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A novel decision-theoretic architecture for intelligent tutoring systems, DT Tutor (DT), was fleshed out 

into a complete ITS and evaluated.  DT uses a dynamic decision network to probabilistically look ahead 

to anticipate how its tutorial actions will influence the student and other aspects of the tutorial state.  It 

weighs its preferences regarding multiple competing objectives by the probabilities that they will occur 

and then selects the tutorial action with maximum expected utility.  

 The evaluation was conducted in two phases.  First, logs were recorded from interactions of 

students with a Random Tutor (RT) that was identical to DT except that it selected randomly from 

relevant tutorial actions.  The logs were used to learn many of DT’s key probabilities for its model of the 

tutorial state.  Second, the logs were replayed to record the actions that DT and a Fixed-Policy Tutor (FT) 

would select for a large sample of scenarios.  FT was identical to DT except that it selected tutorial 

actions by emulating the fixed policies of Cognitive Tutors, which are theoretically based, widely used, 

and highly effective.  The possible action selections for each scenario were rated by a panel of judges who 

were skilled human tutors.  The main hypotheses tested were that DT’s action selections would be rated 

higher than FT’s and higher than RT’s.  This was the first comparison of a decision-theoretic tutor with a 

non-trivial competitor.  

DT was rated higher than FT overall and for all subsets of scenarios except help requests, for 

which it was rated equally.  DT was also rated much higher than RT.  The judges preferred that the tutors 

provide proactive help and the study design permitted this information to be put to use right away to 

develop and evaluate enhanced versions of DT and FT.  The enhanced versions of DT and FT were rated 

about equally and higher than non-enhanced DT except on help requests.  The variability of the actions 

selected by both non-enhanced and enhanced versions of DT demonstrated more sensitivity to the tutorial 

state than the actions selected by non-enhanced and enhanced versions of FT.  
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1.0 INTRODUCTION 
 
 
 
 
Intelligent tutoring systems (ITSs) that coach students as they attempt tasks often emulate the turn taking 

observed in human tutorial dialog (Graesser et al., 1995; Merrill et al., 1995).  Student turns usually 

consist of attempting a task step or asking for help.  The tutor’s main task can be seen as deciding what 

action to take on its turn, or tutorial action selection.  Selecting tutorial actions involves inherent 

difficulties.   

A significant source of difficulty is that the tutor is uncertain about the student’s internal state 

because it is not directly observable.  This includes both (1) the student’s cognitive state, such as task-

related knowledge, mental inferences, and focus of attention; and (2) the student’s affective state.  

Compounding the difficulty, the student’s internal state changes over the course of a tutoring session as 

the student interacts with the tutor, learns, attempts task steps, and experiences successes and failures.  

Furthermore, the tutor is uncertain about the effects of the tutor’s actions on the student’s internal state.  

The tutor may also be uncertain about other aspects of the tutorial state, such as task progress if it is not 

entirely observable.  To glean uncertain information about the tutorial state and how it is influenced by 

both tutor and student actions, a tutor must make inferences based on observable phenomena and guided 

by the tutor’s beliefs about the situation.  In recent years, many ITSs (see, e.g., Jameson, 1996) have 

modeled the tutor’s uncertainty in terms of probability using Bayesian techniques (Pearl, 1988) for 

mathematically sound yet relatively efficient inference. 

Another significant difficulty is that just what constitutes effective tutorial action depends upon 

the tutor’s objectives and priorities among them.  The tutor’s objectives are likely to include student-

centered objectives such as increasing the student’s knowledge, helping the student complete tasks and 

bolstering the student’s affective state, along with other objectives such as being a cooperative discourse 

partner.  It may not be possible to maximize attainment of all the tutor’s objectives over the course of a 

tutoring session.  For instance, the tutor may want to maximize both the student’s knowledge and task 

progress, but focusing on increasing the student’s knowledge could take time away from helping the 

student complete tasks, and conversely, helping the student complete tasks (e.g., by telling the student 

exactly how to do task steps) could take time away from increasing the student’s task-related knowledge.  

When the tutor has competing objectives, the effectiveness of the tutorial action alternatives depends 
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upon the tutor’s priorities.  Tutors must often strike a “delicate balance” among multiple competing 

objectives (Lepper et al., 1993; Merrill et al., 1992, p.280; Reye, 1995).   

Decision theory extends probability theory by considering, in addition to the decision-maker’s 

(e.g., the tutor’s) uncertainty, the decision-maker’s objectives and priorities in terms of utility as a rational 

basis for making decisions (Russell & Norvig, 1995).  This work features a decision-theoretic approach 

for tutoring, called DT Tutor, that involves explicitly looking ahead to anticipate how the tutorial action 

alternatives will influence the student and other aspects of the tutorial state.  In broad terms, for each 

tutorial action alternative, the tutor looks ahead to compute (1) the probability of every possible outcome 

of that tutorial action, (2) the utility of each possible outcome relative to the tutor’s objectives and 

priorities, and then (3) the alternative’s expected utility by weighing the utility of each possible outcome 

by the probability that it will occur.  The tutor then selects the tutorial action with maximum expected 

utility.  This approach unifies considerations regarding the tutor’s objectives and priorities, the tutor’s 

uncertain beliefs about the changing tutorial state, and the tutor’s uncertain beliefs about the effects of 

tutorial actions.  One advantage of a decision-theoretic approach is the capability to balance multiple 

tutorial objectives in a principled way when computing the utility of each outcome.  DT Tutor leverages 

this capability by considering multiple objectives related to a rich model of tutorial state outcomes such as 

the student’s knowledge, focus of attention, and affective state, along with task progress and the discourse 

state.  Few other tutoring systems have modeled any tutorial state attribute other than the student’s 

knowledge probabilistically, let alone all in combination.  

While many ITSs and user-modeling systems have used Bayesian networks for reasoning under 

uncertainty (for examples, see, e.g., Horvitz et al., 1998; Jameson, 1996), decision-theoretic approaches 

for selecting tutorial actions remain novel.  Reye (1995) proposed a decision-theoretic approach for ITSs 

which considered uncertainty about the student’s knowledge and next action, as well as multiple 

concurrent objectives.  That paper mentioned an SQL tutor in progress but left unspecified many details 

of the both the approach and its concrete implementation.  Murray and VanLehn (2000) presented DT 

Tutor’s approach in the context of a prototype tutorial action selection engine for calculus related-rates 

problems.  The only other decision-theoretic ITS work of which the author is aware are the recent 

contrasting approaches embodied by CAPIT (Mayo & Mitrovic, 2001) and iTutor (Pek, 2003).  DT Tutor 

appears to be unique among implemented decision-theoretic ITS approaches in several respects, including 

considering a rich model of the tutorial state to adapt how it responds to the student from turn to turn – 

i.e., to decide what type of help (e.g., what type of hint) to provide in addition to the help topic.  Decision-

theoretic methods have been used more often in the user modeling community.  Conati’s proposal (e.g., 

2002) for educational games is probably the closest to DT Tutor in that it too uses a dynamic decision 

network (defined below) designed to balance objectives regarding the user’s cognitive and affective 
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states, although versions published so far model only the user’s affective state.  Chapter 2.0 of this 

dissertation, Scientific Contributions and Related Work, further describes related work in the context of 

the scientific contributions of this research.   

There are at least three ways that a decision-theoretic approach to tutorial action selection could 

fail.  First is the knowledge representation problem: For real-world tutorial contexts, it might not be 

feasible to decision-theoretically represent the tutorial state with enough fidelity.  The real tutorial state is 

of course hopelessly complex.  It includes the student's knowledge (which is changing, we hope), the 

student's focus of attention, the student's affect, progress on the tutorial task, the tutor’s domain 

knowledge and pedagogical objectives, the discourse history, etc.  Some of these tutorial state attributes 

can be approximated.  For instance, student affect could be represented by a variable with just two values: 

high or low.  However, such coarse approximations may make it impossible to predict future tutorial 

states and rate their utilities accurately enough.  Moreover, to build a decision-theoretic system on the 

scale of DT Tutor, thousands of probabilities and utilities must be specified.  It is probably not necessary 

for all of these values to be precise (e.g., Henrion et al., 1996), but they must be accurate enough for DT 

Tutor to have a sufficiently realistic model of the tutorial state to make effective decisions.  Thus, one 

challenge is to develop a representation of the tutorial state that is accurate enough to make good 

decisions but not so complex that it is computationally infeasible. 

Another potential point of failure is the real-time inference requirement: A tutor must select 

actions quickly enough to keep the student engaged.  DT Tutor’s decision-theoretic approach uses an 

extension of Bayesian networks.  Its networks have many uninstantiated variables, are multiply-

connected, and can be large.  Such characteristics, which appear to be necessary for many complex, real-

world domains (Cooper, 1990), can make probabilistic inference NP-hard (Cooper, 1990; Dagum & 

Luby, 1993) and thus can make real-time inference challenging. 

A third way that a decision-theoretic approach could fail is in its tutorial action selection 

capabilities.  By definition, a decision-theoretic approach should be able to select actions rationally.  

However, DT Tutor’s architecture is novel.  Its networks can be complex because they model multiple 

outcomes as they change over time, and they may include hundreds of nodes and thousands of 

probabilities and utilities.  Yet these networks are just approximations of the tutorial state.  At the outset 

of this research it was unclear just what action selection capabilities would emerge from such a complex 

yet approximate representation, or how these capabilities would compare to other approaches.  

Previously, decision-theoretic approaches had been compared only to random action selection (Mayo & 

Mitrovic, 2001) and to no tutoring at all (Mayo & Mitrovic, 2001; Pek, 2003).  Even if DT Tutor’s action 

selections should prove to be better than those selected by unintelligent approaches (e.g., random or no 

tutoring it all), it is still important to know how a decision-theoretic approach compares to more reasoned 
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approaches.  DT Tutor’s approach is computationally intensive and so it must provide some benefit over 

less computationally intensive approaches in order to be worthwhile.   

In work with DT Tutor prior to the current study, the feasibility of its approach was tested with 

prototype action selection engines for tutoring diverse domains: calculus related-rates problems and 

reading aloud.  These action selection engines did not yet have modern user interfaces and so they could 

not be used to test DT Tutor’s action selection capabilities for tutoring with real students.  However, the 

knowledge representation problem was addressed by encoding DT Tutor’s approach for the two domains 

(e.g., Murray & VanLehn, 2000; Murray et al., 2001b).  To see whether the real-time inference 

requirement could be met, the response times of both action selection engines were tested on a variety of 

problem sizes with improving but still modest results (Murray & VanLehn, 2000; Murray et al., 2004).  

The remaining problem, tutorial action selection capabilities, was partially addressed by presenting both 

action selection engines with a variety of simulated scenarios and checking to see whether the actions 

selected were both (1) rational in light of the system’s probabilities and utilities, and (2) comparable to the 

actions of human or other automated tutors (Murray & VanLehn, 2000; Murray et al., 2004).  Section 1.2 

introduces DT Tutor’s solutions to these challenges, beginning with its general decision-theoretic 

approach and concluding with an overview of the architecture of its action selection engine.   

The purpose of the current study was to assess DT Tutor’s action selection capabilities for 

situations involving real students and to compare these capabilities with a competing approach.  In order 

to assess DT Tutor’s capabilities for situations involving real students, it was first necessary to flesh out 

DT Tutor by developing a modern user interface for calculus related-rates problems along with other 

components necessary for a complete ITS.  A research plan was developed not only to comparatively 

assess DT Tutor, but also to further address the knowledge representation problem by empirically 

learning key probabilities and further tuning DT Tutor’s utilities.  Along the way, further steps were 

taken to address and informally assess progress on the real time inference requirement as well.   

First, besides fleshing out DT Tutor, two other methods of selecting tutorial actions were 

developed for comparison purposes.  One, the Random Tutor, selected randomly from tutorial actions 

that were relevant to the current tutorial state.  The other, the Fixed-Policy Tutor, emulated a fixed policy 

for selecting tutorial actions employed by the Cognitive Tutors (Anderson et al., 1995), which are theory-

based (Anderson & Lebiere, 1998), widely-used and highly effective (Koedinger et al., 1997).  Both of 

these tutors shared the same user interface and help messages as DT Tutor with only the methods used 

for selecting tutorial actions being different.  The tutorial action selections consisted only of whether to 

provide a help message and, if so, which help message to provide.  By using the same interface and the 

same pool of help messages for all three tutors, the only differences between them would be which help 
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messages they selected and when, and these differences would be solely due to their action selection 

methods. 

Next, after taking a pretest, students used the Random Tutor while both student and tutor actions 

were logged, and then they took a posttest.  This was the start of the data collection and tuning phase of 

the experiment, which had three purposes:  The first purpose was to collect data from the pre- and 

posttests and logged student-tutor interactions to learn key probabilities about student knowledge, student 

behavior, and the effects of tutorial actions.  The Random Tutor was used to collect data about the effects 

of individual tutorial actions by statistically controlling for the effects of sequences of tutorial actions by 

randomizing over the sequences in which the individual actions occurred.  The second purpose of the 

data collection and tuning phase was to tune DT Tutor’s utilities.  The final purpose of this phase was to 

collect logs of student-tutor interactions for use during the assessment phase of the study.   

During the assessment phase, a replay mechanism developed for this study was used to replay the 

logged student-tutor actions while recording the responses that DT Tutor and the Fixed-Policy Tutor 

would provide for the exact same tutorial situations.  The actions selected by the Random Tutor, the 

Fixed-Policy Tutor and DT Tutor were then rated, mainly quantitatively but also qualitatively, by a panel 

of judges who were skilled in tutoring calculus.  The primary purpose of this phase was to compare the 

judges’ ratings of DT Tutor’s tutorial action selections with their ratings of the action selections of the 

Random Tutor and the Fixed-Policy Tutor.  A secondary purpose was to learn details about the 

preferences of skilled human tutors for tutoring within the domain and about what might be done to 

improve the performance of computer tutors.  

This study design cannot provide conclusive information about the bottom line of which tutor is 

most effective with students, but it has other advantages.  First, it provided data for learning many of DT 

Tutor’s key probabilities.  Second, it can be used to compare the action selections of different tutoring 

approaches in identical situations.  Third, it can provide information that is much more detailed than the 

bottom line about what makes the tutors’ actions effective or not in particular situations (Mostow et al., 

2001), information that can be used to improve not only DT Tutor but other tutors as well.  Both the 

logged data and the judges’ ratings remain a rich source of information about tutoring.  

 
 
 
 

1.1 RESEARCH PROBLEMS 
 
 
This study had a number of goals, as discussed in the Introduction.  First, was addressing the knowledge 

representation problem by fleshing out DT Tutor into a complete ITS and learning key probabilities for 
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its decision-theoretic representation.  Along the way, it was hoped that progress would be made towards 

meeting the real-time inference requirement.  These issues are discussed in some detail in this report.  But 

the primary focus of this study was evaluating DT Tutor’s tutorial action selection capabilities by 

comparing its action selections with those selected by two other action selection methods, according to 

the ratings of a panel of judges who are skilled tutors in the domain.  Comparison between DT Tutor’s 

decision-theoretic approach and the two other action selection approaches was conducted using standard 

statistical hypothesis testing.  The specific hypotheses are described in the following subsections. 

 
 
1.1.1 Hypothesis 1:  Decision-theoretic can be better than random tutoring 
 
 
Hypothesis 1 is as follows: 

 

According to ratings by skilled human tutors, tutorial action selections by decision-

theoretic methods can be better than selections made randomly among relevant 

tutorial actions.  

 

The procedure for obtaining ratings from skilled human tutors is described in section 5.2.  The exact 

method used to randomly select tutorial actions is described in section 4.2.1.2.  The provision that random 

selection would be made among relevant tutorial actions was made to ensure that the Random Tutor 

would not be at a disadvantage because its action selections were not relevant to the current tutorial state.   

 This hypothesis was made for two purposes.  First, if the other, more reasoned methods for 

selecting tutorial actions could do no better than an unreasoned, random method, then the validity of the 

experimental procedure might be in question.  Second, random action selection provides a baseline 

control condition against which to compare decision-theoretic methods to see if they are useful at all.  

 
 
1.1.2 Hypothesis 2:  Decision-theoretic can be better than fixed-policy tutoring 
 
 
Hypothesis 2 is as follows: 

 

According to ratings by skilled human tutors, tutorial action selections by decision-

theoretic methods can be better than selections made by a fixed policy that emulates 

the fixed policies of theory-based, widely accepted and highly effective computer 

tutors. 
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The procedure for obtaining ratings from skilled human tutors is described in section 5.2.  The 

exact fixed policy to be compared is described in section 5.2.2.3.  This fixed policy emulates the tutorial 

action selection policy of the Cognitive Tutors (Anderson et al., 1995), discussed above, and is also very 

similar to the fixed policy of Andes1 (Conati et al., 2002) except for a difference in responses to student 

errors (Gertner & VanLehn, 2000).  It must be emphasized that this hypothesis is made with respect to 

this fixed policy only (albeit one whose success sets a high standard) since a fixed-policy can be made 

arbitrarily complex – e.g., at the extreme, table lookup to match or surpass the tutorial action selections of 

DT Tutor for any finite enumeration of combinations of tutorial state attributes.  

 
 
 
 

1.2 GENERAL APPROACH 
 
 
This section first describes the decision-theoretic basis of DT Tutor’s approach. Next is a description of 

how that decision-theoretic basis is put into action with DT Tutor’s general architecture.  

 
 
1.2.1 A decision-theoretic approach 
 
 
The term decision-theoretic has been used in various ways (Jameson et al., 2001). DT Tutor’s approach is 

described in this section, which first reviews prerequisite concepts to work up to a description of the 

dynamic decision network that is at the heart of DT Tutor.  

Probability has long been the standard for modeling uncertainty in diverse scientific fields. In 

recent years, algorithms for belief networks (Pearl, 1988, equivalently, Bayesian networks) have made 

probabilistic modeling of complex domains more feasible. A belief network is a directed acyclic graph 

with (1) a chance node for each modeled attribute to represent beliefs about its value, and (2) arcs 

between nodes to represent conditional dependence relationships among the beliefs. Beliefs are specified 

in terms of probability distributions for the attribute’s possible values. For a node with incoming arcs, a 

conditional probability table specifies its probability distribution conditioned on the possible values of its 

parents. For a node without parents, a prior probability table specifies its probability distribution prior to 

observation of actual node values. In many real-world scenarios, a substantial number of conditional 

independence relationships exist. When this is the case, a belief network can concisely represent the entire 

joint probability distribution – the probabilities for every possible combination of attribute values – with 

exponentially fewer probability entries, making it possible to model more complex domains. Belief 
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networks provide a mathematically sound basis for updating beliefs about any set of nodes in the network 

given any set of observations. Prior and conditional beliefs may be determined subjectively, theoretically, 

or empirically. Using Bayes’ rule and a variety of inference algorithms, belief networks can be used to 

perform diagnostic, causal and intercausal reasoning, as well as any combination of these (Russell & 

Norvig, 1995).  

Each node within a belief network represents possibly changing beliefs about an attribute whose 

value is fixed even though it may be unknown. Temporal probabilistic networks (Dean & Kanazawa, 

1989) support reasoning under uncertainty in domains where the values of attributes may change over 

time (as tutorial state attributes often do). For each attribute whose value may change, a sequence of 

nodes represents the attribute’s value at each point in time. Typically, a new slice is created for each time 

point at which attribute values may change, where a slice is a set of nodes representing attributes at a 

specific point in time. For tutoring, slices can be chosen to represent the tutorial state after a tutor or 

student action, when attribute values are likely to change (Reye, 1998). In addition to atemporal arcs 

between nodes within the same slice, temporal arcs extend between nodes across time slices to represent 

the fact that attribute values may also depend on earlier values of the same and other attributes. The set of 

temporal arcs represents the network’s state evolution model (Russell & Norvig, 1995). Typically (e.g., 

Albrecht et al., 1998), each slice is constructed so that the Markov property holds true, by adding 

additional nodes if necessary (Russell & Norvig, 1995): attribute values in one slice depend only on 

attribute values in the same slice and in the immediately preceding slice.  

In static temporal networks, the number of slices is fixed in advance. Dynamic temporal networks 

(e.g., dynamic belief networks) avoid this limitation by creating additional slices dynamically and 

removing old slices when they are no longer required. They rely on the Markov property to roll up beliefs 

from an old slice into the following slice so that beliefs in the following slice summarize all accumulated 

evidence and the old slice can be removed. However, attributes that are conditionally independent in one 

slice may eventually be influenced by a common historical cause, making them conditionally dependent 

in later slices. This can cause nodes in later slices to become fully connected (Boyen & Koller, 1998) – 

i.e., to lose all conditional independencies between nodes – eliminating the conciseness advantage of 

belief network representations. To avoid this situation, rollup schemes that approximate a slice’s belief 

state without full connectivity can be used (e.g., Boyen & Koller, 1998).  

Decision theory extends probability theory to provide a normative account of how a rational 

decision-maker should behave (Keeney & Raiffa, 1976). The decision-maker’s preferences in light of her 

objectives are quantified in terms of a numeric utility value for each possible outcome of the decision-

maker’s action. To decide among alternative actions, the expected utility of each alternative is calculated 

by taking the sum of the utilities of all possible outcomes weighted by the probabilities of those outcomes 
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occurring. Decision theory holds that a rational agent should choose the alternative with maximum 

expected utility, thereby maximizing the utility achieved when averaged over all possible outcomes 

(Russell & Norvig, 1995). Explicitly quantifying the decision-maker’s preferences facilitates comparing 

and prioritizing outcomes, helps to clarify the rationale underlying decisions (Jameson et al., 2001), and 

supports modifying the agent’s behavior simply by changing utility values. The expected utility 

mechanism integrates considerations about probability and utility over a continuous range of values. 

Decision theory thus provides a rational, transparent, flexible and integrated mechanism for comparing 

decision alternatives in light of probabilities and priorities regarding any number of competing objectives. 

A belief network can be extended into a decision network (equivalently, an influence diagram) by adding 

decision and utility nodes along with appropriate arcs (Howard & Matheson, 1984).  

A dynamic decision network combines the capabilities of a dynamic belief network and a decision 

network by combining chance, decision and utility nodes in a dynamic temporal representation (Dean & 

Wellman, 1991). Dynamic decision networks model scenarios in which decisions, attribute values, or 

priorities among objectives can vary over time. They provide a unified mechanism for computing the 

decision with maximum expected utility considering both uncertainty about the changing state and 

multiple competing objectives. As with dynamic belief networks, dynamic decision networks are typically 

constructed so that they can rely on the Markov property to dynamically add new slices and remove old 

slices. Rollup methods are similar to those for dynamic belief networks. 

