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1. ABSTRACT 

 
 

Mycobacterium tuberculosis is the leading cause of death due to a single infectious agent 

worldwide. Immune response elicited against the bacterium is sufficient to control, but not to 

eliminate the pathogen leading to the establishment of asymptomatic state called latency. 

Currently very little is known about conditions that are required to prime robust, protective 

immune response in the initial stages of infection. We hypothesized that CD40 ligation is 

essential for the priming of strong Th1 response and for the subsequent control of M. 

tuberculosis infection. Furthermore, it is unknown how persistent exposure to mycobacterial 

antigens affects the functionality of T cells. Our initial thought was that the reason why immune 

response cannot eliminate M. tuberculosis and why reactivation occurs is due to T cell 

exhaustion as a result of continuous antigenic stimulation. Since the goal of every vaccine 

strategy is to elicit long-lasting and protective immunity, it is necessary to define the factors 

required for the development and maintenance of effector and memory T cell responses. We 

hypothesized that CD4 help and IL-15 are required for the development of functional CD8+ 

memory responses. Our results indicate that in murine model of tuberculosis CD40 ligation on 

 v



antigen presenting cells either by host- or mycobacterium-derived ligands, is essential for the 

induction of robust IFN-γ T cell response resulting in protection against disease and death. Once 

a strong immune response is elicited, long-term control of M. tuberculosis infection is mediated 

by dynamic changes in the frequency and types of T cell effector functions. We identified that 

IL-15 was not essential for the proliferation of CD4+ and CD8+ T cells or for the maintenance of 

their effector functions after primary and secondary M. tuberculosis infection. Our findings 

indicate that CD4 help was required during priming of effector CD8+ T cells and during 

secondary infection for the functional and durable memory CD8+ T cell responses. Collectively, 

the findings presented in this thesis broadened our understanding of what factors are essential for 

the generation and maintenance of functional effector and recall responses following M. 

tuberculosis infection. 
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2. INTRODUCTION 

 

2.1. Historical perspective 

Mycobacterium tuberculosis has deep roots in the history of human civilization. DNA 

unique to M. tuberculosis complex has been detected in the lungs of an Egyptian mummy (1550 

- 1080 BC) (1), and also in the body of a female mummy from Peru dating 1000 years ago (2). In 

Greek history, tuberculosis was described as “phthisis” (consumption), and it was noted in 

Hippocrates scripts (460 BC) that tuberculosis was well spread in Greek society, and that it was 

almost always fatal. For the longest time it was believed that “modern” M. tuberculosis emerged 

after humans adapted to the stationary mode of living and embraced agricultural practices as the 

means for survival (3). It was postulated that M. bovis, a bovine pathogen, “jumped” the species 

barrier and adapted to humans. One reason for such a belief was that the host range of M. bovis is 

very broad while M. tuberculosis is primarily a human pathogen (4). However, the most recent 

evolutionary study carried out by Brosch et al. revealed that the ancestor of today’s M. 

tuberculosis was specifically a human pathogen, and that M. bovis is relatively “new”, derived 

after successive loss of genetic material resulting in at least nine distinct deletions in the M. 

tuberculosis genome (4).  

Well adapted to the living inside the human host, M. tuberculosis exploited changes in 

human society and used them to ensure successful spread amongst human population. It was not 

until 1882, that the causative agent of the “white plague” was identified as a bacillus by the name 

Mycobacterium tuberculosis. The exceptional microbiologist, Robert Koch, was responsible for 

this miraculous finding. He had isolated the causative agent of tuberculosis in humans and cattle, 

grew it in a pure culture, and reproduced the disease after inoculation of M. tuberculosis into 
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naïve animals. The Koch’s postulates, as they are known today, are the basis of modern 

microbiology.  In 1944, Wakesman and colleagues opened the area of anti-tuberculosis 

chemotherapy after streptomycin, the first antibiotic effective against tuberculosis, was 

discovered (5). Very shortly, isoniazid (1952), rifampicin (1965), ethambutol (1968) and 

pyrazinamide (1970) were developed initiating a revolution in the treatment of tuberculosis (6). 

Prior to the advent of anti-mycobacterial therapy, tuberculosis had a 50% death rate. 

Attempts to control tuberculosis by vaccination were initiated very soon after its 

identification by Robert Koch. However, it was the live, attenuated M. bovis vaccine by Albert 

Calmette and Camille Guerin that was shown to be effective in a series of animal models, and it 

was introduced as a human vaccine in 1921 (7). Such fast development in anti-tuberculosis 

treatment led Waksman to believe that “the ancient foe of man, known as consumption, the great 

white plague, tuberculosis, or by whatever other name, is on the way to being reduced to a minor 

ailment of man. The future appears bright indeed, and the complete eradication of the disease is 

in sight.” (5, 8).  Yet, despite the global immunization with BCG vaccine and the existence of 

anti-tuberculosis antibiotics for the past 60 years, M. tuberculosis still remains the most 

dangerous foe of man responsible for infecting one third of the world’s population and causing 

two million deaths each year, which translates to 4,931 deaths per day (9). The world is still very 

far from reaching its ultimate goal of tuberculosis eradication. In fact, the epidemic of 

tuberculosis in many countries prompted the World Health Organization to declare tuberculosis a 

global health emergency, and introduced directly observed therapy (DOTS) as an attempt to 

prevent the tuberculosis epidemic spiraling out of control.  

The most intriguing question remains: “How is it that M. tuberculosis is not eliminated?” 

The reasons are multifactorial and we are partly to blame. Although anti-tuberculosis 
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chemotherapy is effective against M. tuberculosis, it takes six to nine months of treatment with 

double or triple antibiotic therapy to control active tuberculosis. Most patients are unwilling to 

complete such lengthy and complex regimens, and interrupt therapy once their condition is 

improved leading to relapse of the disease and emergence of multi-drug resistant TB. 

Socioeconomic and political changes that lead to the breakdown of health care and government 

systems, such as wars, refugees, poverty, malnutrition, and overcrowding will lead to the 

establishment and spread of M. tuberculosis epidemics. However, the most important factor in 

the tuberculosis eradication is the ability of M. tuberculosis to persist and survive in the adverse 

environment of its host and avoid elimination by host’s immune system and harsh antibiotic 

treatments. This persistence results in an enormous reservoir of infected but asymptomatic 

persons, all with a risk of developing active tuberculosis. Such a reservoir makes it almost 

impossible to eradicate tuberculosis. The next section describes the genetic adaptation of and 

mechanisms by which M. tuberculosis resists and prevents its eradication by the host.  

 

2.2. Survival strategies of Mycobacterium tuberculosis 

 

2.2.1. The initial response 

M. tuberculosis infection is acquired through inhalation of aerosolized droplets 

containing the bacilli generated by a person with active tuberculosis. Droplets 1 – 5 µm in 

diameter avoid mechanical elimination by tracheal cilia, and settle in the alveolar spaces of the 

lungs, where they encounter alveolar macrophages. Using complement receptors CR1, CR3, 

CR4, mannose receptor, scavenger receptors, CD14 or surfactant Sp-A receptors, M. tuberculosis 

establishes successful infection of alveolar macrophages (MΦ) (10, 11). Current evidence 
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supports that the entry pathways of M. tuberculosis do not have a major survival advantage or a 

huge impact on the intracellular growth of mycobacteria (10). Such promiscuous use of receptors 

indicates that M. tuberculosis is determined to enter the intracellular environment of the 

macrophages, and hide from the potent immune response that is about to be generated.  

Inside resting macrophages, M. tuberculosis interferes with the regulators of intracellular 

trafficking and imposes phagosomal maturation arrest by multiple mechanisms. Normally, a 

phagosome formed around inert latex beads and many bacteria undergoes progressive 

acidification (pH 4.5) and fusion with lysosomes containing potent hydrolyases leading to the 

destruction of ingested material. However, D’Arcy Hart and colleagues were first to note that M. 

tuberculosis successfully interferes with this process, and while maintaining an active and 

dynamic relationship with endocytic compartment, it blocks the fusion and interaction with pre-

existing lysosomes (12). The block occurs between the maturation stages controlled by small 

GTP-binding proteins Rab5 (early endocytic) and Rab7 (late endosomal) (13). M. tuberculosis 

possesses many bioactive lipids, and lipoarabinomannan (LAM) has been implicated in the 

phagosomal maturation arrest (14). It is believed that LAM inhibits Ca2+/calmodulin- and Rab5-

mediated recruitment of phosphatidylinositol-3-kinase (hVPS34) to the mycobacteria-containing 

phagosomes (reviewed in (13)). This hVPS34 kinase produces phosphatidylinositol-3-phosphate 

which is essential for the binding of early endosomal autoantigen 1 (EEA1) and tethering it to the 

phagosomal membrane (15-17). EEA1 together with trans-Golgi network SNARE Syntaxin 6 

then delivers VoH+ ATPase to the phagosomal membrane leading to the progressive acidification 

of the phagosome and activation of the delivered lysosomal hydrolases (13). Thus, M. 

tuberculosis derived LAM blocks the vesicle transport between trans-Golgi network and 

phagosomes by interfering with phospatidylinositol-3-phosphate pathway (13). However, 
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survival of M. tuberculosis inside the macrophages is dependent on maintaining the active 

communication with early endosomal pathway by which it acquires essential nutrients, 

particularly iron. Another M. tuberculosis derived lipid phosphatidylinositol mannoside (PIM) is 

characterized as having fusion-promoting properties. It was found that PIM specifically 

stimulates fusion of early endosomes with mycobacteria-containing phagosomes in an ATP, 

cytosol and Rab dependent manner (18).  

Another mechanism by which M. tuberculosis can interfere with phagosomal maturation 

is through interaction with TACO (tryptophan aspartate rich coat protein). TACO shares 

approximately 35% homology to coronin protein derived from Dictyostelium slime mold (19). 

Genetic studies with Dictyostelium suggested that coronin may be implicated in phagocytosis 

and particle uptake by this organism (20). Based on the homology results between TACO and 

coronin, it was postulated that phagocytosis may trigger TACO acquisition and retention on 

mycobacteria containing phagosomes. Although not proven experimentally, it was proposed that 

TACO may be functioning to prevent the fusion of lysosomes with the plasma membrane, and 

thus retention of TACO on the mycobacteria-containing phagosomes identifies this membrane 

non-fusogenic with lysosomes (19).  

M. tuberculosis also interferes with signal transduction pathways of the host cells by 

encoding several serine-threonine kinases, such as protein kinase G, which modulate the 

intracellular membrane trafficking and prevent lysosomal delivery to the phagosomes harboring 

viable mycobacteria (21).  

The net result of these inhibitory mechanisms is uncontrolled replication of M. 

tuberculosis inside the host cells, which is seen in the first two to three weeks of infection until 

cell mediated immunity is induced. 
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2.2.2. Induction of the immune response and subsequent adaptation to the hostile 

environment of activated macrophages  

In addition to invading resident alveolar macrophages, M. tuberculosis also infects 

dendritic cells (DC) that are patrolling the lung parenchyma in search of invading pathogens 

(Figure 1). Infected DC will mature, leave the lung, and migrate to the regional lymph nodes 

where they prime naïve T cells. Activated T cells travel to the lung where they recognize 

infected macrophages. Host immune response against M. tuberculosis is initiated and results in 

the formation of organized structures called granulomas (Figure 1). The main function of the 

granuloma is to seal off the focus of infection by enclosing the infected macrophages and to 

enable intimate T cell – macrophage contacts. M. tuberculosis-specific T cells deliver potent 

cytokines such as IFN-γ and TNF, which synergistically activate infected macrophages to 

elaborate toxic reactive nitrogen intermediates (RNI) and reactive oxygen species (ROS). 

Suddenly, M. tuberculosis has to deal with multiple adverse effects that are imposed upon it by 

activation of macrophages and granuloma formation.  

 

2.2.3. Life within activated macrophages 

IFN-γ and TNF-α will overcome mycobacterial phagosomal maturation arrest 

mechanisms leading to the phagosome-lysosome fusion.  M. tuberculosis counteracts by 

effectively producing ureases, which through generation of ammonia raise the phagolysosomal 

pH, and prevent the activation of lysosomal hydrolases (22). Gene expression microarray 

analysis captured the transcriptional responses of M. tuberculosis in macrophages from wild-type 

and NOS2-/- mice before and after immunological activation.  
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Lymph 
node 

Lung 

Spleen 

Figure 1 Initial response to M. tuberculosis infection 

M. tuberculosis (red rods) infection is acquired through inhalation of aerosolized droplets containing tubercle bacilli. 
Once inside the lung, M. tuberculosis is engulfed by resident alveolar dendritic cells (yellow cells), which migrate to 
the regional lymph nodes and spleen to prime naïve T cells (CD4+ blue cells; CD8+ red cells). Activated T cells 
travel to the site of infection where they recognize infected macrophages (purple cells), and elaborate their effector 
functions, which will lead to the better control of M. tuberculosis infection. The net result is formation of 
granulomas, which allow intimate contacts between macrophages and T cells, and prevent further spread of 
infection.  
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 Induction of enzymes involved in the β-oxidation of fatty acids indicates that M. 

tuberculosis relies on fatty acids as carbon and energy source. In addition, induction of sodium 

dodecyl sulfate (SDS)-regulated genes, and genes involved in the mycolic acid modification 

point to damage and repair of the cell wall (23, 24). Collectively, these results suggest that the 

phagosomal environment in which M. tuberculosis resides after immunological activation of 

macrophages is nitrosative, oxidative, hypoxic, nutrient-deficient and damaging to the M. 

tuberculosis cell wall (23, 24).  

M. tuberculosis, however, encodes several enzymes that specifically serve as a defense 

against nitrosative and oxidative stress. In search for transposon mutants with hypersusceptibility 

to acidified nitrite, Darwin et al. identified five mutants that had insertions in proteasome-

associated genes (25). Chemical inhibition of M. tuberculosis encoded proteosomes rendered 

bacteria susceptible to reactive nitrogen intermediates replicating the phenotype of proteosome 

mutants. Thus, mycobacterial-encoded proteosomes function to protect the organism against 

nitrosative stress. The mechanism of protection probably involves the degradation of irreversibly 

oxidized and nitrated proteins (25). In addition, M. tuberculosis ahpC gene encodes the 

peroxiredoxin alkyl hydroperoxide reductase subunit C (AhpC) which is capable of catabolizing 

peroxynitrate anion (ONOO-), a potent oxidant formed between NO and O2
- (26). Although the 

role of oxidative burst in the control of M. tuberculosis infection is debatable (see below), 

genetic analysis of katG M. tuberculosis mutants revealed that M. tuberculosis is equipped with 

ROS detoxification mechanisms, which contribute to its virulence. Although markedly 

attenuated in wild-type and NOS2-/- mice, the katG deletion mutant was equally capable of 

replicating and persisting just like virulent M. tuberculosis inside the gp91phox-/- mice, which 

lack the gp91 subunit of NADPH oxdidase (26).  LAM, mycobacterial sulfatides and 
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phosphoglycolipid-1 (PGL-1) have all been shown to act as oxygen radical scavengers thus 

reducing the damaging effects of ROS (27, 28). 

Since recognition of M. tuberculosis-infected macrophages has such a detrimental effect 

on mycobacterial survival inside activated cells, M. tuberculosis employs a whole spectrum of 

mechanisms by which it interferes with antigen processing and presentation by their host cells.  It 

has been shown in several studies that M. tuberculosis components decrease MHC Class II 

mRNA synthesis by downregulating expression of Class II transactivator (CIITA), sequester 

immature MHC Class II heterodimers, and interfere with the normal trafficking of MHC Class II 

molecules by alkalization of MHC Class II compartment due to the increased production of 

mycobacterium encoded urease (29-33). In addition, M. tuberculosis inhibits macrophage 

responses to IFN-γ signaling in a Toll-like receptor (TLR) – 2 and myeloid differentiation factor 

88 (MyD88)-dependent and independent fashion (34). Inhibition of IFN-γ signaling may result in 

diminished ability of macrophages to kill intracellular mycobacteria after stimulation with IFN-γ. 

M. tuberculosis-infected macrophages secrete IL-6, which render the surrounding, bystander, 

uninfected macrophages refractory to activation by IFN-γ suggesting that M. tuberculosis 

exploits the inhibitory property of IL-6 to evade eradication by robust immune response (35).  

 

2.2.4. Life within the granuloma 

As the immune response against M. tuberculosis becomes vigorous, the granuloma 

progressively matures, and it is thought to have stratified structure. The center of a granuloma is 

composed of a cheese-like, semi-solid material that is low in oxygen, and rich in lipids derived 

from dead host cells and bacteria (caseum). It is believed that inside this necrotic, caseous center, 

mycobacteria exist extracellularly (36). The center of the granuloma is surrounded by a layer of 
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partially activated or fully activated macrophages, which are enclosed by non-activated 

macrophages and T and B lymphocytes. The granuloma is mantled with fibroblasts which give 

the strength and support to the whole structure (36). Containment of M. tuberculosis within 

granuloma may lead to eventual calcification of the surrounding tissues, and within these 

encased structures mycobacteria can persist for decades, even for the life time of an individual 

without reactivating.  

Assessment of M. tuberculosis within human lesions is limited to necropsy specimens. In 

a study by Opie and Aronson lesions from cadavers often contained acid-fast bacilli (37). The 

findings from their study demonstrated that homogenates from fibrocaseous lesions of the apex 

of the lung typically caused tuberculosis when injected into guinea pigs. In contrast, 

homogenates from calcified lesions seldom contained viable bacteria and were unable to cause 

tuberculosis in susceptible animals. Interestingly, they recovered viable, infectious mycobacteria 

from the apparently healthy looking lung tissues in half of the cases, suggesting that latent M. 

tuberculosis could exist outside granulomatous lesions (37). Many years later, in situ PCR 

analysis demonstrated the presence of M. tuberculosis genomic DNA in lung endothelial cells 

and type II pneumocytes indicating that M. tuberculosis can infect other cell types in addition to 

macrophages (38).  

Surgical resection of TB lesions after chemotherapy revealed large number of acid fast 

bacilli observed by microscopy even months after patients on chemotherapy became sputum 

negative (39-41). Most lesions failed to yield cultivable bacilli, which led to hypothesis that these 

mycobacteria were “viable but not cultivable” or “not dead, but dormant” as a result of presence 

of inhibitors of mycobacterial growth in the tissues of antibiotic treated patients (42). Indeed, 

after careful and extensive washing of resected lung tissue, the rate of successfully recovered 
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mycobacteria increased (40). Mitchinson was first to hypothesize that the persistence of bacilli in 

the face of chemotherapy was attributed to physiological heterogeneity of bacteria in the lung 

tissues (5). This theory predicts that anti-TB drugs target and eliminate fast growing bacteria 

first, while the drugs are ineffective against intermediate and slow growing mycobacteria (5). 

Existence of bacteria with different susceptibilities to antibiotics could explain the need for the 

long term (at least 6 months) treatment with antibiotics to which patients must be subjected 

before infection is fully contained (5). Clinical evidence in support of Mitchinson’s hypothesis 

came from a study in which pulmonary lesions defined as being “open and active” yielded drug-

resistant bacteria cultured within 2 months, while bacilli from lesions that were classified as 

“dormant and closed” were cultivable only  after prolonged incubation of 10 months and they 

were unvaryingly drug susceptible (43). Growing evidence indicates that the physiological and 

metabolic state of mycobacteria grown in vitro does not represent their state inside the lungs. 

 

2.2.5. Modeling M. tuberculosis persistence under in vitro culture conditions 

 In Wayne model of dormancy, unshaken M. tuberculosis cultures were allowed to settle 

slowly through a self-generated oxygen gradient into the anaerobic conditions present at the 

bottom of the culture flask. As bacteria reached anaerobic environment, they underwent stage-

specific cell cycle arrest and entered the state of non-replicating persistence (NRP) (44). Among 

strategies that appear to facilitate hypoxic NRP in M. tuberculosis are restriction of biosynthetic 

activity (almost total shut down of DNA and protein synthesis, while RNA synthesis is minimal), 

induction of enzyme systems that utilize alternative energy sources and development of 

mechanisms for stabilizing the bacterial cells and their contents (44). Dormant state induced by 
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oxygen deprivation is also characterized by loss of antibiotic sensitivity to isoniazid and 

rifampicin, and increased sensitivity to metronidazole (44).  

 One strategy to circumvent oxygen deficiency is to use alternative mechanisms for 

energy generation. RNA analysis on mycobacteria from anaerobic cultures revealed elevated 

levels of two enzyme systems, one leads to reductive amination of glyoxylate (isocitrate lyase) 

and the second one to nitrate reduction (nitrate reductase) (44). In addition, two more processes 

may play a protective role: induction of alpha-crystallin and thickening of cell wall. Alpha 

crystallin is expressed six hours after induction of hypoxia, and the major role of this protein 

with chaperone-like activity is to protect and reduce the rate at which essential proteins critical 

for survival need to be replaced (44). The whole process is orchestrated by a set of thirteen 

potential sigma factors whose expression is increased upon entry into hypoxic or stationary 

phase (44). 

 

2.2.6. Modeling M. tuberculosis persistence in vivo 

Most observations made using the Wayne model of persistence were replicated in the two 

mouse models of persistence, namely the low-dose and Cornell models of persistence.  

In the low-dose model, mice are infected with a low dose of M. tuberculosis via aerosol 

route (~ 10 – 50 CFU), reviewed in (45). During the first three weeks of infection, mycobacteria 

replicate uncontrolled in the lungs of infected mice until induction of robust immune response. 

Infiltration of immune cells and elaboration of their effector mechanisms hinder bacterial 

replication, and bacterial numbers are stably maintained at 104 to 106 CFU per lung for the life of 

a mouse without any overt signs of disease. Spontaneous reactivation is rare, and experimental 

manipulations such as neutralization of TNF, inhibition of NOS2 or depletion of CD4+ T cells 
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are essential for reactivation to occur leading to death of mice (46-49). The only caveat with this 

model is that the bacterial load at which latency is established is significantly higher than in 

humans leading to the progressive immunopathology and deterioration of lung architecture (45).  

In the Cornell model of persistence, mice are infected with M. tuberculosis and latency is 

established by administration of isoniazid and pyrazinamide for twelve weeks (50). Such 

treatment will reduce, but not eliminate M. tuberculosis. Following completion of antibiotic 

therapy no viable bacteria were cultured after plating multiple organ homogenates, and it was 

impossible to transfer infection to susceptible guinea pigs after injection of the organ extracts 

from antibiotic treated mice (50). Hence, latency is established as the presence of infection 

cannot be demonstrated by any available methods. However, after several months, a significant 

proportion of antibiotic treated mice spontaneously reactivated, and with immunosuppressive 

corticosteroid treatment rate of reactivation increased to 100% (50). The main caveat of the 

Cornell model is that the success of reactivation is not always reproducible amongst different 

laboratories. Factors such as time of initiation of antibiotic treatment, types of antibiotics used, 

and duration of treatment can influence the rate of reactivation (47).  

Although the mouse granuloma performs the same function of preventing the spread of 

infection, it is important to note that the mouse granuloma is structurally different from the 

human granuloma. It lacks the necrotic, caseous center in which mycobacteria are believed to 

reside during latent infection in humans. Some critics of the mouse model of human latency 

believe that conditions inside the mouse granuloma do not accurately represent the insults to 

which mycobacteria are exposed inside human granuloma, and development of non-human 

primate models of tuberculosis will definitely lead to the better understanding of human latency. 

Nevertheless, generation of a whole library of M. tuberculosis mutants and microarray analysis 
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of the mouse lung tissues following M. tuberculosis infection yielded important insights into the 

requirements of M. tuberculosis for existence and persistence during latent infection.  

Studies of M. tuberculosis mutants in the mouse models of persistence led to the 

classification of attenuated mutants into several phenotypic categories: severe growth in vivo 

mutants (sgiv), growth in vivo mutants (giv), persistence (per), pathology (pat) and dissemination 

(dis) mutants, reviewed in (9).  

 

2.2.6.1. Phenotypic characterization of “severe growth in vivo” M. tuberculosis 

mutants 

 Most of sgiv mutants have severe growth defects in nutrient-poor media, murine or 

human macrophages and they are unable to establish infection in the lungs of infected mice. The 

severe growth defect of sgiv stems from bacterial inability to obtain essential nutrients necessary 

for the survival and replication inside phagosomal environment (9). Magnesium acquisition 

appears to be essential for M. tuberculosis virulence, hence a mgt (magnesium transporter) 

mutant was unable to replicate under low magnesium and slightly acidic conditions. 

Consequently, mgt mutant could not survive inside macrophages and showed severe growth 

defect in the lungs and spleens of infected mice (51). Many auxotrophic mutants of M. 

tuberculosis with deletions in leucine (leuD), lysine (lysA) proline (proC) and tryptophan (trpD) 

biosynthetic pathways belong to this category of mutants (52-55). 
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2.2.6.2. Phenotypic characterization of “growth in vivo” M. tuberculosis 

mutants 

 These mutants are characterized by limited replication inside the lungs; they have 

attenuated phenotype leading to the increased survival of infected mice (9). Some giv mutants 

are auxotrophic mutants; i.e. they show impairment in one of the important biosynthetic 

pathways that are necessary to ensure survival of M. tuberculosis under nutrient and oxygen 

deficient conditions. One such mutant is characterized by the absence of glutamine synthetase 

gene (glnA), which is necessary for nitrogen metabolism during persistence under anaerobic 

conditions (56). Since acquisition of iron is very important for intracellular survival of 

mycobacteria, deletion in one of the bacterial mycobactins (mbtB) led to decreased growth under 

iron-deficient conditions both in vitro and within macrophages. Hence, it was not surprising 

when MbtB mutant showed severe attenuation in its virulence and significantly limited 

replication in the lungs of infected mice (57). It was unexpected to discover the importance of 

vitamin B5 de novo biosynthesis in the virulence of M. tuberculosis. Deletion of panC and panD 

mutants rendered mycobacteria sensitive to the adverse insults in infected lungs, and panCD 

mutants were highly attenuated in mouse survival studies (58). Mycobacterial tyrosine kinases 

and phosphatase act as virulence factors by interfering with host cell signaling. A mptpB mutant 

strain of M. tuberculosis had impaired ability to survive in activated macrophages and guinea 

pigs, but not in resting macrophages suggesting that mycobacterial phosphatase MptpB plays an 

important role in host-pathogen interaction (59). Two component regulatory proteins function in 

bacteria to sense and respond to changes in the extracellular environment. PhoP/PhoQ two 

component regulatory proteins are necessary for M. tuberculosis survival in vivo as a phoP 

deletion mutant had reduced growth in the liver, lung and spleen of infected mice, which is 
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characteristic of giv mutants (60). As most bacterial pathogens export their virulence factors 

through the use of secretion systems, it was postulated that secA mutant of M. tuberculosis will 

show attenuated phenotype in vivo. Indeed, secA mutants were more sensitive to macrophage 

effector mechanisms as superoxide dismutase (SOD) could not protect mycobacteria from 

reactive oxygen species as secretion of SOD is SecA-dependent (60). Camacho et al. identified 

16 giv mutants some of which were defective in the synthesis of the complex cell wall-associated 

lipids such as phthiocerol and phenolphthiocerol derivatives (61). Such mutants exhibited 

profound morphological changes and alterations in the cell wall, which may have made the 

mutants more sensitive to the reactive oxygen and nitrogen intermediates (61). 

 

2.2.6.3. Phenotypic characterization of “persistence” M. tuberculosis mutants 

 Persistence mutants grow well during initial stages of infection; however, these mutants 

fail to resist the onslaught of the immune response, and cannot persist once cell mediated 

immunity is initiated (9). These mutants have revealed virulence factors that enable M. 

tuberculosis to withstand host adaptive immune responses. Genes involved in “cording” (pcaA) 

or encoding isocitrate lyase (icl), phospholipases (plcABCD), and dnaE2 were all shown to have 

reduced growth after the onset of acquired immunity (9). “Cording”, i.e. formation of 

microscopic ropes or bundles by mycobacteria has always been associated with the most virulent 

phenotypes. A novel mycolic acid cyclopropane synthetase encoded by pcaA gene was shown to 

be required for cording, persistence and virulence of M. tuberculosis during latent infection (62). 

These findings underscore the importance of cyclopropenated lipids in mycobacterial 

pathogenesis. Isocitrate lyase (icl) mutant is one of the best characterized persistence mutants. 

This enzyme is known to be essential for the metabolism of fatty acids, and reduced survival of 
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icl mutants after initiation of immune response indicates that long term survival of M. 

tuberculosis inside the infected host relies heavily on fatty acid metabolism (63). The strongest 

link between the requirement for isocitrate lyase and the immune status of the host was 

established by the restored virulence of icl mutant in IFN-γ knockout mice (63). When 

microorganisms encounter a nutrient limited environment they slow their growth dramatically 

and reduce the level of RNA and protein synthesis. In M. tuberculosis this starvation program is 

mediated by hyperphosphorylated guanine nucleotides, or pppGpp, which are synthesized and 

hydrolyzed by RelMtb protein (9). M. tuberculosis mutants that lack this protein are defective in 

long-term survival both in vitro and in vivo (64). Hence, elimination of the major bacterial 

mechanism for starvation adaptation leads to the perishing of mycobacteria inside the hosts. 

Another mechanism by M. tuberculosis resists eradication by the immune response is possession 

of an efficient error-prone DNA repair system (65). Genetic studies have shown that drug 

resistance emerged more frequently in wild-type and complemented strains of M. tuberculosis 

than in dnaE2 mutant suggesting that the action of this polymerase may contribute the 

emergence of drug resistance in vivo (65). 

 

2.2.6.4. Phenotypic characterization of “pathology” M. tuberculosis mutants 

 Pathology mutants do not show growth defects after initiation of immune response; 

instead it is believed these mutants elicit reduced immunopathology when compared to wild-type 

M. tuberculosis (9). The only mutants that showed reduced pathology and attenuated virulence 

were bacteria that lack one of regulatory factors such as SigH, SigE, SigA (66-68). It was 

reported that infection of mice with these mutants results in reduced infiltration of cytokine 

secreting T cells into the lungs and formation of fewer granuloma. 
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2.2.6.5. Phenotypic characterization of “dissemination” M. tuberculosis 

mutants 

 M. tuberculosis has the ability to invade and persist inside the cells other than 

macrophages (69). Disruption of hbhA gene which encodes heparin-binding hemagglutinin 

(HBHA) demonstrated the importance of this protein in mediating adherence and entry of M. 

tuberculosis into alveolar epithelial cells. M. tuberculosis with deletion in hbhA showed a severe 

defect in their ability to disseminate and colonize other organs (70).  

 

Several transcriptional studies revealed the importance of differential expression of iron-, 

carbon- and oxygen responsive genes in the lungs of chronically infected mice as well as in 

tuberculosis patients confirming the genetic mutation studies described above (71-73). In the 

presence of Th1 mediated immunity, M. tuberculosis changed the gene expression profile to 

adapt to iron limitation, glucose starvation, fatty acid substrates and hypoxia (71-73). 

Collectively these studies provide evidence for changes in M. tuberculosis transcription pattern 

that are characteristic of non-replicating persistence (73).  

 

2.3. Host immune response against M. tuberculosis infection 

 

2.3.1. Risk of tuberculosis infection 

 In epidemiological studies the risk of acquiring M. tuberculosis infection, and the risk of 

developing tuberculosis disease are often considered separately. The risk of acquiring M. 

tuberculosis infection is determined by the probability of being exposed to M. tuberculosis and 

the probability of having productive infection, if exposed to M. tuberculosis (Figure 2). 
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Similarly, the risk of having tuberculosis disease consists of risk of primary tuberculosis, if 

infected and risk of reactivation, if latently infected (Figure 2). There is also an additional risk of 

re-infection (74-77). 

 The risk of exposure to M. tuberculosis within general US population is very low; it is 

estimated to be 0.02% - 0.08% per year (78, 79). However, the risk of exposure to TB increases 

if persons work and live in congregate settings such as hospitals (11.7%), prisons (27%), nursing 

homes (5%) or homeless shelters (18 – 70%) (80-85).  

 Currently there are no epidemiological studies which with a great degree of certainty can 

determine what the risk of infection is, if an individual is exposed to M. tuberculosis. It will 

depend on several factors, namely ability of infected person to transmit M. tuberculosis, the 

biological fitness of M. tuberculosis, and susceptibility of the exposed individuals (86). The 

ability of infected person to transmit M. tuberculosis will depend on the extent of pulmonary 

disease, and the concentration of tubercle bacilli in their sputum. There is no genetic evidence 

yet to demonstrate that certain M. tuberculosis strains are more transmissible than others. Our 

laboratory and others are addressing this question in the household contacts of index cases with 

active tuberculosis in Uganda. The susceptibility of exposed individuals will depend on two 

aspects, namely whether exposed individual has an underlying immunodeficiency such as HIV 

infection, or whether exposed individual had prior TB infection, BCG vaccination or infection 

with environmental mycobacteria (86).  
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– 7 years of infection (86, 87). If infected individuals do not reactivate within the first 10 years of 

infection, it is estimated that the risk of reactivation is 10% in the lifetime of an individual. 

 

2.3.2. Innate immunity 
 

2.3.2.1. Role of TLR2 and TLR4 in M. tuberculosis recognition 

 Purified M. tuberculosis derived components such as 19-kDa lipoprotein, PIM, and LAM 

were all found to interact with TLR2, and depending on the ligand, induced pro- or anti-bacterial 

effects on antigen presenting cells. For example, 19-kDa lipoprotein induces host cell apoptosis, 

inhibits MHC Class II processing machinery, stimulates murine and human macrophages to 

secrete TNF and NO and induces IL-12 production by monocyte derived dendritic cells  

(reviewed in (88)). Furthermore, it was shown that both viable and killed M. tuberculosis 

activated murine macrophages expressing TLR2 and TLR4, although mycobacterium-derived 

TLR4 ligands are yet to be identified (88).  

 Considering that TLRs play an important role in pathogen recognition, it was surprising 

to see that TLR2-/- and TLR4-/- mice were fully capable of controlling M. tuberculosis infection. 

Following infection of TLR2-/- and TLR4-/- mice with a low dose of M. tuberculosis (100 

CFU), both mutant strains were as resistant as wild-type control mice (89, 90). Granuloma 

formation, macrophage activation, and secretion of pro-inflammatory cytokines in response to 

low-dose infection were identical between the mutant and wild-type mice (89). In two 

independent studies, it was shown that infection of TLR2-/- mice with a high dose of M. 

tuberculosis (500 CFU and 2000 CFU) resulted in a susceptible phenotype (89, 90). These 

findings suggest that paradoxically TLR2 may be important after high dose challenge during the 
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chronic stage of infection. In contrast, TLR4-/- mice were not more susceptible than wild-type 

mice after high dose M. tuberculosis infection (2000 CFU) (89). Ongoing studies with respect to 

the involvement of TLR4 in protective responses against M. tuberculosis yielded confusing 

results. One study reported that macrophage recruitment and the proinflammatory response to M. 

tuberculosis were impaired in TLR4-/- mice and that TLR4 signaling was required to mount 

protective response during chronic infection (91). In contrast, two separate studies demonstrated 

that TLR4-/- mice were resistant to infection with M. tuberculosis (89, 92).  

 Infection of mice deficient in the myeloid differentiation factor 88 (MyD88) with M. 

avium resulted in increased susceptibility and MyD88-/- mice succumbed to infection between 9 

and 14 weeks (93). Interestingly, this phenotype was not reproduced after infection of TLR2-/- 

and TLR4-/- mice with M. avium, suggesting that other TLRs may play a protective role against 

mycobacterial infections (93). Two studies reported the outcome of M. tuberculosis infection in 

MyD88-/- mice. Both studies demonstrated that infection of MyD88-/- mice with virulent M. 

tuberculosis resulted in higher bacterial burden and more severe pathology (94, 95). However, 

while Sugawara et al. reported that expression levels of IL-12, TNF-α and IFN-γ in MyD88-/- 

mice were comparable to wild-type mice (95), Scanga et al. results indicate that susceptibility of 

MyD88-/- mice was attributed to reduced Th1 cytokines and NOS2 induction (94). 

