

We need the following lemma for the last theorem.

Lemma 3.1.7. n — 00 = ¢ — o
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Proof:

1/n 1
c = CI)’l(—ﬁ 2+ ) and
& - @@—1(&)

2 2
Qw — 2@@*1(ﬁl/n+1)
on 2 on 2

61/17, lnﬂ Bl/n +1
- - ¢>[<I>—1<
2n2 2
n —5"/"1n g
@ity e
2 b [@—1(/31/;1-1—1)}
—BY/"mp
C/ — 2n2

o |01 (25

Bl/n +1

)| x @ EE

(3.17)

¢ > 0 implies that ¢ is an increasing function of n, therefore n — oo = ¢ — 0.

Lemma 3.1.8. = — 0 if n — oo where c =

Proof:

Observe that,

Then,

@71(%),

lim — =
n—oo n CcC— 00

Ing3
In(2®(c)—1)

1 In(2®(c) — 1)

(3.18)

0

"0



we will apply the L’Hospital rule. To do that we need to take derivative of the both numerator
and denominator separately.

dc -1 2¢(c) -1 2¢?

on AL In§ (20(c) — 1)(1/v27) exp(c?)

2

— 0 ’

completes the proof.

Lemma 3.1.9.
n—oo n
0.5¢?
it—) lim exp(0-5¢) 0
n—oo n
Proof:i-)
2 2 1 In(2®(c) — 1
oy Ty (), L n20(0) 1)
nTee T npee-n s L@
0
0
Applying the L’hospital rule,
2¢(c)
. exp(c?) =1 @D
lim —— = lim —-——
n—00 n c—oo In 3 ]
. —1 2/ exp(0.5¢2)
= lim
c—oo (20(c) — 1) In 3 2¢
— 00

completes the first part.
ii-)
By similar argument and applying L’hospital rule, it is easy to see that;

26(c)

2
. —1 o)—
T e M CED)
oo n oo h’lﬂ exp(0.5c2)
— 2
= lim L /m
c—oo (20(c) — 1)Infg ¢
— 0

completes the second part.
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Lemma 3.1.10. lim,,_, ‘/Tﬁ — 0
Proof:
lim v lim Lﬁ
n—oo C n—o0 @—1(5 ;”Fl)
00
-, =
00

Applyin L’hospital rule and using the equation 3.17,

Vn , 0.5n~1/2
m — - = lim ——
n—00 (I)—I(IB +1) n—o00 w
2 n

¢>[<I>—1(751/2"“ )}
n3/2¢ {@—l(w)]
. 2
= g

— O

completes the proof.

The usual recommendation for the shrinkage constant,a, is n — 3. Lemma 3.1.10 implies

that lim,,_, ‘/Ta — 00. This means that a has to be bounded above by a constant. In the

following proofs, we assume that a is bounded above by a constant,m, such that a < m < n.
Lemma 3.1.11. For a large enough n ,P(Cp1) = 2(®(c — /a) — 1)™.

Proof:
Then from the theorem 3.1.2,

P(Cy) > P{—c++Va<Z <c—+aa<55}

if limg,, ¢ < 1, then P(SS > a) = 1, because SS has a non central chi squared distribution

that stochastically increasing in n.
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Thenlet £ : {—c+va< Z;<c—+/a,i=1,..,n}and F = {a < SS}. By given P(F¢) = 0.
Then

P(Cy) > P{-c++a<Z <c—+/a,a< 55}
> P(E)— P(F°NE)
> P(—c++va<Z <c—+va)—Pla>S9)
> P(—c+Va<Z<c—vVa)=2®(c—Va)-1)"

Theorem 3.1.3. P(Cy) dominate P(Cy) up to an arbitrarily small constant for a sufficiently

large number of means, n.

Proof:

Observe that for a large enough n,P(SS < a) — 0, since limg,, * = 0. Then,
P(Cy)=P{n:|RTU;+Z—-(1-R")n| <¢,S5 >a}.

From Theorem 3.1.2,
P(Cy) > (2@(c — \/a) — 1)™, then Let A = (2®(c) — 1
lim, oo A = 0. Keep in mind that lim,,_,.(2®(c) — 1

)" — (2®(c — /a) — 1)™. We show that
)" = 0.95. Then,

- vy 0=y — 1"
A A= i @) — U = g — o

@B @) - 1)
= 095 (1= lim o Ty

Also observe that,

n : (2®(c—+/a)—1)
hmn—>oo % — eXpllmTL*}oonan ‘
Then,
20 (c — \/a) — 1 1 2P (c — Ja) — 1
lim nln( (c—va) —1) lim np 1 (2®(c — Va) — 1)

A 20(c) — 1)  aeeIn(20(c)— 1) (20(c) — 1)
— lm ﬁ I (2(c — va) — 1) — In(28(c) — 1)]
_ In(2®(c — /a) — 1)
= fm G e - 1
— 0

-1
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Therefore, lim,, ., % — 1. This implies that lim, ..o A = 0.95 x [1 —1] = 0.

We showed that the rectangular confidence intervals centered around a shrinkage estima-
tor have coverage probability uniformly exceeding that of the usual rectangular confidence
regions up to an arbitrarily small epsilon when the number of means is sufficiently large. We
also showed that these intervals have strictly greater coverage probability when all the main
effects are zero, and that the coverage probability of the two procedures converge to one
another when at least one of the main effects becomes arbitrarily large. We also developed
a lower bound for the coverage probability of the rectangular confidence region which is a

decreasing function of the shrinkage constant.

3.2 UNKNOWN o2 CASE

The usual confidence rectangle for the vector © of cell means is
OO = {@ = (91, 7871) : |AXVZ - 01| S & ,i = 1, ...,TZ}, (319)

where ¢ = ]m\a,nm\%, and |m|ane is the 1 — a quantile of the Student maximum modulus
statistics, 62 is the unbiased estimator of o2. It was stated by most of the statistical text
book that when n goes to infinity, the quantile of Student maximum modulus statistics can

be replaced by the quantile of student t distribution.

We again use the shrinkage estimator with Lindley’s shrinkage factor and replace o with

. . N n_ i=1%(Y;;—X;)?
an unbiased estimator, 62 = Zuzi(k_f)” i

Our confidence interval is the same as

(3.10), the only difference is the shrinkage estimator. The confidence interval is,

Cy(X) = {0=(01,...00) : |[RT(Xi — X) + X — 0, < )} (3.20)
where R is
Rt =(1 9y (3.21)



That is,

52 L X (Xi=X)?

R L e A
n V)2

0 . DhOeX?

By using same notations in known o case, (3.20) becomes

Ol(X) = {77 = (771> ---ﬂ?n) : |R+(Ui) +7Z - (1 - R+)77i| < C)} (3-22)

where
a6?

Z?:l (Ui + 77@')2

Now, we try to derive same analytical results for the unknown o case.

Rt =(1- ).

3.2.1 Analytical Results

Lemma 3.2.1. limsup,/, % <1

Proof:

Let 1 = /Do n2, & = % and similarly let 7, = \/Z?:l Zle Ny € = %, where
n; = 0; — 0, and n;; = 0;; — 0; . Observe that > e =1, and Y 1, Zle efj = 1.Keep in

i=1 "1

mind that Y ;" , n? — oo implies that 1,72 — c0.

aZ?zl Ty (Usj+eijr2)?

lim sup a;&z = limsup n(h—1)
7]/17~>oo SS Y1,72—00 Z’L:l(Ui + 51’71)2

9 i Zj:1(%+5ij)2

= limsup a2 1)
Y1,Y2—00 7% Z?:l(% + Ei)Q
n k
a Dic1 Zj:l E?j
n(k—1) > €
a

G
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The following lemma proves that, the coverage probability of two procedures converge to

one another when at least one of the main effects becomes arbitrarily large.
Lemma 3.2.2. if n'n — oo, P(C;) — P(Cy) .

Proof:

Let v = /n'n and ¢ = 2. Then SS = 3 (U; + n:)? = > (U; + €7)> — oo. Consider
P(Ol)7

SS

P(Cy) = P(|Z—ey| <cii=1,.n 55 < a)+P(|[RUAZ—~(1-R)ery < ¢,i = 1, M= 2 a))I
o)

Y 6'2
Observe that as v goes to infinity, P(|Z —ey| < ¢,i = 1,..,n) goes to zero. Therefore P(C})
becomes

52(1 . _
ac®(U; + €7y) — _ SS

P(Cy) = P(U;, — = < >
() ( 2121(Ui+€i7>2 o?

From the previous lemma lim, .., P(25 > a) = 1, then

(1&2([]1' + El’}/)
Z?:l(Ui + €7)
a6?(U; + €;y) ao®(U; + €7)

PCy) = P —c—Uj; = n
( 1) <mzaX( Cc + Zi:1<Ui n 61’7) Zi:1<Ui + 6[)/)

— /(T [min(c — G(U;, em)] -7 [maX(—c - G(U;, ew)] ) fu(U)dU

3 (2

P(C1) = P(|Ui_

2+Z|§c)

5) < Z < min(c—U; +

7))

where

. Uyn  ayn(Ui+ey)
62 (Uit en)?
Uin/n a/n(Ui + ¢
G2 (Ui, €y) Vi vinl V)

o7 > i1 (Ui + )

G1<Uia Gi’Y)

and T is the cdf of t distribution.

Since T' [min;(G1(U;, €v)] — T [max;(G2(Us, €77)] < 1 and fy(U) is absolutely continuous,

lim, o P(Ch) = [(T im0 (min; (G1(Us, €7))] = T [lim, oo (max; (G2 (Ui, €7))]) fu (U)dU.
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alUi

Observe that lim,_, SF (Uten)?

— 0 and lim,_, % — 0. Then P(C}) becomes

PlU;+Z|<c ,i=1,..n) = P(|Z;~Z+Z|<c,i=1,..,n)
= P(|Zl],i=1,...,n)

= P(Ch)
Lemma 3.2.3. Forn'n =0, or for eachn; =0 ,i=1,....n, P(C) > P(Cy)
Proof:

P(Cy) = E;P(C4/d), then consider P(C1/5),

P(Cy/o6) = /T(C — R"Upy) = T(—=c+ R"Up) fo,, (Uny) fo,, (Up) dUpydUpy

> / T(c—Upy) — T(—c+ Up) fo, (Uny) fo,y (Upn) dUp dUpy

where T is the probability density function for Z, Up) = max; U; and Upj must be positive
,Upp) = min; U; and Up,) must be negative since ) . U; = 0, and 0 < R < 1. It follows that,

P(Ch) = EsP(Ci/0)
> Lbs /T(C - U[n}) - T(_C + U[1]>fU[1](U[1])fU[n] (U[n])dUU]dU[n}
Theorem 3.2.1. A lower bound P(C}) is

P(Cr1) = P(—c+ a6 < Z; < ¢ — Vas,a6* < S9)

, where X; = Z; + ;.
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Proof:

If a6? < SS, then consider %(XZ - X),

~2 ~2
%(Xi - X)| < ﬂm?X’Xz’ — X|

SS
a6? — |max;(X; — X)2
< v A2
= Vs M\/ SS

< Vao? =\/ao

Observe that if n — oo, the quantile of maximum modulus can be replaced by the quantile of
either t or z distribution. When we prove that the rectangular confidence intervals centered
around a shrinkage estimator have coverage probability uniformly exceeding that of the usual
rectangular confidence regions up to an arbitrarily small epsilon when the number of means

is sufficiently large, we make use of that fact.
Lemma 3.2.4. lim, .., P(SS > ad?) = 1.

Proof:
Asn — oo, 6 — 0. SS has a non central chi-square distribution v degrees of freedom, let

SS1 has a central chi-square distribution with v degrees of freedom. Then,

lim P(SS > a6?) = Plac < SS)=1— P(ac > SS) > 1— Plac > S9;) =1

n—oo

since a is bounded above by a constant, lim,,, = = 0.

