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A novel method for catalytic electron transfer initiated cyclization reaction for the 

formation of cyclic acyl aminals through a unique method of carbon-carbon σ-bond activation 

has been developed. This new cyclization strategy employs a potent electrophile, generated by a 

photoinitiated single electron oxidation of a homobenzylic amide or t-butyl carbamate, which 

reacts with an appended nucleophile allowing for the formation of cyclic acyl aminals.  
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The Lewis acid-surfactant-combined catalyst (LASC) was employed in a novel method 

for effecting intramolecular Prins cyclization reactions in water. Acetals of 1,2 and 1,3 di- and 

tri- substituted alcohols with a tethered allyl silane have been converted to 2,6-syn-

tetrahydropyrans. The LASCs are generated in situ by the addition of cerium nitrate to a solution 

of sodium dodecylsulfate and acetal in water. A heterogeneous reaction environment is created in 

which the acetal is trapped within the hydrophobic core of the immediately generated micelle. 

Intarmolecular Prins cyclization is catalyzed upon interaction of the acetal with Lewis acidic 

cerium cations located at the surface of the micelle.  LASC mediated intramolecular Prins 

cyclization reactions are efficient, high yielding, and an environmentally benign method of 

generating 2,6-cis-tetrahydropyrans. 

Paul E. Floreancig 
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A highly convergent route towards the total synthesis of the marine macrolide (+)-

dactylolide is currently being pursued. The route involves the condensation of two highly 

functionalized segments of the molecule, an α,β-unsaturated aldehyde and a 1,3-syn-diol, to form 

a cyclic α,β-unsaturated acetal. Both enantiopure segments arise from vinylogous aldol reactions, 

providing the three necessary stereocenters. The key synthetic transformation involves 

intramolecular Prins cyclization of a cyclic α,β-unsaturated acetal with a pendent allylsilane to 

provide the 2,6-cis-disubstituted-4-methylenetetrahydropyran core of the molecule efficiently 

and stereoselectively. Other key transformations include a completely trans selective selenoxide-

selenate [2,3] sigmatropic rearrangement and the selective oxidation of a primary allylic alcohol 

in the presence of a secondary alcohol with Dess-Martin periodinane. 
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1. Mechanistic and stereochemical studies of photoinduced electron transfer initiated 

cyclization reactions: the role of nitrogen 

 

1.1. Introduction to electron transfer 

 

I. General 
 

Photochemistry has become a widely accepted, fundamental branch of organic chemistry, 

playing an integral role in many syntheses.1 Photochemical transformations often provide routes 

to synthetic targets that cannot be attained by conventional transformations. Photoinduced 

electron transfer (PET) is the branch of photochemistry that exploits the ability of certain 

photoexcitied molecules to act as strong oxidizing or reducing species, and induce a permanent 

chemical change in a ground state molecule through an electron transfer mechanism. After being 

oxidized or reduced by a photosensitizer, an organic substrate is transformed into a reactive 

intermediate that is capable of undergoing a variety of reactions. PET reactions provide a novel 

route to approaching difficult synthetic targets that could not be realized by conventional means.2 

Photoinduced electron transfer processes have widespread application in semiconductor 

photocatalysis,2 imaging systems, such as silver halide photography,3 spectral sensitization4 and 

xerography.5 Nature frequently invokes electron transfer in a variety of enzymatic processes such 

as oxidative phosphorylation,6 the DNA-photolyase reaction7 and photosynthesis. Despite the 

numerous applications and biological examples, the use of electron transfer reactions in 

preparative organic synthesis is limited to include a few examples such as the Birch reduction,8 

acyloin condensation,9 Ullmann coupling,10 formation of Grignard reagents,11 protecting group 

removal, and SRN1 reactions.12 



 

 2

The perceived complexities of electron transfer processes are often responsible for their 

minimal utilization in reaction design. The reluctance to invoke these processes could be 

attributed to the lack of applicable data for predicting reaction outcomes as well as the inability 

to control various side reactions associated with the odd electron species generated. Over the past 

years an increased understanding of the kinetics, thermodynamics and primary reaction pathways 

of radical ions has renewed interest in their application toward reaction design. The ability to 

exploit the full potential of photoinduced electron transfer in reaction design requires an 

understanding of the principles of photochemistry and underlying theory of electron transfer.  

 

II. Photochemical Principles 
 

The absorption of light provides the impetus for all photochemical reactions. Core 

electrons and electrons in lower energy orbitals are normally not perturbed by the absorption of 

light. However, electrons in high lying molecular orbitals are susceptible to photoexcitation in 

the ultraviolet and visible regions of the electromagnetic spectrum (100-700 nm). The absorption 

of light generates an excited state species that is generally more reactive than its ground state 

analog. Most commonly one electron from the highest occupied orbital (HOMO) is promoted 

into the lowest unoccupied molecular orbital (LUMO) (Figure 1.1).13 
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Figure 1.1: Electronic transition resulting from photoexcitation 

 

Molecules cannot remain in the excited state for an extended length of time and therefore must 

lose their extra energy in some manner. Excited species can react in a variety of different ways, 

as shown in Figure 1.2.  

Figure 1.2: Photochemical pathways 

 

   

Photoexcited molecules are able to induce transitory or permanent changes in 

neighboring molecules through an electron transfer pathway. Electronic transitions create 

vacancies in low-lying bonding or non-bonding orbitals, called holes, which serve as much better 

electron acceptors than unoccupied orbitals of higher energy. Energy is released upon the 
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transfer of one electron from an orbital of infinite separation from the nucleus of the donor into a 

low-lying, vacant orbital nearer to the nucleus of the acceptor. The absorbed light can be 

converted to chemical energy by the transfer of an electron either to or from the excited state 

species in an energetically favorable, exothermic process.  

The energy change associated with the excitation of a bound electron from its orbital into 

an orbital at infinite distance, or the difference in orbital energies between the low-lying bonding 

and higher nonbonding orbitals, is referred to as ionization potential (IP) (Figure 1.3). The 

reverse process, the amount of energy required to bring an electron from an infinite distance into 

a low-lying vacant orbital, is referred to as electron affinity (EA). IP’s and EA’s are quantities 

used to describe gas phase molecules, which are not directly applicable in describing molecules 

in solution. 

Figure 1.3: IP and EA of both the ground and excited state species 

 

 

The solvation of ions is an important factor in solution phase chemistry, resulting in the 

need for the solution phase analogs of IP and EA, oxidation and reduction potentials.14 Oxidation 
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potential is the potential at which an electron is removed from a molecule, and reduction 

potential is the potential at which an electron is added to a molecule. Variations in oxidation and 

reduction potentials parallel those in ionization potentials and electron affinities. Plots of redox 

potentials versus ionization potentials and electron affinities for structurally related compounds 

often show linear correlations.15 A ground state example of the redox process is shown in Figure 

1.4, where electron transfer occurs between a donor and acceptor molecule. In the ground state 

the free energy change for the electron transfer process is the difference in redox potentials of the 

donor and acceptor. Because of the large HOMO-LUMO gap in the ground state of organic 

molecules, electron transfer would be a largely endothermic process. 

Figure 1.4: Ground state redox reactions 

 

In addition to a donor (D), and an acceptor (A), PET reactions require an electronic 

excitation source (light). In PET the electronically excited species serves as the oxidizing or 

reducing species, as shown in Figure 1.5. Here, the free energy change associated with electron 

transfer, which includes the redox potentials of the donor and acceptor, is made more negative by 

an additional term corresponding to the excitation energy. Electronic excitation exploits the large 

HOMO-LUMO gap, making electron transfer an energetically more favorable process. 

D        +        A D+        +        A-
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Figure 1.5: Photoinitiated electron transfer 

 

The Rehm-Weller equation16 provides a useful expression for calculating the free energy 

change associated with PET reactions. For most PET reactions the number of electrons 

transferred, represented by n, is usually one and the charge associated with the transfer of one 

mole of electrons, the unit of Faraday, is represented by F. For most electron transfer processes 

this quantity, nF, is approximately equal to one and can be disregarded in the calculations. The 

oxidation potential of the donor (OPD), the reduction potential of the acceptor (OPR), and the 

equilibrium excitation energy (∆G00), based on the wavelength of excitation, factor into the 

thermodynamic condition for spontaneous electron transfer. The work term, wp, describes the 

coulombic attraction between ions generated by electron transfer. This term is not applicable to 

cases where electron transfer occurs between a charged and neutral species, due to the lack of 

electrostatic attraction between the species, and can therefore be disregarded.  

 

 

 

 

 

 

D        +        A D+        +        A-D        +        A*hv

∆GET = nF[OPD – OPR – ∆G00 – wp]       Rehm-Weller Equation 
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III. The Radical Cation 
 

 

The most commonly observed primary reaction pathways for radical cations are: 1. A-B 

bond cleavage at the periphery of the electrophore (A-B = C-H, C-C, C-X, A-H, X-Y), 2. 

reactions initiated by attack of nucleophiles, and 3. radical based processes such as ET, 

dimerization, reactions with radicals, and hydrogen transfer (Figure 1.6).17 Over the past decade 

a broad body of knowledge concerning the primary reactions of radical cations has accumulated. 

For radical cations generated in solution a highly selective, predictable mode of fragmentation 

usually operates to give a neutral radical and a cation.18 This unimolecular bond dissociation is 

referred to as mesolytic cleavage.19  Fragmentation in solution is quite efficient, but the synthetic 

utility has been limited mostly to C-H, O-M, S-R, Si-Si, C-Si, C-Ge, C-N and C-Sn bonds.20  

Figure 1.6: Primary reaction pathways for radical cations 

A
B

Nu-

Radical-based
   processes

Orbital overlap explains why A-B bond cleavage
 is preferred over electrophore-A bond cleavage 

 
PET reactions exploit the ability of electronically excited molecules to function as strong 

oxidants and have proven to be an excellent method for generating radical cations in solution. In 

radical cations strong bonds, such as C-C, can be selectively cleaved to generate radicals and 

cations from unconventional precursors under mild reaction conditions. The majority of 

examples of C-C fragmentation stem from PET reactions of strained carbocyclic compounds,21-22 

where strain release provides the driving force for bond scission. Examples of unstrained 

mesolytic C-C bond cleavage occur mostly in aromatic substrates with aliphatic side chains. The 

addition of alkyl, aryl, hydroxyl, siloxy and alkoxy substituents was found to lower the barrier to 
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mesolytic C-C bond cleavage of the radical cation due to increased stabilization of the resulting 

cationic fragment through electron donation.20 However, deprotonation is a competing process 

that reduces synthetic utility. 

 

IV. C-C Bond Fragmentation 
 

 During measurements of standard oxidation potentials of a series of alkylbenzenes, Kochi 

and coworker’s23 were able to demonstrate that the lifetimes of the radical cations in acetonitrile 

were less than 100 µs. One important trend noticed during this study was that cyclic 

voltamograms (CV) of tert-butyl substituted benzenes were found to be reversible. The 

reversibility of the CV’s was associated with the absence of benzyl protons in the tert-butyl 

group, allowing for the extended lifetime of the radical cation. The shortened lifetime of 

alkylbenzenes having labile benzyl protons indicated that C-H bond activation was favored over 

C-C bond activation. 

Arnold and coworker’s24 work with the irradiation of an acetonitrile-methanol (3:1) 

solution of 2,2-diphenylethyl methylether and 1,4-dicyanobenzene to yield exclusively diphenyl 

methane and the dimethyl acetal of formaldehyde provided the first example of a PET reaction 

involving a homobenzylic ether (Figure 1.7). This study revealed that with the appropriate 

substitution in the alkyl chain of alkylarenes, C-C bond activation effectively competed with C-H 

bond activation. It also provided a simple system for the study of the theory and application of C-

C bond cleavages of radical cations in solution.  
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Figure 1.7: PET induced mesolytic cleavage of C-C bond 

 

Arnold25 proposed a stepwise mechanism for the radical cation cleavage reaction (Figure 

1.8). The first step in the mechanism is excitation of the sensitizer, 1,4-dicyanobenzene. 

Substitution of the singlet excited state energy and reduction potential into the Rehm-Weller 

equation16 showed that photoexcited 1,4-dicyanobenzene was capable of oxidizing any 

substituent with an oxidation potential of less than 2.4 V at the diffusion controlled rate of 1.8 x 

1010 M-1s-1. Given that the oxidation potentials of the 2-phenylethyl ether systems chosen were 

below the limit (2.01-2.29 V) and the electron transfer process was energetically favorable by –3 

kcal/mol it follows that formation of the radical cation would occur.  The third step accounts for 

the competing process of return electron transfer from the sensitizer to the substrate. Return 

electron transfer is an exothermic process that usually occurs on the microsecond timescale. It is 

most often observed when the tight ion pair that results from the electrostatic attraction of the 

radical anion for the radical cation is unable to separate. Arnold found that this process was 

slowed in cases were the free energy change for return electron transfer was very exergonic. This 

large energy gap slowed the process of back electron transfer so that the rate fell into the 

Marcus26 inverted region. Thus, the rate of return electron transfer became slower than the rate of 

solvent separation of the radical ion pairs.  

OCH3

O O
hv, 1,4-dicyanobenzene

CH3CN, CH3OH, 10  C
+
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Figure 1.8: Mechanism for mesolytic C-C bond cleavage 

 

The fourth step in the mechanism represents C-C bond cleavage of the radical cation. 

Through subsequent work on a variety of aromatic substrates it was found that C-C bond 

cleavage depends upon the bond dissociation energy (BDE) of the C-C bond in the radical cation 

(Figure 1.9). An activation barrier of 10-15 kcal/mol was estimated for the C-C bond cleavage of 

the radical cation.25  

Figure 1.9: PET reactions of 2-phenyl ether systems, Snes. = 1,4-dicyanobenzene 

 

OCH3 hv, Sens., 80   C

CH3CN, CH3OH
No Reaction

hv, Sens., 80   C

CH3CN, CH3OH
+

OCH3

hv, Sens., 10   C

CH3CN, CH3OH
+ OCH3

OCH3

hv, Sens., 10   C

CH3CN, CH3OH
+ + OCH3

OCH3
+

CN

1.   Sensitizer (A)
hv

A*

2.   Ph2CH-R  +  A* Ph2CH-R+    +   A-

4.   Ph2CH-R+ Ph2CH   +   R+

5.   R+   +   CH3OH R-OCH3   +   H+

3.   Ph2CH-R+    +   A- Ph2CH-R  +  A

6.   Ph2CH   +   A- Ph2CH-   +   A

7. Ph2CH-   +   CH3OH Ph2CH2   +   CH3O-
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In order to decrease the BDE of the radical cation enough to force C-C bond cleavage to 

be the major reaction pathway, either the BDE of the C-C bond must be decreased, or the 

oxidation potential of the fragment that becomes the cation must be decreased through 

appropriate substitution. Gas phase BDEs are most often derived from experimental data by the 

use of thermodynamic cycles as shown in Equations 1-4.27 

 

  Substituting oxidation potentials for ionization potentials allows for the determination of 

solution phase BDEs. Through modulated photolysis/phase sensitive voltametry14 the oxidation 

and reduction potentials of transient free radicals can be determined, and applied to Equation 5 to 

provide a more accurate description of the behavior of free radicals in solution and BDE’s of 

radical cations. In Equation 5, BDES represents the bond dissociation energy of the ground state 

molecule, OPS represents the oxidation potential of the substrate, and OPE represents the 

oxidation potential of the electrophilic fragment. Figure 1.10 uses a simple schematic, where a 

monoalkylarene serves as the substrate, to illustrate the BDE of the radical cation. 

 

 

 

BDE = ∆Hf°(R+) + ∆Hf°(R•)  - ∆Hf°(R - R•+)                                    (1) 
 
BDE = (∆Hf°(R•) + IP(R•)) - ∆Hf°(R•) – (∆Hf°(R-R) + IP(R-R))     (2) 
 
   D° =  2∆Hf°(R•) - ∆Hf°(R-R)                          (3) 
 
BDE = D° + IP(R•) – IP(R-R)                           (4) 

BDERC = BDES – OPS + OPE         (5)



 

 12

Figure 1.10: Schematic of the BDE of the radical cation 
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Arnold found that a significant decrease in the BDE of the radical cation could be 

achieved by substitution of an α-oxymethyl for one benzyl group. Upon bond dissociation of a 

homobenzylic ether, a π-stabilized radical and more stabilized α-oxycarbocation was formed. 

Arnold postulated that the regioselectivity of the reaction was dependent upon the redox 

properties of the two radicals formed upon homolytic bond cleavage. Bond cleavage occurred in 

such a way as to give the carbocation of the radical fragment that had the lower oxidation 

potential.  In cases involving radical cations of ethers, the fragment containing the α-oxygen had 

a lower oxidation potential than the benzylic radical.19 Thus, the ether serves to stabilize the 

formed carbocation as well as weaken the benzylic C-C bond.  

Arnold’s findings were supported by the work of Camaioni26 with α-Me and -OH 

substituted bibenzylic systems. Camaioni was able to show through the use of semiempirical 

calculations of bond dissociation energies (BDE) of bibenzyl radical cations with Me or OH 

substituents on the ethylene bridge, that mesolytic C-C bond cleavage was the primary reaction 

pathway. The substantially reduced C-C BDE in the substrates tested was attributed to the ability 

of the electron donating groups to stabilize the cleavage products. Kinetic studies of side chain 
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fragmentation reactions of arylalkanol radical cations and the effects of α- and β-OR groups by 

Baciocchi28 further supported Arnold’s findings. Baciocchi showed that in homobenzylic ethers 

the dominant reactive pathway upon photoinitiated oxidation was mesolytic cleavage of the 

benzyl C-C bond, as shown in Figure 1.11.  

Figure 1.11: Radical cation bond dissociations studied by Camaioni 
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A kinetic preference for cleavage of the C-C bond parallel to the π system of the arene, 

allowing for orbital overlap and stabilization, was also demonstrated.25 In order for the alkoxy 

group to provide maximum stabilization of the incipient carbocation, one of the lone pairs of 

electrons on the oxygen atom must overlap with the C-C anti-bonding (σ*) orbital to stabilize the 

transition state for C-C bond cleavage, as shown in Figure 1.12. 

Figure 1.12: Kinetically preferred conformation for C-C bond cleavage 
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Maximum stabilization, calculated using semiempirical methods, was found to occur 

when the dihedral angle between the non-bonding pair of electrons of the oxygen and the 

adjacent C-C anti-bonding (σ*) orbital was 0°. When the dihedral angle was 90°, stabilization 

was found to be at a minimum. This leads to the hypothesis that if a preferred conformation of 
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the ether does not have the alkoxy group oriented in such a way that a lone pair of electrons on 

the oxygen can overlap with the adjacent C-C anti-bonding (σ*) orbital, cleavage may be 

inhibited. Maximum overlap between the π system and the C-C bond being broken is also 

required. This was confirmed through Arnold’s28 study of methyl 2-phenylcyclopentyl ether 

radical cations (Figure 1.13). PET of trans-methyl 2-phenylcyclopentyl ether led to mesolytic 

cleavage of the benzyl, whereas the cis compound underwent isomerization under identical 

conditions.    

Figure 1.13: Kinetic preference for C-C bond cleavage 

OMe

H
Ph

Ph

OMe

H

hv, Sens.

MeOH, MeCN
PhCH2(CH2)2CH(OMe)2

hv, Sens.

MeOH, MeCN
OMe

H
Ph

 

The fifth step in Arnold’s proposed mechanism for mesolytic C-C bond cleavage 

involves nucleophilic attack on the carbocation by methanol to form the methyl ether. An 

example of a stereospecific nucleophilic attack in a PET reaction comes from the work of 

Dinnocenzo.21 PET reactions of 1,1-diphenyl-2-methylcyclopropane and 1,1-diphenyl-2,2-

dimethylcyclopropane were shown to undergo ring opening by a three-electron SN2 substitution 

at C-2 (Figure 1.14). The inversion of configuration was rationalized to be the result of backside 

nucleophilic attack onto the ring-closed radical cation. The bimolecular rate constants were 

measured and found to be between 106 and 108 M-1s-1, which point to rather rapid, nucleophile 

induced C-C bond cleavage.29 These cyclizations are rare examples of highly selective tertiary 

and neopentyl nucleophilic substitutions that are controlled by electronic factors rather than 

steric factors.  
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Figure 1.14: Stereospecific nucleophilic attack onto a radical cation 
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V. Electron Transfer Initiated Cyclizations (ETIC) 
 

The extensive studies of PET reactions of alkyl arenes, C-C bond cleavage and 

mechanistic studies of radical cations, and more specifically homobenzylic ethers, have 

prompted the development of a new electron transfer initiated cyclization method30 through 

carbon-carbon σ-bond activation of homobenzylic ethers (Figure 1.15).  

Figure 1.15: Electron transfer initiated cyclization 
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This new method utilizes attack of an appended nucleophile on a homobenzylic ether 

following single electron oxidation to generate cyclic acetals. As demonstrated by Arnold and 

Camaioni the benzylic bond of homobenzylic ethers is significantly weakened upon single 

electron oxidation and allows for nucleophilic displacement of a benzyl radical. This method of 

C-C σ-bond activation was chosen for five main reasons: (1) substrate synthesis is facilitated by 

the generally inert benzyl group, (2) the mild reaction conditions allow for the inclusion of acid 

and base sensitive functionalitity in the cyclization substrate, (3) the oxidation potential of the 

substrate, and chemoselectivity of the oxidation can be altered in a rational manner through the 

introduction of substituents on the arene, (4) the reactivity of the system can be tuned by the 

introduction of substituents at the benzylic position, and (5) the highly electrophilic nature of the 

radical cations should allow a wide variety of nucleophiles to be employed in the reaction.30  
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Initial attempts at cyclization of a homobenzylic ether using a variation of Arnold’s 

conditions28 resulted in little or no product formation. The inefficiency of cyclization was 

postulated to result from rapid regeneration of starting materials through return electron transfer 

in the tight ion pair formed by the radical anion of dicyanobenzene and the radical cation of the 

homobenzylic ether.  

A study of nucleophile-assisted cleavage of benzyltrialkylsilane cation radicals by 

Dinnocenzo31 showed that the rate of return electron transfer could be slowed through the use of 

a cationic sensitizer and a neutral cosensitizer. Employing N-methylquinolinium 

hexafluorophosphate (NMQPF6) as the cationic sensitizer in a photoinitiatied electron transfer 

cyclization, coupled with the use of the aromatic cosolvent tert-butylbenzene, dramatically 

increases the efficiency of the electron transfer initiated cyclization reaction. In these 

cyclizations, the photoexcited sensitizer NMQPF6 serves as a single electron oxidant that 

oxidizes the aromatic cosolvent tert-butylbenzene to its radical cation. Facile electron transfer 

between the radical cation of tert-butylbenzene and the homobenzylic ether ensues to form the 

radical cation of the homobenzylic ether. Upon radical cation formation of the homobenzylic 

ether, the benzylic bond is so significantly weakened that it allows for attack by the appended 

nucleophile and displacement of a benzyl radical to form the desired cyclic acetal (Figure 1.16).    
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Figure 1.16: Cation sensitized photoinitiated single electron transfer 
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Under these new cation sensitized electron transfer conditions cyclic acetals ranging in 

ring size from 5 to 8 carbons could be generated efficiently and in high yield.30 The proposed 

mechanism inferred from the product distribution is shown in Figure 1.17. The two possible 

reactive pathways involve either an associative (SN2) type pathway leading to stereochemical 
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appear to have resulted from a dissociative pathway. However, partitioning between the two 

pathways could be controlled through substrate structure, thus leading to a unique strategy for 

controlling anomeric stereochemistry.29 

Figure 1.17: Proposed mechanistic pathways 

 

VI. Project Goal 
 

The new ETIC method developed in this group allows for the efficient generation of a 
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Figure 1.18: ETIC involving homobenzylic amides or carbamates 

Developing a mild cyclization method is of interest because it would allow for the facile 

generation of iminosugars and glyconic-δ-lactams, both of which represent classes of compounds 

that have exhibited biological and enzyme inhibitory activity (Figure 1.19).32-33 The mild ETIC 

reaction conditions would allow for the incorporation of acid sensitive functional groups in the 

substrate that would not be tolerated under conventional cyclization conditions. Therefore, 

studies into the synthetic and stereochemical aspects of photoinitiated single electron transfer 

initiated cyclization reactions of homobenzylic amides and carbamates, as well as homobenzylic 

ethers containing nitrogen nucleophiles, have been undertaken and are detailed herein. 
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1.2. Results 

 

The pioneering work30 on homobenzylic ethers following single electron oxidation 

showed that ETIC reactions were a viable synthetic method for carbon-carbon bond activation. 

The goal of the present work was to extend this method and to test the applicability of nitrogen in 

ETIC substrates. Incorporation of nitrogen in an ETIC reaction requires that it be protected as an 

amide, carbamate, or sulfonamide, rather than a free amine, which could be easily oxidized under 

the reaction conditions. If incorporated into an ETIC substrate as an amide or carbamate, 

nitrogen could function as a stabilizing group in the homobenzylic position. Also, the role of 

nitrogen containing groups as nucleophiles could be examined. We therefore set out synthesize 

and test nitrogen containing substrates for ETIC reactions, while simultaneously optimizing 

cyclization conditions and examining the stereochemical aspects of the reaction. 

The first two substrates synthesized and tested under ETIC conditions are shown in 

Scheme 1.1. Starting from epoxypropylbenzene (4), amide 5 was obtained in 5 steps. Opening of 

the epoxide with allylmagnesium bromide at 0 ºC led to the corresponding alcohol in 95% yield.  

The alcohol was converted to the mesylate and then displaced with sodium azide in DMF at 

room temperature using tetrabutylammonium iodide as a phase transfer agent. The azide was 

reduced to the amine via the Staudinger34 reaction. The amine was then acylated with hexanoyl 

chloride in the presence of triethylamine to give a 41% yield of amide 5. Subsequent 

hydroboration of amide 5 with 9-BBN and quenching with basic hydrogen peroxide yielded the 

cyclization substrate, amide 6, in 44% yield.   

Amide 6 was subjected to ETIC cyclization conditions using a slight excess (1.2 

equivalents) of the sensitizer NMQPF6, the aromatic cosolvent tert-butylbenzene, the insoluble 
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base NaOAc, dichloroethane as the solvent, and Pyrex-filtered irradiation from a medium 

pressure mercury lamp. The desired cyclic acylaminal (7) was obtained in 86% isolated yield 

after five hours of irradiation. This result indicated that amides, which could be easily 

synthesized from the corresponding alcohol, served as excellent stabilizing groups in the 

homobenzylic position. 

Tertiary amide 8 was formed in 82% by reaction of amide 5 with methyl iodide and 

sodium hydride at 0 ºC in DMF. Hydroboration with 9-BBN followed by quenching with basic 

hydrogen peroxide provided the desired cyclization substrate, tertiary amide 9, in 92% yield. 

Amide 9 was subjected to the standard ETIC reaction conditions, 1.2 equivalents of NMQPF6, 

tert-butylbenzene, NaOAc, and dichloroethane and the desired cyclic acylaminal 10 was 

obtained in an isolated yield of 56%.  

Reaction times of four and six hours were required for ETIC reactions of both amide 6 

and amide 9. Purification of cyclic acylaminals 7 and 10 was difficult and required flash 

chromatography on SiO2 followed by preparatory thin layer chromatography. A change in color 

of the reaction mixture from colorless to dark red was observed for both cyclization reactions. 

Nonetheless, the cyclized products of both the secondary and tertiary amide were obtained and 

provided evidence that ETIC reactions involving homobenzylic amides are indeed a synthetically 

viable method for the generation of cyclic acyl aminals through nucleophilic attack on acyl 

imminium ions generated under mild reaction conditions. 
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Scheme 1.1: Synthesis of initial cyclization substrates 
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With two examples of successful ETIC reactions, the next step was to use 

stereochemistry as a mechanistic probe. This was done through the incorporation of a methyl 

group in the bishomobenzylic position as shown in Scheme 1.2. The hydroxyl group of 4-pentyn-

1-ol was protected with tert-butyldimethylsilyl chloride and imidazole in DMF to provide 11 as 

the starting material for the synthesis of cyclization substrates 14 and 17. Olefin 12 was formed 

by carboalumuniation with trimethylaluminum and Cp2ZrCl2 followed by palladium catalyzed 

coupling with benzyl chloride.35 This reaction proved problematic in that initial attempts were 

low yielding and long reactions times were required. As much as a four-fold excess of 

trimethylaluminum was required, and made purification laborious. The moderate 76% yield was 

partially attributed to the inability to separate the desired olefin from the aluminum salts 

generated upon quenching. Performing the carboalumination reaction at -23 ºC with one 

equivalent of water and one equivalent of trimethyl aluminum, based on Wipf’s procedure,36 

successfully decreased reaction time from two days to two hours, and facilitated product 

purification.  

Olefin 12 was hydroborated with BH3·THF and quenched with basic hydrogen peroxide 

to provide an 81% yield of alcohol 13. The alcohol was converted to the mesylate with mesyl 

chloride and triethylamine in CH2Cl2, and then displaced with sodium azide at 55 °C in DMF. 
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The azide was reduced to the amine via the Staudinger34 reaction and then acylated with 

hexanoyl chloride in the presence of triethylamine to give the desired amide in 61% yield. The 

TBS ether was deprotected with TBAF to provide amide 14 in 96% yield. Amide 14 was 

subjected to standard ETIC reaction conditions to form a 2.4:1 mixture of diastereomers of cyclic 

acylaminal 15 in 76% yield. The mixture of diastereomers was purified by flash chromatography 

and the diastereomers were ultimately separated by preparative thin layer chromatography.  

Scheme 1.2: Stereoselective synthesis of cyclization substrates 
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The stereochemical relationships between the amide and methyl ring substituent for 

acylaminal 15 were determined by comparison of coupling constants of the anomeric hydrogens 

(Figure 1.20). With a syn relationship between the amide and methyl substituent, the anomeric 

hydrogen appeared in the 1H NMR spectrum as a doublets of doublets, showing a small coupling 

to the methyne hydrogen (3.1 Hz) and a large coupling to the amide hydrogen (J = 6.0 Hz). Upon 

addition of D2O to the 1H NMR sample and exchange of the amide proton for a deuterium the 

signal corresponding to the anomeric hydrogen changed to a doublet with a small coupling to the 
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methine hydrogen (J = 2.4 Hz) and the signal corresponding to the amide hydrogen was no 

longer apparent. In 15b the anti relationship between the amide and methyl substituent resulted 

in the appearance of the anomeric hydrogen as a doublet of doublets, showing a large coupling to 

both the methine hydrogen and the amide hydrogen (J = 9.5 Hz). Upon deuterium exchange the 

signal corresponding to the anomeric hydrogen changed to a doublet with a large coupling to the 

methine hydrogen (9.3 Hz) and the signal corresponding to the amide hydrogen was no longer 

apparent.  

Figure 1.20: Relative stereochemical relationship of amide 15 
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Amide 17 was synthesized to test the ability of teriary amides to control the 

diastereoselectivity of ETIC reactions.  Amide 16 was obtained in 36% yield by reaction of the 

TBS protected form of amide 14 with sodium hydride and methyl iodide in DMF as shown in 

Scheme 2. Deprotection of the TBS ether with TBAF provided amide 17 in 78% yield. When 

tertiary amide 17 was subjected to standard ETIC reaction conditions a single diastereomer of 

cyclic acylaminal 18 was isolated in 43% yield. A 67% yield was obtained when the cyclization 

was performed using the more polar solvent, acetonitrile, and NaHCO3 as the base.  

1H NMR analysis of acylaminal 18 showed two doublets at 5.36 ppm (J = 9.8 Hz) and 

4.45 ppm (J = 9.4 Hz), each corresponding to the anomeric hydrogen.  The anomeric hydrogen 

exhibited a large coupling to the methyne hydrogen, indicating that the relative stereochemistry 
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was that of an anti relationship between the amide and methyl substituent of the ring. The 

existence of two separate signals corresponding to the same anomeric hydrogen was caused by 

restricted rotation around the amide bond. A variable temperature 1H NMR study done in DMSO 

at 10 degree intervals from 298K to 378K showed the collapse of these two signals into a single 

signal above 358K. 

Several attempts to synthesize the anti diastereomer of amide 17 to test the 

stereoselectivity of the cyclization reaction were unsuccessful. Mitsonobu reactions on alcohol 

13 led only to elimination back to an inseparable mixture of alkene 12 and the conjugated styrene 

adduct. Attempted hydroboration-amination37 of alkene 12 was also unsuccessful. Because of the 

hindered nature of the tri-substituted olefin, only the alkyl borane was isolated out of the reaction 

mixture. 

The mixture of diastereomers of amide 17a, shown also in Table 3, was synthesized in 

six steps starting from alcohol 13 (Scheme 1.3). Alcohol 13 was oxidized to ketone 19 in 74% 

yield via the Swern38 oxidation. Reaction of the ketone with hydroxylamine hydrochloride in 

ethanol buffered with NaOAc provided oxime 20 in 88% yield. The oxime was reduced to the 

amine in the presence of nickel chloride and lithium aluminum hydride39 at room temperature in 

ether. The resulting amine was acylated with hexanoyl chloride in the presence of triethylamine 

to yield 63% of the corresponding amide. The amide was alkylated with methyl iodide and 

sodium hydride in DMF. The TBS protecting group was removed with TBAF to give amide 17a 

in 91% yield. Subjecting amide 17a to catalytic aerobic ETIC reaction conditions provided the 

desired product in 56% yield, having an anti relationship between the amide and the methyl 

group. Catalytic aerobic ETIC reaction conditions will be discussed in detail later in the 

manuscript (Figure 1.24). 
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Scheme 1.3: Synthesis of a diastereomeric mixture of amides 
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Having gleaned the desired stereochemical information from the cyclization reactions of 

14 and 17 and 17a, the next logical step was to increase the level of complexity of the functional 

groups on the tether of the substrate. The lack of information pertaining to the effects of placing 

electron withdrawing groups adjacent to the reactive center, coupled with the end goals in the 

development of this cyclization method for application in the total synthesis of glycosidase 

inhibitors and aminosugars, which are poly-oxygenated species, led to the synthesis of substrates 

with an oxygen containing functional group adjacent to the reactive center. Having a methoxy 

group in the bishomobenzylic position provides a handle for the examination of the 

stereochemical outcome of cyclization as well the desired increased functionality in the form of 

an easily synthetically installed, relatively non-reactive functional group (Scheme 1.4). 

Scheme 1.4: Stereoselective synthesis of methyl ether sunbstrates 
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Amide 24 was obtained in eight steps starting from L-phenylalanine. The 3:1 mixture of 

the diastereomeric β-amino alcohols 22a and 22b was prepared according to the Reetz39 

procedure. This involved benzylation of phenylalanine by refluxing with benzyl bromide, 
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potassium carbonate and sodium hydroxide. The benzyl ester was reduced to the alcohol with 

lithium aluminum hydride. Swern oxidation led to the aldehyde, and addition to the carbonyl 

with allyl magnesium bromide provided 22a and 22b. The alcohols were separated by flash 

chromatography, but could never be completely purified. Overall yield for the four steps was 

56%.  

Each of the diastereomers was carried separately through the synthetic sequence shown in 

Scheme 4. Formation of the methyl ether with sodium hydride and methyl iodide in DMF 

followed by hydroboration with BH3·THF and quenching with basic hydrogen peroxide afforded 

a 73% yield of alcohol 23. Debenzylation proved to be the most problematic step in the 

sequence, never yielding more than 50%. Initial attempts using ammonium formate and Pd/C in 

refluxing methanol followed by acylation with hexanoyl chloride were very low yielding and 

resulted in a mixture of products including the monobenzylamine, the formamide, and the O-

acylated amide. Debenzylation using 1,4-cyclohexadiene and Pd/C was also low yielding and 

required lengthy reaction times. Protection of the alcohol with pivaloyl chloride prior to 

debenzylation with ammonium formate and Pd/C in refluxing methanol proved to be the 

optimum conditions for debenzylation. The pivalate was easily removed with sodium methoxide 

in methanol to yield the desired cyclization substrate 24 in 49% yield.  

Figure 1.21: ETIC reaction of amide 24 
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Amide 24 was subjected to a variety of ETIC reaction conditions as shown in Table 1.1. 

Solvent and base were varied, while the use of tert-butylbenzene as the aromatic cosolvent and 

an excess of the sensitizer NMQPF6 remained constant. The mixture of cyclic acylaminals 25a 
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and 25b, shown in Figure 1.21, was purified by flash chromatography and then the diastereomers 

were separated by thin layer preparative chromatography. Using insoluble bases such as NaOAc 

and NaHCO3 in the reaction mixture resulted in a lower than expected yield and isolation of a 

mixture of diastereomers 25a and 25b. Switching to the soluble base 2,6-dichloropyridine in 

DCE resulted in a four-fold increase in yield, and the isolation of a single diastereomer. 

Purification of both the starting material and the cyclization product were difficult, as was 

visualization of the reaction by TLC. Therefore, the discrepancy in diastereomeric ratios isolated 

from the reactions could again be attributed to these difficulties rather than any stereoelectronic 

factors. 

Table 1.1: Variations of ETIC reaction conditions 

Solvent Base Percent Yield 
C2H4Cl2 NaOAc 6 
C2H4Cl2 2,6-dichloropyridine 21 
CH3CN 2,6-dichloropyridine 38 
CH3CN NaHCO3 5 

 

As was seen with the ETIC reactions of amide 17, alkylation to form the tertiary amide 

results in isolation of a single diastereomer.  Tertiary amide 26 was synthesized to demonstrate 

both stereoselectivity and tolerance of increased functionality in ETIC reactions. Methylating the 

amide of the pivalate ester with sodium hydride and methyl iodide prior to pivalate deprotection 

with sodium in methanol gave the desired starting material for cyclization, amide 26, in 96% 

yield. Subjecting amide 26 to the conditions shown to give the highest cyclization yields for 

amide 24 (excess NMQPF6, 2,6-dichloropyridine and acetonitrile) failed to yield the desired 

cyclized product (Figure 1.22). Rather, amide 27 proved to be the only isolable product in 10% 

yield, resulting from nucleophilic attack of water on the acylimminium ion. 
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Figure 1.22: ETIC reaction of amide 26 
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Because the reaction substrates were difficult to purify and visualize, having the alcohol 

protected during the debenzylation process facilitated substrate synthesis, and early work done in 

the Floreancig group with homobenzylic ethers showed that THP ethers could serve as 

nucleophiles in ETIC reactions, amide 28 (Figure 1.23) was synthesized and subjected to ETIC 

reaction conditions. The synthesis entailed protection of the diastereomer of alcohol 18 as the 

THP ether rather than the pivalate prior to debenzylation. This facilitated not only substrate 

purification, but also allowed for cleaner ETIC reactions and ease of reaction monitoring by 

TLC. An 18% isolated yield, as a 1:1 mixture of diastereomers was obtained when the reaction 

was only taken to 70% conversion.  

Figure 1.23: ETIC reaction of amide 28 
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From the results of the ETIC reactions with α-amido ethers 24, 26, and 28, the need for a 

change in the form of the homobenzylic nitrogen stabilizing group was apparent. One slight 

modification to the system that also alleviated the problematic debenzylation step in the 

synthesis of the substrates, was switching from the homobenzylic amide to the t-butyl carbamate.  
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Scheme 1.5: Diastereoselective carbamate synthesis 
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Starting from L-phenylalanine, a 6:1 diastereomeric mixture of alcohols 30a and 30b was 

prepared in 54% yield by reduction with lithium aluminum hydride, protection with “Boc” 

anhydride, Swern oxidation and addition of allyl magnesium bromide into the aldehyde (Scheme 

1.5). Diastereomers 30a and 30b could be separated by flash chromatography, and 30a was 

carried through the synthesis. The hydroxyl of 30a was protected as the methyl ether with 

sodium hydride and methyl iodide in DMF. Subsequent hydroboration with BH3·THF and 

quenching with basic hydrogen peroxide provided the desired alcohol in 65% yield. The alcohol 

was protected as THP ether with dihydropyran and p-toluenesulfonic acid to give carbamate 31 

in 91% yield. Under ETIC reaction conditions (1.2 equivalents of NMQPF6, NaOAc, toluene, 

and dicholorethane) a 2:1 ratio of the desired cyclized products 32a and 32b was obtained in 

35% isolated yield (53% at 70% conversion). The aromatic cosolvent toluene was conveiniently 

substituted for tert-butylbenzene due to similar oxidation potentail, increased volatility and 

increased cost effectiveness. This reaction was a vast improvement from the ETIC reaction with 

the homobenzylic amides in terms of increased yields, and facile visualization and purification of 

products.  

An admirable improvement in yield was also observed upon switching from an amide to 

a carbamate stabilizing group in the homobenzylic position. However, the reaction still could not 

be performed at the desired efficiency. Difficult purification, due to the number of the aromatic 

side products formed from the excess NMQPF6, which co-eluted with the desired products, and 
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long reaction times played a significant role in decreasing both reaction efficiency and yield. 

Throughout the course of the reactions a color change from colorless to deep, dark red was 

observed, presumably resulting from the oxidative decomposition of quinoline derived products. 

Reactions often did not proceed to complete conversion due to the formation of covalent adducts 

between the N-methylquinolyl radical (NMQ*) produced from the initial electron transfer and the 

benzyl radical produced in the displacement reaction. Once formed, these adducts can be 

oxidized in preference to the cyclization substrate, feed into the electron transfer cascade and 

produce a variety of aromatic waste products while consuming the photosensitizer. Deposition of 

the solid base onto the walls of the reaction flask was also observed, requiring the flask to be 

rotated periodically throughout the course of the reaction so as not to allow the deposition to 

impede the amount of light entering into the reaction. Nevertheless, the majority of problems 

with the reaction associated with the use of excess amounts of NMQPF6 and the production of 

large quantities of aromatic waste products could presumably be eliminated through the use of a 

catalytic amount NMQPF6.  

Dinnocenzo31 reported that in transient absorption spectroscopic studies of NMQ-

sensitized arene oxidations reactions the reduced form of NMQ reacts with dissolved oxygen at 

or close to the diffusion-controlled limit, whereas radical cations did not. Thus, NMQ• could be 

oxidized to NMQ+ through a single electron transfer reaction involving O2 as the terminal 

oxidant, regenerating the photosensitizer without affecting the electron transfer cascade or 

impeding the desired cyclization reaction. This information was used to develop a catalytic 

photosensitized electron transfer cyclization reaction under aerobic conditions (Figure 1.24).   
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Figure 1.24: A catalytic aerobic ETIC reaction 
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This new strategy was tested by subjecting amide 28a to the ETIC reaction conditions 

while simultaneously bubbling air through the reaction mixture and using only 0.5 equivalents of 

NMQPF6 (Figure 1.25).  

Figure 1.25: ETIC reaction under new aerobic conditions 
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 The first aerobic cyclization was done using benzene as the aromatic cosolvent (Table 

1.2). The additional products isolated from the reaction mixture resulted from decomposition of 

the starting material. Changing the aromatic cosolvent to toluene, as well as switching to the 

soluble base 2,6-dichloropyridine, failed to increase reaction yield.  

Table 1.2: Altering aromatic cosolvents 

Solvent Base Cosensitizer
Percent Yield 

(Stoichiometric 
NMQ) 

Percent Yield 
(Catalytic 

NMQ) 
C2H4Cl2 NaOAc Benzene 25 30 
C2H4Cl2 2,6-Dichloropyridine Toluene 33 33 

 

Even though the yield of the reaction was not dramatically increased, the catalytic aerobic 

conditions alleviated the majority of the difficulties previously associated with the cyclization 

reaction. Reaction times were decreased from 5 hours to 2 hours, and purification was facilitated 

due to the lack of aromatic side products. Deposition on the walls of the reaction flask and the 
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characteristic deep red color were no longer observed. More importantly, decomposition 

products 33 and 34 could be isolated, providing an explanation for the low yields and lack of 

mass balance observed in previous cyclization attempts. 

