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ABSTRACT
ESSAYS ON AUCTION THEORY
Hadi Yektas, PhD

University of Pittsburgh, 2006

This work is composed of three essays on auction theory. In the first essay, we analyze
the optimal auction of multiple non-identical objects when buyers are risk averse. We show
that the auction forms that yield the maximum revenue in the risk neutral case are no
longer optimal. In particular, selling the goods independently does not maximize the seller’s
revenue. On the other hand, the optimal auction remains weakly efficient. The optimal
auction has the following properties: The seller perfectly insures all buyers against the risk
of losing the object(s) for which they have high valuation. While the buyers who have high
valuation for both objects are compensated if they do not win either object, the buyers who
have low valuation for both objects incur a positive payment in the same event.

In the second essay, we question whether, in the all-pay auction, the seller’s commitment
to the reserve price is beneficial if she has the chance of repeating the auction, possibly with
a different reserve price, in case there is no sale in the first period. We show that, for any
number of potential buyers, non-commitment is preferable only if the seller is relatively more
patient than the buyers. Moreover, as the number of potential buyers increases, the seller’s
incentive to commit increases if she maximizes the average bid, whereas it decreases if she
maximizes the highest bid. A possible explanation is that if the seller maximizes the average
(highest) bid then screening high types (highest type) becomes costlier (less costly) as more
buyers participate in the auction.

The third essay studies collusive behavior in the Ausubel auction in an environment

with incomplete information. The Ausubel auction is vulnerable to collusion due to two

v



main reasons: First, the mechanism has a dynamic nature that allows the bidders to detect
and punish those that deviate from the agreed collusive strategy. Second, in case a bidder
strategically reduces his demand to signal his intention to collude, the mechanism allows the

opponents to correctly interpret the signal.
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1.0 OPTIMAL MULTI-OBJECT AUCTION WITH RISK-AVERSE
BUYERS (WITH GCAGRI S. KUMRU)

1.1 INTRODUCTION

Optimal selling mechanisms for multiple objects have been analyzed extensively due to their
theoretical and practical importance (e.g., the spectrum auctions, second hand car auc-

! One of the main assumptions in these studies is that the buyers are risk neutral.

tions).
However, in many situations this assumption is violated and further analysis is needed.?
The optimal design problem in the presence of risk averse buyers can be described as
follows: When the number of objects is limited, the buyers face the risk of not getting
the object(s) they want. And in order to reduce this risk, the risk averse buyers bid more
aggressively compared to those who are risk neutral.> Therefore, when the buyers are risk
averse, the seller will be tempted to increase the magnitude of the risk. Yet, this comes with
a trade-off, as the high type buyers (namely, the ones who value the good highly), when

confronted with too much risk, may find it more profitable to mimic the low type buyers or

may even be discouraged to participate. Therefore, a revenue maximizing scheme should

!See for example, Harris and Raviv [21], Maskin and Riley [29], Levin [24], Figueroa and Skreta [16].

2In many auctions, the buyers are firms and they are generally assumed to be risk neutral. Yet, firms
whose ownership are non-diversified (e.g. most family owned companies), those that are bound by liquidity
constraints or under a financial distress, and those that are subject to a nonlinear tax system should all be
assumed to be risk averse. (Asplund [4]) Even a firm which is owned by risk-neutral shareholders may behave
in a risk-averse manner if the control of the firm is delegated to a risk-averse manager and his payment is
linked to the firm’s performance.(i.e. through stock options.)

Smith and Walker [40] show that the overbidding relative to Nash predictions (for the risk neutral envi-
ronment) which has been observed in the first-price auction cannot be attributed to noisy-decision making,
supporting the hypothesis that it must be due to the risk aversion of the buyers.

3See, for example, Maskin and Riley [28] and Matthews [30].

4As we know from the optimal auction literature, it may be desirable to exclude the low-type (and in
some environments the high-type (Bertoletti [10])) buyers from the auction. (Exclusion Principle) Yet, if



impose "the right amount risk" on "the right type of buyers".

For single object, Maskin and Riley [28], Matthews [30], and Es6 [15] describe how the
above mentioned trade-off should be balanced. They observe that once the risk neutrality
assumption is relaxed the models deliver quite different results. In his seminal work, Myerson
[34] shows that if the buyers are risk neutral and their private valuations are independently
distributed, then it is optimal to give the object to the buyer who has the highest wvirtual
valuation (not the actual valuation) that exceeds the seller’s outside option.” Thus, the
standard auctions, including the "high bid" and "English" auctions, with appropriately
chosen reserve price are all optimal. He further shows that any two auctions with the same
allocation rule are revenue equivalent if the expected utility of each buyer in some benchmark
case is the same, the celebrated revenue equivalence theorem. To the contrary, if the buyers
are risk averse, the standard auctions with appropriate reserve price neither generate the
same expected revenue nor are they optimal. (Maskin and Riley [28], Matthews [30]).5
Another contrast is observed when the buyers’ valuations are correlated: If the buyers are
risk neutral, then the seller can fully extract the informational rents using an efficient auction
(Crémer and McLean [13]), but she cannot do so if the buyers are risk averse, unless the
correlation is sufficiently strong. (Esé [15]).

In the light of these works, the current paper studies the optimal design problem for the

case of multiple objects and seeks answers to the following two natural questions:

1. How does the optimal multi-object auction with risk-averse buyers compare with that

with risk-neutral buyers?

2. Which features of the optimal single-object auction carry over to the optimal multi-object

auction?

the seller imposes too much risk on all types then she will herself face the risk of no sale, hence ending up
with no profit.

>Virtual valuations are the adjusted valuations that take into account buyers’ informational rents and,
more precisely, are defined as v, (v;) = v; —[1 — F;(v;)]/ fi(vi), if buyer #’s valuation v; is distributed according
to cumulative distribution function F;(.) with associated density function f;(.).

6In a second price auction, the buyers bid truthfully regardless of their risk preference. But in the first
price auction, a risk-averse buyer shades his bid less than a risk-neutral buyer. As a result, the first price
auction yields more revenue than the second price auction. Nevertheless, the first price auction is not optimal
because it imposes too much risk on the high type buyers.

"Optimal auction should remove the risk from high type buyers, which requires providing insurance (and
hence leaving some surplus) to them.



To answer the first question, we compare our results with those of Armstrong [1] who, in
a binary model, characterizes the optimal multi-object auction for risk-neutral buyers.® This
comparison provides a twofold answer: One, in either case, the optimal auction is weakly

210 Two, none of the auction forms that are shown to be optimal in Armstrong

efficient
[1] maximize the seller’s revenue when the buyers are risk averse. In particular, it is not
optimal to sell the two goods independently. This sharp contrast is due to the way in which
the objects are allocated when all buyers have low valuation for both objects. (That is, when
all buyers are of type LL.)

The optimal auctions for risk-neutral buyers can take the form of independent auction,
bundling auction, or mixed auction, depending on how their valuations are correlated across
objects.'*'? These three formats allocate each object independently and randomly if all buy-
ers are of type LL. However, doing so does not impose enough risk on type LL. Contrarily,

when the buyers are risk averse both objects must be given to the same (LL type) buyer.'?:14

8 Armstrong [1] inherited his setting from Armstrong and Rochet [2], who study a principal-agent prob-
lem. Both of these papers and the current paper assume that buyers/agents have multidimensional private
information and, in this regard, differ from the references mentioned in footnote 1.

Manelli and Vincent [26] and Manelli and Vincent [27] also assume multidimensional private information,
but different from the current paper, they assume a single buyer.

9Weak efficiency requires that each object is sold to the buyer with the highest valuation whenever it
is sold. Some of the objects can be kept by the seller eventhough there is a buyer who has valuation that
exceeds that of the seller. For strong efficiency, on the other hand, the objects valued more highly by a buyer
than the seller must always be sold. In this sense, the optimal auctions in Myerson [34] are weakly efficient.

10Tt must be noted, though, that the optimal multi-object auction is no longer weakly efficient when the
model assumes a continuous type space.

UTn all three forms, the buyers have the same expected probability of winning the object(s) for which
they have high valuation. These forms differ only in the expected probability of winning the objects for
which buyers have low valuation. In a mixed auction, a buyer who has low valuation, say, for object A
but high valuation for object B, is assigned object A more often than a buyer who has low valuation for
both objects. While independent auctions don’t distinguish between these two types for object A, bundling
auction perfectly discriminates against the type that has low valuations for both objects. It should be noted
that the bundling auction allows the goods to end up in the hands of different buyers.

12 Avery and Hendershott [7] also consider risk-neutral buyers. While Armstrong [1] assumes that all buyers
have demand for both objects, in Avery and Hendershott [7], only one buyer demands multiple objects and
the remaining buyers demand only one or the other. Not surprisingly, the optimal auction in the latter paper
may not be weakly efficient due to the good deal of asymmetry among buyers. Yet, even in that case, the
optimal auction bundles the objects probabilistically for the multi-demand buyer.

131t is riskier to lose both objects than to lose a single object.

“In Armstrong [1], bundling is optimal only when buyers’ valuations are negatively correlated across
objects, or in other words, when a buyer’s high value for one object, say A, is likely to be accompanied by
a relatively low value for the other object, say B. The goods are bundled only for the types HL or LH. In
this case, their incentive conditions in all directions are binding.

In the current paper, we show that the seller utilizes bundling not only to make the desired incentive
conditions binding but also to increase the risk as much as possible for type LL.



When the buyers are risk neutral, the seller assigns each buyer a single expected payment
that depends only on his type. On the other hand, we show that, when the buyers are risk
averse, it is optimal to make each buyer’s payment (a function of his report) conditional also
on the type and the number of the objects he wins. Moreover, it is not optimal to make

these expected payments random.'?

For the second question, we do a robustness check in order see to what extent our results,
which we obtain in a binary model, are comparable with those of the current literature, which
assumes continuous distribution of types. (Namely, Maskin and Riley [28] and Matthews
[30])'® We observe that the optimal single-object auction in the binary model replicates the
behavior of that of the continuous model at the two extremes of the type space. This analogy
helps us interpret our results regarding the multi-object auction: The seller perfectly insures
all buyers against the risk of losing the object(s) for which they have the high(est) valuation.
The buyers who are (most) eager to win both objects are compensated if they can not win
either object. On the other hand, those (most) reluctant to win both objects must incur a

positive payment if they lose both objects.!”

The intuition for our results is as follows: While, on one hand, the seller would like to
screen the buyers, on the other hand, she would like to confront them with risk. Screening
the buyers requires leaving informational rents to (and, in turn, decreasing the risk for) the
buyers who have high valuation for one or both objects. As a result, the buyers’ marginal
utility of income must remain the same regardless of whether they win or lose the objects for
which they have high valuation. This also implies providing insurance to type HH. On the
other hand, the buyers who have low value for both objects must confront the highest risk
from which the seller benefits in two ways: One, she makes imitating L L unattractive to the

other types and two, she fully extracts the informational rents from type LL. Confronting

15 This also implies that it is not optimal to make the payments dependent on other buyers’ reports.

6 Matthews [30] studies the same problem as Maskin and Riley [28]. While the former assumes a particular
form of utility function, namely CARA, and obtains necessary and sufficient conditions for an auction to be
optimal, the latter considers different forms of risk aversion and characterize the properties of the optimal
auction for all of these forms.

ITA natural question to ask is how the punishment for type LL can be implemented in real life. When
there is a single object, the optimal auction reduces to a modified first price auction for some parameter
values. (Maskin and Riley [28]) The seller charges an entry fee, but she does not return it to the buyers with
low valuation if they don’t win the object.



these types with the highest risk involves bundling the objects whenever all buyers are LL

and collecting payments even when they don’t win any objects.
There is a vast amount of literature on bundling

Finally, we comment on the solution methods used in this paper: In section 1.2, we
describe the optimal single object auction in reduced form, meaning we construct the buyers’
expected probability of obtaining the object (contingent only on his own type), rather than
his actual probability of winning as a function of all buyers’ types. This technique was also
utilized by Matthews [30] and Maskin and Riley [28] in order to avoid the computational
complexity that risk aversion involves.'® Yet, when one solves the seller’s optimal design
problem in reduced form, in addition to the incentive constraints and the participation
constraints, one had to impose the implementability constraints in order to guarantee the

existence of the actual probabilities.'?

The number of implementability constraints increases exponentially with the number
of goods (or more precisely with the number of elements in the type space), nevertheless
Armstrong [1] was still able to solve the problem in reduced form. Yet, when the buyers are
risk averse, since the correlation between the events of winning object A and object B also
matters for the buyers (and in turn for the seller), the conditions that one needs to impose
cannot be easily determined.?’ Therefore, in section 1.3, we describe the optimal auction
in non-reduced form and construct the actual probabilities of the events that a buyer can
possibly face as functions of the entire type profile (as reported by all participating buyers).?!
Since the buyers don’t observe their opponents’ types, only the expected probabilities of

observing each event (conditional only on one’s type) matter in the incentive conditions.

18The technique was introduced to the literature by Myerson [34].

19When there is a single object or when the buyers are risk neutral, these conditions take a very simple
form, which, can be interpreted as the probability that a buyer whose type belongs to a given subset of
the type space obtains a particular object cannot be higher than the probability that there is a buyer whose
type is in that subset.

The implementability conditions need to be imposed because the seller has only a limited number of each
type of good. A multi-product monopolist who has unlimited number of each type of good does not face
this constraint. (See Manelli and Vincent [26] and Manelli and Vincent [27])

20Using the main result of Border[11] (Also footnote 27), Armstrong [1] was able to describe the imple-
mentability conditions. In his environment, the main difficulty is to identify the conditions that are binding
at the optimum. In the current paper, on the other hand, Border[11]’s theorem is not applicable.

21 These events are winning only object A, only object B, winning both objects and winning nothing.



Therefore, we also make use of these ezpected probabilities throughout our analysis.??

The remainder of the paper is organized as follows: In section 1.2, we construct the
optimal single-object auction for risk averse buyers in a binary framework and analyze the
properties of it. In Section 1.3, we increase the number of objects and repeat the analysis.

Finally, in section 1.4., we discuss the main results and their implications.

1.2 OPTIMAL SINGLE-OBJECT AUCTIONS

1.2.1 Description of the Problem

A single indivisible object is to be sold to one of n > 2 potential buyers, whose private
valuations are discretely distributed according to a random variable v;, which takes values vy
with probability ay > 0 and vy, with probability «j > 0 such that ag + ay = 1. Without
loss of generality, we assume vy > vy > 0, so that vy and vy denote valuations of high-
type (eager) and low-type (reluctant) buyers, respectively. Buyer valuations are distributed
independently and identically. Buyers are risk-averse and have a constant measure of risk

aversion (CARA). In particular, their preferences are represented by a utility function u(w) =

e~ TwW

—, where 7(> 0) measures the rate of risk aversion. Note that, u(.) > 0 and v"(.) < 0.

Specifically, if a buyer with valuation v wins the object and incurs a net payment of 7 then

e—T(v—"T)

his utility is u(v — 7) = — . The seller is risk-neutral and her valuation for the object
is zero. Both the seller and the buyers are expected utility maximizers.

The seller’s problem is to design a selling scheme that maximizes her revenue.?® Such
a scheme most generally consists of a message set, M = M; x - - - x M,, and an outcome
function, ¢ : M — A, that maps the list of messages, m € M, into a possibly random

allocation @ € A = A; x - -+ x A,.2* Buyers’ behavior is described by a Bayesian Nash

equilibrium, s = (s, ..., s,), where s, : ©, — M, is the equilibrium strategy of buyer b;

22Tn regard to the solution method, this paper is also related to Menicucci [32] which extends Armstrong
[1] by allowing for a synergy if the two goods end up in the hands of the same buyer. He shows that in this
case the optimal auction is likely to allocate the goods inefficiently.