Theorem 3.2.2. P(Cy) dominate P(Cy) up to an arbitrarily small constant for a sufficiently

large number of means, n.

Proof: From the previous theorem and lemma,

P(Ch) > P(Ci) = P(|Z] <c—+ao)

= P(|Z] <c(1 - Y

)
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Observe that as n — oo,

o — 0
Ve o,
c
=Y Ly
c
Moreover,
lim P(Cry) = lim E;P(|Z;] < ¢ — Va6 /5) (3.23)

o has a chi-square distribution and |P(|Z;| < ¢ — +v/ad)| < 1 is bounded. Therefore, all
the conditions for dominated convergence theorem are met, we can take the limit inside of

expectation.

lim E&P(|Zl| S c—\/a&/&) = E[, lim P(|Z1| S c—ﬁ&/&)

For both a known and an unknown o cases, we proved that the rectangular confidence in-
tervals centered around a shrinkage estimator have coverage probability uniformly exceeding
that of the usual rectangular confidence regions up to an arbitrarily small epsilon when the
number of means is sufficiently large. We showed that these intervals have strictly greater
coverage probability when all the parameters are zero, and that the coverage probability of
two procedures converge to one another when at least one of the parameters becomes arbi-
trarily large. We also developed a lower bound for the coverage probability of the rectangular

confidence region which is a decreasing function of the shrinkage constant.
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3.3 SIMULATION RESULTS

Since we want to show that the coverage probability for our rectangular confidence pro-
cedure, P(C}), is uniformly higher than the coverage probability for the usual rectangular
confidence procedure, P(Cjy), for small number of means, and all the main effects are small,
we run the simulation for n = 2, .., 10 and we generate the main effects, n, from the following
set H = (—4,-3.75,-3.5,...,3.5,3.75,4).

We can write the coverage probability of our procedure the following way,
P(C)=P{n=(m,n): |RN(Z)+Z (1 - R )| <)},

where Z!s are i.i.d N(0,1), Z is N(0,1/n), and ¢ = @—1(_0-9512/%1).

Lemma 3.3.1. P(C4) is sign invariant.

Lemma 3.3.2. P(C}) is permutation invariant.

To do simulations, we followed these steps;

Step 1: Generate Z¢ i = 1,...,10,000 and store them where Z, is a n x 1 column ma-
trix.

Step 2: Generate all the possible 7/ by taking sign and permutation invariance into account
from the set above, H, where j = 1,...K, and K is the total number of 7, generated, and 7,
is a n X 1 column matrix.

Step 3: Calculate c.

Step 4: For each j =1, .., K, calculate

PS;j = (Z. — Z))RF — (1 — R, for each i =1, ...,10,000.

Step 5: For j = 1,...,K and i = 1,...,10,000 , let CP¥ =1 if all the values in PS;; are in

[-c,c] and 0 o.w., where C'P¥ is a n x 1 column matrix.

Step 6: Calculate the coverage probability for k =1,.., K, P, = Ezlif 00 S%%ko

(See Appendix for the R codes).

36



Plotting the coverage probabilities against the length of  makes sense for the spherical
confidence regions because Casella and Hwang proved that the coverage probability of the
spherical region depends only on the length of n. That is not the case for rectangular
confidence regions. To have a better understanding of our procedure, we also plot the

coverage probabilities against the maximum of |7)|.

For n=2, we try to find the optimum range of the shrinkage constant, a, such that P(C)
dominates P(Cp). To find the optimum a, we ran simulations for a between 0 and 2 with 0.1
increments. The first thing we notice from simulations for a, when 7 is zero, is that P(C}) is
higher than P(Cp) and P(C}) achieves its maximum for any choice of a. Secondly, we notice
from the simulation for a that coverage probabilities for our procedure are increasing in n
until » = 1, then the coverage probabilities are decreasing. We could not find a universal
a for all the n’s such that P(Cy) is higher than P(Cj) in every region. Therefore P(C}) is
not uniformly higher than P(Cy) for n=2. We also plot the coverage probabilities against
the length of 1 for each a. One thing that is common for all values of a is that the coverage
probabilities are decreasing until the mid values of the length of n then it starts increasing
again. The sharpness of this dip depends on choice of a. As a increases, this dip becomes

sharper. (See Figure 8.1 - 8.8)

For n=3, Lindley proved that our shrinkage estimator, fittingly namely Lindley’s estima-
tor, did not have a smaller TMSE than the usual estimator. First we want to see if P(C}) is
uniformly higher than P(Cy) for n=3. If so, we want to find the optimum range for a. We
run the simulations for different choices of a. Again, when 7 is around zero, P(C}) domi-
nates P(Cy) and P(C}) achieves its maximum when 1 = 0 for any choice of a. As in n=2,
we plot the coverage probabilities against the length of 1 for each a. Again the coverage
probabilities are decreasing until the mid values of the length of n then it starts increasing
again. The sharpness of this dip depends on choice of a. As a gets bigger, this dip becomes
sharper. When a is less than 0.05, P(C}) is uniformly higher than P(Cy). Therefore the
optimum range for a is [0,0.05]. The coverage probabilities are not a decreasing function of
the length of n for n=3. Since a at 0.05 is very small, we are not gaining very much by using
the shrinkage estimator. Therefore we agree with Lindley’s result. Since our simulations do

not indicate the domination of our procedure over the usual one, we do not plot the coverage
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probabilities against the max;|n;|(See Figure 8.9 - 8.16)

For n=4, we first plot the coverage probabilities against the length of n for each a, again
there is a dip and coverage probabilities are not decreasing function of length of 1. Then
we plot the coverage probabilities against the maximum ||, again there is a dip but the dip
is not as sharp as in the first graph. As a gets smaller, this dip is getting smaller like in
the first graph. When 7 is around zero, P(C}) is uniformly higher than P(Cy) and P(C})
achieves its maximum at n = 0 for any choice of a . When a is less than equal to 1, P(C})
is uniformly higher than P(Cj) everywhere. Therefore the optimum choice for a is 1. The
usual recommendation for a is n-3. We agree with the usual recommendation. (See Figure

8.17 - 8.21)

For n=5, we again try to find the optimum shrinkage constant, a. Again, when 7 is
around zero, P(C}) is uniformly higher than P(Cj) for any choice of a in every region and
P(C}) achieves its maximum at n = 0. When a is less than equal to 2, P(C}) is uniformly
higher than P(Cjy) everywhere. Therefore the optimum choice for a is 2. Again, we agree
with the usual recommendation. As in n=4, we plot the coverage probabilities first against
the length of 7 then against the maximum |n|’s. We observe similar pictures, there is a dip
and the sharpness of that dip depends on a. The dip in the second graph is not as sharp as
the dip in the first graph. (See Figure 8.22)

For n equal 6,7,8,9, and 10, the coverage probabilities are not a decreasing function of
the length of . We have similar pictures for each n. We again plot the coverage probabilities
first against the length 7 then against the maximum|n|. Again, there is a dip in the graph
and the dip depends on a. The dip in the first graph is sharper than that of the second
graph. When n = 0, P(C}) achieves its maximum and is uniformly higher than P(Cp),
for every choice of a. However the usual recommendation for a did not work for each n.
The following table shows the optimum choice of a for each n. We also check the Casella’s
recommendation for a = 0.8(n —2), even tough Casella’s recommendation is for James-Stein

shrinkage estimator.(Figure 8.23 - 8.25)
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Recommendations for a

n || The Usual Recommendation | Casella’s Recommendation | Optimum Choice

- 0.8 0.05

2.4
3.2

4.8
5.6
6.4

© [0 [ | O | O | = | W | N

CU | = [ | W NN

—_
o

Table 3.1:  Table for the Shrinkage Constant for One-Way ANOVA model

In conclusion, our simulations indicate that P(Cj) is uniformly higher than P(Cy), for
n =4,...,10. We plot the coverage probabilities first against the length of n , then against
the maximum of the |n| for each n. We have similar pictures in both graphs. The only differ-
ence is the second graph is smoother than the first graph. There is a small dip, but the dip
is a function of a, when a gets smaller, the dip is getting smaller. The coverage probabilities
are not a decreasing function of either the length of 7 nor the maximum |n|. We also did
not agree with the usual recommendation for a for n > 6. Based on our simulation, our

recommendation for a is [0.6(n — 2)] for n > 4, where [X] is the nearest integer function.
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4.0 MULTIPLE COMPARISON WITH CONTROL

Dunnett (1955) stated that when a control is present, the comparisons of primary interest
may be the comparison of each treatment mean with the mean of a control. For example,
the control may be a placebo, or it may be a standard treatment. We call such comparisons
multiple comparison with a control. We are interested in simultaneous confidence intervals for
the multiple comparison with a control in the balanced one-way ANOVA model with known
o?. We give the modification of our procedure for the balanced one-way ANOVA model with
unknown o2 and the unbalanced one-way ANOVA model with both known or unknown o?
in Appendiz. The sample cell means, Xy, ..., X,,, defined in (2.2) are independent normally
distributed random variables with means 64, ..., 8,, and variance 1. The sample control mean

is normally distributed with mean 6. and variance 1, independent of the sample cell means.

The usual confidence interval for multiple comparison with control is

Ey = {|IXi—X.—(0,—0,)| <c"i=1,..,n} and

P(Ey) = P{lY)|<c,i=1,..,n} =0.95. (4.1)
Y1
Where V; = X; — X, — 0, +60.,Y = : has normal distribution N(0,%), ¥ =
Y.
2 1 1 1
1 21 1

, and ¢* is the solution of (4.1).
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The confidence interval we are proposing is

B = {|R"Xi - X. - X+ X)+X - X.— (i —0)| < c"i=1,.,n}

Ei = {|RTU+Z—-Z.—(1-R )| <ci=1,...n} (4.2)

Where, Uy =X, — X —n; ;i =0, —0, Z=X —0, Z. = X, — 0, and

a k 2
Rt — 1- SR (X—X)2 Y (Xi—X)*>a
0 LY (X —X)?<a

Since 4.1 is very similar to 3.1, we would like to see if there is any kind of relationship

between ¢ and ¢*. In the following lemma’s, we are going to prove that ¢* > c.

Lemma 4.0.3. ¢* > 5.

Proof:
See appendiz.

Lemma 4.0.4. ¢* > c.

Proof:

P(Ey) = P{X;—X.—(6;—0;] <c"i=1,.,n}
= P{-c+X.<X; <"+ X,i=1,..,n}

B / [P(c" + Xo) = B(—c" + Xo)|" px) (Xe)dXe

Where ¢(x,)(X.) is standard normal distribution. We will investigate the properties of
[D(c" + X)) — P(—c" + X )]", let A(Xe) = [®(c" + X)) — P(c" + X )"

OA(X,)
9X.,

1

= [+ Xe) — B X (e 0T 0Se

N

1
v 2T

P [0+ X0 = D+ X [ 4 Ko 05 H  (r g Xm0 ]

2
= n(n—1)[®(c"+ X.) = d(—c" + X)"? [ Col e°'5“*”“)2>]

Observe that for X, =0,
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OA(X. 92A (X, . o\ . 05
S = 0 and 222 = [B(c) — ()] (207 0) <0,

This implies that for X. = 0, A(X,) achieves its maximum. Moreover,

[P(c” + Xe) = ®(c” + Xo)]" < [@(c") — D(c)]™

Then,
P(Ey) =095 = [@(c* + X.) — P(—c" + X.)]" ©x.)(Xe)dX,
0.95 < [®(c") — D(—c")]"
0.95Y/™ 41
¢_1(—+ S C*
2
c < .

