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Combination of the femtosecond laser time-resolved two-photon photoemission (TR-2PP) and the ultra 

high vacuum (UHV) surface science preparation techniques provides the possibility to study the 

electronic structures and the interfacial electron transfer dynamics at the atomically ordered adsorbate 

overlayers on single-crystalline surfaces, such as TiO2. The nearly perfect, stoichiometric TiO2 surface is 

prepared by a standard surface-preparation protocol, while various UHV surface preparation methods 

are available to modify the stoichiometric surfaces by introducing defects and/or adsorbed molecules. 

Two-photon photoemission (2PP) spectroscopy with near ultraviolet (400 nm) femtosecond laser pulses 

are used to investigate systematically the work function, and the occupied and unoccupied electronic 

structure of TiO2 surfaces due to the presence of defects and adsorbates. Adsorbates e.g. O2, H2O, 

CH3OH are introduced onto TiO2 surfaces to investigate their interaction with the TiO2 surface, as well 

as the ultrafast interfacial charge transfer dynamics. O2 molecules act as electron acceptors and titrate 

(heal) the surface O atom vacancy defects. H2O acts as an electron donor and forms a monolayer 
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structure with an effective electric-dipole of 0.5 D pointing outwards. More remarkably, at ~1 

monolayer coverage of water with minority -OH species present on TiO2 surfaces, an unoccupied state 

of 2.45 eV above the Fermi level is observed. Density functional theory shows this to be a “wet-

electron” state, representing the lowest energy nonadiabatic electron transfer pathway through the 

interface. The decay of the wet-electron state through the reverse charge transfer occurs within 15 

femtoseconds, faster than the dielectric response time scale of the H2O overlayer. Similarly, the 

chemisorption of CH3OH molecules on TiO2 surfaces induces a related resonance at 2.3 ±  0.2 eV above 

the Fermi level. Following the injection of electrons into the CH3OH overlayer we can follow by pump-

probe measurements the ultrafast dielectric response of the interface leading to the solvation of injected 

electrons. Surprisingly, the solvation dynamics exhibit a strong deuterium-isotope effect. The excess 

charge is stabilized by the structural reorganization of the interface involving the inertial motion of 

substrate ions (polaron formation), followed by slower diffusive solvation by the molecular overlayer. 

According to the pronounced isotope effect on the electron lifetime, this motion of heavy atoms 

transform the reverse charge transfer from a purely electronic process (nonadiabatic) to a proton-coupled 

electron transfer (PCET) regime on ~30 fs time scale. 
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Chapter 1  

 

Introduction 

 

The subject of this thesis is the electronic structure and interfacial charge transfer dynamics of 

molecule modified titanium dioxide TiO2(110) surfaces.  TiO2 is one of the most investigated 

metal oxides by surface science techniques, in part because of its many important applications 

such as in photocatalysis, as an anode in dye-sensitized solar cells, a potential gate material of 

the next generation of MOSFETs, as a coating with self-cleaning properties, and others [1]. Here, 

we investigate the electronic structure and heterogeneous charge transfer dynamics of protic 

solvents on rutile TiO2(110) surfaces by means of femtosecond time-resolved two-photon 

photoemission (TR-2PP) spectroscopy [2] [3].  

 

1.1 TiO2 Fundamentals 

 

Minerals with TiO2 stoichiometry come in many different polymorphic structures, of which 

rutile, anatase and brookite are most commonly found in nature and can be synthesized by 

different methods [1, 4]. The rutile polymorph is the primary component [5] in many important 

applications of TiO2 and has been studied most extensively with surface science techniques, 

because it is readily available and low index crystalline surfaces can be readily prepared. The  



 2 

rutile unit cell shown in Fig. 1.1, has the 14
4hD  crystallographic structure (a = b = 4.584 Ǻ, c = 

2.953 Ǻ), where titanium atoms are surrounded by six oxygen atoms in a distorted octahedral 

configuration.  

 

Figure 1.1 The unit cell structure of rutile TiO2.  

 

Cutting through the TiO2 crystal along the diagonal crossing surface in the unit cell structure in 

Fig. 1.1, we can obtain the most stable rutile-TiO2 (110)-(1×1) crystal surface (Fig. 1.2). It 

contains two different types of Titanium atoms, which form rows along the [001] crystal 

orientation. Rows of 6-fold coordinated Ti ions alternate with the 5-fold terminal Ti ions, which 

are missing a single O atom ligand perpendicular to the surface. The surface also contains two 

kinds of oxygen atoms. Within the main surface plane, there are 3-fold coordinate oxygen atoms 

as in the bulk. In addition, there are the so-called bridging oxygen atoms that are above the main 

surface plane and form bonds to two six-coordinate Ti atoms in the surface plane. Due to the  
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coordinative under-saturation of the bridging oxygens, they are the subject to surface 

reconstruction and reaction. They are easily removed from the surface by thermal annealing or 

irradiation with high kinetic energy electrons or ions. Any TiO2(110) surface has some fraction 

of these bridging O atom vacancy defects, even what we will call stoichiometric surfaces.  The 

defect concentration that depends on the surface preparation techniques affects the overall 

chemistry of the surface. Fig. 1.2 (a) and (b) demonstrate the nearly perfect stoichiometric 

TiO2(110) surface model and the defective surface model respectively, where the most general 

defective sites are the single bridging oxygen (BO) vacancies and the double BO vacancies [6]. 

  

 

Figure 1.2 (a) The stoichiometric and (b) defective TiO2 surfaces.  Red balls represent Ti atoms 

and blue balls, the O atoms. 

 

The electronic structure of TiO2, especially the stoichiometric surface has been calculated using a  
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wide variety of theoretical methods. There is a general agreement that the surface electronic 

structure is not much different than that of bulk. Here our main interest is in the energy states 

near to the Fermi level, i.e. the boundary separating the occupied and unoccupied states. The 

occupied states, especially the valence bands, are mostly formed by O 2p orbitals, where the 

unhybridized orbitals have three-fold degeneracy. The conduction bands are derived mostly from 

the Ti 3d orbitals. The interaction and hybridization in between O-2p and Ti-3d orbitals in the 

octahedral coordination cause a crystal-field splitting of the 3d orbitals into two sub-bands. The 

Ti 2
z

d  and 22 yx
d

−
orbitals point directly towards the O ligands and hybridize into eg symmetry 

orbitals to form σ -type bonding, and at lower energy the xyd , xzd  and yzd  orbitals point normal 

to the O ligands and hybridize into t2g symmetry orbitals to form π -type boding.  

 

 

Figure 1.3 The calculated electronic structures of the bulk-reduced TiO2 crystal, the bandgap 

states are indicated [7].  
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The calculated TiO2 electronic structure using the tight-binding Hamiltonian by Munnix and 

Schmeits that is given in Fig. 1.3 [7] shows the wide band gap of TiO2 (~3.0 eV), where the 

valence band maximum (VBM) is located at the highest energy level of the occupied O 2p band, 

and the conduction band minimum (CBM) appears as the lowest energy of the unoccupied Ti 3d 

band. For the stoichiometric surface, the Fermi level EF is located approximately in the middle of 

the bandgap. However, undoped large band gap materials like TiO2 are insulators, which 

complicate measuring photoemission spectra. The accumulation of charge on the sample surface 

can severely distort the photoemission signals. So a primary requirement for a successful 

photoemission measurement is to introduce n-type doping [8] into the insulating TiO2 through a 

bulk reduction procedure. The reduction procedure by heating the crystal above 900 K creates 

oxygen vacancies in the sample, which increases the free-carrier concentration, and pins the 

Fermi level close to CBM. After this process, as shown in Fig.1.3, the sample becomes 

conductive, and a bandgap state appears about ~1 eV below CBM (Fig. 1.3 ) [9].  

 

 

The Ultraviolet Photoemission Spectroscopy (UPS) spectra taken with 47=υh  eV in Fig. 1.4 

show  the occupied density of states (DOS) states of a reduced TiO2 surface. The lowest binding 

energy of the main spectral feature at ~3 eV corresponds to the VBM in agreement with the 

theoretical prediction of 3 eV bandgap. However, as the sample is reduced, through exposure 

500 eV electron irradiation to generate oxygen vacancies, the O 2p valence band edge shifts to 

higher binding energies.  In addition, a distinct bandgap state appears near the Fermi level and its 

DOS is proportional to the concentration of the defective sites, that is, O atom vacancies that are 
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generated by the electron irradiation.  This band gap state typically has the maximum DOS at 1 

eV below the Fermi level. 

 

Figure 1.4 The UPS spectra of the reduced TiO2 surfaces [9]. 

 

We have presented the model for the ideal TiO2(110)-(1×1) surface previously, however, in 

reality, the surface structure depends subtle differences in the sample preparation conditions, 

e.g., the annealing temperature, the ambient residual gas pressure, the cooling process, and so on. 

We have developed a reproducible standard surface preparation procedure to obtain the well 

defined (110) crystal surface. As shown in Fig. 1.5, T. Minato et al. obtained an atomically 

resolved STM image that we expect is representative of our reduced surfaces [10]. On the left 

hand-side, the STM image with positive bias voltage gives the unoccupied DOS of the TiO2 

sample surface, where the bright rows are the 5-fold terminal Ti ions, and the dark rows are the 

BO rows. The BO vacancies appear as additional bright spots in the dark BO rows, because of 
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tunneling into unoccupied states of Ti ions. These BO vacancies induce the surface reduction of 

the 5-coordinate Ti ions at the terminal sites, associated with a bandgap state energy at ~1 eV 

below the Fermi level. The band gap states are responsible for the enhanced bright features in the 

occupied state image on the right side of Fig. 1.5, which is recorded with a negative bias. The 

small yellow dots in Fig. 1.5 indicate the BO vacancy sites which are responsible for those 

induced reduced Ti ions featured as enhanced bright slots (right side).  

 

 

Figure 1.5 High resolution STM image of the TiO2 (110)-(1×1) crystal surface. The color-coded 

circles in the left figure are assigned as the identical spots in right side [10] (permission 

restriction). 

 

1.2 Applications of TiO2 

 

Titanium dioxide (TiO2) is a versatile material with multiple applications in science and 

technology [1, 11, 12]. For example, TiO2 is widely used in photochemical and photocatalytic 
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reactions [3], mainly in the form of metal/TiO2 systems, used for selective oxidation reactions 

[12]. Fujishima and Honda initially demonstrated the photocatalytic decomposition of H2O on 

the TiO2/Pt electrochemical system to generate O2 and H2, which has been of great interest as a 

potential energy source for the future [13]. TiO2 is also chosen as the substrate material of the 

dye-sensitized photovoltaic solar cells, for converting the solar energy into electricity with 

efficiency as high as 10% [14]. TiO2 is also used as photoreversible a super-hydrophilic material 

under UV irradiation, due to its ability to decompose hydrophobic organic molecules [15]. With 

the recent surge of interest in the nano-scaled field transistors, TiO2 has become a very attractive 

candidate as the gate material of the next generation of MOSFETs [16]. Moreover, TiO2 is a 

common white pigment in paints, ceramics, and cosmetic products [17], and can also be 

employed as a corrosion-protective and self-cleaning coating material [18]. It also finds 

applications in earth science, Li-based battery, electrochromic devices, and others [1]. In the 

following, we will briefly describe the two of the most relevant applications to the subject of this 

thesis, namely TiO2 based photocatalytic splitting of H2O and photovoltaic solar cells. 

 

 

TiO2 can be effectively photoexcited through band-gap irradiation to create the electron-hole 

charge separation. Under the circumstances when the electrochemical potentials of both the 

H2/H2O and O2/H2O redox couples (in Fig. 1.6) are overcame, the photosplitting of H2O is 

feasible. In Fig. 1.6, we give an schematic of the photocatalytic splitting of H2O through a 

composite catalyst, which includes the TiO2 colloidal powder along with deposited metal 

particles for H2 catalysis (e.g. Pt) and semiconductor particles for O2 evolution (e.g. RuO2·nH2O) 
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[11, 12]. The proposed mechanism can be described by the following equations and shown in 

Fig. 1.6.                                    
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Figure 1.6 Photocatalysis of H2O on a TiO2 based composite catalyst. 

 

Such a colloidal system behaves as a short-circuited nano photoelectrochemical cell in which the 

metal H2 catalyst is the cathode and the semiconductor O2 catalyst works as the anode. The  

photoexcitation process generates an electron-hole pair across the bandgap of the TiO2 colloid. 

The excess electrons in the conduction band (CB) of the colloidal TiO2 transfer into H2 catalyst, 

while the holes in the valence band (VB) are scavenged by O2 catalyst. The presence of both H2 

and O2 catalyst in the cathode or anode coupling with TiO2 particle reduces the overall 
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electrochemical potentials for the redox pair significantly, so the trapped electrons in cathode 

reduce water to hydrogen while the trapped holes in anode oxidize water to oxygen. As is well 

known, the known fossil fuel energy resources on the Earth, especially the petroleum, will be 

depleted within this century, so how to obtain and store new sources of energy is serious 

problems facing mankind.  The photocatalysis of H2O on a TiO2 catalyst system gives a 

convenient method to generate the H2, which represents a prospective source of inexhaustible 

clean energy.   

  

 

Next, we introduce photovoltaic property of TiO2 in a solar cell. 

 

Figure 1.7 Schematic of the operation of a dye-sensitized TiO2 solar cell [14]. 

 

Fig. 1.7 illustrates the main structure and operation of a dye-sensitized photovoltaic cell, also 

named as the regenerative Grätzel cell [14] in recognition of his pioneering work. Visible 

photons excite the dye molecules from the ground states (S+/S) to the excited states (S+/S*), 
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generating electron-hole pairs in the surface space-charge layer. The negative charge carriers 

inject into the semiconductor conduction band (CB), move through the bulk to the current 

collector, then to the external circuit. The positive charges (holes) are driven to the surface and 

scavenged by the reduced form of the redox relay mediator (R/O) [5] in the electrolyte solution, 

                                                         

                                                               ORh →++ .   (1.2) 

 

The oxidized form O is reduced back to R-form through a reversible process, where the electrons 

are re-entering the cell from the cathode electrode,  

 

                                                              ROe →+− .   (1.3) 

 

Typically, the redox pair of −
3I / −I  is chosen to deliver charge from the cathode to the dye-

molecules chemisorbed anode to complete the circuit. In Fig. 1.7, the mesoscopic nano-

structured TiO2 colloids are attached on a conducting substrate to form the anode electrode. The 

surface area with a porosity of 50% available for dye chemisorption is over a thousand times 

compared to a flat, unstructured electrode, allowing dye molecules adsorb most of the incident 

light.     

 

One big advantage of TiO2 based photovoltaic cells is their relatively high conversion efficiency 

(> 10%) and simplicity and cost of fabrication. Compared to the limited energy resources on the 

earth, the solar energy provides an infinite energy reservoir, and even collection over a small 

fraction of the Earth’s surface can supply the human energy needs. TiO2 based solar cells are 
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some of the most attractive candidates for solar-to-chemical and electrical energy conversion. 

However, due to the difficulty to find the stable dye molecules anchored on the mesoscopic TiO2 

nano-structures, and the challenge to further constrain the reverse charge transfer to achieve 

higher photon conversion current, the widely used commercial TiO2 photovoltaic products are 

yet to come.     

 

 

 

1.3 Application of Two-photon Photoemission (2PP) Technique  

to Molecule/TiO2 System 

 

The proposal of my thesis is not only to investigate the electronic structure of the bare TiO2(110) 

surface, but also to explore the electronic structures of the adsorbate-covered surfaces. Such 

surfaces can exhibit molecular excited-state resonances, which participate in the heterogeneous 

charge transfer dynamics. 
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Figure 1.8 The electron transfer mechanism mediated by the molecular excited states, from the 

adsorbate overlayer to the oxide substrates. 

 

 

For an isolated molecular system or molecules in the gaseous phase, the photons can induce an 

excitation transition from the ground state to the excited states. The excited electrons relax back 

to the stable ground state through radiative decay rk  where an atom or molecule emits a photon 

by undergoing a downward transition conserving energy in the process (e.g. fluorescence) or 

non-radiative decay nrk where the process is does not involve the emission of a photon (e.g. 

inelastic energy transfer), and the decay time scales usually span from nanosecond up to 

millisecond time scales [19]. However, if the molecules are attached on an oxide substrate, and 

form a heterogeneous electronic system at the interface, there can be an additional ultrafast decay 

channel -charge transfer involving the injection of electrons to the conduction band and holes  
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into the valance band [20]. The charge transfer 
CTk  occurs in femtosecond to picosecond time 

scales at the adsorbates/oxide interfaces, establishing a much faster nonradiative decay process 

compared to the isolated molecules [21, 22]. Therefore, the femtosecond lifetimes of 

electronically excited states measured in our time-resolved photoexcitation are mainly 

determined by the interfacial charge transfer mechanism (in Fig. 1.8).  

 

 

In Fig. 1.9, we show a typical time-resolved measurement used to explore the charge transfer 

mechanism from an aromatic adsorbate (bi-isonicotinic acid) to the TiO2 substrate [23]. The 

energy alignment between the molecular states and the TiO2 energy bands determines whether 

electron transfer into the conduction band is energetically feasible. The lowest unoccupied 

molecular orbital (LUMO) is located in the bandgap of the substrate, while the higher molecular 

states LUMO+1 and LUMO+2 have energy levels above the CBM of the substrate. So the 

charge transfer out of LUMO to the substrate is forbidden, but from LUMO+1 and LUMO+2 it 

is feasible. By combining the x-ray adsorption (XAS) illustrated in Fig. 1.9 and resonant 

photoemission spectroscopy (RPES) where in a core-excitation system, a valence electron fills 

the core hole, while another valence electron takes up the energy released in the former process 

and is ejected above vacuum level and measured (not shown), J. Schnadt et. al. measured the 

core hole decay rate and estimated the charge transfer from LUMO+1 state to the CB of TiO2 

occurs on a time scale of less than 3 fs [23]! This is the fastest reported time scale for an 

interfacial charge transfer process on oxides, however the results are obtained through an indirect 

measurement in the frequency domain. 
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Figure 1.9 Charge transfer from the aromatic adsorbate to the TiO2 substrate. 

 

 

In another study, Rego and Batista performed molecular dynamics (MD) simulation for the 

electron transfer dynamics in the catechol/anatase system [24]. As illustrated in Fig. 1.10, the 

catechol molecule is anchored on the anatase TiO2 surface, through two –CO- covalent bonds. 

Fig. 1.10 (a) shows the original orbital distribution of catechol LUMO+1. The calculated 

snapshots of the LUMO electron density in Fig. 1.10 describe the ultrafast charge transfer from 

the catechol molecular orbitals to the anatase substrate. The primary electron injection occurs 

within 6 fs through the –CO covalent bond to localize the charge on the Ti4+ ions next to the 

adsorbate molecule, then the isotropic delocalization of the injected charge occurs within the 

anatase crystal for the next 30 fs. Within ~12.5 fs time evolution, the LUMO+1 charge orbital 

distribution completely transferred to the anatase surface and started to disperse into the crystal 

bulk.  
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Figure 1.10 MD simulations for charge transfer in the catechol/anatase-TiO2 structures. 

 

 

From the previous discussion, we notice that the interfacial charge transfer at TiO2 surfaces can 

be extremely fast, on the time scale of few femtoseconds! In order to measure the dynamical 

processes directly in the time domain requires an excitation laser source with extremely good 

time-resolution. Ti:Sapphire laser oscillator outputs a wide spectrum at the center wavelength of 

~800 nm that supports femtosecond pulses (~10 fs) delivered with a typical repetition rate of 90 

MHz [25].  
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The femtosecond laser pulses can be focused onto the sample surface and induce non-linear two-

photon photoemission (2PP). A typical 2PP process is illustrated in Fig. 1.11, where the first 

photon (pump pulse) excites electrons from a bandgap state to an intermediate energy state, and 

the second delayed photon (probe pulse) further excites electrons from the intermediate state to 

above the vacuum level, where they can emit into vacuum [2]. One big advantage of the 2PP 

methodology compared with the single photon photoemission (1PP) as illustrated in Fig. 1.11 is 

that it can provide information not only on the DOS of the occupied electronic states below the 

Fermi energy EF, but also that of the unoccupied states above EF. Whenever the intermediate 

state is a virtual energy state, the 2PP maps only the occupied DOS in a same way as what 1PP 

does; on the other hand, when the intermediate state corresponds to a real molecular excited 

state, the 2PP intensities at the relevant energy levels would display the molecular resonance 

feature, which cannot be observed by 1PP spectroscopy [26]. Moreover, changing the arrival 

times between the pump and probe pulses enables us to record the dynamics of the intermediate 

state through the change of the 2PP intensities as a function of the time-delay. Analysis of the 

experimental time-resolved spectra, allows us to retrieve the time scales and mechanisms for 

various charge injection processes from the surface excited molecular states to the oxide 

substrate [2, 27]. 
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Figure 1.11 The 2PP process at TiO2 surface and the charge injection between the surface 

molecules and the substrate. 

 

 

Up to now, we have discussed the structure of TiO2, its applications involving light, and the 

application of the femtosecond time-resolved two-photon photoemission (TR-2PP) technique 

compared to the conventional UPS methodology. These are the perspectives and tools for the 

study of the electronic structure and charge separation dynamics on molecule covered TiO2 

surfaces.  In the following chapters, we will discuss the following topics: Chapter 2: the 

Experimental apparatus consisting of the excitation laser system and the UHV apparatus;  
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Chapter 3: the Fundamental theory of two-photon photoemission (2PP) process, including the 

methods for simulation of excited state electron dynamics [2, 27, 28]; Chapter 4: the 2PP 

investigation in the typical TiO2 single crystal systems [29]; Chapter 5: Observation of “wet-

electron states” at the H2O/TiO2(110) surface [30]; Chapter 6: Time-resolved studies of the 

ultrafast interfacial proton-coupled electron transfer dynamics in the CH3OH/TiO2 overlayer 

[31]; Charpter 7: Summary and Conclusions.  
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Chapter 2  

 

Experimental Apparatus 

 

In this Chapter, I discuss the major optical, vacuum, and electronic instrumentation used in the 

time-resolved photoemission experiment. Section 2.1, describes the ultrafast Ti:Sapphire laser 

excitation source; Section 2.2, the ultra high vacuum (UHV) apparatus; and Section 2.3, the 

diagnostic technology and the data acquisition process for the time-resolved photoemission 

experiment. 

 

 

2.1 Laser Systems 

      

The laser and optoelectronic systems are illustrated in Fig. 2.1. The optical system can be 

subdivided into three sub-units: 1) the Ti: Sapphire oscillator [32, 33], 2) the non-linear optical 

harmonic generation system [34, 35], and 3) the Mach Zehnder Interferometer [2]. They will be 

described individually in the following.                              
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2.1.1 Ti:Sapphire Oscillator 

 

 

Figure 2.1 The optical system for the time-resolved photoemission experiment. 

 

 

The left lower corner of Fig. 2.1 shows a schematic representation of the ultrafast Ti:Sapphire 

Laser cavity constructed in our laboratory. A commercial continuous wave (CW) solid state laser 

(Millennia Xs from Spectra Physics) is used as a pump for the Ti:Sapphire laser.  Approximately 

5 Watts output power of continuous green light at 532 nm incident at the Brewster’s angle is  
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focused with a 50 mm focal lens onto the Ti:Sapphire crystal [36].  The resulting -800 nm 

emission is amplified to generate a coherent beam with p-polarization, i.e. the transverse 

magnetic (TM) mode [37].  

 

 

To generate a mode-locked fs laser pulses requires the oscillation of a large number of 

longitudinal modes underneath a broadband gain medium. In absence of mode-locking, 

corresponding to a CW operation in time domain, some of these different modes oscillate within 

the laser cavity independently. The term “mode-locking” refers to the procedure of forcing all 

the modes to oscillate with the same phase, so that all the waves of different frequencies add 

constructively at certain point in time, resulting in a very intense and short burst of light. In our 

laser system, we adopt self-phase modulation (SPM), which occurs via the 3rd order nonlinear 

interaction of a rapidly varying optical field of the laser pulse with the nonlinear intensity-

dependent change in the refractive index of an optical material [38] to induce the mode-locking 

for various longitudinal modes. The nonlinear index change induces transient lens effect (Kerr 

effect) in the gain crystal.  The Ti:Sapphire oscillator delivers an optimal pulse of ~10 fs time 

duration, with a repetition rate of around 90 MHz and an output power of ~650 mW.   

 

 

2.1.2 Non-linear Optics 

 

The photon energy of ~1.55 eV from the 800 nm laser is not sufficient to excite two-photon 

photoemission from typical metal or semiconductor surfaces. With typical work function of 4 ~ 5 
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eV [39], the minimum practical energy to excite 2PP and to observe the unoccupied electronic 

structure of the sample in a sufficiently large energy range corresponds to at least the second 

harmonic of the Ti:Sapphire oscillator. Even higher photon energies are desirable to study the 

electronic structure or dynamics of image states on metal surfaces [40], or the conduction bands 

of wide bandgap (~ 3 eV) semiconductors [41-43]. In this section, we describe the second order 

harmonic generation process [38], where the nonlinear optical susceptibility of a crystal is 

exploited to double the laser frequency or energy. 

 

The second harmonic conversion efficiency of a non-linear optical crystal is described by [38]: 
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where L is the effective conversion length in the crystal, ijkd  is the appropriate non-linear 

susceptibility tensor element for the incoming fundamental and outgoing second harmonic waves 

of specific polarization, and k∆  is the wave vector deference between the fundamental and the 

second harmonic waves. In order to optimize the conversion efficiency, the non-linear crystal 

should be used under the phase matching condition where, 

 

  ∆k = k( 2ω ) − 2k(ω ) =
2ω

c / n2ω
− 2

ω
c / nω =

2ω
c
(n2ω − nω )  (2.2) 

        

In Fig. 2.2, we describe how to achieve the optimum phase matching condition ∆k = 0 when 

ωω nn =2  in a negative uniaxial birefringent crystal, where the extraordinary beam of the second 
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harmonic (blue dash oval) has a smaller index compared with the ordinary beam of the 

fundamental light (red solid circle), i.e. ωω
oe nn <2 . In the diagram, when the red light with 

polarization vector normal to the plane of paper and blue light with a polarization lying in the 

plane of paper are propagating collinearly at an angle mθ  with respect to the optical axis, the 

indices of refraction ωωθ om nn =2)(  for the two beams are the same, and the phase matching 

condition is achieved. 