Under the aerobic cyclization reaction conditions undesired reactive oxygen species are 

generated from molecular oxygen and benzyl peroxy radical. These unwanted reactive oxygen 

species decrease reaction yields, despite complete consumption of starting materials, especially 

on large scale. This was observed in reactions of homobenzylic ethers, where oxidative 

decomposition reactions resulting from the accumulation of reactive oxygen species was 

believed to be the cause of the drastic reduction in yield from 86% to 15%, when reactions were 

performed on a larger than a 1.0 g scale.40 One way of suppressing unwanted oxidative 

decomposition reactions associated with the accumulation of superoxide and benzyl peroxy 

radicals without inhibiting the cyclization was through the use of the mild reducing agent 

Na2S2O3. Soluble reducing agents such as DMSO were found to completely inhibit the 

cyclization reaction, whereas solid Na2S2O3 did not impede the electron transfer process, but 

rather reduced the superoxide and any unwanted reactive oxygen species. Having a reducing 

agent with low solubility in organic solvents was advantageous, in that electron transfer was not 

quenched, but rather the limited solubility allowed for enhanced reaction efficiency through the 

reduction of the unwanted reactive oxygen species. As shown in Figure 1.26, the products of the 

peroxide and superoxide reductions by Na2S2O3 are water and benzaldehyde, neither of which 

was found to impede the cyclization reaction. 
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Figure 1.26: Catalytic aerobic ETIC reaction with Na2S2O3 
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Under catalytic aerobic cyclization conditions (0.025 equivalents of NMQPF6, toluene, 

NaOAc, dichloroethane and the gentle bubbling of air through the reaction mixture) both the 

reaction efficiency and ease of product isolation of amide 28a increased. Therefore, it was 

desirable to test the scope and generality of these conditions. The substrates tested under these 

new conditions are shown in Tables 1.3 and 1.4. All of the substrates previously cyclized under 

standard stoichiometric ETIC reaction conditions were subjected to the new catalytic conditions. 
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Table 1.3: Substrates tested under catalytic aerobic ETIC conditions 
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For amides 7, 14 and 17, the yield under catalytic conditions was within the same range 

as those observed under stoichiometric conditions. The difference, though, was in the ease of 

purification of the catalytic cyclization, and the 50 percent decrease in reaction time under 

catalytic conditions. Switching from the hydroxyl to the THP ether in 14a facilitated purification 

of the starting material, but resulted in a slight decrease in yield of the cyclized product. 

Cyclization with the THP ether of a tertiary amide, 17b, was unsuccessful. This was attributed to 

the combination of the decrease in nucleophilicity of the THP ether relative to the hydroxyl, and 

the decreased oxidation potential of the tertiary amide. Subjecting carbamate 31 to the catalytic 
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cyclization conditions resulted in a 10% increase in yield and decreased the reaction time from 4 

to 2 hours. Cyclization with the tertiary carbamate, 35, resulted in complete decomposition.  

A variety of substrates were synthesized to test what other nitrogen containing functional 

groups could be used as stabilizing groups in the homobenzylic position. The use of 

trifluoracetamides and oxazolidinones was thought to be a way of increasing the oxidation 

potential at the homobenzylic position without drastically altering the cyclization substrates.  

Trifluoroacetamide 37 was synthesized as shown in Scheme 1.6. The Boc group of 

carbamate 30b was removed in trifluoroacetic acid. The free amine was protected as the 

trifluoroacetamide by reaction with trifluoroacetic anhydride in the presence of pyridine to give 

36 in 45% yield. Subsequent hydroboration with BH3·THF and quenching with basic hydrogen 

peroxide provided trifluoroacetamide 37 in 65% yield. No desired cyclized product was obtained 

when trifluoroacetamide 37 was subjected to catalytic aerobic ETIC reaction conditions for 3.5 

h, and 80% of the starting material was recovered.  

Scheme 1.6: Synthesis of trifluoroacetamide 37 
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Oxazolidinone 39 was synthesized in four steps from carbamate 30b, as shown in 

Scheme 1.7. The Boc group of carbamate 30b was removed with trifluoroactetic acid, and 

oxazolidinone 38 was formed by reaction of the free amine with carbonyl diimidazole. The 

alkene was then hydroborated with BH3·THF and quenched with basic hydrogen peroxide to 

provide the corresponding alcohol. The alcohol was protected as the THP ether with 

dihydropyran and p-toluenesulfonic acid to provide oxazolidinone 39 in 25% yield. 
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Oxazolidinone 39 was subjected to the catalytic aerobic cyclization conditions. However, after 

12 hours no product formation was observed and 33% of the starting material was recovered. 

Scheme 1.7: Oxazolidinone synthesis 
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Because excellent stereocontrol had been exhibited in the reactions of tertiary amides 17 

and 17a cyclization reactions involving an oxazoline were attempted. The synthesis of oxazoline 

41 is shown in Scheme 1.8.42 

Scheme 1.8: Oxazoline synthesis 
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Carbamate 30b was reacted with 2,2-dimethoxypropane in refluxing toluene to give 

oxazoline 40 in 32% yield. Subsequent hydroboration with BH3·THF and quenching with basic 

hydrogen peroxide provided the corresponding alcohol in 71% yield. The alcohol was protected 

as the THP ether with dihydropyran and p-toluenesulfonic acid to provide oxazoline 41 in 90% 

yield. Cyclization of oxazoline 41 under catalytic conditions resulted in the isolation of a single 

diastereomer, the cis-6,5-ring fusion with retention of configuration at the nitrogen center, in 

85% isolated yield.  

The cyclization was then repeated with a mixture of diastereomers, 41a, to test the 

stereoselectivity and proposed dissociative mechanism. The diastereomeric mixture was prepared 
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in the same manner as shown in Scheme 8, with the exception that a mixture of 30a and 30b was 

employed as the starting material. The cyclization provided a single diastereomer in 88% isolated 

yield. 

Table 1.4 provides a summary of the cyclization substrates tested under catalytic aerobic 

ETIC reaction conditions to examine the scope and generality of nitrogen containing stabilizing 

groups that could be used in the homobenzylic position. 

Table 1.4: Additional homobenzylic stabilizing groups 
Substrate Product Yield (%) D.R
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After successfully demonstrating the utility of several amides and t-butylcarbamates as 

stabilizing groups in the homobenzylic position we wanted to explore the range of nitrogen 

nucleophiles that could be employed in ETIC reactions. In order to do this, a reversion back to 

the use of homobenzylic ethers as the cyclization substrate was the initial step. A wide variety of 

successful ETIC reactions of homobenzylic ethers using appended oxygen nucleophiles had been 

demonstrated,30 and preliminary results of ETIC reactions of homobenzylic ethers with an 

appended acetamide were promising.43 Therefore, it was of interest to expand upon these results.  
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Alcohol 43 served as the starting material for the synthesis of all of the substrates shown 

in Scheme 1.9.  The alcohol was converted to the mesylate with mesyl chloride and 

triethylamine. The mesylate was then displaced with sodium azide in DMF to provide azide 44 in 

87% yield. Azide 44 was the first substrate containing a potential nitrogen nucleophile subjected 

to catalytic aerobic ETIC reaction conditions. No reaction was observed after three hours, and 

the starting material was re-isolated. 

Scheme 1.9: Substrates containing appended nitrogen nucleophiles 
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Ethyl carbamate 46 and tert-butyl carbamate 47, were both formed from amine 45, which 

was obtained by reduction of azide 44 via the Staudinger reaction. Ethyl carbamate 46 was 

formed in 56% yield by reaction of amine 45 with potassium carbonate and ethyl chloroformate. 

Carbamate 47 was formed in 81% yield by reaction of amine 45 with Boc anhydride and 

triethylamine in a 1:1 mixture of dioxane and water.  Neither carbamate 46 nor carbamate 47 

provided the desired cyclization products when subjected to catalytic aerobic ETIC reaction 

conditions. In both cases, one major product was isolated from the reaction mixture, but the 

identities of those products have yet to be determined. For both carbamates it was believed that 
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oxidation of the carbamate followed by fragmentation was the operative reaction pathway. 

Subjecting the tert-butyl carbamate to the catalytic ETIC conditions with one equivalent of 

methanol tested this hypothesis (Figure 1.27). If preferential oxidation of the carbamate were 

occurring, the hemiaminal resulting from nucleophilic attack of the methanol would have been 

isolated. This however, did not occur and hemiacetal 50 was isolated from the reaction mixture.  

Figure 1.27: Attempted trapping of carbamate radical cation 
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Acetamide 48 was prepared in 69% yield by acylation of amine 45 with acetic anhydride 

in the presence of a catalytic amount of DMAP. No desired cyclization products were observed 

when this substrate was subjected to catalytic aerobic ETIC conditions, only 20% of the starting 

material was recovered, and no identifiable decomposition products were isolated.  

Sulfonamide 49 was formed in 34% yield by reaction of amine 45 with 4-

nitrobenzylsulfonyl chloride and triethylamine. Sulfonamide 49 proved to be an excellent 

substrate for cyclization. No decomposition of the starting material was observed, and the 

cyclized product was obtained in 68% yield. Use of the nitrophenyl sulfonamide as a nucleophile 

proved advantageous because of the ease of removal following cyclization to allow for further 

synthetic manipulation.41 

Sulfonamide 50 was prepared as shown in Scheme 1.10. The alcohol of amide 6 was 

converted to the mesylate with mesyl chloride and triethylamine. The mesylate was displaced 

with sodium azide in DMF at 55 ºC. The azide was reduced to the corresponding amine via the 

Staudinger reaction, and the amine was sulfonylated with 4-nitrobenzenesulfonyl chloride and 

triethylamine in CH2Cl2 to afford sulfonamide 50 in 34% yield over four steps. Catalytic aerobic 

ETIC reaction of sulfonamide 50 afforded (N, N) acyl aminal 51 was in 64% yield. 
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Scheme 1.10: Sulfonamide synthesis 
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Table 1.5 summarizes the variety of homobenzylic ethers with appended nitrogen 

nucleophiles tested under catalytic aerobic ETIC conditions. 

Table 1.5: Nitrogen as a nucleophile 
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In addition to probing the mechanism of the ETIC reaction, the chemoselectivity of the 

single electron oxidation was examined through the incorporation of a trifluoromethyl group on 
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the arene. Incorporation of this group was predicted to increase the oxidation potential of the 

arene by 0.3V,42 effectively prohibiting its oxidation under the reaction conditions.  

3-(Trifluoromethyl)phenylalanine (55)43 served as the starting material for the synthesis 

of both trifluoromethyl-substituted arenes, 57 and 58, as shown in Scheme 1.11. Ketimine 5244 

was easily obtained by condensation of benzophenone immine and glycine methyl ester 

hydrochloride in CH2Cl2. Alkylation of ketimine 52 with the commercially available 3-

(trifluoromethyl)benzyl chloride (53) in the presence of sodium hydride in DMF provided 

ketimine 54 in excellent yield. Hydrolysis of 54 with 6N HCl, followed by saponification of the 

hydrochloride salt with 15% NaOH in MeOH provided the desired starting material 55 in 92% 

yield. 

Scheme 1.11: Synthesis of 3-(trifluoromethyl)phenylalanine 
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3-(Trifluoromethyl)phenylalanine (55) was reduced to the amino alcohol with LAH in 

THF, then reacted with di-tert-butyldicarbonate in one pot to provide the Boc-protected amino 

alcohol (Scheme 1.12). The alcohol was oxidized to the aldehyde with Dess-Martin periodinane, 

which was subsequently reacted with allylmagnesium bromide to provide alcohol 56. The 

trifluoromethyl arene 57 was obtained in a 2% overall yield from alcohol 56 through methyl 

ether formation with methyl iodide and sodium hydride in DMF followed by hydroboration with 

BH3•THF. Trifluoromethyl-substituted arene 58 was obtained in a 6% yield from alcohol 56 by 

oxazoline formation with dimethoxypropane and PPTS in refluxing toluene followed by 

hydroboration with BH3•THF. 
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Scheme 1.12: Synthesis of trifluoromethyl-substituted arenes 
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 Both trifluoromethyl-susbstituted arenes 57 and 58 were subjected to catalytic aerobic 

ETIC reaction conditions. As shown in Figure 1.28, ETIC reaction of 57 lead only to 

decomposition of the starting material, while ETIC reaction of 58 provided the desired cis-6,5-

ring fused product 42 as a single diastereomer in 74% yield. 

Figure 1.28: ETIC reaction of trifluoromethyl-substituted arenes 
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1.3. Discussion of electron transfer initiated cyclization reactions  

 

I. Reaction Stereochemistry 
 

 The incorporation of a methyl group, or methoxy group adjacent to the reactive 

center provided a means of exploring the stereochemical outcome of ETIC reactions of 

homobenzylic amides and carbamates through the analysis of coupling constants. Subjecting 

secondary amides to ETIC reaction conditions resulted in the isolation of a mixture of 

diastereomers. However, ETIC reactions of tertiary amides and tertiary carbamates were 

stereoselective processes. 

When tertiary amide 17 was subjected to standard ETIC conditions the single 

diastereomer 18 was isolated. The relative stereochemistry of cyclic acylaminal 18 can be 

explained by examination of the transition state. If the transformation proceeds through an early 

transition state, allylic strain would be the dominant controlling factor, and the anti relationship 

between the methyl and amide would result from a desire to minimize steric interactions. Figure 

1.29 illustrates the four possible chair-like early transition states that can be assumed: (A) 

illustrates the 1,3 allylic strain between the amide methyl and the backbone methyl, (B) depicts 

the preferred transition state and (C) and (D) show steric clashes between the carbonyl and 

methylene of the ring and the methyl of the iminium ion and methylene group, respectively. If a 

late transition state (E) is the operative mode, developing unfavorable diaxal interactions of the 

amide methyl with the hydrogens of the ring force the equatorial preference.  
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Figure 1.29: Stereocontrol in tertiary amide cyclizations 
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Subjecting the mixture of diastereomers, amide 17 to standard ETIC reaction conditions 

also resulted in the isolation of cyclic acylaminal 18. This result provided additional evidence for 

a dissociative mechanism, which will be discussed in a later portion of the document. 

 

II. Optimization 
 

Initial ETIC reactions of homobenzylic amides and carbamates were successful and the 

desired cyclic acylaminals were obtained in high yields. However, these yields varied due to 

difficulty in purifying the desired product. Earlier work done with the cyclization reactions of 

homobenzylic ethers31 demonstrated that using less than a stoichiometric amount of sensitizer 

resulted in recovery of starting materials, and excess was required for complete conversion. The 

use of 1.2 equivalents of NMQPF6 created aromatic by-products from radical-radical coupling 

reactions. Mesolytic cleavage of the benzylic bond of the radical cation generates a benzyl 

radical as a reactive intermediate, which can participate in unwanted side reactions. Purification 

by flash chromatography followed by preparatory thin layer chromatography was necessary. In 
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addition to the purification difficulties, long reaction times, on the order of 4 to 6 hours, were 

required. During the course of the reaction, deposition of the solid NaOAc on the walls of the 

reaction flask, as well as a color change from colorless to a deep, dark red were observed. Both 

the color change and the deposition were thought to impede the course of the reaction.  

In an attempt to optimize the reaction conditions, a catalytic photosensitized electron 

transfer cyclization reaction under aerobic conditions was developed. The gentle bubbling of air 

through the reaction mixture during irradiation regenerated the photosensitizer NMQPF6. This 

allowed for the use of 0.25 mole percent of NMQPF6, which alleviated the purification 

difficulties associated with the use of excess photosensitizer. This also allowed for the isolation 

of decomposition products, and reduced reaction times from 5 to 2 hours. Any unwanted reactive 

oxygen species generated during the catalytic cycle could be reduced by the addition of solid 

sodium thoisulfate into the reaction mixture.  

 

III. Mechanistic Insights 
 

The isolation of a mixture of diastereomers resulting from ETIC reactions of secondary 

amides and carbamtes indicated that the reaction proceedes by a largely dissociative, rather than 

associative pathway involving discrete acyiminium ion formationas a result of mesolytic 

cleavage of the benzylic C-C bond. Had the product isolated from these reactions been a single 

diastereomer with inversion of configuration at the reactive center, an associative mechanism 

would have been assumed. 

Figure 1.30 illustrates the proposed mechanism. Upon single electron oxidation of the 

homobenzylic amide 14 the radical cation is formed. The benzylic bond of the radical cation then 
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fragments to give a stabilized benzyl radical and an acyliminium ion. The cation is then attacked 

by the appended hydroxyl group, and upon proton transfer the desired product is formed.  

Because the intermediate is a sp2 hybrodized carbon, attack from either face is possible, resulting 

in a mixture of diastereomers.  Subjecting a 2:1 mixture of diastereomers of 15 to ETIC reaction 

conditions for 4 hours resulted in recovery of the same 2:1 mixture. To discount the possibility 

that the 2:1 mixture was an equilibrium mixture, the syn diasteromer (15b) was subjected to the 

aerobic catalytic ETIC reaction conditions. Over prolonged reaction times approximately 10% 

epimerization was observed. However, this rate of epimerization is not sufficient to account for 

the observed product ratios.    

Figure 1.30: Proposed dissociative mechanism 

 

 Further evidence for a dissociative mechanism was provided by subjecting mixtures of 

diastereomers of tertiary amides as well as acyloxazolines to ETIC reaction conditions. In both 

cases the single diastereomer that was isolated, was the same as that which was isolated from 

ETIC reactions of single diastereomers of tertiary amides or oxazolines. 

Changing from a methyl adjacent to the reactive center to a methoxy group had a definite 

impact on the ETIC reaction. As is evident by examination of ETIC reactions of amides 24 and 

26, oxygen containing functional groups placed adjacent to the reactive center result in decreased 

yields. Comparison of the ETIC reaction of amide 14 to that of amide 24 shows a 50% decrease 

in yield upon incorporation of the methoxy group, as shown in Figure 1.31.  
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Figure 1.31: Comparison of ETIC reactions 

 

In addition to the benzylic bond, the C-C bond between the amide and methyl ether of the 

radical cations of amides 24, and 26 could be cleaved. Having a stabilizing group such as the 

methyl ether adjacent to the reactive center lowers both the bond dissociation energy of the 

substrate, as well as the oxidation potential of the electrophilic fragment. Upon formation of the 

radical cation two mesolytic bond cleavages are possible, the benzylic C-C bond or the C-C bond 

between the amide and methyl ether. Both bond cleavages result in a cation stabilized by the 

amide to form the acyl imminium ion (Figure 1.32). 

Figure 1.32: Two possible mesolytic cleavages 
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electrochemical oxidation potentials, the tertiary amide is more readily oxidized than the 

secondary amide by as much as 0.80 V.41 Figure 1.33 shows a suggested a mechanism for the 

formation of amide 27. After mesolytic cleavage of the bis-homobenzylic bond, the imminium 

ion is attacked by adventitious water present in the system. Proton transfer from the water to the 

nitrogen of the hemiaminal followed by formation of the carbonyl displaces amide 27. 

 

Figure 1.33: Mechanism for formation of amide 27 

Even though the electrochemical oxidation potentials42 of carbamates are known to be 

lower than those of amides, higher yields and cleaner reactions were observed with 

homobenzylic tert-butyl carbamates having an oxygen containing functional group adjacent to 

the reactive center than with the corresponding homobenzylic amides. The mechanism is not 

fully understood, given that there are two easily oxidizable substituents within the substrate. 

Theoretically, the nitrogen of the carbamate can be oxidized in preference to the arene to form 

radical cation A (Figure 1.34). Alternatively, the steric bulk of the tert-butylcarbamate might 

limit oxidation of the nitrogen, allowing for preferential oxidation of the arene, radical cation B. 

In either case, mesolytic cleavage of the benzylic C-C bond to form the acyliminium ion is 

possible. 
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Figure 1.34: Possible radical cations 

 

Homobenzylic Boc protected oxazolines proved to be outstanding ETIC substrates. 

Superb stereocontrol was exhibited and excellent yields were observed despite the lower 

oxidation potential of the tertiary carbamate. The increased yields, relative to the acyclic 

cyclization substrate 31, can be explained through molecular orbital analysis of the radical 

cation. Proper orbital alignment of the SOMO of the carbamate radical cation and the benzylic 

C-C bond is required for mesolytic benzylic bond cleavage. If proper orbital overlap of the lone 

pair of the ether oxygen with the σ* of the homobenzylic C-C bond can be achieved, the 

alternative reactive pathway involving mesolytic cleavage of the homobenzylic C-C bond 

becomes an operative reactive pathway.  

Figure 1.35 shows that the dihedral angle between the lone pair of the ether oxygen in the 

oxazoline cyclization substrate 41 and the σ* orbital of the homobenzylic bond cannot attain 

proper alignment for bond cleavage. Alternatively, in the acyclic substrate 31 the proper orbital 

overlap can be achieved allowing for the undesired bond cleavage and decreasing reaction yield. 

Figure 1.35: Ideal geometries for β-alkoxy carbamate radical cation C-C bond fragmentation 
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Additional support for the reaction proceeding through amide or carbamate oxidation was 
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trifluoromethyl group is expected to increase the oxidation potential of the arene by 0.3V45 

thereby inhibiting the reaction if oxidation of the arene is the relevant reaction pathway. 

Cyclization of 58 provided the desired bicyclo [4.3.0] fused product 42 in good yield, whereas 

subjecting trifluoromethyl-substituted arene 57 to ETIC reaction conditions resulted in complete 

decomposition of the starting material. 

The scope and generality of the ETIC reaction of substrates having an oxygen containing 

functional group adjacent to the reactive center was further tested by varying the stabilizing 

group in the homobenzylic position. ETIC reactions with homobenzylic trifluoroacetamides and 

oxizolidinones were unsuccessful. Neither group was able to stabilize the cation formed from 

mesolytic cleavage of the benzylic bond. Due to the electron withdrawing nature of both the 

trifluoromethyl group and the oxizolidinone, the nitrogen was unable to form the acyliminium 

ion necessary for cyclization. 
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1.4. Conclusion 

 

 A new photoinitiated single electron transfer cyclization reaction has been developed. 

Amides and carbamates can be used a stabilizing groups in the homobenzylic position of alkyl 

arenes with appended nucleophiles. Upon single electron oxidation of the alkyl arene a radical 

cation is formed in which the benzyl C-C bond can selectively undergo mesolytic cleavage 

leading to a benzyl radical and a cationic fragment. The cationic fragment is then subject to 

nuceophilic attack by the appended nucleophile to form the desired heterocycle.  

 Through the course of development of this cyclization method it was discovered that both 

amides and t-butyl carbamates act as stabilizing groups in the homobenzylic position. Placing 

oxygen containing functional groups in the bis-homobenzylic position decreases reaction yields 

and allows for the operation of alternative reactive pathways. However, the use of homobenzylic 

t-butyl carbamates in substrates bearing oxygen containing functional groups in the bis-

homobenzylic position leads to more efficient cyclization reactions.  

 A catalytic variant of the single electron transfer cyclization reaction has been developed. 

Regeneration of the photoactivated sensitizer N-methylquinolinium hexafluorophosphate can be 

achieved under aerobic conditions. The addition of the mild, partially soluble reducing agent 

sodium thiosulfate into the reaction mixture suppresses decomposition attributed to the formation 

of unwanted reactive oxygen species. Switching from the stoichiometric to the catalytic variant 

of the cyclization reaction facilitates purification and reaction efficiency. 

 Mechanistically, the electron transfer initiated cyclization reactions appear to be 

following a dissociative route. The use secondary amides and carbamtes in the homobenzylic 
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position leads to diastereomeric mixtures of products. Tertiary, homobenzylic amides and 

oxazolines provide superb, complementary stereocontrol.  

 Nitrogen can be used as a nucleophile in electron transfer initiated cyclization reactions. 

Homobenzylic ethers as well as homobenzylic carbamates containing appended sulfonamide 

nucleophiles have been subjected to the catalytic ETIC reaction conditions, and the resulting (N, 

N) and (N, O) acylaminals have been isolated in good yields.   
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1.5. Experimental  

 

General Procedures. All reactions were performed in oven or flame-dried glassware under a 

positive pressure of N2
 with magnetic stirring unless otherwise noted. 

 

Instrumentation. Proton (1H NMR) and carbon (13C NMR) nuclear magnetic resonance spectra 

were recorded on Bruker Avance 300 spectrometers at 300 MHz and 75 MHz, respectively. The 

chemical shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak or the 

internal standard tetramethylsilane were used as reference values. For 1H NMR: CDCl3 = 7.27 

ppm, TMS = 0.00 ppm. For 13C NMR: CDCl3 = 77.23, TMS = 0.00. For the proton data: s = 

singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublets; dt = doublet of triplets; b = 

broad. High resolution and low resolution mass spectra were recorded on a VG 7070 

spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer. 

Samples for IR were prepared as a thin film on a NaCl plate by dissolving the compound in 

CH2Cl2 and then evaporating the CH2Cl2. 

 

Materials. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254 

plates. Visualization was done under UV (254 nm). Flash chromatography was done using ICN 

SiliTech 32-63 60 Å silica gel. Reagent grade ethyl acetate and hexanes (commercial mixture) 

were purchased from EM Science and used as is for chromatography. Reagent grade methylene 

chloride (CH2Cl2), dichloroethane (C2H4Cl2), acetonitrile (CH3CN), benzene and toluene were 

distilled from CaH2. Diethyl ether (Et2O) and tetrahydrofuran (THF) were distilled from sodium 
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benzophenone ketyl prior to use. Anhydrous N,N-dimethylformamide (DMF), methanol, 

dimethyl sulfoxide (DMSO) and tert-butylbenzene were purchased from Aldrich and used as is.   

Compounds originating from phenylalanine were found to have racemized during the 

synthesis. 

Hexanoic acid (1-benzylpent-4-enyl)amide (5) 
 

To 1-Phenylhex-5-en-2-ol (2.51 g, 14.22 mmol) in CH2Cl2 (35 mL) at 0 ºC were 

added methanesulfonyl chloride (2.44 g, 21.3 mmol) and triethylamine (5.76 g, 

56.8 mmol). The reaction mixture was stirred for 3 h at room temperature then was quenched 

with water. The reaction mixture was extracted with CH2Cl2, then the organic layer was washed 

with water and saturated NaCl, dried (Na2SO4) and concentrated. The resulting residue was 

dissolved in DMF (35 ml) at 23 ºC under N2. Sodium azide (9.24 g, 14.2 mmol) and tetrabutyl 

ammonium iodide (50 mg) were added. The reaction mixture was stirred for 18 h, then was 

quenched with water, and extracted into hexanes. The organic layer was washed with saturated 

NaCl, dried (Na2SO4), and concentrated. The resulting residue was then dissolved in THF (15 

mL) at 23 ºC under N2 and triphenylphosphine (1.73 g, 6.59 mmol) was added. The reaction 

mixture was allowed to stir for 18 h then was quenched with water (2 mL). The reaction mixture 

was then allowed to stir for an additional 18 h. The temperature was decreased to 0 ºC and 

hexanoyl chloride (1.63 g, 8.25 mmol) and triethylamine (1.11 g, 10.9 mmol) were added. After 

1 h the reaction mixture was quenched with water and extracted with ethyl acetate. The organic 

layer was washed with saturated NaCl (2x 10 mL), dried (Na2SO4) and concentrated. The crude 

product was purified by flash chromatography (20% EtOAc in hexanes) to afford the desired 

product (0.612 g, 40.7%): 1H NMR (300 MHz, CDCl3) δ 7.32-7.16 (m, 5H), 5.78 (m, 1H), 5.19 

(b s, 1H), 4.98 (d, J = 14.0, 2H), 4.95 (d, J = 8.5, 2H) 4.23 (m, 1H), 2.76 (t J = 5.15 , 2H), 2.14-
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2.07 (m, 6H), 1.62-1.21 (m, 6H), 0.88 (t, J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 173.1 

137.94, 129.5, 128.6, 114.8, 49.7, 40.9,36.7, 33.3, 31.3, 30.3, 22.4, 14.1; IR (neat) 3290, 3066, 

3027, 2933, 2855, 1643, 1544, 1453, 894, 748 cm-1; HRMS (EI) calcd for C18H27NO 273.2093, 

found 273.2100. 

 

Hexanoic acid (1-benzyl-5-hydroxypentyl)amide (6)  
 

To hexanoic acid (1-benzylpent-4-enyl)amide (0.212 g, 0.777 mmol) in THF  

(10 mL) at 23 ºC was added 9-BBN (0.5 M in THF, 3.11 ml, 1.55 mmol). The 

reaction was stirred for 3.5 h, then quenched at 0 ºC with water (2 mL) followed by 20% aqueous 

NaOH (1 mL), 30% aqueous hydrogen peroxide solution (1 mL) and saturated Na2SO3 (2 mL). 

The reaction mixture was stirred for an addition hour, then was extracted with ethyl acetate, 

washed with saturated NaCl (2x 10 mL), dried (Na2SO4) and concentrated. The resulting residue 

was purified by column chromatography (50% EtOAc in hexanes) to afford the desired product 

(0.099 g, 43.7%):  1H NMR (300 MHz, CDCl3) δ 7.32-7.16 (m, 5H), 5.23 (bd, J = 3.2 Hz 1H), 

4.23 (m, 1H) 3.62 (t, J = 5.7 Hz, 2H) 2.79 (d, J = 7.6 Hz, 2H), 2.11 (m. 2H), 1.58-1.21 (m, 12H), 

0.87 (t, J = 6.7 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 173.1, 138.1, 129.5, 128.4, 126.5, 62.4, 

49.9, 41.1, 37.0, 33.9, 32.4, 31.4, 25.6, 22.5, 22.3, 14.0; IR (neat) 3281, 2933, 2860, 1638, 1552, 

1445, 1053, 748, 701 cm-1; HRMS (EI) cald  for C18H29NO2 291.2198, found 292.2270. 

 

Hexanoic acid (tetrahydropyran-2-yl)amide (7) 
 

This procedure is representative of a standard ETIC reaction. To hexanoic acid (1-

benzyl-5-hydroxypentyl)amide (0.050 g, 0.172 mmol) in dichloroethane (5 mL) 
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and toluene (1 mL) in a borosilicate flask at 20 ºC were added N- methylquinolinium 

hexafluorophosphate (0.059 g, 0.206 mmol),  and sodium acetate (0.100 g, 1.21 mmol). The 

mixture was stirred at room temperature while irradiating for 5 h at 320nm with a medium 

pressure mercury lamp. The distance between the reaction flask and lamp was 4 cm. The lamp 

was cooled by a cold water circulation through a pyrex jacket surrounding the lamp. The pyrex 

cold jacket also served as a filter to remove all wavelengths below 290 nm emitted by the lamp. 

Upon completion, the reaction mixture was filtered, concentrated, and purified by flash 

chromatography (50% EtOAc in hexanes) to provide the desired product (0.029 g, 86%): 1H 

NMR (300 MHz, CDCl3) δ 6. 05 (d, J = 7.9 Hz, 1H), 5.09 (dt, J = 8.3, 2.3 Hz, 1H), 3.96 (m, 1H), 

3.58 (m, 1H), 2.16 (m, 1H) 1.64 – 1.26 (m, 10H), 0.87 (t, J = 6.7 3H); 13C NMR (75 MHz, 

CDCl3) δ 172.9, 77.8, 36.9, 31.7, 31.5, 25.3, 25.2, 23.0, 22.5, 22.3, 14.0; IR (neat) 3286, 2950, 

2855, 1660, 1544, 1453, 1208, 1083, 1032, 903 cm-1; HRMS (EI) cald for C11H21NO2 199.1572, 

found 199.158809. 

 

This procedure is representative of an ETIC reaction done under catalytic aerobic conditions. To 

hexanoic acid (1-benzyl-5-hydroxypentyl)amide (0.089 g, 0.306 mmol) in dichloroethane (10 

mL) and toluene (2 mL) in a borosilicate flask at 20 ºC were added N- methylquinolinium 

hexafluorophosphate (0.002 g, 0.007 mmol), sodium acetate (0.178 g, 2.17 mmol), and sodium 

thiosulfate (0.178 g, 1.13 mmol). The mixture was stirred at room temperature while bubbling air 

gently and irradiating for 3 h at a distance of 4 cm from a medium pressure mercury lamp. The 

lamp was cooled by a cold water circulation through a pyrex jacket surrounding the lamp. The 

pyrex cold jacket also served as a filter to remove all wavelengths below 290 nm emitted by the 
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lamp.  The reaction mixture was filtered, concentrated, and purified by flash chromatography 

(50% EtOAc in hexanes) to provide the desired product (0.045 g, 75%) 

 

Hexanoic acid (1-benzylpent-4-enyl)methylamide (8) 
 

To a suspension of sodium hydride (60% dispersion in mineral oil, 0.234 g, 5.85 

mmol) in DMF (20 mL) at 0 °C was added hexanoic acid (1-benzylpent-4-

enyl)amide (0.400 g, 1.46 mmol). The reaction mixture was stirred for 30 minutes then methyl 

iodide (2.07 g, 14.6 mmol) was added. The reaction mixture stirred for 12 h then was quenched 

with water (2 mL), extracted with EtOAc (3 x 15 mL), washed with water and saturated NaCl, 

dried (Na2SO4) and concentrated. The resulting residue was purified by flash chromatography 

(50% EtOAc in hexanes) to provide the desired product (0.345 g, 82%): 1H NMR (300 MHz, 

CDCl3) δ 7.29-7.08 (m, 5H), 5.89 (m, 1H), 4.99 (m, 1H), 3.91 (m, 1H), 2.85 (s, 3H), 2.74 (m, 

5H), 2.17 (dt, J = 4.9, 2.4, 1H), 2.01 (m, 2H), 1.73-1.06 (m, 10H), 0.86 (m, 3H). 

 

Hexanoic acid (1-benzyl-5-hydroxypentyl)methylamide (9)  
 

To hexanoic acid (1-benzylpent-4-enyl)methylamide (0.345 g, 1.20 mmol) in 

THF (20 mL) at 23 °C was added 9-BBN (0.5 M in THF, 4.80 ml, 2.40 

mmol). The reaction was stirred for 3 h, then quenched at 0 ºC with water (2 mL) followed by 

20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide solution (1 mL) and saturated 

Na2SO3 (2 mL). The reaction mixture was stirred for an addition hour, then was extracted with 

ethyl acetate, washed with saturated NaCl, dried (Na2SO4) and concentrated. The resulting 

residue was purified by column chromatography (50% EtOAc in hexanes) to afford the desired 
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product (0.339 g, 92%):  1H NMR (300 MHz, CDCl3) δ 7.29-7.08 (m, 5H), 5.02 (bs, 1H), 3.92 

(m, 1H), 3.62 (m, 2H), 2.85 (m, 5H), 2.17 (m, 2H), 2.03 (m, 1H), 1.63-1.18 (m, 12H), 0.86 (m, 

3H). 

 

Hexanoic acid methyl(tetrahydropyran-2-yl)amide (10) 

 

To Hexanoic acid (1-benzyl-5-hydroxypentyl)methylamide (0.100g, 0.327 mmol) 

in dichloroethane (7 mL) and tert-butylbenzene (1 mL)  in a borosilicate flask at 20 

ºC were added N- methylquinolinium hexafluorophosphate (0.114 g, 0.393 mmol) and sodium 

acetate (0.227 g, 2.67 mmol). The mixture was stirred for 6 h at 20 ºC while irradiating. The 

reaction mixture was filtered, concentrated, and purified by flash chromatography (50% Acetone 

in hexanes) to provide the desired product (0.039  g, 55%): 1H NMR (300 MHz, CDCl3) δ 5.64 

(dd, J = 5.6, 3.27 1H), 4.82 (dd J = 8.5, 1.8 1H), 4.02 (bt, J = 12.9 2H), 3.58 (m, 1H), 2.91 (s, 

3H), 2.88 (s, 3H), 2.41 – 2.25 (m, 4H), 1.99 – 1.24 (m, 12H), 0.88 (t, J = 5.5, 3H); 13C NMR (75 

MHz, CDCl3) δ 173.3, 85.42, 81.16, 68.35, 34.14, 33.49, 31.67, 29.69, 29.17, 28.58, 27.34, 

25.34, 25.18, 25.08, 24.52, 23.54, 23.43, 23.12, 22.56, 14.03; IR (neat) 2933, 2855, 1660, 1462, 

1410, 1372, 1316, 1079, 1036, 911 cm-1; HRMS (EI) cald  for C12H23NO2 213.1728, found 

213.1732. 

 

tert-Butyldimethylpent-4-ynyloxy-silane (11)  

 

To 4-pentyn-1-ol (1.99 g, 23.7 mmol) in DMF (20 mL) at 0 ºC were added 

imidazole (2.42 g, 35.6 mmol) and tert-butyldimethylsilyl chloride (3.94 g, 26.1 mmol). The 
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reaction was stirred at 20 ºC for 18 h, and then quenched with saturated NH4Cl, extracted with 

hexanes, washed with saturated NaCl, dried (Na2SO4) and concentrated. The resulting residue 

was purified by column chromatography (10% EtOAc in hexanes) to afford the desired product 

(4.49 g, 95%): 1H NMR (300 MHz, CDCl3) δ 3.73 (t, J = 6.0 2H), 2.30 (dt, J = 2.7, 4.5 2H) 1.96 

(t, J = 2.7 1H), 1.78 (m, 2H), 0.93 (s, 9H), 0.08 (s, 6H). 

 

tert-Butyldimethyl-(4-methyl-6-phenylhex-4-enyloxy)silane (12) 

 

To a room temperature suspension of  bis(cyclopentadienyl)zirconium dichloride 

(5.00 g, 17.24 mmol) in CH2Cl2 (100 mL) was added trimethylaluminum (2.0 M in hexanes, 

22.68 mL, 45.36 mmol). The reaction mixture was stirred for 30 min. before tert-Butyl-dimethyl-

pent-4-ynyloxy-silane (3.42 g, 17.24 mmol) was added. The reaction mixture was stirred for 18 h 

then a solution of benzyl chloride (2.23 g, 17.24 mmol) and palladium tetrakis-

triphenylphosphine  (0.597 g, 0.517 mmol) in THF (20 mL) was added. The reaction mixture 

was stirred  for 12 h then quenched at -78 ºC with ethanol (3 mL) and stirred for 2 h with 

saturated sodium potassium tartrate (15 mL). The mixture was extracted with ether and the 

organic layer was washed with water and saturated NaCl, dried (Na2SO4) and concentrated. The 

resulting residue was purified by column chromatography (5% EtOAc in hexanes) to afford tert-

Butyl-dimethyl-(4-methyl-6-phenyl-hex-4-enyloxy)-silane (5.98 g, 76%): 1H NMR (300 MHz, 

CDCl3) δ 7.33-7.18 (m, 5H), 5.38 (t, J = 1.2, 1H), 3.63 (t, J = 6.6, 2H), 3.40 (d, J = 7.3, 2H), 2.11 

(t, J = 7.2, 2H), 1.75 (s, 3H), 1.69 (m, 2H),  0.92 (s, 9H), 0.06 (s, 6H). 
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6-(tert-Butyldimethylsilanyloxy)-(3S)-methyl-1-phenylhexan-(2R)-ol (13) 

 

To tert-Butyldimethyl-(4-methyl-6-phenylhex-4-enyloxy)silane (0.200 g, 0.656 

mmol) in THF (10 mL) at 0 ºC was added diborane (1.0 M in THF, 1.97 mL, 

1.97 mmol). The reaction was allowed to stir for 3 h, then quenched at 0 ºC with water (2 ml) 

followed by 20% aqueous NaOH (1 ml), 30% aqueous hydrogen peroxide solution (1 ml) and 

saturated Na2SO3 (2 ml). The reaction mixture was stirred for an addition hour, then was 

extracted with ethyl acetate, washed with saturated NaCl (2x 10 mL), dried (Na2SO4) and 

concentrated. The resulting residue was purified by column chromatography (20% EtOAc in 

hexanes) to afford 6-(tert-butyldimethylsilanyloxy)-(3S)-methyl-1-phenyl-hexan-2R-ol (0.171 g, 

81%): 1H NMR (300 MHz, CDCl3) δ 7.33-7.22 (m, 5H), 3.63 (m, 3H), 2.89 (dd, J = 10.5, 3.1, 

1H), 2.58 (dd, J = 9.7, 3.8, 1H), 1.67-1.50 (m, 3H), 1.26 (m, 2H), 1.02 (d, J = 6.7, 3H), 0.91 (s, 

9H), 0.06 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 139.3, 129.4, 128.6, 126.4, 76.7, 63.6, 40.1, 

38.2, 30.5, 28.3, 26.1, 18.4, 15.5, -5.13; HRMS EI calcd for C15H25O2Si (M-40) 265.1623, found 

265.1628. 

 

Hexanoic acid [1-benzyl-5-(tert-butyldimethylsilanyloxy)-(2S)-methylpentyl]amide 

 

 To 6-(tert-butyldimethylsilanyloxy)-(3S)-methyl-1-phenylhexan-(2R)-ol (0.620 

g, 1.92 mmol) in CH2Cl2 (10 mL) at 0 ºC were added methanesulfonyl chloride 

(0.330 g, 2.88 mmol) and triethyl amine (0.778 g, 7.69 mmol). The reaction mixture was stirred 

for 3 h at room temperature, and was then quenched with water. The reaction mixture was 

extracted with CH2Cl2, and then the organic layer was washed with water and saturated NaCl, 
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dried (Na2SO4) and concentrated. The resulting residue was dissolved in DMF (10 mL), sodium 

azide (9.24 g, 14.2 mmol) was added and the reaction mixture was stirred at 55 ºC for 12 h. The 

reaction mixture was quenched with water and extracted with hexanes. The organic layer was 

washed with saturated NaCl, dried (Na2SO4), and concentrated. The resulting residue was then 

dissolved in THF (10 mL) at 23 ºC under N2 and triphenylphosphine (0.299 g, 1.14 mmol) was 

added. The reaction mixture was allowed to stir for 18 h then was quenched with water (1 mL). 

The reaction mixture was then allowed to stir for an additional 18 h. The temperature was 

decreased to 0 ºC and hexanoyl chloride (0.192 g, 1.42 mmol) and triethylamine (0.192 g, 1.90 

mmol) were added. After 1 hour the reaction mixture was quenched with water and extracted 

with ethyl acetate. The organic layer was washed with saturated NaCl (2x 10 mL), dried 

(Na2SO4) and concentrated. The crude product was purified by flash chromatography (20% 

EtOAc in hexanes) to afford the desired product (0.399 g, 61%): 1H NMR (300 MHz, CDCl3) δ 

7.30-7.17 (m, 5H), 5.19 (d, J = 9.4, 1H), 4.26 (m, 1H), 3.56 (m, 2H), 2.75 (m, 2H), 2.35 (t, J = 

7.5, 2H), 2.07 (m, 2H), 1.53-1.18 (m, 9H), 0.88 (m, 12H), 0.05 (s, 6H); 13C NMR (75 MHz, 

CDCl3) δ 172.7, 138.5, 129.1, 128.4, 126.4, 63.3, 53.3, 38.5, 37.1, 35.1, 31.4, 30.5, 29.8, 26.0, 

25.5, 22.4, 14.6, 14.0, -5.17; IR (neat) 3437, 2958, 2934, 2859, 2253, 1663, 1508, 1465, 1386, 

1259, 1097, 906 cm-1; HRMS (EI), (M-57) calcd for C21H36NO2Si 362.2515, found 362.2520. 