The confidence interval we are proposing is defined in 4.2,
P(E))=P{|R"U;+Z—~Z.— (1 =Ry < c*,i=1,..,n} and let Z; = Z — Z,.Then our

confidence regions becomes,
P(E))=P{|R'U;+Z1— (1 =R )| < i=1,...,n}. (4.3)

4.3 is very similar to 3.10. The only difference is the constant term Z. In 4.3, Z; has a

normal distribution with mean 0 and variance 1+ % In 3.10, Z has normal distribution with

1

n"

mean 0 and variance

4.1 ANALYTICAL RESULTS

Lemma 4.1.1. if n'n — oo, P(E,) — P(Ep) .

Proof:
Again let 6 = \/n'n. For e > 0, let A, = {(1 — R") max; |X;| < €}. Then from the lemma
3.1.1,

lim A¢ = 4.4
I8 —o0 € (4.4)

Note that,
neb, s " <X;—Z,—0;—(1-R"X,—X) <c". (4.5)
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and n = 6; — . Thus

PneE) = P{neEiNA}+P{neEiNAST}

IA

P{—c"—e<Z —Z.<c"+enA}+ P{A}

IN

P{—c"—e<Y;<c" +e}+P{A%} (4.6)

Also
P(UEEl) Z P{—C*—FESXZ—ZC—QlSC*—EﬂAE}—FP{AE}
> {—c+e<Z—Z.<c"—e}—P{AAN—C+e< Z, —Z.<c" —¢€}
> P{-c"+e<Y,<c —¢€} - P{AY} (4.7)

It follows from (3.12)-(3.15) that,

2P(c—e)—1)" < lign inf P(n € Cy) <limsup < (2®(c+¢) —1)"

d—00

However ¢ > 0 is arbitrary. Taking ¢ — 0 and noting that ®(.) is a continuous function of

its argument, the assertion of lemma follows.

Lemma 4.1.2. Forn'n =0, or for eachn; =0 ,i=1,...,n, P(E,) > P(E))

Proof:

For each n; = 0, R™ becomes Rt = (1 — Z%IUA)*cmd P(E}) becomes

P(E)) = P{n:|RU;+Z| <c*i=1,.n}
(v/n/n+1(c*—R1Up,
_ / / ' foU)pa(2)azdU
(U1 Up)

..... n/n-‘rl —c*—RTUp,)
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where Upy) = max;—y, » U, U = min;—;_,, U; and ¢(Z) is the p.d.f of the standard normal

distribution. Also, P(Ejy) can be written in a similar way,

P(Ey) = P{n:|Zi~Z.~Z+Z| < i=1,..,n}

= P{n:|\Ui+ 2| < ,'zl,...,n}
n/n+lc —upy
= / / fU(U)SOZ(Z)dZdU
Ui,....Un)

..... n/n+1 —c*—u[y))

Observe that Up; > R™Up and Uy, < RTUp,), and hence,

(v/n/n+1(c*~R+Up)) (v/n/nt+1(c—U,
/ / fo(U)py(Z)dZdU > / / fU(U)goz(Z)dZdU

n/n+1 —c*—RTU,)) n/n+1 —c*=Upy))

which proves that P(F;) > P(Ey).

Theorem 4.1.1. The lower bound P(Ey) is
P(Ep) = P(~c"++Va< Zi— Z. < c* —\/a,a < 59).

Proof:

Let X;=2;+0;, Z=X—0,V; =X, — X, and V; = U; +1,. Then for a < SS, P(E,)

becomes,
P(E)) = P{lZ—Z —mi| < a <SS+ P{|IRTU;+ Z, — (1= R )| < ", a > 5SS}
> P{|R'U;+Z — (1 - R )| < cf,a <SS}
a a
> p — — U +7Z——n| <c.a<
> {|U SSU+ 1= ggml < ¢ a_Ss}
> {yz Z. - (U~|—nz)]<c a<SS}
> {yz ZC— V]<c a<SS}
> * < < ; < .
> { ¢+ 5 v 7 — 7. c+SSm,a_SS}

44



Then from the lemma 3.1.6,

P(E) > P{-~c'+goVi<Zi—Zi<¢ +glia<SS)

> P{-c"+Va<Z—7Z < —va,a <SS} = P(EL)

Keep in mind that P(Ey;) < P {—c+ Jensl < 7oz < oo Jommt g < Ss} < P(El).l

From Lemma 3.1.1 If n — oo, P(a < SS) — 0, then
p(ELl):P{—C*+\/a§ZZ—Z1SC*—\/E,CLSSS}:P{—C*—i—\/ESZZ—ZlSC*—\/E}I
Theorem 4.1.2. P(E;) dominate P(Ey) up to an arbitrarily small constant for a sufficiently

large number of means, n.

Proof:

P(E)) = P{n:|RUi+Zi—(1—R")m| <}
= P{n:|Zi—m| <SS <a}+P{n:|RU+2Z—(1—R")m| <c*, 58 > a}

Observe that for a large enough n,P(SS < a) — 0 since a < n.Then,
P(E\)=P{n:|R"U;+ Z — (1 - R" )| < '}

From Theorem 4.1.1,
P(E) = P(—¢* +Ja < Zi— 2, < ¢ = \/a) = By, [0 — a+ Z,) — &(—c" + a+ Z.)]",
then let a* = /a and
A=[d(c*+ Z,)— ®(—c + Z)|" — [®(c* = Va+ Z,) — ®(—c* + Va+ Z.)]".
lim P(Ey) — P(Ey) = lim Ez A

n—oo n—oo

= EZC lim A.

n—oo
We need to evaluate lim,,_,., A.

[®(c* —Va+ Z.) — ®(—c* +a+ Z.)]"

A = [O(c"+ Z.) — (" + ZC)]n 1—- [@(c* + Z,) — O(—c* + Z.)|"
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[®(c*—v/a+Ze)—D(—c*+v/at+Ze)|"
[®(c*+Zc)—P(—c*+Zc)]"
P(c*—a*+Z.)—P(—c*+a*+Z.)
B+ Ze)—P(—c*+Zc)

Let A = , then let B=1InA,

where B =n X In [ } and a* = y/a, our aim is to show that

lim, ..o B=0
_ _ O(c* —a*+27Z,) — O(—c*+a" + Z,)
lim B =lim, 1
i H nem { O(c* + Zo) — d(—c* + Z,)

_ In 3
and from Lemma 3.18, n = B 1)"

. L In 3 O(c* —a*+ Z,) — O(—c* +a* + Z,)
am b= e — ) ¢! [ B 1 Z) (- 1+ Z,) }
— lim g [ln(fb(c* —a"+Z) = ®(—c"+a" +Z)) In(P(c+Z)-P(—c+Z))
n—o0 In(2®(c) — 1)) In(2®(c) — 1))
0 0
— Inp [6 — 6}

Applying L’Hospital rule;

¢((c*—a*+ZC)) ¢((—c*+a*+Zc)) ¢((c*+ZC)) (z)((—c*—i-ZC))
. o . S(c*—a*+2Z. S(—c*+a*+2Z. . P(c*+Z, S(—c*+Z.
dm B = limInf [ %@ T 20 26(c) 26(c) ]
2P (c)—1 2®(c)—1 2®(c)—1 2P (c)—1
Asn — oo, ‘t;((cs)) — 0 since ¢* > c¢.Therefore, B — 0. Since A = exp[B], as n — 00, A — 1.

This implies that A — 0. This completes the proof.

We showed that the simultaneous confidence intervals for the differences between treat-
ment means and the mean of a control in one-way ANOVA model centered around a shrinkage
estimator, have coverage probability uniformly exceeding that of the usual rectangular con-
fidence regions up to an arbitrarily small epsilon when the number of means is sufficiently
large. We also showed that these intervals have strictly greater coverage probability when all
the main effects are zero, and that the coverage probability of the two procedures converge
to one another when at least one of the main effects becomes arbitrarily large. We also
developed a lower bound for the coverage probability of the rectangular confidence region
which is a decreasing function of the shrinkage constant.

For P(E,) and P(C}), we have the same analytical results. Moreover, P(E;) and P(C})

are in the same form (see 4.2 and 3.10). These reasons lead us to conclude that P(E;) behave
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like P(Cy). In other words, when we graph P(E;) against either the length of the vector
of the main effects(||n||) or the absolute maximum of the main effects(max; |n;|); we expect
that the coverage probabilities will be a decreasing or an increasing function of neither ||n||
nor max; |7;|. Similar to the relationship between P(Cy) and P(Cy), P(E;) will have higher

coverage probabilities than P(FEy) for n > 4.
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5.0 NUMERICAL INTEGRATION

Since we used extensive simulation to prove the P(C}) is uniformly higher than P(Cj), for
n = 2,...10, the next step is to make sure our simulation results are reliable. For n=2,3/4,

we use the numerical integration method to calculate the coverage probabilities.

The most widely investigated method for approximating a definite integral is

[ vt ~ 3 At 6.)

here w(x) is a function. The z; are called the points (or nodes) of the formula and the
A; are called coefficients (or weights). If w(z) is nonnegative in [a,b], then n points and
coefficients can be found to make (5.1) exact for all polynomials of degree < 2n — 1; this
is the highest degree of precision which can be obtained using n points. Such formulas are
usually called Gaussian quadrature formulas because they were first studied by Gauss. We
first need to write our coverage probability to see the form of the integration to identify the

weight function, w(z), and function, f(z).

The coverage probability for our procedure can be written in the following way, let n=k,

and k=2,3.4.
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There are k-1 sets, since Y1 | (X; — X) =0 or >, U; = 0, those sets are

—C — RJrUl + (1 - R+)7]1 S 7 S RJrUl (1 — R+)7]1
—C — R+U2 —+ (1 — R+)771 S 7 S R+U2 -+ (1 — R+)772
—C — R+Uk_1 + (1 — R+)nk—1 < 7 < R+U1€_1 + (1 — R+>77k 1
k—1

k—1 k—1 k—1
—c+R+Z;UZ-—(1—R+);m < 7§c+R+Z;Ui—(1—R+)Z;m

Let UP be the minimum of the all the upper bounds and LP be the maximum of the all

the lower bounds, then
Uy
P(Cy) = P{UP<Z<LP} and U = : has normal distribution N(0,3), where

Uk-1

. is nonsingular matrix. Then,

P(C) = [ [S(VRUP) = ®(VALP)| fo (V)L irevrydl

1 :
- / (VKU P) (\/ELP)] 1{Lp<UP) ——Ule)dU

1
1 XD
Var s ( 2

Let W(U) = [ (VEUP) — (\/ELP)} 1(1p<up), then
1 :
P(C)) = WU exp | —=UXU ) dU.
|2|1/2 2

Let U = v25Y2V and this implies dU = v2"|SY2|dV = /2 '[S)/2dV. Then,

P(Cy) = /W(\/EEWV) exp (—v’v) V2 D) 2ay

1
o 1|2|1/2

P(C) = / W IZI/QV exp (—V’V) dv.
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Let Wy (V) = “%/V) then

My

P(Ch) /W1 eXp( VV) dV = Z ZAl A Wilag, -+ ag-),

lk—1
where as are called nodes, A; are the Hermite polynomials weights and, M/s are the number
of nodes. We use Hermite polynomials because the function in this form e, Tt is stated in
most text books that numerical integration method for higher dimensions are not reliable.
Therefore, we decided to use numerical integration to calculate P(C}) for n=2,3,4 (See R

codes for numerical integration).