DT Tutor uses a dynamic decision network to make tutorial action decisions by looking ahead to 

anticipate their effects on the changing tutorial state in light of the tutor’s uncertain beliefs and multiple 

competing objectives. For DT Tutor, chance nodes represent the tutor’s beliefs about tutorial state 

attributes, decision nodes represent tutorial action alternatives, and utility nodes represent the tutor’s 

preferences among the possible tutorial states. 

 
 

1.2.2 DT Tutor’s general architecture 
 
 
DT Tutor’s dynamic decision network is formed from dynamically created decision networks. These 

networks are called tutor action cycle networks (TACNs) because they each represent a single cycle of 

tutorial action, where a cycle consists of deciding a tutorial action and carrying it out, observing the next 

student action, and updating the tutorial state based on these two actions.  
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Slice 0

 
 

 

Figure 1.1:  Tutor action cycle network, high-level overview 

 
 
 
1.2.2.1 High-level overview of DT Tutor’s architecture  
 
 
Each TACN consists of three slices, as illustrated in Figure 1.11. The Tutorial States subnetwork in each 

slice is a belief (sub)network representing the student’s state and all other attributes of the tutorial state, 

such as the discourse state and the state of the tutorial task (e.g., solving problems). The Tutor Action1 

decision node and the Student Action2 chance node represent tutor and student actions, respectively. The 

Utility2 node is a high-level representation of multiple utility nodes that together represent the tutor’s 

preference structure regarding the various possible outcomes of the tutor’s action for the current TACN.  

TACNs are used both for deciding the tutor’s action and for updating the tutorial state. Let us first 

consider how a TACN is used for deciding the tutor’s action. During this phase, Slice 0 represents the 

tutor’s current beliefs about the tutorial state, Slice 1 represents the tutor’s possible actions and 

predictions about their influence on the tutorial state, and Slice 2 represents a prediction about the 

student’s next action, its influence on the tutorial state, and the utility of the resulting tutorial state 

outcomes. The decision network inference algorithm calculates the action with maximum expected utility 

and the tutor selects that action. This ends the decision-making phase. The tutor executes the action. After 

the tutor has observed the student’s action or decided that the student is at an impasse, the update phase 

begins.  

                                                      
1 In figures in this report, decision nodes are represented by rectangles, chance nodes are represented by ovals, utility 
nodes are represented by hexagons, and subnetworks are represented by rounded rectangles. Each arc into or out of a 
subnetwork actually represents multiple arcs to and from various subnetwork nodes. For subnetwork and node 
names, a subscript of 0, 1, or 2 refers to the slice number of the component. A subscript of s refers to any slice in 
which the component appears. 

 Slice 2Slice 1 

Tutor 
Action1 

Student 
Action2 Utility2 

Tutorial 
State0 

Tutorial 
State2

Tutorial 
State1
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The tutor enters the student action as evidence in Slice 2 and updates the network. At this point, 

the posterior probabilities in Tutorial State2 represent the tutor’s current beliefs. Since it is now time for 

another tutorial action selection, another TACN is created and the dynamic network is rolled forward: 

posterior probabilities from Tutorial State2 of TACNi are copied as prior probabilities to Tutorial State0 of 

TACNi+1, where they represent the tutor’s current beliefs2. This initializes the new TACN. The old 

TACN is discarded. This ends the update phase. The tutor is ready to begin the next phase, deciding what 

action to take next.  

With this architecture, the tutor both reacts to past student actions (e.g., for corrective feedback), 

whose effects are summarized by the beliefs in Tutorial State0, and anticipates future student actions and 

their ramifications (e.g., to provide proactive help) as represented by the beliefs in Tutorial State2. In 

principle, the tutor can look ahead any number of slices without waiting to observe student actions in 

order to consider the long-term effects of its action alternatives. The tutor simply predicts probability 

distributions for the next student action and the resulting Tutorial State2, rolls the dynamic decision 

network forward, predicts the tutor’s next action and the following student action, and so on. However, a 

large amount of lookahead can be computationally prohibitive, so DT Tutor currently looks ahead only as 

far as the student’s next action and the resulting tutorial state. 

                                                      
2 This is a naïve network rollup scheme that neglects additional dependencies between nodes in the new slice (slice 0 
of TACNi+1) that are induced by shared dependence on nodes in previous time slices. Future work includes refining 
this rollup using an algorithm for approximate summarization of past dependencies (e.g., Boyen & Koller, 1998).  
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2.0 SCIENTIFIC CONTRIBUTIONS AND RELATED WORK 
 
 
 
 
This section discusses the scientific contributions of this work in the context of related work. The 

scientific contributions of this work include (1) a non-trivial comparison of a decision-theoretic tutoring 

system to a competing approach, and (2) a novel computational architecture for tutorial action selection.  

 
 
 
 

2.1 COMPARATIVELY EVALUATE DECISION-THEORETIC TUTORING 
 

 

CAPIT (Mayo & Mitrovic, 2001) and iTutor (Pek, 2003) appear to be the only other decision-theoretic 

tutors that have been implemented and evaluated.  However, these tutors were compared only with no 

tutoring at all (CAPIT: Mayo & Mitrovic, 2001), with “self-learning and consulting the teacher when 

required” (iTutor: Pek, 2003, p. 136), and with randomized action selection (CAPIT: Mayo & Mitrovic, 

2001).  This work does not directly assess effectiveness with students, but it does comparatively assess 

decision-theoretic tutoring against a higher standard:  a Fixed-Policy Tutor that selects tutorial actions by 

emulating the fixed policy employed by the Cognitive Tutors (Anderson et al., 1995), which are theory-

based (Anderson & Lebiere, 1998), widely-used and highly effective (Koedinger et al., 1997).    

 
 
 
 

2.2 A NOVEL ARCHITECTURE FOR TUTORIAL ACTION SELECTION 
 
 
Related work sometimes extends beyond ITSs to include user-modeling research because many systems 

that are not explicitly educational model the user (for an ITS, the student) to inform decisions about what 

actions to take in order to facilitate the interaction.  Below, DT Tutor’s architectural contributions are 

described in terms of important elements of the design space for a user modeling system: deciding what 

actions to take, modeling change in the user and the situation over time, deciding the type as well as the 
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topic of tutorial actions, modeling only observable or also unobservable attributes, modeling the user’s 

focus of attention, modeling the user’s affective state, and predicting the user’s next action. 

 
 
2.2.1 Making decisions 
 
 
Applications that use a belief network representation often resort to heuristics to decide which action to 

take.  For instance, Andes1, the first version of a physics ITS from which DT Tutor is descended, used 

heuristics to decide the topic of what-next? help (Gertner et al., 1998).  Like many other belief network 

applications, Andes1 incorporated no explicit notion of the utilities of the possible outcomes of its 

actions.  Such applications cannot integrate considerations regarding the probabilities and utilities of the 

possible action outcomes.  Instead, Andes1 selected actions using probability thresholds and rules which 

reflect implicit priorities. 

Some applications take outcome probabilities computed by a belief network and multiply them by 

their associated utilities outside the network to compute expected utilities for decision-theoretic action 

selection.  These include an ITS for English capitalization and punctuation (CAPIT, Mayo & Mitrovic, 

2001) and various other user modeling applications (e.g., Horvitz et al., 1999).  An advantage of 

computing expected utility outside the network is potentially faster inference due to a smaller network (no 

decision or utility nodes with associated arcs) and the flexibility to consider only subsets of actions or 

outcomes in the expected utility calculations.  However, the potential speedup is mitigated by (1) forgoing 

the option to use specialized decision network algorithms such as those that find the decision with 

maximum expected utility without computing exact expected utility values for all alternatives (e.g., 

Shachter & Peot, 1992), and (2) the potential to miss less obvious decision alternatives or outcome 

combinations with higher expected utility, resulting in decisions with less than maximum expected utility.   

A few user modeling applications use decision network or equivalent representations to directly 

compute the decision with maximum expected utility.  DT Tutor and Conati’s representation (2002) for 

an educational game use DDN architectures to select actions for helping a user with a task.  iTutor (Pek, 

2003) uses a DDN for deciding actions at a different grain size: pre-computing a policy for selecting 

curriculum topics such as which problems to present to a student.  Jameson and colleagues (2001) use a 

decision network to decide whether to present instructions individually or several at a time. 

One benefit of decision-theoretic representations is support for value of information computations 

to guide user queries and other information-seeking behaviors.  Applications that utilize value of 

information include those of Horvitz and colleagues (Horvitz et al., 1998; Paek & Horvitz, 2000) and 

iTutor (Pek, 2003).  DT Tutor does not currently query the user or make decisions about other 

information-seeking behaviors and so it does not utilize value of information at this time. 
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2.2.2 Deciding the type of tutorial action as well as the topic 
 
 
Many probabilistic ITSs decide the topic of tutorial discourse actions in real time as they tutor the student, 

but use a fixed, predetermined policy to decide the type of tutorial discourse action, such as hinting at 

various levels of detail or explicitly telling the student how to do the next task step.  For example, both 

Andes1 (Conati et al., 2002) and the model-tracing tutors (e.g., Anderson et al., 1995; Koedinger et al., 

1997) dynamically decide which problem step to give the student help on (the topic of the tutorial action) 

and then use a fixed sequence of progressively more explicit hints (the type of the tutorial action), 

bottoming out with a hint that tells the student exactly how to do the step.  Similarly, the decision-

theoretic CAPIT ITS (Mayo & Mitrovic, 2001) uses decision theory to decide which problem-solving 

constraint to give feedback on (the topic of the tutorial action), but the content and style of the feedback 

messages seem to be determined in advance.  The only other decision-theoretic ITS, iTutor (Pek, 2003), 

uses decision theory to precompute curriculum topics but then uses heuristics to decide which hint to give 

the student. 

However, dynamically deciding which type of tutorial help to provide is important too.  Reye’s 

(1995) proposal apparently envisioned using decision theory to decide the tutorial action type as well as 

the topic, since it included examples of the tutor deciding whether to simply present a topic or to first ask 

the student about her knowledge of it.  Moreover, the tutorial action type influences both the student’s 

cognitive and affective states.  For instance, a vague initial hint provides a small amount of cognitive 

information that may be sufficient to remind a student of what she already knows with a relatively small 

negative influence on her feeling of independence (del Soldato & du Boulay, 1995).  But, at least with the 

model-tracing tutors, “… students are often annoyed with the vague initial messages and decide there is 

no point in using the help facility at all” (Anderson et al., 1995, p.199).  Conversely, an explicit bottom-

out hint provides a large amount of cognitive information that a student may require to complete a task 

step.  Accomplishing task steps with extensive tutorial help may decrease the student’s feeling of 

independence while increasing the student’s confidence (del Soldato & du Boulay, 1995).  But the 

cognitive information available in extensive tutorial help may be overused by students who do not really 

need it – “hint abusers” – causing them to learn little (Anderson et al., 1995, p.198).  Thus, the type of 

tutorial action influences both the student’s cognitive and affective states, and this influence depends at 

least in part on the student’s prior mental state.  Since prior mental state varies by student and even time 

for an individual student, it is not possible to determine in advance the best type of tutorial action to 

provide.   

DT Tutor dynamically decides both the type of tutorial discourse action to provide – currently: 

prompt, hint, teach, do (tell the student exactly how to do a step), or null (no tutorial action) – and the 
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tutorial action topic (e.g., a particular problem step).  It does this by looking ahead to predict the influence 

of the tutorial action type and topic on tutorial state attributes such as the student’s knowledge, the 

student’s affective state, and task progress (among other attributes).  The possible tutorial action types 

have differing effects on the various tutorial state attributes, with none dominant for maximizing all 

attributes.  By modeling tradeoffs among the expected outcomes of the tutorial action type alternatives 

relative to the tutor’s objectives and priorities, DT Tutor can decide not only to provide vague initial help 

(e.g., a prompt or a hint) but it can also, for instance, decide instead to progress directly to teaching a 

task-related rule or even to doing a step for the student.  Moreover, DT Tutor uses the same set of 

considerations to decide whether to provide proactive help (and if so, the topic and type of help to 

provide), which Andes, CAPIT, iTutor and the model-tracing tutors do not provide. 

 
 

2.2.3 Modeling change over time 
 
 
Systems that have used probabilistic networks to model change over time include POLA and Andes1, 

ancestors of DT Tutor, which employ a static atemporal belief network for each problem.  POLA avoided 

temporal representation by dynamically adding nodes to represent problem-solving actions as the student 

completed them, along with nodes to represent the student’s related physics knowledge (Conati & 

VanLehn, 1996).  In effect, the semantics of each version of the incrementally-built networks changed 

with each time step to represent the tutorial state at the current point in time (Schäfer & Weyrath, 1997).  

Because POLA built its networks incrementally, it could not use them to model student knowledge 

related to uncompleted steps or to predict which action the student was most likely to attempt next 

(Conati et al., 2002).  Andes1’s networks do include nodes to represent uncompleted problem-solving 

actions and related knowledge, but the semantics of these nodes does not distinguish between steps that 

have already been completed and steps that Andes1 believes the student can complete (Conati et al., 

2002).  Thus, Andes1’s networks cannot track the student’s most recent action or current focus of 

attention (Conati et al., 2002).  Andes1 models the evolution of a student’s knowledge at a high level by 

copying updated beliefs about the student’s knowledge between the atemporal networks for each 

successive problem, but this modeling is at too coarse a grain size to influence tutorial actions while the 

student is working on any particular problem.   

Horvitz and colleagues have modeled change over time with a set of single-slice network models 

by embedding the notion of time within variable definitions (e.g., “attribute a at time t”) (Horvitz et al., 

1998) or by encoding time-dependent conditional probabilities (Horvitz et al., 1998) or utilities (e.g., 

Horvitz & Barry, 1995).  Usually, each successive network represents the current point in time.  The state 

evolution model is specified externally to the networks and is implicit in the changing variable 
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definitions, conditional probabilities and utilities.  Without arcs across slices or an equivalent mechanism, 

many temporal dependencies may be neglected, such as the conditional dependence of attributes on their 

previous values.  Without nodes to represent beliefs in more than one slice, a network cannot model 

changes in beliefs about the present through evidence-based revision of beliefs about the past. 

CAPIT (Mayo & Mitrovic, 2001) uses a two-slice static temporal belief network to predict 

student problem-solving actions in terms of constraints.  It adapts conditional probabilities to the current 

student while she works, using an algorithm for atemporal models heuristically modified to give greater 

weight to more recent events.  Thus, CAPIT adapts its static temporal belief network to reflect changes in 

the tutorial state beyond its two-slice limit.  However, the network does not track the order in which 

constraints have been attempted or feedback has been given, so it cannot track the student’s focus of 

attention or make a more specific prediction about the student’s next action.  CAPIT’s student model is 

limited to observable constraints, so it cannot model the evolution of the student’s knowledge or other 

unobservable tutorial state attributes. 

Dynamic belief network representations can model the temporal evolution of the model’s state 

over any number of slices, including projections about future slices (Russell & Norvig, 1995), by 

dynamically creating new slices and removing old slices as they are no longer needed.  Reye (1996) 

proposed dynamic belief network representations for ITSs to model the evolution of the student’s 

knowledge over time and showed (Reye, 1998; Reye, 2004) how two probabilistic ITSs (Corbett & 

Anderson, 1992; Shute, 1995) can be characterized as special cases of a dynamic belief network 

approach.  Other user modeling applications include a game (Albrecht et al., 1998) and office productivity 

tools (e.g., Horvitz et al., 1999), among others.  Dynamic belief networks share with static belief networks 

the lack of an integrated provision for decision-making.   

A DDN extends a dynamic belief network representation to include decision-making capability.  

iTutor (Pek, 2003) uses a DDN to pre-compute which curriculum topics to present to the student but then 

uses a dynamic belief network to track the student’s knowledge as she progresses through the curriculum.  

Both DT Tutor and Conati (2002) employ DDNs both for decision-making and for modeling observable 

and unobservable attributes as they change over time, combining all these capabilities within integrated 

DDN architectures.  

 
 

2.2.4 Which attributes to model 
 
 
The set of attributes that an application considers should naturally influence the actions that it selects.  For 

instance, if a help or tutoring application does not consider the user’s focus of attention, its help is liable 

to be directed towards a topic that the user is not concerned about, which may confuse the user (e.g., 
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Gertner et al., 1998).  Many ITSs consider only one or two sets of attributes, such as the student’s 

knowledge and task progress.  A strength of decision-theoretic approaches is the ability to smoothly 

integrate considerations involving multiple sets of attributes.  Described below is research related to 

modeling some of the more important attributes that DT Tutor can model.   

 
 
2.2.4.1 Modeling observable and unobservable attributes 
 
 
Some applications have used statistical methods to probabilistically model only observable user attributes.  

These include a machine learning system for predicting the details of subtraction errors (Chiu & Webb, 

1998), CAPIT (Mayo & Mitrovic, 2001), and ADVISOR (Beck & Woolf, 2000), an ITS for grade school 

arithmetic.  Limiting modeling to observable user attributes affords the considerable advantage of 

simplifying machine learning efforts (e.g., Jameson et al., 2001).  All required data can be gathered from 

log files and other readily observable sources that record values for the attributes of interest (e.g., Horvitz 

et al., 1998).  Data that the system can observe (e.g., keystrokes, mouse actions and timing data in 

context) can even be used to adjust prior and conditional probabilities while the system is in use in order 

to further adapt to specific users or populations (e.g., Horvitz et al., 1998; Mayo & Mitrovic, 2001).   

However, there are also important advantages to modeling unobservable attributes (Jameson et 

al., 2001).  Perhaps foremost among these for ITSs is that they are usually concerned with the student’s 

knowledge – often to influence and sometimes to assess – which is unobservable.  An application must 

model attributes if it is to reason about them (Grossmann-Hutter et al., 1999).  Second, unobservable 

attributes often influence observable attributes.  For instance, a student’s knowledge influences the 

correctness of her problem-solving actions.  So even if an application is concerned only with observable 

outcomes, it may be advantageous to consider its influence on unobservable attributes as well.  In 

particular, ITSs often influence their students’ observable behaviors through discourse and other actions 

intended to influence the student’s mental state.  Modeling conditional dependencies between observable 

and mental attributes allows one to leverage and even to test research from such fields as education and 

psychology (Grossmann-Hutter et al., 1999).  Finally, networks with hidden variables representing 

unobservable attributes can be more concise (e.g., Heckerman, 1995), making them faster to learn (Binder 

et al., 1997) and to update (Martin & VanLehn, 1995), with a structure that is easier to elicit from experts 

(Binder et al., 1997) and more amenable to interpretation in terms of theoretical and empirical knowledge 

(e.g., Binder et al., 1997; e.g., Grossmann-Hutter et al., 1999).  DT Tutor, like many other ITSs and other 

user modeling systems, models both observable and unobservable attributes. 
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2.2.4.2 Modeling the user’s focus of attention 
 
 
Identifying the user’s focus of attention can be critical to providing assistance that is timely and relevant 

to the user’s needs (e.g., Horvitz et al., 1999).  No other decision-theoretic ITS currently models the 

user’s focus of attention.  According to Grosz and Sidner (e.g., 1986), knowledge of focus of attention as 

well as task structure is necessary for understanding and generating task-oriented discourse.  DT Tutor 

follows Grosz in modeling focus of attention relative to a hierarchical task structure.  However, instead of 

modeling focus with a stack as in the work of Grosz and colleagues (e.g., Grosz & Sidner, 1986), DT 

Tutor’s probabilistic approach has more in common with Walker’s (1996) cache model of attentional 

state.  The cache model accounts for phenomena such as the influence of the recency of discourse content 

as well as the influence of the hierarchy of intentions related to the task.  The cache model is also 

consistent with Albrecht and colleagues’ (1998) observation that users may interleave actions to achieve 

multiple goals.  Reye (1995) criticizes the stack model’s inflexibility regarding the order in which goals 

may be pursued within an ITS.  DT Tutor also models focus aging, or decreasing probability of focus on 

task elements that were in focus at earlier times, which is consistent with both the cache model and 

Horvitz and colleagues’ (1998) approach of associating observations seen at earlier times with decreased 

relevance to the user’s current goals.   

Andes1 uses a hierarchically-structured atemporal belief network to narrow in on a set of task 

steps that may be in the student’s task-related focus of attention when she requests what-next? help.  

However, Andes1’s network does not distinguish completed steps and cannot track the student’s most 

recent action, so Andes1 uses a heuristic procedure to guess the student’s specific focus of attention 

(Conati et al., 2002; Gertner et al., 1998).  The Adele ITS for medical diagnosis (Ganeshan et al., 2000) 

likewise models focus of attention relative to a hierarchically-structured atemporal belief network.  

However, Adele does not model uncertainty about the student’s focus of attention probabilistically, 

instead directing the discourse and asking disambiguating questions to limit the possibilities.  The 

Lumière Project’s help systems for office productivity programs probabilistically model focus of attention 

for non-ITS applications, but at least initially avoided detailed modeling of domain-specific content 

(Horvitz et al., 1998).  Some other applications by Horvitz and colleagues (e.g., Horvitz et al., 1999; Paek 

& Horvitz, 2000) model focus of attention at mostly a coarser level, such as which agent or application 

program the user is attending to.   
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2.2.4.3 Modeling the user’s affective state 
 
 
Considering the student’s affective or motivational state can be vital for effective tutoring.  Lepper and 

colleagues (1993) observed that their expert human tutors appeared to give as much weight to affective 

and motivational outcomes as to informational and cognitive outcomes, knowing that a negative affective 

state can interfere with learning (Goleman, 1995).  Many ITSs consider the student’s affective state at 

most implicitly, with corresponding effects on the affective sensitivity of the tutoring that they provide.  

Most ITSs and other user modeling applications that do consider the student’s affective state pay 

relatively scant attention to other considerations.   

For ITSs, detailed models of the student’s affective state have been implemented by, for example, 

del Soldato and du Boulay (1995) and de Vicente and Pain (e.g., 2002).  However, these models have at 

least two shortcomings.  First, they do not model the ITS’s uncertainty about the student’s affective state.  

Arroyo and Woolf (2001) address this issue with a statistical approach for predicting the student’s 

behavior and affective state.  Second, they do not satisfactorily resolve what the tutor should do when 

there is a conflict between the best tutorial action based on affective outcomes and the best tutorial action 

based on cognitive or other outcomes.   