 

 

 

Figure 2.2 The phase matching condition for a negative uniaxial non-linear optical crystal. 
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From Eqs. 2.1, we can see that the incident power per unit area is also a very important factor for 

the efficient non-linear conversion. In Fig. 2.3, we describe the optical system for the second 

harmonic generation (SHG) in our lab employing type-І phase matching in β-BBO crystal, where 

the type-І phase matching is defined as: two input laser beams (ω1 and ω2) with parallel 

polarization (e.g. parallel or perpendicular to the optical axis), are converted to a sum-frequency 

of frequency-doubled output beam 213 ωωω +=  with orthogonal polarization (Fig. 2.3). A pair 

of spherical concave reflection mirrors with 50 mm focal length is used to focus the fundamental 

beam into the crystal to achieve high conversion efficiency and deliver second harmonic light 

with transverse electric (TE) mode and adjustable focusing. The reflection mirrors are mounted 

on and manipulated by optical translation stages in order to reach the best focusing as judged by 

the optimized SHG conversion efficiency. Especially, the BBO crystal is mounted on a gimbal 

mount, which allows for rotation along the tuning axis in order to maximize the SHG output 

power or to tune the output wavelength of a broad band input pulse through changing the phase 

match angleθ .  

 

 

                                                                                                      .   (2.3) 
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Figure 2.3 The diagram for the Type І SHG generaiton with a BBO crystal and where θ  is 

defined in the formula:  

 

                                                                                                       

In Fig. 2.4, we compare side-by-side the spectra of the fundamental laser output at the exit of the 

cavity and its second harmonic generated by the SHG optical system. The fundamental includes 

both a broadband of mode-locked femtosecond pulse component and a sharp Raman scattering 

component that is often observed in <10 fs laser pulses. The second harmonic spectrum displays 

near ideal Gaussian shape with a central wavelength at 395 nm. 

 

 

The predicted pulse width (FWHM) of each mode-locked laser pulse due to the  
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Figure 2.4 The fundamental and second harmonic spectra of the Ti:Sapphire laser. 

 

 

Heisenberg uncertainty law, can be as short as the reciprocal of the emission frequency line band 

width                           
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Where the gain bandwidth is 
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Using a central wavelength of 800 nm along with a wavelength bandwidth ~ 150 nm of the 

fundamental component of our Ti:Sapphire laser in Fig 2.4, the estimated pulse width is 

calculated as:  
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This shows a femtosecond pulse can be achieved experimentally through a broad band gain 

emission profile. 

   

 

 

2.1.3 The Variable Time-delay Generation with a Mach-Zehnder Interferometer 

 

This section describes the Mach-Zehnder Interferometer for generation of identical phase 

correlated pump-probe pairs for the probing ultrafast electron dynamics in two-photon 

photoemission measurements.  

 

 

The main structure of the Mach-Zehnder Interferometer (MZI) is shown in the upper part of Fig. 

2.1. Inside the MZI, two broad band beam splitters designed for 50% reflection of s-polarized 

400 nm light at 45° incidence separate and recombine a single pulse into a collinear pulse pair. 

One of the optical paths is fixed, while the other is scanned with a piezoelectric actuator to 

generate variable time delay between the pump and probe pulses. The MZI has two light outputs. 

The path for which the dispersion is balanced is used for the 2PP measurements, while the 

unbalanced part is used for the scan delay calibration. The calibration procedure will be 

described in the section 2.3.  
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Before entering the photoemission chamber, the excitation light passes through a 2/λ  wave-

plate to select p- or s-polarization. A differentially pumped CaF2 lens with a nominal focal length 

of 200 mm mounted on the UHV chamber focuses the excitation light onto the sample and 

simultaneously serves as transparent vacuum seal. The focus size on the sample is estimated to 

be less than 100 µ m. 

 

 

2.2  The UHV Chamber and Electronic Instruments 

 

 

Time-resolved photoemission measurement are performed in a UHV chamber with a base 

pressure of <1.0 × 10-10 mbar. Gases to be adsorbed on the surface such as O2, H2O or CH3OH 

can be introduced into the chamber by back-refilling method through a leak valve.  

 

 

2.2.1 Overview of the UHV System 

 

 

The schematic diagram of the UHV system for our experiment is shown in Fig. 2.5. The sample 

is mounted at the end of a custom UHV manipulator. The manipulator has the capability of 3D 

translation and rotation involving a differentially pumped stage. The manipulator is used to  

position the sample and to perform various functions such as Ar+ sputtering, e- irradiation, 

adsorption of molecules, and photoemission measurements. The manipulator has a hollow center 
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with a Helium flow cryostat.  However, it is mostly cooled with liquid nitrogen. The sample 

heating is accomplished through electron bombardment. When applying high voltage (~1 KV) 

with respect to the sample transfer plate, the electrons evaporated from a coiled tungsten wire, 

which is heated by passing a filament current of ~2 A, are accelerated into the transfer plate. The 

final sample temperature depends on the magnitude of both the acceleration potential and the 

electron emission current. Using the combination of liquid N2 cooling and the electron 

bombardment heating, we can control the sample temperature from 85 up to 1000 K. 

 

 

Figure 2.5 Overview of the UHV System. 
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The TiO2 sample is clamped at the upper and lower edges by two flexible molybdenum springs 

and mounted onto the transferable sample plate. In order to measure the temperature in a wide 

range, an N-type thermocouple, which is made of a nonmagnetic material, is spot welded onto a 

fixed spring that holds the aforementioned sample plate. The UHV system is designed to allow 

for the transfer and storage of multiple samples. The load-lock chamber in Fig. 2.5 is separated 

from the main chamber by a gate valve, and has a rotatable sample holder, which is capable of 

storing up to 6 samples.  

 

 

The main experimental measurement system in our UHV apparatus is the hemispherical energy 

analyzer (at lower left of Fig. 2.5). Its main function is to collect the photoemitted electrons from 

the sample surface, and to perform their energy and momentum analysis. The UHV apparatus is 

pumped by a combination of rotary vane pump, turbomolecular pump, VARIAN ion pump and 

Titanium sublimation pump [44]. The center part of the rotary vane pump is a steel cylinder 

rotator, which can rotate to pump out air through compression-expansion of the gas volume. The 

turbomolecular pump contains alternative rotating and stationary discs and plates, where the 

discs and plates of each are cut to form angled flaps. The rotary motion of one set of discs and 

plates can generate a projected force to drag the molecules moving towards the stator, then out of 

the system. These two kinds of pumps can usually evacuate the chamber from atmospheric 

pressure to intermediate vacuum level ~1×10-6 mbar. The VARIAN ion pump applies an 

extremely high voltage (~ 3 KV to 7 KV) between its anode and cathode. The molecules moving  
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between the electrodes are ionized and accelerated into the cathode where they are trapped.   The 

ion pump can generate the ultra high vacuum level to ~1×10-10 mbar from the intermediate 

vacuum condition. Moreover, we also have a Ti-sublimation pump installed in our vacuum 

system. Activation of the pump evaporates Titanium getter material, which effectively adsorbs 

reactive gases. Practically, the Ti-sublimation pump operates intermittently to reduce the residual 

gas level significantly within a short period. 

 

 

Finally, we describe the method for introducing molecular adsorbates onto the sample [44]. At 

the bottom division of Fig. 2.5, we show an oxygen reservoir and several inlets for introducing 

chemicals into the vacuum system. The oxygen gas is essential for preparing a well-defined 

stoichiometric TiO2 surface. The other chemicals can be introduced into the UHV chamber in the 

gas phase through a leak value by back filling method [45, 46].  Molecules are chemisorbed onto 

the sample surface by reducing the sample temperature to typically 90-100 K to form stable 

overlayer structures to be used in photoemission measurements. The oxygen reservoir and the 

other external gas reservoirs share a same introduction pipe, which is connected to 

turbomolecular pump through Swagelok gate valves. When the valves are open, the 

turbomolecular pump can evacuate the residual gases while the pipes and the manifold are 

baking; after the manifold is evacuated, new types of gases can refill the manifold and be 

introduced into the chamber.  
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2.2.2 The Hemispherical Electron Energy Analyzer and the Channeltron Detector 

 

 

The Omicron-125 hemispherical electron energy analyzer with an inner radius of 125 mm is the 

heart of our UHV system. It is composed of two concentric electrostatic hemispherical shells. 

The photoemitted electrons from the source are collected by an electrostatic Universal Lens 

System (not shown), employing a design of two sequential lenses, and focused onto the entrance 

aperture of the analyzer.  

 

 

The first lens of the electrostatic input universal lens system is the Einzel lens, which anchored in 

the analyze collection tube, the lens can be operated in three discrete magnification modes: high, 

medium and low. In high magnification mode, the focal plane is near to the sample and the lens 

accepts a wide cone angle of emitted electron from a small sample region. In the low 

magnification mode, the focal plane is further from the sample and the lens accepts only a 

narrow cone angle but from a larger area. The medium magnification mode is intermediate. The 

angular acceptance or angular resolution is solely determined by the magnification mode of the 

Einzel lens. In our photoemission measurement, we usually use “Low Magnification Mode” to 

reach the angular resolution as high as 01± . The second lens mainly adjusts the kinetic energy of 

the electrons, retarding or accelerating them to match the pass energy V0 of the analyzer while 

preserving the electron energy distribution that existed before entering the lens system, and 
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employing a zoom lens function to ensure the focal point remains on the analyzer entrance 

aperture.   

 

 

The trailing edge of the input lens system is directly connected to the entrance aperture of the 

hemispherical energy analyzer. Its dimensions are variable to satisfy the various requirements for 

momentum or kinetic energy resolution of electrons traveling between the two hemispheres of 

the analyzer. As shown in Fig. 2.6, our energy analyzer is able to work in a multi-channel mode. 

Electrons with an average energy V0 follow slightly different trajectories between the 

hemispherical plates depending on their energy dispersion.  At the exit slit of the hemispherical 

analyzer, the energy dispersed electrons are collected by an array of seven channeltron detectors. 

Similar to the entrance slit, the size of exit slit is also changeable: a larger size gives 

correspondingly higher signal intensity, but with worse energy resolution. The photoelectron 

currents at different energies are recorded as parallel photoemission spectra, which are combined 

into a single spectrum after parallel channel acquisition.  

 

 

A remaining essential question is how to estimate the energy resolution. Here we use a simple 

formula to perform an approximate calculation, 
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Figure 2.6 The diagram of the multi-channel energy analyzer. 

 

 

where pE is the pass energy of the analyzer (typically 50 ==VE p eV), d is the entrance slit width 

being used (~ 1 mm), 0R  is the mean radius of the hemisphere (~ 125 mm), and α  is the half-

acceptance angle of electrons entering the analyzer in radian units (in the “Low Magnification” 

mode, 180
1~

π
α ≈o

). Under these conditions, the energy resolution can be as good as < 20 meV.    

 

The signal intensity that is the electron count rate at the analyzer exit aperture is pretty low, 

especially from semiconductor surfaces like TiO2 with a low DOS at the Fermi level. Usually, a 

channeltron is used as a single electron amplifier so that it is possible to count the single electron 

events. In Fig 2.7, we use a cartoon to show how electron amplification process occurs in a 

channeltron. Primary electrons that enter the channeltron with kinetic energy distribution at the  
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pass energy (~ 5 eV) are accelerated within the inner core of the channeltron by a bias of 1.2 ~ 

1.5 KeV to generate several secondary electrons out of the emissive materials. As traveling down 

along the channeltron, those secondary electrons have been through several steps of serial 

amplification. Therefore, a single electron is amplified by a factor of 108 to a fast current pulse. 

Those fast current pulses are output to feed into a fast preamplifier. From there, the current pulse 

is further delivered through various electronic devices onto a pulse counter for processing. The 

further details relevant to this topic will be addressed in later section.  

 

 

Figure 2.7 Single electron amplification in a channeltron. 

 

 

2.2.3 The Fundamentals of Photoemission Experiments 

 

The body of the electron energy analyzer is mounted to the main chamber wall, sharing the same 

electrical ground. The inner surface of the energy analyzer is coated with a layer of graphite to  

give a uniform work function of 4.5 eV. The photoemission sample is isolated electrically from 

the main chamber wall at the tip end of the cryogenic storage system by a sapphire plate, which 
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is an electrical insulator with a volume resistivity 1014 Ohm-cm, and a good thermal conductor 

with approximately constant thermal conductivity 0.065 cal cm-1 s-1 oC-1 at various temperatures. 

The electrical isolation allows us to directly apply a bias voltage of several Volts between the 

sample and the analyzer, which can enhance the capture of low energy electrons and the S/N 

ratio. In Fig. 2.8, we describe schematically a two-photon photoemission measurement for a 

typical wide bandgap semiconductor such as TiO2. The photoexcitation can occur from the 

occupied to unoccupied states. The bandgap of TiO2 is ~ 3 eV and the work function is 4.4 ~ 5.8 

eV [47, 48].  The combined energy of two photons (6.1 eV) is not sufficient to excite the valence 

band electrons to above the vacuum level
vacE , so the photoemission is mainly contributed by the 

DOS of the bandgap energy states. The reference energy level (zero energy) for 2PP 

measurements is the Fermi level of the sample as convenience (Fig. 2.8). 

 

Figure 2.8 The schematic diagram of a 2PP measurement for a wide bandgap semi-conductor 

(TiO2), and the energy alignment of the sample and the electron energy analyzer. 
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2.3  Data Acquisition and Diagnostic System  

 

In this section, we give a detailed description of the data acquisition process and the 

optoelectronic devices used in our two-photon photoemission experiment.  

 

2.3.1 Overview of the Data Acquisition System 

 

 

Figure 2.9 Overview of the electronics for data acquisition system. 

 

In Fig. 2.9, we present the outline of the data acquisition and control electronics used in our  

experiment. The single photoelectron event transmitted by the hemispherical energy analyzer is  
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detected and amplified as an electron pulse by the channeltron detector. Those output pulses 

from the channeltron are passed through an input protection device, implemented a capacitor C1, 

which is used to isolate the high voltage (1.2~1.5 KV) of the channeltron multiplier and maintain 

the electron pulses having amplitude in the region of 300 mV to 1.3 V and time duration of ~ 25 

ns. Afterwards the pulsed signals are further amplified by a wideband pulse preamplifier U1 and 

the outputs of the wideband pulse amplifier are delivered through a discriminator, whose 

threshold level is usually set as 50 mV to discriminate the true electron detection events from 

noise. Thereafter, the pulse signal is converted to a digital signal and sent into a high-speed 

comparator U2 and the dead time control system. The pulse width generated by the dead-time 

control actually depends on parameter settings.  For example, the default settings are: 35 ns pulse 

width along with 70 ns dead time. Then the pulses are sent through the optic fiber to Omicron 

pulse-counter, where a computer card count the pulse invents in a time interval that is defined in 

software (usually 0.5 s in spectroscopic measurements and 150 µ s in time-resolved 

measurements). The operation of the Omicron card is also briefly outlined in Fig. 2.9 as well. 

Triggered by a series of TTL signals, the Omicron card starts to count the number of signal 

digital pulse events in a data acquisition cycle. When the next TTL signal comes, it clears the 

memory and proceeds the counting for the next interval. More details regarding to the data 

acquisition along with the participation of Omicron computer board will be discussed in our 

time-resolved measurement section.       

 

2.3.2 Spectroscopy and 7-channel Data Acquisition 

 

According to the discussion in the previous sections, we illustrate a complete picture of

photoemission measurement and data acquisition process: the photoelectrons are measured by  
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the hemispherical energy analyzer, and detected at different energies by an array of 7 parallel  

 

channeltron detectors. The signals for each channel are counted and processed separately by the 

Omicron computer card, as explained above, and are stored as a separate data-flow in the PC and 

displayed either as separate spectra, or summed spectra by the acquisition software. In Fig. 2.10, 

a screenshot of EAC software window is given, showing individual spectra along with the 

acquisition parameters in the 7-channel acquisition mode. The detailed information regarding to 

the spectroscopic parameters in Fig. 2.10 is given in Appendix A.   

 

 

Figure 2.10 the screenshot of the software window during a 7-channel data acquisition. 
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2.3.3 Time-resolved Dynamics Measurement and Signal Synchronization 

 

The previous section discussed the data acquisition for a typical spectroscopic measurement. We 

also acquire data in a time-resolved mode that is particular to our experiment. The operation of 

the dynamic data acquisition process is outlined in Fig. 2.11: the PC performs all the control and 

acquisition functions. 

  

 

 

Figure 2.11 The electronic system for the interferometric two-pulse correlation measurements. 
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In a time-resolved measurement, the PC sends a command through the GPIB board to a Stanford 

Research Systems SRS345 arbitrary functional generator, which outputs a vector waveform 

(sawtooth wave) to the piezoelectric system control electronics.  The signal is amplified and 

supplied to the piezo-actuator in order to scan a flexure stage in the Mach-Zehnder 

Interferometer. The translation of a pair of mirrors on that stage by 30± mµ  provides a variable 

delay of 200±  fs. The scanning is performed continuously in synchronization with the data 

acquisition. From section 3.1.3, the MZI has two output components: one is delivered to the 

sample in the UHV chamber to work as the photoexcitation source, the other is sent into a 

monochromator to optimize the beam alignment and calibrate the time-delay. The 

monochromator takes the broadband input light and selects a single frequency (usually the 

spectral intensity maximum) that is detected with a photodiode.  The effect of narrowing the 

spectrum is that the ~10 fs input pulses are stretched to the picosecond time scale. As a result, the 

pump and probe pulses at the output of the monochromator overlap in space and time throughout 

the delay scan, and the optical interference between the pulses provide sinusoidal signal where 

one period corresponds to one optical cycle of the monitored light (Fig. 2.12).  

 

 

The scan is performed repeatedly with a saw tooth waveform with a frequency of ~1.34 Hz. 

Synchronously, the photodiode voltage is read every 150 µ s by an A/D board corresponding to a 

typical delay interval of < 0.1 fs per data point. In Fig. 2.11 we show how this operation is  

performed: the PC sends a command to one of the A/D-D/A boards, requesting the control box 1  
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to acquire analog interfering fringes from the photodiode.  The digitized waveform is then stored 

into different time bins. Since displacement of the piezoelectric actuator is non-linear with the 

input voltage, the recorded fringes are used to linearise the time axis and determine the phase of 

the coherent photoemission signals. Simultaneously, another A/D-D/A board sends a TTL signal  

 

 

Figure 2.12 Signal synchronization between the calibration interference fringes and the two-

pulse correlation signals.  

 

 

to the control box 2 to trigger the Omicron data acquisition board to start counting the 

photoelectron counts for each of the 7 channels. The counts are summed for the same time 

interval as for the reference fringe signal (150 µ s).  The counts for each pump-probe scan are  
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summed with those of the previous scans for the same interval in order to acquire an 

interferometric two-pulse correlation trace of two-photon photoemission. Because the acquisition 

of the interference fringes and photoelectron counts are synchronized in the data acquisition (Fig. 

2.12), we can obtain very precise delay time and phase information that is essential for 

performing <10 fs time resolution polarization and population dynamics measurements. Also, the 

7-channel acquisition mode allows us to compare dynamics under exactly the same conditions 

for different measurement energies. The details of the interferometric pump-probe measurement 

control software are given in the Appendix B. 
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Chapter 3    

2PP Background 

 

This chapter will cover the fundamental physical processes involved in a time-resolved two-

photon photoemission (TR-2PP) process[26, 41, 49]. Time-resolved photoemission spectroscopy 

[2] is one of several techniques that has developed in recent years for studying ultrafast charge 

carrier dynamics with a unique capability of directly observing electrons with specific energy 

and momentum within the skin depth of a solid surface [40, 50-53].  It is the primary method in 

our project for investigation the electron solvated and charge transfer dynamics [54-56] in 

molecular overlayers on metal-oxide surfaces [30, 31]. The main advantage of 2PP methodology 

is that it can be used to study the electronic structure and dynamics of materials in otherwise 

unoccupied states.  

 

 

3.1 Hot Electron Dynamics 

 

3.1.1  Laser Pulse Induced Electron Distribution at the Intermediate Unoccupied States 

 

Fig. 3.1 describes the electronic structure of both the occupied and unoccupied states for a 

typical metal surface. In a two photon photoemission (2PP) process, the photoexcitation can  
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populate the originally unoccupied states and modify the electron distribution by further exciting 

to higher energies. Considering an energy E above the Fermi level but below the vacuum level, 

the pump laser 1ωh changes the electronic distribution by populating E from a lower energy 

level 1ωh−E  and by depopulating E in the next step by inducing excitation to a higher energy 

state 1ωh+E . This final state is usually a free electron state above the vacuum level. Therefore, 

the total contribution of the laser excitation to the electronic distribution at the intermediate 

energy level E can be approximately described as:  

 

      ))(1)(()([)(),( 11 EfEfEDtIAtkH p −−−×⋅= ωω hh  

      ))](1)(()( 1ωh+−− EfEfED , (3.1)  

 

where Ip (t) is the photon flux, )(ED  the density of states (DOS), and f(E) the Fermi-Dirac 

distribution function [57]. 

 

 

Figure 3.1 Excitation scheme in two-photon process. 
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As shown in Fig. 3.1, recording the “photoelectron current” vs. “scanning the electron energy” 

gives the 2PP energy spectrum, which contains information on the joint DOS of both the 

occupied and unoccupied states. Especially, the red energy bands in Fig. 3.1 represent the 

unoccupied intermediate states.  

 

Moreover, by performing the pump-probe experiments with femtosecond pluses having a 

variable time delay, we can measure the electron population dynamics in the unoccupied states. 

The time-dependent intermediate state population can be described by Eq. 3.2 quantitatively 

[57], involving various electron population and decay mechanisms in the k-space: 

   

                   }.{sec|
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|
)),((
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)),((

process
dt

tknd

dt

tknd
tkH

dt

tknd
pheee −+++= −− . (3.2) 

 

The first term on the right side of Eq. 3.2 describes the hot-electron distribution induced by the 

laser excitation that we just addressed; the second term describes the electron population decay 

through electron-electron (e-e) scattering process, where an electron in the measured unoccupied 

state scatters with an electron in an occupied state [58, 59]; the third term describes the electron-

phonon scattering, which is generally much slower and removes much less energy so it is less 

important than e-e scattering [60]; the last term represents the overall secondary processes, such 

as the Auger electron process, or the ultrafast interfacial charge transfer, which can also affect 

the population dynamics [61-63]. In the following sections, these relevant processes will be 

discussed separately. 
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3.1.2 Fermi-Liquid Theory Description of Electron-electron Scattering 

  

The electron-electron (e-e) scatting process through the screened Coulomb interaction [58, 59] 

can be extremely fast, causing the excited state population decay on femtosecond time scales. 

Fig. 3.2 describes the constraints on e-e scattering imposed by energy and momentum 

conservation within the Fermi liquid theory [58]. Typically, an electron excited to an energy E 

above the Fermi level with a momentum 
→

k  scatters with an electron at Energy E1 with a 

momentum 1

→

k  state inside the Fermi sea. The scattering process generates two secondary 

electrons above the Fermi level with momenta 2

→

k , 3

→

k . The overall e-e scattering rate can be 

described by 

                                  )()()())(1(|
)(

kSkfkSkf
dt

kdf
eeee

−+
− +−= , (3.3) 

where )(kf and )(1 kf− are electron and hole occupation factors; )(
→

+ kSe and )(
→

− kS e  represent the 

electron scattering rates into and out of the
→

k state, respectively. The in and out scattering rates 

are given by    
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where the delta functions kδ and Eδ  in the above equations indicate the momentum and energy 

conservation in an e-e scattering process.  

 

To obtain the e-e scattering rate, requires the calculation of the matrix terms |),|,(| 321 kkkkM  

in Eqs. (3.4) and (3.5) given by the screened Coulomb potential [64]  
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=
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, (3.6) 

 

 

Figure 3.2 The electron-electron scattering process according to the Fermi-Liquid theory. The 

inner solid circle represents Fermi sea, while the outer bigger circle represents the momentum 
→

k  

space.  
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where 0ε is the vacuum dielectric constant, 2

→→→

−= kkq and )()( 2

→→

−= kEkEEex are the momentum 

and energy exchanged through the e-e scattering. The cross section represents the probability of 

the hot electron originally having )(
→

kE in the energy/momentum space scattering with an 

electron having )( 1

→

kE within the Fermi sea, to create two new electrons above the Fermi level 

having energies )( 2

→

kE and )( 3

→

kE after the scattering [57]. The long wavelength static 

approximation gives bexEq εε ===
→

)0,0( , which can be estimated from the tabulated dielectric 

constant of the metal [65]. 

 

 

 

By using the Thomas-Fermi approximation, the dielectric coefficient can be expressed as,  
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adjustable scale parameter used to fit the experimental result. 