 

Hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)amide (14) 

 

 To hexanoic acid [1-benzyl-5-(tert-butyldimethylsilanyloxy)-(2S)-

methylpentyl]amide (0.244 g, 0.581 mmol) at 23 ºC in THF (10 mL) was added 

tetrabutlylammonium fluoride hydrate (0.228 g, 0.872 mmol). The reaction mixture was stirred 
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for 12 h, and then quenched with saturated NH4Cl (2 mL), extracted with ethyl acetate, dried 

(Na2SO4) and concentrated. The resulting residue was purified by column chromatography (50% 

EtOAc in hexanes) to afford the desired product (0.170 g, 96%):  1H NMR (300 MHz, CDCl3) δ 

7.27-7.14 (m, 5H), 5.55 (d, J = 9.4, 1H), 4.31 (m, 1H), 3.72 (m, 3H), 3.54 (m, 2H), 2.72 (m, 2H), 

2.06 (m, 2H), 1.83 (m, 3H), 1.57-1.44 (m, 6H), 1.23-1.15 (m, 4H), 0.92 (d, J = 6.8, 3H), 0.83 (t, 

J = 7.3, 3H); 13C NMR (75 MHz, CDCl3) δ 173.1, 138.4, 129.1, 129.0, 128.4, 126.4, 62.8, 52.7, 

38.7, 37.0, 35.5, 31.3, 30.4, 29.9, 25.5, 22.4, 14.5, 13.9; IR (neat) 3286, 3070, 2933, 2873, 1638, 

1544, 1453, 1062, 735, 696 cm-1; HRMS (EI) calcd for C12H24NO2 (M-91) 214.1807, found 

214.1812. 

 

Hexanoic acid [1-benzyl-2-methyl-5-(tetrahydropyran-2-yloxy)pentyl]amide (14a) 

 

 To hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)amide (0.178 g, 0.583 

mmol) at 0 ºC in CH2Cl2 (10 mL) was added dihydropyran (0.0732 g, 0.871 

mmol) and p-toluenesulfonic acid (0.133 g, 0.699 mmol). The reaction mixture was stirred for 12 

h, then diluted with ether (15 mL), washed with NaHCO3 (2 x 15 mL) and saturated NaCl (2 x 

15 mL), dried (Na2SO4) and concentrated. The resulting residue was purified by flash 

chromatography (30% EtOAc in hexanes) to provide the desired product (0.137 g, 60%): 1H 

NMR (30 MHz, CDCl3) δ 7.24-7.16 (m, 5H), 5.62 (d, J = 9.2, 1H), 4.52 (bs, 1H), 4.25 (bs, 1H), 

3.82 (m, 1H), 3.68 (m, 1H), 3.47 (m, 1H), 3.32 (m, 1H), 2.75 (m, 2H), 2.06 (m, 2H), 1.51 (m, 

12H), 1.19 (m, 4H), 0.93 (d, J = 6.8, 3H), 0.84 (t, J = 6.9, 3H); 13C NMR (75 MHz, CDCl3) δ 

172.4, 128.8, 128.0, 125.9, 98.62, 98.56, 67.34, 62.07, 60.13, 54.00, 52.99, 38.22, 36.62, 35.06, 

31.08, 30.51, 29.95, 27.11, 25.30, 25.24, 22.16, 20.78, 19.44, 15.83, 14.27, 13.95, 13.70; IR 
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(neat) 3291, 3065, 3025, 2922, 2867, 1635, 1544, 1453, 1136, 1029; HRMS (EI) calcd for 

C24H39NO3 389.2929, found 389.2937. 

 

Hexanoic acid ((3S)-methyl-tetrahydropyran-2-yl)amide (15a,b) 

 

 Hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)amide (0.016g, 0.053 

mmol) was subjected to both standard ETIC reaction conditions. The reaction 

mixture was filtered, concentrated, and purified by flash chromatography (50% 

EtOAc in hexanes) to provide the desired product as a separable mixture of diastereomers (0.008 

g, 75%): Hexanoic acid ((3S)-methyltetrahydropyran-2S-yl)amide (15a)  1H NMR (300 

MHz, CDCl3) δ 5.96 (bd, J = 7.65, 1H), 5.31 (dd, J = 3.1, 6.0, 1H), 3.85 (m, 1H), 3.67 (m, 1H), 

2.21 (t, J = 7.4, 2H), 1.98-1.31 (m, 13H), 0.97 (d, J = 6.9, 3H), 0.90 (t, J = 1.7, 3H); 1H NMR 

(330MHz, CDCl3, D2O) δ 5.31 (d, J = 2.4, 1H), 3.85 (m, 1H), 3.67 (m, 1H), 2.21 (t, J = 7.4, 2H), 

1.98-1.31 (m, 13H), 0.97 (d, J = 6.9, 3H), 0.90 (t, J = 1.7, 3H);  13C NMR (75 MHz, CDCl3) δ  

173.0, 79.1, 65.7, 37.1, 36.39, 31.92, 31.61, 29.0, 25.4, 22.5, 21.8, 14.1, 13.1; IR (neat) 3440, 

2954, 2851, 1655, 1466, 1075, 997, 731 cm-1; HRMS (EI) calcd for C12H23NO2 213.1728, found 

213.1731.  Hexanoic acid ((3S)-methyltetrahydropyran-2R-yl)amide (15b) 1H NMR  (300 

MHz, CDCl3) δ 5.75 (bs, 1H), 4.79 (t, J = 9.5, 1H), 3.00 (m, 1H), 3.57 (m, 1H), 2.20 (t, J = 7.15, 

2H), 1.90 (m, 1H), 1.63-1.26 (m, 12H), 0.89 (m, 6H) ); 1H NMR (330MHz, CDCl3, D2O) δ 4.79 

(d, J = 9.3, 1H), 3.00 (m, 1H), 3.57 (m, 1H), 2.20 (t, J = 7.15, 2H), 1.90 (m, 1H), 1.63-1.26 (m, 

12H), 0.89 (m, 6H) );  13C NMR (75MHz, CDCl3) δ 173.3, 82.9, 67.8, 37.1, 36.4, 32.1, 31.6, 

26.0, 25.4, 22.5, 17.4, 14.1. 
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 Hexanoic acid (1-benzyl-5-hydroxypentyl)amide (0.064 g, 0.212 mmol) was subjected to 

catalytic aerobic cyclization conditions. The reaction mixture was filtered, concentrated, and 

purified by flash chromatography (70% EtOAc in hexanes) to provide the desired product (0.032 

g, 72%) 

 

6-(tert-Butyldimethylsilanyloxy)-3S-methyl-1-phenylhexan-2-one (19) 

 

To a solution of DMSO (0.242 g, 3.10 mmol) and oxallyl chloride (0.243 g, 

1.86 mmol) in CH2Cl2 at –78 °C was added 6-(tert-butyldimethylsilanyloxy)-

(3R)-methyl-1-phenylhexan-(2R)-ol (0.200g, 0.620 mmol). The reaction mixture was stirred at –

78 °C for 30 min. before triethylamine (0.313 g, 3.10 mmol) was added. The reaction mixture 

was warmed to room temperature, quenched with water, washed with saturated NaCl (2 x 15 

mL), dried (MgSO4) and concentrated. The resulting residue was purified by flash 

chromatography (10% EtOAc in hexanes) to yield the desired product (0.147 g, 74%): 1H NMR 

(300 Mhz, CDCl3) δ 7.29-7.20 (m, 5H), 3.72 (s, 2H), 3.53 (t, J = 5.9, 2H), 2.67 (m, 1H), 1.69 (m, 

1H), 1.40 (m, 3H), 1.07 (d, J = 6.9, 3H), 0.08 (s, 9H), 0.01 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 

211.9, 134.4, 129.7, 128.8, 127.1, 63.0, 48.5, 45.4, 30.4, 29.3, 26.1, 18.5, 16.6, 0.21, -5.08; IR 

(neat) 2930, 1716, 1459, 1246, 1101, 832, 770, 696 cm-1; HRMS (EI) calcd for C19H32O2Si 

320.2171, found 320.2156. 
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6-(tert-Butyldimethylsilanyloxy)-3S-methyl-1-phenylhexan-2-one oxime (20) 

 

To 6-(tert-butyldimethylsilanyloxy)-(3S)-methyl-1-phenylhexan-2-one (0.147 

g, 0.458 mmol) in EtOH (5 mL) at 23 °C were added ammonium hydroxide 

hydrochloride (0.063 g, 0.917 mmol) and sodium acetate (0.150 g, 1.83 mmol). A white 

precipitate was immediately observed. The reaction mixture was stirred for 1 h, then quenched 

with water, extracted with CH2Cl2, dried (NaSO4) and concentrated. The resulting residue was 

purified by flash chromatography (20% EtOAc in hexanes) to yield the desired product (0.134 g, 

88%): 1H NMR (300 MHz, CDCl3) δ 7.27-7.21 (m, 5H), 3.72 (s, 2H), 3.51 (m, 2H), 3.27 (m, 

1H), 2.37 (m, 1H), 1.43-1.39 (m, 3H), 1.02 (dd, J = 6.9, 7.5, 3H), 0.88 (s, 9H), 0.01 (s, 6H); 13C 

NMR (75 MHz, CDCl3) δ 129.4, 129.1, 128.6, 128.5, 126.7, 126.4, 106.5, 63.1, 38.3, 37.4, 32.3, 

32.0, 31.0, 30.6, 30.5, 30.0, 26.1, 18.5, 17.5, 0.21, -5.08; IR (neat) 3260, 3075, 2924, 1462, 1247, 

1096, 946, 838, 778, 696 cm-1; HRMS (EI) calcd for C19H33NO2Si 335.2280, found 335.2283. 

 

Hexanoic acid [1-benzyl-5-(tert-butyldimethylsilanyloxy)-(2S)-methylpentyl]amide  
 

To a suspension of nickel chloride (0.311 g, 2.39 mmol) in ether (10 mL) at 23 

°C was added lithium aluminum hydride (0.091 g, 2.39 mmol). A black 

precipitate formed immediately and the reaction mixture was stirred for 5 minutes before 6-(tert-

butyldimethylsilanyloxy)-3R-methyl-1-phenylhexan-2-one oxime (0.134 g, 0.399 mmol) was 

added. The reaction mixture was stirred for 10 minutes, then quenched with water (3 mL), 

filtered over celite, washed with CH2Cl2 (2 x 15 mL) and methanol (2 x 15 mL). The filtrate was 

made basic by the addition of 15 % NaOH, then extracted in CH2Cl2 and washed with saturated 

NaCl (2 x 15 ml), dried (NaSO4) and concentrated. The resulting residue was dissolved in THF 
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(10 mL) and at 0 °C under N2 hexanoyl chloride (0.085 g, 0.599 mmol) and triethylamine (0.278 

g, 1.99 mmol) were added. The reaction mixture was stirred for 1 h, then quenched with water, 

washed with NaCl, dried (NaSO4) and concentrated. The resulting residue was purified by flash 

chromatography (30% EtOAc in hexanes) to yield the desired product (0.105 g, 63%): 1H NMR 

(300 MHz, CDCl3) δ 7.27-7.19 (m, 5H), 5.13 (d, J = 9.2, 1H), 4.24 (m, 1H), 3.58 (m, 2H), 2.91-

2.72 (m, 2H), 2.35 (t, J = 7.5, 2H), 2.06 (m, 2H), 1.69-1.20 (m, 10H), 0.90 (m, 12H), 0.03 (s, 

6H); 13C NMR (75 MHz, CDCl3) δ 172.7, 138.6, 129.3, 129.2, 128.6, 126.5, 63.5, 63.4, 54.4, 

53.4, 37.4, 37.2, 35.8, 35.2, 31.5, 31.4, 30.8, 30.6, 29.9, 28.4, 26.1, 25.6, 24.6, 22.6, 22.5, 16.4, 

14.7, 14.1, 0.21, -5.02; IR (neat) 3290, 2954, 2855, 1724, 1643, 1544, 1458, 1380, 1251, 1088, 

843, 774, 701; HRMS calcd for C25H46NO2Si 420.3297, found 420.3302. 

 

 

Hexanoic acid [1-benzyl-5-(tert-butyldimethylsilanyloxy)-(2)-methylpentyl]-methylamide  

 

To a suspension of sodium hydride (60% dispersion in mineral oil, 0.234 g, 

5.85 mmol) in DMF (20 mL) at 0 °C was added hexanoic acid [1-benzyl-5-

(tert-butyldimethylsilanyloxy)-(2S)-methylpentyl]amide (0.338 g, 1.23 mmol). The reaction 

mixture was stirred for 30 minutes then methyl iodide (1.75 g, 12.4 mmol) was added. The 

reaction mixture stirred for 12 h then was quenched with water (2 mL), extracted in EtOAc, 

washed with water and saturated NaCl, dried (Na2SO4) and concentrated. The resulting residue 

was purified by flash chromatography (50% EtOAc in hexanes) to provide the desired product 

(0.193 g, 36%): 1H NMR (30 MHz, CDCl3) δ 7.27-7.06 (m, 5H), 3.68 (m, 2H), 3.55 (m, 1H), 
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3.03 (m, 1H), 2.84 (s, 3H), 2.66 (m, 2H), 2.08 (m, 1H), 1.78-0.69 (m, 25H), 0.06 (s, 6H); HRMS 

(EI) (M- 57) calcd for C22H38NO2Si 376.2671, found 376.2670. 

 

This procedure was repeated using a mixture of both hexanoic acid [1S-benzyl-5-(tert-

butyldimethylsilanyloxy)-2S-methylpentyl]amide and hexanoic acid [1R-benzyl-5-(tert-

butyldimethylsilanyloxy)-2S-methylpentyl]amide to yield the desired mixture of diastereomers. 

1H NMR (300 MHz, CDCl3) δ 7.26-7.23 (m, 5H), 3.62 (m, 2H), 3.01 (m, 1H), 2.97 (m, 1H), 2.83 

(s, 3H), 2.61 (m, 4H), 2.25 (m, 1H), 2.01 (m, 2H), 1.70-0.67 (m, 22H), 0.03 (m, 6H); 13C NMR 

(75 MHz, CDCl3) δ 172.7, 139.1, 129.2, 129.1, 128.9, 128.7, 128.3, 126.7, 126.2, 65.2, 64.6, 

63.5, 63.4, 36.5, 36.1, 35.8, 35.6, 35.4, 32.6, 31.7, 30.7, 30.3, 30.1, 29.9, 27.7, 26.1, 24.8, 24.6, 

22.6, 22.5, 17.5, 16.7, 14.1, 0.21, -5.03.  

  

Hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)methylamide (17) 
 

 To hexanoic acid [1-benzyl-5-(tert-butyldimethylsilanyloxy)-(2S)-

methylpentyl]methylamide (0.193 g, 0.671 mmol) at 23 ºC in THF (10 mL) was 

added tetrabutlylammonium fluoride hydrate (0.263 g, 1.00 mmol). The reaction mixture was 

stirred for 12 h, then quenched with saturated NH4Cl (2 mL), extracted in ethyl acetate, dried 

(Na2SO4) and concentrated. The resulting residue was purified by column chromatography (50% 

EtOAc in hexanes) to afford the desired product (0.110 g, 78%):  1H NMR (300 MHz, CDCl3) δ 

7.27-7.06 (m, 5H), 3.74 (t, J = 6.2, 1H), 3.67 (t, J = 4.9, 1H), 3.55 (dt, J = 2.3, 8.2, 1H), 3.12 (dd, 

J = 4.8, 9.9, 1H), 3.03 (dd, J = 2.9, 11.1, 1H), 2.84 (s, 3H), 2.67 (s, 3H), 2.06 (m, 1H), 1.83-0.78 

(m, 13H).  
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(17a) 

 This procedure was repeated using a mixture of both hexanoic acid [1S-benzyl-

5-(tert-butyldimethylsilanyloxy)-2S-methylpentyl]-methylamide and hexanoic 

acid [1R-benzyl-5-(tert-butyldimethylsilanyloxy)-2S-methylpentyl]methylamide to yield the 

desired mixture of diastereomers. 1H NMR (300 MHz, CDCl3) δ 7.27-7.05 (m, 5H), 3.72-3.49 

(m, 3H), 3.12-2.99 (m, 2H), 2.83 (s, 3H), 2.64 (m, 5H), 2.10-2.00 (m, 3H), 1.77-0.79 (m, 16H); 

13C NMR (75 MHz, CDCl3) δ 174.2, 138.8, 129.0, 128.7, 128.6, 128.2, 126.6, 126.1, 65.2, 64.5, 

62.8, 62.7, 60.5, 59.0, 36.3, 35.5, 33.8, 32.4, 31.5, 30.0, 29.8, 29.7, 29.2, 28.9, 25.8, 24.7, 24.5, 

24.1, 22.4, 19.8, 16.3, 14.0, 13.7. 

 

Hexanoic acid methyl-((3S)-methyltetrahydropyran-2R-yl)amide (18) 
 

 Hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)methylamide (0.036 g, 

0.113 mmol) was subjected to standard ETIC reaction conditions. The reaction 

mixture was filtered, concentrated, and purified by flash chromatography (50% EtOAc in 

hexanes) to provide the desired product (0.011 g, 43%): 1H NMR (300 MHz, CDCl3) δ 5.36 (d, J 

= 9.8, 1H), 4.45 (d, J = 9.4, 1H), 4.02 (m, 2H), 3.54 (m, 2H), 2.91 (d, J = 11.8, 3H), 2.31 (m, 

3H), 1.99- 1.25 (m, 6H), 0.90 (m, 3H), 0.80 (m, 3H); 1H NMR (300 MHz, DMSO, 378K) δ 4.85 

(bs, 1H), 4.02 (m, 2H), 3.54 (m, 2H), 2.91 (d, J = 11.8, 3H), 2.31 (m, 3H), 1.99- 1.25 (m, 6H), 

0.90 (m, 3H), 0.80 (m, 3H);  13C NMR (75 MHz, CDCl3) δ 174.3, 90.9, 86.0, 68.5, 34.3, 33.7, 

33.3, 32.5, 32.2, 31.9, 26.4, 26.1, 25.4, 22.7, 17.0, 16.7, 14.1; IR (neat) 2952, 2853, 1654, 1456, 

1073, 1005; HRMS (EI) calcd for C13H25NO2 227.1885, found 227.1891. 
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To hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)methylamide (0.036 g, 0.113 mmol) in 

acetonitrile (5 mL) and tert-butylbenzene (1 mL)  in a borosilicate flask at 23 ºC were added N- 

methylquinolinium hexafluorophosphate (0.039 g, 0.136 mmol) and sodium bicarbonate (0.078 

g, 0.929 mmol). The mixture was stirred for 3 h at 23 ºC while irradiating. The reaction mixture 

was filtered, concentrated, and purified by flash chromatography (50% EtOAc in hexanes) to 

provide the desired product (0.011 g, 43%). 

 

Hexanoic acid (1-benzyl-5-hydroxy-(2S)-methylpentyl)methylamide (0.064 g, 0.212 mmol) was 

subjected to catalytic aerobic ETIC reaction conditions. The reaction mixture was filtered, 

concentrated, and purified by flash chromatography (90% EtOAc in hexanes) to provide the 

desired product as seperable mixture of diastereomers (0.032 g, 72%). 

 

2-Dibenzylamino-1-phenylhex-5-en-3-ol (22) 

 

To a solution of potassium carbonate (18.28 g, 132.2 mmol) and sodium hydroxide 

(5.281 g, 132.2 mmol) in water (100 mL) at 23 °C was added L-phenylalanine 

(10.00 g, 66.13 mmol). Benzyl bromide (33.92 g, 198.3 mmol) was added drop 

wise to the reaction mixture over a period of one hour while refluxing. The reaction 

mixture was refluxed for 1 h, cooled and the organic layer was separated, washed with saturated 

NaCl and dried (MgSO4) and concentrated. The resulting residue was dissolved in ether (10 mL) 

and added drop wise to a suspension of LiAlH4 (95% dispersion in mineral oil, 0.6822 g, 17.08 

mmol) at 0°C under N2 in ether (60 mL). The reaction mixture was stirred at 23 °C for 2 h, then 

quenched with water (1 mL), 15% NaOH (3mL), water (3 mL) and filtered. The filtrate was 
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washed with saturated NaCl, dried (MgSO4), concentrated, and placed under vacuum at 40 °C 

for 16 h. The resulting residue was added to solution of DMSO (2.444 g, 31.31 mmol) and oxalyl 

chloride (2.0M solution in CH2Cl2, 7.826 ml, 15.65 mmol) at –78 °C in CH2Cl2. The reaction 

mixture was allowed to stir for 30 minutes before. The reaction mixture was stirred for 2 h at –78 

°C, then quenched with triethyl amine (7.199 g, 71.15 mmol), warmed to 23 °C, quenched with 

water (2 mL), extracted in CH2Cl2, washed with water, saturated NaCl, dried (MgSO4), and 

concentrated. The resulting residue was dissolved in ether (50 mL) and added to a solution of 

allyl magnesium bromide (1.0M in ether, 42.69 mL, 42.69 mmol) at –78 °C under N2. The 

reaction mixture was stirred for 1.5 h, then quenched with saturated NH4Cl, extracted with 

EtOAc, washed with water (2 x 15 mL), saturated NaCl, dried (MgSO4) and concentrated. The 

resulting residue was purified by flash chromatography (5% EtOAc in hexanes). The mixture of 

diastereomers was separated during the purification process. 2-Dibenzylamino-1-phenylhex-5-

en-(3S)-ol (22a): 1H NMR (300 MHz, CDCl3) δ 7.35-7.20 (m, 15H), 5.69 (m, 1H),  5.08 (m, 

2H), 3.87 (m, 1H), 3.76 (m, 4H), 3.01 (m, 3H), 2.48 (m, 1H), 2.14 (m, 1H), 1.86 (bs, 1H); 13C 

NMR (75 MHz, CDCl3) 141.1, 139.9, 135.4, 129.6, 128.6, 128.5, 127.1, 126.0, 118.2, 70.9, 63.2, 

55.0, 40.0, 32.3. 2-Dibenzylamino-1-phenylhex-5-en-(3R)-ol (22b): 1H NMR (300 MHz, 

CDCl3) δ 7.34-7.22 (m, 5H), 5.77 (m, 1H) 4.96 (m, 2H), 4.36 (m, 1H), 3.97 (d, J = 13.2, 2H), 

3.68 (dt, J = 5.3, 3.07 1H), 3.43 (d,  J = 13.3, 2H), 3.15-2.73 (m, 3H), 2.23 (m, 1H), 1.94 (m, 

1H).  

 

Dibenzyl-(1-benzyl-2-methoxypent-4-enyl)amine  

 

To a suspension of NaH (60% dispersion in mineral oil, 0.251 g, 6.29 mmol) in DMF 
NBn2
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(30 mL) at 0 ºC was added 2-Dibenzylamino-1-phenylhex-5-en-(3S)-ol (0.668 g, 1.79 mmol). 

The reaction mixture was stirred for 30 minutes then methyl iodide (1.27 g, 8.99 mmol) was 

added. The reaction mixture was quenched after 1.5 h with ice chips, extracted with hexanes, 

washed with saturated NaCl, dried (MgSO4) and concentrated. The resulting residue was purified 

by flash chromatography (5% EtOAc in hexanes) to provide the desired product, dibenzyl-(1-

benzyl-2S-methoxypent-4-enyl)amine (0.652 g, 94%): 1H NMR (300 MHz, CDCl3) δ 7.44-7.16 

(m, 15H), 5.38 (m, 1H), 4.82 (m, 2H), 4.23 (d, J = 13.5, 2H), 3.58 (d, J = 13.6, 2H), 3.32 (s, 3H), 

3.12-2.90 (m, 3H), 2.47 (m, 2H); ); 13C NMR (75 MHz, CDCl3) δ 141.0, 140.8, 136.1, 129.4, 

129.4, 128.5, 128.4, 128.3, 126.9, 125.9, 116.2, 82.6, 61.4, 58.4, 55.7, 35.5, 30.1; IR (neat) 3058, 

3027, 2920, 2817, 1952, 1879, 1806, 1643, 1595, 1496, 1449, 1372, 1096, 903, 744, 701; HRMS 

(EI) cacld for 384.2327, found 384.2333. Dibenzyl-(1-benzyl-2R-methoxypent-4-enyl)-amine: 

1H NMR (300 MHz, CDCl3) δ 7.32-7.09 (m, 15H), 5.58 (m, 1H), 4.91 (m, 2H), 3.82 (d, J = 14.0, 

2H), 3.54 (bd, J = 13.9, 3H), 3.37 (s, 3H), 2.97 (m, 3H), 2.41 (m, 1H), 2.20 (m, 1H); 13C NMR 

(75 MHz, CDCl3) δ 140.3, 134.9, 129.8, 128.9, 128.1, 126.7, 125.8, 117.5, 80.7, 61.0, 57.0, 54.4, 

36.4, 32.0. 

 

5S-Dibenzylamino-4-methoxy-6-phenylhexan-1-ol (23) 

 

To Dibenzyl-(1-benzyl-2S-methoxypent-4-enyl)amine (0.652 g, 1.69 mmol) in 

THF  (20 mL) at 0 ºC was added BH3 (1.0 M in THF, 5.07 mL, 5.07 mmol). The 

reaction was allowed to stir for 1 h, then quenched at 0 ºC with water (2 mL) followed by 20% 

aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide solution (1 mL) and saturated Na2SO3 

(2 mL). The reaction mixture was stirred for an addition hour, then was extracted with ethyl 
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acetate, washed with saturated NaCl, dried (MgSO4) and concentrated. The resulting residue was 

purified by column chromatography (30% EtOAc in hexanes) to afford the desired product, 5S-

Dibenzylamino-4S-methoxy-6-phenyl-hexan-1-ol (0.500 g, 73%):  1H NMR (300 MHz, CDCl3) 

δ 7.41-7.18 (m, 15H), 4.18 (d, J = 13.38, 2H), 3.55 (d, J = 13.34, 2H), 3.40 (m, 3H), 3.28 (s, 3H), 

3.12 (m, 2H), 2.99 (m, 2H), 1.82 (m, 1H), 1.64 (m, 1H), 1.14 (m, 1H), 0.99 (m, 1H), 0.72 (m, 

1H); 13C NMR (75 MHz, CDCl3) δ 141.1, 129.5, 129.4, 128.5, 128.4, 126.9, 125.9, 82.3, 63.2, 

60.5, 57.8, 55.7, 30.2, 29.0, 25.6; IR (neat) 3359, 3058, 3023, 2933, 2821, 1961, 1879, 1806, 

1604, 1501, 1458, 1367, 1096, 744, 705; HRMS (EI) cacld for 402.2433, found 402.2422. 5S-

Dibenzylamino-4R-methoxy-6-phenylhexan-1-ol: 1H NMR (300 MHz, CDCl3) δ 7.34-7.20 (m, 

15H), 3.81 (d, J = 13.9, 2H), 3.66 (d, J = 14.0, 2H), 3.53 (m, 3H), 3.36 (s, 3H), 3.05-2.90 (m, 

3H), 1.70 (m, 1H), 1.56 (m, 3H), 1.32 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 141.6, 140.2, 

129.6, 128.8, 128.1, 126.7, 125.7, 81.4, 62.9, 61.1, 56.9, 54.5, 32.2, 28.5, 27.4. 

 

Hexanoic acid (1-benzyl-5-hydroxy-2-methoxypentyl)amide (24) 

 

To 5S-dibenzylamino-4S-methoxy-6-phenyl-hexan-1-ol (0.553 g, 1.37 mmol) in 

CH2Cl2 at 0 ºC was added treithylamine (0.624 g,  6.17 mmol), pivaloyl chloride 

(0.331 g, 2.74 mmol), and DMAP (cat.). The reaction mixture was allowed to stir for 12 h, then 

was quenched with water, washed with saturated NaHCO3, dried (MgSO4) and concentrated. The 

resulting residue was dissolved in EtOH (20 mL) at 23 ºC under N2 and palladium (10% on 

carbon, 0.400g) and 1,4 cyclohexadiene (0.328 g, 4.10 mmol) were added. The reaction mixture 

stirred at 40 ºC for 12 h, filtered over celite, washed with EtOH, and concentrated. The resulting 

residue was dissolved in THF (10 mL) and triethylamine (0.083 g, 0.820 mmol) and hexanoyl 
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chloride (0.055 g, 0.615 mmol) were added at 0 ºC under N2. The reaction mixture was stirred 

for 1.5 h, then quenched with water, washed with saturated NaCl (2 x 15 mL), dried (MgSO4) 

and concentrated. The resulting residue was dissolved in MeOH (5 mL) and Na (small piece) 

was added at 0 ºC under N2. The reaction mixture was stirred at 40 ºC for 12 h, the quenched 

with water, concentrated, redissolved in EtOAc (25 mL), washed with NaCl, dried (MgSO4), and 

concentrated. The resulting residue was purified by flash chromatography (50% acetone in 

hexanes) to yield the desired product (0.088 g, 49%):  1H NMR (300 MHz, CDCl3) δ 7.31-7.21 

(m, 5H), 5.73 (d, J = 9.26, 1H), 4.35 (m, 1H), 3.57 (m, 2H), 3.42 (s, 3H), 3.08 (t, J = 5.9, 1 H), 

2.87 (dd, J = 4.9, 2.2, 2H), 2.14 (m, 2H), 1.91 (bs, 1H), 1.58-1.18 (m, 10H), 0.87 (t, J = 7.1, 3H); 

13C NMR (75 MHz, CDCl3) 172.6, 138.3, 129.2, 128.5, 126.4, 80.2, 62.5, 57.8, 51.8, 38.4, 36.8, 

31.3, 28.7, 26.2, 25.4, 22.4, 13.9; IR (neat) 3433, 3156, 2930, 2867, 1659, 1504, 1465, 1378, 

1093, 906, 649. Hexanoic acid (1-benzyl-5-hydroxy-2R-methoxypentyl)amide: 1H NMR (300 

MHz, CDCl3) δ 7.32-7.19 (m, 5H), 5.57 (d, J = 8.9, 1H), 4.44 (m, 1H), 3.66 (m, 2H), 3.42 (s, 

3H), 3.32 (m, 1H), 2.94 (dd, J = 5.0, 9.2, 1H), 2.80 (dd, J = 4.8, 9.4, 1H); 13C NMR (75 MHz, 

CDCl3) δ 173.0, 138.2, 129.2, 128.7, 126.6, 82.3, 62.7, 58.0, 51.5, 37.0, 35.4, 31.4, 28.7, 26.4, 

25.5, 22.5, 14.1. 

 

Hexanoic acid [1-benzyl-2-methoxy-5-(tetrahydropyran-2-yloxy)pentyl]amide (28) 
 

To hexanoic acid (1-benzyl-5-hydroxy-2S-methoxypentyl)amide (0.087 g, 

0.273 mmol) in CH2Cl2 at 0 °C was added dihydropyran (0.115 g, 1.36 

mmol) and pyridinium p-toluene sulfonic acid (cat.). The reaction mixture was stirred for 12 h, 

then diluted with ether (15 mL), washed with saturated NaHCO3, dried (MgSO4) and 

concentrated. The resulting residue was purified by flash chromatography (50% EtOAc in 
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hexanes) to afford the desired product, hexanoic acid [1-benzyl-2S-methoxy-5-(tetrahydro-

pyran-2-yloxy)-pentyl]-amide (0.062 g, 56%): 1H NMR (300 MHz, CDCl3) δ 7.32-7.18 (m, 5H), 

5.78 (d, J = 9.2, 1H), 4.51 (m, 1H), 4.31 (m, 1H), 3.28 (m, 1H), 3.67 (m, 1H), 3.44 (m, 1H), 3.42 

(s, 3H), 3.30 (m, 1H), 3.12 (m, 1H), 2.87 (m, 2h), 2.14 (t, J = 2.1, 2 H), 1.66-1.48 (m, 16H), 0.89 

(t, J = 6.8, 3H); 13C NMR (75 MHz, CDCl3) δ 172.9, 138.6, 129.4, 128.6, 126.5, 98.9, 79.9, 67.4, 

62.4, 58.2, 52.2, 38.6, 37.0, 31.5, 30.8, 27.2, 25.8, 25.7, 22.5, 19.8, 14.1; HRMS (EI) calcd for 

C19H31NO3 321.2303, found 321.3214. 

 

Hexanoic acid (3-methoxytetrahydropyran-2-yl)amide (25) 

 

Hexanoic acid (1-benzyl-5-hydroxy-2S-methoxypentyl)amide (0.045 g, 0.139 

mmol) was subjected to standard ETIC reaction conditions. The reaction mixture 

was filtered, concentrated, and purified by flash chromatography (50% acetone in 

hexanes) to provide the desired product as a separable mixture of diastereomers  

(0.001 g, 4%): Hexanoic acid (3S-methoxytetrahydropyran-2R-yl)amide (25a) 1H NMR (300 

MHz, CDCl3) δ 5.88 (bd, J = 7.4, 1H), 4.96 (dd, J = 8.5, 8.55, 1H), 3.88 (m, 1H), 3.55 (dt, J = 

2.7, 8.8, 1H), 3.36 (s, 3H), 3.02 (m, 1H), 2.23 (t, J = 7.4, 2H), 1.69-1.26 (m, 10H), 0.88 (m, 3H); 

13C NMR (75 MHz, CDCl3) δ 173.3, 82.9, 67.8, 37.1, 36.4, 32.1, 31.6, 29.9, 26.0, 25.4, 22.6, 

17.4, 14.1; IR (neat) 3431, 2952, 2930, 2848, 1683, 1504, 1463, 1382, 1211, 1092, 1070, 1044, 

907; HRMS (EI), (M-32) calcd for C11H19NO2 197.1415, found 197.1420. Hexanoic acid (3S-

methoxytetrahydropyran-2S-yl)amide (25b): 1H NMR (300 MHz, CDCl3) δ 6.54 (d, J = 7.9, 

1H), 5.19 (dd, J = 1.5, 7.8, 1H), 3.94 (m, 1H), 3.62 (dt, J = 2.2, 9.4, 2H), 3.40 (s, 3H), 3.28 (m, 
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1H), 2.21 (t, J = 7.8, 2H), 1.64-1.25 (m, 10H), 0.91 (t, J = 6.5, 3H); 13C NMR (CDCl3) δ 173.2, 

75.2, 66.8, 56.7, 36.9, 31.6, 29.9, 25.3, 25.0, 22.6, 19.9, 14.1.  

 

The cyclization reaction was repeated using the various conditions shown in Table 1.6. 

Table 1.6: ETIC conditions with varying base and solvent 

Solvent Base Time Yield D.R 

DCE 2, 6-dichloropyridine 5 h 21 100:0 

MeCN 2,6-dichloropyridine 5 h 38 3:1 

MeCN NaHCO3 5 h 5 100:0 

 

The cyclization reaction was repeated with hexanoic acid [1-benzyl-2-methoxy-5-(tetrahydro-

pyran-2-yloxy)pentyl]amide (28) using  the various reaction conditions shown in Table 1.7. 

Table 1.7: ETIC conditions with variation in aromatic cosolvent 

SOLVENT BASE COSENSITIZER TIME YIELD D.R 

DCE NaOAc tert-Butylbenzene 2.5 18 1:1 

DCE NaOAc Benzene 1.5 25 2:1 

 

Hexanoic acid [1-benzyl-2-methoxy-5-(tetrahydropyran-2-yloxy)pentyl]amide (28) (0.040 g, 

0.0.098 mmol) was subjected to catalytic aerobic ETIC reaction conditions. The reaction mixture 

was filtered, concentrated and purified by flash chromatography (70% EtOAc in hexanes) to 

afford the desired product as a mixture of diastereomers, hexanoic acid (3-methoxytetrahydro-

pyran-2-yl)amide (0.007 g, 30%), as well as 4-(tetrahydropyran-2-yloxy)butyric acid methyl 

ester (33) (0.0037 g, 0.0183 mmol) 1H NMR (300 MHz, CDCl3) δ 4.57 (t, J = 2.7, 1H), 3.83-
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3.72 (m, 2H), 3.67 (s, 3H), 3.51-3.39 (m, 2H), 2.42 (dt, J = 1.5, 7.5), 1.94 (m, 2H), 1.81-1.49 (m, 

6H); 13C NMR (CDCl3) δ 174.1, 129.6, 129.1, 128.5, 127.8, 98.8, 66.4, 62.2, 51.6, 44.5, 37.5, 

31.3, 31.1, 30.7, 25.5, 25.2, 23.9, 22.5, 19.5, 14.0; IR 2990, 1794, 1651, 1469, 1382, 1097, 913; 

HRMS (EI) (M - 84) calcd for 117.0551, found 117.0553. 

The cyclization reaction was repeated using the various conditions shown in Table 1.8. 

 Table 1.8: Catalytic aerobic ETIC conditions  

Solvent Base  Cosensitizer Time Yield D.R 

*DCE NaOAc Benzene 3 6 100:0 

DCE 2,6-dichloropyridine Toluene 2 33 2.5:1 

* Molecular sieves were added to the reaction mixture 

 

(1-Benzyl-2-methoxypent-4-enyl)carbamic acid tert-butyl ester (30a) 

 

To a suspension of lithium aluminum hydride (1.31 g, 36.3 mmol) refluxing in THF 

under N2 L-phenylalanine (3.00 g, 18.1 mmol) was added in small portions. The 

reaction mixture was stirred for 12 h, then cooled to 0 ºC and quenched with water (1 mL), 

NaOH, 15%, 1.5 mL), water (5 mL), and di-tert-butyl-dicarbonate (in 20 mL of CH2Cl2, 3.95 g, 

18.2 mmol) was added. The reaction was stirred at 60 ºC for 12 h, cooled and filtered through a 

pad of Na2SO4. The resulting residue was added to a solution of oxalyl chloride (2.0 M in 

CH2Cl2, 6.97 mL, 13.9 mmol) and DMSO (1.23 g, 15.9 mmol) in CH2Cl2 at -78 ºC under N2. 

The reaction mixture was stirred for 1 h, then quenched with triethylamine (4.02 g, 39.8 mmol), 

warmed to room temperature, quenched with water, extracted with CH2Cl2, washed with 

saturated NaCl, dried (MgSO4) and concentrated. The resulting residue was dissolved in THF 
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(30 mL) and vinyl magnesium bromide (1.0 M in THF, 23.8 mL, 23.8 mmol) was added at 0 ºC 

under N2. The reaction was stirred for 12 h, then quenched with saturated NH4Cl, acidified to pH 

4.0, extracted with EtOAc, dried (Na2SO4) and concentrated. The resulting residue was added to 

a suspension of sodium hydride (60% dispersion in mineral oil, 0.065 g, 1.61 mmol) in DMF (10 

mL) at 0 ºC under N2. The reaction mixture was stirred for 30 minutes, and then methyl iodide 

(1.14 g, 8.06 mmol) was added. The reaction mixture was stirred for 3 h, then quenched with 

water, washed with saturated NaCl, dried (Na2SO4) and concentrated. The resulting residue was 

purified by flash chromatography (10% EtOAc in hexanes) to afford the desired product as a 

separable mixture of diastereomers (0.237 g, 54%): 1H NMR (300 MHz, CDCl3) δ 7.26-7.20 (m, 

5H), 5.66 (m, 1H), 5.30 (m, 2H), 4.89 (d J = 9.6, 1H), 3.93 (m, 1H), 3.36 (s, 3H), 3.07 (m, 1H), 

2.82 (m, 2H), 2.33 (m, 1H), 2.14 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 155.4, 138.4, 133.9, 

129.1, 128.2, 126.0, 117.5, 79.5, 78.7, 57.6, 53.3, 38.7, 34.7, 28.2; IR (neat) 3440, 3341, 3062, 

2980, 2924, 1698, 1496, 1440, 1363, 1238, 1169, 1096. 

 

(1-Benzyl-5-hydroxy-2-methoxypentyl)carbamic acid tert-butyl ester 

 

To (1-benzyl-2-methoxypent-4-enyl)carbamic acid tert-butyl ester (0.437 g, 1.43 

mmol) in THF  (10 mL) at 0 ºC was added BH3 (1.0 M in THF, 4.30 mL, 4.30 

mmol). The reaction was allowed to stir for 1 h, then quenched at 0 ºC with water (2 mL) 

followed by 20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide solution (1 mL) and 

saturated Na2SO3 (2 mL). The reaction mixture was stirred for an addition hour, then was 

extracted with ethyl acetate, washed with saturated NaCl (2x 10 mL), dried (MgSO4) and 

concentrated. The resulting residue was purified by column chromatography (30% EtOAc in 
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hexanes) to afford the desired product (0.302 g, 65%):  1H NMR (300 MHz, CDCl3) δ 7.33-7.15 

(m, 5H), 4.83 (d, J = 9.5, 1H), 3.93 (m, 1H), 3.57 (m, 2H), 3.55 (s, 3H), 3.02 (m, 1H), 2.80 (m, 

2H), 1.79 (bs, 1H), 1.62-1.44 (m, 4H), 1.36 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 138.7, 129.4, 

128.6, 126.4, 80.4, 79.4, 62.7, 57.9, 53.6, 38.8, 28.9, 28.5, 26.2; IR (neat) 3445, 3346, 2978, 

2930, 2871, 1695, 1497, 1366, 1172, 1069; HRMS (EI) calcd for C18H30NO4 324.2174, found 

324.2177. 

 

[1-Benzyl-2-methoxy-5-(tetrahydropyran-2-yloxy)pentyl]carbamic acid tert-butyl ester (31) 

 

To (1-benzyl-5-hydroxy-2-methoxypentyl)carbamic acid tert-butyl ester (0.200 

g, 0.618 mmol) in CH2Cl2 at 0 °C was added dihydropyran (0.078 g, 0.927 

mmol) and pyridinium p-toluene sulfonic acid (0.199 g, 0.742 mmol). The reaction mixture was 

stirred for 12 h, then diluted with ether (15 mL), washed with saturated NaHCO3, dried (MgSO4) 

and concentrated. The resulting residue was purified by flash chromatography (20% EtOAc in 

hexanes) to afford the desired product, [1-benzyl-2-methoxy-5-(tetrahydropyran-2-yloxy)-

pentyl]carbamic acid tert-butyl ester, (0.228 g, 91%): 1H NMR (300 MHz, CDCl3) δ 155.8, 

139.2, 138.8, 129.4, 129.2, 129.1, 128.5, 128.4, 128.3, 126.3, 126.1, 99.0, 83.2, 82.4, 80.1, 79.3, 

67.6, 67.4, 62.4, 58.5, 58.1, 53.8, 38.8, 35.4, 35.1, 30.8, 28.5, 27.0, 25.8, 25.7, 19.7. 
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(3-Methoxytetrahydropyran-2-yl)carbamic acid tert-butyl ester (32a,b) 

 

 [1-Benzyl-2-methoxy-5-(tetrahydropyran-2-yloxy)pentyl]carbamic acid tert-

butyl ester (0.055 g, 0.135 mmol) was subjected to standard ETIC reaction 

conditions. The reaction mixture was filtered, concentrated, and purified by 

flash chromatography (30% acetone in hexanes) to provide the desired product as a separable 

mixture of diastereomers (0.011 g, 53%): (3S-Methoxytetrahydropyran-2S-yl)carbamic acid 

tert-butyl ester (32a): 1H NMR (300 MHz, CDCl3) δ 5.70 (bs, 1H), 4.90 (bd, J = 9.4, 1H), 3.93 

(m, 1H), 3.53 (dt, J = 2.3, 9.48, 1H), 3.38 (s, 3H), 3.31 (m, 1H), 2.11 (m, 1H), 1.80-1.25 (m, 

12H); 13C NMR (75 MHz, CDCl3) δ 155.3, 79.8, 75.5, 66.2, 56.7, 28.4, 25.5, 20.3; IR (neat) 

3443, 3338, 2930, 1719, 1490, 1367, 1163, 1064, 984, 878 cm-1.  