Decision-theoretic approaches provide a way to take into account the tutor’s uncertainty about the 

student’s affective state while balancing considerations regarding affective and other outcomes.  DT Tutor 

uses a DDN to weigh uncertain beliefs and multiple objectives regarding the student’s changing affective 

state along with other tutorial outcomes.  Conati (2002) likewise proposes a DDN representation to 

consider both the user’s affective state and “learning state” for an educational game, employing a detailed 

model of the user’s affective state but leaving the model of the user’s learning state unspecified. DT Tutor 

sports a relatively impoverished model of the student’s affective state.  DT Tutor’s main contribution in 

this area is providing a framework for weighing uncertain, changing beliefs and priorities regarding any 

number of outcomes, including the user’s affective state, at various levels of detail, depending on the 

needs and capabilities of the application.   

 
 

2.2.4.4 Predicting and learning from the user’s actions 
 
 
ITSs and other user modeling applications often choose actions, at least implicitly, on the basis of beliefs 

about how they will influence the user’s performance. Conversely, the user’s performance can be used as 

evidence to update the application’s user model. Therefore, it can be important for a user modeling 

application to predict the user’s performance and to learn from the user’s actual performance.  

 19



An application’s prediction capabilities depend in part on the factors that it considers. For 

instance, Chiu and Webb (1998) consider the student’s past subtraction performance in detail to arrive at 

detailed predictions about future subtraction performance, but they do not consider the influence of help. 

ADVISOR (Beck & Woolf, 2000), on the other hand, models many other factors, including the help 

provided, to predict the time required for a student to solve an arithmetic problem and whether she will be 

correct, but does not model or predict the student’s performance on problem subskills. Jameson and 

colleagues (2001) likewise predict a user’s execution time and errors based in part on the system’s 

delivery of instructions. CAPIT (Mayo & Mitrovic, 2001) models and makes predictions about student 

performance in terms of 25 constraints. 

All of the systems above model the user and make predictions strictly in terms of observable 

attributes, which facilitates empirical learning both prior to and during interaction with the user. However, 

modeling relationships between unobservable attributes, such as the user’s knowledge and focus of 

attention, and observable user actions can help in predicting observable user actions. Furthermore, such 

models can be used for diagnostic learning about unobservable attributes based on observed user actions. 

Albrecht and colleagues (1998) model an unobservable attribute, the user’s quest in a game, as 

part of predicting the user’s next action and location within the game space. Horvitz and colleagues 

(1999) and DT Tutor both model the user’s focus of attention as part of predicting the user’s next action. 

DT Tutor models focus of attention along with student knowledge at a finer grain size – particular task 

steps and rules within the tutorial domain – to predict the topic and the correctness of, but not the time 

required for, the student’s next action.  

ADVISOR (Beck & Woolf, 2000) and the systems that use probabilistic networks (e.g., Albrecht 

et al., 1998; Horvitz et al., 1999; Jameson et al., 2001; Mayo & Mitrovic, 2001; Murray & VanLehn, 

2000) model the system’s inherent uncertainty by predicting the user’s next action probabilistically. The 

systems that use probabilistic networks also have the capability to learn diagnostically about unobserved 

attributes (e.g., the user’s goal, knowledge, focus of attention, and even potentially observable attributes) 

based on observed user actions. 
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3.0 TECHNICAL APPROACH  

 
 
 
 
This section describes the technical approach for developing DT Tutor into a full-fledged ITS, the 

Calculus Related Rates Tutor (Calculus Tutor for short).  The components include a domain expert, a 

decision-theoretic action selection engine, and a student interface.  Appendix A provides an introduction 

to the Calculus Tutor and its domain from a student’s point of view, including a screen shot of the 

interface in Figure A1.  Appendices C through E and G provide additional information about the materials 

used with the Calculus Tutor, a variety of screen shots, and sample help messages.  

 
 
 
 

3.1 THE DOMAIN EXPERT 
 
 
The domain expert performs several functions for DT Tutor.  First, it solves problems in the domain while 

creating for each problem a problem solution graph structure which is the basis for (1) DT Tutor’s 

dynamic decision networks and the (2) the goal reification in the Goals  Window of the student interface.  

These are the domain expert’s fundamental capabilities that will be described here.  The domain expert 

also checks the correctness of student equations and acts as log server for the web-based version of the 

student interface.  To describe the problem solver, it is first necessary to describe the problem domain.  

 
 
3.1.1 The calculus related-rates problem domain 
 
 
A sample word problem for this domain follows: 

The economy of the newly–founded republic of San Pedro is growing such  that, in any 
year y, the level m of the money supply in billion dollars is 2 times the square of the 
number of years elapsed. The gross national product g of the economy is 4 times the 
money supply. How fast is the gross national product growing when y equals 2 years?  
(Singley, 1986, p.8) 
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In equation form, the givens are m = 2y2, g = 4m, and y = 2, and the goal is to find dg/dy when y equals 2. 

Singley (1986) developed a model-tracing tutoring system for 32 types of problems in this domain. 

Quoting Singley (1986, pp.9-10), the problems have the following features: 

• Three variables, referred to generically as x, y, and z. The value of the z variable is always 

given. 

• Two relations, one between x and y and the other between y and z. Each relation could be 

stated either as a regular equation (e.g., x = 3y2) or as a derivative (e.g., dx/dy = 6y). 

Furthermore, these relations could be stated either with x in terms of y (forward direction) 

or with y in terms of x (backward direction). By crossing these two binary features, each 

relation could take on four possible forms. Given two relations, this meant a total of 

sixteen possible “initial states” for the problems. 

• A goal, either to find the value of the x variable (an “integration” goal) or the value of 

dx/dz (a “differentiation” goal) for a particular value of z. These goals were so named 

because, in most cases, finding a value for x involved integration and finding a value for 

dx/dz involved differentiation. Crossing the 16 initial states by these two goals yields a 

total of 32 problems. 

 

In addition, Singley’s specification seems to implicitly include the following restrictions: 

1. For integration operations, the arbitrary constant of integration is neglected. For instance, p = ∫ 

32t dt = 16t2 rather than p = ∫ 32t dt = 16t2 + c (Singley, 1986, p.151). 

2. For the “differentiation” problems, the relationship between the x and y variables is always such 

that the first derivative is a constant (e.g., dx/dy = c, where c is an arbitrary constant) (Singley, 

1986, p.100). 

3. Again for the “differentiation” problems, the relationship between the y and z variables is always 

such that the first derivative is not a constant (e.g., dy/dz = f(z)). 

Restriction (1) above is mathematically incorrect. It simplifies the integration operation and probably 

more importantly simplifies combining the resulting equation with other equations, facilitating students’ 

movement through the resulting problem space by simplifying calculus operations and algebraic 

manipulations. For the purposes of this study, the domain-specific content of the tutoring is much less 

important than its effectiveness, so restrictions of this sort can be tolerated.  
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Restrictions (2) and (3) are restrictions on the problems presented to students. They simplify 

applying the chain rule to achieve the “differentiation” goal of finding the value of dx/dz for a particular 

value of  z (i.e., dx/dz = dx/dy * dy/dz = c * f(z) = f'(z)).  

To solve these problems, the following calculus and algebra operators are supported as quoted 

from (Singley, 1986, pp.10-11):  

• Differentiate. Takes a regular equation stating x in terms of y and produces the derivative 
dx/dy. 

• Integrate. Takes the derivative dx/dy and produces a regular equation stating x in terms of 
y. 

• Apply chain rule. Takes two derivatives, dx/dy and dy/dz, and produces a third, dx/dz. 

• Substitute equations. Takes two regular equations, x in terms of y, y in terms of z, and 
produces a new equation stating x in terms of z. 

• Flip derivative. Takes the derivative dx/dy and produces the derivative dy/dx. 

• Restate equation. Takes a regular equation stating x in terms of y and transforms it into an 
equation stating y in terms of x. 

• Evaluate. Given an equation stating either x or dx/dz in terms of z, and a value for z, 
returns the value of x or dx/dz respectively.  

Apply chain rule and substitute equations are the only “combining operator[s]” (Singley, 1990, p.110), so 

called because they put “previously unassociated variables in direct relation to one another” (Singley, 

1986, p.11). Since the initial relations are between (1) x and y, and (2) y and z, and the goal is to find the 

value of x or dx/dz in terms of the value of z, a combining operator must be applied in each problem in 

order to relate the variables x and z. The operators differentiate, integrate, flip derivative, and restate are 

unary since they take a single operand.  

Singley (1986) also imposes a few restrictions on problem solutions, apparently to reduce 

floundering:  

• Illegal operator applications are blocked – i.e., applying an operator to an invalid operand is not 

allowed.  

• Higher-order differentiation is blocked. It is not taught in Singley’s tutor’s supporting material 

and it is not needed to solve the problems that are presented to students.  

• Previously performed operator applications may not be repeated.  
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• After the student has derived the sought equation for the problem, which states the value of the 

sought variable (generically, x or dx/dz) in terms of the variable whose value is known (z), further 

exploration of the problem space is “restricted.”   

• Evaluation seems to be blocked except on the problem’s target equation with the value z=c.  

Singley (1986) also developed a goal-posting version of his tutor which, for each problem, (1) tells the 

student a top-level goal of which combining operator to apply, (2) tutors the student to set the subgoals 

required to apply the combining operator, (3) directs the student to pursue these subgoals and then apply 

the combining operator in a prescribed order, and (4) blocks operator selections that do nothing to satisfy 

the current problem-solving goal. However, Singley (1986) does not clearly specify which combining 

operator should be applied given the initial problem state. Singley (1986, p.28) states that  

It’s generally the case that those initial states composed of regular equations favor use of 
the substitute equations operator and those composed of derivatives favor use of apply 
chain rule. Of course, this bias is somewhat modulated by the goal type of the problem, 
with integration goals favoring substitute equations and differentiation goals favoring 
apply chain rule.  

Even less clear is what to do for initial states composed of one regular equation and one derivative. 

Perhaps because of lack of clear direction on which combining operator to apply, Singley’s goal-posting 

tutor simply tells the student which combining operator to apply instead of helping the student select the 

combining operator herself.  

Singley (1986) specifies a means-ends analysis approach for solving problems in this domain and 

designates an “optimal” solution for 12 of the 32 problem types, but does not specify how these solutions 

are culled from the large number of possible solutions or how to find an “optimal” solution without an 

exhaustive search of all possible solutions.  

 
 

3.1.2 Problem solutions generated by the domain expert 
 
 
The domain expert can solve all of the types of calculus related-rates problems with which students may 

be presented (and others as well). Depending on the problem-solving rules and heuristics that it employs, 

the problem solver can produce either forward- or backward-chaining solutions, including multiple 

solutions for each problem type. The problems and the operations used to solve them conform to the 

domain specification of Singley (1986) except that students will be given problems in equation rather than 

word form to avoid the complex task of modeling and tutoring the process of translating word problems 

into equations. Singley (1986) likewise does not model the translation task. 
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  A fundamental characteristic of backward-chaining solutions that distinguishes them from 

forward-chaining solutions is decomposition of the problem into goals and subgoals, along with related 

rules, that can be used to direct and constrain student problem-solving actions to effective actions within 

the problem space. A core principle of the ACT theories (e.g., Anderson, 1983; Anderson, 1993; 

Anderson & Lebiere, 1998) upon which the original Cognitive Tutors are based is that problem solving 

involves decomposing the problem into goals and subgoals. Furthermore, the ACT theories assume that 

students can convert their declarative knowledge (e.g., knowing the chain rule) into procedural knowledge 

(e.g., knowing how to apply the chain rule) only by relating it to task goals (Anderson et al., 1995). 

According to the theories, the student’s procedural knowledge consists of a set of production rules that 

specify which problem-solving actions to apply (including setting subgoals) in service of the student’s 

problem-solving goals.  Therefore, developers of the Cognitive Tutors attempt to create interfaces that 

make explicit, or reify (Collins & Brown, 1988) the goal structure underlying the problem solving 

(Anderson et al., 1995). To this end, an important contribution of Singley’s (1986) work on a Cognitive 

Tutor for calculus related-rates problems was developing and demonstrating the effectiveness of a user 

interface which reified – to a limited extent – each problem’s goal structure (Anderson et al., 1995).  

Using backward-chaining solutions as a basis for tutoring is thus consistent with a Cognitive Tutor 

approach, which should facilitate a fair comparison between the decision-theoretic version and fixed-

policy version (which emulates Cognitive Tutors) of the tutor. Consequently, the current version of the 

problem solver uses backward-chaining to produce a single partial-order solution for each problem using 

the heuristics defined in the Calculus Tutor Tutorial which is listed in Appendix A.   

 Figure 3.1 illustrates the problem solution graph for a simple problem, Problem P1, created by the 

problem solver and used as input for both the student interface and the decision-theoretic action selection 

engine.  The problem statement is “Transform the given equations and evaluate to find dq/ds=<number> 

when s=2” and the given equations are dq/dr=3, dr/ds=10*s2 and s=2.  Nodes in the top two rows of the 

graph with crosshatch filling represent rule nodes.  The remaining nodes consist of goal and equation 

nodes.  Nodes with solid shading represent given nodes.  The shaded goal node “Eval dq/ds=num” 

represents the given goal “evaluate to find dq/ds=<number>.”  The shaded goal nodes represent the given 

equations.  The domain expert solves the problem by using rule evaluate operand 1 (rule node “Eval 

Op1”) to set a goal to find an equation of form dq/ds=f(s), which corresponds to node “Find dq/ds=f(s).”  

Given this goal, rule select chain rule (node “Select Chain”) is used to set the goal apply chain rule (node 

“Apply Chain”).  Given this goal, rules evaluate operand 1 (rule node “Eval Op1”) and evaluate operand 

2 (rule node “Eval Op2”) are used to set goals find dq/dr=<number> and find dr/ds=f(s).  Equations of 

the desired equation forms were given (dq/dr=3 and dr/ds=10*s2) and so a find equation form rule (node 

“Find Eq Form”) is used to find them.  Once the desired equations are found, rule execute chain rule 
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(node “Exec Chain”) is used to apply the chain rule to the given equations to establish equation 

dq/ds=30*s2. Finally rule execute evaluation is applied to equations dq/ds=30*s2 and s=2 to derive the 

answer, dq/ds=120. 

 
 
 

 
 
 

Figure 3.1:  Problem solution graph for problem P1 

 
 
 

3.2 DECISION-THEORETIC ACTION SELECTION ENGINE 
 
 
This section builds on section 1.2 above, General Approach, providing more detail about the structure, 

mechanism and capabilities of DT Tutor’s tutorial action selection engine.  For a still more detailed 

description, see (Murray et al., 2004)  
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3.2.1 Tutor Action Cycle Network in more detail 
 
 
Figure 3.2 shows DT Tutor’s TACN architecture in more detail. Each of the elements depicted will be 

described below.  The Tutorial States subnetwork in each slice is further divided into subnetworks to 

model various tutorial state attributes. In Figure 3.2, Student Models is composed of the Student 

Knowledges subnetworks to model the student’s task-related knowledge, the Student Focuss subnetworks 

to model the student’s task-related focus of attention, Student Help Styles nodes to model the student’s 

style of using help, and Student Independences nodes to model the student’s affective feeling of 

independence.  Outside the student model are the Discourse States subnetworks to model the state of the 

discourse between student and tutor.  The Tutor Action1 and Student Actions representations, shown in 

Figure 1.1 as single nodes, consist here of more than one node, as described below. 

 
 
 

 
 
 

Figure 3.2:  DT Tutor's Tutor Action Cycle Network 
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3.2.2 Problem solution graph structure 
 
 
The Student Knowledges and Student Focuss subnetworks, which are the problem-specific part of each 

Tutor Action Cycle Network (TACN), are based on the problem solution graph for each problem created 

by the domain expert.  For each problem, DT Tutor simply reads in a file created by the domain expert.  

 
 
3.2.3 Tutor Action Nodes 
 
 
DT Tutor addresses the tutor action topic in the manner specified by the tutor action type. These action 

components are represented by the decision nodes Tutor Action Topic1 and Tutor Action Type1. The Tutor 

Action Type1 alternatives are currently prompt, hint, teach, do (tell the student exactly how to do a step), 

and null (no tutor action).  

The Tutor Action Topic1 alternatives may consist of any problem step (fact or goal) or related rule 

in the problem solution graph. However, students rarely repeat steps that they have already completed 

successfully, and they are unlikely to be able to complete steps for which prerequisites have not been 

completed. Accordingly, tutors are less likely to address such steps. Therefore, for faster response time, 

DT Tutor normally considers as the tutor action topic only uncompleted steps for which prerequisites 

have been completed and related rules. A tutor action topic of null is also supported to model no tutor 

action.  

The Tutor Action1 nodes may influence the student’s affect, knowledge, and focus of attention, as 

well as the discourse state. Tutor Action Type1 also influences Utility2 in order to model individual 

differences in tutoring styles among tutors. 

 
 

3.2.4 Student Action Nodes 
 
 
Like Tutor Action1, DT Tutor’s student action representation consists of nodes to model the student’s 

problem-solving action topic and type: Student Action Topics and Student Action Types respectively (S 

Topics and S Types in Figure 3.2). Student Action Topics may be any step in the problem solution graph or 

null to model either no action at all or an action with no specific topic (such as a general help request). 

Student Action Types may be correct, error, impasse, or null. A correct action matches a step in the 

problem solution graph. An action type of impasse models either a help request on a specific topic 

(specified by the Student Action Topics value in the same slice) or a general help request such as “What 

should I do next?”  Null means no student action. All other student actions are of type error.  
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The Student Action0 nodes (in Slice 0) in a TACN represent the most recent student action while 

the Student Action2 nodes represent the student action following the tutor’s action in the current TACN. In 

the initial TACN, the Student Action0  nodes have the value null since there is no previous student action. 

 
 

3.2.5 Student Focus Subnetworks 
 
 
The Student Focuss subnetworks represent the tutor’s beliefs about two components of the tutorial state: 

(1) the student’s focus of attention within the current problem, and (2) the student’s problem-solving 

progress.   Figure 3.3 illustrates the Student Focuss subnetworks for a simple problem with just five steps 

(facts or goals), the first of which (Step 1s) is given.  The student’s focus of attention is modeled relative 

to the problem steps, so the Student Focuss subnetworks consist of just the step nodes in the problem 

solution graph. 

Student Focuss step nodes have four possible values: not_ready, ready, in_focus, and complete. 

The student is unlikely to be able to successfully complete problem steps for which prerequisites have not 

been completed, and is therefore less likely to attempt them. Such steps have the value not_ready. The 

student is also unlikely to repeat problem-solving steps that have already been completed successfully. 

These steps have the value complete. The remaining steps are uncompleted steps that the student could 

productively attempt next since all prerequisite steps have been completed, and thus are more likely to be 

in the student’s focus of attention. They have some distribution over the values ready and in_focus, with 

ready meaning that the student is ready to attempt the step next, and in_focus meaning that the step is also 

in the student’s focus of attention. In Figure 3.3, the probability distribution between ready and in_focus 

is depicted by the density of the dots shading the nodes, with denser dots meaning that the node is more 

likely to be in_focus.  
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Figure 3.3:  Student Focus subnetworks in TACN 

 
 
 

Nodes in slice 0 represent the tutor’s prior beliefs about the tutorial state and are disconnected except for 

arcs to slice 1. In Student Focus0 of the first TACN for a tutorial session, prior probabilities for the given 

steps (the problem goal and facts) are set to complete with probability 1.0. Steps with uncompleted 

precedent steps are set to not_ready with probability 1.0. Prior probabilities for the remaining steps are set 

to a distribution over the values ready and in_focus, with a probability mass of 1.0 for in_focus divided 

equally among these steps. For subsequent TACNs, prior probabilities for slice 0 are copied from 

posterior priorities in slice 2 of the previous TACN.  Slice 0 in Figure 3.3 depicts a situation in which 

Step 10 was given, Step 20 and Step 30 have equal probabilities of being in_focus, and Step 40 and Step 50 

are not_ready.  

Student Focus1 represents the influence of the tutor’s action on the student’s focus of attention. 

The tutor normally considers addressing only steps that are ready or in_focus, so in Figure 3.3 there are 

arcs from the tutor action nodes to Step 21 and Step 31.  Student Focus1 influences the topic of the 

student’s next action, Student Action Topic2, which may be any problem step. 

The student action nodes can in turn influence the Student Focus2 step nodes. In slice 2 of Figure 

3.3, the student has just completed Step 2, so it is complete. Student Focus2 step nodes are also influenced 

Tutor 
Type1 

Tutor 
Topic1 S Topic2 S Type2 

Step 10 

Step 20 

Step 30 Step 31

Step 40 Step 41

Step 50 Step 51

Step 21

Step 11 

Step 32 

Step 42

Step 52 

Step 22

Step 12 

ready in focus not ready complete 
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by their prerequisite steps. In Figure 3.3, when Step 22 becomes complete, its child, Step 42, has a 

distribution over the values ready and in_focus since all of its prerequisite steps (just Step 22) are now 

complete. 

 
 

3.2.5.1 Focus evolution and aging 
 
 
Temporal arcs between Student Focuss step nodes model the persistence of the student’s focus of attention 

and task progress over time. For instance, steps that are not_ready remain so until either all of their parent 

steps are complete or the student completes the step (e.g., by guessing). In contrast, steps that are in_focus 

at some point in time become a little less likely to be in_focus with each passing slice. This is to model 

focus aging: steps that were in_focus slowly become less in_focus over time as the student moves on to 

other topics. In Figure 3.3, Step 3’s probability of being in_focus decreases from slice 1 to slice 2 as the 

student completes Step 22 instead. 

When there are multiple steps that could be in_focus because they are the next ready step along 

some portion of a solution path, DT Tutor needs some way to decide how likely the various steps are to 

be in_focus. To do this, DT Tutor, like Andes1 (Gertner et al., 1998), assumes a depth-first bias: Students 

usually prefer to complete work on one portion of a solution path before starting to work on another. A 

depth-first bias in problem solving corresponds to a depth-first traversal of the problem solution graph. 

Such a bias is consistent with activation-based theories of human working memory (e.g., Anderson, 1993) 

and observations of human problem solvers (e.g., Newell & Simon, 1972). However, depth-first bias is 

not absolute (VanLehn et al., 1989): at any given step, there is some probability that a student will not 

continue depth-first. 