 

The free-electron scattering matrix element given by Thomas-Fermi screening is  
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Applying derivations in Eqs. (3.3-3.5) and (3.8), as well as integration in the k-space near the 

Fermi surface region (typically Fi kk = , i = 0→3), thus the overall e-e scattering rate at T = 0 K 

is given by [2]:  

                                                                                                                                        

                                                                                                       .      (3.9) 

  

 

Eq. 3.9 can be employed to predict the energy dependence of the electron decay rates through  

 

screened Coulomb interaction in different metals. The hot-electron lifetimes are predicted to 

follow an inverse-square rule of electron energy: as the electron energy approaches the Fermi 

energy, the electron scattering time becomes infinite; at a higher energies, electron scattering 

times decrease as:           
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The free electron Fermi-liquid theory (FLT) gives only an upper limit for e-e scattering rates in 

real metals, since the hot electron near the Fermi level is significantly screened by virtual valance 

band excitations and the ionic nuclear cores, so the screening length calculation in (3.7) can be 

modified as following when the band structure (especially the metal d-band) and the density of 

state (DOS) at the Fermi level are taken into account: 
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Ogawa et al. applied both the free-electron FLT model and the band structure calculation to 

calculate the hot electron lifetimes and compared with the experimental data [50]. Where in the 

free-electron model, the screening length 1−
TFq  they used is 0.55 Ǻ, while in band structure 

calculation, the scaled screening length is decreased to 0.27 Ǻ through Eq. (3.11). It turns out the 

band structure calculation reproduced the hot-electron lifetimes for the low index surface of Cu  

 

better than the free electron model (Fig. 3.3). FLT calculation either implementing free electron 

approximation or involving the electronic band structure for the specific metals with different 

crystal faces usually gives reasonable predictions for the hot-electron lifetimes in the low energy 

range (0.3~2.2 eV) [52, 66]. And more advanced theories employing the recent developed 

techniques to calculate the e-e inelastic scattering mechanism and hot electron lifetimes are 

extensively discussed by Echenique et al. and in the references therein [67]. The study of the 

electron dynamics through e-e scattering process employing the FLT approximation shows the 

ultrafast electron process within several to several tens of femtoseconds and opens a window to 

the investigation of the electron dynamics in a semiconductor.    
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Figure 3.3 The experimentally measured hot-electron lifetimes for the low index surfaces of Cu 

are compared with theoretical calculations, by free electron model or the band structure 

calculation [2]. 

 

3.1.3 Other Electron Dynamical Pathways 

 

The e-e scattering rate is not the only factor that determines the electron decay time scale at the 

intermediate energies above the Fermi level. Sometimes other processes can have influence on 

the intermediate state lifetime as detected by the 2PP method resulting in deviations from 

predictions of the Fermi liquid theory.   
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Figure 3.4 Various electron excitation mechanism in copper [62]. 

 

Fig. 3.4 describes the different electron excitation pathways within a typical metal such as Cu. 

The direct interband transition from the occupied d-band located 2 eV below the Fermi level to 

an unoccupied upper sp-band is denoted as process A. With a photon energy of 6.3=hv eV, the 

interband excitation can generate electrons with a threshold value thresE  of 1.6 eV. This leads to a 

dramatic drop in the 2PP intensity above the 1.6 eV intermediate energy level. Nerveless, 

electrons can still be excited above thresE  by an indirect sp-intraband transition, denoted as  

process B in Fig. 3.4. But in this case, the electron must scatter with a defect in the crystal lattice 

or through a phonon to satisfy the constraint of momentum conservation. Because of the 

difference in the DOS and the order of the excitation process, the process A is much more likely 

to generate hot electrons than process B. Because the process A is more probably, it can generate 

a large amount of d-band holes. The Auger decay of these photogenerated d-band holes results in 
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the creation of hot (secondary) electrons. The Auger decay mechanism for generation of hot 

electrons is denoted as process C in Fig. 3.4.  

 

So the generation rate of the hot electrons excited via interband or intraband transitions (process 

A/B) follows the time duration of pump pulse. Meanwhile, the generation of the d-band holes in 

process C also follows the pump pulse, but the secondary electron population excited through 

Auger decay builds up with a time delay that is related to the average lifetime of the holes. So 

when the electron dynamics is also involves the Auger  decay of d-band holes, the delayed 

excitation has to be included in the hot electron lifetime analysis [50, 62]. 

 

Another important electron dynamic pathway, which we should keep in mind, is the electron 

transport from the surface into the bulk. Evidence for electron transport effect was reported 

previously from the sample thickness dependence of time-resolved photoemission measurements 

[68]. In a photoemission experiment, the sample is illuminated by the excitation light and the 

light penetration depth is mainly determined by absorption coefficient for certain wavelength and  

usually in the order of 100 nm. However, not all the accelerated (excited) electrons in the 

illuminated region are able to escape to surface as photoemitted electrons. Only those which do 

not lose energy significantly by inelastic scattering on their passage to the surface will eventually 

escape and finally appear in the photoemission spectrum. The escape depth of electrons for a 

broad range of materials is described by the electron kinetic energy by the empirically 

determined “Universal Curve” [69] (Appendix C). In a typical photoemission experiment, the 

final state energy of a photoexcited electron energy relative to EF is around 4 ~ 10 eV, 

corresponding to an escaped depth <100 Ǻ.      
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So the relevant length scale for the transport of electrons from the observation region is below 

100 Ǻ. As shown in Fig. 3.5, the nonequilibrium electron can move out of the illuminated region 

in all directions till they are cooled down via the interaction with the crystal lattice, and an 

electron with ~ 1 eV energy is approximately corresponding to a Fermi velocity of ~104 m/s. In a 

relatively thicker sample (e.g. 100 Ǻ, the left diagram of Fig. 3.5), the electrons which originally 

have the ability to escape as photoelectrons, could however partially transport down to the bulk, 

which represents an additional loss mechanism of hot electrons. On the other hand, in the much 

thinner sample (e.g. < 20 Ǻ, the diagram on the right side), the excess electrons are well confined 

to be photoemitted [68]. This causes the measured electron lifetimes by using various thicknesses 

(< 100 Ǻ) of samples are different.   

 

Figure 3.5 Excited electron transport into the bulk [68]. 
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At the circumstance when the electron transport effects are non-negligible, the measured overall 

electron decay rate is faster than the true population decay kinetics, and can be described as 

 

             
TransportDynamicsMeasured τττ
111

+= ,   (3.12) 

 

where Measuredτ , Dynamicsτ  and Transportτ  are the measured electron decay time scale, the intrinsic 

electron decay time scale and the addition transport related time scale respectively. Theories and 

experiments have been addressed the effect of electron transport on the hot electron lifetimes, but 

a satisfactory understanding is not available yet.  

 

 

3.2 Diagnostic Measurement of the Laser Excitation Source 

 

3.2.1 Nonlinear Autocorrelation Characterization of the Laser Pulse 

 

Before performing a time-resolved measurement, we need to optimize and characterize the 

photoexcitation pulse. The pulse is optimized by minimizing of the overall dispersion in the 

optical path length. The pulse is characterized by a nonlinear autocorrelation diagnostic 

technique [28]. In a nonlinear autocorrelation signal, a pair of pulse replicas is overlapped in a 

nonlinear crystal to generate the second harmonic signal. Scanning the delay between the two 

pulses and recording the second harmonic signal provides the autocorrelation trace, which 

contains the information on the time duration and the phase of the pulse.  
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Overlapping of two orthogonally polarized or noncollinear pulses results in an intensity 

autocorrelation signal [28]:   

              ∫
+∞

∞−

−= dttItIA probepumpc )()()( ττ .   (3.13) 

 

The intensity autocorrelation provides only very little information on the pulse shape, since 

different symmetric and asymmetric pulse shapes can give very similar autocorrelation profiles. 

Moreover, there is no information on the phase of the excitation field. The intensity  

autocorrelation is widely used as the diagnostic technique because it is simple to implement, 

however to get more detailed information on the pulse shape more complex methods have to be 

employed. 

 

If two pulses with same polarizations propagate collinearly, such as the two identical pulses 

)(E1 τ−t  and )(2 tE generated by the MZI [37] an interference pattern is observed when scanning 

τ  and detecting the light intensity. This gives the electric field autocorrelation, 
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where the intensity consists of constant amplitudes 2
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For two identical inputs we have )()(12

~

ωω IA ∝
+

, which is actually the laser intensity spectrum. 

Thus, the electric field autocorrelation provide information on the pulse spectrum, which can 

also be obtained by more conventional means. In order to learn more details about the laser pulse 

shape and phase, the nonlinear autocorrelation technique has to be involved.  

 

 

The non-linear interferometric autocorrelation can be measured by surface second harmonic 

generation (SSHG) from a metal surface. In Fig 3.6, we describe the SSHG autocorrelation 

measurement from a Cu surface [2, 70, 71]. Since Cu is a homogenous media, only at the 

surface, the symmetry is broken to satisfy one of the most essential requirements for the non-

linear optics generation. Two fundamental pulses with p-polarization induce second harmonic 

generation the metal near the surface region, and the harmonic signal with s-polarization is 

selected by a high-pass filter. Since in a SSHG process, the frequency doubling occurs usually 

within surface depth of < 100 nm, so the phase-matching condition is always satisfied. 
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Therefore, the main concern in a surface harmonics generation process is trying to find an 

appropriate axis for the incident light under certain crystalline geometry to maximize the 

nonlinear electric susceptibility for the substrate materials being used for SSHG, e.g. Cu or BBO 

crystal.    

 

Figure 3.6 SSHG at a metal surface. 

 

The non-linear interferometric autocorrelation signal [28] is given by 
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where )()(
~

)(|)(| titi etetEE ϕϕ ε ⋅⋅ ⋅== , lω  is the central frequency of the laser pulse, and the A, B 

and C terms are the fundamental, the first order and the second order envelopes respectively, 

given by the following three equations:  

       

                                                                                                             

 

                                                                                                                 (3.18)  

 

 

 

Both the first and the second order envelopes include the phase terms and can be used as 

diagnostic signals of the dispersions of the input laser pulses. The more detailed and concrete 

discussions regarding to the interferometric autocorrelation will be given later. 

 

From the equations (3.17) and (3.18) it is evident that at the zero delay ∫= )(16)0( 4
2 tG ε ; while 

at infinite delay ∫=∞ )(2)( 4
2 tG ε . So the peak to background ratio in the second order 

interferometric autocorrelation is 8:1.  
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3.2.2 Dispersion and Linear Chirp for a Gaussian Pulse 

 

Dispersion is defined as the relationship between the wave number and the frequency, 

)()( ωωω n
c

k =  of an electromagnetic field propagating through a dispersive medium, where 

)(ωn is the frequency dependent index of refraction. Using Taylor expansion at the central 

frequency up to the second-order, we have  
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The first-order term is the trivial time delay, but it has to be retained for the discussion of the 

effect of the 3rd-order term. Only considering the first-order dispersion, the laser electrical field 

in the frequency domain is  
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                    After the Fourier transformation, 
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Therefore, the first-order dispersion term is actually a time delay without involving any phase 

information: 
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Then let us look at the second-order dispersion for a Gaussian pulse
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Assuming the second-order dispersion term or group velocity dispersion (GVD) is a small, the 

Fourier transformation of (3.22) gives 

 

                               
)1()(

2
1

2
0

"
2

0

1)2(
2

0)]1()(
2
1

exp[)]([)(
ia

T

t

l eL
T

k
i

T

t
EFtE

⋅+−
− =−−== ω  (3.23) 

 

So apparently, the GVD corresponds to the linear chirp defined for a Gaussian pulse as: 
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Combining the 1st order dispersion and GVD, we have  
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Let us also briefly discuss the higher orders of dispersion. The 3rd order dispersion in Eq. (3.19) 

is  
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It seems impossible to obtain an explicit result from the integration in Eq. (3.27), however if the 

third-order dispersion is considered, the overall analytic electrical field is  
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To summarize, the 1st-order dispersion gives the time delay; the GVD is proportional to the liner 

chirp for a Gaussian pulse; and the 3rd-order dispersion is essentially equal to a convolution with 

the lower order term, usually giving sub-pulse in the wings of the main pulse. And the sub-pulse 

gives symmetrically displaced secondary pulse structure in the corresponding autocorrelation 

signal. 

 

 

Applying a Gaussian pulse with a linear chirp term 
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=ε  into the Eqs. (3.17) and 

(3.18), the calculated SHG signal is given by 
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Figure 3.7 Calculated second order interferometric autocorrelation signals for Gaussian pulses 

with different linear chirp parameters indicated in the figure. 

 

 

Experimentally, the non-linear interferometric autocorrelation signals can be obtained either 

through a pure optical method: e.g. the surface second harmonic generation process as we 

discussed previously, or through a time-resolved two-photon photoemission. Here, we employed 

the latter to assess and optimize the experimental pulses. Typically, we perform the nonlinear 

autocorrelation experiment on a polycrystalline molybdenum surface in the UHV chamber. 

Before the laser pulse is delivered into the UHV chamber, it has been through a dispersion 

compensation set-up, in which the positive group velocity dispersion in the optical elements (lens  
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and beamsplitter) and air is compensated by inserting optical elements with negative dispersion.  

In our laboratory, we use two sets of two mirror-pairs, where each of the mirror-pairs is coated 

with multi-layer negatively dispersive materials. And each mirror is coated to provide in 

combination well-balanced (constant) negative GVD across through the entire laser emission 

spectrum. So the amount of dispersion compensation is purely determined by the number of laser 

reflection times between the mirror pairs. Fig. 3.8 shows a representative experimental 

interferometric autocorrelation signal, which appears as good as the simulated autocorrelation 

signal for Gaussian pulse with minor third-order dispersion. Therefore the nonlinear 

interferometric signal serves as an excellent diagnostic method for adjustment and balance of the 

dispersion of the laser pulse.     

 

 

 

Figure 3.8 Experimental autocorrelation signals for excitation laser pulse. 
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3.3 Optical Bloch Equation Approach to Simulating Electron  

          Dynamics 

 

 

This section presents the Optical Bloch Equation (OBE) [2, 27, 28, 72] approach to simulation 

the electron dynamics in a two-photon photoemission experiment.  

 

Fig. 3.9 shows the excitation scheme for two-photon absorption in metal and semiconductors.  

The excitation, in its simplest form, can be described by a scheme involving three energy levels: 

the energy level 0 is below the Fermi level, corresponding to an occupied state; the energy level 

1 is above the Fermi level, but below the vacuum level, corresponding to an unoccupied state; 

and the energy level 2 is a free electron state above the vacuum level. With photon energy 

satisfying the resonance energy between the initial and intermediate states, and the intermediate 

and final states, femtosecond pulses can induce the two-photon absorption process between 0 and 

2 states, probing the one and two-photon coherences between different energy levels and the 

population in the intermediate state. In particular, the OBE scheme is applied to TiO2 as 

described on the right side of Fig. 3.9. For the n-doped semiconductor the Fermi level is located 

in the bandgap, just below the CBM. The band gap states below the Fermi level constitute the 

DOS of the initial energy levels 0 [9, 73].  

 

 

Now, Let us consider an electronic system of discrete energy states within a set of normalized 

orthogonal basis 
kφ , having a non-perturbated Hamiltonian  
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                                          kkkkk EH φωφφ h==0 .      (3.30) 

 

Figure 3.9 OBE in a metal or semi-conductor system. 

 

The excitation laser pulse introduces a time-dependent perturbation term that couples the 

eigenstates of the system.  Then the total Hamiltonian is )()( '
0 tHHtH += , and the new wave 

function can be expressed using the original basis set, ∑ ∑ ⋅⋅−==
k k
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rotating coordinate with an angular frequency 
lω  (the central frequency of the laser pulse) [27]. 
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Eq. (3.31) is multiplied by the complex conjugate *
kφ  and integrated in the wave packet space, 

resulting in 

 

                                                                                       ,   (3.32) 

                                                                                               

where the matrix element ∫ ∗= rdtHH knnk

3'' )( φφ  and the perturbation term can be approximated 

in the electric dipole approximation:   

 

                             )cos()()()(' ttAretEretH lω⋅⋅−=⋅⋅−= .   

 

In ladder representation )(
+∧∧

+∝ aar only the two adjacent matrix elements in the Eq. (3.32) do 

not vanish. If we just consider a three-energy-level system, 0-1-2, coupled by a two-photon 

transition (where δ  indicates the time-delay between the pump and probe pulses), the various 

occupation coefficients are: 
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Where the amplitudes 1E  or 2E in the above equations are relevant to the transition coefficients 

either between 0 and 1, or between 1 and 2 respectively. When the energy level 1 corresponds to 

a real excited state rather than a virtual state, the transition coefficient 1E  becomes a much larger 

quantity than that for a virtual state.  

 

 

Usually, we would rather consider the density operator elements ∗= nmmn ccρ , which have more 

physical meanings, where the diagonal elements mmρ  correspond to the population at the energy 

level m, and the off-diagonal elements mnρ represent the coherence between energy states m and 

n.  

 

Taking the first-order derivative of ∗)()( tctc nm , we get  
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Because the energy levels 1 and 2 are unoccupied states, their transient populations will decay 

back to zero.  Moreover, the optical excitation creates coherences through the dipole coupling 

that oscillate at the single photon pulse 
lωh  or a two-photon 2

lωh  frequencies. To describe the 

time dependence of the density matrix elements we define the time scales 1
1T  and 2

1T as the  
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population decay times at energy level 1 and level 2; 01
2T , 12

2T  as the first-order decoherence 

times (in between states 0 and 1 or states 1 and 2), and 02
2T  as the second-order decoherence time 

(in between states 0 and 2) [2]. Using derivative formula (3.34) and these time scales, we can 

construct 9 first-order differential equations for the three level system. However, some of them 

are complex conjugates, resulting in only 6 independent equations.  
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                                                                                                                     (3.35.6)  

                                                                                                                                                                                                                                                                                                                            

 

Where  
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are time-delayed pump-probe excitation transition functions. lωω −=∆ 11 , lωω 222 −=∆  are 

the first- and second-order resonance detuning frequencies, respectively. 

 

 

Applying a set of appropriate initial values for the density matrix elements, reasonable 

incoherent and coherent decay time scales, and suitable values for the excitation transition 

amplitudes and resonance detuning energies, we can perform the OBE simulation for the overall 

electronic system.  

 

In our experiment, we use electron energy analyzer to measure the time-resolved 2PP data at the 
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the value of density operator element ),(22 δρ t  integrated over the pump probe sequence. Since 

the time scale of ~11 nanosecond corresponding to the interval between our ~90 MHz repetition 

laser pulses, is much longer than the relevant population and polarization time scales, we only 

need to integrate over a single pump- probe cycle AT ,  

                                                                                                       

                                                                                                   .  (3.36) 

 

However, the fitting the coherent and incoherent dynamic parameters of an electronic system by 

solving OBE is quite complicated, requires large amount of computational resources, and is 

usually restricted to single exponential decay kinetics (Eqs. 3.35). Instead of fitting to OBE 

equation, we use a special fitting procedure based on the Fourier transformation, which involves 

much simpler routine to calculate the various dynamical decay time scales. 

 

 

3.4 Hot Electron Dynamics and the Fitting Procedures 

 

Although the interferometric two-pulse correlation (I2PC) measurements of two-photon 

photoemission are very similar to the  nonlinear interferometric autocorrelation signal (IAC), but 

in addition they contain information on the hot electron population and polarization dynamics, 

which broaden the signal. The photon pulse incident on the sample surface induces linear or non-

linear polarization, which oscillates coherently at the excitation frequency or its higher 

harmonics, meanwhile the photoexcited electron decay incoherently through e-e elastic 

scattering. Coherent interaction with linear or non-linear polarization gives interference at both 
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ω1  and ω2  frequencies; and incoherent excitation of hot electrons above the Fermi energy gives 

a phase independent component. 

 

 

Therefore the I2PC signal can be decomposed into three different parts: the phase average ω0 , 

the ω1  envelope component, and ω2  envelope component. All three envelopes can be extracted 

from the experimental I2PC signal )(δI (δ same as before is the time-delay between pump and 

probe pulses) by Fourier transformation over each optical cycle, which is demonstrated in Fig. 

3.10, as [74]:  
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Figure 3.10 A typical I2PC signal for adsorbate covered TiO2 surface is decomposed into three 

components: ω0 , ω1 , and ω2 . Fitting of the envelopes provides the polarization and population 

decay times. 

 

which correspond to the green (2ω), red (1ω) and blue (0ω) curves in Fig. 3.10 respectively. The 

temporal width and shape of these components are determined both by the energy and phase 

relaxation time scales of the hot electrons in the sample and by the excitation laser pulse width. 

From the IAC signal for a Gaussian pulse in Eq. (3.29), neglecting the dispersion, we have  
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Therefore the FWHM pulse widths for the three components of an I2PC signal are:  

 

                                                                                     

 

As compared to the pulse autocorrelation function in Eq. (3.37), the decomposed 

component )(2 δωI  gives the coherent dephasing time scale )02(
2T  between energy states 0 and 

2 ; the component )(1 δωI contains the dephasing time scale )01(
2T  between 0  and 1  states, 

and the phase averaged component )(0 δωI has contribution from both the coherent polarization 

decay )01(
2T and the incoherent population decay 1

1T  at the intermediate state 1 . 

 

 

So the fitting formulas for all three components are constructed as the convolution between the 

coherent or incoherent dynamical decay and the phase-averaged laser auto-correlation, where 

single exponential decay kinetics in a regular OBE function is used and the FWHM pulse width 

is τ . 

                                                                                          (3.39.1) 

                                                                                        

 

                                                                                           (3.39.2) 

 

 

 

( ) ))2ln(4exp( 2
2 0T
I δ

ω −∝ ( ) ))2ln(3exp( 2
1 0T
I δ

ω −∝ ( ) ))2ln(4exp( 2
0 0T
I δ

ω −∝

∫
∞

∞−

−
−

−

= dteecI

t
T

t

fit
2

02
2

))(2ln(42
02 )( τ

δ

ω
ω δ

∫
∞

∞−

−
−

−

= dteecI

t
T

t

fit
2

01
2

))(2ln(31
01 )( τ

δ

ω
ω δ



 78 

  

                                                                                                       

                                                                                                          (3.39.3) 

 

Therefore through the fitting process, we can determine the various coherent and incoherent 

kinetic decay time scales. Compared with solving the complicated OBE, this fitting procedure is 

much simpler and requires much smaller computation resources along with much shorter 

computation time. 

 

 

Nessler et. al. first applied this fitting procedure to the study the hot electron dynamics in a High 

Tc superconducting material Bi2212 [74] and observed the temperature dependent electron 

lifetimes; their results exhibit apparently inverse square rule due to e-e scattering predicted by 

Eq. (3.10) [51, 75].  
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Chapter 4 

 

2PP Measurements on TiO2 Surfaces 

 

This chapter gives a fundamental discussion about the two-photon photoemission spectroscopy 

of bare TiO2 surfaces. Results are reported for nearly perfect, i.e. stoichiometric surfaces and 

reduced surfaces.  The stoichiometric rutile crystal has a band gap of 3.05 eV. The sample 

reduction can be accomplished by introducing surface or bulk oxygen vacancy defects.  For each 

O atom removed, two electrons are transferred to the lowest unoccupied states corresponding to 

the t2g symmetry Ti 3d-orbitals. The excess surface charge is distributed over more than ten five-

coordinate surface terminal sites [10]. Although no single Ti ion receives the full one electron 

charge, we adopt the conventional Ti3+ label for the reduced ions [1, 42]. The DOS of these Ti3+ 

defect states is distributed in a broad band at 0.7 ~ 1.0 eV below the Fermi level as already 

introduced in Chapter 1 [10, 76]. The introduction of oxygen defects raises the Fermi level from 

the midgap, where it would be for the stoichiometric sample, to 0.1 eV below the conduction 

band [77]. The energy diagram for a defective TiO2 crystal along with its 2PP spectrum is 

illustrated in Fig. 4.1.   
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Figure 4.1 Energy diagram for a defective TiO2 crystal and 2PP measurement with the electron 

energy analyzer. EF, Φ, CBM and VBM represent the Fermi level, the work function, the 

conduction band minimum and the valence band maximum, respectively.  

 

   

4.1  2PP Spectra for Various Bare TiO2 Surfaces 

 

Typical 2PP spectra of bare TiO2(110) surfaces prepared by four different methods, are plotted in 

Fig. 4.2. All the data are measured at 90 K. For each surface, we prepare first the stoichiometric 

surface through a standard recipe. The surface is sputtered by 1000 eV Ar+ ion with a flux of 

10 2/ cmAµ  for about 15 minutes to remove surface impurities, and then it is annealed for 45 

minutes at about 900 K under an oxygen atmosphere (O2 partial pressure 4×10-7 mbar). 

Following the annealing procedure, the sample is cooled down to the room temperature under the 



 81 

same O2 environment). Other surfaces are generated through additional UHV treatment, e.g. 

vacuum annealing or electron bombardment.  

 

The weakest spectrum in Fig. 4.2 rising from the vacuum edge at 5.5 eV is that of a 

stoichiometric surface. Other spectra reflect different degrees of surface reduction by various 

methods. The second weakest spectrum starting at 5.0 eV is of the electron-irradiated surface 

prepared by exposure of the stoichiometric surface to a 0.5 mC/cm2 dose of 500 eV electrons. 

The spectrum starting at 4.8 eV is that of an annealed surface prepared by heating the 

stoichiometric surface at 1000 K in vacuum for 30 min. Finally, the strongest and broadest 

spectrum is prepared by Ar+ sputtering the stoichiometric surface for 20 min (1000 eV energy, 

with a 2 µA/cm2 sample current). Note that the 2PP spectra in Fig. 4.2 are typical for these 

specific preparation methods; however, the intensities and work functions exhibit some variation 

between the same preparations due to factors that are difficult to control. 

 

 

As shown in the energy diagram in Fig. 4.1, the high-energy edge in 2PP spectra in Fig. 4.2 at 

around 6.1 eV corresponds to two-photon photoemission of electrons from the Fermi level. 

Photoemission from the Fermi level is observed for all preparation methods, but the intensity 

near the Fermi level increases with the defect concentration. This is to be expected since the 

initial annealing procedure, which changes the sample color from transparent to blue and makes 

the sample conductive, introduces bulk defects that cannot be removed by subsequent surface 

preparation procedures. The low-energy edge corresponds to the minimum energy for excitation 

of an electron to a freely propagating state in vacuum, i.e., the vacuum level. We confirmed this 
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assignment by demonstrating the low-energy edge coincides with the threshold energy for the 

secondary electron emission when the sample is irradiated by 500 eV electrons. The vacuum 

energy range of 4.3 to 5.5 eV sets the limit for the lowest energy of initial states that can be 

accessed by 2PP of 1.7 to 0.6 eV below the Fermi level. Considering the large band gap and the 

pining of the Fermi level close to the conduction band minimum, photoemission can only occur 

from the defect states within the band gap; carriers excited from the top of the valence band to 

the bottom of the conduction band indicated in Fig. 4.1, have insufficient energy to be excited 

above the vacuum level by subsequent absorption of another 3.05 eV photon.  