Discrepancies in the two studies could be partly attributed to the use of different mouse genetic 

backgrounds and different strains of M. tuberculosis. Therefore, further studies are required to 

clarify the involvement of TLR signaling as a part of innate immunity in the subsequent 

induction of protective responses against M. tuberculosis. 
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2.3.2.2. Macrophages 

 After deposition in the alveolar spaces of the lung, tubercle bacilli encounter alveolar 

macrophages, which represent the first arm of defense. Initially they serve as hosts for bacterial 

replication, and secrete IL-1, IL-6 and TNF-α, which help recruit monocytes, neutrophils and 

lymphocytes to the site infection. In this early stage, macrophages have a limited ability to 

restrain bacterial growth until cell mediated immunity is induced. Recognition of infected 

macrophages by antigen specific T cells leads to secretion of IFN-γ and TNF-α, which 

synergistically activate effector mechanisms within infected macrophages (Figure 3A). The 

effector mechanisms of macrophages in controlling M. tuberculosis growth include induction of 

apoptosis, phagolysosomal fusion (discussed in Section 1.2.1.), oxidative burst, and NO-

dependent and NO-independent mechanisms. 
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Figure 3 Innate and acquired immunity against M. tuberculosis 

A) Cytokine production. Both CD4+ and CD8+ T cells are important producers of IFN-γ and TNF-α during 
M. tuberculosis infection. Both cytokines act synergistically to activate M. tuberculosis-harboring 
macrophages. Activation of macrophages results in upregulation of inducible nitric oxide synthase (NOS2), 
which leads to production of reactive nitrogen intermediates (RNI), such as nitric oxide (NO). RNI, 
together with reactive oxygen intermediates (O2

.), exerts anti-mycobacterial effects, which leads to 
reduction in viable mycobacteria.  

B) Cytotoxicity  
(i) Granule-dependent exocytosis pathway. Upon recognition of M. tuberculosis-infected cells, 

CD8+ T cells release perforin-containing granules. Entry of effector molecules such as 
granzyme A and granzyme B (serine proteases) lead to apoptosis or lysis of the target cell. 
The lysis of unresponsive macrophages infected with M. tuberculosis releases the pathogen 
into the extracellular environment to be taken up by freshly activated macrophages, which are 
better equipped for killing them.  

(ii) Fas/FasL–mediated cytotoxicity. Cross-linking of FasL (expressed on activated CD4+ and 
CD8+ T cells) and Fas (expressed on target cell) leads to recruitment of Fas Associated Death 
Domain (FADD) and activation of caspase 8 leading to apoptosis of target cell.  

(iii) direct microbicidal activity. Granules within human CD8+ T cells contain a newly identified 
molecule, granulysin, which has direct microbicidal effect on intracellular bacteria.  A murine 
homologue of granulysin has not been identified, and may not exist.  

 
From: Lazarevic V. and Flynn J. (2002) 166:1116-1121. Copyright permission granted by AJRCCM. 
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Induction of apoptosis  

 Exposure of M. tuberculosis infected macrophages to extracellular ATP results in 

bacterial killing. This killing was dependent on an increase in cytosolic Ca2+, which was linked 

to promotion of phagosome-lysosome fusion (96). In vitro studies with P2X7-/- murine 

macrophages demonstrated that stimulation of phagosome-lysosome fusion and ATP-mediated 

killing of intracellular mycobacteria was dependent on activation of P2X7 receptor (97). In a 

recent study a single nucleotide polymorphism (1513C allele) in the human P2X7 gene was 

identified (98). The change results in a single amino acid substitution at position 496 (D → A) 

and renders P2X7 inactive without affecting its cell surface expression (99). The frequency of 

1513C allele is 0.12 in the Caucasian population with the prevalence of homozygous condition in 

1-2% population (98). In contrast to wild-type macrophages, activation of macrophages isolated 

from individuals homozygous for 1513C failed to induce apoptosis and did not result in ATP-

mediated mycobacterial killing (98). These results demonstrate complete loss of killing in 

response to ATP suggesting that the single nucleotide polymorphism may allow for increased 

survival of M. tuberculosis in homozygous individuals.  

 

Oxidative burst 

 Catalytic action of the oxidative burst by NADPH-oxidase complex produces ROS such 

as hydrogen peroxide (H2O2), superoxide anion (O2
-) and hydroxyl radical (OH.) which may be 

directly toxic to intracellular bacteria (Figure 3A). The role of ROS in protection against M. 

tuberculosis is questionable. The strongest evidence for the contribution of oxidative burst to 

macrophage effector mechanisms should come from individuals or mice that lack phox enzymes. 

Epidemiological evidence involving subjects with chronic granulomatous disease (CGD), who 
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lack one of the four subunits of NADPH-oxidase complex, indicates that there is no increased 

incidence of tuberculosis in these patients (100). However, tuberculosis appears to be a serious 

health issue for CGD patients who live in areas endemic for TB (101). Gp91phox-/- and p47phox-/- 

mice showed a defect at restraining M. tuberculosis replication, but only in the lung, temporarily, 

and to a small degree (102, 103). Phox-/- NOS2-/- double knockout mice did not die any faster 

following aerosol challenge with M. tuberculosis infection than NOS2-/- mice suggesting that 

oxidative burst does not appear to be a major nonredundant mechanism of host defense against 

M. tuberculosis (104). 

 

Role of reactive nitrogen intermediates in the control of M. tuberculosis infection 

 NO and RNI have the potential to modify and damage bacterial DNA, proteins and lipids 

intracellularly and extracellularly (Figure 3A). In the murine model of tuberculosis, NO plays an 

important and essential role in the killing of intracellular mycobacteria during acute and latent 

infection. NOS2-/- mice were more susceptible to aerosol infection with M. tuberculosis than 

wild-type mice (105). Administration of NOS inhibitor, aminoguanidine, led to the reactivation 

of latent tuberculosis, suggesting that RNI pathway is at least partly responsible for preventing 

reactivation of latent tuberculosis in mice (46). In contrast to murine studies, there is more 

controversy about the role of NO in human tuberculosis. However, there is accumulating 

evidence now that human macrophages produce NO following M. tuberculosis infection (106-

108). There was increased NOS2 expression in the alveolar macrophage from TB patients, and 

moreover NOS2 was catalytically active (106). Patients with active TB exhaled more NO than 

healthy controls, and the output of NO increased after administration of aerosolized IFN-γ to 
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patients with pulmonary TB (109, 110). Collectively these studies implicate NO as being an 

essential component of human defense against M. tuberculosis. 

 

NO-independent mechanisms 

 In initial studies it was noted that NOS2-/- mice survived significantly longer the aerosol 

challenge with virulent M. tuberculosis than IFN-γ-/-, IFN-γR-/-, or STAT1-/- mice. These 

findings demonstrated the existence of IFN-γ-dependent, but NOS2-independent mechanisms 

against M. tuberculosis. MacMicking et al. identified LRG-47, a member of 47-kilodalton (p47) 

guanosine triphosphatase family, as being an important component of protective immunity 

against M. tuberculosis functioning independently of NOS2 (111). LRG47-/- mice failed to 

control M. tuberculosis infection, where the defective killing by LRG47-/- macrophages was 

attributed to the impaired fusion of lysosomes with mycobacteria containing phagosomes in 

response to IFN-γ signaling (111). 

 

2.3.2.3. Dendritic cells 

In the lungs of uninfected mice, CD11c+ cells are distributed widely in airway epithelia 

and within the interstitial spaces of the alveoli, suggesting that these cells are strategically placed 

for encounter with invading organisms (112). In the absence of infection, these cells have 

immature phenotype CD11c mid to high, MHC Class IIlow, CD34neg, CD14neg, CD8αneg, CD11ahi, 

CD11bhi and CD54+ (112). Recent studies have shown that M. tuberculosis infects human 

dendritic cells via ligation of DC-SIGN by lipoarabinomannan (113, 114). Infection of both 

human and murine dendritic cells with M. tuberculosis results in maturation of these antigen 

presenting cells characterized by increased expression of adhesion, co-stimulatory and antigen-
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presenting molecules (ICAM-1, CD54, CD40, B7.1, B7.2, MHC Class I and MHC Class II) as 

well as in production of inflammatory cytokines such as TNF-α, IL-1 and IL-12 (115, 116). 

Dendritic cell maturation can be stimulated by M. tuberculosis lipopeptides via TLR2 signaling 

pathway (117). Pre-incubation of immature human dendritic cells with anti-TLR2 blocking 

antibody before addition of M. tuberculosis lipopeptides blocked the phenotypic and functional 

changes associated with dendritic cell maturation (117).  

The fate of M. tuberculosis inside murine and human dendritic cells is poorly understood. 

While resting murine dendritic cells supported replication of intracellular mycobacteria to a 

similar extent as resting macrophages, unactivated human dendritic cells appear not to be 

permissive for the growth of intracellular mycobacteria (116, 118). The global maturation-

induced reduction in endocytosis by human dendritic cells was responsible for depriving M. 

tuberculosis of essential nutrients and stalling its growth (118). Although the fate of M. 

tuberculosis inside activated dendritic cells has not been investigated by Tailleux and colleagues, 

Bodnar et al. demonstrated that unlike activated macrophages, dendritic cells were unable to kill 

intracellular M. tuberculosis after IFN-γ and LPS stimulation (116). The ability of M. 

tuberculosis to survive, but not replicate, within activated dendritic cells, may be beneficial in 

the priming of T cell responses in the lymph nodes. A constant supply of secreted antigens from 

viable mycobacteria may induce better CD4+ and CD8+ T cell responses against tuberculosis 

than killed bacteria (116).  

Direct comparison of dendritic cells and macrophages after M. tuberculosis infection 

revealed that dendritic cells are the primary cells involved in the priming of M. tuberculosis-

specific acquired immunity (119). Bhatt et al. demonstrated that only dendritic cells receiving 

inflammatory stimuli from M. tuberculosis up-regulated expression of CCR7, and migrated to 
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the regional lymph nodes where they primed naïve T cells (119). Macrophages and dendritic 

cells respond differently to M. tuberculosis infection and hence have different consequences for 

the development of T cell responses (120). Infection of dendritic cells with M. tuberculosis 

stimulates secretion of IFN-γ inducing cytokines, such as IL-12 and IFN-α; in contrast, 

macrophages respond to M. tuberculosis with IL-18 and IL-10 production (120, 121). In one 

study, IFN-γ production by M. tuberculosis infected macrophages was reported, suggesting that 

macrophages could be a significant source of Th1 cytokines, a finding that definitely merits 

further investigation (122).  From these studies it was postulated that following M. tuberculosis 

infection, dendritic cells are involved in the induction of antimycobacterial T cell responses 

while macrophages modulate Th1 response within granulomas (119-121).  

In addition to producing Th1/IFN-γ inducing cytokines, IFN-αβ and IL-12, M. 

tuberculosis infected dendritic cells expressed CCL3, CCL4, CXCL9 and CXCL10, which were 

involved in the stimulation of NK and T cell migration (123). This increase in the expression of 

chemokines was mediated by IFN-α production as neutralization of IFN-α significantly reduced 

the chemotactic properties of the supernatants from M. tuberculosis infected dendritic cells 

(123). Therefore, dendritic cell-derived IFN-α may contribute to recruitment and homing of 

activated effector cells to the site of infection.  

Collectively, these studies underscore the importance of dendritic cells in the initiation of 

protective Th1 response against M. tuberculosis. The fact that M. tuberculosis infection is 

usually contained but not eliminated by the host, indicates that M. tuberculosis has developed 

evasive mechanisms by which it suppresses the robustness of immune response generated against 

it. M. tuberculosis-derived LAM binds to DC-SIGN, an important receptor on dendritic cells for 

mycobacteria, blocks maturation of M. tuberculosis-infected dendritic cells by interfering with 
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TLR signaling, and induces the production of immunosuppressive cytokine IL-10 (113). These 

findings indicate that in humans, M. tuberculosis may target DC-SIGN to suppress cellular 

immune responses and induce the state of antigen-specific tolerance (113). 

 

2.3.2.4. NK cells 

Murine NK cells respond to pulmonary infection with M. tuberculosis during the first 21 

days by increasing in numbers, expressing activation and maturation makers, producing IFN-γ 

and perforin (124). However, depletion of NK cells did not influence bacterial load or disease 

progression in the lungs, suggesting that NK cells are not essential for the host resistance to M. 

tuberculosis (124). In humans, NK cells were found to regulate CD8+ T cell effector function at 

multiple levels. Depletion of NK cells from PBMC of healthy PPD+ individuals resulted in the 

decreased frequency of IFN-γ producing and cytolytic CD8+ T cells (125). NK cells maintained 

the frequency of IFN-γ producing CD8+ T cells by stimulating monocytes to produce IL-15 and 

IL-18 (125). The lytic function of CD8+ T cells appeared to be regulated by the direct contact 

between the CD40L on NK cells and CD40 on infected monocytes (125). Thus, NK cells appear 

to bridge innate and adaptive responses in protective immunity against M. tuberculosis. 

 

 

 

 

 

 

 

30 



 

2.3.3. Acquired immunity 
 

2.3.3.1. CD4+ T cells 

Mice deficient in CD4+ T cells either through deletion of genes for CD4, MHC Class II 

or CIITA molecules, are susceptible to M. tuberculosis acute infection (126, 127). MHC Class II-

/- and CD4-/- mice had diminished production of IFN-γ in the first three weeks of infection. By 

four weeks post-infection, CD4-deficient mice had wild-type levels of IFN-γ due to the 

compensatory increase in IFN-γ producing CD8+ T cells (126). However, MHC II -/- mice were 

not rescued, and they succumbed to infection with mean survival time of 41 days (126). The 

importance of CD4+ T cells in chronic M. tuberculosis infection was demonstrated using an anti-

CD4 antibody mediated depletion model. In this study, mice were infected with a low dose of M. 

tuberculosis, and at six months post-infection were treated either with anti-CD4 antibody or 

isotype control for the duration of the study (48). Antibody-mediated depletion of CD4+ T cells 

resulted in rapid reactivation of a persistent infection, with dramatically increased bacterial 

numbers in multiple organs, increased pathology in the lungs and decreased survival. 

Interestingly, IFN-γ and NOS2 gene and protein expression was comparable to wild-type mice at 

all time points. These findings indicate that CD4+ T cells are absolutely essential for the control 

of acute infection, and for preventing reactivation of persistent tuberculosis in the murine model. 

Furthermore, CD4+ T cell protective function extends beyond IFN-γ production and macrophage 

activation. In humans, the AIDS epidemic demonstrated that loss of CD4+ T cells greatly 

increases the risk of acquiring primary tuberculosis, and the risk of reactivation of latent 

tuberculosis is increased to 10% per year within HIV positive population (128). 
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How do CD4+ T cells contribute to protection against M. tuberculosis? 

 Indisputably, the most important role of CD4+ T cells in protective immunity against M. 

tuberculosis is IFN-γ production, which will lead to NOS2 expression and activation of infected 

macrophages (Figure 3A). Since CD4+ T cells are the most important source of IFN-γ, delayed 

production of this important cytokine rendered CD4-/- and MHC II-/- mice susceptible to M. 

tuberculosis induced disease (126). These results indicate that the CD4+ T cell contribution to the 

IFN-γ production, macrophage activation and granuloma formation early in infection is 

indispensable and cannot be replaced by other immune cells, such as NK and CD8+ T cells. 

However, CD4+ T cells have other IFN-γ and NOS2-independent mechanisms of protection, 

which are yet to be identified. It is these mechanisms that contribute to the role of CD4+ T cells 

in preventing reactivation of persistent infection in mice. Despite the wild-type levels of IFN-γ 

and NOS2, chronically infected mice rapidly reactivated after short-term CD4 depletion and 

succumbed to M. tuberculosis infection (48). 

Cowley et al. attempted to identify IFN-γ independent mechanism of CD4 mediated 

immunity. In an in vitro model CD4+ T cells were responsible for >90% inhibition of 

intracellular M. tuberculosis growth in the complete absence of IFN-γ signaling (129). This 

CD4+ T cell-mediated, IFN-γ independent, control of mycobacterial replication was dependent 

largely on NO (129). The signals delivered by CD4+ T cells to the infected macrophages could 

be dependent on CD40/CD40L interaction; however, results from this thesis indicate that CD40-

/- macrophages were equally capable of killing intracellular mycobacteria following IFN-γ/LPS 

stimulation or activation with M. tuberculosis specific T cells (Chapter 1). Although these results 

suggests that CD40 ligation on macrophages is not necessary for macrophage activation, it is 

possible that in the absence of IFN-γ signaling, CD40/CD40L interaction may be a major 

32 



 

pathway for macrophage activation. Another promising candidate is TNF-α as neutralization of 

TNF-α significantly diminished the ability of macrophages to control intracellular M. 

tuberculosis infection (129).  

 In addition to cytokine production which has been demonstrated in M. tuberculosis 

infected humans and mice (130-134), human CD4+ T cells also express perforin and contribute 

to the killing of infected macrophages in both granule exocytosis dependent and Fas/FasL 

dependent pathways (135-137). In contrast, murine CD4+ T cells do not express perforin, but 

they are required for the normal development of cytotoxic CD8+ T cells responses during acute 

M. tuberculosis infection (138). 

 The role of CD4+ T cells in preventing reactivation of latent tuberculosis could be 

associated with their role in maintaining organized granuloma structure. Depletion of CD4+ T 

cells from the chronically infected mice could result in the loss of structural integrity of the 

tuberculous granuloma, thus leading to TB reactivation (48). 

 

2.3.3.2. CD8+ T cells 

The evidence for an essential role of CD8+ T cells is not quite as compelling.  For years 

many researchers in the tuberculosis field ignored this T cell subset. Since M. tuberculosis lives 

primarily within a vacuole inside the cell, rather than in the cytoplasm, it seemed unlikely that 

antigens would be effectively presented to CD8+ T cells by MHC Class I molecules.   

However, early studies using antibody-mediated T cell subset depletion suggested that 

CD8+ T cells, in addition to CD4+ T cells, were necessary for control of M. tuberculosis infection 

(139) and adoptive transfer of purified immune CD8+ T cells reduced the numbers of M. 

tuberculosis bacteria in the spleens of infected mice, albeit at a lower efficiency compared to 
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CD4+ T cells (140, 141). The development of gene-disrupted mice provided stronger data for a 

role of CD8+ T cells in the control of M. tuberculosis infection.  

Mice genetically deficient in β2-microglobulin (β2m), which lack functional MHC Class 

I molecules and consequently CD8+ T cells, failed to control infection, particularly in the lung, 

and succumbed prematurely to tuberculosis (142). Although it was reasonable to assume at the 

time (10 years ago) that susceptibility of β2m-/- mice was due to a drastically reduced total 

number of peripheral CD8+ T cells, the defect in β2m-/- mice is broad. In addition to the absence 

of classical MHC Ia molecules, which present peptides to CD8+ T cells, these mice also lack 

functional CD1 and other non-classical MHC Ib molecules, which present lipid antigens and N-

formylated peptides derived from bacteria.  Thus, even though CD8+ T cells were shown to be 

important for control of infection, the molecules used to present antigens to the protective T cell 

subset remained unclear. 

To determine relative contributions of classical or non-classical MHC Class I–dependent 

CD8+ T cell populations in protection against tuberculosis, a series of gene-disrupted mouse 

strains were compared for susceptibility to intravenous M. tuberculosis infection, as measured by 

survival time and bacterial loads. Among the strains tested, the most susceptible mice were the 

β2m-/-, followed by TAP1-/- (transporter associated with antigen processing), followed by 

CD8α-/-, perforin-/-, and CD1d-/- mice (143). The conclusion was that classically restricted 

(which are TAP1-dependent) CD8+ T cells contribute to in vivo protection against M. 

tuberculosis, however, the role of CD8+ T cells in protective immunity was not limited to 

perforin-dependent cytotoxicity (143).  

It is well established that the CD4+ T cell response is crucial to control infection, and it 

must be targeted in vaccine development. While many investigators believe that CD8+ T cells are 
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important and should be considered in design of new vaccines, others are not as convinced.  In a 

recent study, wild-type and gene-knockout mice deficient in both CD4+ and CD8+ T cells, MHC 

I (lack CD8+ T cells) or MHC II (lack CD4+ T cells) were infected via aerosol and monitored for 

survival and ability to control infection (144). The conclusion of this study was that in contrast to 

CD4+ T cells, CD8+ T cells were dispensable, and not essential for the control of infection. 

However, the data from this study do not fully support these conclusions. Although mice devoid 

of CD4+ T cells died earlier from tuberculosis than CD8+ T cell-deficient mice, the absence of 

both CD4+ and CD8+ T cells resulted in even greater susceptibility.  One interpretation is that the 

presence of CD8+ T cells in CD4+ T cell-deficient mice resulted not only in increased survival 

time, but also prevented excessive immunopathology when compared to mice without both T cell 

subsets (144). The fact that mice devoid of CD8+ T cells still succumb to M. tuberculosis 

infection despite the development of fully functional CD4+ T cell responses argues that CD8+ T 

cells may play an important role in controlling chronic infection.  Furthermore, depletion of 

CD8+ T cells resulted in reactivation of latent tuberculosis in a murine model, suggesting that 

this T cell subset may also be essential for controlling latent tuberculosis (145). 

 

How do CD8+ T cells contribute to protection against M. tuberculosis? 

CD8+ T cells have the potential to affect antimycobacterial immunity in a number of 

ways.  These cells may function as a source of Type 1 cytokines such as IFN-γ and TNF-α or 

they may exert their protective effect by killing infected macrophages within the tissues (Figure 

3A and 3B).  Results from experiments using gene-deficient mice have generated controversy 

about which CD8+ T cell-mediated mechanisms are responsible for protection against 

tuberculosis.  Intracellular cytokine staining indicated that comparable numbers of activated CD4+ 
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and CD8+ T cells in the lungs of infected mice were primed to produce IFN-γ after brief, non-

specific stimulation (130). However, intracellular cytokine staining of unstimulated CD4+ and 

CD8+ T cells from the lungs of infected mice, which is more reflective of an in vivo situation, 

suggested an important difference between the two T cell subsets. Early in infection at least 13% of 

CD4+ T cells produced IFN-γ directly ex vivo, in contrast to <5% of IFN-γ producing CD8+ T cells 

(130). The presence of large numbers of activated CD8+ T cells in the lungs, with moderate 

cytokine production, suggests that the cytotoxic functions of CD8+ T cells may be important in the 

response against acute M. tuberculosis infection (130).  

Early in infection, M. tuberculosis-specific CD8+ T cells from the lungs expressed 

perforin in vivo, and lysed M. tuberculosis-infected macrophages in a perforin- and MHC Class 

I-dependent manner (146). Additional evidence for the importance of CD8+ cytotoxic effector 

functions comes from studies in CD4+ T cell-deficient mice, which succumbed to M. 

tuberculosis acute or chronic infection despite compensatory IFN-γ production by CD8+ T cells 

resulting in wild-type levels of this cytokine in the lungs (48, 126). Subsequently, it was shown 

that CD8+ T cells from CD4+ T cell-deficient mice have impaired cytotoxic function in the lungs 

of M. tuberculosis infected mice (138). These results suggest that the susceptibility to 

tuberculosis seen in CD4+ T cell-deficient mice may be partly due to defective cytotoxic effector 

functions of CD8+ T cells.  Furthermore, the level of protection against M. tuberculosis conferred 

by the adoptive transfer of CD8+ T cell clones into recipient mice correlated with the level of 

cytotoxicity rather than with the level of IFN-γ secretion (147).  

On the other hand, several studies suggest that cytokine secretion may be the major 

effector function of CD8+ T cells. In experiments using IFN-γ-/- mice as CD8+ T cell donors, 

production of IFN-γ was required for CD8+ T cells to exert a modest anti-mycobacterial effect in 

36 



 

CD4+ T cell deficient mice (148).  Moreover, mice with targeted disruptions in the genes for Fas, 

perforin or granzyme were no more susceptible to acute infection with M. tuberculosis than their 

wild-type littermates (149, 150). The fact that perforin-/- mice succumb later in infection 

suggests that perforin-mediated cytotoxic activity of CD8+ T cells may be more important during 

the chronic stage of infection (143).  However, interpretation of these results is complicated by 

the fact that perforin gene disruption is associated with a compensatory activation of T cells, and 

expression of increased levels of cytokines even in the absence of experimental infection (150, 

151).  Perforin deficiency also affects the function of CD8+ T cells during acute M. tuberculosis 

infection (146).  Perforin-/- mice had increased numbers of CD8+ T lymphocytes, which were in 

a state of hyperactivation with 4.5-fold increased IFN-γ production compared with wild-type 

mice (146).  This could mask any effect of a lack of perforin on control of the infection.  

There is one confounding factor for addressing the importance of CD8+ T cells in control 

of M. tuberculosis in the murine model.  Recent studies demonstrated that human CD8+ T cells 

recognizing M. tuberculosis-infected macrophages had the ability to directly kill intracellular 

mycobacteria (152) (Figure 3B). This killing was due to a granule-associated protein, granulysin 

(153).  The purified molecule was toxic to mycobacteria, but required perforin pore formation to 

enter an infected cell.  This was an important demonstration of how CD8+ T cells could be 

playing a direct role in control of M. tuberculosis infection.  Unfortunately, mice do not have a 

granulysin homolog, and at this time it is not possible to test the true contribution of this 

mechanism to control of infection in the mouse model.  Therefore, data from murine studies 

suggesting that CD8+ T cells are not necessary for control of infection must take into account the 

absence of what may be the key mechanism by which CD8+ T cells participate in anti-

tuberculosis immunity.  Questions regarding CD8+ T cell induction, kinetics of migration to the 
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lungs, and elucidation of CD8+ T cell effector mechanisms that contribute to protective immunity 

against tuberculosis are a subject of investigation in the chapter 2 of this thesis. 

 

2.3.3.3. B cells 

 Although antibodies against major M. tuberculosis proteins, such as ESAT-6, PPE 

antigen, and Des protein, have been detected in the sera of M. tuberculosis-infected patients 

(154-156), the role of B cells and antibodies in protective immunity against M. tuberculosis has 

been difficult to define. A review of the published literature on the role of antibody-mediated 

immunity against M. tuberculosis over the past 100 years presented evidence for and against 

protective effects of antibody therapy (157). The major problems with the early studies from 

1888 – 1920 were that there were no consistent serum formulations, no appropriate controls and 

no detailed diagnostic evaluations following antibody treatment (157). Several modern studies 

(after 1930s) revealed that there was a correlation between antibody titers and improved outcome 

of tuberculosis and the efficacy of treatment depended on the target antigen (158-161). In 

contrast, other studies reported no association between the presence of serum antibodies and 

outcome of tuberculosis infection (162-164). Results from murine studies using B cell knockout 

mice revealed equally contradictory results. In one report B cells contributed very little or not at 

all to protective immunity in a murine model of tuberculosis, as B cell-deficient mice did not 

show significant differences in cytokine mRNA expression, pathology or bacterial burden in 

multiple organ during acute infection with a low dose of M. tuberculosis (165). In contrast, Bosio 

et al. reported a potential role of B cells in pulmonary granuloma formation and subsequent 

dissemination of M. tuberculosis in wild-type mice (166). Collectively, these studies call for 

methodical evaluation of the role of B cells and antibody-mediated immunity against M. 
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tuberculosis. Use of monoclonal antibodies to defined antigen targets may finally shed light on 

the efficacy of individual antibodies in modifying the course of M. tuberculosis infection (157). 

 

2.3.4. Cytokines 

 Although the roles of many cytokines in protective immunity against M. tuberculosis 

have not been explored, the roles of IL-12, IFN-γ, TNF-α are well established; while, the 

influence of IL-10 on the course of M. tuberculosis infection has been more difficult to 

demonstrate. 

 

2.3.4.1. IL-12 

 The absence of the bioactive IL-12 results in unrestrained growth of M. tuberculosis. The 

inability of IL12p40-/- mice to control bacterial growth was associated with the absence of both 

innate and acquired sources of IFN-γ (167). However, the severity of the susceptible phenotype 

was more pronounced in IL12p40-/- than in IL12p35-/- mice suggesting that mice lacking 

bioactive IL-12 can generate antigen specific IFN-γ responses if the IL12p40 is present (168, 

169). Mice lacking p35 subunit exhibited moderate ability to control bacterial growth and 

increased survival, which were associated with the induction of antigen-specific IFN-γ responses 

(168, 169). A candidate molecule of inducing protective response in IL12p35-/- mice is IL-23, 

which is composed of p40 and p19 subunits. Although a direct role for IL-23 in protective 

immunity against M. tuberculosis has not been investigated yet, expression of p19 subunit was 

demonstrated in the lungs of M. tuberculosis infected mice (168, 169). IL-12 increases resistance 

of susceptible BALB/c and CD4+ T cell-deficient mice, although the modulatory effects of IL-

12, which lead to better protection, have not been clearly defined (170, 171). In IL-12 treated 
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CD4-/-mice, the early increase in IFN-γ , most likely due to activated NK cells, could contribute 

to the increased survival of M. tuberculosis-infected CD4-/- mice (171).  

Expression of IL12Rβ1 and IL12Rβ2 correlated well with the amount of IFN-γ 

production in human tuberculosis. Patients with active tuberculosis had reduced frequency of 

IFN-γ producing T cells and expressed low levels of IL12Rβ1 and IL12Rβ2 mRNA when 

compared to healthy PPD+ individuals (172). Addition of neutralizing anti-IL-10 and anti-TGF-β 

antibodies to M. tuberculosis-stimulated PBMC from tuberculosis patients increased expression 

of IL12Rβ1 and IL12Rβ2 subunits and enhanced IFN-γ production, suggesting that production 

of immunosuppressive cytokines in TB patients may reduce T cell responsiveness to IL-12 and 

result in weak IFN-γ responses (172). 

 

2.3.4.2. IFN-γ 

 IFN-γ-/- mice are unable to control infection with virulent M. tuberculosis, and are the 

most susceptible mouse strain tested to date. Although granuloma formation was not impaired in 

the absence of IFN-γ, activation of macrophages was defective leading to unrestrained 

mycobacterial replication and widespread necrosis throughout the major target organs (173, 

174). Direct comparison of IFN-γ-/- and NOS2-/- mice revealed that NOS2-/- mice lived 

significantly longer than IFN-γ-/- mice, which points to the existence of NO-independent, IFN-γ 

mediated protective mechanisms. A recent study by MacMicking et al. revealed that IFN-γ 

mediates phagosome-lysosomal fusion in infected macrophages through the action of LRG47 

phosphatase (section 1.3.2.2., NO-independent mechanisms). 
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2.3.4.3. TNF-α 

 The effects of TNF-α in protective immunity against tuberculosis are pleotropic. This 

cytokine has been implicated in causing immunopathology, if present in elevated concentration 

(175), inducing apoptosis (176), controlling metalloproteinase-9 expression (177), but most 

importantly in orchestrating chemokine expression, thus regulating granuloma formation and 

maintenance of granuloma integrity (178-180). 

 TNFp55-/- and TNF-/- mice and mice in which TNF-α was neutralized succumb to acute 

M. tuberculosis infection due to delayed granuloma formation and RNI production (178, 181). 

Furthermore, neutralization of TNF-α in chronically infected mice led to fatal reactivation of 

persistent tuberculosis, increased bacterial burden, severe pathology and augmented IL-10 

production, suggesting that TNF-α plays an essential role in the control of chronic M. 

tuberculosis infection (49, 182). In humans, reactivation of tuberculosis was associated with 

administration of Infliximab, a TNF neutralizing agent. In a study by Keane et al. 70 cases of 

tuberculosis were identified among 147,000 patients who received Infliximab for the treatment 

of inflammatory diseases such as rheumatoid arthritis and Chron’s disease (183). In a similar 

study, treatment of patients with Etanercept, another commercially available anti-TNF agent, 

resulted in 25 cases of tuberculosis out of 121,000 patients that received the therapy (184). 

Collectively murine and human studies suggest that TNF is important in preventing reactivation 

of latent tuberculosis, and that patients receiving anti-TNF agents should be screened and treated 

for M. tuberculosis infection and closely monitored during anti-TNF therapy.  
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2.3.4.4. IL-10 

 IL-10 antagonizes the action of proinflammatory responses by downregulating expression 

of IFN-γ, TNF and IL-12. Cross-linking of the mannose receptor or DC-SIGN on human 

dendritic cells with mannosylated LAM will induce the production of anti-inflammatory 

cytokine such as IL-10 (113, 185). Anergy in the setting of tuberculosis refers to the absence of 

delayed hypersensitivity response to PPD in M. tuberculosis infected patients (186). It is 

estimated that about 15% of infected individuals will be PPD negative, and this anergy is 

contributed to the presence of IL-10 producing T cells, which suppress immune responses (186). 

Expression of IL-10 in tuberculosis patients was associated with abberant TCR mediated 

signaling and reduced expression of CTLA-4 (186, 187), which led to the hypothesis that chronic 

M. tuberculosis-mediated stimulation of T cells in the absence of IFN-γ and presence of IL-10 

will lead to T cell anergy and establishment of M. tuberculosis persistence.  

 The influence of IL-10 on the development of tuberculosis disease in mice is still a 

question of debate. Infection of IL-10-/- mice with M. tuberculosis resulted in either a minor 

increase in resistance or no difference at all (188-190).   Mice that overexpressed IL-10 in all 

cells showed no difference in bacterial burden during acute infection; however, during chronic 

infection there was a significant increase in bacterial numbers, which was associated with 

decreased mRNA production for TNF-α and IL12p40, and a decrease in antigen-specific IFN-γ 

responses, suggesting that IL-10 overexpression can lead to suppression of Th1 immunity (191).  

 

2.3.5. Chemokines 
 

Granuloma formation is a hallmark of tuberculosis. The granuloma is composed of 

centrally located macrophages surrounded by the cuff of T and B lymphocytes. Recent studies 
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indicate that infiltration of cells into infected lungs and formation of granulomas are mediated by 

chemokines. It has been very difficult to study roles of individual chemokines in tuberculosis due 

to redundancy in the system as a single cell type will express multiple receptors, and a single 

receptor will bind multiple ligands. Nevertheless, some common observations have been drawn 

regarding involvement of chemokines in M. tuberculosis infection. 

M. tuberculosis is a potent inducer of chemokine expression (reviewed in (192)). This 

was demonstrated using in vitro macrophage system where rapid expression of CCL2, CCL3, 

CCL4 and CCL5 by infected macrophages was detected as early as 2 hours post-infection (180, 

193). Expression of CCL2, CCL3, CCL7, CCL12, CXCL2 and CXCL10 was demonstrated 

following normal course of M. tuberculosis infection in wild-type mice (193). Although 

macrophages appear to be the most attractive candidate for chemokine expression, several 

studies reported that human bronchial epithelial cells also expressed chemokines, most notably 

CXCL8, CXCL9, CXCL10 and CXCL11 (194). Generation of knockout mice was essential for 

addressing the role of CCR2 and CCR5 ligands in controlling M. tuberculosis infection. 