23Milgrom [33] defines an auction to be a mechanism (scheme) to allocate resources among a group of
bidders. Therefore, we use these three terms interchangeably.

24 An allocation consists of a decision about who is going to get which object(s) and possibly negative
monetary transfers from buyers to the seller.



sp(0y) representing the message that maximizes buyer b’s expected utility given that his type
is 0, and all buyers other than him follow the equilibrium strategy.?® So, any selling scheme,
in a given equilibrium, will result in an outcome represented by 1(s1(601), ..., s,(0,)), if the
buyers’ type profile is (01, ...,0,).

Alternatively, when looking for the optimal selling scheme, attention can be restricted to
the revelation schemes in which the message space is the type space, ©. This is because any
allocation, ¥ (s1(01), ..., sn(0,)), resulting from an equilibrium of an arbitrary selling scheme
can also be obtained in a revelation scheme in which the outcome is determined via the
composite function 1pos : © — A and truth-telling is an equilibrium (Revelation Principle).20
Thus, the seller’s problem can be reduced to finding the optimal revelation scheme in which
the buyers are willing to participate (individual rationality) and have incentive to truthfully
report their type (incentive compatibility).

Given a profile of reports, a selling scheme must, most generally, assign each buyer a
probability of winning, a payment in case he wins and another payment in case he loses.
That is, the outcome is determined by functions of the form 1, (m) = (py(m), £ (m), L (m))
for b =1, ...,n, where tildes represent the possibility that the payment functions are random.
Since there is only one object for sale, a feasible scheme must satisfy >, pp(m1, ..., m,) < 1
for all (myq, ..., m,).

Given an equilibrium, we can calculate buyer b’s expected probability of winning and his

expected random payments in case of winning and losing, respectively, as

po(mp) = E_y[pp(m) | mu) (1.1)
T (me) = E_y[fy (m) | m) (1.2)
Fy(my) = E_y[ty(m) | my). (1.3)

Since buyers are ex ante identical, only the schemes that treat them symmetrically need

to be considered. This is because, for any asymmetric scheme, we can construct a symmetric

%5In this section, each type of a buyer corresponds to a possible valuation , namely ©; = {vg,vr} for
all j = 1,...,n, whereas, in the next section, there are four different types of buyers. That is, ©; =
{HH,HL,LH,LL} for all j =1, ...,n, where the first (second) letter in each type represents buyer j’s value
for object A (B).

26See Myerson [34].



scheme that generates the same revenue as the proposed asymmetric scheme. Symmetric

schemes satisfy the following condition:

For any b,b" € {1,...,n} and any m, m' € M,
Py(m) = Py (m')

if my, = my,, my = my, and for all " # b, b my = mj,.

Therefore, in a symmetric scheme, the expected probability and the expected payments of two
different buyers submitting the same message are equal. Hence, we can drop the subscript
on each of the functions in 1.1-1.3. Describing a selling scheme from the perspective of an
arbitrary buyer, using p(.), 7“(.), 7(.), is called reduced form representation.

Three points need to be emphasized about our approach to solving the seller’s problem.
First, using the Revelation Principle, we consider only the revelation schemes that satisfy
two sets of conditions: individually rationality and incentive compatibility.

Second, we construct the optimal auction in reduced form. We justify this by imposing
another set of conditions called implementability conditions.?” These conditions make sure
that the reduced form probability, p(.), is implementable, that is, they make sure that there

exists a symmetric auction with actual allocation probabilities, p(.), which satisfies

p(my) = Elp(m) | ms)]. (1.4)

2TBorder [11] states the necessary and sufficient conditions, for the reduced form probabilities to be im-
plementable. We include the proposition for easy reference:

Let (S,T) be a measurable space of possible types of bidders and A(.) be a probability measure on S.
Define an auction to be a measurable function p : S™ — [0,1]" satisfying Y., p’(s) < 1 for all s € S™.
Define an auction to be symmetric if p’(s) is independent of 7. Given an auction, define

pi(s,;) = / D(S1y ey S )AA(S1, -5 Si—1,8i41,-5 Sn.)
Snfl

to be the probability that a buyer ¢ wins when he reports his type as s;.
Then p is implementable by a symmetric auction if and only if for each measurable set of types A € T,
the following inequality is satisfied:

1 — A(A°)
n

[ ploire) <
A

Furthermore, if S is a topological space and A is a regular Borel probability on .S, then T may be replaced
by either the open subsets or the closed subsets of S.



The final point is that we initially consider only the schemes in which the expected
payments contingent on winning and losing are nonrandom. In other words, we first construct
the optimal scheme within the class of schemes for which 7*(.) and 7/(.) are deterministic.
(So, we drop the tildes.) We later establish that this scheme is also optimal among all selling
schemes, including those that assign random payments.

To summarize, the seller’s problem is to construct the optimal revelation scheme, the
reduced form of which can be represented by six variables, {p;, 7%, 7t }i=z 1, where p; € [0, 1]
denotes the probability that a buyer wins the object when he reports a valuation of v;, and
¢ 71 € R denote the net deterministic payments that the same type of buyer incurs when
he wins and loses the object, respectively. As mentioned above three sets of conditions are
imposed:

If a buyer with valuation v; reports v; then his utility is equal to pu(v; — 77) + (1 —

p;)u(—74). Thus, buyers truthfully reveal their valuations if the auction satisfies the following

two incentive compatibility conditions:

pru(vy —7H) + (1= pu(=7y) > pru(vn —7%) + (1= pplu(—77)
pru(ve —77) + (1= p)u(=7%) > pyulv, —75) + (L= py)u(—7y).

Buyers are free to participate in the auction. Thus, participating buyers satisfy the

individual rationality conditions of the form

\Y
A
=

pru(vg — ) + (1 — pr)u(—7y)

pru(vy —7L) + (1= ppu(=7L) > u(0).

Finally, the implementability conditions take the following form in our binary model:

nogpy < 1-— Oé?i ([M{H})
napp; < 1—al. (IM{L})



One can interpret these conditions as follows: the probability the object is won by a
buyer who belongs to a particular subset of the type space should be no greater than the
probability that there is a buyer who belongs to that subset.?®

The seller’s revenue is the sum of the expected payments made by each buyer. Since
buyers are ex ante identical the seller’s revenue can be written in terms of the expected

payments made by an arbitrary buyer (namely, the term in the bracket):

T =nlag(pgTy + (1 — pi)Ty) + arlp,ty + (1= pL)7h).

To sum up, the seller’s problem is to choose a reduced form scheme, {p;, 7%, 7\ }i—m 1,
that maximizes 7 subject to the two incentive compatibility conditions, the two individual
rationality conditions, and the three implementability conditions.

For convenience, we define ¢; = e~ and yl — ¢t . Note that, 0 < cyg < ¢ < 1 and

y¥ > 0 for all i and k. So, we can rewrite the seller’s problem as

n w w
max 7= —[ag(py myg + (1 — py) nyy) + ap(p,nyy + (1—py)Iny;)]  (1.5)
{piv¥ ' }imm L r

subject to

prcuyy + (1 — PH)?J < prenyr + (1 - PL)?Ji (ICHx)
precyf + (L—po)vr < precyir + (1= pu)yn (IC1)
prcayi + (1= pp)yy < 1 (IRp)
precyp + (1 —pry, <1 (IRp)
n(appy, +appy) < 1 (I Mimry)
nagpy < 1—af (IMgmy)

nopp, < 1—af (I MyLy)

and the non-negativity conditions py, p; > 0.

28 Armstrong [1] alternatively calls these conditions resource constraints.
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For convenience, we refer to the left-hand side of the inequalities in IRy and IRy, as Dy
and Dy, respectively. Similarly, right hand side of ICy and IC}, are referred to as D% and
DH | respectively. The subscripts denote a buyer’s actual type, whereas superscripts denote

the type he is imitating.

1.2.2 Solution to the Problem

Since ¢z, > ¢y, ICy and IR}, together imply I Ry.? Hence, this condition is redundant. For
now, we also ignore IC}, when we solve the seller’s problem. That is, we suppose that the
low-type buyers do not have the incentive to misrepresent their types. Below, in proposition

8, we prove that this is indeed the case.

Definition 1. The relaxed problem is defined to be a design problem that ignores the upward

incentive constraints.

The following lemma shows that when only the downward incentive conditions are con-
sidered, high-type’s incentive condition and low-type’s individual rationality condition must

be binding.

Lemma 2. In the relaxed problem, where 1C7, is ignored, the constraints ICy and I Ry, must

be binding.

The seller may want to increase her revenue by excluding the low-type buyers from the
auction if, for a given distribution of types, their valuation is small enough compared to that
of the high-type buyers.>’ This results in an inefficiency, because with positive probability
the seller keeps the object even if all buyers value the object more highly than her.

Inefficiency may also be due to a misallocation of the objects. To be consistent with
Armstrong [1], we focus only on the latter kind of inefficiency, by assuming that the goods
are always sold, i.e. p; > 0.*! In this case, it is optimal for the seller to leave informational

rents to the high-type buyers.

Dy < DILLI < Dy, <1, where the second inequality is due to cy < cr.

30The same behavior is also observed when a monopolist implements second-degree price discrimination.

31Clearly, high-type buyers should not be excluded from participating in the auction if revenue is maxi-
mized. That is, py; must be strictly positive. If not, then the incentive conditions would imply p;cr, < prcH,
and since ¢y, > cy this in turn would imply p; = 0, meaning the good is not sold, at all. Yet, the seller can
always guarantee a positive profit by posting a fixed price of vy > 0.
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Lemma 3. At the optimum, if the low-type buyers are not excluded from the auction, then

IRy must be slack.

The following proposition states that it is not optimal to impose any risk on the high-type

buyers. The risk is fully eliminated from them.
Proposition 4. High-type buyers are fully insured against the risk of losing the object.

Through insurance, a high-type’s marginal utility of income in cases of winning and
losing is made the same. Eliminating the risk rewards the high-type buyer for revealing his
true type.

If the seller does not pay informational rents to the high type buyer (7% = vg), the
perfect (full) insurance requires that the seller sets the high type buyer’s payment contingent
on losing equal to zero (75 = 0) in order to keep him at the same level of utility. However,
when there is information gap between the seller and the buyers, high-type buyers should
receive information rent to be active. In this case (i.e. 7% < vg), perfect insurance requires

that the seller compensates the high type buyer (74, > 0).
Proposition 5. High-type buyers are compensated if they lose the object.

Using proposition 4, we can write the seller’s profit as

n 1 w
7= “lag(pyn— + nyh) + arlp, % +ny))] (1.6)
T CH yL

Note that, since 0 < ¢y < 1, the seller’s profit is strictly increasing with respect to py. Thus,
given the values of other variables, p; must be set as high as possible at the optimum. This
implies that either IMyy or My 1y, or both are binding.

The Kuhn-Tucker conditions with respect to 4% and ! can be written as

9L _ o L — ALprer + cg =10

ayr LﬂLylLU LPLCL T HEPLCH =

oL 1

- = oar(l=pp)— = ALl = pr) + pg(l —py) =0.
Yy, YL

Since app Ly% > 0, these two equations together yield
L

w )\ _
y_lL — /\Lfﬂff (1.7)
YL LCL — HpCH
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Note that the right-hand side of equation 1.7 is smaller than é So, we have

This condition has a very nice implication: At the optimum, iso-revenue curve must be
flatter than the line corresponding to the implementability condition My ry.%?
Thus, I Mgy and I My 1y are both binding and the optimal allocation probabilities can

be calculated as
n—1

P = ek pp =t (1.9)

noy n

which is the point where the iso-revenue curve (1.6) is tangent to the feasible set that is
bound by the implementability conditions (Figure 1)

It is not surprising to see that the allocation probabilities that we have obtained in 1.9
are the same as those in the risk-neutral environment. The optimal allocation is monotonic
with respect to buyer types in either case.

Note that, narp;, = af , meaning the probability that the object is won by a low-type
buyer is equal to the probability that all buyers are low-type. In other words, the object is

won by a high-type buyer whenever there is one. Hence, the proposition follows.
Proposition 6. The optimal auction is weakly efficient.

Contrary to the insurance provided to the high-type buyers, the seller confronts the low-
type buyers with risk by making their marginal utilities vary in cases of winning and losing.
In this circumstance, a high-type buyer who considers imitating the low-type buyers would
face a greater risk, and will eventually reveal his own true valuation. Hence, it is optimal
for the seller to relax the high-type buyer’s incentive constraint and not to offer insurance to
the low-type buyers. The following proposition states that at the optimum low-type buyers’

marginal utility of income is greater when he wins the object than when he loses it.

Proposition 7. Low-type buyers are better off winning than losing: cry?¥ < yt. Moreover,
i case of losing the object, they incur a payment that is less than what they would pay if

they win: 1 < yb < y¥.

o In(yp/v}) < 2L where the left hand side of the inequality is slope of

agIn(l/cyg) o’
the iso-profit curve and the right hand side is the slope of the line corresponding to the implementability

condition IM{H,L} .

32This condition is equivalent to
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Figure 1: Single object - Optimal allocation probabilities are the same regardless of buyers’

risk attitude.

Next, we show that the solution to the relaxed problem also solves the full problem which

does not ignore IC7,.

Proposition 8. Low-type buyers do not have the incentive to misrepresent their type. That

1s, 1C', s slack.

The reduced form of the revelation scheme that we’ve constructed above is optimal within
the class of schemes in which the expected payments contingent on winning and losing are
deterministic. Finally, we establish that making ¢* and ¢! random has a negative effect on

seller’s revenue.

Proposition 9. If buyer preferences are represented by CARA, then, in an optimal auction,

the payments, t¥ and t., must be deterministic.

Remark 10. Above proposition also implies that it is not profitable for the seller to condition

the payments made by a buyer on the realizations of his opponents’ types.
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1.3 OPTIMAL MULTI-OBJECT AUCTIONS

1.3.1 Description of the Problem

Now, there are two nonidentical objects, denoted A and B, to be sold to n > 2 buyers.
The seller’s valuation for both objects is zero, whereas buyer valuations are random and
described by a pair (v4,v?), where v° denotes the buyer’s valuation for object 0. Suppose
that v° € {v}, v}, where the subscripts denote whether the buyer is of high-type (H) or low-
type (L). Thus, we assume v% —v9 > 0. There are four types of buyers corresponding to the
four possibilities (v, v5), (v, v2), (v, vE) and (vf, vP). Using a slightly shorter notation,
we define the set of possible types as © = {HH, HL, LH, LL}. A typical element of this set
is denoted with 77, where i represents a buyer’s valuation for object A and j represents his
valuation for object B. Types are independently and identically distributed across buyers
according to a probability measure a over O, so that the probability that a buyer is of type ij
is represented by «;;. The marginal probability that a buyer has a high value for object A is
denoted with aﬁ = ayy + ayp. Similarly, ozf = ar g+ arr denotes the marginal probability
that the buyer has a low value for object A. In the same fashion, we define ag = aggtoryg
and &f = ay + arp to be the marginal probabilities that the buyer has a high and low
value for object B, respectively.

Each buyer is risk-averse and has preferences represented by the common CARA utility

—Trw

function of the form u(w) = —%—, where r > 0. In the event that a buyer wins object(s)

of a (total) value v and incurs a net payment 7, his utility will be equal to u(v — 7). For

example, if a buyer wins only object A when his valuation for that object is v and incurs

a net payment 74 then his utility is equal to u(vy! — 74). Similarly, if a buyer of type HL

wins both objects and incurs a net payment 747 then his utility will be u(vi + v8 — 748).