To model depth-first bias, when a step first becomes ready or in_focus because all of its parent 

steps have become complete, that step has a high probability of being in_focus. This is because the 

student, having just completed the last of the step’s parents, is likely to continue working with the step 

itself. In Figure 3.3, Step 42 is highly likely to be in_focus since Step 22 has just been completed. Focus 

aging helps to model another aspect of depth-first bias: preferring to backtrack to more recently in_focus 

steps. When the student completes or abandons a portion of the solution path, steps that were recently 

in_focus but that are still not complete have had less focus aging than steps that were in_focus in the more 

distant past, so the more recently raised steps remain more likely to be in_focus. 
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Figure 3.4:  Student Knowledge subnetworks in TACN 

 
 
 
3.2.6 Student Knowledge Subnetworks 
 
 
The Student Knowledges subnetworks represent the tutor’s beliefs about the student’s problem-related 

knowledge. Figure 3.4 provides an illustration for the same problem that was described in the previous 

subsection. To create these subnetworks, the problem solution graph is converted into a belief network, 

associating each node with a probability distribution for the values known and unknown. Rule nodes 

represent the tutor’s belief about the student’s knowledge of the corresponding rule. Step nodes represent 

the tutor’s beliefs about the student’s capability to derive the corresponding fact or goal given the 

student’s rule knowledge. In Figure 3.4, the step nodes are shaded according to whether their Student 

Focus0 subnetwork values are not_ready, ready or in_focus (“ready/i-f”), or complete. This shading is 
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intended to illustrate why the tutor action nodes influence some nodes (the ready or in_focus nodes and 

their rule parents) and not others, as explained below.  

In the first TACN for a tutorial session, prior probabilities for the Student Knowledge0 rule nodes 

are based on the best information available, such as pretest data for a particular student or statistical data 

for a student population. Prior probabilities for the given steps (the problem goal and the given facts) are 

set to known with value 1.0. Prior probabilities for the remaining steps are set to unknown with probability 

1.0. For subsequent TACNs, prior probabilities for slice 0 are copied from posterior priorities in slice 2 of 

the previous TACN.  

Within slices 1 and 2, the Student Knowledges subnetworks have the same basic structure as the 

problem solution graph: atemporal arcs from rule nodes model the influence of rule knowledge on the 

student’s ability to derive related steps, and atemporal arcs between step (fact or goal) nodes model 

prerequisite relations. Temporal arcs between corresponding nodes in adjacent slices model the 

persistence of the student’s knowledge over time.  

Student Knowledge1 represents the influence of the tutor’s action on the student’s knowledge. The 

tutor normally considers addressing only steps that are ready or in_focus – this is the reason for the 

shading in Figure 3.4.  The tutor also considers tutoring on rules related to steps that are ready or 

in_focus, since (1) these rules are more likely to be in the student’s focus of attention, and (2) tutoring on 

them may provide the knowledge necessary for the student to complete the corresponding step. Therefore, 

in Figure 3.4 there are arcs from the tutor action nodes to Step 21 and Step 31 (there is not an arc to Step 11 

since it was given) and to Rule A1 since it is the parent of both Step 21 and Step 31.  

Given the topic of a student action (Student Action Topic2), the student’s knowledge of the topic 

influences the student action type (e.g., correct, error, or impasse), Student Action Type2. Therefore, 

Student Knowledge1 step nodes influence Student Action Type2.  

In slice 2, the Student Action2 nodes do not directly influence Student Knowledge2 nodes. This is 

because a student action does not influence the student’s knowledge without feedback (e.g., from the 

tutor), which is not modeled until the next TACN. Rather, once Student Action2
 has been observed, it 

influences Student Knowledge1 nodes diagnostically, which in turn influence the corresponding Student 

Knowledge2 nodes. 

 
 

3.2.7 Discourse State subnetworks 
 
 
DT Tutor employs a relatively simple model of the discourse state as illustrated in Figure 3.2. Discourse 

State0 is simply the most recent student action (Student Action Topic0 and Student Action Type0, which 

have the value null for the initial TACN). Discourse State1 models the influence of the tutor’s action on 
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the discourse state. There is no separate representation for Discourse State2 because (1) the utility of the 

tutor’s contribution to the discourse state is based on Discourse State1, and (2) the contribution of the 

Slice 2 student action to the discourse state is represented by the student action itself as S Type0 and S 

Topic0 of the next TACN.  

In Discourse State1, the Coherence1 node (“Cohere1” in Figure 3.2) represents the coherence of 

the tutor’s action in response to the previous student action as either coherent or incoherent. For instance, 

negative feedback in response to a student error is coherent. It is important to note that the tutor is not 

obligated to select a coherent action because such actions may not have maximum expected utility.  

The Relevance1 node (“Relev1” in Figure 3.2) in Discourse State1, with values high and low, 

models how well the tutor cooperates with the student’s focus of attention by assessing the extent to 

which the same problem steps are in focus before and after the tutor’s action. Problem steps that are in the 

student’s focus of attention are likely to be in focus in Student Focus0. A tutorial action that addresses a 

problem step or related rule that is in the student’s focus of attention will further increase the probability 

that the problem step is in focus in Student Focus1. Therefore, if the same problem steps are most likely in 

focus in Student Focus0 and Student Focus1, Relevance1 is most likely high. 

 
 

3.2.8 Student Independence nodes to model affect 
 
 
The Student Independences nodes shown in Figure 3.2 represent the tutor’s beliefs about the student’s 

feeling of independence, or self-efficacy within the domain (e.g., whether she feels like she can solve 

problems without the tutor’s help).  Independence is one of the attributes modeled in del Soldato and du 

Boulay’s (1995) seminal work for affective modeling within ITSs, and is related to the attributes of 

challenge and confidence suggested by Lepper and colleagues (1993).  The Independences nodes have 

five possible values, level 0 through level 4, with higher levels representing greater independence. Both 

tutor and student actions influence the Independences nodes.   

Tutor Action Type1’s influence on Independence1 is in inverse relation to the explicitness of the 

help provided because explicit help prevents the student from increasing her feeling of independence by 

achieving successes on her own.  For instance, a Tutor Action Type1 value of null (no help action) slightly 

increases the student’s feeling of independence, a value of prompt (the least explicit help action) slightly 

decreases the student’s feeling of independence, and a value of do (the most explicit help action) sharply 

decreases the student’s feeling of independence.  

Similarly, successful student actions increase the student’s feeling of independence while 

unsuccessful actions decrease it.  For instance, a Student Action Type2 value of correct boosts 

Independence2 while a Student Action Type2 values of error or impasse have the opposite effect. Arcs 
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between corresponding Independences nodes in adjacent slices model the persistence of the student’s 

affective state over time. 

 
 

3.2.9 Student Help Style nodes 
 
 
The Student Help Styles nodes (“H Styles” in Figure 3.2) represent the way that the student uses help in 

the current tutorial session as either neutral or abuse.  Student Help Style0 influences Student Knowledge1 

because student help style influences the way that the student uses the tutor’s help (the influence from the 

Tutor Action1 nodes).   Student Help Style1 in turn influences Student Action Type2 – e.g., even if the 

student knows how to do a particular step, if her help style is abuse she may, e.g., request help instead of 

attempting the step on her own.  Student Action Type2 can in turn influence Student Help Style1 

diagnostically.  Temporal arcs between slices represent the relative persistence of the student’s help style 

over the course of a tutoring session, although it can be influenced by tutor actions (e.g., refusing to 

provide explicit help) and student actions (e.g., correct problem-solving actions that increase the student’s 

confidence in being able to complete problem steps without the tutor’s help. 

 
 
3.2.10 Utility subnetwork 
 
 
Node Utility2 in Figure 3.2 is actually a number of utility nodes in a structured utility model representing 

tutor preferences regarding the following outcomes:  

1. Student rule knowledge in slice 2 (rule nodes in Student Knowledge2) 

2. Student problem solving progress in slice 2 (step nodes in Student Focus2) 

3. Student independence in slice 2 (Independence2) 

4. Student help style in slice 2 (Student Help Style2) 

5. Tutor action type in slice 1 (Tutor Action Type1) 

6. Discourse state coherence in slice 1 (Coherence1) 

7. Discourse state relevance in slice 1 (Relevance1) 
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DT Tutor uses linearly-additive multiattribute utility functions to combine subutilities for the 

outcomes above: Subutilities are combined by assigning a weight to each subutility, multiplying each 

subutility value by its weight, and summing the weighted subutility values. These functions make it easy 

to change DT Tutor’s behavior by simply changing the weights. For instance, DT Tutor will focus on 

student rule knowledge at the expense of problem-solving progress if a high weight is assigned to the 

former and a low weight is assigned to the latter.  

 
 

3.2.11 Filter nodes  
 
 
Filter nodes are used to reduce the sizes of conditional probability tables.  Many nodes in the Student 

Knowledges and Student Focuss subnetworks are influenced by the topic and type of either the tutor’s 

action (in slice 1) or the student’s action (in slice 2), but only if the action topic (Tutor Action Topic1 or 

Student Action Topic2) corresponds to the node.  For instance, in Figure 3.3, node Step 21 in the Student 

Focuss subnetwork is influenced by the tutor’s action only if Tutor Action Topic1 (abbreviated to Tutor 

Topic1 in the figure) has the value Step 2.  Tutor Action Topic1 always has other possible values as well, 

including null and often values corresponding to other step nodes.  Without a filter node, the conditional 

probability table for Step 21 would require a complete set of entries for every combination of values for 

Tutor Action Topic1 and Tutor Action Type1 even though Step 21 is influenced by the tutor action only if 

Tutor Action Topic1 has the value Step 2.  Instead, deterministic filter nodes are inserted between the 

Tutor Action Topic1 and Student Action Topic2 nodes and the nodes that they influence (herein called 

target nodes).  Each filter node reduces the influence of the tutor or student action topic node to a binary 

distinction: either the topic node directly influences the target node or it does not.  Since filter nodes have 

only one input (an action topic node) and a binary output, their conditional probability tables remain 

relatively small while they limit the increase in the size of their target nodes’ conditional probability 

tables to a factor of two. Filter nodes wherever they are useful throughout TACNs but do not clutter 

network diagrams because they have no effect on network semantics.  

 
 
3.2.12 Rule-based conditional probability table creation 
 
 
Conditional probability table (CPT) entries make up the vast majority of a TACN’s numeric entries. They 

often follow patterns so that the CPTs of different nodes may be similar in many respects even if the 

nodes have different numbers of influences from different parent nodes. For instance, consider the CPTs 

of two different Student Knowledge1 subnetwork step nodes, one of which has one parent (antecedent) 
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step, and the other of which has two parent steps (both steps also have rule node parents). For both nodes, 

if any of the parent nodes is unknown, then the student does not have the information to complete the step 

successfully, so the step is likely to be unknown unless the student guesses correctly. Conversely, for both 

nodes, if all of the parent nodes are known, then the step is likely to be known unless the student somehow 

slips in making the inference required for the step. The probability of a correct guess or a slip is likely to 

be about the same for both steps, at least in the absence of knowledge about special circumstances related 

to either node – probabilities summarize uncertainty due to such ignorance anyway (Russell & Norvig, 

1995). Similar levels of tutor help may also have similar probabilities of helping a student know different 

steps, again in the absence of more specific knowledge, and especially in extreme cases, such as when the 

tutor simply prompts the student (providing little or no information) or when the tutor tells the student 

exactly how to do a step.  

 
 
 

 
 

Figure 3.5:  Simplified CPT for a Student Knowledge step node 
 
 
 
DT Tutor uses rules to specify such patterns along with numeric parameters representing the probability 

of a correct guess, a slip, success after a specific level of tutor help, etc.  Figure 3.5, along with the rules 

listed below, provides an example of automated CPT creation for Student Knowledge1 subnetwork step 

nodes. The table in Figure 3.5 is the CPT for the slice 1 node dq/ds=30*s2 (shown in Figure 3.1) except 

g= probability of a correct guess
h= probability that a hint about an unknown step will be successful 
s= probability of a slip on a known step 
f= probability of forgetting a step known in the previous slice 

Tutor
Ac etion Typ

Antecedent
Steps & 

Rule

dq/ds=
30*s2 

Prompt
Hint 

Do 

Slice 1Slice 0

dq/ds= 
30*s2 

 

Conditional Probability Table for dq/ds = 30*s2 in Slice 1 

Step, Slice 0 Unknown Known 
Antecedents Unknown Known Unknown Known 
T Action Type Prompt Hint Do Prompt Hint Do Prompt Hint Do Prompt Hint Do 

Unknown 1 – g 1 – h s s s s f f f f f f 
Known g h 1 –s 1 – s 1 - s 1- s 1 - f 1 - f 1 - f 1 - f 1 - f 1 - f 
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that it has been simplified as follows: (1) The step’s slice 1 parents – its antecedent steps and related rule 

– are simplified to a single node, Antecedent Steps & Rule, which has value unknown if any of the parents 

are unknown and value known otherwise. (2) The Tutor Action Type1 decision node has just 3 alternatives 

– prompt, hint, and do – which can be extended as described below. (3) The influence of Tutor Action 

Topic1 (through a filter node) is not shown. If the value of Tutor Action Topic1 does not correspond to this 

node (i.e., if the tutor addresses some other knowledge element), then Tutor Action Type1 does not 

directly influence the student’s knowledge of this node. For these cases, the table entries are the same as 

the table entries for the content-free Tutor Action Type1 value of prompt, which also does not influence 

the student’s knowledge of this node.  

The rules and parameters follow3. Each rule specifies only the conditional probability that the 

node is known, p(known), since p(unknown) is simply 1 – p(known).  

1. If a step is known in slice 0, then the step is known with probability 1 – f, where f is a parameter 

representing the probability of forgetting a step known in the previous slice. 

2. Otherwise, if all of the step’s parents are known, then the step is known with probability 1 – s, where s 

is a parameter representing the probability of a slip on a known step. 

3. Otherwise, the probability that the step is known depends on Tutor Action Type1.  

• If Tutor Action Type1 is content-free, such as prompt, then the step is known with probability g, 

where g is a parameter representing the probability of guessing an unknown step correctly. 

• If Tutor Action Type1 is do (tell the student exactly how to do a step), then the step is known with 

probability 1 – s. 

• If Tutor Action Type1 is neither content-free nor as explicit as do, the step is known with a 

probability corresponding to the efficacy of Tutor Action Type1 at conveying the information. In 

Figure 3.5, this probability is h, a parameter representing the probability that a hint about an 

unknown step will be successful. This schema is easily extended to various levels of hint efficacy 

and to other Tutor Action Type1 values such as teach. 

 

 

 

 

                                                      
3 The parameters g, h and s represent subjective parameters before DT Tutor began learning conditional probabilities 
empirically.  With empirically learned probabilities, all of the entries on the left side of the table (for Step, Slice 0 = 
unknown) are copied from Table 4.6.  

 38



3.3 THE STUDENT INTERFACE 
 
 
A Java-based student interface was created to be used with all three tutorial action selection engines using 

a common pool of help messages.  Appendix A provides an introduction to the Calculus Tutor’s student 

interface and its domain from a student’s point of view, including a screen shot of the interface in Figure 

A1, and Appendices D, E and G provide a variety of screen shots and sample help messages.   

 
 
3.3.1 Reification of goal structure in the Goals Window 
 
 
For each problem, the problem solution graph created by the domain expert (see Figure 3.1 for an 

example) is used as the basis for a reification of the problem’s goal and solution structure in the Goals 

Window.  The Goals Window is an extended and  customized implementation of Singley’s (1986) goal 

reification for a Cognitive Tutor in the same domain, intended to communicate the goal structure 

underlying the problem solving as required for Cognitive Tutor implementations (Anderson et al., 1995),  

Appendix D shows screen shots for each of the 5 problems used in this study after all problem steps have 

been successfully completed with the goals in the Goals Window fully expanded.  (In these screen shots, 

the Goals Window has goal numbers added in brackets to the right of each goal that are not actually 

displayed in the interface.)  The list of goals is not normally fully expanded but instead expands as 

subgoals are created and shrink as subgoals are completed as illustrated in the following example.  

 
 
3.3.1.1 An extended example of student interface displays 
 
 
At the start of problem P1, whose problem solution graph is shown in Figure 3.14, the Goals Window 

contains the following: 

 

find equation form dq/ds=<number> using evaluate 

evaluate operand 1:  find equation form ______ 

evaluate operand 2:  s=2 

 

and the Accepted Equations Window contains the 3 given equations: 

 

                                                      
4 It might be instructive to trace this extended example through  as well.  Figure 3.1
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 (1)  dq/dr=3  given 

 (2)  dr/ds=10*s2 given 

 (3) s=2  given 

 

The “______” at the end of the second line is highlighted in blue as a prompt to indicate that the student 

should click on it to work on a problem step.  When the student clicks on it, a “Select Equation Form” 

Dialog Window (see the Dialog Windows in Appendix E) is displayed.  The Calculus Tutor Tutorial 

covered how to select the correct equation form.  If the student selects correct equation form dq/ds=f(s), 

the following would be displayed in the Goals Window (the Accepted Equations Window would remain 

unchanged for now):  

 

find equation form dq/ds=<number> using evaluate 

evaluate operand 1:  find equation form dq/ds=f(s) using equation form / operator ____ 

evaluate operand 2:  s=2 

 

When the student clicks on the “equation form / operator ______” prompt, the “Use Accepted Equation or 

Operator” Dialog Window (once again, see Appendix E) is displayed.  For this step, the student should 

click on “Operator(s)” since none of the equations in the Accepted Equations Window has equation form 

dq/ds=f(s), so an operator must be applied to create an equation of the desired form.  When the student 

clicks “Operator(s),” the “Select Operator(s)” Dialog Window is displayed.  If the student correctly uses 

the heuristics supplied in the Calculus Tutor Tutorial, she will select “chain rule.”  If she does, the 

following will be displayed in the Goals Window: 

 

 find equation form dq/ds=<number> using evaluate 

evaluate operand 1:  find equation form dq/ds=f(s) using chain rule 

 chain rule operand 1:  find equation form _____ 

 chain rule operand 2:  find equation form _____ 

evaluate operand 2:  s=2 

 

As shown above, deciding to use operator chain rule has caused two subgoals to be set and displayed, 

corresponding to finding the two operands required to apply the chain rule.  If the student clicks on the 

chain rule operand 1 prompt, the “Select Equation Form” Dialog Window is displayed.  If the student 

correctly selects equation form dq/dr=<number>, the following will be displayed in the Goals Window: 
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 find equation form dq/ds=<number> using evaluate 

evaluate operand 1:  find equation form dq/ds=f(s) using chain rule 

chain rule operand 1:  find equation form dq/dr=<number> using accepted 

equation  / operator ______ 

 chain rule operand 2:  find equation form _____ 

evaluate operand 2:  s=2 

 

If now the student clicks on the “equation form / operator ______” prompt, the “Use Accepted Equation 

or Operator” Dialog Window is displayed.  For this step, the student should click on “Accepted Equation” 

since one of the equations in the Accepted Equations Window has equation form dq/dr=<number>.  At 

this point, the “Select Accepted Equation Window” is displayed.  To select the correct equation, the 

student should click on the box to the left of the equation in the Accepted Equations Window.  If the 

student selects the correct equation, dq/dr=3, the following is displayed in the Goals Window: 

 

 find equation form dq/ds=<number> using evaluate 

evaluate operand 1:  find equation form dq/ds=f(s) using chain rule 

chain rule operand 1:  dq/dr=3 

 chain rule operand 2:  find equation form _____ 

evaluate operand 2:  s=2 

 

As shown, the display of the steps to find chain rule operand 1 has been collapsed to just the resulting 

equation, dq/dr=3.  If the student wants to, she can click on any completed goal to toggle back and forth 

between the short and long forms of the goal display: 

 

chain rule operand 1:  dq/dr=3 

… or …  

chain rule operand 1:  find equation form dq/dr=<number> using given equation 

– Result: dq/dr=3 

 

The student should then use a similar procedure to find chain rule operand 2 (another given equation).  At 

this point, the Goals Window will look like this:   
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 find equation form dq/ds=<number> using evaluate 

evaluate operand 1:  find equation form dq/ds=f(s) using chain rule – Result _____ 

chain rule operand 1:  dq/dr=3 

 chain rule operand 2:  dr/ds=10*s2 

evaluate operand 2:  s=2 

 

Note that a “Result ______” prompt has been added to the end of goal line 2, indicating that it is now 

time to apply the chain rule to its two operands.  If the student clicks on this prompt, the “Enter Equation” 

dialog window is displayed, directing the student to enter the result of applying the chain rule in the 

Equation Entry Window.  If the student enters the correct equation, a new equation will be added to the 

Accepted Equations Window: 

 

 (1)  dq/dr=3  given 

 (2)  dr/ds=10*s2 given 

 (3) s=2  given 

 (4) dq/ds=30*s2 chain rule(1,2) 

 

The new equation (4) lists as its derivation “chain rule(1,2),” indicating that the chain rule was applied to 

equations (1) and (2).   The Goals Window will now look like this: 

 

 find equation form dq/ds=<number> using evaluate – Result _____ 

evaluate operand 1:  dq/ds=30*s2 

evaluate operand 2:  s=2 

 

Note that since the operands for the chain rule are no longer needed, they have been collapsed in the 

Goals Window.  If the student would like to see subgoals that have been completed and collapsed, she can 

click on a little handle to the left of their parent goal to display them.  Again, now that the evaluate 

operand 1 subgoal has been completed, just the resulting equation is displayed in the short form of the 

goal display, but the student can click on it to toggle between the short and long form display.  When the 

student clicks on the first goal, the “Enter Equation” dialog window is displayed, directing the student to 

enter the result of applying evaluate to its operands in the Equation Entry Window.  If the student enters 

the correct equation, the Accepted Equations window will be updated as follows: 
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 (1)  dq/dr=3  given 

 (2)  dr/ds=10*s2 given 

 (3) s=2  given 

 (4) dq/ds=30*s2 chain rule(1,2) 

 (5) dq/ds=120 evaluate(3,4) 

 

The Goals Window will now display just the final answer in goal line 1:  

 

 dq/ds=120  

 

As illustrated above, there are always one or two prompts displayed until the problem is solved.  The 

student may click on any prompt to work on the corresponding step.  

 
 
3.3.1.2 Immediate flag feedback 
 
 
Whenever the student makes an entry in the interface, it is immediately flagged as either an error, by 

highlighting the entry in red, or as correct, by highlighting the entry in green.  Besides clicking on blue 

prompts, the student may click on entry that is highlighted in red to attempt the step again.  Green 

highlighting for correct steps reverts to a black font when the student clicks on another goal so that only 

the latest correct entry will be highlighted in green.  

 
 
3.3.1.3 Correspondence between dialog windows and types of rules 
 
 
There are five different types of Dialog Windows (listed in Appendix E).  The “Use Accepted Equation or 

Operator” window is simply a disambiguation dialog to find out whether the student wants to select an 

accepted equation or select operator(s).  If the student asks for help on the “Use Accepted Equation or 

Operator” window, she will get help on either selecting an accepted equation or selecting operator(s), 

whichever is correct for the current problem state.  The remaining four types of Dialog Windows 

correspond to the four different types of steps and related rules.  This correspondence is described in 

further detail in the following section about help messages. 
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3.3.1.4 Help messages 
 
 
Help messages are always displayed in the lower portion of the Dialog Window that corresponds to the 

problem step for which help is being provided.  Even if the student clicks the general Help! button, the 

tutor selects a step to provide help for and displays the help in the corresponding Dialog Window.   