(3S-Methoxytetrahydropyran-2R-yl)carbamic acid tert-butyl ester (32b): 1H NMR (300 

MHz, CDCl3) δ 5.11 (bs, 1H), 4.66 (t, J = 8.4, 1H), 3.88 (m, 1H), 3.50 (dt, J = 2.2, 9.2, 1H), 3.38 

(s, 3H), 2.98 (m, 1H), 2.22 (m, 1H), 1.68-1.44 (m, 12H); 13C NMR (75 MHz, CDCl3) δ 155.3, 

83.0, 80.4, 66.5, 56.7, 29.9, 28.5, 24.8. 

 

[1-Benzyl-2-methoxy-5-(tetrahydropyran-2-yloxy)pentyl]carbamic acid tert-butyl ester (31) 

(0.055 g, 0.135 mmol) was subjected to catalytic aerobic ETIC reaction conditions. The reaction 

mixture was filtered, concentrated and purified by flash chromatography (30% EtOAc in 

hexanes) to provide the desired product as a separable mixture of diastereomers. 
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5R-Allyl-4S-benzyl-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester (40) 

 

To (1-benzyl-2R-hydroxypent-4-enyl)carbamic acid tert-butyl ester (1.25 g, 4.29 

mmol) in toluene (15 mL) at 23 ºC was added 2,2-dimethoxypropane (5.36 g, 

51.5 mmol) and pyridinium p-toluene sulfonic acid (cat.). The reaction mixture 

was stirred at 80 ºC for 3 h, then concentrated and purified by flash chromatography (5% EtOAc 

in hexanes) to afford the desired product (0.454 g, 32%): 1H NMR (300 MHz, CDCl3) δ 7.28-

7.19 (m, 5H), 5.55 (M, 1H), 4.93 (m, 2H), 3.95 (m, 2H), 3.85 (m,1H), 3.24 (dd, J = 2.6, 10.5, 

1H), 2.85 (m, 1H), 2.11 (m, 2H), 1.62-1.25 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 152.5, 137.9, 

133.9, 130.0, 129.6, 128.5, 126.6, 117.7,  94.8, 93.9, 80.2, 79.0, 62.8, 40.0, 39.6, 38.9, 37.7, 28.7, 

27.8, 27.2; IR (neat), 3066, 2976, 2929, 1703, 1376, 1260, 1174, 1083, 916, 705 cm-1; HRMS 

(EI) calcd for C17H24NO3 290.1756, found 290.1754. 

 

4S-Benzyl-5R-(3-hydroxypropyl)-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester  

 

To 5R-allyl-4S-benzyl-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl 

ester (0.432 g, 1.30 mmol) in THF  (10 mL) at 0 ºC was added BH3 (1.0 M in 

THF, 3.91 mL, 3.91 mmol). The reaction was allowed to stir for 1 h, then quenched at 0 ºC with 

water (2 mL) followed by 20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide solution 

(1 mL) and saturated Na2SO3 (2 mL). The reaction mixture was stirred for an additional hour, 

then was extracted with ethyl acetate, washed with saturated NaCl (2x 10 mL), dried (MgSO4) 

and concentrated. The resulting residue was purified by column chromatography (20% EtOAc in 

hexanes) to afford the desired product (0.325 g, 71%): 1H NMR (300 MHz, CDCl3) δ 7.33-7.22 
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(m, 5H), 3.94 (m, 1H), 3.82 (m, 1H), 3.53 (m, 2H), 3.27 (dd, J = 2.5, 10.5, 1H), 2.83 (m, 1H), 

1.78-1.29 (m, 19H); 13C NMR (75 MHz, CDCl3) δ 152.5, 137.7, 129.8, 129.4, 128.5, 126.6, 80.0, 

79.3, 78.3, 63.7, 63.3, 62.5, 39.8, 37.4, 31.7, 31.0, 28.9, 28.5, 27.5, 26.9; IR (neat) 3457, 3065, 

1683, 1493, 1477, 1457, 1398, 1176, 1085, 906, 728 cm-1; HRMS (EI) calcd for C20H32NO4 

350.2331, found 350.2336.  

 

4-Benzyl-2,2-dimethyl-5-[3-(tetrahydropyran-2-yloxy)propyl]oxazolidine-3-carboxylic acid 

tert-butyl ester (41) 

 

 To (4S-Benzyl-5R-(3-hydroxypropyl)-2,2-dimethyloxazolidine-3-

carboxylic acid tert-butyl ester (0.296 g, 0.845 mmol) in CH2Cl2 (15 mL) at 

0 °C was added dihydropyran (0.106 g, 1.26 mmol) and pyridinium p-

toluenesulfonic acid (cat.). The reaction mixture was stirred for 3 h, then concentrated. The 

resulting residue was purified by flash chromatography (5% EtOAc in hexanes) to afford the 

desired product (0.2329 g, 90%): 1H NMR (300 MHz, CDCl3) δ 7.29-7.23 (m, 5H), 4.52 (m, 

1H), 3.82 (m, 1H), 3.63 (m, 1H), 3.50 (m, 1H), 3.25 (m, 1H), 2.86 (m, 1H), 1.72-1.30 (m, 25H); 

13C NMR (75 MHz, CDCl3) δ 152.5, 138.1, 129.8, 129.4, 128.6, 128.4, 126.6, 98.7, 79.9, 66.9, 

63.7, 62.3, 39.9, 30.7, 28.6, 27.3, 25.7, 25.5, 19.6; IR (neat) 3025, 2938, 2863, 1691, 1453, 1390, 

1255, 1176, 1116, 1077, 1029, 910, 732 cm-1; HRMS (EI) calcd for C25H40NO5 434.2906, found 

434.2896. 
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(41a) 
 

 This procedure was repeated with a mixture of (4S-Benzyl-5R-(3-

hydroxypropyl)2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl ester 

and (4S-Benzyl-5S-(3-hydroxypropyl)-2,2-dimethyloxazolidine-3-carboxylic acid tert-butyl 

ester (0.216 g, 61%). 1H NMR (300 MHz, CDCl3) δ 7.25-7.18 (m, 5H), 4.50 (m, 1H), 4.25 (m, 

1H), 4.15 (m, 1H), 4.04 (m, 1H), 3.91 (m, 1H), 3.78 (m, 1H), 3.60 (m, 1H), 3.46 (m, 1H), 3.24 

(m, 1H), 1.73-1.34 (m, 25H); 13C NMR (75 MHz, CDCl3) δ 152.1, 151.8, 139.3, 138.0, 129.5, 

129.4, 129.2, 128.5, 128.4, 128.3, 126.2, 126.0, 125.47, 98.8, 98.7, 92.8, 92.2, 80.0, 79.6, 77.5, 

77.4, 67.1, 67.0, 62.3, 62.2, 62.1, 60.9, 60.7, 36.6, 36.0, 30.8, 30.79, 28.7, 28.5, 28.4, 28.1, 27.8, 

27.6, 27.3, 26.8, 26.7, 26.4, 26.3, 25.8, 25.6, 25.0, 23.8, 21.6, 19.6, 19.5. 

 

2,2-Dimethyl-tetrahydropyrano[2,3-d]oxazole-3-carboxylic acid tert-butyl ester (42) 

 

4S-Benzyl-2,2-dimethyl-5R-[3-(tetrahydropyran-2-yloxy)propyl]oxazolidine-3-

carboxylic acid tert-butyl ester (0.100 g, 0.230 mmol) was subjected to catalytic 

aerobic ETIC reaction conditions. The reaction mixture was filtered, concentrated and purified 

by flash chromatography (10% EtOAc in hexanes) to provide the desired product as a single 

diastereomer (0.503 g, 85%). 1H NMR (300 MHz, CDCl3, 323K) δ 5.15 (bs, 1H), 3.97 (m, 1H), 

3.88 (m, 2H), 3.43 (dt, J = 2.8, 8.5, 2H), 2.13-2.08 (m, 2H), 1.95-1.38 (m, 17H); 13C NMR (75 

MHz, CDCl3) δ 151.9, 128.4, 100.2, 93.9, 83.2, 77.4, 71.2, 63.7, 31.5, 28.4, 24.8, 22.5, 19.7, 

13.9; IR (neat) 2974, 2934, 2871, 1706, 1457, 1394, 1263, 1180, 1081, 1017 cm-1; HRMS (EI) 

calcd for C12H20NO4 242.1392, found 242.1402. 
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This procedure was repeated with the mixture of 4S-Benzyl-2,2-dimethyl-5R-[3-

(tetrahydropyran-2-yloxy)propyl]oxazolidine-3-carboxylic acid tert-butyl ester and 4S-Benzyl-

2,2-dimethyl-5S-[3-(tetrahydropyran-2-yloxy)propyl]oxazolidine-3-carboxylic acid tert-butyl 

ester and the addition of 200 weight percent of Na2S2O3 to yield a mixture of enantiomers of  

2,2-dimethyl-tetrahydro-pyrano[2,3-d]oxazole-3-carboxylic acid tert-butyl ester (0.042 g, 88%).  

 

4S-Benzyl-5S-[3-(tetrahydro-pyran-2-yloxy)propyl]oxazolidin-2-one (39) 
 

To trifluoroacetic acid (10 mL) at 0 °C was added (1-benzyl-2S-hydroxypent-

4-enyl)-carbamic acid tert-butyl ester (0.410 g, 1.40 mmol). The reaction 

mixture was stirred for 15 minutes, and then concentrated. The resulting 

residue was redissolved in CH2Cl2, washed with saturated NaHCO3, dried (Na2SO4) and 

concentrated. The resulting residue was dissolved in THF (10 mL) and carbonyl diimidazole 

(0.342 g, 2.11 mmol) and DMAP (cat.) were added. The reaction mixture was stirred for 12 h, 

quenched with water, extracted with EtOAc, washed with saturated NaCL (2 x 15 ml), dried 

(Na2SO4) and concentrated. The resulting residue was dissolved in THF (10 mL) and BH3 (1.0 M 

in THF, 3.91 mL, 3.91 mmol) was added at 0 °C under N2. The reaction was allowed to stir for 1 

h, then quenched at 0 ºC with water (2 mL) followed by 20% aqueous NaOH (1 mL), 30% 

aqueous hydrogen peroxide solution (1 mL) and saturated Na2SO3 (2 mL). The reaction mixture 

was stirred for an addition hour, then was extracted with ethyl acetate, washed with saturated 

NaCl, dried (MgSO4) and concentrated. The resulting residue was dissolved in CH2Cl2 (10 mL) 

and dihydropyran (0.0.091 g, 1.08mmol) and pyridinium p-toluene sulfonic acid (0.165 g, 0.869 

mmol) were added at 0 °C under N2. The reaction mixture was stirred for 3 h, then concentrated, 

redissolved in CH2Cl2, washed with saturated NaHCO3, dried (MgSO4) and concentrated. The 

O
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resulting residue was purified by flash chromatography (40% EtOAc in hexanes) to yield the 

desired product (0.058 g, 25%): 1H NMR (300 MHz, CDCl3) δ7.35-7.17 (m, 5H), 5.12 (bs, 1H), 

4.72 (m, 1H), 4.59 (m, 1H), 4.00 (m, 1H), 3.87 (m, 2H), 3.48 (m, 2H), 2.93 (dd, J = 3.4, 9.4, 1H), 

2.69 (dd, J = 11.3, 13.0, 1H), 1.95-1.27 (m, 11H); 13C NMR (75 MHz, CDCl3) δ 158.7, 136.7, 

129.1, 127.2, 99.2, 79.8, 66.8, 62.6, 56.9, 36.3, 26.3, 25.5, 19.8; IR (neat) 3281, 2972, 2864, 

1754, 1445, 1384, 1126, 1070, 1023, 984, 731, 696 cm-1. 

 

To 4S-Benzyl-5S-[3-(tetrahydropyran-2-yloxy)propyl]oxazolidin-2-one (0.058 g, 0.182 mmol) 

in dichloroethane (5 mL) and toluene (1 mL) in a borosilicate flask at 20 ºC were added N- 

methylquinolinium hexafluorophosphate (0.003 g, 0.012 mmol) and sodium acetate (0.116 g, 

1.41 mmol). The mixture was stirred at room temperature while bubbling air gently and 

irradiating for 12 hours. The reaction mixture was filtered, concentrated. No desired cyclization 

product was obtained, and the starting material (0.019g, 33%) was re-isolated by flash 

chromatography (40% EtOAc in hexanes). 

 

N-(1S-Benzyl-2R-methoxypent-4-enyl)-2,2,2-trifluoroacetamide (36) 

 

To trifluoroacetic acid (10 mL) at 0 °C was added (1-benzyl-2R-methoxypent-4-

enyl)-carbamic acid tert-butyl ester (0.158 g, 519 mmol). The reaction mixture was 

stirred for 15 minutes, and then concentrated. The resulting residue was redissolved in CH2Cl2, 

washed with saturated NaHCO3, dried (Na2SO4) and concentrated. The resulting residue was 

dissolved in CH2Cl2 (10 mL) and trifluoroacetic anhydride (0.250 g, 1.19 mmol) and pyridine 

(0.129 g, 1.63 mmol) were added at 0 °C under N2. The reaction mixture was stirred for 3 h and 
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then concentrated. The resulting residue was purified by flash chromatography (30% EtOAc in 

hexanes) to yield the desired product (0.071 g, 45%).  1H NMR (300 MHz, CDCl3) δ 7.28-7.15 

(m, 5H), 6.38 (d, J = 6.45, 1H), 5.82 (m, 1H), 5.19 (m, 1H), 4.35 (m, 1H), 3.43 (s, 4H), 3.04 (dd, 

J = 4.5, 9.8, 1H), 2.73 (dd, J = 3.9, 10.0, 1H), 2.53 (m, 1H), 2.30 (m, 1H); 13C NMR (75 MHz, 

CDCl3) δ 156.8, 137.2, 133.5, 129.2, 128.7, 127.0, 118.4, 81.3, 58.0, 53.3, 34.8, 34.5; IR (neat) 

3303, 3062, 3027, 2933, 1686, 1445, 1195, 1096, 916, 756, 701 cm-1; HRMS (EI) calcd for 

C15H18NO2F3 301.1289, found 301.1277. 

 

N-(1S-Benzyl-5-hydroxy-2R-methoxypentyl)-2,2,2-trifluoroacetamide (37) 
 

To N-(1-Benzyl-2R-methoxy-pent-4-enyl)-2,2,2-trifluoroacetamide (0.071 g, 

.237 mmol)  in THF (10 mL) was added BH3 (1.0 M in THF, 3.91 mL, 3.91 

mmol) at 0 °C under N2. The reaction was allowed to stir for 2 h, then quenched at 0 ºC with 

water (2 mL) followed by 20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide solution 

(1 mL) and saturated Na2SO3 (2 mL). The reaction mixture was stirred for an addition hour, then 

was extracted with ethyl acetate, washed with saturated NaCl, dried (MgSO4) and concentrated. 

The resulting residue was purified by flash chromatography (50% EtOAc in hexanes) to yield the 

desired product (0.049 g, 65%) 1H NMR (300 MHz, CDCl3) δ 7.29-7.15 (m, 5H), 6.63 (d, J = 

8.4, 1H), 4.37 (m, 1H), 3.64 (m, 2H), 3.41 (s, 3H), 3.33 (m, 1H), 2.97 (dd, J = 4.9, 9.2, 1H), 2.79 

(dd, J = 4.8, 9.5, 1H), 2.04 (bs, 1H), 1.69 (m, 4H), 13C NMR (75 MHz, CDCl3) δ 156.9, 137.2, 

129.2, 128.7, 126.9, 121.6, 117.8, 81.9, 65.1, 60.7, 53.0, 35.3, 29.8, 28.2, 26.1, 21.1, 18.9, 14.2; 

IR (neat) 3307, 3092, 2937, 1707, 1561, 1453, 1372, 1182, 1083, 873, 744, 705 cm-1; HRMS 

(EI) (M-18) calcd for C15H18NO2F3 301.1289, found 301.1283.  
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To N-(1-benzyl-5-hydroxy-2R-methoxypentyl)-2,2,2-trifluoroacetamide (0.045 g, 0.140 mmol) 

in dichloroethane (5 mL) and toluene (1 mL) in a borosilicate flask at 20 ºC were added N- 

methylquinolinium hexafluorophosphate (0.001 g, 0.003 mmol), sodium acetate (0.090 g, 1.09 

mmol), and sodium thiosulfate (0.090 g, 0.569 mmol). The mixture was stirred at room 

temperature while bubbling air gently and irradiating for 3.5 h. The reaction mixture was filtered, 

concentrated. No desired cyclization product was obtained, and the starting material (0.035 g, 

80%) was re-isolated by flash chromatography (50% EtOAc in hexanes). 

 

4-Nitro-N-(5-octyloxy-6-phenylhexyl)benzenesulfonamide (49) 

 

To 5-Octyloxy-6-phenylhexan-1-ol (0.200 g, 0.652 mmol) ) in 

CH2Cl2 (35 ml) at 0 ºC were added methanesulfonyl chloride 

(0.111g, 0.978 mmol) and triethyl amine (0.264 g, 2.61 mmol). The reaction mixture was stirred 

for 3 hrs. at room temperature then was quenched with water. The reaction mixture was extracted 

in CH2Cl2, and then the organic layer was washed with water and saturated NaCl, dried (Na2SO4) 

and concentrated. The resulting residue was dissolved in DMF  (10 mL) at 23 ºC under N2 and 

sodium azide (0.051 g, 0.783 mmol) was added. The reaction mixture was stirred at 55 °C for 12 

h then was quenched with water, extracted into hexanes, washed with saturated NaCl, dried 

(Na2SO4), and concentrated. The resulting residue was then dissolved in THF (15 mL) at 23 ºC 

under N2 and triphenylphosphine (0.132 g, 0.503 mmol) was added. The reaction mixture was 

allowed to stir for 18 h then was quenched with water (0.5 mL). The reaction mixture was then 

allowed to stir for an additional 8 h and concentrated. The resulting residue was dissolved in 

CH2Cl2 (10 mL) and at 0 °C triethylamine (0.132 g, 1.30 mmol) and 4-nitrobenzylsulfonyl 

OC8H17

H
N

S
O

O

NO2

49



 

 88

chloride (0.108 g, 0.491 mmol) were added. The reaction mixture was stirred at 23 °C for 12 h, 

then quenched with water (2 mL), washed with saturated NaCl, dried (MgSO4) and concentrated. 

The resulting residue was purified by flash chromatography (20% EtOAc in hexanes) to yield the 

desired product (0.055 g, 34%): 1H NMR (300 MHz, CDCl3) δ 8.35 (d, J = 8.68, 2H), 8.04 (d, J 

= 8.61, 2H), 7.29-7.13 (m, 5H), 4.98 (t, J = 5.88, 1H), 3.36 (m, 4H), 2.98 (m, 2H), 2.84 (dd, J = 

5.9, 7.7, 1H), 2.63 (dd, J = 6.5, 7.0, 1H), 1.48-1.13 (m, 18H), 0.87 (t, J = 6.87, 3H); 13C NMR δ 

150.1, 146.1, 138.9, 129.5, 128.4, 126.2, 124.5, 80.7, 69.8, 43.3, 42.3, 40.7, 33.3, 31.9, 30.2, 

29.7, 29.5, 29.4, 26.3, 22.8, 22.6, 14.2; IR (neat) 3208, 3092, 3023, 2924, 2855, 1600, 1522, 

1458, 1333, 1088, 855, 739, 705 cm-1; HRMS (CI), (M+1 = 491). 

 

1-(4-Nitrobenzenesulfonyl)-2-octyloxypiperidine (49a) 
 

4-Nitro-N-(5-octyloxy-6-phenylhexyl)benzenesulfonamide (0.055 g, 0.113 mmol) 

was subjected to catalytic aerobic ETIC reaction conditions. The reaction mixture 

was filtered, concentrated. The resulting residue was purified by flash 

chromatography (10% EtOAc in hexanes) to yield the desired product (0.031 g, 68%): 1H NMR 

(300 MHz, CDCl3) δ 8.35 (d, J = 8.8, 2H), 8.04 (d, J = 8.9, 2H), 5.22 (m, 1H), 3.61 (dd, J = 2.9, 

10.0, 1H), 3.36 (m, 2H), 3.07 (t, J = 2.7, 10.1, 1H), 1.89 (m, 1H), 1.62-1.23 (m, 18H), 0.88, (t, J 

= 7.0, 3H); 13C NMR (75 MHz, CDCl3) 130.1, 124.2, 84.6, 67.9, 63.2, 41.5, 33.1, 29.9, 29.6, 

29.5, 26.4, 24.8, 22.7, 21.2, 18.1, 14.3, 14.1; IR (neat) 3561, 3101, 2924, 2855, 1604, 1535, 

1466, 1350, 1165, 1105, 937, 847, 744; HRMS (EI) calcd for C19H30N2O5S 398.1875, found 

398.1868. 
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(5-Azido-2-octyloxy-pentyl)benzene (44) 
 

To 4-Octyloxy-5-phenylpentan-1-ol (0.200 g, 0.652 mmol) in CH2Cl2 (10 mL) 

at 0 ºC were added methanesulfonyl chloride (0.112 g, 0.978 mmol) and 

triethylamine (0.264 g, 2.61 mmol). The reaction mixture was stirred for 3 h at room temperature 

then was quenched with water. The reaction mixture was extracted with CH2Cl2, and then the 

organic layer was washed with water and saturated NaCl, dried (Na2SO4) and concentrated. The 

resulting residue was dissolved in DMF (10 ml) at 23 ºC under N2 and sodium azide (0.051 g, 

0.784 mmol) was added. The reaction mixture was stirred for 18 h at 0 °C, then was quenched 

with water, and extracted into hexanes. The organic layer was washed with saturated NaCl, dried 

(Na2SO4), and concentrated. The resulting residue was purified by column chromatography (10% 

EtOAc in hexanes) to yield the desired product (0.189 g, 87%): 1H NMR (300 MHz, CDCl3) δ 

7.32-7.18 (m, 5H), 3.42 (m, 3H), 3.26 (t, J = 6.6, 2H), 2.88 (dd, J = 6.1, 7.49, 1H), 2.70 (dd, J = 

6.4, 7.1, 1H), 1.62-1.27 (m. 16H), 0.90 (t, J = 6.9, 3H); 13C NMR (75 MHz, CDCl3) δ 139.3, 

129.7, 128.4, 126.2, 80.8, 69.9, 51.6, 41.0, 33.8, 32.0, 30.4, 29.6, 29.5, 29.1, 26.4, 23.0, 22.9, 

14.3. 

 

To (5-Azido-2-octyloxy-pentyl)benzene (0.050 g, 0.151 mmol) in dichloroethane (5 mL) and 

toluene (1 mL) in a borosilicate flask at 20 ºC were added N- methylquinolinium 

hexafluorophosphate (0.001 g, 0.003 mmol), sodium acetate (0.100 g, 1.22 mmol), and sodium 

thiosulfate (0.100 g, 0.595 mmol). The mixture was stirred at room temperature while bubbling 

air gently and irradiating for 3 h. The reaction mixture was filtered, concentrated. No desired 

cyclization product was obtained, and the starting material was re-isolated by flash 

chromatography (10% EtOAc in hexanes). 
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N-(4-Octyloxy-5-phenylpentyl)acetamide (48) 
 

To (5-azido-2-octyloxypentyl)benzene (0.818 g, 2.47 mmol) in THF (15 

mL) at 23 ºC was triphenylphosphine (1.73 g, 6.59 mmol). The reaction 

mixture was allowed to stir for 18 h then was quenched with water (2 mL). The reaction mixture 

was then allowed to stir for an additional 18 h, and concentrated. The resulting residue was 

dissolved in CH2Cl2 (10 mL) and triethylamine (0.134 g, 1.31 mmol) and acetic anhydride (0.037 

g, 0.360 mmol) were added at 0 °C under N2. The reaction mixture was stirred for 1.5 h, and then 

quenched with water, extracted into CH2Cl2, washed with saturated NaCl, dried (Na2SO4) and 

concentrated. The resulting residue was purified by flash chromatography (50% EtOAc in 

hexanes) to yield the desired product (0.75 g, 69%): 1H NMR (300 MHz, CDCl3) δ 7.26-7.16 m, 

5H), 5.84 (bs, 1H), 3.38 (m, 3H), 3.20 (m, 2H), 2.82 (dd, J = 6.1, 7.49, 1H), 2.68 (dd, J = 6.4, 

7.14, 1H), 1.93 (s, 3H), 1.46-1.25 (m, 18H), 0.88 (t, J = 6.78, 3H); 13C NMR (75 MHz, CDCl3) δ 

170.2, 139.1, 129.5, 128.2, 126.1, 80.8, 69.7, 40.8, 39.7, 33.7, 31.9, 30.2, 29.6, 29.5, 29.3, 26.3, 

23.3, 23.0, 22.7, 14.2; IR (neat) 3286, 3083, 2929, 2855, 1651, 1552, 1449, 1363, 1290, 1101; 

HRMS (EI) calcd for C22H38NO2 348.2902, found 348.2900. 

 

To N-(4-octyloxy-5-phenylpentyl)acetamide (0.075 g, 0.216 mmol) in dichloroethane (5 mL) 

and toluene (1 mL) in a borosilicate flask at 20 ºC were added N-methylquinolinium 

hexafluorophosphate (0.001 g, 0.003 mmol), sodium acetate (0.150 g, 1.83 mmol), and sodium 

thiosulfate (0.150 g, 0.893 mmol). The mixture was stirred at room temperature while bubbling 

air gently and irradiating for 19 h. The reaction mixture was filtered, concentrated. No desired 

cyclization product was obtained, and the starting material (0.015 g, 20%) was re-isolated by 

flash chromatography (50% EtOAc in hexanes). 
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(4-Octyloxy-5-phenylpentyl)carbamic acid ethyl ester (46) 
 

To (5-azido-2-octyloxypentyl)benzene (0.539 g, 1.63 mmol) in THF (15 

mL) at 23 ºC was added triphenylphosphine (0.513 g, 1.95 mmol). The 

reaction mixture was allowed to stir for 18 h then was quenched with water (2 mL). The reaction 

mixture was then allowed to stir for an additional 18 h, and concentrated. The resulting residue 

was dissolved in acetone (10 mL) and potassium carbonate (0.676 g, 4.89 mmol) and ethyl 

chloroformate (0.353 g, 0.3.26 mmol) were added under N2. The reaction mixture was refluxed 

for 1.5 h, filtered to remove the solid potassium carbonate, and concentrated. The resulting 

residue was purified by flash chromatography (20% EtOAc in hexanes) to yield the desired 

product (0.172 g, 56%): 1H NMR (300 MHz, CDCl3) δ 7.33-7.25 (m, 5H), 4.76 (bs, 1H), 4.19 (q, 

J = 7.04, 2H), 3.46 (m, 3H), 3.22 (m, 2H), 2.93 (dd, J = 6.1, 7.45, 1H), 2.76 (dd, J = 6.3, 7.3, 

1H), 1.54-1.28 (m, 18H), 0.96 (t, J = 6.9, 3H); 13C NMR (75 MHz, CDCl3) δ 139.3, 129.7, 

129.6, 128.4, 128.3, 126.1, 80.8, 69.8, 60.8, 40.9, 33.8, 32.0, 30.3, 29.6, 29.4, 26.4, 22.8, 14.8, 

14.3; IR (neat) 3337, 3027, 2916, 2855, 1698, 1531, 1449, 1376, 1341, 1247, 1096, 774, 744; 

HRMS (EI) calcd for C23H40NO3 378.3008, found 378.3009. 

 

To (4-octyloxy-5-phenylpentyl)carbamic acid ethyl ester (0.080 g, 0.212 mmol) in 

dichloroethane (5 mL) and toluene (1 mL) in a borosilicate flask at 20 ºC were added N- 

methylquinolinium hexafluorophosphate (0.002 g, 0.005 mmol), sodium acetate (0.160 g, 1.95 

mmol), and sodium thiosulfate (0.160 g, 0.952 mmol). The mixture was stirred at room 

temperature while bubbling air gently and irradiating for 5 h. The reaction mixture was filtered, 

concentrated. No desired cyclization product was obtained, but one major product was obtained 
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from the reaction mixture: 1H NMR (300 MHz, CDCl3, 343 K), 6.74 (dt, J = 1.9, 6.7, 1H), 5.34 

(bs, 1H), 4.90 (m, 1H), 4.08 (m, 3H), 3.81 (m, 1H), 3.52 (m, 2H), 3.40 (t, J = 6.4, 2H), 3.31 (t, J 

= 6.41, 2H), 3.06 (bs, 4H), 2.89 (dt, J = 2.9, 9.9, 1H), 2.50 (bs, 1H), 1.99 (m, 2H), 1.80-1.17 (m, 

?H), 0.87 (t, J = 6.93, 3H); IR (neat) 3488, 2924, 2855, 1707, 1651, 1415, 1372, 1337, 1264, 

1234, 1174, 1118, 1092, 1049, 989 cm-1 HRMS (EI) calcd for C16H32NO3 286.2382, found 

286.2371; HRMS (FAB) calcd for C16H31NO3 285.2303, found 285.2301. 

 

(4-Octyloxy-5-phenylpentyl)carbamic acid tert-butyl ester (47) 
 

To (5-azido-2-octyloxypentyl)benzene (0.139 g, 419 mmol) in THF (10 

mL) at 23 ºC was added triphenylphosphine (0.132 g, 0.503 mmol). The 

reaction mixture was allowed to stir for 18 h then was quenched with water (2 mL). The reaction 

mixture was then allowed to stir for an additional 18 h, and concentrated. The resulting residue 

was dissolved in a solution of dioxane (5 mL) and water (5mL) and triethylamine (0.0636 g, 

0.629 mmol) and di-tert-butyldicarbonate (0.101 g, 0.462 mmol) were added at 0 °C. The 

reaction mixture was stirred for 2 h, and then concentrated. The resulting residue was redissolved 

in EtOAc and washed with water and saturated NaCl, dried (Na2SO4) and concentrated. The 

resulting residue was purified by flash chromatography (30% EtOAc in hexanes) to yield the 

desired product (0.137 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.30-7.18 (m, 5H), 4.51 (bs, 1H), 

3.37(m, 3H), 3.10 (m, 2H), 2.85 (dd, J = 6.1, 7.5, 1H), 2.69 (dd, J = 6.3, 7.3, 1H), 1.53-1.26, (m, 

27H), 0.88 (t, J = 6.9, 3H); 13C NMR (75MHz, CDCl3) δ 156.1, 139.3, 129.6, 128.3, 126.1, 80.9, 

69.8, 40.9, 33.9, 32.0, 30.3, 29.6, 29.4, 28.6, 27.6, 26.4, 22.9, 14.3; IR (neat) 3357, 2930, 2856, 

1719, 1515, 1456, 1367, 1252, 1172, 1092, 872, 743, 702 cm-1. 
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To (4-octyloxy-5-phenylpentyl)carbamic acid tert-butyl ester (0.050 g, 0.123 mmol) in 

dichloroethane (5 mL) and toluene (1 mL) in a borosilicate flask at 20 ºC were added N- 

methylquinolinium hexafluorophosphate (0.001 g, 0.003 mmol), sodium acetate (0.100 g, 1.22 

mmol), and sodium thiosulfate (0.100 g, 0.595 mmol). The mixture was stirred at room 

temperature while bubbling air gently and irradiating for 2 h. The reaction mixture was filtered, 

and then concentrated. No desired cyclization product was obtained, and small quantities of 

several unidentifiable side products were isolated. 

 

To (4-octyloxy-5-phenylpentyl)carbamic acid tert-butyl ester (0.050 g, 0.123 mmol) in 

dichloroethane (5 mL) and toluene (1 mL) in a borosilicate flask at 20 ºC were added N- 

methylquinolinium hexafluorophosphate (0.001 g, 0.003 mmol), methanol (0.003 g, 0.123 

mmol), sodium acetate (0.100 g, 1.22 mmol), and sodium thiosulfate (0.100 g, 0.595 mmol). The 

mixture was stirred at room temperature while bubbling air gently and irradiating for 3 h. The 

reaction mixture was filtered, and then concentrated. No desired cyclization product was 

obtained, starting material (0.010 g, 20%), and small quantities of several unidentifiable side 

products were isolated, along with (4-Methoxy-4-octyloxy-butyl)-carbamic acid tert-butyl ester 1 

H NMR (300 MHz, CDCl3) δ 4.57 (bs, 1H), 4.39 (t, J = 5.6, 1H), 3.51-3.38 (m, 6H), 3.28 (s, 

3H), 1.41-1.15 (m, 25H), 0.85 (m, 3H). 

 

Hexanoic acid [1-benzyl-5-(4-nitrobenzenesulfonylamino)pentyl]amide (50) 
 

Dry EtOAc (2 mL) was added to a reaction flask containing Pd/C (0.25 

g) fitted with an H2 balloon. The system was evacuated, then purged 
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with H2 five times to ensure a H2 atmosphere, and the reaction mixture was then stirred for 1h. 

(5-Azido-2-octyloxy-pentyl)benzene (0.11 g, 0.34 mmol, in 2 mL EtOAc) was added and the 

pump/purge with H2 technique was repeated five times. The reaction mixture was stirred for 

1.5h, then filtered over Celite. The Celite was washed with EtOAc (100 mL) and the filtrate was 

concentrated. The resulting residue was dissolved in CH2Cl2 (10 mL) and the temperature was 

decreased to 0 ºC before triethylamine (0.13 g, 1.37 mmol) and 4-nitrobenzenesulfonyl chloride 

(0.11 g, 0.51 mmol) were added. The reaction mixture was stirred for 18h, then quenched with 

H2O. The two layers were separated, and the organic layer was washed with saturated NaCl (2 x 

10 mL), dried (MgSO4) and concentrated. The resulting residue was purified by flash 

chromatography to afford the desired product (0.09 g, 61%): 1H NMR (300 MHz, CDCl3) δ 8.46 

(d, J = 7.2 Hz, 2H), 8.17 (d, J = 7.3 Hz, 2H), 7.37 (m, 5H), 6.11 (t, J = 5.7 Hz, 1H), 5.60 (d, J = 

8.9 Hz, 1H), 4.30 (m, 1H), 3.07 (dd, J = 5.8, 12.0 Hz, 2H), 2.87 (t, J = 6.2 Hz, 2H), 2.22 (add, J 

= 3.1, 7.2, 11.1 Hz, 2H), 1.67-1.26 (m, 12H), 0.97 (t, J = 7.3 Hz, 3H); 173.61, 149.97, 146.32, 

137.90, 129.36, 128.58, 128.39, 126.67, 124.42, 49.50, 43.02, 41.33, 37, 01, 33.89, 31.43, 28.84, 

25.59, 22.62, 22.49, 22.31, 17.00, 14.07; IR (neat) 3378, 3287, 2930, 2859, 1643, 1524, 1350, 

1156, 1093, 847, 740 cm-1; HRMS (EI) calcd for (M+H) C24H34N3O5S 476.221918, found 

476.218065. 

 

Hexanoic acid [1-(4-nitro-benzenesulfonyl)-piperidin-2-yl]-amide (51) 
 

To 4-nitro-N-(5-octyloxy-6-phenyl-hexyl)benzenesulfonamide (10) (0.040 g, 0.084 

mmol) in dichloroethane (5 mL) and toluene (1 mL) in a borosilicate flask at 20 ºC 

were added N- methylquinolinium hexafluorophosphate (0.002 g, 0.007 mmol), 

sodium acetate (0.100 g, 1.21 mmol), and sodium thiosulfate (0.100 g, 0.632 mmol). The mixture 
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was stirred at room temperature while bubbling air gently and irradiating for 5 h, then filtered, 

and concentrated. The resulting residue was purified by flash chromatography to yield the 

desired product 11 (0.021 g, 64%): 1H NMR (300 MHz, CDCl3) δ 8.30 (d, J = 8.9, 2H), 8.04 (d, 

J = 8.9, 2H), 6.10 (m, 1H), 5.90 (m, 1H), 3.80 (m, 1H), 2.91 (dt, J = 8.3, J = 3.2), 1.79 (m, 4H), 

1.22 (m, 10H), 0.84 (t, J = 6.8); 13C NMR (75 MHz, CDCl3) δ 172.0, 150.0, 146.0, 128.8, 124.5, 

58.4, 42.0, 36.6, 31.4, 31.1, 25.2, 22.4, 18.8, 14.0; IR (neat) 3313, 2939, 2861, 1650, 1527, 1354, 

1147, 1097, 924, 740 cm-1;  HRMS (EI) calcd for C17H26N3O5S 384.1593, found 384.1583.  

 

Methyl N-(diphenylmethylene)glycinate (52) 
 

To a stirring solution of benzophenone immine (1.21 g, 6.66 mmol) in CH2Cl2 (20 

mL) was added glycine methyl ester hydrochloride (0.83 g, 6.66 mmol). The 

reaction mixture was stirred at room temperature for 18h, then filtered to remove NH4
+Cl and 

concentrated. The resulting residue was purified by flash chromatography (30% EtOAc in 

hexanes) to afford the desired product (1.43 g, 85%): 1H NMR (300 MHz, CDCl3) δ 7.68-7.18 

(m, 10H), 4.23 (s, 2H), 3.75 (s, 3H). 

 

3-(Trifluoromethyl)phenylalanine (53) 
 

To a suspension of sodium hydride (60% dispersion in mineral oil, 0.15 g, 3.95 

mmol) in DMF (10 mL) at 0 ºC was added methyl N-

(diphenylmethylene)glycinate (52) (1.00 g, 3.95 mmol, in 5 mL DMF). The reaction mixture was 

stirred for 15 min. before 3-(trifluoromethyl)benzyl chloride (0.61 g, 3.95 mmol) was added. The 

reaction mixture was stirred for 2h at room temperature, then was quenched with ice chips. The 

reaction mixture was extracted into ether, washed with saturated NaCl, dried (MgSO4) and 
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concentrated. The resulting residue was purified by flash chromatography (5% EtOAc in 

hexanes). The resulting residue was dissolved in 6N HCl (5 mL) and heated to reflux for 6.5h. 

The reaction mixture was then cooled to 0 ºC and stirred for 1h. The reaction mixture was 

filtered and the hydrochloride salt was washed with cold acetone. The hydrochloride salt was 

dissolved in MeOH (10 mL) and the temperature was decreased to 0 ºC. The pH was increased to 

9 by dropwise addition of 15% NaOH and the reaction mixture was stirred for 15 min. The 

reaction mixture was concentrated and the resulting residue was redissolved in EtOAc (5 mL) 

and washed with saturated NaCl (5 mL). The organic layer was dried (MgSO4) and concentrated 

to afford the desired product (0.84 g, 92%): 1H NMR (300 MHz, D2O) δ 7.51 (m, 2H), 7.41 (m, 

2H), 3.94 (ddd, J = 1.9, 5.6, 7.6 Hz, 1H), 3.22 (dd, J = 5.4, 14.6 Hz, 1H), 3.08 (dd, J = 7.8, 14.6 

Hz, 1H). 

 

5-(3-Hydroxypropyl)-2,2-dimethyl-4-(3-trifluoromethylbenzyl)oxazolidine-3-carboxylic 
acid tert-butyl ester (54) 

 

To a suspension of lithium aluminum hydride (0.27 g, 7.24 mmol) refluxing 

in THF (25 mL) was added 3-(trifluoromethyl)phenylalanine (0.84 g, 3.62 

mmol) was added in small portions. The reaction mixture was stirred for 18 

h, then cooled to 0 ºC and quenched with 15% NaOH (1.5 mL) and water (5 mL). Di-tert-butyl-

dicarbonate (0.95 g, 4.34 mmol, in 5 mL CH2Cl2) was added. The reaction was stirred at 60 ºC 

for 6 h, cooled and filtered through a pad of Na2SO4 and concentrated. The resulting residue was 

added dropwise to a solution of oxalyl chloride (0.73 g, 5.76 mmol) and DMSO (0.51 g, 6.59 

mmol) in CH2Cl2
 (30 mL) at -78 ºC. The reaction mixture was stirred for 1 h, then quenched with 

triethylamine (1.66 g, 16.4 mmol), warmed to room temperature and quenched with water (5 

BocN
O

F3C

OH

54



 

 97

mL). The two layers were separated and the organic layer was washed with saturated NaCl (15 

mL), dried (MgSO4) and concentrated. The resulting residue was dissolved in THF (10 mL) and 

the temperature was decreased to 0 ºC. Allyl magnesium bromide (1.0 M in THF, 9.85 mL, 9.85 

mmol) was added and the reaction mixture was stirred at room temperature for 2 h, then 

quenched with saturated NH4Cl and extracted into EtOAc. The organic layer was dried (MgSO4) 

and concentrated. The resulting residue was purified by flash chromatography (5% EtOAc in 

hexanes). To a solution of the resulting residue in toluene (10 mL) was added PPTS (0.02 g) and 

dimethoxypropane (4.06 g, 39.54 mmol). The reaction mixture was heated to reflux for 3 h, then 

cooled to room temperature, concentrated and purified by flash chromatography (5% EtOAc in 

hexanes). To a stirring solution of the resulting residue was dissolved in THF (5 mL) and the 

temperature was decreased to 0 ºC. BH3 (1.0 M in THF, 5.07 mL, 5.07 mmol). The reaction was 

allowed to stir for 1 h, then quenched at 0 ºC with a solution of basic hydrogen peroxide [(2 mL) 

20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide (1 mL)] and saturated Na2SO3 (2 

mL).  and saturated Na2SO3 (2 mL). The reaction mixture was stirred for an addition hour, then 

was extracted with ethyl acetate, washed with saturated NaCl, dried (MgSO4) and concentrated. 

The resulting residue was purified by flash chromatography (50% EtOAc in hexanes) to afford 

the desired product (0.03 g, 2%): 1H NMR (300 MHz, CH3Cl) δ 7.49 (m, 4H), 4.26 (dd, J = 6.3, 

11.4 Hz, 1H), 4.10 (m, 1H), 3.83 (bs, 1H), 3.56 (m, 2H), 3.14 (m, 1H), 2.88 (m, 1H), 1.53 (m, 

13H), 1.40 (s, 3H), 1.29 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 140.27, 140.39, 133.54, 133.20, 

132.97, 130.74, 129.09, 128.85, 126.80, 126.23, 123.60, 123.8193.35, 92.72, 80.61, 80.38, 

80.0163.64, 63.02, 62.52, 60.85, 60.67, 36.85, 36.52, 35.86, 31.01, 29.99, 29.07, 28.65, 28.47, 

28.18, 27.85, 27.62, 27.00, 26.33, 25.09, 23.89; IR (neat) 3447, 2978, 2933, 2866, 1678, 1399, 
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1326, 1170, 1125, 1069; HRMS (EI) calcd for C21H31NO4F3 (M+H) 418. 220519, found 

418.219120.  

 

To 5-(3-hydroxypropyl)-2,2-dimethyl-4-(3-trifluoromethylbenzyl)oxazolidine-3-carboxylic acid 

tert-butyl ester (54) (0.030 g, 0.0718 mmol) in dichloroethane (2.5 mL) and toluene (0.5 mL) in a 

borosilicate flask at 20 ºC were added N- methylquinolinium hexafluorophosphate (0.002 g, 

0.007 mmol), sodium acetate (0.060 g, 0.714 mmol), and sodium thiosulfate (0.060 g, 0.379 

mmol). The mixture was stirred at room temperature while bubbling air gently and irradiating for 

2.5 h, then filtered, and concentrated. The reaction mixture was purified by flash 

chromatography (45% EtOAc in hexanes) to provide the desired product 42 as a single 

diastereomer (0.010 g, 56%). 