Both the seller and the buyers are expected utility maximizers.*3
The seller’s problem is to design a selling scheme that maximizes her revenue. In view

of the Revelation Principle, we solve this problem within the class of revelation schemes

33We assume that there are no economies of scope in the production of the bundle nor are there com-
plementarities in the consumption of the bundle. We make this assumption so as to isolate the role that
bundling has on the seller’s ability to extract the consumer surplus.

15



which satisfy incentive compatibility and individual rationality constraints.?® Furthermore,
as justified in the previous section, among the revelation schemes, we focus only on the
symmetric ones in which the buyers of the same type are treated the same.

Let n;; be the number of buyers of type ij and n = (ngy, nyr, nLy, nrr) be the vector
representing the profile of reports where ) " jco Mij = 1. Then, a symmetric revelation scheme

can most generally be described with two sets of rules:

e a decision rule, pfj (n), that assigns each type ij € © probabilities of realizing possible

events k = A, B, AB, O, for each profile of reports 7. Given 7, the decision rule must

satisfy
Do MilPi () + 25 < 1 (1.10)
Do MlPE ) + P 0] <1 (1.11)
pi(n) +pi(m) + PP () +p5(n) = 1 Vije© (1.12)

e a payment rule, ffj(n), that, for each profile of reports 7, assigns each type ij € © possibly
random payments to be made to the seller at each possible event k = A, B, AB, O.

The decision rule specifies the probability that a buyer b of type ij realizes the valuations

v, "UJ-B, v + U}B or 0. We abuse the notation and list these four events respectively as:

Event A - winning only object A
Event B - winning only object B
Event AB - winning both object A and object B
Event O - winning neither object.

Remember from Armstrong [1] that the risk-neutral buyers are only interested in the
marginal probabilities of winning the objects. For risk-averse buyers, on the other hand, the
correlation between the events of winning object A and object B matters. The decision rule
in the above specification takes this into consideration.

Note that, pf} (n)+p;;%(n), in 1.10, represents the marginal probability of winning object
A which we shortly denote with ﬁf‘j (n). Similarly, pg(n) + pf}B (n), in 1.11, represents the

34Remember that in a revelation scheme, buyers are asked to report their types.
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marginal probability of obtaining object B which is denoted with ]35(7}) Thus, conditions
1.10 and 1.11 are the resource constraints representing the fact that there is only one unit
of each object. Condition 1.12 states that the events A, B, AB and O are all inclusive.

Although the payment rule allows the seller impose random payments, when we solve the
seller’s problem, we assume ffj(n) =7k . where T . eRforallije ®and k = A, B, AB, O,
and characterize the optimal scheme within the class of schemes that assign deterministic
payments. We will show later that imposing random payments to each type 75 under each
event k£ cannot improve the seller’s revenue.

Now, define an ij type buyer’s expected probability of realizing the event k = A, B, AB, O

as

n N—MyHH N~ MHH—NMHL
N

pzy Z Z Z P@(HHH,RHL,HLH,RLL) —= (1.13)

aij
ngg=0 nygr=0 nrg=0

HH , "HL_ "LH

_ "LL -
where W — @G oyt oyl gy any n;; > 0, U2 denotes the probability that the
ij

ngg'ngrnrg'npr!

buyer profile is n = (ngu,nyL, nLy,nrr) given that there is one ij in that profile (of course,
conditional on incentive constraints hold).*

The reduced form of a symmetric revelation scheme, then, can be represented with

B _AB A _B _AB _O
{pzj7 Pijs Pig > pz]a Tij»Tijr Tij > Tijrijeo-

pf}- and pf; are type ij’s expected probability of winning object A or B, alone; whereas pf}-B
is his probability of winning both objects. Apparently, p = 1 — p;; — p — p;;¥ represents
the probability of winning neither object. Tfj is the net deterministic payment that type ij
must incur if event k occurs.

Then, the utility of a buyer of type ij who misrepresents his type as i'j’ is

A

p?j’u(vi - 7

Tf}j/) + pfj,u(vj - Tfj,) + pﬁﬁu(vf +of — T?ﬁ) + pio/j,u(—ﬁo,j,).

Let ¢ =e ™ foro= A, B and i = H, L and yfj = fork € K = {A, B, AB,O} and

1j € ©. Then a scheme is individually rational if, for each type ij € ©,

35The multinomial distribution is used.
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_ AAA, BB B, ABAB AB , 0.0
Dij = pijcivi; + pizci vi; +0ij ¢y + iy < L

An auction is incentive compatible if, for any ij € © and i'j’ € © \ { ij},

A A A B B, B AB A B, AB o ,0 _ i3’
Dl] S pz‘ljlc,i yi’j’ + pilj/cj yi'j’ + piljlcl‘ Cj yi’j’ + pi’j’yi’j’ = D’Lj .

The seller’s revenue can, then, be written in terms of the expected payment of an arbitrary

buyer, namely the term in brackets:

m=n[> {ay Y _ pimh}. (1.14)

ijEO keK

Note that, T,Ifj = %ln yfj Then, if the reduced form probabilities are ‘implementable’ we

can write the seller’s problem in reduced form as

n
max - Z{aij Z pfj In yfj} (SP)

{eljuijliicokex ijEO keK

subject to
Dy <1 1] € © (1.15)
D; < D' ijeo, i €0\ {ij} (1.16)

Since the buyers are risk-averse, the correlation between the events of winning object
A (namely, event AU AB ) and object B (namely, event B U AB) matters for the buyers
and also for the seller through 1.14. Thus, Border’s [11] theorem does not apply to this
problem.? As it is also mentioned in Armstrong [1], the conditions that we need to impose to
ensure that the reduced form probabilities are implementable are not clear. For this reason,
different from the previous section, we aim to construct the actual probabilities, pfj (n),
Vij € ©, k = A, B, AB and Vn.*" Given a payment rule, the optimality of a decision rule

will be analyzed as follows: For any modification of p,’fj (1), we will first describe how expected

36See footnote 28.
3TGiven 45 and 7, pl-oj () can be calculated using 1.13 and the values of pf‘j(n), pf’;(n), and pf}B(n) are
found.
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probabilities pfj will be affected. Then, we figure out whether the incentive constraints in 1.16
and individual rationality constraints in 1.15 hold and whether the objective function (SP)
increases after the modification. To demonstrate how this works, we borrow the following
example from Menicucci [32]:

Suppose for a given profile of reports with ngy > 1 and npy > 1 each type wins object
A with probability ﬁ and each type LH wins object B with probability %(O < pB<1).

Note that from 1.13, this generates a contribution to p?, equal to

5 np

nNrgp OLH

Consider reducing 5 by AfS > 0 while increasing by AS the probability that the same buyer
of type HH winning object A will also win object B. Then,

A
Nrg  oLg
AB _npw
Apy = ———W—— = —Apjj.
nNHH OHH
So, AppB = —Apth = —2LLApP. We can then evaluate the profitability of reducing 3

OHH

since the seller’s profit function and the constraints are linear with respect to the expected

probabilities.

1.3.2 Solution to the problem

Before we attempt to solve problem SP, note that, since 0 < cy < ¢, incentive compatibility
conditions imply that among the individual rationality conditions only the one corresponding

to type LL matters.
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1.3.2.1 The relaxed problem Using the same approach as in Armstrong [1], we first

solve the seller’s problem considering only the five downward incentive constraints, that

ensure that a buyer does not underreport his valuation for an object. We show ex post that

the remaining constraints are satisfied (Propositions 25 and 26).

Thus, the seller solves

subject to

max  aga{ Py M Yin + Pir M YTe + PiE VS + pha MY}
+on{pi Iy, + pnLnyn + e nynt 4+ p5 Inyf )
+CYLH{P?H In ny + pr In ny + Pf]j—gf In yfﬁ + ng In ng}

+arc{pi, nyl, + pr nyl, + p P Wyl + 0% Iny?, }

AB

AB A B, AB

A A A B B.B o .0
PLrCryir Y Py + Prrcercyrr +orpyrn <1

IN

IA

IN

VAN

<

A A A B B.B AB A B AB , O O
PLHCLYLE T PLuCHYLH + PLHCLCHYLHE + PLHYLH

A A A B B_ B AB A B _AB o O
PrrLCrYrr T PLrCu¥rr + P CLCuYrr + PLLYLL

A A A B B B AB A B AB, O O
PurLCuYur + PuLCLYuL * PuLCHCLYHL T PHLYHL

A A A B B.B AB A B AB , O .O
PLLCHYLL T PLLCLYLL T PLL CHCLYLL T+ PLLYLL

A A A B _B.B AB A B AB o O
PaaCaYun v PauCaYan * PuaCuCa¥un * PuaYmu

A A A B B.B AB A B . AB , O .O
PLLCuYLL T PLrCu¥Yrr * PrL CuCu¥rr + PLLYLL

A A A B B.B AB A B. AB o 0
PuaCuYun v PuuCuYun + PHECHCHYHE * PHuYHH

A A A B B.B AB A B AB , O .O
PruCuYrr + PLuCuYrr + PLuCHCHYLE T PLHYLH

A A A B _B.B AB A _B. AB o O
PaaCaYun v PauCaYun * PuaCuCu¥un * PuaYmu

A A A B BB AB A B AB , O O
PurCaYurL + PaLCaYnL + PHLCHCHYHL T PHLYA L

(]RLL)

(ICLH)

(ICHE)

(ICHE)

(ICiir)

(ICHH)

We first establish that it is not optimal to make the expected payments, namely yfjs,

random. This is because if a yfj is random for an ij and k, then the seller could replace it

with its expected value without affecting the incentive conditions (because they are linear in

yfj) and increase her revenue (as the seller’s revenue is a concave function of yzkj)
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Proposition 11. If the buyers’ preferences are represented by CARA wutility function then,
m an optimal auction, the expected payments conditional on types and allocation must be

deterministic.

Now, we determine which of the six conditions in the relaxed problem are binding.
Lemma 12. At the optimum of the relaxed problem, I Ry; must be binding.
Lemma 13. At the optimum of the relaxed problem, ICEL and ICEY must be binding.

Lemma 14. At the optimum of the relazed problem, at least one of ICEY, ICEE and ICHL

must be binding.

Using the above lemmata, we write the Lagrangian of the relaxed problem and derive its
Kuhn-Tucker conditions with respect to the payments, namely yfjs Then, we establish the
relation among the payments using these Kuhn-Tucker conditions, the details of which we
relegate to the appendix.

Similar to the single object case, when a buyer wins an object, say object i, for which he
has high valuation, he pays v more than what he would have paid if he lost that object.
The intuition for proposition 4 also applies here.

If the objects are not limited, the seller can make the high-type buyer’s probability of
obtaining the object(s) equal to one in order to reward him for revealing his true valuation(s).
However, when the objects are limited, the same rewarding strategy does not work because
each high-type buyer may face the risk of losing the object(s) to another high-type buyer
and hence, the marginal utility of income may differ in the events of winning and losing.
The resource constrained seller, however, can reward a high-type buyer by offering perfect
insurance and increase her revenue. Note that, if buyers are risk neutral, there is no insurance
issue. In other words, if the buyers are risk averse the seller has an additional tool to extract

more revenue from them when compared to risk neutral environment.

Proposition 15. FEach buyer is perfectly insured against the risk of losing the object(s) for
which he has high valuation.

When it comes to the LL-type buyers, the seller faces the following predicament: to

extract more revenue from the LL-type buyer by offering insurance and to exploit the risk-
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bearing of the buyers who have high-valuation for one or both of the objects to screen them.
At the optimum, the marginal benefit of exploiting high-type buyers risk bearing exceeds
the marginal cost of not offering insurance to LL-type buyers. Moreover, LL-type buyers
pay penalty when he loses both objects which further deters high-type buyers from behaving

as if they are LL-type.

Proposition 16. Suppose that type LL is not excluded from the auction. Then, he incurs

a positive payment if he loses both objects.

With the help of the preceding results, the seller’s problem can be written as

. . 1 . . 1
lm Pt + Py In T (PR + aLapry) n -5 toanmln Y
H H

tog i nyn, + (1= p) Inyg,) + OéLH[fbe Inyy + (1= piy) InyZy]

tornlpi, Iyl + pronyry + e Iyl + p?p Inyd) )

subject to
Dy, =1
Diy = pruciyin + (1= pig)yly
Dy = ﬁgLCf?JgL +(1- ﬁgL)ygL
Dy
yiau = min ¢ pRychyiy + (L= pin)yy

prciyin + (1= Prr)ydr
where ﬁé = p;‘} + pf}B and bg = pg + pf}B. Let’s call this problem SP’.
Thus, for the optimality of an auction only the following reduced form probabilities
matter:
{ﬁf;, ﬁg}ij:HHﬂL,LH, {0} L een B a5
Consider a mechanism where, for a given profile, 1, both objects are sold with probability

one. Then, if the seller modifies the mechanism by increasing pfj (n) by n%jgfj, the following

condition must hold:

Z(afj—l-ef‘jB) <0 for k=A,B.

ijes
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After this modification, pfj will increase by O%sfj\l/
ij
We now establish that the solution to the relaxed problem is weakly efficient. That is, if
there is a buyer with high valuation for an object then that object is never sold to a buyer

who has low valuation for that object.

Proposition 17. Let n = (ngg,npu,ngr,nrr) be the profile of the participating buyers.
Then, the solution to the relaxed problem satisfies the following two rules:

i) For any n with ngy +ngr > 0, ngupay(n) + nprps, (n) =1

i) For any n with ngy +nrg > 0, ngpp2y(n) + ngrpPy(n) = 1.

If there is a buyer who has a high value for object A (B) then with probability one it
is given to a buyer who has a high value for it. While proposition 17 states this result in
terms of actual probabilities, the following corollary does the same in terms of the expected

probabilities.

Corollary 18. At the optimum of the relaxed problem, reduced form probabilities satisfy

i) aupiy + oy, = (1 - (af)") and

i) annpy + orupiy = (1= (af)").

The next lemma establishes that both objects are sold with probability one, if a buyer’s
payment contingent on winning an object for which he has low valuation is larger than his
payment contingent on losing both objects.

Similar to the previous section, we assume that the seller never keeps the object. We
have already established in proposition 17 that the seller does not keep an object whenever
there is a buyer who has a high value for it. This requires the probability that an object is
won by a buyer who has a low value for it to be equal to the probability that all buyers have

low value for it.

&)

—~
Q

S SES

~— S~—
3 3

A A A A
arLLprr, Y QLHPLE =

B B
oLLPLL + CHLPHL =

SI—3|=

In terms of actual probabilities, we can write these conditions as

For any n with ngg + ngr = 0, nLHﬁfH(n) + nLLﬁfL(n) =1 (1.17)

For any n with ngg +nrg = 0, ngrph,(n) +npeps(n) =1 (1.18)
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Proposition 19. The necessary conditions for 1.17-1.18 are yiy > y%u, y5. > y9,, and
YL, Yin YL > Yo
Since Dy = y9,; < 1, when HH loses both objects he either does not pay anything

(i.e. ¥9 = 1) or he is compensated (i.e. 9, < 1).

Proposition 20. In any mechanism that solves the relaxed problem, if an HH type buyer

loses both objects then he is compensated.

This proposition results because the seller needs to provide insurance to type H H. This
is a property that carries over from the single unit optimal auction. (Maskin and Riley [28])
They show that when the type space is continuous, the seller provides full insurance (and
hence full compensation) only to the highest type but partial insurance to the types that are
sufficiently high.

