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B.S. in Mathematics, Koç University, 2000

B.A. in Economics, Koç University, 2000

M.A. in Economics, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of

the Department of Economics in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF ECONOMICS

This dissertation was presented

by

Hadi Yektaş
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ABSTRACT

ESSAYS ON AUCTION THEORY

Hadi Yektaş, PhD

University of Pittsburgh, 2006

This work is composed of three essays on auction theory. In the �rst essay, we analyze

the optimal auction of multiple non-identical objects when buyers are risk averse. We show

that the auction forms that yield the maximum revenue in the risk neutral case are no

longer optimal. In particular, selling the goods independently does not maximize the seller�s

revenue. On the other hand, the optimal auction remains weakly e¢ cient. The optimal

auction has the following properties: The seller perfectly insures all buyers against the risk

of losing the object(s) for which they have high valuation. While the buyers who have high

valuation for both objects are compensated if they do not win either object, the buyers who

have low valuation for both objects incur a positive payment in the same event.

In the second essay, we question whether, in the all-pay auction, the seller�s commitment

to the reserve price is bene�cial if she has the chance of repeating the auction, possibly with

a di¤erent reserve price, in case there is no sale in the �rst period. We show that, for any

number of potential buyers, non-commitment is preferable only if the seller is relatively more

patient than the buyers. Moreover, as the number of potential buyers increases, the seller�s

incentive to commit increases if she maximizes the average bid, whereas it decreases if she

maximizes the highest bid. A possible explanation is that if the seller maximizes the average

(highest) bid then screening high types (highest type) becomes costlier (less costly) as more

buyers participate in the auction.

The third essay studies collusive behavior in the Ausubel auction in an environment

with incomplete information. The Ausubel auction is vulnerable to collusion due to two
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main reasons: First, the mechanism has a dynamic nature that allows the bidders to detect

and punish those that deviate from the agreed collusive strategy. Second, in case a bidder

strategically reduces his demand to signal his intention to collude, the mechanism allows the

opponents to correctly interpret the signal.
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1.0 OPTIMAL MULTI-OBJECT AUCTION WITH RISK-AVERSE

BUYERS (WITH ÇA¼GRI S. KUMRU)

1.1 INTRODUCTION

Optimal selling mechanisms for multiple objects have been analyzed extensively due to their

theoretical and practical importance (e.g., the spectrum auctions, second hand car auc-

tions).1 One of the main assumptions in these studies is that the buyers are risk neutral.

However, in many situations this assumption is violated and further analysis is needed.2

The optimal design problem in the presence of risk averse buyers can be described as

follows: When the number of objects is limited, the buyers face the risk of not getting

the object(s) they want. And in order to reduce this risk, the risk averse buyers bid more

aggressively compared to those who are risk neutral.3 Therefore, when the buyers are risk

averse, the seller will be tempted to increase the magnitude of the risk. Yet, this comes with

a trade-o¤, as the high type buyers (namely, the ones who value the good highly), when

confronted with too much risk, may �nd it more pro�table to mimic the low type buyers or

may even be discouraged to participate.4 Therefore, a revenue maximizing scheme should

1See for example, Harris and Raviv [21], Maskin and Riley [29], Levin [24], Figueroa and Skreta [16].
2In many auctions, the buyers are �rms and they are generally assumed to be risk neutral. Yet, �rms

whose ownership are non-diversi�ed (e.g. most family owned companies), those that are bound by liquidity
constraints or under a �nancial distress, and those that are subject to a nonlinear tax system should all be
assumed to be risk averse. (Asplund [4]) Even a �rm which is owned by risk-neutral shareholders may behave
in a risk-averse manner if the control of the �rm is delegated to a risk-averse manager and his payment is
linked to the �rm�s performance.(i.e. through stock options.)
Smith and Walker [40] show that the overbidding relative to Nash predictions (for the risk neutral envi-

ronment) which has been observed in the �rst-price auction cannot be attributed to noisy-decision making,
supporting the hypothesis that it must be due to the risk aversion of the buyers.

3See, for example, Maskin and Riley [28] and Matthews [30].
4As we know from the optimal auction literature, it may be desirable to exclude the low-type (and in

some environments the high-type (Bertoletti [10])) buyers from the auction. (Exclusion Principle) Yet, if
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impose "the right amount risk" on "the right type of buyers".

For single object, Maskin and Riley [28], Matthews [30], and Es½o [15] describe how the

above mentioned trade-o¤ should be balanced. They observe that once the risk neutrality

assumption is relaxed the models deliver quite di¤erent results. In his seminal work, Myerson

[34] shows that if the buyers are risk neutral and their private valuations are independently

distributed, then it is optimal to give the object to the buyer who has the highest virtual

valuation (not the actual valuation) that exceeds the seller�s outside option.5 Thus, the

standard auctions, including the "high bid" and "English" auctions, with appropriately

chosen reserve price are all optimal. He further shows that any two auctions with the same

allocation rule are revenue equivalent if the expected utility of each buyer in some benchmark

case is the same, the celebrated revenue equivalence theorem. To the contrary, if the buyers

are risk averse, the standard auctions with appropriate reserve price neither generate the

same expected revenue nor are they optimal. (Maskin and Riley [28], Matthews [30]).6

Another contrast is observed when the buyers�valuations are correlated: If the buyers are

risk neutral, then the seller can fully extract the informational rents using an e¢ cient auction

(Crémer and McLean [13]), but she cannot do so if the buyers are risk averse, unless the

correlation is su¢ ciently strong. (Es½o [15]).7

In the light of these works, the current paper studies the optimal design problem for the

case of multiple objects and seeks answers to the following two natural questions:

1. How does the optimal multi-object auction with risk-averse buyers compare with that

with risk-neutral buyers?

2. Which features of the optimal single-object auction carry over to the optimal multi-object

auction?

the seller imposes too much risk on all types then she will herself face the risk of no sale, hence ending up
with no pro�t.

5Virtual valuations are the adjusted valuations that take into account buyers�informational rents and,
more precisely, are de�ned as  i(vi) = vi� [1�Fi(vi)]=fi(vi); if buyer i�s valuation vi is distributed according
to cumulative distribution function Fi(:) with associated density function fi(:).

6In a second price auction, the buyers bid truthfully regardless of their risk preference. But in the �rst
price auction, a risk-averse buyer shades his bid less than a risk-neutral buyer. As a result, the �rst price
auction yields more revenue than the second price auction. Nevertheless, the �rst price auction is not optimal
because it imposes too much risk on the high type buyers.

7Optimal auction should remove the risk from high type buyers, which requires providing insurance (and
hence leaving some surplus) to them.
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To answer the �rst question, we compare our results with those of Armstrong [1] who, in

a binary model, characterizes the optimal multi-object auction for risk-neutral buyers.8 This

comparison provides a twofold answer: One, in either case, the optimal auction is weakly

e¢ cient.9 ;10. Two, none of the auction forms that are shown to be optimal in Armstrong

[1] maximize the seller�s revenue when the buyers are risk averse. In particular, it is not

optimal to sell the two goods independently. This sharp contrast is due to the way in which

the objects are allocated when all buyers have low valuation for both objects. (That is, when

all buyers are of type LL.)

The optimal auctions for risk-neutral buyers can take the form of independent auction,

bundling auction, or mixed auction, depending on how their valuations are correlated across

objects.11 ;12 These three formats allocate each object independently and randomly if all buy-

ers are of type LL. However, doing so does not impose enough risk on type LL. Contrarily,

when the buyers are risk averse both objects must be given to the same (LL type) buyer.13 ;14

8Armstrong [1] inherited his setting from Armstrong and Rochet [2], who study a principal-agent prob-
lem. Both of these papers and the current paper assume that buyers/agents have multidimensional private
information and, in this regard, di¤er from the references mentioned in footnote 1.
Manelli and Vincent [26] and Manelli and Vincent [27] also assume multidimensional private information,

but di¤erent from the current paper, they assume a single buyer.
9Weak e¢ ciency requires that each object is sold to the buyer with the highest valuation whenever it

is sold. Some of the objects can be kept by the seller eventhough there is a buyer who has valuation that
exceeds that of the seller. For strong e¢ ciency, on the other hand, the objects valued more highly by a buyer
than the seller must always be sold. In this sense, the optimal auctions in Myerson [34] are weakly e¢ cient.
10It must be noted, though, that the optimal multi-object auction is no longer weakly e¢ cient when the

model assumes a continuous type space.
11In all three forms, the buyers have the same expected probability of winning the object(s) for which

they have high valuation. These forms di¤er only in the expected probability of winning the objects for
which buyers have low valuation. In a mixed auction, a buyer who has low valuation, say, for object A
but high valuation for object B, is assigned object A more often than a buyer who has low valuation for
both objects. While independent auctions don�t distinguish between these two types for object A, bundling
auction perfectly discriminates against the type that has low valuations for both objects. It should be noted
that the bundling auction allows the goods to end up in the hands of di¤erent buyers.
12Avery and Hendershott [7] also consider risk-neutral buyers. While Armstrong [1] assumes that all buyers

have demand for both objects, in Avery and Hendershott [7], only one buyer demands multiple objects and
the remaining buyers demand only one or the other. Not surprisingly, the optimal auction in the latter paper
may not be weakly e¢ cient due to the good deal of asymmetry among buyers. Yet, even in that case, the
optimal auction bundles the objects probabilistically for the multi-demand buyer.
13It is riskier to lose both objects than to lose a single object.
14In Armstrong [1], bundling is optimal only when buyers� valuations are negatively correlated across

objects, or in other words, when a buyer�s high value for one object, say A, is likely to be accompanied by
a relatively low value for the other object, say B. The goods are bundled only for the types HL or LH. In
this case, their incentive conditions in all directions are binding.
In the current paper, we show that the seller utilizes bundling not only to make the desired incentive

conditions binding but also to increase the risk as much as possible for type LL.
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When the buyers are risk neutral, the seller assigns each buyer a single expected payment

that depends only on his type. On the other hand, we show that, when the buyers are risk

averse, it is optimal to make each buyer�s payment (a function of his report) conditional also

on the type and the number of the objects he wins. Moreover, it is not optimal to make

these expected payments random.15

For the second question, we do a robustness check in order see to what extent our results,

which we obtain in a binary model, are comparable with those of the current literature, which

assumes continuous distribution of types. (Namely, Maskin and Riley [28] and Matthews

[30])16 We observe that the optimal single-object auction in the binary model replicates the

behavior of that of the continuous model at the two extremes of the type space. This analogy

helps us interpret our results regarding the multi-object auction: The seller perfectly insures

all buyers against the risk of losing the object(s) for which they have the high(est) valuation.

The buyers who are (most) eager to win both objects are compensated if they can not win

either object. On the other hand, those (most) reluctant to win both objects must incur a

positive payment if they lose both objects.17

The intuition for our results is as follows: While, on one hand, the seller would like to

screen the buyers, on the other hand, she would like to confront them with risk. Screening

the buyers requires leaving informational rents to (and, in turn, decreasing the risk for) the

buyers who have high valuation for one or both objects. As a result, the buyers�marginal

utility of income must remain the same regardless of whether they win or lose the objects for

which they have high valuation. This also implies providing insurance to type HH. On the

other hand, the buyers who have low value for both objects must confront the highest risk

from which the seller bene�ts in two ways: One, she makes imitating LL unattractive to the

other types and two, she fully extracts the informational rents from type LL. Confronting

15This also implies that it is not optimal to make the payments dependent on other buyers�reports.
16Matthews [30] studies the same problem as Maskin and Riley [28]. While the former assumes a particular

form of utility function, namely CARA, and obtains necessary and su¢ cient conditions for an auction to be
optimal, the latter considers di¤erent forms of risk aversion and characterize the properties of the optimal
auction for all of these forms.
17A natural question to ask is how the punishment for type LL can be implemented in real life. When

there is a single object, the optimal auction reduces to a modi�ed �rst price auction for some parameter
values. (Maskin and Riley [28]) The seller charges an entry fee, but she does not return it to the buyers with
low valuation if they don�t win the object.
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these types with the highest risk involves bundling the objects whenever all buyers are LL

and collecting payments even when they don�t win any objects.

There is a vast amount of literature on bundling

Finally, we comment on the solution methods used in this paper: In section 1.2, we

describe the optimal single object auction in reduced form, meaning we construct the buyers�

expected probability of obtaining the object (contingent only on his own type), rather than

his actual probability of winning as a function of all buyers�types. This technique was also

utilized by Matthews [30] and Maskin and Riley [28] in order to avoid the computational

complexity that risk aversion involves.18 Yet, when one solves the seller�s optimal design

problem in reduced form, in addition to the incentive constraints and the participation

constraints, one had to impose the implementability constraints in order to guarantee the

existence of the actual probabilities.19

The number of implementability constraints increases exponentially with the number

of goods (or more precisely with the number of elements in the type space), nevertheless

Armstrong [1] was still able to solve the problem in reduced form. Yet, when the buyers are

risk averse, since the correlation between the events of winning object A and object B also

matters for the buyers (and in turn for the seller), the conditions that one needs to impose

cannot be easily determined.20 Therefore, in section 1.3, we describe the optimal auction

in non-reduced form and construct the actual probabilities of the events that a buyer can

possibly face as functions of the entire type pro�le (as reported by all participating buyers).21

Since the buyers don�t observe their opponents� types, only the expected probabilities of

observing each event (conditional only on one�s type) matter in the incentive conditions.

18The technique was introduced to the literature by Myerson [34].
19When there is a single object or when the buyers are risk neutral, these conditions take a very simple

form, which, can be interpreted as the probability that a buyer whose type belongs to a given subset of
the type space obtains a particular object cannot be higher than the probability that there is a buyer whose
type is in that subset.
The implementability conditions need to be imposed because the seller has only a limited number of each

type of good. A multi-product monopolist who has unlimited number of each type of good does not face
this constraint. (See Manelli and Vincent [26] and Manelli and Vincent [27])
20Using the main result of Border[11] (Also footnote 27), Armstrong [1] was able to describe the imple-

mentability conditions. In his environment, the main di¢ culty is to identify the conditions that are binding
at the optimum. In the current paper, on the other hand, Border[11]�s theorem is not applicable.
21These events are winning only object A, only object B, winning both objects and winning nothing.
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Therefore, we also make use of these expected probabilities throughout our analysis.22

The remainder of the paper is organized as follows: In section 1.2, we construct the

optimal single-object auction for risk averse buyers in a binary framework and analyze the

properties of it. In Section 1.3, we increase the number of objects and repeat the analysis.

Finally, in section 1.4., we discuss the main results and their implications.

1.2 OPTIMAL SINGLE-OBJECT AUCTIONS

1.2.1 Description of the Problem

A single indivisible object is to be sold to one of n � 2 potential buyers, whose private

valuations are discretely distributed according to a random variable vi, which takes values vH

with probability �H > 0 and vL with probability �L > 0 such that �H + �L = 1: Without

loss of generality, we assume vH > vL > 0; so that vH and vL denote valuations of high-

type (eager) and low-type (reluctant) buyers, respectively. Buyer valuations are distributed

independently and identically. Buyers are risk-averse and have a constant measure of risk

aversion (CARA). In particular, their preferences are represented by a utility function u(!) =

� e�r!

r
; where r(> 0) measures the rate of risk aversion. Note that, u0(:) > 0 and u00(:) < 0.

Speci�cally, if a buyer with valuation v wins the object and incurs a net payment of � then

his utility is u(v � �) = � e�r(v��)

r
: The seller is risk-neutral and her valuation for the object

is zero. Both the seller and the buyers are expected utility maximizers.

The seller�s problem is to design a selling scheme that maximizes her revenue.23 Such

a scheme most generally consists of a message set, M = M1 � � � � �Mn; and an outcome

function,  : M ! ~A; that maps the list of messages, m 2 M; into a possibly random

allocation ~a 2 ~A = ~A1 � � � � � ~An:
24 Buyers�behavior is described by a Bayesian Nash

equilibrium, s = (s1; :::; sn); where sb : �b ! Mb is the equilibrium strategy of buyer b;

22In regard to the solution method, this paper is also related to Menicucci [32] which extends Armstrong
[1] by allowing for a synergy if the two goods end up in the hands of the same buyer. He shows that in this
case the optimal auction is likely to allocate the goods ine¢ ciently.
23Milgrom [33] de�nes an auction to be a mechanism (scheme) to allocate resources among a group of

bidders. Therefore, we use these three terms interchangeably.
24An allocation consists of a decision about who is going to get which object(s) and possibly negative

monetary transfers from buyers to the seller.
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sb(�b) representing the message that maximizes buyer b�s expected utility given that his type

is �b and all buyers other than him follow the equilibrium strategy.25 So, any selling scheme,

in a given equilibrium, will result in an outcome represented by  (s1(�1); :::; sn(�n)); if the

buyers�type pro�le is (�1; :::; �n):

Alternatively, when looking for the optimal selling scheme, attention can be restricted to

the revelation schemes in which the message space is the type space, �: This is because any

allocation,  (s1(�1); :::; sn(�n)), resulting from an equilibrium of an arbitrary selling scheme

can also be obtained in a revelation scheme in which the outcome is determined via the

composite function  �s : �! ~A and truth-telling is an equilibrium (Revelation Principle).26

Thus, the seller�s problem can be reduced to �nding the optimal revelation scheme in which

the buyers are willing to participate (individual rationality) and have incentive to truthfully

report their type (incentive compatibility).

Given a pro�le of reports, a selling scheme must, most generally, assign each buyer a

probability of winning, a payment in case he wins and another payment in case he loses.

That is, the outcome is determined by functions of the form  b(m) = (pb(m); ~t
w
b (m); ~t

l
b(m))

for b = 1; :::; n, where tildes represent the possibility that the payment functions are random.