For n=2, P(C}) becomes

P(CY) /W1 ) exp(—X?)dV ~ ZA Wi(as),

i1

where W1(X) = =[20(v2(c — |[R*X — (1 — R")n|)) — les|r+x—(1-r+)y- We use 1500

ey
nodes and weights to approximate P(C). We calculate P(C}) for different choice of the
shrinkage constant. The difference between the results from the numerical integration and the
simulations is negligible. Our simulation results and the result of the numerical integration
method agreed. (See Figure8.1 - 8.8)

For n=3, P(C}) becomes

Mo My

P(CY) /W1 )exp(X7 + X3)dX ~ Y > A A Wi(ai,, az,),

is i1
where W1 (X) = 1[®(v3UB)—®(v3LB)|1yp>1s where UB is the minimum of the all upper
bounds and LB is the maximum of all the lower bounds. We use 800 nodes and weights
to approximate P(C}). We calculate P(C}) for different choices of the shrinkage constant.
The difference between the results from the numerical integration and the simulations is
negligible. However, the numerical integration results tend to be slightly higher than the
simulations results. Also the contour plot shows a clear picture of the domination; the
coverage probability achieves its maximum when all the population cell means are zero and
the coverage probability achieves its minimum when all the cell means are big that is slight

bigger than 0.95. (See Figure 8.9 - 8.16). Since the numerical integration methods are not
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highly recommended for the higher dimension, we use the numerical integration method for
at most n=4 (dimension of integration is 3).

For n=4, P(C}) becomes

Mo Ms M,

P(Cl) = /Wl(X) exp(Xf +X22 +X§>dX ~ ZZZAlAQA:),Wl(CLZ‘I,ai2,ai3),

i3 i3 01
where Wy (X) = #[@(2UB) — ®(2LB)|1yp>rp where UB is the minimum of the all upper
bounds and LB is the maximum of all the lower bounds. We use 40 nodes and weights
to approximate P(Cy). We calculate P(CY) for different choices of the shrinkage constant.
The difference between the results from the numerical integration and the simulations is
negligible. However, the numerical integration results tend to be slightly higher than the
simulations results. (See Figure 8.17-8.19) Since there is no significant difference between
our simulation result and the numerical integration result, we are confident saying that our
simulation results are reliable. Moreover, since we use 10,000 replication in our simulation,
this makes our simulation result to be accurate until the third decimal. Therefore our

simulation results are reliable.
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6.0 TWO WAY ANALYSIS OF VARIANCE MODEL

Since the two-way ANOVA model a special case of the one-way ANOVA model, we hope
to prove the same results for the two- way ANOVA model that we earlier have shown for
the one-way ANOVA model. Fabian (1990) gave a simultaneous confidence interval for the
cell means in a two-way ANOVA model in which additivity is conjectured but the presence
of interaction cannot be ruled out. He suggested the following recommendation: ignore
interactions and do analysis but estimate the error involved in neglecting the interactions
from the power of the test. He also stated that, one-way method or usual recommendation
for two-way method is substantially better than his method. Gleser (1992) pointed out the
flaw in Fabaian’s recommendation and suggested the confidence rectangle centered at the

related shrinkage estimator. Gleser suggested the following point estimator

Xogg + RTWy

where RT = (1 — Zi;ij )T. Therefore we use Gleser’s point estimator to prove that the
procedure suggested by Gleser a has uniformly higher coverage probability than the usual
procedure.

We consider the balanced two-way ANOVA model but we give modification of our procedure
for the unbalanced two-way ANOVA model in an Appendix. After briefly restating the

model and assumptions, we start with the known o case and continue with the unknown o

case. We finish with our simulations results for two-way ANOVA model.
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6.1 BALANCED TWO WAY ANOVA MODEL

We introduced the model for the balanced two-way ANOVA model in the second chapter. Y
are obtained from a balanced two-way classification design. In such a two factor experiment,
there are I levels of factor A and J levels of factor B and K replications for each treatment

combination of ith level of factor A and jth level of factor B. We defined the cell mean
model for two-way ANOVA model in (2.6). The model is

Xij=Xoij + Wi 1=1,..11=1,...,J

In (2.6),X;; is the sample cell mean for ith level of the first factor, A, and the jth level of the
second factor, B, Xy;; is the main effect for ith level of A and jth level of B and W;; is the
interaction effect for the ith level of A with jth level of B. Xy;;’s are distributed normally
N(0,0.22=1) and W;;’s are normally distributed

([ —1)(J 1)
N (03, 0; 77 )

where 0, = 2= and S Wy =0, i=1,.1 Y0 Wiy =0, j=1,...J.

The usual confidence rectangle for the population means, 6;;, under the (i,j) treatment

combination is

S
[

O = (611, ...,0[]) : (|XU - 9”| S S,i = 1,[,] = 1, couy J} (61)

), where N=IJK and @ is the standard normal distribution function.

The confidence interval we are proposing is

D2 = {@ = (911, ...,9[]) : (|Xm'j + RJ'_VVZ‘]' - 92]| S S,i = 1,],] = 1, ceny J} (62)
where
aao,
Rt = (1 - ———0 )t (6.3)
Zi:l Zj:l Wz%
That is,
ao, Zz{:l Zj:l Wi2j
- — e : = —J—- -J >
Rt = 1 Y1 X (Wij)? Te =4
O . Z'{:l Z;‘Izl Wi2j < a.

Oe -
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6.2 THE KNOWN oy CASE

If the o, is known, without loss of generality we assume that o. is 1. Then the usual

simultaneous confidence interval for the cell mean becomes

DIZ{@:(QH,.. 9[]) (|Xl] 6’”| SS,izl...,I7j:1,...,J} (64)

1

where s = ®~1(2 “1), where N is 1J and @ is the distribution function of standard normal

distribution.

The confidence interval, we are proposing is

Dy ={0 = (bh1,....00)) : (| Xoij + R"Wy; — 05| < si=1.,1,j=1,..,J} (6.5)

a . I J 2
l-srsfayr @ L2 Wi2a

0 : Zz 12]1 1]—

Rt =

6.2.1 Analytical Results

Lemma 6.2.1. if §'0 — oo, P(Dy) — P(Dy).

Proof:

Let Wi; = Vij +0i, v = V00 and ¢;; = QTJ Then ZZ‘I=1 Zj:l(‘/ij +0;)? = Zle Z}]=1<Vij +
€j7)* — oo. This implies that the shrinkage factor, R*, will be positive since

a <L 37 (Vij + €)?. Then,

aVij a

+ Xoij — Neiy| < s)
Sy Y (Vi + €7)? S Y (Vi + €7)?
Vij + €5y

+ Xoij| < s)
Z'L 1 Z] 1(‘/;] + EZ]PY) !

P(Dy) = P(|Vij —

= P(|Vy -

Let X(l) = (X()H, ...X()[J), Vl = (‘/11, ...,‘/]J and 6" = (‘911, ...7€]J). Then

W+
E{ IE 1( ijtein? Zil 1EJ 1( ij 51]"/)
D2 // o i on(XO)fV(V)dXodV

0
Z{ 12‘] 1( +€ij7)2) +ZZ-I:12]J:1(Vij+€ij’Y)2
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. Let g(V,0) = —(1 — > )V +

S X (Vigtei)? 6. Observe that

a
Sic 2= (Vij+eij)?

lim ¢(V,0) — 0.

Y00

Since all the conditions are met for the dominated convergence theorem, we can take the

limit inside of integration.

s—limy 00 g(V,0)
lim P(Dy) — / / Fro (Xo) fo (V)dXodV
Tee s—glimy— o (V,0)

// Ixo(Xo) fy(V)dXodV
_ P(D)

Lemma 6.2.2. If a < WW, then |(1 — RT)Wj;| = |4
>t Z}]=1 Wi

Proof:

We use the fact that 37, Z‘j]:l W;; = 0.

< /e L= < a, where WW =

I J
2.2 Wy = 3 ), Wyt Wi =0
j i=1 j=1

i=Ij#J

Moreover,

WWw = ZZ W2+ W,

v
+
3
<

v
=

|W1J| S T
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Then for a < WW,

aW,;
(1-R"(Wy) = W—I/I;
WWxN—1
CLWZ‘]‘ < a N
ww  — wWw
a ax N—1
< XA\
ww N
axN-—1
< <+a
< N <
and the same way
aW.:
1—-RYHWy) = —2
WWxN-1
aI/Vij > _& N
ww  — Ww
a

%
|
=
S
X

X

==
|

v
|

This completes the proof.

The following theorem states the our lower bound for P(Dy).

Theorem 6.2.1. The lower bound P(D3) is
P(Dps) =P(—=s+Va< Zi; <s—+a,a<WW)
s where Xz‘j = Zij + 9”

Proof:

Let Wi; = Vi +0;; and WW = Zle Z}]=1 VV%

P(Dg) P{‘Xol] — (91]‘ S S, S WW} -+ P{’RJFVVU +X0ij — 01]‘ S S, a 2 WW}

P(Dy)

v

P{|R+Wl] +X()ij — 9”| S S, a S WW}
4
Ww

P{'V;J + XOij — #WA S s, a S WW}

v

P{|WZ‘]‘— Wi+X0ij—9ij’§S,a§WW}

Y

o6



Then from the previous lemma,

a
P{=s+ iy
> P{-s+vVa<Zj;<s—+vaa<WW} =P(Dp)

P(Dy)

v

a
Wi < Zij < s+ WW}j’a < WW}

Keep in mind that P(Dys) < P{—s byl <z <s o fexhaL g < WW} < P(D,).

Lemma 6.2.3. For a large enough N, P(Dr,) = (2®(s — v/a) — 1)V.

Proof:
If N is large enough, limsup + = 0. Then from Theorem 6.2.1

P(Dy) > P{-s++a<Z;<s—+aa<WW}

Since limsup & = 0, then P(WW > a) = 1, because WW has a non central chi squared
distribution which is a schur concave in 7.

Thenlet E: {—-s+va<Z;<s—+ai=1,.,1j=1,.,J}and F ={a < WW}. Then

P(Ch)

AV

P{—s+\/5§Zij§s—\/5,a§WW}

vV

P(E) — P(F°) > P(E) — P(F)

v

P(=s++va< Zy <s—+a)+Pla>WW)
P(—s+Va < Zy < 5 — va) = (28(s — va) — )"

v

Theorem 6.2.2. P(D,) dominate P(D;) up to an arbitrarily small constant for a sufficiently

large number of means, n.
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p(DQ) = P{@ . ‘RJrWij +X0ij — 9”’ S S}
P(Dg) = P{Q : |X0ij —91j| S S,WW S CL} —l—P{Q . |R+VV7;J' +X0ij —91| S S,WW Z CL}

Observe that for a large enough N,P(WW < a) — 0 since a is bounded above by a constant
and a < N.Then,

P(Dy) = P{9 CRTW 4 Xoy — 0i5] < s, WW > a}.

From Theorem 6.2.1,
P(Dy) > (2®(s — v/a) — 1)", the rest of the proof is similar the proof of theorem 3.1.3

6.3 THE UNKNOWN oy CASE

The usual confidence rectangle for the vector 6 of cell mean is
D1 = {0 = (911, ...,HIJ) . |X7,J — 0”| S S ,i = ]_, ...,],j = 1, .oy J} . (66)

, where s = ]m\a7n7v\/%, and |m|qno is the 1 — a quantile of the Student maximum modulus
statistics, 62 is the unbiased estimator of o2. Keep in mind that when I.J is large, the
quantile of Student maximum modulus statistics can be replaced by the quantile of student

t distribution.

27{:1 Z]J:1 Ei(:l(yijkfxij)z
I1J(K-1)

We replace o with an unbiased estimator 62 = . Our confidence

interval is the same as 6.2, the only difference is the shrinkage estimator.

Dy(X) = {|(Xoij + RTWy; — 05 < s)} (6.7)
where RT is
~9
ao
Rt =(1- 7 = )T (6.8)
> i1 Zj:l WZ
That is,
a6? . Z{:1 Z}']:1 Wizj
R+ _ 1= Z{:l Zj:l ng o 2 a
0 27{:1 2&:5:1 W'L2] S a
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By using same notations in known o case, 6.7 becomes

X) = {|Xoij + BTV — (1 = R")by| < 5)} (6.9)
where
R =(1— as” )+ (6.10)

S 2 (Vg + 055)?

and W;; = V;; +0;;. Now, we try to derive same analytical results for the unknown o, case.