Proposition 21. In any mechanism that solves the relaxed problem, if all the buyers are of
type LL (i.e. npp = n) then the objects are bundled and each buyer wins the bundle with
equal probability. (i.e. pPf(n) = 1).

An immediate implication of the proposition above is that it is not optimal to sell the
goods independently in which case with positive probability the objects may end up in the
hands of different LL type buyers. Yet, the proposition has further implications.

When the buyers are risk neutral (Armstrong [1]), depending on how buyers’ valuations
are correlated across objects, the optimal multi-object auction can take the form of indepen-
dent auctions, mixed auction or bundling auction. But all of these auction forms allocate the
two objects independently and randomly when all buyers are of type LL. This contradicts
with the proposition. Therefore, none of these auction forms are optimal when the buyers

are risk averse.

Theorem 22. Whenever the parameter values are such that the relaxed method solves the
full problem, the three auction formats that are optimal when the buyers are risk neutral do

not maximize the seller’s revenue if the buyers are risk averse.

The main reason for why we obtain this contradictory result is that the optimal auction

forms for the risk neutral buyers do not impose the right amount of risk on type LL. The
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optimal auction for risk averse buyers, on the other hand, imposes two kinds of risk on this
type. The first kind removes the possibility of winning a single object when all buyers are of
type LL and the second kind assigns a positive payment if he doesn’t win any objects. These
two kinds of risk improve the sellers revenue in the following way. The former exploits the
risk bearing of the buyers who have high valuation for one or both objects by facing them
with even greater risk when imitating LL than the optimal auction for risk neutral buyers.
The latter, on the other hand, help the seller collect the penalty fees from more people.
Since the seller probabilistically assesses the buyer valuations (i.e. only ex ante proba-
bilities of the type distribution matter) and never keeps the objects by assumption, there
always exists a probability that LL type buyers can obtain both objects. This can happen
only if all buyers are of type LL. On the other hand, whenever there is a type HH or both
HL and LH, then LL cannot win any objects. The following lemma states the conditions

under which an LL can obtain a single object.

Lemma 23. In any mechanism that solves the relaxed problem,

i) if n is such that npg,npr, >0 and npg +mnp = n, then object A is sold to an LH type

buyer (i.e. npypiy(n) =1) if

«Q 9 «Q o
( HL Ygg 11 LL Yy 4 1)71 _ (T)

i YL Y7L aLu b
Otherwise, an LL type buyer gets object A (i.e. npppp,(n) =1).

i) if n is such that ngrp,npy > 0 and ngr + npr = n, then object B is sold to an HL

type buyer (i.e. nprpp,(n) = 1) if

«Q % a %
lpry < ( LH Ygg 1 LL Y@L i 1)—1 _ (i)

O O =7YHL-
Yo ®HH YL CHL

Otherwise, an LL type buyer gets object B (i.e. nprp?;(n) =1).

According to the previous lemma, in the optimal auction, if the excess payment that L H
makes for object A is larger than that of LL (namely, t1, —t9, >t —t9,), then LH wins
object A.

By this lemma, the solution to the relaxed problem depends on the values of v, and
V1. Note that, v; 7 > 1 if and only if v;; > 1. Thus, we can divide the rest of the analysis

into three cases (See Figure 2):
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Vb 1

Ky

Figure 2: Allocation of each object when all buyers have low valuation for it.

® Vi + 7L <1 (Region Ay),
o 1 <7,y +7ur <2 (Region A,),

® 2 <7y +Vur (Region Ay).

Remark 24. Readers should note that the three cases listed above are analogous to those
mentioned in Lemma 2 of Armstrong [1]: strong positive correlation, weak positive correla-

tion, and negative correlation, respectively.

Whether object A (B) is given to an LL or LH (HL) type buyer depends on whether

(vYom, Ve falls in region A;, As, or As.

1.3.2.2 Case Al - Strong positive correlation: [y, + vy, < 1] We can set

rr =1 =Yy — YL, Mg = Vo> FuL = YHL (1-19)

In this case, all incentive constraints of type HH are binding. This also implies that the

seller is indifferent between LH and LL for object A and between H L and LL for object B.
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For any given allocation probabilities, the payments

(Ui L D YL Y Yo VB L YL Y (1.20)
solve
max apgnyqy +org(l— pry) myly + apr(l— ph) Inyg, + +arp?, nyd, (1.21)
tarupiy Inyty +appp Iyl + arepi Iyl + arpf Inyl, + aprplf mypp
subject to
PLLCIYLL + PLLCLYLL + PRLCECLyiL + Pyl = 1 (1.22)
A A A AB A B A 0 .0 AA A A AA N\ O
PELCEYLL + PLLCHYLL + PLLCocaynr + PLoyie = Prpcivin + (1 — pim)yiy (1.23)
PRLCHYLL + PLLClYLL + PrLchclyit + p0uys, = Prnciynn + (1 — phn)ys (1.24)
PRLCHYLL + PLLCHYLL + PLLCHCRYLL + POyl = Yiu (1.25)
A A A AA O o
prucuyin + (1= DPou)¥in = Yin (1.26)
ﬁchgygL + (1 - fbgL)ygL = yI?TH' (1-27)
By 1.19 and lemma 24,
nyygL = nyy(L)H and yfIL?JgL = yLBL?JIO{L (1.28)

must also be true. Using equations 1.22-1.27, and the two conditions in 1.28, we can solve
for eight of the variables (say, except y9 ;) listed in 38 in terms of y9,;, the parameters and
the reduced form probabilities. After plugging these variables into the objective function
1.21 we can solve it for 39 ,,.

Now, we consider the conditions that we have omitted in the relaxed problem.

Proposition 25. (Full problem - Case A1) The upward incentive conditions, ICEH  TCHE

ICEE and ICHE are not binding.

38 The payments that are not listed in (38), namely y2,;, yfg, yfIL, yf}%, yI‘f}H, yE o, y}‘}%, can be calculated
using proposition 15.
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The above proposition states that type LL does not have incentive to imitate the types
LH or HL. Moreover, neither type LH nor type H L has incentive to imitate H H.

The conditions ICEE and ICL! together imply

AB A _B A

AA
ng piH I (pLH _ PHL)CLCHA ;HCL /ng . } (1.29)
PrLu H PLH PHL Culh pHL Ch
A pd g ChcB —chAcB B L AB
< yHL{:OHL AgL(l _Pgﬁ L HA Ly AgL(l - P )_B}
CH PHL HCH PHL
AB pAB CACB o CAC pA AA
o LH ~A \CLCH HCL LH A A
+  youlein— + 521 - pry) YN + 51— prm)—}
¢ PLy CHCH PLH
where A" = ¢&, — ¢
ICHH takes the following form:
Ay aped
1 <ygulpin—= ) +pHH B + oy =L 5 T Pt (1.30)
CH CuCh
and vy, < 1 can be written as
QOLHOHL < yj(L)HyI?{L (1 31)

=70 .0
arLOCHH YrrLYeH

Proposition 26. The optimal allocation probabilities satisfy the necessary condition 1.31.

Moreover, 1.29 and 1.30 are not binding.
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1.4 DISCUSSION AND CONCLUDING REMARKS

In a binary model, we show that when the buyers are risk-averse, the optimal auction is
weakly efficient. That is, with probability one each object is sold to a buyer who has high
valuation for it, if such a buyer exists. Each buyer is perfectly insured against the risk of
losing the object(s) for which he has high valuation. Buyers who are eager to win both
objects are compensated if they can not win either object; whereas, buyers who have low
value for both objects incur a positive payment if they lose both objects. The objects are
bundled when all buyers are reluctant for both objects, thus, none of the auction forms listed
in Armstrong [1] are optimal.

In a more general framework, it has been shown that among all mechanisms for allocat-
ing multiple objects that are strongly efficient, incentive compatible, and individually ratio-
nal, the Vickrey-Clarke-Groves mechanism maximizes the expected revenue.** The optimal
multi-object auction that we have constructed for risk averse buyers is incentive compati-
ble and individually rational but is only weakly efficient and thus different from the VCG
mechanism.

The inefficiency results either because some types are ex ante excluded from participating
the auction, or because of a misallocation. In this paper, we confined ourselves from the
first kind of inefficiency, and showed that the latter kind of inefficiency does not occur in an
optimal auction. Yet, this result is very sensitive to the assumption of binary distribution
of types. Armstrong [1] shows that weak efficiency does not survive once the type space is
made continuous.

The seller can exploit the risk bearing of the buyers, either by making their payments
different in the events of winning and losing; or, contingent on winning and losing, she can
make their payments random. While the former improves the revenue the latter does not.

We finally comment on the restrictions of our model. For tractability reasons, we focused
only on the case where the buyers’ utility function exhibits constant absolute risk aversion.
Instead a buyer’s utility may exhibit increasing or decreasing absolute risk aversion, or rel-

ative risk aversion, in which case the answer to the optimal design problem is not clear.

39For a clear and concise discussion of VCG mechanisms see Krishna [23].
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Alternatively, one can also consider the situations where the buyers have different risk atti-
tudes with respect to each good, in addition to that with respect to the wealth level. In that
case, one would have to consider a generalization of the Arrow-Pratt theory (Arrow [3] and
Pratt [36]) which allows to study multi-dimensional risk attitudes. One such generalization
is proposed by Kihlstrom and Mirman [22].

Gal-Or [18], considers the case where the risk-averse buyers worry about the possibility
of breakdowns. She shows that running "sales" improves the revenue of the single-unit mo-
nopolist. This is because the risk-averse buyers tend to buy more frequently than necessary
to avoid buying at the higher regular price and to avoid the cost of waiting for the next sales
period. Since, in our model, the seller owns only one unit of each object and the objects
are not related, our results would not change if the buyers worry about breakdowns. In this

case, buyers’ concerns can be easily embodied into their valuations.
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2.0 SEQUENTIAL ALL-PAY AUCTION WITHOUT COMMITMENT

2.1 INTRODUCTION

The seminal paper by Myerson [34] showed that when bidders have linear cost functions, the
independent private value auctions with optimal reserve price maximize revenue. This clearly
explains why sellers often post a reserve price in auctions.! However, when the market value
of the object is higher than sellers’ valuation, sequential rationality imposes a constraint on
their behavior: They cannot credibly commit to keep the object out of market if the reserve
price is not met. Indeed, it is common today that the sellers reauction the same object over
and over again if it fails to sell. This behavior is observed in auctions that are held online at
Ebay and that take place in well-known auction houses, like Christie’s and Sotheby’s. The
seller’s inability to commit is not incorporated in Myerson [34], and the consequences of this
behavior need to be analyzed.

McAfee and Vincent [31] (Henceforth MV) analyze this problem in the first price and
the second price auctions. They proved that the revenue equivalence result of Myerson [34]
holds between sequential first price and second price auctions when the seller is unable to
commit. They observe that the seller lowers the reserve price if the object fails to sell in the
previous period. Yet, they didn’t question how much the seller loses by not committing to
the reserve price.

Sobel and Takahashi [41] (Henceforth ST) study the same problem in a multi-stage

bargaining environment where the seller makes take-it-or-leave-it offers in each period until

IMyerson assumes that the imposing a reserve price does not change the number of potential buyers.
Engelbrecht-Wiggans [14], on the other hand, provide two examples where this might not be the case, and
show that the loss associated with the reduced number of buyers outweigh the benefits of a reserve price.His
result, though, does not apply to the situations that we consider in this paper.
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the buyer accepts the offer?. In this case, if the buyer does not want to buy the object at the
current price, the seller cannot resist the temptation to try to resell it in the next period.
The posted price, here, is analogous to the reservation price of the auctions. ST showed that
the ability to commit to a price schedule is beneficial to the seller because with this ability
the seller can threaten to maintain a high price in order to induce a purchase in the first
period. ST assume different discount rates for the seller and buyer, and analyze both the
two-period case and infinite-period case, whereas MV assume same discount rates for all the

players and analyze only the infinite-period case.

The current paper, which is also an extension of ST, studies the commitment problem in
all-pay auctions where the winner collects the prize and but all bidders forfeit their bids. All-
pay auctions are used to raise funds for charities, but, in general, they are rarely preferred as
a selling mechanism. Although all-pay auctions are not practical in real life, in the literature,
they are frequently used to model real life situations such as R&D tournaments, promotions
in labor markets, and lobbying activities. For motivation, let’s discuss why these situations
are analogous (or precisely isomorphic) to all-pay auctions and why the "sellers" in these

circumstances cannot commit to the "reserve price".

An example to a research and development tournament is the prototype tournaments
sponsored by the U.S. Army Air Corps in which several manufacturers compete to make
a prototype of an aircraft specifications of which is announced by the sponsor.® If none
of the competitors can meet these minimum requirements, and therefore, not enter the
tournament, the sponsor will naturally think of revising the rules and bringing down the
minimum requirements. If at least one of the firms is interested in the project, then the
tournament will take place. The winner, which is assumed to be the firm that spends the

highest effort, is awarded the production contract?. The efforts of the losers are sunk. The

2Note that, if there is only one bidder, the models in MV and ST are equivalent.

30ne such tournament was organized by the U.S. Army for a Joint Cargo Aircraft. Lockheed’s C-130J’s
exclusion from the competition raised a protest:

"The Army has excluded the C-130J without adequate regard to Air Force requirements," Lockheed
said in its complaint to the Government Accountability Office, which serves as a watchdog agency for the
federal government. "As such, it appears the joint title of the (Joint Cargo Aircraft) program is significantly
overstated."

4Here, it is implicitly assumed that the quality of the prototype is monotonically increasing with the
effort level, which may not be the case in all R&D projects.
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objective of the privately sponsored R&D tournaments, generally, aims to maximize the
effort spent on the "best" project. A tournament designed by public authorities, on the
other hand, may aim to boost the overall activity level in a particular market. In that case,
the objective of the tournament is to maximize the effort spent on "all" projects.

Now, consider a labor market tournament designed to promote one of the lower-rank
employees to an open higher-rank position®. This type of tournaments prove useful as a
selection process when an outside option is not available due to regulations (i.e. army, secret
service) or when the outside option is too costly. Also, an employer can make use of a
tournament to increase the effort level of the workers, overall. In either case, the employee
who exerts the highest effort is awarded the indivisible prize. The effort of the non-winning
participants, on the other hand, are sunk. It is very natural for the employer to require
a minimum effort level if the efforts of the contestants can be observed, yet the employer
cannot credibly commit to this minimum effort level due to the lack or the cost of the outside
option.

Finally, consider lobbying activities. Campaign contributions that are made to policy-
makers are usually considered as access cost. If the contribution is high enough then the
policymaker grants the interest groups "access", a chance to defend their cases. Lobbyists
think that the higher is the amount of the contribution donated the more decisive is the
information they provide to the policymakers. Grossman and Helpman [20] state that poli-
cymakers impose these costs, one, because they need funds to finance their campaigns, two,
because they need a screen to distinguish groups that are more likely to provide valuable
information, three, because their time is a scarce resource, and they want the value of the
information to exceed the opportunity cost of their time®. The model presented in this paper,
applies to all three cases. In the first two cases, the total revenue of the seller should be inter-
preted as sum of all contributions and aggregate value of all the informations, respectively.
In the latter case, policymaker minimizes the time spent with the lobbyists’. Regardless

of which case is assumed, policymaker grants access to certain lobbyists the contributions

SReaders can refer to Nalebuff and Stiglitz [35] and Rosen [38] for labor market tournaments.

6 Austen-Smith [6], Lohmann [25], and Wright [42] are the other papers that interpret campaign contri-
butions as access cost.