Since there is only one object for sale, a feasible scheme must satisfy
Pn

b=1 pb(m1; :::;mn) � 1

for all (m1; :::;mn):

Given an equilibrium, we can calculate buyer b�s expected probability of winning and his

expected random payments in case of winning and losing, respectively, as

�b(mb) = E�b[pb(m) j mb] (1.1)

~�wb (mb) = E�b[~t
w
b (m) j mb] (1.2)

~� lb(mb) = E�b[t
l
b(m) j mb]: (1.3)

Since buyers are ex ante identical, only the schemes that treat them symmetrically need

to be considered. This is because, for any asymmetric scheme, we can construct a symmetric

25In this section, each type of a buyer corresponds to a possible valuation , namely �j = fvH ; vLg for
all j = 1; :::; n, whereas, in the next section, there are four di¤erent types of buyers. That is, �j =
fHH;HL;LH;LLg for all j = 1; :::; n; where the �rst (second) letter in each type represents buyer j�s value
for object A (B).
26See Myerson [34].
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scheme that generates the same revenue as the proposed asymmetric scheme. Symmetric

schemes satisfy the following condition:

For any b; b0 2 f1; :::; ng and any m;m0 2M;

 b(m) =  b0(m
0)

if mb = m0
b0 ;mb0 = m0

b; and for all b
00 6= b; b0 mb00 = m0

b00 :

Therefore, in a symmetric scheme, the expected probability and the expected payments of two

di¤erent buyers submitting the same message are equal. Hence, we can drop the subscript

on each of the functions in 1.1-1.3. Describing a selling scheme from the perspective of an

arbitrary buyer, using �(:); ~�w(:); ~� l(:), is called reduced form representation.

Three points need to be emphasized about our approach to solving the seller�s problem.

First, using the Revelation Principle, we consider only the revelation schemes that satisfy

two sets of conditions: individually rationality and incentive compatibility.

Second, we construct the optimal auction in reduced form. We justify this by imposing

another set of conditions called implementability conditions.27 These conditions make sure

that the reduced form probability, �(:); is implementable, that is, they make sure that there

exists a symmetric auction with actual allocation probabilities, p(:), which satis�es

�(mb) = E[p(m) j mb]: (1.4)

27Border [11] states the necessary and su¢ cient conditions, for the reduced form probabilities to be im-
plementable. We include the proposition for easy reference:
Let (S;�) be a measurable space of possible types of bidders and �(:) be a probability measure on S.

De�ne an auction to be a measurable function p : Sn ! [0; 1]n satisfying
Pn

i=1 p
i(s) � 1 for all s 2 Sn:

De�ne an auction to be symmetric if pi(s) is independent of i. Given an auction, de�ne

�i(si) =

Z
Sn�1

p(s1; :::; sn)d�(s1; :; si�1;si+1;::; sn)

to be the probability that a buyer i wins when he reports his type as si:
Then � is implementable by a symmetric auction if and only if for each measurable set of types A 2 �,

the following inequality is satis�ed: Z
A

�(s)d�(s) � 1� �(Ac)n
n

Furthermore, if S is a topological space and � is a regular Borel probability on S; then � may be replaced
by either the open subsets or the closed subsets of S.
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The �nal point is that we initially consider only the schemes in which the expected

payments contingent on winning and losing are nonrandom. In other words, we �rst construct

the optimal scheme within the class of schemes for which ~�w(:) and ~� l(:) are deterministic.

(So, we drop the tildes.) We later establish that this scheme is also optimal among all selling

schemes, including those that assign random payments.

To summarize, the seller�s problem is to construct the optimal revelation scheme, the

reduced form of which can be represented by six variables, f�i; �wi ; � ligi=H;L, where �i 2 [0; 1]

denotes the probability that a buyer wins the object when he reports a valuation of vi, and

�wi ; �
l
i 2 R denote the net deterministic payments that the same type of buyer incurs when

he wins and loses the object, respectively. As mentioned above three sets of conditions are

imposed:

If a buyer with valuation vi reports vj then his utility is equal to �ju(vi � �wj ) + (1 �

�j)u(�� lj): Thus, buyers truthfully reveal their valuations if the auction satis�es the following

two incentive compatibility conditions:

�Hu(vH � �wH) + (1� �H)u(�� lH) � �Lu(vH � �wL) + (1� �L)u(�� lL)

�Lu(vL � �wL) + (1� �L)u(�� lL) � �Hu(vL � �wH) + (1� �H)u(�� lH):

Buyers are free to participate in the auction. Thus, participating buyers satisfy the

individual rationality conditions of the form

�Hu(vH � �wH) + (1� �H)u(�� lH) � u(0)

�Lu(vL � �wL) + (1� �L)u(�� lL) � u(0):

Finally, the implementability conditions take the following form in our binary model:

n(�L�L + �H�H) � 1 (IMfH;Lg)

n�H�H � 1� �nL (IMfHg)

n�L�L � 1� �nH : (IMfLg)
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One can interpret these conditions as follows: the probability the object is won by a

buyer who belongs to a particular subset of the type space should be no greater than the

probability that there is a buyer who belongs to that subset.28

The seller�s revenue is the sum of the expected payments made by each buyer. Since

buyers are ex ante identical the seller�s revenue can be written in terms of the expected

payments made by an arbitrary buyer (namely, the term in the bracket):

� = n[�H(�H�
w
H + (1� �H)�

l
H) + �L(�L�

w
L + (1� �L)�

l
L)]:

To sum up, the seller�s problem is to choose a reduced form scheme, f�i; �wi ; � ligi=H;L;

that maximizes � subject to the two incentive compatibility conditions, the two individual

rationality conditions, and the three implementability conditions.

For convenience, we de�ne ci = e�rvi and yki = er�
k
i . Note that, 0 < cH < cL < 1 and

yki > 0 for all i and k: So, we can rewrite the seller�s problem as

max
f�i;ywi ;yligi=H;L

� =
n

r
[�H(�H ln y

w
H + (1� �H) ln y

l
H) + �L(�L ln y

w
L + (1� �L) ln y

l
L)] (1.5)

subject to

�HcHy
w
H + (1� �H)y

l
H � �LcHy

w
L + (1� �L)y

l
L (ICH)

�LcLy
w
L + (1� �L)y

l
L � �HcLy

w
H + (1� �H)y

l
H (ICL)

�HcHy
w
H + (1� �H)y

l
H � 1 (IRH)

�LcLy
w
L + (1� �L)y

l
L � 1 (IRL)

n(�L�L + �H�H) � 1 (IMfH;Lg)

n�H�H � 1� �nL (IMfHg)

n�L�L � 1� �nH (IMfLg)

and the non-negativity conditions �H ; �L � 0:
28Armstrong [1] alternatively calls these conditions resource constraints.
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For convenience, we refer to the left-hand side of the inequalities in IRH and IRL as DH

and DL, respectively. Similarly, right hand side of ICH and ICL are referred to as DL
H and

DH
L , respectively. The subscripts denote a buyer�s actual type, whereas superscripts denote

the type he is imitating.

1.2.2 Solution to the Problem

Since cL > cH , ICH and IRL together imply IRH .29 Hence, this condition is redundant. For

now, we also ignore ICL when we solve the seller�s problem. That is, we suppose that the

low-type buyers do not have the incentive to misrepresent their types. Below, in proposition

8, we prove that this is indeed the case.

De�nition 1. The relaxed problem is de�ned to be a design problem that ignores the upward

incentive constraints.

The following lemma shows that when only the downward incentive conditions are con-

sidered, high-type�s incentive condition and low-type�s individual rationality condition must

be binding.

Lemma 2. In the relaxed problem, where ICL is ignored, the constraints ICH and IRL must

be binding.

The seller may want to increase her revenue by excluding the low-type buyers from the

auction if, for a given distribution of types, their valuation is small enough compared to that

of the high-type buyers.30 This results in an ine¢ ciency, because with positive probability

the seller keeps the object even if all buyers value the object more highly than her.

Ine¢ ciency may also be due to a misallocation of the objects. To be consistent with

Armstrong [1], we focus only on the latter kind of ine¢ ciency, by assuming that the goods

are always sold, i.e. �L > 0.
31 In this case, it is optimal for the seller to leave informational

rents to the high-type buyers.

29DH � DL
H � DL � 1, where the second inequality is due to cH < cL:

30The same behavior is also observed when a monopolist implements second-degree price discrimination.
31Clearly, high-type buyers should not be excluded from participating in the auction if revenue is maxi-

mized. That is, �H must be strictly positive. If not, then the incentive conditions would imply �LcL � �LcH ;
and since cL > cH this in turn would imply �L = 0; meaning the good is not sold, at all. Yet, the seller can
always guarantee a positive pro�t by posting a �xed price of vL > 0:
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Lemma 3. At the optimum, if the low-type buyers are not excluded from the auction, then

IRH must be slack.

The following proposition states that it is not optimal to impose any risk on the high-type

buyers. The risk is fully eliminated from them.

Proposition 4. High-type buyers are fully insured against the risk of losing the object.

Through insurance, a high-type�s marginal utility of income in cases of winning and

losing is made the same. Eliminating the risk rewards the high-type buyer for revealing his

true type.

If the seller does not pay informational rents to the high type buyer (�wH = vH), the

perfect (full) insurance requires that the seller sets the high type buyer�s payment contingent

on losing equal to zero (� lH = 0) in order to keep him at the same level of utility. However,

when there is information gap between the seller and the buyers, high-type buyers should

receive information rent to be active. In this case (i.e. �wH < vH), perfect insurance requires

that the seller compensates the high type buyer (� lH > 0).

Proposition 5. High-type buyers are compensated if they lose the object.

Using proposition 4, we can write the seller�s pro�t as

� =
n

r
[�H(�H ln

1

cH
+ ln ylH) + �L(�L ln

ywL
ylL
+ ln ylL)] (1.6)

Note that, since 0 < cH < 1, the seller�s pro�t is strictly increasing with respect to �H . Thus,

given the values of other variables, �H must be set as high as possible at the optimum. This

implies that either IMfHg or IMfH;Lg, or both are binding.

The Kuhn-Tucker conditions with respect to ywL and y
l
L can be written as

@L
@ywL

= �L�L
1

ywL
� �L�LcL + �H�LcH = 0

@L
@ylL

= �L(1� �L)
1

ylL
� �L(1� �L) + �H(1� �L) = 0:

Since �L�L
1
ywL
> 0; these two equations together yield

ywL
ylL
=

�L � �H
�LcL � �HcH

: (1.7)
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Note that the right-hand side of equation 1.7 is smaller than 1
cH
: So, we have

ywL
ylL

<
1

cH
: (1.8)

This condition has a very nice implication: At the optimum, iso-revenue curve must be

�atter than the line corresponding to the implementability condition IMfH;Lg.32

Thus, IMfHg and IMfH;Lg are both binding and the optimal allocation probabilities can

be calculated as

�H =
1��nL
n�H

; �L =
�n�1L

n
(1.9)

which is the point where the iso-revenue curve (1.6) is tangent to the feasible set that is

bound by the implementability conditions (Figure 1)

It is not surprising to see that the allocation probabilities that we have obtained in 1.9

are the same as those in the risk-neutral environment. The optimal allocation is monotonic

with respect to buyer types in either case.

Note that, n�L�L = �nL , meaning the probability that the object is won by a low-type

buyer is equal to the probability that all buyers are low-type. In other words, the object is

won by a high-type buyer whenever there is one. Hence, the proposition follows.

Proposition 6. The optimal auction is weakly e¢ cient.

Contrary to the insurance provided to the high-type buyers, the seller confronts the low-

type buyers with risk by making their marginal utilities vary in cases of winning and losing.

In this circumstance, a high-type buyer who considers imitating the low-type buyers would

face a greater risk, and will eventually reveal his own true valuation. Hence, it is optimal

for the seller to relax the high-type buyer�s incentive constraint and not to o¤er insurance to

the low-type buyers. The following proposition states that at the optimum low-type buyers�

marginal utility of income is greater when he wins the object than when he loses it.

Proposition 7. Low-type buyers are better o¤ winning than losing: cLywL < ylL: Moreover,

in case of losing the object, they incur a payment that is less than what they would pay if

they win: 1 < ylL < ywL :

32This condition is equivalent to �L ln(y
w
L=y

l
L)

�H ln(1=cH)
< �L

�H
; where the left hand side of the inequality is slope of

the iso-pro�t curve and the right hand side is the slope of the line corresponding to the implementability
condition IMfH;Lg:
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Figure 1: Single object - Optimal allocation probabilities are the same regardless of buyers�

risk attitude.

Next, we show that the solution to the relaxed problem also solves the full problem which

does not ignore ICL.

Proposition 8. Low-type buyers do not have the incentive to misrepresent their type. That

is, ICL is slack.

The reduced form of the revelation scheme that we�ve constructed above is optimal within

the class of schemes in which the expected payments contingent on winning and losing are

deterministic. Finally, we establish that making twi and t
l
i random has a negative e¤ect on

seller�s revenue.

Proposition 9. If buyer preferences are represented by CARA, then, in an optimal auction,

the payments, twi and t
l
i; must be deterministic.

Remark 10. Above proposition also implies that it is not pro�table for the seller to condition

the payments made by a buyer on the realizations of his opponents�types.

14



1.3 OPTIMAL MULTI-OBJECT AUCTIONS

1.3.1 Description of the Problem

Now, there are two nonidentical objects, denoted A and B, to be sold to n � 2 buyers:

The seller�s valuation for both objects is zero, whereas buyer valuations are random and

described by a pair (vA; vB), where vo denotes the buyer�s valuation for object o. Suppose

that vo 2 fvoH ; voLg, where the subscripts denote whether the buyer is of high-type (H) or low-

type (L). Thus, we assume voH�voL > 0. There are four types of buyers corresponding to the

four possibilities (vAH ; v
B
H); (v

A
H ; v

B
L ); (v

A
L ; v

B
H) and (v

A
L ; v

B
L ): Using a slightly shorter notation,

we de�ne the set of possible types as � = fHH;HL;LH;LLg. A typical element of this set

is denoted with ij; where i represents a buyer�s valuation for object A and j represents his

valuation for object B. Types are independently and identically distributed across buyers

according to a probability measure � over �, so that the probability that a buyer is of type ij

is represented by �ij: The marginal probability that a buyer has a high value for object A is

denoted with �AH = �HH+�HL: Similarly, �AL = �LH+�LL denotes the marginal probability

that the buyer has a low value for object A: In the same fashion, we de�ne �BH = �HH +�LH

and �BL = �HL + �LL to be the marginal probabilities that the buyer has a high and low

value for object B, respectively.

Each buyer is risk-averse and has preferences represented by the common CARA utility

function of the form u(!) = � e�r!

r
, where r > 0. In the event that a buyer wins object(s)

of a (total) value v and incurs a net payment � , his utility will be equal to u(v � �): For

example, if a buyer wins only object A when his valuation for that object is vAL and incurs

a net payment �A then his utility is equal to u(vAL � �A): Similarly, if a buyer of type HL

wins both objects and incurs a net payment �AB then his utility will be u(vAH + vBL � �AB):

Both the seller and the buyers are expected utility maximizers.33

The seller�s problem is to design a selling scheme that maximizes her revenue. In view

of the Revelation Principle, we solve this problem within the class of revelation schemes

33We assume that there are no economies of scope in the production of the bundle nor are there com-
plementarities in the consumption of the bundle. We make this assumption so as to isolate the role that
bundling has on the seller�s ability to extract the consumer surplus.
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which satisfy incentive compatibility and individual rationality constraints.34 Furthermore,

as justi�ed in the previous section, among the revelation schemes, we focus only on the

symmetric ones in which the buyers of the same type are treated the same.

Let nij be the number of buyers of type ij and � = (nHH ; nHL; nLH ; nLL) be the vector

representing the pro�le of reports where
P

ij2� nij = n. Then, a symmetric revelation scheme

can most generally be described with two sets of rules:

� a decision rule, pkij(�); that assigns each type ij 2 � probabilities of realizing possible

events k = A;B;AB;O, for each pro�le of reports �. Given �; the decision rule must

satisfy

X
ij2�

nij[p
A
ij(�) + pABij (�)] � 1 (1.10)X

ij2�
nij[p

B
ij(�) + pABij (�)] � 1 (1.11)

pAij(�) + pBij(�) + pABij (�) + pOij(�) = 1 8ij 2 � (1.12)

� a payment rule, ~tkij(�), that, for each pro�le of reports �; assigns each type ij 2 � possibly

random payments to be made to the seller at each possible event k = A;B;AB;O.

The decision rule speci�es the probability that a buyer b of type ij realizes the valuations

vAi , v
B
j , v

A
i + vBj or 0. We abuse the notation and list these four events respectively as:

Event A - winning only object A

Event B - winning only object B

Event AB - winning both object A and object B

Event O - winning neither object.

Remember from Armstrong [1] that the risk-neutral buyers are only interested in the

marginal probabilities of winning the objects. For risk-averse buyers, on the other hand, the

correlation between the events of winning object A and object B matters. The decision rule

in the above speci�cation takes this into consideration.

Note that, pAij(�)+p
AB
ij (�), in 1.10, represents the marginal probability of winning object

A which we shortly denote with p̂Aij(�): Similarly, p
B
ij(�) + pABij (�), in 1.11, represents the

34Remember that in a revelation scheme, buyers are asked to report their types.
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marginal probability of obtaining object B which is denoted with p̂Bij(�). Thus, conditions

1.10 and 1.11 are the resource constraints representing the fact that there is only one unit

of each object. Condition 1.12 states that the events A;B;AB and O are all inclusive.

Although the payment rule allows the seller impose random payments, when we solve the

seller�s problem, we assume ~tkij(�) = � kij where �
k
ij 2 R for all ij 2 � and k = A;B;AB;O,

and characterize the optimal scheme within the class of schemes that assign deterministic

payments. We will show later that imposing random payments to each type ij under each

event k cannot improve the seller�s revenue.