 

[5-Hydroxy-1-(3-trifluoromethyl-benzyl)pentyl]carbamic acid tert-butyl ester (55) 
 

 To a suspension of lithium aluminum hydride (0.21 g, 5.44 mmol) 

refluxing in THF (25 mL) was added 3-(trifluoromethyl)phenylalanine 

(0.63 g, 2.27 mmol) was added in small portions. The reaction mixture was stirred for 18 h, then 

cooled to 0 ºC and quenched with 15% NaOH (1.5 mL) and water (5 mL). Di-tert-butyl-

dicarbonate (0.59 g, 2.72 mmol, in 5 mL CH2Cl2) was added. The reaction was stirred at 60 ºC 

for 6 h, cooled and filtered through a pad of Na2SO4 and concentrated. To a solution of the 

resulting residue in CH2Cl2 (5 mL) at 0 ºC was added Dess-Martin periodinane (0.15 g, 0.35 

mmol). The reaction mixture was stirred at room temperature for 1h, then quenched slowly with 

saturated NaHCO3 (1.5 mL). The two layers were separated and the organic layer was washed 

with saturated NaCl (5 mL), dried (MgSO4) and concentrated. To a solution of the resulting 
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residue in THF (5 mL) at 0 ºC was added allylmagnesium bromide (1.0 M in THF, 0.35 mL, 0.35 

mmol). The reaction mixture was stirred at 0 ºC for 30 min, then quenched with saturated NH4Cl 

(1.5 mL) and warmed to room temperature. The reaction mixture was extracted into EtOAc (10 

mL), washed with saturated NaCl (5 mL), dried (MgSO4) and concentrated. The resulting residue 

(in 1 mL DMF) was added to a suspension of sodium hydride (60% dispersion in mineral oil, 

0.02 g, 0.38 mmol) in DMF (5 mL) at 0 ºC. The reaction mixture was stirred for 30 min. before 

methyl iodide (0.05 g, 0.33 mmol) was added. The reaction mixture was stirred for 3 h, then 

quenched with ice chips and extracted into Et2O. The organic layer was washed with saturated 

NaCl (5 mL), dried (MgSO4) and concentrated. To a solution of the resulting residue in THF (5 

mL) at 0 ºC was added BH3 (1.0 M in THF, 0.49 mL, 0.49 mmol). The reaction was allowed to 

stir for 1 h, then quenched at 0 ºC with a solution of basic hydrogen peroxide [(2 mL) 20% 

aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide (1 mL)] and saturated Na2SO3 (2 mL). 

The reaction mixture was stirred for an additional hour, then was extracted with ethyl acetate, 

washed with saturated NaCl, dried (MgSO4) and concentrated. The resulting residue was purified 

by flash chromatography (60% EtOAc in hexanes) to afford the desired product (0.04 g, 2%): 1H 

NMR (300 MHz, CH3Cl) δ 7.42 (M, 4H), 3.66 (m, 2H), 3.51 (m, 1H), 3.45 (s, 3H), 3.25 (m, 1H), 

2.73 (m, 2H), 2.54 (bs, 1H), 1.76-1.67 (m, 4 H), 1.34 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 

155.95, 140.28, 132.49, 128.81, 125.75, 123.17, 122.46, 83.00, 82.68, 82.02, 79.75, 63.06, 62.71, 

58.39, 58.18, 58.07, 35.11, 34.90, 34.09, 29.79, 28.75, 28.25, 28.15, 27.49, 27.15, 26.61, 26.39, 

24.12 IR (neat) 3369, 2978, 2933, 1806, 1739, 1711, 1505, 1326, 1159, 1120; HRMS (EI) calcd 

for C16H21NO3F3 (M–C3H7O) 332.147354, found 332.147026. 
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2. The aqueous Prins reaction 

 

2.1. Introduction 

 

I. Introduction 
 

The Prins reaction,45 first discovered in 1899, is the condensation of an alkene and 

formaldehyde in the presence of an acid at an elevated temperature to afford either an allylic 

alcohol, a 1,3-diol, or a 1,3-dioxane (Figure 2.1). The product composition is dependent on the 

specific alkene as well as the reaction conditions. The reaction appears to proceed partly by an 

electrophlic addition of a protonated aldehyde to an alkene, and partly through an ene reaction 

when the reaction is initiated thermally in the absence of a catalyst. Despite numerous 

investigations into the mechanism46 and extensive postulation, it is generally accepted that the 

complex product mixtures that arise are a result of general acid catalysis, but are not consistent 

with a mechanism of simple carbenium ion formation.  
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Figure 2.1: Generally accepted Prins mechanism 
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 The initial electrophilic addition of the protonated aldehyde to the olefin is generally 

considered to proceed in a stepwise manner leading to the formation of carbenium ion 1. This 

carbenium ion can then react further with any of the species present in the reaction mixture to 

form the allylic alcohol 2, 1,3-diol 3, or the 1,3-dioxane 4. Each of these products may in turn 

react further increasing the complexity of the product composition. 

 One method of controlling the product distribution of the Prins reaction is through 

controlling the formation of the cationic intermediates. Incorporating a silyl group into the 

nucleophilic component of the reaction either in the allylic (5) or vinyl (8) position encourages 

the formation of cationic intermediates 6 and 9, (Figure 2.2). These cations, unlike cation 1, are 

thermodynamically stabilized by hyperconjugation of the adjacent carbon-silicon bond, and 

kinetically unstable with respect to loss of the silicon group. Therefore, homoallylic alcohols (7) 

are formed specifically. 
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Figure 2.2: Generally accepted Prins mechanism involving allyl and vinylsilanes 
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 Unlike Prins reactions of alkenes, reactions incorporating allylsilanes are often catalyzed 

with Lewis acids rather than protic acids. Protic acids can induce protodesilylation in 

competition with carbon-carbon bond formation, whereas Lewis acids are less likely to attack the 

carbon-carbon double bond. The existence of cationic intermediate 6 has not yet been proved for 

this type of reaction. However, circumstantial evidence is provided through the observed 

formation of oxepins without loss of the silyl group.47 

 Allylsilanes are thermally stable with respect to allylic shift of the silyl group. 

Consequently, regioisomeric allylsilanes react in a reliable manner with the electrophile always 

bonding to the terminus of the allyl unit remote from the silyl group, to afford regiospecific 

products, as shown in Figure 2.3. Under Lewis acidic conditions, carbon-carbon bond formation 

occurs exclusively at the γ-carbon of the allylsilane, with clean allylic transposition leading to 

the formation of homoallylic alcohols.48 

Figure 2.3: Allylic transposition of allylsilanes 
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 Acetals and ketals serve as exceptional electrophiles for Prins reactions. When these 

intermediate oxocarbenium ions are tethered to alkenes, intramolecular additions occur to 

generate cyclic oxocarbenium ions from which a variety of products can arise depending on the 

method of termination. This variant of the Prins reaction, cyclic acetal ionization under strongly 

acidic conditions and intramolecular electrophilic addition of a pendent alkene, provides a 

powerful method for access into cyclic ethers through carbon-carbon bond construction.  

 Early examples of intermolecular Prins reactions of mixed acetals to form 

tetrahydrofurans49 are known. Overman has greatly expanded the scope of the reaction and has 

successfully used intramolecular pinacol-terminated Prins cyclization reactions as the key 

strategic element in the total synthesis of a variety of natural products.50  Through the ionization 

of cyclic acetals, intramolecular Prins cyclization, and termination via pinacol rearrangement, as 

shown in Figure 2.4, Overman has accessed highly functionalized acyltetrahydrofuran 

derivatives. 

Figure 2.4: Pinacol-terminated Prins cyclization 
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 Tetrahydropyrans (THP) are critical substructural motifs in a variety of biologically 

significant natural products, and a number of methods for the formation of these oxacycles have 

been developed based on the basic Prins reaction. Rychnovsky used intramolecular Prins 

cyclizations of saturated acetals followed by subsequent trapping with oxygen nucleophiles as an 

entry into oxygenated tetrahydropyrans51 (Figure 2.5). 
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Figure 2.5: Prins cyclization to form THPs 
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 Many have realized the utility and enhanced reactivity of allylsilanes as intramolecular 

traps for oxocarbenium ions generated in various ways and have exploited this reactivity. Marko 

has done extensive studies in this area, and developed an efficient tetrahydropyran synthesis that 

combines the Noyori52 method for generation of oxocarbenium ions with intramolecular silyl 

modified Sakurai (ISMS) reaction (Eq. 1, Figure 2.6). Marko has also coined the term “IMSC” 

(intramolecular Sakurai cyclization) in reference to the cyclization of hydroxy allylsilanes in 

sequences leading to pyrans via an “ene” type reaction53 (Eq. 2, Figure 2.6).  

Figure 2.6: ISMS and ISMC reactions 
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 Recently, Keck reported a facile enantioselective synthesis of 2,6-cis-disubstituted-4-

methylenetetrahydropyran systems through a two-step process54 (Figure 2.7). The first step is 

asymmetric allylation of an aldehyde in the presence of a BINOL titanium isopropoxide catalyst 

to generate the enantiopure hydroxyl allylsilane. The second step, TMSOTf–promoted 

annulation of the silane with a second aldehyde, affords the 2,6-cis-tetrahydropyran containing 

an exo-methylene in the 4 position. 
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Figure 2.7: Two-step THP formation 
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 In a similar approach, Rychnovsky has also reported a Mukaiyama aldol-Prins (MAP) 

cyclization reaction effectively utilizing allylsilanes in the synthesis of tetrahydropyrans55 

(Figure 2.8). The cascade reaction involves the Mukaiyama aldol condensation of an aldehyde 

and an alkyl enol ether to generate an intermediate oxocarbenium ion. The oxocarbenium ion is 

then trapped with an allylsilane in an intramolecular Prins cyclization. This method was applied 

in a formal total synthesis of leucascandrolide A, and has since expanded to include 

condensation with ketones followed by intramolecular Prins cyclization.56 

Figure 2.8: MAP cyclization reaction 
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II. The role of the oxonia-Cope rearrangement in the Prins reaction 
 

 It is known that the substitution of a carbon for a charged heteroatom in [3,3]-sigmatropic 

rearrangements leads to significant rate increases. Typical examples of these types of reactions 

are the anionic oxy-Cope rearrangement and the 2-azonia-Cope rearrangement, shown in Figure 

2.9. The oxygen analog of the 2-azonia-Cope rearrangement is the oxonia-Cope rearrangement, 
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which has been invoked as a competitive pathway in Prins cyclizations and related 

transformations.57 This competitive cationic [3,3]-sigmatropic rearrangement leads to undesired 

stereochemical outcomes and side chain scrambling in Prins reactions. 

Figure 2.9: Heteroatom substituted [3,3]-sigmatropic rearrangements 
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 In his studies of Lewis acid-induced π-cyclization reactions of a variety of α-methoxy 

oxocarbenium ions, Speckamp found that the oxonia-Cope rearrangement played an important 

role in the formation of 5- and 6-membered cyclic ethers. The influence of the [3,3]-sigmatropic 

rearrangement on the regio- and stereochemical outcome of the cyclization reaction was 

examined through the influence of side chain substituents, the type of π-nucleophile (allyl- or 

vinylsilane) and the cyclization of enantio-pure substrates. The controlling factors in whether or 

not rearrangement would occur were found to be the nature of the π-nucleophile, with 

vinylsilanes more apt to rearrange to form the allylsilane, and the substitution pattern of the 

oxocarbenium ion intermediate, with rearrangement occurring to form the more stable 

sigmatropisomer. Retention of stereochemical integrity was observed in the cyclization of 

enantiopure substrates. However, oxonia-Cope cyclization was observed in Prins cyclization 

reactions of vinylsilanes. 
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 In the course of studies on the synthesis of 2,6-disubstituted dihydropyrans, Roush found 

the oxonia-Cope rearrangement to be a competitive reaction pathway in intramolecular Prins 

cyclization reactions of allylsilanes.58 The goal of the study was the development of a novel 

method for the synthesis of 2,6-trans-disubstituted dihydropyrans through the reaction of a β-

hydroxyallylsilane with an aldehyde in the presence of a Lewis acid to generate an intermediate 

oxocarbenium ion that would subsequently undergo intramolecular Prins cyclization (Figure 

2.10). The strong stereoelectronic preference of silyl substituents to adopt an axial orientation in 

reactions that develop cationic character in the β-position was expected to be the origin of the 

trans selectivity. 

Figure 2.10: Origin of 2,6-trans-dihydropyran selectivity 

R

OH

SiMe3

R'CHO

Lewis Acid O

R

SiMe3

R' O

R'

R  

 In initial studies to optimize reaction conditions, the isolated products, surprisingly, 

consisted of 2,6-cis-disubstituted dihydropyrans rather than the targeted trans diastereomer. 

Attempts to extend the method to include a variety of β-hydoxyallylsilane-aldehyde 

combinations and achieve the desired trans selectivity led only to complex reaction mixtures 

with side chain exchange (Figure 2.11). 

Figure 2.11: 2,6-cis-substituted dihydropyrans with side chain exchange 
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 The unexpected exchange of allylsilane side chains and the preferential 2,6-cis-

disubstituted dihydropyran formation was explained through the facile oxonia-Cope 

rearrangement prior to intramolecular Prins cyclization, as shown in Figure 2.12. The reaction 

was initially predicted to proceed through oxocarbenium ion intermediate 12, which could 

cyclize via a chair transition state to give the desired product, 13. However, oxonia-Cope 

rearrangement occurs at a faster rate than intramolecular Prins cyclization to give oxocarbenium 

ion intermediate 14, placing the alkyl substituent in the thermodynamically unfavorable axial 

position. Intermediate 14 can then isomerize through a reversible nucleophilic addition to give 

15, which is structurally equivalent to intermediates proposed by Speckamp13 in observed 

oxonia-Cope rearrangements of vinylsilanes in attempted intramolecular Prins cyclizations. 

Intermediate 15 can cyclize directly to form the 2,6-cis-disubstituted dihydropyran, 17. The 

intermediacy of 14 and 15 also account for the observed side chain scrambling, where the 

addition of TMSOH creates the opportunity for release of one aldehyde equivalent and 

recombination with another. 
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Figure 2.12: Mechanism of 2,6-cis-disubstituted dihydropyran formation 

R1

OH

SiMe3

OR2

R1

SiMe3

slow O

R2

R1

O

R1

SiMe3

R2 O

H

SiMe3

R2
R1

OR2

H

R1
SiMe3

O

R2

R1

2,6-trans

2,6-cis

R1

OH

SiMe3

R2

OH

SiMe3

OR3

R2

SiMe3

Side Chain Scrambling

R2CHO

11 12 13

14 15 16

18 17

R3CHO

19  

 Rychnovsky demonstrated recently that oxonia-Cope rearrangements are faster than 

intramolecular Prins cyclization reactions when simple alkenes59 are employed as nucleophiles. 

The oxonia-Cope rearrangement was first observed when an unexpected epimerization product 

was isolated from an intramolecular Prins cyclization (Figure 2.13). The α-acetoxy ether 20 was 

cyclized in the presence of SnBr4 to produce the desired product 22 and its C3 epimer 23. The 

intermediate oxocarbenium ion 24 could cyclize directly to afford the desired product, or 

undergo oxonia-Cope rearrangement via a chair transition state and then cyclize to give the 

desired product. However, oxonia-Cope rearrangement of oxocarbenium ion 21 through a boat 

transition state, ring flip and subsequent cyclization through a chair transition state explains the 

formation of the undesired C3 epimer, 23.  
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Figure 2.13: Proposed mechanistic pathway for epimerization 
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Due to the unexpected boat transition state invoked in the oxonia-Cope rearrangement, 

Rychnovsky sought further evidence of the intermediacy of 25 in the formation of the undesired 

epimer by treatment of the starting material with TMSOTf. The reaction produced the E and Z 

alkenes 26 and 27 (Figure 2.14), both of which presumably arise from the hydrolysis of 

oxocarbenium ion intermediates 24 and 25. Thus, it was concluded that the oxonia-Cope 

rearrangement plays an important role in the Prins cyclization of simple alkenes, providing 

unexpected outcomes. 

Figure 2.14: Test of proposed oxonia-Cope boat transition state 
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III. Substrate Design 
 

 Tetrahydropyrans serve as the core of numerous marine natural products and are key 

structural features in a variety of polyether antibiotics and pheromones.60 They also are the 

structural core of the majority of carbohydrates, which are the most abundant biological 

molecules on earth.61 Numerous methods exist for the synthesis of highly functionalized 

tetrahydropyrans, such as hetero Diels-Alder reactions, oxiranyl anions, carbonyl ylides, Claisen 

rearrangements, ring opening of epoxides, iodolactonization, and ring closing metathesis. During 

the course of the present work towards the total synthesis of (+)-dactylolide the development of a 

new method for the construction 2,6-cis-disubstituted-4-methylenetetrahydropyrans became of 

interest.  

As shown through the work of Overman and Rychnovsky, the ionization of cyclic acetals 

followed by intramolecular Prins cyclization provides a powerful entry into 2,4,6-trisubstituted 

tetrahydropyrans through carbon-carbon bond construction. The incorporation of allylsilanes in 

intramolecular Prins reactions has led to the formation of 2,6-cis-disubstituted-4-

methylenetetrahydropyrans.10 Based on the combination of these two results, the design of 

substrates that will efficiently and stereoselectively undergo intramolecular Prins cyclization at 

ambient temperature with mild Lewis acids that will tolerate other acid sensitive functional 

groups contained within the molecule should be possible.  
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Figure 2.15: Substrate design 
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The general cyclization substrate consists of a cyclic α,β-unsaturated acetal with a 

pendent allylsilane (Figure 2.15). Given that Prins cyclization is initiated through ionization, it 

was postulated that this step could be facilitated through the use of cyclic α,β-unsaturated acetals. 

The use of cyclic acetals allows for the convergent condensation of highly functionalized 

aldehydes and 1,3-diols, alleviating the need for lengthy synthetic sequences and numerous 

protecting group manipulations. Employment of an α,β-unsaturated acetal provides a relatively 

stable conjugated oxocarbenium ion upon ionization. This is expected to thermodynamically 

disfavor the oxonia-Cope rearrangement which is often a competitive reaction pathway in Prins 

cyclizations and has been known to lead to stereorandomization and sidechain scrambling. 

Substrates are also designed with a pendent electron rich olefin in the form of an allylsilane, 

which is expected to expedite the cyclization step. Finally, as the objective is to develop a 

method applicable to advanced synthetic intermediates, cyclization reactions involving 

secondary ethers were examined to determine if the reaction is in any way inhibited, or oxacene 

formation becomes a competitive reaction pathway. 
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2.2. Results and Discussion 

 

 An intramolecular Prins cyclization reaction was first observed in the Floreancig labs in 

the course of efforts towards the total synthesis of (+)-dactylolide. Construction of the core of the 

molecule, a 2,6-cis-disubstituted-4-methylenetetrahydropyran, was envisioned to occur through 

an electron transfer initiated cyclization (ETIC) reaction.62 However, during the synthesis of a 

model substrate for the ETIC reaction, the intramolecular Prins cyclization provided an 

undesired, although serendipitous result. 

 The reaction attempted was the addition of trimethylsilyl propyne into acetal 28 in the 

presence of titanium tetrachloride, as shown in Figure 2.16. The desired product, propargyl ether 

29, was not detected; rather, the only isolable product was a single diastereomer at the 2 and 6 

positions of tetrahydropyran 30. Tetrahydropyran 30 was postulated to arise from the 

intramolecular Prins cyclization with the pendent vinyl bromide upon ionization of the acetal and 

termination by trapping with chloride. Because of the interest in the generation of 2,6-cis-

disubstituted-4-methylenetetrahydropyrans, utilizing pendent allylsilanes in the development of a 

novel method for intramolecular Prins cyclization reactions of cyclic acetals to provide these 

moieties became the primary focus. 

Figure 2.16: Initially observed intramolecular Prins cyclization 
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 Synthesis of the test substrate, cyclic acetal 34 containing a pendent allylsilane, began 

with 1,3-propane diol (Scheme 2.1). Monoprotection of the diol as the tert-butyldiphenylsilyl 

ether followed by Dess-Martin periodinane oxidation afforded the aldehyde, which was then 

reacted with 2,3-dibromopropene in the presence of metallic tin63 and HBr to give homoallylic 

alcohol 32. The silyl ether was removed with TBAF, and the diol was condensed with 

commercially available heptaldehyde to provide acetal 33. Palladium-mediated coupling of the 

vinyl bromide with trimethylsilylmethylmagnesium chloride afforded the cyclization substrate, 

34, in good yield. These conditions will be used as the standard allylsilane formation conditions. 

Scheme 2.1: Synthesis of initial Prins substrate 
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 Intramolecular Prins cyclization of cyclic acetal 34 was performed using the same 

conditions under which the Prins reaction was initially observed. The acetal was treated with two 

equivalents of titanium tetrachloride in methylene chloride at -78 ºC, and 2,6-cis-substituted-4-

methylenetetrahydropyran 35, was isolated as a single diastereomer (Scheme 2.2). The cis 

stereochemical relationship between the C2 and C6 methines was confirmed through the strong 

correlation observed in the NOESY spectrum. The origin of the cis selectivity is assumed to be 

the preference of the two alkyl groups to adopt a pseudoequitorial orientation in the transition 

state. 

Scheme 2.2: Intramolecular Prins cyclization with an allylsilane 
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 With adequate proof that the cyclization reaction could be performed with complete 

stereoselectivity, and in accord with the desire to carry out this transformation on advanced 

synthetic intermediates, intramolecular Prins cyclizations of a variety of α,β-unsaturated acetals 

were examined. Cyclic α,β-unsaturated acetal 39 served as the primary cyclization substrate, and 

also as the substrate on which cyclization reaction conditions would be optimized. Cyclic α,β-

unsaturated acetal 39 was synthesized in the same manner as cyclic acetal 34, excepting the 

substitution of crotonaldehyde for heptaldehyde in the acid mediated acetal formation (Scheme 

2.3) 

Scheme 2.3: α,β-Unsaturated acetal synthesis 
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 Intramolecular Prins cyclization of cyclic α,β-unsaturated acetal 39 to form 2,6-cis-

substituted-4-methylenetetrahydropyran 40 was carried out using a variety of organic solvents 

and both Lewis and Brønstead acids (Scheme 2.4), the results of which are shown in Table 2.1. 

Scheme 2.4: Cyclization with specifically designed substrate 
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 The initial conditions, using titanium tetrachloride as the Lewis acid, proved too harsh 

and led only to decomposition of the starting material. Switching to BF3•OEt2 afforded the 

desired cyclized tetrahydropyran in a moderate yield, as did reaction with trimethylaluminum. 

Use of the mild Lewis acids cerium chloride and cerium bromide also provided the desired 

tetrahydropyran in moderate yield. However, the lack of solubility of the cerium coupled with 
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the associated nucleophilic counterions played a major role in the reaction, leading to the 

incorporation of both chlorine and bromine into the cyclized products (42) and promoting 

formation of the protodesylilated product 41 in varying yields. In situ generation of a soluble 

cerium (III) source through the combination of ceric ammonium nitrate and hydroquinone 

proved ineffective at initiating the cyclization reaction. Use of p-toluenesulfonic acid yielded a 

1:1 mixture of the desired cyclized product in combination with protodesilylated product 41. 

Both acetic acid and Montmorillonite K-10 clay also proved ineffective at initiating 

intramolecular Prins cyclization. Through the reaction conditions examined, it became clear that 

the enhanced reactivity afforded as a result of the α,β-unsaturated acetal required that cyclization 

be initiated with a mild Lewis acid bearing non-nucleophilic counterions to avoid decomposition, 

unproductive protodesilylation and incorporation of the counterion into the desired product. 

Table 2.1: Intramolecular Prins cyclization with Lewis/Brønstead acids 

Entry Lewis/Brønstead acid Solvent Temperature Product (%) 
1 TiCl4 CH2Cl2 -78 ºC decomposition 
2 BF3•OEt2 CH2Cl2 -78 ºC 40 (52%) 
3 AlMe3 CH2Cl2 r.t. 40 (55%) 
4 CeCl3 CH3CN r.t. 40 (57%), 41 (22%) 
5 CeCl3 THF r.t. No rxn 
6 CeCl3 THF:H2O r.t. No rxn 
7 CeCl3 on silica CH2Cl2 r.t. No rxn 
8 CeBr3 CH3CN r.t. 40 (47%), 41 (12%) 
9 CAN/Hydroquinone CH3CN r.t. No rxn 
10 PTSA CH2Cl2 r.t. 40 (55%), 41 (3%) 
11 PPTS CH2Cl2 r.t. decomposition  
12 Montmorillonite K-10 CH3CN r.t. No rxn 
13 AcOH CH2Cl2 r.t. No rxn 

 

Kobayashi’s Lewis acid surfactant combined catalyst (LASC)64 provided a solution to 

this problem. LASCs are composed of water-stable Lewis acidic cations, such as scandium (III) 

ions, and anionic surfactants, such as dodecyl sulfate that form stable colloidal dispersions 
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rapidly in the presence of water. These catalysts act both as a Lewis acid, as well as a surfactant 

to simultaneously activate substrate molecules and form a hydrophobic reaction environment, 

effectively utilizing the concept of organic microsolvation to allow for rapid organic reactions in 

water. Kobayashi successfully employed these catalysts in carbon-carbon bond forming reactions 

such as aldol, allylation, and Mannich-type reactions, but had not demonstrated that they could 

be employed in reactions where the reactive electrophilic intermediates could be irreversibly 

consumed by water. Therefore, it was pleasing to observe that the addition of 10 mol % ScCl3 to 

a suspension of allylsilane 39 and 30 mol% of sodium dodecylsulfate (SDS) in water rapidly 

generated a colloidal dispersion that afforded a 71% yield of the desired 2,6-cis-substituted-4-

methylenetetrahydropyran 40 as a single diastereomer in the first aqueous Prins cyclization 

reaction (Scheme 2.5). The cis stereochemical relationship of the C2 and C6 protons was verified 

through the strong correlation observed in the NOESY spectrum.  

Scheme 2.5: Initial aqueous Prins reaction 
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The aqueous Prins reaction conditions are mild and procedurally simple. The reaction is 

performed in water at ambient temperature without need for organic cosolvents. The reaction 

mixture appears as a colloidal dispersion in which the cyclization reaction proceeds efficiently 

and stereoselectively inside micelles. Micelles are generated in situ by the addition of Lewis acid 

into a rapidly stirring suspension of the cyclization substrate and the surfactant (Figure 2.17). 
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Only a catalytic amount of both the Lewis acid and surfactant are needed to effect reaction. In 

the absence of the cyclization substrate, with simply the combination of the Lewis acid and 

surfactant in water, the reaction mixture appears homogeneous and no micelle formation is 

observed. Stirring a mixture of the water soluble Lewis acid and the cyclization substrate in 

water for extended periods of time failed to yield any of the desired cyclization product and 

resulted in recovery of the starting material with minimal acetal hydrolysis. 

Figure 2.17: Schematic of aqueous Prins reaction 

 

  Based on the inability to hydrate the exocyclic olefin by resubjecting the resulting 

tetrahydropyran to the reaction conditions, and the inability to effect reaction in the absence of 

the surfactant, it is postulated that all starting materials, intermediates and products are contained 

within the hydrophobic interior of the micelle for the duration of the reaction. Nucleation by the 

cyclization substrate and micelle formation occurs upon addition of the Lewis acid to the 

suspension. Once viable micelles are formed, the substrate can be envisioned to diffuse through 

the hydrophobic interior to the periphery of the micelle where it can encounter and coordinate to 

the Lewis acidic cations. Ionization of the acetal ensues to form the intermediate oxocarbenium 
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ion which is rapidly trapped with the pendent allylsilane resulting in the formation of a 2,6-cis-

disubstituted-4-methylenetetrahydropyran, as shown in Figure 2.18. 

Figure 2.18: Intramolecular Prins contained within a micelle 
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The effect of surfactant chain length on micelle and stability was examined. As 

summarized in Table 2.2, the dodecanesulfonate provided the best yields, while surfactants with 

shorter or longer alkyl chains resulted in lower yields. In addition to surfactant alkyl chain 

length, concentration proved to be a significant factor in micelle formation. Acheivement of a 

critical micelle concentration was necessary for formation and maintenance of viable micelles for 

extended reaction times. The critical micelle concentration could typically be achieved by 

performing the reaction at a 0.5 M concentration with respect to the cyclization substrate, 10 

mol% of the Lewis acid ScCl3•6H2O and 40 mol% of sodium dodecylsulfate. 
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Table 2.2: Optimal surfactant chain length 

O O

O OH

SiMe3

H H

39 40

+
HO

OH

40a  

Entry Lewis Acid Surfactant 
Concentration 
(with respect 
to substrate) 

Product (%) 

1 ScCl3•6H2O NaO4SC10H21 0.5 M 40 (64%), 40a (20%)
2 ScCl3•6H2O NaO4SC12H25 0.5 M 40 (74%), 40a (23%)
3 ScCl3•6H2O NaO4SC18H30 0.5 M 40 (50%), 40a (9%) 

 

In an effort to make the cyclization a more cost effective reaction, the use of various 

cerium (III) salts was examined. Cerium was the Lewis acid of choice based on cost as well as 

predicted compatibility with reactions in aqueous media.65 Cerium has a hydrolysis constant 

(pKh) of 8.3 and an exchange rate constant for substitution of inner-sphere water ligands 

(WERC) of 2.7x108 M-1s-1, making it an ideal Lewis acid for use in aqueous conditions. The 

appropriate range for sufficient Lewis acidity of a metal cation in water is a pKh between 4.3 and 

10.8. A value of less than 4.3 indicates that the metal cation is easily hydrolyzed. Conversely, 

any metal cation with a pKh value greater than 10.8 is deemed too stable. A WERC value greater 

than 3.2x106 M-1s-1 is also required for sufficient Lewis acidity. The cost/benefit analysis of the 

various cerium (III) salts based on a 0.4 mmol scale reaction with respect to the cyclization 

substrate is shown in Table 2.3. Although slightly less reactive than Ce(OTf)3-based micelles, 

Ce(NO3)3•6H2O provides an attractive alternative to ScCl3•6H2O that effectively catalyzes the 

intramolecular Prins cyclization at a fraction of the cost. 
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Table 2.3: Cost/benefit analysis of cerium III salts 

Entry Lewis Acid 

Scale (with 
respect to 

Lewis 
acid)  

Surfactant Product 
(%) Cost/rxn 

1 ScCl3•6H2O 0.04 mmol NaO4SC12H25 40 (74%) $0.20 
2 CeCl3•6H2O 0.04 mmol NaO4SC12H25 40 (67%) $0.01 
3 Ce(OTf)3•H2O 0.04 mmol NaO4SC12H25 40 (77%) $0.33 
4 Ce(NO3)3•6H2O 0.04 mmol NaO4SC12H25 40 (76%) $0.003 

 

The extent to which the hydrophobic nature of the molecule influences the aqueous Prins 

reaction was examined through the cyclization reaction of 45. Cyclic α,β-unsaturated acetal 45 

was synthesized in the same manner as acetal 34, excepting the substitution of 2-decenal for 

heptaldehyde in the acid mediated acetal formation (Scheme 2.6). Intramolecular Prins 

cyclization was performed using ScCl3-micelle conditions, to afford the desired tetrahydropyran 

46 in a 73% yield, indicating that increasing the hydrophobicity of the substrate has a negligible 

effect on reaction yield. 

Scheme 2.6: Synthesis of tetrahydropyran 46 
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 As the objective is to develop a method applicable to advanced synthetic intermediates, 

cyclization reaction involving secondary ether 52 was examined to determine if reaction was in 

any way inhibited, or oxacene formation became a competitive reaction pathway (Scheme 2.7). 

The synthesis of 52 began with protection of the primary alcohol as the pivalate ester, followed 

by protection of the secondary alcohol as the silyl ether. The pivalate ester was removed with 

sodium methoxide in methanol and the resulting alcohol was oxidized with Dess-Martin 

periodinane to provide aldehyde 48. Aldehyde 48 was then reacted with 2,3-dibromopropene in 
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the presence of metallic tin and HBr to afford the resulting homoallylic alcohol, which followed 

by silyl ether deprotection afforded diol 50. The diol was condensed with crotonaldehyde to 

provide cyclic acetal 51, which was converted to the allylsilane 52 by the standard palladium-

mediated coupling with trimethylsilylmethylmagnesium chloride. Intramolecular Prins 

cyclization of 52 using Ce(NO3)3-based micelles provided tetrahydropyran 53 in 80% yield 

indicating that the secondary ether does not inhibit cyclization or lead to competitive oxecene 

formation. 

Scheme 2.7: Prins cyclization of secondary ether 54 
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e) Sn, HBr, Et2O:H2O, f) TBAF, THF (91% over 2 steps), g) PTSA, PhH, refulx, 70%, h) Me3SiCH2MgCl, Pd(PPh3)4,
THF, 68%, i) Ce(NO3)3  6H2O, SDS, H2O, 80%.
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 The mild nature of the reaction conditions, specifically their compatibility with other 

acid-sensitive functional groups contained within the cyclization substrate, was examined 

through the cyclization of cyclic α,β-unsaturated acetal 57 (Scheme 2.8). Synthesis of the acetal 

commenced with protection of 3-butenol as the methoxymethyl ether, followed by cross 

metathesis with acrolein using Grubbs 2nd generation catalyst to provide aldehyde 55. The 

aldehyde was condensed with diol 43 to form acetal 56 using p-toluenesulfonic acid and 

magnesium sulfate66 in methylene chloride. The vinyl bromide was converted to the allyl silane 

using the standard palladium mediated coupling conditions to provide acetal 57. Intramolecular 

Prins cyclization of cyclic α,β-unsaturated acetal 57 with Ce(NO3)3-based micelles provided 

tetrahydropyran 58 in reasonable yield, indicating the compatibility of these reaction conditions 

with acid-sensitive functional groups.  
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Scheme 2.8: Prins cyclization with an acid-sensitive functional group 
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 Cyclization reaction of 1,3-dioxolanes was examined, as shown in Scheme 2.9. The 

synthesis of cyclic acetal 64 began with the protection of 1,4-butene diol with tert-

butyldimethylsilyl chloride and sodium hydride in DMF to afford the bis-silyl ether. Ozonalysis 

followed by reduction with triphenylphosphine provided aldehyde 60. Allylation of aldehyde 60 

with 2-bromoallyltrimethylsilane67 61 followed by silyl deprotection afforded diol 62. Acid 

mediated condensation of diol 62 with decenal provided cyclic acetal 63. The vinyl bromide was 

converted to the allylsilane through palladium mediated coupling with trimethylsilylmethylzinc 

bromide68 (prepared in situ from trimethylsilylmethylmagnesium bromide and zinc bromide). 

While reaction of cyclic acetal 64 with both the ScCl3- and Ce(NO3)3-based micelles afforded the 

desired tetrahydropyran 65, the ScCl3-based micelles provided higher yields. The major 

byproduct isolated only from Ce(NO3)3-based micelle reactions was the tertiary alcohol 66 rather 

than the exocyclic olefin.  
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Scheme 2.9: Prins cyclization of a 1,3-dioxolane 64 
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 Cyclization of enantiomerically enriched cyclic α,β-unsaturated acetal (-)-72 was 

examined in order to determine if oxonia-Cope rearrangement was indeed a competitive reaction 

pathway in the intramolecular Prins cyclization. The starting material for the synthesis, as shown 

in Scheme 2.10, was (+)-(S)-methyl lactate, which was protected as the benzyl ether using benzyl 

bromide in the presence of silver (I) oxide.69 The ester was reduced with DIBAL-H to provide 

aldehyde 68. Allylation with 2-bromoallyltrimethylsilane in the presence of tin tetrachloride 

provided allyl alcohol 69 in 45:1 diastereoselectivity and 79% ee. The benzyl protecting group 

was removed with titanium tetrachloride to give diol 70, which was subjected to acid mediated 

condensation with decenal to provide vinyl bromide 71. The vinyl bromide was converted to the 

allylsilane through palladium-mediated coupling with trimethylsilylmethylzinc bromide to 

provide cyclic α,β-unsaturated acetal (-)-72. In accord with the cyclization of cyclic α,β-

unsaturated acetal 64, ScCl3-based micelles provided higher yields of the desired tetrahyropyran 

(+)-73. Tetrahydropyran (+)-73 was isolated as a single diastereomer, and the cis stereochemical 

relationship of the C2/C6 methine protons was confirmed through the strong correlation 

observed in the NOESY spectrum. HPLC analysis of the benzyl ester of tetrahydropyran (+)-73 

showed no loss of ee, indicating that the oxonia-Cope rearrangement is not a competitive 

reaction pathway in intramolecular Prins cyclization reactions of cyclic α,β-unsaturated acetals. 
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Scheme 2.10: Synthesis of enantioenriched cyclic -unsaturated acetal (-)-72 
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In addition to 2,6-cis-disubstituted-4-methylenetetrahydropyran (+)-73, the 

protodesilylated product (-)-74 and tertiary alcohol 75 were isolated as byproducts of the 

reaction. Resubjecting tetrathydropyran (+)-73 to the cyclization reaction conditions for an 

extended time failed to yield tertiary alcohol 75 and resulted in the complete recovery of starting 

material. Therefore, tertiary alcohol 75 is proposed to result from intramolecular Prins 

cyclization of alkene (-)-74 followed by trapping of the intermediate cation with either water or 

dodecyl sulfate. The enhanced reactivity afforded through the use of 1,3-dioxolanes allows for 

significantly faster cyclization reactions than those of 1,3-dioxanes, as well as for the use of less 

nucleophilic, unactivated olefins as nucleophiles. 

Methyl glycolate severed as the starting material for the synthesis of the racemate of 

tetrahydropyran 73, which was used for HPLC analysis of enantiomeric excess. Methyl glycolate 

was protected with benzyl bromide in the presence of silver (I) oxide. The benzyl ether was then 

alkylated70 with methyl iodide and reduced with DIBAL-H to provide the racemate of aldehyde 
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68. The aldehyde was carried through the synthesis in the same manner to ultimately yield rac-

73.  

 

2.3. Conclusion 

 

 An innovative variant of the Prins cyclization has been developed in which cyclization 

reactions occur efficiently and stereoselectively under mild conditions when cyclic α,β-

unsaturated acetals are ionized in the presence of allysilanes to provide 2,6-cis-disubstituted-4-

methylenetetrahydropyrans. These cost-effective reactions are procedurally simplistic, and utilize 

the environmentally benign solvent, water, without need for organic cosolvents. The reactions 

are catalyzed by Lewis acid surfactant combined catalysts (LASCs) generated in situ through the 

combination of either Lewis acid ScCl3·6H2O or Ce(NO3)3·6H2O and the surfactant sodium 

dodecylsulfate (SDS) in the presence of the cyclization substrate in water at ambient 

temperature. These reaction conditions effectively utilize the concept of organic microsolvation 

to provide a sufficiently anhydrous environment to protect oxocarbenium ion intermediates from 

hydrolysis. Both α,β-unstaurated 1,3-dioxanes and 1,3-dioxolanes having pendent electron rich 

olefins in the form of allylsilanes react under these conditions to provide a variety of 2,6-cis-

disubstituted-4-methyletetrahydropyrans. The reaction conditions are sufficiently mild so as to 

tolerate the incorporation of acid-sensitive functional groups within the cyclization substrate. 

 Table 2.4 provides a summary of the cyclic α,β-unsaturated acetals subjected to 

intramolecular Prins cyclization reactions using the aqueous Prins reaction conditions. Reactions 

are performed using either 10 mol % ScCl3·6H2O or Ce(NO3)3·6H2O, 30-60 mol % SDS, at 0.5 

M with respect to the acetal and isolated yields of purified products are reported. 
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Table 2.4: Summary of intramolecular Prins cyclization substrates 
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2.4. Experimental 

 

General Procedures. All reactions were performed in oven or flame-dried glassware under a 

positive pressure of N2
 with magnetic stirring unless otherwise noted.  

 

Materials. Tetrahydrofuran and diethyl ether were dried by passage through an activated 

alumina column under positive N2 pressure. Methylene chloride was distilled under N2 from 

CaH. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254 plates. 

Visualization was done under UV (254 nm). Flash chromatography was done using ICN SiliTech 

32-63 60 Å silica gel. Reagent grade ethyl acetate, diethyl ether, pentane and hexanes 

(commercial mixture) were purchased from EM Science and used as is for chromatography. 

 

Instrumentation. High resolution and low resolution mass spectra were recorded on a VG 7070 

spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer. 

Samples for IR were prepared as a thin film on a NaCl plate by dissolving the compound in 

CH2Cl2 and then evaporating the CH2Cl2. Proton (1H NMR) and carbon (13C NMR) nuclear 

magnetic resonance spectra were recorded on Bruker Avance 300 spectrometers at 300 MHz and 

75 MHz, respectively. The chemical shifts are given in parts per million (ppm) on the delta (δ) 

scale. The solvent peak was used as a reference value, for 1H NMR: CDCl3 = 7.27 ppm, for 13C 

NMR: CDCl3 = 77.23. Data are reported as follows: (s = singlet; d = doublet; t = triplet; q = 

quartet; dd = doublet of doublets; dt = doublet of triplets; b = broad). HPLC analysis was 

performed with a HP series 1100 instrument using either a Chiralcel OD-H or OJ or CHIRAPAK 

AD column. 
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5-Bromo-hex-5-ene-1,3-diol (36) 
 

To 1,3-propanediol (1.00 g, 13.14 mmol) in THF (20 mL) was added sodium hydride 

(60% dispersion in mineral oil, 0.54 g, 13.14 mmol). The reaction mix was stirred for 

30 min. then tert-butylchlorodiphenylsilane (3.62 g, 13.14 mmol) was added. The reaction 

mixture was stirred for 1.5 h then quenched with ice chips, extracted into ether, dried (MgSO4), 

and concentrated. The resulting residue was dissolved in CH2Cl2 (20 mL) under N2 and the 

temperature was decreased to 0 ºC before Dess-Martin periodinane (6.70 g, 15.77 mmol) was 

added. The reaction mixture was stirred at 23 ºC for 30 min. then quenched with saturated 

aqueous NaHCO3 (5 mL) and saturated aqueous Na2S2O3 (5 mL). The reaction mixture was 

stirred for an additional 20 min. before the two layers were separated. The organic layer was 

dried (MgSO4), and concentrated. To a stirring suspension of tin powder (1.95 g, 16.42 mmol) in 

an ether-water mixture (25 mL:12.5 mL) were added a few drops of HBr, 2,3-dibromopropene 

(3.15 g, 15.76 mmol) and the resulting residue (in 10 mL of ether). The reaction mixture was 

stirred for 18 h before it was filtered through a pad of Celite. The filtrate was washed with brine. 

The organic layer was dried (MgSO4), concentrated, and filtered through a plug of silica gel. The 

resulting residue was dissolved in THF (10 mL) under N2 and tetrabutylammonium fluoride 

(1.72 g, 5.56 mmol) was added. The reaction mixture was stirred for 1 h, then concentrated and 

purified by flash chromatography (5% hexanes in EtOAc) to afford the desired product (0.84 g, 

32%): 1H NMR (300 MHz, CDCl3) δ 5.70 (s, 1H), 5.51 (s, 1H), 4.16 (m, 1H), 3.85 (m, 3H), 2.62 

(dd, J = 14.4, 7.8 Hz, 1H), 2.55 (dd. J = 14.3, 4.9 Hz, 1H), 1.75 (m, 2H); 13C NMR (75 MHz, 

CDCl3) δ 130.5, 119.6, 69.2, 61.1, 49.6, 37.8; IR (neat) 3349, 2939, 1736, 1634, 1424, 1372, 

1255, 1050, 886 cm-1; HRMS (EI): m/z calcd for C4H5BrO (M – C2H7O) 147.952376, found 

147.9523. 