Although CCR2-/- mice successfully controlled low dose infection with M. tuberculosis they 

succumbed to M. tuberculosis following high dose challenge (195, 196). These mice were 

characterized by a severe defect in monocyte/macrophage migration to the inflammatory site, 

while T cell migration, particularly CD4+ T cells, was reduced only during early stages of 

infection (195, 196). The studies with CCR2-/- mice demonstrated that macrophage infiltration 

into M. tuberculosis infected lungs was strongly mediated by CCR2 regardless of infection route, 

dose or strain of M. tuberculosis (195, 196). CCR5-/- mice were also able to control M. 

tuberculosis infection with formation of histologically normal granulomas. Although there was 

no difference in bacterial numbers between the knockout and wild-type mice, CCR5-/- were 
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characterized by extensive infiltration of macrophages and T lymphocytes into infected lungs, 

particularly during chronic infection. This dysregulation could be due to an excess of the CCR5-

binding ligands, which through signaling with a different chemokine receptor, such as CCR1, 

will lead to increased infiltration of cells to the site of infection (Algood, H.M.S, in press).  

Studies with TNF neutralizing antibodies, TNF-/- or TNFRp55-/- mice point to delayed 

granuloma formation or loss of granuloma structural integrity resulting in the susceptibility to 

acute infection or reactivation of latent TB. These studies suggest that TNF may orchestrate 

granuloma formation and maintain granuloma structural integrity through induction of 

chemokine expression. Our laboratory has demonstrated that neutralization of TNF in M. 

tuberculosis infected macrophages led to a reduction in expression of CCL5, CXCL9, and 

CXCL10 (180). In TNF-deficient mice, although cells migrated to the lungs, there was no 

evidence of structured granuloma formation.  Most importantly, isolation of CD11b+ cells from 

the lungs of TNF-deficient and wild-type revealed significant difference in the levels of 

chemokine expression in vivo. CD11b+ cells from TNF-deficient mice had reduced expression of 

CCL5, CXCL9, CXCL10, suggesting that TNF affects chemokine expression by macrophages in 

vitro and in in vivo (180). Hence, this and other studies provide evidence for the role of TNF in 

directly controlling chemokine expression and granuloma formation in M. tuberculosis infection 

(178-180). 
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3. STATEMENT OF THE PROBLEM 

 

The goal of this study was to investigate the conditions required for efficient priming and 

maintenance of T cell mediated immunity against Mycobacterium tuberculosis, and the factors 

necessary for generation of protective CD8+ T cell memory responses. 

Although the importance of T cell mediated immunity is well established in controlling M. 

tuberculosis infection, very little is known about what is required to initiate a robust and 

protective immune response against this pathogen. Persistent exposure of T cells to high antigen 

dose can lead to dysfunctional T cell responses, characterized by either T cell exhaustion or 

deletion. It has not been studied yet how exposure to high antigen dose affects the functionality 

of T cells in the face of persistent M. tuberculosis infection.  

 The ultimate objective of vaccine design is induction of long-lasting protective immunity. 

Currently, little is known about the factors required for generation and maintenance of memory 

CD4+ and CD8+ T cell responses against M.  tuberculosis. 

The work presented in this thesis addresses several important questions of T cell biology in 

tuberculosis, namely priming of effector T cells, maintenance and regulation of effector 

functions during persistent infection, and establishment of protective CD8+ T cell memory 

responses in the absence of CD4+ T cells or IL-15. Using murine model of tuberculosis, the 

following hypothesis will be tested: 1) CD40 ligation is required for the priming of strong Th1 

response; 2) inability of immune response to eliminate M. tuberculosis is a result of T cell 

exhaustion as a consequence of continuous antigenic stimulation in the lungs during persistent 

M. tuberculosis infection; 3) there is differential regulation of CD8+ T cell effector functions 

during different phases of immune response; 4) IL-15 is required for the maintenance of CD4+ 

and CD8+ T cell effector functions and for the homeostatic proliferation of CD8+ memory T 
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cells; 5) CD4+ T cell help is required for the generation and maintenance of functional memory 

CD8+ T cells during primary and secondary M. tuberculosis infection. Consequently, the 

following specific aims are set forward: 

1. Evaluate the priming of IFN-γ T cell responses following M. tuberculosis infection in 

CD40-/- and wild-type mice. 

2. Examine proliferation, activation status and effector functions of CD4+ and CD8+ T cells 

during acute and chronic M. tuberculosis infection. 

3. Analyze the effector functions of CD4+ and CD8+ T cells after primary and secondary M. 

tuberculosis infection of IL-15-/- and wild-type mice. 

4. Assess the consequences of CD4+ T cell depletion during priming of effector CD8+ T cells 

on the development of CD8+ T cell memory. 

5. Evaluate the effects of CD4+ T cell depletion during secondary infection on the 

maintenance of memory CD8+ T cell responses. 

 

The results from these studies will contribute to a better understanding of what encompasses 

protective immune response against M. tuberculosis, and how we can use this knowledge to 

improve the efficacy of current and future anti-tuberculosis vaccines. 
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4. CHAPTER 1 CD40, BUT NOT CD40L, IS REQUIRED FOR THE PRIMING OF 
MYCOBACTERIUM TUBERCULOSIS SPECIFIC T CELL RESPONSES 

 
This chapter has been adapted from a published study (Lazarevic V et al. (2003) Immunity 

19:823-835) with permission from Elsevier. The chapter includes additional data that was not 

shown in the published paper. 

 

4.1. Introduction 

 

CD40 is expressed on antigen presenting cells (APCs) such as B cells, macrophages 

(MΦ) and dendritic cells (DC) while CD40 ligand (CD40L) is primarily restricted to activated 

CD4+ T cells (197). CD40 and its ligand are essential for B cell activation, proliferation, 

survival, isotype switching, germinal center formation, and memory generation (reviewed in 

(198)). CD40L-/- mice are also severely impaired in primary T cell responses to protein antigens 

(199).  Dendritic cells constitutively express low levels of co-stimulatory molecules and require 

activation to become competent APCs for priming naïve T cells (200). It has been proposed that 

CD40/CD40L interaction is required for the induction of co-stimulatory activity on APCs (201).  

Studies in CD40-/- and CD40L-/- mice demonstrated a critical role for CD40/CD40L 

interaction in the protective immune response against intracellular parasitic pathogens such as 

Leishmania spp and Trypanosoma cruzi (202-205). In these models, infected CD40-/- and 

CD40L-/- mice were unable to control the growth of parasites and succumbed to infection due to 

impaired IFN-γ production by T cells. The failure of CD40L-/- mice to mount a protective Th1 

response was attributed to the inability of CD40L-/- T cells to induce IL-12 production by 

infected macrophages, even in the presence of exogenous IFN-γ (203, 204). In addition, 
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activation of macrophages and production of nitric oxide (NO) was not evident in infected 

CD40L-/- mice, providing direct evidence for the role of CD40/CD40L in the effector functions 

of macrophages (202). 

However, CD40/CD40L interaction is not required to mount a protective immune 

response against all intracellular pathogens. Strong activation of primary CD8+ T cell responses 

after infection of CD40L-/- mice with Listeria monocytogenes or viruses such as lymphocytic 

choriomeningitis virus, Pichinde virus or vesicular stomatitis virus suggests that priming of 

CD8+ T cells can occur independently of CD40/CD40L interaction (206-209). The induction of 

CD40/CD40L independent immune responses against some viruses can be explained by the 

observation that infection of APCs with certain pathogens is sufficient to activate APCs thus 

bypassing the need for co-stimulation (210). 

We and others have previously demonstrated that control of Mycobacterium tuberculosis 

acute and chronic infection is dependent on CD4+ T cells (48, 126, 144, 211). Although CD4+ T 

cells are clearly important for IFN-γ production and macrophage activation, it appears that these 

cells have additional roles in control of M. tuberculosis infection (48). Since CD4+ T cells are the 

primary source of CD40L (197), we sought to determine whether CD40L interaction with CD40 

on APCs was an important function of CD4+ T cells in M. tuberculosis infection. Our initial 

hypothesis was that this interaction is not essential for generation of protective immune 

responses for several reasons: (i) infection of both human and murine dendritic cells with M. 

tuberculosis was sufficient to up-regulate cell surface expression of antigen presenting and co-

stimulatory molecules as well as induce IL-12 production (115, 116), (ii) CD8+ T cells were 

primed to produce IFN-γ in the absence of CD4+ T cells in vitro and in M. tuberculosis-infected 

mice (126, 138), and (iii) CD40L-/- mice were resistant to intravenous infection with M. 
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tuberculosis (212). CD4+ T cells from CD40L-/- mice produced wild-type levels of IFN-γ when 

stimulated with purified protein derivative (PPD) in vitro, suggesting that CD40L was not 

necessary for priming T cells during M. tuberculosis infection (212). 

Contrary to our expectations, CD40-/- mice were susceptible to aerosol infection with M. 

tuberculosis due to poor priming of IFN-γ producing T cells in the lymph nodes of CD40-/- mice 

as a result of attenuated IL-12 production. The subsequent deficiency in IFN-γ producing T cells 

in the lungs of CD40-/- mice culminated in fatal, uncontrolled bacterial growth. However, 

CD40L-/- mice were resistant to aerosol infection, confirming the results from a previously 

published study (212). Such asymmetry between the outcome of infection in CD40-/- and 

CD40L-/- mice points to the existence of an additional ligand for CD40. Here, we show that M. 

tuberculosis Hsp70 functions as an alternative ligand for CD40 as it induced significant IL-12 

production by wild-type but not CD40-/- dendritic cells.  Overall, our results highlight an 

important role for ligation of the CD40 molecule on APC in the control of M. tuberculosis 

infection.  
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4.2. Materials and Methods 

 
4.2.1. Mice 

C57BL/6 mice, CD40L-/- (B6.129S2-Tnfsf5tm1Imx) mice and CD40-/- (B6.129P2-

Tnfrsf5tm1Kik) breeding pairs were purchased from The Jackson Laboratory (Bar Harbor, ME). 

β2m-/-, MHC II-/- and CD40-/- mice were bred in the University of Pittsburgh Biotechnology 

Center. All mice were maintained under specific pathogen-free conditions and used at 8-12 

weeks of age. The University Institutional Animal Care and Use Committee approved all animal 

protocols employed in the study. 

 

4.2.2. Bacteria and infections 

Aerosol and intravenous infections with M. tuberculosis (Erdman strain, Trudeau 

Institute, Saranac Lake, NY) were performed as described previously (146). In the anti-CD40L 

blocking study, C57BL/6 mice were injected with 250 µg/injection of blocking anti-CD40L 

antibody MR1 (a generous gift from Dr. Robert Hendricks, University of Pittsburgh) prior to 

infection, and every other day throughout the duration of the study.  

 

4.2.3. CFU determination  

Bacterial burden was determined by plating serial dilutions of lung and spleen 

homogenates onto 7H10 agar plates (Difco). Plates were incubated at 37oC in 5% CO2 for 21 

days prior to counting colonies. 
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4.2.4. Histology and immunohistochemistry  

For histological analysis, organs were fixed in 10% normal buffered formalin, embedded 

in paraffin, and 6 µm sections were stained with hematoxylin and eosin. For NOS2 

immunohistochemistry, sections were stained with anti-NOS2 antibody (Transduction 

Laboratories, Cincinnati, OH) or rabbit IgG control (Accurate Chemical & Scientific Corp., 

Westbury, NY) as described previously (48). 

 

4.2.5. Flow cytometry  

Lung and lymph node single cell suspensions were prepared and stained as described 

previously (146). Cells were stained with anti-CD4 (PE; clone H129.19), anti-CD8 (Cy-Chrome; 

clone 53-6.7), anti-CD69 (FITC; clone H1.2F3), anti-CD40 (PE; clone 3/23), anti-CD11c (PE; 

clone HL3), anti-B220 (PE; clone RA3-6B2), anti-MHC Class I (H-2Db; FITC; clone KH95), 

anti-MHC Class II (I-Ab; PE; clone AF6-120.1), and anti-B7.2 (PE; clone GL1) fluorescently 

conjugated antibodies. All antibodies were used at 0.2 µg/106 cells and were purchased from BD 

Pharmingen (San Diego, CA). Cells were collected on a FACS Caliber (Beckon Dickinson) and 

analyzed by CellQuest software (Becton Dickinson, Immunocytometry Systems, San Jose, CA) 

or FlowJo (Tree Star Inc, San Carlos, CA).   

 

4.2.6. Culture of bone marrow derived macrophages and dendritic cells  

Macrophages and dendritic cells were generated from bone marrow of C57BL/6, CD40-/-

MHC II-/- or β2m-/- mice, as described previously (146). 
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4.2.7. Macrophage killing assay and nitrite production  

Bone marrow derived macrophages were harvested from C57BL/6 and CD40-/- mice 

using standard procedure (146). After 6 days of culture macrophages were plated in U-bottom, 

96-well plates (triplicates) at 2 x 105/well. Macrophages were infected with M. tuberculosis at 

MOI 1.5 overnight.   

The next day T cells were harvested from the lungs of 4-week infected mice, and single 

cell suspensions were obtained. Lung cells were divided into two samples. In unfractionated 

sample, macrophages were removed by incubating cell suspensions in NUNC LabTek plates at 

37oC for 2 hours. In CD8-depleted sample, cells were incubated with 1:4 dilution of hybridoma 

2.43 supernatant (anti-CD8) at 4oC for 30 minutes. Cells were washed once, and the cell pellet 

was suspended in T cell media (RPMI, 10% FBS, 1mM sodium pyruvate, 2 mM L-glutamine, 25 

mM HEPES, 50 µM 2-ME (Sigma)). Cells were added to goat anti-rat IgG (Zymed Laboratories) 

coated plates (10 µg/10ml of 0.05M Tris buffer/plate; 4oC; O/N) and incubated at room 

temperature for 1 hour. Following incubation, the non-adherent cells were removed, and plates 

were washed twice with PBS. Cells were counted and suspended at 1 x 106/ml. Efficiency of 

CD8+ T cell depletion was confirmed by flow cytometry.  

After overnight infection, macrophages were washed gently twice with warm DMEM and 

200 µl/well of T cell media, 250U/ml IFN-γ + 3 µg/ml LPS, CD8-depleted lung cells (2 x 

105/well) or unfractionated lung cells (2x105/well) were added to the wells.  At this time point, 

macrophages were lysed in a subset of wells to determine the input number of intracellular 

bacteria.  

Following 3-day incubation at 37oC, the number of intracellular bacteria was determined 

by lysing adherent macrophages with 1% saponin for 10 minutes. Cell lysates were collected, 
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sonicated for 10 seconds, and serial dilutions were plated on 7H10 agar plates. Nitrite in the 

supernatants was measured by Greiss assay (116).  

 

4.2.8. Functional characterization of CD40-/- and WT dendritic cells  

Uninfected and M. tuberculosis-infected wild-type dendritic cells were treated with 

stimulating anti-CD40 antibody (BD Pharmingen; clone 3/23) or rIgG2a isotype control (BD 

Pharmingen; clone A110-2) at 3.5 µg/106 cells/ml on ice for 30 minutes. Following antibody 

treatment uninfected and M. tuberculosis-infected wild-type and CD40-/- dendritic cells were 

seeded at 1 x 106/ml in 24-well plates in dendritic cell media supplemented with GM-CSF and 

IL-4 (1000 U/ml) for 24 hours. Supernatants were filter sterilized and the amount of IL-12 was 

determined by ELISA (see below). Dendritic cells were stained with the anti-mouse CD4, CD8, 

CD3, MHC Class I, MHC Class II and B7.2 antibodies. Flow cytometric analysis revealed that 

dendritic cell preparations used for either M. tuberculosis infection or HSP70 ligation 

experiments did not contain CD3+ T cells, and that they expressed high levels of MHC Class I, 

MHC Class II and B7.2.  

For Hsp70 binding experiments, uninfected wild-type and CD40-/- dendritic cells were 

incubated with either 10 µg/ml or 1 µg/ml of purified, LPS-free Hsp70, which was generously 

provided by Dr. John Belisle (the NIH Tuberculosis Reagents Contract NO1 AI-75320). 

 

4.2.9. In vitro priming assay  

Spleens were harvested from uninfected C57BL/6 mice, and single cell suspensions were 

obtained by crushing the organs through 70 µm cell strainers. Red blood cells were lysed with 

NH4-Tris solution at room temperature for 2 minutes, followed by two washes in PBS. 
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Splenocytes were treated with anti-B220 antibody (BD Pharmingen; clone RA3-6B2) at 10 

µg/107 cells/ml at 4oC for 30 minutes. After 30-minute incubation, unbound antibody was 

removed by washing cells once in PBS, and the cells were added to goat anti-rat IgG coated 

plates (Zymed Laboratories) for 1 hour at room temperature. At the end of 1-hour incubation, 

non-adherent cells were collected and plates were washed twice with PBS. Efficiency of B cell 

depletion was confirmed by flow cytometry. The remaining splenocytes were cultured in T cell 

media supplemented with 20 U/ml of IL-2 (Roche) with either M. tuberculosis-infected CD40-/- 

or wild-type dendritic cells at 1:10 (DC:T cell) ratio for 7 days.  

In IL-12 rescue assay, recombinant murine IL-12 (a generous gift from Genetics Institute, 

Cambridge, Massachusetts) was added to CD40-/- DC–T cell co-cultures at 50ng/ml. Midway 

through T cell–DC co-culture, 100 µl of supernatants was removed from the wells and the 

amount of IL-12 was measured using ELISA. 100 µl of fresh T cell media was added 

supplemented with IL-2 (20 U/ml) for another 4 days of culture.  

At the end of a 7-day incubation, cells were counted and used in an IFN-γ ELISPOT to 

determine the frequency of IFN-γ producing cells in response to T cell media (negative control), 

ConA  (positive control; 10µg/well (Sigma)), uninfected and M. tuberculosis-infected dendritic 

cells (1:2 DC:T cell ratio).  

 

4.2.10. IL-12 immunotherapy in CD40-/- and WT mice  

CD40-/- and WT mice were administered 300 ng of recombinant murine IL-12 (a 

generous gift from Immunex) three times a week. The treatment commenced on the first day of 

infection and continued for the next three weeks. At weekly time points lung and lymph nodes 

were harvested (week 1 – week 5), and analyzed for cell composition by flow cytometry and 
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IFN-γ production was evaluated by ELISPOT as described below. In addition, lung and lymph 

node tissues were snap frozen, and subsequently isolated RNA was used to determine IFN-γ 

mRNA expression by RT-PCR as described below.  

 

4.2.11. ELISA 

The amount of IL-12 was quantitated using ELISA as described previously (116). The 

capture anti-IL12 antibody (Biosource International; clone C15.6) was used at 4 µg/ml in the 

binding buffer (0.1M Na2HPO4, pH 9.0) overnight at 4oC. The biotinylated anti-IL12 antibody 

(Biosource International; clone 17.15), which detects both p40/p70 heterodimer, was added at 2 

µg/ml in the incubation buffer for 1 hour at room temperature.  

 

4.2.12. ELISPOT 

Millipore Multiscreen 96-well MAIPS4510 plates (Millipore Corp, Bedford, MA) were 

coated with capture anti-IFN-γ antibody (BD Pharmingen; clone R4-6A2) in PBS at 10 µg/ml 

overnight at 4oC.  

The next day, the plates were washed with PBS, and blocked with RPMI/15% FBS for 1–

2 hours at room temperature. Lung and lymph node single cell suspensions were prepared as 

described previously (146), and plated at 80,000 lung cells/well or 150,000 lymph node 

cells/well in T cell media supplemented with IL-2 at final concentration of 20 U/ml. Lung and 

lymph node cells were either cultured in T cell media alone, ConA (10 µg/well (Sigma)), 

uninfected and M. tuberculosis-infected wild-type dendritic cells (total IFN-γ production), MHC 

II-/- dendritic cells (IFN-γ production by CD8+ T cells), and β2m-/- dendritic cells (IFN-γ 

production by CD4+ T cells) at 1:2 (DC:T cell) ratio at 37oC for ~40 hours. 
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 Following incubation plates were washed with PBS/0.1% Tween-20 and biotinylated 

anti-IFN-γ antibody (BD Pharmingen; clone XMG 1.2) was added at 5 µg/ml in 

PBS/0.5%BSA/0.1% Tween-20 at 37oC for 2 hours. Avidin Peroxidase Complex (PK-6100; 

Vector Laboratories) was prepared as directed by the manufacturer and added to the plates at 100 

µl/well for 1 hour at room temperature. Following incubation, plates were washed with 

PBS/0.1% Tween-20, and developed by adding Vectastain AEC substrate (SK-4200; Vector 

Laboratories) prepared according to manufacturer’s instructions. The spot forming units (SFU) 

per well were counted using ELISpot reader (Cellular Technology Ltd, Cleveland, OH). The cut 

off number of SFU accurately measured by the ELISpot reader is 1500 SFU/well. In IL-12 

rescue assay, the wells that were “too numerous to count” (TNTC) or were solid red were 

estimated to be >1500 SFU/well. 

 

4.2.13. Quantitative RT-PCR 

Total lung and lymph node RNA was extracted using Trizol (Life Technology, Green 

Island NY) and RNA extraction kit as directed by the manufacturer (Qiagen; Valencia, CA). 

cDNA synthesis was performed using Superscript II enzyme system according to the 

manufacturer’s instructions (Quiagen). We adopted a relative gene expression method as 

described previously (213). In our assay, we used RNA isolated from the lungs of uninfected 

mice as a calibrator and we used HPRT as a normalizer gene. Relative gene expression was 

calculated as 2-∆∆Ct, where ∆Ct = Ct (gene of interest) – Ct (normalizer) and the ∆∆Ct = ∆Ct 

(sample) - ∆Ct (calibrator). We used published sequences for the IL-12 primer and probe sets 

(214) at 400 nM and 250 nM concentrations, respectively. 
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4.2.14. RNAse Protection Assay  

A custom-made template set mck-2b (NOS2, IL-4, IL-12p40, TNF-α, IL-1β, IL-1α, IFN-γ), 

template set mck-1 (IL-4, IL-5, IL-10, IL-13, IL-15, IL-9, IL-2, IL-6, IFN-γ) and multiprobe 

RNAse protection assay (RPA) system (BD Pharmingen) were used to determine mRNA levels 

for genes of interest at designated time points. The relative gene expression was quantified by 

densitometer (ImageQuant Software; Molecular Dynamics, Sunnyvale, CA) and compared to the 

abundance of the housekeeping gene, L32.  

 

4.2.15. Statistics  

The results represent the mean ± standard error of mean. Statistical significance was calculated 

using student t-test. For comparison of CFU between CD40-/- and wild-type mice, the raw data 

were transformed into log numbers prior to statistical analysis. * p-value ≤ 0.05; ** p-value ≤ 

0.01. 
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4.3. Results 

 

4.3.1. CD40-/- mice are susceptible to aerosol M. tuberculosis infection 

The course of infection was compared in CD40-/- and wild-type mice after low dose 

aerosol infection with virulent M. tuberculosis (20–50 CFU/mouse). Bacterial numbers were 

similar for the first 2 weeks post-infection between the two groups of mice. As colony forming 

units (CFU) began to plateau in the wild-type mice at 3 weeks post-infection, bacterial numbers 

continued to rise in the lungs and spleen of the CD40-/- mice reaching 500-1000 fold higher 

bacterial burden by 4 weeks post-infection (Figure 4A and 4B). Indeed, 40% of the CD40-/- 

mice were moribund between 3 and 4 weeks post-infection. CD40-/- mice that survived this 

crisis point had reduced bacterial numbers by 5 weeks post-infection (Figure 4A and 4B). A 

small number of surviving CD40-/- mice were followed up to 5 months post-infection; these 

mice had excessive lung pathology and 10-1000 fold higher CFU in the lungs compared to wild-

type mice. 

 Histological analysis did not reveal obvious differences in the infiltration of cells into the 

lungs in the first three weeks of infection (Figure 4C). Early in infection, CD40-/- mice formed 

granulomas comparable in numbers to those found in the wild-type mice. Analysis of lung 

sections from CD40-/- mice revealed the presence of unusual, multi-nucleated giant cells at 3 

weeks post-infection (Figure 4C). These giant cells are the hallmark of human tuberculosis, but 

are rarely found in mice except in chronic infection as a result of long-term inflammation (data 

not shown). The most dramatic difference between the lungs of CD40-/- and wild-type mice was 

detected during the crisis point at 4 weeks post-infection (Figure 4C). There was massive 

necrosis in the lungs of CD40-/- mice resulting in extensive consolidation of airspaces and death 

of mice. 
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Figure 4 CD40-/- mice are susceptible to aerosol M. tuberculosis infection 

(A and B) CD40-/- ( ) and C57BL/6 ( ) mice were infected with ~20-50 CFU of M. tuberculosis via aerosol.  At 
weekly time points the number of CFU was determined by plating serial dilutions of the lung (A) and spleen (B) 
homogenates.  
(C) At 2, 3 and 4 weeks post-infection lung sections of CD40-/- and WT mice were stained with hematoxylin and 
eosin. Scale bar equals 200 µm, inset scale bar is 30 µm. The data are representative of three experiments, with 4 
mice per experimental group at each time point.  
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4.3.2. CD40 ligation is not required for the induction of mycobactericidal 

mechanisms in macrophages 

Production of reactive nitrogen intermediates (RNI), such as NO, via the inducible nitric 

oxide synthase (NOS2) pathway by activated macrophages is an important component of 

macrophage-mediated defense against M. tuberculosis (105, 215). CD40/CD40L interaction was 

critical for T cell dependent activation of macrophages resulting in RNI production and 

microbicidal activity against Leishmania and other intracellular pathogens (202-205). To address 

the role of CD40/CD40L interaction in macrophage activation, in vivo expression of CD40 

following M. tuberculosis infection was examined.  By 1 week post-infection, only 5% of lung 

cells within the R1 gate expressed CD40, but this number increased to 50% by 4 weeks post-

infection (Figure 5A). 

To test the dependence of macrophage effector functions on CD40 ligation, the ability of 

CD40-/- and wild-type macrophages to limit the growth of intracellular mycobacteria and 

produce nitrite (a measure of RNI) was evaluated in vitro. Bone marrow derived CD40-/- and 

wild-type macrophages were infected with M. tuberculosis  (Figure 5B, input) and cultured for 

three days in T cell media alone, IFN-γ/LPS, or with unfractionated or CD8-depleted lung T cells 

isolated from 4-week infected wild-type mice. CD40-/- and wild-type macrophages were equally 

efficient at reducing the numbers of intracellular mycobacteria after IFN-γ/LPS or T cell 

activation (Figure 5B). Furthermore, similar amounts of nitrite were produced when infected 

CD40-/- and wild-type macrophages were activated with IFN-γ/LPS or mycobacteria-specific T 

cells (Figure 5C). No reduction in the number of intracellular mycobacteria or nitrite production 

was observed when macrophages were cultured with naïve splenic T cells (data not shown). 
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 To analyze in vivo macrophage activation during infection, lung sections were stained for 

the expression of NOS2. There was no apparent difference in the amount or the pattern of NOS2 

staining within the granulomas of CD40-/- and wild-type mice (Figure 5D). Collectively these 

results indicate that CD40-/- macrophages did not differ significantly from wild-type 

macrophages in their intrinsic ability to produce RNI or limit the growth of intracellular bacteria. 

Hence, CD40/CD40L interaction is not pivotal to the induction of NOS2 expression in M. 

tuberculosis-infected mice. 
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Figure 5 CD40 ligation is not required for the induction of mycobactericidal state in macrophages 

(A) Expression of CD40 on lung cells during the course of aerosol M. tuberculosis infection was determined by flow 
cytometry. Lung cells from wild-type mice were stained with anti-CD40 antibody (thick line) or isotype control 
(thin line) and the percentage of CD40 positive cells within R1 gate was determined.  
(B) The ability of CD40-/- and wild-type MΦ to reduce the number of intracellular bacteria was assessed by an in 
vitro macrophage killing assay as described in Materials and Methods. Error bars are standard error of mean and the 
p values were calculated by comparing each condition to the input CFU. * p-value ≤ 0.05; ** p-value ≤ 0.01. 
(C) The amount of nitrite in supernatants of resting MΦ (media alone) or IFN-γ/LPS and T cell activated MΦ was 
determined by a Greiss assay. The data are representative of three experiments (B-C) with 4 mice per experimental 
group at each time point.  
(D) Expression of iNOS in the lung sections of CD40-/- and WT mice. 
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4.3.3. CD40-/- dendritic cells are inefficient in priming naïve T cells despite normal 

maturation and migration into the lung draining lymph nodes 

CD40/CD40L interaction has an important role in the maturation and activation of APCs, 

characterized by up-regulation of co-stimulatory and antigen-presenting molecules and 

production of inflammatory cytokines (201, 216). To ascertain the role of CD40/CD40L 

interaction in dendritic cell activation, cell surface molecule expression as a result of M. 

tuberculosis infection and CD40 ligation was examined. Infection of both wild-type and CD40-/- 

dendritic cells with M. tuberculosis resulted in up-regulation of MHC Class I, MHC Class II and 

B7.2 (data not shown). Ligation of CD40 on infected dendritic cells with stimulating anti-CD40 

antibody did not significantly increase expression of co-stimulatory and antigen-presenting 

molecules suggesting that M. tuberculosis infection alone was sufficient to mature CD40-/- and 

wild-type dendritic cells (data not shown). In vivo, migration of dendritic cells into the lung 

draining lymph nodes of wild-type and CD40-/- mice after aerosol challenge was comparable 

(Figure 6A). These results indicate that CD40-/- and wild-type dendritic cells are equally 

equipped with antigen presenting and co-stimulatory machinery and exhibit no defect in their in 

vivo migratory abilities.  

Next, we investigated the importance of CD40 ligation in cytokine production by 

dendritic cells and their ability to prime M. tuberculosis-specific T cell responses in vitro.  The 

most striking difference between wild-type and CD40-/- dendritic cells was observed in their 

capacity to produce IL-12 following M. tuberculosis infection. Incubation with stimulating anti-

CD40 antibody or infection with M. tuberculosis in the absence of T cells induced a 4-fold 

increase in IL-12 production by wild-type dendritic cells (Figure 6B). In contrast, M. 

tuberculosis infection of CD40-/- dendritic cells failed to induce IL-12 production above the 
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baseline. Since there is a strong correlation between the IL-12 production and generation of a 

strong Th1 response, we next evaluated the ability of CD40-/- and WT dendritic cells to prime 

naïve splenocytes. Splenocytes from naïve wild-type mice were incubated with M. tuberculosis-

infected wild-type or CD40-/- dendritic cells. Following 7-day in vitro priming, T cells were 

used in ELISPOT assays. Priming with wild-type or CD40-/- dendritic cells resulted in 

preferential expansion of CD8+ T cells, with < 2% residual CD4+ T cells (data not shown). 

Therefore, the number of spot forming units (SFU) in the ELISPOT assays after in vitro priming 

is mainly attributed to IFN-γ production by CD8+ T cells. The frequency of M. tuberculosis-

specific IFN-γ producing T cells after priming with infected wild-type dendritic cells was 2-fold 

higher than in T cell cultures that were primed with infected CD40-/- dendritic cells (Figure 6C). 

As expected the level of IL-12 in the CD40-/- DC–T cell cultures was also 4-fold lower 

than in the wild-type DC–T cell co-cultures from the in vitro priming experiments (Figure 6D). 

Consequently, the priming of IFN-γ T cell responses by CD40-/- dendritic cells was inefficient 

due to low production of IL-12 following M. tuberculosis infection. These findings suggest that 

CD40 ligation on dendritic cells is essential for optimal production of IL-12 and priming of M. 

tuberculosis-specific IFN-γ T cell responses in vitro. 
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Figure 6 CD40-/- DCs are inefficient at priming naïve T cells and show diminished IL-12 production in vitro 

(A) Single cell suspensions from lymph nodes of CD40-/- ( ) and wild-type ( ) mice were stained with anti-
CD11c antibodies.  The percentage of CD11c+ cells within R1 gate is shown. 
(B) The amount of IL-12 produced by uninfected or M. tuberculosis-infected CD40-/- dendritic cells and uninfected 
and M. tuberculosis-infected wild-type dendritic cells treated with either stimulating anti-CD40 antibody or isotype 
control was determined by ELISA. 
(C) The ability of CD40-/- and wild-type dendritic cells to prime naïve T cells was assessed by in vitro priming 
assay as described in Materials and Methods.  
(D) IL-12 levels in WT dendritic cells - T cell or CD40-/- dendritic cells - T cell co-cultures during the in vitro 
priming experiment were quantified by ELISA. The data are representative of three (B and C) or two (D) 
experiments. 
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4.3.4. Susceptibility of CD40-/- mice to M. tuberculosis is associated with impaired 

IFN-γ production in vivo 

Given that CD40-/- dendritic cells were inefficient at priming naïve T cells in vitro, the 

requirement for CD40 in induction of protective, M. tuberculosis-specific Th1 T cell responses 

in vivo was investigated. To establish the existence of IL-12 deficiency in CD40-/- mice in vivo, 

we measured the amount of IL-12 mRNA in the lungs and lymph nodes of CD40-/- and WT 

mice using quantitative RT-PCR. Our results indicate that there was substantially less IL-12 in 

the lymph nodes of CD40-/- mice at 2 and 3 weeks post-infection during the peak of priming in 

wild-type mice (Figure 7A). In addition, there was a significant difference in the levels of IL-12 

in the lungs of CD40-/- and WT mice throughout the acute infection (Figure 7B).  

 

 

 

 

Figure 7 Diminished IL-12 production in the lymph nodes and the lungs of CD40-/- mice 

(A and B) Expression of IL-12 mRNA in the lymph nodes (A) and lungs (B) of CD40-/- and wild-type mice as 
measured by quantitative RT-PCR. The data show significant reduction in IL-12 mRNA expression in CD40-/- 
mice. 
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CD40-/- mice had substantially fewer CD4+ and CD8+ T cells in the lungs than wild-type 

mice (Figure 8A). The most striking difference was seen at 4 weeks following aerosol challenge 

when many CD40-/- mice succumbed to infection.  This is the time of the peak response in wild-

type mice, after which the T cell numbers contract as the infection is brought under control. 

CD40-/- mice that survived the crisis point at 4 weeks post-infection had wild-type numbers of T 

cells at 5 weeks post-infection. 