For each type of step and related rule, four different kinds of help messages are provided:  

prompt, hint, teach, and do.  The prompt message is intended to point out pertinent information that is 

already available in the interface but not to provide any new information.  The hint message is intended to 

provide partial information about the step – not enough to teach the student how to do the step but 

perhaps enough to either remind the student or help the student figure out how to do the step.  The teach 

message is supposed to provide all the information that the student needs to understand the rule related to 

the step, including at least one example, and thus to help the student complete the step correctly by 

learning the rule.  Teach messages were not supposed to tell the student exactly what to enter for a step.  

However, for Select Operator(s) help messages, this researcher could not think of a way to provide 

complete information to teach the student which operator to select without naming the operator, so the 

teach messages for Select Operator(s) steps do give the answer away although the student must find it 

amongst a relatively large amount of text.  The do message was intended to tell the student exactly what 

to enter for the current step without teaching her anything about the related rule. 

The sets of prompt, hint, teach and do messages for different steps that use the same Dialog 

Window were all very similar.  Appendix G lists sample help messages for each Dialog Window.  
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4.0 EVALUATION:  DATA COLLECTION PHASE 

 
 
 
 
An evaluation was conducted in two phases:  (1) data collection and tuning, and (2) assessment.  This 

chapter describes the data collection and tuning phase.  

 
 
 
 

4.1 GOALS OF THE DATA COLLECTION AND TUNING PHASE 
 
 
The data collection and tuning phase of the evaluation had three purposes.  First was to provide empirical 

data for learning many of DT Tutor’s (DT’s) probabilities.  DT uses its probabilistic model of the tutorial 

state to compute probabilities for the various possible outcomes of its tutorial action alternatives.  The 

probabilities of the possible outcomes, combined with their utilities, are the basis of DT’s tutorial action 

selections (see section 1.2.1 for a more in-depth explanation).  Thus, the probabilities in DT’s 

probabilistic model are a core influence on which tutorial actions it selects.  A decision-theoretic 

representation supports obtaining probabilities and utilities from any combination of the best sources 

available. For instance, they can be based on (1) subjective beliefs, (2) logic, (3) pedagogical, cognitive, 

and psychological theory, and (4) empirical data such as results from pretests, logged student interactions 

with the system, and posttests.  Obtaining key probabilities from empirical data was the first purpose of 

this phase. 

 The second purpose of the data collection phase was tuning DT’s utilities.  DT, like human tutors 

(Merrill et al., 1992), undertakes a delicate balance, considering multiple attributes of the tutorial state in 

order to decide which tutorial action to select.  If one or more probabilities or utilities are significantly out 

of balance – for instance, if the utility for one tutorial attribute is given too much weight – then this 

delicate balance can be upset.  To avoid this situation, the experimenter performed minor tuning of DT’s 

utilities so that it seemed to behave reasonably according to that experimenter’s subjective opinion, not 

knowing how it would perform on the collected scenarios or how the judges’ opinions would compare.  

The final purpose of the data collection phase was to collect scenarios from tutorial interactions 

with real students as the basis for the second phase, assessment.  Each scenario was a point in an 
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interaction between a computer tutor and a student where the computer tutor must decide what tutorial 

help action to select, if any.  The scenarios were collected in order to compare the tutorial help actions 

selected by different computer tutors in identical situations.  

 
 
 
 

4.2 DESIGN OF THE DATA COLLECTION EXPERIMENT 
 
 
4.2.1 Subjects 

The subjects, or students, were required to be at least 18 years old and to have taken algebra but not 

calculus.  They were recruited from ads posted around the University of Pittsburgh campus and in the 

University of Pittsburgh student newspaper.  All students who met the requirements and passed the 

pretest (described below) were accepted, so their demographics varied; not all of them were University of 

Pittsburgh students.  The students were paid $7/hour for their participation.  60 students completed the 

procedure in its entirety; their data was used for the remainder of the evaluation.   

 
 
4.2.1.1 Printed materials 
 
 
The printed materials consisted of the following: 

1. A questionnaire to collect demographic information: age, gender, native language, high school 

grade point average, SAT scores, college/university attendance, and math classes taken in high 

school and college.   

2. A 12-page tutorial on solving calculus related-rates problems and using the Calculus Related 

Rates Problem Tutor (Calculus Tutor for short) interface.  Assuming an understanding of basic 

algebra, the tutorial covered everything the students needed to know in order to use the tutor.  

This tutorial is included as Appendix A.  

3. A pretest and posttest consisting of multiple-choice and short-answer questions that tested each of 

28 concepts needed to solve the problems that students would face using the Calculus Tutor.  The 

pretest and posttest problems were different but isomorphic both in surface and solution structure.  

The orders of equivalent problems in the two tests were the same except for one set of problems – 

selecting which operator(s) to use – for which using the same order might have given the answers 

away.  A copy of the posttest is included as Appendix B.  

4. A tip sheet that students read and then used as they wished while they were using the Calculus 

Tutor.  The tip sheet included instructions for using the Calculus Tutor interface and a list of 
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symbols and definitions.  27 of the 60 students used a tip sheet which had an additional 

instruction, listed in Figure 4.1, intended to dissuade them from using help when they didn’t 

really need it (Murray & VanLehn, 2005).  For these help-dissuaded students, the Calculus Tutor 

delayed for 10 seconds after the student clicked the help button before the tutor provided help5.  

The remaining 33 students were not given any instructions about whether and when to request 

help, and they did not experience a help delay from the Calculus Tutor.  

 

 
 
 

Figure 4.1:  Text discouraging help requests on 27 of 60 tip sheets 

 
 
 

• Do not click any other buttons while waiting for help or you may 
lose the help you are waiting for.  

• There will be a substantial delay before help is presented to 
discourage students from requesting help when they don’t really 
need it.  During this delay, the help button will darken but nothing 
else will happen.   

Do not request help unless you need it.  If you need help, click on 
either the Help! button at the bottom of the screen or a help button displayed 
in the Prompt Window.  

4.2.1.2 The Random Tutor 
 
 
A version of the Calculus Related Rates Problem Tutor, the Random Tutor, was created especially for the 

data collection phase of the experiment.  The Random Tutor used the same student interface as DT Tutor, 

described in section 3.3, with the same pool of help messages so that only the method used for selecting 

tutorial actions was different.  For each opportunity to provide tutorial help, the Random Tutor used 

random selection among relevant actions:  For proactive help opportunities, the Random Tutor decided 

randomly, with a 50% probability, whether to provide proactive help.  Proactive help opportunities 

occurred (1) whenever a student clicked on a prompt within the Goals Window of the interface, and (2) 

whenever a student made an error.  For reactive help opportunities (in response to a student’s help 

request), the Random Tutor always provided help.  If the student clicked the interface’s general Help! 

button, the Random Tutor randomly decided which step to provide help for (the tutorial action topic) from 
                                                      
5 The commercial version of Cognitive Tutor Algebra, a model-tracing tutor, delays successive levels of help to 
prevent rapid-fire help requests (Baker et al., 2004). 
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among the steps with prompts in the Goals Window.  Otherwise, the tutorial action topic had already been 

determined by either (1) the step that the student had clicked within the Goals Window, or (2) the step 

that the student was working on when she clicked the help button within the Prompt Window.  If the 

Random Tutor decided to provide help, it selected from among the tutorial action types of prompt, hint, 

teach and do; otherwise, it selected the null action type.  To avoid excessive repetition of help types for 

repeated help opportunities, the Random Tutor decided in advance a random order for the response types 

prompt, hint, teach and do, and then returned response types in that order, repeating the order cyclically if 

necessary.  

 The Random Tutor selected tutorial actions randomly for two purposes:  First, random selection 

of help served as a control condition during the assessment phase versus the more principled fixed-policy 

and decision-theoretic methods.  Second, random selection was used to collect data about the 

effectiveness of individual help actions during tutoring:  A potential confound when assessing the 

effectiveness of an individual help action in a series of help actions is that the apparent effectiveness of 

the individual help action may be due to the accumulated effectiveness of a sequence of help actions.  

Since sequences of help actions cannot be avoided (students sometimes need more than one incidence of 

help to complete a step), instead the effects of sequences of help actions were controlled statistically by 

randomizing over the sequences in which individual help actions occurred.   

 Students solved five multi-step problems using the Random Tutor.  The five problems were set up 

so that students would encounter each of the 28 covered domain concepts at least twice during problem 

solving.  Students were allowed as much time as they needed to complete the problems and most took 

about an hour.  

 
 
4.2.2 Procedure 
 
 
Each student carried out a fixed procedure, during which time they were allowed to take as much time as 

they wanted – i.e., the task was fixed but time on task was not.  Students could complete the procedure 

over one or two sessions and take breaks as they liked.  After completing a consent form, the students 

filled out a brief demographic questionnaire.  They then studied a 12-page tutorial on solving calculus 

related-rates problems and using the Calculus Related Rates Problem Tutor (Calculus Tutor for short), 

which took an average of about 45 minutes.  Assuming an understanding of basic algebra, the tutorial 

covered everything the students needed to know in order to use the Calculus Tutor.  After completing the 

tutorial, the students could end their first session if they wished.  Students who divided their participation 

into two sessions were allowed to review the tutorial at the start of the second session.  Next, students 

turned in the tutorial – they were not allowed to look at it again – and took the pretest, which took an 
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average of about 25 minutes.  Students who did not score too low or too high on the pretest were allowed 

to continue.  For students who were allowed to continue, the lowest score was 8 out of 28, the highest 

score was 25, the mean score was 18.5, and the median score was 19.  Next, students solved five multi-

step problems using the Random Tutor.  After students finished solving the five problems using the 

Random Tutor, they took the posttest (which was isomorphic to the pretest), completing their 

participation.  Posttest scores were a low of 5 (unlike on the pretest, students had no external motivation 

not to score too low), a high of 27, a mean of 20.9, and a median of 23.   

 
 
 
 

4.3 PARTITIONING INTO TRAINING AND TEST DATA SETS 
 
 
The student data was partitioned into training and test sets of 30 students each, which were matched 

according to pretest scores.  The training and test sets were established by repeatedly randomly 

partitioning the 60 students into two groups and then using a t-test to compare the two groups’ pretest 

scores until a pair of partitions was found for which t=0.0.  Students who were dissuaded from using help 

unless they really needed it (see section 4.2.1.1, item 4) were split as evenly as possible between the 

groups, with 14 in the training set and 13 in the test set.  Subsequently, the training set was used for all 

procedures prior to the second phase of the evaluation, assessment, for which the test set was used.  

 
 
 
 

4.4 LEARNING PROBABILITIES EMPIRICALLY 
 
 
The structures of DT Tutor’s (DT’s) probabilistic networks were determined in advance, as described in 

section 3.2.  The overarching structure of DT’s 3-slice dynamic decision network architecture, which is 

common to all of DT’s networks, was determined by task analysis; indeed, it is one of DT’s contributions 

to the field of intelligent tutoring systems (see section 6.7.1).  Within each network are problem-specific 

subnetworks, the Student Knowledge and Student Focus subnetworks in each slice, whose structure is 

computed by DT’s domain expert as summarized in section 3.1.2.  With the structures of DT’s networks 

thus postulated, there was no need to learn them.   

 The parameterization of DT’s networks – learning prior and conditional probabilities – was 

another story.  Determining prior and conditional probabilities is a fundamental part of constructing any 

probabilistic network.  DT’s probabilities are a core influence on its tutoring behavior, as discussed in 

sections 1.2.1 and 4.1.  Data collected from pretests, logged student interactions with the Random Tutor, 
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and posttests was used to learn many of DT Tutor’s (DT’s) key probabilities empirically.  To learn DT’s 

probabilities, a number of challenges had to be faced: 

 
1. Learning about students in the presence of help abuse  

2. Unobservable variables such as student rule knowledge  

3. Learning with sparse data  

4. Variables that change over time  

 

The methods used to address these challenges are described in the following subsections.  Section 6.1 

further discusses the methods used, some surprises in the learned probabilities, and related work.  Section 

6.6.3.2 discusses future directions.   

 Many of DT’s conditional probability tables were constructed using rule-based techniques for 

principled creation of thousands of conditional probability entries from a relatively small number of seed 

probabilities, as described in section 3.2.12.  158 freely determined probabilities (not counting 

probabilities that were constrained to a specific value because probabilities must sum to 1) were learned 

from the training set of student data.  117 freely determined probabilities were specified subjectively but 

84 of these were for just the three Independence nodes (1 in each of the 3 network slices), leaving 33 

freely determined probabilities specified subjectively for the rest of the network.  These remaining 

subjectively-specified probabilities were all for unobservable variables:  the evolution of the student’s 

help style (this variable is discussed in section 4.4.1), the influence of the student action type (e.g., 

correct, error or impasse) on the student’s focus of attention (modeled by the Student Focuss networks, 

described in section 3.2.5), focus aging in the Student Focuss networks, and a frame axiom that a student’s 

knowledge remains unchanged in the absence of other influences.   

 Only basic techniques were used for learning DT’s probabilities.  The probability for each 

outcome of a distribution was calculated simply as the ratio of events with that outcome to the total 

number of like events.  For conditional probabilities, the denominator of this ratio was the number of 

events with the same values for the conditioning variables.  Section 6.1.1 briefly discusses more advanced 

techniques.  

Most of the conditional probabilities that were learned concerned the influence of the various 

tutorial help actions on the student.  The influence of the tutor’s help depends largely on the amount of 

attention and effort the student devotes towards trying to understand and use the help.  A conditional 

probability representing the likelihood that a student will learn from a particular help action should 

likewise depend upon the way the student uses the help – the student’s help style.  DT Tutor models the 

 50



student’s help style (see section 3.2.9) for precisely this reason.  Accordingly, before learning conditional 

probabilities, the training set was partitioned according to the students’ apparent help styles. 

 
 

4.4.1 Identifying student help style, including help abuse 
 
 
Unfortunately, sometimes students misuse help.  For example, when bottom-out help is available that tells 

a student exactly what to do (such as the Calculus Tutor’s do help), as many as 82-89% of students who 

request help continue to request it until they get to the bottom-out help (Aleven & Koedinger, 2000).  In 

another study (Aleven et al., 2004), a large percentage of students who abused help did so by “clicking 

through” intermediate level or less explicit help, not spending enough time viewing the help to use it.  

Bottom-out help is sometimes necessary to prevent students from getting stuck when they don’t 

understand the tutor’s help (Anderson et al., 1995), but it can be susceptible to abuse.  Students who 

abuse help by ignoring less explicit help are probably less likely to learn from less explicit help than 

students who pay it careful attention.  

 There are also other ways of using help unproductively or “gaming the system” (Baker et al., 

2004).  For example, sometimes students appear to attempt steps without taking enough time to think 

(Aleven & Koedinger, 2000), perhaps engaging in a trial-and-error approach and perhaps intentionally 

eliciting proactive help after their errors.  A potentially new way of eliciting proactive help was observed 

in this study (Murray & VanLehn, 2005):  some students repeatedly began a step by clicking on a goal 

and then canceled the ensuing prompt until they received proactive help.  This pattern of behavior was 

likely caused by a unique set of circumstances.  First, the Random Tutor (described in section 4.2.1.2) 

provided proactive help about 50% of the time when students clicked on a goal (before the student had a 

chance to attempt the step).  Second, some students were discouraged from asking for help unless they 

really needed it, as described in section 4.2.1.1, item 4.  Due to this combination of circumstances, 

students may have been motivated to elicit help without asking for it, and with the Random Tutor’s 

random provision of proactive help, they could.  Similar patterns might be observed with other computer 

tutors that provide proactive help if there is any motivation to avoid requesting help – for instance, many 

model-tracing tutors link progress through the tutor with help-seeking behavior (Anderson et al., 1995).  

 Besides abusing help, sometimes students do not ask for help even when they need it (Aleven et 

al., 2004).  Among the 30 students in the training set, 7 students never requested help.  Only 4 of these 

students were help-dissuaded (see section 4.2.1.1, item 4), so some students did not request help out of 

their own volition.  (Interestingly, 2 other help-dissuaded students in the training set made 59 and 60 help 

requests respectively, the second- and third-most in the training set, so not all help-dissuaded students 

avoided requesting help.)  Some students who did not request help may not have needed it, as evidenced 
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by one who made only 17 errors, the least among training set students and well below the median of 45.5.  

But another student who never requested help made 132 errors and elicited 119 instances of proactive 

help – both counts by far the highest among training set students.  Other students who avoided asking for 

help may have paid careful attention to the proactive help that they did receive in order to avoid needing 

more help.   

 For the purpose of learning empirical probabilities for DT Tutor (DT), it does no good to learn 

conditional probabilities based on distinctions that DT does not model.  DT does model the student’s help 

style as described in section 3.2.9, currently as either abuse, which means that the student solicits or 

elicits help that she does not need, or neutral for all other students.  DT does not model help avoidance at 

this time for two reasons.  The main reason is that many of the students who avoid requesting help use the 

help that they do receive (e.g., proactive help) effectively, much like help-neutral students who use help 

appropriately.  Therefore, conditional probabilities representing the effectiveness of tutorial help for these 

students should be about the same as for help-neutral students.  Avoiding requesting help is not 

necessarily a problem, especially when proactive help is available, as with the student who made only 17 

errors.  Help-avoiding students who make excessive errors and elicit excessive proactive help, like the 

student who made 132 errors and elicited 119 instances of proactive help, need to be treated differently 

not because they do not ask for help, but because they elicit help that they may not need.  Such students 

are more like help abusers in obtaining an excessive amount of help but not using it effectively, so they 

are classified as help abusers.  

 The second reason that DT does not model help avoidance at this time is that it would not treat 

help avoiders differently even if it could detect them.  Help avoiders who also abuse help are classified as 

help abusers, as discussed above.  For the remaining help avoiders, their essential difference from help-

neutral students is that when they don’t know how to complete a step, they are more likely to make an 

error than to request help.  But currently help requests and errors have the same effect on DT’s utility for 

the tutorial situation – they are both just evidence that the student does not know the required knowledge 

element6 – so DT has no preference about whether the student requests help or makes an error.  Anecdotal 

evidence from this study (see the judge’s comment at section 5.5.1, item 2.b) suggests that the judges 

might prefer that the tutor provide proactive help when a student avoids using help, so perhaps DT will be 

modified in the future to treat help avoiders differently.  

 So far in this section, a student’s help style has been discussed as if it were a static property of the 

student.  But it is more likely that a student’s help style can change dynamically according to the mix of 

motivators present in the tutorial situation.  For instance, a help-dissuaded student might start a tutorial 

                                                      
6 Model tracing tutors such as the PACT Geometry Tutor also treat help requests and errors the same for knowledge  
tracing (Aleven & Koedinger, 2000). 
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session by avoiding asking for help but after she finds out that the “substantial delay” before help is 

presented (see section 4.2.1.1, item 4) is only 10 seconds, she might begin to ask for help much more 

often.  However, it is difficult to detect minute-by-minute changes to a student’s help style because 

interpretation of a student’s help-seeking behavior depends partly on her knowledge and intentions, which 

are unobservable.  Instead, for the purposes of this study, a student’s help style is defined as the dominant 

help style apparent over the course of a tutorial session.  

 As described above, help abuse can be manifested differently by different students.  Examples 

included continually clicking all the way through to bottom-out help, not spending enough time with less 

explicit help to learn from it, requesting help excessively, or eliciting excessive proactive help (even with 

no help requests) either by making excessive errors or by clicking on goals and canceling prompts until 

help is received.  Therefore, there was no one measure of student behavior that would capture all 

instances of help abuse.  Instead, help abusers were identified subjectively by considering a mix of 

behavior measures:   

 
1. Number of help requests 

2. Total help received (to detect students who elicited help excessively by whatever means) 

3. Number of errors 

4. Net pretest to posttest gain (to detect students who did not learn much from the help that they 

received) 

5. Ratio:  correct answers after bottom-out help / correct answers after all kinds of help (to 

detect students who were rarely helped except by bottom-out help)  

6. Number of help messages that were viewed for 2 seconds or less  

 
Table 4.1 lists 7 students (by subject ID) who were identified as help abusers along with their scores on 

the behavior measures listed above.  For comparison purposes, Table 4.1 also lists the median value on 

each of these measures for all students in the training set (median is used instead of mean because the 

help abusers were outliers who skewed the means of the distributions).  As shown in the table, all of the 

students who were identified as help abusers performed worse than the median on at least 4 of 6 

measures.    

It is interesting to note that the students identified as help abusers performed at least as well on 

the pretest as their help-neutral peers, with a mean of 19.6 and a median of 20 versus a mean of 18.2 and a 

median of 18 for the help-neutral students, although this difference in pretest scores was not statistically 

significant.  However, the help-abusing students did not learn nearly as much as the help-neutral students 
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did, with a mean net gain of -2.9 and a median of -4 versus a mean of 3.7 and a median of 3 for the help-

neutral students.  This difference in net gain scores was significant, t(28)=4.130, p<.001.  

 Since 7 of 30 students, or approximately 25%, were classified as help abusers, the prior 

probabilities for DT’s model of student help style, Student Help Style0, were set to .25 for abuse and .75 

for neutral. 