 

 

Figure 4.2 2PP spectra of stoichiometric, electron-irradiated, vacuum annealed, and Ar+ 

sputtered surfaces at 90 K. The top and bottom axes give the intermediate and final state energy 

respectively, in two-photon excitation from occupied states below the Fermi level.  Energies are 

given with respect to the Fermi level throughout the thesis. 
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The work function for each surface is defined as the half maximum of the lowest energy edge of 

the 2PP spectra. Based on this definition, work functions for the stoichiometric surfaces in our 

measurements range between 5.5-5.7 eV. Work function is one of the most fundamental 

properties of a solid surface, which has rarely been studied for metal oxides [48]. It is usually 

discussed in terms of a sum of potentials required to overcome the bulk electrostatic chemical 

potential and to transport electrons through the surface dipole layer [78]. The difference in work 

functions between different surface preparations can be explained by a simple model, which 

considers how the surface defects and adsorbates modify the surface potential. As in the standard 

models for work functions of metals, the electron density extends beyond the image plane into 

the vacuum. The excess negative charge extending into vacuum is compensated by a net positive 

charge on the surface ions [78]. Since oxygen has strong electron affinity, which generates a 

negatively charged surface, the removal of oxygen reduces the negative charge, and therefore, 

reduces the work required to transport electrons into vacuum. Consequently, lower work function 

correlates with higher concentration of surface oxygen vacancies. 

 

 

Compared with the changes in the work function, the difference in intensity distributions of 2PP 

spectra is not as easy to explain. Since the estimated electron escape depth at ~ 6 eV is ~ 100 Ǻ 

[78], the 2PP spectra are sensitive to both surface and bulk defects. The intensities in 2PP spectra 

depend on the joint occupied and unoccupied DOS, and to a lesser extent, the energy dependence 

of transition moments coupling the initial, intermediate and final states, as well as the 

intermediate state lifetimes. In addition to the primary photoexcitation process, the 2PP spectra 
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can also have contributions from secondary electrons, which suffer energy and momentum 

exchanging collisions in the intermediate or final states prior to being emitted into vacuum. In 

resonant UPS spectra, the Ti3+ defect DOS forms a peak symmetrically distributed about a 

binding energy of 0.8 eV [9, 73]; however, in our spectra the defect induced signals decrease 

monotonically from the vacuum edge corresponding to the initiate energy state of 1.7 eV below 

the Fermi level up to the Fermi level. The reason why a distinct peak may not be observed can be 

attributed to several factors including the overlap of the Ti3+ feature with the secondary 

electrons, the convolution of the initial and intermediate state DOS in the 2PP spectra, the 

different final state resonance conditions, energy dependent intermediate state lifetimes, and the 

higher spectral resolution than in the previous studies.  

 

Figure 4.3 Photoemission spectra of bare Ar+ sputtered surface at 100 K measured with different 

modes of excitation. The solid and dotted lines represent 2PP measured with p- and s-polarized 

3.05 eV light. The dashed line represents one-photon photoemission measured with p-polarized 

6.1 eV light [29].  
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In order to further characterize the defect DOS, we measure photoemission with different 

polarizations and employ one or two-photon excitation to the same final state. Fig. 4.3 compares 

the normalized 2PP spectra of Ar+ sputtered surface excited with 3.05 eV p- and s- polarized 

light and one photon photoemission (1PP) excited by 6.1 eV p-polarized light. The surface was 

generated through 1000 eV Ar+ sputtering the stoichiometric surface for 10 min with a sample 

current of 2 µA/cm2. The 2PP spectra are independent of the polarization and quite similar to the 

1PP spectrum. The similarity of the 2PP spectra with the 1PP spectra indicates that the later is 

mainly determined by the occupied DOS.  However, the enhancement of 2PP spectra near the 

Fermi edge with respect to the 1PP may reflect a weak contribution to the joint DOS from the eg 

symmetry of the Ti4+ intermediate state at ~2 eV above the CBM. It is interesting to note that the 

p- and s-polarized spectral distributions are identical. The similarity may indicate random 

direction of the one-photon transition moment with respect to the surface normal, which can 

happen for a disordered surface, or it indicates that the same initial and final states are coupled 

by a coherent two-photon transition [50].  

 

 

Through the study of the photoemission spectra from the bare surfaces in Fig. 4.2 and Fig. 4.3, 

we conclude that they are mainly due to the initial states present in the band gap of TiO2 on 

account of the O atom vacancy defects. These states can be generated with different distributions 

by various preparation techniques. The low-energy edge of the 2PP spectra gives an accurate 

value of the work function averaged over the irradiated spot on the surface. The 2PP spectra are 
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quite sensitive to the work function changes. The photoemission intensities are approximately 

proportional to the DOS of the occupied band gap states. 

 

 

4.2 Oxygen Adsorption on TiO2 Surfaces 

 

In this section, we mainly discuss about the interaction of O2 with TiO2 surfaces after various 

preparation procedures and compare our experimental data with the existing model for O2-TiO2 

interaction. Because Ti is such a reactive element, oxygen-deficient surfaces are clearly expected 

to react with O2 and other adsorbates. Also, in order to investigate the photocatalytic reactions on 

TiO2 surfaces, we also study how O2 affects the defect concentration and the work function of 

TiO2.  

 

Molecular oxygen is adsorbed on TiO2 surfaces through a leak value into the UHV chamber to 

achieve specific exposures measured in Langmuir (L) (1 L = 10-6 Torr×s) at ~100 K.  The 

changes in the surface structure are deduced from 2PP spectra taken immediately after the 

exposure. Fig. 4.4 shows the model for how O2 molecules adsorb on TiO2(110) surfaces 

proposed by Henderson et. al. [79]. Oxygen molecules strongly bind to oxygen-deficient surfaces 

to fill the bridging oxygen vacancy sites. However, after the O atom vacancy defects are titrated 

(removed by reaction with O2) they are not adsorbed on stoichiometric surfaces under our 

experimental conditions (~ 90 K) [79]. The reduced Ti ions associated with a bridging oxygen 

(BO) vacancy site, i.e. δ−+4Ti which are active in the O2 adsorption and relevant photocatalytic 

reactions on TiO2 surfaces. By introducing an O atom vacancy or other means of surface 
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reduction (e.g. H atom forming a bridging -OH species) the excess electrons are spread over 

several Ti sites indicated in Fig. 4.4, as δ−+4Ti instead of more commonly, but less 

accurately +3Ti . These reduced Ti ions are the adsorption and reaction sites of electrophilic 

molecules such as O2.  

  

Figure 4.4 Diagram of the O2 adsorption on an Oxygen-deficient TiO2(110) surface. (A) An O 

atom vacancy is surrounded by reduced Ti ions. (B) O2 binding and interacting with the reduced 

Ti ions ultimately to remove O atom vacancies..     

 

In Henderson’s model, O2 molecules bind in the vicinity of an O atom vacancy and form O2- 

species surrounding the vacancy. Those O2- species are very active in photo-oxidation of CO or 

NH3, and dissociation of H2O, which were discussed in O2 co-adsorption studies with these 

molecules [1, 80, 81]. According to Henderson, these oxygen molecules and species are stable at 

room temperature, and desorb at around 400 K. This model, however, is not supported by our 

observations. 
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4.2.1 O2 does not Adsorb at the Stoichiometric Surface 

 

First, let us look at the interaction of O2 molecules with a stoichiometric TiO2 surface.  The 

concentration of O atom vacancies is minimum because the sample is annealed and cooled in O2 

atmosphere, as discussed previously. In Fig. 4.5, we observe that exposing the perfect surfaces 

oxygen to up to above 30 L of O2 barely changes the 2PP spectra.  The spectrum shows weaker 

emission just above the vacuum level. The upturn of emission at the vacuum level is most likely 

due to the secondary electron scattering on a rough surface. The effect of exposure is to reduce 

this secondary emission possibly indicating that the surface becomes less rough, however, the 

negligible up-shift in the vacuum level indicates that O2 does not adsorb on stoichiometric 

surfaces.  This result is consistent with other observations and theoretical predictions that O2 

does not adsorb on perfect surfaces even at 90 K [82, 83].  

 

 

Figure 4.5 The effect of O2 exposure on the 2PP spectra of the stoichiometric surface. 
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4.2.2 O2 Adsorption at the TiO2 Sample with Surface Defects  

 

By contrast to the stoichiometric surface, the O2 oxygen adsorption on reduces surfaces, such as 

the electron-irradiated surface shown in Fig. 4.6, produces dramatic changes in the 2PP spectra. 

The electron-irradiated surface is prepared by irradiating the stoichiometric surface with a dose 

of 0.5 mC/cm2 500 eV electrons. The thick solid line in Fig. 4.6 (a) shows the bare electron 

irradiated surface, while the much less intense spectra are the O2 oxygen exposed surfaces. In 

order to display the 2PP spectra with substantially diminished intensity after the O2 exposure, in 

Fig. 4.6 (b), we give the expanded spectra in the indicated region of Fig. 4.6 (a). The thin solid 

lines in Fig. 4.6 (b) represent photoemission after exposing the surface with 0.06 and 0.3 L O2, 

while the dashed line represents the stoichiometric surface before electron irradiation. Further O2 

dosing does not change the 2PP spectra. Remarkably, exposure to only a fraction of one 

monolayer of O2 restores the stoichiometric surface spectrum at 100 K. After it is restored by 

oxygen dosing, the surface is further heated up to 450 K for a 5 min. and cooled back to 100 K. 

The 2PP spectrum after this heating-cooling procedure cycle is shown by the thin dotted line in 

Fig. 4.6 (b). There is almost no change in the 2PP spectra after this procedure, indicating the 

surface is restored to the stoichiometric condition by exposing to sub-monolayer dose of O2 at 

100 K.  

 

Our observation of defect healing at 100 K contrasts with those of Henderson and Lu et al. [79, 

83] who report that vacuum annealed surface healing of oxygen vacancies requires heating of the 

surface to temperature in the range of 150 to 400 K. We will show in the next section that these  
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Figure 4.6 (a) 2PP spectra of electron-irradiate surface at 100 K before and after exposure to 

oxygen molecules. The thick solid line is the bare surface after electron irradiation with a 0.5 

mC/cm2 at 500 eV. (b) is the expanded spectra in the indicated region of (a). The thick dotted 

line gives the stoichiometric surface. Thin solid lines give the electron-irradiated surface after 

exposure to 0.06 and 0.3 L of O2. The dotted line represents the spectrum after heating the 

oxygen exposed surface to 450 K and subsequent cooling to 100 K.   
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activated healing processes may involve subsurface oxygen defects that exist on annealed sample 

surfaces, but not on electron irradiated surfaces. Our observation of efficient healing at 100 K 

after submonolayer exposure suggests that O2 is adsorbed with a high probability in a weakly 

bound state with high surface mobility. And this efficient healing implies that mobile, weakly 

bound O2 is irreversibly trapped most likely by dissociation into O2- at the bridge O atom 

vacancy sites.   

 

 

4.2.3 O2 Adsorption at the Sample with Both Surface and Sub-surface Defects 

 

The same O2 adsorption/heating procedure is repeated for the vacuum annealed surface (1000 K 

for 30 min), which is cooled to 100 K before the measurements. The 2PP spectra (thick solid 

line) in Fig. 4.7 (a) show that this treatment reduces the work function by 0.7 eV and 

significantly increases the intensity compared with the stoichiometric surface (dashed line). The 

annealed surface is exposed to a range of O2 doses (0.1 to 4.0 L) and 2PP spectra shown by thin 

solid lines are taken after each exposure. By contrast with the electron irradiated surface, the 

work function of oxygen-exposed surface increases more gradually as the dosage is increased, 

and even after exposure to 4.0 L of O2, the spectrum does not return to the original 

stoichiometric surface. The work function saturates at 5.2 eV at the high exposure of oxygen, 

which is substantially below that of the stoichiometric surface. Moreover, the 2PP intensities 

change in a different manner during the O2 exposure, and do not decrease like for the electron-

irradiated surface. The behavior of this surface after the heating procedure (dotted line) is also  
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substantially different with the electron irradiated surface: the work function reverts to that of the 

original bare annealed surface, although the intensity at high energies is decreased by this 

procedure.   

 

Figure 4.7 2PP spectra of vacuum annealed surfaces before and after exposure to O2. (a) The 

annealed surface prepared by heating to 1000 K for 30 min in vacuum. (b) Mild annealing 

condition by heating surface to 900 K for 10 min. In both figures, dashed lines represent the 

clean surface taken at 100 K immediately after the preparation. The thin solid lines represent 

spectra of oxygen-exposed surfaces for different dosages. The dotted lines represent spectra of 

surfaces that have been exposed to O2, annealed briefly to 450 K and subsequently cooled to 100 

K.  
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Since the heavy annealing procedure probably creates a drastically different surface compared to 

the electron-irradiated surface, we also prepared a “slightly annealed” surface by heating the 

sample in vacuum at 900 K for 10 min, followed by oxygen dosing. In Fig. 4.7 (b), we can easily 

observe this procedure generates more modest changes in 2PP spectra. The work function change 

(-0.4 eV) is comparable to the electron-irradiated surface, however, the behavior upon O2 dosing 

and heating is entirely consistent with the trends observed for the heavily annealed surface. The 

only difference is the dosage of O2 at which the spectral changes saturate decreases to ~ 1 L. The 

different behavior of electron irradiated and vacuum annealed surfaces in Fig. 4.6 and Fig. 4.7 

demonstrate that the two reduction procedures create different defect distributions.  

 

 

Thermal annealing of the surface will produce a distribution of defects at the surface and 

diffusion into the bulk; while with electron irradiation, the defects are generated mainly at the 

surface, and below 100 K their diffusion into the bulk is suppressed. Thus, on the bare electron 

irradiated surface, the work function and intensity distribution of 2PP spectra are determined by 

the surface defects, mainly bridging oxygen vacancies. Molecular oxygen effectively heals the 

surface defects at 100 K, and therefore, the 2PP spectra are restored to that of a stoichiometric 

surface. By contrast, the 2PP spectrum of the vacuum annealed surface is dominated by 

subsurface defects. The escape depth of 6 eV electrons corresponds to 30 layers ( ≤  100 Ǻ) 

according to the universal curve for the electron scattering lengths. The integration of the bulk 

defect signal over this escape depth can easily overwhelm the surface contribution.  Evidence for 

the strong contribution from the bulk defects can also be seen in the large signal from the 
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secondary electrons at the work function edge. Oxygen adsorption on the annealed surface can 

heal the surface defects and produce a substantial increase in the work function. However, the 

secondary electron intensity does not decrease indicating that the sub-surface region is still 

disordered. According to Lu and Henderson, molecularly adsorbed oxygens are photochemically 

labile at 100 K, and dissociate to atomic species with thermal activation to heal defects in the 

temperature range of 150-400 K. This activated dissociation may arise from the diffusion of 

existing subsurface defects to the surface where they can be healed with the pre-adsorbed O2 

molecules, regenerating the surface defects [79, 83]. This interpretation is comparable to the 

STM images of the annealed TiO2(110) surfaces, where two types of oxygen vacancies with 

densities of 7 and 1-2% that have been assigned, respectively, to the surface bridging oxygen 

vacancies, and to subsurface vacancies [84].   

 

 

4.2.4 O2 Adsorption on the Heavily Damaged TiO2 Surface 

 

Finally, in Fig.4.8, we present the spectral changes following the interaction of O2 with Ar+ 

sputtered surface (1000 eV, for 3 mC/cm2) using the same procedures as above. Exposing the 

bare Ar+ sputtered surface to O2 can eventually increase the work function to 0.1 eV above that 

of the stoichiometric surface. However, the 2PP spectra after O2 exposure have much higher 

intensity than the stoichiometric surface indicating that some defects cannot be healed at 100 K. 

By heating up to 400 K, the work function is reduced in a similar feature as the annealed surface, 

but this shift does not reach as low as the original sputtered surface.  
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Figure 4.8 2PP spectra of Ar+ sputtered surfaces before and after exposure to oxygen. The 

dashed line is the amplified spectrum of the stoichiometric surface by 10 times. The thick solid 

line is the bare Ar+ sputtered surface. The thin solid lines represent the spectra of oxygen-

exposed surface for several dosages. The dotted line represents the oxygen-exposed surface 

spectra after heating to 450 K and subsequent cooling to 100 K.   

 

 

Argon ions, similar to electrons, cause non-thermal damage to the surface. However, Ar+ can 

transfer much larger momentum to the surface and therefore induce much more damage, 

including subsurface defects. Previous XPS measurements of Ar+ sputtered surfaces show 

evidence for defects with the valence of titanium Tin+, n ranging from 0-3 [85]. These vacancies 

cause strong intensity and very low work function in the 2PP spectra. When exposed to oxygen, 

a significant fraction of vacancies is healed because they exist mainly at the outmost layer. The  
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reason why the work function exceeds that of the stoichiometric surface is not understood, but it 

is possible that the concentration of oxygen on the sputtered surfaces after saturation exposure is 

even larger than for the stoichiometric surface, leading to a higher work function. When the 

sample is heated to 450 K, the work function substantially decreases indicating that the reduction 

of surface oxygen concentration is facile. This can happen either by diffusion to the surface of 

the shallow defects remaining after the low temperature exposure to O2 or desorption of weakly 

bound oxygen species from the disordered surface.   

 

 

The above experimental results on interaction of oxygen molecules with stoichiometric and 

damaged surfaces demonstrate that the high sensitivity of 2PP to the work function and the 

concentration of near surface defects. The 3.05 eV excitation can only induce two-photon 

photoemission from the defect states hence it provides considerably higher sensitivity to defects 

as compared with the other standard surface science techniques. The characterization of surface 

defects is important because they serve as the initial states in the 2PP process, and they govern 

how molecules like H2O and CH3OH chemisorb on TiO2 surfaces. 
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Chapter 5  

 

Observation of Wet Electrons at the H2O/TiO2 (110) 

Surface 

 

The following chapter will cover the 2PP spectroscopy and dynamics of the H2O/TiO2 system. 

For many reasons, water is probably the most important adsorbate at the TiO2 surfaces. For 

example, photocatalytic processes usually are performed in an aqueous environment, where both 

the molecular water and the surface hydroxyl (-OH) species can easily affect adsorption and 

reaction processes [1, 11]. Moreover, water molecules comprise one of the main residual gas 

components in UHV environment, hence it is a typical adsorbate even in under well-controlled 

conditions. Recent STM measurements have demonstrated that O atom vacancy defects and 

bridging -OH species formed by the dissociation of residual water are difficult to distinguish in 

the unoccupied state STM images [86]. Because water is central to many applications of TiO2, its 

adsorption on TiO2 surface has been intensively investigated with a variety of experimental and 

theoretical techniques.   
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5.1  The Model for H2O Adsorption on the TiO2(110) Surface 

 

 

Figure 5.1 The model for H2O/ TiO2 interface. 

 

A cartoon of the absorbed multilayer H2O interaction with TiO2 (110) rutile surfaces is shown in 

Fig. 5.1, and the strongest interaction between H2O and TiO2 occurs at the bridging O atom 

vacancies. For each vacancy, single H2O molecule dissociates to form two uncorrelated surface  

-OH species on the bridging O atom rows. Based on Temperature Programmed Desorption 

(TPD) and High Resolution Electron Energy Loss Spectroscopy (HREELS) measurements, 

Henderson proposed a structure for multilayer H2O adsorbed on TiO2(110) surface in Fig. 5.1 

[46]. According to this model, after the existing O atom vacancy defects are removed by water 

dissociation, the subsequent first layer of water molecules adsorbs in channels between the 

bridging oxygen atoms. H2O forms bonds through its oxygen and single H atom to the terminal  
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five-coordinate Ti4+ sites (Fig. 1.2) and the bridging O atoms, respectively. The remaining H 

atoms form hydrogen bonds (HB) with neighboring water molecules, thereby forming linear 

hydrogen chains along the [001]  rows (Fig. 5.2). The second layer of water adsorbs on top of the 

first monolayer, however, since almost all the H atoms in the first monolayer are engaged in 

favorable hydrogen bonds, the interaction between the first and second monolayers is weak. 

Thus, Henderson concluded that water molecules make separate hydrogen bonding networks 

between the first and second layers, which lead to the formation of amorphous ice structure. 

According to Henderson, the hydrogen bonding within the second layer occurs with retention of 

the non-hydrogen bonded OH stretch of the -OH species on the bridging O rows [46]. Those       

-OH species drastically change the surface charge distribution, and thus have essential different 

influence on the upper layer structures of H2O compared to the molecular H2O [87, 88].  

 

 

Fig. 5.2 (a) gives the density functional theory (DFT) calculated electronic structures of 1 

monolayer (ML) H2O covered rutile TiO2(110) surface to show in detail of how the surface 

provides a template for the first and subsequent H2O monolayer chemisorption, and to provide 

more quantitative information regarding to intermolecular hydrogen bonds at the surface [76, 

89]. More specifically, the distance between two adjacent five coordinate terminal +4
5cTi  ions 

(indicated by blue arrows) of 2.96 Ǻ on rutile (110) surface is slightly longer than the 2.76 Ǻ 

maximum in the radial distribution function between two oxygen molecules in liquid H2O [90]. 

As shown in Fig. 5.2 (a), this slight mismatch favors formation of stronger molecule-surface HBs 

involving the bridging O atoms and weaker intermolecular HBs, leaving one H atom of each 

adsorbed H2O remain weakly hydrogen bonded.  
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Figure 5.2 (a) The calculated structure for chemisorption of 1ML H2O on TiO2(110) surface, 

where Ti atoms are blue, O atoms are green and H atoms are red. Dotted lines indicate strong 

(thick) and weak (thin) hydrogen bond, the blue arrows indicate the terminal +4
5cTi  ions and the 

white arrows indicate the bridging O atoms [89]. (b) UPS (HeI) spectra for TiO2 (110) surface 

exposed to water at 120 K [45]. 

 

 

In Fig. 5.2 (b), we show the reported UPS spectra following the adsorption of H2O on TiO2 

surface by Krischok et al. [45]. In these measurements, the contribution from both the 

dissociated and molecular water are displayed, which mainly modify the DOS of the O (2p) 

valence band structure, and to some extent the defect related Ti3+ band gap states. Initially, the  

spectra are dominated by the -OH species ( σ3  or π1  orbitals in Fig. 5.2 (b)) generated through 

the dissociation of H2O at the O atom vacancy defect sites (Fig. 5.1). When these defect sites are 

titrated, water adsorbs molecularly at the terminal Ti sites ( 21b , 13a and 11b  orbitals in Fig.5.2 

(b)). So the UPS spectra show a clear trend of switching from being dominated by the 
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dissociative species (OH) at low coverage, to the molecular species (H2O) at high coverage. This 

feature however provides a complementary quantitative evidence to support the proposed model 

of monolayer H2O chemisorption and dissociation at the TiO2 (110) surface discussed in Fig. 5.1.      

 

  

5.2 H2O Adsorption on Various TiO2 Surfaces:  the Work Function  

         Change 

 

In this section, we investigated how the chemisorption of water affects the work function of TiO2 

surfaces after different preparation techniques. Figure 5.3 shows the work function change in 

2PP spectra (p-polarized excitation) as a function of H2O adsorption at the stoichiometric TiO2 

surface. We can see that water causes the work function to decrease. The shift is in the opposite 

direction compared to oxygen, indicating that H2O acts as an electron donor rather than an 

acceptor on TiO2 surfaces. As the dosage is increased, the work function decreases and 2PP 

intensity increases. The work function change saturates at a high dose of ~ 5 L (data not shown). 

In order to study the polarization dependence of the 2PP spectrum, we also performed 2PP 

measurements using s-polarized light, as well as single-photon photoemission with 6.0 eV light 

(data not shown).  The p-polarized light mainly induces the perpendicular dipolar transition to 

the surface, while s-polarized light induces the parallel dipole transition. The polarization 

dependence of the 2PP spectra is a reflection of the geometry of the surface electronic structures 

of both the occupied initial state and the unoccupied intermediate state. Usually, the p-polarized 

excitation involves a larger transition dipole matrix element, which gives much higher 

photoemission intensity. These additional spectra are almost identical to those measured by p-
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polarized light, except for relatively smaller emission intensity. From this we conclude that the 

spectra in Fig. 5.3 mainly give the electronic features of the occupied Ti bandgap-states near to 

the Fermi level.   

  

 

Figure 5.3 2PP spectra for the progressive H2O adsorption onto a stoichiometric TiO2 surface.  

 

In order to further characterize the work function change upon water adsorption and quantify the 

dosage associated with one monolayer coverage, we employ the Helmholtz model to our 

analysis, where the adsorbate molecules are treated as a surface dipole layer. Therefore, the 

change in the surface chemical potential through the molecular adsorption affects the work 

function according to [78, 91] 

                                             

                                                        
ε

µ
φ effNe
=∆ .    (5.1) 
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So the work function change φ∆  is proportional to the density of adsorbed molecules N and their 

effective dipole moment effµ . Assuming molecules adsorb at every terminal Ti4+ site, at the full 

monolayer coverage the surface density of molecules is N0 = 0.52 ×1015 cm-2 [46]. According to 

the Langmuir adsorption equation )exp(1 xk ⋅−−=θ  the coverage density is defined by 

θ⋅= 0NN , where θ  gives the coverage in monolayer, k  is the adsorption coefficient 

representing all the effects that determine the adsorption probability and x is the molecular 

exposure (dosage) measured in Langmuir (Section 4.2).    