The frequency of IFN-γ producing T cells in the lymph nodes and the lungs of infected 

CD40-/- and wild-type mice following M. tuberculosis infection was determined by ELISPOT 

assay. T cells isolated from the lymph nodes and lungs of infected mice were incubated with 

uninfected and infected wild-type dendritic cells (to measure total IFN-γ secreting T cells) or 

uninfected and infected β2m-/- dendritic cells (to measure IFN-γ producing CD4+ T cells) 

(Figure 8B). In wild-type mice, IFN-γ producing T cells were detected in the lymph nodes and 

lungs as early as 2 weeks post-infection (Figure 8B and 8C). The numbers of IFN-γ producing T 

cells increased in the lungs of wild-type mice up to 4 weeks post-infection, when the bacterial 

numbers stabilized (Figure 8C). In contrast, CD40-/- mice suffered from a major defect in the 

priming of IFN-γ secreting T cells in the lymph nodes, which was most obvious at the peak 

priming point of 2 weeks post-infection (Figure 8B and 8C). This deficit in priming resulted in 

overall weaker IFN-γ responses in the lungs of CD40-/- mice, which finally reached wild-type 

levels at 5 weeks post-infection. Both CD4+ and CD8+ T cell responses were impaired; however 

the absence of CD40 molecule had a greater impact on CD4+ T cells (Figure 8D).  These results 

were confirmed by IFN-γ intracellular cytokine staining of T cells from the lungs of wild-type 

and CD40-/- mice at each time point (data not shown). 
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M. tuberculosis-infected CD40-/- and wild-type dendritic cells were equally capable of 

inducing T cells from infected mice to produce IFN-γ upon in vitro re-stimulation (data not 

shown).  Furthermore, intracellular cytokine staining revealed similar percentages of IFN-γ 

positive cells within CD4+ and CD8+ gates after stimulation with anti-CD3/CD28 antibodies, 

indicating that T cells that had infiltrated the lungs of CD40-/- mice function independently of 

CD40/CD40L interaction (data not shown). These results suggest that CD40 is critical for the 

initiation of T cell responses within the secondary lymphoid organ, but not at the effector stage 

of T cell function within the lung following M. tuberculosis infection. 
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Figure 8 CD40-/- mice show delayed priming of IFN-γ producing T cells in the lymph nodes and overall 
weaker IFN-γ responses at the site of infection 

(A) Lung cells from CD40-/- ( ) and wild-type ( ) mice were stained with anti-CD4and anti-CD8 antibodies. The 
data are representative of 3 experiments, and 5-6 mice per experimental group were used at each time point.  
(B) The number of IFN-γ producing T cells from the lymph nodes and lungs of 2 week-infected CD40-/- ( ) and 
wild-type ( ) mice was assessed by ELISPOT.  
(C) The number of SFU per 150,000 of lymph node cells or 80,000 lung cells was used to calculate the frequency of 
IFN-γ producing cells in response to M. tuberculosis-infected wild-type dendritic cells. The number of total IFN-γ 
secreting T cells per lymph node or lung was calculated using the following formula: Number of IFN-γ producing 
cells = frequency x total number of cells per lymph node or lung. In each case, the number of SFU in response to 
uninfected dendritic cells was subtracted from the number of SFU in response to M. tuberculosis-infected dendritic 
cells before the calculations were made. ( ) represent CD40-/- and ( ) represent wild-type mice.  
(D) 80,000 lung cells from CD40-/- ( ) and wild-type ( ) mice were incubated with either uninfected and M. 
tuberculosis-infected β2m-/- dendritic cells or uninfected and M. tuberculosis-infected MHC II-/- dendritic cells to 
estimate the number of IFN-γ producing CD4+ and CD8+ T cells, respectively.  
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4.3.5. Exogenous administration of IL-12 in vitro and in vivo improved the priming 

efficiency of CD40-/- dendritic cells 

The most striking difference between CD40-/- and WT dendritic cells was in their ability 

to produce IL-12 upon M. tuberculosis infection. Diminished IL-12 production by infected 

CD40-/- dendritic cells is the main cause for the poor priming of Th1 response, thus leading to 

the susceptibility of CD40-/- mice to M. tuberculosis. We postulated that exogenous 

administration of IL-12 to in vitro CD40-/- - T cell co-cultures and to M. tuberculosis infected 

CD40-/- mice will lead to improved priming of IFN-γ producing T cells.  

 Exogenous administration of 50 ng/ml of recombinant murine IL-12 to CD40-/- DC – T 

cell co-cultures significantly improved the priming capacity of CD40-/- dendritic cells and 

resulted in the priming of high frequency of IFN-γ producing T cells (Figure 9).  

  

 

Figure 9 Exogenous administration of IL-12 improves the priming efficiency of CD40-/- dendritic cells in vitro 

Naïve splenocytes were stimulated with M. tuberculosis-infected WT dendritic cells, M. tuberculosis-infected 
CD40-/- dendritic cells, and M. tuberculosis-infected CD40-/- dendritic cells supplemented with 50 ng/ml of IL-12 
for 7 days in in vitro priming experiment. Following seven days of incubation, splenocytes were collected, plated at 
100,000 cells/well and the frequency of IFN-γ producing T cells in response to media, ConA, uninfected and M. 
tuberculosis-infected dendritic cells was estimated by ELISPOT.  
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IL-12 immunotherapy of 300 ng/mouse, three times a week for the first three weeks of 

infection, led to enhanced IFN-γ responses in CD40-/- mice both at the RNA and protein level 

(Figure 10A – 10C). IL-12 treatment of both CD40-/- and WT mice gave rise to the induction of 

a stronger Th1 response as evidenced by increased levels of IFN-γ mRNA and high frequency of 

IFN-γ producing T cells in the lymph nodes of treated mice (Figure 10A - 10B). Although 

enhanced expression of IFN-γ mRNA was observed in the lungs of WT mice, the frequency of 

IFN-γ producing T cells was reduced (Figure 10A – 10C). This enhanced expression of IFN-γ 

mRNA could be attributed to NK cells. 

 
IL-12 immunotherapy resulted in the improved survival of CD40-/- mice. All PBS treated 

mice had extensive lung pathology at 5 weeks post-infection (data not shown) and succumbed to 

infection by 2 months post-infection. None of the IL-12 treated mice showed signs of the disease 

and survived the challenge with the low dose of M. tuberculosis infection. The number of CFUs 

in the lungs and spleen of IL-12 treated CD40-/- mice were not significantly different from wild-

type mice, while PBS treated mice had a 100 fold higher bacterial burden at 5 weeks post-

infection than IL-12 treated CD40-/- and wild-type mice (Figure 11). 
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Figure 10 Exogenous administration of IL-12 to CD40-/- mice enhanced the priming of IFN-γ response at 
mRNA and protein level 

(A) RNA was isolated from the lymph nodes and lungs of IL-12 and PBS treated CD40-/- and WT mice. The level 
of IFN-γ mRNA expression was determined by quantitative RT-PCR using relative expression method. 
(B and C) The frequency of IFN-γ producing T cells in the lymph nodes (B) and the lungs (C) of IL-12 and PBS 
treated CD40-/- and WT mice was determined by ELISPOT as described in the Materials and Methods. 
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Figure 11 Exogenous administration of IL-12 to CD40-/- mice resulted in better control of M. tuberculosis 
infection 

(A and B) Colony forming units from the lungs (A) and the spleens (B) of IL-12 and PBS treated CD40-/- and WT 
mice was determined by plating serial dilutions of lung and spleen homogenates on 7H10 plates. Top asterisks 
designate statistically significant differences between IL-12 and PBS treated CD40-/- mice, while bottom asterisks 
denote significant differences between IL-12 and PBS treated wild-type mice. 
 

 

 

4.3.6. CD40-/- mice that survive the crisis point succeed in inducing IFN-γ 

responses 

The finding that some CD40-/- mice survived the crisis point, and could live up to 5 

months post-infection albeit with a higher bacterial burden was intriguing. To investigate the 

differences between resistant and susceptible CD40-/- mice, the cytokine profile in the lungs of 

CD40-/- and wild-type mice was analyzed by RNase protection assay (RPA). At 4 weeks post-

infection, during the crisis point, we extracted RNA from the lungs of four moribund CD40-/- 

mice (Figure 12A; lanes 2, 4, 14, 16), one CD40-/- mouse that was controlling infection (Figure 
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12A; lane 6), and three wild-type mice (Figure 12A; lanes 8, 10, 12). CD40-/- mice that failed to 

control M. tuberculosis infection had ~1000-fold higher CFU in the lungs compared to wild-type 

mice.  These mice had higher levels of IL-10 and IL-6 and no detectable IL-15 and IFN-γ mRNA 

(Figure 12A; lanes 2, 4, 14, 16). In contrast, the relatively healthy CD40-/- mouse had ~10-fold 

more CFU in the lungs compared to wild-type mice, no IL-10 mRNA expression and normal 

levels of IFN-γ and IL-15 (Figure 12A, compare lane 6 to lanes 8, 10, 12). In the healthy CD40-

/-mouse, a high level of IL-6 mRNA was also detected indicating that irrespective of the disease 

status, the inflammation in the lungs of CD40-/- mice was significant  (Figure 12A, compare lane 

6 to lanes 8, 10, 12). 

 As a group, CD40-/- mice had significantly reduced levels of IFN-γ mRNA over the 

course of infection (Figure 12B) and higher levels of IL-10 at 4 weeks post-infection (Figure 

12C). The increased level of IL-10 mRNA appears to be due to IL-10 production by 

macrophages as no IL-10 was detected within the lymphocyte population by intracellular 

cytokine staining or ELISPOT following specific and non-specific stimulation (data not shown). 

Expression of IL-10 and IL-6 is likely due to the inflammation and extensive necrosis in the 

lungs of CD40-/- mice at 3 and 4 weeks post-infection. At 5 weeks post-infection no IL-10 

mRNA was detected in the lungs of CD40-/- and wild-type mice. CD40-/- mice also had 

significantly less IL-12 mRNA in the lungs throughout the infection as shown by quantitative 

real-time RT-PCR (data not shown). No IL-4 mRNA was detected (data not shown). 

 These results confirmed that the susceptibility of CD40-/- mice to progressive M. 

tuberculosis infection was associated with a defect in the ability of these mice to produce IFN-γ 

in the lungs during acute infection. Those mice that survived were eventually able to recruit IFN-

γ producing T cells to the lungs. 
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Figure 12 CD40-/- mice that controlled M. tuberculosis infection succeeded in recruiting IFN-γ producing T 
cells 

(A) At 4 weeks post-infection RNA was extracted from the lungs of four moribund CD40-/- mice (lanes 2, 4, 14, 
16), one CD40-/- mouse that controlled infection (lane 6) and three WT mice (lanes 8, 10, 12) and analyzed by RPA. 
Lane 1 contains unprotected probe (marker) and each lane represents protected probe from an individual mouse or 
its 1:10 dilution.  
(B-C) mRNA levels for IFN-γ and IL-10 were determined by RPA at weekly time points from the lungs of infected 
CD40-/- ( ) and wild-type ( ) mice. The results represent the mean ratio of the gene of interest and L32 house 
keeping gene for 4 mice per experimental group per time point. The data are representative of two experiments. 
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4.3.7.  Infection of CD40-/- mice with higher inoculum rescued CD40-/- mice from 

death 

The duration and strength of TCR-mediated signals may dictate the level of co-

stimulation required to achieve T cell activation (217, 218). Therefore, the antigen dose or 

number of priming events may determine the requirement for CD40/CD40L interaction in the 

induction of M. tuberculosis-specific T cell responses. To address this question, CD40-/- mice 

were infected with 2 x 105 CFU/mouse intravenously, a sublethal dose in wild-type mice. CD40-

/- mice had approximately 10-fold higher number of CFU in the lungs 3 weeks after intravenous 

infection with M. tuberculosis (Figure 13A). In contrast to aerosol infected CD40-/- mice in 

which the number of CFU continued to rise to high levels, CD40-/- mice maintained slightly 

higher but stable bacterial numbers after intravenous infection (Figure 13A). None of CD40-/- 

mice died after intravenous M. tuberculosis infection during the study. Except for the 2-week 

time point, the overall numbers of CD4+ and CD8+ T cells in the lungs of CD40-/- mice were 

comparable to those in wild-type mice (Figure 13B). Normal priming in the lymph nodes and 

only slightly lower IFN-γ responses were observed in the lungs of CD40-/- mice at 2 weeks post-

infection (Figure 13C). No difference in the number of IFN-γ producing T cells was detected in 

the spleens of CD40-/- and wild-type mice following intravenous infection (Figure 13C, spleen). 

After aerosol challenge, there were on average 500 and 5000 IFN-γ producing T cells in the 

lungs of CD40-/- mice at 2 and 3 weeks, respectively (Figure 13C, lung). After higher antigenic 

challenge a 17-fold and 2-fold increase in the number of IFN-γ producing T cells was detected in 

the lungs of CD40-/-mice at 2 and 3 weeks, respectively (Figure 13C, lung).  

 Aerosol infection with a higher inoculum (2-3 fold higher, ~100 CFU) was performed to 

address whether higher antigen load or a systemic infection increased resistance of CD40-/- mice 
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to M. tuberculosis. Similarly to intravenous infection, none of CD40-/- mice died after high dose 

aerosol infection. CD40-/- mice had slightly higher, but nevertheless controlled, bacterial loads 

in the lungs and spleen after high dose aerosol infection (data not shown).  

When compared to WT mice, CD40-/- mice infected with a higher inoculum via aerosol 

had fewer CD4+ and CD8+ T cells in the lungs at 3 weeks post-infection; however, this was 

compensated for by a massive expansion of CD4+ and CD8+ T cell responses at 4 weeks post-

infection (data not shown). Induction of IFN-γ T cell responses was robust after higher dose M. 

tuberculosis infection (data not shown). When compared to low dose infection, the number of 

IFN-γ producing T cells was 7-fold higher in the lymph nodes of CD40-/- mice at 3 weeks after 

high dose infection, leading to 8.6-fold and 8-fold higher numbers of IFN-γ producing T cells in 

the lungs of CD40-/- mice at 4 and 5 weeks, respectively (data not shown). Thus, the markedly 

improved survival of CD40-/- mice is attributed to the induction of a stronger Th1 response 

characterized by a potent IFN-γ production in the lungs, solely as a result of higher antigen dose.  
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Figure 13 Infection of CD40-/- mice with a higher dose of M. tuberculosis resulted in better priming of IFN-γ 
T cell responses 

(A) CD40-/- ( ) and wild-type ( ) mice were infected with 2 x 105 M. tuberculosis bacilli intravenously. At 
weekly time points, serial dilutions of lung and spleen homogenates were plated for CFU determination.  
(B) The CD4+ and CD8+ T cell responses in the lungs of CD40-/- ( ) and wild-type ( ) mice were analyzed using 
flow cytometry.  
(C) 150,000 lymph node cells/well, 200,000 splenocytes/well and 80,000 lung cells/well from CD40-/- ( ) and 
wild-type ( ) mice were incubated with uninfected or M. tuberculosis-infected wild-type dendritic cells for 40 
hours in an ELISPOT assay. The number of IFN-γ producing T cells was calculated as follows: frequency x total 
number of cells per lymph node, spleen or lung.  
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4.3.8. The outcome of M. tuberculosis infection in CD40-/- and CD40L-/- mice is 

different 

The finding that IFN-γ responses were impaired in CD40-/- mice after aerosol challenge 

was surprising as a previous study reported that CD40L-/- mice developed mycobacteria-specific 

Th1 responses in the spleen and were resistant to intravenous infection with M. tuberculosis 

(212).  This observation prompted us to investigate whether different routes of infection could 

influence the outcome of infection in CD40L-/- mice. In contrast to CD40-/- mice, CD40L-/- or 

anti-CD40L-antibody treated mice were resistant to low dose (30 - 50 CFU) aerosol challenge 

with M. tuberculosis and controlled mycobacterial growth in the lungs and spleen comparably to 

control mice (Figure 14A and 14B, data not shown).  

The magnitude of CD4+ and CD8+ T cell responses in the lungs of CD40L-/- and anti-

CD40L-antibody treated mice was similar to control mice, indicating that the development of 

protective T cell responses occurs normally in the absence of CD40L (Figure 14C,  data not 

shown). As early as 2 weeks post-infection, there was a substantial number of IFN-γ secreting T 

cells in the lungs and lymph nodes of CD40L-/- mice (Figure 14D). These results suggest that 

irrespective of the route of infection CD40L-/- mice are resistant to M. tuberculosis challenge 

due to their ability to prime mycobacteria-specific Th1 T cells that migrate to the lungs early in 

infection, before the crisis point that we saw in CD40-/- mice. The results obtained in mice 

treated with blocking anti-CD40L antibody correlated well with the results using CD40L-/- mice, 

confirming that resistance in CD40L-/- mice was not due to compensatory mechanisms in a 

knockout strain. These results suggest that CD40, but not CD40L, is required for the priming of 

IFN-γ T cell responses. Such asymmetry in the outcome of infection between CD40-/- and 

CD40L-/- mice points to the existence of an additional ligand for CD40. Wang et al. reported 
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that recombinant, LPS-free, M. tuberculosis-derived Hsp70 can ligate CD40 and induce 

chemokine, cytokine and NO expression by human dendritic cells, macrophages, and CD40 

transfected cell lines (219, 220). We next tested the ability of recombinant, LPS-free, M. 

tuberculosis-derived Hsp70 to ligate CD40 on murine wild-type dendritic cells, and stimulate IL-

12 production (Figure 15). Our results indicate that M. tuberculosis-derived Hsp70 induced 

significant production of IL-12 by wild-type dendritic cells, but not CD40-/- dendritic cells, 

suggesting that M. tuberculosis-derived Hsp70 could be an alternative ligand for CD40.  
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Figure 14 CD40L-/- are able to control M. tuberculosis aerosol infection 

(A and B) The number of colony forming units in the lungs of CD40L-/-, anti-CD40L blocking antibody treated 
mice and their respective controls was determined by plating serial dilutions of lung homogenates on 7H10 plates.  
(C) The number of CD4+ and CD8+ T cells in the lungs of CD40L-/- and WT mice was determined by flow 
cytometry using the following formula = % total x total number of cells per lung. 
(D) The number of IFN-γ producing T cells was determined by ELISPOT as described in Materials and Methods. 
The results represent the mean of 3-4 mice per time point and error bars are standard error of mean. Statistical 
significance was determined by student t-test.  
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Figure 15 Asymmetry in the outcome of infection between CD40-/- and CD40L-/- mice could be due to 
existence of an alternative ligand for CD40 (M. tuberculosis derived Hsp70) 

WT and CD40-/- dendritic cells were left untreated, infected with M. tuberculosis (MOI 3), treated with 10 µg/ml or 
1 µg/ml of recombinant, LPS-free, M. tuberculosis-derived Hsp70 for 24 hours. Supernatants were collected, filtered 
and the amount of IL-12 (p70) was estimated by ELISA. 
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4.4. Discussion 

 

In this study we demonstrate that CD40 is essential for the induction of protective 

immunity against aerosol challenge with M. tuberculosis. The susceptibility of CD40-/- mice to 

M. tuberculosis infection was attributed to the failure of these mice to rapidly mount protective 

Th1 responses. The underlying cause for poor induction of the Th1 response was due to deficient 

in vivo IL-12 production by CD40-/- dendritic cells upon M. tuberculosis infection. Interestingly, 

the outcome of infection in CD40-/- and CD40L-/- mice was markedly different. This dichotomy 

implies that CD40 ligation, but not CD40L, is essential for the induction of a robust Th1 

response in M. tuberculosis infection. In the absence of CD40L, stimulation through CD40 could 

be achieved by an alternative ligand. Here, we demonstrate that infection with M. tuberculosis or 

treatment with M. tuberculosis Hsp70 stimulates IL-12 production from wild-type dendritic cells 

in a CD40-dependent manner.  

At 4 weeks post-infection, nearly 40% of CD40-/- mice died, and histological analysis 

revealed excessive necrosis and consolidation of airspaces leading to hypoxia and respiratory 

distress in susceptible mice.  However, some CD40-/- mice lived for up to 5 months post-

infection albeit with higher bacterial numbers in the lungs when compared with wild-type mice. 

This intriguing finding prompted us to determine the cause of susceptibility in CD40-/- mice, and 

examine why a subset of CD40-/- mice were capable of controlling M. tuberculosis infection. 

Our results indicate that the susceptibility of CD40-/- mice to M. tuberculosis infection 

stems from their inability to produce IFN-γ early in infection. This impaired Th1 response is 

related to inefficient priming of naïve T cells by CD40-/- dendritic cells compared to wild-type 

dendritic cells.  These results were surprising, as direct infection of APCs with a pathogen can be 
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sufficient to activate APC and overcome the need for co-stimulation in the induction of T cell 

responses (210). It is generally believed that infection of dendritic cells with M. tuberculosis is 

sufficient to mature them into potent antigen presenting cells. Infection of dendritic cells with M. 

tuberculosis results in up-regulation of antigen presenting, co-stimulatory and adhesion 

molecules, in production of inflammatory cytokines such as IL-1, IL-12 and TNF-α (112, 115, 

116), and efficient in vitro priming of M. tuberculosis-specific CTL responses (138). Despite the 

fact that M. tuberculosis-infected CD40-/- dendritic cells displayed phenotypic changes 

indicative of maturation, such as cell surface marker up-regulation, their ability to prime naïve T 

cells was diminished compared to wild-type dendritic cells. M. tuberculosis-infected wild-type 

dendritic cells produced greater than four times more IL-12 than infected CD40-/- dendritic cells. 

Furthermore, attenuated in vivo IL-12 production may have a direct effect on the priming 

efficiency of Th1 responses in the lymph nodes of CD40-/- mice. Exogenous administration of 

IL-12 to CD40-/- DC – T cell co-cultures and to M. tuberculosis-infected CD40-/- mice 

enhanced the priming of potent IFN-γ T cell responses.   

Our results indicate that CD40-/- mice manifested a major defect in the in vivo priming of 

M. tuberculosis-specific, IFN-γ T cell responses. This early defect in IFN-γ production in the 

lymph nodes of CD40-/- mice had a significant impact on the magnitude of IFN-γ responses in 

the lungs. Infiltration of IFN-γ producing T cells into the lungs of CD40-/- mice was 

substantially delayed compared with wild-type mice. While wild-type mice responded early to 

M. tuberculosis challenge with IFN-γ production, poor priming in CD40-/- mice provided a 

window of opportunity for M. tuberculosis to overwhelm the immune system of CD40-/- mice. 

These results underscore the importance of early IFN-γ production in resistance to M. 

tuberculosis infection as previously suggested with CD4+ T cell-deficient mice (126). M. 
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tuberculosis-infected CD40-/- dendritic cells could re-stimulate T cells from infected wild-type 

mice to produce IFN-γ suggesting that the defect in CD40-/- mice is at the level of priming, and 

that CD40 is not required for the effector function of T cells.  M. tuberculosis-specific CD4+ T 

cell responses were more affected than CD8+ T cell responses by the absence of CD40 molecule. 

This finding was surprising as it is believed that CD4+ T cell help for the development of CD8+ T 

cell responses is mediated through CD40/CD40L interaction (210, 221, 222).  

Direct comparison of gene expression between CD40-/- mice that were moribund and 

those that were controlling the infection at 4 weeks revealed a striking difference in the amount 

of IFN-γ mRNA present in the lungs. While moribund CD40-/- mice had undetectable IFN-γ 

mRNA levels, CD40-/- mice that controlled infection showed wild-type levels of IFN-γ gene 

expression. These results support the conclusion that the ability of surviving CD40-/- mice to 

control M. tuberculosis challenge is due to successful induction of IFN-γ production.  

It has been proposed that the strength of signal and duration of TCR stimulation can 

determine the level of co-stimulation required to achieve efficient T cell activation (217, 218). 

High antigen dose and prolonged TCR ligation were shown to overcome the need for co-

stimulation in the induction of T cell responses (223). CD40-/- mice did not exhibit a permanent 

impairment, but rather a 4 week-delay, in IFN-γ production in the lungs. This suggests that 

continuous replication of mycobacteria within the lungs of CD40-/- mice may generate a 

sufficient antigen dose that will elicit repeated and prolonged TCR stimulation, thereby 

overcoming the need for CD40/CD40L interaction as proposed for some viral infections 

(reviewed in (218)). Thus, those mice that survived the critical point may have received a 

slightly higher dose of bacteria during aerosol infection, or supported a higher antigen load early 

in the lungs.  
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To evaluate the effect of antigen dose and systemic infection on CD40 dependent 

induction of Th1 responses, we infected CD40-/- mice with a higher bacterial inoculum 

intravenously and via aerosol. High dose intravenous and aerosol infections resulted in improved 

induction of IFN-γ responses, maintenance of stable bacterial numbers in the lungs and spleens, 

and survival of mice throughout duration of the study. These results suggest that high antigen 

dose and priming at multiple sites achieved through systemic infection or immunization may 

overcome the need for CD40 ligation in the induction of mycobacteria-specific IFN-γ responses.  

Activation of macrophages was not obviously impaired by the absence of CD40/CD40L 

interaction. Production of RNI appears to be a primary effector mechanism by which activated 

macrophages contribute to the growth inhibition and killing of intracellular mycobacteria (215).  

Induction of NOS2, as an indicator of macrophage activation, can be achieved by soluble 

mediators, such as IFN-γ and TNF-α, or through T cell-macrophage contacts via CD40-CD40L 

interaction (215, 224). CD40-/- macrophages had no intrinsic defect in their ability to reduce the 

numbers of intracellular bacteria or produce RNI after in vitro LPS/IFN-γ or T cell-mediated 

activation. Moreover, lung sections from CD40-/- mice did not reveal any obvious differences in 

NOS2 expression, suggesting that CD40/CD40L interaction is not necessary for induction of 

NOS2 in vivo. Although CD40-/- mice have significantly reduced amounts of IFN-γ and lack the 

CD40 molecule, these mice have normal NOS2 mRNA and protein expression. These results 

suggest that either there is another pathway for induction of NOS2, independent of IFN-γ and/or 

CD40/CD40L interaction, or the reduced levels of IFN-γ in the lungs of CD40-/- mice were 

sufficient to activate macrophages through a conventional IFN-γ dependent pathway. It remains 

unclear as to why CD40-/- mice still succumb to M. tuberculosis infection despite normal levels 

of NOS2. Although induction of NOS2 and production of RNI intermediates are absolutely 
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essential for protection against M. tuberculosis (105, 215), they may not be sufficient to protect 

CD40-/- mice in the absence of optimal IFN-γ production.  We previously reported that 

chronically infected mice succumbed to infection after depletion of CD4+ T cells, even though 

IFN-γ and NOS2 production in the lungs was unaffected (48).  These data emphasize the 

importance of NOS2- and IFN-γ- independent anti-mycobacterial mechanisms in control of 

tuberculosis.  

 The susceptibility of CD40-/- mice to low dose aerosol challenge was unexpected, as a 

previous study reported that CD40L-/- mice were resistant to intravenous M. tuberculosis 

infection (212).  To exclude the possibility that the route of infection could have an effect on the 

outcome of infection, we infected CD40L-/- and wild-type mice that were treated with the 

blocking anti-CD40L antibody with a low dose of M. tuberculosis by aerosol. CD40L-/- mice 

were resistant to M. tuberculosis infection irrespective of the infection route. The development of 

Th1 responses in CD40L-/- and anti-CD40L antibody treated mice was similar to control mice, 

indicating that the absence of CD40L has negligible impact on the generation of IFN-γ responses 

in M. tuberculosis infection. We noted a minor difference in the number of IFN-γ producing cells 

in the lungs and lymph nodes of CD40L-/- mice at 2 weeks post-infection.  However, this 

difference did not influence the outcome of infection as it occurred at the time when the CFU in 

CD40L-/- mice were still low. By 3 weeks post-infection CD40L-/- mice exhibited strong lung 

IFN-γ responses comparable to wild-type mice resulting in stable control of mycobacterial 

burdens.  

These data indicate that CD40, but not CD40L, is required for the optimal priming of T 

cells and control of M. tuberculosis infection. One possible explanation could be the existence of 

another host-derived ligand for CD40, as shown for other members of TNF-R superfamily (198, 
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225). Alternatively, a M. tuberculosis-encoded protein may directly ligate CD40 on APCs, 

thereby modulating their function. Our results support that a M. tuberculosis-derived product 

induces IL-12 production by dendritic cells through CD40 ligation. In the absence of exogenous 

IFN-γ or T cells, the level of IL-12 produced by M. tuberculosis-infected wild-type dendritic 

cells was four times greater than the amount of IL-12 produced by M. tuberculosis infected 

CD40-/- dendritic cells.  Furthermore, we found that recombinant M. tuberculosis Hsp70 

stimulated significant IL-12 production by wild-type but not CD40-/- dendritic cells, suggesting 

that Hsp70 is an alternative ligand for CD40. A recent publication reported that mycobacterial 

heat shock protein 70 (Hsp70) binds to CD40 and stimulates human mononuclear cells to release 

CC-chemokines RANTES, MIP-1α, and MIP-1β (219). Thus, our data and this publication 

strongly support a role for mycobacterial derived proteins in the stimulation of CD40 for priming 

immune responses.   

One question is why would a pathogen evolve to induce strong T cell responses? 

Granulomas are formed following T cell induction in M. tuberculosis infection; these 

granulomas contain, but do not always eliminate the organisms.  One could speculate that 

granuloma formation, which is dependent on T cell responses, is essential for effective 

transmission of M. tuberculosis infection.  Transmission is greatly enhanced in persons with 

cavitation, i.e. a granuloma reactivating and breaking through a bronchus, releasing large 

numbers of bacteria into the airways. This might explain why M. tuberculosis would maintain 

molecules that strongly stimulate induction of a T cell response. 

 Our initial interest in CD40/CD40L interaction stemmed from experiments in which 

CD4+ T cell depletion in chronically infected mice resulted in the death of mice despite normal 

levels of IFN-γ and NOS2 expression in macrophages (48). In addition, CD4-/- and MHC Class 
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II-/- mice succumb to acute M. tuberculosis infection despite the compensatory IFN-γ production 

by CD8+ T cells in the lungs (126, 138).   Since CD40L is primarily expressed by activated CD4+ 

T cells, we sought to determine whether additional roles of CD4+ T cells in the control of M. 

tuberculosis infection are mediated through CD40/CD40L interaction. Our results show that the 

phenotype of CD40-/- mice differs considerably from that of CD40L-/- and CD4-/- mice (data 

not shown) indicating that CD40/CD40L interaction is not the mechanism by which CD4+ T 

cells contribute to the control of acute or chronic M. tuberculosis infection.  

In conclusion, our results demonstrate the importance of CD40 in the generation of 

protective immunity against M. tuberculosis. The failure of CD40-/- mice to control M. 

tuberculosis infection is attributed to inefficient priming of IFN-γ T cell responses. CD40 

dependence on induction of IFN-γ responses appears to be a function of antigen dose as 

intravenous and aerosol infection of CD40-/- mice with a higher dose of M. tuberculosis 

overcomes the need for co-stimulation in the induction of IFN-γ responses.  These results may 

have important implications for vaccine development and priming of immune responses in 

humans following M. tuberculosis infection as the rate at which T cell responses are primed 

could influence progression to disease or containment of the infection. 
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5. CHAPTER 2 LONG-TERM CONTROL OF MYCOBACTERIUM TUBERCULOSIS 
INFECTION IS MEDIATED BY DYNAMIC IMMUNE RESPONSES 

 

5.1. Introduction 

 

Mycobacterium tuberculosis remains the largest cause of death in the world attributed to 

a single infectious agent (226). Over the past twenty years, work utilizing gene-knockout murine 

models has proven essential for understanding the contributions of various immune cell types 

and effector arms in the successful long-term control of M. tuberculosis infection (reviewed in 

(227)).  IL-12 production by M. tuberculosis-infected dendritic cells is essential for the priming 

of potent Th1 responses characterized by IFN-γ and TNF production by CD4+ and CD8+ T cells 

(119, 228). The activation of these responses culminates in the formation of organized structures 

in the lungs called granulomas. Elaboration of proinflammatory cytokines by T cells leads to 

induction of bacteriostatic and bactericidal mechanisms by infected macrophages mediated via 

RNI and ROS pathways (reviewed in (227)). Coincident with the onset of M. tuberculosis-

specific T cell mediated immunity, bacterial growth is suppressed and maintained under strict 

control, resulting in life-long containment and latency within infected individuals. However, in 

10% of infected people spontaneous reactivation occurs, usually as a consequence of waning 

immune function. This risk of reactivation is increased in HIV+ infected individuals to 10% per 

year, emphasizing the role of CD4+ T cells in restraining M. tuberculosis growth and maintaining 

latency (128).  

It has been particularly challenging to establish adequate animal models of human latent 

tuberculosis. Mice infected with M. tuberculosis typically do not display overt signs of disease 

(45), and  reactivation occurs  when experimental manipulations such as CD4 depletion, nitric 
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oxide synthase inhibition or TNF neutralization are implemented (46-49). Unlike humans, 

bacterial loads are maintained at relatively high levels (~ 1x106 CFU per lung), which can lead to 

progressive immunopathology. Therefore, the murine model of tuberculosis is more reflective of 

persistent M. tuberculosis infection, a feature which can be exploited to study the influence of 

chronic exposure to antigen on effector functions of M. tuberculosis-specific CD4+ and CD8+ T 

cells. 

It has been shown in viral persistent infections caused by human immunodeficiency virus 

(HIV), cytomegalovirus (CMV), Epstein-Barr virus (EBV), Friend virus (FV) and Clone 13 

lymphocytic choriomeningitis virus (LCMV) infections that chronic exposure of CD8+ T cells to 

viral antigens leads to functional abnormalities including impaired cytotoxicity and cytokine 

production, reduced proliferative capacity, and clonal deletion or exhaustion (229-237). This 

dysregulation of effector capabilities is not limited to CD8+ T cells. Infection with high dose of 

LCMV Clone 13 leads to aberrant CD4+ T cell responses marked by reduced IFN-γ and IL-2 

production (233, 234). From these findings a model has emerged in which chronic exposure to 

high viral load culminates in functionally weak CD4+ T cell responses. Inadequate CD4+ T cell 

help concomitant with chronic exposure to high antigen doses can generate defective CD8+ T 

cell responses leading to persistent viral infection (233, 234).  

Therefore, the role of antigen levels on shaping the functional competency and 

developmental skewing of T cell responses has become recognized as a key factor in chronic 

disease processes. For example, the removal of antigen stimulation can lead to reacquisition of 

effector functions, and high or low antigen states have been shown to be primary determinant of 

the cytokine versus cytolytic nature of virus specific CD8+ T cell responses (233, 238, 239).  
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In this study we sought to determine the effect of prolonged exposure to high bacterial 

loads on the quality of effector CD4+ and CD8+ T cell responses during a 5-7 month period of M. 

tuberculosis infection. The results from our study reveal several important findings: (i) CD4+ and 

CD8+ T cells did not show signs of replicative senescence, but rather demonstrated two bursts of 

expansion during a 7 month course of infection; (ii) although CD4+ T cells were the primary 

source of IFN-γ during acute infection, CD8+ T cells equally contributed to IFN-γ production 

during chronic infection; (iii) the frequency of IFN-γ producing CD4+ and CD8+ T cells 

dynamically changed during protracted M. tuberculosis infection; and (iv) there was differential 

regulation of CD8+ T cell effector functions during different phases of infection whereupon 

CD8+ T cells functioned primarily as cytotoxic T lymphocytes during acute infection, and 

switched to cytokine production during chronic infection. This lack of CTL activity was not 

accompanied by loss of perforin production. Collectively, our findings depict a dynamic host 

immune response during persistent M. tuberculosis infection characterized by quantitative and 

qualitative differences in the effector functions of CD4+ and CD8+ T cell responses that were 

previously unrecognized. 
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5.2. Materials and Methods 

 

5.2.1. Mice and infections 

C57BL/6 wild-type mice were purchased from Charles River Laboratories (Wilmington, 

MA). All mice were kept under specific pathogen-free conditions in a Biosafety Level 3 facility, 

and animal protocols were approved by the University Institutional Animal Care and Use 

Committee. Mice were infected with a low dose of M. tuberculosis (Erdman strain, Trudeau 

Institute, Saranac Lake, NY) at 5x105/ml using a nose-exposure only aerosolizer unit (Intox Inc., 

Moriarty, NM). The dose received was estimated by plating whole lung homogenates of three 

mice 24 hours following aerosol infection. Twenty mice were used for each time point, with 5 

mice per experimental group. 

 

5.2.2. CFU determination 

Lung homogenates were serially diluted in PBS/0.05% Tween-80 and plated on 7H10 

agar plates (Difco). Plates were incubated at 37oC, 5% CO2 for 21 days prior to counting 

colonies. 

 

5.2.3. Bone marrow derived macrophages and dendritic cell cultures 

In ex vivo stimulation assays, such as ELISPOT and limiting dilution analysis, bone 

marrow derived dendritic cells were cultured in the presence of GM-CSF supernatant at 1:200 

dilution (a generous gift from Dr. Binfeng Lu, University of Pittsburgh) and 20 ng/ml of IL-4 

(PeproTech Inc, Rocky Hill, NJ) and macrophages were cultured in the presence of L cell sup as 

a source of CSF-1 using standard procedure described previously (146).  
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5.2.4. Preparation of lung cells 

For all experiments performed in this study, we treated lung cells with 1 mg/ml of 

collagenase A and 25 U/ml of DNase (Roche, Mannheim, Germany) at 37oC for 20 minutes. The 

lungs were crushed with a 5 ml syringe plunger through 70 µm cell strainer to obtain single cell 

suspension. Red blood cells were lysed with NH4Cl/Tris solution for 2 minutes at room 

temperature. Following one wash with 1x PBS, cells were suspended in T cell media (DMEM, 

10% FBS, 1 mM sodium pyruvate, 2 mM L-glutamine, 25 mM HEPES, 50 µM 2-ME [Sigma]) 

and counted using trypan blue exclusion method. 