Now, de�ne an ij type buyer�s expected probability of realizing the event k = A;B;AB;O

as

�kij =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

pkij(nHH ; nHL; nLH ; nLL)	
nij
�ij

(1.13)

where 	 = (n�1)!�nHHHH �
nHL
HL �

nLH
LH �

nLL
LL

nHH !nHL!nLH !nLL!
: For any nij > 0; 	

nij
�ij
denotes the probability that the

buyer pro�le is � = (nHH ; nHL; nLH ; nLL) given that there is one ij in that pro�le (of course,

conditional on incentive constraints hold).35

The reduced form of a symmetric revelation scheme, then, can be represented with

f�Aij; �Bij; �ABij ; �Oij; �Aij; �Bij; �ABij ; �Oijgij2�:

�Aij and �
B
ij are type ij�s expected probability of winning object A or B, alone; whereas �

AB
ij

is his probability of winning both objects. Apparently, �Oij = 1 � �Aij � �Bij � �ABij represents

the probability of winning neither object. � kij is the net deterministic payment that type ij

must incur if event k occurs.

Then, the utility of a buyer of type ij who misrepresents his type as i0j0 is

�Ai0j0u(v
A
i � �Ai0j0) + �Bi0j0u(v

B
j � �Bi0j0) + �ABi0j0u(v

A
i + vBj � �ABi0j0 ) + �Oi0j0u(��Oi0j0):

Let coi = e�rv
o
i for o = A;B and i = H;L and ykij = er�

k
ij for k 2 K = fA;B;AB;Og and

ij 2 �: Then a scheme is individually rational if, for each type ij 2 �;
35The multinomial distribution is used.
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Dij � �Aijc
A
i y

A
ij + �Bijc

B
j y

B
ij + �ABij c

A
i c
B
j y

AB
ij + �Oijy

O
ij � 1:

An auction is incentive compatible if, for any ij 2 � and i0j0 2 � n f ijg;

Dij � �Ai0j0c
A
i y

A
i0j0 + �Bi0j0c

B
j y

B
i0j0 + �ABi0j0 c

A
i c
B
j y

AB
i0j0 + �Oi0j0y

O
i0j0 � Di0j0

ij :

The seller�s revenue can, then, be written in terms of the expected payment of an arbitrary

buyer, namely the term in brackets:

� = n[
X
ij2�

f�ij
X
k2K

�kij�
k
ijg]: (1.14)

Note that, � kij =
1
r
ln ykij: Then, if the reduced form probabilities are �implementable�we

can write the seller�s problem in reduced form as

max
f�kij ;ykijgij2�;k2K

n

r

X
ij2�

f�ij
X
k2K

�kij ln y
k
ijg (SP)

subject to

Dij � 1 ij 2 � (1.15)

Dij � Di0j0

ij ij 2 �; i0j0 2 � n fijg (1.16)

Since the buyers are risk-averse, the correlation between the events of winning object

A (namely, event A [ AB ) and object B (namely, event B [ AB) matters for the buyers

and also for the seller through 1.14. Thus, Border�s [11] theorem does not apply to this

problem.36 As it is also mentioned in Armstrong [1], the conditions that we need to impose to

ensure that the reduced form probabilities are implementable are not clear. For this reason,

di¤erent from the previous section, we aim to construct the actual probabilities, pkij(�);

8ij 2 �, k = A;B;AB and 8�.37 Given a payment rule, the optimality of a decision rule

will be analyzed as follows: For any modi�cation of pkij(�); we will �rst describe how expected

36See footnote 28.
37Given ij and �, pOij(�) can be calculated using 1.13 and the values of p

A
ij(�); p

B
ij(�), and p

AB
ij (�) are

found.
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probabilities �kij will be a¤ected. Then, we �gure out whether the incentive constraints in 1.16

and individual rationality constraints in 1.15 hold and whether the objective function (SP)

increases after the modi�cation. To demonstrate how this works, we borrow the following

example from Menicucci [32]:

Suppose for a given pro�le of reports with nHH � 1 and nLH � 1 each type wins object

A with probability 1
nHH

and each type LH wins object B with probability �
nLH

(0 < � � 1).

Note that from 1.13, this generates a contribution to �BLH equal to

�

nLH
	
nLH
�LH

:

Consider reducing � by �� > 0 while increasing by �� the probability that the same buyer

of type HH winning object A will also win object B. Then,

��BLH = � ��
nLH

	
nLH
�LH

��AHH = � ��
nHH

	
nHH
�HH

= ���ABHH :

So, ��ABHH = ���AHH = � �LH
�HH

��BLH : We can then evaluate the pro�tability of reducing �

since the seller�s pro�t function and the constraints are linear with respect to the expected

probabilities.

1.3.2 Solution to the problem

Before we attempt to solve problem SP, note that, since 0 < cH < cL, incentive compatibility

conditions imply that among the individual rationality conditions only the one corresponding

to type LL matters.
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1.3.2.1 The relaxed problem Using the same approach as in Armstrong [1], we �rst

solve the seller�s problem considering only the �ve downward incentive constraints, that

ensure that a buyer does not underreport his valuation for an object. We show ex post that

the remaining constraints are satis�ed (Propositions 25 and 26).

Thus, the seller solves

max �HHf�AHH ln yAHH + �BHH ln y
B
HH + �ABHH ln y

AB
HH + �OHH ln y

O
HHg

+�HLf�AHL ln yAHL + �BHL ln y
B
HL + �ABHL ln y

AB
HL + �OHL ln y

O
HLg

+�LHf�ALH ln yALH + �BLH ln y
B
LH + �ABLH ln y

AB
LH + �OLH ln y

O
LHg

+�LLf�ALL ln yALL + �BLL ln y
B
LL + �ABLL ln y

AB
LL + �OLL ln y

O
LLg

subject to

�ALLc
A
Ly

A
LL + �BLLc

B
Ly

B
LL + �ABLL c

A
Lc
B
Ly

AB
LL + �OLLy

O
LL � 1 (IRLL)

�ALHc
A
Ly

A
LH + �BLHc

B
Hy

B
LH + �ABLHc

A
Lc
B
Hy

AB
LH + �OLHy

O
LH

� �ALLc
A
Ly

A
LL + �BLLc

B
Hy

B
LL + �ABLL c

A
Lc
B
Hy

AB
LL + �OLLy

O
LL (ICLLLH)

�AHLc
A
Hy

A
HL + �BHLc

B
Ly

B
HL + �ABHLc

A
Hc

B
Ly

AB
HL + �OHLy

O
HL

� �ALLc
A
Hy

A
LL + �BLLc

B
Ly

B
LL + �ABLL c

A
Hc

B
Ly

AB
LL + �OLLy

O
LL (ICLLHL)

�AHHc
A
Hy

A
HH + �BHHc

B
Hy

B
HH + �ABHHc

A
Hc

B
Hy

AB
HH + �OHHy

O
HH

� �ALLc
A
Hy
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�AHHc
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HH + �ABHHc
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Hc
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AB
HH + �OHHy
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HH
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A
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A
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B
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B
HL + �ABHLc

A
Hc

B
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AB
HL + �OHLy

O
HL: (ICHLHH)

We �rst establish that it is not optimal to make the expected payments, namely ykijs,

random. This is because if a ykij is random for an ij and k, then the seller could replace it

with its expected value without a¤ecting the incentive conditions (because they are linear in

ykij) and increase her revenue (as the seller�s revenue is a concave function of y
k
ij).
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Proposition 11. If the buyers�preferences are represented by CARA utility function then,

in an optimal auction, the expected payments conditional on types and allocation must be

deterministic.

Now, we determine which of the six conditions in the relaxed problem are binding.

Lemma 12. At the optimum of the relaxed problem, IRLL must be binding.

Lemma 13. At the optimum of the relaxed problem, ICLLLH and IC
LL
HL must be binding.

Lemma 14. At the optimum of the relaxed problem, at least one of ICLLHH ; IC
LH
HH and IC

HL
HH

must be binding.

Using the above lemmata, we write the Lagrangian of the relaxed problem and derive its

Kuhn-Tucker conditions with respect to the payments, namely ykijs Then, we establish the

relation among the payments using these Kuhn-Tucker conditions, the details of which we

relegate to the appendix.

Similar to the single object case, when a buyer wins an object, say object i, for which he

has high valuation, he pays viH more than what he would have paid if he lost that object.

The intuition for proposition 4 also applies here.

If the objects are not limited, the seller can make the high-type buyer�s probability of

obtaining the object(s) equal to one in order to reward him for revealing his true valuation(s).

However, when the objects are limited, the same rewarding strategy does not work because

each high-type buyer may face the risk of losing the object(s) to another high-type buyer

and hence, the marginal utility of income may di¤er in the events of winning and losing.

The resource constrained seller, however, can reward a high-type buyer by o¤ering perfect

insurance and increase her revenue. Note that, if buyers are risk neutral, there is no insurance

issue. In other words, if the buyers are risk averse the seller has an additional tool to extract

more revenue from them when compared to risk neutral environment.

Proposition 15. Each buyer is perfectly insured against the risk of losing the object(s) for

which he has high valuation.

When it comes to the LL-type buyers, the seller faces the following predicament: to

extract more revenue from the LL-type buyer by o¤ering insurance and to exploit the risk-

21



bearing of the buyers who have high-valuation for one or both of the objects to screen them.

At the optimum, the marginal bene�t of exploiting high-type buyers risk bearing exceeds

the marginal cost of not o¤ering insurance to LL-type buyers. Moreover, LL-type buyers

pay penalty when he loses both objects which further deters high-type buyers from behaving

as if they are LL-type.

Proposition 16. Suppose that type LL is not excluded from the auction. Then, he incurs

a positive payment if he loses both objects.

With the help of the preceding results, the seller�s problem can be written as

[�HH �̂
A
HH + �HL�̂

A
HL] ln

1

cAH
+ [�HH �̂

B
HH + �LH �̂

B
LH ] ln

1

cBH
+ �HH ln y

O
HH

+�HL[�̂
B
HL ln y

B
HL + (1� �̂BHL) ln y

O
HL] + �LH [�̂

A
LH ln y

A
LH + (1� �̂ALH) ln y

O
LH ]

+�LL[�
A
LL ln y

A
LL + �BLL ln y

B
LL + �ABLL ln y

AB
LL + �OLL ln y

O
LL]

subject to

DLL = 1

DLL
LH = �̂ALHc

A
Ly

A
LH + (1� �̂ALH)y

O
LH

DLL
HL = �̂BHLc

B
Ly

B
HL + (1� �̂BHL)y

O
HL

yOHH = min

8>>><>>>:
DLL
HH

�̂ALHc
A
Hy

A
LH + (1� �̂ALH)y

O
LH

�̂BHLc
B
Hy

B
HL + (1� �̂BHL)y

O
HL

where �̂Aij = �Aij + �ABij and �̂Bij = �Bij + �ABij : Let�s call this problem SP 0:

Thus, for the optimality of an auction only the following reduced form probabilities

matter:

f�̂Aij; �̂Bijgij=HH;HL;LH ; f�kLLgk=A;B;AB

Consider a mechanism where, for a given pro�le, �; both objects are sold with probability

one. Then, if the seller modi�es the mechanism by increasing pkij(�) by
1
nij
"kij, the following

condition must hold: X
ij2S

("kij + "ABij ) � 0 for k = A;B:
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After this modi�cation, �kij will increase by
1
�ij
"kij	:

We now establish that the solution to the relaxed problem is weakly e¢ cient. That is, if

there is a buyer with high valuation for an object then that object is never sold to a buyer

who has low valuation for that object.

Proposition 17. Let � = (nHH ; nLH ; nHL; nLL) be the pro�le of the participating buyers.

Then, the solution to the relaxed problem satis�es the following two rules:

i) For any � with nHH + nHL > 0; nHH p̂
A
HH(�) + nHLp̂

A
HL(�) = 1

ii) For any � with nHH + nLH > 0; nHH p̂
B
HH(�) + nHLp̂

B
LH(�) = 1:

If there is a buyer who has a high value for object A (B) then with probability one it

is given to a buyer who has a high value for it. While proposition 17 states this result in

terms of actual probabilities, the following corollary does the same in terms of the expected

probabilities.

Corollary 18. At the optimum of the relaxed problem, reduced form probabilities satisfy

i) �HH �̂
A
HH + �HL�̂

A
HL =

1
n
(1� (�BL )n) and

ii) �HH �̂
B
HH + �LH �̂

B
LH =

1
n
(1� (�AL)n):

The next lemma establishes that both objects are sold with probability one, if a buyer�s

payment contingent on winning an object for which he has low valuation is larger than his

payment contingent on losing both objects.

Similar to the previous section, we assume that the seller never keeps the object. We

have already established in proposition 17 that the seller does not keep an object whenever

there is a buyer who has a high value for it. This requires the probability that an object is

won by a buyer who has a low value for it to be equal to the probability that all buyers have

low value for it.

�LL�̂
A
LL + �LH �̂

A
LH =

1

n
(�AL)

n

�LL�̂
B
LL + �HL�̂

B
HL =

1

n
(�BL )

n

In terms of actual probabilities, we can write these conditions as

For any � with nHH + nHL = 0; nLH p̂
A
LH(�) + nLLp̂

A
LL(�) = 1 (1.17)

For any � with nHH + nLH = 0; nHLp̂
B
HL(�) + nLLp̂

B
LL(�) = 1 (1.18)
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Proposition 19. The necessary conditions for 1.17-1.18 are yALH > yOLH ; y
B
HL > yOHL; and

yALL; y
B
LL; y

AB
LL > yOLL:

Since DHH = yOHH � 1, when HH loses both objects he either does not pay anything

(i.e. yOHH = 1) or he is compensated (i.e. y
O
HH < 1).

Proposition 20. In any mechanism that solves the relaxed problem, if an HH type buyer

loses both objects then he is compensated.

This proposition results because the seller needs to provide insurance to type HH. This

is a property that carries over from the single unit optimal auction. (Maskin and Riley [28])

They show that when the type space is continuous, the seller provides full insurance (and

hence full compensation) only to the highest type but partial insurance to the types that are

su¢ ciently high.

Proposition 21. In any mechanism that solves the relaxed problem, if all the buyers are of

type LL (i.e. nLL = n) then the objects are bundled and each buyer wins the bundle with

equal probability. (i.e. pABLL (�) =
1
n
).

An immediate implication of the proposition above is that it is not optimal to sell the

goods independently in which case with positive probability the objects may end up in the

hands of di¤erent LL type buyers. Yet, the proposition has further implications.

When the buyers are risk neutral (Armstrong [1]), depending on how buyers�valuations

are correlated across objects, the optimal multi-object auction can take the form of indepen-

dent auctions, mixed auction or bundling auction. But all of these auction forms allocate the

two objects independently and randomly when all buyers are of type LL. This contradicts

with the proposition. Therefore, none of these auction forms are optimal when the buyers

are risk averse.

Theorem 22. Whenever the parameter values are such that the relaxed method solves the

full problem, the three auction formats that are optimal when the buyers are risk neutral do

not maximize the seller�s revenue if the buyers are risk averse.

The main reason for why we obtain this contradictory result is that the optimal auction

forms for the risk neutral buyers do not impose the right amount of risk on type LL. The
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optimal auction for risk averse buyers, on the other hand, imposes two kinds of risk on this

type. The �rst kind removes the possibility of winning a single object when all buyers are of

type LL and the second kind assigns a positive payment if he doesn�t win any objects. These

two kinds of risk improve the sellers revenue in the following way. The former exploits the

risk bearing of the buyers who have high valuation for one or both objects by facing them

with even greater risk when imitating LL than the optimal auction for risk neutral buyers.

The latter, on the other hand, help the seller collect the penalty fees from more people.

Since the seller probabilistically assesses the buyer valuations (i.e. only ex ante proba-

bilities of the type distribution matter) and never keeps the objects by assumption, there

always exists a probability that LL type buyers can obtain both objects. This can happen

only if all buyers are of type LL. On the other hand, whenever there is a type HH or both

HL and LH, then LL cannot win any objects. The following lemma states the conditions

under which an LL can obtain a single object.

Lemma 23. In any mechanism that solves the relaxed problem,

i) if � is such that nLH ; nLL > 0 and nLH +nLL = n; then object A is sold to an LH type

buyer (i.e. nLH p̂ALH(�) = 1) if

�LH < (
�HL
yOHL

yOHH
�HH

+ 1)(
�LL
yOLL

yOLH
�LH

+ 1)�1 � 
LH : (y)

Otherwise, an LL type buyer gets object A (i.e. nLLp̂ALL(�) = 1).

ii) if � is such that nHL; nLL > 0 and nHL + nLL = n; then object B is sold to an HL

type buyer (i.e. nHLp̂BHL(�) = 1) if

�HL < (
�LH
yOLH

yOHH
�HH

+ 1)(
�LL
yOLL

yOHL
�HL

+ 1)�1 � 
HL: (z)

Otherwise, an LL type buyer gets object B (i.e. nLLp̂BLL(�) = 1):

According to the previous lemma, in the optimal auction, if the excess payment that LH

makes for object A is larger than that of LL (namely, tALH � tOLH > tALL� tOLL), then LH wins

object A.

By this lemma, the solution to the relaxed problem depends on the values of 
LH and


HL: Note that, 
LH � 1 if and only if 
HL � 1: Thus, we can divide the rest of the analysis

into three cases (See Figure 2):
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Figure 2: Allocation of each object when all buyers have low valuation for it.

� 
LH + 
HL � 1 (Region A1),

� 1 � 
LH + 
HL � 2 (Region A2),

� 2 � 
LH + 
HL (Region A3).

Remark 24. Readers should note that the three cases listed above are analogous to those

mentioned in Lemma 2 of Armstrong [1]: strong positive correlation, weak positive correla-

tion, and negative correlation, respectively.