6.4 ANALYTICAL RESULTS

Lemma 6.4.1. If the shrinkage constant, a, equals to zero, P(Dy) — P(Dy).

Proof:
If a =0, then R™ = 1. This implies that P(Dy) — P(Dy).
This lemma states that if we pick a small enough, P(D5) will be very close to P(Dy).

Lemma 6.4.2. if 0’0 — oo, P(Dy) — P(Dy).

Proof:

lim P(Dy) = lim E,P(Dy/6%)

' 9—o0 8'9—o0
62 has a chi-square distribution and |P(Ds)| < 1 is bounded. Therefore, all the conditions
for dominated convergence theorem are met, we can take the limit inside of expectation.
The main and interaction effects have independent multivariate t distribution so we can take
the limit inside of the probability too. The rest of the proof of this lemma is very similar for

the lemma 6.2.1.

Lemma 6.4.3. If a < WW  then |(1 — RY)Wy; = |% W”| < 4Nl < Jab, where
WW:Zi:l Zj:lW
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Proof:
We use the fact that Zle Z‘jjzl W;; = 0.

Moreover,

= Y

Wi,
>
Z N _1 +
N
> W2
- WIJN
WW x N —1
Wil < \/ N .
Then for a6? < WW,
a6*W,;
1—R+ Wz — Y

CL@'QWU'

VAN
I~
%
S
S
=[x
i

WWw

and the same way

IA
-
=|s
SIS

x =
=

S

X
==

|

2
WU
1— Rt ) = ao Wiy
a&ZWij
ww  —
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This completes the proof.

The following theorem states the our lower bound for P(Dy).

Theorem 6.4.1. The lower bound P(Dy) is
P(DLQ) = P(—S -+ \/5& S Zi]’ S S — \/56',&&2 S WW), where Zij = Xl'j +9”

Proof:

Let W;; = Vi +0;; and WW = Zz‘lzl Zj:l VVE

WW WwWw
P(Dy) = P{|X0ij_eij|SS;GS?}+P{|R+Wij+X0ij_0ij|SS’G’Z7}
Ww
> P{|R+M/z‘j+X0ij_0ij|§3aa§ - }
g

v

WW
P{|—(1—R+)Wz’j+X0ij+Wij—9ij|SS,GS }

5-2

v

P{’—(l—RJr)VVZ]‘i‘ZZ]’ SS,CLS WW}

&2
Then from the previous lemma,

wWw
P(Dg) Z P{—S+ (1 — R+)Wij S Zij S s + (1 — R+)WZ‘]‘,6L S 7}

N N WW
> P{—S—F\/ECTQSZijSS—\/EUz,aSA—Q} = P(Dys)
o

Keep in mind that P(Dyy) > P {—s + \/CL%OTQ < Zij<s-— \/a%(;{a < %}

Theorem 6.4.2. P(D,) dominate P(D;) up to an arbitrarily small constant for a sufficiently

large number of means, N.

Proof:

Since a is any linear function of N such that limg,, ~ = 0, From lemma 3.2.4 P(a <

WV) = 1. The lower limit P(Dy,) = P{—s+ /a6 < Z;; < s — /a6, }. Then, observe that

6—2

Z;;’s are independent and have ¢ distribution.

Pizgl<s-vas) =PIz <s0- Y20 (6.11)
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As N — oo,

— O

— 0 therefore

é“‘ﬁl oY

Then conditioning on &,

Jim B P(|Z;) < s(1 - VIG5

Keep in mind that 62 has chi-square distribution and |P(]Z;;| < s(1 — \/Sa”))] < 1. Then

all the conditions for dominated coverage theorem are met. Therefore we can take the limit

inside,

lim s P(|Z; < s(1 — V5 = B, Jim P(|Zy] < s(1 - Vs, 5
—00 S —00 S

— P(Z,| < s) = P(D))

6.5 SIMULATION RESULTS

Since we want to show the coverage probability for our rectangular confidence proce-
dure, P(D3), is uniformly higher than the coverage probability for the usual rectangular
confidence procedure, P(D;), for small N and ||0]|*>. We run the simulation for the degrees
of freedom, df, of interaction effect since we shrinkage the interactions toward zero. We
use df=2,..,6. In other words we run the simulations for the following designs, matrixs,
(2x2,3x2,4x2,5x2,3x%3,6x2,7x2,4x3). Before we explain how we did simulations,

we state a couple of lemma’s about P(D,).

Lemma 6.5.1. P(D,) is sign invariant.

Lemma 6.5.2. P(D,) is transpose invariant.

This lemma proves that the coverage probability of a matrix equals the coverage probability

of the transpose of the same matrix.

62



Lemma 6.5.3. P(D;) is column invariant.

This lemma proves that the coverage probability of a matrix is not going to change if you

change the position of its columns.
Lemma 6.5.4. P(D,) is row invariant.

This lemma proves that the coverage probability of a matrix is not going to change if you

change the position of its rows.
Lemma 6.5.5. P(D,) is not row and column invariant.

This lemma proves that the coverage probability of a matrix is going to change if you change
the position of its rows and columns at the same time. Dy can be written in the following
way,

Dy = {|Xoij + R*Vy; — (1= R")by| < s}

where Xo;; = Xi+X; — X, Vij = Xy — Xoj, X = 3577, Xy, X; = 330, X;; and
X=4 ST Z}]:1 X;;. R" and s are defined in 6.1 and 6.3. For the simulations for the
one-way ANOVA model, we mainly use the following set to create 6 vectors. The set is
(—4,—3.75,...,3.75,4). Since the simulations for two-way ANOVA model require more com-
puting time than the simulations for one-Way ANOVA model, we use the same set above to
create matrixs of # for small dimensions. For big dimensions, we use a smaller set. This set
is (-3, ...,3).

To do simulations we followed these steps:

Step 1: Generate ZF; k=1,...,10,000 and store them where Zr; is a [ x J matrix.

Step 2: Generate all the possible 1! ; by taking sign, row, transpose, and column invariances
into account from the set above where [ = 1,...L, and L is the total number of n;; generated,
and n;y is a I x J matrix.

Step 3: Calculate s.

Step 4: For each [ =1, .., L, calculate

PSy. = Xorg + R™Vi; — (1 — RNt for each k =1, ...,10,000
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,PSy; is a I x J matrix.
Step 5: Forl =1,...,L and k = 1,...,10,000 , let C P, = 1 if all the values in PSy, are in
[-s,s] and 0 o.w.

Step 6: Calculate the coverage probability for [ =1,..,L, P, = ,ﬁ?oo 1%?6“0

(See appendix for the R codes).

For df = 1, there is only one design matrix which is a 2 x 2 design matrix. We do not
expect to see that P(Ds) dominates P(D;) in every region, since df is 1. We run simulations
for the different choices of the shrinkage constant, a, but P(D5) could not dominate P(Dy).
We are not surprised by this result. We do not except see the domination result until df is 4.
We also plot the coverage probabilities against the length of 6, 25:1 Z;.le Hfj. The plot looks

like a random plot, there seems to be no relationship between the coverage probabilities and

the length of 6. (See Figure 8.26)

For df = 2, there is only one design matrix which is a 2 x 3 design matrix. We run the
simulations for different choices of a. When all the population cell means, 6, are zero, P(D,)
dominates P(D;) and P(D3) achieves its maximum for any choice of a. However, P(D;) can
not dominate P(D;) in every region. We plot the coverage probabilities against the length
of 6 for each a. The coverage probabilities are decreasing until the mid values of the length,
then it starts increasing again. The sharpness of this dip depends on choice of a. As a gets
bigger, this dip is getting sharper.(See Figure 8.26)

In a one-way ANOVA model, we plot the coverage probabilities against the length of ¢
and the maximum of |n|. Those two graphs look very similar; therefore we plot the coverage
probabilities against the length of 6 in a two-way ANOVA model.

For df = 3, there is only one design matrix which is a 4 x 2 design matrix. We first
plot the coverage probabilities against the length of 6 for each a, again there is a dip and
coverage probabilities are not a decreasing function of length of . Then we plot the coverage
probabilities against the maximum ||, again there is a dip but the dip is not as sharp as in
the first graph. As a gets smaller, this dip is getting smaller like in the first graph. When
0 is around zero, P(Dy) is uniformly higher than P(D;) and P(D;) achieves its maximum

at § = 0 for any choice of @ . When a is less than 1, P(D;) is uniformly higher than P(D;)
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everywhere. Therefore the optimum choice for a is 1. We are surprised by this result because
in the previous studies, Lindley, Casella and Hwang proved that the shrinkage estimator we

use has smaller TMSE than the usual estimator for df > 4. (See Figure 8.26)

For df = 4, there are two design matrixs which are 5 x 2 and 3 x 3. We again try
to find the optimum shrinkage constant, a. For the two design matrixs; when 6 is around
zero, P(D,) is uniformly higher than P(D;) for any choice of a in every region and P(D,)
achieves its maximum at # = 0. When a is less than 2, P(D,) is uniformly higher than
P(D;) everywhere. Therefore the optimum choice for a is 2. Again, we agree with the
usual recommendation. We plot the coverage probabilities against the length of 8 for the
two design matrixs. We have similar pictures, there is a dip and the sharpness of that dip
depends on a. The dip in the second graph is not as sharp as the dip in the first graph.
Also, we observe that the coverage probabilities for 3 x 3 is higher than that of 5 x 2. (See
Figure 8.26-8.27)

For df = 5, there is only one design matrix which is a 6 x 2 design matrix. We first
plot the coverage probabilities against the length of 8 for each a, again there is a dip and
coverage probabilities are not decreasing function of length of 6. As a gets smaller, this dip
is getting smaller like in the first graph. When 6 is around zero, P(Ds) is uniformly higher
than P(D;) and P(D,) achieves its maximum at § = 0 for any choice of @ . When a is less
than 3, P(Dy) is uniformly higher than P(D;) everywhere. The optimum choice for a is 3.
(See Figure 8.26-8.27)

For df = 6, there are two design matrixs which are 7 x 2 and 4 x 3. We again try
to find the optimum shrinkage constant, a. For the two design matrixs; when 6 is around
zero, P(Ds) is uniformly higher than P(D;) for any choice of a in every region and P(Ds)
achieves its maximum at # = 0. When a is less than 4, P(D,) is uniformly higher than
P(D;) everywhere. Therefore the optimum choice for a is 4. Again, we agree with the
usual recommendation. We plot the coverage probabilities against the length of 8 for the
two design matrixs. We have similar pictures, there is a dip and the sharpness of that dip
depends on a. The dip in the second graph is not as sharp as the dip in the first graph.
Also, we observe that the coverage probabilities for 4 x 3 is much higher than that of 7 x 2.
(See Figure 77-8.27)
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By using simulations, we showed P(Dy) is uniformly higher than P(D;), for small design
matrixs. We plot the coverage probabilities first against the length of 6 , than against the
maximum of the |f| for each design matrix. We have similar pictures in both graphs. The
only difference is the second graph is smoother then the first graph. There is a small dip,
but the dip is a function of a, when a gets smaller, the dip is getting smaller. The coverage
probabilities are not a decreasing function of either of the the length of  or the maximum |6)|.
We also agree with the usual recommendation for a. Our simulations indicate the domination
of our procedure over the usual one when df = 3. That is an improvement and we are quite

surprised to see the domination result for df = 3.
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7.0 CONCLUSION AND FUTURE RESEARCH

If the researcher is interested in finding the simultaneous confidence interval for the inde-
pendent samples normally distributed random variables, our procedure can be applied.