   

Moreover, the dielectric constant of a water film is given  by )1(0 χεε += , where the 

susceptibility χ of the monolayer of molecules has been derived by MacDonald and Barlow in 

terms of the molecular polarizability α  [92]         

                                      

                                                   2/34 NΛ= απχ ,        (5.2) 

 

whereΛ is the molecular structure parameter with approximate value of 9. By combining all of 

the above equations (Eqs. (5.1-5.2) and those in text), we can obtain the change in the work 

function as a function of H2O exposure,  
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Because, the polarizability of free water molecules α  is very small ~ 1.45 × 10-24 cm3 [93], the 

denominator of Eq. 5.3 can be approximated as 0ε , thus the Helmholtz model simplifies to: 

 

                                     
0

0 )]exp(1[
)(

ε

µ
φ

xkNe
x

eff ⋅−−
=∆ .      (5.4) 

 

The same approach also is used to study the adsorption of water on the electron-irradiated, UHV 

annealed, and Ar+ sputtered surfaces. We record the 2PP spectra for each of these surfaces with 

various amounts of water adsorption, and monitor the “work function change” vs. “H2O dosage”, 

which is plotted in Fig. 5.4 (a). The work function change has a range of -0.8 to -1.2 eV, and 

saturates after exposure to ~ 5 L of water. By contrast to oxygen, adsorption of H2O appears to 

be weakly dependent on the defect concentration. The saturation behavior indicates that only the 

initial growth forms a film with ordered dipole moments and in the subsequent layers, the dipole 

moment is random or parallel to the surface. The range of work function changes (-0.8 to -1.2 

eV) reflects the properties of surfaces prepared by different procedures. The largest work 

function change is observed for the most electron withdrawing stoichiometric surfaces.  

Removing surface O atoms by various techniques decreases the electron transfer from H2O 

molecules, and therefore, the saturated magnitude of the work function change becomes smaller. 

As discussed above, water also dissociates at defective surfaces to form pairs of surface –OH 

species, and the dissociative chemisorption at defects does not seem to have substantial effect on 

the work function change [1, 46, 73, 94-96].  
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The solid curve in Fig. 5.4 (b) represents the least-square fit of the work function change with 

water coverage to the functional form of Eq. (5.4) for the electron-irradiated surface. The curve 

reproduces our experimental data well validating the Helmholtz model and Langmuir adsorption 

kinetics. The derived dipole moment effµ  is 05.048.0 ±  Debye and the adsorption coefficient k 

is 1.49 ± 0.07L−1 . Dipole moments derived by fitting the data for other surfaces (differet 

preparation methods) range between 0.45-0.6 D. Our results are consistent with a previous (X-

ray photoemission spectroscopy) XPS measurement of 5.0=effµ  D for water on a 

stoichiometric TiO2(110) surface [94], and with 0.4 – 0.8 D for water adsorbed on Ir(110) [97] 

and Cu(110) [98] surfaces. The effective dipole moment on the metal and metal oxide surfaces is 

considerably smaller than for free water molecules in the gas phase, where 8.1=µ  D [99]. The 

similarities between the effective dipole moments on metal and metal oxide surfaces can in part 

be attributed to the dipole-dipole depolarization, though the structures of water can be 

considerably different [6, 100]. Finally, we note that the agreement with the Langmuir adsorption 

kinetics for at least the first monolayer implies that well-ordered TiO2(110) surfaces under UHV 

are hydrophilic [101]. According to the similar saturation feature displayed in the various work 

function change curves in Fig. 5.4 (a) and the data fitting analysis in Fig. 5.4 (b), we tentatively 

assign the exposure of 1.2 ~ 1.5 Langmuir corresponds to 1 ML coverage of H2O. We will 

discuss this further in the next section.   
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Figure 5.4 (a) The work function change as a function of water dosage for the stoichiometric, 

electron-irradiated, vacuum annealed, and Ar+ sputtered surfaces at T = 100 K. Individual data 

points for each surface are connected to guide the eye. (b) Experimental data (squares) and fitted 

curve (solid line) of the work function change as a function of dosage for the electron-irradiated 

surface according to the Helmholtz model (Eq. 5.4) [29]. 
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5.3 The Unoccupied Electronic Structure for H2O Adsorbed on  

          Defective TiO2 Surfaces 

 

In addition to the work function change, the adsorption of water leads to another more notable 

spectral feature that exclusively appears in 2PP spectra of reduced TiO2 surfaces. Figure 5.5 

shows the change in 2PP spectra when reduced TiO2 surfaces are exposed to H2O.  By contrast to 

the stoichiometric surface in Fig. 5.3, a new peak at the final energy of ~ 5.5 eV appears from 

sub-monolayer to multilayer coverages. The peak reaches the maximum intensity for the 

exposure of ~ 1.3 L water, and decreases to ~ 25% of its maximum value above 3 L H2O 

exposure. This new feature is never observed on stoichiometric TiO2 surfaces. Here, we assign 

that the dosage of 1.3 L at which coverage the 2PP spectrum shows the maximum resonance 

intensity is corresponding to the one monolayer (1 ML) coverage of H2O on the reduced TiO2 

surface [30]. This resonance intensity, proportional to the DOS of the unoccupied states of the 

specific system, is essentially associated with the available free H atoms i.e. dangling H in the 

H2O overlayer structures. The monolayer structure will present the largest population of dangling 

H, which would be partially consumed through the hydrogen bonding with the second layer of 

H2O. The more quantitative discussion regarding to the precise definition of one monolayer (1 

ML) H2O coverage will be involving the DFT calculation of H2O/TiO2 surface (Fig. 5.10) given 

in Section 5.5 [76].   
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Figure 5.5 2PP spectra for successive exposures of reduced (annealed)TiO2(110) surface to H2O. 

 

 

In Fig. 5.6, we plot the 2PP spectra excited either by p- or s-polarized light for the exposure TiO2 

of ~1.3 L i. e. approximate 1 ML coverage H2O. The comparison shows that the water-induced 

peak is mainly excited by p-polarized light. In order to separate the water-induced peak from the 

bulk 2PP signal, we also show the difference between the p- and s-polarized spectra that have 

been normalized in the 4.1-4.3 eV region. Such polarization dependent differences do not occur 

when H2O is adsorbed on stoichiometric TiO2 surfaces, or when O2 is adsorbed on the 

stoichiometric or reduced TiO2 surfaces. Furthermore, one-photon photoemission (1PP) spectra 

excited with 6.0 eV light of the H2O covered reduced TiO2 surfaces do not show this resonance, 

indicating that it is due to an unoccupied intermediate state resonance with a transition dipole 
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moment normal to the surface. These observations clearly point to assignment to a resonance at 

an unoccupied state energy of 2.45 eV that is induced by water adsorption [30].  

 

 

Figure 5.6 2PP spectra of the reduced TiO2 surface before and after deposition of ~1 ML of 

H2O. The H2O/TiO2 spectra are taken with p- and s-polarized light, and are normalized at the 

intensity of the work-function edge. The difference between the normalized p- and s-spectra 

(green) for the reduced surface isolates the additional DOS of the wet-electron state. The final 

energy is measured for the photoelectrons with respect to EF, whereas the intermediate-state 

energy is obtained by subtracting the photon energy of 3.05 eV.   
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Because the H2O induced electron resonance appears only on the reduced surfaces, where the 

H2O molecules dissociate at O atom defects, we consider its assignment based on its dependence 

on adsorption of both H2O and OH. This electron resonance states, in which the non-hydrogen 

bonded -“dangling” H atoms bind and partially hydrate electrons on the surfaces of H2O 

overlayer structures show very similar feature as the dubbed “wet-electron” states in 2D 

environments [102-105],  therefore are defined as “wet-electron” states transiently evolving at 

the H2O/TiO2 interface. The H2O induced wet-electron resonance in the 2PP difference spectra 

of reduced TiO2 in Fig. 5.6, which is absent when H2O is chemisorbed on the stoichiometric 

TiO2 surface (Fig. 5.3), is probably caused by a few percent of H2O that dissociated at O atom 

vacancy defects to form OH [30]. In Fig. 5.7, we plot the work function change and the 

integrated wet electron state intensity vs. the H2O exposure. The resonance intensity attains its 

maximum for 1.35 L of water, where the change of the work function is almost saturated. 

According to both of integrated peak area and our modeling of the work function change, we 

conclude that the exposure of 1.35 L of H2O results in ~ 1 ML coverage. When the H2O 

exposure is increased to attain coverage above 1 ML, the resonance peak area, i.e. the DOS of 

the unoccupied wet electron state decreases, and above 3 L it saturates at ~ 25% of its maximum 

value.     
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Figure 5.7 Plot of the wet electron-state peak area from difference spectra such as in Fig. 5.6 

(circles), and the work-function change (squares) plotted as a function of water exposure. The 

solid line is a fit of the work-function change to the Helmholtz model. The resonance intensity 

reaches its maximum at a coverage of 1.35 L corresponding to the approximately 1-ML H2O.  

 

 

5.4 Temperature Dependence of the Water-induced Resonance   

          Intensity  

 

In order to confirm that the wet-electron state attains the maximum intensity at 1 ML of H2O, we 

also measured 2PP spectra for surfaces where H2O coverage was defined by the surface 

temperature. Temperature programmed desorption (TPD) spectra of H2O/TiO2 surfaces in Fig. 

5.8 from Henderson [46] exhibit peaks at 155, 175 and 270 K, respectively, which have been 

assigned to the desorption of water from the multilayer, the second layer and monolayer films. In 
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addition, for reduced surfaces hydroxyl recombination to form H2O leads to an additional peak at 

500 K (not shown) [46]. 

 

 

Figure 5.8 TPD spectra for different initial exposures of TiO2 (110) surface to water at 135 K. 

The background spectrum corresponds to exposing the crystal to the background chamber 

pressure (2.0 × 10-10 Torr) for 40 min [46]. 

 

 

After dosing 3.7 L of H2O onto a reduced surface, we measured 2PP spectra at several 

temperatures with both p- and s-polarized light. In Fig. 5.9, we plot the excess DOS arising from  
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the difference spectra of the “wet-electron” state for each temperature. The peak intensity is 

initially weak, and it increases to a maximum at 180 K after the H2O multilayer film is desorbed 

above 175 K to expose the first monolayer. The wet-electron DOS decreases above 180 K and is 

nearly extinguished when the remaining H2O is desorbed at 300 K. The 180 K data confirm that 

the resonance maximum occurs for ~ 1 ML H2O coverage. With only OH groups remaining on 

the surface at 300 K, a weak feature, which appears as the low energy wing of a peak that exists 

above 3.05 eV, is observed. Based on the H2O coverage dependence of the wet electron 

resonance and its appearance only on the reduced TiO2 surfaces we conclude that both the 

minority OH and majority H2O species are necessary to observe the “wet electron” resonance.   

 

 

Figure 5.9 The p-s polarization difference spectra recorded at different temperatures after 

exposing the reduced TiO2 surface to 3.7 L of H2O below 100 K. According to the TPD spectra 

in Fig. 5.8, 1-ML coverage of H2O is attained at 180 K, where the “wet-electron” state has 

maximum intensity. Only OH groups remain on the surface above 300 K.    
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5.5  DFT Electronic Structure of H2O/TiO2 Surfaces 

 

To assign the wet-electron state to specific adsorbate-substrate structures, J. Zhao et. al. 

performed plane-wave pseudo-potential DFT calculations for associatively chemisorbed H2O at 

+4
5cTi  sites and H adsorbed on bridging O sites of TiO2 for various coverages and structures [76]. 

Density function theory (DFT) was developed by W. Kohn and L. J. Sham to describe the 

electron distribution in a homogenous many-body interacting system as a function of the electron 

density n.  Details of the DFT method are given in Appendix D [106]. The most relevant 

structure to our experiment is 1 ML H2O + 0.5 ML H, where intervening bridging O atoms 

hinder orbital overlap between the neighboring OH species. Because, these clusters which are 

representative of the experimentally attained low-OH coverage surfaces, have a calculated 

unoccupied energy level at 2.4 eV in good agreement with the experimental measurement.  

 

 

The calculated distribution of orbitals for the lowest energy adsorbate-localized unoccupied 

states for 1 ML H2O + 0.5 ML H at 2.4 eV is shown in Fig. 5.10. The unoccupied states of the 

adsorbate-covered surfaces are either associated with the +4Ti  ions, which form the conduction 

band of TiO2, or the dangling H atoms on OH and H2O. For each H2O and H coverage and 

structure, we found unoccupied adsorbate-localized states, where the unoccupied orbitals span 

clusters of several dangling H atoms, involving single OH with two or more H2O molecules. The 

association of electrons with the dangling H atoms is well known from the studies of hydrated 

electrons in water [107] and its clusters [102-105, 108, 109]. Once again (defined previously in 
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Section 5.3), based on the analogy to the electrons partially hydrated in small H2O clusters, we 

attribute the observed water-induced resonances to the partially hydrated or the so called “wet-

electron” states that we calculated for TiO2 surfaces. 

 

 

 

Figure 5.10 The optical molecular structure for the 1 ML H2O + 0.5 ML H covered TiO2 surface 

at 2.4 eV above the EF (left), and the orbital distribution of the same structure with superimposed 

unoccupied state probability (right). The adsorbate orbitals are spread over clusters involving one 

OH and one H atom each contributed by two adjacent H2O molecules. Red, Green, Blue atoms 

represent H, O, Ti atoms respectively, and various hydrogen bond separations are indicated [30, 

89]  
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The DFT calculations of other structures and coverages show that the minimum wet electron 

energy is attained when there are adjacent OH sites on bridging O rows, i.e. for 1 ML H 

structures, where the unoccupied state energy could be as low as 1.5 eV. Such adjacent OH 

occurring on the experimental surfaces could be responsible for the characteristic low-energy tail 

in the difference spectrum in Fig. 5.6 [110]. Moreover, the calculated wet electron state energy 

of 3.5 eV for 1 ML H2O explains why the resonance cannot be excited with 3.05 eV light for the 

stoichiometric surfaces. Because H2O helps to stabilize the wet-electron state on the minority 

surface OH species, when H2O desorbs above 300 K, the resonance energy increases above 3 eV, 

and cannot be observed by our laser. All the different wet-electron energies of the various 

corresponding H2O/H adsorption structures along with the number of dangling H atoms in each 

hydration cluster are given in Fig. 5.11, and more detailed information on the theoretical study 

can be found in [76].   

 

 

Above 1 ML H2O coverage, the dangling H atoms on the OH species are partially consumed by 

the hydrogen bonding with the second layer water molecules thereby removing the attractive 

sites for stabilizing electrons in the H2O overlayer. The removal of dangling H atoms at higher 

coverages has been reported in HREELS spectra of H2O/TiO2 surfaces [46], and was confirmed 

in our 2PP studies for the multilayer of H2O adsorption causing the decrease of the resonance 

intensity over one monolayer coverage, presented in previous sections [30].  
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Figure 5.11 The correlation of the wet-electron energy for different coverages of H2O and H 

adsorbates with the number of dangling H atoms in each hydration cluster. The infinite limit 

corresponds to the 1 D chain of H atoms on the bridging oxygens [76].   

 

 

5.6  Atomic-H Adsorption on TiO2 Surface and co-adsorption with H2O 

 

In section 5.3, we discussed the properties of the H2O molecule induced resonance, i.e. the “wet 

electron state” [30, 76], which appears on the defective (i.e. reduced) TiO2(110) surfaces. 

However, the absence of the molecular resonance on the H2O covered stoichiometric surface 

(Fig. 5.3) tells us that this feature appears only when –OH groups are created on reduced surfaces 

through the dissociation H2O at the bridging oxygen vacancy sites and in addition the molecular  

water is chemisorbed at the 5-coordinate Ti terminal sites. Here, we present an alternative 

protocol to create the wet-electron state: Exposing of the stoichiometric surface to H atoms 
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produced by flowing H2 over a thermal cracking source, followed by molecular water deposition, 

which presents a separate route to producing surfaces with minority -OH species co-adsorbed 

with monolayer H2O to confirm the proposed assignment of the wet-electron state.  

 

 

Here is our experiment to generating the hydroxylated (or H-terminated) TiO2 surface. The 

stoichiometric surface is prepared and cooled down to below 100 K, then exposed to hydrogen 

gas introduced by back-refilling method through a leak valve. H atoms are generated through 

thermal cracking of H2 by a tungsten wire with a diameter of 0.38 mm, which is heated to ~2000 

K. The distance between the wire and the sample is around 50 mm. This experimental condition 

is comparable to that used by Suzuki, et al. [111] for the same application. However, we apply 

much higher H2 pressure (2 x 10-7 mbar), which results in a shorter exposure time (up to 4 min).    

 

 

In Fig. 5.12, we observe in 2PP spectra that the work function of TiO2 is continuously down-

shifting upon the exposure to the H atom flux to form the bridging –OH. Before exposing the 

surface to H atoms, we also recorded 2PP spectra during the exposure to molecular hydrogen at 

high pressure as control measurement (data not shown). We observed that the 2PP spectra were 

barely changed, indicating the hydrogen molecules H2 do not dissociate to an experimentally 

significant extent on TiO2 surface due to a high energy barrier for molecular chemisorption. 

Therefore, the spectral changes in Fig. 5.12 are mainly due to the exposure to atomic H from the 

thermal cracking source. More over, at our experimental condition, the work function change 

(Fig. 5.12) due to chemisorption of H flux does not stop or saturate yet, indicating the H    
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Figure 5.12 2PP spectra for progressive exposures to atomic H onto a stoichiometric TiO2.  The 

estimated H-atom coverage is < 0.25 ML.  

 

 

coverage is relatively smaller compared to the highest H coverage (0.23 ML) reached by Suzuki 

et al [111]. As we know, the saturation of the work function change for O2 or H2O adsorption 

corresponds either to the complete titration of oxygen vacancies on the surface or the 

establishment of the monolayer structures, therefore our H dosage is actually corresponding to a 

minority of -OH terminals on the TiO2 surface.   
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Figure 5.13 The STM image for H-terminated surface, where the 20 eV electron irradiation 

decreases the concentration of -OH population and exposure of the H-flux up to a half hour 

reaches the saturation at 0.23 ML [111].  

 

 

Suzuki et al determined the H-coverage according to their STM in Fig. 5.13, where the Ar+ 

sputtered-annealed surface is essentially covered by submonolayer of -OH, either from cracking 

of H2 molecules by Ar+ ions, or the dissociation of H2O at defects. By using a low energy 

electron irradiation (~ 20 eV), the H atom features are greatly decreased, without damaging the 

surface. As shown on the left side of Fig. 5.13 (c), the H atom density is decreased from 0.13 to 

0.04 ML during the first 60-min of electron irradiation. Further exposure does not change the H  
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atom coverage. After the electron treatment, exposing the surface to the H atom source increases 

the H atom concentration to a saturated coverage at ~ 0.23 ML as deduced from the STM images 

(Fig. 5.13). Among those surface species, the majority are bridging -OH, which can be removed 

by 20-eV electron irradiation; the minor species (0.04 ML) that remained on the surface after 

electron irradiation can be assigned to H adatoms trapped at oxygen vacancies.  

 

 

Figure 5.14 The comparison of 2PP spectra excited with s- (blue) and p-polarized (red) light for 

different exposures of the hydroxylated TiO2(110) surface to H2O molecules.  

 

 

In Fig. 5.14, we show the effect of exposure of the minority H terminated (generated from Fig. 

5.12) stoichiometric surface to different dosages of H2O molecules from 0 up to 2.25 Langmuir 

at 90 K. Before the introduction of H2O, there is a small difference between the normalized p- 
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and s-polarized 2PP spectra. The small difference is probably caused by the H2O formed in the 

UHV chamber by the interaction of H atoms with the chamber surfaces. With additional 

exposure to water molecules, the difference becomes larger and saturates above 1.8 L. The 

additional DOS introduced by H2O adsorption is very similar in energy and its dependence on 

the H2O exposure to the wet electron states produced through exposure of reduced TiO2 surfaces 

to H2O. Therefore, this alternative protocol can also create wet-electron states, and it confirms 

our assignment of the wet-electron DOS to the electron solvation by the minority of -OH and 

majority of H2O species on the surface. However, the central energy for the wet electron states 

generated by this protocol is somewhat (0.2 eV) higher than that achieved through the 

dissociation of H2O on reduced TiO2 surfaces [30]. This difference may be related to differences 

in the -OH coverage achieved by the two protocols, which apparently affects the character of the 

wet electron states.  

 

 

5.7  Charge Transfer Dynamics at the H2O/TiO2 Interface  

 

In order to measure the lifetimes of the wet-electron states, we performed time-resolved 

measurements at various energies for the TiO2 surface after different exposures to H2O. Fig. 5.15 

(a) indicates the measurement energies at the wet electron resonance induced by ~ 1 ML H2O for 

the time-resolved interferometric two-photon correlation I2PC scans [2] which are shown in  Fig. 

5.15 (b). We compare the I2PC scans averaged over the optical phase at different energies, and 

find out that they were only weakly dependent on the measurement energy. So this feature 
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demonstrates that the photoexcited wet-electrons in the interfacial molecular structures decay 

uniformly back to the TiO2 substrate surface.    

 

 

 

Figure 5.15 (a) 2PP spectrum for ~ 1 ML H2O covered TiO2(110) surface with the energies for 

time-resolved measurements indicated by color coded arrows. (b) The corresponding I2PC scan 

envelopes in the order of decreasing energy from top to bottom.   
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In order to calculate the ultrafast time scales for the decay of the wet electron states, in Fig. 5.16 

we plot the averaged I2PC scans and their fits to an optical Bloch model [27] assuming single 

exponential decay kinetics for the bare TiO2 surface, and reduced TiO2 surfaces with 0.5 and 1.1 

ML H2O coverages. All surfaces displayed only weak dependence on the measurement energy; 

however, the adsorption of H2O noticeably increased the I2PC width and therefore implies a 

finite intermediate-state lifetime. The I2PC scan for the bare surface is identical to the pulse 

autocorrelation, given by the two-pulse correlation from the Molybdenum sample, indicating that 

the 2PP process most likely occurs via virtual intermediate states. The wet-electron lifetimes 

increase to 110 ±  and 114 ±  fs for exposures of 0.5 and 1.1 ML of H2O, respectively, and 

saturate at ~15 fs for >1 ML coverage. Because their energy relaxation by electron inelastic 

scattering in H2O overlayer is unlikely to be so fast, wet electrons probably decay by resonant 

charge transfer into the conduction band of TiO2. And the inserted diagram in Fig. 5.16 gives 

more details regarding to the two-photon photoemission (2PP) process occurring at the H2O/TiO2 

interfaces. The electron distributions are excited exclusively (using Franck-Condon 

approximation [19], which assumes that the nuclei in the system are frozen during the electronic 

transition) from the bandgap δ−+4
5cTi  DOS (Section 4.2) to the H2O-OH chemisorption induced 

wet-electron state, followed by a decay process within 15 fs through the resonant charge transfer 

into the conduction band of TiO2 substrate. The measured lifetime corresponds to only two 

periods of O-H stretching vibration, therefore the nuclear motion of H2O molecules to more 

favorable electron hydration structures cannot compete with the resonant charge transfer.   
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Figure 5.16 Phase-averaged I2PC scans for the bare reduced TiO2 surface (red), and after its 

exposure to 0.5 (orange) and 1.1 ML (green) of H2O. The black lines represent fits with a three-

level optical Bloch equation model assuming single exponential decay kinetics for the 

intermediate state and using the experimentally measured pulse autocorrelation (blue). The bare 

surface intermediate-state lifetime is too short to determine, and the lifetimes for 0.5 and 1.1 ML 

H2O covered surfaces are 110 ± and 114 ± fs, respectively. The insert illustrates the relevant two-

photon process associated with the reverse charge transfer (RCT) occurring at the intermediate 

state.  
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Chapter 6 

 

 

Electron Solvation in Methanol Overlayers on TiO2 

Surfaces 

 

 

In order to probe the fundamental photocatalytic processes of TiO2 in water, in the previous 

chapters we described the 2PP spectroscopy studies of H2O/TiO2(110) surfaces. 2PP spectra 

provide information on both the occupied and unoccupied electronic states near the Fermi level, 

such as the formation of δ−+4Ti defect states near the conduction band minimum, and the changes 

of the work function through the reduction of the sample by various means. Remarkably, for 

reduced H2O/TiO2(110) surfaces we also observed a pronounced peak in 2PP spectra due to 

adsorbate-induced intermediate state at 2.45 eV above EF [30]. Because this peak can only be 

observed when TiO2 surface is hydroxylated, and reaches the maximum intensity at 1 ML 

coverage of water, we assigned it to the charge transfer from the reduced five-coordinate 

δ−+4
5cTi ions to the excited hydrated electron states centered on the neighboring -OH groups and 

stabilized by coadsorbed H2O molecules. 
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In order to further elucidate the nature of molecule induced resonances and to understand how 

organic molecules interact with the TiO2 surfaces, we use 2PP spectroscopy to study the system 

of CH3OH/TiO2(110). Methanol is the simplest protic organic adsorbate with well-known liquid 

and interfacial electron solvation, adsorption and photochemical properties. In the photocatalytic 

splitting of water, a small amount of methanol significantly accelerates reaction rate by 

sacrificial decomposition [1, 11, 12, 79]. Infrared time-resolved spectroscopy revealed that 

lifetimes of photogenerated electrons on TiO2 surfaces are extremely long in the presence of 

methanol, because it acts as an efficient trap for the photogenerated holes [112].    

 

6.1  Methanol Adsorption Structure 

 

Firstly, we consider the adsorption structure of methanol on TiO2(110) surface. Figure 6.1 

illustrates our proposed model for the possible adsorption modes of methanol based on the 

conclusions of previous experimental measurements [113] and theoretical calculations [114]. 

Methanol can chemisorb at the bridging oxygen vacancy sites, where it titrates the vacancies and 

dissociates into methoxy (CH3O-) and hydroxy (-OH) groups. After the defects are titrated, the 

methanol molecules bind at the terminal +4Ti sites. According to both experiment [113] and 

theory [114], it partially dissociates (deprotonates) leaving CH3O- at the δ−+4
5cTi sites and 

transferring a proton to form –OH at the bridging sites.  This additional dissociation process 

results in a higher –OH coverage than that can be achieved for H2O covered surfaces. 