Whether object A (B) is given to an LL or LH (HL) type buyer depends on whether

(
LH ; 
HL) falls in region A1, A2; or A3:

1.3.2.2 Case A1 - Strong positive correlation: [
LH + 
HL � 1] We can set

�LL = 1� 
LH � 
HL, �LH = 
LH , �HL = 
HL (1.19)

In this case, all incentive constraints of type HH are binding. This also implies that the

seller is indi¤erent between LH and LL for object A and between HL and LL for object B.
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For any given allocation probabilities, the payments

fyALL; yBLL; yABLL ; yOLL; yALH ; yOLH ; yBHL; yOHL; yOHHg38 (1.20)

solve

max �HH ln y
O
HH + �LH(1� �̂ALH) ln y

O
LH + �HL(1� �̂BHL) ln y

O
HL ++�LL�

O
LL ln y

O
LL (1.21)

+�LH �̂
A
LH ln y

A
LH + �HL�̂

B
HL ln y

B
HL + �LL�
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LL ln y

A
LL + �LL�

B
LL ln y

B
LL + �LL�

AB
LL ln y

AB
LL

subject to

�ALLc
A
Ly

A
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B
Ly

B
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Ly

AB
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O
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Ly

A
LH + (1� �̂ALH)y
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�ALLc
A
Hy

A
LL + �BLLc

B
Ly

B
LL + �ABLL c

A
Hc

B
Ly

AB
LL + �OLLy

O
LL = �̂BHLc

B
Ly

B
HL + (1� �̂BHL)y

O
HL(1.24)

�ALLc
A
Hy

A
LL + �BLLc

B
Hy

B
LL + �ABLL c

A
Hc

B
Hy

AB
LL + �OLLy

O
LL = yOHH (1.25)

�̂ALHc
A
Hy

A
LH + (1� �̂ALH)y

O
LH = yOHH (1.26)

�̂BHLc
B
Hy

B
HL + (1� �̂BHL)y

O
HL = yOHH : (1.27)

By 1.19 and lemma 24,

yALHy
O
LL = yALLy

O
LH and y

B
HLy

O
LL = yBLLy

O
HL (1.28)

must also be true. Using equations 1.22-1.27, and the two conditions in 1.28, we can solve

for eight of the variables (say, except yOHH) listed in 38 in terms of y
O
HH ; the parameters and

the reduced form probabilities. After plugging these variables into the objective function

1.21 we can solve it for yOHH .

Now, we consider the conditions that we have omitted in the relaxed problem.

Proposition 25. (Full problem - Case A1) The upward incentive conditions, ICLHLL , IC
HL
LL ,

ICHHLH and ICHHHL are not binding.

38The payments that are not listed in (38), namely yBLH ; y
AB
LH ; y

A
HL; y

AB
HL; y

A
HH ; y

B
HH ; y

AB
HH ; can be calculated

using proposition 15.
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The above proposition states that type LL does not have incentive to imitate the types

LH or HL. Moreover, neither type LH nor type HL has incentive to imitate HH.

The conditions ICHLLH and ICLHHL together imply

yOHHf
�ALH
�̂ALH

�A

cAH
+ (

�ABLH
�̂ALH

� �ABHL
�̂BHL

)
cALc

B
H � cAHc

B
L

cAHc
B
H

+
�BHL
�̂BHL

�B

cBH
g (1.29)

� yOHLf�AHL
�A

cAH
� �ABHL
�̂BHL

(1� �̂BHL)
cALc

B
H � cAHc

B
L

cAHc
B
H

+
�BHL
�̂BHL

(1� �̂BHL)
�B

cBH
g

+ yOLHf�BLH
�B

cBH
+
�ABLH
�̂ALH

(1� �̂ALH)
cALc

B
H � cAHc

B
L

cAHc
B
H

+
�ALH
�̂ALH

(1� �̂ALH)
�A

cAH
g:

where �i = ciH � ciL.

ICHHLL takes the following form:

1 � yOHHf�AHH
cAL
cAH
+ �BHH

cBL
cBH
+ �ABHH

cALc
B
L

cAHc
B
H

+ �OHHg (1.30)

and 
HL � 1 can be written as

�LH�HL
�LL�HH

� yOLHy
O
HL

yOLLy
O
HH

(1.31)

Proposition 26. The optimal allocation probabilities satisfy the necessary condition 1.31.

Moreover, 1.29 and 1.30 are not binding.
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1.4 DISCUSSION AND CONCLUDING REMARKS

In a binary model, we show that when the buyers are risk-averse, the optimal auction is

weakly e¢ cient. That is, with probability one each object is sold to a buyer who has high

valuation for it, if such a buyer exists. Each buyer is perfectly insured against the risk of

losing the object(s) for which he has high valuation. Buyers who are eager to win both

objects are compensated if they can not win either object; whereas, buyers who have low

value for both objects incur a positive payment if they lose both objects. The objects are

bundled when all buyers are reluctant for both objects, thus, none of the auction forms listed

in Armstrong [1] are optimal.

In a more general framework, it has been shown that among all mechanisms for allocat-

ing multiple objects that are strongly e¢ cient, incentive compatible, and individually ratio-

nal, the Vickrey-Clarke-Groves mechanism maximizes the expected revenue.39 The optimal

multi-object auction that we have constructed for risk averse buyers is incentive compati-

ble and individually rational but is only weakly e¢ cient and thus di¤erent from the VCG

mechanism.

The ine¢ ciency results either because some types are ex ante excluded from participating

the auction, or because of a misallocation. In this paper, we con�ned ourselves from the

�rst kind of ine¢ ciency, and showed that the latter kind of ine¢ ciency does not occur in an

optimal auction. Yet, this result is very sensitive to the assumption of binary distribution

of types. Armstrong [1] shows that weak e¢ ciency does not survive once the type space is

made continuous.

The seller can exploit the risk bearing of the buyers, either by making their payments

di¤erent in the events of winning and losing; or, contingent on winning and losing, she can

make their payments random. While the former improves the revenue the latter does not.

We �nally comment on the restrictions of our model. For tractability reasons, we focused

only on the case where the buyers�utility function exhibits constant absolute risk aversion.

Instead a buyer�s utility may exhibit increasing or decreasing absolute risk aversion, or rel-

ative risk aversion, in which case the answer to the optimal design problem is not clear.

39For a clear and concise discussion of VCG mechanisms see Krishna [23].
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Alternatively, one can also consider the situations where the buyers have di¤erent risk atti-

tudes with respect to each good, in addition to that with respect to the wealth level. In that

case, one would have to consider a generalization of the Arrow-Pratt theory (Arrow [3] and

Pratt [36]) which allows to study multi-dimensional risk attitudes. One such generalization

is proposed by Kihlstrom and Mirman [22].

Gal-Or [18], considers the case where the risk-averse buyers worry about the possibility

of breakdowns. She shows that running "sales" improves the revenue of the single-unit mo-

nopolist. This is because the risk-averse buyers tend to buy more frequently than necessary

to avoid buying at the higher regular price and to avoid the cost of waiting for the next sales

period. Since, in our model, the seller owns only one unit of each object and the objects

are not related, our results would not change if the buyers worry about breakdowns. In this

case, buyers�concerns can be easily embodied into their valuations.
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2.0 SEQUENTIAL ALL-PAY AUCTION WITHOUT COMMITMENT

2.1 INTRODUCTION

The seminal paper by Myerson [34] showed that when bidders have linear cost functions, the

independent private value auctions with optimal reserve price maximize revenue. This clearly

explains why sellers often post a reserve price in auctions.1 However, when the market value

of the object is higher than sellers�valuation, sequential rationality imposes a constraint on

their behavior: They cannot credibly commit to keep the object out of market if the reserve

price is not met. Indeed, it is common today that the sellers reauction the same object over

and over again if it fails to sell. This behavior is observed in auctions that are held online at

Ebay and that take place in well-known auction houses, like Christie�s and Sotheby�s. The

seller�s inability to commit is not incorporated in Myerson [34], and the consequences of this

behavior need to be analyzed.

McAfee and Vincent [31] (Henceforth MV) analyze this problem in the �rst price and

the second price auctions. They proved that the revenue equivalence result of Myerson [34]

holds between sequential �rst price and second price auctions when the seller is unable to

commit. They observe that the seller lowers the reserve price if the object fails to sell in the

previous period. Yet, they didn�t question how much the seller loses by not committing to

the reserve price.

Sobel and Takahashi [41] (Henceforth ST) study the same problem in a multi-stage

bargaining environment where the seller makes take-it-or-leave-it o¤ers in each period until

1Myerson assumes that the imposing a reserve price does not change the number of potential buyers.
Engelbrecht-Wiggans [14], on the other hand, provide two examples where this might not be the case, and
show that the loss associated with the reduced number of buyers outweigh the bene�ts of a reserve price.His
result, though, does not apply to the situations that we consider in this paper.
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the buyer accepts the o¤er2. In this case, if the buyer does not want to buy the object at the

current price, the seller cannot resist the temptation to try to resell it in the next period.

The posted price, here, is analogous to the reservation price of the auctions. ST showed that

the ability to commit to a price schedule is bene�cial to the seller because with this ability

the seller can threaten to maintain a high price in order to induce a purchase in the �rst

period. ST assume di¤erent discount rates for the seller and buyer, and analyze both the

two-period case and in�nite-period case, whereas MV assume same discount rates for all the

players and analyze only the in�nite-period case.

The current paper, which is also an extension of ST, studies the commitment problem in

all-pay auctions where the winner collects the prize and but all bidders forfeit their bids. All-

pay auctions are used to raise funds for charities, but, in general, they are rarely preferred as

a selling mechanism. Although all-pay auctions are not practical in real life, in the literature,

they are frequently used to model real life situations such as R&D tournaments, promotions

in labor markets, and lobbying activities. For motivation, let�s discuss why these situations

are analogous (or precisely isomorphic) to all-pay auctions and why the "sellers" in these

circumstances cannot commit to the "reserve price".

An example to a research and development tournament is the prototype tournaments

sponsored by the U.S. Army Air Corps in which several manufacturers compete to make

a prototype of an aircraft speci�cations of which is announced by the sponsor.3 If none

of the competitors can meet these minimum requirements, and therefore, not enter the

tournament, the sponsor will naturally think of revising the rules and bringing down the

minimum requirements. If at least one of the �rms is interested in the project, then the

tournament will take place. The winner, which is assumed to be the �rm that spends the

highest e¤ort, is awarded the production contract4. The e¤orts of the losers are sunk. The

2Note that, if there is only one bidder, the models in MV and ST are equivalent.
3One such tournament was organized by the U.S. Army for a Joint Cargo Aircraft. Lockheed�s C-130J�s

exclusion from the competition raised a protest:
"The Army has excluded the C-130J without adequate regard to Air Force requirements," Lockheed

said in its complaint to the Government Accountability O¢ ce, which serves as a watchdog agency for the
federal government. "As such, it appears the joint title of the (Joint Cargo Aircraft) program is signi�cantly
overstated."

4Here, it is implicitly assumed that the quality of the prototype is monotonically increasing with the
e¤ort level, which may not be the case in all R&D projects.

32



objective of the privately sponsored R&D tournaments, generally, aims to maximize the

e¤ort spent on the "best" project. A tournament designed by public authorities, on the

other hand, may aim to boost the overall activity level in a particular market. In that case,

the objective of the tournament is to maximize the e¤ort spent on "all" projects.

Now, consider a labor market tournament designed to promote one of the lower-rank

employees to an open higher-rank position5. This type of tournaments prove useful as a

selection process when an outside option is not available due to regulations (i.e. army, secret

service) or when the outside option is too costly. Also, an employer can make use of a

tournament to increase the e¤ort level of the workers, overall. In either case, the employee

who exerts the highest e¤ort is awarded the indivisible prize. The e¤ort of the non-winning

participants, on the other hand, are sunk. It is very natural for the employer to require

a minimum e¤ort level if the e¤orts of the contestants can be observed, yet the employer

cannot credibly commit to this minimum e¤ort level due to the lack or the cost of the outside

option.

Finally, consider lobbying activities. Campaign contributions that are made to policy-

makers are usually considered as access cost. If the contribution is high enough then the

policymaker grants the interest groups "access", a chance to defend their cases. Lobbyists

think that the higher is the amount of the contribution donated the more decisive is the

information they provide to the policymakers. Grossman and Helpman [20] state that poli-

cymakers impose these costs, one, because they need funds to �nance their campaigns, two,

because they need a screen to distinguish groups that are more likely to provide valuable

information, three, because their time is a scarce resource, and they want the value of the

information to exceed the opportunity cost of their time6. The model presented in this paper,

applies to all three cases. In the �rst two cases, the total revenue of the seller should be inter-

preted as sum of all contributions and aggregate value of all the informations, respectively.

In the latter case, policymaker minimizes the time spent with the lobbyists7. Regardless

of which case is assumed, policymaker grants access to certain lobbyists the contributions

5Readers can refer to Nalebu¤ and Stiglitz [35] and Rosen [38] for labor market tournaments.
6Austen-Smith [6], Lohmann [25], and Wright [42] are the other papers that interpret campaign contri-

butions as access cost.
7In this case, the policymaker minimizes the disutility, or equivalently maximizes the negative of the

disutility.
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of which exceed the amount set by the policymaker. The interest group whose information

played a decisive role is considered as winner. All the other lobbyists are deemed as losers.

The contributions made by them are sunk.

Since the contest examples mentioned above are isomorphic to all-pay auctions, in the

remainder of the paper, auction theory jargon is used8. The contest designer is referred to as

the seller or she and the contestant(s) as the bidder(s) or he(they). The seller may maximize

the highest bid or the sum of all bids. The latter objective is equivalent to maximizing the

average bid if the buyers are ex ante symmetric.

In an all-pay auction, no matter which of the two objectives the seller pursues, if she is

patient enough then imposing a relatively high reserve price in the �rst period and, in case of

no sale, lowering it in the second period maximizes the revenue, conforming to the �ndings

of ST and MV. In other words, the sequential all-pay auction in which the seller commits to

the reserve price in the second period yields a higher revenue than the single period all-pay

where the seller commits to the reserve price in the �rst period.

The main result of the paper is that, as the number of bidders increases, the seller will

have a higher incentive to run a single-period all-pay auction if she maximizes the average

bid, but she will prefer to run a sequential all-pay auction if she maximizes the highest bid.

With a large number of bidders, a single-period all-pay auction yields higher revenue for a

average-bid-maximizing seller only if she is almost fully patient. Moreover, the more bidders

participate in the auction the less patient the highest-bid-maximizing seller has to be in

order to prefer the sequential all-pay auction.

The remainder of the paper is organized as follows: Part 2 further reviews the literature.

Part 3 introduces the model. Part 4 analyzes the benchmark case where the seller is assumed

to announce no reserve price. Part 5, on the other hand, analyzes the case where the seller

sets the optimal reserve price and commits to it if no sale occurs. Parts 6 explores the case

where the seller is unable to commit temporarily. Finally, part 7 concludes.

8For classi�cation of contests, you can refer to Baye et al. [9].
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2.2 RELATED LITERATURE

Bertoletti [10] shows that when a seller has bargaining power then she should set an optimal

reserve price. He shows that the revenue generated under the optimal reserve price might be

higher than that generated when the highest valued lobbyist is excluded. Yet, this conclusion

can be derived only if the seller has complete information about bidder�s values. Hence,

excluding the highest bidder is di¢ cult when the seller is uninformed about the valuation of

the bidders or when the bidders are ex-ante symmetric. Di¤erent from Bertoletti [10], this

paper assumes incomplete information and weakens the assumption that the seller is able to

commit to the reserve price.

Gavious and Sela [19] study all-pay auction with reserve prizes where the cost of bidding

is a nonlinear function of the bids. They show that setting a reservation price is pro�table

for a seller who wishes to maximize the highest bid. When the seller wishes to maximize

the average bid, on the other hand, it might not be pro�table to set a reserve price. If the

players have exogenous entry costs, then setting reserve price is always pro�table.

Finally, Skreta [39] characterizes the optimal auction in a two-period model under non-

commitment.

2.3 MODEL

This paper studies an all-pay auction where n ex ante symmetric risk-neutral bidders compete

to win a single indivisible object. Seller�s valuation of the object is normalized to zero,

whereas the bidders�private values are drawn independently and identically from uniform

distribution over [0,1].

The rules of the all-pay auction are as follows: The seller announces a reserve price and

then the bidders simultaneously place their bids. If the reserve price is met then the highest

bidder wins the object and everyone pays their bids. If the reserve is not met and the seller

is able to commit to keep the object then the game ends. If the seller is unable to commit

and no sale occurs in the �rst period then she reauctions the object. The new reserve price

is announced and the bids are submitted. The item goes to the highest bidder if at least
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one of the bids exceed the second period�s reserve price and all bidders pay their bids. The

game ends after the second period regardless of whether the reserve is met or not.

Both the seller and the bidders are assumed to be expected utility maximizers. All

players discount their expected future earnings but the bidders discount at a rate di¤erent

from the seller�s.

All features of the above model and the seller�s ability to commit are common knowledge

among all players.

The equilibrium constructed in section 2.4 is Bayesian Nash equilibrium and the equilibria

that are described in all other sections are perfect Bayesian Nash.

2.4 BENCHMARK CASE: NO RESERVE PRICE

We start with the simplest scenario where the seller does not make any strategic decision,

i.e. the seller does not announce a reserve price. In this case, the game is played among

the bidders. A bidder wins the object and enjoys a positive payo¤ only if he outbids his

opponents, yet he has to pay his bids even when he loses the object. More precisely, when

bidder i of type v who places a bid of bi; he earns an expected utility of u(bi; v) = v Pr[bi >

max
j 6=i
fbjg]� bi.