 
 
 

Table 4.1:  Help abusers and their scores on help abuse measures 

 
 

Student 
 Help 

Requests 
 Total 

Help 
 

Errors 
 Net 

Gain 
 Success 

After do 
 Help Msgs 

Clicked Thru
             

s10  59  135  68  -4  .78  10 
s20  43  94  28  1  .86  3 
s43  52  120  47  -6  .76  0 
s67  0  119  132  -5  .68  1 
s73  47  108  40  -2  .74  15 
s80  109  197  86  -5  .78  77 
s88  60  151  70  1  .58  11 

             
Training Set 

Median 
 5.5  83.5  45.5  1  .55  0 

 
 
 
4.4.2 Learning prior probabilities  
 
 
Besides prior probabilities for student help style, prior probabilities were learned for each of 28 key 

domain concepts, or rules, required to successfully use the Calculus Related Rates Problem Tutor 

(Calculus Tutor for short).  Each of these rules was tested on the pretest.  Pretest performance should not 

have been directly influenced by student help style because there was no help given until after the pretest 

and because students were motivated to do as well as they could on the pretest in order to continue 

participating in the study.  30 data points were available for each rule with no missing data since each rule 

was tested individually on the pretest and all 30 students in the training set completed the pretest.  The 

learned prior probability that a rule was known was simply the ratio of students who got the pretest 

problem right to the number of students assessed (30).  Of course, the probability for unknown was 1 – 

p(known).  The learned prior probabilities are listed in .Table 4.2
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Table 4.2:  Learned prior probabilities for Calculus Tutor domain rules 

 
Rule  Probability 

1. Select equation form   
chain rule operand 1  .43 
chain rule operand 2  .67 
differentiate operand  .73 

evaluate operand 1  .40 
flip derivative operand  .93 

integrate operand  .70 
restate operand  .93 

substitute operand 1  .57 
substitute operand 2  .73 

2. Apply operator   
execute chain rule  .80 

execute differentiate  .70 
execute evaluate  .87 

execute flip derivative  .97 
execute integrate  .60 

execute restate with exponent  .83 
execute restate with multiplication  .97 

execute substitute  .83 

3. Find equation form   
find equation form - function  .90 
find equation form - number  .87 

4. Select operator   
select chain rule  .27 

select differentiate  .47 
select differentiate after substitute  .50 

select flip derivative  .70 
select integrate  .33 

select integrate after chain rule  .57 
select restate with exponent  .63 

select restate with multiplication  .50 
select substitute  .13 
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The first set of domain rules in Table 4.2, select equation form, concern specifying the equation 

form for each operator’s operand(s) as explained in the Equation Forms section of the Calculus Tutor 

Tutorial in Appendix A.  The second set of rules, apply operator, concerns how to apply each of the 

operators to its operands as explained in the Operators section of the Calculus Tutor Tutorial.  The third 

set of rules, find equation form, concerns finding an equation from the list of Accepted Equations that 

matches an equation form, as explained in the Equation Forms and The Calculus Tutor’s Problem-Solving 

Procedure sections of the tutorial.  The last set of rules, select operator, involves selecting operators as 

explained in the Heuristics (Rules of Thumb) for Selecting Operators section of the Calculus Tutor 

Tutorial (included as Appendix A). 

As Table 4.2 shows, prior probabilities varied significantly for different rules, ranging from a low 

of .13 for selecting operator substitute to a high of .97 for executing the flip derivative operator, which 

should have been familiar from the students’ backgrounds in basic algebra.  Prior probabilities also varied 

significantly across sets of rules as shown in Table 4.3, which lists for each set of rules the number of 

rules and descriptive statistics for that set’s prior probabilities:  mean, minimum, maximum and standard 

deviation.  Judging by both mean and minimum prior probabilities, the select operator rules seemed to be 

most difficult, followed by select equation form, apply operator, and find equation form in that order. 

 
 
 

Table 4.3:  Learned prior probabilities by rule type 

 
 

           

Rule Type  N  Mean  Min  Max  Std Dev 

           

Select equation form  9  .68  .40  .93  .19 

Apply  Operator  8  .82  .60  .97  .13 

Find Equation Form  2  .89  .87  .90  .02 

Select Operator  9  .46  .13  .70  .18 

 
 

 56



4.4.3 Learning conditional probabilities  
 
 
As described in section 4.2.1.2, the Random Tutor was used during the data collection phase partly to 

collect data about the effects of individual tutorial actions by statistically controlling for the effects of 

sequences of tutorial actions by randomization.  CAPIT, one of few other decision-theoretic tutors, 

likewise used a random data collection strategy (Mayo & Mitrovic, 2001).   

 
 
4.4.3.1 Learning conditional probabilities related to unobservable variables 
 
 
The bulk of the key conditional probabilities to be learned were for the effects of tutorial help actions on 

student rule knowledge and student problem-solving progress.  A student’s rule knowledge at one point in 

time (time slice) is strongly influenced by her rule knowledge at previous points in time (previous time 

slices).  A student’s problem-solving progress is strongly influenced by her rule knowledge as well.  But a 

student’s rule knowledge is unobservable and so must be estimated based on observable tutorial state 

attributes.  So the bulk of the key conditional probabilities to be learned had to do with unobservable 

attributes: either they were for an unobservable variable or they were partly conditioned on an 

unobservable variable.   

The Random Tutor’s problems were set up so that students would encounter each of 28 rules at 

least twice during problem solving.  The pretest assessed the students’ knowledge of the rules before 

tutoring and the posttest assessed their knowledge after tutoring.  Thus, the students’ activities were 

arranged to reveal, for each rule, whether they knew the rule before tutoring, and if not, whether and when 

they learned it during tutoring.  Evidence, either from problem solving or from the posttest, that a student 

had learned a rule after a tutorial help action was interpreted as evidence that the tutorial action had 

helped her learn the rule.  This evidence is uncertain (and accordingly beliefs are expressed 

probabilistically), but one can rarely be certain about the details of another person’s mental state anyway.  

The following sections describe how the values of these variables were estimated based on the observable 

data of pretests, posttests, and logged interactions with the Random Tutor. 

 
 

4.4.3.2 Learning conditional probabilities with sparse data 
 
 
While the students’ activities were arranged to reveal the evolution of their knowledge of each rule during 

tutoring, the data gathered during tutoring was often sparse relative to the information needs.  For 

example, the conditional probability table that a particular tutorial help action will help a particular 
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student know the result of a particular step within a problem solution, conditioned on the student’s rule 

knowledge and the student’s help style, requires conditional probabilities for 16 combinations of 

conditioning variables:  4 different non-null tutorial actions (prompt, hint, teach, do), times 2 states for 

the student’s rule knowledge (known, unknown), times 2 states for the student’s help style (neutral, 

abuse).  And that is assuming that the probabilities regarding the effects of tutorial help are the same for 

different steps involving the same rule, that they do not change over time, and that the effects of tutorial 

help are the same whether the student asked for it or not (i.e., whether the help is reactive or proactive) – 

assumptions that were all made due to the sparsity of the data.  16 conditional probabilities would thus be 

needed for each of 28 rules, for a total of 448 conditional probabilities.  Ideally, 20 or 30 sample events 

would be available for each conditional probability.  With just 20 sample events each, 8,960 events would 

be needed.  Since the training set was already partitioned into help-abusing and help-neutral students, 

only half of the 8,960 help events, or 4,480, would be needed for the 7 help-abusing students.  But the 

help-abusing students had only 1,294 help events in total.  In addition, there were times when random 

proactive help obfuscated whether the student knew a rule without help, as shall be described below, so 

not all of the help events were usable.  And the help events were not evenly distributed either, since some 

rules were used more than twice and more difficult rules generally had more help events associated with 

them.  

 Since there was not enough data to learn all of the conditional probabilities desired, fewer 

probabilities were learned by combining conditional probabilities for sets of similar events. To illustrate, 

take the example from the preceding paragraph of a conditional probability that a particular tutorial help 

action will help a particular student know the result of a particular problem-solving step, conditioned on 

the student’s rule knowledge and the student’s help style.  Probabilities for different tutorial action types 

(prompt, hint, teach, do) could not be combined because a primary reason that the probabilities were 

being learned was to decide which tutorial help type to provide.  Events where the student does not know 

the relevant rule and events where the student does know the relevant rule were too dissimilar, as were 

events involving help-neutral and help-abusing students.  Events were more similar for different rules 

within the 4 sets of rules in Table 4.2:   (1) select equation form, (2) apply operator, (3) find equation 

form, and (4) select operator.  While prior probabilities varied for the rules within each set, they also 

varied across sets of rules, with each set of different difficulty as discussed in section 4.4.2 and shown in 

Table 4.3.  Furthermore, all rules within a set involved similar concepts and somewhat similar template-

based help messages (help messages are described in section 3.3.1.4).  Therefore, for students who did not 

know a rule when help was given, the height of the conceptual hurdle relative to the scaffolding provided 

by the help messages was more the same within a set of rules than between sets of rules.  So conditional 

probabilities were combined for rules within each set by aggregating the help events for all rules within a 
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rule set and performing the conditional probability calculations upon the aggregated events.  Other 

aggregations were performed for other types of conditional probabilities as described in the following 

sections.  

 
 
4.4.3.3 Estimating rule knowledge as it changes over time 
 
 
A student’s rule knowledge is unobservable, so it must be estimated by observable events.  Evidence from 

both the pretest and previous interactions with the tutor was used to determine a current estimate of 

student rule knowledge at any point in time.  This current estimate, which was used only for learning 

probabilities, was binary and deterministic with values known or unknown.  (The tutor’s student model, 

on the other hand, modeled the student’s rule knowledge probabilistically.)  The current estimate was 

determined by the student’s most recent performance related to the rule.  The initial current estimate for 

each rule was based on pretest performance (known if the student got the associated pretest item right; 

otherwise unknown).  Thereafter, the current estimate was updated to known after a successful problem-

solving step without help that told the student exactly what to do on that step (without do help or some 

kinds of teach help, as described in section 3.3.1.4).  Conversely, the current estimate was updated to 

unknown after a student help request, error, or cancellation of a step attempt. 

Estimating rule knowledge proved to be difficult for the 7 of 30 students in the training set who 

abused help because their performance while using the tutor did not provide reliable evidence (see section 

4.4.1 for a discussion).  Many of the students who abused help seemed to ask for help in order to avoid 

applying their rule knowledge to the problem, preferring instead to ask for help until the tutor told them 

exactly what to do (with bottom-out help), so requesting help was not reliable evidence that they needed 

it.  Some other students seemed to attempt to elicit proactive help by beginning steps and then canceling 

the ensuing prompts until proactive help was received, so canceling a step was not reliable evidence that 

they didn’t know how to do it.  Still others attempted steps without taking much time to think, which 

oftentimes resulted in errors, so errors were likewise unreliable as evidence that a help-abusing student 

did not know a rule.  In other words, evidence that a student was a help abuser often overwhelmed 

evidence about whether a student knew individual rules. 

For the 23 of 30 students who did not abuse help, these estimates of whether rules were known 

seemed to correlate more closely with student rule knowledge.  Evidence for this comes from much 

higher empirical probabilities that steps were known when the related rule was estimated to be known, as 

shown in Table 4.6.  
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4.4.3.4 Estimating p(guess) and p(slip) 
 
 
P(guess) was defined as the probability that a student will know the correct result for a problem step when 

she does not know the related rule.  P(slip) was defined as the probability that a student will not know the 

correct result for a problem step when she knows the related rule.  These probabilities are used in the 

conditional probability tables for Student Knowledge1 step nodes for step attempts when the tutor does not 

provide help.  P(slip) is also used to calculate the conditional probability table entries for Student 

Knowledge1 step nodes when the student knows the related rule and the tutor provides help, as described 

in section 4.4.3.6. 

Both p(guess) and p(slip) were estimated by student performance on step attempts without help 

(either proactive or reactive) because the presence of help could change the student’s knowledge state as 

she attempted the step.  P(guess) was the ratio of correct step attempts to all step attempts when the 

student did not know the related rule (according to the estimate of student rule knowledge defined in 

section 4.4.3.4).  P(slip) was the ratio of incorrect step attempts to all step attempts when the student did 

know the related rule.  Probabilities were conditioned on student help style (neutral or abuse) and 

estimated for all four rule types as shown in Table 4.4.  P(guess) and p(slip) appear to be inversely 

correlated.  Especially for help-neutral students, p(guess) was lower and p(slip) was higher for the more 

difficult rule types, where difficulty is estimated by the prior probabilities shown in Table 4.3.  This 

pattern is not quite as evident for help-abusing students, whose actions were not as reliable as evidence of 

their knowledge, although the most difficult rule type, select operator, and the least difficult, find 

equation form, clearly show the pattern.  Also, help-abusing students were much less likely to guess 

successfully and more likely to slip in their application of a rule when they did not have help, consistent 

with their tendency to rely on explicit help to progress through problems. 

 
 
 

Table 4.4:  P(guess) and p(slip) by rule type and help style 
 
 

         
  p(guess)  p(slip) 

Rule type  neutral  abuse  neutral  abuse 
         

Select equation form  .33  .18  .48  .68 
Apply operator  .61  .17  .28  .52 

Find equation form  .82  .25  .11  .15 
Select operator  .17  .10  .62  .88 
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4.4.3.5 Estimating effects of help on student rule knowledge 
 
 
Probabilities for the effects of tutorial help on student rule knowledge were learned for use as conditional 

probability table entries for the Student Knowledge1 rule nodes.  A student’s rule knowledge at any point 

in time (slice) is influenced by her rule knowledge at previous time points (slices), by the tutor’s help (if 

any), and by the way that the student uses tutorial help (student help style).  Students who know a rule are 

assumed not to forget it over the course of a tutoring session, consistent with the assumption of model-

tracing tutors (Corbett et al., 2000).  It was also assumed that unknown rules would remain unknown 

without the tutor’s help (students had no access to other instruction during tutoring).  

Therefore, it was necessary only to learn probabilities that the various tutorial help types would 

help a student learn an unknown rule.  Evidence that a student had learned a rule due to a particular 

tutorial help type required three components:  (1) the student did not know the rule before the help event, 

(2) the student’s action after receiving the help was completing the associated problem step successfully, 

and (3) the student’s next action involving the same rule, either while interacting with the tutor or on the 

posttest, was successful without tutorial help.  For component (1), the method described in section 4.4.3.3 

was used to estimate whether the student knew a rule before the help event.  Component (2) was readily 

assessed as a correct student problem-solving action.  Component (3) was likewise readily assessed as a 

correct student problem-solving action without tutorial help.  Component (3) was used to distinguish 

between a lucky guess on one step (in which case the student’s next problem-solving action involving the 

same rule was not as likely to be successful) and learning a rule so that it could be applied consistently 

across steps.   

One difficulty was that component (3) required that the student’s next problem-solving action be 

successful without help and the Random Tutor randomly provided proactive help on about 50% of its 

opportunities to do so (whether or not the student needed it).  This meant that about 50% of the help 

events that satisfied components (1) and (2) were ineligible to satisfy component (3) even if the student 

could have succeeded without proactive help.  This would have led to over-sampling failures for 

component (3) if no correction were made.  Instead, the percentage of students who did not receive 

proactive help and satisfied component (3) was used to estimate the percentage of students who satisfied 

components (1) and (2) that would have satisfied component (3) if they had not received proactive help.  

This estimated percentage was used to extrapolate the number of students who would have satisfied all 

three components.  This extrapolated number of students who learned the rule with tutorial help was 

divided by the total number of students who satisfied component (1) to estimate the probability that the 

tutorial help would help a student learn the rule.  
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One other adjustment was required for the find equation form rules:  Because these rules were 

usually already known with high probability (e.g., Table 4.2 shows prior probabilities of .87 and .90), 

there were not enough samples for when the student do not already know the rule (i.e., when component 

(1) was not satisfied).  Instead, conditional probabilities for these rules were estimated using the same 

calculation as above for all rule types combined.   

The methods above were used to determine conditional probabilities for help-neutral students.  

For help-abusing students, the estimates of components (1) and (3), whether the student knew the rule 

before and after tutorial help, proved to be too unreliable.  Instead, it was noted that the average number 

of rules gained (based on pretest to posttest performance) of help-abusing students, 1.86, was about 1/3 

the average gains of help-neutral students, 5.48, meaning that help-abusing students were about 1/3 as 

likely to learn a rule as help-neutral students.  Therefore, conditional probabilities that help-abusing 

students would learn a rule were set to 1/3 the corresponding probabilities that help-neutral students 

would learn a rule.  

Conditional probabilities thus derived about whether students will learn a rule are listed in Table 

4.5 by rule type and student help type.  The probabilities listed are for p(known).  P(unknown) is simply 1 

– p(known).  The results listed in the table are somewhat surprising:  First, the prompt, hint and teach help 

types were all of about the same effectiveness with none of them dominant for all rule types.  Second, the 

do action was most effective at getting students to learn a rule even though it was designed to tell the 

student only what to enter for the current step and not to tell the student anything about the associated 

rule.  
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Table 4.5:  P(rule known) by rule type, help type and student help style 

 
 

     
  Student help style 
Rule type:  Help type  Help-neutral  Help-abusing 
     
Select equation form:     

prompt  .13  .05 
hint  .18  .06 

teach  .21  .07 
do  .41  .14 

    
Apply operator:     

prompt  .35  .12 
hint  .33  .11 

teach  .32  .11 
do  .49  .16 

    
Find equation form:     

prompt  .22  .07 
hint  .26  .09 

teach  .26  .09 
do  .40  .13 

    

Select operator:     
prompt  .20  .07 

hint  .31  .10 
teach  .31  .10 

do  .33  .11 
    

 
 
 
4.4.3.6 Estimating effects of help on student step knowledge when rule unknown  
 
 
Probabilities for the effects of tutorial help on student step knowledge were learned for use as conditional 

probability table entries for the Student Knowledge1 step nodes.  It is assumed that students do not forget 

known steps because the result of every completed step remains displayed in the Calculus Tutor’s 

interface.  It is also assumed that the results of problem steps remain unknown until the student attempts 

them.  Therefore, what is left to learn are the probabilities that the various tutorial help types (prompt, 
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hint, teach, do) will help the student to know a step result conditioned on (1) the student’s knowledge of 

the related rule, and (2) the student’s help style (the way the student uses the tutor’s help).  This section 

describes the calculation of conditional probabilities for cases where the student does not know or learn 

the related rule, or p(guess | help type).  The calculation for when the student does know or learn the 

related rule is described in the next section. 

 For help-neutral students, evidence that a tutorial action helped a student know a problem step 

without learning the related rule is the same as evidence that a student learned the related rule (see section 

4.4.3.5) except for component (3).  The three required components are:  (1) the student did not know the 

rule before the help event, (2) the student’s action after receiving the help was completing the associated 

problem step successfully, and (3) the student’s next action involving the same rule, either while 

interacting with the tutor or on the posttest, did not receive tutorial help and was not successful.  For 

component (1), the method described in section 4.4.3.3 was used to estimate whether the student knew a 

rule before the help event.  Component (2) was again readily assessed as a correct student problem-

solving action.  Component (3) was likewise readily assessed as an incorrect student problem-solving 

action without tutorial help.  An incorrect problem-solving action for component (3) was evidence that the 

student did not really know the rule even though she got the step for component (2) right.   

 Just as in section 4.4.3.5, the difficulty in assessing component (3) was that the Random Tutor 

randomly provided proactive help on about 50% of its opportunities to do so, and when it did, it was 

impossible to assess whether the student would have completed the related step successfully without 

tutorial help.  To resolve this difficulty, a similar extrapolation scheme was used based on the students 

who did not receive tutorial help on the next step.   

 Again as described in section 4.4.3.5, there were not enough help events for find equation form 

rules when the rule was not already known (because students usually knew the find equation form rules).  

Just as before, conditional probabilities for these rules were estimated using the calculation above for all 

rule types combined.   

 For help-abusing students, the estimates of components (1) and (3), whether the student knew the 

rule before and tutorial help, proved to be too unreliable.  One of the defining characteristics of help-

abusers is that they rely on tutorial help rather than their knowledge to progress through problems.  

Instead, for help abusers the probability that tutorial help would help the student to know the result of a 

step was computed without regard as to whether the student knew the related rule or not – i.e., the 

conditional probabilities are the same whether the rule is (estimated to be) known or unknown. 

 The conditional probabilities thus computed are listed in Table 4.6, which lists only p(known) for 

the step.  Once again, p(unknown) is 1 – p(known).  Table 4.6 also includes probabilities for when the 

related rule is known, for which the calculation is described in the next section.  As the table shows, when 

 64



the rule is unknown, teach seems to be more effective than prompt and hint for step knowledge (these 3 

help types were of about the same effectiveness for rule knowledge, as discussed in section 4.4.3.5).  For 

help abusers the probability that help type do will help the student know the step is quite a bit higher than 

the probabilities for the other help types, which is consistent with help abuse behavior patterns.   

 
 
 

Table 4.6:  P(step known) by rule type, help type, rule known, and student help style 

 
 

         
  Rule known  Rule unknown 

Rule type:   
                       Help type 

 Help-
neutral 

 Help-
abusing 

 Help-
neutral 

 Help-
abusing 

         
Select equation form:         

prompt  .62  .09  .10  .09 
hint  .58  .20  .06  .20 

teach  .70  .21  .18  .21 
do  .91  .74  .39  .74 

         
Apply operator:         

prompt  .77  .20  .05  .20 
hint  .78  .23  .06  .23 

teach  .91  .35  .19  .35 
do  .95  .87  .24  .87 

         
Find equation form:         

prompt  .99  .67  .11  .67 
hint  .99  .59  .11  .59 

teach  .99  .56  .26  .56 
do  .99  .94  .35  .94 

         
Select operator:         

prompt  .56  .14  .18  .14 
hint  .59  .24  .21  .24 

teach  .80  .52  .42  .52 
do  .71  .72  .33  .72 
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4.4.3.7 Estimating effects of help on student step knowledge when rule known  
 
 
For help abusing students, the probability that the student will know a step with tutorial help is estimated 

to be the same regardless of whether the student knows the related rule, as discussed in section 4.4.3.6.  

These values are listed in the Help-abusing columns of Table 4.6.  

For help-neutral students, the student’s rule knowledge was considered when calculating 

probabilities.  When the student knows the rule required to complete a step successfully but the tutor 

gives her help anyway, there are two ways that she can know the step result:  (1) by applying the rule, and 

(2) by guessing the correct answer based on the tutor’s help.  The probability of applying the rule 

correctly is 1 – p(slip), where p(slip) is the probability that a student will not know the correct result for a 

problem step when she knows the related rule (defined in section 4.4.3.4 with values for each rule listed 

in Table 4.4).  The probability of guessing the correct answer based on the tutor’s help is estimated to be 

the same as the probability that the student will know the step based on the tutor’s help without knowing 

the corresponding rule.  This is p(guess | help type) as calculated in the previous section (0) and listed in 

Table 4.6 in the column Rule unknown, Help-neutral.  Therefore, for help-neutral students, the probability 

that a student will know a step when she knows the rule and the tutor helps her anyway is 1 – p(slip) + 

p(guess | help type).   

The calculated probability values are listed in Table 4.6 in the column Rule known, Help-neutral.  

As the table shows, help-neutral students are much more likely to know a step result when they know the 

related rule.  The likelihood that help-neutral students will know a step when they know the related rule 

seems to be correlated with the rule’s difficulty as discussed in section 4.4.2 and shown in Table 4.3.  

Help type teach again seems to be more effective than prompt and hint.  For the find equation form rules 

when the rule is known, the step is known with almost certainty regardless of the tutor’s help type 

because these rules are relatively easy.    