"In this case, the policymaker minimizes the disutility, or equivalently maximizes the negative of the
disutility.
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of which exceed the amount set by the policymaker. The interest group whose information
played a decisive role is considered as winner. All the other lobbyists are deemed as losers.

The contributions made by them are sunk.

Since the contest examples mentioned above are isomorphic to all-pay auctions, in the
remainder of the paper, auction theory jargon is used®. The contest designer is referred to as
the seller or she and the contestant(s) as the bidder(s) or he(they). The seller may maximize
the highest bid or the sum of all bids. The latter objective is equivalent to maximizing the

average bid if the buyers are ex ante symmetric.

In an all-pay auction, no matter which of the two objectives the seller pursues, if she is
patient enough then imposing a relatively high reserve price in the first period and, in case of
no sale, lowering it in the second period maximizes the revenue, conforming to the findings
of ST and MV. In other words, the sequential all-pay auction in which the seller commits to
the reserve price in the second period yields a higher revenue than the single period all-pay

where the seller commits to the reserve price in the first period.

The main result of the paper is that, as the number of bidders increases, the seller will
have a higher incentive to run a single-period all-pay auction if she maximizes the average
bid, but she will prefer to run a sequential all-pay auction if she maximizes the highest bid.
With a large number of bidders, a single-period all-pay auction yields higher revenue for a
average-bid-maximizing seller only if she is almost fully patient. Moreover, the more bidders
participate in the auction the less patient the highest-bid-maximizing seller has to be in

order to prefer the sequential all-pay auction.

The remainder of the paper is organized as follows: Part 2 further reviews the literature.
Part 3 introduces the model. Part 4 analyzes the benchmark case where the seller is assumed
to announce no reserve price. Part 5, on the other hand, analyzes the case where the seller
sets the optimal reserve price and commits to it if no sale occurs. Parts 6 explores the case

where the seller is unable to commit temporarily. Finally, part 7 concludes.

8For classification of contests, you can refer to Baye et al. [9].
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2.2 RELATED LITERATURE

Bertoletti [10] shows that when a seller has bargaining power then she should set an optimal
reserve price. He shows that the revenue generated under the optimal reserve price might be
higher than that generated when the highest valued lobbyist is excluded. Yet, this conclusion
can be derived only if the seller has complete information about bidder’s values. Hence,
excluding the highest bidder is difficult when the seller is uninformed about the valuation of
the bidders or when the bidders are ex-ante symmetric. Different from Bertoletti [10], this
paper assumes incomplete information and weakens the assumption that the seller is able to
commit to the reserve price.

Gavious and Sela [19] study all-pay auction with reserve prizes where the cost of bidding
is a nonlinear function of the bids. They show that setting a reservation price is profitable
for a seller who wishes to maximize the highest bid. When the seller wishes to maximize
the average bid, on the other hand, it might not be profitable to set a reserve price. If the
players have exogenous entry costs, then setting reserve price is always profitable.

Finally, Skreta [39] characterizes the optimal auction in a two-period model under non-

commitment.

2.3 MODEL

This paper studies an all-pay auction where n ex ante symmetric risk-neutral bidders compete
to win a single indivisible object. Seller’s valuation of the object is normalized to zero,
whereas the bidders’ private values are drawn independently and identically from uniform
distribution over [0,1].

The rules of the all-pay auction are as follows: The seller announces a reserve price and
then the bidders simultaneously place their bids. If the reserve price is met then the highest
bidder wins the object and everyone pays their bids. If the reserve is not met and the seller
is able to commit to keep the object then the game ends. If the seller is unable to commit
and no sale occurs in the first period then she reauctions the object. The new reserve price

is announced and the bids are submitted. The item goes to the highest bidder if at least
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one of the bids exceed the second period’s reserve price and all bidders pay their bids. The
game ends after the second period regardless of whether the reserve is met or not.

Both the seller and the bidders are assumed to be expected utility maximizers. All
players discount their expected future earnings but the bidders discount at a rate different
from the seller’s.

All features of the above model and the seller’s ability to commit are common knowledge
among all players.

The equilibrium constructed in section 2.4 is Bayesian Nash equilibrium and the equilibria

that are described in all other sections are perfect Bayesian Nash.

2.4 BENCHMARK CASE: NO RESERVE PRICE

We start with the simplest scenario where the seller does not make any strategic decision,
i.e. the seller does not announce a reserve price. In this case, the game is played among
the bidders. A bidder wins the object and enjoys a positive payoff only if he outbids his
opponents, yet he has to pay his bids even when he loses the object. More precisely, when
bidder i of type v who places a bid of b;, he earns an expected utility of u(b;, v) = v Pr[b; >
max{b; }] — b

Each section of this paper aims to construct a symmetric equilibrium in monotonic
strategies. Thus, the opponents of bidder i follow the same bidding strategy, ((.), which is

monotonically increasing in v. So, bidder ¢’s utility can be written as

u(b;,v) = vPr[b; > B(v;) for j #i] —b; (2.1a)
= ’UFn_l(ﬁ_l(bi) > Uj) — b (21b)
= vF" N (B7H(by)) — by, (2.1c)

where F(.) represents the belief that bidder ¢ carries about his opponents valuations.

If bidder 4’s utility is differentiable, then the optimal bid b* solves the first-order condition

Au(b*,v)

5~ = U for each v. The envelope theorem states that the total derivative of the value
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function is equal to the partial derivative of it. Namely,

du(b*,v)  Ou(b*,v) N ou(b*,v) b;

dv ov ob; 0Ov (2.22)
_ Ou(b*,v)
=5 (2.2b)
= e 0)) (2.2¢)
= F"(v). (2.2d)

The second equality follows from the fact that b* solves the first-order condition and 2.2d
follows due to the symmetry of the equilibrium bid functions. Note that, equilibrium bid
function has to assign an optimal bid to each possible valuation, hence b* = [(v). The
integral of 2.2d, gives back the value function. Hence, combining equations 2.1c and 2.2d,

one can write

oF" (B (b)) — bF = / Frel (et (2.32)
wF" 1 (v) — B(v) — / Frl(t)dt (2.3)
B(v) = vF"L(v) — / Frl(8)dt. (2.3¢)

Since bidders’ values are assumed to be uniformly distributed, equation 2.3c is equivalent to

_n—l

v) = v 2.4
Bo) = "= (2.4
Proposition 27. If the seller does not announce a reserve price, then bidding according to
B(v) = "T_lv” 1s a symmetric equilibrium of the all-pay auction.

The seller’s payoff can then be calculated. If her objective is to maximize the average

bid then

I = B3] = [ A (e (2.50)
n—1
- (2.5b)
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Similarly, if she maximizes the highest bid, then her payoff is equal to

= B3 0> _max (o} = [ BP0 (2.6a)
-2 L (2.6b)

Each bidder, on the other hand, earns an ex ante utility of
1
Elu(B(0), )] = [ {oF"(0) = )} lo)do (272)
0

Loym 1
/0 n Y n(n+1) (2.7b)
2.5 RESERVE PRICE WITH COMMITMENT

This section lets the seller play a strategic role in the game. Foreseeing the equilibrium play
of the bidders in the subgame, the seller posts a nonnegative reservation price. In order to
solve seller’s problem, the bidders’ behavior needs to be analyzed first.

Let’s assume that the seller posts a nonnegative reserve price r and also remember that

bidder ¢ with valuation v will earn a utility of
u(b;,v) = vPr[b; > B(v;) for j #i] —b; (2.8)

if he bids b;. It can be shown that the bidders with low valuations have no incentive to
participate. As an example, consider the bidder with valuation r. Since the probability of
winning is smaller than one, this bidder cannot earn positive utility when he enters. This is
because he has to bid at least r. For participation, a bidders valuations must be sufficiently
large in order to offset the effect of his incomplete information about his opponents’ values.
In other words, there must be a critical type ¢ > r where the bidder is just indifferent
between participating and not participating. So, we conclude that only the bidders with
valuations larger than ¢ will place a positive bid.

The bidders with valuations larger than ¢, on the other hand, tend to bid more aggres-
sively than they would if the seller didn’t impose a reserve price. The arguments that lead

to this conclusion are as follows: The bidder with a valuation equal to ¢ wins only if all
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other bidders have valuations smaller than ¢, and in the case that he wins he will be better
off by placing the smallest bid, namely the reserve price r. Since the bidder with valuation
¢ is indifferent between participating and not participating he earns zero utility, whereas
he could have earned positive utility by placing a slightly smaller bid if the seller did not
post a reserve price. So, when the seller posts a reserve price, the bidder with valuation ¢
increases his bid. Using the monotonicity of the bidding strategies we conclude that bidders
with valuations larger than ¢ bid more aggressively if the seller posts a reserve price.

Since only the bidders of type v > ¢ place a positive bid, using the arguments that leads

to equation 2.2d, one can write bidder 7’s value function as

(2

u(f(v),v) = /F"_l(t)dt +u(B(c),c) for ¢ <w. (2.9)

c

This expression is equivalent to equation 2.1c given that b is chosen optimally. So, we can

write bidder i’s equilibrium bidding strategy as

B(v) = vF" 1 (v) — /F”_l(t)dt —u(B(c),c) for c <w (2.10a)

c

= v 4 — for c <w (2.10Db)

The second equality is due to the fact bidder ¢ earns zero utility when his valuation is c.
Bidder 7 bids the reserve price when his valuation is equal to the critical type: f(c) = r.

Hence, ¢ = r'/". In equilibrium, the seller forms a correct belief about how the bidders will

behave in the second stage. So, if the seller’s objective is to maximize the average bid, then

her payoff is equal to

1

I(c) = EB(v)] = / B(0) f(v)dv = / "2+ San, (2.11)
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whereas her payoff is equal to

Ie) = BISG) [0 > s {03} 2122
= /6(U)nF”_1(v)f(v)dv (2.12Db)
- /(n ;l 1v" + %)nv”_ldv (2.12¢)

Cc

if her objective is to maximize the highest bid. Since critical type is strictly increasing with
the reserve price, the seller’s problem is equivalent to choosing the optimal ¢ that maximizes

[1¢ and I1". Using calculus, we can show that the optimal critical type that maximizes 1%

1
n+1

and I} are ¢** =  and " = ( )7, respectively.

Observe that c* > %, that it monotonically increases as the number of bidders increases
and that it is equal to 1 in the limit. This is because the value of the highest bidder being
above a given critical type increases as the number of bidders increases. In that case, the

seller will be better off by posting a higher reserve price to induce aggressive bidding.

Proposition 28. The symmetric equilibrium of an all-pay auction with reserve price, r, can

be described as follows: The bidders follow (v) = ”Tflvn + % if v > ¢ and zero otherwise,

1/n

where ¢ = r*/". The seller posts the reserve price such that only bidders whose valuations

are above some critical type will participate. The critical type is ¢** = % if her objective is to

mazimize the average bid and c* = (n%rl)% if her objective is to maximize the highest bid.

In equilibrium, the seller’s payoffs are equal to

n—1 1
Ha a* —
() n(n+1) * n(n 4+ 1)2n

_n—l+ 1
o 2n 2n(n+1)

(2.13a)

I (") (2.13b)

Since the seller chooses a critical type different from zero, when it is an available action.

Thus, we conclude that posting a reserve price is beneficial for the seller.
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L

Figure 3: Equilibrium bidding strategies in the single-period all-pay auction and the sequen-

tial all-pay auction.

2.6 TEMPORARY LACK OF COMMITMENT

The previous section assumed that the seller is able to commit to the reserve price. This
section, on the other hand, assumes that she is unable to do so for only one period. The
timing of the game is as follows: The seller posts a reserve price, r1, in period one. The
bidders place their bids which are either zero or larger than the reserve price’. If at least
one of the bids is positive, then the game ends. If all of the bids are zero then the seller
posts a new reserve price, 5 in the second period. The bids are placed and and the highest
bidder wins. The game ends regardless of whether the bids in the second period are zero or
positive. The seller and the bidders discount the payoffs earned in the second period at a
rate of 6° and ¢, respectively. (6%, 6° € [0,1])

We construct and analyze a symmetric perfect Bayesian equilibrium in monotonic strate-

gies.

9Equivalently, one could have assumed that the seller interprets any positive bid smaller than the current
reserve price as being submitted by a bidder with valuation smaller than the critical type.
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Definition 29. The perfect Bayesian equilibrium of the two period all-pay auction is defined
as the set of strategies {ry, 51;(.), 72, B2 (.)} and the belief {u}satisfying

e Vv € [0,1], By maximizes bidder i’s continuation utility, us(.,.), for any history of
reserve prices (r1,72), i =1,2,....,n

e r, marimizes the seller’s continuation payoff, 1., given her belief i and the bidders’
second period strategies,

e Vv € [0,1], By, maximizes the bidders expected first period utility, uy(.,.), given the
second period strategies and r1, 1 =1,2,....n

e 1, mazimizes the seller’s expected first period payoff, 11\, given the bidders’ and the
seller’s subsequent strategies,

e /1 is Bayes-consistent with the bidders’ first period strategies and observed actions.'’

2.6.1 Second Period Strategies

We begin with constructing the bidders’ second period strategies. The seller announces
second period’s reserve price 9, if no sale occurs in the first period after a reserve price of
r1. That is, the game reaches the second period if both bidders place bids of zero in the first
period. So, bidder ¢ moves at a history that is of the form (74, (0,0, ..,0), r3), shortly (r1,75).

In the second period, bidder i updates his belief about his opponents’ values. Due to
the symmetry in the equilibrium strategies, bidder 7 believes that his opponents have values
smaller than the critical type of period 1, namely ¢;. And his objective is to choose the optimal
bid by € {0} U [rq, 1] that maximizes his continuation utility ug(be;, v) = v Pr[by; > [5(v;) for
J # 1] — bg;. This problem of bidder i is similar to bidders’ problem of the previous section
with the only difference that the opponents’ values now being distributed uniformly between
[0, ¢1]. Thus, he places a positive bid only if his value is larger than some critical type cs,

and when he does so he will follow:

(2

Bo(v) = vG"(v) — /G”_l(t)dt if oo <v<¢ (2.14a)
1 .
= —=gl(n = D" + ¢ if o<v<a (2.14b)
ney

0The definition is analogous to that in Freixas, et al. [17]
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where G(v) is the uniform distribution over [0, ¢;].

Since a strategy is a complete contingent plan, it has to describe how the bidders will
behave off the equilibrium path. That is, bidder i’s strategy has to describe what to do in
the second period when his valuation is larger than c;''. In this case, he faces the following
problem:

max vG" (B (b2)) — by (2.15)
The first order condition to this problem is

UdGn_l(ﬁgl(b2))
dby

= 1. (2.16)

Bidder 7 has no incentive to bid more than the highest bid that his opponents might place
in the second period, namely (,(c;), because he believes that his opponents’ valuations are
smaller than or equal to ¢;.

He doesn’t have incentive to bid lower than [3,(c1), either: Let’s say that bidder i bids
by < Py(c1). Since B4(.) is continuous, there is a valuation v' < ¢; for which b}, is optimal,
and hence is the solution to 2.16. Note that, the left hand side of equation 2.16 represents
the gain due to slightly higher bid whereas the right hand side represents the loss. Since

n— —1/37 n— —1/37
W v W = 1, bidder 7 has incentive to bid higher. So, b, is not
2 2

C1 >
optimal. To conclude, in the second period, the bidders bid £,(c;) for any value greater than
Co.

When his valuation is ¢y, bidder ¢ wins the object only if his opponents have valuation
smaller than c,. In that case, he is better off by placing the smallest possible bid, namely

n—1

ra. S0, By(ca) =13 o1 ¢y = (¢ 1r) /.