Each section of this paper aims to construct a symmetric equilibrium in monotonic

strategies. Thus, the opponents of bidder i follow the same bidding strategy, �(:), which is

monotonically increasing in v. So, bidder i�s utility can be written as

u(bi; v) = v Pr[bi > �(vj) for j 6= i]� bi (2.1a)

= vF n�1(��1(bi) > vj)� bi (2.1b)

= vF n�1(��1(bi))� bi; (2.1c)

where F (:) represents the belief that bidder i carries about his opponents valuations.

If bidder i�s utility is di¤erentiable, then the optimal bid b� solves the �rst-order condition
@u(b�;v)
@bi

= 0 for each v. The envelope theorem states that the total derivative of the value
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function is equal to the partial derivative of it. Namely,

du(b�; v)

dv
=
@u(b�; v)

@v
+
@u(b�; v)

@bi

bi
@v

(2.2a)

=
@u(b�; v)

@v
(2.2b)

= F n�1(��1(b�)) (2.2c)

= F n�1(v): (2.2d)

The second equality follows from the fact that b� solves the �rst-order condition and 2.2d

follows due to the symmetry of the equilibrium bid functions. Note that, equilibrium bid

function has to assign an optimal bid to each possible valuation, hence b� = �(v): The

integral of 2.2d, gives back the value function. Hence, combining equations 2.1c and 2.2d,

one can write

vF n�1(��1(b�))� b� =

vZ
0

F n�1(t)dt (2.3a)

vF n�1(v)� �(v) =

vZ
0

F n�1(t)dt (2.3b)

�(v) = vF n�1(v)�
vZ
0

F n�1(t)dt: (2.3c)

Since bidders�values are assumed to be uniformly distributed, equation 2.3c is equivalent to

�(v) =
n� 1
n

vn: (2.4)

Proposition 27. If the seller does not announce a reserve price, then bidding according to

�(v) = n�1
n
vn is a symmetric equilibrium of the all-pay auction.

The seller�s payo¤ can then be calculated. If her objective is to maximize the average

bid then

�a = E[�(v)] =

Z 1

0

�(v)f(v)dv (2.5a)

=
n� 1

n(n+ 1)
: (2.5b)
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Similarly, if she maximizes the highest bid, then her payo¤ is equal to

�h = E[�(v) j v > max
j=1;2;::n�1

fvjg] =
Z 1

0

�(v)nF n�1(v)f(v)dv (2.6a)

=
n� 1
2n

: (2.6b)

Each bidder, on the other hand, earns an ex ante utility of

E[u(�(v); v)] =

Z 1

0

fvF n�1(v)� �(v)gf(v)dv (2.7a)

=

Z 1

0

vn

n
dv =

1

n(n+ 1)
: (2.7b)

2.5 RESERVE PRICE WITH COMMITMENT

This section lets the seller play a strategic role in the game. Foreseeing the equilibrium play

of the bidders in the subgame, the seller posts a nonnegative reservation price. In order to

solve seller�s problem, the bidders�behavior needs to be analyzed �rst.

Let�s assume that the seller posts a nonnegative reserve price r and also remember that

bidder i with valuation v will earn a utility of

u(bi; v) = v Pr[bi > �(vj) for j 6= i]� bi (2.8)

if he bids bi. It can be shown that the bidders with low valuations have no incentive to

participate. As an example, consider the bidder with valuation r. Since the probability of

winning is smaller than one, this bidder cannot earn positive utility when he enters. This is

because he has to bid at least r. For participation, a bidders valuations must be su¢ ciently

large in order to o¤set the e¤ect of his incomplete information about his opponents�values.

In other words, there must be a critical type c > r where the bidder is just indi¤erent

between participating and not participating. So, we conclude that only the bidders with

valuations larger than c will place a positive bid.

The bidders with valuations larger than c; on the other hand, tend to bid more aggres-

sively than they would if the seller didn�t impose a reserve price. The arguments that lead

to this conclusion are as follows: The bidder with a valuation equal to c wins only if all
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other bidders have valuations smaller than c; and in the case that he wins he will be better

o¤ by placing the smallest bid, namely the reserve price r. Since the bidder with valuation

c is indi¤erent between participating and not participating he earns zero utility, whereas

he could have earned positive utility by placing a slightly smaller bid if the seller did not

post a reserve price. So, when the seller posts a reserve price, the bidder with valuation c

increases his bid. Using the monotonicity of the bidding strategies we conclude that bidders

with valuations larger than c bid more aggressively if the seller posts a reserve price.

Since only the bidders of type v > c place a positive bid, using the arguments that leads

to equation 2.2d, one can write bidder i�s value function as

u(�(v); v) =

vZ
c

F n�1(t)dt+ u(�(c); c) for c � v: (2.9)

This expression is equivalent to equation 2.1c given that b is chosen optimally. So, we can

write bidder i�s equilibrium bidding strategy as

�(v) = vF n�1(v)�
vZ
c

F n�1(t)dt� u(�(c); c) for c � v (2.10a)

=
n� 1
n

vn +
cn

n
for c � v (2.10b)

The second equality is due to the fact bidder i earns zero utility when his valuation is c.

Bidder i bids the reserve price when his valuation is equal to the critical type: �(c) = r:

Hence, c = r1=n: In equilibrium, the seller forms a correct belief about how the bidders will

behave in the second stage. So, if the seller�s objective is to maximize the average bid, then

her payo¤ is equal to

�ac(c) = E[�(v)] =

1Z
c

�(v)f(v)dv =

1Z
c

(
n� 1
n

vn +
cn

n
)dv; (2.11)
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whereas her payo¤ is equal to

�hc (c) = E[�(v) j v > max
j=1;2;::n�1

fvjg] (2.12a)

=

1Z
c

�(v)nF n�1(v)f(v)dv (2.12b)

=

1Z
c

(
n� 1
n

vn +
cn

n
)nvn�1dv (2.12c)

if her objective is to maximize the highest bid. Since critical type is strictly increasing with

the reserve price, the seller�s problem is equivalent to choosing the optimal c that maximizes

�ac and �
h
c : Using calculus, we can show that the optimal critical type that maximizes �

a
c

and �hc are c
a� = 1

2
and ch� = ( 1

n+1
)
1
n , respectively.

Observe that ch� > 1
2
; that it monotonically increases as the number of bidders increases

and that it is equal to 1 in the limit. This is because the value of the highest bidder being

above a given critical type increases as the number of bidders increases. In that case, the

seller will be better o¤ by posting a higher reserve price to induce aggressive bidding.

Proposition 28. The symmetric equilibrium of an all-pay auction with reserve price, r, can

be described as follows: The bidders follow �(v) = n�1
n
vn + cn

n
if v � c and zero otherwise,

where c = r1=n: The seller posts the reserve price such that only bidders whose valuations

are above some critical type will participate. The critical type is ca� = 1
2
if her objective is to

maximize the average bid and ch� = ( 1
n+1
)
1
n if her objective is to maximize the highest bid.

In equilibrium, the seller�s payo¤s are equal to

�ac(c
a�) =

n� 1
n(n+ 1)

+
1

n(n+ 1)2n
(2.13a)

�hc (c
h�) =

n� 1
2n

+
1

2n(n+ 1)
: (2.13b)

Since the seller chooses a critical type di¤erent from zero, when it is an available action.

Thus, we conclude that posting a reserve price is bene�cial for the seller.
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Figure 3: Equilibrium bidding strategies in the single-period all-pay auction and the sequen-

tial all-pay auction.

2.6 TEMPORARY LACK OF COMMITMENT

The previous section assumed that the seller is able to commit to the reserve price. This

section, on the other hand, assumes that she is unable to do so for only one period. The

timing of the game is as follows: The seller posts a reserve price, r1, in period one. The

bidders place their bids which are either zero or larger than the reserve price9. If at least

one of the bids is positive, then the game ends. If all of the bids are zero then the seller

posts a new reserve price, r2 in the second period. The bids are placed and and the highest

bidder wins. The game ends regardless of whether the bids in the second period are zero or

positive. The seller and the bidders discount the payo¤s earned in the second period at a

rate of �s and �b, respectively. (�s, �b 2 [0; 1])

We construct and analyze a symmetric perfect Bayesian equilibrium in monotonic strate-

gies.

9Equivalently, one could have assumed that the seller interprets any positive bid smaller than the current
reserve price as being submitted by a bidder with valuation smaller than the critical type.
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De�nition 29. The perfect Bayesian equilibrium of the two period all-pay auction is de�ned

as the set of strategies fr1; �1i(:); r2; �2i(:)g and the belief f�gsatisfying

� 8v 2 [0; 1]; �2i maximizes bidder i�s continuation utility, u2i(:; :); for any history of

reserve prices (r1; r2); i = 1; 2; :::; n

� r2 maximizes the seller�s continuation payo¤, �2nc; given her belief � and the bidders�

second period strategies;

� 8v 2 [0; 1]; �1i maximizes the bidders expected �rst period utility, u1i(:; :); given the

second period strategies and r1; i = 1; 2; :::; n

� r1 maximizes the seller�s expected �rst period payo¤, �1nc; given the bidders�and the

seller�s subsequent strategies;

� � is Bayes-consistent with the bidders��rst period strategies and observed actions.10

2.6.1 Second Period Strategies

We begin with constructing the bidders� second period strategies. The seller announces

second period�s reserve price r2; if no sale occurs in the �rst period after a reserve price of

r1. That is, the game reaches the second period if both bidders place bids of zero in the �rst

period. So, bidder i moves at a history that is of the form (r1; (0; 0; ::; 0); r2), shortly (r1; r2):

In the second period, bidder i updates his belief about his opponents�values. Due to

the symmetry in the equilibrium strategies, bidder i believes that his opponents have values

smaller than the critical type of period 1, namely c1:And his objective is to choose the optimal

bid b2 2 f0g[ [r2; 1] that maximizes his continuation utility u2(b2i; v) = v Pr[b2i > �2(vj) for

j 6= i] � b2i. This problem of bidder i is similar to bidders�problem of the previous section

with the only di¤erence that the opponents�values now being distributed uniformly between

[0; c1]. Thus, he places a positive bid only if his value is larger than some critical type c2,

and when he does so he will follow:

�2(v) = vGn�1(v)�
vZ

c2

Gn�1(t)dt if c2 � v � c1 (2.14a)

=
1

ncn�11

[(n� 1)vn + cn2 ] if c2 � v � c1 (2.14b)

10The de�nition is analogous to that in Freixas, et al. [17]
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where G(v) is the uniform distribution over [0; c1].

Since a strategy is a complete contingent plan, it has to describe how the bidders will

behave o¤ the equilibrium path. That is, bidder i�s strategy has to describe what to do in

the second period when his valuation is larger than c111. In this case, he faces the following

problem:

max
b2

vGn�1(��12 (b2))� b2: (2.15)

The �rst order condition to this problem is

v
dGn�1(��12 (b2))

db2
= 1: (2.16)

Bidder i has no incentive to bid more than the highest bid that his opponents might place

in the second period, namely �2(c1), because he believes that his opponents�valuations are

smaller than or equal to c1.

He doesn�t have incentive to bid lower than �2(c1); either: Let�s say that bidder i bids

b02 < �2(c1): Since �2(:) is continuous, there is a valuation v
0 < c1 for which b02 is optimal,

and hence is the solution to 2.16. Note that, the left hand side of equation 2.16 represents

the gain due to slightly higher bid whereas the right hand side represents the loss. Since

c1
dGn�1(��12 (b02))

db2
> v0

dGn�1(��12 (b02))
db2

= 1; bidder i has incentive to bid higher. So, b02 is not

optimal. To conclude, in the second period, the bidders bid �2(c1) for any value greater than

c2:

When his valuation is c2; bidder i wins the object only if his opponents have valuation

smaller than c2. In that case, he is better o¤ by placing the smallest possible bid, namely

r2: So, �2(c2) = r2 or c2 = (cn�11 r2)
1=n:

Lemma 30. In the continuation game that follows the history (r1; r2), each bidder uses the

following strategy:

�2(v) =

8>>><>>>:
0

1
ncn�11

[(n� 1)vn + cn2 ]

1
ncn�11

[(n� 1)cn1 + cn2 ]

0 < v < c2

c2 � v � c1

c1 < v

where c2 = (cn�11 r2)
1=n:

11This event occurs if bidder i accidentally bids zero in the �rst period and no sale occurs in that period.
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In the second period, after having observed bidders� response of bids of zero to the

�rst period�s reserve price, r1, and foreseeing the second period bidding strategies, the seller

maximizes her continuation payo¤by choosing an appropriate reserve price, r2. Since second

period�s critical type is strictly increasing with the reserve price, she can equivalently choose

the optimal c2 that maximizes her payo¤. More precisely, to maximize the average bid, the

seller solves

max
c2

Z c1

c2

�2(v)g(v)dv; or (2.17a)

max
c2

1

ncn1

Z c1

c2

[(n� 1)vn + cn2 ]dv (2.17b)

whereas she solves

max
c2

Z c1

c2

�2(v)nG
n�1(v)g(v)dv; or (2.18a)

max
c2

1

c2n�11

Z c1

c2

[(n� 1)v2n�1 + cn2v
n�1]dv (2.18b)

in order to maximize the highest bid. Here, G(v) represents the probability that an oppo-

nent�s value is smaller than v which is distributed uniformly over [0; c1] and g(v) = dG(v)=dv

is the corresponding density function: Problems 2.17b and 2.18b are both uniquely maxi-

mized by ca�2 =
c1
2
and ch�2 = (n+ 1)�1=nc1, respectively.

Lemma 31. Suppose that no sale takes place in the �rst period after a reserve price of r1 and

that the seller believes that the bidders�valuations are smaller than c1: Then, to maximize

the average bid (highest bid), she posts a reserve price such that only bidders with valuations

larger than ca�2 =
c1
2
(ch�2 = (n+ 1)�1=nc1) participate.
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2.6.2 First Period Strategies

2.6.2.1 Average Bid In the �rst period, having observed the reserve price r1, bidder i

maximizes his payo¤. This problem is similar to the one in the previous subsection. So, we

can write his bid function as

�1(v) = vF n�1(v)�
vZ

c1

F n�1(t)dt� u1(�1(c1); c1) for c1 � v (2.19a)

=
n� 1
n

vn +
cn1
n
� u1(�1(c1); c1) for c1 � v: (2.19b)

This bid function is analogous to equation 2.14a. Yet, the critical type, c1, should comply

with the following incentive compatibility condition: Bidder i does not have incentive to

wait until the second period if his valuation is larger than c1.

If a bidder with valuation v > c1 bids in the �rst period he will earn vn � [n�1n vn +
cn1
n
�

u1(�(c1); c1)]. If he waits, on the other hand, he will enjoy his valuation with probability

one by placing the highest possible bid of the second period. So, he will earn a discounted

payo¤ of �b[v�(n�1+ 1
2n
) c1
n
]: To satisfy the incentive compatibility condition, the di¤erence

between these two utilities

u1(�1(v); v)� �bu2(�2(c1); v) =
vn

n
� �bv � cn1

n
+ �b(n� 1 + 1

2n
)
c1
n
+ u1(�1(c1); c1) (2.20)

has to be at least zero for any valuation above c1. One can easily see that the minimum of

this expression is attained at v = (�b)1=n�1 if (�b)1=n�1 > c1 and at v = c1 if (�
b)1=n�1 � c1:

Therefore, the bidder with critical type earns the following payo¤:

u1(�1(c1); c1) =

8<: 2n�1
n2n

�bc1

n�1
n
(�b)n=n�1 +

cn1
n
� (n�1)2n+1

n2n
�bc1

if

if

(�b)1=n�1 � c1

(�b)1=n�1 > c1
: (2.21)

Substituting 2.21 into 2.19b, one can �nd bidder i�s strategy: Place a positive bid only if the

valuation is larger than c1 and, if so, use the following bid function:

�1(v) =

8<: n�1
n
vn +

cn1
n
� 2n�1

n2n
�bc1

n�1
n
vn � n�1

n
(�b)n=n�1 + (n�1)2n+1

n2n
�bc1

if

if

(�b)1=n�1 � c1

(�b)1=n�1 > c1
: (2.22)
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When his valuation is c1; bidder i wins the object only if his opponents have valuations

smaller than c1. In that case, he is better o¤ by placing the smallest possible bid, namely

r1: So, �1(c1) = r1. This equation has a unique positive solution in which the critical type,

c1; is monotonically increasing with the reserve price, r1.

Lemma 32. In an all-pay auction where the seller maximizes the average bid and cannot

commit to the reserve price r1 for only one period, the bidders use the following strategy in

the �rst period: Place a positive bid of

�1(v) =

8<: n�1
n
vn +

cn1
n
� 2n�1

n2n
�bc1

n�1
n
vn � n�1

n
(�b)n=n�1 + (n�1)2n+1

n2n
�bc1

if

if

(�b)1=n�1 � c1

(�b)1=n�1 > c1

for any valuation v � c1 and bid zero otherwise, where c1 solves �1(c1) = r1:

Finally, seller�s payo¤ function can be written as:

�1anc(c1) =

Z 1

c1

�1(v)f(v)dv + �sF n�1(c1)

Z c1

ca�2

�2(v)f(v)dv: (2.23)

The �rst term represents the expected payo¤ from the �rst period and the second term

represents the discounted expected payo¤ from the second period. F n�1(c1) appears in the

second term because a bidder places a positive bid, only if his opponents do not get the

object in the �rst period, an event which happens with probability F n�1(c1):

Seller chooses the optimal reserve price, or equivalently the optimal critical type, that

maximizes 2.23, because the critical type of period one, c1 is strictly increasing with r1.