 
 

4.4.3.8 Estimating conditional probabilities for Student Action Topic 
 
 
As described in section 3.2.4, the student action topic and the student action type together form the 

representation of student actions, Student Action Topics and Student Action Types in TACN slice 0 and 

slice 2.  Student Action Topics is either one of the problem steps (when the student is working on a 

specific problem step) or null.  The value null, in combination with Student Action Types, represents either 

the student clicking on the general Help! button (Student Action Types = impasse) when she is not 

working on a step, or clicking the Cancel button (Student Action Types = null) when she is working on a 

step, possibly with help provided.  At any point in time, only one or the other of the Help! and Cancel 
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buttons is available to the student, depending on whether she is working on a step.  To create the 

conditional probability table to predict Student Action Topic1, first the probability that the student will 

click Help! or Cancel (depending on the situation) is calculated.  The remaining probability, which is the 

bulk of it, is divided up amongst the currently possible problem steps (depending on the status of the 

problem solution) according to how in_focus they are in the Student Focus1 subnetwork (see section 

3.2.5).   

 At times when a student can click the Help! button, her choices are between clicking Help! and 

clicking on a step in the Goals Window to start working on it.  So a training set estimate of the probability 

that a student will click Help! is the number of  Help! clicks divided by the total number of Help! clicks 

and step clicks together.  Separate probabilities were calculated conditioned on student help style (neutral 

or abuse) because it was thought that help-abusing students would be more likely to click Help! (indeed 

they were).   The calculated probabilities are shown in Table 4.7 in the p(Help!) column. 

The Cancel button is only available when a student is working on a problem step.  As described 

in section 4.4.1, some help abusers repeatedly started working on a problem step and then clicked Cancel 

until they received proactive help, with the effect that students were more likely to click Cancel when 

help was not provided.  Therefore, the probability that a student would click Cancel was conditioned on 

both the student’s help style (neutral or abuse) and whether help was currently being provided.  The 

calculated probabilities are shown in the p(Cancel) columns of Table 4.7.  

 As the table shows, help-abusing students were more likely than help-neutral students to click 

Help!.  Surprisingly, help-neutral students were more likely to click Cancel, although the probabilities for 

both help-neutral and help-abusing students were small and so could have been heavily influenced by just 

a few unusual samples.  For both help styles, students much more likely to click Cancel when no help was 

provided.  

 
 
 

Table 4.7:  P(Cancel) and p(Help!) for Student Action Topic 

 
 

  p(Cancel)  

Student Help Style 
 Help 

Provided 
 No Help 

Provided 
 p(Help!) 

       
neutral  .008  .04  .01 

abuse  .003  .03  .07 
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4.4.3.9 Estimating conditional probabilities for student action type  
 
 
If the student does not know the result of a problem step (knowledge of problem steps is modeled in the 

Student Knowledge1 nodes), then Student Action Type1 will be either a help request or an error.  As 

discussed in section 4.4.1, help-abusing students often request more help than their help-neutral peers, and 

sometimes make more errors.  Therefore, conditional probabilities that students will make a help request 

or an error are conditioned on the student’s help style.  The probability of a help request is simply the 

number of help requests divided by the number of help requests and errors combined.  The probability of 

an error is calculated just the same except with errors in the numerator.  Results are shown in Table 4.8.  

As the table shows, help-neutral students were significantly more likely to make an error than to request 

help.  Help-abusing students were almost as likely to request help as to make an error, and they were 

significantly more likely than help-neutral students to request help.  

 
 
 

Table 4.8:  P(Help Request) and p(Error) for Student Action Type 

 
 

Student Help Style 
 p(Help 

Request) 
 

p(Error) 
     

neutral  .13  .87 
abuse  .44  .56 

 
 
 
 

4.5 TUNING UTILITIES 
 
 
With DT Tutor’s (DT’s) probabilities specified, it was time to specify the remainder of DT’s numerical 

parameters – its utilities.  This is relatively uncharted territory for intelligent tutoring systems.  Most 

probabilistic ITSs use neither decision theory nor utilities, and only two other decision-theoretic 

intelligent tutoring systems have been implemented.  One, CAPIT (Mayo & Mitrovic, 2001), considers 

only a single attribute at a time and so any utility function will do (CAPIT uses a utility of 1.0 for desired 

states and a utility of 0.0 for other states).  The only other decision-theoretic tutoring system, iTutor (Pek, 

2003), does consider 3 tutorial state attributes.  iTutor, like DT, uses a linearly-additive multiattribute 

utility function (discussed in section 4.5.2 below) but it is unclear how iTutor obtains the weights for its 

linear function. 
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An important consideration was that there was no empirically verifiable way to determine DT’s 

utilities.  In contrast to a human tutor or perhaps a more advanced intelligent agent, DT currently has no 

internal state (i.e., preferences) to which to adapt its utility function.  Indeed, DT’s utility function, once 

specified, becomes its preferences (rather than just a mathematical representation of some other internal 

preference structure).  The only applicable criteria for which to adapt DT’s utility function are external to 

DT, such as (1) maximizing effectiveness with students or (2) maximizing human judges’ ratings of the 

tutor.  Even these latter criteria do not constrain DT’s utilities to empirically verifiable values.  In the first 

case (1), effectiveness with students can be measured, for example, (1a) for any combination of various 

attributes, such as knowledge gain, affective state (e.g., motivation, feeling of independence), and 

problem-solving progress, as measured by various instruments; (1b) for any student population; and (1c) 

over any period of time (e.g., a tutor that is more motivationally effective but less cognitively effective in 

the short term may prove to be more cognitively effective in the long term by increasing student interest 

and persistence).  In the second case (2), human judges’ ratings of the tutor can likewise be for any 

combination of attributes, for any populations of judges and students, over any period of time, etc.  At any 

rate, attempting to maximize effectiveness with students was not an option for the current study because 

the actual student-tutor interactions were between students and the Random Tutor.  Attempting to 

maximize judges’ ratings was not an option because tuning was permitted only on the training set (the 

judges rated only the test set) in order to preserve the integrity of the assessment phase.  Instead, minor 

tuning was performed until DT seemed to perform reasonably on several representative scenarios 

according to the experimenter’s  subjective  preferences.  

 
 

4.5.1 Utilities for each tutorial state attribute 
 
 
DT uses a multiattribute utility function to compute the utility for each combination of tutorial state 

attributes that could be an outcome of the tutor’s action.  The multiattribute function, which is described 

in section 4.5.2, combines into an overall utility the individual utilities for each of the attributes that DT 

considers.  This section describes each of the individual utilities as background for an understanding of 

tuning DT’s multiattribute utility function.  Only the last of these, tutor response preferences, was tuned, 

as described below.   
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4.5.1.1 Discourse coherence 
 
 
The Discourse State1 node models a tutorial discourse action (i.e., response) as coherent if Tutor Action 

Type1 abides by the following constraints:   

 

1. When help is provided:   

a. The tutor must respond to any student help request with a non-null response type. 

2. Weak successive explicitness constraint:   

a. The available help messages are ranked in order of the explicitness of the help that they 

provide, from least to most explicit.  For this study, the sequence is  prompt, hint, teach, 

do.   

b. When help is provided (i.e., for non-null responses), it must be more explicit than the 

help previously provided.  If the bottom-out help message (do for the Calculus Tutor) has 

already been provided, it may be repeated.  

Constraint (1), when help is provided, was implemented to supply a cooperative and understandable 

interface (e.g., if the tutor didn’t respond to a help request at all, the student might think the tutor had 

crashed).  The Fixed-Policy Tutor, with which DT is compared during the assessment phase, follows the 

same constraint for when help is provided plus a couple more, as described in section 5.2.2.3.  Constraint 

(2) is a weaker version of a similar constraint followed by the Fixed-Policy Tutor, which requires that the 

tutor’s response be minimally more explicit than any previous help message provided.   

For tutorial actions that satisfy these constraints, the utility when Discourse State1 is coherent, or 

U(Discourse State1=coherent), is 1.0.  Otherwise, U(Discourse State1=incoherent) = 0.0. 

 
 

4.5.1.2 Discourse relevance 
 
 
The Discourse Relevance1 node, described in section 3.2.7, measures how relevant the topic of the tutor’s 

response is to topic(s) in the student’s focus of attention (e.g., a problem step), as modeled by the Student 

Focuss subnetworks (described in section 3.2.5).  A simple example is that if the student requests help 

while she is working on a particular problem step, help related to that topic step is relevant to the 

student’s focus of attention.  When more than one topic may be relevant, the Student Focuss subnetworks 

model the relative strength of each topic’s relevance.  For discourse relevance, U(Discourse 

Relevance1=relevant) = 1.0 and U(Discourse Relevance1=irrelevant) = 0.0. 
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4.5.1.3 Student rule knowledge 
 
 
The Student Knowledges rule nodes, described in section 3.2.6, model the student’s knowledge of each 

domain rule that is applicable to the current calculus related-rates problem.  For each rule ruler, U(Student 

Knowledge2 ruler=known) = 1.0 and U(Student Knowledge2 ruler=unknown) = 0.0.  Since multiple rules 

are applicable to each problem, DT sums their utilities7 to come up with an overall utility for the student’s 

rule knowledge.  

 
 
4.5.1.4 Student problem-solving progress  
 
 
The Student Focuss step nodes, described in section 3.2.5, model the student’s progress in completing 

each step in addition to the student’s focus of attention.  For each step steps, U(Student Focus2 steps = 

complete) = 1.0 and U(Student Focus2 steps ≠ complete) = 0.0.  Since multiple rules are applicable to each 

problem, DT sums their utilities (see footnote 7) to come with an overall utility for the student’s problem-

solving progress. 

 
 
4.5.1.5 Student help style 
 
 
The Student Help Styles nodes model the student’s help style (discussed in section 4.4.1) as either neutral 

or abuse.  U(Student Help Style2=neutral) = 1.0 and U(Student Help Style2=abuse) = 0.0.   

 
 
4.5.1.6 Student independence 
 
 
The Student Independences nodes, described in section 3.2.8, model the student’s feeling of independence 

in terms of 5 levels, level 0 through level 4.  Utilities for level 0 through 4  are 0, 0.25, 0.5, 0.75 and 1.0, 

respectively.  

 
 

                                                      
7 Utilities for student rule knowledge and problem-solving progress are simply summed, but technically the 
mechanism for doing this is a linearly-additive multiattribute function with all weights equal to 1.0.  Such functions 
are described in more detail in section 0. 
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4.5.1.7 Tutor response preferences 
 
 
The utility for tutor response preference is based on Tutor Action Type1, which can have value null, 

prompt, hint, teach, or do.  This utility was originally intended to model differences observed between 

human tutors in previous studies (e.g., VanLehn et al., 2003) where, with the same student population and 

subject domain, some tutors tended to be less verbal and more reticent with help while others tended to be 

more verbal and proactive in leading students through the problem space.  Less verbal tutors could be 

modeled as preferring response types like null and prompt while more verbal tutors could be modeled as 

preferring longer, more explicit response types like teach. 

 More generally, utility for tutor response type can be used to at least coarsely model preferences 

among tutorial actions that are not based on tutorial state attributes that DT models.  For instance, the 

apparent tutor response type preferences discussed above might have been based on differences in the 

human tutors’ beliefs about how best to tutor.  If so, and if DT modeled those beliefs, then DT could 

model the differences in the tutors’ response preferences based on differences in their beliefs.  Since DT 

doesn’t model the tutors’ beliefs about how best to tutor, it can instead model just the results of 

differences in their beliefs as differences in their response preferences.  This method is coarser, since it 

may miss changes to response preferences that result from changes in the tutors’ beliefs, but it may 

provide results that are good enough since modeling of human preferences is necessarily approximate 

anyway.   

 The experimenter used the same method to begin to tune DT’s behavior so that its responses 

corresponded more to the experimenter’s beliefs about how best to tutor.  A problem with DT’s responses 

observed immediately after learning key probabilities was that it selected the do response too often.  This 

was due to a surprise in learning conditional probabilities, discussed in sections 4.4.3.5 and 6.1.4, that the 

do response often was most effective not only at getting the student to learn the step that was the topic of 

the tutor’s response, but also at getting the student to learn the related rule.  A consequence was that DT 

began to select do more often even though do had the most negative influence on the student’s feeling of 

independence.  The student’s independence changed rather slowly in DT’s model, too slowly to 

counterbalance response type do’s  more positive influence on both the student’s task progress and rule 

knowledge.  For future work, DT’s model of the student’s affective state needs to be improved (see 

section 6.6.2).  In the meantime, tutor response type preferences were changed to strongly disfavor 

response type do.  In addition, the experimenter found that the null response type was being selected a 

little too often and that the teach response was not being selected quite often enough (during training), so 

tutor response type preferences were changed to slightly disfavor null and slightly favor teach.  Table 4.9 

provides the complete list of utilities for response type preferences.  
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Table 4.9:  Utilities for tutor response preference 

 
 

Response Type  Utility
   

null  6 
prompt  7 

hint  7 
teach  8 

do  1 
 
 
 
4.5.2 Multiattribute utility function  
 
 
To model the utility of combinations of multiple attributes (e.g. student knowledge, student affect, 

problem-solving progress, etc.), DT currently uses a linearly-additive multiattribute utility function, 

which is the only type of multiattribute utility function currently supported by DT’s underlying 

probabilistic inference engine, SMILE8.  Use of this  type of utility function requires additive 

independence among preferences for multiple attributes:  In brief, changes in lotteries for one attribute do 

not affect preferences for lotteries in other attributes.  In other words, there must be no interaction in 

preferences among the attributes (Clemen, 1996).  von Winterfeldt and Edwards (1986) report that 

additive independence usually does not hold for human preferences, and indeed it does not for the 

experimenter’s preferences:  For instance, comparing Lottery A and Lottery B below in regard to student 

outcomes, the experimenter would prefer Lottery A in order to avoid risking the situation where the 

student’s outcome is to have both low knowledge and low affect. 

 
A (low knowledge, high affect)  with probability 0.5 
 (high knowledge, low affect)  with probability 0.5 
 
B (low knowledge, low affect)   with probability 0.5 
 (high knowledge, high affect) with probability 0.5 

 
 

However, Clemen (1996, p. 585) retains the perspective that the objective is to create a reasonable 

representation – an approximate model – of the decision maker’s value structure, stating that “[i]f 

minimal interactions exist among the attributes, then the additive utility function is appropriate.” 

                                                      
8 The core of the decision-theoretic portion of DT’s implementation is based on the SMILE reasoning engine for 
graphical probabilistic models contributed to the community by the Decision Systems Laboratory, University of 
Pittsburgh (http://www.sis.pitt.edu/~dsll). 
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 With this perspective, and given the available options, the experimenter’s utility function was 

modeled as a linearly-additive multiattribute utility function,  

U(x1,…,xm) = ∑1
m wiUi(xi) 

where Ui(xi) is the utility of attribute xi and wi is the weight allotted to attribute xi in the linearly-additive 

function.  The tutorial state attributes (xi) for which utility was modeled, along with their weights (wi), are 

listed in Table 4.10.  

 
 
 

Table 4.10:  Weights for linearly-additive multiattribute utility function 

 
 

   
Attribute  Weight 
   
First priority:   
Discourse Coherence  100,000
  
Second priority:   
Discourse Relevance  10,000
  
Third priority:  
Student Knowledge  400
Student Independence  200
Student Help Style  200
Problem-Solving Progress  40
Tutor Response Preference  10
   

 
 
 
At first, the differences in the magnitudes of the weights in Table 4.10 may seem shocking, but there is a 

simple explanation.  The main reason is that a system of priorities amongst the utilities was implemented.  

This could have been accomplished with smaller differences between the weights9, but the orders of 

magnitude approach shown makes it easy to discern at a glance when higher priority utilities are not at 

their maximum value.  

 The first priority was discourse coherence so that DT would always respond appropriately as 

described in section 4.5.1.1.  The second priority was discourse relevance, described in section 4.5.1.2, so 

that DT would always respond with a topic that was relevant to the student’s focus of attention.  

                                                      
9 Utility rankings are unchanged by a linear transformation of multiplying by a non-negative number and adding a 
constant.  
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Assigning these two attributes the highest order of magnitude weights guaranteed that DT’s response 

would maximize utilities for these attributes if at all possible, virtually ensuring that DT would respond 

appropriately within the discourse context and with a relevant response topic. 

 The third priority was to enable DT, like human tutors, to decide the tutor’s response type while 

maintaining a delicate balance (Merrill et al., 1992) among the remaining considerations of student 

knowledge, student independence, student help style, problem-solving progress, and tutor response 

preferences.  As shown in the bottom section of Table 4.10, different weights are assigned to different 

third-priority attributes, making it appear that there are still more priorities at work, but this is mostly an 

illusion, as described below.   

The first goal in assigning weights to the third-priority attributes was to adjust the ranges of the 

utilities for the different attributes to be about the same.  For example, at one point during tuning, the 

weighted expected utility for Student Knowledge (which had the highest weight of 400) varied from 2084 

for the null response to 2146 for the do response10, for a range of 62.  At the same time, the weighted 

expected utility for Tutor Response Preference (which had the lowest weight of 10) ranged from 10 for 

the do response to 80 for the teach response, for a range of 70.  It is the changes in utilities for different 

decision alternatives rather than the absolute values of the utilities that influence which alternative the 

tutor selects.  With similar ranges for the different attributes’ utilities, the pros and cons of the tutor’s 

decision alternatives, reflected in the weighted expected utilities for different attributes, can be traded off 

in the desired delicate balance without the expected utility for one attribute overwhelming the others.  The 

reason that different attributes require different multipliers to have approximately the same range of 

weighted expected utilities is that the tutor’s actions have more influence on the probabilities of some 

attributes than others, as reflected in their conditional probability table entries.  For the example above, 

the unweighted utilities for Student Knowledge varied from 5.21 (for null) to 5.365 (for do), a range of 

0.155.  At the same time, the unweighted utilities for Tutor Response Preference (which is deterministic) 

varied from 1 to 8, a range of 7, which is about 45 times greater than the range of 0.155.  But by 

weighting Student Knowledge 40 times greater than Tutor Response Preference, 400 to 10, the range for 

Student Knowledge was brought up to be just about equivalent to the range for Tutor Response 

Preference.  Since Student Knowledge was at its highest for response type do when Tutor Response 

Preference was at its lowest, the two attributes were approximately counterbalanced.  

With multiattribute utility weights thus assigned so that the various attributes would 

counterbalance each other appropriately, a few small adjustments were made to the weights while the 

                                                      
10 Weighted expected utilities for Student Knowledge and Problem-Solving Progress can be much greater than their 
multiattribute utility weights because the utilities were summed for multiple rules and multiple steps, respectively.  
Utilities for rule knowledge were usually 4 digits – i.e., greater than 1,000 but less than 10,000 – which is why the 
next higher magnitude weight (for Discourse Relevance) was 5 digits (10,000).  
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experimenter simulated different response patterns for a student until DT seemed to behave appropriately 

in a few representative situations.  For instance, the experimenter verified that the priority system 

described above worked as designed, that the tutor did not intervene with proactive help at every 

opportunity, and that the tutor tended to provide less explicit help (e.g., null or prompt) when the student 

was less likely to need help and more explicit help (e.g., teach) when the student was more likely to need 

it.  A great deal more attention could have been paid to this phase, with hopefully even better results, if 

not for time limitations for completing the study.  
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5.0 EVALUATION:  ASSESSMENT PHASE 

 
 
 
 
This chapter describes work on the primary focus of this study, a comparative assessment of the tutorial 

action selection capabilities of DT Tutor, the Fixed-Policy Tutor and the Random Tutor.  

 
 
 
 

5.1 GOALS OF THE ASSESSMENT PHASE 
 
 
The primary purpose of the assessment phase was to compare the judges’ ratings of DT Tutor’s tutorial 

action selections with their ratings of the action selections of the Random Tutor and the Fixed-Policy 

Tutor.  This comparison followed a traditional hypothesis testing approach for the following hypotheses: 

 

Hypothesis 1:  According to ratings by skilled human tutors, tutorial action selections by 

decision-theoretic methods can be better than selections made randomly among relevant 

tutorial actions.  

 

Hypothesis 2:  According to ratings by skilled human tutors, tutorial action selections by 

decision-theoretic methods can be better than selections made by a fixed policy that 

emulates the fixed policies of theory-based, widely accepted and highly effective 

computer tutors. 

 

A secondary purpose was to learn details about what skilled tutors think about the best tutorial responses 

to provide for various types of tutorial situations, and also what they think about the pool of responses 

currently available from the student interface.  This information, combined with empirical data about DT 

Tutor’s patterns of responses in different situations, might be used to improve both the student interface 

and DT Tutor’s action selections.  Such information can even be used to inform a fixed policy (or other 
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methods of selecting tutorial actions) for improved tutorial action selections (at least according to the 

judges’ ratings), as indeed it was as described in section 5.7.  

 
 
 
 

5.2 DESIGN OF THE ASSESSMENT PHASE EXPERIMENT 
 
 
5.2.1 Subjects 
 
 
Three judges were recruited from the population of graduate students in mathematics at the University of 

Pittsburgh.  All had extensive experience tutoring calculus as well as other mathematics to college and 

high school students.  The first three applicants who met the requirements were accepted.  They consisted 

of two males and one female, ranging in age from early-20s to mid-30s.  One was from the USA and two 

were from other countries (specifics not provided here to protect their anonymity).  They were paid 

$10/hour for training (described below) and thereafter paid $1/scenario (tutoring situation) that they 

evaluated for a total of 350 scenarios.  These were considered skilled tutors, although not necessarily 

expert tutors, because of their extensive mathematical knowledge and experience teaching calculus.  

 
 
5.2.2 Materials 
 
 
5.2.2.1 Printed materials 
 
 
The printed materials included all of the materials used by the students in the data collection and tuning 

phase of the experiment (see section 4.2.1.1) because, before providing the assessments, the judges first 

went through the same procedure that the students went through in order to develop the judges’ intuitions 

for the scenarios that they would be rating.  The remaining printed materials were used only while the 

judges performed scenario assessments.  They consisted of the following: 

 

1. Screen shots of the Calculus Tutor interface for all 5 problems that students worked on (see Appendix 

D).  The screen shots were of the interface after all problem steps had been successfully completed.  

The Accepted Equations Window listed all of the equations in a successful solution.  The Goals 

Window showed all problem goals expanded to show the structure of the completed problem solution 

along with every correct problem step entry.  The Goals Window had goal numbers added in brackets 
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to the right of each goal to correspond to the goal numbers listed in the scenarios that the judges 

evaluated (described in item 3 below).  

 

2. Screen shots of the Calculus Tutor interface for all Dialog Windows that are displayed (see Appendix 

E).  These screen shots show the Dialog Window displayed for every type of step.  They were 

provided to the evaluators so that the Relevant Action Histories (see item 3.f  below) in the scenarios 

that the judges evaluated could just refer to the name of the Dialog Window instead of showing a 

screen shot every time.  