 

5.2.5. Flow cytometry 

Lung single cell suspensions were stained as described previously (180). Cells were 

stained with anti-CD4 (clone H129.19), anti-CD8 (clone 53-6.7), anti-CD69 (clone H1.2F3), 

anti-Ly6C (clone AL-21), anti-CD44 (clone IM7), and anti-CD62L (clone MEL-14) 

fluorescently conjugated antibodies. All antibodies were purchased from BD Pharmingen (San 

Diego, CA) and used at 0.2 µg/ml concentration. Cells were collected on a FACSCaliber 

(Beckon Dickinson, San Jose, CA) and analyzed by CellQuest (Becton Dickinson) or FlowJo 

(Tree Star Inc, San Carlos, CA) software.  

 

5.2.6. Proliferation of T cells in the lungs of infected mice 

Sixteen hours prior to each experimental time point, mice were injected intraperitoneally 

with saline containing 1 mg of 5-bromo-2’-deoxyuridine [BrdU] (Sigma-Aldrich, St. Louis, 

MO). Lung cells were stained for cell surface markers CD4 and CD8 at room temperature for 20 

minutes prior to a fixation step with 4% paraformaldehyde [PFA] (200 µl/tube) on ice for 20 
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minutes. Cells were washed with tissue culture phosphate buffered saline [PBS] at 470 g, and 

cell pellets were suspended in ice-cold 0.15 M NaCl (100 µl/tube), followed immediately by 

drop-wise fixation with ice-cold 95% ethanol (200 µl/tube) on ice for 30 minutes. Following a 

PBS wash, cells were permeabilized and fixed with 200 µl/tube of 0.4% saponin and 2% PFA for 

1 hour at room temperature. Cells were washed with PBS, and suspended in 200 µl/tube of 0.15 

M NaCl, 4.2 mM MgCl2 (pH 5) containing 250 U/ml of DNase I (Roche, Indianapolis, IN) for 

30 minutes in 37oC water bath. Cells were washed with PBS, and incubated with anti-BrdU 

antibody or the respective isotype control (BD Pharmingen, FITC-conjugated antibody set) 

diluted at 1:3 in 0.5% Tween-20 and 0.5% BSA (50 µl/tube). Following 30 minute incubation at 

room temperature, cells were washed with PBS, and fixed with 4% PFA prior to acquisition on 

the flow cytometer.  

 

5.2.7. Apoptosis staining 

Lung cells were stained for the expression of CD4 and CD8 molecules for 20 minutes at 

room temperature. The amount of apoptosis was determined by staining lung cells with Annexin 

V-FITC and 7-AAD reagents (BD Pharmingen) according to manufacturer’s instructions. 

Briefly, cells were suspended in 100 µl/tube of 1x Binding buffer, and incubated with 5 µl/tube 

of Annexin V-FITC and 5 µl/tube of 7-AAD for 15 minutes in the dark at room temperature. 

Cells were washed with 2 ml/tube of 1x Binding buffer to remove any unbound Annexin V-FITC 

and 7-AAD, and fixed with 4% PFA in 1x Binding buffer. Samples were analyzed within 30 

minutes.  
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5.2.8. IFN-γ production 

Cytokine production by CD4+ and CD8+ T cells isolated from the lungs of M. 

tuberculosis infected mice was evaluated by intracellular cytokine staining and ELISPOT as 

described previously (130, 228). Briefly, for intracellular cytokine staining, lung and lymph node 

cells were incubated in media or stimulated with anti-CD3 (BD Pharmingen, clone 145-2C11, 

0.1 µg/ml) and anti-CD28 (BD Pharmingen, clone 37.51, 1 µg/ml) antibodies for 4 hours in the 

presence of 3 µM monensin (Sigma-Aldrich, St. Louis, MO). At the end of the stimulation 

period, cells were stained for CD4 and CD8, fixed, permeabilized, and stained for IFN-γ 

expression.  

For ELISPOT, lung and lymph node cells were plated in anti-IFN-γ antibody (BD 

Pharmingen, clone R4-6A2) coated plates (MAIPS4510, Millipore Corp, Bedford, MA) at 

80,000 cells/well and 150,000 cell/well, respectively. Cells were incubated in duplicate wells 

with media, ConA (10 µg/ml; Sigma-Aldrich), uninfected and M. tuberculosis-infected dendritic 

cells (MOI 3; overnight) to estimate the number of total number of IFN-γ producing T cell, and 

M. tuberculosis-infected dendritic cells incubated with the blocking anti-MHC Class I (BD 

Pharmingen, clone 8F12) or anti-MHC Class II (BD Pharmingen, clone M5/114.15.2) antibodies 

at 10 µg/ml to estimate the number of IFN-γ producing CD4+ and CD8+ T cells, respectively. In 

addition, dendritic cells were pulsed with ESAT-6 protein (received from NIH Tuberculosis 

Research Reagent Contract NO1 AI-75320) at 10 µg/ml overnight. All dendritic cells were 

added to lung and lymph nodes cells at 1:2 ratio and the cultures were supplemented with IL-2 

(PeproTech) at final concentration of 20 U/ml. Following 40 hour incubation, the IFN-γ 

producing T cells were visualized after stepwise incubation of plates with biotinylated anti-IFN-γ 

antibody (BD Pharmingen, clone XMG 1.2) , streptavidin-conjugated enzyme (PK-6100, Vector 
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Laboratories) and AEC substrate (SK-4200, Vector Laboratories). The spot forming units (SFU) 

were enumerated using ELISpot reader (Cellular Technology Ltd, Cleveland, OH).  

 

5.2.9. Limiting dilution analysis 

The cytotoxic potential of CD8+ T cells was estimated using limiting dilution analysis 

(LDA) (240, 241). Effector cells were derived from the lungs and lung draining lymph nodes of 

M. tuberculosis-infected mice at designated time points. Freshly isolated cells were plated in 2-

fold serial dilutions starting from 40,000 cells/well to 1250 cells/well in V-bottom 96-well plates 

(24 replicates/input number) supplemented with IL-2 at 20 U/ml. Lung  and lymph node cells 

were incubated with M. tuberculosis-infected dendritic cells (500 DC/well) for 7 days.  

Following incubation, 100 µl of old media was removed from each well, and lung cells were 

cultured for another round of stimulation with M. tuberculosis-infected macrophages (1000 

MΦ/well) and IL-2 (20 U/ml) to allow for expansion of CTL precursors. Flow cytometry 

analysis revealed that 75-95% of cells were CD8+ T cells after 2 weeks of stimulation.  

Cytotoxicity was determined in each well by a standard 51Chromium release assay with 

M. tuberculosis-infected macrophages as targets. M. tuberculosis-infected macrophages were 

labeled with 51Cr (100 µl of 51Cr per 3x106 macrophages) for 1 hour at 37oC, and added to lung 

and lymph node T cell cultures at 4000 cells/well. Following 4 hour incubation, 100 µl of 

supernatant was collected (Skatron SCS System; Skatron, Sterling, VA) and radioactivity was 

quantified using a gamma counter. Positive wells were defined as being greater than mean + 3 

SD of spontaneous target cell release. Frequency of CTLp was determined using zero-order 

Poisson equation (ln Y = - Fx + ln A; where x = the number of effector cells/well; Y = % 

negative wells; A = the y-axis intercept; F = CTLp frequency defined by the negative slope of 
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the line). All calculations were performed using a software program fitted to the equation by χ2 

minimization analysis (a generous gift from Dr. Carolyn A. Keever-Taylor, Medical College of 

Wisconsin). 

 

5.2.10. Intracellular perforin and IFN-γ staining 

To determine perforin and IFN-γ expression within CD8+ T cells we adapted the 

technique for combined intracellular staining of perforin and IFN-γ as previously described by 

Slifka et al. (242). Freshly isolated lung and lymph node cells were incubated with the 

stimulating anti-CD3 (BD Pharmingen, clone 145-2C11, 0.1 µg/ml) and anti-CD28 (BD 

Pharmingen, clone 37.51, 1 µg/ml) antibodies for 4 hours in the presence of 3 µM monensin 

(Sigma-Aldrich, St. Louis, MO). At the end of the stimulation period, cells were fixed with 2% 

PFA for 20 minutes on ice, washed, and permeabilized with 0.1% saponin/1%FBS/ Ca2+ -free 

PBS. Cells were incubated with 1:200 dilution of anti-perforin antibody (clone KM 585 (P1-8), 

Kamiya Biomedical) in 0.3% saponin/5% normal goat serum/Ca2+ -free PBS (50 µl/tube) at 4oC 

for 30 minutes.  Cells were washed with 0.1% saponin, and incubated with the secondary goat 

anti-rat IgG-FITC antibody (BD Pharmingen) at 4oC for 30 minutes. Following incubation, cells 

were stained with anti-IFN-γ PE (BD Pharmingen, clone XMG 1.2) and anti-CD8+ CY (BD 

Pharmingen, clone 53-6.7) antibodies for 20 minutes at room temperature. Cells were washed 

with 0.1% saponin, and suspended in 2% PFA until flow cytometry analysis. 
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5.2.11. Statistics 

Statistically significant differences in the numbers of effector T cells between the two 

time points were determined using unpaired, two-sided, Student t-test. The p-value of < 0.05 was 

defined as being significant. 
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5.3. Results 

 

5.3.1. Generation of immune response follows bacterial replication kinetics 

 Following a low dose aerosol infection (~ 20 – 50 CFU/lung), M. tuberculosis replicated 

exponentially in the lungs of infected mice, peaking 3 weeks post-infection and then stabilizing 

at 4 weeks post-infection (Figure 16A). Enhanced replication of mycobacteria early in infection 

was followed by increased infiltration of immune cells into the lung, which peaked and stabilized 

at 4 weeks post-infection (Figure 16B). This control of M. tuberculosis replication coincided 

with the formation of organized structures called granulomas consisting of T cells, B cells, 

macrophages and dendritic cells (data not shown). Thus, with the induction of immune response, 

growth of mycobacteria was hindered and maintained under control during long-term persistent 

infection.  

 To determine the kinetics of CD4+ and CD8+ T cell responses during acute and chronic 

infection, lungs were crushed into single cell suspensions and stained for the expression of CD4 

and CD8 molecules. Unlike many well-studied viral or bacterial infections, there does not seem 

to be an immunodominant antigen recognized by murine CD8+ T cells in M. tuberculosis 

infection.  Although there is a dominant M. tuberculosis antigen recognized by CD4+ T cells 

early in infection ((132) and see below), MHC Class II multimer reagents for this antigen are not 

readily available.  These limitations preclude the identification of M. tuberculosis antigen-

specific T cells by flow cytometry.  In this section we addressed the complete T cell population 

in the lungs during M. tuberculosis infection. Since the lung is not a lymphoid organ, the 

majority of cells observed are present due to the infection. 
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The number of CD4+ and CD8+ T cells in the lungs increased 10-fold from 2 to 4 weeks 

post-infection. The number of CD4+ T cells was 2-fold higher than the number of CD8+ T cells 

during the peak of the response, which was followed by a retraction phase in both T cell 

populations once bacterial numbers stabilized (Figure 16C and 16D). During chronic infection 

the numbers of both bacteria and immune cells were maintained at a steady state level.  

 

 

 

Figure 16 Infiltration of immune cells into the infected lungs follows the bacterial replication kinetics.  CD4+ 
and CD8+ T cells follow programmed retraction phase after acute M. tuberculosis infection 

(A) The number of live mycobacteria was determined by plating serial dilution of lung homogenates on 7H10 plates. 
Following 21 days of incubation, colonies were enumerated, and the number of CFU per lung determined.  
(B) The number of live cells in the infected lungs was quantified using trypan blue exclusion method.  
(C and D) The number of CD4+ and CD8+ T cells was quantitated after staining lung cells with anti-CD4 and anti-
CD8 antibodies using flow cytometry. The number of cells was calculated by multiplying the percent of CD4+ and 
CD8+ positive cells within live cell gate and the total number of live cells in the lungs. The data represent the mean 
± SEM of 8 – 20 mice per time point.   
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5.3.2. Turnover of CD4+ and CD8+ T cells in the lungs of M. tuberculosis infected 

mice 

 To gain insights into the turnover of CD4+ and CD8+ T cells during acute and chronic 

infection, we measured the amount of proliferation and apoptosis using BrdU incorporation and 

annexin V – 7-AAD staining, respectively. BrdU was injected 16 hours prior to each time point 

to obtain an accurate estimation of in situ proliferating cells. Lung cells were harvested at 

indicated time points, and cells from the same mice were stained either with anti-CD4, anti-CD8 

and anti-BrdU antibodies; or with annexin V, 7-AAD, anti-CD4 and anti-CD8 antibodies to 

quantify proliferating and apoptotic cells, respectively.  

 Figure 17A depicts the percentage of BrdU+ CD4+ and BrdU+ CD8+ T cells within the 

lymphocyte gate. Initially during the peak of the response there was a 6-fold increase in the 

percentage of BrdU+ CD4+ and BrdU+ CD8+ T cells. Once bacterial numbers stabilized, the 

percentage of proliferating cells decreased and remained low until late stage of infection. 

Apoptosis occurring within CD4+ and CD8+ T cell populations followed similar kinetics as BrdU 

incorporation: there was an initial increase in the percentage of apoptotic cells during the peak of 

the response followed by a stabilization phase with more apoptotic CD4+ than CD8+ T cells. The 

amount of apoptosis increased during the late stage of chronic infection (Figure 17B).  

 The graphs in Figure 17C and 17D directly compare the amount of proliferation and 

apoptosis within CD4+ and CD8+ T cell gates. These experiments provide three important results. 

First, the 10-fold increase in the numbers of CD4+ and CD8+ T cells during the peak of response 

at 4 weeks post-infection (Figure 16C and 16D) was mainly due to infiltration of primed effector 

T cells into the inflamed lung rather than in situ proliferation of the effector cells, as only 5% of 

CD4+ and CD8+ T cells were proliferating at this time point (Figure 17C and 17D). Second, the 
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retraction phase was brought about by increased apoptosis and reduced proliferation of T cells as 

infection progressed into the chronic phase. Third, the initial wave of proliferation was followed 

by another burst of proliferation of a smaller magnitude within CD4+ and CD8+ T cell 

populations at 5 months post-infection (Figure 17C and 17D). 
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Figure 17 Turnover of CD4+ and CD8+ T cells in the lungs of M. tuberculosis infected mice 

(A) The percentage of CD4+BrdU+ and CD8+BrdU+ cells within lymphocyte gate was determined following a 16 
hour injection of BrdU (1 mg/mouse) using flow cytometry.  
(B) The amount of apoptosis within the lungs of infected mice was assessed following staining of lung cells with 
annexin V and 7-AAD. Only double positive cells were considered to be apoptotic.  
(C and D) The graphs summarize the percentage of proliferating and apoptotic cells within CD4+ and CD8+ gates. 
The data represent mean ± SEM of 5 mice per time point.  
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5.3.3. CD4+ and CD8+ T cells display activated effector phenotype in the face of 

chronic M. tuberculosis infection 

 To determine the activation status of CD4+ and CD8+ T cells during acute and chronic 

infection, we isolated cells from the lungs of infected mice at indicated time points and stained 

cells for the expression of CD4, CD8, Ly6C, CD62L and CD69 (Figure 18A). The vast majority 

of CD4+ and CD8+ T cells isolated from the lungs of infected mice displayed high levels of 

CD44 as early as 2 weeks post-infection (data not shown), up-regulated and remained Ly6C 

high, down-regulated CD62L and up-regulated CD69 (Figure 18B). Although CD8+ T cells were 

present in fewer numbers than CD4+ T cells, the percentage of CD69+ CD8+ T cells was more 

than 1.5-fold higher when compared to CD69+ CD4+ T cells during chronic infection, indicating 

that more CD8+ T cells were in immediate contact with infected cells (and thus stimulated by 

MHC molecules) inside the lungs (Figure 18A and 18B). These data demonstrate the presence of 

highly activated CD4+ and CD8+ T cells during persistent M. tuberculosis infection.  
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Figure 18 CD4+ and CD8+ T cells exhibit activated phenotype in the lungs during persistent M. tuberculosis 
infection 

(A) Single lung cell suspensions were stained with anti-CD4, anti-CD8, anti-Ly6C, anti-CD62L and anti-CD69 
antibodies and the relative expression of the indicated markers within CD4+ and CD8+ gates (filled histograms) was 
estimated by flow cytometry. The solid line represents background staining with isotype control antibody.  
(B) The graphs illustrate the percentage of Ly6C+, CD62L+ and CD69+ cells within CD4+ and CD8+ gates. The cells 
exhibit activated phenotype characterized by downregulation of CD62L and upregulation of CD69. All cells were 
CD44 high within 2 weeks post-infection (data not shown), and remained Ly6C high during persistent M. 
tuberculosis infection. 
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5.3.4. Priming T cells specific for M. tuberculosis in the lung-draining lymph nodes 

 The priming of M. tuberculosis-specific IFN-γ T cell responses in lymph nodes of 

infected mice was determined by ELISPOT. T cells isolated from mediastinal lymph nodes were 

stimulated with infected wild-type dendritic cells that were incubated with either blocking anti-

MHC Class I or anti-MHC Class II antibodies to estimate the frequency of IFN-γ producing 

CD4+ and CD8+ T cells, respectively. In addition, wild-type dendritic cells were pulsed with 

ESAT-6 protein, an antigen exclusively recognized by CD4+ T cells in C57BL/6 (H-2b) mice, to 

estimate the frequency of ESAT-6 specific CD4+ T cells. The priming of IFN-γ T cell responses 

peaked in the lung draining lymph nodes at 2 weeks post-infection (Figure 19A).  Early in 

infection the priming of IFN-γ producing CD4+ T cells was prominent, and majority of these 

CD4+ T cells were also specific for ESAT-6 (Figure 19A and 19C). Surprisingly very few CD8+ 

T cells were primed to produce IFN-γ in acute infection (Figure 19B).  

 

5.3.5. Dynamic changes in the frequency of M. tuberculosis-specific IFN-γ responses 

in the lungs 

 The majority of IFN-γ producing T cells in the lungs were CD4+ during acute infection 

(Figure 19A). Most of the IFN-γ CD4+ T cell response was directed against ESAT-6, which 

appeared to be immunodominant antigen in the acute infection (Figure 19C). However, as 

infection entered into the chronic stage the frequency of ESAT-6 specific, IFN-γ-producing 

CD4+ T cells decreased suggesting that other mycobacterial antigens were recognized by CD4+ T 

cells. Although very few IFN-γ producing CD8+ T cells were detected during acute infection, 

CD8+ T cells substantially contributed to the total IFN-γ production during chronic phase of 
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infection (Figure 19B). In fact, IFN-γ producing CD4+ and CD8+ T cells were present at equal 

frequencies during chronic infection (Figure 19A – 19B).  

 The most important finding of these experiments was that during the plateau stage when 

the number of bacteria and immune cells reached the steady state, the frequency of IFN-γ 

producing effector cells dynamically changed (Figure 19A and 19B). Both CD4+ and CD8+ T 

cell IFN-γ responses waxed and waned over the course of infection, suggesting bursts in the 

immune response. All the results were confirmed by intracellular cytokine staining (data not 

shown).  

 Since IFN-γ production is a key player in protection against tuberculosis, we next asked 

how many of IFN-γ producing T cells inside the infected lung were specific for M. tuberculosis.  

To address this question we directly compared the number of IFN-γ producing CD4+ and CD8+ T 

cells as estimated by intracellular cytokine staining and ELISPOT (Figure 19D). Non-specific 

stimulation of T cells with anti-CD3/CD28 antibodies will trigger IFN-γ production by all T cells 

that were primed to secrete IFN-γ. However, incubation of T cells with M. tuberculosis-infected 

dendritic cells will stimulate IFN-γ secretion only by M. tuberculosis-specific T cells. CD8+ T 

cells showed a strong positive correlation between the two assays indicating that most of CD8+ T 

cells that were primed to produce IFN-γ were specific for M. tuberculosis (Figure 19D). 

Although CD4+ T cells also showed a positive correlation, a significant portion of CD4+ T cells 

were activated bystanders (Figure 19D).  

 These results reflect a dynamic state of immune responses during the persistent M. 

tuberculosis infection, what was considered previously to be a steady balance between a 

pathogen and a host. In addition, these studies revealed significant kinetic and qualitative 

differences between M. tuberculosis-specific CD4+ and CD8+ T cells. Although priming of IFN-γ 
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producing CD8+ T cells was delayed, most of the CD8+ effector T cells were specific for M. 

tuberculosis. In contrast, IFN-γ producing CD4+ T cells were primed very early in infection; 

however, a significant proportion of CD4+ T cells were activated bystanders during persistent 

infection.  
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Figure 19 IFN-γ T cell responses in the lymph nodes and the lungs of M. tuberculosis-infected mice 

(A and B) The graphs depict the frequency of IFN-γ producing CD4+ and CD8+ T cells, respectively, in the lymph 
nodes and the lungs of infected mice during a 7 month course of M. tuberculosis infection. The asterisks denote a 
statistically significant reduction in the frequency of IFN-γ producing T cells between the time points as determined 
by two-tail Student t-test. All the results were also confirmed with intracellular IFN-γ staining.  
(C) The frequency of Esat-6 specific CD4+ T cell responses in the lymph nodes and the lungs.  
(D) Comparison of the number of IFN-γ producing CD4+ and CD8+ T cells as estimated by ELISPOT (M. 
tuberculosis-specific responses) and intracellular cytokine staining (non-specific anti-CD3/CD28 antibody 
stimulation).  
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5.3.6. Differential regulation of CD8+ T cell effector functions in different phases of 

immune response against M. tuberculosis 

 The cytotoxic potential of CD8+ T cells during M. tuberculosis infection was analyzed 

using limiting dilution assay. Lung and lymph node cells of infected mice were plated in 2-fold 

serial dilutions and expanded during 2 week incubation with M. tuberculosis-infected antigen 

presenting cells. Following the expansion phase in vitro, the cytotoxicity of CD8+ T cells was 

tested against M. tuberculosis-infected, chromium labeled macrophages. The frequency of CTLp 

was determined by χ2 minimization analysis. Flow cytometry analysis revealed that more than 

80% of cells were CD8+ positive T cells after in vitro expansion (data not shown).   

 As shown in Figure 20A, CD8+ T cells were cytotoxic during acute infection; however, 

the frequency of CTLp declined as infection progressed into the chronic stage. The CD8+ T cells 

that were primed early in the lymph node had cytotoxic potential, and these cells were also 

cytotoxic in the lungs up to 4 weeks post-infection (Figure 20B). However, by 8 weeks post-

infection, the CD8+ T cells in the lymph nodes and lungs had essentially no cytolytic potential 

(Figure 20B and 20C). As the frequency of CTLp decreased, the frequency of IFN-γ producing 

CD8+ T cells increased during the chronic infection, suggesting that there was a differential 

regulation of CD8+ T cell effector functions during different phases of immune response (Figure 

20D).  

 To further evaluate the functional program of CD8+ T cells on a per cell basis during 

acute and persistent M. tuberculosis infection, we measured the percentage of perforin-producing 

cells within CD8+ IFN-γ positive and CD8+ IFN-γ negative populations using intracellular 

cytokine staining. Ex vivo isolated lung and lymph node cells were stimulated with anti-

CD3/CD28 antibodies in the presence of monensin for 4 hours. Following incubation, cells were 
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fixed and permeablized, stained for perforin, IFN-γ and CD8 marker. During acute infection 

when CD8+ T cells exhibited cytotoxic potential, perforin detection was low within CD8+ T cell 

population (Figure 21B and 21C). The lack of perforin staining could be associated with ex vivo 

degranulation of CD8+ T cells during acute infection. Perforin expression was detected almost 

exclusively within IFN-γ negative CD8+ T cells during chronic infection, suggesting that these 

CD8+ T cells were clearly capable of synthesizing perforin at the time when their cytolytic 

activity was minimal (Figure 21B and 21C). It appears that these CD8+ T cells were not 

exhausted during persistent infection, but rather were not degranulating perforin in the face of 

constant exposure to M. tuberculosis antigens. We have confirmed perforin expression in the 

lungs of M. tuberculosis-infected mice using immunohistochemistry, and there was an increase 

in perforin staining in the chronic phase of infection (data not shown).  

  Since exposure of CD8+ T cells to low or high dose of antigens can determine the 

functional program of CD8+ T cells (238, 243-246), we performed direct comparison between 

bacterial load as determined by number of colony forming units and frequency of CTLp in the 

lungs of infected mice. We did not find a direct correlation between the total number of live 

replicating bacteria and cytotoxic activity of CD8+ T cells, suggesting that the functional 

program of CD8+ T cells may not be governed by the number of viable mycobacteria.  However, 

mycobacteria that are killed by the immune response or even by drugs are not quickly cleared 

(247, 248), so cumulative antigen load may contribute to the change in CD8+ T cell function.  
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Figure 20 The frequency of cytotoxic CD8+ T cells decreases as the frequency of IFN-γ producing CD8+ T 
cells increases during chronic M. tuberculosis infection 

(A) The frequency of CTLp was estimated by limiting dilution assay using χ2 minimization analysis as described in 
Materials and Methods.  
(B and D) The median number of CTL precursors per million lymph node and lung cells. Each filled circle 
represents an individual mouse. The line represents the median number of CTLp for all mice in each group (4 – 5 
mice). 
 (D) The median number of IFN-γ producing CD8+ T cells per million lung cells.  
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Figure 21 Perforin staining was limited only to IFN-γ negative CD8+ T cell population 

There was minimal cytotoxic activity despite significant perforin expression during chronic infection. The determine 
the percentage of perforin positive cells within IFN-γ positive and IFN-γ negative CD8+ T cells, we adapted the 
method from Slifka et al. (242).  
(A) The populations were gated as shown in the panel A.  
(B and C) Single cell suspensions from the lymph nodes (B) and the lungs (C) were prepared at designated time 
points, and stimulated ex vivo with anti-CD3 and anti-CD28 antibodies in the presence of monensin for 4 hours at 
37oC. Following stimulation cells were fixed-permeabilized and stained with anti-perforin, anti-IFN-γ and anti-CD8+ 
antibodies as described in Material and Methods. The graphs in B and C show the percentage of perforin expressing 
cells within CD8+IFN-γ+ and CD8+IFNγ- cells.  
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5.4. Discussion 

 The primary aim of this study was to determine how chronic exposure to high antigen 

dose influences the functionality of M. tuberculosis specific T cell responses. In contrast to 

models of chronic viral infection, we found no evidence of paralysis or permanent loss of 

effector functions during chronic M. tuberculosis infection. The main findings of our study 

indicate that both CD4+ and CD8+ T cells underwent two bursts of replication during a 7 month 

course of M. tuberculosis infection. Although CD4+ T cells were the predominant source of IFN-

γ during acute infection, both CD4+ and CD8+ T cells equally contributed to IFN-γ production 

during chronic infection. There were dynamic changes in the frequency of IFN-γ producing 

CD4+ and CD8+ T cells during the stable chronic phase of infection. Surprisingly, CD8+ T cells 

exhibited differential effector functions at different phases of infection; they were mainly 

cytotoxic T lymphocytes during acute infection, but switched to IFN-γ production during chronic 

infection. The lack of cytotoxic activity was not associated with the loss of perforin staining, 

suggesting that CD8+ T cells were restrained from employing their cytotoxic effector functions.  

In viral models of chronic infections it has been shown that T cells are incapable of 

mounting adequate effector functions to facilitate viral clearance, despite being persistently 

activated. CD8+ T cells may completely lose their cytotoxic capability, often marked by the 

absence of perforin staining, or may sequentially lose the ability to elaborate key cytokines, such 

as IL-2, TNF-α and IFN-γ (229-237). Detrimental effects to the host immune system by chronic 

exposure to high antigen doses are not limited to CD8+ T cells. CD4+ T cell responses also 

demonstrate marked dysregulation of their effector functions. CD4+ T cells lose their ability to 

produce IL-2 and IFN-γ and to provide help for CD8+ T cell function (233, 234). In addition, 

following exposure to persistently elevated antigen doses, T cells enter a state of replicative 
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senescence, in which T cells remain metabolically active but fail to proliferate (237). Our data 

demonstrate that the interaction of M. tuberculosis with the immune system, in which a chronic 

infection is established, is very different than the viral systems that have been studied to date.  

 A common feature of persistent viral infections is that following exposure to high antigen 

doses, virus-specific T cells undergo accelerated and excessive T cell turnover resulting in 

replicative senescence. Our results using staining for BrdU incorporation and annexin V/7AAD 

expression on the same lung cells suggest that over the 7 months of M. tuberculosis infection, 

CD4+ and CD8+ T cells did not lose the capacity to proliferate. Both cell populations underwent 

two successive bursts of replication in the lungs.  The level of apoptosis occurring within the 

lung paralleled the proliferation kinetics, whereby increased apoptosis of the cells was 

accompanied by increased proliferation. During the shift from acute to chronic infection, once 

bacterial numbers were stabilized, increased apoptosis and reduced proliferation contributed to 

the contraction phase of the T cell responses. However, the stabilization of T cell numbers during 

chronic infection was accompanied by steady levels of apoptosis.  This suggests that infiltration 

of new effector T cells into the lungs is likely to be ongoing during chronic infection. 

 Flow cytometric analysis demonstrated that both CD4+ and CD8+ T cell populations 

remained in an activated state, characterized by downregulation of CD62L and high expression 

of Ly6C and CD69.  

 Priming of M. tuberculosis-specific IFN-γ responses peaked at 2 weeks post-infection.  

IFN-γ specific ELISPOT and intracellular cytokine staining showed that CD4+ T cells were 

responsible for the majority of IFN-γ production during acute infection, as suggested previously 

(132). The priming and the presence of IFN-γ producing CD8+ T cells in the infected lungs was 

negligible until 8 weeks post-infection. Most of IFN-γ producing CD4+ T cells were specific for 
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ESAT-6, which appeared to be the dominant antigen in acute infection (132). However, during 

chronic infection the frequency of ESAT-6 specific CD4+ T cells in the lungs decreased, 

indicating that other mycobacterial antigens were being recognized.  

Although CD8+ T cells contributed minimally to IFN-γ production during acute infection, 

the frequency of IFN-γ producing CD8+ T cells was equivalent to IFN-γ producing CD4+ T cells 

during chronic infection. A surprising result was that the frequency of IFN-γ producing CD4+ 

and CD8+ T cells dynamically waxed and waned during persistent M. tuberculosis infection. 

These results could be explained by two possible scenarios: (i) during chronic infection 

mycobacteria are likely mostly quiescent; however, they may transiently undergo bursts of 

replication. These changes in bacterial numbers are sensed by the host immune system, which 

responds in turn by rapidly increasing the numbers of IFN-γ producing T cells until bacterial 

growth is brought under control. In this manner, bacterial growth will be strictly controlled, with 

minimal immunopathology that otherwise would be induced by persistently elevated levels of 

inflammatory cytokines, such as IFN-γ. This explanation suggests a dynamic equilibrium 

achieved between the pathogen and the host’s immune system that persists throughout the course 

of infection. (ii) Alternatively, T cells may be rendered transiently anergic and unable to respond 

to constant antigenic stimulation, which would be characterized by drops in the frequency of 

IFN-γ producing T cells. The regular periodicity of the peaks and troughs in the frequency of 

IFN-γ producing T cells suggests that a certain time interval is required for T cells to renew their 

IFN-γ producing capacity. A detailed investigation of TCR signaling at different time points 

during chronic infection will resolve whether transient anergy in T cell activation exists due to 

persistent exposure to mycobacterial antigens. Nevertheless, the T cell IFN-γ production is not 
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permanently silenced by high antigen doses, suggesting that the effects of persistent 

mycobacterial antigenic stimulation on T cell functionality are transient.  

Our findings point to kinetic and qualitative differences in M. tuberculosis-specific CD4+ 

and CD8+ T cell responses. Although CD4+ T cells outnumbered CD8+ T cells in the lungs 

throughout infection, a greater percentage of CD8+ T cells was activated, and nearly all of them 

were specific for M. tuberculosis, in contrast to CD4+ T cells. While CD4+ T cells responded 

early to M. tuberculosis challenge, priming of IFN-γ producing CD8+ T cells occurred after 

chronic infection was established.  

Longitudinal analysis of CD8+ T cell effector functions revealed that there was a switch 

in the functional program of CD8+ T cells during the course of infection. Early in infection, 

CD8+ T cells were predominantly cytotoxic, but during chronic infection CD8+ T cells switched 

to cytokine production. The lack of cytotoxicity by CD8+ T cells was not accompanied by the 

expected loss of perforin staining, as most of IFN-γ negative CD8+ T cells continued to express 

perforin during chronic infection.  

The dual staining for IFN-γ and perforin within the CD8+ T cell population revealed two 

important findings. First, the split between cytokine production and cytotoxic functions was 

clearly evident on per cell basis, as perforin staining segregated to only the IFN-γ negative T 

cells. Second, although CD8+ T cells exhibited minimal cytotoxicity in chronic infection, their 

ability to synthesize perforin remained unimpaired. In fact, when measurable cytotoxic function 

was high, it was difficult to detect intracellular perforin staining, suggesting that perforin was 

released from the cells efficiently.  Therefore, it appears that the lack of CTL activity was not a 

result of CD8+ T cell exhaustion but rather a consequence of factors that dictate the functional 
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program of CD8+ T cells during persistent M. tuberculosis infection. The clearest candidate 

accounting for these observations is antigen dose.  

Several studies reported that the level of TCR occupancy can determine the development 

fate of CD8+ T cells i.e. whether CD8+ T cells will be cytotoxic or produce cytokines (119, 243-

246). At low antigen doses, an immature immunologic synapse is formed, which is sufficient to 

trigger cytotoxicity, but not cytokine production or proliferation (245, 246). Conversely, at high 

levels of TCR occupancy, a mature immunological synapse is formed that due to sustained and 

heightened levels of Ca2+ intracellular signaling will lead to preferential cytokine production by 

CD8+ T cells (245, 246). Most of these studies were performed on CD8+ T cells clones and by 

pulsing antigen presenting cells with different peptide concentrations.  

Very few reports exist on the behavior of primary CD8+ T cells during in vivo infection. 

Betts et al. showed that in primary human HIV- and CMV- specific CD8+ T cells, antigen dose 

was the sole determinant of the cytokine versus cytotoxic nature of virus specific CD8+ T cell 

responses (238). Using M. tuberculosis-specific human CD8+ T cell clones, Lewinsohn et al. 

demonstrated that CD8+ T cells preferentially lysed heavily infected cells (249). These CD8+ T 

cell clones were generated from the peripheral blood of latently infected individuals in which it 

is believed the presence of M. tuberculosis antigen is minimal or undetectable. Results from 

several epidemiological studies indicate that the cytotoxic activity of CD8+ T cells was 

dependent on the clinical state of TB patients. De la Barrera et al. reported that while cytotoxic 

activity was readily detectable in healthy PPD+ individuals, the cytotoxic potential of CD4+ and 

CD8+ T cells was significantly diminished in patients with active tuberculosis (250). Therefore, 

cell lines and clones from healthy PPD+ individuals may not represent the physiological state of 
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CD8+ T cells in patients with active or chronic tuberculosis where CD8+ T cells may be exposed 

to high antigen dose over long periods of time.  