2.6.2.2 Highest Bid Bidder i�s �rst period bid function is of the form of 2.19b. Since

the seller chooses a di¤erent c2 in the second period, the incentive compatibility condition

needs to be modi�ed:

If a bidder with valuation v > c1 bids in the �rst period he earns vn � [n�1n vn +
cn1
n
�

u1(�(c1); c1)]. But if he waits he will earn a discounted payo¤ of �
b[v � n

n+1
c1]: Again, to

satisfy the incentive compatibility condition, the di¤erence between these two utilities

u1(�1(v); v)� �bu2(�2(c1); v) =
vn

n
� �bv � cn1

n
+

n

n+ 1
c1�

b + u1(�(c1); c1) (2.24)
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Figure 4: For any given number of bidders, if the state is such that the pair of discount factors

falls above the corresponding line, then the seller prefers not to commit to the reserve price.

Note that, the set of pairs for which non-commitment is bene�cial to the seller shrinks as

the number of bidders, n; increases.
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has to be at least zero for any valuation above c1. The minimum of this expression is attained

at v = (�b)1=n�1 if (�b)1=n�1 > c1 and at v = c1 if (�
b)1=n�1 � c1: Therefore, the bidder with

critical type will earn the following payo¤:

u1(�1(c1); c1) =

8<: 1
n+1

�bc1

n�1
n
(�b)n=n�1 +

cn1
n
� n

n+1n
�bc1

if

if

(�b)1=n�1 � c1

(�b)1=n�1 > c1
: (2.25)

Substituting 2.27 into 2.19b, one can �nd bidder i�s strategy: Place a positive bid only if the

valuation is larger than c1 and if so use

�1(v) =

8<: n�1
n
vn +

cn1
n
� 1

n+1n
�bc1

n�1
n
vn � n�1

n
(�b)n=n�1 + n

n+1n
�bc1

if

if

(�b)1=n�1 � c1

(�b)1=n�1 > c1
: (2.26)

When his valuation is c1; bidder i wins the object only if his opponent has valuation

smaller than c1. In that case, he is better o¤ by placing the smallest possible bid, namely

r1: So, �1(c1) = r1. This equation has a unique positive solution, in which the critical type

is monotonically increasing with the reserve price.

Lemma 33. In an all-pay auction where the seller maximizes the highest bid and cannot

commit to the reserve price r1 for only one period, the bidders use the following bidding

strategy in the �rst period. Place a positive bid of

�1(v) =

8<: n�1
n
vn +

cn1
n
� 1

n+1n
�bc1

n�1
n
vn � n�1

n
(�b)n=n�1 + n

n+1n
�bc1

if

if

(�b)1=n�1 � c1

(�b)1=n�1 > c1

for any valuation v � c1 and bid zero otherwise, where c1 is the critical type that solves

�1(c1) = r1

Finally, seller�s payo¤ function can be written as follows:

�1hnc(c1) =

Z 1

c1

�1(v)nF
n�1(v)f(v)dv + �s

Z c1

ch�2

�2(v)nF
n�1(v)f(v)dv: (2.27)

The �rst term represents the expected payo¤ from the �rst period and the second term

represents the discounted expected payo¤ from the second period. Seller chooses the optimal

c1 that maximizes 2.27.

48



Figure 5: For any given number of bidders, if the state is such that the pair of discount factors

falls above the corresponding line, then the seller prefers not to commit to the reserve price.

Note that, the set of pairs for which non-commitment is bene�cial to the seller expands as

the number of bidders, n; increases.
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2.6.3 Discussion of the Results

In the previous two subsections, we have characterized the seller�s objective functions for

the cases of maximizing the average bid [Function 2.23] and maximizing the highest bid

[Function 2.27]. Unfortunately, neither problem has a closed form solution. Using numerical

methods, we obtain the following results.

Proposition 34. For any given number of buyers, the non-commitment equilibrium gener-

ates higher revenue than the commitment equilibrium if the seller is relatively more patient

than the buyers. Moreover, as the number of buyers increases, the non-commitment equi-

librium generates higher revenue for a smaller set of parameter values if the average bid is

maximized. If, on the other hand, the highest bid is maximized, then the non-commitment

equilibrium generates higher revenue for a larger set of parameter values.

Corollary 35. For any given number buyers, if the seller prefers to run a sequential all-pay

auction rather than a single-period all-pay auction when she maximizes the average bid then

she does the same when she maximizes the highest bid. Moreover, if the seller prefers to

run a single-period all-pay auction when she maximizes the highest bid, then she also does

so when she maximizes the average bid.

We explain, in detail, the features of the model that derive these results and then discuss

the implications of the model on the three real life situations that we have mentioned in the

introduction.

A reserve price in a standard auction has a dual e¤ect on the behavior of the buyers

and, hence, on the revenue generated by the auction: On one side, it makes the high-type

buyers bid more aggressively and, on the other side, it restrains the low-type buyers from

participating. While the former has a positive e¤ect on the seller�s revenue, the latter has

a negative e¤ect. Thus, the optimality of a reserve price depends on whether it induces the

right degree of competition among the right type of buyers.

The ability to rerun the auction decreases the cost of excluding the low-type buyers,

which gives the seller an incentive to exclude more types and to induce a higher degree of

competition in the �rst period among the participating buyers. Hence, the reserve price

in the �rst period of the sequential auction will be higher than that of the single-period
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optimal auction. The reserve price in the second period, on the other hand, is lower than

the optimal reserve price of the single-period auction. In conclusion, some types (e-type)

that would participate in the optimal single-period auction are excluded in the �rst period

of the sequential auction, yet some other types (p-type) that are excluded from the optimal

single-period auction have the opportunity to participate in the second period of the optimal

sequential auction. (See �gure 3)

It turns out that if the seller is patient enough, regardless of whether she maximizes the

average bid or the highest bid, the discounted bene�t of having p-type buyers in the second

period (together with the increased level of competition in the �rst period) compensates

the loss due to excluding the e-type buyers from the �rst period. The graphs in �gures 4

and 5 show the pairs of discount factors for which the above-mentioned bene�t and loss

balance out, for the cases of average bid and the highest bid, respectively. For any number

of buyers, if the parameter vector lies above the corresponding line then the discounted gain

from having p-type buyers in the second period is larger than the loss due to excluding the

e-type buyers in the �rst period. This implies that when the seller is relatively more patient

than the buyers, she prefers to run a sequential auction rather than a single-period auction,

or in other words, she prefers not to commit to running a single-period auction.

Moreover, if the number of buyers, and hence the chance of observing a sale in the

�rst period, increases, then the loss due to excluding the e-type buyers dominates the gain

from the p-type buyers if the seller maximizes the average bid and she is not patient enough.

Hence,only highly patient sellers prefer to run sequential all-pay auction. Conversely, a seller

who maximizes the highest bid does not have to be as patient, in order to run a sequential

auction, for, as more buyers participate, a sale in the �rst period is more likely and inducing a

higher degree of competition in the �rst period with a higher reserve price is more pro�table.

In other words, as the number of buyers increases, it is costlier to screen the high types if

average bid is maximized whereas it is less costly to screen the highest type if the highest

bid is maximized.

When applied to the R&D tournaments, our results imply that the optimal tournament

should resemble the sequentially optimal all-pay auction. That is, the designer should ini-

tially announce a relatively demanding list of minimum requirements, and if there is no
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participation in the �rst period, then she should revise the list and bring down the minimum

requirements. This is because in a research and development tournament for an aircraft

only few companies that have the required high technology participate and the tournament

designer is generally more patient than the participants.

The promotion scheme in an army or a secret service is analogous to a labor market

tournament where the minimum e¤ort level is not publicly announced but is usually common

knowledge. The winner(s) of the tournament is chosen from a large pool of relatively more

patient employees. Although there are substantially large number of employees in the above

mentioned institutions, whenever promotions are considered, many positions have to be �lled

as well. Therefore, the labor market tournaments in these institutions typically maximize

the aggregate e¤ort. Also, the organizer, in this case, is likely to be highly impatient, for

the position has to be �lled and there is no outside option. Therefore, a tournament scheme

that mirrors the optimal single-period all-pay auction is more likely to be chosen.

Finally, quite many policymakers maximize the overall contributions and the aggregate

level of information and are highly impatient with respect to time for obvious reasons. In

this case, these policymakers are unlikely to set high reservation levels that is required in the

�rst stage of the sequential process. Moreover, the number of lobbyists, the participants, is

relatively high. Thus, a single-period all-pay scheme maximizes the policymakers payo¤ in

this situation.

2.7 CONCLUSION

This paper analyzes how the seller�s revenue is a¤ected by her ability to commit to the

reservation price in a class of contests that are isomorphic to all-pay auctions. It is shown

that when seller�s discount factor is higher relative to that of the bidders, that is when the

seller is more patient than the buyers, then it is pro�table for her to set a high reserve price

in the �rst period and then lower it in the next period if no sale occurs. The result holds

regardless of whether the seller�s objective is to maximize the average bid or the highest bid.

This result is unexpected because in a bargaining model Sobel and Takahashi [41] showed

that ability to commit is more pro�table for the seller. The main reason for this contrary
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result is that when the seller sets a reserve price in an all-pay auction the types of bidders

smaller than a cut-o¤ withhold their bids. But the types larger than the cut-o¤ bid more

aggressively compared to the no reserve case. By not committing to the reserve price, seller

utilizes the opportunity to trace the higher type the bidders. She can use this tool only when

he is patient enough and when the number of bidders is small.

As a �nal word, we can compare "exclusion principle" with the result of this paper. Ex-

clusion principle says the seller should exclude the highest type bidder from the auction to

increase the revenue. This principle can work only when the seller has perfect information

about the bidders valuations, which is generally not possible because sellers are naturally

imperfectly informed about the types of the bidders. When the seller has incomplete in-

formation, to improve the revenue a seller can exclude the bidders with low valuations by

imposing a reservation price. This paper, now, proposes a method to improve the revenue

which can be used the when the seller is patient enough and when there aren�t many bidders.

A question that is not addressed in this paper is whether the results of the paper hold

when the seller is unable to commit for more than one period and when she is never able

to commit. I conjecture that, the seller needs to be even more patient as the number of

periods increases because the bidders are expected to behave less aggressively in response

to the sellers inability to commit. To make them bid more aggressively seller is expected to

impose a higher reservation price, but this in turn decreases the probability of observing a

sale in the early periods. Thus, to increase the contribution of tomorrow�s sale to the seller�s

discounted utility she has to be more patient.
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3.0 A NOTE ON COLLUSION IN THE AUSUBEL AUCTION

Several mechanisms have been proposed to allocate multiple units of an object, like treasury

bills or electromagnetic spectrum, among many buyers who potentially demand more than

one unit. The uniform price auction, the discriminatory auction, the Vickrey auction are

static mechanisms that have been implemented in real life and/or widely discussed in the lit-

erature. In these institutions, the bidders are asked to simultaneously report their demands

as a function of price. The market clearing price is determined as the price at which the

aggregate demand is equal to the number objects that are available. Each bidder wins the

items, for which bidder�s willingness to pay according to the reported demand function is

larger than the market clearing price. In the uniform price auction, each bidder pays the

market clearing price for each units he wins. In the discriminatory auction, on the other

hand, each bidder pays his bid for each unit he wins. It has been shown theoretically, em-

pirically, and experimentally that the �rst two mechanisms not necessarily yield an e¢ cient

outcome, in the sense the objects do not go into the hands of those who value them the

most. E¢ ciency of the allocation mechanism is the primary objective of public authorities

either for consideration of fairness or for the stability of the market after the auction.

Vickrey auction attains e¢ ciency by making the bidders pay the externality they impose

on other bidders. This payment mechanism gives bidders the incentive to bid truthfully

by preventing them to possibly change the price they pay for the inframarginal units by

not demanding the marginal units. The Ausubel auction [5] replicates the same outcome in

a dynamic fashion: The price is announced, the demands are collected, and each buyer is

clinched the units that are not claimed by his opponents. The price increases until all units

are allocated and when the game ends the buyers pay for each unit the price at which they

are clinched that particular unit. Sincere bidding is the unique outcome of the elimination
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of the weakly dominated strategies. Both the simplicity of its rules and its dynamic nature

make the Ausubel auction a better choice as a mechanism to sell multiple homogeneous

goods. Yet, these very features may allow sophisticated buyers to collude in the Ausubel

auction. Provided that enough information is released, the buyers can detect deviations from

the agreed collusive strategy. Moreover, the Ausubel auction also allows the buyers sustain

collusion. In general, a buyer prefers to deviate if the gains from deviation is larger than the

gains from sustaining the collusion. Most of the gains from deviation is earned at the period

in which the buyer defects. Yet, in the Ausubel auction, given that the opponents follow the

collusive strategy, a buyer will not be clinched more units at the time of the deviation and

moreover by doing so the buyer will trigger sincere bidding in the remainder of the auction.

Theoretical literature on collusion in dynamic multi-object auctions is not rich. Recently,

Brusco and Lopomo [12] studied the collusive equilibria of the simultaneous ascending bid

auction. This mechanism allows each bidder to signal his interest in particular items and

his intention to refrain from competiting for the other items provided that the others don�t

compete for the items he wants. In the collusive equilibrium, the bidders successfully divide

the items among themselves and maintain low prices.

Below, we provide three examples in which collusion can be achieved and sustained in

the Ausubel auction. In these examples, we assume that the price-clock runs continuously.

The �rst two examples assume complete information and two non-divisible units and the

�nal example assumes incomplete information and a single divisible unit.

3.1 AN EXAMPLE WITH COMPLETE INFORMATION AND

SYMMETRIC BUYERS

Example 36. Table 1 illustrates marginal valuations of the two bidders for the two units

that are to be allocated. If both bidders bid sincerely then each will win one unit, pay the

externality that he imposes on the other, namely 10, and earn a utility of 20-10=10.

Yet, the following strategy also describes a symmetric equilibrium: Use the bid function

described in table 2 as long as everyone does the same, otherwise bid sincerely. If both bidders
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Bidder 1 Bidder 2

Unit 1 20 20

Unit 2 10 10

Table 1: Bidder valuations (symmetric buyers with complete information)

Price Demand

p � 5 2

5 < p � 10 1

10 < p 0

Table 2: Equilibrium bidding strategies

follow this new strategy, then they each will win one object at price 5(+") and earn a utility

of 20-5=15.

To prove that this strategy is part of an equilibrium one has to show that the bidders have

no pro�table deviation. Before discussing possible deviations, it is important to note that by

deviating a bidder cannot change the number of units he wins nor can he change the price

he pays. Thus, there is no "immediate" advantage of deviation. Moreover, since deviation

triggers sincere bidding, it creates "absolute" disadvantage, namely deviator has to pay the

maximum possible price for the units he wins.

If a bidder deviates at a price smaller than 5 he will win one object and pay 10, where

as he could have earn that single unit for 5. When price is 5(+") a bidder is clinched one

unit since his opponent reduces his demand to one. Therefore, at any price above 5 a bidder

will be willing to deviate only to win the second unit. But since deviation triggers sincere

bidding, he can be clinched the second unit only when price reaches 20(+") which exceeds the

amount that he is willing to pay for the second unit. Hence, the collusive strategy described

above is an equilibrium.
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3.2 AN EXAMPLE WITH ASYMMETRIC BUYERS AND COMPLETE

INFORMATION

Bidder 1 Bidder 2

Unit 1 20 20

Unit 2 10 5

Table 3: Bidder valuations (asymmetric buyers with complete information)

Example 37. Let�s modify example 36 by changing marginal valuations of bidder 2. If both

bidders bid sincerely then bidder 1 will win both units1, pay the externality that he imposes

on bidder 2, namely 10+5=15, and earn a utility of 30-15=15.

There is an equilibrium in the Ausubel auction where each bidder wins one object, bidder

2 pays nothing and bidder 1 pays the price announced in the second stage (denote it by p=").

This equilibrium results if bidder1 reduces his demand to one unit at the starting price, and

bidder 2 drops out after he understands the signal. Note that this collusive equilibrium Pareto

dominates sincere bidding equilibrium, in the sense that both earn strictly higher payo¤s. It

is also important to note that signaling is not costly to bidder1, at all. In the case that bidder

2 misinterprets the signal he will drop out when price reaches 5, at which bidder 1 is clinched

one unit and earns a payo¤ of 15, which is equal to payo¤ he could have earned had he bid

sincerely.