Henderson’s temperature programmed desorption (TPD) results along with Electron Energy Loss  
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Spectroscopy show that both the molecular and dissociated species co-exist on CH3OH covered 

TiO2 surfaces [113]. However, the molecular methanol can adsorb at the 5-fold terminal sites, 

whereas the methoxy can adsorb either in the terminal or bridging sites. Bates et al. [114] 

performed the first-principles calculations of the structure of 1 ML CH3OH/TiO2, and they found 

that among the various absorption structures, the mixed structure, including 0.5 ML molecular 

CH3OH and 0.5 ML dissociated species (CH3O- and -OH)  is the most stable structure.  

 

  

Figure 6.1 Possible adsorption sites and structures of CH3OH on TiO2(110) surface. 

 

 

In order to understand the unoccupied electronic structure of chemisorbed methanol, J. Zhao 

performed the DFT calculation for 1ML CH3OH/TiO2(110) using the VASP code [115, 116]. In 

Fig. 6.2, we show several typical calculated molecular structures, where the overall adsorption 

energies for the molecular and the fully-dissociated structures (upper) are -0.68 and -0.58 eV per  
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unit cell respectively. However, the energies for the two possible half-dissociated structures in 

Fig. 6.2 (below) of -0.86 or -0.81 eV are even larger [117]. Based on previous experiments and 

our calculations we conclude at 1 ML coverage CH3OH molecules partially dissociate into the 

mixed structures of CH3OH, CH3O- and –OH, to minimize the overall adsorption energy for the 

whole system. According to Bates and Gillan, the barrier for the proton transfer from the 

molecularly chemisorbed to the deprotonated form is negligible (less than 0.05 eV) [114]. 

      

 

Figure 6.2 Several calculated structures for the chemisorption of CH3OH on TiO2(110) surface 

and the respective adsorption energies [117]. 
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6.2  CH3OH Adsorption Induced Wet-Electron States 

 

We investigate the unoccupied electronic structure of CH3OH on TiO2(110) surfaces in order to 

provide more information on the wet electron state that was observed for H2O/TiO2(110) 

surfaces. 

 

 

Figure 6.3 2PP spectra for a series of exposures of CH3OH on TiO2 surfaces. 

  

In Fig. 6.3, we plot a series of 2PP spectra for various exposures of CH3OH on a reduced 

TiO2(110) surface. The 2PP spectra indicate substantial decrease in the surface work function as 

the CH3OH coverage increases. The rate of decrease is initially fast, and eventually approaches  
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saturation. Similar to H2O, the change of work function can be fitted by the Helmholtz model 

[29], where the effective dipole momentum of CH3OH is calculated to be 0.72 D, which is 

significantly larger than for H2O (0.5 D). Another distinct feature in Fig. 6.3 is the broad CH3OH 

coverage dependent resonance with final state energies in the range of 5.0 ~ 5.8 eV. Similar to 

H2O, the resonance peak area increases with CH3OH coverage upon initial exposure, however, 

above certain exposure, the trend reverses and the peak area starts to decrease to a saturation 

value of 20~30% of its maximum value. However, by contrast to H2O the resonance peak energy 

decreases monotonously with the CH3OH dosage.  

 

 

 

Figure 6.4 Work function change fitted by Helmholtz model and the resonance peak area for 

increasing exposure of TiO2(110) surface to CH3OH. The arrows indicate the appropriate axis for 

different data. 

 



 132 

 

In Fig. 6.4, we plot the normalized integrated resonance peak areas for different exposure of 

CH3OH, and similar to H2O assign one-monolayer coverage (1 ML) to the point where the peak 

area achieves the maximum. At this point the work function change of about -1.2 eV approaches 

saturation. The work function shift of -1.2 eV is almost twice as large as that of H2O, indicating 

that CH3OH molecules induce larger charge transfer to the surface and possess a larger dipole 

moment than H2O molecules.  

 

 

Figure 6.5 The normalized 2PP spectra of (a) reduced and (b) stoichiometric TiO2(110) surfaces 

exposed to 1.1 L methanol measured with p- (thick lines) and s-polarization (dashed lines) at 100 

K. The difference spectra (thin lines) show the methanol-induced resonance [118].  
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Fig. 6.5 shows 2PP spectra of the (a) reduced and (b) stoichiometric TiO2 surfaces at 

approximately 1 ML coverage measured with p- and s-polarization. The spectra are normalized 

at the work function edge, and their difference is shown with thin solid lines. Like for H2O/TiO2, 

this procedure isolates the methanol-induced resonance. However, unlike water, the peak is 

observed for both the stoichiometric and annealed surfaces. We note, however, the peak is 

considerably stronger for the annealed surface.  

 

 

The polarization dependence of the 2PP spectra in Fig. 6.5 indicates that the transition dipole 

moment is directed normal to the surface. The methanol induced resonance does not appear in 

spectra measured with a single 6.1 eV pulse-excitation, so it must represent an unoccupied 

intermediate state, which mediates the 2PP process for resonant excitation from the δ−+4
5cTi defect 

states. Consequently, the resonance peak implies the adsorption of methanol introduces a new 

state at ~2.3 eV above the Fermi level for both the stoichiometric and reduced surfaces. The 

energy, coverage dependence, and polarization dependence of the methanol induced resonance 

peak is similar to that observed for H2O adsorbed reduced TiO2 surfaces (Section 5.7). Based on 

this comparison, we assign it to the charge transfer (CT) excitation from neighboring terminal 

δ−+4
5cTi ions to the methanol overlayer [119-121]. The main difference between methanol and 

water is that for the former the resonance peak appears on both the reduced and stoichiometric 

surfaces, while for the latter, it only appears on reduced surfaces. This difference can be 

attributed to lack of dissociation of water on stoichiometric surfaces, while methanol partially  
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dissociates on both surfaces.  The different propensity of H2O and CH3OH towards the 

dissociation on TiO2 is in agreement with the previous IR and TPD measurements of Henderson 

et al [113]. In order to further characterize the methanol induced resonance, we investigate its 

dispersion along the [001] (parallel to the bridging oxygen rows) and ]011[
−

 (perpendicular) for ~ 

1 ML coverage (data not shown). We found that the methanol induced resonance is non-

dispersive, indicating that the excitation is localized [118].   

 

 

6.3 Electron Dynamics at the CH3OH/TiO2 Interface: Energy and      

         Coverage Dependence 

 

We perform time-resolved measurements on ~1.2 ML CH3OH covered TiO2 surface in order to 

characterize the time scale of the electron decay from the photoexcited CH3OH/TiO2 overlayer 

[2, 75] (Fig. 6.6 (a)). We record interferometric two-pulse correlation signals (I2PC) for a range 

of energies near the methanol resonance (Fig. 6.6 (b)). The representative phase averaged I2PC 

scans strongly depend on the observation energy: at energy levels above the peak maximum the 

signals follow the single exponential decay kinetics. However, at the lower energy levels, 

especially below the resonance energy, the dynamics obviously deviate from the single 

exponential decay kinetics, including at least two independent decay time scales. The electron 

kinetics are substantially different from the observed “wet-electron” dynamics in the H2O/TiO2 

system.       
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Figure 6.6 (a) 2PP spectrum for ~1.2 ML covered CH3OH surface. Colored arrows indicate the 

energies for which time-resolved measurements in (b). (b) The Phase-averaged interferometric 

two-photon correlation signals for energy levels indicated in (a). 

 

 

Time-resolved measurements for different CH3OH coverages (from ~ 0.3 ML up to ~ 2.0 ML) 

indicate that the excited state dynamics strongly depends on the CH3OH coverage.  In Fig. 6.7 

we compare phase averaged I2PC signals at the resonance energy for each of the measured 

CH3OH coverages. Compared with the pulse autocorrelation signal, the normalized I2PC signals  
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have similar central shapes indicating the coherence decay time <1 fs.  The much broader and 

coverage dependent wings indicate much longer and more complex population dynamics. By 

contrast to the wet-electron feature in H2O/TiO2 system, the typical I2PC at resonance energy for 

different CH3OH coverages are very different: The decay time of the I2PC increases 

significantly as the CH3OH coverage increases; at the higher CH3OH coverage, the substructure 

in the autocorrelation trace due to the nonlinear dispersion is washed out due to the longer 

electron decay time.  However, at and above 1 ML coverage a distinct new sub-peak feature 

appears, exhibiting coverage-dependent non-exponential decay kinetics. 

 

 

 

Figure 6.7 The typical normalized I2PC scans for different coverages of CH3OH adsorbed TiO2 

surfaces (from 0.3 ML up to 2.0 ML). The arrows at the low-right corner indicate that the 

appropriate offsets are used. The pulse autocorrelation (AC) trace is given in black.  

 



 137 

 

In order to investigate quantitatively and develop a model of the wet-electron dynamics on 

CH3OH/TiO2 surfaces, we perform systematically time-resolved measurements for a spectrum of 

energies across the methanol resonance induced by various coverages and present the results in 

three dimensional (3D) contour plots in Fig. 6.8. These plots are constructed from 2PC 

measurements recorded in 0.1 eV intervals, which are combined to provide a map of 2PP 

emission intensities at different energies and pump-probe delays.  These 3D plots in Fig. 6.8 

obtained for various CH3OH coverages show that the CH3OH induced wet-electron state density 

is spread over a broad energy range of 0.5 ~ 0.7 eV, and that the decay time scales increase with 

the CH3OH coverage, from roughly 35 fs at ~0.3 ML to above 200 fs at ~2.0 ML. The 3D plots 

in Fig. 6.8 are composed of 2PC scans spanning around 20 different energies. The 2PP intensity 

scale is given by the bar code in the figure. The 3D plot clearly show that the lifetimes are long 

(relative to e.g. clean surface) and coverage dependence, while below the resonance, where the 

2PP processes mediated by virtual intermediate states, the 2PC trace widths are laser pulse width 

limited. We will employ such 3D plots to present and analyze the electron dynamics in the 

methanol overlayer structures on the TiO2 surfaces in the following sections.  
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Figure 6.8 The 3D contour plots of the 2PP intensity profiles for the different amounts of 

CH3OH adsorbed TiO2 surfaces as a function of pump-probe delay. The left axis indicates the 

final state energy, and the right axis the intermediate state energy. The 3D plots are constructed 

from two-pulse correlation measurements (2PC) taken at 0.1 eV intervals. The bar graph on the 

right represents the normalized intensity scale where the peak intensity at each coverage is set to 

1.0. 

 

 

6.4  The Kinetic Scheme for Simulating the CH3OH Dynamics 

 

Besides the remarkable energy (Fig. 6.6 (b)) and coverage dependence (Fig. 6.7) revealed in 

measurement of the wet-electron dynamics on the CH3OH deposited TiO2 surfaces, we also find  
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that in a certain coverage and energy range the 2PC signals do not obey the single exponential 

decay kinetics. This is especially true at the energy levels below the resonance energy for 

CH3OH coverages of >1 ML. More detailed investigations and analysis of the CH3OH/TiO2 

system in the next Section (Section 6.5) indicate the CH3OH related electron dynamics include 

both population and energy relaxation processes, as well as a pronounced deuterium isotope 

effect. Obviously, this complex kinetics cannot be explained by the standard 3-level scheme 

involving single adsorbate localized intermediate state [27]. In order to simulate the experimental 

data and retrieve the time decay constants for the various relevant kinetic processes, we modified 

the standard Optical Bloch Equation (OBE) model by proposing two close lying intermediate 

states (Fig. 6.9 (a)). In the proposed model, the ground states 0 are the occupied bandgap states 

below the Fermi level, the final states 2 are the free electron states above the vacuum level as 

before. The intermediate states 1 and 1* represent the intermediate molecular resonance excited 

states that are responsible for the observed dynamics [31].  

 

 

Now, let us consider the population decay of the intermediate energy states following the photo-

excitation process. Initially, the photoexcitation transfers electrons from the band gap DOS and 

populates mainly the higher intermediate state 1, however the simulation shows the lower energy 

state 1* could also be mildly populated (< 30%). After excitation, the population of the higher 

energy level N1 partially transfers into the lower energy level N1* through an energy relaxation 

process with a time scale *11
1T . In parallel with the energy relaxation from 1 → 1*, the population 

relaxation occurs from both states by the reverse charge transfer (RCT) [3] to the CB of the TiO2  
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substrate, similar to the H2O/TiO2 system. The excess electron population decay times in both of 

these excited states through the aforementioned RCT process are denoted as 1
1T  and *1

1T  

respectively. In Fig. 6.9 (a), the coherence decay time scales (e.g. 01
2T ) are indicated as well.   

 

 

Figure 6.9 (a) The modified OBE model [27] used to simulate the non-exponential decay 

kinetics, where the ground state 0 is below EF, the final state 2 is above EVAC, and the 

intermediate states include two separate energy levels 1 and 1*. (b) Decomposition of the 

coherent/incoherent components of the electron dynamics at the higher intermediate energy 

level )(1 tN , and (c) at the lower energy level )(*1 tN . The fitting parameters are given in the text. 
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According the model in Fig. 6.9, a set of differential equations (Eqs. 6.1) can be used to describe 

the photoexcited electron population and energy relaxation dynamics at the intermediate states 1 

and 1*, where we simplify the notation for the decay parameters in Fig. 6.9 (c) by the notation: 

 

       *11
*11

1*1
*1

11
1
1 ,,' τττ →→→ TTT .  

 

The differential equations describing the evolution of 1 and 1* are given by: 
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Where the free parameter α  is used in the second equation to model a continuum of the 

intermediate excited states with a two-state model. The population decay rate at the higher 

energy level 1N  includes the contribution from both the population relaxation from the 

molecular overlayer through RCT ( '
1τ ) and the energy relaxation to 1* ( *11τ ) [30, 31]. However, 

since both processes lead to the decay of state 1, the combined effect can still be simulated by 

single exponential decay kinetics
*1111

1
'
11

τττ
+= . The total decay time of the primary 

photoexcited state 1 corresponds to the rise time of the 1* state. The population kinetics of the 1* 

state include the energy relaxation from the higher lying 1 state, as well as the exponential decay 

through both RCT and a significantly slower energy relaxation process probably related to with  
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the electron solvation. Since the 1* state decay kinetics again include both energy and population 

decay, we can combine these two rates into a single process. Thus, the intermediate state 

populations 1 and 1* evolve according to: 

                                                             

                                                                                                 (6.3) 
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where 0
1N  and 0

*1N  are the initial amplitudes, and 1τ  and *1τ  are electron energy and population 

decay time scales for 1N  and *1N  respectively. For N1*, the extent of the rising amplitude and 

the time that the population reaches its peak are determined by both the parameter α  and the 

energy relaxation time scale *11τ . We will employ this model to analyze the methanol dynamics 

and discuss the physical meaning of the various time scales in Equation (6.3) and (6.4) in next 

section.  

 

 

In order to simulate the experimental 2PC scans, the coherent component (mainly involving the 

decoherence time scale between ground state and intermediate state i.e. 01
2T ) of the 2PP process 

is added to the incoherent components described by Eqs. 6.3 or 6.4, and the sums are convoluted 

with the pulse autocorrelation: 
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The parameters 1c and 2c are variable coefficients used to obtain the correct amplitudes of the 

coherent and incoherent components of the 2PC signals for the N1 or N1* dynamic, and 0c  gives 

the baseline.  The ratio of the coherent and the incoherent contribution is determined by the 

photo-excitation and electron decay kinetic in each specific system [122].  

 

 

 

 

6.5 Charge Transfer Dynamics, Isotopic Effect, Solvation and     

          Proton-Coupled Electron Transfer Mechanism 

 

         

In previous sections, we introduced the CH3OH coverage dependent dynamics by comparing the 

2PP signal intensities at different methanol coverages or various representative photoelectron 

energies (Fig. 6.8). In order to understand the electron dynamics in the CH3OH overlayer more 

precisely, we perform 2PC measurements for three comparable coverages of CH3OH (left-side in 

Fig. 6.10) and CH3OD (right-side) from <1 ML to ~2 ML, and present the 3D plots of 2PP 

intensity decay profiles plotted as a function of both energy and pump-probe delay. The  
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motivation for performing 2PC measurements on the deuterated molecule is the well-

documented 2  slower inertial component of solvation of electrons in D2O as compared with 

H2O. The observation of such an isotope effect would provide additional information on the 

molecular response to the injection of excess electrons.  

 

 

 

In Fig. 6.10, each 3D plot is constructed from the 2PC intensities at 14 different energies 

encompassing the methanol resonance. Horizontal cuts through the 3D plots (e.g. Fig. 6.10 (1b)) 

give the original two-photon correlation (2PC) scans. By simulating the 2PC scans based on the 

above model  for both the H and D substituted molecules we can present and compare the 

extracted time constants for related processes in Fig. 6.11. As can be seen in Fig. 10, the 

proposed model provides a good representation of the observed dynamics. The deduced decay 

parameters from the simulation show the following trends: i) at low coverages (≤1 ML), the 

methanol resonance decays in <30 fs independent of energy or isotopic substitution; ii) above 1 

ML coverage both the excited state population and its energy decay with fast and slow 

components; iii) only the slow decay components depend strongly on the methanol coverage; 

and iv) most significantly, the slow population decay shows a pronounced deuterium isotope 

effect. 
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Figure 6.10-1 
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Figure 6.10-2 
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Figure 6.10-3 

 

 

Figure 6.10 (1a, 2a, 3a) The 3D contour plots of the 2PP intensity decay profiles of the wet-

electron states on CH3OH adsorbed TiO2(110) surfaces with coverages of ~0.85 ML, ~1.5 ML 

and ~2.0 ML). (1b, 2b, 3b) The original two-pulse correlation signals (2PC) used to construct 

the 3D plots for several characteristic energies near the wet electron resonance that are indicated 

by color coded horizontal lines in parts a). The solid lines show the simulation of the 

experimental results according to the model described in Fig. 6.9. (1c, 2c, 3c) are the wet-

electron population time-evolution profiles at each of the representative energies used in the 
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simulation, coded with same colors in (1b-3b). The black arrows in each of the 3D plot indicate 

the coverage independent feature of the energy relaxation from N1 to N1* in a time constant of 30 

~ 40 fs. The corresponding measurements or simulations for the CH3OD dynamics are presented 

on the right side of CH3OH results. 

 

 

 

The results presented in Fig. 6.11 show the characteristic time scales for the fast and slow decay 

components for the protonated and deuterated molecules. Based on the time scales, the nature of 

the decay process, and the isotope effect we attribute the physical and chemical interpretation to 

the observed the electron dynamics in the methanol overlayer. As we discussed previously, the 

dynamics of electrons described by )(1 tN involve both the population decay and energy 

relaxation to the 1* state. The population decay probably occurs by RCT into the conduction 

band of TiO2 as for H2O/TiO2.  Simultaneously, N1 decays in energy by ~0.1 eV to a quasi-

stationary state 1* on a time constant τ
11*
 within 30 – 40 fs (Fig. 6.10). According to Fig. 6.11, 

the time scale for the decay of N1 is essentially isotope independent, since the slope for τ1 of 1.1. 

Because the photoexcitation involves the charge redistribution from the Ti5c
+4 -δ  sites to the 

methanol overlayer, the fast energy relaxation process probably involves polaron formation. The 

photoinduced charge redistribution prompts the inertial screening response of the lattice ions.  

This assignment is consistent with the energy and time scales for polaron formation through the 

excitation of ~24 THz longitudinal optical phonons in TiO2 crystal [123]. Substantial electron-

lattice correlation in TiO2 is also evident in both the electronic structure of bridging oxygen atom 
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vacancy defects and the transient photoconductivity of TiO2 [10, 123]. This inertial dielectric 

response stabilizes N1* with respect to the population decay by RCT. 

 

 

The observed trends for the evolution of the 1* state given by N1*(t) can be used to interpret the 

photoelectron dynamics below the CH3OH resonance energy (e.g. 2.05 eV, Fig. 6.10 (2b*)) for 

the 1* state. A rise time τ1 and a slower RCT population decay kinetics τ1* with coverage and 

isotope dependence, characterize the 2PC signal at this energy. The energies corresponding to 

the 2PP intensities maximum relaxes first because of the fast polaron formation in 30-40 fs, and 

for longer delays, on account of a much slower process with time scale of > 200 fs (e.g. Fig. 6.10 

(2a*)). Based on similar 2PP measurements for CH3OH/Ag(111), we attribute this energy 

relaxation process to the injected charge solvated by CH3OH molecules with a time constant τ sol  

[124]. Thus, the total decay rate of N1*(t) can be described as a joint effect including a reverse 

charge transfer process and injected charge solvation in the CH3OH overlayer,  

solRCT τττ
111

*1

+= .  

 

 

By contrast to the decay of the primary, photoexcited state 1, the dynamics described by  N1*(t) 

exhibit a strong deuterium isotope effect, according to the slope of 05.02.2 ±  reported in Fig. 

6.11.  Since solvation in liquid methanol is isotope independent  [125, 126], the source of the 

observed isotope effect lies most likely in the RCT dynamics.  Isotope substitution can affect 

rates of kinetic processes through different mechanism [31], which may be differentiated through  
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Figure 6.11 (a) The τ1 and τ1* lifetimes determined for comparable coverage and observation 

energy for the CH3OH/TiO2(110) (abscissa) and CH3OD/TiO2(110) (ordinate) surfaces. (b) 

Schematic free energy surfaces for the proton-coupled electron transfer (PCET) plotted against a 

generalized solvent coordinate. The solid lines represent surfaces for an electron and a proton 

before (1a) or after (2b) photoinduced transfer; the dotted line (2b’ and 2b”) represent manifold 

2b surfaces with different degrees of proton vibrational equilibrium ground state structure (N1 

state) evolve through the inertial dielectric response toward the 2b manifold minima (N1* state). 

The nonadiabatic electronic decay (down arrows) most likely occurs before crossing of the 1a 

manifold with the 2b manifold. The PCET is the most probable at surface crossing between the 

1a and 2b manifolds (horizontal arrows). 

 



 151 

 

the magnitude of the observed ratio of kinetic parameters. For example, an isotope effect of 

H

D

m
m ~1.4, that was observed in the inertial component of electron hydration in liquid H2O 

[126], has been attributed to the inertial response of the solvent molecules involving molecular 

liberation. The substantially larger isotope effect on τ1*  of 2.2 is significantly larger than the 

reduced mass ratio for any conceivable kinetic process involving the motion of single proton or 

proton containing species such as vibration or liberation. The larger ratio, therefore, implies 

either that the kinetic process involves the motion of multiple protons, or the tunneling motion of 

protons where the reduced mass effect enters in an exponent [127].  

 

 

The reverse charge transfer dynamics associated with the N1* population relaxation, which 

exhibit a significant isotope effect, cannot be explained by a purely electronic process (e.g. 

inelastic electron scattering). Rather, they are indicative of a correlated electron transfer process 

that is mediated by the motion of protons or H atoms, i.e. proton-coupled electron transfer 

(PCET), which is well documented in homogeneous photocatalysis [128, 129], but our results 

show first evidence for such dynamics for molecular overlayers on solid surfaces. Based on this 

understanding, we describe the total decay rate of N1*(t) with a modified expression, 

solPCET τττ
111

*1

+= . 
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Photoinduced electron transfer under highly nonequilibrium conditions, such as in the dye 

sensitized charge injection or the wet electron population decay into TiO2, cannot be described 

by quasi-equilibrium models such the Marcus-Jortner theory [24, 130, 131]. However, in Fig. 

6.11 (b) we draw on the formalism of the Marcus-Jortner theory to propose a scenario for how 

the inertial structural changes are associated with the dielectric response of the interface control 

the wet electron dynamics.  

 

 

The free energy surfaces for the proton and electron transfer are plotted in Fig. 6.11 (b) against a 

generalized solvent coordinate representing the multi-dimensional dielectric response of the 

interface to both the electron and proton displacements [127]. Photoexcitation occurs 

“vertically”, that is, faster than the proton or solvent response, shown in Fig. 6.11 (b), from the 

donor surface 1a (electron at the δ−+4
5cTi sites and proton at its ground state geometry) to a 

manifold of acceptor surfaces 2b, 2b’, 2b”, etc. This manifold represents the excited state where 

an electron is in the CH3OH overlayer and a proton is displaced with respect to the ground state, 

with different degrees of excitation of an internal proton vibration. Because at the instant of 

excitation, a proton in the excited state is strongly displaced along these internal coordinates, the 

optical transition terminates on a distribution of vibrationally excited free-energy surfaces. The 

wave packet created on the 2b manifold evolves toward the surface minimum through the inertial 

dielectric response. In competition with the dielectric relaxation, the excited state population  
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decays by nonadiabatic processes, which change the state occupation (vertical transitions), and 

by PCET processes, which exchange the proton and electron between the donor and acceptor 

states (horizontal transitions) [130]. Exothermic non-adiabatic transitions occur before the wave 

packet propagates to crossings of the 1a manifold with the 2b manifold. By contrast, PCET is 

most probable at crossings between 1a and 2b manifolds, where the activation energy (solvent 

reorganization) is minimum. As the excited state evolves toward the equilibrium structure of wet 

electron state, the transition from non-adiabatic to PCET-dominated population decay is revealed 

by the emergence of the deuterium isotope effect.     