 The concept of antigen dose shaping the developmental fate of CD8+ effector functions is 

particularly attractive in our tuberculosis model. During acute infection very few macrophages 

are infected, and the number of mycobacteria is low; hence, cytotoxicity may be the preferential 

mode of action for CD8+ T cells early in infection. During chronic infection when a large 

number of macrophages are infected, the antigen dose is higher, and CD8+ T cells switch to 

cytokine production. In this manner, the immunopathologic effects of persistent cytotoxic 

activity during long term M. tuberculosis infection may be minimized.  

We were unable to correlate CD8+ CTLp frequency with the total number of viable 

bacteria in the lungs. However, determination of CFUs is a crude estimate of antigenic load that 

CD8+ T cells may be exposed to in vivo. It measures only the number of replication-competent 

mycobacteria. It is very difficult to estimate the epitope density on the surface of infected 

macrophages. Russell et al. reported that mycobacterial antigens, particularly lipids and 

glycolipids, traffic dynamically to the cell surface of infected cells (251-253). Thus, the 

physiological relevance of antigen dose on effector CD8+ T cell functions in M. tuberculosis 

infection remains to be resolved.  

 An alternative explanation for the differential effector functions of CD8+ T cells was 

proposed by Sad et al. who suggest that initially CD8+ T cells kill the antigen presenting cells 

that they encounter, but repeated stimulation of CD8+ T cells with higher numbers of APCs 

eventually leads to cytokine production (243). It is tempting to speculate in our model that at first 

M. tuberculosis-specific CD8+ T cells will kill infected macrophages and following repeated 

exposure to infected macrophages, CD8+ T cells will preferentially produce inflammatory 
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cytokines. This switch will activate RNI and ROS pathways in infected macrophages leading to 

the destruction of intracellular bacteria, thereby minimizing immunopathology that would 

otherwise be invoked by extensive cytotoxic activity during infection.  

Overall, our study indicates that the long-term control of M. tuberculosis is achieved 

through dynamic immune responses that persist even during the chronic phase of infection, 

including waxing and waning of cytokine production and shifts in effector phenotypes. 

Comparison of antigen specific and non-specific stimulation revealed that while most of CD8+ T 

cells were antigen-specific, a significant portion of CD4+ T cells were activated bystanders. 

Although IFN-γ production by CD8+ T cells was delayed when compared to CD4+ T cells CD8+ 

T cells responded early by preferentially employing their cytotoxic effector mechanisms. 

Cytokine production by CD8+ T cells occurred after transition to the chronic stage of infection. 

The lack of cytotoxic activity during chronic infection was not accompanied by the expected loss 

of perforin staining suggesting that certain components of immune system may regulate the 

effector function of CD8+ T cells. We showed previously that CD4+ T cells are required for 

cytotoxic functions of CD8+ T cells, suggesting that the immune response to M. tuberculosis is 

cross-regulatory. Understanding of the in vivo mechanisms that regulate the effector functions of 

T cells in the face of persistent M. tuberculosis infection is pivotal for the improved design of 

anti-tuberculosis vaccine strategies. 
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6. CHAPTER 3 INDUCTION OF MYCOBACTERIUM TUBERCULOSIS-SPECIFIC 
PRIMARY AND SECONDARY T CELL RESPONSES IN IL-15-/- MICE 

 

6.1. Introduction 

 IL-15 exerts its biological effects on multiple cell types as a result of wide distribution of 

its receptor. IL-15-/- and IL-15Rα-/- mice exhibit lymphopenia due to marked reductions of 

thymic and peripheral NK, NK T cells, and TCRγδ intraepithelial lymphocytes (IEL) (254, 255). 

Furthermore, in the absence of IL-15 signaling the population of CD8+ T cells with memory 

phenotype (CD8+ CD44hi) was significantly diminished (254, 255). 

 It was initially reported that proliferation of memory CD8+ T cells was considerably 

enhanced after injection of LPS and Poly I:C into mice as a result of increased type I IFN 

production (256). Zhang et al. identified  IFN I to be a potent inducer of IL-15, which strongly 

and selectively stimulated proliferation of memory CD8+ T cells both in vivo and in vitro (256). 

IL-2/IL-15Rβ (a common receptor subunit for these two cytokines) is highly expressed on 

memory CD8+ CD44hi T cells while expression of this receptor subunit is low on naïve CD8+ T 

cells and memory CD4+ T cells (257). Treatment of cells with the blocking anti-IL-2/IL-15Rβ 

antibody, but not with anti-IL-2 antibody, markedly reduced the numbers of proliferating 

memory CD8+ T cells (257). Additional evidence for the role of IL-15 in regulating homeostasis 

of memory CD8+ T cells came from IL15 transgenic mice, which have markedly increased 

numbers of memory CD8+ T cells (258, 259).  

 IL-15 signaling is also essential for antigen-presenting functions of dendritic cells. 

Stimulation of dendritic cells with IL-15 resulted in up-regulation of co-stimulatory molecules, 

increased production of IFN-γ and enhanced capacity of dendritic cells to stimulate proliferation 
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of CD8+ T cells (260). Dendritic cells and macrophages from γc-/-, IL-2/IL-15Rβ-/-, IL-15-/-, but 

not from IL-2-/-, mice showed impaired production of IL-12, IFN-γ and NO and reduced levels 

of antigen-presenting and co-stimulatory molecules (261). IL-15 stimulated human monocytes to 

produce IL-12 upon contact with CD4+ T cells via CD40/CD40L interaction, and thus 

contributed to IL-12-mediated induction of IFN-γ secretion by CD4+ T cells (262). 

 Due to pleotropic effects of IL-15 on multiple cell types of innate immunity and CD8+ T 

cell compartment, it was not surprising that IL15-/- and IL-15Rα-/- mice exhibited compromised 

host defense responses against viral and bacterial pathogens. Although generation of 

lymphocytic choriomeningitis virus (LCMV)-specific effector CD8+ T cell responses was 

unimpaired in IL-15 deficient mice (263), the absence of IL-15 had a profound effect on the 

maintenance of LCMV-specific memory CD8+ T cell responses (263). Generation of primary 

and memory CD8+ T cell responses against vesicular stomatitis virus (VSV) was dependent on 

IL-15 signaling as longitudinal analysis revealed a slow decline in virus specific memory CD8+ 

T cells in IL-15-/- and IL-15Rα-/- mice (264). 

 Treatment of Toxoplasma gondii immune mice with soluble IL-15Rα markedly reduced 

the ability of treated mice to control infection (265). CD8+ T cell responses in sIL-15Rα 

administered mice demonstrated reduced IFN-γ production, cytolytic activity and replicative 

capacity in response to T. gondii infection (265). In contrast, treatment of T. gondii-infected mice 

with IL-15 augmented and prolonged the duration of CD8+ T cell mediated immunity against T. 

gondii infection (266, 267). Similarly, IL-15 transgenic mice had significantly increased numbers 

of memory CD8+ T cells and conferred higher level of resistance against Listeria and Salmonella 

infections (258, 259, 268). Collectively, these studies demonstrate the importance of IL-15 in 

protective immunity against viral, parasitic and bacterial infections.   
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 Several lines of evidence indicate that IL-15 may play a role in protective immunity 

against mycobacterial infections. Detection of IL-15 mRNA and IL-15 protein in the skin lesions 

of Mycobacterium leprae infected patients was previously reported (269, 270). While Julien et 

al. detected increased levels of IL-15 mRNA in patients with resistant tuberculoid lesions versus 

patients with susceptible lepromatous lesions, immunohistochemical staining of skin biopsies 

revealed similar levels of IL-15 protein in both forms of the disease (270). Infection of murine 

macrophages with M. bovis BCG and M. tuberculosis H37Ra in the presence of IFN-γ resulted in 

increased IL-15 mRNA expression (271). In vitro infection of monocyte-derived macrophages 

isolated from healthy blood donors with M. tuberculosis induced significant IL-15 protein 

secretion (270). Immunohistochemical analysis revealed that significantly higher number of 

alveolar macrophages isolated from bronchoalveolar lavage of tuberculosis patients produced IL-

15 when compared to healthy subjects suggesting that IL-15 expression is induced following M. 

tuberculosis infection in humans (272). In murine studies, IL-15 transgenic mice exhibited 

increased resistance to M. bovis BCG infection, which in part could be attributed to increased 

numbers of NK cells and augmented IFN-γ production by CD8+ T cells (273). Furthermore, IL-

15 improved the efficacy of M. bovis BCG vaccine in conferring protection against virulent M. 

tuberculosis H37Rv challenge. BGC-vaccinated IL-15 transgenic mice had significantly lower 

bacterial burden when compared with BCG-vaccinated wild-type mice (274). The increased 

protective effect observed in IL-15 transgenic BCG vaccinated mice was accompanied by 

enhanced IFN-γ CD8+ T cell responses (274). IL-15 administration also protected susceptible 

BALB/c mice against virulent M. tuberculosis infection when given as a treatment at 3 weeks 

post-infection (275).  
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 Although these studies collectively show that IL-15 is expressed following mycobacterial 

infections, and that IL-15 exogenous administration can enhance protective immunity against M. 

tuberculosis infection, there is no information about the functionality of M. tuberculosis-specific 

primary and secondary T cell responses in the absence of IL-15. In this study, we evaluated the 

quality of CD4+ and CD8+ effector and memory T cell responses against M. tuberculosis 

infection in IL-15-/- mice. Our data indicate that IL-15-/- mice exhibited slightly higher bacterial 

burden in the lungs during chronic M. tuberculosis infection, which was accompanied by an 

increase in the frequency of IFN-γ producing CD4+ and CD8+ T cell responses. The baseline 

level of CD8+ T cells in uninfected IL-15-/- mice was  ~ 30 - 50% lower than in uninfected wild-

type mice. The remaining CD8+ T cells from IL-15-/- mice did not show increased apoptosis or a 

defect in their replicative capacity in response to M. tuberculosis infection. There were 

significantly fewer CD4+ and CD8+ T cells in the lungs of immune IL-15-/- and wild-type mice 

early after secondary challenge. Similar percentages of proliferating and IFN-γ producing 

memory CD4+ and CD8+ T cells were detected in IL-15-/- and wild-type mice after M. 

tuberculosis secondary infection. These findings suggest that generation of M. tuberculosis-

specific effector CD4+ and CD8+ T cells responses is unimpaired in IL-15-/- mice. 
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6.2. Materials and Methods 

 

6.2.1. Mice and infections 

 IL-15-/- and C57BL/6 wild-type mice were purchased from Taconic (Germantown, NY) 

and Charles River Laboratories (Wilmington, MA), respectively. All mice were kept under 

specific pathogen-free conditions in a Biosafety Level 3 facility. Animal protocols used in this 

study were approved by the University Institutional Animal Care and Use Committee. For the 

primary infection and secondary challenge mice were infected with a low dose of M. 

tuberculosis (Erdman strain, Trudeau Institute, Saranac Lake, NY) at 5x10 /ml using a nose-

exposure only aerosolizer unit (Intox Inc., 

5

Moriarty, NM). The dose received was estimated by 

plating whole lung homogenates of two mice 24 hours following aerosol infection (~30 

CFU/mouse). 

 

6.2.2. Memory IL-15-/- mice 

 Mice were infected with a low dose of M. tuberculosis (~30 CFU/mouse) via aerosol 

route. From 4 weeks post-infection, mice were treated with isoniazid (0.1 g/liter) and 

pyrazinamide (15 g/liter) in drinking water two times a week for 8 weeks to clear the infection. 

As IL-15-/- mice were unable to clear M. tuberculosis with this antibiotic therapy, the treatment 

was changed to isoniazid (0.1g/liter) and rifampicin (0.15 g/l) for additional 16 weeks. At the end 

of antibiotic treatment mice were sacrificed and several organ homogenates (lung and spleen) 

were plated on 7H10 plates (Difco) to confirm the absence of viable mycobacteria. Mice were 

challenged with a low dose of M. tuberculosis via aerosol route and the quality of CD8+ memory 

T cell responses was investigated after secondary M. tuberculosis infection.  
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6.2.3. CFU determination 

 Lung homogenates were serially diluted in PBS/0.05% Tween-80 and plated on 7H10 

agar plates (Difco). Plates were incubated at 37oC, 5% CO2 for 21 days prior to counting 

colonies. 

 

6.2.4. Bone marrow derived macrophages and dendritic cell cultures 

 In ex vivo stimulation assays, such as ELISPOT and limiting dilution analysis, bone 

marrow derived dendritic cells were cultured in the presence of GM-CSF supernatant at 1:200 

dilution (a generous gift from Dr. Binfeng Lu, University of Pittsburgh) and 20 ng/ml of IL-4 

(PeproTech Inc, Rocky Hill, NJ) and macrophages were cultured in the presence of L cell 

supernatent as a source of CSF-1 using standard procedure described previously (146). 

 

6.2.5. Flow cytometry 

 Lung single cell suspensions were stained as described previously (146). Cells were 

stained with anti-CD4 (clone H129.19), anti-CD8 (clone 53-6.7), and anti-CD69 (clone H1.2F3) 

fluorescently conjugated antibodies. All antibodies were purchased from BD Pharmingen (San 

Diego, CA) and used at 0.2 µg/ml concentration. Cells were collected on a FACSCaliber 

(Beckon Dickinson, San Jose, CA) and analyzed by CellQuest (Becton Dickinson) or FlowJo 

(Tree Star Inc, San Carlos, CA) software.  

 

6.2.6. Proliferation of T cells in the lungs of infected mice 

 Sixteen hours prior to each experimental time point, mice were injected intraperitoneally 

with saline containing 1 mg of 5-bromo-2’-deoxyuridine [BrdU] (Sigma-Aldrich, St. Louis, 
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MO). Lung cells were stained for cell surface markers CD4 and CD8 at room temperature for 20 

minutes prior to a fixation step with 4% paraformaldehyde [PFA] (200 µl/tube) on ice for 20 

minutes. Cells were washed with tissue culture phosphate buffered saline [PBS], centrifuged at 

470 g, and cell pellets were suspended in ice-cold 0.15 M NaCl (100 µl/tube), followed 

immediately by drop-wise fixation with ice-cold 95% ethanol (200 µl/tube) on ice for 30 

minutes. Following a PBS wash, cells were permeabilized and fixed with 200 µl/tube of 0.4% 

saponin and 2% PFA for 1 hour at room temperature. Cells were washed with PBS, and 

suspended in 200 µl/tube of 0.15 M NaCl, 4.2 mM MgCl2 (pH 5) containing 250 U/ml of DNase 

I (Roche, Indianapolis, IN) for 30 minutes in 37oC water bath. Cells were washed with PBS, and 

incubated with anti-BrdU antibody or the respective isotype control (BD Pharmingen, FITC-

conjugated antibody set) diluted at 1:3 in 0.5% Tween-20 and 0.5% BSA (50 µl/tube). Following 

30 minute incubation at room temperature, cells were washed with PBS, and fixed with 4% PFA 

prior to acquisition on the flow cytometer.  

 

6.2.7. Apoptosis staining 

 Lung cells were stained for the expression of CD4 and CD8 molecules for 20 minutes at 

room temperature. The amount of apoptosis was determined by staining lung cells with Annexin 

V-FITC and 7-AAD reagents (BD Pharmingen) according to manufacturer’s instructions. 

Briefly, cells were suspended in 100 µl/tube of 1x Binding buffer, and incubated with 5 µl/tube 

of Annexin V-FITC and 5 µl/tube of 7-AAD for 15 minutes in the dark at room temperature. 

Cells were washed with 2 ml/tube of 1x Binding buffer to remove any unbound Annexin V-FITC 

and 7-AAD, and fixed with 4% PFA in 1x Binding buffer. Samples were analyzed within 30 

minutes.  
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6.2.8. IFN-γ production 

 Cytokine production by CD8+ T cells isolated from the lungs of M. tuberculosis infected 

mice was evaluated by ELISPOT as described previously (240, 241). Briefly, lung and lymph 

node cells were plated in anti-IFN-γ antibody (BD Pharmingen, clone R4-6A2) coated plates 

(MAIPS4510, Millipore Corp, Bedford, MA) at 80,000 cells/well and 150,000 cell/well, 

respectively. Cells were incubated in duplicate wells with media, ConA (10 µg/ml; Sigma-

Aldrich), uninfected and M. tuberculosis-infected dendritic cells (MOI 3; overnight) to estimate 

the number of total number of IFN-γ producing T cell, and M. tuberculosis-infected dendritic 

cells incubated with the blocking anti-MHC Class I (BD Pharmingen, clone 8F12) or anti-MHC 

Class II (BD Pharmingen, clone M5/114.15.2) antibodies at 10 µg/ml to estimate the number of 

IFN-γ producing CD4+ and CD8+ T cells, respectively. All dendritic cells were added to lung and 

lymph nodes cells at 1:2 ratio and the cultures were supplemented with IL-2 (PeproTech) at final 

concentration of 20 U/ml.  

 Following 40 hour incubation, the IFN-γ producing T cells were visualized after stepwise 

incubation of plates with biotinylated anti-IFN-γ antibody (BD Pharmingen, clone XMG 1.2), 

streptavidin-conjugated enzyme (PK-6100, Vector Laboratories) and AEC substrate (SK-4200, 

Vector Laboratories). The spot forming units (SFU) were enumerated using ELISpot reader 

(Cellular Technology Ltd, Cleveland, OH).  

 

6.2.9. Limiting dilution analysis 

 The cytotoxic potential of CD8+ T cells was estimated using limiting dilution analysis 

(LDA) (240, 241). Effector cells were derived from the lungs and lung draining lymph nodes of 
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M. tuberculosis-infected mice at designated time points. Freshly isolated cells were plated in 2-

fold serial dilutions starting from 40,000 cells/well to 1250 cells/well in V-bottom 96-well plates 

(24 replicates/input number) supplemented with IL-2 at 20 U/ml. Lung  and lymph node cells 

were incubated with M. tuberculosis-infected dendritic cells (500 DC/well) for 7 days.  

Following incubation, 100 µl of spent media was removed from each well, and lung cells were 

cultured for another round of stimulation with M. tuberculosis-infected macrophages (1000 

MΦ/well) and IL-2 (20 U/ml) to allow for expansion of CTL precursors. Flow cytometry 

analysis revealed that 75-95% of cells were CD8+ T cells after 2 weeks of stimulation.  

 Cytotoxicity was determined in each well by a standard 51Chromium release assay with 

M. tuberculosis-infected macrophages as targets. M. tuberculosis-infected macrophages were 

labeled with 51Cr (100 µl of 51Cr per 3x106 macrophages) for 1 hour at 37oC, and added to lung 

and lymph node T cell cultures at 4000 cells/well. Following 4 hour incubation, 100 µl of 

supernatant was collected (Skatron SCS System; Skatron, Sterling, VA) and radioactivity was 

quantified using a gamma counter. Positive wells were defined as being greater than mean + 3 

SD of spontaneous target cell release. Frequency of CTLp was determined using zero-order 

Poisson equation (ln Y = - Fx + ln A; where x = the number of effector cells/well; Y = % 

negative wells; A = the y-axis intercept; F = CTLp frequency defined by the negative slope of 

the line). All calculations were performed using a software program fitted to the equation by χ2 

minimization analysis (a generous gift from Dr. Carolyn A. Keever-Taylor, Medical College of 

Wisconsin). 
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6.2.10. Statistics 

Statistically significant differences in the numbers of effector T cells between the two time points 

were determined using unpaired, two-sided, Student t-test. The p-value of < 0.05 was defined as 

being significant. 
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6.3. Results 

 

6.3.1. IL15-/- mice are not susceptible to M. tuberculosis infection 

 IL15-/- and wild-type mice were infected with a low dose of M. tuberculosis via aerosol 

route. At designated time points, lung, spleen and lymph node homogenates were plated to 

determine the number of colony forming units (CFU). IL15-/- mice were equally capable of 

controlling M. tuberculosis infection in the lungs during acute infection; however, IL-15-/- mice 

harbored a slightly higher bacterial burden during chronic infection (reproducible in three 

separate experiments) (Figure 22). There were no significant differences in bacterial numbers in 

the spleen and lymph nodes of IL-15-/- and wild-type mice at any time point (Figure 22). 

 

 

 

 

Figure 22 IL-15-/- mice control low-dose M. tuberculosis infection 

IL-15-/- and wild-type mice were infected with a low dose of M. tuberculosis via aerosol route. At designated time 
points, serial dilutions of lung, spleen and lymph nodes were plated on 7H10 plates and the colony forming units 
(CFU) were enumerated after 21 days of incubation. The results represent the mean ± SEM of four mice per group, 
and the experiments were replicated three times with similar results. 
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6.3.2. CD4+ and CD8+ T cell responses during primary M. tuberculosis infection 

 Overall numbers of cells infiltrating the lung and within the lymph nodes were lower in 

IL-15-/- mice; however, differences were not always statistically significant (Figure 23A). The 

percentage of CD4+ and CD8+ T cells and their activation status were determined by flow 

cytometry after staining lung and lymph node cell suspensions with anti-CD4, anti-CD8 and anti-

CD69 antibodies. IL15-/- mice had a similar percentage of CD4+ T cells in the lungs and lymph 

nodes when compared to wild-type mice (Figure 23B). In contrast, uninfected IL-15-/- mice had 

50% fewer CD8+ T cells in the lungs and ~ 70% fewer CD8+ T cells in the lymph nodes when 

compared to uninfected wild-type mice (Figure 23C). A 2-fold difference in the percentages of 

CD8+ T cells was maintained throughout the infection. There was a similar percentage of 

activated CD4+ T cells, while significantly more CD8+ T cells were activated in IL-15-/- mice 

during chronic infection (Figure 23D). 
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Figure 23 Phenotypical characterization of immune cells infiltrating the lungs of IL-15-/- and wild-type mice 

(A) Overall numbers of live cells inside the lungs and lymph nodes of IL-15-/- and wild-type mice were determined 
by trypan blue exclusion method.  
(B-C) The percentage of CD4+ and CD8+ T cells in the lungs and lymph nodes of IL-15-/- and wild-type mice was 
analyzed by flow cytometry gating on lymphocyte population by forward and side scatter. 
(D) The activation status of CD4+ and CD8+ T cells was assessed by staining lung cells with anti-CD4, anti-CD8, 
and anti-CD69 antibodies. The results present the percentage of CD69 positive cells within CD4+ and CD8+ gates. 
The data are presented as mean ± SEM of four mice per group, and the experiments were repeated three times. 
Statistical analysis was determined by two-sided Student’s t-test, where * p ≤ 0.05, and ** ≤ 0.01. 
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6.3.3. Proliferation and apoptosis of CD8+ T cells during M. tuberculosis infection 

 IL15-/- or IL15Rα-/- mice are deficient in peripheral CD8+, but not in CD4+ T cells (254, 

255, 276) (and figure 23B and 23C). IL-15 signaling promotes the survival of naïve CD8+ T cells 

by inducing expression of anti-apoptotic proteins, such as Bcl-2 (276, 277). The lack of IL-15 

signaling could explain the initial CD8+ T cell deficiency in uninfected IL-15-/- mice. Since IL-

15 is also important for stimulating proliferation and survival of antigen-specific memory CD8+ 

T cells (CD8+ CD44hi) (254, 255, 263), we sought to determine whether proliferation of CD8+ T 

cells was impaired in the absence of IL-15 and whether CD8+ T cells were more prone to 

apoptosis after M. tuberculosis infection in IL-15 deficient environment.  

 Proliferation of CD8+ T cells in IL-15-/- and wild-type mice was determined by flow 

cytometry. Sixteen hours prior to each experiment, mice were injected with BrdU 

intraperitoneally, and the percentage of BrdU+ cells within CD8+ gate was determined (Figure 

24A). Our data indicate that CD8+ T cells did not show any defects in proliferation in response to 

M. tuberculosis infection. A significantly higher percentage of proliferating CD8+ T cells in IL-

15-/- mice was detected during acute and chronic infection, suggesting that even in the face of 

persistent exposure to M. tuberculosis antigens in IL-15 deficient mice CD8+ T cell did not lose 

their capacity to proliferate (Figure 24A). There were no differences in proliferation of CD8+ T 

cells from the lymph nodes of IL-15-/- and wild-type mice (data not shown). 

 Since CD8+ T cells may be more sensitive to activation induced death in the absence of 

IL-15, we measured the amount of apoptosis in the CD8+ T cell population of IL-15-/- and wild-

type mice by staining lung cells with annexin V and 7-AAD. Apoptotic CD8+ T cells were 

defined as being annexin V and 7-AAD positive. Our results indicate that similar percentages of 
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lung CD8+ T cells from IL-15-/- and wild-type mice underwent apoptosis following M. 

tuberculosis infection (Figure 24B).  The dynamic T cell responses in the lungs over time, with 

waxing and waning of proliferation and apoptosis have been previously described (Chapter 2) 

 Collectively, these findings suggest that the remaining CD8+ T cells in IL-15-/- mice 

were capable of proliferating and were not more susceptible to apoptosis than wild-type CD8+ T 

cells following M. tuberculosis infection.  

 

 

 

 

 

Figure 24 CD8+ T cells from IL-15-/- mice are not impaired in proliferation and do not undergo enhanced 
apoptosis following M. tuberculosis infection  

(A) To estimate the proliferative capacity of CD8+ T cells inside the lungs of IL-15-/- and wild-type mice, BrdU was 
injected intraperitoneally 16 hours prior to each experiment. Single lung suspensions were stained with anti-CD8 and 
anti-BrdU antibodies. The results represent mean percentage of proliferating (BrdU+) cells within CD8+ T cell gate ± 
SEM. Statistical significance was determined by two-sided Student’s t-test, where * p ≤ 0.05. 
(B) The amount of apoptosis occurring within CD8+ T cell population was determined after staining lung cells with 
anti-CD8 antibody, annexin V and 7-AAD. The results present the percentage of annexin V and 7-AAD positive 
cells within CD8+ T cell gate ± SEM. No significant differences were observed in the percentage of apoptotic cells 
within CD8+ T cells of IL-15-/- and wild-type mice. 
 

 

 

 

136 



 

6.3.4. IFN-γ production by CD4+ and CD8+ T cells in IL-15-/- mice 

 The number of IFN-γ producing CD4+ and CD8+ T cells was determined after ex vivo 

stimulation of lung cells with M. tuberculosis-infected dendritic cells in the presence of blocking 

anti-MHC Class I and anti-MHC Class II antibodies, respectively. During acute infection there 

were no differences in the numbers of IFN-γ producing CD4+ and CD8+ T cells in the lungs of 

IL-15-/- and wild-type mice (Figure 25A and 25B). In chronic infection, the number of IFN-γ 

producing CD4+ and CD8+ T cells increased in IL-15-/- mice, which in part could be due to 

increased bacterial burden in the lungs of IL-15-/- mice. Although there were significantly fewer 

CD8+ T cells overall in the IL-15-/- mice the number of IFN-γ producing CD8+ T cells was 

similar between IL-15-/- and wild-type mice.   These findings indicate that long-lasting effector 

CD8+ T cells can develop in the absence of IL-15 during M. tuberculosis infection.  

 

 

 

Figure 25 IFN-γ production by CD4+ and CD8+ T cells isolated from the lungs of IL-15-/- and wild-type mice 
after M. tuberculosis infection 

(A-B) The number of IFN-γ producing CD4+ and CD8+ T cells was determined by ELISPOT assay after ex vivo 
stimulation of lung cells with M. tuberculosis-infected dendritic cells incubated with blocking anti-MHC Class I or 
anti-MHC Class II antibodies, respectively. The background number of spot forming units (SFU) after incubation of 
lung cells with uninfected dendritic cells was subtracted before calculations were made. The number of IFN-γ 
producing T cells was determined by multiplying the frequency of IFN-γ producing CD4+ or CD8+ T cells with total 
number of lung cells. The results represent the mean number of IFN-γ producing cells ± SEM of four mice per 
group. The statistical significance was determined by two-sided Student’s t-test, where * p ≤ 0.05. 
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6.3.5. Cytotoxic activity of M. tuberculosis-specific CD8+ T cells in the absence of 

IL-15 

 The cytotoxic potential of IL-15-/- and wild-type CD8+ T cells was determined by 

limiting dilution analysis, using T cells harvested from the lungs, and tested in an M. tuberculosis 

specific assay (240, 241) (Chapter 2). The data are summarized as mean number of CTL 

precursors per lung for each group of mice (Figure 26). Our results demonstrate that the 

cytotoxic CD8+ T cells develop and function normally in IL-15-/- deficient environment during 

acute infection. Both groups of mice followed the same kinetics of cytotoxic activity, which in 

murine model of tuberculosis is characterized by high cytotoxic activity during acute infection, 

and loss of cytolytic CD8+ T cells during chronic infection (Chapter 2). Although there were 

significantly more CTLp in the lungs of IL-15-/- mice 9 weeks post-infection, the cytotoxicity 

was negligible in both groups of mice by 12 weeks post-infection (Figure 26).  

 

 

 

 

Figure 26 Cytotoxic CD8+ T cells are functional in the absence of IL-15 

The frequency of CTLp in the lungs of IL-15-/- and wild-type mice was determined by limiting dilution analysis 
(LDA). Serial dilutions of lung cells (40,000 cells/well → 1250 cells/well; 24 replicates/cell dilution) were 
stimulated with M. tuberculosis-infected dendritic cells for seven days, followed by another round of stimulation 
with M. tuberculosis-infected macrophages. After 14 days of expansion, the cytotoxicity of each individual well was 
determined by chromium release assay using M. tuberculosis infected macrophages as targets. The actual frequency 
of CTLp was determined by χ2 minimization analysis. The experiments were repeated twice with similar results. 
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6.3.6. IL15-/- mice successfully control secondary infection with M. tuberculosis 

 Resistant C57BL/6 wild-type mice control M. tuberculosis infection, but they are unable 

to completely eliminate the bacteria even in the face of potent immune response. To study 

memory responses mycobacteria were cleared prior to challenge by treating IL-15-/- and wild-

type mice with a combination of pyrazinamide (15 g/l in drinking water) and isoniazid (0.1 g/l) 

beginning four weeks post-infection for two months. Prolonged treatment with this combination 

of antibiotics was previously shown to have sterilizing activity in wild-type mice (47).  Although 

wild-type mice cleared the infection at the end of a 2-month antibiotic treatment, M. tuberculosis 

still persisted in IL-15-/- mice. For this reason, the antibiotic regimen was changed to isoniazid 

(0.1 g/l) and rifampicin (0.15 g/l) for additional 4 months until plating of whole lung 

homogenates revealed no viable mycobacteria. Mice were challenged with a low dose of M. 

tuberculosis via aerosol route, and the ability of immune IL-15-/- and wild-type mice to control 

secondary M. tuberculosis infection was evaluated.  Both immune IL-15-/- and wild-type mice 

were equally efficient at controlling bacterial burden after M. tuberculosis challenge (Figure 27). 

 

 

 

Figure 27 IL-15-/- mice successfully controlled secondary M. tuberculosis infection 

IL-15-/- and wild-type mice were infected with a low dose M. tuberculosis infection (primary infection). Prolonged 
antibiotic treatment, which commenced at 4 weeks post-infection and lasted for 6 months, ensured complete 
elimination of mycobacteria and establishment of a memory pool of CD4+ and CD8+ T cells. After resting period, 
IL-15-/- and wild-type mice were challenged with a low dose of M. tuberculosis via aerosol route (secondary 
infection). The numbers represent mean ± SEM of four mice per group. 
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6.3.7. Memory CD4+ and CD8+ T cell responses in IL-15-/- mice 

 Previous reports have demonstrated that IL-15-/- or IL-15Rα-/- mice have reduced 

numbers of memory CD8+ T cells (254, 255), mainly due to decreased proliferation and 

decreased homing of IL-15Rα-/- lymphocytes to peripheral lymph nodes (255). We investigated 

the importance of IL-15 in the development of M. tuberculosis-specific T cell memory following 

challenge with a low dose of M. tuberculosis. Infiltration of immune cells into the lungs of IL-

15-/- mice was delayed at 3 weeks post-challenge, but by 6 weeks post-challenge infiltration of 

cells into the lungs of IL-15-/- and wild-type mice was similar (Figure 28A). No apparent 

differences were observed in lymph node cell numbers between two groups of mice throughout 

the secondary infection (Figure 28A). Although there were similar percentages of CD4+ T cells 

in the lymph nodes, infiltration of CD4+ T cells into the lungs of IL-15-/- mice initially lagged 

behind wild-type mice (Figure 28B). The absence of IL-15 resulted in significantly lower 

percentage of activated CD69+ CD4+ T cells after secondary challenge (Figure 28D). The 

response of IL15-/- CD8+ T cells was very similar during primary and secondary M. tuberculosis 

infection. A 2-fold difference in percent CD8+ T cells in the lungs and lymph nodes of IL-15-/- 

mice was also obvious during secondary infection (Figure 28C). Although fewer CD8+ T cells 

were present in the lungs of IL-15-/- mice, equal percentages of activated CD8+ T cells were 

detected in the lungs of both groups of mice after secondary infection with M. tuberculosis 

(Figure 28D). 

 Differences seen in the number of immune cells within the lungs of immune IL-15-/- 

mice could be a result of a smaller burst size of effector CD8+ T cell responses in IL-15-/- mice 

during primary infection. Nevertheless, similar percentages of activated CD8+ T cells were 

observed in the lungs of IL-15-/- and wild-type mice after secondary M. tuberculosis infection. 
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Interestingly, infiltration of CD4+ T cells was delayed initially in the absence of IL-15, and fewer 

IL-15-/- CD4+ T cells expressed early activation marker CD69 after secondary M. tuberculosis 

infection.  

 

 

 

 

Figure 28 Lung lymphocyte analysis after secondary infection with M. tuberculosis 

(A) Overall numbers of viable cells in the lungs of IL-15-/- and wild-type mice following M. tuberculosis challenge 
were determined by trypan blue exclusion method. 
(B – C) The percentage of CD4+ and CD8+ T cells in the lungs and lymph nodes of IL-15-/- and wild-type mice was 
determined by flow cytometry. 
(D) The percentage of activated CD4+ and CD8+ T cells in the lungs of IL-15-/- and wild-type mice was evaluated 
by staining for CD69 expression using flow cytometry. Data represent mean percentage of CD69+ T cells within 
CD4+ and CD8+ gates ± SEM. 
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6.3.8. Proliferation and cytokine production by memory CD4+ and CD8+ T cell 

responses is not impaired in IL-15-/- mice 

 In contrast to previous findings where numbers of virus specific memory CD8+ T cells 

slowly declined in IL-15 deficient mice (263, 264), the most dramatic difference in memory T 

cell responses of IL-15-/- and wild-type mice was observed early after secondary infection with 

M. tuberculosis. Immune IL-15-/- mice had significantly fewer CD4+ and CD8+ T cells until six 

weeks post-challenge (Figure 29A). This difference in total numbers of CD4+ and CD8+ T cells 

during early recall response was not due to impaired proliferation as similar percentages of 

proliferating CD4+ and CD8+ T cells were detected in the lungs of immune IL-15-/- and wild-

type mice (Figure 29B). These differences are most likely due to delayed infiltration of memory 

CD4+ and CD8+ T cells into the infected lungs following secondary M. tuberculosis infection.  