3.3 ANOTHER EXAMPLE: INCOMPLETE INFORMATION

Suppose that one unit of a divisible good is to be split between two bidders who have privately

known constant marginal valuation ui which is independently and identically drawn from

the uniform distribution over [0,1]2. Price clock runs continuously. Then, sincere bidding is
1Note, that at price 10 there will be a tie, and second unit needs to allocated according to a price breaking

rule. The point in the example independent of the tie breaking rule.
2When the goods are perfectly divisible the number of objects to be sold can be normalized to one without

loss of generality. Similarly, the upper bound of the support of the distribution of ui can be any �u 2 R:
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the unique outcome of iterated elimination of weakly dominated strategies in the Ausubel

auction. Sincere bidding yields an e¢ cient allocation and in equilibrium bidder i earns an

expected surplus of

S(ui) = Pr[ui > uj]fui � E[uj j ui > ujg

= uiffui �
Z ui

0

uj
1

ui
dujg

=
u2i
2
:

Below, I show that there is a continuum of collusive "separating" equilibria, in which at

price p bidder i demands

x(p) =

8<: 1� bp if p � ui

0 if p > ui

unless there was no deviation by any of the bidders until price reaches p. If any of the bidders

deviates at p0 then then bidder i demands sincerely, that is at any price p > p0

x(p) =

8<: 1� bp0 if p � ui

0 if p > ui
:

De�ne s(q) : [0; 1]! [0; 1] to be the residual supply, such that s�1(p) = 1� x(p)

In this equilibrium, with probability one, the auction ends before price reaches 1
2b
. Let�s

show that bidder i has no incentive to deviate if ui > 1
2b
: If he follows the equilibrium

strategy, he will be clinched half of the units if uj > 1
2b
and his payment will be equal to the

area under the residual supply; otherwise the game ends when p = uj, in which case he will

win 1� 2buj: at price uj and buj will be clinched as price rises. Bidder i�s expected surplus

when he colludes is

S = [1� 1

2b
]fui
2
�
Z 1=2

0

s(q)dqg

+
1

2b

Z 1
2b

0

fx(uj)ui � (1� 2s�1(uj))uj �
Z s�1(uj)

0

s(q)dqg2bduj

=
(4b+ 1)ui � 1

8b
:
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Now, let�s suppose that bidder i deviates at price p0 by demanding x0 6= x(p0) units. It is

clear that x0 > x(p0); because otherwise bidder i would forego x(p0)� x0 > 0 units which he

could have earned with probability Pr[ui > uj]: Until price reaches p0, bidder i has already

clinched s�1(p0) units and a total surplus of uis�1(p0)�
R s�1(p0)
0

s(q)dq has been realized. At

price p0, there are 1 � 2s�1(p0) units remaining unsold and bidder i wins all of them with

probability Pr[uj < ui j uj > p0] at a price E[uj j p0 < uj < ui]: Thus, bidder i�s expected

surplus when he deviates is

S
00
= uis

�1(p0)�
Z s�1(p0)

0

s(q)dq + :
ui � p0

1� p0
(1� 2s�1(p0))(ui �

Z ui

p0

uj
ui � p0

duj):

Let�s also calculate bidder i�s collusive equilibrium surplus when his valuation ui < 1
2b
:

In this case, the auction ends, when price is reaches ui or uj. With probability Pr[ui < uj];

bidder i will be the �rst to drop out, in which case he is clinched s�1(ui) units through the

mechanism. Otherwise, the opponent drops out �rst, then bidder i is clinched s�1(uj) units

through the mechanism and remaining units are clinched at price uj: Thus,

S
0
= [1� ui][uis

�1(ui)�
Z s�1(ui)

0

s(q)dq]

+ui

Z ui

0

[ui(1� s�1(uj))� uj(1� 2s�1(uj))�
Z s�1(uj)

0

s(q)dq]
1

ui
duj

59



BIBLIOGRAPHY

[1] Armstrong, M. Optimal multi-object auctions, The Review of Economic Studies 67
(2000), 455 - 481.

[2] Armstrong, M. and Rochet, J., Multi-dimensional screening: A user�s guide, European
Economic Review 43 (1999), 959 - 979.

[3] Arrow K. J. Essays on the Theory of Risk Bearing, Amsterdam: North-Holland, 1971.

[4] Asplund M. Risk-averse �rms in oligopoly, International Journal of Industrial Organi-
zation 20 (2002), 995 - 1012.

[5] Ausubel, L. M. An e¢ cient ascending-bid auction for multiple objects, American Eco-
nomic Review 94 (2004), 1452-1475

[6] Austen-Smith, D. Campaign contribution and access, The American Political Science
Review 89 (1995), 566-581

[7] Avery, C. and Hendershott, T. Bundling and optimal auctions of multiple products, The
Review of Economic Studies 67 (2000), 483 - 497.

[8] Baye, M.R., Kovenock, D., and de Vries, C. Rigging the lobbying process: An application
of the all-pay auction, American Economic Review 83 (1993), 289-294

[9] Baye, M.R., Kovenock, D., and de Vries, C. (1998) A general linear model of contests,
mimeo, Indiana University, Purdue University, Tinbergen Institute and Erasmus Uni-
versity, http://www.nash-equilibrium.com/baye/Contests.pdf

[10] Bertoletti, P. (2006). On the reserve price in all-pay auctions with com-
plete information and lobbying games, mimeo, University of Pavia,
http://economia.unipv.it/pagp/pagine_personali/pberto/papers/lobby.pdf

[11] Border, K. C. Implementation of reduced form auctions: A geometric approach, Econo-
metrica 59 (1991), 1175 - 1187.

[12] Brusco, S. and Lopomo, G. Collusion via Signalling in Simultaneous Ascending Bid
Auctions with Heterogeneous Objects, with and without Complementarities, Review of
Economic Studies 69 (2002), 1-30.

60



[13] J. Cremér and R. P. McLean, Full extraction of the surplus in Bayesian and dominant
strategy auctions, Econometrica 56 (1988), 345 - 361.

[14] Engelbrecht-Wiggans, R., On optimal reservation prices in auctions, Management Sci-
ence 33 (1987), 763-770.

[15] Es½o, P. An optimal auction with correlated values and risk aversion, Journal of Economic
Theory 125 (2005), 78 - 89.

[16] Figueroa N. and Skreta V. Optimal auction design for multiple objects with externalities,
mimeo, University of Minnesota.

[17] Freixas, X, Guesnerie, R., and Tirole, J., Planning under incomplete information and
the ratchet e¤ect, The Review of Economic Studies 52 (1985), 173-191.

[18] Gal-Or, E. "Sales" and risk-averse consumers, Economica 50 (1983), 477-483.

[19] Gavious, A. and Sela, A. (2001). Contests with reservation prices, mimeo, Ben-Gurion
University, http://www.econ.bgu.ac.il/papers/125.pdf

[20] Grossmann, G. M. and Helpman, E. Special Interest Politics, Cambridge, MA: MIT
Press, 2001.

[21] Harris, M. and Raviv, A. Allocation mechanisms and the design of auctions, Economet-
rica 49 (1981), 1477 - 1499.

[22] Kihlstrom, R. E. and Mirman L. J. Constant, increasing and decreasing risk aversion
with many commodities, Review of Economic Studies 48 (1981), 271 - 280.

[23] Krishna, V. Auction Theory, San Diego, CA: Academic Press, 2002.

[24] Levin J. An optimal auction for complements, Games and Economic Behavior 18
(1997), 176 - 192.

[25] Lohmann, S. Information, access, and contributions: A signaling model of lobbying,
Public Choice 85 (1995), 267-284.

[26] Manelli, A. M. and Vincent, D. R. (2004a). Bundling as an optimal mechanism for a
multiple-good monopolist, mimeo, Arizona State University and University of Maryland

[27] Manelli, A. M. and Vincent, D. R. (2004b). Multi-dimensional mechanism design: Rev-
enue maximization and the multiple good monopolist, mimeo, Arizona State University
and University of Maryland

[28] Maskin, E. and Riley, J. G. Optimal auctions with risk-averse buyers, Econometrica 52
(1984), 1473 - 1518.

61



[29] Maskin, E. and Riley, J. G. Optimal multi-unit auctions, in The Economics of Missing
Markets, Information, and Games (F. Hahn, Ed.), Oxford: Oxford University Press,
1989.

[30] Matthews, S. A. Selling to risk-averse buyers with unobservable tastes, Journal of Eco-
nomic Theory 30 (1983), 370 - 400.

[31] McAfee, R. P. and Vincent, D. Sequentially optimal auctions, Games and Economic
Behavior 18 (1997), 246-276.

[32] Menicucci, D. Optimal two-object auctions with synergies, Review of Economic Design
8 (2003), 143 - 164.

[33] Milgrom, P., Putting Auction Theory to Work, Cambridge, United Kingdom: Cambridge
University Press, 2004.

[34] Myerson, R. B., Optimal auction design,Mathematics for Operations Research 6 (1981),
58 - 73.

[35] Nalebu¤, B. and Stiglitz, J. Prizes and incentives: Towards a general theory of compen-
sation and competition, Bell Journal of Economics 14 (1983), 21-43.

[36] Pratt, J. Risk aversion in the small and in the large, Econometrica 32 (1964), 122-136.

[37] Palfrey, T. R. Bundling decision by a multi-product monopolist with incomplete infor-
mation, Econometrica 51 (1983), 463-484.

[38] Rosen, S. Prizes and incentives in elimination tournaments, American Economic Review
76 (1986), 701-715.

[39] Skreta, V. (2003). Optimal auction design under non-commitment, mimeo, University
of California at Los Angeles, http://www.econ.ucla.edu/skreta/research.htm

[40] Smith, V. L. and Walker, J. M. Rewards, experience, and decision costs in �rst-price
auctions, Economic Inquiry 31 (1993), 237-244.

[41] Sobel, J. and Takahashi, I. A multistage model of bargaining, Review of Economic
Studies 50 (1983), 411-426.

[42] Wright, J. R. Contributions, Lobbying, and Committee Voting in the U.S. House of
Representatives, American Political Science Review 84 (1990), 417-438.

62



APPENDIX A

OPTIMAL SINGLE OBJECT AUCTION

The Lagrangian to the relaxed problem can be written as

L = � � �L(DL � 1)� �H(DH �DL
H)

��fH;Lg(n�L�L + n�H�H � 1)� �fHg(n�H�H � 1 + �nL)

��fLg(n�L�L � 1 + �nH)

where �L and �H are the Lagrange multipliers on IRL and ICH , respectively, and �fH;Lg,

�fHg, and �fLg are the multipliers on the implementability conditions.

Proof of Lemma 2. Suppose �rst that IRL is slack. Then, the seller can improve her revenue

by increasing ylL by " =
1�DL
2

> 0. This would not violate any of the constraints of the relaxed

problem. So, IRL must be binding.

Suppose, next, that ICH is slack. Then, again, the mechanism can be improved prof-

itably, without violating any of the conditions considered in the relaxed problem. Namely,

increasing ylH by " =
DL
H�DH
2

> 0 improves the revenue: Hence, ICH is also binding.

Proof of Lemma 3. Suppose, by contradiction, that IRH is binding. Then, we have 1 =

DH = DL
H = DL, where the equalities are due to IRH , ICH , and IRL, respectively. Yet, since

low-type buyers are not excluded, this would contradict with DL�DL
H = �L(cL�cH)ywL > 0:

Hence, IRH is slack.
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Proof of Proposition 4. Kuhn-Tucker conditions with respect to ywH and y
l
H yield

@L
@ywH

= �H�H
1

ywH
� �H�HcH = 0

@L
@ylH

= �H(1� �H)
1

ylH
� �H(1� �H) = 0

These equations together imply that ylH = cHy
w
H :

Proof of Proposition 5. Remember that IRH is slack by Lemma 2. Using Proposition 1, we

can rewrite this condition as

DH = ylH < 1:

This is equivalent to tlH < 0; implying that, at the optimum, an high-type buyer is compen-

sated when he loses the object.

Proof of Proposition 7. Armed with the optimal values of �H ; and �L;(see 1.9) we will now

calculate the payments made by each type of buyer. Using ICH , IRL; and proposition 1, we

write the payments, ywL ; y
l
L; and y

w
L ; as

ywL =
1�ylH

�L(cL�cH)
; ylL =

cLy
l
H�cH

(1��L)(cL�cH)
; ywH =

ylH
cH

where ylH is in

argmax
ylH

fn
r
[�H(�H ln

1

cH
+ ln ylH) + �L(�L ln(1� ylH) + (1� �L) ln(cLy

l
H � cH))]g:

Equivalently, ylH solves the �rst-order condition of the form

�H
ylH

+
�H(1� �L)cL
cLylH � cH

� �L�L
1� ylH

= 0:

This equation can be rewritten as

cL(y
l
H)

2 � �ylH + �HcH = 0 (A.1)

where � = (1� �L)(cL + �HcH) + �L(cH + �HcL):

Since 0 < �L < 1 and cH < cL, � > (cH + �HcL) must be true. Then, �
2 � 4�HcLcH >

(cH + �HcL)
2 � 4�HcLcH = (cH � �HcL)

2 � 0. Thus, a solution to equation A.1 exists.

Furthermore, if a buyer of type H loses the object he pays

ylH =
� +

p
�2 � 4�HcLcH
2cL

:
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Proof of Proposition 8. We have already established above that IRL and ICH are binding

and IRH is slack. We only need to show that ICL is slack. Equivalently, we need to show

that �Ly
w
L < �Hy

w
H :
1 Plugging in the values of ywL and y

w
H gives

1� ylH
(cL � cH)

<
�Hy

l
H

cH
() cH

�HcL + (1� �H)cH
< ylH :

We substitute in the value of ylH to get

cLcH + �H [�HcL + (1� �H)cH ]
2 < �[�HcL + (1� �H)cH ]:

Substituting in the value of � and using IMfH;Lg yields

0 < c2L�H(n� 1) + c2H(1� �H) + cLcH [(2� n)�H � 1]:

Now, we plug in the value of �H and rewrite this condition as

0 < (1� �nL)[c
2
L(n� 1)� c2H + cLcH(2� n)] + (1� �L)[c

2
Hn� cLcHn]:

Since c2Hn � cLcHn < 0; we can replace (1 � �L) with (1 � �nL) and get the following more

restrictive condition

0 < (1� �nL)(n� 1)(cL � cH)
2;

which holds for any parameter values. Hence, ICL must be slack.

Proof of Proposition 9. Suppose that twi and t
l
i [hence y

w
i and y

l
i] are stochastic. Replacing

ywi and y
l
i with their expected values would not a¤ect any of the incentive compatibility and

individual rationality conditions (because buyers�utilities are linear with respect to these

variables), but would strictly improve the seller�s revenue (as revenue is concave with respect

to ywi and y
l
i), which is a contradiction.

1We add up ICH (binding) and ICL (slack).
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APPENDIX B

OPTIMAL MULTI-OBJECT AUCTION

We can write the Lagrangian of the relaxed problem as

L = �HHf�AHH ln yAHH + �BHH ln y
B
HH + �ABHH ln y

AB
HH + �OHH ln y

O
HHg

+�HLf�AHL ln yAHL + �BHL ln y
B
HL + �ABHL ln y

AB
HL + �OHL ln y

O
HLg

+�LHf�ALH ln yALH + �BLH ln y
B
LH + �ABLH ln y

AB
LH + �OLH ln y

O
LHg

+�LLf�ALL ln yALL + �BLL ln y
B
LL + �ABLL ln y

AB
LL + �OLL ln y

O
LLg

+�LLf1� �ALLc
A
Ly

A
LL � �BLLc

B
Ly

B
LL � �ABLL c

A
Lc
B
Ly

AB
LL � �OLLy

O
LLg

+�LHfcAL [�ALLyALL � �ALHy
A
LH ] + cBH [�

B
LLy

B
LL � �BLHy

B
LH ]

+ cALc
B
H [�

AB
LL y

AB
LL � �ABLHy

AB
LH ] + [�

O
LLy

O
LL � �OLHy

O
LH ]g

+�HLfcAH [�ALLyALL � �AHLy
A
HL] + cBL [�

B
LLy

B
LL � �BHLy

B
HL]

+ cAHc
B
L [�

AB
LL y

AB
LL � �ABHLy

AB
HL] + [�

O
LLy

O
LL � �OHLy

O
HL]g

+�HH(�LLfcAH [�ALLyALL � �AHHy
A
HH ] + cBH [�

B
LLy

B
LL � �BHHy

B
HH ]

+ cAHc
B
H [�

AB
LL y

AB
LL � �ABHHy

AB
HH ] + [�

O
LLy

O
LL � �OHHy

O
HH ]g

+ �LHfcAH [�ALHyALH � �AHHy
A
HH ] + cBH [�

B
LHy

B
LH � �BHHy

B
HH ]

+ cAHc
B
H [�

AB
LHy

AB
LH � �ABHHy

AB
HH ] + [�

O
LHy

O
LH � �OHHy

O
HH ]g

+ �HLfcAH [�AHLyAHL � �AHHy
A
HH ] + cBH [�

B
HLy

B
HL � �BHHy

B
HH ]

+ cAHc
B
H [�

AB
HLy

AB
HL � �ABHHy

AB
HH ] + [�

O
HLy

O
HL � �OHHy

O
HH ]g)
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Since the number of buyers participating in the auction are assumed to be larger than

three and since buyers of each type are treated the same in a symmetric auction, each type�s

probability of losing both objects is positive. That is, �Oij > 0 for all ij 2 S: Thus, using the

four Kuhn-Tucker conditions, @L
@yOij

= 0;

@L
@yOHH

= �OHH [
�HH
yOHH

� �HH ] = 0

@L
@yOLH

= �OLH [
�LH
yOLH

+ �HH�LH � �LH ] = 0

@L
@yOHL

= �OHL[
�HL
yOHL

+ �HH�HL � �HL] = 0

@L
@yOLL

= �OLL[
�LL
yOLL

� �LL + �LH + �HL + �HH�LL] = 0

we can solve for �ijs:

�HH =
�HH
yOHH

�HL =
�HL
yOHL

+
�HH
yOHH

�HL

�LH =
�LH
yOLH

+
�HH
yOHH

�LH

�LL =
�LL
yOLL

+
�LH
yOLH

+
�HL
yOHL

+
�HH
yOHH

:

The remaining Kuhn-Tucker conditions are of the following form
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@L
@yAHH

= �AHH [
�HH
yAHH

� �HHc
A
H ] = 0

@L
@yBHH

= �BHH [
�HH
yBHH

� �HHc
B
H ] = 0

@L
@yABHH

= �ABHH [
�HH
yABHH

� �HHc
A
Hc

B
H ] = 0

@L
@yAHL

= �AHL[
�HL
yAHL

� (�HL � �HH�HL)c
A
H ] = 0

@L
@yBHL

= �BHL[
�HL
yBHL

� (�HLcBL � �HH�HLc
B
H)] = 0

@L
@yABHL

= �ABHL[
�HL
yABHL

� cAH(�HLc
B
L � �HH�HLc

B
H)] = 0

@L
@yALH

= �ALH [
�LH
yALH

� (�LHcAL � �HH�LHc
A
H)] = 0

@L
@yBLH

= �BLH [
�LH
yBLH

� (�LH � �HH�LH)c
B
H ] = 0

@L
@yABLH

= �ABLH [
�LH
yABLH

� cBH(�LHc
A
L � �HH�LHc

A
H)] = 0

@L
@yALL

= �ALL[
�LL
yALL

� cAL(�LL � �LH) + cAH(�HL + �HH�LL)] = 0

@L
@yBLL

= �BLL[
�LL
yBLL

� cBL (�LL � �HL) + cBH(�LH + �HH�LL)] = 0

@L
@yABLL

= �ABLL [
�LL
yABLL

� cAL(�LLc
B
L � �LHc

B
H) + cAH(�HLc

B
L + �HH�LLc

B
H)] = 0:

Proof of Lemma 12. Suppose that IRLL is slack. Then, we have

DLL � �ALLc
A
Ly

A
LL + �BLLc

B
Ly

B
LL + �ABLL c

A
Lc
B
Ly

AB
LL + �OLLy

O
LL < 1:

Since number of buyers are larger than three and since buyers are treated symmetrically,

each type�s probability of losing both objects is positive. So, �OLL > 0. Thus, an increase

in yOLL by "=�
O
LL for " = (1 � DLL)=2 > 0 strictly improves seller�s payo¤. Note that, this

modi�cation on yOLL does not violate any of the constraints, yielding a contradiction.