In this dissertation, we concentrate on simultaneous confidence intervals for the cell
means, and the comparison of treatment means with the mean of a control. We make use
of Stein type Shrinkage estimators as centers to improve the simultaneous coverage of those
confidence intervals. Basically, we study the rectangular confidence region centered at a
design appropriate shrinkage estimator in one way and two way ANOVA models. The main
obstacle to an analytic study of the coverage probabilities of such regions, as compared to
studies of coverage probabilities of similarly centered spherical confidence region is that the
rectangular confidence regions are not rotation invariant. We briefly state our results and
make some suggestions for the future work.

In this dissertation, we primarily use simulation to show dominance of the rectangular confi-
dence intervals centered around a shrinkage estimator over the usual rectangular confidence
regions centered about the sample means.

For the one-way ANOVA model, our simulation results indicate that our confidence pro-
cedure has higher coverage probability than the usual confidence procedure if the number
of means is sufficiently large. We prove that the rectangular confidence intervals centered
around a shrinkage estimator have coverage probability uniformly exceeding that of the usual
rectangular confidence regions up to an arbitrarily small epsilon when the number of means
is sufficiently large. We show that these intervals have strictly greater coverage probability
when all the parameters are zero, and that the coverage probability of the two procedures
converge to one another when at least one of the parameters becomes arbitrarily large. We

also develop a lower bound for the coverage probability of our rectangular confidence region
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which is a decreasing function of the shrinkage constant for the estimator used as center.
To check the reliability of our simulations for the one-way ANOVA model, we use numeri-
cal integration to calculate the coverage probability for the rectangular confidence regions.
Gaussion quadrature making use of Hermite polynomials is used to approximate the cover-
age probability of our rectangular confidence regions for n=2, 3, 4. The difference in results
between numerical integration and simulations is negligible. However, numerical integration
yields values slightly higher than the simulations.

A similar approach is applied to develop improved simultaneous confidence intervals for the
comparison of treatment means with the mean of a control. We again develop a lower bound
for the coverage probability of our confidence procedure and prove results similar to those
that we proved for one-way model.

We also apply our approach to develop improved simultaneous confidence intervals for the cell
means for a two-way ANOVA model. We again primarily use simulation to show dominance
of the rectangular confidence intervals centered around an appropriate shrinkage estimator
over the usual rectangular confidence regions. We again develop a lower bound for the
coverage probabilities of our confidence procedure and prove the same results that we proved
for the one-way model. Our simulations indicate that our confidence procedure has higher
coverage probability than the usual confidence procedure for, df > 3. That is an improvement
because Lindley, Casella and Hwang proved that the shrinkage estimator with the shrinkage
factor that we used in our confidence procedure has a smaller TMSE than usual one for
df > 4.

Since our confidence rectangles are not rotation invariant, it is difficult to come up with a
proof for domination result. To calculate coverage probability of our procedure, the integrals
must be evaluated. Because of the shrinkage factor we used, the coverage probability is a
nonlinear function of the cell means. From the graphs based on our simulation, we see that
coverage probability is not a convex or concave function of the cell means. To overcome this
and to make the coverage probability function less complex, we tried a shrinkage estimator

with the shrinkage factor




but the confidence region based on that shrinkage estimator did not have uniformly higher
coverage probability than the usual confidence region. We also use the original James-Stein

estimator as our shrinkage estimator,

7.1 THE JAMES-STEIN ESTIMATOR

We want to examine the rectangular confidence interval for the cell mean centered at the
James-Stein estimator. The James-Stein estimator is,

a
2 i X7

,where R* is defined in 3.11. We hope to prove the same results for the James-Stein estimator

Rt =(1 )+ (7.1)

for the one-way model that we earlier have shown for the Lindley’s estimator for the one-way
model.
Let the shrinkage factor to be RT. Keep in mind that 0 < R™ < 1, that is the only condition

we need for the most of the analytical results stated below.

7.1.1 Analytical Results

The rectangular confidence interval centered at the James-Stein estimator is in the following
form,
The usual rectangular confidence interval Cj is The usual confidence interval is
Theorem 7.1.1. P(C)) is uniformly higher than P(Cy) if ||0]]° = 31, 62 < 2.
Proof:

10]]* < ¢ implies that max; |6;| < ¢. Then from triangular inequality,

IN

|R*Zi| + |(1 = R)0;| = RT|Z;| + (1 — R7)|0,]

< Rfe+(1-RMc=c
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Lemma 7.1.1. if §'0 — oo, P(Cy) — P(Cy).

Proof:

Proof of this lemma is almost identical to the proof of lemma 3.1.4.

Lemma 7.1.2. Ifa < SS, then (1— RT)X; = &3 <[/ 2= < |\/a|, where 5SS =Y} X2.
Proof:

a <SS =>""X? implies that

| aX; < a Ja max; X?
vzl S /v VW = e
> X? > i1 X7 > i1 X?

< Va.

The following theorem states the our lower bound for P(CY).

Theorem 7.1.2. The lower bound P(Cy) is
P(Cr1) = P(—c++a< Z;<c—\/a,a < SS), where X; = Z; + 0;.

Proof:

P(C)) = P{6]<ca<SS)+P{RX,~ 0] <ca>SS)
> P{|R"X;—0;] <c,a<S5S5}
a
> . —X.—0.l < <
> P{|XZ =X, 01|_c,a_55}
a
> _ ZX|<ca<
> P{|ZZ SSXA_C,@_SS}
a a
> et — X, < Zi<cH+ —X;a< .
> P{ c+SSXZ_ZZ_c+SSXZ,a_SS}

Then from the previous lemma,

a a
> et —X: < T <4 —X;a<
PCy) > P{ c+SSXI_ZZ_c+SSX,,a_SS}
> P{-c+va<Z <c—+aa<SS}.

This completes the proof.
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Lemma 7.1.3. Asn — oo, P(Cr1) = (2®(c — v/a) — 1)"

Proof:
Asn — oo, P(a < SS) =1, and this completes the proof.

Theorem 7.1.3. P(C}) dominate P(Cy) up to an arbitrarily small constant for a sufficiently

large number of means, n.

Proof:

Asn — oo, P(a < SS)=1since a <n and a is a any linear function of n. Then,

P(Cy) = P{|R"X;—6;] <c,a<5S}

— P{|Xi—SiSXi—9i\§c}
_ P{|Zi—%Xi]§c}
- P{—c+%Xi§Zi§c+é%Xi}

Then from previous lemma,

P(Cy) = P{—c+ %Xi <Z <c+ %X}

(20(c — V/a) — 1)".

v

The rest of the proof is the similar the proof of theorem 3.1.3.

7.1.2 Simulation Results

We run simulations for n = 3,4, 5,6, 7. We used the simulation method that we described
in the previous section. We have exactly matching pictures. The coverage probability is not
a monotone decreasing function of the length of 6§ and the coverage probability achieves its
maximum when all the #'s are zero and the optimum choice for the shrinkage constant is

n— 3.
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One can try different shrinkage factors. If the shrinkage factor makes the coverage
probability function a Schure concave function, the proof for the domination result will
follow easily. Another way to prove the domination result is to come up with a sharper lower
than ours and work on the lower bound to prove the domination result.

Since our confidence procedure has substantially higher coverage probability than the usual
confidence procedure for n >4 in one way model and df > 3 in two way model, it may be
possible to reduce the volume of the rectangular confidence region while still maintaining
superior coverage probability relative to the usual procedure. In other words, it may be
possible to permit the length of the interval to be function of the data. In two way model,
we let the length of the interval to be a function of data but unfortunately that confidence
interval could not dominate the usual one.

It is our hope that our research will contribute to the field of statistical inference and even-

tually help to applied statisticians.
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8.0 APPENDIX

8.1 UNBALANCED ONE AND TWO WAY ANOVA MODELS

If the data Y;; are obtained from an unbalanced one way classification design, then Y;; =
0;+e€j, g=1,...,n;, i=1,...,k. And our notation remains the same as before, except that

the sample cell mean is replaced by:

X, = ymY; (8.1)
where Y; = Z;;l % Then the X;’s are distributed independently and normally as
N(y/nibi,0%), i=1,..,k. (8.2)

Let v = /n;0;. The usual confidence rectangle for the vector © of cell means now becomes

CYO = {F:<71777k) : ‘X1_71| Scaizla'“ak}
— C )
— {@ = (91,...,9k) : |Y; —92| S \/n_ , 1= 1,,/{7}

, Where ¢ = UT*1($) and T is the distribution function of Y%, And the confidence
Vi

rectangle we are investigating converts into

Cr = {D= (o) [RE (X = X) + X =il S cii=1, ..k

~.

—

- X X c
{@ (017 79’6) ‘R ( 7 \/n—l)—i_ \/n—l 97/' — \/ﬁijz ? k}

_ X c
- {@:yR+m+(1—R+) — 0 < ,@:1,...k}
n; A/ T




,where R* is defined in 3.11. When ¢ is unknown, we replace o with an unbiased estimator

in (', defined above. Similar method will be applied to two way ANOVA model.

8.2 PROOFS

Proof of Lemma 3.1.5:
Let U be normal, N(0,1/2), p.d.f. For n=2, the coverage probability is

fm " (2(v/3(e — m])) — 1) fu (U)dU+

2 n
va/2—m
f_(7]1+c)_ /—(C 2424 gUTil Ca( )fU(U)dU

(c— n1)+\/(c+n1)2+2a

+f\/ﬁ*771 ’ gU,m,c,a(U)fU(U)dU 0L m < a/Q
Py = { V" R0V~ ) - Do)+ .

\/a/2 m
f‘(’lﬁ-C)—W gum, Ca( )fU(U)dU

(e= n1)+\/m
+f\/ﬁ*771 ? gU,m,c,a(U)fU(U)dU : V CL/2 < m <c

—(n—e)+4/ (c+n1)%+2a
2 . >
|- iiefimrman 9omeal)fu(U)dU mze
\ 2

where U, ca(U) = 2®(v/2(c — |U — ml)) —1).

Wlog assume 7; > 0, there three three regions we need to consider;

1.0 < < V/a/2

2.4/a/2<m <c

3.m >c

1.The first region (0 < n; < y/a/2):
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Let v = upy, n =

V2(c—|Ru—(1—R)7)
f f (—c+|Ru—(1—R)n)

oW

then,
1))

a/2—17
= [ YRR o) fuddudu+ [y [ Y

2(U+n) )

U+n) )

we need to check the upper and lower bounds of integration.

Checkl:
V2(e = [nl) > V2(=c +Inl)
s> (yes)
Check2:
V2(e—|U - > V2t |U - 2
(0= U = 557D > VA U = 5
a
c>|U —
U aw )
a
U— _
c > 2(U—|— ) > —C
Check 2.1:
Dy
N 2(U + 1)
2Uc+2cn = 2U?+2Un —a
= 22U +2(n—c)U —a—2cn
0 = U+(n—c)U—a/2—cn
—n—c) £+ +2a
U, =
2
Check 2.1.1:
We need to check if Uy 5 € A.
1.

5

o(v) f(u)dvdu



U1 — _(77_6)"' V (77"’_6)2"’_2“ > &/2 _ 77

2
c—n—m+2n+\/m
c+n—+v2a+sqrt(c+n)? +2a >0
so Uy ¢ A.

2.

U, = 7(7776)7\/2@ > —\/a/2—n
c—77+\/%+277+\/m
c+n+\/2_—\/m>0

so Uy € A.
Check 2.2:

a
Uv— — -

2(U +1n)
—2Uc—2cn = 2U°42Un—a

= 2U*+2(n+c)U —a+2cn
0 = U+ (n+U—a/2+cn

—(n+c) £/ (n—c)?+2a

U, = 5

1:

U, = *(n+6)*\/2(cfn)2+2a < —alz—y
—c—n+V2a+2n—/(c—n)?+2a
(e—n) +VZa— o= P F2a<0
so U; ¢ A.