 

 

 

6.6  DFT Electronic Structure Interpretation of the PCET Dynamics  

 

 

To gain further insight into the PCET process, Dr. J. Zhao performed DFT calculations of the 

molecular and electronic structure of CH3OH/TiO2 surface [89, 117]. The ground state geometry 

(Fig. 6.2) with the unoccupied electronic structure is calculated for a 3-layer TiO2 slab covered 

by 1 ML of CH3OH, where 50% of the molecules are dissociated.  The unoccupied wet electron 

orbital in the methanol overlayer was identified as for H2O/TiO2 [76]. In order to optimize the 

excited state structure, the delta self-consistent (∆-SCF) DFT calculation is performed on a single 

layer of TiO2 that is cut from a 3 layer slab of the optimized ground state structure (Fig. 6.12 A 

and B). In this calculation, an electron is added to the wet electron orbital, which is mainly  
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Figure 6.12 (A and B) Top and side views of the optimized geometry of the ground state and the 

associated lowest (2.5 eV) unoccupied adsorbate localized orbital of 50% dissociated CH3OH at 

1 ML coverage on TiO2(110) as obtained from DFT calculations [115, 116].  Ti, O, C, and H 

atoms are designated by blue, red, orange, and white (green and yellow), respectively. The 

arrows indicate the bridging oxygen Ob, terminal five-coordinate titanium Ti5c rows, and methyl 

Hm atoms.  The translucent structures indicate the unoccupied orbital distribution of the wet 

electron state. (C and D)  The top and side views of the optimized geometry of the electronically 

excited state. The primary structural change from A and B is rotation of the bridging -OH (green) 

towards the surface normal configuration, followed by the transfer of proton (yellow) from the 

CH3OH to the proximate Ob site. Simultaneously, the wet electron distribution descends towards 

the surface from the methyl groups to the bridging -OH. 
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localized on methyl hydrogen (Hm) atoms.  Thus formed excited state structure is optimized 

while keeping all the surface atoms of the substrate except bridging oxygen (Ob) fixed. The 

optimized structure is attained after substantial displacement of H atoms belonging to OH groups 

on the surface Hb (green) and CH3OH (yellow), as shown in Fig. 6.12 C and D, with concomitant 

shift of the excited state electron distribution from Hm to Hb atoms. By following the H atom 

positions at each structure optimization step, we find that the primary rotation of the bridging -

OH (green) to the vertical orientation contributes 80% of the ~0.5 eV stabilization energy, while 

the secondary transfer of a proton from CH3OH (yellow) to its neighboring Ob site is responsible 

for the rest.  

 

 

The excited state calculations provide insight into this PCET dynamic mechanism that could 

account for the D isotope effect observed at >1 ML coverage. The calculated concerted H+/e- 

transfer for <1 ML CH3OH occurs without an energy barrier, and therefore, the PCET process 

should be rapid and not exhibit an isotope effect that is larger than implied by the reduced mass 

for the calculated motion. While for methanol coverages of  >1 ML, the second layer molecules 

chemisorb by forming a hydrogen bond with the Ob atoms. Since this perturbs the existing 

hydrogen bond structure, it can impose an energy barrier to hinder the proton motion in Fig. 

6.12, and thereby give rise to the isotope effect that stabilizes wet electrons on Hm atoms [96]. 

Here, the role of second layer CH3OH molecules may be to gate the H+/e- transfer, and therefore 

retard the charge transport through the molecule-oxide interface, causing the time scales of 

electron decay correlated with proton motion increases significantly. 
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There are reports about the intermolecular proton transfer or tautomerization processes in 

solvents. At the barrierless case, it occurs in time scales of tens of fs [132, 133]; the PCET 

process tunneling through some energy barrier, for example the photo-induced double-proton 

transfer in DNA base pair structures is corresponding to several hundred fs to pico-second time 

scale [134, 135]. Our measured time scales, spanning from 25 fs to 160 fs are in the range of 

well-documented PECT process [128, 129], however, the values we presented include both the 

times for the adiabatic avoided cross section search and for electron inelastic scattering decay in 

the conduction band (CB) of the substrate, just giving the upper temporal limit of the proton 

transfer process.. 

 

 

Fig. 6.13 summarizes the overall scheme for the electronic structure and dynamics of the 

CH3OH/TiO2 interface that are investigated in our TR-2PP experiments. On TiO2(110) surfaces 

reduced by creation of Ob vacancies or by chemisorption of electron donating adsorbates, e.g. H 

atoms, the excess surface charge is delocalized over several Ti5c
+4 -δ  sites forming a band 0.1 eV 

below the CB minimum with a maximum DOS appearing ~0.9 eV below EF. Excitation with 

3.05 eV light induces charge transfer from this defect band to an acceptor state in the CH3OH 

overlayer around 2.3 eV above EF [118].   
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The photo-induced charges are transferred to an excited state whose geometry is displaced from 

the equilibrium geometry of ground state along several coordinates, and are associated with a 

complex electronic decay and solvation process. These coordinates are related to the creation of 

the hole in the TiO2 substrate, and injection of an electron into the CH3OH overlayer. The 

creation of a hole excites the Ti-O bond stretching vibration. Likewise, the injection of an 

electron into the molecular overlayer excites the motion of the electropositive H atoms. Both 

motions can lead to the fast energy relaxation associated with the dielectric screening of the 

photogenerated charge distribution, where the energy and time scales are consistent with the 

polaron formation dynamics in TiO2 [123].  

 

 

Simultaneously with the screening of the excited state charge distribution through the inertial 

motion of heavy nuclei, the photoexcited excess charge can decay through a nonadiabatic RCT 

into the CB of TiO2. Meanwhile, the aforementioned fast energy relaxation process via polaron 

formation, feeds the lower lying states N1*, whose population dynamics clearly shows a delayed 

rise and a slower decay, as well as a significant D isotope effect of factor 2.2. According to the 

previous discussion, the lower-lying state N1* decays through a correlated electron–proton 

motion, i. e. the PCET process (Fig. 6.13).        
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Figure 6.13 Schematic diagram for the 2PP excitation at the CH3OH/TiO2 interface. The 

photoinduced charge transfer from the partially reduced Ti5c
+4 -δ  sites (N0) to the CH3OH overlayer 

(N1) initiates the coupled electron-nuclear dynamics. The charge redistribution elicits dielectric 

response involving fast nuclear motion of the Ti-O bonds (polaron formation), along with slower 

motion of adsorbate molecules (solvation), thereby relaxing the initially prepared N1 state to the 

quasi-stable N1* state. Simultaneously, the population decay evolves from the nonadiabtic ( τ nad ) 

to the proton-coupled ( τPCET ) resonant charge transfer (RCT) regimes.  The two-photon 

photoemission spectra such as shown for 1 ML CH3OH, and pump-probe two-pulse correlation 

measurements obtained by further excitation of electrons above the vacuum level (N2) record the 

intermediate state electronic structure and relaxation dynamics. 
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As the result of the structural change of the interface, which leads to the energy stabilization of 

the primary excited state, a quasi-stable intermediate state forms, from which further relaxation 

is substantially suppressed. Since this quasi-stable state is substantially displaced from the 

ground state geometry, it can be stabilized with respect to RCT if the nonadiabatic decay can 

become endothermic. The continuing energy relaxation of the quasi-stable state can be attributed 

to the diffusive electron solvation by the molecular overlayer [124, 136, 137]. Our preliminary 

investigation of the electron solvation dynamics in the ≥  3 ML CH3OH overlayers, shows the 

electron lifetime can be extended to the picosecond range. However, the precise rate of energy 

relaxation is difficult to quantify because our measurements are limited to delays of 300 fs. 

Further discussions on this topic of the hydrated electrons will appear in our future publication 

[138].   

 

 

Our studies elucidate how the dielectric response of a protic-solvent/metal-oxide interface 

controls the electron transfer and solvation in a photocatalytic process. Presolvated electrons, 

such as those observed for CH3OH/TiO2, are potent reagents that have been implicated in the 

photocatalytic decomposition of halocarbons, which are relevant to chemical remediation and the 

destruction of Earth’s ozone layer [139]. Conditions exist to support similar wet electron states 

on all oxide surfaces in contact with protic solvents. However, details of the electronic structure 

and dynamics most likely depend on the specific molecular-scale solvent-substrate interactions.      
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Chapter 7 

 

 

Summary and Conclusions 

 

 

 

The goal of the research presented in this thesis is to study the electronic structure (spectroscopy) 

and electron dynamics at the atomically ordered adsorbate covered TiO2 single crystalline 

surfaces by means of the time-resolved two-photon photoemission (2PP) technique. 2PP 

spectroscopy is mainly used to investigate the unoccupied states of chemisorbed molecular 

overlayers.  Pump-probe measurements with femtosecond time resolution on the energy and 

population dynamics of transiently excited electrons reveal dynamical processes both within the 

molecular overlayers on the TiO2 surfaces and involving the charge transfer across the interface.   

 

 

The primary electronic properties of TiO2 are discussed, mainly focusing on the rutile (110) 

surfaces. The most important industrial applications of TiO2 are reviewed, e.g. the photocatalytic 

splitting of H2O, or the TiO2 based photovoltaic solar cells. The advantages and importance of 

applying the femtosecond 2PP techniques to study the molecule/TiO2 system have been 

addressed.    
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The 2PP experimental apparatus used in our measurements is extensively described. The 

components of the optical system include the self-made Ti:Sapphire laser oscillator cavity that 

generates ~10 fs laser pulses, the nonlinear optical generation of near UV light, and the Mach-

Zehnder Interferometer for the generation of time-correlated pump probe pulses. The optical 

pulses are delivered to the UHV photoemission apparatus, where the 2PP measurements are 

performed. The UHV apparatus, including the sample preparation facilities, the ultra-high 

vacuum pumping systems, along with the photoemission measurement devices and methods have 

been discussed in detail. Most importantly, the electron energy analyzer and channeltron 

detectors are extensively discussed. The details of the data acquisition, the diagnostics and the 

signal processing/analysis are presented.  

 

 

 The theoretical section describes the 2PP process, including effects such as hot electron 

relaxation dynamics at a solid-state surface, that can affect the experimental results.  Moreover, a 

theoretical description of the nonlinear interferometric autocorrelation measurement, the Optical 

Bloch Equation (OBE) method as they pertain to the analysis two-photon process and the 

electron dynamics simulation/fitting procedures are presented.   

 

 

2PP spectroscopic investigations on bare stoichiometric and modified TiO2 surfaces are 

discussed for various surface preparation methods.  Experiments are performed under the UHV 

environment for surfaces modified by annealing in UHV to 1000 K, energetic electron (500 eV) 
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bombardment, as well as Ar+ sputtering. The sensitivity of different surface preparation methods 

to O2 adsorption are discussed with particular emphasis in the interaction of O2 molecules with 

the surface O atom vacancy sites.  

 

 

The H2O chemisorption on and interaction with TiO2 surfaces are extensively studied. The 

overall electronic structures of the H2O/TiO2 system and the work function changes due to the 

H2O deposition to induce a surface dipole layer are systematically studied via 2PP spectroscopy. 

Most remarkably, at the coverage of one monolayer H2O molecules and minority –OH 

terminated species on TiO2 surfaces, an unoccupied electronic state is observed at 2.4 eV above 

the Fermi level. Density functional theory (DFT) shows this resonance can be described as a 

partially hydrated electron or “wet-electron” state. The dynamics of the wet-electron state is 

studied by time-resolved 2PP, indicating the electron decay from the wet-electron state occurs in 

less than 15 femtoseconds.     

 

 

The same time-resolved 2PP technique also is employed to study the electronic structure and 

dynamics of CH3OH overlayers chemisorbed TiO2 surfaces. A similar wet-electron excited state 

to H2O/TiO2 is discovered. It displays a broadband molecular resonance feature with energy of 

2.3 eV above the Fermi level. However compared to H2O, this CH3OH induced wet-electron 

state exhibits much more complex dynamics, which are  strongly coverage dependent; especially 

at the coverage of above one monolayer, the CH3OH dynamics display both the population decay 

and energy relaxation processes, including both fast and slow decay components, as well as a 
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deuterium isotope effect. A kinetic model is developed to simulate the electron kinetics in the 

CH3OH/TiO2 structure, indicating that the wet-electrons decay through a reverse charge transfer 

process (RCT) mediated by the correlated motion of H atoms and electrons at the interface. 

Although such proton-coupled electron transfer process (PCET) is known in homogeneous 

electron transfer, this is the first example of such dynamics at a molecule/solid interface. The 2D 

electron diffusive solvation dynamics is also studied. Finally, we find longer, picosecond time 

scale lifetimes of the hydrated electrons for ≥ 3-ML CH3OH coverage, which could be an 

interesting topic for further investigations.    

 

 

The “wet-electron” or partially hydrated electron states we observed at the H2Oor CH3OH/TiO2 

surfaces represent the lowest energy pathway for the nonadiabatic electron transfer. The energy 

level (2.3 ~ 2.5 eV) is associated with the minimum energy that photons must deliver to transport 

electrons through the interface into the molecular overlayer.  Such electrons can drive 

photochemical or photocatalytic reactions of molecules in the chemisorbed overlayer. Our 

research is also relevant to the photosensitized charge injection for the dye-molecules/TiO2 

system, where wet electron state can present a similar low energy pathway for transport into the 

conduction band of TiO2. Furthermore, similar wet electron states are likely to exist on all protic 

solvent covered metal oxide surfaces.  Their participation in chemical and physical processes in 

UHV and under atmospheric conditions can now be investigated by methods described in this 

thesis.    
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APPENDIX A 

THE TYPICAL PARAMETERS OF THE 2PP SPECTROSCOPY 

The typical parameters for recording 2PP spectra shown in Fig. 2.10 will be briefly discussed 

here. 1) Start energy and End energy are 9.80 eV and 12.00 eV.  Since we employ a bias 

voltage of 5 eV between the sample and the energy analyzer, the measured energy range of 

measured spectra actually covers 4.80 ~ 7.00 eV above the Fermi level. 2) Step 0.02 eV and 

Dwell time 0.5 s give the energy interval between each measured points and the integration time 

for the photoemission counts at each energy.   3) Mode CAE, 5.0 eV means that the analyzer is 

operating in Constant Analyzer Energy mode with average pass energy of 5.0 eV (Section 2.2.2). 

4) Mag. -“Low” means that the “low magnification mode” is employed, where the focal plane of 

the electrostatic input lens is far behind the sample, so the lens accepts electrons emitted in a 

narrow cone of angles from a large area. 5) Ent. Slit of 6 mm dia. and Exit Slit of 3 x 10 mm 

give the entrance aperture of 6 mm diameter, while the exit slit has the given rectangular 

dimension for each of the 7 channels. From Fig. A.1, there are three options for the exit slit; we 

generally employ the medium size dimension of 3 x 10 mm. 6) # Ch. 7, means that the analyzer 

is working in a 7-channel acquisition mode, i.e. 7 channeltrons are measuring photoelectrons 

simultaneously and presenting 7 parallel energy spectra after each scan.             
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Figure A.1 The photo of the analyzer’s exit slit plate.   

 

 

The other information can also be found in the screenshot window as well, such as the excitation 

energy ~ 3.1 eV, the experiment date and time, and etc.  
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APPENDIX B 

SOFTWARE FOR TIME-RESOLVED EXPERIMENT  

We developed a software package for control of all the optoelectronic devices and computer 

boards (Fig. 2.11) for signal processing, data acquisition and storage in our time-resolved two-

photon photoemission experiment. The following diagram (Fig. B.1) illustrates the electronic 

signals in the experiments, and is very helpful to describe the operation of the overall software.  

 

 

Our software includes four major functions (or operations) in the current time-resolved 2PP 

experiment: 1) Sending a signal through a GPIB board to generate the “Sawtooth Wave” with the 

SRS 345 functional generator; 2) Sending a command to one of the NI-DAQ boards (1), 

requesting the control box 1 to acquire analog interference fringes from the photodiode and to 

save the data; 3) Sending a command to the other NI-DAQ board (2), to generate a sequence of 

TTL signals that act as the “external trigger signal” for  the Omicron data acquisition card; 4) 

Directing the TTL signals to trigger the Omicron card to record the photoemission counts from 

the channeltron detectors. 
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Figure B.1 The synchronized electronic signals in the various electronic devices and computer 

cards (boards).  

 

 

The software is also able to send commands through the GPIB board to turn on/off the 

channeltron high voltage to start/terminate the data acquisition process. Moreover, the software 

includes the codes to record the photon counts at SRS 430, which is originally designed to record 

the SSHG signals for the laser-pulse diagnostics. We will describe the software components 

individually.  
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B.1 The parameter file, which serves as an input file including a set of appropriate parameters for 

each of those electronic devices functioning synchronized in a TR-2PP experiment.  

 

DEFAULT PARAMETERS FOR 2PP EXPERIMENTS  

(The data in numeric lines would be retrieved for parameter-settings) 

 

--- Display Settings, AD = 0, MSC = 1, SAC Ch1-7 = 2-8 ---     

//Define the positions of each panel in the display window.   

top plot: 

0    //Top panel is used to display the interfering fringe signals from DAQ-1 card. 

middle plot: 

1 /* Middle panel is supposed to display the SSHG from SRS 430, however we don’t   

            have the experimental data presently. */  

bottom plot: 

2 /*Bottom panel could be used to display the I2PC electron-counts from any of the  

           seven channeltron detectors. */ 

 

--- Function Generator (SRS 345) Settings --- 

amplitude (V): 

0.8 //  Set the peak to peak amplitude of Sawtooth wave to 0.8 volt.   

offset (V); 

0.0 // Set the offset of the Sawtooth wave to zero 

frequency of point (Hz): (14920 points, minimum value)  (20000 x 1, 2 ,4) 
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20000  /*  The Sawtooth wave cycle includes 14920 small points, each of which has a time 

duration 1/20000 second, so the Sawtooth wave cycle corresponding to a piezo-scanning motion 

cycle is: 14920/20000=0.746 s. We only use part of the increasing wave (90%) as the piezo-

scanning time-delay modulation, so the each data acquisition (or pump-probe) cycle is less than 

0.746*0.9=0.6714 s.  */   

 

--- Multichannel Scaler (SRS 430) Settings --- 

binwidth (11=40.96us 12=81.92us, 13=163.84us, 14=327.68us): 

13     /*  Each time-bin or per data acquisition duration at each of time-delay intervals is  

              163.84 us. */   

number of bins (1=1k): 

4    /* Total number of the data in each data acquisition cycle or pump-probe cycle is  

 4096, therefore each data acquisition cycle corresponds to 4096*163.84 us = 0.6711 s */. 

number of iteration: 

20  //We don’t have SSHG data, so this really doesn’t matter.  

 

 

---AD Board (NI-DAQ) Settings --- 

sampling rate (sec): (0.00016384,  0.00008192,  0.00004096) 

0.00016384  /* Set the time-duration per data acquisition interval in NI-DAQ 1 same as  

                         that of SRS 430, 163.84 us. */   

number of data points (less than 5000, usually 4096): 

4096  // Total number of the data in each pump-probe cycle is also the same 4096. 
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number of iteration: 

1    // We just need one set of the interferometric fringe signal as time-delay reference.    

 

--- Omicron SAC Card Settings --- 

number of channel: 

7    /*  Typically, 7 channeltron detectors are functioning all-together, thus we need the  

           Omicron Card to store all of the 7 different data-sets. */  

dwell time (micro sec, integer only): 

150 /* Only the first 150 us in the 163.84 us is used to collect the photoelectron counts,  

              the rest of 13.84 us is the deadtime used to clear the memory to record the data  

              for the next time-delay interval. */ 

number of data points (each channel, usually 4096): 

4096   // Total # of data acquisition in each pump-probe cycle is always the same 4096.  

number of iteration only for SAC card (total=AD x SAC):  

1000 /* The iteration of data acquisition for SAC card, the different channels can be  

          functioning simultaneously and coincidently. */      

 

--- Analyzer Settings --- 

pass energy 

5 // The pass energy for the CAE (Constant Analyzer Energy) mode is always 5.  

  

 



 171 

B.2 The software opens the input file “TR-2PP_2003.txt”, and retrieves and transfers the preset 

parameters to all the participating electronic devices for initialization.  

 

CGraphDoc::CGraphDoc ()    // Class Initialization and Parameters Reading.  

{ // TODO: add one-time construction code here 

 char dummy[128];  // Temporary memory allocation for data-storage.  

 FILE *fp;    //Temporary file pointer  

 

 if((fp=fopen("TR-2PP_2003.txt","rt"))==NULL){ 

  AfxMessageBox ("Cannot open Default.txt!"); 

  exit(0); }   

     // The command to open the input file, including malfunction treatment. 

 

            fgets(dummy, 128, fp);       // title, return button and memory reallocation  

 fgets(dummy, 128, fp);       // display settings, return and memory reallocation 

 fgets(dummy, 128, fp);     // non-numeric buffer, return and memory reallocation 

  

            fscanf(fp, "%d\n", &Panel0);   

          // Set top panel to display the interfering fringe signals 

 fgets(dummy, 128, fp);  // return to next line, memory reallocation  

 fscanf(fp, "%d\n", &Panel1); //Set middle panel to display the data from SRS 430 

 fgets(dummy, 128, fp); // return to next line, memory reallocation  

            fscanf(fp, "%d\n", &Panel2); //Set bottom panel to display the one of the 7-chns.  
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          fgets(dummy, 128, fp); // SRS345 settings, return to next line, memory reallocation  

          fgets(dummy, 128, fp);  //return to next line, memory reallocation  

          fscanf(fp, "%f\n", &AMP_DS345); //Set amplitude for SRS345 (or DS345)  

         // The SRS345 is labeled as DS345 in the software!  

        fgets(dummy, 128, fp); //return to next line, memory reallocation  

        fscanf(fp, "%f\n", &OFFSET_DS345); //Set offset for SRS345 

        fgets(dummy, 128, fp); //return to next line, memory reallocation 

        fscanf(fp, "%lf\n", &FRQ_DS345); // Set single-point frequency for SRS345 

         

 

        fgets(dummy, 128, fp);  // SR430 settings, return to next line, memory reallocation 

      //SRS430 is labeled as SR430 in the software   

       fgets(dummy, 128, fp); //return to next line, memory reallocation 

       fscanf(fp, "%d\n", &BINWIDTH_SR430); //Set time-bin duration for SRS 430 

       fgets(dummy, 128, fp); //return to next line, memory reallocation 

       fscanf(fp, "%d\n", &NumBINS_SR430); //Set the number of time-bin for SRS 430 

       fgets(dummy, 128, fp); //return to next line, memory reallocation 

       fscanf(fp, "%d\n", &ITRE_SR430); /*Set the iteration time of data-acquisition  

                                                                  cycles for SRS 430 */   

 

        fgets(dummy, 128, fp);  //DAQ Board, return to next line, memory reallocation 

                        //NI-DAQ Board is simplified as AD board in software. 

       fgets(dummy, 128, fp);   //return to next line, memory reallocation 
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         fscanf(fp, "%lf\n", &RATE_AD); /* Set the time-duration per data acquisition  

                                                                 interval in NI-DAQ 1 */ 

    fgets(dummy, 128, fp);  //return to next line, memory reallocation   

     fscanf(fp, "%d\n", &NumDATA_AD);  /*Set number of data points for each data    

                                                                       acquisition cycle for NI-DAQ 1. */ 

    fgets(dummy, 128, fp);  //return to next line, memory reallocation   

    fscanf(fp, "%d\n", &ITRE_AD);  /*Set the iteration time of data-acquisition  

                                                            cycles for NI-DAQ 1 */ 

  

   fgets(dummy, 128, fp);  // Omicron Board, return to next line, memory reallocation  

         //Omicron data-acquisition card is simplied as SAC board in the software.  

           

 fgets(dummy, 128, fp);  //return to next line, memory reallocation     

fscanf(fp, "%d\n", &NumCH_SAC); /*Set the number of channels functioning  

                                                             coincidently for Omicron SAC board */  

              fgets(dummy, 128, fp); //return to next line, memory reallocation     

  fscanf(fp, "%d\n", &Dwell_SAC);   /*Set the time-duration for each of the data  

                                                            acquisition interval for SAC board*/   

fgets(dummy, 128, fp);  //return to next line, memory reallocation   

fscanf(fp, "%d\n", &NumDATA_SAC); /*Set number of data points for each data    

                                                     acquisition cycle for Omicron SAC Board. */ 

fgets(dummy, 128, fp); //return to next line, memory reallocation     
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fscanf(fp, "%d\n", &ITRE_SAC);    /*Set the iteration time of data-acquisition  

                                                             cycles for SAC Board */ 

            fgets(dummy, 128, fp);   /* Energy analyzer setting, return to next line, memory   

                                          reallocation */    

fgets(dummy, 128, fp);  //return to next line, memory reallocation      

fscanf(fp, "%d\n", &PE); //Set the pass energy for the energy analyzer 

  

fclose(fp);   // Close the input file  

 

NumData0=0;    //Data initialization for later purposes.  

NumData1=0; 

NumData2=0; 

}  // The end of  CGraphDoc () class!   

 

 

B.3   GP-IB Control and Initialization  

 

#include "WINDECL.h"     //System headfile   

#define BDINDEX              0     // Set GPIB-Board Index as 0 

#define PRIMARY_ADDR_OF_SCOPE_1     8      // Primary address for SR430, 8 

#define PRIMARY_ADDR_OF_SCOPE_2    19      // Primary address for DS345, 19 

#define NO_SECONDARY_ADDR   0  // Secondary address of both devices are 0 

#define TIMEOUT          T10s     // Timeout value = 10 seconds 
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#define EOTMODE              1     // Enable the END message 

#define EOSMODE              0     // Disable the EOS mode 

 

 

B.4   Set DS345 to generate the Sawtooth wave for the piezoelectric actuator scanning.   

 

void CGraphDoc::SetWave()  // Construct a class for DS345 

{  

            int  DS345; //definition of DS345 

 char cmd[40];   //memory allocation for a string buffer 

 int  i, sum, number; //definition integers inside the current class 

 short data[100];  //memory allocation for an data array of short integers 

  

DS345 = ibdev(BDINDEX, PRIMARY_ADDR_OF_SCOPE_2, NO_SECONDARY_ADDR, 

TIMEOUT, EOTMODE, EOSMODE); 

//Device DS345 Initialization with some default setting parameters.  

     

if (ibsta & ERR) 

    {AfxMessageBox("Unable to open device DS345");}  

     //Turn on the DS345 for functioning! 