OH OH Br

36
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Trimethyl[2-(2-propenyl[1,3]dioxan-4-ylmethyl)allyl]silane (39) 
 

This procedure is representative of a standard acetal formation followed by 

palladium mediated coupling to afford the desired cyclization substrate. To 36 

(0.20 g, 1.02 mmol) in benzene (5 mL) was added crotanaldehyde (0.08 g, 0.82 mmol) and p-

toluenesulfonic acid (cat.). The reaction mixture was refluxed for 2 h, then cooled to room 

temperature and triethylamine (0.2 mL) was added. The reaction mixture was stirred for 20 min. 

then extracted into ether, washed with 10% aqueous NaOH and brine, dried (MgSO4), and 

concentrated. The resulting residue was flashed through a silica gel column (10% EtOAc in 

hexanes) then dissolved in THF (5 mL). Palladium tetrakistriphenylphosphine (0.03 g, 0.03 

mmol) was added followed by trimethylsilylmethylmagnesium chloride (1.0 M in ether, 3.29 

mmol, 3.29 mL). The reaction mixture was heated to reflux for 3 h, then cooled to room 

temperature and quenched with saturated aqueous NH4Cl. The reaction mixture was extracted 

into ethyl acetate, washed with H2O, dried (MgSO4), and concentrated. The resulting residue was 

purified by flash chromatography (10% triethylamine, 5% EtOAc in hexanes) to afford the 

desired product (0.15 g, 92%): 1H NMR (300 MHz, CDCl3) δ 5.91 (dq, J = 15.5, 6.5 Hz, 1H), 

5.57 (m, 1H), 4.95 (d, J = 5.1 Hz, 1H), 4.66 (s, 1H), 4.61 (s, 1H), 4.15 (m, 1H), 3.80 (m, 2H), 

2.38 (dd, J = 13.9, 5.7 Hz, 1H), 2.10 (dd, J = 13.9, 7.5 Hz, 1H), 1.75 (d, J = 1.5 Hz, 1H), 1.72 (d, 

J = 1.5 Hz, 1H), 1.64 (m, 2H), 1.55 (d, J = 2.9 Hz, 3H), 0.04 (s, 9H); 13C NMR (75 MHz, 

CDCl3) δ 143.6, 129.8, 129.0, 110.0, 101.0, 75.9, 66.9, 45.1, 31.5, 27.6, 19.6, -1.4; IR (neat) 

3069, 2952, 1723, 1658, 1440, 1374, 1374, 1309, 1287, 1258, 1192, 1054, 974, 836 cm-1; HRMS 

(EI): m/z calcd for C14H26O2Si (M+) 254.170209, found 254.170992. 

 

 

O O
SiMe3

39
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2-(4-Methylene-6-propenyl-tetrahydropyran-2-yl)-ethanol (40) 
 

To a suspension of cerium chloride (0.19 g, 0.79 mmol) in acetonitrile (5 mL) 

was added 39 (0.10 g, 0.39 mmol). The reaction mixture was sonicated for 3 h, 

then quenched by the addition of saturated aqueous NaHCO3. The reaction mixture was extracted 

with ether (2 x). The combined organic layers were dried (MgSO4) and concentrated. The 

resulting residue was purified by flash chromatography (2% Et2O in pentanes) to afford the 

desired product 2 (0.04 g, 57%): 1H NMR (300 MHz, CDCl3) δ 5.71 (dq, J = 15.4, 1.0 Hz, 1H), 

5.49 (ddq, J = 16.9, 6.2, 1.5 Hz, 1H), 4.75 (d, J = 1.7 Hz, 1H), 4.74 (d, J = 1.7 Hz, 1H), 3.79 (m, 

3H), 3.58 (m, 1H), 2.76 (bs, 1H), 2.22 (dd, J = 15.0, 11.2 Hz, 2H), 2.05 (dd, J = 12.5, 12.3 Hz, 

2H), 1.85 (m, 5H); 13C NMR (75 MHz, CDCl3) δ  143.5, 131.9, 127.2, 109.0, 79.2, 78.7, 61.4, 

41.1, 40.8, 38.4, 17.8; IR (neat) 3410, 3069, 2916, 2850, 1701, 1650, 1440, 1389, 1309, 1258, 

1185, 1054 cm-1; HRMS (EI): m/z calcd for C11H18O2 (M+) 182.130680, found 182.130982. 

 

4-(2-Methylallyl)-2-propenyl-[1,3]dioxane (41) 
  

41 results from desilylation of the starting material (0.02 g, 22%): 1H NMR (300 

MHz, CDCl3) δ 5.91 (m, 1H), 5.54 (ddq, J = 15.5, 4.9, 1.3 Hz, 1H), 4.92 (d, J = 4.9 

Hz, 1H), 4.79 (s, 1H), 4.73 (s, 1H), 4.13 (dd, 11.4, 4.8 Hz, 1H), 3.79 (m, 2H), 2.38 (dd, J = 13.9, 

6.3 Hz, 1H), 2.16 (dd, 13.9, 6.7 Hz, 1H), 1.74 (s, 3H), 1.71 (d, J = 6.5 Hz, 3H), 1.61 (ddd, 23.8, 

11.8, 4.9 Hz, 1H), 1.42 (d, J = 13.3 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ  141.6, 130.4, 128.5, 

113.0, 100.8, 75.4, 66.7, 44.7, 31.1, 23.0, 17.8; IR (neat) 3076, 2960, 2916, 2850, 2727, 1687, 

1636, 1440, 1367, 1316, 1243, 1134, 1076, 1010, 960, 887 cm-1; HRMS (EI): m/z calcd for 

C11H17O2 (M+) 181.122855, found 181.122805. 
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This procedure is representative of a standard aqueous Prins reaction. To trimethyl[2-(2-

propenyl[1,3]dioxan-4-ylmethyl)allyl]silane (0.10 g, 0.39 mmol) in H2O (1 mL) was added 

sodium dodecylsulfate (0.03 g, 0.12 mmol) followed by cerium nitrate hexahydrate (0.01 g, 0.04 

mmol). Micelles formed immediately upon the addition of the cerium nitrate and the reaction 

mixture was stirred at 1100 rmp for 18 h. The reaction mixture was extracted into ether, washed 

with 10% aqueous HCl, dried (MgSO4), and concentrated. The resulting residue was purified by 

flash chromatography (20% EtOAc in hexanes) to afford the desired product 2 (0.06 g, 76%).  

 

Trimethyl-[2-(2-non-1-enyl-[1,3]dioxan-4-ylmethyl)-allyl]-silane (45) 
 

This cyclization substrate was obtained using standard acid mediated acetal 

formation conditions with 36 (0.50 g, 2.56 mmol) and trans-2-decenal (0.39 g, 

2.56 mmol). A portion of the resulting residue (250 mg, 0.75 mmol) was 

subjected to standard palladium-mediated coupling conditions using palladium 

tetrakistriphenylphosphine (0.09 g, 0.08 mmol) and trimethylsilylmethylmagnesium chloride (1.0 

M in ether, 3.77 mmol, 3.77 mL) to afford the desired cyclization substrate (0.18 g, 71%): 1H 

NMR (300 MHz, CDCl3) δ 5.92 (dt, J = 14.9, 6.6 Hz, 1H), 5.53 (ddt, J = 15.1, 5.0, 1.4 Hz, 1H), 

4.95 (d, J = 5.0 Hz, 1H), 4.65 (s, 1H), 4.61 (s, 1H), 4.15 (ddd, 11.4, 4.8, 1.2 Hz, 1H), 3.82 (m, 

2H), 2.38 (dd, J = 13.9, 5.5 Hz, 1H), 2.08 (m, 3H), 1.72 – 1.26 (m, 14H), 0.87 (t, J = 6.5 Hz, 

3H), 0.03 (s, 9H) ); 13C NMR (75 MHz, CDCl3) δ 144.0, 135.4, 127.4, 110.0, 101.1, 76.3, 66.8, 

45.1, 32.2, 32.0, 31.4, 29.4, 29.3, 28.9, 27.5, 22.8, 14.4, -0.58; IR (neat) 2952, 2923, 2850, 1672, 

1636, 1461, 1352, 1243, 1134, 1018, 967, 858 cm-1; HRMS (EI): m/z calcd for C20H38O2Si (M+) 

338.264109, found 338.263779. 
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2-(4-Methylene-6-non-1-enyl-tetrahydropyran-2-yl)ethanol (46) 
 

Trimethyl-[2-(2-non-1-enyl-[1,3]dioxan-4-ylmethyl)-allyl]-silane (45) (0.10 g, 

0.29 mmol) was subjected to standard aqueous Prins cyclization conditions 

using scandium chloride hexahydrate (0.004 g, 0.03 mmol) and sodium 

dodecylsulfate (0.03 g, 0.09 mmol) to afford the desired product (0.06 g, 73%): 1H NMR (300 

MHz, CDCl3) δ 5.66 (dtd, J = 15.4, 6.6, 0.9 Hz, 1H), 5.47 (ddt, J = 15.4, 6.2, 1.3 Hz, 1H), 4.73 

(s, 2H), 3.79 (t, J = 5.0 Hz, 2H), 3.74 (m, 1H), 3.57 (m, 1H), 2.76 (s, 1H), 2.26 – 1.97 (m, 6H), 

1.80 (m, 2H), 1.26 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 144.2, 

132.7, 130.5, 108.9, 79.3, 78.7, 61.3, 41.2, 40.8, 38.4, 32.4, 32.0, 29.8, 22.8, 14.1; IR (neat) 

3396, 2923, 2850, 1650, 1461, 1425, 1352, 1309, 1054, 960, 894 cm-1; HRMS (EI): m/z calcd for 

C17H30O2 (M+) 266.224580, found 266.225400. 

 

2,2-Dimethylpropionic acid 3-hydroxy-butyl ester 
 

To 1,3-butanediol (1.50 g, 16.64 mmol) in CH2Cl2 (15 mL) at 0 ºC was added 

triethylamine (7.58 g, 74.89 mmol) followed by pivaloyl chloride (2.20 g, 18.31 mmol). The 

reaction mixture was stirred for 4 h at room temperature then quenched with H2O. The two 

layers were separated and the organic layer was dried (MgSO4), concentrated and purified by 

flash chromatography (40% EtOAc in hexanes) to afford the desired product (79%, 2.28 g): 1H 

NMR (300 MHz, CDCl3) δ 4.36 (m, 1H), 4.11 (m, 1H), 3.86 (m, 1H), 2.05 (br s, 1H), 1.74 (m, 

2H), 1.26 (d, J = 4.8 Hz, 3H), 1.18 (s, 9H).1 
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Trimethyl-[2-(6-methyl-2-propenyl-[1,3]dioxan-4-ylmethyl)-allyl]-silane (52) 
  

 To 2,2-dimethyl-propionic acid 3-hydroxybutyl ester (2.28 g, 13.08 mmol) in 

DMF (15 mL) was added triethylamine (1.58 g, 15.70 mmol) followed by tert-

butylchlorodiphenylsilane (3.95 g, 14.39 mmol). The reaction mixture was 

stirred for 48 h, and then quenched with H2O. The two layers were separated and the organic 

layer was dried (MgSO4), and concentrated. Sodium (0.299 g, 13.08 mmol) was dissolved in 

MeOH (20 mL) under N2 at 0 ºC. The resulting residue (in 5 mL of MeOH) was added drop 

wise. The reaction mixture was heated to 40 ºC for 12 h, then cooled to room temperature, 

quenched with H2O and extracted with EtOAc. The organic layer was dried (MgSO4), 

concentrated and purified by flash chromatography (20% EtOAc in hexanes) to afford the 

desired primary alcohol (2.05 g, 48%). The resulting alcohol was dissolved in CH2Cl2 (30 mL) 

under N2 and the temperature was decreased to 0 ºC before Dess-Martin periodinane (3.19 g, 

7.50 mmol) was added. The reaction mixture was stirred for 1 h at room temperature. The 

temperature was then decreased to 0 ºC and the reaction mixture was quenched with saturated 

aqueous NaHCO3 and saturated aqueous Na2S2O3. The reaction mixture was warmed to room 

temperature and stirred for 30 min. before the two layers were separated. The organic layer was 

dried (MgSO4) and concentrated. To a stirring suspension of tin powder (0.93 g, 7.82 mmol) in 

an ether-water mixture (15 mL:7 mL) were added a few drops of HBr, 2,3-dibromopropene (1.87 

g, 7.50 mmol) and the resulting residue (in 5 mL of ether). The reaction mixture was stirred for 

18 h before it was filtered through a pad of Celite. The filtrate was washed with brine, dried 

(MgSO4), and concentrated. The resulting residue was dissolved in THF (15 mL) and TBAF 

(1.26 g, 4.84 mmol). The reaction mixture was stirred for 3h, then filtered through a plug of 

silica (EtOAc) to afford the desired diol (0.76 g, 91%). 
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  The cyclic α,β-unsaturated acetal was obtained using standard acid mediated acetal 

formation conditions with 6-bromo-hept-6-ene-2,4-diol (0.50 g, 2.39 mmol), crotonaldehyde 

(0.15 g, 2.15 mmol) and p-toluenesulfonic acid.  The resulting residue was purified by flash 

chromatography. The all cis-substituted product was isolated and subjected to standard palladium 

mediated coupling conditions using palladium tetrakistriphenylphosphine (0.06 g, 0.05 mmol) 

and trimethylsilylmethylmagnesium chloride (1.0 M in ether, 5.35 mmol, 5.35 mL) in THF (10 

mL) to afford the desired cyclization substrate (0.19 g, 68%): 1H NMR (300 MHz, CDCl3) δ 5.95 

(dq, J = 15.5, 6.5 Hz, 1H), 5.59 (m, 1H), 4.97 (d, J = 5.3 Hz, 1H), 4.65 (s, 1H), 4.61 (s, 1H), 3.80 

(m, 1H), 2.36 (dd, J = 13.8, 5.7 Hz, 1H), 2.09 (dd, J = 13.8, 7.5 Hz, 1H), 1.74 (dd, J = 6.5, 1.4 

Hz, 3H), 1.58 (m, 2H), 1.25 (m, 5H), 0.02 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 144.3, 130.3, 

128.9, 109.8, 100.7, 74.1, 72.8, 44.9, 38.7, 27.5, 21.9, 14.2, -1.09; IR (neat) 2943, 2906, 2857, 

1714, 1419, 1376, 1235, 1124, 1100, 1032, 842 cm-1; HRMS (EI): m/z calcd for C15H28O2Si (M+) 

268.185859, found 268.185834.  

 

1-(4-Methylene-6-propenyltetrahydropyran-2-yl)propan-2-ol (53) 
 

2-Bromo-6-(tert-butyl-diphenyl-silanyloxy)-hept-1-en-4-ol (52) (0.10 g, 0.37 

mmol) was subjected to standard aqueous Prins cyclization conditions using 

cerium nitrate hexahydrate (0.01 g, 0.04 mmol) and sodium dodecylsulfate (0.05 g, 0.19 mmol), 

to afford the desired product (0.06 g, 80%): 1H NMR (300 MHz, CDCl3) δ 5.70 (dq, J = 15.4, 6.2 

Hz , 1H), 5.51 (ddq, J = 15.4, 6.2, 1.3 Hz, 1H), 4.74 (s, 2H), 4.03 (m, 1H), 3.78 (m, 1H), 3.58 

(m, 1H), 2.15 (m, 4H), 1.63 (m, 5H), 1.18 (d, J = 6.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 

143.8, 131.4, 127.7, 109.3, 79.7, 79.1, 68.3, 44.5, 41.0, 40.8, 23.6, 18.0; IR (neat) 3418, 3069, 
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2923, 2850, 1643, 1440, 1374, 1309, 1061, 960, 887 cm-1; HRMS (EI) m/z calcd for C12H20O2 

(M+) 196.146330, , 0.06 g found 196.146690. 

 

5-Methoxymethoxypent-2-enal (55) 
 

To 3-butenol (1.00 g, 13.86 mmol) in CH2Cl2 (10 mL) at 0 ºC was added N, N’- 

diisopropylethylamine (2.68 g, 20.80 mmol), and chloromethyl methyl ether (1.67 

g, 20.80 mmol). The reaction mixture was stirred for 1.5 h at room temperature, then poured into 

a separatory funnel containing Et2O: 1N HCl and extracted. The organic layer was dried 

(MgSO4) and concentrated. To a solution of the resulting residue in CH2Cl2 (10 mL) was added 

acrolein (0.49 g, 8.61 mmol) and triclyclohexylphosphine[1,3-bis(2,4,6-trimethylphenyl)-4,5-

dihydroimidazol-2-ylidene] [benzylidine]ruthenium (IV) dichloride (Grubbs second generation 

catalyst) (0.18 g, 0.22 mmol). The reaction mixture was heated to reflux for 18 h, cooled to room 

temperature and concentrated. The resulting residue was purified by flash chromatography (30% 

Et2O in pentanes) to afford the desired product (0.17 g, 28%): 1H NMR (300 MHz, CDCl3) δ 

9.55 (d, J = 7.8 Hz, 1H), 6.88 (dt, J = 15.7, 6.7 Hz, 1H), 6.22 (dd, J = 15.7, 7.8 Hz, 1H), 4.65 (s, 

2H), 3.73 (t, J = 6.2, 2H), 3.37 (s, 3H), 2.64 (m, 2H).  

 

4-(2-Bromoallyl)-2-(4-methoxymethoxy-but-1-enyl)-[1,3]dioxane (56) 
 

To 36 (0.23 g, 1.21 mmol) in CH2Cl2 (5 mL) at -20 ºC was added 5-

methoxymethoxypent-2-enal (0.17 g, 1.21 mmol), p-toluenesulfonic acid (0.02 g, 

0.12 mmol), and anhydrous MgSO4 (0.17 g, 1.39 mmol). The reaction mixture was 

stirred for 18 h, quenched with saturated aqueous NaHCO3 (2 mL) and allowed to warm to room 
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temperature. The two layers were separated, and the organic layer was dried (MgSO4) and 

concentrated. The resulting residue was purified by flash chromatography (20% Et2O in 

pentanes) to afford the desired product (0.29 g, 76%): 1H NMR (300 MHz, CDCl3) δ 5.92 (dt, J 

= 15.7, 6.7 Hz, 1H), 5.66 (s, 1H), 5.60 (ddt, J = 15.7, 4.6, 1.4 Hz, 1H), 5.48 (d, J = 1.5 Hz, 1H), 

4.96 (d, J = 4.6 Hz, 1H), 4.60 (s, 2H), 4.11 (dd, J = 11.4, 4.9 Hz, 1, H), 3.99 (m, 1H), 3.80 (dt, J 

= 11.9, 2.6 Hz, 1H), 3.57 (t, J = 6.7 Hz, 2H), 3.33 (s, 3H), 2.75 (dd, J = 14.4, 6.7 Hz, 1H), 2.49 

(dd, J = 14.4, 6.3 Hz, 1H), 2.36 (m, 2H), 1.64 (m, 1H), 1.48 (m, 1H); 13C NMR (75 MHz, 

CDCl3) δ 131.6, 128.9, 119.6, 100.5, 96.4, 74.2, 66.7, 66.5, 55.3, 47.7, 32.6, 30.5; IR (neat) 

2945, 2916, 2850, 1694, 1629, 1432, 1352, 1243, 1149, 1134, 1032, 974; HRMS (EI) m/z calcd 

for C13H20O4Br (M+) 319.054495, found 319.054353. 

 

{2-[2-(4-Methoxymethoxybut-1-enyl)-[1,3]dioxan-4-ylmethyl]allyl}-trimethylsilane (57) 
 

To 56 (0.29 g, 0.92 mmol) in THF (5 mL) was added 

trimethylsilylmethylmagnesium chloride (1.0 M in Et2O, 4.59 mmol, 4.59 mL) and 

palladium tetrakistriphenylphosphine (0.05 g, 0.05 mmol). The reaction mixture 

was heated to reflux for 3h, cooled to 0 ºC, and quenched with saturated aqueous NH4Cl. The 

reaction mixture was warmed to room temperature and extracted into Et2O. The organic layer 

was dried (MgSO4) and concentrated. The resulting residue was purified by flash 

chromatography (10% triethylamine, 20% Et2O in pentanes) to afford the desired product (0.24 

g, 80%): 1H NMR (300 MHz, CDCl3) δ 5.93 (dt, J = 15.7, 6.7 Hz, 1H), 5.63 (ddt, 15.7, 3.4, 1.3 

Hz, 1H), 4.97 (d, J = 4.7 Hz, 1H), 4.65 (s, 1H), 4.63 (s, 3H), 4.15 (dd, J = 11.4, 4.9 Hz, 1H), 3.80 

(m, 2H), 3.60 (t, J = 6.8 Hz, 2H), 3.35 (s, 3H), 2.37 (m, 2H), 2.10 (dd, J = 13.9, 7.3 Hz, 2H) 1.53 

(m, 2H), 1.24 (s, 2H), 0.35 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 143.2, 131.4, 129.2, 110.0, 
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100.6, 96.5, 75.7, 66.8, 55.3, 44.8, 32.6, 31.2, 27.3, -1.19; IR (neat) 3076, 2952, 2850, 1687, 

1621, 1367, 1243, 1149, 1112, 1047, 967, 850; HRMS (EI): m/z calcd for C17H31O4Si (M+) 

327.199163 found, 327.199646.  

 

2-[6-(4-Methoxymethoxybut-1-enyl)-4-methylenetetrahydropyran-2-yl]ethanol (58) 
 

{2-[2-(4-Methoxymethoxybut-1-enyl)-[1,3]dioxan-4-ylmethyl]allyl}-

trimethylsilane (57) (0.10 g, 0.304 mmol) was subjected to standard 

aqueous Prins cyclization conditions using scandium chloride hexahydrate (0.004 g, 0.03 mmol) 

and sodium dodecylsulfate (0.04 g, 0.12 mmol) to afford the desired product (0.04 g, 53%): 1H 

NMR (300 MHz, CDCl3) δ 5.65 (m, 2H), 4.75 (d, J = 1.6 Hz, 1H), 4.74 (d, J = 1.6 Hz, 1H), 4.61 

(s, 2H), 3.73 (t, J = 5.1 Hz, 3H), 3.57 (t, J = 6.8 Hz, 3H), 3.35 (s, 4H), 2.33 (m,2H), 2.17 (m, 

4H), 1.80 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 143.7, 132.4, 128.5, 109.2, 96.4, 78.9, 78.8, 

67.1, 61.4, 55.2, 40.7, 40.5, 38.0, 32.8; IR (neat) 3440, 3069, 2930, 2880, 1658, 1425, 1352, 

1316, 1149, 1105, 1047, 960, 901; HRMS (EI): m/z calcd for C14H24O4 (M+) 256.167460, found 

256.167673. 

 

 

(tert-Butyldimethylsilanyloxy)-acetaldehyde (60) 
 

Ozone was bubbled through a solution of 1,4-bis(tert-butyldimethylsilanyloxy)but-2-ene 

(3.00 g, 9.47 mmol) in CH2Cl2 (30 mL) at -78 ºC. The flow of ozone was stopped after 

45 min. and triphenylphosphine (2.48 g, 9.47 mmol) was added to the reaction mixture. The 

mixture was allowed to stir for 12 h while slowly warming to room temperature. The reaction 
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mixture was concentrated to a third of its volume, placed directly on a silica gel column and 

purified by flash chromatography (CH2Cl2) to afford the desired aldehyde (3.03 g, 51%): 1H 

NMR (300 MHz, CDCl3) δ 9.71 (s, 1H), 4.23 (s, 2H), 0.94 (s, 9H), 0.11 (s, 6H). 

 

Trimethyl[2-(2-non-1-enyl[1,3]dioxolan-4-ylmethyl)allyl]silane (64) 
 

To a solution of (2-bromo-allyl)-trimethylsilane (1.85 g, 9.58 mmol) in CH2Cl2  

(15 mL) at -78 ºC was added 60 (1.11 g, 6.39 mmol)  followed by titanium 

tetrachloride (1.51 g, 7.98 mmol). Then reaction mixture was stirred for 35 min., 

then cannulated into a stirring saturated aqueous NaHCO3 (25 mL) at 0 ºC. The mixture was 

stirred while warming to room temperature. The two layers were separated. The water layer was 

washed with ethyl acetate. The combined organic layers were dried (MgSO4) and concentrated. 

The resulting residue was purified by flash chromatography (5% EtOAc in hexanes) to afford the 

desired product (1.10 g, 59%). To 4-bromo-1-(tert-butyldimethylsilanyloxy)pent-4-en-2-ol (1.10 

g, 3.73 mmol) on THF (10 mL) under N2 was added tetrabutylammonium fluoride (1.07 g, 4.11 

mmol). The reaction mixture was stirred for 12 h then concentrated. The crude mixture was 

purified by flash chromatography (EtOAc). The resulting residue was subjected to standard acid 

mediated acetal formation conditions using trans-2-decenal (0.51 g, , 0.51 g 3.28 mmol). A 

solution of zinc bromide (0.71 g, 3.15 mmol) in THF (3 mL) was added dropwise to a solution of 

trimethylsilylmethylmagnesium chloride (1.0 M in ether, 3.15 mmol, 3.15 mL) and was stirred 

for 18 h. A solution of the resulting residue from the acetal formation in THF (2 mL) was added, 

followed by palladium tetrakistriphenylphosphine (0.04 g, 0.03 mmol). The reaction mixture was 

stirred for 18 h, and was then quenched with saturated aqueous NH4Cl. The two layers were 

separated and the aqueous layer was washed with ether. The organic layers were combined, dried 
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(MgSO4), concentrated and purified by flash chromatography (10% triethylamine, 5% ether in 

pentanes) to afford the desired product: 1H NMR (300 MHz, CDCl3) δ 5.91 (m, 1H), 5.48 (m, 

1H), 5.32 (d, J = 6.6 Hz, 1H), 5.20 (d, J = 6.8 Hz, 1H), 4.64 (m, 1H), 4.60 (s, 1H), 4.26 (m, 1H), 

4.14 (dd, J = 8.1, 6.0 Hz, 1H), 3.96 (dd, J = 7.7, 6.5 Hz, 1H), 3.61 (dd, J = 7.7, 6.4 Hz, 1H), 3.52 

(dd, J = 8.1, 6.9 Hz, 1H), 2.40 (m, 2H), 2.21 (m, 2H), 1.25 (m, 12H), 0.02 (s, 9H); 13C NMR (75 

MHz, CDCl3) δ 143.8, 143.6, 138.0, 137.2, 126.9, 109.7, 104.7, 103.9, 75.6, 74.8, 70.5, 69.8, 

42.6, 42.1, 32.2, 32.0, 29.0, 28.9, 27.6, 22.8, 14.2, -1.12; IR (neat) 3061, 2945, 2923, 1730, 1665, 

1643, 1461, 1403, 1243, 1127, 1061, 967, 850; HRMS (EI): m/z calcd for C19H36O2Si (M+) 

324.248459, found 324.247900. 

 

(4-Methylene-6-non-1-enyl-tetrahydropyran-2-yl)methanol (65) 
 

  (4-Methylene-6-non-1-enyl-tetrahydropyran-2-yl)methanol (64) (0.05 g, 0.15 

mmol) was subjected to standard aqueous Prins cyclization conditions using 

scandium chloride hexahydrate (0.002 g, 0.02 mmol) and sodium dodecylsulfate (0.04 g, 0.15 

mmol) to afford the desired product (0.03 g, 77%): 1H NMR (300 MHz, CDCl3) δ 5.70 (dt, J = 

15.5, 6.5 Hz, 1H), 5.49 (dd, J = 15.5, 6.4 Hz, 1H), 4.77 (s, 2H), 3.79 (m, 1H), 3.61 (m, 2H), 3.47 

(m, 1H), 2.05 (m, 7H), 1.57 (m, 3H), 1.26 (m, 10H), 0.88 (t, J = 5.5 Hz, 3H); 13C NMR (75 

MHz, CDCl3) δ 143.8, 133.2, 130.3, 109.4, 79.2, 78.6, 66.1, 41.2, 36.3, 32.5, 32.0, 29.8, 29.3, 

22.8, 14.3; IR (neat) 3418, 3069, 2930, 2850, 1650, 1461, 1345, 1098, 1054, 967, 894; HRMS 

(EI): m/z calcd for C16H28O2 (M+) 252.208930, found 252.209094.  
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2-Benzyloxy-propionic acid methyl ester (+)-67 
 

To a suspension of silver oxide (4.45 g, 19.21 mmol) in ether (15 mL) was added 

methyl-(S)-(-)-lactate (1.00 g, 9.60 mmol) and benzyl bromide (2.45 g, 14.40 mmol). 

The reaction mixture was stirred for 48 h, then filtered through a pad of Celite and concentrated. 

The resulting residue was purified by flash chromatography (10% Et2O in pentanes) to afford the 

desired product (1.09 g, 63%): 1H NMR (300 MHz, CDCl3) δ 7.35 (m, 5H), 4.72 (d, J = 11.6 Hz, 

1H), 4.48 (d, J = 11.6 Hz, 1H), 4.09 (q, J = 6.9 Hz, 1H), 3.76 (s, 3H), 1.44 (d, J = 6.8 Hz, 3H); 

13C NMR (75 MHz, CDCl3) δ 173.8, 137.6, 128.5, 128.1, 74.1, 72.1, 52.0, 18.8; [α]D
23 -92.3º 

(CDCl3, c 0.37); lit: [α]D
23 78.5º (CDCl3, c 0.37) for the (R)-(-) enantiomer.   

 

2-Benzyloxy-5-bromo-hex-5-en-3-ol (+)-69 
 

To (+)-67 in CH2Cl2 ( 10 mL) at -98 ºC was added diisobutyl aluminum hydride (1.0 

M in hexanes, 3.33 mmol, 3.33 mL). The reaction mixture was stirred for 1 h, then 

quenched with ethyl acetate (2 mL) and stirred for 10 min. before a solution of saturated sodium, 

potassium tartrate (10mL) was added. The reaction mixture was warmed to room temperature 

and stirred for 2 h before the two layers were separated. The water layer was washed with 

CH2Cl2 and the combined organic layers were dried (MgSO4) and concentrated. The resulting 

residue was added to a solution of (2-bromo-allyl)-trimethyl-silane (0.64 g, 3.33 mmol) under N2 

at -78 ºC in CH2Cl2 (10 mL). Tin (IV) chloride (1.0 M in CH2Cl2, 5.55 mmol, 5.55 mL) was 

added and the reaction mixture was stirred for 45 min. before being quenched with H2O (10 mL). 

The reaction mixture was warmed to room temperature and the two layers were separated. The 

aqueous layer was washed with CH2Cl2 and the combined organic layers were dried (MgSO4) 
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and concentrated. The resulting residue was purified by flash chromatography (10% Et2O in 

pentanes) to afford the desired product (0.46 g, 62%): 1H NMR (300 MHz, CDCl3) δ 7.32 (m, 

5H), 5.66 (d, J = 1.3 Hz, 1H), 5.15 (d, J = 1.5 Hz, 1H), 4.70 (d, J = 11.5 Hz, 1H), 4.47 (d, J = 

11.5 Hz, 1H), 3.85 (m, 1H), 3.52 (dq, J = 4.8, 6.2 Hz, 1H), 2.60 (d, J = 6.1 Hz, 2H), 1.28 (d, J = 

6.2 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 138.4, 130.8, 128.7, 128.0, 119.4, 76.5, 72.6, 71.1, 

45.5, 15.8; IR (neat) 3447, 3083, 3061, 3025, 2952, 2923, 2872, 1621, 1505, 1447, 1374, 1207, 

1069, 901, 734, 698 cm-1; HRMS (EI): m/z calcd for C13H17O2 (M+) 284.041191, found 

284.041088; [α]D
23 14.7º (CHCl3, c 5.0). 

 The ee was determined to be 80% by chiral HPLC analysis using a chiracel OD-H 

column. Conditions: Hex:i-PrOH 90:10, 0.80 mL/min. 

 

4-(2-Bromo-allyl)-5-methyl-2-non-1-enyl-[1,3]dioxolane (-)-71 
 

To (+)-69 (0.31 g, 1.08 mmol) in CH2Cl2 (10 mL) at 0 ºC was added titanium (IV) 

chloride (0.25 g, 1.36 mmol). The reaction mixture was stirred for 2h, and then 

quenched with saturated aqueous NaHCO3 (5 mL) and allowed to warm to room temperature. 

The reaction mixture was extracted into ethyl acetate, and the aqueous layer was washed (5 x) 

with ethyl acetate. The combined organic layers were dried (MgSO4) and concentrated and 

flashed through a silica gel plug using ethyl acetate. To a solution of the resulting residue in 

CH2Cl2 (5 mL) at -20 ºC under N2 was added trans-2-decenal (0.12 g, 0.78 mmol), p-

tolunesulfonic acid (0.01 g, 0.08 mmol), and anhydrous MgSO4 (0.11 g, 0.89 mmol). The 

reaction mixture was stirred for 18 h, then was quenched with saturated aqueous NaHCO3 (2 

mL) and warmed to room temperature. The two layers were separated and the organic layer was 

dried (MgSO4) and concentrated. The resulting residue was purified by flash chromatography 

Br
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(5% Et2O in pentanes) to afford the desired product (0.22 g, 85%): 1H NMR (300 MHz, CDCl3) 

δ 5.93 (dt, J = 15.3, 6.6 Hz, 1H), 5.75 (m, 1H), 5.53 (d, J = 1.7 Hz, 1H), 5.47 (m, 1H), 5.36 (d, J 

= 6.8 Hz, 1H), 5.30 (d, J = 6.9, Hz, 1H), 3.87 (m, 2H), 2.79 (m, 1H), 2.58 (dtd, J = 13.4, 4.3, 

0.85 Hz, 1H), 2.05 (m, 2H), 1.37 (d, J = 5.9 Hz, 3H), 1.26 (m, 10H), 0.87 (t, J = 6.5 Hz, 3H); 13C 

NMR (75 MHz, CDCl3) δ 138.0, 137.7, 129.3, 129.2, 127.1, 127.0, 119.4, 103.7, 103.5, 81.0, 

79.9, 78.0, 76.6, 45.2, 44.7, 32.2, 32.0, 29.3, 28.8, 22.8, 18.3, 18.2, 15.4, 14.2; IR (neat) 3105, 

2952, 2923, 2850, 1672, 1629, 1454, 1410, 1374, 1316, 1214, 1127, 1083, 1061, 974, 894; 

HRMS (EI): m/z calcd for C16H26O2Br (M+) 329.11616, found 329.110518; [α]D
23 -10.9º 

(CH2Cl2 , c 5.7).  

 

Trimethyl[2-(5-methyl-2-non-1-enyl-[1,3]dioxolan-4-ylmethyl)allyl]silane (-)-72 
 

A solution of zinc bromide (0.57 g, 2.54 mmol) in THF (3 mL) was added 

dropwise to a solution of trimethylsilylmethylmagnesium chloride (1.0 M in ether, 

2.54 mmol, 2.54 mL) and was stirred for 18 h. A solution of (-)-71 (0.17 g, 0.508 

mmol) in THF (2 mL) was added, followed by palladium tetrakistriphenylphosiphine (0.03 g, 

0.03 mmol). The reaction mixture was stirred for 18 h, and was then quenched with saturated 

aqueous NH4Cl. The two layers were separated and the aqueous layer was washed with ether. 

The organic layers were combined, dried (MgSO4), concentrated and purified by flash 

chromatography (5% Et2O in pentanes, the silica was neutralized with 10% triethylamine in 

pentanes) to afford the desired cyclization substrate (0.15 g, 89%): 1H NMR (300 MHz, CDCl3) 

δ 5.19 (dt, J = 15.3, 6.6 Hz, 1H), 5.50 (m, 1H), 5.34 (d, J = 6.7 Hz, 1H), 5.30 (d, J = 6.8 Hz, 1H), 

4.72 (s, 1H), 4.63 (s, 1H), 3.74 (m, 2H), 2.33 (m, 1H), 2.05 (m, 3H), 1.57 (s, 3H), 1.26 (m, 12H), 

0.88 (t, J = 6.8 Hz, 3H), 0.04 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 143.5, 143.4, 138.2, 138.0, 
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127.0, 110.3, 103.4, 103.2, 82.1, 80.7, 78.5, 66.0, 41.5, 32.2, 31.9, 29.3, 28.8, 27.1, 22.8, 18.2, 

14.3, -1.1; IR (neat) 3069, 2952, 2916, 2850, 1680, 1629, 1454, 1410, 1381, 1250, 1163, 1120, 

1076, 1047, 960, 843; HRMS (EI): m/z calcd for C20H38O2Si (M+) 338.264109, found 

338.263645; [α]D
23 -12.8º (CH2Cl2 , c 5.0). 

 

1-(4-Methylene-6-non-1-enyltetrahydropyran-2-yl)ethanol (+)-73 
 

Trimethyl[2-(5-methyl-2-non-1-enyl-[1,3]dioxolan-4-ylmethyl)allyl] (-)-72 

(0.05 g, 0.15 mmol) was subjected to standard aqueous Prins cyclization 

conditions using scandium chloride hexahydrate (0.002 g, 0.01 mmol) and sodium 

dodecylsulfate (0.04 g, 0.15 mmol) to afford the desired product (0.02 g, 51%): 1H NMR (300 

MHz, CDCl3) δ 5.69 (dtd, J = 15.5, 5.8, 0.76 Hz, 1H), 5.47 (ddt, J = 15.5, 6.2, 1.2 Hz, 1H), 4.78 

(s, 2H), 3.74 (m, 1H), 3.66 (m, 1H), 3.11 (m, 1H), 2.81 (s, 1H), 2.22 (m, 2H), 2.02 (m, 4H), 1.27 

(m, 10H), 1.18 (d, J = 6.3 Hz, 3H), 0.88 (t, J = 6.4 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 143.9, 

132.7, 130.5, 109.5, 82.9, 79.1, 70.7, 41.2, 36.7, 32.5, 32.0, 29.3, 22.8, 18.4, 14.2; IR (neat) 

3440, 3076, 2916, 2850, 1650, 1469, 1367, 1250, 1061, 967, 887; HRMS (EI): m/z calcd for 

C17H30O2 (M+) 266.224580, found 266.224580; [α]D
23 +0.218º (CH2Cl2 , c 16.0). 

 

2-(1-Hydroxyethyl)-4-methyl-6-non-1-enyl-tetrahydropyran-4-ol (75) 

 (0.006, 12%): 1H NMR (300 MHz, CDCl3) δ 5.68 (dt, J = 15.4, 6.8 Hz, 1H), 

5.47 (dd, J = 15.6, 6.1 Hz, 1H), 4.17 (m, 1H), 3.85 (m, 1H), 3.64 (m, 2H), 3.16 

(m, 1H), 2.04 (m, 2H), 1.62 (m, 4H), 1.36 (s, 3H), 1.27 (m, 10H), 1.17 (d, J = 6.3 Hz, 3H), 0.89 

(t, J = 6.8, 3H); 13C NMR (75 MHz, CDCl3) δ 133.0, 130.3, 79.9, 75.7, 73.6, 70.7, 69.5, 46.4, 

44.6, 41.9, 40.18, 32.5, 32.0, 29.9, 29.3, 26.3, 22.8, 18.3, 14.3; IR (neat) 3374, 2952, 2923, 2858, 
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1469, 1367, 1294, 1090, 1054, 967; HRMS (EI): m/z calcd for C17H32O3 (M+) 284.235145, found 

284.235687. 

 

Benzoic acid 1-(4-methylene-6-non-1-enyltetrahydropyran-2-yl)ethyl ester 
 

To (+)-73 (0.02 g, 0.08 mmol) in CH2Cl2 (1 mL) was added benzoyl chloride 

(0.01 g, 0.11 mmol), anhydrous pyridine (1 mL), and a catalytic amount of 

DMAP. The reaction was stirred for 18 h, then concentrated and purified by flash 

chromatography (5% Et2O in pentanes) to afford the desired product (0.02 g, 81%): 1H NMR 

(300 MHz, CDCl3) δ 8.05 (d, J = 7.0 Hz, 2H), 7.56 (dd, J = 7.3, 7.3 Hz, 1H), 7.45 (dd, J = 7.2, 

6.5 Hz, 2H), 5.66 (dt, J = 15.5, 6.4 Hz, 1H), 5.52 (dd, J = 15.5, 5.8 Hz, 1H), 5.27 (m, 2H), 4.78 

(s, 2H), 3.76 (m, 1H), 3.52 (m, 1H), 2.15 (m, 6H), 1.40 (d, J = 6.5 Hz, 3H), 1.27 (m, 10H), 0.86 

(t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 166.2, 144.1, 133.0, 132.4, 130.8, 130.4, 

129.8, 128.4, 109.5, 79.2, 72.3, 41.2, 35.7, 32.5, 32.0, 29.3, 22.8, 15.7, 14.3; IR (neat) 3061.8, 

2923.6, 2850.9, 1716.3, 1650.9, 1592.7, 1447.2, 1352.7, 1309.1, 1280.0, 1170.9, 1112.7, 960.0, 

887.2; HRMS (EI): m/z calcd C24H34O3 (M+) 370.250795 found, 370.252609; [α]D
23 0.986º 

(CH2Cl2 , c 5.0). 

The ee was determined to be 86% by chiral HPLC analysis using a chirapak AD column. 

Conditions: Hex:i-PrOH 90:10, 0.40 mL/min. 

 

Benzyloxy-acetic acid methyl ester 

To a suspension of silver (I) oxide (5.15 g, 22.20 mmol) in Et2O (10 mL) was added methyl 

glycolate (1.0 g, 11.10 mmol) and benzyl bromide (2.85 g, 16.65 mmol). The reaction mixture 

was heated to reflux and stirred for 18 h, cooled to room temperature, filtered through a pad of 

O
OBz

H H
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Celite and concentrated. The resulting residue was purified by flash chromatography (10% Et2O 

in pentanes) to afford the desired product (82%, 1.64 g): 1H NMR (300 MHz, CDCl3) δ 7.33 (m, 

5H), 4.64 (s, 2H), 4.15 (s, 2H), 3.77 (s, 3H). 

 

2-Benzyloxy-propionic acid methyl ester 
 

To a stirring solution of lithium bis(trimethylsilyl)amide (1.0 M in THF, 5.55 mmol, 

5.55 mL) and hexamethylphosphoramide (0.05 g, 0.28 mmol) at -78 ºC was added 

benzyloxy-acetic acid methyl ester (0.50 g, 2.77 mmol). The reaction mixture was stirred for 30 

min, and then iodomethane (1.96 g, 13.87 mmol) was added. The reaction mixture was stirred for 

3 h, then quenched with saturated aqueous NH4Cl and allowed to warm to room temperature. 

The reaction mixture was extracted into Et2O and the aqueous layer was washed with Et2O. The 

combined organic layers were dried (MgSO4), and concentrated. The resulting residue was 

purified by flash chromatography (10% Et2O in pentanes) to afford the desired product (0.25 g, 

46%): 1H NMR (300 MHz, CDCl3) δ 7.35 (m, 5H), 4.72 (d, J = 11.6 Hz, 1H), 4.48 (d, J = 11.6 

Hz, 1H), 4.09 (q, J = 6.9 Hz, 1H), 3.76 (s, 3H), 1.44 (d, J = 6.8 Hz, 3H). 