2:

U, = —(n+c)+\/2(7]—c)2+2a > —\JaZ—n
c—n+v2a+2n+ \/m
e—m)+VZa+Se—nPF2a>0

so Uy € A.
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Then

~alim
2(V2(e~ ) = DAl + [ e Guneal) ()

(e=n1)+4/ (c+m1)2+2a

2 d
" \/\/mn1 gu,n,c,a(u)fu(u) U

[

a/2—m

where,guy.ca(U) = 28(v2(c = |U = ggt1) — 1)
Also observe that — 9~ VQ(Cfm)QHa < —s and (cmm)Fy/(ctm)*+2a > s

2

2.The Second Region(\/m <m <c

Since 1 < ¢, we will get the same integrals as above.
3.The third Region(n; > ¢):

Check 3.1:

V2(c—[nl) > V2(=c+In])

¢>|n| , No.

Check 3.2:

c=U — m and Upy = —(n—o)% 2(77+C)2+2a
1:

U = B RCARAY AL A a/2 —n, YES.

2

SO, Ul ¢ A.
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Uy = “Wmdovntoie o7 — p, YES.
U, = —(n=o)- V2(n+c)2+2a > —\/a/2 —n, YES.

so Uy € A.

Check 3.3:

—(n+c)E4/(n—c)®+2a
2

—c=U— —Q(Uern) and ujp =

U, =~V Ot s — g, YES.
U, = SOV dte  Son ) YES,

so Uy € A.

U, = Ity (1o +2a a/2 —n, YES.

2

so Uy ¢ A.

—=0+/GEe T
wsos/irrm Junea(1)fu(u)du.
2

then, P(C) = [

Where, gp.ca(U) = 20(v2(c — |U — 52—])) — 1).

2(U+n)
Also observe that

—(nte)+4/(n—c)?+2a
2

Proof of Theorem 3.1.1:

—(n— 219
(n—o)+ (77+6)+a>8

> —s and 5
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There are three regions we need to consider from the previous lemma;

1.0 <m < \/a/2

2./a/2<m <c

3.m >c

1.The first region (0 <7y < +/a/2):

Val2—In|
P(Cy) - P(Co) = 2 / . V(e — 1) — v (e — [ul))fu(u)du
Va2l a
+ 2/6 [p(V2(c — |u— mn — 6V2(c — [u])] fu(w)du
+ 2 /\/%MIW\&(C — |u— ) ) — ovV2(c — |u])] fu(u)du
ww;ﬂ .
+ / 26(V2(c — |u— MD — 1] fu(u)du

There are 5 terms in P(Cy) — P(Cp), we will take the first and second derivatives w.r.t \/a

for term by term.

Let k = \/’07% =1 =kKy/a/2.

The Derivatives of the first term:
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2f\/a_/2 A a/2 c—|/»€\/_| — oV2(c — |u]))] fu(u)du

1=2/" “5;(1:>)[¢ (¢ — |ry/a/2])) = ov2(c — [u])) fu(u)du

01 1—/<c

NG = 2[( \/§ V2(e — |ky/a/2))) — ¢(V2(c — |(1 — K)\/a/2])))
+ 1\—;; c—|/£\/_| C—|1+’i\/_|

Val20-r)
TRy e (elny/as2l?—u? g,

* /—M(H—n)( m )
= V2/m(1 - ke VP [6(Vo(e — |\/af2x]) -
VAR 4 e VTR (6B e~ | a3n) -

— 2R VA 0 Ja(l — k) — ¢(—Va(l + k)]

01 —
byalva=o =0

e~ (Wa/2(1-r))*

—(v/a/2(1+x))?

o(vV2(c = [V/a/2(1 = x)]))]
o(V2(c — 1v/a/2(1 + K))))]

For the second derivative, when we apply product rule into the function above, we will

drop the term which is zero for /a =0

%1

O BT~ )0+ e W2 T (el /a]2w))?
e 2/m(1 = R)l0+ e \/_27r
bR (1) c-ly/ar2)? | LH B —(emy/arzaem?)
T 2

1+x

_ f’i[ (com/af2p (L —vanp | 11K
V2

VT V2r

e~ (Val+r)® 4 )]
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0?1 0, —K _.
El\/azo = \/2/7T<1—/€)[0+6(E€ + \/%

—K > 1 —K _ 2

+ \/2/7(1+H>[o+60(me—c + me—c )]

- \/2/_71'/@6_62(1\/_2_:—#1\72_:)

_ 1;“6—02((1_%”%(—“1%)—/f/m—%_n“m))
R e 1tk e 2% o

= %[(1—25%%]

_ A—we”

so y/a = 0 is the local min for the first term.

The Derivatives of the second term:

2 =2 [V P (0 Be — u = gt])) = 0(V3(e — [u)) ()

02 —(L+K) _(Jap(1m))
5 = A= e (Va0 [6(\/3 (e — | — (1 + K)\/a/2
2(_m(1+K)+K\/CL/—2|))—¢(\/§(C—I—M(1+%)I))J
/W“*@ 2v/a(u+ ka2 —ar/V2 e e
—c (u+ ky/a/2)?

_I_
3|

02 —
yalva=o =0
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822 —\/5 —RkR 2 1—|—l€ 2

——| g = 14+ K)(—e° + e ¢
| R Ot
+ —(1+kr)(2+K)e® +—/ ——du
T T ) . u
(1 1 9 [0 p—(c—lu)?~u?
= M@’cz +=(1+8)2+rK)e ™ + —/ SR —
™ ™ T ) . u

The Derivatives of the third term:

3= 2z (O(V2e = Ju= ot ]) = 0(V2(e = [ul)) fu(u)du

D = VIR = e V(B — | wy/a2) - (e~ [VafE - )

+ l /’S 2\/5('“ + K V CL/2) - a/{/\/ie—(c—\u—mD?_u?
T J\/aj2(1-k) (u+ ky/a/2)?
3 _
syalva=o = 0.
93 (1-r)(1—=2k)e¢ 1 a2 [Ce(ehuniol
83—\/5|\/E=0 - = - —}(1—I€)(2—R)6 —i—;/o Tdu

The Derivatives of the fourth term:

4= 15 @0(VAe ~ u = gt = D fulw)du

K/ a c—1/(c—kr/a/2)2+2a
A= _ /2+ ( v/ a/2)?2+2 and

2
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A\/a:O = —C A/\/EZO =0.

04
NG
0%4

7 Ja Vi

The Derivatives of the fifth term:

5= J2R0(VR(e— fu— ot ) = 1) ful(uw)du

A = —frac(c — k\/a/2) + \/(c+ ky/a/2)? + 2a2 and
A\/E:O = —C A,\/EZO - O

05
B5/a Ve
9?5
825\/5 |\/6:0

Adding the terms;

2, .
sumlea‘z—\}a\\/a:o > 0,s0 that’s a local min.

2.The second region (y/a/2 <n<c):
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Va/2—n|
P(Ch) — P(Cy) = 2/ [6(V2(c — ) — oV2(c — [u]))] fu(u)du

~v/a/2=In|
Va/2=n| "
+ 2/ [p(V2(c — |u— ) &V2(c — [u])] fulu)du
+ 2/6 ~ l[eb(ﬁ(c— Ju— 2(uin)|> — 0V2(c — |ul)] fulu)du
- /_(:+C)—\/m[2¢(\/§(c - |u - Q(UZ— 77) D - 1]fu(u)du
@ "
+ / [2¢(\/§(C — |u— Yt ) — 1] fu(u)du

There are 5 terms in P(C;) — P(Cy), we will take the first and second derivatives w.r.t \/a

for term by term.

The Derivatives of the first term:

L= 2 VIR (33— feta) — ovBe — [u)lfulu)da

jja = 2/me VAR (G(2(e — n))) — 6v/2(c — [v/aj2 — n]))]
+ V2 me Ve 6(V2(e — [n) — ¢V2(c — [Va/2 + n]))]
38715’\/&0 =0

2 2 2 . .
82_\}5|\/5:0 = 2= =(¢1" > 0 50 it’s a local min.
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The Derivatives of the second term:

2= 2 [V PIG(V(e — u— gt ) — B(VE(e — [ul))) fu(u)du

02
0v/a

S )

— a2_
n 2/ VT VA e

T u+n

ﬂ| =0
dy/alva=0
822|f0 __67]*071 fﬂe(5|"| 7"d

3=2 [0 (O(Va(e — lu— st ]) — O(VE(e — fu)) fu(w)du

B Al VT (e~ fnl)) — (e~ Va2 -

ova
E/c V(o fum g 2
\aj2—n U +n

03 | =0

dv/alva=0 —

9°3 _dgnP—(e—m)? | 2 ¢ eZ(amlub?u?
8\/5’\/620 = —x¢ + ™ f—n u+n du

The Derivatives of the fourth term:

= [ 2o6(V2(c — [u— 5555 1) = D fulu)du

85

= —V2/me” VN G(V2(e — [n])) — (V2(e — [V/a/2 + 1))



c—n++/ (c+n)2+2a
A= (2 ) and

A\/a:[) = C A/\/EZO :O

The Derivatives of the fifth term:

05

oyar =Y
9?5
yaivim = 0

Adding the terms;

5

92 9 e e—(s—luh?-u
Sumizl_az\/a‘ﬁzo =2

2
e du > 0,so0 that’s a local min.
n

3.The Third region n; > c:
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Py -Pcy = 2 [ [20(3(c — fu = 5-—]) = 9vBle — Ju)fu(w)du

~te)+y/=e) P42 2(u+mn)
—(n—a)+V(n+re)242a

s T ReVEe u g ) - Uluda
C—<n+c>+\/2m

+ 2 f (26(v2(c — [u)]) — 1) fulu)dul

—C

There are 3 terms in P(Cy) — P(Cp), we will take the first and second derivatives w.r.t \/a

for term by term.

The Derivatives of the first term:

1= [X26(V2(c = [u = g5t 1) — ov2(c — [ul)] fu(u)du

A= —(c+n) 44/ (c—n)%+42a

5 and

A\/EZOZ_CA\/EZOZO'

824 | 2 /C e—(C—W—mD2 p
R _ = — U
PEN G T J . u+n

The Derivatives of the second term:

2= [220(v2(c — Ju— 5:2=]) — 1] fu(u)du

A= —(n—c)+ 2(n+6)2+2a and

A\/EZOZCA\/E:(]:O‘
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The Derivatives of the third term:

3= [2126(v2(c — [u])]) — 1) fu(u)du]

A= —(n+c)+ 2(17—0)2+2a and

A\/&ZOZCA\/a:(]:O.

03
aava= = 0
0?3
Fyavi- =0

3 9% _ 2 o e (s—lup?-u? , .
sumi_y 55 =| ja=o = 5 J e —q——du > 0,50 that’s a local min.