Hence, IRLL must be binding.
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Proof of Lemma 13. Suppose �rst that ICLLLH is slack. Then, we have

DLH � �ALHc
A
Ly

A
LH + �BLHc

B
Hy

B
LH + �ABLHc

A
Lc
B
Hy

AB
LH + �OLHy

O
LH

< �ALLc
A
Ly

A
LL + �BLLc

B
Hy

B
LL + �ABLL c

A
Lc
B
Hy

AB
LL + �OLLy

O
LL � DLL

LH

Let " = (DLL
LH � DLH)=2: Since �OLH > 0; if we increase yOLH by "=�OLH ; seller�s payo¤ will

improve and none of the constraints are violated. This is a contradiction. So, ICLLLH must

be binding.

Along the same lines, we can easily show that ICLLHL is binding, too.

Proof of Lemma 14. Suppose that all three conditions are slack. Then, we have DHH <

minfDLL
HH ; D

LH
HH ; D

HL
HHg: De�ne " = (minfDLL

HH ; D
LH
HH ; D

HL
HHg �DHH)=2: An increase in yOHH

in the amount of "=�OHH ; improves seller�s payo¤ and does not violate any of the conditions.

This is a contradiction. So, at least one of these three conditions must be binding.

Proof of Proposition 15. Since DHH = minfDLL
HH ; D

LH
HH ; D

HL
HHg, we can replace the last three

incentive compatibility conditions with DHH = �LLD
LL
HH + �LHD

LH
HH + �HLD

HL
HH where

�LL; �LH ; �HL � 0 and �LL+�LH+�HL = 1 provided that �ij = 0 if and only if DHH < Dij
HH

(or equivalently, �ij > 0 if and only if DHH = Dij
HH):

The Kuhn-Tucker conditions with respect to ykij for k = A;B;AB and ij 2 S can be

written as
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�AHH�HH [y
O
HH � yAHHc

A
H ] = 0 (a)

�BHH�HH [y
O
HH � yBHHc

B
H ] = 0 (b)

�ABHH�HH [y
O
HH � yABHHc

A
Hc

B
H ] = 0 (c)

�AHL�HL[y
O
HL � yAHLc

A
H ] = 0 (d)

�BHL[
�HL
yBHL

� �HH
yOHH

�HL(c
B
L � cBH)�

�HL
yOHL

cBL ] = 0 (e)

�ABHL[
�HL
yABHL

� cAH(
�HH
yOHH

�HL(c
B
L � cBH) +

�HL
yOHL

cBL )] = 0 (f)

�ALH [
�LH
yALH

� �HH
yOHH

�LH(c
A
L � cAH)�

�LH
yOLH

cAL ] = 0 (g)

�BLH�LH [y
O
LH � yBLHc

B
H ] = 0 (h)

�ABLH [
�LH
yABLH

� cBH(
�HH
yOHH

�LH(c
A
L � cAH) +

�LH
yOLH

cAL)] = 0 (i)

�ALL[
�LL
yALL

� �LL
yOLL

cAL � f
�HL
yOHL

+
�HH
yOHH

(�HL + �LL)g(cAL � cAH)] = 0 (j)

�BLL[
�LL
yBLL

� �LL
yOLL

cBL � f
�LH
yOLH

+
�HH
yOHH

(�LH + �LL)g(cBL � cBH)] = 0 (k)

�ABLL [
�LL
yABLL

� �LL
yOLL

cALc
B
L �

�LH
yOLH

cAL(c
B
L � cBH)�

�HL
yOHL

cBL (c
A
L � cAH)

��HH
yOHH

(cALc
B
L � �LHc

A
Lc
B
H � �HLc

A
Hc

B
L � �LLc

A
Hc

B
H)] = 0: (l)

Note that, these equations are of the form �kij
 = 0. We can use them to solve for ykij

for ij 2 S and k = A;B;AB; by implicitly assuming that �kij = 0: This is without loss of

generality, because each of these ykij�s appears with the corresponding �
k
ij everywhere in the

problem. Thus, if �kij = 0 for a type ij and for an event k, then the value of ykij will not

matter in the solution, if �kij > 0, on the other hand, then 
 = 0 must be true.

Thus, equations (a)-(d) and (h) respectively yield

yAHH =
yOHH
cAH
; yBHH =

yOHH
cBH
; yABHH =

yOHH
cAHc

B
H
;

yAHL =
yOHL
cAH
; yBLH =

yOLH
cBH
;

and the pairs �(e),(f)�and �(g),(i)�respectively give

yABHL =
yBHL
cAH
; yABLH =

yALH
cBH
:
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These two sets of equations imply that the excess payment that a buyer makes for an

object for which he has high valuation is equal to his valuation for that object. In other

words, each buyer is perfectly insured against the risk of losing the object(s) for which he

has high valuation.

Proof of Proposition 16. Similarly, equations (e),(g),(j),(k) and (l) can be used to solve for

yBHL; y
A
LH ; y

A
LL; y

B
LL and y

AB
LL , respectively.

�LH
yALH

=
�LH
yOLH

cAL +
�HH
yOHH

�LH(c
A
L � cAH)

�HL
yBHL

=
�HL
yOHL

cBL +
�HH
yOHH

�HL(c
B
L � cBH)

�LL
yALL

=
�LL
yOLL

cAL +
�HL
yOHL

(cAL � cAH) +
�HH
yOHH

(�HL + �LL)(c
A
L � cAH)

�LL
yBLL

=
�LL
yOLL

cBL +
�LH
yOLH

(cBL � cBH) +
�HH
yOHH

(�LH + �LL)(c
B
L � cBH)

�LL
yABLL

=
�LL
yOLL

cALc
B
L +

�LH
yOLH

cAL(c
B
L � cBH) +

�HL
yOHL

cBL (c
A
L � cAH)

+
�HH
yOHH

(cALc
B
L � �LHc

A
Lc
B
H � �HLc

A
Hc

B
L � �LLc

A
Hc

B
H)

Remember from �rst section that a low-type buyer has to make a payment if he cannot

win the object. Using the last three of the above equations we get a similar result for type

LL.

Using the last three equations, one can write

yALL =
yOLL
cAL+"1

; yBLL =
yOLL
cBL+"2

; yABLL =
yOLL

cALc
B
L+"3

for some "1; "2; "3 > 0: We plug these values into LL�s individual rationality constraint to

get

yOLL(1� �ALL
"1

cAL + "1
� �BLL

"2
cBL + "2

� �ABLL
"3

cALc
B
L + "3

) = 1:

Note that, the term in the parenthesis is less than one if LL gets either or both objects.

Thus, if �OLL 6= 1; then yOLL > 1 (hence, tOLL > 0) must be true.
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Proof of Proposition 17. i) Let � be such that nHH +nHL > 0 and without loss of generality

assume that nHH > 0: Now, suppose by contradiction, that nHH p̂AHH(�) + nHLp̂
A
HL(�) < 1:

Let " � 1� nHH p̂
A
HH(�)� nHLp̂

A
HL(�):

There are three possibilities that we need to consider:

- nLH + nLL = 0 :

In this case, modify the mechanism by increasing pAHH(�) by
"

nHH
: This would increase

�̂AHH by 	 "
�HH

. Change in the Lagrangian can be calculated as 	" ln 1
cH

> 0: This is a

contradiction.

- nLH p̂ALH(�) > 0 :

We will now show that for some " < nLH p̂
A
LH(�); decreasing p̂

A
LH(�) by

"
nLH

; and increasing

p̂AHH(�) by
"

nHH
is pro�table. After this modi�cation, �̂ALH decreases by 	 "

�LH
and �̂AHH

increases by 	 "
�HH

:1 We calculate the change in the Lagrangian as

�L = 	"fln 1
cAH
� ln y

A
LH

yOLH
+ �LH [c

A
L

yALH
�LH

� yOLH
�LH

]� �HH�LH [c
A
H

yALH
�LH

� yOLH
�LH

]g

= 	" ln
yOLH
cAHy

A
LH

which is positive since yOLH > cHy
A
LH :

- nLLp̂ALL(�) > 0 and nLH p̂
A
LH(�) = 0 :

Suppose �rst that nLLpALL(�) > 0: Then consider modifying the mechanism by decreasing

pALL(�) by
"
nLL

and increasing pAHH(�) by
"

nHH
for some " < nLLp

A
LL(�): This would decrease

�ALL by 	
"

�LL
and increase �̂AHH by 	

"
�HH

: Lagrangian then changes by

�L = 	"fln 1
cAH
� ln y

A
LL

yOLL
+ (�LL � �LH)[

cALy
A
LL

�LL
� yOLL
�LL

]� (�HL + �HH�LL)[
cAHy

A
LL

�LL
� yOLL
�LL

]g

= 	" ln
yOLL
cAHy

A
LL

> 0

Suppose now that nLLpALL(�) = 0: Then, nLLpABLL (�) > 0 must be true. We will show

that the following modi�cation is pro�table: For some " < nLLp
AB
LL (�); decrease p

AB
LL (�) by

1 p̂ALH(�) can be decreased either by decreasing p
A
LH(�) or p

AB
LH(�): If the former, is positive then we

decrease pALH(�) (and increase p
A
HH(�)): If the former is zero, however, p

AB
LH(�) should be decreased (and in

response pABHH(�) should be increased) In this case, marginal probabilities of winning A and B are a¤ected
for both types HH and LH. Yet, either modi�cation, have the same e¤ect on the Lagrangian.
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"
nLL

and increasing pABHH(�) by
"

nHH
: This would decrease �ABLL by 	

"
�LL

and increase �̂AHH and

�̂BHH by 	
"

�HH
: As a result, Lagrangian will increase by

�L = 	"fln 1
cAH
+ ln

1

cBH
� ln y

AB
LL

yOLL
+ �LL[

cALc
B
Ly

AB
LL

�LL
� yOLL
�LL

]

��LH [
cALc

B
Hy

AB
LL

�LL
� yOLL
�LL

]� �LH [
cAHc

B
Ly

AB
LL

�LL
� yOLL
�LL

]

��HH�LL[
cAHc

B
Hy

AB
LL

�LL
� yOLL
�LL

]g

= 	" ln
yOLL

cAHc
B
Hy

AB
LL

> 0

Thus, we conclude that if � is such that nHH +nHL > 0; then nHH p̂AHH(�)+nHLp̂
A
HL(�) = 1:

We can prove part ii) of the Lemma along the same lines.

Proof of Corollary 18. We will prove only part i): Proof of part ii) is similar. (*5) implies

that

�HH �̂
A
HH =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

nHH p̂
A
HH(�)	

�HL�̂
A
HL =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

nHLp̂
A
HL(�)	:

Adding these two equalities and multiplying both sides with n gives

n[�HH �̂
A
HH + �HL�̂

A
HL] =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

[nHH p̂
A
HH(�) + nHLp̂

A
HL(�)]n	

=
nX

nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

n	�
nX

nLH=0

n!�nLHLH �n�nLHLL

nLH !(n� nLH)!

= 1� (�LH + �LL)
n:

The second equality follows from the part i of proposition 9.
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Proof of Proposition 19. i) Suppose that the pro�le is such that nHH + nHL = 0; but

nLH p̂
A
LH(�) + nLLp̂

A
LL(�) < 1: Let " < 1 � nLH p̂

A
LH(�) � nLLp̂

A
LL(�): There are two cases

that we need to consider:

- nLH > 0 : Let�s increase p̂ALH(�) by
"

nLH
; which would increase �̂ALH by 	

"
�LH

: Change

in the Lagrangian is calculated as

�L = 	"fln y
A
LH

yOLH
+ �LH [�cAL

yALH
�LH

+
yOLH
�LH

] + �HH�LH [c
A
H

yALH
�LH

� yOLH
�LH

]g

= 	" ln
yALH
yOLH

which is positive if yALH > yOLH ; or
cAL�cAH
1�cAL

< �LH
yOLH

yOHH
�HH

1
�LH

:

- nLH = 0 : A pro�table modi�cation would be to increase pALL(�) by
"
nLL

and hence �ALL

by 	 "
�LL

: Lagrangian will increase by

�L = 	"fln y
A
LL

yOLL
� (�LL � �LH)[

cALy
A
LL

�LL
� yOLL
�LL

] + (�HL + �HH�LL)[
cAHy

A
LL

�LL
� yOLL
�LL

]g

= 	" ln
yALL
yOLL

which is positive if yALL > yOLL; or
cAL�cAH
1�cAL

< �LL
yOLL
(�HL
yOHL

+ �HH
yOHH

(1� �LH))
�1:

ii) Along the same lines of the previous part, we can easily show that this part holds,

too, if yBHL > yOHL and y
B
LL > yOLL, or equivalently if

cBL � cBH
1� cBL

< minf�HL
yOHL

yOHH
�HH

1

�HL
;
�LL
yOLL

(
�LH
yOLH

+
�HH
yOHH

(1� �HL))
�1g:

Proof of Proposition 20. Suppose, for now, that HH is not compensated. Then yOHH = 1:

Since cAH < cAL and c
B
H < cBL ; we have 1 = yOHH � Dij

HH � Dij � 1 for ij = LL;LH;HL

where the �rst inequality is due to ICijHH ; and the last inequality is the individual rationality

constraint. So, all individual rationality constraints are binding and Dij = Dij
HH = 1 for

ij = LL;LH;HL: Moreover, since Dij �Dij
HH = 0; we have

�ALL(c
A
L � cAH)y

A
LL + �BLL(c

B
L � cBH)y

B
LL + �ABLL (c

A
Lc
B
L � cAHc

B
H)y

AB
LL = 0

�̂ALH(c
A
L � cAH)y

A
LH = 0

�̂BHL(c
B
L � cBH)y

B
HL = 0
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Each term in these equations are nonnegative, therefore �ALL = �BLL = �ABLL = �̂ALH = �̂BHL = 0

must be true. This contradicts with the previous Corollary because �LL�̂
A
LL + �LH �̂

A
LH >

0:

Proof of Proposition 21. Suppose, by contradiction, that for some pro�le � with nLL = n,

pABLL (�) <
1
n
: Since both objects are sold with probability one, this implies that pALL(�) =

pBLL(�) > 0: Let " < 1 � npABLL (�): Consider modifying the mechanism by decreasing pALL(�)

and pBLL(�) both by
"
n
and increasing pABLL (�) by

"
n
. This would imply ��ABLL = ���ALL =

���BLL = 	 "
�LL

: Now, we calculate the change in the Lagrangian:

�L = 	" ln y
O
LLy

AB
LL

yALLy
B
LL

which is positive if yOLLy
AB
LL > yALLy

B
LL or, equivalently, if

�LL
yALL

�LL
yBLL

>
�LL
yOLL

�LL
yABLL

() (�LH�HL + �LL�HH�LL)(c
A
L � cAH)(c

B
L � cBH) > 0:

Since the last inequality holds for any parameter values, this modi�cation is pro�table. Thus,

we conclude that if all the buyers are of type LL then the objects are bundled and each buyer

gets the bundle with equal probability.

Proof of Proposition 22. Any of the three auction formats, namely independent auction,

bundling auction and mixed auction, that are optimal when the buyers are risk neutral

allocate the objects independently and randomly when all buyers report to be of type LL.

Yet, by proposition 21, when the buyers are risk averse, a necessary condition for the

optimality of the auction is to give both object to the same buyer if all buyers are of type

LL.

Proof of Lemma 23. i) Suppose that for some � with nLH ; nLL > 0 and nLH + nLL = n;

nLH p̂
A
LH(�) < 1: Then, since A is sold with probability one, pALL(�) must be positive. Let

" < nLLp
A
LL(�): Now, consider modifying the mechanism by decreasing pALL(�) by

"
nLL

and
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increasing p̂ALH(�) by
"

nLH
: This, would decrease �̂ALL by

	"
�LL

and increase �̂ALH by
	"
�LH

: As a

result, the Lagrangian will change by

�L = 	" ln y
A
LHy

O
LL

yOLHy
A
LL

:

This is positive if yALHy
O
LL > yOLHy

A
LL; or equivalently if

�LH
yOLH

�LL
yALL

> �LH
yALH

�LL
yOLL

: Using the Kuhn-

Tucker conditions, we can rewrite this inequality as

(�LH � �HH�LH)[c
A
L(�LL � �LH)� cAH(�HL + �HH�LL)] >

(cAL�LH � cAH�HH�LH)(�LL � �LH � �HL � �HH�LL):

After some manipulation, we get

�LH(�HL + �HH�LL) > �HH�LH(�LL � �LH)

(
�HL
yOHL

yOHH
�HH

+ 1)(
�LL
yOLL

yOLH
�LH

+ 1)�1 > �LH :

Proof of part ii) is similar.
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