 

The racemic form of benzoic acid 1-(4-methylene-6-non-1-enyltetrahydropyran-2-yl)ethyl ester 

was synthesized in the same manner as the enantiopure form starting from  2-Benzyloxy-

propionic acid methyl ester. The racemic form was used as a standard for HPLC analysis and ee 

determination. 
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3. Efforts towards the total synthesis of (+)-dactylolide 

 

3.1. Introduction 

 

I. Background 
 

Over 70% of the earth’s surface is covered by water.71 The oceans endow us with a 

complex biological environment that consists of an extensive assemblage of life forms. These 

life forms thrive in extreme habitats and continuously endure tremendous variations in pressure, 

salinity, and temperature, as well as attack from a wide array of predators. Consequently, they 

have developed unique metabolic and physiological capabilities that ensure survival. It is this 

potential for the production of unique bioactive metabolites, unlike any isolated from terrestrial 

organisms, that drives the isolation and analysis of these marine systems. Sponges and marine 

bacteria serve as fertile sources for these structurally diverse, bioactive molecules. Although 

isolated from phyogenetically diverse marine sources, macrolides are emerging as an 

increasingly interesting and important category of molecule based on the wide spectrum of 

biological and pharmacological properties they exhibit.  

Macrolactones are a class of macrolides that provide a great number of cytotoxic agents. 

(+)-Dactylolide (1) is one such cytotoxic macrolactone recently isolated from the Vanuata 

sponge Dactylospongia sp. by Riccio and coworkers72 (Figure 3.1). The crude extract from this 

sponge was selected based on preliminary pharmacological screening. The biologically active 

metabolites were obtained following methanol extraction of the lyophilized organism. The 

methanolic extract was then subjected to a modified Kupchan partition procedure to afford four 

extracts. Mycothiazole,73 latrunculin A74, isolaulimalide75 and laulimalide were isolated as pure 
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compounds after medium pressure liquid chromatography of the most active CCl4 extract. (+)-

Dactylolide was isolated as a pure metabolite following elution with 80% hexanes under medium 

pressure liquid chromotagraphy and further purification by C-18 reverse phase HPLC 

(MeOH/H2O 70:30).  

Figure 3.1: (+)-Dactylolide (1) and (-)-Zampanolide (2) 
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Extensive spectroscopic analysis revealed the structure of 12. (+)-Dactylolide posses a 

hydrocarbon skeleton bearing three remote stereogenic centers. The major architectural elements 

are the highly unsaturated 20-membered macrolactone containing two di- and two trisubstituted 

olefins,the α-acyloxyaldehyde, and the remote C19 stereocenter. The core of the molecule is 

composed of a 2,6-cis-disubstituted-4-methylenetetrahydropyran, giving rise to the two 

remaining C11 and C15 stereocenters. While the relative stereochemistry of the core was 

determined during the initial structural analysis, the absolute stereochemistry and the assignment 

of the C19 stereocenter was not made until completion of the first total synthesis by Smith76 in 

2001.  

(+)-Dactylolide’s cytotoxicity was expressed through a 63% inhibition against L1210 

(lymphatic leukemia of mice) and 40% inhibition against SK-OV-3 (carcinoma of the overies) 

tumor cell lines at 3.2 µg/mL. Other interesting examples of macrolides that bear close structural 

relationship to (+)-dactylolide are the sphinxolides and reidispongiolides (Figure 3.2). This new 

class of cyctotoxic macrolides are characterized by a very similar 26-membered macrolactone 

ring which has proven effective against human bronchopulmonary, nasopharyngeal, breast and 



 

 156

colon tumor cell lines, as well as murine leukemia.77 In particular, the cytotoxicity of the 

sphinxolides is associated with cell cycle arrest in G2-M and induction of apoptosis. 

Sphinxolides were found to cause rapid loss of microfilaments in cultured cells without affecting 

microtubule organization, and potently inhibited actin polymerization in vitro. More importantly, 

both the sphinxolides and reidispongiolides were shown to circumvent multidrug resistance 

mediated by overexpression of either P-glycoprotein or MPR.78 Therefore, these macrolides, as 

well as (+)-dactylolide may be efficacious in treatment of drug resistant tumors.  

Figure 3.2: Sphinxolides and reidispongiolides 
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II. Previous Syntheses 
 

Smith’s interest in the total synthesis of (+)-dactylolide stemmed from its structural 

similarity to (-)-zampanolide (2), another cytoxic marine macrolide (Figure 3.1). Although 

isolated in 1996 from the Okinawan sponge Fasciospongia rimosa, (-)-zampanolide’s skeletal 

structure is also a sparsely functionalized 20-membered macrolactone incorporating a 2,6-cis-

disubstituted-4-methylenetetrahydropyran, differing only in the stereochemical configuration 

about the tetrahydropyran ring and bearing an unusual N-acyl hemiaminal side chain. The 

absolute stereochemistry of (-)-zampanolide was unknown until Smith reported the first total 
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synthesis and tentative stereochemical assignment of the non-naturally-occuring antipode, (+)-

zampanolide.79 Assuming that (+)-dactylolide and (-)-zampanolide would be biosynthetically 

related and possess the same relative stereochemical assignment at the C19 center, Smith 

employed the advanced intermediate (-)-AB (Figure 3.3) from his total synthesis of (+)-

zampanolide in the first total synthesis and determination of the absolute stereochemical 

configuration of (+)-dactylolide3. 
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Figure 3.3: Smith's retrosynthetic analysis of (+)-dactylolide 

O

Br

TBSO

OTBS

(-)-AB

H H

O

Br

SO2Ar

H H

(-)-B

CHO

OTBS OTBS

(+)-A

O

CHO

BMDO
O TBSO

O
PO(OEt)2

H H

BMDO
O CO2H

PO(OEt)2

O

OHC O

O

O

H H

15 11

7

1

19

(+)-Dactylolide (1)

3

4 5
19

1

7

3

15 11

 

 Smith arrived at (+)-dactylolide in a total of thirty-five steps, with the longest linear 

sequence involving thirteen steps and the key Petasis-Ferrier80 rearrangement to form the 2,6-cis-

disubstituted-4-methylenetetrahydropyran core. Three strategic disconnections led to the 

formation of the macrocycle. Scission of the C2-C3 olefin afforded the Horner-Emmons 

macrocyclization81 substrate 3. Disconnection of the acyl phosphonate linkage provided the 

commercially available diethylphosphonoacetic acid, 5. Disconnection of the C17-C18 bond 

simplifies to the higher order cuprate82 coupling of vinyl bromide (-)-AB and epoxide 4. 
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Cleavage of the C9-C8 olefin gave rise to the Kocienski-Julia olefination83 partners (-)-B and 

(+)-A. 

 The Petasis-Ferrier rearrangement5 was effectively utilized by Smith for the formation of 

the 2,6-cis-disubstituted-4-methylenetertahydropyran core in the synthesis of sulfone (-)-B 

(Figure 3.4). Trimethylsilyl ether (+)-6 was synthesized in five steps from a known aldehyde, 

using a Brown asymmetric allylation84 to set what will ultimately become the C11 stereocenter. 

Following condensation of 2(E)-3-bromobut-2-enal and (+)-6, a 10:1, inseparable mixture of 

dioxanones (+)-8 was isolated. Reaction of the mixture of dioxanones (+)-8 with the Petasis-

Tebbe reagent (Cp2TiMe2)85 furnished (+)-9 as a 6:1, inseparable mixture of enol ethers. 

Treatment of the mixture of enol ethers with one equivalent of dimethylaluminum chloride at -78 

ºC effected the Petasis-Ferrier rearrangement to provide a separable mixture of cis-pyranones, 

affording the desired pyranone (+)-12 in 59% yield. 

Figure 3.4: Petasis-Ferrier rearrangement 
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Standard Wittig reaction with pyranone (+)-12 provided the exocylic methylene to 

complete the tetrahydropyran core of the molecule (Figure 3.5). Removal of the BPS protecting 

group followed by introduction of the thiotetrazole using the Mitsunobu protocol86 provided (+)-
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16. The sulfide was then oxidized to the sulfone to afford advanced intermediate (-)-B. Thus, the 

2,6-cis-disubstituted-4-methylenetetrahydropyran core of  (+)-dactylolide was realized in the 

longest linear sequence of the total synthesis. Starting from a known aldehyde, a total of thirteen 

steps were utilized to furnish (-)-B in a 12% overall yield, with key cyclization reaction 

involving the Petasis-Ferrier rearrangement. 

Figure 3.5: Completion of advanced intermediate (-)-B 
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 Following the construction of the 2,6-disubstituted-4-methylenetetrahydropyran core, 

completion of the molecule proceded quickly and uneventfully (Figure 3.6). The most difficult 

step involved reaction of the higher order cuprate of (-)-AB with epoxide 4, only providing the 

desired secondary alcohol in moderate yield. Acylation with the commercially available 

diethylphosphonoacetic acid 5 afforded (-)-17 in excellent yield. Subsequent selective 

desilylation of the primary silyl ether, oxidation to the aldehyde with Dess-Martin periodinane 

(DMPI) and Horner-Emmons macrocyclization provided (-)-18 in good yield. Following two 

successive deprotection oxidation steps Smith arrived at the natural product (+)-dactylolide, 

assigning both the absolute and relative stereochemistries. 
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Figure 3.6: Completion of (+)-dactylolide 
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Hoye recently reported the total synthesis of the antipode, (-)-dactylolide 20, coupled 

with a synthetic effort towards zampanolide, in which the key transformations involved a unique 

macrocyclization and Prins cyclization for the formation of the 2,6-cis-disubstituted-4-

methylenetetrahydropyran core.87 The strategic disconnections are shown in Figure 3.6.  Bond 

scission A gives rise to the titanium (IV)-mediated epoxide opening by a carboxylic acid (Box A, 

Figure 3.7). Formation of bond B was envisioned through a C8-vinyl anion addition to a C7-

aldehyde (Box B, Figure 3.7). Construction of the 2,6-cis-disubstituted-4-

methylenetetrahydropyran core was envisioned to occur via a Prins cyclization reaction between 

a C15-enal and an allylsilane (Box C, Figure 3.7). 
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Figure 3.7: Strategic bond disconnections in the Hoye synthesis 
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 Synthesis of the 2,6-cis-disubstituted-4-methylenetetrahydropyran core is shown in 

Figure 3.8. Condensation of aldehyde 21 and silyl ether 22 in the presence of camphorsulfonic 

acid (CSA) provided intermediate oxocarbenium ion 22a, which underwent intramolecular Prins 

cyclization to form 2,6-cis-disubstituted-4-methylenetetrahydropyran 23. Tetrahydropyran 23 

was isolated as a single diastereomer in good yield. Initial attempts at cyclization using Lewis 

acids (BF3•OEt2 or TMSOTf) provided better yields, but unacceptable 2:1 cis/trans 

stereoselectivity. Removal of the pivalate protecting group followed by DMPI oxidation 

furnished aldehyde 24. Aldehyde 24 was transformed via a Takai reaction into iodoalkene 25 

with 4:1 E:Z selectivity. The silyl ether was removed with TBAF to reveal the allyl alcohol. 

Deprotection of the silyl ether with the fluoride source TBAF proved beneficial in that the minor, 

inseperable Z isomer underwent facile E2-elimination to give the more polar, seperable alkyne. 

Sharpless asymmetric epoxidation88 provided advanced intermediate 26, setting the C19 

stereocenter with 25:1 diastereoselectivity. 
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Figure 3.8: Hoye's Prins cyclization to form the core of (-)-dactylolide 
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 The final manipulations for macrolactonization and completion of the synthesis are 

shown in Figure 3.9. The C7-C8 bond of tetrahydropyran 28 was formed via addition of the vinyl 

lithium derived from vinyl iodide 26 into aldehyde 27. Protecting group manipulations followed 

by oxidation to the carboxylic acid provided the key macrocyclization substrate 29. Exposure of 

29 to titanium isopropoxide and heat afforded a modest yield of the macrolactone via Lewis acid 

assisted opening of the epoxide by the carboxylic acid inverting the C19 stereocenter. The 

efficiency of the cyclization was limited by unproductive macrolactone formation through 

closure at C20 rather than C19, and C1 isopropyl ether formation. Given the accumulation of 

undesired side products with extended reaction times, macrolactonization was never carried to 

more than 50% conversion. Silyl ether removal, chemoselective oxidation of the allylic alcohol 

and final cleavage of the diol with lead tetraacetate provided (-)-dactylolide, 20. The natural 

product was realized in thirteen total steps through the coupling of three highly advanced 

intermediates. 
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Figure 3.9: Completion of (-)-dactylolide 
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III. Retrosynthesis 
 
 
 Both Smith and Hoye used convergent strategies focusing on advanced intermediates 

derived from chiral pool materials as well as asymmetric catalysis that could be applied in 

unified syntheses of both dactylolide and zampanolide. The bench mark for our synthesis of (+)-

dactylolide was set by Smith at a total of thirty-five steps, but more importantly construction of 

the 2,6-cis-4-methylene-tetrahydropyran core in thirteen steps. Given the development of the 

aqueous Prins cyclization method89 we believed that the synthesis could be achieved in far fewer 

steps through a highly convergent route effectively utilizing the Prins cyclization as the key 

transformation on a late stage synthetic intermediate. The aqueous Prins cyclization method was 
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developed as an efficient and stereoselective entry into 2,6-cis-4-methylene-tetrahydropyrans via 

intramolecular cyclization reaction of a cyclic α,β-unsaturated acetal with a pendent allylsilane. 

The use of cyclic α,β-unsaturated acetals as cyclization substrates allows for the condensation of 

two highly functionalized advanced intermediates that can undergo the key transformation, thus 

dramatically decreasing the number of  synthetic manipulations required for completion of the 

synthesis. 

The retrosynthetic analysis is outlined in Figure 3.10. Following in the footsteps of 

Smith, scission of the C2-C3 olefin provides Horner-Emmons macrocyclization substrate 42.  

Disconnection of the C1 acylphoshonate linkage leads to the commercially available 

diethylphosphonoacetic acid 5 and secondary alcohol (-)-41. Reverse allylic transposition of the 

sencodary alcohol from C9 to C7 provides selenoxide-selenate rearrangement substrate (+)-40. 

Disconnection of the C14-C15 tetrahydropyran bond gives rise to the intramolecular Prins 

cyclization substrate cyclic α,β-unsaturated acetal (+)-39. Cleavage of the cyclic α,β-unsaturated 

acetal of (+)-39 yields the known enal (+)-3890 as well as diol (-)-37. α,β-unsaturated aldehyde 

(+)-38 arises from a copper-pybox catalyzed vinylogous aldol reaction. Diol (-)-37 also 

ultimately comes from the vinylogous aldol reaction of enal 35 and silyl ketene acetal 36. α,β-

unsaturated aldehyde 36 can be envisioned to arise from a cross metathesis reaction of the 

commercially available diethylacrolein acetal with skipped diene 33. Scission of what will 

ultimately become the C5-C6 bond gives rise to the starting materials vinyl stannane 31 and 

allylbromide. 
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Figure 3.10: Retrosynthetic analysis 
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3.2. Results and Discussion 

 

 The key transformation in our highly convergent route to (+)-dactylolide involves an 

intramolecular Prins cyclization of a cyclic α,β-unsaturated acetal with a pendent allylsilane. The 

desired cyclic α,β-unsaturated acetal (+)-39 results from the condensation of two highly 

functionalized advanced intermediates enal (+)-38 and diol (-)-37, followed by conversion of the 

ester to the allylsilane. Both enal (+)-38 and diol (-)-37 were synthesized using vinylogous aldol 

reactions (Figure 3.10).  

The synthesis of enal (+)-38 is shown in Scheme 3.1. p-Methoxy benzyloxy acetaldehyde 

43 was prepared in three steps from 1,4-butene diol. Protection of 1,4-butene diol as the bis-PMB 
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ether followed by Sharpless asymmetric dihydroxylation and silica gel-supported sodium 

metaperiodate91 cleavage cleanly provided the aldehyde in good yield. Ozonolysis reactions of 

either PMB-protected allyl alcohol or the bis-PMB-protected 1,4-butene diol were low yielding 

and difficult to purify. The [Cu((R,R)PhPyBox)](SbF6)2•2Cl catalyzed vinylogous aldol92 

reaction between p-methoxy benzyloxy acetaldehyde 43 and enolsilane 44 provided the desired 

aldol adduct, α,β-unsaturated ester (+)-45 as a single (E)-olefin isomer in good yield and 

excellent enantioselectivity (82%, 95% ee).  

Scheme 3.1: Synthesis of enal (+)-38 
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This vinylogous aldol reaction developed by Evans aptly provides the desired enatio- as 

well as regioselectivity (through avoidance of unwanted A1,3 strain) for the generation of the 

necessary ε-hydroxy-α,β-unsaturated carbonyl structure. The transition state for the vinylogous 

aldol is depicted in Figure 3.11, showing re-face attack of the diene. No product arising from α-

addition of the silylketene acetal was observed, only that of γ-addition. 

Figure 3.11: Vinylogous aldol transition state 
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 Following the vinylogous aldol reaction, secondary alcohol (+)-45 (Scheme 3.1) was 

protected as the tert-butyldimethylsilyl ether using tert-butyldimethylsilyl chloride and imidazole 

in DMF. The α,β-unsaturated ester was reduced to the allylic alcohol with lithium aluminum 

hydride and then oxidized to enal (+)-38 with manganese dioxide in good yield. Enal (+)-38, one 

major coupling partner needed for cyclic α,β-unsaturated acetal formation, containing what 

would ultimately become the C19 stereocenter of (+)-dactylolide and bearing the correct 

geometry for the C16-C17 olefin, was realized in four steps in high yield and excellent 

enantioselectivity. 

 A vinylogous aldol reaction was also used in the production of diol (-)-37, the second 

coupling component necessary for cyclic α,β-unsaturated acetal formation. The synthesis of the 

aldehyde required for the vinylogous aldol reaction, and what would ultimately become the C3-

C9 segment, is shown in Scheme 3.2. Preparation of the C4-C5 trisubstituted (Z)-olefin started 

with Red-Al reduction of 2-butyn-1-ol followed by quenching with tributyltin chloride to give 

(Z)-3-tributylstannyl-but-2-en-1-ol 31 in good yield. The primary alcohol was protected as the 

tert-butyldiphenylsilyl ether to afford vinylstannane 48. Palladium mediated coupling of 

vinylstannane 48 and allyl bromide provided the skipped diene 33 in good yield. Cross 

metathesis93 between skipped diene 33 and the commercially available diethylacrolein acetal 

(34) using Grubbs 1st generation catalyst, followed by in situ formic acid hydrolysis provided 

α,β-unstaurated enal 35 in high yield with excellent (E)-selectivity. The observed selectivity is 

proposed to result from the reversibility of the cross metathesis reaction, tending toward the 

formation of the more thermodynamically stable E-isomer. This type of self editing, reversible 

mechanism was exploited by Smith in his synthesis of (-)-cylindrocyclophanes A and F.94 
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Support for this idea is also provided through the work of Grubbs on ring closing metathesis,95 as 

well as by Hoveyda in his work on the total synthesis of fluvirucin B1.96 

Scheme 3.2: Synthesis of aldehyde 35 
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 With aldehyde 35 in hand the stage was set for the second vinylogous aldol reaction. The 

vinylogous aldol reaction was first examined using the unique chemistry developed by Carreira97 

for the catalytic generation of a chiral Cu(II) dienolate initiated by a (R)-Tol-BINAP·Cu(II)-

fluoride complex that is generated in situ through the reaction of (R)-Tol-BINAP·Cu(II)-triflate 

with the anhydrous fluoride source (Bu4N)Ph3SiF2 (TBAT) as shown in Scheme 3.3. The three 

salient features of this vinylogous aldol reaction were its application in the total syntheses 

leucascandrolide A98 for the  formation of a similar dioxenone, combined with the inexpensive, 

commercially available BINAP ligand, as well as the high yields and enantioselectivities 

observed by Carreira. However, in test reactions involving cinnamaldehyde and silyl ketene 

acetal 36 the observed yields and enantioselectivities were considerably less than expected or 

previously reported in the literature. 
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Scheme 3.3: Carreira vinylogous aldol 
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The desired mechanistic pathway involved desilylation by the in situ generated metal 

fluoride with concomitant generation of a chiral enolate through complexation with the chiral 

metal complex, as shown in Figure 3.12. The low enantioselectivity was proposed to result from 

the in situ generation of copper (II) fluoride in competition with the generation of the chiral (R)-

Tol-BINAP-Cu(II)-fluoride. Copper (II) fluoride then entered into the catalytic cycle to catalyze 

the racemic aldol reaction. Given the difficulty in obtaining the desired yields and 

enantioselectivities, coupled with the success of the alternative Denmark vinylogous aldol, 

further development of this reaction was not pursued. 

Figure 3.12: Carreira vinylogous aldol catalytic cycle 
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Reaction of aldehyde 35 with silyl ketene acetal 36 in the presence of Denmark’s chiral 

bisphosphoramide (S,S)-E99 and silicon tetrachloride provided dioxenone (-)-52 in good yield 

and excellent enantioselectivity (65%, 93% ee), as shown in Scheme 3.4.  
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Scheme 3.4: Denmark vinylogous aldol 
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The reaction is unique in that the active chiral Lewis acid is generated in situ through the 

coordination of the weak Lewis acid silicon tetrachloride to the strongly Lewis basic 

bisphosphoramide (S,S)-E to form a catalytically active pentacoordinate silicon species.  

Extensive studies by Denmark on solution and solid phase bisphosphoramide•SnCl4 

complexes100 suggest that the reaction proceeds through the hexacoordinate cationic silicon 

assembly 52a shown in Scheme 3.4. In allylation as well as aldol reactions higher 

enantioselectivities were observed using a tethered bisphosphoramide rather than two equivalents 

of a phosporamide. The restriction provided by a five-methylene unit tether in (S,S)-E dictates 

the coordination environment about the reactive silicon center, forcing it to adopt an octahedral 

geometry. Thus, in the transition structure, the aldehyde would coordinate trans to a chloride at 

the most Lewis basic site, consequently increasing its electrophilicity. Support for the reaction 

proceeding through an open transition state was furnished by Denmark’s observation that in 

bisphosphoramide silicon tetrachloride catalyzed aldol101 reactions the geometrical integrity of 

the nucleophile had no effect on the enantio- or diastereoselectivity of the products. Denmark 

further discounted the possibility of a closed Zimmerman-Traxler type transition state102 through 

NMR studies on the stability of silyl ketene acetals in the presence of silicon tetrachloride and 

HMPA, in which no isomerization or metathesis of the silyl ketene acetals was observed.   
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 Following the Denmark vinylogous aldol reaction, synthesis of diol (-)-37 was completed 

uneventfully in a total of three steps in high yield an excellent enantioselectivity, as shown in 

Scheme 3.5. Coversion of dioxenone (-)-52 to β-hydroxy keto ester (-)-54 was accomplished 

through a thermal retro-Diels-Alder reaction leading to intermediate ketene 53 formation through 

acetone extrusion and subsequent trapping with 1-butanol. β-Hydroxyketone (-)-54 was 

subjected to diastereoselective sodium borohydride reduction in the presence of the chelating 

reagent diethylmethoxyborane103 to provide 1,3-syn diol (-)-37 in high yield and 99:1 d.e.   

Scheme 3.5: Synthesis of diol (-)-37 
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 With the successful synthesis of 1,3-syn diol (-)-37 and enal (+)-38, the focus became 

formation of the key advanced intermediate, cyclic α,β-unsaturated acetal (+)-39. In the 

development of the aqueous Prins reaction, cyclic acetals were generated under protic conditions 

either by refluxing with concomitant azeotropic removal of water, or at low temperature utilizing 

the dehydrating reagent magnesium sulfate. However, all attempts at acetal formation under 

protic conditions, including the use of Montmorillonite K-10 clay,104 Amberlyst-15 resin105 and 

trans-acetalization with the diethylacetal of enal (+)-38 proved ineffective, and led to E/Z 

isomerization of the aldehyde. Acetalization under Lewis acidic conditions (TMSOTf, WCl6
106) 

was also unproductive. Yet, as shown in Scheme 3.6, successful acetalization was accomplished 
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using conditions developed by Noyori107 employing catalytic TMSOTf and stoichiometric silyl 

ethers. Formation of the bis-trimethylsilyl ether (-)-55 with trimethylsilyl chloride and DMAP in 

DMF, followed by TMSOTf catalyzed reaction with enal (+)-38 afforded the desired cyclic α,β-

unsaturated acetal (+)-39 in good yield. 

Scheme 3.6: Formation of cyclic α,β-unsaturated acetal (+)-39 
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 The central transformation in the synthesis involved intramolecular Prins cyclization to 

form the 2,6-cis-4-methylene-tetrahydropyran core of the (+)-dactylolide.  The transformation 

was envisioned to occur upon ionization of the cyclic α,β-unsaturated acetal followed by 

cyclization with the pendent allylsilane. Therefore, conversion of the butyl ester in cyclic α,β-

unsaturated acetal (+)-39 to the allylsilane was necessary. The literature protocol for the 

conversion of a functionalized ester to an allylsilane consists of a two step procedure involving 

the addition of a premixed solution of anhydrous cerium (III) chloride and 

trimethylsilylmethylmagnesium chloride to the ester to afford the tertiary alcohol. Mild acid 

treatment of the crude tertiary alcohol with silica gel then initiates Peterson elimination to form 

the desired allylsilane.108 When cyclic α,β-unsaturated acetal (+)-39 was stirred with a premixed 

solution of anhydrous cerium (III) chloride and trimethylsilylmethylmagnesium chloride 

followed by quenching with 5% HCl, the product isolated from the reaction mixture was not the 
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expected tertiary alcohol, but rather the 2,6-cis-4-methylene-tetrahydropyran core of the 

molecule (+)-40, as shown in Scheme 3.7. 

Scheme 3.7: Intramolecular Prins Cyclization 
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 The one pot transformation from cyclic α,β-unsaturated acetal (+)-39 to the 2,6-cis-4-

methylene-tetrahydropyran (+)-40 is shown in Figure 3.13.  Under the reaction conditions, the 

organosilane carries out a double addition into the ester to provide tertiary alcohol 56. Upon 

quenching with 5% HCl the tertiary alcohol undergoes Peterson elimination to form the 

allylsilane (-)-57.  It is believed that trace amounts of cerium survived the work-up protocol and 

went on to catalyze the Prins cyclization, because 2,6-cis-4-methylene-tetrahydropyran (+)-40 

was only observed following work-up and concentration of the crude reaction mixture.  
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Figure 3.13: One-pot transformation 
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 In an effort to better understand the results of the one pot ester-to-Prins transformation 

the quenching and work-up procedures were altered. Repeating the quenching and work-up 

procedure, followed by allowing the crude product to stand at room temperature overnight led 

only to decomposition of what appeared to be the desired Prins product by TLC. Refluxing the 

organic layer obtained after work-up in ether prior to concentration resulted in isolation of only 

the E/Z isomerized aldehyde (+)-38.  As shown in Scheme 3.8, quenching with ethyl acetate 

followed by basic work-up with saturated NaHCO3 provided tertiary alcohol 56, which could be 

converted to allylsilane through stirring with silica gel in CH2Cl2. Quenching with saturated 

NH4Cl afforded allylsilane (-)-57. However, washing allylsilane (-)-57 with a 1.0 M solution of 

cerium (III) chloride failed to effect Prins cyclization, as did stirring with silica gel for prolonged 

periods of time. 
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Scheme 3.8: Altered quenching method 
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Given the ability to cleanly isolate allylsilane (-)-57, conversion to the Prins cyclization 

product (+)-40 was attempted using a variety of Lewis and Brønstead acids as shown in Table 

3.2. Prins cyclization could only be affected using both PPTS and the pyridine salt of 

camphorsulfonic acid (PCSA). Cyclization with PPTS resulted in protodesilylation, as well as 

the desired tetrahydropyran (+)-40. The addition of MgSO4 to PPTS catalyzed Prins cyclization 

increased reaction yield, and provided only the desired tetrahydropyran (+)-40. Subjecting 

allylsilane (-)-57 to the reaction conditions developed for the aqueous Prins reaction failed to 

yield any of the desired tetrahydropyran (+)-40, but rather resulted in complete decomposition of 

the starting material. Under these reaction conditions viable micelle formation was not observed. 

Neither the critical micelle concentration required was achieved, nor was a surfactant of ideal 

chain length for viable micelle formation identified. All attempts at performing the Prins 

cyclization in the presence of a mild Lewis acid at ambient temperature also proved ineffective. 

Despite the ability to isolate allysilane (-)-57 and effect Prins cyclization with PPTS, in 

terms of overall yield and step count the most synthetically practical route to tetrahydropyran 

(+)-40 remains the one pot ester-to-Prins transformation. Isolation of the tertiary alcohol 

followed by Peterson elimination to give allylsilane (-)-57 and subsequent Prins cyclization with 

PPTS is a lengthy, inefficient means for the preparation of the tetrahydropyran (+)-40. 

Protodesilylation is a competitive, unproductive reactive pathway in this route that significantly 
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decreases reaction yield, and affords the side product (-)-58 that can not be further manipulated 

for useful synthetic transformations. Therefore, efforts will continue to be focused on optimizing 

the one pot ester-to-Prins transformation. 

Table 3.1: Screening of viable Prins cyclization conditions 

O

OTBDPS

O

OPMB

TBSO

SiMe3

(-)-57

O

OTBDPS

O

OPMB

TBSO

(-)-58

O

OPMB
OTBS

TBDPSO

H H
HO

(+)-40

+

 

 

Entry Lewis/Brønstead Acid Solvent Product (%) 

1 ScCl3•6H2O, SDS H2O Decomposition 

2 Me3Al CH2Cl2 Decomposition 

3 Ce(OTf)3 CH3CN Decomposition 

4 ScCl3•6H2O CH3CN No rxn 

5 Sc(OTf)3 CH3CN Decomposition 

6 EuCl3 CH3CN Decomposition 

7 CeCl3 EtOAc No rxn 

8 CeCl3, I2 EtOAc No rxn 

9 CeCl3, SiO2 EtOAc No rxn 

10 SiO2 CH2Cl2 No rxn 

11 SnCl4 on SiO2 CH2Cl2 Decomposition 

12 TMSOTf CH2Cl2 Decomposition 

13 MgCl2 EtOAc No rxn 
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14 Montmorillonite K-10 CH2Cl2 No rxn 

15 
Pyridinium 

camphorsulfonate 
CH2Cl2 (+)-40 (47%) 

16 PTSA CH2Cl2 Decomposition 

17 PPTS CH2Cl2 
(+)-40 (48%), (-)-58 

(29%) 

18 PPTS, MgSO4 CH2Cl2 (+)-40 (66%) 

*All reactions conducted at room temperature 

In Figure 3.13, the atoms involved in intramolecular Prins cyclization are highlighted in 

red for clarity. In accord with the observed diastereoselectivity in the development of the 

aqueous Prins reaction, only a single diastereomer of (+)-40 was isolated. The cis stereochemical 

relationship between the C11 and C15 protons was conformed through the strong correlation 

observed in the NOESY spectrum of (-)-59. The origin of the cis selectivity is understood to be 

the preference of the two alkyl groups to adopt a pseudoequitorial orientation in the transition 

state for the Prins reaction.  α,β-Unsaturated ketone (-)-59 was used in spectral studies in 

preference to (+)-40 simply for ease of analysis. 

Having successfully constructed the core of the molecule through intramolecular Prins 

cyclization, the focus shifted to allylic transposition of the C7 alcohol to C9. Initially, the 

feasibility of allylic transposition via a Wharton epoxy ketone fragmentation109 was probed. 2,6-

cis-4-Methylene-tetrahydropyran (+)-40 was converted to α,β-epoxy ketone (-)-60, as shown in 

Scheme 3.9. However, all attempted to affect the transformation using hydrazine under the 

conditions developed by Wharton or at low temperature using conditions developed by Luche110 

failed to yield any of the desired transposed allylic alcohol.  
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Scheme 3.9: Wharton epoxy ketone fragmentation 
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Fearing that facile, self condensation to form azine 61 was inhibiting fragmentation, the 

reaction was attempted using 1,2-bis(tert-butyldimethylsilyl)hydrazine (BTBSH)111 in the 

presence of Sc(OTf)3. BTBSH is known to react with ketones and aldehydes in the presence of a 

Lewis acid, and to date has been employed in Wolff-Kischner-type reduction reactions, Barton 

vinyl iodide preparation, and the synthesis of gem-dihalides.112 The use of the N-silyl hydrazone 

was expected to enhance stability and prevent azine formation, allowing for isolation of a stable 

hydrazone which could then be subjected to Wharton fragmentation conditions. However, 

reaction of BTBSH with epoxy-ketone (-)-60, as shown in Scheme 3.10, led only to 

decomposition of the starting material. No identifiable side products were isolated and no 

starting material was recovered.  
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Scheme 3.10: Hydrazone formation with BTBSH 
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Allylic transposition via the Wharton fragmentation gave way to an allyl selenoxide-

selenate [2,3] sigmatropic rearrangement,113 as all attempts employing hydrazine or BTBSH 

proved ineffective. The [2,3] sigmatropic rearrangement of selenoxides provides a powerful 

pathway for allylic transposition of alcohols. Tetrahydropyran (+)-40 was converted to selenide 

40a with phenylselenocyanate and tributyl phosphine. Selenide 40a was then treated with 

peroxide and pyridine to effect oxidation to the selenoxide, followed by [2,3] sigmatropic 

rearrangement to provide allylic alcohol (-)-62 (Scheme 3.11). Allylic alcohol (-)-62 was isolated 

as a single isomer with complete stereocontrol in the formation of the trans C8-C9 olefin. The 

complete selectivity is attributed to the propensity of the large alkyl groups to preferentially 

occupy pseudoequitorial positions in the five-membered transition state. This result also is in 

accord with observations made by Otera in his work on [2,3] sigmatropic rearrangements of 

allylic sulfoxides, in which rearrangements were found to occur with extremely high E-

selectivity when a substituent branched at the β position of the sulfinyl group  was involved. 

Thus, formation of the E-isomer is thermodynamically, as well as kinetically, favored, so as to 

avoid A1,3 strain that would be imposed by the presence of the THP ring in the Z-isomer. 
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Scheme 3.11: Selenoxide-selenate rearrangement 
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Following the selective [2,3]-selenoxide-selenate rearrangement, preparations to close the 

macrocycle began. Global deprotection of the silyl ethers using TBAF to provide triol 63, 

followed by double allylic oxidation with MnO2 led only to decomposition (Scheme 3.12). 

Scheme 3.12: Double allylic oxidation 
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Reagents: a) TBAF, THF, 95%, b) MnO2, CH2Cl2  

Subsequent to the failed double allylic oxidation, the strategy became protection of the 

C9 alcohol as the PMB ether, followed by global silyl deprotection and selective oxidation of the 

primary alcohol in the presence of the secondary alcohol. Thus, following acylation with the 

commercially available diethylphosphonoacetic acid 5 and Horner-Emmons macrocyclization a 

global deprotection of the PMB ethers followed by a double oxidation would provide the (+)-

dactylolide.  As shown in Scheme 3.13, the C9 alcohol was protected as the PMB ether using 

sodium hydride and p-methoxybenzyl chloride in DMF. Protection under acidic conditions using 

p-methoxybenzyl trichloroacetimidate failed to yield any of the desired PMB ether. The use of 

HF-pyridine for global silyl deprotection provided a 40% yield of the desired diol, (-)-41 and 

27% yield of primary alcohol 64, which could be resubjected to the reaction conditions to 
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provide (-)-41. Global silyl deprotection with TBAF proved less favorable, providing only a 27% 

yield of the desired diol (-)-41, with no other isolable products. Selective oxidation of the 

primary, allylic alcohol in the presence of the secondary alcohol was accomplished using one 

equivalent of Dess-Martin periodinane to provide aldehyde (-)-65 in 64% yield.  

Scheme 3.13: Selective oxidation 
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Reagents: a) PMBCl, NaH, TBAI, DMF, b) HF-pyridine, THF, 40%, c) DMPI, CH2Cl2, 64%  

Precedence for acylation with the commercially available diethylphosphonoacetic acid 5, 

followed by Horner-Emmons macrocyclization was established through the work of Smith3 in 

the first total synthesis of (+)-dactylolide. An advanced intermediate prepared by Smith differs 

from (-)-65 only in that the C9 hydroxyl group is protected as a TBS ether, rather than a PMB 

ether. Efforts towards the completion of the molecule are on going. However, advanced 

intermediate (-)-65 was attained in seventeen total steps, with the longest linear sequence 

involving seven steps for the preparation of diol (-)-37. Thus, this highly convergent route clearly 

underscores the efforts of Smith who set the bench mark at thirty-five total steps with a longest 

linear sequence of thirteen steps. 
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3.3. Conclusion 

 

A highly convergent route towards the total synthesis of the marine macrolide (+)-

dactylolide is currently being pursued. The route involves the condensation of two highly 

functionalized segments of the molecule, an α,β-unsaturated aldehyde and a 1,3-syn-diol, to form 

a cyclic α,β-unsaturated acetal. Both enantiopure segments arise from vinylogous aldol reactions, 

providing the three necessary stereocenters. The 1,3-syn-diol is reached in the longest linear 

sequence of the synthesis, utilizing only seven steps from commercially available starting 

materials. The key synthetic transformation involves intramolecular Prins cyclization of a cyclic 

α,β-unsaturated acetal with a pendent allylsilane to provide the 2,6-cis-disubstituted-4-

methylenetetrahydropyran core of the molecule efficiently and stereoselectively. The 

transformation can be achieved either through the in situ generation of the allylsilane in a one pot 

ester-to-Prins cyclization reaction, or in a lengthier, step-wise manner in which the allylsilane is 

isolated. Other key transformations include a completely trans selective selenoxide-selenate [2,3] 

sigmatropic rearrangement and the selective oxidation of a primary allylic alcohol in the 

presence of a secondary alcohol with Dess-Martin periodinane. Thus far the synthesis entails 

seventeen total steps, with the longest linear sequence involving seven steps, well below the 

bench mark established by Smith at thirty-five total steps. Precedence for the conversion of the 

most advanced intermediate attained in this effort to the natural product was also established 

through the work of Smith. 
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3.4. Experimental 

 

General Procedures. All reactions were performed in oven or flame-dried glassware under a 

positive pressure of N2
 with magnetic stirring unless otherwise noted.  

 

Materials. Tetrahydrofuran and diethyl ether were dried by passage through an activated 

alumina column under positive N2 pressure. Methylene chloride was distilled under N2 from 

CaH. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254 plates. 

Visualization was done under UV (254 nm). Flash chromatography was done using ICN SiliTech 

32-63 60 Å silica gel. Reagent grade ethyl acetate, diethyl ether, pentane and hexanes 

(commercial mixture) were purchased from EM Science and used as is for chromatography. 

 

Instrumentation. High resolution and low resolution mass spectra were recorded on a VG 7070 

spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer. 

Samples for IR were prepared as a thin film on a NaCl plate by dissolving the compound in 

CH2Cl2 and then evaporating the CH2Cl2. Proton (1H NMR) and carbon (13C NMR) nuclear 

magnetic resonance spectra were recorded on Bruker Avance 300 and Bruker Avance 500 

spectrometers at 300 MHz and 75 MHz, and 500 MHz and 100 MHz, respectively. The chemical 

shifts are given in parts per million (ppm) on the delta (δ) scale. The solvent peak was used as a 

reference value, for 1H NMR: CDCl3 = 7.27 ppm, for 13C NMR: CDCl3 = 77.23. Data are 

reported as follows: (s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublets; dt 

= doublet of triplets; b = broad). HPLC analysis was performed with a HP series 1100 instrument 

using either a Chiralcel OD-H or OJ or CHIRAPAK AD column. 
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bis p-Methoxybenzyl ether 
To a stirring suspension of sodium hydride (60% dispersion in mineral oil, 1.18 

g, 31.12 mmol) under N2 at 0 ºC in DMF (30 mL) was added but-2-ene-1,4-diol (1.21 g, 13.83 

mmol). The reaction was stirred for 30 min. and p-methoxybenzyl chloride (4.33 g, 27.66 mmol) 

was added. The reaction mixture was stirred for 18 h at room temperature, then was quenched by 

the addition of ice chips, and extracted into hexanes. The organic layer was dried (MgSO4) and 

concentrated. The resulting residue was purified by flash chromatography (20% EtOAc in 

hexanes) to afford the desired product (3.37 g, 74%): 1H NMR (300 MHz, CDCl3) δ 7.29 (d, J = 

6.5 Hz, 2H), 6.91 (d, J = 6.8 Hz, 2H), 5.80 (adt, J = 3.8, 1.0 Hz, 1H), 4.48 (s, 2H), 4.07 (dd, J = 

3.8, 1.0 Hz, 2H), 3.82 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 159.39, 130.40, 129.69, 113.95, 

72.04, 65.62, 55.49.  

 

p-methoxy benzyloxy acetaldehyde (43) 
 

To a stirring solution of AD-mix-β (1.4g/mmol substrate, 7.00 g) in 1:1 tert-butyl 

alcohol and H2O (25 mL:25 mL) at 0 ºC was added bis p-methoxybenzyl ether (1.64 g, 

5.00 mmol). The reaction mixture was warmed to room temperature and stirred for 18 h. The 

temperature was then decreased to 0 ºC and sodium sulfite (1.5g/mmol substrate, 7.5 g) was 

added in bulk. The reaction mixture was allowed to stir for 1 h while warming to room 

temperature, then was extracted into CH2Cl2. The aqueous layer was washed with CH2Cl2 (2 x 

25 mL) and the combined organic layers where dried (MgSO4) and concentrated. The resulting 

residue was dissolved in CH2Cl2 (15 mL) and sodium periodate immobilized on silica gel 

(2.0g/mmol substrate, 5.52 g) was added. The reaction mixture was stirred vigorously for 30 

min., then was filtered. The filter cake was washed with CH2Cl2 (2 x 20 mL) and the filtrate was 

OPMB
PMBO

O

H
OPMB

43
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concentrated. The resulting residue was purified by vacuum distillation (bp 120 – 125 ºC, 2 mm 

Hg) to afford the desired product (1.44 g, 80%): 1H NMR (300 MHz, CDCl3) δ 9.69 (s, 1H), 7.28 

(d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.56 (s, 2H), 4.07 (s, 2H), 3.80 (s, 3H); 13C NMR 

(75 MHz, CDCl3) δ 200.89, 159.96, 132.21, 129.84, 114.30, 75.27, 73.58, 55.47. 

 

(1-Ethoxy-3-methyl-buta-1,3-dienyloxy)-trimethyl-silane (44) 
 

To a solution of diisopropylamine (4.45 g, 44.00 mmol) in THF (50 mL) at 0 ºC 

under N2 was added n-butyllithium (1.6M in hexanes, 27.5 mL, 44.00 mmol). The 

reaction mixture was stirred at 0 ºC for 30 min., then the temperature was decreased to -78 ºC. 3-

Methyl-but-2-enoic acid ethyl ester (5.12 g, 40.00 mmol) was added and the reaction mixture 

was stirred for 30 min. before trimethylsilyl chloride (6.52 g, 60.00 mmol) was added. The 

reaction mixture was stirred for an additional 20 min., then was allowed to warm to room 

temperature. The reaction mixture was concentrated under reduced pressure and the resulting 

residue was dissolved in dry pentanes and filtered. The filtrate was concentrated and the resulting 

residue was purified by distillation (bp 63 – 75 ºC, 2 mm Hg) to afford the desired product (5.95, 

74%): 1H NMR (300 MHz, CDCl3) δ 4.77 (d, J = 2.2 Hz, 1H), 4.52 (m, 1H), 4.23 (s, 1H), 3.80 

(q, J = 6.9 Hz, 2H), 1.93 (s, 1H), 1.30 (t, J = 6.9 Hz, 3H), 0.25 (s, 9H); 13C NMR (75 MHz, 

CDCl3) δ 156.76, 140.77, 107.28, 81.09, 63.65, 23.92, 14.62, 0.65. 