 

 ibclr(DS345); 

    if (ibsta & ERR) 
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    {AfxMessageBox("Unable to clear device DS345");} 

     // Clear the Device DS345 

    

    sprintf(cmd, "AMPL %f VP\n", AMP_DS345);  

     ibwrt (DS345, cmd, strlen(cmd)); 

     // Set the amplitude for the generated wave in DS345  

         

sprintf(cmd, "FSMP%lf\n", FRQ_DS345);   

ibwrt (DS345, cmd, strlen(cmd)); 

/* Set frequency for each point in a mode of multi-point-sequence (N), so the total    time 

duration for each data-acquisition cycle should be equal to  N*(1/FRQ_DS345). */  

 

            sprintf(cmd,"OFFS%f\n", OFFSET_DS345);  

 ibwrt (DS345, cmd, strlen(cmd)); 

           //Set the offset for the wave in DS345  

 

         sum=0;   //Diagnostic value  

                 number=3;   //The three extraordinary points for the Sawtooth wave 

     data[0]=0;     data[1]=-2047;     //x and y coordinates for the first point  

      data[2]=14669;   data[3]=2047;    //x and y coordinates for the second point 

      data[4]=16299;  data[5]=-2047;    //x and y coordinates for the third point  

 

       for(i=0; i<number; i++) sum+=data[2*i]+data[2*i+1];  // diagnostic value  
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  data[2*number]=sum;  //set check point  

       sprintf(cmd,"LDWF?1,%d\n",number);   /* Construct the Sawtooth wave  

      based on the parameter settings, using the three extraordinary points */   

        ibwrt (DS345, cmd, strlen(cmd)); //Write String “LDWF?1,3” to DS345 

        ibrd (DS345, cmd, 40);  //Retrieving the current status of DS345, ready 

                    ibwrt (DS345, (char *)data, (long)(4*number+2));   /* Pass the x and  

         y coordinates of the three extraordinary points and the diagnostic value into  

         DS345 */  

          sprintf(cmd,"FUNC5\n"); //vector waveform  

         ibwrt(DS345,cmd,strlen(cmd)); /*Sending command to DS345 to generate a  

          vector waveform (Sawtooth) using the input data. */   

        

        ibonl(DS345, 0);  //DS345 clearing and re-initialization 

}  // The end of DS345() (or SetWave()) class! 

 

 

 

B.5 Set the NI-DAQ AD 1 board to record the interfering fringes for delay time calibration.   

 

     #include "nidaqex.h"    //Include an essential headfile 

 

void CGraphDoc::NIDAQControl()    //Construct a Class for NI-DAQ board  

{      int i, j; 
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      /* 

     * Local Variable Declarations for NI-DAQ  

     */ 

 

NTimes0=ITRE_AD;   // Set the iteration time for data-acquisition cycles 

 NPoint=NumDATA_AD;   // Set number of data points per acquisition cycle 

  

i16 iStatus = 0;    /*  The status value for NI-DAQ board, where 0 means it is working as     an 

AD board. i16 is predefined as the “short integer” data type. */     

     

i16 iRetVal = 0;    /* Error indicator. If an error occurs, we can tell what kind error it is   

                       from the value of “iRetVal”. */  

i16 iDevice = 1;     /* The index of GPIB is assigned as 0, and the index of NI-DAQ board is  

                                    assigned as Device 1. */     

i16 iChan = 1;      // Default value  

i16 iStartTrig = 1;   //  1: means using the external trigger   

i16 iExtConv = 0;    //  0:Use the onboard clock to control data acquisition  

i16 iGain = 1;     /* Gain is one,  which means the identical transformation from the    

                                input analog signal to the digitized signal  */ 

u32 ulCount = NPoint;    /* NPoint = NumDATA_AD, data points per cycle, where u32 is              

                                            predefined as “unsigned long integer” */        

f64 dGainAdjust = 1.0;   

/* No further gain adjustment, f64 is predefined as “double-precision float” data type */   
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    f64  dOffset = 0.0;      // No offset  

    f64 dSampRate = RATE_AD;  // Set the time-interval for each of Data points  

    i16 iUnits = 1;     // using second as the unit, so 0.00016384 s.   

    i16 iSampTB = 0;  //Default parameters  

    u16 uSampInt = 0;  //Default parameters, using unsigned short int. 

static i16 piBuffer[5000] = {0}; /* Temporary memory allocation for an array of static   

                               short integer, with maximum accommodation of 5000 data points. */   

static f64 pdVoltBuffer[5000] = {0.0};  /* Temporary memory allocation for an array of 

static double-float, with maximum accommodation of 5000 data points, used to store the 

measurement results of 4096 data. */  

static f64 outputArray[5000]={0.0};  /* Memory allocation for a data array for temporary data   

                                                             delivery and storage.  */   

i16 iDAQstopped = 0;  /* The data acquisition completion indicator, where 0 means the    

                                           measurement is still in processing, or doesn’t finish yet. */     

 

    u32 ulRetrieved = 0;      

    i16 iIgnoreWarning = 0; 

    i16 iYieldON = 1;       //Quite a few default setting parameters for NI-DAQ board  

 

  

for(i=0; i<NPoint; i++) outputArray[i]=0.0;   //Data storage memory initialization  
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 for(j=0; j<NTimes0; j++) { 

 /*   NI-DAQ board data acquisition processing, set the iteration time for the data  

                  acquisition cycles as “NTimes0”, using “for” Loop  */ 

  

iStatus = Select_Signal (iDevice, ND_IN_START_TRIGGER, ND_PFI_0, 

ND_LOW_TO_HIGH);  //1.  * Setup part: setting the status of the Board and leading the 

external trigger signal into the “PFI0” pin of the instrument! */  

// Select_Signal (deviceNumber, Trigger_signal, source_Trigger, sourceSpec)  

iRetVal = NIDAQErrorHandler(iStatus, "Select_Signal", iIgnoreWarning); 

//Reset the error handler 

iStatus = DAQ_Config(iDevice, iStartTrig, iExtConv); 

// 1: External Trigger; 0: Use onboard Internal Clock to control the acquisition  

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Config", iIgnoreWarning); 

//Reset the error handler, including the NI-DAQ trigger and relevant configuration. 

  iStatus = DAQ_Rate(dSampRate, iUnits, &iSampTB, &uSampInt); 

 /* Set the acquisition interval for each data point in appropriate unit (s). And   

    initialization of both the “iSampTB” (timebase) and “uSampInt” (interval). */ 

     

iStatus = DAQ_Start(iDevice, iChan, iGain, piBuffer, ulCount, iSampTB, uSampInt); 

/* Prepare the data acquisition and set all the processing parameters previously mentioned, where 

the data array “piBuffer” is  used to store the acquired counts in each time-interval. */    
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 iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Start", iIgnoreWarning); 

      //Reset the error handler, start the data acquisition.   

 

                 while ((iDAQstopped != 1) && (iStatus == 0)) { 

     /*  2. * Taking Data Part*, employing a “while” Loop to check if the preset data   

        acquisition process is complete or not. A single data acquisition cycle. */    

           iStatus = DAQ_Check(iDevice, &iDAQstopped, &ulRetrieved); 

           //Check the Status of NI-DAQ 

            iRetVal = NIDAQYield(iYieldON); 

          //Check the error indicator of NI-DAQ    

  } 

 

 //3 * Finish Data Acquisition, re-initialization and data storage 

      iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Check", iIgnoreWarning); 

       //After the data acquisition, Reset the error handler.   

iStatus = DAQ_VScale(iDevice, iChan, iGain, dGainAdjust, dOffset, ulCount, piBuffer,  

                                      pdVoltBuffer); 

/* Check the status, store the acquired data into “piBuffer” and “pdVoltBuffer”. The binary 

data is acquired, but the double-precision values are returned in pdVoltBuffer. */ 

 

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_VScale", iIgnoreWarning); 

    //Reset the error handler.   

iStatus = DAQ_Config(iDevice, 0, 0); 
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// CLEANUP, set triggering mode back to initial state.  

/* 0: Set the trigger for another NI-DAQ sequence (the default); 0: Set PFI line back  

to initial state. */ 

 

iStatus = Select_Signal(iDevice, ND_IN_START_TRIGGER, ND_AUTOMATIC,  

                                       ND_DONT_CARE); 

iStatus = DAQ_Clear(iDevice);  

iDAQstopped = 0;  //a few command-lines to finish up the current Acquisition cycle.  

   

for(i=0; i<NPoint; i++){ /* Using a “for” Loop to save Data into outputArray[], employing the 

accumulative style: Adding the corresponding data in each of time-intervals of all the previous 

data-acquisition cycles together! */     

 

outputArray[i]+=pdVoltBuffer[i];  

pdVoltBuffer[i]=0; 

piBuffer[i]=0;   /* After data retrieving, Initialization of the data array for the next cycle of data  

                            acquisition.  */  

} 

 

  

}   /* Very important bracket, the end of the big “for” (j) Loop, finishing all of the data   

        acquisition cycles! 
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  for(i=0; i<NPoint; i++){ 

  Data0X[i]=(float)i; 

  Data0Y[i]=(float)outputArray[i]; 

 }  //Save the accumulative data for each of the time-intervals  

                

                       NumData0=NPoint; 

             for(i=0; i<NumData0; i++){    // Saving the Original Data for back-up 

  OrgData0X[i]=Data0X[i];  

             OrgData0Y[i]=Data0Y[i]; } 

} //The end of NIDAQControl class!  

 

B.6   Set the Omicron SAC card to record the interferometric two-pulse correlation (I2PC) 

counts for the 7 channeltron detectors  

 

#include "SacDriverDll.h"   //Include the head file for the Omicron card    

 

void CGraphDoc::SACControl()  //Construct a class for Omicron SAC card   

{    

        int i,k;    /* Local integer variable Declaration for SAC card */ 

        int sacNChannels = NumCH_SAC;  // Number of channels used in data acquisition 

        unsigned long dwelluSec = (unsigned long) Dwell_SAC;    

        /* Set the duration time for each of the data acquisition intervals */  

        long numReads = 0;  // The default value 
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        unsigned long* pbuf = 0; //Temporary memory allocation for data buffer  

        unsigned long* sacArray = 0; //Memory allocation and initialization for data storage.   

        long sacNPoint = NumDATA_SAC;  //Number of data points for each channeltron 

        long sacNData = sacNPoint*sacNChannels; /* The total number of data points for   

                                                 all of channels functioning in data acquisition process. */   

 sacArray = new unsigned long[sacNData]; //Memory allocation for saving the data.  

 NTimes2=ITRE_SAC; 

/* Set the data acquisition iteration time for the SAC card, and Keep in mind: the SAC    

    card starts each of data acquisition cycle just a little bit after the NI-DAQ AD board  

    does. */ 

   

       for(k=0; k<NTimes2; k++) {  // Using ”for” Loop for the acquisition iteration time !  

 

for(i=0; i<sacNData; i++) sacArray[i] = 0;  //Data array initialization! 

             

 SAC::Init (); //SAC card initialization  

SAC::EmptyBuffer (); //Clear the memory buffer for the SAC card 

SAC::SetDwellTime(dwelluSec*1E-6); /* Set the duration time for each  

                                               data-acquisition interval in unit of “second” */   

      

    pbuf = SAC::PrepareCountingDMA(sacNChannels, sacNPoint); 

           

               if (pbuf == 0) {   
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         AfxMessageBox("Unable to allocate memory to SAC board"); 

                          exit (0); } 

/* Allocate the dynamic memory accessory (DMA) unit for data acquisition and check  

     the status of NI-DAQ SAC card! */ 

  

      SAC::StartCountingDMA();  // Start the Data Acquisition in the SAC card  

        while (!SAC::IsFinishedCountingDMA()) 

                   {Sleep(1); }    //Check if the Data acquisition process is finished or not!   

      

           for(i=0; i<sacNData; i++){  

            sacArray[i]+=(long)(pbuf[i] & 0x7FFFFFF); 

 } /* Using a “for” Loop to save Data into the sacArray [], as an accumulative 

style: Adding the corresponding data in each of time-intervals and in various channeltrons of all 

the previous data-acquisition cycles together! */     

                                          

 SAC::ResetCountingDMA ();   /* Reset the DMA after each of data  

                                                                   acquisition cycle! */ 

                   

               SAC::EndCountingPolled (); 

     SAC::Exit();    

                  //Clearing the SAC board after each data acquisition cycle. 
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}   /* Very important bracket, the end of the big “for” (k) Loop, finishing all of the data 

acquisition cycles for the Omicron SAC card! 

 

… … 

 

if(sacNChannels==7){ for(i=0; i<sacNPoint; i++){ 

   Data2X[i]=(float)i; 

   Data2Y[i]=(float)sacArray[7*i]; 

   Data3Y[i]=(float)sacArray[7*i+1]; 

   Data4Y[i]=(float)sacArray[7*i+2]; 

   Data5Y[i]=(float)sacArray[7*i+3]; 

   Data6Y[i]=(float)sacArray[7*i+4]; 

   Data7Y[i]=(float)sacArray[7*i+5]; 

   Data8Y[i]=(float)sacArray[7*i+6]; } 

} /* Saving the accumulative data recorded by SAC card into 7 different data array, 

representing the I2PC signals from 7 different channeltron detectors. */    

  

      delete [] sacArray;  // Delete the sacArray [], scavenge the dynamic memory!  

 

} //The end of SACControl() class!  
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B.7   Set the GPIB control to manipulate the SR430 processing, send commands to activate the 

NI-DAQ-AD-1 board and Omicron SAC card, and turn on/off the front-bias high voltages for the 

channeltron detectors     

 

  

void CGraphDoc::GPIBControl()  

/* Construct a class for SRS430, which is simplified as SR430 in the software! */   

{   int  SR430;        //Definition of SR430 

 char cmd[40]; 

 int i;     

 int sp=0;     //Some local variables definition and initialization 

 short buffer[5000];   

 char scan[20];  //Local data arrays definition!    

 int status=1;    //Set the status of SR430 to “ready”!    

  

     for(i=0; i<5000; i++) buffer[i]=0; //Data array initialization and memory allocation.   

 

SR430 = ibdev(BDINDEX, PRIMARY_ADDR_OF_SCOPE_1, NO_SECONDARY_ADDR, 

TIMEOUT, EOTMODE, EOSMODE); 

//Device SR430 Initialization with some default setting parameters.  

  

if (ibsta & ERR) 

    {AfxMessageBox ("Unable to open device SR430") ;} 
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//Open the device SR430, and check the status!  

  

 ibclr(SR430);  //Clear the device SR430.  

   if (ibsta & ERR) 

    {AfxMessageBox("Unable to clear device SR430");} 

//Check the status after device clearing process! 

  

     sprintf(cmd, "OUTP 1\n");      

     ibwrt(SR430, cmd, strlen(cmd)); 

    //Direct SR430 output to the GPIB interface.  

 

    sprintf(cmd, "BWTH %d\n", BINWIDTH_SR430);  

     ibwrt (SR430, cmd, strlen(cmd)); 

/* Set the Binwidth (time duration for each data acquisition interval) of SR430 to 

BINWIDTH_SR430, which is 163.84 us for our experiment. */    

 

 sprintf (cmd,"BREC %d\n", NumBINS_SR430);   

 ibwrt (SR430, cmd, strlen(cmd));  

/* Set Number of bins (or data points) per acquisition scanning cycle to NumBINS_SR430 

(which is 4096 typically). */    

   

sprintf(cmd, "RSCN %d\n", ITRE_SR430);   

ibwrt (SR430, cmd, strlen(cmd));  



 189 

  //Set the data acquisition iteration times to ITRE_SR430.  

 

sprintf(cmd, "ACMD 0\n");   

ibwrt (SR430, cmd, strlen(cmd));  

/* Set the data acquisition scanning mode as “accumulative” mode, all the counts from each of 

previous scans should be summed for each corresponding time-bin! */ 

      

 sprintf(cmd, "CLRS\n");   

 ibwrt (SR430, cmd, strlen(cmd));  // Clear the device SR430 

 

 sprintf(cmd, "SSCN\n");   

 ibwrt (SR430, cmd, strlen(cmd));  

   //Start the data acquisition scanning using the preset parameters!  

       

 MultiON ();  //Apply the front-bias high voltage to the channeltrons 

            NIDAQControl (); //Activate the NI-DAQ AD board 

 SACControl ();  //Activate the Omicron SAC board.  

 MultiOFF (); //Turn of the high voltage from the channeltron detectors  

     

 do{    

 sprintf(cmd,"*STB?\n");   

 ibwrt (SR430, cmd, strlen(cmd));   

            /* Communicating with SR430 by using serial poll* / 
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 ibrd (SR430,  scan, 40); //Retrieving the current status of SR430    

 status=(atoi(scan))%2;   //Checking the current status of SR430, the last digital 

 } while(!(status & 1));    /* Using a “do-while” Loop to check whether the data 

acquisition scanning of the SR430 has finished or not! */  

  

 sprintf(cmd, "BINB?\n");   

 ibwrt (SR430, cmd, strlen(cmd));   

/* After the SR430 data acquisition has been finished, Read Recorded Data from the memory in 

the ASCII format */ 

ibrd (SR430, (char *)buffer, 2*4096);  /* Store the data read from the SR430 memory to a 

temporary array ( buffer[] ) as the data type of short integer. */    

ibonl(SR430, 0); //Clearing and resetting the Device after data saving!     

 

// Data from SR430 is supposed to be displaying in the panel 1. 

 for(i=0; i<4096; i++){ 

  Data1X[i]=(float)i; 

  Data1Y[i]=(float)buffer[i]; }  

 /*Data obtained from SR430 are forced to convert to “float” and saved into some other 

permanent data arrays!  */ 

  

} // The end of GPIBControl () class!  
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B.8   A separate C++ program (main {}) to generate the synchronized TTL triggering signal for 

the Omicron SAC card. The commands are sent through the NI-DAQ-2 board.   

 

# include "stdio.h" 

#include "nidaqex.h"     //Including essential headfile  

 

void main(void)  

//Using a separate C++ main{} function to generate a sequential TTL pulsed signals   

{   

      int i=0;  int time=1;  

      i16 iStatus = 0; i16 iRetVal = 0; i16 iDevice = 1;  //Board index 1 

      i16 iNumChans = 1;  i16 iChan = 0;  //Only one channel with an index 0 

  /* Several local variable Declaration and Initialization, the data type is short int ! */ 

      static i16 piChanVect[1] = {0}; //Initialization of an array with only a single item.  

    //analog signals output, only using single output channel.  

 

   static f64 pdBuffer[100] = {0};   // Memory allocation for storage data 

   static i16 piBuffer[100] = {0};   // Memory allocation for transformed data   

    u32 ulCount = 100; //Each data-point interval could be divided into 100 small divisions  

u32 ulIterations = 4096; /* Each generation cycle includes a sequence of 4096 different    

                                      TTL signals */          

f64 dUpdateRate = 1.34102*4096*100;  

/*Set the sampling rate for each of the TTL signals, obvious it is 100 times faster    
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compared to the data-acquisition rate, which means the TTL width is 1/100 of each 

data-acquisition time interval (Referred to Fig. B.1). */  

     

  i32 lTimeout = 180;   //Set timeout value for the NI-DAQ 2 board        

  i16 iIgnoreWarning = 0;  //Default value  

 

    iStatus = Timeout_Config(iDevice, -1); //Initialization of the NI-DAQ 2 board 

    iRetVal = NIDAQErrorHandler(iStatus, "Timeout_Config", iIgnoreWarning); 

    //Check the board status and setup the ErrorHandler 

    

     printf("Please Choose Corresponding Trigger Rate from the following: \n\n");  

     printf("1. Original Trigger Rate: 163.84 us. (Default Value)\n");     

     printf("2. Double Original Trigger Rate: 81.92 us. \n"); 

     printf("3. 4 times of Original Trigger Rate: 40.96 us. \n\n"); 

     printf("Your Option: "); 

     scanf("%d", &time); 

 /* We designed a customer oriented computer interface, which allow the customer to generate 

the TTL trigger rates from the default value, up to 4 times as fast as the default value. The 

customers should make their desired option, typically choosing “1”. */   

      

     //The digital data array initialization   

      pdBuffer[0]=8;    //The first data in the array is high-value, or “1” 

       for (i=1;i<100;i++) 
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        pdBuffer[i]=0;    //The rest of data in the array is low-value, or “0”                  

      //So this gives an identified feature of the TTL signal.  

 

     if (iStatus == 0) {  

/* If the NI-DAQ 2 board is available (or free), we direct it to TTL signals generation. */   

    if (time == 1 || time ==2) time*=1;  

else if (time ==3)  time=time+1;   

else time=1;  //Set up the appropriate multiplier to satisfy the customers’ choice.  

dUpdateRate = dUpdateRate*time;  

//Update the sampling rate implementing the multiplier   

 

printf(" A %lu point waveform should be output at a rate of %f updates/sec.\n", ulCount, 

(dUpdateRate/100));  

/* Output a line in the minor to remind the customer 100 data (actually only one TTL signal) is 

generated at the specific rate. This rate is well matched and synchronized with the data-

acquisition interval of all the other instruments or computer boards. */   

 

       iStatus = Select_Signal(iDevice, ND_OUT_START_TRIGGER, 

         ND_PFI_0, ND_LOW_TO_HIGH); 

      /* Check the status of NI-DAQ 2, especially set the PFI_0 pin to receive the  

      external triggering signals. */ 

      printf(" Apply your digital trigger signal to PFI0 when ready.\n"); 

     //Reminder regarding to external trigger 
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      iRetVal = NIDAQErrorHandler(iStatus, "Select_Signal", iIgnoreWarning); 

     //Set the ErrorHandler again  

      

iStatus = WFM_Scale(iDevice, iChan, ulCount, 1.0, pdBuffer, piBuffer); 

/* Prepare the wave generation through channel-0 of the NI-DAQ 2 board, with the configuration 

given by the data array pdBuffer [100] (data type is the double-precision float); and direct the 

output wave to the new data array piBuffer [], whose data type is static short integer. The 

parameter “1.0” means generation of a Square wave form!) 

  

 iRetVal = NIDAQErrorHandler(iStatus, "WFM_Scale", iIgnoreWarning); 

//Reset the ErrorHandler at the current situation!  

 

while(1)  {  /* Using a always-true “while” Loop, so the TTL signals generation will be 

continuous and never-ending, unless there is an error occurring, or the program is forced to 

close! */ 

 

iStatus = WFM_Op(iDevice, iNumChans, piChanVect, piBuffer, ulCount, ulIterations,  

                                 dUpdateRate);  

/* Generating a sequence of ulIterations (4096) TTL signals in a single data-generation channel, 

with a sampling rate-, dUpdateRate; outputting the TTL signals to piBuffer [] array. After each 

cycle of signal generation, there will come another cycle,  -which will be never ending! */     

iRetVal = NIDAQErrorHandler(iStatus, "WFM_Op", iIgnoreWarning); 

//Check the Error indicator continuous while the TTL signals generation! 
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};   //End of the “while” Loop! 

 

    iStatus = AO_VWrite(iDevice, iChan, 0.0); 

   /* CLEAR UP the device, and Set the output to 0 volts. */ 

         

iStatus = Select_Signal(iDevice, ND_OUT_START_TRIGGER, 

 ND_AUTOMATIC, ND_LOW_TO_HIGH);   

// Reset the NI-DAQ 2 board to “ready” status, and set an automatically generated trigger!  

}  /* The end of the big “if” Loop, followed by the case when the NI-DAQ 2 is not  

      available! */ 

 

else {printf("Check the parameters and status of NIDAQMakeBuffer! \n"); 

        } /* The status of the NI-DAQ 2 board is busy or available, so it cannot be directed  

               to wave-generating! */  

    

 iStatus = Timeout_Config(iDevice, -1);  /* Disable the Timeout function! */ 

 

}/* End of the main {} program! */ 
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APPENDIX C 

UNIVERSAL CURVE FOR ELECTRON ESCAPE DEPTH 

 

 
Figure C.1 Universal curve for electron escape depth. 

 

From Ref. [69]. 
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APPENDIX D 

DENSITY FUNCTIONAL THEORY 

 

Analytic solutions of the Schrödinger equation and numerically exact solutions are only available 

for a few very simple systems; however, in most cases of interest, such as reactions on surfaces 

in chemistry or electron-electron interaction in solids, require the use of approximate 

Hamiltonians or simplified computational schemes. In order to predict the physical and chemical 

properties of many-body systems with reliability and without excessive computation, the density 

functional formalism was developed [140, 141].  

 

The predecessor of density function theory (DFT) is Thomas-Fermi theory [142], where the 

chemical potential µ can be expressed as, 

                                   )())(3(
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,     (D.1) 

 

in which the )(
→

rn and )(
→

rveff are the electron density and effective potential in a system of 

interacting electrons, respectively. However, it was not clear whether there is a strict relation 

between the electron density appearing in the Thomas-Fermi equations and the corresponding 

many-body wave function. 

 

Analogous to the Hartree-Fock method [143, 144], Kohn and Sham developed the so-called 

Kohn-Sham equations with respect to the single particle states [106],  
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Thus, the effective one-electron potential is given by, 
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the Hartree potential )(
→

rvH is defined as  
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which corresponds to the electrostatic potential of all other electrons; the third term )(
→

rvXC in Eq. 

(D.3) is the exchange-correlation potential from the derivative of the exchange-correlation 

functional ][nEXC
,  
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The exchange-correlation functional ][nEXC
can be written as  
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where )]([
→

rnXCε is the exchange-correlation energy per particle at the point 
→

r , but depends on 

the whole electron density distribution )(
→

rn . Generally, in a many-body system, the exchange- 

correlation energy is not known, and cannot be exactly derived. What is known is the exchange-

correlation energy for the homogenous electron gas, i.e. for a system with a constant electron 

density. Therefore, two important models have been developed for the exchange-correlation 

energy calculation: one is called Local Density Approximation (LDA) model [145], and a more 

recent one is called Generalized Gradient Approximation (GDA) model [115, 116], the 

corresponding exchange energies are described by the following equations: Eq. (D.8) and Eq. 

(D.9) respectively,  
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and  
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The electron density can be expressed as a sum over single-electron states from the solutions of 

Eq. (D.2),  

                                               ∑
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Then the calculated electron density )(
→

rn  can be implemented into Eq. (D.2) again to perform 

the next iteration cycle of calculation until a satisfactory convergence is obtained.  
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