Lemma 30. In the continuation game that follows the history (r1,72), each bidder uses the

following strategy:

0 O0<v<en
By(v) = sa=rlln =D + &) ¢y <v<el
m%f[(n—l)c?—i-cg] 1 <v
1

where cy = (¢} try) /™.

1 This event occurs if bidder i accidentally bids zero in the first period and no sale occurs in that period.
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In the second period, after having observed bidders’ response of bids of zero to the
first period’s reserve price, r1, and foreseeing the second period bidding strategies, the seller
maximizes her continuation payoff by choosing an appropriate reserve price, ry. Since second
period’s critical type is strictly increasing with the reserve price, she can equivalently choose
the optimal ¢, that maximizes her payoff. More precisely, to maximize the average bid, the

seller solves

max / By(v)g(v)dv, or (2.17a)
max —n [(n— o™ + cdv (2.17b)
Cc2 nCl co
whereas she solves
Cc1
max By (v)nG™ Hw)g(v)dv, or (2.18a)
co e
1
max m/ [(n = Dv*" ™ 4 o Hdv (2.18b)
c2 Cl e

in order to maximize the highest bid. Here, G(v) represents the probability that an oppo-
nent’s value is smaller than v which is distributed uniformly over [0, ¢;] and g(v) = dG(v)/dv
is the corresponding density function. Problems 2.17b and 2.18b are both uniquely maxi-

mized by ¢§* = £ and c§* = (n+ 1)~/ respectively.

Lemma 31. Suppose that no sale takes place in the first period after a reserve price of r1 and
that the seller believes that the bidders’ valuations are smaller than ci. Then, to maximize
the average bid (highest bid), she posts a reserve price such that only bidders with valuations

larger than ¢§* = & (ch* = (n+ 1)7Y"¢y) participate.
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2.6.2 First Period Strategies

2.6.2.1 Average Bid In the first period, having observed the reserve price ry, bidder i
maximizes his payoff. This problem is similar to the one in the previous subsection. So, we
can write his bid function as

v

B(v) = vF" 1 (v) — /F”l(t)dt —u(B1(c1),¢1) forep <w (2.19a)
_n ; 111” + % —uy(B(c1), 1) for ¢; <w. (2.19b)

This bid function is analogous to equation 2.14a. Yet, the critical type, c¢;, should comply
with the following incentive compatibility condition: Bidder ¢ does not have incentive to
wait until the second period if his valuation is larger than c;.

If a bidder with valuation v > ¢; bids in the first period he will earn v" — [”T_lv” + % —
u1(B(e1),¢1)]. If he waits, on the other hand, he will enjoy his valuation with probability
one by placing the highest possible bid of the second period. So, he will earn a discounted
payoff of 6°[v— (n—1+ 2%)%] To satisfy the incentive compatibility condition, the difference
between these two utilities

wa(Bu(0),0) = Pur(Balen),v) = o = o= L4 80— 14 D b wn(Byen),en) (2:20)

has to be at least zero for any valuation above ¢;. One can easily see that the minimum of
this expression is attained at v = (6°)"/"~1 if (6°)Y/"1 > ¢; and at v = ¢; if ()" < ¢;.

Therefore, the bidder with critical type earns the following payoff:

2o if (7)Yl < g
%(5 )n/nil + ?1 B T ) C1 if ((5 )1/n71 >

Substituting 2.21 into 2.19b, one can find bidder ¢’s strategy: Place a positive bid only if the

valuation is larger than c¢; and, if so, use the following bid function:

B1(v) o+ & - Bk if (") < e (2.22)
1\v) = N . .
n;lvn _ n;l((sb)n/nfl + (”—TIL;%L +15b01 if (51))1/7171 > ¢
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When his valuation is c;, bidder ¢ wins the object only if his opponents have valuations
smaller than ¢;. In that case, he is better off by placing the smallest possible bid, namely
r1. S0, B1(c1) = 1. This equation has a unique positive solution in which the critical type,

c1, is monotonically increasing with the reserve price, ry.

Lemma 32. In an all-pay auction where the seller mazximizes the average bid and cannot
commit to the reserve price r1 for only one period, the bidders use the following strategy in

the first period: Place a positive bid of

B ( ) n—1 1 o™ ‘I‘ 2n2_n16b Zf (6b)1/n71 <
1\v) = n
n_—lvn _ %(5b)n/n—1 4 (n 711231 +15bcl Zf (6b)l/n—1 >

n

for any valuation v > ¢; and bid zero otherwise, where ¢; solves B,(c1) = 11.

Finally, seller’s payoff function can be written as:

1 (cy) / By(v)f(v)dv + 6°F" (¢ / Bo(v) f(v)dv. (2.23)

The first term represents the expected payoff from the first period and the second term
represents the discounted expected payoff from the second period. F"~1(c;) appears in the
second term because a bidder places a positive bid, only if his opponents do not get the
object in the first period, an event which happens with probability F"~!(c,).

Seller chooses the optimal reserve price, or equivalently the optimal critical type, that

maximizes 2.23, because the critical type of period one, ¢; is strictly increasing with ;.

2.6.2.2 Highest Bid Bidder ¢’s first period bid function is of the form of 2.19b. Since
the seller chooses a different ¢, in the second period, the incentive compatibility condition
needs to be modified:

If a bidder with valuation v > ¢; bids in the first period he earns v" — [”—_11;” + i —
uy(B(er), e1)]. But if he waits he will earn a discounted payoff of 6°[v — -2-¢;]. Again, to

satisfy the incentive compatibility condition, the difference between these two utilities

n 7
v cf

u1(31(v), v) = 5bu2(62(01)av) = 8ty — - +

nT 1cl5b+ul(ﬁ(cl),cl) (2.24)
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Commitmert vs. Nor-commitment: Average Bid
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Figure 4: For any given number of bidders, if the state is such that the pair of discount factors
falls above the corresponding line, then the seller prefers not to commit to the reserve price.

Note that, the set of pairs for which non-commitment is beneficial to the seller shrinks as

the number of bidders, n, increases.
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has to be at least zero for any valuation above ¢;. The minimum of this expression is attained
at v = (6")V/" 1 if ()71 > ¢ and at v = ¢ if (6°)Y/"' < ¢;. Therefore, the bidder with

critical type will earn the following payoff:

5bC Zf (5b)1/n—1 S c
w (By(er),er) = e 1

(2.25)
neL(ghyn/not 4 S noghey if ()Y > g

n—i—ln

Substituting 2.27 into 2.19b, one can find bidder i’s strategy: Place a positive bid only if the

valuation is larger than ¢; and if so use

By (v) = S if @)y (2.26)
n_—lvn_ n— 1(5b)n/n 1+ 5b01 Zf <5b)1/n71 >

n

T

When his valuation is ¢;, bidder ¢ wins the object only if his opponent has valuation
smaller than ¢;. In that case, he is better off by placing the smallest possible bid, namely
r1. S0, B1(c1) = 1. This equation has a unique positive solution, in which the critical type

is monotonically increasing with the reserve price.

Lemma 33. In an all-pay auction where the seller maximizes the highest bid and cannot
commit to the reserve price r1 for only one period, the bidders use the following bidding

strateqy in the first period. Place a positive bid of

5 (U) B n—1 1 o _|_ n+1n5bcl Zf (5b)1/n71 <
1 =
nT—lvn _ nT—l(é‘b)n/nfl + n—flné‘b Zf (5b)1/n71 > ¢

for any wvaluation v > c¢; and bid zero otherwise, where ¢y is the critical type that solves
Biler) =1

Finally, seller’s payoff function can be written as follows:

I () / By (0)nF™ (0) f(v)dv + 6° / By()nF™ (o) f()dv.  (2.27)

The first term represents the expected payoff from the first period and the second term
represents the discounted expected payoff from the second period. Seller chooses the optimal

c; that maximizes 2.27.
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Commitment vs. Non-commitment: Highest Bid
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Figure 5: For any given number of bidders, if the state is such that the pair of discount factors
falls above the corresponding line, then the seller prefers not to commit to the reserve price.
Note that, the set of pairs for which non-commitment is beneficial to the seller expands as

the number of bidders, n, increases.
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2.6.3 Discussion of the Results

In the previous two subsections, we have characterized the seller’s objective functions for
the cases of maximizing the average bid [Function 2.23] and maximizing the highest bid
[Function 2.27]. Unfortunately, neither problem has a closed form solution. Using numerical

methods, we obtain the following results.

Proposition 34. For any given number of buyers, the non-commitment equilibrium gener-
ates higher revenue than the commitment equilibrium if the seller is relatively more patient
than the buyers. Moreover, as the number of buyers increases, the non-commitment equi-
librium generates higher revenue for a smaller set of parameter values if the average bid is
mazimized. If, on the other hand, the highest bid is maximized, then the non-commitment

equilibrium generates higher revenue for a larger set of parameter values.

Corollary 35. For any given number buyers, if the seller prefers to run a sequential all-pay
auction rather than a single-period all-pay auction when she maximizes the average bid then
she does the same when she maximizes the highest bid. Moreover, if the seller prefers to
run a single-period all-pay auction when she maximizes the highest bid, then she also does

so when she maximizes the average bid.

We explain, in detail, the features of the model that derive these results and then discuss
the implications of the model on the three real life situations that we have mentioned in the
introduction.

A reserve price in a standard auction has a dual effect on the behavior of the buyers
and, hence, on the revenue generated by the auction: On one side, it makes the high-type
buyers bid more aggressively and, on the other side, it restrains the low-type buyers from
participating. While the former has a positive effect on the seller’s revenue, the latter has
a negative effect. Thus, the optimality of a reserve price depends on whether it induces the
right degree of competition among the right type of buyers.

The ability to rerun the auction decreases the cost of excluding the low-type buyers,
which gives the seller an incentive to exclude more types and to induce a higher degree of
competition in the first period among the participating buyers. Hence, the reserve price

in the first period of the sequential auction will be higher than that of the single-period
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optimal auction. The reserve price in the second period, on the other hand, is lower than
the optimal reserve price of the single-period auction. In conclusion, some types (e-type)
that would participate in the optimal single-period auction are excluded in the first period
of the sequential auction, yet some other types (p-type) that are excluded from the optimal
single-period auction have the opportunity to participate in the second period of the optimal

sequential auction. (See figure 3)

It turns out that if the seller is patient enough, regardless of whether she maximizes the
average bid or the highest bid, the discounted benefit of having p-type buyers in the second
period (together with the increased level of competition in the first period) compensates
the loss due to excluding the e-type buyers from the first period. The graphs in figures 4
and 5 show the pairs of discount factors for which the above-mentioned benefit and loss
balance out, for the cases of average bid and the highest bid, respectively. For any number
of buyers, if the parameter vector lies above the corresponding line then the discounted gain
from having p-type buyers in the second period is larger than the loss due to excluding the
e-type buyers in the first period. This implies that when the seller is relatively more patient
than the buyers, she prefers to run a sequential auction rather than a single-period auction,

or in other words, she prefers not to commit to running a single-period auction.

Moreover, if the number of buyers, and hence the chance of observing a sale in the
first period, increases, then the loss due to excluding the e-type buyers dominates the gain
from the p-type buyers if the seller maximizes the average bid and she is not patient enough.
Hence,only highly patient sellers prefer to run sequential all-pay auction. Conversely, a seller
who maximizes the highest bid does not have to be as patient, in order to run a sequential
auction, for, as more buyers participate, a sale in the first period is more likely and inducing a
higher degree of competition in the first period with a higher reserve price is more profitable.
In other words, as the number of buyers increases, it is costlier to screen the high types if
average bid is maximized whereas it is less costly to screen the highest type if the highest

bid is maximized.

When applied to the R&D tournaments, our results imply that the optimal tournament
should resemble the sequentially optimal all-pay auction. That is, the designer should ini-

tially announce a relatively demanding list of minimum requirements, and if there is no
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participation in the first period, then she should revise the list and bring down the minimum
requirements. This is because in a research and development tournament for an aircraft
only few companies that have the required high technology participate and the tournament
designer is generally more patient than the participants.

The promotion scheme in an army or a secret service is analogous to a labor market
tournament where the minimum effort level is not publicly announced but is usually common
knowledge. The winner(s) of the tournament is chosen from a large pool of relatively more
patient employees. Although there are substantially large number of employees in the above
mentioned institutions, whenever promotions are considered, many positions have to be filled
as well. Therefore, the labor market tournaments in these institutions typically maximize
the aggregate effort. Also, the organizer, in this case, is likely to be highly impatient, for
the position has to be filled and there is no outside option. Therefore, a tournament scheme
that mirrors the optimal single-period all-pay auction is more likely to be chosen.

Finally, quite many policymakers maximize the overall contributions and the aggregate
level of information and are highly impatient with respect to time for obvious reasons. In
this case, these policymakers are unlikely to set high reservation levels that is required in the
first stage of the sequential process. Moreover, the number of lobbyists, the participants, is
relatively high. Thus, a single-period all-pay scheme maximizes the policymakers payoff in

this situation.

2.7 CONCLUSION

This paper analyzes how the seller’s revenue is affected by her ability to commit to the
reservation price in a class of contests that are isomorphic to all-pay auctions. It is shown
that when seller’s discount factor is higher relative to that of the bidders, that is when the
seller is more patient than the buyers, then it is profitable for her to set a high reserve price
in the first period and then lower it in the next period if no sale occurs. The result holds
regardless of whether the seller’s objective is to maximize the average bid or the highest bid.

This result is unexpected because in a bargaining model Sobel and Takahashi [41] showed

that ability to commit is more profitable for the seller. The main reason for this contrary
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result is that when the seller sets a reserve price in an all-pay auction the types of bidders
smaller than a cut-off withhold their bids. But the types larger than the cut-off bid more
aggressively compared to the no reserve case. By not committing to the reserve price, seller
utilizes the opportunity to trace the higher type the bidders. She can use this tool only when
he is patient enough and when the number of bidders is small.

As a final word, we can compare "exclusion principle" with the result of this paper. Ex-
clusion principle says the seller should exclude the highest type bidder from the auction to
increase the revenue. This principle can work only when the seller has perfect information
about the bidders valuations, which is generally not possible because sellers are naturally
imperfectly informed about the types of the bidders. When the seller has incomplete in-
formation, to improve the revenue a seller can exclude the bidders with low valuations by
imposing a reservation price. This paper, now, proposes a method to improve the revenue
which can be used the when the seller is patient enough and when there aren’t many bidders.