 We assessed the ability of memory CD4+ and CD8+ T cells from IL-15-/- and wild-type 

mice to produce IFN-γ in response to M. tuberculosis-infected dendritic cells. Equal numbers of 

IFN-γ producing CD4+ and CD8+ memory T cells were present in the lungs of immune IL-15-/- 

and wild-type mice (Figure 29C) suggesting that the IFN-γ production by memory T cells is not 

dependent on IL-15. 
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Figure 29 Proliferation and cytokine production by CD4+ and CD8+ T cells in immune IL-15-/- and wild-type 
mice 

(A) The absolute numbers of CD4+ and CD8+ T cells were determined after staining lung cells with anti-CD4 and 
anti-CD8 antibodies. The numbers were calculated by multiplying total number of lung cells with % CD4+ or % 
CD8+ within live cell gate. The results are presented as mean ± SEM of four mice per group. The most dramatic 
difference in immune IL-15-/- and wild-type mice was seen early after secondary infection as infiltration of memory 
CD4+ and CD8+ T cells was delayed into infected lungs in the absence of IL-15. Similar numbers of CD4+ and CD8+ 
T cells were detected between IL-15-/- and wild-type mice at 3 months post-challenge. 
(B) The percentage of proliferating (BrdU+) cells within CD4+ and CD8+ gates was determined as described in 
Materials and Methods and figure legend 3. The graphs represent mean ± SEM of four mice per group. Statistical 
differences were calculated using two-sided Student’s t-test, where * p ≤ 0.05, and ** ≤ 0.01. CD4+ and CD8+ T 
cells from immune IL-15-/- and wild-type mice showed similar proliferation kinetics. 
(C)The numbers of IFN-γ producing CD4+ and CD8+ T cells in the lungs of immune IL-15-/- and wild-type mice 
was determined by ELISPOT using M. tuberculosis-infected dendritic cells as antigen specific stimulators. 
Incubation of M. tuberculosis-infected dendritic cells with blocking MHC Class I or MHC Class II antibodies 
delineated the number of IFN-γ producing CD4+ or CD8+ T cells, respectively. The inhibitory effect of the blocking 
MHC Class I and MHC Class II antibodies was ≥ 95% at 10 µg/ml concentration. The calculations were made as 
described in the figure legend 25. The mean numbers of IFN-γ producing CD4+ and CD8+ T cells from four IL-15-/- 
and wild-type mice at each time point are shown. Error bars represent SEM. 
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6.4. Discussion 

 The main goal of this study was to investigate whether IL-15 is required for the 

generation and maintenance of effector and memory T cell responses following M. tuberculosis 

infection. The main findings of this study indicate that IL-15-/- mice were not substantially 

impaired in their ability to control primary and secondary M. tuberculosis infection. Similar 

numbers of mycobacteria were detected in the lungs, lymph nodes and spleen of IL-15-/- and 

wild-type mice. There was a tendency for slightly higher bacterial burden in the lungs of IL-15-/- 

mice during chronic M. tuberculosis infection. CD4+ and CD8+ T cell effector functions were not 

affected by IL-15 deficiency after primary and secondary M. tuberculosis infection. In the view 

of recent studies, the most relevant finding is that CD8+ T cells were not more prone to apoptosis 

following M. tuberculosis infection, and there was no sign of reduced proliferation of effector 

and memory CD8+ T cells in IL-15 deficient mice. The most dramatic difference in immune IL-

15-/- and wild-type mice was characterized by delayed infiltration of immune cells into infected 

lungs early after secondary challenge. 

 Initial studies in which the potential of IL-15 as an immunotherapeutic agent against M. 

tuberculosis has been investigated suggest that overexpression of IL-15 can augment T cell 

mediated immune responses against M. tuberculosis (273-275).  Infection of IL-15 transgenic 

mice with M. bovis BCG conferred better protection against challenge with virulent M. 

tuberculosis H37Rv than M. bovis BCG alone (274). This enhanced efficacy of BCG by IL-15 

could be attributed in part to enhanced CD8+ T cell responses (274). However, exogenous IL-15 

administration did not increase the survival or improved the effector function of CD8+ T cells in 

susceptible CD4-/- mice (C57BL/6 background) after low dose infection with aerosolized M. 

tuberculosis (see Appendix A). Furthermore, IL-15 treatment did not change the course of 

infection in wild-type mice (see Appendix A). 
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   In this study we sought to determine whether IL-15 was required for the generation of 

primary and recall T cell responses against M. tuberculosis. The baseline number of CD8+ T 

cells in the lungs and lymph nodes in uninfected IL-15-/- mice was at least 2-fold lower when 

compared to uninfected wild-type mice. Initial studies with IL-15-/- and IL-15Rα-/- mice 

revealed that in the absence of IL-15 signaling there was ~ 30 – 50% reduction in peripheral 

CD8+ T cells (254, 255). Additional studies revealed that IL-15 signaling is important for the 

survival of peripheral naïve CD8+ T cells, which is most likely mediated by increased expression 

of anti-apoptotic proteins, such as Bcl-2 (276, 277). Since the initial CD8+ T cell deficiency in 

IL-15-/- mice could be explained by reduced survival of naïve T cells associated with IL-15-

deficient mice, there was still a possibility that a reduction in the overall CD8+ T cell effector 

population after primary infection could be due to reduced proliferation or enhanced apoptosis of 

CD8+ T cells in the absence of IL-15. We tested these hypotheses, and our data indicate that 

significantly higher percentage of effector CD8+ T cells proliferated in IL-15-/- mice during 

acute and chronic M. tuberculosis infection. It is important to emphasize that the proliferative 

ability of CD8+ T cells in the face of persistent stimulation with M. tuberculosis antigens is not 

undermined in the absence of IL-15. Since CD8+ T cells may be more prone to undergo 

apoptosis after antigenic stimulation in the absence of IL-15, we determined the percentage of 

apoptotic CD8+ T cells during acute and chronic M. tuberculosis infection. Staining of lung cells 

with annexin V and 7-AAD revealed a similar percentage of apoptotic CD8+ T cells between IL-

15-/- and wild-type mice. Therefore, the low magnitude CD8+ T cells responses during primary 

M. tuberculosis infection of IL-15-/- mice is not a result of reduced proliferation or enhanced 

apoptosis. Furthermore, the cytokine production and cytotoxic activity of CD8+ T cells were 
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normal in IL-15-/- mice, suggesting that IL-15 is not required for the effector functions of M. 

tuberculosis-specific CD8+ T cells. 

 In accordance with previous studies (254, 255), CD4+ T cell responses were not affected 

by the absence of IL-15 signaling. Similar percentages of proliferating and apoptotic CD4+ T 

cells were detected in the lungs and lymph nodes of IL-15-/- and wild-type mice (data not 

shown). The effector function of CD4+ T cells was normal in IL-15-/- mice as evidenced by a 

high percentage of activated CD4+ T cells and potent IFN-γ CD4+ T cell responses.  

 Interestingly, the number of IFN-γ producing CD4+ and CD8+ T cells increased in the 

lungs of IL-15-/- mice during chronic infection compared to wild-type mice. This boosted IFN-γ 

response could be ascribed to increased bacterial burden in the lungs of IL-15-/- mice. Notably 

the number of IFN-γ producing CD4+ and CD8+ T cells did not decline in the absence of IL-15. 

 There are no phenotypic markers that reproducibly represent the functional characteristics 

of memory CD4+ and CD8+ T cells in murine model of tuberculosis. Combination of CD44, 

Ly6C, CD62L markers failed to clearly delineate memory cells from effector cells after M. 

tuberculosis infection of naïve or memory mice (Chapter 4). The only distinguishing feature of 

memory response in murine model of tuberculosis is a higher percentage of activated CD69+ T 

cells in the lungs of immune mice when compared with naïve mice within the first 3 weeks post-

challenge (Chapter 4).  Our data indicate that protective immune responses were generated in the 

absence of IL-15 as evidenced by strict control of bacterial loads in the lungs and spleens of 

challenged IL-15-/- and wild-type mice.  

 Several groups reported that in the absence of IL-15 or IL-15Rα signaling the 

homeostatic proliferation of memory CD8+ T cells was significantly diminished leading to a 

slow decline in virus-specific memory CD8+ T cells (263, 264). There was no indication of 
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reduced proliferation or a decline in memory CD4+ and CD8+ T cell responses in IL-15-/- mice 

in our studies. The most dramatic difference between immune IL-15-/- and wild-type mice was 

observed early after secondary challenge with M. tuberculosis. There was a significant delay in 

the infiltration of CD4+ and CD8+ T cells into the lungs of IL-15-/- immune mice at three weeks 

post-challenge. Alternatively, initial differences could also be attributed to a smaller burst size of 

effector CD8+ T cell responses during primary infection of IL-15-/- mice. By six weeks post-

challenge the kinetics and magnitude of memory T cell responses were similar between IL-15-/- 

and wild-type mice. As M. tuberculosis is not cleared by a secondary immune response, and re-

infection is established, it is important to note that any effect of IL-15-/- deficiency on 

maintenance of memory T cell responses could be masked by the influx of de novo primed 

effector T cells at 6 weeks post-infection.  

 Although development of primary T cell responses occurred normally in IL15-/- mice, 

these mice had difficulty clearing M. tuberculosis infection when treated with antibiotics. We 

observed previously that CD4-/- mice were unable to eliminate M. tuberculosis during antibiotic 

treatment (Chapter 4). Since CD4+ T cells play a pivotal role in controlling acute and persistent 

M. tuberculosis infection, the efficacy of antibiotics was undermined in the absence of this 

important T cell subset. These findings suggest antibiotics treatment must be prolonged in the 

cases of immunodeficiency such as absence of CD4+ T cells. Since IL-15-/- mice had a similar 

difficulty in eliminating mycobacteria during antibiotic treatment suggested that this cytokine 

may have other unidentified roles in modulating the immune system that may be overlooked 

using standard immunological techniques. Flow cytometric analysis revealed similar numbers of 

dendritic cells, neutrophils and macrophages in the lungs of IL-15-/- and wild-type mice and 

cytokine profile analysis revealed no significant deficiencies in IL-2, IL-7, IL-12 and IL-10 
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mRNA expression (data not shown). Since no major differences in the functionality of T cells, 

composition of innate immune cells, and cytokine profile were detected in IL15-/- mice, it still 

remains unresolved why IL-15-/- mice were unable to clear M. tuberculosis infection in the 

presence of a standard course of antibiotics.  

 Collectively, our results indicate that IL-15 is not essential for the generation and 

maintenance of effector CD4+ and CD8+ T cell responses. The magnitude of the recall response 

in immune IL-15-/- mice was significantly smaller than in immune wild-type mice, which could 

be due to delayed infiltration of immune cells or a consequence of a smaller burst size of effector 

CD8+ T cell responses during primary infection of IL-15-/- mice. Development of tetramer 

staining reagents for M. tuberculosis antigens and better phenotypic definition of M. 

tuberculosis-specific memory T cells will enable a detailed investigation of development and 

maintenance of memory T cell responses following secondary M. tuberculosis infection. 
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7. CHAPTER 4 CD4+ T CELLS ARE NECESSARY FOR SUSTAINED CD8+ T CELL 
MEMORY RESPONSES FOLLOWING CHALLENGE WITH MYCOBACTERIUM 

TUBERCULOSIS 

 

7.1. Introduction 

 The contribution of CD8+ T cells to control of M. tuberculosis infection was first 

established through adoptive transfers and by in vivo CD8+ T cell depletion experiments (139-

141). Subsequently, it was demonstrated that mice which lack functional classically and non-

classically restricted CD8+ T cells were more susceptible to M. tuberculosis infection than wild-

type mice as evidenced by increased bacterial burden and reduced survival (142, 143, 278). In 

wild-type mice M. tuberculosis-specific CD8+ T cells emerged early in infection, produced 

inflammatory cytokines, such as IFN-γ and TNF-α, expressed perforin and lysed M. 

tuberculosis-infected macrophages in a β2m – and MHC Class I-dependent manner (130, 146). 

Although priming, migration and IFN-γ production by CD8+ T cells were normal in CD4+ T cell-

deficient mice during acute M. tuberculosis infection, cytotoxic CD8+ T cell responses were 

impaired in the absence of CD4+ T cell help (138).  

 The role of CD4+ T cells in the induction and maintenance of effector CD8+ T cell 

responses and in generation of CD8+ T cell memory has been extensively investigated. Studies 

using different stimuli (inflammatory versus non-inflammatory), or different systems (infection 

versus cross-priming) led to the definition of helper-dependent and helper-independent CD8+ T 

cell responses. In viral systems, CD4+ T cell help was not required for the induction of primary 

CD8+ T cell responses with viruses that are cleared efficiently (151, 279). However, in the case 

of chronic viral infections, CD8+ T cell responses atrophied in the absence of CD4+ T cells, and 

failure to sustain functional CD8+ T cell responses resulted in impaired viral clearance (229, 235, 
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280-282). Inflammatory nature of an antigen (222, 283-288), route of immunization (289), CTLp 

frequency (285, 290) and epitope affinity for MHC Class I molecules (291) have all been 

reported to influence the helper dependence of cytotoxic CD8+ T cells.  

 CD4+ T cells could provide help to CD8+ T cells either through “conditioning” of antigen 

presenting cells (APCs) via CD40-CD40L interaction, or by influencing the availability of 

cytokines, such as IL-2, IL-12 and IL-15, which are essential for the normal functioning of CD8+ 

T cells.  Although several studies reported the importance of soluble factors for normal CD8+ T 

cell differentiation (292-297), it appears that signaling through CD40 molecule on APCs is 

possibly the most important helper-dependent mechanism for CTL generation.  In support of this 

hypothesis, extensive studies demonstrated that CD40 and CD40L deficiencies resulted in 

impaired CD8+ T cells responses, and anti-CD40 stimulating antibodies could substitute for 

CD4+ T cell help (210, 221, 222). 

  Although CD4+ T cells may or may not be required for CD8+ T cell activation, division 

and differentiation into effector cells, several studies reported that CD4+ T cells are absolutely 

essential for providing instructive signals to CD8+ T cells to differentiate into effective memory 

cells (298-301). The unifying theme from these studies is that quality of memory CD8+ T cell 

responses is dependent on CD4+ T cell help. The most striking difference between “helped” and 

“unhelped” memory CD8+ T cells was in their ability to proliferate (299-301).  Memory CD8+ T 

cells generated in the absence of CD4+ T cells failed to expand in response to secondary 

challenge, and the amount of IFN-γ and IL-2 production was significantly diminished when 

compared to memory CD8+ T cells that developed with CD4+ T cell help (299-301). Although 

CD4+ T cell help was most important during priming of CD8+ T cells responses (299-301), CD4+ 

T cells may also influence the properties of memory CD8+ T cells at later stages in infection. 
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 Previously, we showed that CD8+ T cells participate in the recall responses to M. 

tuberculosis challenge. M. tuberculosis-specific memory CD8+ T cells were rapidly mobilized 

into the lungs of immune mice one week post-challenge. In contrast to naïve CD8+ T cells, 

memory CD8+ T cells exhibited swift up-regulation of CD69 (early activation marker), and 

enhanced IFN-γ production (302). These findings underscore the importance of incorporating 

stimulation of CD8+ T cell responses into rational vaccine design against tuberculosis. Therefore, 

it is necessary to define the requirements for generation and maintenance of effective memory 

CD8+ T cell responses that will lead to better protection against this pathogen.  In this study, we 

investigated the role of CD4+ T cells in the maintenance of memory CD8+ T cells. Our findings 

indicate that although expansion and proliferation of memory CD8+ T cells was normal in the 

absence of CD4+ T cells, the IFN-γ producing memory CD8+ T cells were unable to persist after 

6 weeks post-challenge. The results from this study emphasize the importance of CD4+ T cells in 

maintaining effective memory IFN-γ producing CD8+ T cells. 
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7.2.Materials and Methods 

 

7.2.1. Mice and infections 

 C57BL/6 wild-type mice were purchased from Charles River Laboratories (Wilmington, 

MA). CD4-/- mice were bred at the University of Pittsburgh Biotechnology Center. All mice 

were kept under specific pathogen-free conditions in a Biosafety Level 3 facility. Animal 

protocols used in this study were approved by the University Institutional Animal Care and Use 

Committee. For the primary infection and secondary challenge mice were infected with a low 

dose of aerosolized M. tuberculosis (Erdman strain, Trudeau Institute, Saranac Lake, NY), 

achieved with  5x10 /ml in the nebulizer of a nose-exposure only aerosolizer unit (Intox Inc., 5

Moriarty, NM). The dose received was estimated by plating whole lung homogenates of two 

mice from each experiment 24 hours following aerosol infection. 

 

7.2.2. In vivo CD4 depletion and establishment of M. tuberculosis-specific memory 

models 

 In general, mice are infected with a low dose of M. tuberculosis (~30 CFU/lung) via 

aerosol route. Infection proceeds for four weeks to allow for the induction of primary CD8+ T 

cell responses. From 4 weeks post-infection, mice are treated with isoniazid (0.1 g/liter) and 

pyrazinamide (15 g/liter) in drinking water two times a week for 8 weeks to clear the infection. 

At the end of antibiotic treatment two mice are sacrificed and several organ homogenates (lung 

and spleen) are plated on 7H10 plates (Difco) to confirm the absence of viable mycobacteria. 

Mice are rested for 16 weeks before secondary challenge with a low dose of M. tuberculosis via 

aerosol route. The quality of CD8+ memory T cell responses were investigated at this stage in the 

memory model.  
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 In the first memory model (Figure 30A and 30B), mice were injected with 500 µg/mouse 

of GK1.5 (anti-CD4) antibody to deplete CD4+ T cells one week before infection, and anti-CD4 

antibody treatment was continued twice a week for four weeks (Figure 30A) or 12 weeks (Figure 

30B). Antibiotic treatment began at four weeks post-infection and lasted for 8 weeks. The anti-

CD4 depletion regimen resulted in >96% depletion of CD4+ T cells. The remaining <4% CD4+ T 

cells were CD4low and failed to produce IFN-γ following non-specific stimulation with anti-

CD3/CD28 antibodies (data  not shown). 

 In the second memory model (Figure 30C) wild-type mice were infected with a low dose 

of M. tuberculosis for four weeks. Antibiotic treatment was initiated at 4 week post-infection for 

the following 8 weeks. Mice were rested for 16 weeks, and CD4+ T cells were depleted one week 

prior to the secondary challenge with 500 µg/mouse of GK1.5 antibody. The CD4 depletion 

regimen was continued twice weekly for the duration of study (9 weeks post-challenge). Naive 

CD4-/- and wild-type mice were infected and included as additional controls. 

 

7.2.3. CFU determination 

 Lung homogenates were serially diluted in PBS/0.05% Tween-80 and plated on 7H10 

agar plates (Difco). Plates were incubated at 37oC, 5% CO2 for 21 days prior to counting 

colonies. 

 

7.2.4. Bone marrow derived macrophages and dendritic cell cultures 

 In ex vivo stimulation assays, such as ELISPOT and limiting dilution analysis, bone 

marrow derived dendritic cells were cultured in the presence of GM-CSF supernatant at 1:200 

dilution (a generous gift from Dr. Binfeng Lu, University of Pittsburgh) and 20 ng/ml of IL-4 
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(PeproTech Inc, Rocky Hill, NJ) and macrophages were cultured in the presence of L cell 

supernatant as a source of CSF-1 using standard procedures described previously (146).  

 

7.2.5. Flow cytometry for cell surface molecules 

 Lung single cell suspensions were stained as described previously (146). Cells were 

stained with anti-CD4 (clone H129.19), anti-CD8 (clone 53-6.7), anti-CD69 (clone H1.2F3), 

anti-Ly6C (clone AL-21), anti-CD44 (clone IM7), and anti-CD62L (clone MEL-14) 

fluorescently conjugated antibodies. All antibodies were purchased from BD Pharmingen (San 

Diego, CA) and used at 0.2 µg/ml concentration. Cells were collected on a FACSCaliber 

(Beckon Dickinson, San Jose, CA) and analyzed by CellQuest (Becton Dickinson) or FlowJo 

(Tree Star Inc, San Carlos, CA) software.  

 

7.2.6. Proliferation of T cells in the lungs of infected mice 

 Sixteen hours prior to each experimental time point, mice were injected intraperitoneally 

with saline containing 1 mg of 5-bromo-2’-deoxyuridine [BrdU] (Sigma-Aldrich, St. Louis, 

MO). Lung cells were stained for cell surface markers CD4 and CD8 at room temperature for 20 

minutes prior to a fixation step with 4% paraformaldehyde [PFA] (200 µl/tube) on ice for 20 

minutes. Cells were washed with tissue culture phosphate buffered saline [PBS] at 470 g, and 

cell pellets were suspended in ice-cold 0.15 M NaCl (100 µl/tube), followed immediately by 

drop-wise fixation with ice-cold 95% ethanol (200 µl/tube) on ice for 30 minutes. Following a 

PBS wash, cells were permeabilized and fixed with 200 µl/tube of 0.4% saponin and 2% PFA for 

1 hour at room temperature. Cells were washed with PBS, and suspended in 200 µl/tube of 0.15 

M NaCl, 4.2 mM MgCl2 (pH 5) containing 250 U/ml of DNase I (Roche, Indianapolis, IN) for 
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30 minutes in 37oC water bath. Cells were washed with PBS, and incubated with anti-BrdU 

antibody or the respective isotype control (BD Pharmingen, FITC-conjugated antibody set) 

diluted at 1:3 in 0.5% Tween-20 and 0.5% BSA (50 µl/tube). Following 30 minute incubation at 

room temperature, cells were washed with PBS, and fixed with 4% PFA prior to acquisition on 

the flow cytometer.  

 

7.2.7. IFN-γ production 

 Cytokine production by CD8+ T cells isolated from the lungs of M. tuberculosis infected 

mice was evaluated by ELISPOT as described previously (228). Briefly, lung and lymph node 

cells were plated in anti-IFN-γ antibody (BD Pharmingen, clone R4-6A2) coated plates 

(MAIPS4510, Millipore Corp, Bedford, MA) at 80,000 cells/well and 150,000 cell/well, 

respectively. Cells were incubated in duplicate wells with media, ConA (10 µg/ml; Sigma-

Aldrich), uninfected and M. tuberculosis-infected dendritic cells (MOI 3; overnight) to estimate 

the number of total number of IFN-γ producing T cells, and M. tuberculosis-infected dendritic 

cells incubated with the blocking anti-MHC Class I (BD Pharmingen, clone 8F12) or anti-MHC 

Class II (BD Pharmingen, clone M5/114.15.2) antibodies at 10 µg/ml to estimate the number of 

IFN-γ producing CD4+ and CD8+ T cells, respectively. All dendritic cells were added to lung and 

lymph nodes cells at 1:2 ratio and the cultures were supplemented with IL-2 (PeproTech) at final 

concentration of 20 U/ml.  

 Following 40 hour incubation, the IFN-γ producing T cells were visualized after stepwise 

incubation of plates with biotinylated anti-IFN-γ antibody (BD Pharmingen, clone XMG 1.2) , 

streptavidin-conjugated enzyme (PK-6100, Vector Laboratories) and AEC substrate (SK-4200, 

Vector Laboratories). The spot forming units (SFU) were enumerated using ELISpot reader 
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(Cellular Technology Ltd, Cleveland, OH). The number of IFN-γ producing CD8+ T cells was 

determined using the following formula: (total number of cells/lung) x (frequency of IFN-γ 

producing cells after stimulation with M. tuberculosis infected dendritic cells pre-incubated with 

anti-MHC Class II antibody). Background number of IFN-γ producing cells following 

stimulation with uninfected dendritic cells (< 10 SFU) was subtracted before calculations were 

made. 

 

7.2.8. Limiting dilution analysis 

 The cytotoxic potential of CD8+ T cells was estimated using limiting dilution analysis 

(LDA) (240, 241). Effector cells were derived from the lungs and lung draining lymph nodes of 

M. tuberculosis-infected mice at designated time points. Freshly isolated cells were plated in 2-

fold serial dilutions starting from 40,000 cells/well to 1250 cells/well in V-bottom 96-well plates 

(24 replicates/input number) supplemented with IL-2 at 20 U/ml. Lung  and lymph node cells 

were incubated with M. tuberculosis-infected dendritic cells (500 DC/well) for 7 days.  

Following incubation, 100 µl of media was removed from each well, and lung cells were 

cultured for another round of stimulation with M. tuberculosis-infected macrophages (1000 

MΦ/well) and IL-2 (20 U/ml) to allow for expansion of CTL precursors. Flow cytometry 

analysis revealed that 75-95% of cells were CD8+ T cells after 2 weeks of stimulation.  

 Cytotoxicity was determined in each well by a standard 51Chromium release assay with 

M. tuberculosis-infected macrophages as targets. M. tuberculosis-infected macrophages were 

labeled with 51Cr (100 µl of 51Cr per 3x106 macrophages) for 1 hour at 37oC, and added to lung 

and lymph node T cell cultures at 4000 cells/well. Following 4 hour incubation, 100 µl of 

supernatant was collected (Skatron SCS System; Skatron, Sterling, VA) and radioactivity was 
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quantified using a gamma counter. Positive wells were defined as being greater than mean + 3 

SD of spontaneous target cell release. Frequency of CTLp was determined using zero-order 

Poisson equation (ln Y = - Fx + ln A; where x = the number of effector cells/well; Y = % 

negative wells; A = the y-axis intercept; F = CTLp frequency defined by the negative slope of 

the line). All calculations were performed using a software program fitted to the equation by χ2 

minimization analysis (a generous gift from Dr. Carolyn A. Keever-Taylor, Medical College of 

Wisconsin). 

 

7.2.9. Statistics 

 Statistically significant differences in the numbers of effector T cells between the CD4 

depleted and wild-type mice were determined using unpaired, two-sided, Student t-test. The p-

value of < 0.05 was defined as being significant. Designations in the figures:  * p ≤ 0.05; ** p ≤ 

0.01. 
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7.3. Results 

 

7.3.1. Effects of CD4+ T cell depletion during primary infection on the quality of 

memory CD8+ T cell responses 

 In the first memory model (Figure 30A) we addressed the importance of CD4+ T cells 

during priming of CD8+ T cell responses for the subsequent generation of CD8+ T cell memory. 

CD4+ T cells were depleted one week prior to M. tuberculosis infection and during the first four 

weeks of primary infection to allow for the priming of effector CD8+ T cell responses. Antibiotic 

treatment with isoniazid (0.1 g/l in drinking water) and pyrazinamide (15 g/l) commenced at four 

weeks post-infection and continued for eight weeks. In accordance with previously published 

studies such antibiotic treatment of C57BL/6 wild-type mice infected with an aerosolized low 

dose of M. tuberculosis resulted in the complete elimination of the bacilli as assessed by plating 

whole lung homogenates (47, 302, 303). In addition, immunosuppression of such antibiotic 

treated mice failed to result in reactivation suggesting that complete sterilization of the lungs was 

achieved (47). Mice were rested for 16 weeks prior to secondary challenge with M. tuberculosis. 

The absence of mycobacteria and a long resting period ensured that a stable pool of memory 

CD8+ T cells was established (302). Twenty-eight weeks after initial infection, mice were 

challenged with a low dose of M. tuberculosis via aerosol route, and memory CD8+ T cell 

responses were evaluated. 
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Figure 30 Development of memory models 

(A) CD4+ T cells were depleted using anti-CD4 (GK1.5) antibody one week prior M. tuberculosis infection. 
Antibody administration was continued twice weekly for 4 weeks during priming of effector CD8+ T cell responses. 
Antibiotic treatment with isoniazid and pyrazinamide began at 4 weeks post-infection and continued for 8 weeks. 
Mice were rested for 16 weeks prior to secondary challenge with M. tuberculosis.  
(B) Alternatively, CD4+ T cells were depleted one week prior M. tuberculosis infection, during primary infection (4 
weeks) and throughout antibiotic treatment (8 weeks). Mice were challenged with M. tuberculosis following 16 
weeks of rest. 
(C) Mice were infected with M. tuberculosis for 4 weeks, treated with antibiotics for 8 weeks and rested for 16 
weeks. One week prior to secondary challenge, CD4+ T cells were depleted with GK1.5 antibody, and antibody 
treatment was continued twice a week for duration of the study. 
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 Mice treated with GK1.5 or IgG during the priming phase were equally capable of 

controlling secondary challenge with M. tuberculosis, as both groups of mice harbored similar 

bacterial burden in the lung and spleen (Figure 31A and 31B).  

 

 

 

 
 

Figure 31 Bacterial burden in the lung and spleen of GK1.5 and IgG treated memory mice 

(A-B) Serial dilutions of lung (A) and spleen (B) homogenates were plated on 7H10 plates, and colonies were 
enumerated after 21 days of incubation. Results indicate that both GK1.5 and IgG treated memory mice were 
equally capable of controlling M. tuberculosis infection. The results represent mean ± SEM for 4 mice per group. 
 

 

 Early after secondary challenge, IgG treated mice had a significantly higher percentage of 

CD8+ T cells in the lungs (2 weeks post-challenge); nevertheless, by 3 weeks post-challenge both 

groups of mice had similar percentage of CD8+ T cells (Figure 32A). These findings indicate that 

expansion of memory CD8+ T cells was similar in both GK1.5 and IgG treated mice. 
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Figure 32 Functional analysis of memory CD8+ T cells that were primed in the absence of CD4+ T cell help 

(A-B) Lung cells were stained with anti-CD8 and anti-CD69 antibodies. The percentage of CD8+ T cells within 
lymphocyte gate (A) and the percentage of CD69+ cells within CD8+ gate (B) were estimated by flow cytometry.  
(C) The number of IFN-γ producing CD8+ T cells was determined after ex vivo stimulation of lungs cells with M. 
tuberculosis-infected dendritic cells pre-incubated with the blocking MHC Class II antibody. Background number of 
IFN-γ producing T cells after stimulation with uninfected dendritic cells was subtracted before calculations were 
made. The efficacy of blocking MHC Class II antibody was shown to be >95% at 10 µg/ml concentration. The 
results in the graphs represent mean ± SEM for 4 mice per group. 
(D) The number of CTLp per lung was estimated by limiting dilution analysis as described in Materials and 
Methods. Serial dilutions of lung cells were subjected to two rounds of stimulation with M. tuberculosis-infected 
dendritic cells, followed by M. tuberculosis-infected macrophages. After two weeks of expansion individual wells 
were tested for cytotoxicity using chromium labeled, M. tuberculosis-infected macrophages. The results in the 
graphs represent mean ± SEM for 4 mice per group. 
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 Initially memory CD8+ T cells from both groups of mice responded to the secondary 

challenge with M. tuberculosis with similar kinetics (Figure 32B – 32D). However, as the 

infection progressed, the function of memory CD8+ T cells from the GK1.5 treated mice declined 

at a faster rate than in control mice (Figure 32B – 32D). There were fewer activated memory 

CD8+ T cells (Figure 32B), and the number of IFN-γ producing CD8+ T cells was significantly 

lower in the lungs of GK1.5 treated mice (Figure 32C). While there was some residual cytotoxic 

activity in the lungs of IgG treated mice at 6 weeks post-challenge, the number of CTLp in the 

lungs of GK1.5 treated mice was negligible by 3 weeks post-challenge (Figure 32D).   

 Functional analyses of CD4+ T cells from GK1.5 treated mice revealed that these cells 

were not truly naïve at the time of secondary challenge. Most likely, CD4+ T cells repopulated 

GK1.5 treated mice before all of M. tuberculosis was eliminated by the antibiotic treatment. 

Subsequently, some of CD8+ T cell responses could have been primed in the presence of CD4+ T 

cells later in infection. We attempted to address this problem by depleting CD4+ T cells one 

week prior to infection, during priming of CD8+ T cell responses (4 weeks), and throughout 

antibiotic treatment (8 weeks) (Figure 30B). In this case it was expected that CD4+ T cells would 

repopulate the GK1.5 treated mice after all of the bacteria were cleared by the antibiotics. 

Surprisingly, mice in which CD4+ T cells were depleted for 13 weeks were unable to completely 

eliminate M. tuberculosis despite 2 months of antibiotic treatment (data not shown). In contrast, 

no viable M. tuberculosis was recovered from the lungs and spleens of IgG treated mice. These 

findings suggest that a 2 month antibiotic regimen is not sufficient to clear M. tuberculosis in the 

face of immunodeficiency, such as lack of CD4+ T cells. Due to the presence of residual 

mycobacteria in CD4+ T cell-depleted mice, this study was not included in the analysis of 

memory CD8+ T cell responses. 
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 Although some CD8+ T cells may have been primed in the presence of CD4+ T cells past 

4 weeks post-infection, depletion of CD4+ T cells during this initial stage in infection had a 

significant effect on the function by memory CD8+ T cells during secondary challenge. 

 

7.3.2. Effects of CD4 depletion during secondary challenge on the maintenance of 

memory CD8+ T cell responses 

 Next we asked whether CD4+ T cells were required during secondary challenge for the 

maintenance of functional memory CD8+ T cell responses. In the second memory model (Figure 

30C), mice were infected with M. tuberculosis for the first four weeks of infection, antibiotic 

treatment began at four weeks for the duration of 8 weeks, followed by 4 months of rest. One 

week before secondary challenge, CD4+ T cells were depleted with GK1.5 antibody, and the 

depletion regimen continued twice a week for duration of the study. Naïve CD4-/- and wild-type 

mice were infected as additional controls. 

 In the absence of CD4+ T cells, both naive and memory mice were unable to control M. 

tuberculosis infection. CD4+ T cell-deficient mice had significantly higher bacterial numbers in 

the lung and spleen when compared to immunocompetent mice (Figure 33A and 33B), and 

succumbed to M. tuberculosis infection at 12 weeks post-infection/challenge (data not shown). 

For this reason, all functional analyses of effector and memory CD8+ T cells were completed by 

9 weeks post-infection/challenge. 
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Figure 33 Bacterial burden in the lung and spleen of GK1.5 and IgG treated memory mice, and naïve CD4-/- 
and wild-type mice 

(A-B) Serial dilutions of lung (A) and spleen (B) homogenates from GK1.5 and IgG treated mice as well as from 
naïve CD4-/- and wild-type mice were plated on 7H10 plates, and colonies were counted following 21 days of 
incubation. CD4+ T cell-deficient memory and naïve mice were unable to contain M. tuberculosis infection, and had 
significantly higher bacterial burden by 9 weeks post-infection. CD4+ T cell-deficient memory and naïve mice 
succumbed to M. tuberculosis by 12 weeks post-infection (data not shown). The results are representative of three 
independent experiments. 
 

 

7.3.3. Expansion and activation of effector and memory CD8+ T cells were 

unimpaired in the absence of CD4+ T cells 

 There was an increase in the numbers of CD8+ T cells in the lungs of GK1.5 memory 

mice (Figure 34A). Early after secondary challenge both GK1.5 and IgG memory CD8+ T cells 

exhibited increased expression of CD69 when compared to naïve CD4-/- and wild-type mice 

(Figure 34B). By 3 weeks post-infection a similar percentage of activated CD8+ T cells was 

detected in the lungs of all groups of mice.  
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 Memory CD8+ T cells from the lungs of GK1.5 treated mice proliferated significantly 

more at 3 and 6 weeks post-challenge when compared to IgG treated mice. No significant 

differences were observed in the percentages of proliferating CD8+ T cells from the lungs of 

naïve CD4-/- and wild-type mice or from the lymph nodes of naïve and memory mice (Figure 

34D – 34F). 
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Figure 34 Expansion and activation of memory CD8+ T cells in GK1.5 treated mice were unimpaired 

(A-B) Lung cells from memory GK1.5 and IgG treated mice and from naïve CD4-/- and wild-type mice were 
stained with anti-CD8 and anti-CD69 antibodies at designated time points. The number of CD8+ T cells within live 
cell gate (A), and the percentage of CD69+ T cells within CD8+ gate (B) were estimated by flow cytometry.  
(C-D) The percentage of proliferating cells was estimated by flow cytometry after 16 hour injection of BrdU 
intraperitoneally. The percentage of proliferating cells within CD8+ gate was determined for the lung samples from 
memory (C) and acutely infected mice (D). The data represent mean ± SEM for 3 mice per group. 
(E-F) The percentage of proliferating cells within CD8+ gate in the lymph nodes of memory (E) and naïve (F) mice 
was determined by BrdU incorporation. The data represent mean ± SEM for 3 mice per group. 
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7.3.4. Phenotypic characterization of memory CD8+ T cells 

 Two distinct subsets of memory CD8+ T cells have been described, namely 

“central”/”resting” memory CD8+ T cells (TCM) and effector memory CD8+ T cells (TEM). These 

two subsets are differentiated by their migratory properties, functions, and expression of lymph 

node-homing molecules CD62L and CCR7 (304-307). TCM express CD62L and CCR7, while 

TEM are CD62L- and CCR7- (304). Murine memory CD8+ T cells are also characterized as being 

CD44hi, Ly6Chi and CD69- (308). In this study “resting” memory cells were defined as CD8+ 

Ly6Chi CD62L+ or CD8+ Ly6Chi CD69-; and “effector” memory cells were described as being 

CD8+ Ly6Chi CD62L- or CD8+ Ly6Chi CD44hi (Figure 35). We found that the proportion of 

“resting” CD8+ T cells decreased following M. tuberculosis infection in the lungs and lymph 

nodes of all mice (Figure 35A and 35B). However, there was no correlation in the relative 

presence of “resting” memory CD8+ T cells between naïve and immune mice even before 

primary infection or secondary challenge. In fact, according to the flow cytometric analysis, 

naïve mice had a higher percentage of “memory”-like cells than immune mice (Figure 35A and 

35B). Initially the percentage of “effector” memory CD8+ T cells was higher in the lungs of IgG 

treated memory mice after secondary challenge (Figure 35C). Later in infection both memory 

and naïve mice had a similar percentage of “effector” memory cells in the lungs, while there was 

no pattern in the expression of these memory markers in the lymph nodes (Figure 35C and 35D). 