 

5-Hydroxy-6-(4-methoxybenzyloxy)-3-methyl-hex-2-enoic acid ethyl ester (+)-45 
 

To a solution of (+)-2,6-bis[(4R)-4phenyl-2-oxazolin-2-yl]pyridine (0.124 g, 

0.337 mmol) in CH2Cl2 (13 mL) was added CuCl2 (0.045 g, 0.337 mmol). The 
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reaction mixture was stirred vigorously for 1 h to give a fluorescent green suspension. AgSbF6 

(0.232 g, 0.675 mmol, in 10 mL CH2Cl2) was added via cannula. The reaction mixture was 

wrapped in foil and stirred for 3 h. The resulting mixture was filtered directly into the reaction 

flask through and oven-dried glass pipet, tightly packed with cotton, to remove the white AgCl 

precipitate, yielding active catalyst (R,R)-[Cu(Ph-pybox)](SbF6)2 as a clear blue solution. To the 

solution of active catalyst at -78 ºC was added 43 (2.25 g, 11.21 mmol, in 17 mL CH2Cl2). (1-

Ethoxy-3-methylbuta-1,3-dienyloxy)trimethylsilane (44) (2.69 g, 13.45 mmol) was added drop 

wise over 30 min. The reaction was stirred at -78 ºC for 4 h, and then was filtered through a pad 

of silica (1.5 cm thick). The filtrate was concentrated, and the resulting residue was dissolved in 

THF (20 mL). HCl (1N) was added and the reaction mixture was allowed to stand for 20 min., 

then was diluted with ether (25 mL) and the two layers were separated. The organic layer was 

dried (MgSO4) and concentrated. The resulting residue was purified by flash chromatography 

(40% EtOAc in hexanes) to afford the desired product (2.82 g, 82 %);  1H NMR (300 MHz, 

CDCl3) δ 7.29 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 5.76 (s, 1H), 4.47 (s, 2H), 4.16 (q, J 

= 7.1 Hz, 2H), 4.04 (m, 1H), 3.83 (s, 3H), 3.51 (dd, J = 9.3, 3.3 Hz, 1H), 3.37 (dd, J = 7.0, 2.3 

Hz, 1H), 2.32 (m, 2H), 2.22 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 

166.63, 159.52, 155.89, 129.99, 129.61, 118.26, 114.03, 73.73, 73.26, 68.44, 59.77, 55.43, 44.79, 

19.08, 14.46; [α]D
23 1.25º (CH2Cl2 , c 9.4). 

The ee was determined to be 95% by chiral HPLC analysis using a chirapak AD column. 

Conditions: Hex:i-PrOH 95:5, 1.0 mL/min. 

 

 

 



 

 188

5-(tert-Butyldimethylsilanyloxy)-6-(4-methoxybenzyloxy)-3-methylhex-2-enoic acid ethyl 
ester (+)-46 
 

To a stirring solution of (+)-45 (4.63 g, 15.04 mmol) in DMF was added 

imidazole (1.12 g, 16.54 mmol) followed by tert-butyldimethylsilyl chloride 

(2.49 g, 16.54 mmol). The reaction mixture was stirred for 18 h, then was quenched with ice 

chips and partitioned between water and hexanes. The organic layer was dried (MgSO4) and 

concentrated. The resulting residue was purified by flash chromatography (20% EtOAc in 

hexanes) to afford the desired product (5.65 g, 89%): 1H NMR (300 MHz, CDCl3) δ 7.24 (d, J = 

8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 5.70 (s, 1H), 4.45 (s, 2H), 4.15 (m, 2H), 3.98 (m, 1H), 3.81 

(s, 3H), 3.38 (dd, J = 9.5, 5.3 Hz, 1H), 3.32 (dd, J = 9.5, 5.8 Hz, 1H), 2.42 (dd, J = 13.1, 4.4 Hz, 

1H), 2.23 (dd, J = 13.1, 7.7 Hz, 1H), 2.18 (d, J = 1.2 Hz, 3H), 0.85 (s, 9H), 0.03 (s, 3H), 0.01 (s, 

3H); 13C NMR (75 MHz, CDCl3) δ 166.62, 159.22, 156.40, 130.35, 129.33, 118.56, 113.79, 

74.15, 73.07, 69.92, 59.46, 55.32, 46.36, 25.85, 19.51, 18.15, 14.41, -4.40, -4.87; [α]D
23 10.6º 

(MeOH , c 0.64). 

 

5-(tert-Butyl-dimethyl-silanyloxy)-6-(4-methoxybenzyloxy)-3-methyl-hex-2-enal (+)-38 
 
 To a solution of lithium aluminum hydride (0.179 g, 4.73 mmol) in ether (15 

mL) was added dropwise (+)-46 (1.00 g, 2.36 mmol, in 5 mL ether). The 

reaction mixture was stirred for 1 h, then was cooled to 0 ºC and quenched with a saturated 

solution of sodium potassium tartrate (10 mL). The reaction mixture was warmed to room 

temperature and stirred for 4 h. The two layers were separated. The water layer was washed with 

ether (2 x 15 mL), and the combined organic layers were dried (MgSO4) and concentrated. The 

resulting residue (in 5 mL CH2Cl2) was added to a suspension of activated manganese (IV) oxide 

EtO

O
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(2.00 g, 23.12 mmol) under N2 in CH2Cl2 (10 mL). The reaction mixture was stirred for 18 h, 

and then was filtered through a pad of celite and was concentrated. The resulting residue was 

purified by flash chromatography (5% EtOAc in hexanes) to afford the desired product (0.720 g, 

80%): 1H NMR (300 MHz, CDCl3) δ 10.00 (d, J = 8.1 Hz, 1H), 7.27 (d, J = 8.5 Hz, 2H), 6.90 (d, 

J = 8.6 Hz, 2H), 5.93 (d, J = 8.1 Hz, 1H), 4.45 (s, 2H), 4.03 (m, 1H), 3.82 (s, 3H), 3.40 (dd, J = 

9.4, 5.1 Hz, 1H), 3.32 (dd, J = 9.4, 6.2 Hz, 1H), 2.51 (dd, J = 13.2, 4.3 Hz, 1H), 2.20 (s, 3H), 

0.87 (s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 191.11, 161.13, 159.42, 

130.28, 130.09, 129.51, 113.96, 74.05, 73.24, 70.22, 55.45, 46.14, 25.95, 18.64, 18.26, -4.24, -

4.65; [α]D
23 2.05º (CH2Cl2 , c 0.52). 

 

(Z)-3-Tributylstannanylbut-2-en-1-ol (31) 
 
To a solution of 2-butyn-1-ol (4.21 g, 60.0 mmol) in THF (120 mL) at 0 ºC was 

added Red-Al® (65 % wt solution in toluene, 18.66 g, 60.0 mmol) dropwise over 30 

min. After the addition was complete the reaction mixture was warmed to room temperature and 

stirred for 3 h. Tributyltin chloride (39.05 g, 120 mmol) was added dropwise over a period of ten 

min. The reaction mixture was stirred for 18 h then was quenched with H2O and filtered through 

a pad of Celite. The two layers were separated and the water layer was extracted with Et2O. The 

combined organic layers were washed with 10 % KF, dried (MgSO4) and concentrated. The 

resulting residue was purified by flash chromatography (gradient from hexanes to 20% EtOAc in 

hexanes) to afford the desired product (17.95 g, 83 %): 1H NMR (300 MHz, CDCl3) δ 6.28 (t, J 

= 6.7, 3JSn-H trans = 123 Hz, 1H), 4.03 (t, J = 5.7 Hz, 2H), 1.96 (s, 3JSn-H = 41 Hz, 3H), 1.55 – 1.27 

(m, 13H), 0.92 (m, 15H). 

 

SnBu3
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31
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tert-Butyldiphenyl(3-tributylstannylbut-2-enyloxy)silane (48) 
 

To a stirring solution of 31 (1.00 g, 2.77 mmol) in DMF was added imidazole 

(0.23 g, 3.32 mmol) followed by tert-butyldiphenylsilyl chloride (0.91 g, 3.32 

mmol). The reaction mixture was stirred for 3 h, then was quenched with ice chips and 

partitioned between water and hexanes. The organic layer was dried (MgSO4) and concentrated. 

The resulting residue was purified by flash chromatography (5% EtOAc in hexanes) to afford the 

desired product (1.35 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.71 (m, 4H), 7.41 (m, 5H), 6.26 

(tq, J = 6.5, 1.5 Hz, 3JSn-H, trans 127 Hz, 1H), 4.07 (d, J = 6.3 Hz, 2H), 1.94 (d, J = 0.97 Hz, 3JSn-H 

41 Hz, 3H), 1.44 – 1.21 (m, 12H), 1.06 (s, 9H), 0.83 (m, 15H); 13C NMR (75 MHz, CDCl3) δ 

141.48, 139.68, 135.73, 134.00, 129.63, 127.70, 66.58, 29.21, 27.45, 26.94, 13.77, 10.00; IR 

(neat) 3069, 2952, 2923, 2850, 1949, 1890, 1818, 1461, 1425, 1374, 1112, 1083, 1047, 821, 741, 

698; HRMS (EI) calcd for C24H43OSiSn (M-C4H9) 543.210519, found 543.207774.  

 

tert-Butyl-(3-methylhexa-2,5-dienyloxy)diphenylsilane (33)  
 

To a stirring solution of 48 (0.50 g, 0.833 mmol) in toluene (10 mL) was added 

palladium tetrakistriphenylphosphine (0.048 g, 0.042 mmol) followed by allyl 

bromide (0.101 g, 0.833 mmol). The reaction mixture was heated to reflux for 18 h, then cooled 

to room temperature and was partitioned between Et2O and sat. NH4Cl. The organic layer was 

dried (MgSO4) and concentrated. The resulting residue was purified by flash chromatography to 

afford the desired product (0.234 g, 80%): 1H NMR (300 MHz, CDCl3) δ 7.71 (m, 4H), 7.41 (m, 

5H), 5.62 (m, 1H), 5.48 (t, J = 6.3 Hz, 1H), 4.96 (m, 1H), 4.91 (m, 1H), 4.23 (d, J = 6.3 Hz, 2H), 

2.62 (d, J = 6.5 Hz, 2H), 1.70 (s, 3H), 1.06 (s, 9H); ); 13C NMR (75 MHz, CDCl3) δ 135.91, 

SnBu3

TBDPSO 48

TBDPSO
33
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135.54, 134.49, 129.74, 127.82, 125.91, 115.59, 61.04, 36.86, 27.28, 22.85, 19.46; IR (neat) 

3061, 3040, 2850, 1956, 1890, 1832, 1694, 1636, 1469, 1425, 1105, 1047, 909, 821, 734, 690; 

HRMS (EI) calcd for C19H21OSi (M-C4H9) 293.136169, found 293.135677. 

 

7-(tert-Butyldiphenylsilanyloxy)-5-methylhepta-2,5-dienal (35) 
 

To a stirring solution of 33 (2.0 g, 5.71 mmol) and acrolein diethylacetal 

(1.85 g, 14.26 mmol) in CH2Cl2 (6 mL) under N2 was added (Grubbs 1st 

generation catalyst, 0.117 g, 0.142 mmol). The reaction mixture was heated to reflux for 18 h, 

then cooled to room temperature and a solution formic acid in CH2Cl2 (1:8) (4 mL) was added. 

The reaction mixture was stirred for 3 h, then was concentrated to one third of its original 

volume and was purified by flash chromatography (eluting with 100 mL CH2Cl2, then 10% 

EtOAc in hexanes) to afford the desired product (1.92 g, 89%): 1H NMR (300 MHz, CDCl3) δ 

9.45 (d, J = 7.8 Hz, 1H), 7.71 (m, 4H), 7.42 (m, 5H), 6.61 (dt, J = 15.5, 6.6 Hz, 1H), 6.01 (ddt, J 

= 15.5, 7.8, 1.5 HZ, 1H), 5.60 (t, J = 5.9 Hz, 1H), 4.19 (d, J = 6.4 Hz, 2H), 2.86 (d, J = 6.5 Hz, 

2H), 1.72 (d, J = 1.2 Hz, 3H), 1.06 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 193.71, 155.18, 

135.82, 133.97, 133.68, 133.01, 129.89, 127.89, 127.75, 60.75, 35.74, 27.05, 23.64, 19.37; IR 

(neat) 3061, 2960, 2923, 2865, 1687, 1469, 1425, 1389, 1112, 1047, 974, 814, 698; HRMS (EI) 

m/z calcd for C20H21O2Si (M+) 321.131084, found 321.130751.  

 

Silyl ketene acetal (36) 
 

To a stirring solution of diisopropylamine (2.22 g, 22.00 mmol) in THF (20 mL) at 0 

ºC was added n-butyllithium (1.6M in hexanes, 13.75 ml, 22.00 mmol) drop wise 

TBDPSO

O

H

35

O O
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36
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over 15 min. The reaction was stirred at 0 ºC for 30 min., then the temperature was decreased to -

78 ºC. 2,2,6-Trimethyl-[1,3]dioxin-4-one (2.84 g, 20.00 mmol) was added drop wise over 10 

min. and the resulting bright orange solution was stirred at -78 ºC for 60 min. 

Chlorotrimethylsilane (2.61 g, 24.00 mmol) was added over 10 min. and the reaction mixture 

was stirred for an additional 30 min. at -78 ºC, then was warmed to room temperature. The 

reaction mixture was then filtered through a pad of oven dried anhydrous Na2SO4 and 

concentrated. The resulting residue was purified by kugelrohr distillation (65 ºC at 0.2 mm Hg, 

temperature must not exceed 65 ºC in order to avoid decomposition) to afford the desired product 

as a bright orange liquid (3.76 g, 88%) : 1H NMR (300 MHz, CDCl3) δ 4.65 (s, 1H), 4.08 (s, 1H), 

3.98 (s, 1H), 1.56 (s, 6H), 0.26 (s, 9H). 

 

Dioxenone (-)-52 
 

To a stirring solution of (S,S)-N,N’-bis[4,5-dihydro-3,5-dimethyl-4-(3H-

dinaphtho[2,1-d:1’,2’-f][1,3,2]-2-oxodiazaphosphino)]-N,N’-dimethyl-1,5-

pentanediamine (0.04 g, 0.05 mmol) and 35 (1.92 g, 5.07 mmol) in CH2Cl2  (20 mL) at -78 ºC 

was added silicon tetrachloride (0.94 g, 5.57 mmol). The silyl ketene acetal 36 (1.19 g, 5.57 

mmol, in 5 mL of CH2Cl2) was added via syringe pump over 3h. The reaction mixture was 

stirred at -78 ºC for 18h, then was added via cannula to a stirring room temperature solution of 

1M KH2PO4. The resulting biphasic mixture was allowed to warm to room temperature before 

filtration through a pad of Celite. The filtrate was washed with 10% KF and the organic layer 

was dried (MgSO4) and concentrated. The resulting residue was purified by flash 

chromatography (40% EtOAc in hexanes) to afford the desired product (1.73 g, 65%): 1H NMR 

(300 MHz, CDCl3) δ 7.70 (m, 4H), 7.42 (m, 6H), 5.55–5.53 (m, 3H), 5.28 (s, 1H), 4.31 (m, 1H), 

OH
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OO
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4.19 (d, J = 6.4 Hz, 2H), 2.59 (d, J = 6.3 Hz, 2H), 2.37 (d, J = 3.7 Hz, 1H), 2.34 (d, J = 1.8 Hz, 

1H), 1.67 (m, 9H), 1.04 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 168.51, 160.92, 135.89, 135.89, 

135.10, 134.38, 132.56, 130.26, 129.81, 127.86, 125.20, 106.10, 95.56, 69.71, 60.97, 41.87, 

35.15, 27.15, 25.59, 25.15, 23.49, 19.44; IR (neat) 3454, 3069, 3047, 2996, 2923, 2850, 1723, 

1629, 1425, 1367, 1280, 1200, 1098, 952, 901, 814, 734, 705 cm-1; HRMS (EI): m/z calcd for 

C27H31O5Si (M-C4H9) 463.194078, found 463.194100. 

The ee was determined to be 93% (88.3, 3.2) by chiral HPLC analysis using a chiracel 

OD-H column. Conditions: Hex:i-PrOH 95:5, 0.90 mL/min. Retention time: minor 13.9, major 

15.6 

 

β-hydroxy keto ester (-)-54 
 

The dioxenone (-)-52 (0.62 g, 1.19 mmol) was dissolved in anhydrous 1-

butanol (23 mL). The 1-butanol was degassed by passing a stream of N2 

through for 2h prior to reaction. The reaction mixture was plunged into a preheated oil bath (140 

ºC) and allowed to reflux for 1h, then was cooled to room temperature and concentrated under 

reduced pressure. The resulting residue was purified by flash chromatography (20% EtOAc in 

hexanes) to afford the desired product (0.47 g, 74%): 1H NMR (300 MHz, CDCl3) δ 7.70 (m, 

4H), 7.42 (m, 6H), 5.49-5.34 (m, 3H), 4.49 (m, 1H), 4.20 (d, J = 6.4 Hz, 2H), 4.14 (t, J = 6.7 Hz, 

2H), 3.45 (s, 2H), 2.68-2.57 (m, 4H), 1.68 (s, 3H), 1.62 (m, 2H), 1.36 (m, 2H), 1.05 (s, 9H), 0.93 

(t, J = 7.4 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 202.97, 167.11, 135.78, 135.24, 134.08, 

131.75, 129. 75, 129.39, 127.80, 125.92, 68.33, 65. 56, 60.84, 50.10, 49.78, 35.10, 30.65, 27.01, 

23.53, 19.34, 19.21, 13.83; IR (neat) 3476, 3127, 3061, 2945, 1956, 1890, 1818, 1738, 1650, 

OH
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OO
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1465, 1419, 1306, 1111, 973, 825, 784, 743, 702, 609   cm-1; HRMS (EI): m/z calcd for 

C32H44O5Si (M+) 536.295803, found 536.293564; [α]D
23 -9.87º (CHCl3 , c 1.07). 

 

1,3-syn diol (-)-37 
 

To a stirring solution of  β-hydroxy keto ester (-)-54 (1.08 g, 2.02 mmol) in 

THF (15 mL) at -78 ºC was added diethylmethoxyborane (0.22 g, 2.22 

mmol). The reaction mixture was stirred for 30 min. before NaBH4 (0.45 g, 12.14 mmol) was 

added in bulk. The reaction mixture was stirred at -78 ºC for 18h before being quenched with 

saturated NH4Cl (5 mL). The reaction mixture was warmed to room temperature, diluted with 

Et2O and acidified to pH 1 by the addition of 1N HCl. The two layers were separated and the 

aqueous layer was washed with Et2O (3x20 mL). The combined organic layers were dried 

(MgSO4) and concentrated. The resulting residue was azeotroped with MeOH (3x25 mL) and 

purified by flash chromatography (50% EtOAc in hexanes) to afford the desired product (0.09 g, 

83 %): 1H NMR (300 MHz, CDCl3) δ 7.70 (m, 4H), 7.41 (m, 6H), 5.44 (m, 3H), 4.29 (m, 2H), 

4.21 (d, J = 5.5 Hz, 2H), 4.12 (t, J = 6.6 Hz, 2H), 2.57 (d, J = 6.0 Hz, 2H), 2.47 (d, J = 3.6 Hz, 

1H), 2.45 (d, J = 0.88 Hz, 1H), 1.68 (s, 3H), 1.65-1.50 (m, 4H), 1.35 (m, 4H), 1.05 (s, 9H), 0.94 

(t, J = 7.3 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 172.75, 135.78, 135.50, 134.07, 133.42, 

129.74, 128.74, 127.73, 125.77, 72.71, 68.53, 64.85, 60.85, 42.81, 41.76, 35.12, 30.73, 27.01, 

23.57, 19.34, 19.28, 13.87; IR (neat) 3403, 3069, 3040, 2734, 1963, 1890, 1818, 1730, 1672, 

1592, 1425, 1258, 1112, 814 cm-1; HRMS (EI): m/z calcd for C28H35O4Si (M–C4H9, H2O) 

463.230463, found 463.231124; [α]D
23 -8.57º (CHCl3 , c 1.08). 
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Cyclic α,β-unsaturated acetal (+)-39 
 

To a stirring solution of 1,3-syn diol (-)-37 (0.77 g, 1.44 mmol) in DMF (10 

mL) was added imidazole (0.49 g, 7.23 mmol). The reaction mixture was 

stirred for 5 min. and chlorotrimethylsilane (0.34 g, 3.18 mmol) was added, 

followed by DMAP (0.01 g). The reaction mixture was stirred for 18h, then quenched with ice 

chips. The reaction mixture was extracted into hexanes, and the water layer was washed with 

hexanes (3x15 mL). The combined organic layers were dried (MgSO4) and concentrated. The 

resulting residue was dissolved CH2Cl2 (10 mL) and the temperature was decreased to -78 ºC 

before 5-(tert-butyldimethylsilanyloxy)-6-(4-methoxybenzyloxy)-3-methylhex-2-enal (0.54 g, 

1.44 mmol) and TMSOTf (0.03 g, 0.14 mmol) were added. The reaction mixture was stirred for 

45 min., then quenched with pyridine (0.01 g, 0.17 mmol), warmed to room temperature and 

washed with saturated NaHCO3. The organic layer was dried (MgSO4) and concentrated. The 

resulting residue was purified by flash chromatography (5% EtOAc in hexanes) to afford the 

desired product (0.91 g, 71%): 1H NMR (300 MHz, CDCl3) δ 7.68 (m, 4H), 7.41 (m, 6H), 7.27 

(d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 5.51-5.42 (m, 3H), 5.33 (d, J = 5.9 Hz, 1H), 5.23 

(d, J = 6.1 Hz, 1H), 4.44 (s, 2H), 4.20 (d, J = 6.3 Hz, 2H), 4.09 (t, J = 6.6 Hz, 4H), 3.94 (m, 1H), 

3.80 (s, 3H), 3.36 (d, J = 5.3 Hz, 2H), 2.66 (dd, J = 15.7, 7.0 Hz, 1H), 2.59 (d, J = 6.1 Hz, 2H), 

2.43 (dd, J = 15.6, 6.0 Hz, 1H), 2.26 (dd, J = 13.5, 5.3 Hz, 1H), 2.14 (dd, J = 13.5, 6.9 Hz, 1H), 

1.73 (s, 3H), 1.67 (s, 3H), 1.61 (m, 4H), 1.34 (m, 2H), 1.05 (s, 9H), 0.93 (t, J = 7.6 Hz, 3H), 0.86 

(s, 9H), 0.03 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 170.95, 159.21, 139.37, 135.83, 135.44, 

134.06, 130.84, 130.75, 129.66, 129.38, 127.79, 125.74, 125.28, 113.82, 98.38, 76.42, 74.46, 

73.06, 72.75, 70.49, 64.65, 60.82, 55.40, 44.84, 41.07, 36.65, 35.22, 31.77, 30.76, 27.01, 26.07, 

23.54, 22.84, 10.33, 18.32, 18.15, 13.89, -4.32, -4.57; IR (neat) 3061, 2952, 2923, 2850, 1730, 
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1672, 1607, 1505, 1469, 1381, 1301, 1250, 1120, 1032, 996, 836, 785, 698 cm-1; HRMS (ESI): 

m/z calcd for C53H78O8NaSi2 (M + Na) 921.5133, found 921.5137; [α]D
23 -4.25º (CHCl3 , c 1.00). 

 

2,6-cis-4-methylene-tetrahydropyran (+)-40 
 

Cerium III chloride (2.46 g, 10.0 mmol) was dried with vigorous stirring under 

vacuum (0.2 mm Hg) at 150 ºC for 2h, then cooled to room temperature, 

flushed with N2 and suspended in THF (15 mL). The suspension was sonicated 

for 2h, then transferred to a -78 ºC cold bath. Trimethylsilylmethylmagnesium 

chloride (1.0M in Et2O, 10.0 mL, 10.0 mmol) was added over 20 min. to form a pale yellow 

suspension, which stirred for 1h. The cyclic α,β-unsaturated acetal (+)-39 (0.54 g, 0.60 mmol, in 

2 mL THF) was added dropwise, and the reaction mixture was allowed to gradually warm to 

room temperature and stir for 18h. The temperature was then decreased to -78 ºC and the 

reaction was quenched by the addition of 5 % HCl (5 mL). The reaction mixture was warmed to 

room temperature, and the two layers were separated. The aqueous layer was washed with Et2O 

(2x25 mL), and the combined organic layers were dried (MgSO4) and concentrated using a 40 ºC 

water bath. The flask was the placed under vacuum and allowed to stand for 30 min. The 

resulting residue was purified by flash chromatography (10% → 15% → 20 % → 30% EtOAc in 

hexanes) to afford the desired product (0.21 g, 42%): 1H NMR (500 MHz, CDCl3) δ 7.70 (d, J = 

1.4 Hz, 2H), 7.68 (d, J = 1.5 Hz, 2H), 7.40 (m, 6H), 7.26 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.5 Hz, 

2H), 5.46 (m, 2H), 5.38 (dd, J = 6.2, 15.6 Hz, 1H), 5.22 (d, J = 7.5 Hz, 1H), 4.73 (s, 2H), 4.45 (s, 

2H), 4.24 (ddd, J = 2.2, 6.2, 9.2 Hz, 1H), 4.20 (d, J = 6.4 Hz, 2H), 4.00 (ddd, J = 2.5, 7.8, 11.0 

Hz, 1H), 3.95 (m, 1H), 3.80 (s, 3H), 3.53 (m, 1H), 3.32 (d, J = 5.2 Hz, 2H), 2.57 (d, J = 6.0 Hz, 

2H), 2.26 (dd, J = 6.3, 13.5 Hz, 1H), 2.20 (s, 1H), 2.13 (m, 3H), 2.00 (m, 2H), 1.69 (s, 3H), 1.68 
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(s, 3H), 1.06 (s, 9H), 0.88 (s, 9H), 0.03 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.17, 143.85, 

136.97, 135.72, 135.68, 134.05, 133.63, 130.07, 129.67, 129.35, 127.98, 127.74, 125.51, 113.79, 

109.17, 78.82, 75.67, 74.04, 73.03, 72.24, 70.79, 60.82, 55.36, 44.79, 43.35, 40.92, 40.65, 35.13, 

26.98, 26.04, 23.52, 19.30, 18.30, 18.04, -4.32, -4.54; IR (neat) 3476, 3076, 2930, 2894, 2850, 

1672, 1614, 1585, 1512, 1469, 1425, 1352, 1287, 1250, 1105, 1040, 843, 770, 698 cm -1; HRMS 

(ESI): m/z calcd for C51H74O6NaSi2 (M + Na) 861.4922, found 861.4961; [α]D
23 +0.79º (CHCl3 , 

c 1.01). 

 

Allylsilane (-)-57 
 

The desired Prins cyclization product could also be obtained in a step-

wise manner. Cerium III chloride (2.46 g, 10.0 mmol) was dried with 

vigorous stirring under vacuum (0.2 mm Hg) at 150 ºC for 2h, then 

cooled to room temperature, flushed with N2 and suspended in THF (15 mL). The suspension 

was sonicated for 2h, then transferred to a -78 ºC cold bath. Trimethylsilylmethylmagnesium 

chloride (1.0M in Et2O, 10.0 mL, 10.0 mmol) was added over 20 min. to form a pale yellow 

suspension, which stirred for 1h. The cyclic α,β-unsaturated acetal (+)-39 (0.89 g, 1.00 mmol, in 

2 mL THF) was added dropwise, and the reaction mixture was allowed to gradually warm to 

room temperature and stir for 18h. The temperature was then decreased to -78 ºC and the 

reaction was quenched by the addition of EtOAc (5 mL). The reaction mixture was stirred at -78 

ºC for and addition 20 min., then was warmed to room temperature, and washed with saturated 

NaHCO3 and brine. The organic layer was dried (MgSO4) and concentrated. The resulting 

residue was dissolved in CH2Cl2 (10 mL) and silica gel (1.5 g) was added. The reaction mixture 

was stirred for 18h, then filtered. The filtrate was concentrated and the resulting residue was 
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purified by flash chromatography (10 % EtOAc in hexanes) to afford the desired product (0.35 g, 

66%): 1H NMR (300 MHz, CDCl3) δ 7.69 (m, 4H), 7.41 (m, 6H), 7.26 (d, J = 8.2 Hz, 2H), 6.88 

(d, J = 8.6 Hz, 2H), 5.55-5.33 (m, 4H), 5.20 (d, J = 6.2 Hz, 1H), 4.65 (s, 1H), 4.60 (s, 1H), 4.44 

(s, 2H), 4.20 (d, J = 6.4 Hz, 2H), 4.07 (m, 1H), 3.95 (m, 1H), 3.81 (s, 4H), 3.36 (d, J = 5.3 Hz, 

2H), 2.59 (d, J = 5.8 Hz, 2H), 2.36 (dd, J = 13.9, 5.7 Hz, 1H), 2.26 (dd, J = 13.5, 5.5 Hz, 1H), 

2.15 (dd, J = 13.4, 6.7 Hz, 1H), 2.05 (dd, 15.5, 8.2 Hz, 1H), 1.74 (d, J = 0.9 Hz, 3H), 1.67 (s, 

3H), 1.27 (s, 2H), 1.05 (s, 9H), 0.86 (s, 9H), 0.04 (s, 15H); 13C NMR (75 MHz, CDCl3) δ 159.40, 

143.57, 138.98, 135.90, 135.70, 134.35, 131.50, 131.04, 129.80, 129.45, 129.19, 127.88, 125.84, 

114.01, 110.08, 98.51, 75.42, 74.71, 73.22, 70.80, 60.99, 55.54, 45.05, 44.93, 27.56, 27.17, 

26.21, 23.59, 19.46, 18.43, 18.29, -1.05, -4.18, -4.46; IR (neat) 3061, 2952, 2850, 2734, 2698, 

1949, 1890, 1818, 1738, 1665, 1607, 1585, 1505, 1469, 1425, 1360, 1250, 1112, 843, 778, 734 

cm-1; HRMS (ESI): m/z calcd for C54H82O6NaSi3 (M + Na) 933.5317, found 933.5359; [α]D
23 -

5.53º (CHCl3 , c 0.75). 

  To a solution of PPTS (0.54 g, 1.99 mmol) in CH2Cl2 (2 mL) at room temperature was 

added allylsilane (0.05 g, 0.05 mmol, in 1 mL CH2Cl2) and MgSO4 (0.26 g, 2.18 mmol). The 

reaction mixture was stirred at room temperature for 3.5h, then placed directly on a silica gel 

column. The reaction mixture was purified by flash chromatography (10 % EtOAc in hexanes) to 

afford the desired Prins cyclization product (0.029 g, 66%).  

 

The proto-desilated acetal was isolated as a by-product of the reaction 

(0.014g, 29%): 1H NMR (300 MHz, CDCl3) δ 7.67 (m, 4H), 7.42 (m, 6H), 

7.23 (d, J = 9.8 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 5.52-5.33 (m, 4H), 5.20 (d, 

J = 6.2 Hz, 1H), 4.79 (s, 1H), 4.74 (s, 1H), 4.43 (s, 2H), 4.20 (d, J = 6.4 Hz, 2H), 4.05 (m, 1H), 
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3.94 (m, 1H), 3.81 (s, 4H), 3.34 (d, J = 5.3 Hz, 2H), 2.59 (d, J = 5.8 Hz, 2H), 2.35 (dd, J = 7.4, 

13.9 Hz, 1H), 2.25 (dd, J = 5.5, 13.5 Hz, 1H), 2.12 (dd, J = 6.7, 13.8 Hz, 2H), 1.75 (s, 3H), 1.74 

(s, 3H), 1.67 (s, 3H), 1.47 (m, 2H), 1.26 (m, 2H), 1.04 (s, 9H), 0.86 (s, 9H), 0.02 (s, 6H); 13C 

NMR (75 MHz, CDCl3) δ 159.49, 142.03, 138.87, 135.89, 134.46, 131.55, 131.13, 129.75, 

129.40, 129.11, 127.84, 125.90, 114.07, 112.92, 98.54, 80.12, 75.17, 74.78, 73.23, 70.87, 61.02, 

55.53, 45.08, 44.52, 37.14, 35.34, 27.19, 26.20, 23.51, 23.19, 19.45, 18.39, 18.23, -4.19, -4.46; 

IR (neat) 3069, 2938, 2858, 1607, 1512, 1469, 1425, 1367, 1301, 1243, 1105, 1032, 1003, 829, 

770, 698 cm -1; HRMS (ESI) calcd for C51H74O6NaSi2 (M+Na) 861.4922, found 861.4926.   

 

Ketone (-)-59 
 

To a stirring solution of 2,6-cis-4-methylene-tetrahydropyran (+)-40 

 (0.11 g, 0.12 mmol) in CH2Cl2 (5 mL) at 0 ºC was added Des-Martin 

periodinane (0.06 g, 0.15 mmol). The reaction mixture was stirred at room 

temperature for 2h, then quenched with a 1:1 mix of saturated NaHCO3 and 

saturated Na2S2O3 (1.5 mL). The resultant biphasic reaction mixture was stirred for 30 min, then 

the two layers were separated. The aqueous phase was washed with CH2Cl2 (10 mL), and the 

combined organic layer was dried (MgSO4) and concentrated. The resulting residue was purified 

by flash chromatography (10% EtOAc in hexanes) to afford the desired product (0.10 g, 94%): 

1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 4.0 Hz, 4H), 7.45 (m, 5H), 7.29 (d, J = 5.0 Hz, 2H), 

6.91 (d, J = 5.0 Hz, 2H), 6.64 (dt, J = 3.9, 9.5 Hz, 1H), 6.02 (d, J = 9.5 Hz, 1H), 5.57 (t, J = 3.6 

Hz, 1H), 5.23 (d, J = 4.5 Hz, 1H), 4.77 (s, 1H), 4.76 (s, 1H), 4.47 (s, 2H), 4.20 (d, J = 3.7 Hz, 

2H), 4.01 (at, J = 5.2 Hz, 1H), 3.94 (m, 1H), 3.84 (s, 4H), 3.36 (d, J = 3.0 Hz, 2H), 2.90 (dd, J = 

3.7, 9.6 Hz, 1H), 2.76 (d, J = 3.9 Hz, 2H), 2.59 (dd, J = 3.7, 9.6 Hz, 1H), 2.32 (d, J = 7.8 Hz, 
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1H), 2.31 (d, J = 7.8 Hz, 1H), 2.13 (m, 2H), 2.00 (at, J = 7.3 Hz, 1H), 1.93 (at, J = 7.4 Hz, 1H), 

1.71 (s, 3H), 1.69 (s, 3H), 1.08 (s, 9H), 0.90 (s, 9H), 0.06 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 

197.88, 159.31, 144.71, 144.11, 136.35, 135.81, 133.97, 133.48, 131.61, 130.83, 129.87, 129.41, 

128.56, 127.89, 127.30, 113.91, 109.29, 77.23, 75.80, 74.37, 73.13, 70.17, 60.75, 55.47, 46.69, 

45.21, 40.78, 40.52, 35.43, 27.05, 26.14, 23.67, 19.38, 18.40, 17.91, -4.25, -4.49; IR (neat) 3069, 

2923, 2894, 2843, 1709, 1672, 1614, 1600, 1520, 1469, 1425, 1360, 1250, 1112, 829, 770, 698 

cm -1; HRMS (ESI): m/z calcd for C51H72O6NaSi2 (M Na) 859.4765, found 859.4805; [α]D
23 -

8.02º (CHCl3 , c 1.02). 

 

Allylic alcohol (-)-62 
 

To a stirring solution of 2,6-cis-4-methylene-tetrahydropyran (+)-40 

 (0.13 g, 0.15 mmol) in THF (3 mL) at 0 ºC was added phenylselenocyanate 

(0.03 g, 0.15 mmol) followed by tributylphosphine (0.03 g, 0.15 mmol). The 

reaction mixture was stirred at room temperature for 3h, then concentrated. The 

resulting residue was purified by flash chromatography (CH2Cl2) to yield the desired selenide. 

The selenide was dissolved in CH2Cl2 (2 mL) and the temperature was decreased to -30 ºC. 

Pyridine (0.71 mL) was added, followed by 30% H2O2 (1 mL), and the reaction mixture was 

stirred for 5h, then quenched with saturated NH4Cl (1 mL). The reaction mixture was warmed to 

room temperature and extracted into Et2O. The organic layer was washed with 10% HCl, dried 

(MgSO4) and concentrated. The resulting residue was purified by flash chromatography (5% → 

20% EtOAc in hexanes) to afford the desired product (0.07 g, 58%): 1H NMR (500 MHz, 

CDCl3) δ 7.74 (at, J = 7.1 Hz, 4H), 7.44 (m, 6H), 7.28 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 8.3 Hz, 

2H), 5.72 (dt, J = 4.1, 15.3 Hz, 1H), 5.63 (t, J = 6.5 Hz, 1H), 5.54 (dd, J = 6.4, 15.3 Hz, 1H), 

O

OPMB
OTBS

TBDPSO

H H

HO

(-)-62



 

 201

5.29 (d, J = 7.5 Hz, 1H), 4.75 (s, 2H), 4.48 (s, 2H), 4.23 (m, 1H), 4.16 (m, 1H), 3.98 (m, 2H), 

3.84 (s, 3H), 3.38 (d, J = 5.2 Hz, 2H), 3.34 (m, 1H), 2.37 (m, 4H), 2.23 (m, 2H), 2.14 (m, 2H), 

2.06 (m, 2H), 1.93 (m, 1H), 1.80 (s, 3H), 1.72 (s, 3H), 1.65 (s, 1H), 1.11 (s, 9H), 0.92 (s, 9H), 

0.08 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 159.28, 144.60, 135.98, 135.62, 133.55, 130.55, 

129.63, 129.19, 128.55, 127.66, 127.41, 127.21, 113.64, 108.78, 77.92, 75.82, 74.11, 73.13, 

70.49, 70.21, 60.05, 55.23, 45.21, 40.96, 40.74, 40.23, 39.40, 26.77, 25.89, 23.89, 19.07, 18.41, 

17.95, -4.24, -4.47; IR (neat) 3461, 3083, 2923, 2894, 2850, 1650, 1607, 1505, 1469, 1425, 

1360, 1250, 1120, 836, 770, 741, 705 cm -1; HRMS (ESI): m/z calcd for C51H74O6NaSi2 (M + 

Na) 861.4922, found 861.4948; [α]D
23 -2.32º (PhH , c 1.82). 

 

Diol (-)-41 
 

 To a stirring solution of allylic alcohol (-)-62 (0.013 g, 0.015 mmol) in DMF 

(0.25 mL) at 0 ºC was added 4-methoxybenzyl chloride (0.25 mL), 

tetrabutylammonium iodide (0.01 g) and sodium hydride (60% dispersion in 

mineral oil, 0.0009 g, 0.023 mmol). The reaction mixture was stirred for 18h at 

room temperature, then quenched by the addition of ice chips, and extracted into hexanes. The 

organic layer was dried (MgSO4) and concentrated. The resulting residue was purified by flash 

chromatography (5% EtOAc in hexanes). The resulting residue was dissolved in THF (0.25 mL) 

and 3 drops of HF·pyridine were added. The reaction mixture was stirred at room temperature for 

18h, then quenched by the careful addition of saturated NaHCO3 (1.5 mL) and extracted into 

EtOAc (5 mL). The water layer was washed with EtOAc (5 mL) and the combined organic 

layers were dried (MgSO4) and concentrated. The resulting residue was azeotroped with benzene 

(3x5 mL) to remove any excess pyridine, and purified by flash chromatography (50% EtOAc in 
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hexanes) to afford the desired product (0.003 g, 40%): 1H NMR (500 MHz, CDCl3) δ 7.25 (d, J = 

6.5 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4, 2H), 5.68 (m, 

2H), 5.46 (dd, J = 8.2, 15.5 Hz, 1H), 5.32 (d, J = 7.3 Hz, 1H), 4.75 (s, 2H), 4.54 (d, J = 11.5 Hz, 

1H), 4.49 (s, 2H), 4.26 (d, J = 11.5 Hz, 1H), 4.05 (m, 2H), 3.94 (m, 1H), 3.81 (m, 2H), 3.77 (s, 

3H), 3.76 (s, 3H), 3.45 (dd, J = 3.7, 9.4 Hz, 1H), 3.40 (m, 1H), 3.35 (dd, J = 6.9, 9.3 Hz, 1H), 

2.58 (m, 3H), 2.36 (m, 2H), 2.20 (m, 2H), 2.10-1.95 (m, 4H), 1.71 (s, 3H), 1.67 (s, 3H); 13C 

NMR (100 MHz, CDCl3) δ 159.31, 144.27, 136.77, 135.64, 132.59, 130.25, 129.91, 128.62, 

127.03, 113.83, 113.77, 108.79, 77.86, 76.75, 75.58, 73.64, 73.04, 69.58, 68.34, 58.04, 55.26, 

43.66, 40.66, 40.14, 39.03, 38.54, 23.86, 17.11; IR (neat) 3418, 3076, 2930, 2858, 1650, 1607, 

1585, 1512, 1447, 1360, 1294, 1170, 1040, 894, 814 cm-1; HRMS (ESI): m/z calcd for 

C37H50O7Na (M + Na) 629.3454, found 629.3478 [α]D
23 -21.05º (PhH , c 0.50). 

 

Aldehyde (-)-65 
 

To a stirring solution of diol (-)-41 (0.004g, 0.006 mmol) in CH2Cl2 (0.25 mL) 

at 0 ºC was added Dess-Martin periodinane (0.003 g, 0.006 mmol). The 

reaction mixture was stirred at 0 ºC for 20 min., then warmed to room 

temperature and stirred for an additional 30 min. The temperature was then 

decreased to 0 ºC and the reaction mixture was quenched with saturated aqueous NaHCO3 (0.5 

mL) and saturated aqueous Na2S2O3 (0.5 mL). The reaction mixture was stirred for 10 min. 

before the two layers were separated. The organic layer was dried (MgSO4) and concentrated. 

The resulting residue was purified by flash chromatography (50% EtOAc in hexanes) to afford 

the desired product (0.0023 g, 64%): 1H NMR (500 MHz, CDCl3) δ 9.91 (d, J = 8.1 Hz, 1H), 

7.27 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 
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2H), 5.93 (d, J = 8.1 Hz, 1H), 5.71 (m, 1H), 5.44 (dd, J = 15.7, 8.1 Hz, 1H), 5.31 (d, J = 7.6 Hz, 

1H), 4.77 (s, 2H), 4.51 (m, 3H), 4.25 (d, J = 11.5 Hz, 1H), 3.94-3.88 (m, 2H), 8.81 (m, 4H), 3.80 

(s 3H), 3.44 (dd, J = 9.4, 3.3 Hz, 1H), 3.33 (m, 2H), 2.94 (dd, J = 13.3, 7.9 Hz, 1H), 2.64 (dd, J = 

13.1, 5.4 Hz, 1H), 2.39 (m, 2H), 2.26-1.98 (m, 6H), 1.93 (s, 3H), 1.71 (s,3H); 13C NMR (100 

MHz, CDCl3) δ 191.25, 159.91, 144.28, 131.91, 130.90, 130.01, 129.38, 129.26, 128.71, 113.94, 

113.87, 109.61, 77.77, 76.75, 75.67, 73.72, 73.10, 69.74, 68.59, 55.30, 43.59, 40.74, 40.15, 

39.19, 39.01, 26.02, 17.20; IR (neat) 3461, 3069, 2923, 2850, 1680, 1614, 1595, 1461, 1294, 

1243, 1178, 1061, 1032, 821; HRMS (ESI): m/z calcd for C37H48O7Na (M+Na) 627.3298, found 

627.3307 [α]D
23 -17.95º (PhH , c 0.20).  
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APPENDIX A 
 

Mechanistic and stereochemical studies of photoinduced electron transfer initiated 
cyclization reactions: the role of nitrogen (Supporting Information) 
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