This completes the proof.
Proof of Lemma 4.0.3:
We first need to find ¥7!, Finding X!

a b b b
b a b oo b

X =1, then
b b b a

20+ (n—1)b = 1

a+nb = 0
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From the equations above, b = n_—+11 and, a = 5.
Finding ¥~1/?
ab - bob| |ad b b T P w
a « a I S RO RS | "1 | From above,
_bb b a | _bb b a | _n_—+11n_—+11 n_—JrllnLH_
2L -1 = —
a*+ (n—1) ]
-1
2ab -2 =
ab+ (n —2) e
and working on the first equation,
24 (n— 1B F (n— 122 F2ab(n—1) = —
a®+ (n—1)b°F (n — 1)°b° F 2ab(n — 1) o=
S (=1 — (n—1)% —2ab(n—1) = —
(@ (= DB+ (= DR = (0= D = 2ab(n—1) = —
CDB? 4 (= 1) [ — (n— 1) —2ab] = —
(a+(n—=1)b)"+(n—1) [0 = (n—1) ab] o
(a+(n—1b2+(n—1)[1> = (n—1)0>F (n—2)b* —2ab] = 11
n
(a+ =10+ (n—1) [1> = (n— DB + (n — 21> — (n — 2)1* — 2ab] = nil
1 n
—1)b)? —1) |b* — nb® + b* + nb® — 2b° =
(a+(n—-1)0b)"+(n—-1) nb* 4+ b~ +n +n+1 e
—1 n
) R
(a+(n—1)0)"+-—— o
1
—1)b)? =
(@t (=B = —
1
+(n—-1)b = =+ .
at{n=1) N
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Assume a + (n — 1)b = == thena—\/ﬁ—(n 1)b,
24 (n— 102 = —
a®+ (n—1) e
1 n
—(n—=1b)2+ -1 =
(== = D+ - =
1 2(n—1)b n
—1)%? — - 1p* =
pe A ) — (1) m—— ]
2b n—1
—1 — 1) — + 0| =
(n—=1)|(n—1) T ]
, 2 1
nb” — =
vn+1 n+1
2 1
b’ — b— =0
" vn+1 n+1

n+1

51:%< n1+1+1> and a; = ll_nT—1<\/T+1> Moreover,
)andaQZ

Solving this equation w.r.t b yields, bjp = + ( L_ 4 1>.Then
1

S

3
,_.1

_ 1 1 n—1 1
b2—7<1_¢m m+7< n+1)~

Now, assume a + (n — 1)b = \/’—% and carry out same calculation above, we derived,

63:%(\/%+1)anda3 ern_l(mle)Moreover,

—1 n—1 1

i

b4:%<1—\/ﬁ> anda4:\/r+1—7 1—\/1m .
P(Dy) = P(JY| <)
P(Do) < P(=c"(Ja + [bl(n — 1)) < 72Y* < ¢*(|a] + [b](n — 1))
P(Do) =0.95 < P{|Zj| < (la|+|b|(n—1)),i=1,...,n}
0.95 < [2®(c*|a| + ¢*|b|(n — 1))]"
0.954/™ +1 .
SR < w(e(fal 4 Jbl(n ~ 1))
0,957 +1 .
D) < (lal + bl - 1)
¢ < (lal +[bl(n—1))
c < &
jal + (n = D)Jp]
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Then

> ¢ since |a| = == + (n — 1)b and |b] = (1 + —~=).This implies that,

C
[al+(n 1T Vel st

N o

8.3 GRAPHS

8.3.1 The One-Way ANOVA Model
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Figure 8.1: Coverage probabilities for n=2 One-Way ANOVA model
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Figure 8.18: Cowverage probabilities for n=4 One-Way ANOVA model
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Figure 8.19: Coverage probabilities for n=4 One-Way ANOVA model
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Figure 8.20: Coverage probabilities for n=4 One-Way ANOVA model
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8.3.2 The Two-Way ANOVA Model
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Figure 8.27: Coverage probabilities for 5x 2,6x 2,7x 2,4x 3, Two-way ANOVA model

117



[10]

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

Anderson, T.W (1971), An Introduction to Multivariate Statistical Analysis, John Wiley and
Sons.

Baranchik,A.J.(1964), Multiple Regression and Estimation of the Mean of a Multivariate Nor-
mal Distribution, Technical Report 51. Department of Statistics, Stanford University.

Baranchik,A.J.(1970), A family of Minimax Estimators, of the Mean of a Multivariate Normal
Distributions, Annals of Mathematical Statistics 41,642-645.

Brandwein, A.C and Strawderman, W.E.(1990), Stein Estimation: The Spherically Symmetric
Case,Statistical Science,5(3),356-369.

Brown, L.D.(1966), On the Admissibility of Invariant Estimators of One or More Location
Parameters, Annals of Mathematical Statistics 37,1087-1135.

Brown, L.D.(1971), Admissible Estimators, Recurrent Diffusion and Insoluble Boundary Value
Problems, Annals of Mathematical Statistics,42,855-903.

Casella, G. and Berger, R.L (1990), Statistical Inference, Duzbury Press.

Casella, G and Hwang, J.T.(1983), Empirical Bayes Confidence Sets for the Mean of a Multi-
variate Normal Distribution, The Journal American Statistical Association, 78,688-698.

Efron, B and Morris, C.(1973), Stein’s Estimation Rule and Its Competitors, Journal of the
American Statistical Association, 65,117-130.

Fabian,V.(1991), On the Problem of Interactions in the Analysis of Variance, Journal of the
American Statistical Association, Vol 86,No 414,362-367.

Gleser,Leon Jay.(1992), Accounting for Interactions,Journal of the American Statistical Asso-
ciation, Letters to the Editor,September, Vol.87,No. 419,912-913.

Graybill, F.A (1977), Theory and Application of the Linear Model, Wadsworth and Brooks.

Gruber, Marvin, H.J.(1998),Improving Efficiency by Shrinkage, New York:Marcel Dekker In-
corporation.

Hsu,Jason C.(1996),Multiple Comparisons Theory and Methods, Chapman and Hall.

118



[15]

[16]

[17]

23]

[24]

[25]

[29]

[30]

31]

Hwang, J.T,Casella, G.(1982), Minimax Confidence Sets for the Mean of a Multivariate Nor-
mal Distribution, Annals of Statistics,10,868-881.

Hwang, J.T, Ullah,A.(1994), Confidence Sets Centered at the James Stein Estimators: A
Surprise Concerning the Unknown Variance Case,Journal of Econometrics,60,145-156.

James,W.and Stein ,C.(1961), Estimation With Quadratic Loss,Proceeding of the Fourth Berke-
ley Symposium on Mathematics and Statistics. Berkeley: University of California Press 1,361-
379.

Joshi,V.M.(1967), Inadmissibility of the Usual Confidence Sets for the Mean of a Multivariate
population, Annals of Mathematical Statistics,38,1868-1875.

Judge,G.G and Bock,M.E. (1978), The Statistical Implications of the Pretest and Stein-Rule
Estimators,New York: North Holland Publishing Company.

Judge, G.G,Griffiths, W.E Hill.R.C and Lee, T.C.(1980), The Theory and Practice of Econo-
metrics,New York:John Wiley and Sons.

Lindley,D.V.(1962), Discussion of Professor Stein’s paper, Confidence Sets for the Mean of a
Multivariate Normal Distribution, Journal of Royal Statistical Society Series B 242,265-296.

Marshall A.W. and Olkin 1.(1979), Inequalities: Theory of Majorization and its Applications,
Academic Press.

Miller, R.G.(1966), Simultaneous Statistical Inference, McGraw Hill Book Company.

Morris, C.N.(1983), Parametric empirical Bayes Inference: Theory and applications, Journal
of the American Statistical Association,78,47-65.

Neter,Kutner,Nachtsheim,Wasserman (1996), Applied Linear Statistical Models, The McGraw-
Hill Companies Incorporation

Saleh, MD,A.K.E and Han.(1990), Shrinkage FEstimation in Regression Analysis,
FEstadistica,42(139),40-63.

Seber, G.A.F(1976), Linear Regression Analysis, John Willey and Sons.

Sclove, S.1..(1976), Improved Estimators for the Coefficients in Linear Regression, Journal of
the American Statistical Association, 63,596-606.

Stein, J.(1956), Inadmissibility of the Usual Estimator for the Mean of a Multivariate Distri-
bution, Berkeley: University of California Press,197-206.

Stroud, A.H and Secrest, D. (1966), Gaussion Quadrature Formulas, Prentice-Hall.

Sun, L.A.(1981) A Bayesian Approach to the Symmetric Multiple Comparisons Problem in
the Two-Way Balanced Design, Unpublished Doctoral Dissertation, Purdue University, De-
partment of Statistics.

119



	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	3.1. Table for the Shrinkage Constant for One-Way ANOVA model

	LIST OF FIGURES
	8.1. Coverage probabilities for n=2 One-Way ANOVA model
	8.2. Coverage probabilities for n=2 One-Way ANOVA model 
	8.3. Coverage probabilities for n=2 One-Way ANOVA model 
	8.4. Coverage probabilities for n=2 One-Way ANOVA model 
	8.5. Coverage probabilities for n=2 One-Way ANOVA model
	8.6. Coverage probabilities for n=2 One-Way ANOVA model
	8.7. Coverage probabilities for n=2 One-Way ANOVA model 
	8.8. Coverage probabilities for n=2 One-Way ANOVA model
	8.9. Coverage probabilities for n=3 One-Way ANOVA model
	8.10. Coverage probabilities for n=3 One-Way ANOVA model
	8.11. Coverage probabilities for n=3 One-Way ANOVA model
	8.12. Coverage probabilities for n=3 One-Way ANOVA model
	8.13. Coverage probabilities for n=3 One-Way ANOVA model
	8.14. Coverage probabilities for n=3 One-Way ANOVA model 
	8.15. Coverage probabilities for n=3 One-Way ANOVA model
	8.16. Coverage probabilities for n=3 One-Way ANOVA model 
	8.17. Coverage probabilities for n=4 One-Way ANOVA model
	8.18. Coverage probabilities for n=4 One-Way ANOVA model
	8.19. Coverage probabilities for n=4 One-Way ANOVA model
	8.20. Coverage probabilities for n=4 One-Way ANOVA model
	8.21. Coverage probabilities for n=4 One-Way ANOVA model
	8.22. Coverage probabilities for n=5 One-Way ANOVA model
	8.23. Coverage probabilities for n=6 One-Way ANOVA model
	8.24. Coverage probabilities for n=7 One-Way ANOVA model
	8.25. Coverage probabilities for n=8 One-Way ANOVA model
	8.26. Coverage probabilities for 22,32,42,52, Two-way ANOVA model 
	8.27. Coverage probabilities for 52,62,72,43, Two-way ANOVA model 

	1.0 INTRODUCTION
	2.0 NOTATION AND LITERATURE REVIEW
	2.1 Balanced One-Way Analysis of Variance Model
	2.2 Balanced Two-Way Analysis of Variance Model
	2.3 LITERATURE REVIEW
	2.3.1 One-Way ANOVA Model
	2.3.1.1 The Usual Method
	2.3.1.2 A Product Inequality Method
	2.3.1.3 The Bonferroni Inequality Method

	2.3.2 Simultaneous Confidence Regions for Comparisons with a Control
	2.3.2.1 The Usual Method
	2.3.2.2 Dunnett's Method

	2.3.3 Two way analysis of variance
	2.3.3.1 Analysis of Factor effects when factors do not interact
	2.3.3.2 Fabian's Procedure

	2.3.4 Stein Estimation Procedures in Spherical Confidence Intervals and Bayesian Estimation
	2.3.4.1 The Point Estimation Results for the Shrinkage Estimator
	2.3.4.2 Spherical Confidence Intervals Centered at the Shrinkage Estimator



	3.0 ONE-WAY ANOVA MODEL
	3.1 Known 2 Case
	3.1.1 ANALYTICAL RESULTS

	3.2 Unknown 2 Case
	3.2.1 Analytical Results

	3.3 Simulation Results

	4.0 MULTIPLE COMPARISON WITH CONTROL
	4.1 ANALYTICAL RESULTS

	5.0 NUMERICAL INTEGRATION
	6.0 TWO WAY ANALYSIS OF VARIANCE MODEL
	6.1 Balanced Two Way ANOVA model
	6.2 The Known e Case
	6.2.1 Analytical Results

	6.3 The Unknown e Case
	6.4 Analytical Results
	6.5 Simulation Results

	7.0 CONCLUSION AND FUTURE RESEARCH
	7.1 The James-Stein Estimator
	7.1.1 Analytical Results
	7.1.2 Simulation Results


	8.0 APPENDIX
	8.1 Unbalanced One and Two Way ANOVA Models
	8.2 Proofs
	8.3 GRAPHS
	8.3.1 The One-Way ANOVA Model
	8.3.2 The Two-Way ANOVA Model


	BIBLIOGRAPHY