A question that is not addressed in this paper is whether the results of the paper hold
when the seller is unable to commit for more than one period and when she is never able
to commit. I conjecture that, the seller needs to be even more patient as the number of
periods increases because the bidders are expected to behave less aggressively in response
to the sellers inability to commit. To make them bid more aggressively seller is expected to
impose a higher reservation price, but this in turn decreases the probability of observing a
sale in the early periods. Thus, to increase the contribution of tomorrow’s sale to the seller’s

discounted utility she has to be more patient.
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3.0 A NOTE ON COLLUSION IN THE AUSUBEL AUCTION

Several mechanisms have been proposed to allocate multiple units of an object, like treasury
bills or electromagnetic spectrum, among many buyers who potentially demand more than
one unit. The uniform price auction, the discriminatory auction, the Vickrey auction are
static mechanisms that have been implemented in real life and /or widely discussed in the lit-
erature. In these institutions, the bidders are asked to simultaneously report their demands
as a function of price. The market clearing price is determined as the price at which the
aggregate demand is equal to the number objects that are available. Each bidder wins the
items, for which bidder’s willingness to pay according to the reported demand function is
larger than the market clearing price. In the uniform price auction, each bidder pays the
market clearing price for each units he wins. In the discriminatory auction, on the other
hand, each bidder pays his bid for each unit he wins. It has been shown theoretically, em-
pirically, and experimentally that the first two mechanisms not necessarily yield an efficient
outcome, in the sense the objects do not go into the hands of those who value them the
most. Efficiency of the allocation mechanism is the primary objective of public authorities
either for consideration of fairness or for the stability of the market after the auction.
Vickrey auction attains efficiency by making the bidders pay the externality they impose
on other bidders. This payment mechanism gives bidders the incentive to bid truthfully
by preventing them to possibly change the price they pay for the inframarginal units by
not demanding the marginal units. The Ausubel auction [5] replicates the same outcome in
a dynamic fashion: The price is announced, the demands are collected, and each buyer is
clinched the units that are not claimed by his opponents. The price increases until all units
are allocated and when the game ends the buyers pay for each unit the price at which they

are clinched that particular unit. Sincere bidding is the unique outcome of the elimination
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of the weakly dominated strategies. Both the simplicity of its rules and its dynamic nature
make the Ausubel auction a better choice as a mechanism to sell multiple homogeneous
goods. Yet, these very features may allow sophisticated buyers to collude in the Ausubel
auction. Provided that enough information is released, the buyers can detect deviations from
the agreed collusive strategy. Moreover, the Ausubel auction also allows the buyers sustain
collusion. In general, a buyer prefers to deviate if the gains from deviation is larger than the
gains from sustaining the collusion. Most of the gains from deviation is earned at the period
in which the buyer defects. Yet, in the Ausubel auction, given that the opponents follow the
collusive strategy, a buyer will not be clinched more units at the time of the deviation and
moreover by doing so the buyer will trigger sincere bidding in the remainder of the auction.

Theoretical literature on collusion in dynamic multi-object auctions is not rich. Recently,
Brusco and Lopomo [12] studied the collusive equilibria of the simultaneous ascending bid
auction. This mechanism allows each bidder to signal his interest in particular items and
his intention to refrain from competiting for the other items provided that the others don’t
compete for the items he wants. In the collusive equilibrium, the bidders successfully divide
the items among themselves and maintain low prices.

Below, we provide three examples in which collusion can be achieved and sustained in
the Ausubel auction. In these examples, we assume that the price-clock runs continuously.
The first two examples assume complete information and two non-divisible units and the

final example assumes incomplete information and a single divisible unit.

3.1 AN EXAMPLE WITH COMPLETE INFORMATION AND
SYMMETRIC BUYERS

Example 36. Table 1 illustrates marginal valuations of the two bidders for the two units
that are to be allocated. If both bidders bid sincerely then each will win one unit, pay the
externality that he imposes on the other, namely 10, and earn a utility of 20-10=10.

Yet, the following strategy also describes a symmetric equilibrium: Use the bid function

described in table 2 as long as everyone does the same, otherwise bid sincerely. If both bidders
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Bidder 1 Bidder 2
Unit 1 20 20
Unit 2 10 10

Table 1: Bidder valuations (symmetric buyers with complete information)

Price Demand
p<95 2
H5<p<10 1
10<p 0

Table 2: Equilibrium bidding strategies

follow this new strategy, then they each will win one object at price 5(+¢) and earn a utility

of 20-5=15.

To prove that this strategy is part of an equilibrium one has to show that the bidders have
no profitable deviation. Before discussing possible deviations, it is important to note that by
deviating a bidder cannot change the number of units he wins nor can he change the price
he pays. Thus, there is no "immediate” advantage of deviation. Moreover, since deviation
triggers sincere bidding, it creates "absolute" disadvantage, namely deviator has to pay the

maximum possible price for the units he wins.

If a bidder deviates at a price smaller than 5 he will win one object and pay 10, where
as he could have earn that single unit for 5. When price is 5(+¢) a bidder is clinched one
unit since his opponent reduces his demand to one. Therefore, at any price above 5 a bidder
will be willing to deviate only to win the second unit. But since deviation triggers sincere
bidding, he can be clinched the second unit only when price reaches 20(+¢) which exceeds the
amount that he is willing to pay for the second unit. Hence, the collusive strategqy described

above is an equilibrium.
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3.2 AN EXAMPLE WITH ASYMMETRIC BUYERS AND COMPLETE
INFORMATION

Bidder 1 Bidder 2
Unit 1 20 20
Unit 2 10 5

Table 3: Bidder valuations (asymmetric buyers with complete information)

Example 37. Let’s modify example 36 by changing marginal valuations of bidder 2. If both
bidders bid sincerely then bidder 1 will win both units', pay the externality that he imposes
on bidder 2, namely 10+5=15, and earn a utility of 30-15=15.

There is an equilibrium in the Ausubel auction where each bidder wins one object, bidder
2 pays nothing and bidder 1 pays the price announced in the second stage (denote it by p=¢ ).
This equilibrium results if bidderl reduces his demand to one unit at the starting price, and
bidder 2 drops out after he understands the signal. Note that this collusive equilibrium Pareto
dominates sincere bidding equilibrium, in the sense that both earn strictly higher payoffs. It
18 also important to note that signaling is not costly to bidderl, at all. In the case that bidder
2 musinterprets the signal he will drop out when price reaches 5, at which bidder 1 is clinched
one unit and earns a payoff of 15, which is equal to payoff he could have earned had he bid

sincerely.

3.3 ANOTHER EXAMPLE: INCOMPLETE INFORMATION

Suppose that one unit of a divisible good is to be split between two bidders who have privately
known constant marginal valuation u; which is independently and identically drawn from

the uniform distribution over [0,1]?. Price clock runs continuously. Then, sincere bidding is

'Note, that at price 10 there will be a tie, and second unit needs to allocated according to a price breaking
rule. The point in the example independent of the tie breaking rule.

2When the goods are perfectly divisible the number of objects to be sold can be normalized to one without
loss of generality. Similarly, the upper bound of the support of the distribution of w; can be any u € R.
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the unique outcome of iterated elimination of weakly dominated strategies in the Ausubel
auction. Sincere bidding yields an efficient allocation and in equilibrium bidder ¢ earns an

expected surplus of

S(w;) = Prlu; > ujl{u; — Efu; | u; > u;}

= wi{{w — / uj—du;}
0 Ui

| S,

Below, I show that there is a continuum of collusive "separating" equilibria, in which at

price p bidder ¢ demands

1—0bp if p<u;
z(p) = _
0 if p>uwuy
unless there was no deviation by any of the bidders until price reaches p. If any of the bidders
deviates at p’ then then bidder ¢ demands sincerely, that is at any price p > p/
1—=0bp if p<uy
z(p) = _ -
0 if p>uwuy

Define s(q) : [0,1] — [0,1] to be the residual supply, such that s~!(p) = 1 — z(p)

In this equilibrium, with probability one, the auction ends before price reaches . Let’s
show that bidder ¢ has no incentive to deviate if u; > %. If he follows the equlhbrlum
strategy, he will be clinched half of the units if u; > % and his payment will be equal to the
area under the residual supply, otherwise the game ends when p = u;, in which case he will
win 1 — 2bu;. at price u; and bu; will be clinched as price rises. Bidder i’s expected surplus

when he colludes is

w2
§ = Lol - / s(q)dg}

/ (s — (1= 257 () — /OSI(Uj)s@)dq}%duj

4b+1 Ju; — 1
8b '

o8



Now, let’s suppose that bidder i deviates at price p’ by demanding 2’ # x(p’) units. It is
clear that 2’ > x(p'), because otherwise bidder i would forego x(p’) — 2’ > 0 units which he
could have earned with probability Pru; > u;]. Until price reaches p’, bidder ¢ has already
clinched s~!(p') units and a total surplus of u;s~1(p') — fosil(p " s(¢)dg has been realized. At
price p/, there are 1 — 2s7!(p’) units remaining unsold and bidder 7 wins all of them with
probability Pr{u; < u; | u; > p'| at a price Efu; | p’ < u; < w;]. Thus, bidder ¢’s expected
surplus when he deviates is

Ui
U; —

1"

s7(p)
' — s () — / s(g)dq + .
0

1’,'(1—25—1(;9'))(%—/ gy,

l—p py Wi—D

L
2b°

Let’s also calculate bidder ’s collusive equilibrium surplus when his valuation u; <
In this case, the auction ends, when price is reaches w; or u;. With probability Pr{u; < u;],
bidder i will be the first to drop out, in which case he is clinched s~!(u;) units through the
mechanism. Otherwise, the opponent drops out first, then bidder ¢ is clinched s (u;) units

through the mechanism and remaining units are clinched at price u;. Thus,

) 1 (wi)

S = [l () — / s(q)dd)

u; 571 (uy)
+Ui/0 [us(1 = 57 (uy)) — (1 = 257" (uy)) — /D S(Q)d‘ﬂ%duj

7
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APPENDIX A

OPTIMAL SINGLE OBJECT AUCTION

The Lagrangian to the relaxed problem can be written as

_¢{H7L}(HQLPL +nagpy — 1) — ¢{H}<naHPH —1+a})

—¢gy(napp, — 1+ af)

where A and py are the Lagrange multipliers on IRy, and ICp, respectively, and ¢y 1y,

by, and ¢y, are the multipliers on the implementability conditions.

Proof of Lemma 2. Suppose first that I Ry, is slack. Then, the seller can improve her revenue

1=DL ~ (). This would not violate any of the constraints of the relaxed

by increasing v} by ¢ = 3

problem. So, I R;, must be binding.
Suppose, next, that ICy is slack. Then, again, the mechanism can be improved prof-
itably, without violating any of the conditions considered in the relaxed problem. Namely,

. . DL-D . . N
increasing y}; by ¢ = —H==% > ( improves the revenue. Hence, /Cy is also binding. O

Proof of Lemma 3. Suppose, by contradiction, that IRy is binding. Then, we have 1 =
Dy = DY = Dy, where the equalities are due to [ Ry, ICy, and I Ry, respectively. Yet, since
low-type buyers are not excluded, this would contradict with Dy, — D% = p; (¢ —cxr)y® > 0.

Hence, I Ry is slack. O
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Proof of Proposition 4. Kuhn-Tucker conditions with respect to % and y}; yield

oL 1 0
_— = o _— C =
ayt HpHqu{,I HuPHCH
oL 1
I an(l = py)— — g (1 — py) =0
3,@9{ o ( Prr) yé{ fp Prr)
These equations together imply that v}, = cyy¥. O

Proof of Proposition 5. Remember that [ Ry is slack by Lemma 2. Using Proposition 1, we
can rewrite this condition as

This is equivalent to t5; < 0, implying that, at the optimum, an high-type buyer is compen-

sated when he loses the object. O

Proof of Proposition 7. Armed with the optimal values of py, and p;,(see 1.9) we will now
calculate the payments made by each type of buyer. Using ICy, I Ry, and proposition 1, we

write the payments, y¥, yt , and y¥, as

- eyl —cn

1—y} I
w __— JH i ¢ w — =21
Yo = optei—em YL = G=pp)er——em® YH = oy

where y4; is in

n 1
argmax{ “[a (pr In — +Inyy) + ar(pr n(l = yiy) + (1= pr) Inlezyy = cm))]}-
Yu

Equivalently, v, solves the first-order condition of the form

ag | ap(l—pler  arpyg

Yo g —cm  l—yy

This equation can be rewritten as

=0.

cL(Yn)® — &y + amen = 0 (A1)

where £ = (1 — pp)(cr + apeny) + prlca + anpcr).

Since 0 < p; < 1 and ¢y < cr, € > (cy + ager) must be true. Then, &2 — dagcrcy >

2

(cg + agcer)? — 4agcepey = (eg — ager)? > 0. Thus, a solution to equation A.1 exists.

Furthermore, if a buyer of type H loses the object he pays

IR & —dagepey

!
Yu 2%,
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Proof of Proposition 8. We have already established above that I R; and ICy are binding
and I Ry is slack. We only need to show that IC', is slack. Equivalently, we need to show
that p,y¥ < pyy¥y.! Plugging in the values of y¥ and 3% gives

1— l l
Yu < PulYnu CH
(cL—cu)  cm prcr + (1 — py)en

< yh.
We substitute in the value of 3%, to get
cren + anlpger + (1= pyen]® < Elpger + (1 — pyr)eal.
Substituting in the value of § and using I My 1y yields
0 < p(n—1) + (1 — pg) + crenl(@ - n)py — 1]
Now, we plug in the value of p;; and rewrite this condition as
0<(1—aPct(n—1)—cy +creg(2—n)]+ (1 —ag)lcyn — cregn).

Since c4n — cregn < 0, we can replace (1 — ar) with (1 — a?) and get the following more
restrictive condition

0< (1—a})(n—1)(cp —cy)?,
which holds for any parameter values. Hence, /C}, must be slack. O

Proof of Proposition 9. Suppose that t and ¢! [hence y* and y!] are stochastic. Replacing
y¥ and y! with their expected values would not affect any of the incentive compatibility and
individual rationality conditions (because buyers’ utilities are linear with respect to these
variables), but would strictly improve the seller’s revenue (as revenue is concave with respect

to y¥ and y!), which is a contradiction. O

'We add up ICy (binding) and ICy, (slack).
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APPENDIX B

OPTIMAL MULTI-OBJECT AUCTION

We can write the Lagrangian of the relaxed problem as

L= anplpfynypy + phyInyhy + pis nyss + 05y nyS )
‘o {pf Iy + pnLnyh, + e nynt 4+ p5, nyf

+04LH{10£H In ny + pr In ny + Pé}g In yéﬁ + ng In ng}

B

+arc{pi, Iyl + pl Inyl, + i Iyl + o, Iny, }

A A A B B B AB A _B. AB O O
"‘)\LL{l —PrrfrYrr — Prrfr¥Ycr — PrrCrCr¥yrn — PLL?JLL}

Xeuf{ctlotiyis — prnyinl + culpiivis — PLayiu)

+etenlpttyil — pinvin) + 02yl — p2ayinl}

A uc{cnlotiyin — piryid) + cElpty, — PhLyiL)

+ el byl — pityis) + Tyt — pLyaLl}

A ra (o {enlptiyin — plinvin) + colptLyie — Phuviig)

+eenlpityil — pitval + [P0y — Payial}

+ ppp{enlotuvin — pinvin] + chlptuyiy — PauYi)

+cpenlptnyit — pityis) + 0Cuyle — Py}

+ g {chlptvaL — Panyinl + culphyi. — PaaYi)

+ eenlpntivat — pitviel + Py — P9 ayal})
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Since the number of buyers participating in the auction are assumed to be larger than
three and since buyers of each type are treated the same in a symmetric auction, each type’s

probability of losing both objects is positive. That is, pioj > 0 for all ij € S. Thus, using the

four Kuhn-Tucker conditions, % =0,
ij
aﬁ o OHH
5~ = Paul-o— —Auul=0
OYan i Y
8£ o 1O“LH
—5— = Piul—5— T Aambpy — Au) =0
ang i ng o
oL o 1O“HL
= purl-—o— T Aurpiyr, — Aur] =0
aygL f ygL e
oL Q
a0 ng[#_>\LL+)\LH+)\HL+/\HH,ULL] =0
orr, Yrr
we can solve for \;;s:
Aay =
You
OHL  HH
AHL = —5 T 5 lor

0
YarL Yau
A OrLH OHH
LH — 70O —0o HMrLH
Yoim You
arr arH 03:99 OHH
Ai = 5+t 5+t 5
Yrr Yru Yar Yau

The remaining Kuhn-Tucker conditions are of the following form
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oL |

Q
oA = PHH[in_H_)‘HHCA] =0
HH HH
oL OHH
Yt N ng[?JErH ~ ey =0
oL OHH
W = Pg%[W_AHHCgCIE] =0
HH HH
oL OHL
ayh Pf—‘zL[yT — (AL = M) ci) =0
HL HL
oL e}
—ayB — ng[yT{IL ()\HLCL )\HHMHLCZ)] 0
HL HL
oL aHL
ayw = péIBﬂW — (/\HLCL )\HH/LHch)] 0
HL HL
oL aLH
% = péH[E ()\LHCL )\HH,ULHCQH 0
oL OLH
ByP = pr[yT — (Apw — )‘HHMLH)CIEH =0
LH LH
oL
= B[S Bt — Agupgc)] = 0
ol Yoa
oL o
W = PfL[y_jL - CéO‘LL —Am) + Céz()‘HL + Aunpp)] =0
LL LL
oL !
G = PRCEE — el = M) + O+ Aspar)] = 0
LL LL
oL Q@
— = pP jé ct(Apre? — Apuen) + ca(Awne? + Aguppren)] = 0.
oYL Yrr

Proof of Lemma 12. Suppose that I Ry, is slack. Then, we have

Drr = pruciyin + PLociyin + prrcictyir + pioyss < 1.