These data indicate that a very heterogenous population of CD8+ T cells exists in the lungs 

following primary and secondary infection with M. tuberculosis. Although these cell surface 

markers clearly delineate memory CD8+ T cells in mice following viral infections, we found that 

neither combination of the cell surface markers corresponded to the functional characteristics of 
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memory CD8+ T cells in murine model of tuberculosis, most likely due to the chronic nature of 

the infection.  

 

 

 
 

Figure 35 Phenotypic characterization of memory CD8+ T cells from GK1.5 and IgG treated memory mice 

(A-B) The “resting”/”central” memory cells were defined as CD8+ Ly6Chi CD69- (A) or CD8+ Ly6Chi CD62L+ (B). 
The percentage of “resting” memory CD8+ T cells was determined for the lungs and lymph nodes of memory GK1.5 
and IgG treated mice. Lung and lymph nodes of naïve CD4-/- and wild-type mice were also stained and analyzed for 
the presence of “resting” memory cells as additional controls. 
(C-D) The “effector” memory cells were described as CD8+ Ly6Chi CD62L- (C) or CD8+ Ly6Chi CD44hi (D). The 
percentage of “effector” memory cells was determined for the lung and lymph node samples from GK1.5 and IgG 
treated memory mice as well as naïve CD4-/- and wild-type mice. The results represent mean ± SEM for 3 mice per 
group. 
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7.3.5. IFN-γ producing CD8+ T cells cannot persist without CD4+ T cell help 

 The number of IFN-γ producing CD8+ T cells was determined after ex vivo stimulation of 

lung cells with M. tuberculosis-infected dendritic cells pre-incubated with the blocking MHC 

Class II antibody. The number of IFN-γ producing M. tuberculosis-specific CD8+ T cells did not 

expand and declined in the lungs and the lymph nodes of memory mice in absence of CD4+ T 

cells (Figure 36A and 36C). In contrast, the number of IFN-γ producing CD8+ T cells from IgG 

treated memory mice continued to rise as infection progressed (Figure 36A and 36C). Although 

similar numbers of CD8+ effector cells from naïve CD4-/- mice produced IFN-γ during acute 

infection (up to 3 weeks), the magnitude of IFN-γ+ CD8+ T cell responses was significantly 

lower than in wild-type mice during chronic infection (9 weeks) (Figure 36B and 36D). 

 The number of CTLp in the lungs of GK1.5 and IgG treated memory mice was similar 

suggesting that the absence of CD4+ T cells did not have a significant impact on the development 

and maintenance of memory cytotoxic CD8+ T cell responses. No CTL activity was detected in 

any of the groups of mice at 9 weeks post-challenge (data not shown). 
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Figure 36 Loss of IFN-γ producing CD8+ T cells in the lungs and lymph nodes of memory mice without CD4+ 
T cell help 

(A-B) The number of IFN-γ producing CD8+ T cells in the lungs (A) and lymph nodes (B) of memory and naïve 
mice was determined by ELISPOT as described in Materials and Methods. The results represent the mean of 2 – 6 
mice per group. 
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7.4. Discussion 

 In this study we investigated the requirement for CD4+ T cells during primary 

infection or secondary challenge for the generation and maintenance of memory CD8+ T cell 

responses in M. tuberculosis infection. Depletion of CD4+ T cells during primary infection 

resulted in generation of memory CD8+ T cells that responded with equal kinetics as memory 

CD8+ T cells from control mice; however as infection progressed the frequency of activated, 

cytotoxic and cytokine producing memory CD8+ T cells significantly declined in mice that did 

not receive CD4+ T cell help during priming. Depletion of CD4+ T cells during secondary 

challenge resulted in generation of memory CD8+ T cells that responded with similar kinetics to 

the initial challenge with M. tuberculosis; however as infection progressed, memory CD8+ T 

cells without CD4+ T cell help never reached the same magnitude as “helped” memory CD8+ T 

cells. These findings suggest that CD4+ T cell help is required for the generation of long-lasting 

and functional memory CD8+ T cells. Unlike other studies, which reported a major defect in the 

proliferation of memory CD8+ T cells without CD4+ T cell help (299-301), we found no 

evidence of impaired expansion in “unhelped” memory CD8+ T cells. The most striking 

difference between “helped” and “unhelped” memory CD8+ T cells was in the durability and 

magnitude of their effector functions during the recall response against M. tuberculosis. 

 Previous work from our laboratory demonstrated that memory CD8+ T cells participated 

in the recall responses against M. tuberculosis (302). Since development of cytotoxic CD8+ T 

cell responses depended on CD4+ T cells during acute M. tuberculosis infection (138), we next 

investigated whether CD4+ T cell help was also required for the generation and maintenance of 

memory CD8+ T cells. To delineate when CD4+ T cell help may be required for the development 

of memory CD8+ T cells, we designed two memory models. In the first memory model, we 
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depleted CD4+ T cells during primary infection and asked whether CD4+ T cells were required 

during priming of effector CD8+ T cells for the subsequent generation of memory CD8+ T cells. 

Although the percentage of memory CD8+ T cells in both groups of mice was similar, activation 

and IFN-γ production by memory CD8+ T cells from GK1.5 treated mice significantly declined 

following secondary challenge. The difference between “helped” and “unhelped” memory CD8+ 

T cell responses in this model may be underestimated by the fact that during the secondary 

challenge CD4+ T cells did not exhibit a truly naïve phenotype. These findings suggest that some 

proportion of CD8+ T cells may have received CD4+ T cell help past the initial four weeks of 

priming. We attempted to address this issue by prolonging the CD4 depletion from 4 weeks to 12 

weeks post-infection. Although this antibiotic regimen (isoniazid and pyrazinamide for 8 weeks) 

showed sterilizing activity in latency reactivation studies (47), surprisingly, CD4 depleted mice 

were unable to completely clear M. tuberculosis infection. These CD4 depleted mice harbored 

1x105 CFU in the lungs and 1x104 CFU in the spleen at the time of secondary challenge; 

therefore excluding this study as a model of CD8+ T cell memory.  Since antibiotics were 

insufficient at eliminating M. tuberculosis, these results underscore the importance of CD4+ T 

cell mediated protective responses against M. tuberculosis even during optimal chemotherapy. 

Nevertheless, our data indicate that the absence of CD4+ T cells during the first four weeks of 

infection resulted in a significant reduction of IFN-γ producing CD8+ T cells during secondary 

challenge. 

 In the second memory model, we depleted CD4+ T cells during secondary challenge and 

studied the effects of CD4+ T cells on the maintenance of CD8+ T cell responses. Memory CD8+ 

T cells from GK1.5-treated mice showed no defects in proliferation as measured by BrdU 

incorporation and had a similar percentage of activated CD69+ CD8+ T cells as IgG treated mice 
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throughout the secondary challenge.  However, IFN-γ producing CD8+ T cells did not expand 

substantially in the lungs of GK1.5-treated mice, in contrast to control mice.  These results 

demonstrate a dependence on CD4+ T cells for optimal CD8+ T cell function and maintenance at 

both the priming and restimulation (challenge) phases of infection with M. tuberculosis. In the 

absence of CD4+ T cell help, IFN-γ producing CD8+ T cells perished as infection progressed to 9 

weeks post-challenge. Even acutely infected CD4-/- mice showed dependence on CD4+ T cell 

help in the maintenance of IFN-γ producing CD8+ T cells during the chronic stage of infection. It 

appears that effector CD8+ T cells are more dependent on CD4+ T cells help in the context of 

antigen specific stimulation than previously shown with non-specific stimulation with anti-

CD3/CD28 antibodies (138). 

 Phenotypic characterization of memory CD8+ T cells in naïve and immune CD4+ T cell-

deficient and wild-type mice did not yield conclusive results in this model. In this study, we 

defined “central”/”resting” memory CD8+ T cells as CD8+ Ly6Chi CD69-or CD8+ Ly6Chi 

CD62L+ and “effector” memory CD8+ T  cells as CD8+ Ly6Chi CD62L- or CD8+ Ly6Chi CD44hi. 

Our analysis mainly focused on the relative expression of Ly6C as almost all CD4+ and CD8+ T 

cells in the lungs of M. tuberculosis infected lungs are CD44hi. Expression of CD62L and the 

lack of CD69 marker on CD8+ Ly6Chi cells were the main criteria for defining cells as being 

“resting”, while lack of CD62L expression and high expression of CD44 on CD8+ Ly6Chi cells 

identified cells as being of “effector memory” phenotype. The baseline staining of uninfected 

naïve mice, and unchallenged immune mice yielded confusing results as naïve mice had a higher 

percentage of “memory”-like cells in the lungs and the lymph nodes than memory mice. Thus, 

the use of standard markers for murine memory CD8+ T cells did not represent the functional 

characteristics of memory CD8+ T cells in murine model of tuberculosis. This may be due in part 
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to the lack of tetramer reagents for identifying specific T cells in the lungs, but our previous data 

suggest that most of the CD8+ T cells in the lungs following M. tuberculosis infection are 

specific for mycobacterial antigens. Hence, the use of these cell surface markers for 

representation of M. tuberculosis-specific memory CD8+ T cells should be interpreted with 

caution.  

 The mechanisms of CD4+ help in the generation of effector and memory CD8+ T cell 

responses during M. tuberculosis infection were extensively investigated in our laboratory. A 

similar percentage of CD8+ T cells expressed perforin in the lungs and lymph nodes of CD4+ T 

cell-deficient and wild-type mice suggesting that CD8+ T cells with or without CD4+ T cell help 

were equipped with cytotoxic arsenal (data not shown). However, CD8+ T cells from CD4+ T 

cell-deficient mice failed to employ their cytotoxic effector mechanisms (138). Although CD4+-

T cell deficient mice had significantly less IL-2 and IL-15 in the lungs following acute M. 

tuberculosis infection (138), effector and memory CD8+ T cell responses developed normally in 

IL-15-/- mice (Chapter 3). Our previous studies demonstrated that CD40-/- mice were very 

susceptible to M. tuberculosis infection as a result of reduced priming of IFN-γ T cell responses 

(228). In fact, CD4+ T cells were more affected by the absence of the CD40 molecule, while no 

significant differences were detected in the numbers of IFN-γ producing CD8+ T cells between 

CD40-/- and wild-type mice (228). The cytotoxic activity of CD8+ T cells in CD40-/- and 

CD40L-/- mice was comparable to wild-type mice (data not shown). Collectively, these results 

indicate that CD40/CD40 co-stimulation and the availability of IL-15 are not the primary helper 

mechanisms of CD4+ T cells in M. tuberculosis infection model. 

 Since the primary goal of vaccines against tuberculosis is to elicit long-term protective 

immunity, it is essential to understand which factors regulate development and maintenance of T 
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cell memory. In this study, we have investigated the importance of CD4+ T cells in the 

generation of effective memory CD8+ T cell responses. Our data show that CD4+ T cells are 

required both during priming of effector CD8+ T cells and during secondary challenge for the 

long-term maintenance of memory IFN-γ+ CD8+ T cells.  
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8. SUMMARY OF THE THESIS 

 

 Mycobacterium tuberculosis infection is acquired through inhalation of aerosolized 

droplets containing the bacilli generated by a person with active disease. In the case of 

productive infection, M. tuberculosis infects resident alveolar macrophages and dendritic cells. 

Infected macrophages set off the inflammatory cascade by secreting proinflammatory cytokines, 

resulting in the recruitment of more immune cells into the lungs.  Dendritic cells mature upon M. 

tuberculosis infection and migrate to the lung draining lymph nodes where they prime naïve T 

cells. Activated T cells acquire their effector functions, such as cytokine production and 

cytotoxicity, and infiltrate the infected lung where they recognize M. tuberculosis infected 

macrophages. The net result is formation of granulomas where infected macrophages are 

surrounded by newly recruited macrophages, T and B lymphocytes. The main function of 

granulomas structure is to seal off the foci of infection, prevent dissemination of M. tuberculosis, 

and allow for macrophage – T cell contacts leading to the induction of mycobactericidal 

mechanisms in infected macrophages and control of M. tuberculosis replication.  

 Although we have come a long way in understanding the series of events that lead to 

protection against M. tuberculosis-induced disease, still very little is known about what 

conditions are required for the induction of protective T cell mediated immunity. Furthermore, 

we do not understand how persistent stimulation of CD4+ and CD8+ T cells with M. tuberculosis 

antigens affects their function, and since the goal of all anti-tuberculosis vaccines is to elicit 

long-lasting and protective immunity, we definitely need to identify factors that are required for 

the development and maintenance of functional memory T cell responses.  

 The studies presented in this thesis attempt to answer these questions. In Chapter 1 we 

provide evidence for the importance of the CD40 molecule in the induction of protective IFN-γ T 
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cell responses.  The results in Chapter 2 demonstrate that once a successful immune response is 

initiated, the long-term control of M. tuberculosis is mediated by dynamic changes in the 

frequency and effector functions of CD4+ and CD8+ T cells in a setting that only appears to be a 

steady balance between the pathogen and the host’s immune response. In Chapter 3, we 

addressed the role of IL-15 in the maintenance of T cell effector functions, and also in the 

generation of CD4+ and CD8+ T cell memory, while in Chapter 4 we investigated the 

requirement for CD4 helper mechanisms in the development and maintenance of memory CD8+ 

T cell responses. 

 Our results indicate that CD40 ligation on dendritic cells was necessary for the initiation 

of robust T cell mediated immunity and containment of M. tuberculosis infection, while the 

absence of CD40L did not have a substantial effect on the development of T cell responses 

(Chapter 1). Work with CD40-/- mice demonstrated that in the absence of CD40 signaling, IL-12 

production by dendritic cells was minimal leading to the poor priming of IFN-γ of T cell 

responses. Consequently, infiltration of effector cells into infected lungs of CD40-/- mice was 

significantly diminished when compared to wild-type mice leading to the susceptibility of CD40-

/- mice to M. tuberculosis infection. Exogenous administration of IL-12 to in vitro CD40-/- 

dendritic cell – T cell co-cultures, or injection of IL-12 during priming of T cell responses 

significantly enhanced the priming ability of CD40-/- dendritic cells and resulted in the 

generation of strong, robust IFN-γ T cell responses. Dependence on CD40 ligation for induction 

of protective IFN-γ T cell responses was a function of antigen dose. Priming of IFN-γ T cell 

responses was dependent on CD40 mediated signals after low dose aerosol infection with M. 

tuberculosis. However, in the case of systemic infection or infection with a higher antigen dose, 

induction of IFN-γ T cell responses was CD40 independent possibly due to signaling through 
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Toll-like receptors. Based on these results, we created a following model that describes a series 

of events that will lead to the priming of strong Th1 response.  M. tuberculosis infection of 

dendritic cells results in phenotypic changes that are indicative of maturation characterized by 

upregulation of antigen presenting and costimulatory molecules. Although we have no evidence 

that dendritic cells that were infiltrating the lung draining lymph nodes were directly infected 

with M. tuberculosis, we detected a significant increase in their numbers which coincided with 

the priming of T cell responses. In the lymph nodes, CD40 ligation on dendritic cells, either by 

CD40L on CD4+ T cells and/or by M. tuberculosis-derived components, such as Hsp70, induces 

optimal IL-12 production by dendritic cells. High levels of IL-12 in the lymph nodes result in the 

priming of IFN-γ producing T cells that leave the lymph nodes and infiltrate infected lungs 

conferring protection against M. tuberculosis. 

During initial stage of infection CD4+ T cells are the primary source of IFN-γ, while 

contribution of CD8+ T cells to the IFN-γ production is existent but minimal until chronic stage 

of infection, when the frequency of IFN-γ producing CD8+ T cells is equivalent to IFN-γ 

producing CD4+ T cells (Chapter 2). CD8+ T cells respond to M. tuberculosis infection by 

employing preferentially the cytotoxic mechanisms during acute infection, and switch to 

cytokine production during chronic infection. This switch will activate RNI and ROS pathways 

in infected macrophages leading to the destruction of intracellular bacteria, thereby minimizing 

immunopathology that would otherwise be invoked by extensive cytotoxic activity during 

infection. Nevertheless, CD8+ T cells retained the ability to synthesize perforin, which was 

detected by both intracellular perforin staining and immunohistochemistry. These results suggest 

that CD8+ T cells were not exhausted during chronic infection, but restrained from employing 

their cytotoxic activity (Chapter 2). One of the most important candidates for determining the 
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development fate of CD8+ T cells is antigen dose. Several studies have reported that at low levels 

of TCR occupancy an immature synapse is formed, which is sufficient to trigger cytotoxicity, but 

not cytokine production (245, 246). In contrast, the high level of TCR occupancy is required to 

stimulate cytokine production and proliferation (245, 246). In our study we were unable to 

correlate CD8+ CTLp frequency with the total number of viable bacteria in the lungs. However, 

determination of CFUs is a crude estimate of antigenic load that CD8+ T cells may be exposed to 

in vivo as it measures only the number of replication-competent mycobacteria. It is very difficult 

to estimate the epitope density on the surface of infected macrophages. Russell et al. reported 

that mycobacterial antigens, particularly lipids and glycolipids, traffic dynamically to the cell 

surface of infected cells (251-253). Thus, the physiological relevance of antigen dose on effector 

CD8+ T cell functions in M. tuberculosis infection remains to be resolved.  

A surprising result was that the frequency of IFN-γ producing CD4+ and CD8+ T cells 

dynamically waxed and waned during persistent M. tuberculosis infection (Chapter 2). We 

propose two explanations for such behavior of effector T cells. It is generally accepted that 

during persistent infection, M. tuberculosis exists in a quiescent state characterized by low level 

of metabolic activity. Nevertheless, it is possible that M. tuberculosis transiently undergoes 

bursts of replication. These changes in bacterial numbers are sensed by the host immune system, 

which responds by rapidly increasing the numbers of IFN-γ producing T cells until bacterial 

growth is brought under control. In this manner, bacterial growth will be strictly controlled, with 

minimal immunopathology that otherwise would be induced by persistently elevated levels of 

inflammatory cytokines, such as IFN-γ. This explanation suggests a dynamic equilibrium 

achieved between the pathogen and the host’s immune system that persists throughout the course 

of infection. Alternatively, T cells may be rendered transiently anergic and unable to respond to 
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constant antigenic stimulation, which would be characterized by drops in the frequency of IFN-γ 

producing T cells. The regular periodicity of the peaks and troughs in the frequency of IFN-γ 

producing T cells suggests that a certain time interval is required for T cells to renew their IFN-γ 

producing capacity. A detailed investigation of TCR signaling at different time points during 

chronic infection will resolve whether transient anergy in T cell activation exists due to persistent 

exposure to mycobacterial antigens. Nevertheless, the T cell IFN-γ production is not permanently 

silenced by high antigen doses, suggesting that the effects of persistent mycobacterial antigenic 

stimulation on T cell functionality are transient. Unlike many chronic viral infections where T 

cells undergo rapid turnover, and enter the state of replicative senescence, there is no evidence 

that this is the case during persistent M. tuberculosis infection as CD4+ and CD8+ T cells 

underwent two bursts of replication during 7 months of infection (Chapter 2). 

Work with IL-15-/- mice demonstrated that this cytokine is not essential for the 

generation and maintenance of primary CD4+ and CD8+ T cell responses (Chapter 3). Contrary 

to acute virus infections where IL-15 was shown to be important for the expansion of virus-

specific primary or memory CD8+ T cells (263, 264),  the absence of IL-15 did not affect the 

proliferation or cytokine production by CD4+ and CD8+ T cells. Functional cytotoxic CD8+ T 

cells were also detected in IL-15-/- mice. These findings suggest that IL-15 is not essential for 

the priming of IFN-γ producing CD4+ and CD8+ T cells or cytotoxic CD8+ T cells. Moreover, 

proliferation and the long-term maintenance of CD4+ and CD8+ T cell effector functions were 

not dependent on the presence of IL-15. Our data indicate that IL-15 was not required for the 

proliferative renewal of memory M. tuberculosis-specific T cells or for the maintenance of the 

memory responses against M. tuberculosis. Therefore, infections with viral and bacterial 
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pathogens may result in different requirements for the generation and maintenance of primary 

and memory T cell responses. 

However, the findings from Chapter 4 demonstrate that development and functionality of 

memory CD8+ T cell responses were dependent of CD4 helper mechanisms. Depletion of CD4+ 

T cells during priming of primary CD8+ T cell responses or during secondary challenge resulted 

in low magnitude recall responses by memory CD8+ T cells. Depletion of CD4+ T cells during 

primary infection resulted in generation of memory CD8+ T cells that responded with the equal 

kinetics as memory CD8+ T cells from control mice; however as infection progressed the 

frequency of activated, cytotoxic and cytokine producing memory CD8+ T cells significantly 

declined in mice that did not receive CD4 help during priming. Depletion of CD4+ T cells during 

secondary challenge resulted in generation of memory CD8+ T cells that responded with similar 

kinetics to the initial challenge with M. tuberculosis; however as infection progressed, memory 

CD8+ T cells without CD4+ T cell help never reached the same magnitude as “helped” memory 

CD8+ T cells. These findings suggest that CD4+ T cell help is required for the generation of long-

lasting and functional memory CD8+ T cells. 

In conclusion, this thesis has addressed several important issues of T cell biology during 

M. tuberculosis infection, namely priming, maintenance of effector functions and development 

of functional memory T cell responses. We found that CD40 ligation on dendritic cells by host- 

or mycobacterial-derived ligands was essential for induction of optimal IL-12 production and 

priming of IFN-γ producing T cells. In contrast, we found no evidence that IL-15 was required 

for the priming of IFN-γ producing or cytotoxic T cells, suggesting that this cytokine is not 

pivotal for the initiation of potent Th1 response. Once effector T cells were successfully primed, 

they infiltrated infected lungs where they elaborated their effector functions. Our results indicate 
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that CD4+ T cells responded by IFN-γ production, while CD8+ T cells were preferentially 

cytotoxic and killed infected target cells. As infection was brought under control, CD8+ T cells 

silenced their cytolytic activity and switched to cytokine production. Long-term control of M. 

tuberculosis-infection was characterized by dynamic changes in the frequency of IFN-γ 

producing CD4+ and CD8+ T cells. IL-15 was not required for the long-term maintenance of 

CD4+ and CD8+ T cell effector functions. In addition, we found no evidence that IL-15 was 

involved in the development of functional T cell memory. However, development of memory 

CD8+ T cells was dependent of CD4+ T cell helper mechanisms.  

The findings in this thesis broadened our knowledge of what is required to establish 

protective immunity against M. tuberculosis, and improved our understanding of what is needed 

to generate functional memory CD8+ T cell responses. However, this work has not revealed what 

the helper mechanisms of CD4+ T cells are for the normal functionality of primary and memory 

CD8+ T cells responses. Future work should be directed towards identification of the CD4+ T cell 

helper mechanisms, so that in the case of CD4+ T cell deficiency caused by HIV infection, we 

could provide the helper signals to CD8+ T cells through immunotherapy, and enhance their 

ability to contain M. tuberculosis infection. Furthermore, these findings will also enhance the 

efficacy of newly designed vaccines that target CD8+ T cell responses. 
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APPENDIX A 
 
 
 

IL-15 administration did not increase the survival of susceptible CD4-/- mice following low 
dose aerosol infection with M. tuberculosis 

 
 

A.1 Introduction 

 In murine studies, IL-15 transgenic mice exhibited increased resistance to M. bovis BCG 

infection, which in part could be attributed to increased numbers of NK cells and augmented 

IFN-γ production by CD8+ T cells (273). Furthermore, IL-15 improved the efficacy of M. bovis 

BCG vaccine in conferring protection against virulent M. tuberculosis H37Rv challenge. BGC-

vaccinated IL-15 transgenic mice had significantly lower bacterial burden when compared with 

BCG-vaccinated wild-type mice (274). The increased protective effect observed in IL-15 

transgenic BCG vaccinated mice was accompanied by enhanced IFN-γ CD8+ T cell responses 

(274). IL-15 administration also protected susceptible BALB/c mice against virulent M. 

tuberculosis infection when given as a treatment at 3 weeks post-infection (275). Collectively 

these findings suggest that IL-15 exogenous administration can enhance protective immunity 

against M. tuberculosis infection by augmenting CD8+ T cell responses.  

 In our initial studies, we have demonstrated that development of cytotoxic CD8+ T cells 

was dependent on CD4+ T cell helper mechanisms (138). Furthermore, IL-15 mRNA expression 

was significantly reduced in the lungs of CD4-/- mice when compared to wild-type mice (138). 

We postulated that one of the helper mechanisms by which CD4+ T cells could affect 

development and maintenance of CD8+ T cell effector functions was by influencing the 

availability of IL-15 cytokine. Since CD4-/- mice had diminished expression of IL-15, we 

hypothesized that exogenous administration of IL-15 could restore CD8+ T cell effector 
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functions and increase the survival of CD4-/- mice after low dose aerosol infection with M. 

tuberculosis. 
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A.2 Materials and Methods 

 

Mice and infections 

 C57BL/6 wild-type mice were purchased from Charles River Laboratories (Wilmington, 

MA). CD4-/- (C57BL/6 background) were bred at University of Pittsburgh Biotech Center. All 

mice were kept under specific pathogen-free conditions in a Biosafety Level 3 facility. Animal 

protocols used in this study were approved by the University Institutional Animal Care and Use 

Committee. Mice were infected with a low dose of M. tuberculosis (Erdman strain, Trudeau 

Institute, Saranac Lake, NY) at 5x10 /ml using a nose-exposure only aerosolizer unit (Intox Inc., 5

Moriarty, NM). The dose received was estimated by plating whole lung homogenates of two 

mice 24 hours following aerosol infection (~30 CFU/mouse). 

 

IL-15 administration 

 CD4-/- and wild-type mice were injected with 1 µg/200 µl of human IL-15 daily starting 

at 5 days post-infection until 21 days post-infection. Control CD4-/- and wild-type mice were 

injected with 200 µl PBS. 

 

CFU determination 

 Lung homogenates were serially diluted in PBS/0.05% Tween-80 and plated on 7H10 

agar plates (Difco). Plates were incubated at 37oC, 5% CO2 for 21 days prior to counting 

colonies. 
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Bone marrow derived macrophages and dendritic cell cultures 

 In ex vivo stimulation assays, such as ELISPOT and limiting dilution analysis, bone 

marrow derived dendritic cells were cultured in the presence of 20 ng/ml of GM-CSF and 20 

ng/ml of IL-4 (PeproTech Inc, Rocky Hill, NJ) and macrophages were cultured in the presence 

of L cell supernatent as a source of CSF-1 using standard procedure described previously (146). 

 

Flow cytometry 

 Lung single cell suspensions were stained as described previously (146). Cells were 

stained with anti-CD4 (clone H129.19), anti-CD8 (clone 53-6.7), and anti-CD69 (clone H1.2F3) 

fluorescently conjugated antibodies. All antibodies were purchased from BD Pharmingen (San 

Diego, CA) and used at 0.2 µg/ml concentration. Cells were collected on a FACSCaliber 

(Beckon Dickinson, San Jose, CA) and analyzed by CellQuest (Becton Dickinson) or FlowJo 

(Tree Star Inc, San Carlos, CA) software.  

 

IFN-γ production 

 Cytokine production by CD8+ T cells isolated from the lungs of M. tuberculosis infected 

mice was evaluated by ELISPOT as described previously (240, 241). Briefly, lung and lymph 

node cells were plated in anti-IFN-γ antibody (BD Pharmingen, clone R4-6A2) coated plates 

(MAIPS4510, Millipore Corp, Bedford, MA) at 80,000 cells/well and 150,000 cell/well, 

respectively. Cells were incubated in duplicate wells with media, ConA (10 µg/ml; Sigma-

Aldrich), uninfected and M. tuberculosis-infected dendritic cells (MOI 3; overnight) to estimate 

the number of total number of IFN-γ producing T cell, and M. tuberculosis-infected dendritic 

cells incubated with the blocking anti-MHC Class I (BD Pharmingen, clone 8F12) or anti-MHC 
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Class II (BD Pharmingen, clone M5/114.15.2) antibodies at 10 µg/ml to estimate the number of 

IFN-γ producing CD4+ and CD8+ T cells, respectively. All dendritic cells were added to lung and 

lymph nodes cells at 1:2 ratio and the cultures were supplemented with IL-2 (PeproTech) at final 

concentration of 20 U/ml.  

 Following 40 hour incubation, the IFN-γ producing T cells were visualized after stepwise 

incubation of plates with biotinylated anti-IFN-γ antibody (BD Pharmingen, clone XMG 1.2), 

streptavidin-conjugated enzyme (PK-6100, Vector Laboratories) and AEC substrate (SK-4200, 

Vector Laboratories). The spot forming units (SFU) were enumerated using ELISpot reader 

(Cellular Technology Ltd, Cleveland, OH).  

 

Limiting dilution analysis 

 The cytotoxic potential of CD8+ T cells was estimated using limiting dilution analysis 

(LDA) (240, 241). Effector cells were derived from the lungs and lung draining lymph nodes of 

M. tuberculosis-infected mice at designated time points. Freshly isolated cells were plated in 2-

fold serial dilutions starting from 40,000 cells/well to 1250 cells/well in V-bottom 96-well plates 

(24 replicates/input number) supplemented with IL-2 at 20 U/ml. Lung  and lymph node cells 

were incubated with M. tuberculosis-infected dendritic cells (500 DC/well) for 7 days.  

Following incubation, 100 µl of spent media was removed from each well, and lung cells were 

cultured for another round of stimulation with M. tuberculosis-infected macrophages (1000 

MΦ/well) and IL-2 (20 U/ml) to allow for expansion of CTL precursors. Flow cytometry 

analysis revealed that 75-95% of cells were CD8+ T cells after 2 weeks of stimulation.  

 Cytotoxicity was determined in each well by a standard 51Chromium release assay with 

M. tuberculosis-infected macrophages as targets. M. tuberculosis-infected macrophages were 
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labeled with 51Cr (100 µl of 51Cr per 3x106 macrophages) for 1 hour at 37oC, and added to lung 

and lymph node T cell cultures at 4000 cells/well. Following 4 hour incubation, 100 µl of 

supernatant was collected (Skatron SCS System; Skatron, Sterling, VA) and radioactivity was 

quantified using a gamma counter. Positive wells were defined as being greater than mean + 3 

SD of spontaneous target cell release. Frequency of CTLp was determined using zero-order 

Poisson equation (ln Y = - Fx + ln A; where x = the number of effector cells/well; Y = % 

negative wells; A = the y-axis intercept; F = CTLp frequency defined by the negative slope of 

the line). All calculations were performed using a software program fitted to the equation by χ2 

minimization analysis (a generous gift from Dr. Carolyn A. Keever-Taylor, Medical College of 

Wisconsin). 

 

Statistics 

Statistically significant differences in the numbers of effector T cells between the two time points 

were determined using 2-way ANOVA. The p-value of < 0.05 was defined as being significant. 
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A.3 Results 

IL-15 administration did not improve the survival of CD4-/- mice 

 CD4-/- mice were injected daily with 1 µg/200 µl of human IL-15 starting at 5 days post-

infection until 21 days post-infection. Our data indicate that IL-15 treatment did not have a 

significant effect on controlling the bacterial infection or survival of susceptible CD4-/- mice 

after low dose infection with aerosolized M. tuberculosis. 

 

 

 

 

Figure 37 IL-15 administration did not affect control of bacterial replication or survival of CD4-/- mice 

(A) Lung homogenates from IL-15 and PBS treated CD4-/- and wild-type mice were plated to determine the number 
of colony forming units (CFU). 
(B) Survival curve. 
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IL-15 administration did not enhance CD8+ T cell effector functions in CD4-/- and wild-type 

mice 

 IL-15 administration did not significantly augment the numbers of CD8+ T cells in either 

CD4-/- and wild-type mice, and there is no evidence that IL-15 treatment enhanced IFN-γ 

production or cytotoxic activity. 

 

 

Figure 38 IL-15 administration did not enhance CD8+ effector functions in CD4-/- and wild-type mice 

(A-B) The graphs depict the percentage of CD8+ T cells within lymphocyte gate and the number of CD8+ T cells in 
a whole lung of IL-15 and PBS treated CD4-/- and wild-type mice 
(C) Frequency of IFN-γ producing CD8+ T cells and (D) the number of CTLp in the lungs of IL-15 and PBS treated 
CD4-/- and wild-type mice. 
 
 
 

190 



 

A. 4 Discussion 

 IL-15 treatment of susceptible CD4-/- and wild-type mice did not significantly change the 

ability of mice to control infection or the course of the disease. IL-15 administration did not 

improve the survival of CD4-/- mice. There was no indication that IL-15 immunotherapy 

increased the number of CD8+ T cells or enhanced CD8+ T cell effector functions.  

 It is important to note that the course of infection in this set of experiments did not follow 

the normal response kinetics. Until 6 weeks post-infection, the numbers of immune cells 

infiltrating the lungs of both CD4-/- and wild-type mice were so low that not all experiments 

were performed with optimal numbers of cells. For example, in the setting of LDA as little as 

10,000 cells/well (highest cell concentration) to 125 cells/well (lowest cell concentration) were 

used, most likely contributing to undetectable CTL activity during acute infection. It was not 

until 9 weeks post-infection that cell numbers sufficiently increased in the lungs of infected mice 

to set up experiments according to standard conditions. The study should be repeated just to 

confirm that during early time points IL-15 did not significantly influence the cytotoxic activity 

of CD8+ T cells in CD4-/- and wild-type mice. 
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1. Lazarevic, V. and Flynn, J.L. (2004) Long-term control of Mycobacterium tuberculosis 
infection is mediated by dynamic immune responses. The Journal of Immunology (submitted). 
 
2. Lazarevic, V. Yankura, D.J., DiVitto, S.J., and Flynn, J.L. (2004) Induction of Mycobacterium 
tuberculosis-specific primary and secondary T cell responses in IL-15-/- mice. (in preparation). 
 
3. Lazarevic, V. and Flynn, J.L. (2004) CD4+ T cells are necessary for sustained CD8+ T cell 
memory responses following challenge with Mycobacterium tuberculosis. (in preparation). 
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