Since number of buyers are larger than three and since buyers are treated symmetrically,
each type’s probability of losing both objects is positive. So, p¢;, > 0. Thus, an increase
in y?, by €/p%, for e = (1 — Dy)/2 > 0 strictly improves seller’s payoff. Note that, this
modification on y¥; does not violate any of the constraints, yielding a contradiction.

Hence, I R;;, must be binding. O
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Proof of Lemma 13. Suppose first that ICEE is slack. Then, we have

A A A B B.B AB A B AB , O O
Dreg = prucryin + PruCaVon + PLuCLCuyrn + PLaYin

A A A B B.B AB A B AB , O O _ nLL
< PLrCL¥ir + PLrChYrr t PLLciCayir t PLLyin = Drin

Let ¢ = (DEL — Dyy)/2. Since p9y > 0, if we increase y?; by /0%y, seller’s payoff will
improve and none of the constraints are violated. This is a contradiction. So, ICEL must
be binding.

Along the same lines, we can easily show that ICEL is binding, too. O

Proof of Lemma 14. Suppose that all three conditions are slack. Then, we have Dyy <
min{ DEE DEE DHLA Define ¢ = (min{ DEL,, DEL DHEY — Dyy)/2. An increase in 49
in the amount of €/p%,;, improves seller’s payoff and does not violate any of the conditions.

This is a contradiction. So, at least one of these three conditions must be binding. O]

Proof of Proposition 15. Since Dyg = min{ DL, DEL DL wwe can replace the last three
incentive compatibility conditions with Dyy = p,; DEY + pp g DEL + py DEE where
Brps By tgr = 0and ppp +pp g +pgy, = 1 provided that p;; = 0 if and only if Dy < DZH
(or equivalently, 1;; > 0 if and only if Dyy = Dg )

The Kuhn-Tucker conditions with respect to yfj for k = A,B,AB and ij € S can be

written as
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ngO‘HH[yI?TH - yﬁHCg] =0 (a)
PgHOéHH [3/12}1 - yfchg] =0 (b)
pinanrlySy — vinenen) = 0 (c)
péLO‘HL[yI?TL - yf]LCﬁr] =0 (d)
agr Ogg afrL
phl—5— — —o—tuLlcl —cp) — —5—cf] = 0 (e)
HL Yau HL
afgr OHH OHL
pitl=as — ci(—g—hur(ct —ci) + —g—¢cL)] = 0 ()
YL Yau Yar
arg  agg arg
prul—— — —ompulct —cfy) — —a—cf] = 0 (2)
You Yau Yrou
PEHOCLH[ng - ?JEHCE] =0 (h)
arH OHH arH .
pinl =5 — ci(—o—hrulch — i) + —5—c)] = 0 (i)
Yrr HH Yru
arr arr, OHJ, aOgH :
prl—= — ==t — {5~ + gy + pp) et —ep)] = 0 §);
YL Yrr YaL HH
arr, Qarr, arLH OHH
pil— — == —{——+ 5 (tpg + pr)}(cf —cip)] = 0 (k)
Yrr Yrr Yru HH
arr arr arH QgL
P?f[m - chcf - ch(cf - Cff) - ch(cf - Cﬁ)
Yrr Yrr Yru YarL
OHH
- 0 (cfcf - NLHCng - MHLCII‘}ICE - MLLC?ICZ)] = 0. 1)
HH

Note that, these equations are of the form pfjﬂ = 0. We can use them to solve for yfj
for ij € S and k = A, B, AB, by implicitly assuming that ,ofj = (. This is without loss of
generality, because each of these yfj’s appears with the corresponding pfj everywhere in the
problem. Thus, if pfj = 0 for a type ij and for an event k, then the value of yfj will not
matter in the solution, if pfj > 0, on the other hand, then 2 = 0 must be true.

Thus, equations (a)-(d) and (h) respectively yield

A _Ygu. ,B  _ Yim. ,AB _ Yjpy .
Yaug = A Yuew = "By YHH = A B
H H H~H
A _ygL B _ng.
Yur = ch Yra = B

and the pairs ‘(e),(f)’ and ‘(g),(i)’ respectively give

AB _ Yho. ,AB _ Yiu
ZJHL—CI@, Yo = B
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These two sets of equations imply that the excess payment that a buyer makes for an
object for which he has high valuation is equal to his valuation for that object. In other
words, each buyer is perfectly insured against the risk of losing the object(s) for which he

has high valuation. O]

Proof of Proposition 16. Similarly, equations (e),(g),(j),(k) and (1) can be used to solve for

B ,A ,A B AB .
YL Yim Yoo, Yoo and yrr , respectively.

arH OrHg 4o OCHH A A
— = 5+t 5 Hwu(cp —cq)
You Yru Yau
OHL OHL p , OHH B B
—5 = ¢+t hyrlc —cpy)
YaL YaL Yau
arr arr a4 . CHL , 7 A CHH A A
— = Q5L+~ (cp —cy)+ —5— (L + prp)cy — cy)
YL Yrr YarL Yau
arr arp p, @YLH, B B OHH B B
— = Qo+t (cL —cg)+—5(pry +up)(cr —cy)
yrr Yrr Yru Yau
arp OLL A B, “LH A, B B OHL B, A A
—5 = o e+ —ocple —cy)+—(5-crlcp —cy)
Yrr Yrr Yoo Yor
OHH , A B A B A B A B
+ (cpcl — BLuCLCh — MELCHCL — MLrChCrr)
HH

Remember from first section that a low-type buyer has to make a payment if he cannot
win the object. Using the last three of the above equations we get a similar result for type

LL.

Using the last three equations, one can write

yA = AR yB, = A yAB — viL
LL cL:¥+51 ) LL cf+62 ) LL cfcf+53

for some e1,e5,e3 > 0. We plug these values into LL’s individual rationality constraint to

get
o A& B &2 AB €3
1— - . A —— ) =1.
Yirll = P e R v 63)

Note that, the term in the parenthesis is less than one if LL gets either or both objects.

Thus, if p¢; # 1, then y¥;, > 1 (hence, t¢; > 0) must be true. O

71



Proof of Proposition 17. i) Let n be such that nyy +mnyr > 0 and without loss of generality
assume that nyy > 0. Now, suppose by contradiction, that nyupa;(n) + nurpi(n) < 1.
Let € <1 —ngupiry(n) — nacpi(n)-

There are three possibilities that we need to consider:

-nrg+np, =0:

In this case, modify the mechanism by increasing p3,;(n) b

Pup by \Ifﬁ Change in the Lagrangian can be calculated as \Ife lna > (0. This is a
contradiction.

- npaprg(n) >0

We will now show that for some € < npppsy(n), decreasing piy, (n) by -, and increasing

Py (1)
asH ! We calculate the change in the Lagrangian as
A o A o
y AY ) ) )
AL = \Ifg{ln — —In S x e P — SR N e R — SR
CH Yy QL QLH OrH  QLH
— Peln E{Lg
CHYLH

which is positive since y%; > cryiy.
- npepiy,(n) > 0 and npppry(n) =0
Suppose first that nyp7; (n) > 0. Then consider modifying the mechanism by decreasing

4. (n). This would decrease

pi;(n) by +— and increasing i (n ) b

A
PLL

c O CA A O
AL = \Ifa{ln— —In ygL + (Apr — Apg)[RYLL LYLE ~YLLY Oy 4 Ay ) [ YEL YLy
H Yrr Qrr arr orr arr,

— Yeln-JLL_ yLL >0
cHyLL

Suppose now that np;p?;(n) = 0. Then, nypt2(n) > 0 must be true. We will show

that the following modification is profitable: For some ¢ < n;p72(n), decrease p12(n) by

15 (n) can be decreased either by decreasing p7(n) or pfE(n). If the former, is positive then we
decrease p7;(n) (and increase p4 (n)). If the former is zero, however, p25(n) should be decreased (and in
response pﬁ%(n) should be increased) In this case, marginal probabilities of winning A and B are affected
for both types HH and LH. Yet, either modification, have the same effect on the Lagrangian.
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Bby

ﬁ and increasing pfl (n) b

Prn by \Dﬁ As a result, Lagranglan will increase by

1 1 A B, AB O
AL = Ue{ln— o +1In— — In 2LL yLL 4 Ay [l YLL
CH yLL arp arr,
_)\L [Cécgyfg o yLL] . )\LH[CIIL;CE?J?E o y?L]
OéLL aLL arr arr
cAe
—Anmpprl & HyLL - zii]}
yeL
= Yeln >0
Cﬁcgyﬁ

Thus, we conclude that if 7 is such that nyg +ngr > 0, then nypps;(n) +nurpi (n) = 1.

We can prove part ii) of the Lemma along the same lines. O

Proof of Corollary 18. We will prove only part i). Proof of part i) is similar. (*5) implies
that

n N—NMgH N—MHH—NHL

ngpg=0 ngr=0 nr =0

n N—MyHH NM—MHH—NMHL

aHLﬁIIL—,l[L = Z Z Z nHLﬁﬁL(n)‘I’-

ngg=0 ngr=0 npg=0
Adding these two equalities and multiplying both sides with n gives

n N—MHH NM—MHH—MHL

nlonupiy + o) = Z Z Z (s Dt (n) + B, (n)In®

’rLHHZO TLHLZO TLLHZO

N N—NEHN—NHH-NHL n | n—npy

_ nlapyaly
= n¥v — | '
nrgl(n — npm!
ngg=0 ngr=0 nrg=0 nrg=0 LH ( LH)

= 1- (aLH + OéLL)n.

The second equality follows from the part ¢ of proposition 9. n
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Proof of Proposition 19. i) Suppose that the profile is such that nyy + nyr, = 0, but

nLHﬁfH(n) + nLLﬁfL(n) < 1. Lete < 1— nLHﬁfH(n) - nLL;ﬁfL(n). There are two cases

that we need to consider:

[

. . ~A €
-, which would increase p7y by ¥ —. Change

-npy > 0: Let’s increase piiy(n) by

in the Lagrangian is calculated as

YA yhe 9 ” yO
AL = \I/E{ln% F A\py[—cp 2L g TEH N e 2R LH |}
?JLH QL QLH oty arm
= Weln === yLH
Yin

A
CL cH < aLH yHH 1
C ?JLH OHH KrE "

- npy = 0 : A profitable modification would be to increase p?; (1)

which is positive if y2; > y%Py, or

by
A, A O A A o)
c c
AL = Wen Y2 (ny AV YEE) ()Y YLy
yLL Qarr Qarr arL arr
— Peln ZLL yLL
yLL

A A
c a «a «@
which is positive if > or H < SLL(SHL 4 HH (]
p yLL yLL? —eh 9, <yHL v (

firg)) !

i1) Along the same lines of the previous part, we can easily show that this part holds,

too, if y&,; > y9, and y5, > y9,, or equivalently if

B_ B o

L —Chm . coppygy 1 oL app | apw .

1_cB < min{—5 o (o + o5 (L —pg) '}
—Cr Yar ®HH PerL Yrr Yiw  Yaw

]

Proof of Proposition 20. Suppose, for now, that HH is not compensated. Then 39, = 1.
Since ¢y < ¢ff and ¢ < cP, we have 1 = ¢4, < D%, < D;; <1 forij = LL,LH,HL
where the first inequality is due to [ C’g i, and the last inequality is the individual rationality
constraint. So, all individual rationality constraints are binding and D;; = DgH =1 for

tj = LL, LH, HL. Moreover, since D;; — DEH = 0, we have

P?L(Cf - C?I)ny +pro(el — epyrp + PLL (cfcf C?Icg)yLL =0
ﬁéH (C? - c‘é)ny =0
fagL(Cf - Cg)yfm =0
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Each term in these equations are nonnegative, therefore pji, = pP, = pAB = pt. = pB =0
must be true. This contradicts with the previous Corollary because ayppr; + arupiy >
O

0.

Proof of Proposition 21. Suppose, by contradiction, that for some profile n with ny;, = n,
pP(n) < L. Since both objects are sold with probability one, this implies that p7, (n) =
pP.(n) > 0. Let ¢ < 1 — np?B(n). Consider modifying the mechanism by decreasing p%; ()

and p?;(n) both by £ and increasing p7f(n) by <. This would imply ApfP = —Ap, =

—ApB, = \IfaiL. Now, we calculate the change in the Lagrangian:

O ., AB
AL = Weln ZLLILL
Yrr¥rr

which is positive if 4y, yAB > yi yB, or, equivalently, if

arr adrp arrp adrp
?JfL ?JEL yj(:)L yff
< (ArpAmr + )\LL)‘HHMLL)(Cé - Cé)(CLB —cgp) > 0.

Since the last inequality holds for any parameter values, this modification is profitable. Thus,
we conclude that if all the buyers are of type LL then the objects are bundled and each buyer
gets the bundle with equal probability. O]

Proof of Proposition 22. Any of the three auction formats, namely independent auction,
bundling auction and mixed auction, that are optimal when the buyers are risk neutral
allocate the objects independently and randomly when all buyers report to be of type LL.
Yet, by proposition 21, when the buyers are risk averse, a necessary condition for the
optimality of the auction is to give both object to the same buyer if all buyers are of type

LL. [l

Proof of Lemma 23. i) Suppose that for some n with npy,ny, > 0 and nyy + np, = n,
nrapiyg(n) < 1. Then, since A is sold with probability one, p7; (n) must be positive. Let

e < nprpi;(n). Now, consider modifying the mechanism by decreasing p#; () by —— and
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Ue
arr

€
nrpg’

increasing psy(n) by This, would decrease p5; by and increase piy by a‘i—; As a

result, the Lagrangian will change by

A O
AL = VUeln y’éH—yflL.
YreYrrL

This is positive if y7,y?, > yPuys, , or equivalently if 242 %L > %LH °LL  [sing the Kuhn-
Yrag Yoo Yo Yoo

Tucker conditions, we can rewrite this inequality as

Apr — Amgmppg)letAee — Anm) — cpAar + Agapgy)] >

(A — chumioy) (AL — Mg — Awr — Aumfipg)-
After some manipulation, we get

A Amr + Agmprn) > Aguprg(Ae — Am)

o) )
« «
(oI L ) (CEE B )T sy,
Yar “HH Yror *LH
Proof of part i7) is similar. O
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