 

3. Scenarios descriptions depicting tutorial situations for judges’ ratings and comments (see Appendix F 

for a sample).  350 scenario descriptions were created.  Details about scenarios selection are described 

in section 5.2.2.2 below.  Here the elements of each scenario description are described in order:  

 

a. Screen shot showing the Calculus Tutor interface at the current moment. 

b. Description specific to the scenario type (see section 5.2.2.2 below for a description of 

scenario types): 

• Step-specific help request:  The problem, goal number, correct entry, and Goals 

Window prompt for the student’s next action, the help request.  

• General Help Request:  The same information as for a step-specific help request, 

listed for all possible next steps (at most 2).  By the way, only 5 of 350 scenarios 

turned out to be general help requests, so they played an insignificant role in the 

analyses. 

• Error:  The problem, goal number, correct entry, and Goals Window prompt for the 

student’s last action, the error.  

• Step start:  The problem, goal number, correct entry, and Goals Window prompt for 

the student’s next action, clicking on a prompt in the Goals Window. 

c. General student history:  Number of correct entries, number of errors, and number of help 

requests. 

d. Whether this student was discouraged from requesting help. 

e. The student’s performance on the pretest problem for the rule related to this problem step 

(correct or error).  

f. Relevant Action History:  This step lists previous student-tutor interactions on (1) any 

previous steps that use the same rule that is related to the current step, and (2) the current 

step.  
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g. A page for tutorial response ratings for each of the 5 possible tutorial response types to the 

current situation.  These are listed in random order with just the text for the corresponding 

help message (without the response type name of null, prompt, hint, teach, or do).  For the 

null response type, the text displayed is “(<window name> dialog window with no 

message),” where <window name> is either “Blank” or one of the Dialog Windows listed in 

Appendix E.   Judges were asked to rate each response (whether or not any of the tutors 

provided it) on a scale of 1 (worst) to 5 (best), and told that the ratings were not comparisons 

– e.g., they could give more than one response the same rating.  

h. Space for any comments about the listed tutorial responses.  

i. Space asking for the best single tutorial response, if any, to display for the current scenario.  

This could be one of the listed tutorial responses, a response that the judge creates, or “none.” 

j. The responses to General Help! Request scenarios were usually situations where the tutor had 

a  choice about which problem step to provide help for.  Consequently, these scenarios had a 

few more elements: 

• A history of the most recent student-tutor interaction, provided to give the judge a 

feel for the student’s current focus of attention.  

• Relevant action histories for the rules related to each of the steps the tutor could 

provide help for.  

• A question about which of the currently possible steps the tutor should provide help 

for, including a choice of “The tutor should not respond.” 

• Separate pages for tutorial response ratings and comments for the help messages 

related to each of the possible next steps.  

 
 
5.2.2.2 Scenario types and stratified sampling 
 
 
Scenarios are classified into three types according to the type of tutorial situation they represent: 

1. Help requests:  These are scenarios where the student has requested help.  Help can be either step-

specific or general.  Step-specific help occurs when the student presses the Help button within a 

Dialog Window while she is working on a step – for these help requests, the student’s focus of 

attention at the time she requests help is assumed to the step she is working on.  General help 

occurs when the student presses the Help! button at the lower left side of the interface.  This 

button is only available when the student is not working on a specific step, so the tutor must 

decide which step to provide help for.  Responses to help requests are reactive help.  
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2. Errors:  These are scenarios where the student has just made an error.   Help responses to errors 

are proactive help (sometimes called unsolicited help).  

3. Step starts:  These are scenarios where the student has just clicked on one of the goals with an 

open prompt in the Goals Window to begin working on the corresponding step.  Help responses 

to step starts are proactive help.  

 
For assessing the performance of the different tutorial action selection methods, 350 scenarios were to be 

selected from the test set.  The intention was to select the scenarios randomly so as not to introduce any 

bias.  However, a completely random selection would have produced a highly skewed sampling among 

the scenario types listed above.  Of 5009 scenarios in the test set, 2837 were step starts, 1754 were errors, 

and only 418 were help requests, so a random sampling would have collected about 57% or 200 step start 

scenarios, 35% or 122 errors, and 8% or 28 help requests.  This is just the opposite of what was desired 

for assessing help selection, for which the help provided for help requests is arguably most important, the 

help provided for errors is probably next most important, and it is debatable whether help should be 

provided for step starts at all.  With a completely random distribution, the judges’ ratings of the tutors 

would be dominated by their ratings for step start scenarios and only weakly influenced by their ratings 

for help request scenarios.  Therefore, a stratified sample was selected with the sample for each stratum 

randomly selected from among all the scenarios in that stratum:  175 help requests, 100 errors and 75 step 

starts.  

 One additional criteria was employed for selecting scenarios:  Since the Random Tutor selected 

actions randomly, it might for a specific step select, say, do help (the most explicit help message), and 

then if the student was not successful, follow the do help with a prompt (the least explicit non-null help 

message).  Such sequences of help messages violated both the weak successive explicitness constraint 

followed by DT Tutor (see section 4.5.1.1) and the strong successive explicitness constraint followed by 

the Fixed-Policy Tutor (see the next section, 5.2.2.3), which prevent those tutors from providing less 

explicit help messages after more explicit help messages for the same step.  It was unclear just how DT 

Tutor or the Fixed-Policy Tutor should respond following sequences of help messages that violated even 

the weaker successive explicitness constraint, since providing successively more explicit messages would 

no longer be possible.  A related concern was that it was unclear just how such seemingly odd (indeed, 

random) sequences of help messages would affect the judges’ intuitions about what kind of help to 

provide next.  Therefore, scenarios whose Relevant Action History (described in section 5.2.2.1, item 3.f 

above) included sequences of tutorial actions that violated the weaker successive explicitness constraint 

were excluded from the sample. 
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5.2.2.3 The Fixed-Policy Tutor 
 
 
A Fixed-Policy Tutor was designed as a stiff test for comparison with DT Tutor (see Research Hypothesis 

2 in section 1.1.2).  The Fixed-Policy Tutor used the same student interface as DT Tutor, described in 

section 5.2.2.3, with the same pool of help messages so that only the method used for selecting tutorial 

actions was different.  The Fixed-Policy Tutor’s policy for providing help messages emulates the tutorial 

action selection policy of the Cognitive Tutors (Anderson et al., 1995), which are theory-based (e.g., 

Anderson & Lebiere, 1998), widely used and highly effective (e.g., Koedinger et al., 1997).  The policy 

consists of the following constraints:  

 

1. When help is provided:   

a. The tutor must respond to any student help request with a non-null response type. 

b. Proactive help is not provided after the student’s first error on a step, but it is provided 

after subsequent errors (Aleven & Koedinger, 2000).  (Other fixed-policy tutors, 

including Cognitive Tutors, may not ever provide proactive help after errors, or may 

provide proactive help after a different number of errors.  The policy for earlier Cognitive 

Tutors was to “never volunteer help” (Anderson et al., 1995, p. 199), and Aleven and 

Koedinger’s (2000, p. 198) paper states that “… we have modified the PACT Geometry 

tutor so that it initiates help after two errors.”) 

c. Proactive help is never provided for step start scenarios.  

2. Strong successive explicitness constraint:   

a. The available help messages are ranked in order of the explicitness of the help that they 

provide, from least to most explicit.  For this study, the sequence is  prompt, hint, teach, 

do.  (Other fixed-policy tutors, including Cognitive Tutors, may have a sequence of 

different length, and there may be more than one message per level of explicitness.  The 

point is that there are successive levels of explicitness (Anderson et al., 1995).)   

b. When help is provided (i.e., for non-null responses), it must be minimally more explicit 

than the help previously provided.  If the bottom-out help message (do for the Calculus 

Tutor) has already been provided, it may be repeated.  

DT Tutor’s discourse coherence model (see section 4.5.1.1) abides by the same constraints as the Fixed-

Policy Tutor’s except in two respects:  First, DT Tutor does not follow constraints (1b) and (1c).  Second, 

DT Tutor’s constraint (2b) does not include the term “minimally.”  
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It is important to note all of the tutors – DT Tutor, the Random Tutor, and the Fixed-Policy 

Tutors – employ the student interface’s capability to automatically provide immediate “flag” feedback 

after errors:  the student’s entry is displayed in red to indicate that it is an error (correct actions get 

immediate flag feedback in green).  The Cognitive Tutors typically provide immediate flag feedback as 

well (Koedinger et al., 1997).  In addition, for a commonly occurring slip or misconception, Cognitive 

Tutors may also provide an error or “bug” message “that indicates what is wrong with the answer or 

suggests a better alternative” (Koedinger et al., 1997, p. 35).  The Calculus Tutor’s student interface has 

not yet implemented any bug messages.  

 The fixed policy above is also very similar to the fixed policy of Andes1 (Conati et al., 2002) 

except for a difference in responses to student errors (Gertner & VanLehn, 2000):  Andes1 also provides 

flag feedback, but it provides a hint or an  error message only for simple syntactic errors.  

 
 
5.2.3 Procedure 
 
 
First, a replay mechanism developed for this study was used to replay the logs of the interactions between 

students and the Random Tutor.  While the logs were replayed, the actions that DT Tutor would have 

selected for the same tutorial situations were recorded.  When the actions selected by the Random Tutor 

and DT Tutor differed, the action originally selected by the Random Tutor was provided in order to 

preserve the fidelity of the replay, and DT Tutor updated its model of the tutorial state to include the 

action actually provided by the Random Tutor.  A similar process was undertaken to record the actions 

that the Fixed-Policy Tutor would have taken for the same situations.  These replays recorded the actions 

that DT Tutor and the Fixed-Policy Tutor would have taken for every scenario, not just the sample of 

scenarios used for assessment.  

 Next, the judges rated all possible responses for 350 scenarios.  Note that with this design it is 

possible to use the same judges’ ratings to assess the tutorial action selections of still more tutors, or 

updated versions of the same tutors, as long as they select from the same pool of help messages.  The 

judges were told that they were rating scenarios in order to provide information about what help messages 

would be best to provide for various situations.  They had no idea which tutor provided which responses 

or that their ratings would be used to compare tutors.  
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5.3 FAST RESPONSE TIME BY LIMITING PROBLEM SOLUTIONS 
 
 
Fast response time by DT Tutor (DT) was not required for the success of this study.  As described in 

section 5.2.3, the responses of DT and the Fixed-Policy Tutor were computed offline based on logs 

created from interactions between the Random Tutor and real students.  The fact that the Random Tutor’s 

responses were nearly instantaneous sufficed to create pleasantly snappy interactions with students.  

However, DT Tutor’s response time had previously been a problem, as described in (Murray & VanLehn, 

2000) and noted in the literature (e.g., Conati et al., 2002), although response time has been improving 

(Murray et al., 2004).  Therefore, significant further improvement is noteworthy.  

No formal study of DT’s response times was conducted, but from informal observations of DT 

computing its own responses to logged scenarios, it appeared that DT provided sub-second response time 

for almost all scenarios, if not all scenarios, of the 30 test set students each working on the same 5 

problems.  It did this while running concurrently with several other applications on a PC11, including the 

domain expert and the student interface described in sections 3.1 and 3.3 respectively, using the SMILE12 

probabilistic reasoning engine and a clustering algorithm (Huang & Darwiche, 1996) for exact inference.  

An additional challenge was that the logged interactions were replayed at 15 times original speed with all 

delays over 10 seconds removed (i.e., instead of reducing a 10-second delay to 10/15 = 2/3 seconds, 

delays of 10 seconds or more were simply skipped during the replay), so the system did not have the 

respites it had during the original interactions while waiting for the next student input.  

Probabilistic inference is NP-hard in the worst case for both exact (Cooper, 1990) and 

approximate (Dagum & Luby, 1993) algorithms.  DT’s networks possess several characteristics that can 

make inference challenging: 

 

1. Multiply-connected, with some network nodes having three or more parents, for which exact 

inference can be NP-hard (Cooper, 1990).  Multiply-connected networks seem to be necessary to 

represent many complex, real-world domains (Cooper, 1990). 

2. Large (Cheng & Druzdzel, 2000; Russell & Norvig, 1995), also as seems to be necessary for 

many complex, real-world domains (e.g., Cooper, 1990).  

3. Temporal (Cooper et al., 1989), increasing both the number of nodes (for multiple slices) and 

connectivity, with temporal as well as atemporal arcs (Ngo et al., 1997) 

                                                      
11 667-MHz Pentium III, 512-Mb RAM, running Windows 98 – the same system used for (Murray et al., 2004)  
12 The core of the decision-theoretic portion of DT’s implementation is based on the SMILE reasoning engine for 
graphical probabilistic models contributed to the community by the Decision Systems Laboratory, University of 
Pittsburgh (http://www.sis.pitt.edu/~dsl). 
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4. Large conditional probability tables (e.g., Cheng & Druzdzel, 2000) 

5. Decision networks, requiring an update for each alternative (Russell & Norvig, 1995) 

 

While some characteristics can be addressed by specialized inference algorithms (e.g., Lin & Druzdzel, 

1999; Shachter & Peot, 1992), DT‘s combination of characteristics pose a stiff test.  

  The key to DT’s improved performance was a reduction in the both the number of response topics 

that it considers (i.e., values for Tutor Action Topic1) and the number of response types that it considers 

(i.e., values for Tutor Action Type1).  Previously, DT had considered providing 7 different help types for 

every step (i.e., topic) in the problem.  For instance, for a 15-step problem, the decision network 

algorithm that DT used required 15*7 = 105 network updates to compute exact expected utilities for 

every combination of decision alternatives (not all algorithms require computing exact expected utilities 

for every alternative – e.g., (Shachter & Peot, 1992)).  For the current version of DT, only 5 different 

response types were considered for each step (null, prompt, hint, teach, do) instead of 7.  

Reducing the number of topics that DT considers had an even bigger effect.  The domain expert 

described in section 3.1 implemented the heuristics described in the Calculus Tutor Tutorial (Appendix 

A) to limit to one the number of problem solution paths for each problem.  These student interface 

described in section 3.3 both enforced the heuristics and reified student problem-solving goals that might 

otherwise be invisible (Singley, 1990).  The combination of limiting the number of solution paths and 

making all problem-solving steps (Singley, 1990) visible13 allowed DT to limit the number of user 

interface problem steps that could be within the student’s focus of attention to two14.  This meant that DT 

considered at most 2 response topics times 5 response types, or at most 10 network updates for each 

decision, an order of magnitude reduction.   

Another factor that has surely helped to improve DT’s response time is continuing improvements 

to SMILE, the reasoning engine for graphical probabilistic networks that DT employs.  

 
 
 
 

5.4 DISTRIBUTIONS OF RESPONSES SELECTED BY THE TUTORS 
 
 
As a first step in assessing the tutors’ performance on the test set of scenarios, their response selection 

patterns were analyzed.  The following subsections describe and compare the selections of the tutors, 
                                                      
13 All problem-solving steps at the grainsize considered by the Calculus Tutor’s user interface were visible.  It would 
be possible to decompose these problem steps into smaller components.  
14 The fact that at most 2 problem steps were possible in the Calculus Tutor at any one time, as opposed to 1 or 3 or 
more, is an artifact of the problem solver’s heuristics and the domain operators.  The point is that the number of 
possible next problem-solving steps was sharply reduced. 
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focusing on the Fixed-Policy Tutor (FT) and DT Tutor (DT) since the Random Tutor’s (RT) selections 

were random and so mostly uninteresting.   

The details in this section may seem excessive without an understanding of their purposes, which 

are as follows:   

 

1)  To provide a feel for how FT and DT behaved in various situations 

2)  To demonstrate that FT and DT differed from one another in their responses 

3)  To demonstrate that DT’s responses varied by situation 

4)  To identify some failings in DT’s response selections 

5)  To provide a basis for explaining differences in the judges’ ratings of FT and DT 

 

Table 5.1 shows the distribution of response types (null, prompt, hint, teach, do) across all scenarios for 

the Random Tutor (RT), the Fixed-Policy Tutor (FT) and DT Tutor (DT).   A Pearson’s chi-square test of 

association found the differences in response patterns to be significant, χ2(8)=149.1, p<.001.   

 
 
 

Table 5.1:  Distributions of response types for all scenarios, percentages 

 
 

  null prompt hint teach do 
RT  23 18 15 22 21 
FT  41 23 11 14 11 
DT  27 14 3 47 9 

 
 
 
RT’s responses were fairly evenly distributed across all of the response types, which was expected since 

RT selected response type randomly.  The distribution of RT’s responses is otherwise unremarkable and 

so won’t be discussed much further.  

 
 
5.4.1 The Fixed-Policy Tutor’s overall distribution of response selections 
 
 
FT selected more null responses than any other type.  This was expected since FT’s policy is not to 

respond (i.e., to respond null) when the student selects a step to start working on it (start step scenarios) 

and when the student makes an error for the first time on a step.  In addition, FT exhibited a general trend 

to select more of the less explicit response types (e.g., null, prompt) and fewer of the more explicit 

 86



response types (e.g., teach, do).  This is consistent with FT’s policy of selecting successively more 

explicit help:  FT selects less explicit help for most steps and only for a few steps does it progress all the 

way to selecting the most explicit help.  An exception to this trend occurred, however, when RT had 

already provided somewhat explicit help, in which case FT’s policy was to select the help alternative that 

was minimally more explicit; this is how FT managed to select more teach than hint responses.   

 
 
5.4.2 DT Tutor’s overall distribution of response selections 
 
 
DT’s responses were significantly different from FT’s, χ2(4)=96.0, p<.001.  Particularly remarkable were 

a large number of teach responses and a small number of hint responses.  

 
 
5.4.2.1 DT Tutor’s large number of teach responses 
 
 
A surprise in DT’s distribution of response selections was that it selected significantly more teach 

responses than any other type.  There appear to be a few reasons for this.  First, DT’s discourse coherence 

model, in concert with a low utility for incoherent responses, followed a constraint of selecting 

successively more explicit help responses (see section 4.5.1.1).  FT’s policy followed a similar but 

stronger constraint (see section 5.2.2.3) which limited it to selecting help messages that were minimally 

more explicit.  Therefore, DT, like FT (which also selected more teach than hint responses, although by a 

much smaller margin), was constrained to select more explicit help responses than RT had already 

provided (or else to reply null or repeat the do response).  So DT and FT sometimes selected teach just 

because RT had most recently selected hint.  When RT had most recently selected prompt, FT was 

constrained to select hint (or no help at all) because hint is minimally more explicit than prompt.  DT was 

free to select hint as well in such situations but, since prompt and hint were usually of similar 

effectiveness (see sections 4.4.3.5, 4.4.3.6, 4.4.3.7, 5.5.1 and 6.1.4) and usually less effective than teach, 

DT usually selected teach over hint.  

 Second, even though the do message (telling the student exactly how to do a step without 

teaching the rationale for the action) was usually more effective than teach, do sharply decreased the 

student’s feeling of independence (see section 3.2.8).  So teach was sometimes preferred over do because 

its influence on the student’s affective state was less deleterious.   

 Third, one of DT’s utilities was set to slightly favor the teach response over other responses as  

described in section 4.5.1.7 and shown in Table 4.9.  This was done as part of tuning during the data 

collection phase because the experimenter believed that DT was not responding with teach often enough.  
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The adjustment was based on training set performance before assessment with the test data.  Perhaps this 

was an overadjustment, upsetting DT’s delicate balance of multiple considerations (considering the 

student’s knowledge, problem-solving progress and feeling of independence, etc. – see section 4.5) so that 

it selected teach too many times and hint too few.  A change to this utility would reduce the number of 

teach responses. 

 
 
5.4.2.2 DT Tutor’s small number of hint responses 
 
 
The other main surprise in DT’s distribution of response selections is that it selected very few hint 

responses.  Part of this must simply be due to an imbalance between the hint and teach responses, as 

mentioned in section 5.4.2.1 above.  But another reason is that the empirically-learned conditional 

probabilities for the teaching effectiveness of the prompt and hint responses were often about the same, as 

discussed in sections 4.4.3.5, 4.4.3.6, 4.4.3.7, and 6.1.4.  In fact, the judges sometimes considered the 

prompt and hint messages to be equivalent (even though they had different content) – anecdotal evidence 

for this is listed in section 5.5.1, item 6.  But hint had a more negative impact than prompt on the 

student’s feeling of independence, according to DT’s model (see section 3.2.8).  And both prompt and 

hint were usually less effective teaching responses than teach.  So, all else being equal, DT preferred 

prompt over hint when the student was less likely to need explicit help, and it preferred teach over hint 

when the student was more likely to need explicit help.  

 
 
5.4.3 First-message-opportunity scenarios:  pretest-wrong, pretest-right 
 
 
A subset of the scenarios will often be important for understanding the contrasts between the tutorial 

responses selected by FT and DT.  This subset, which includes 188-19015 of the 350 scenarios, involves 

problem-solving steps for which the Random Tutor (RT) had not yet given help to the student.  These are 

called first-message-opportunity scenarios (FMOs) because the tutor has the opportunity to select the first 

help message to be displayed for the current step.  For these scenarios, DT had free reign over which 

tutorial response to select (if any) while FT adhered to its fixed policy.  For other scenarios, involving 

problem steps for which RT had already given help to the student, both FT and DT abided by a constraint 

(described in Section 4.5.1.1) to select a tutorial response (if any) that was more explicit than the help that 

RT had already given, or else to repeat the do response if RT had already given it.  In the most 

                                                      
15 The number of first-message-opportunity scenarios faced by a tutor depended on which topics the tutor selected 
for the 5 general impasse scenarios, for each of which the tutor had two topic choices.  
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constraining cases, when RT had already given either teach or do help, both FT and DT were constrained 

to give do help (if any).  Thus, first-message-opportunity scenarios were less constrained and so had more 

potential for revealing differences in the tutoring behaviors of FT and DT.  First-message-opportunity 

scenarios cut across the three subsets of scenarios described in section 5.2.2.2 (help requests, errors and 

step starts) because any of these types of scenarios may involve a first-message-opportunity.  

 First-message-opportunity scenarios were sometimes partitioned according to student 

performance on the pretest problem that corresponded to the rule required to complete the current 

problem step:  pretest-wrong and pretest-right.  The idea behind this partitioning is that students who get 

a pretest problem wrong are more likely than those who get it right to need explicit help during tutoring 

on steps that require knowledge of the rule tested by the pretest problem.  This is by no means a perfect 

test – e.g., the student might have merely slipped on the pretest problem or the student might have learned 

the rule since the pretest – but one advantage is that it does not require subjective judgments by the 

experimenter.   

 With the pretest-wrong/right partitioning, it must be noted that DT was not given information 

about the pretest performance of students in the test set.  However, DT could glean information about the 

likelihood that a particular student in the test set knew a rule in two ways:  (1) by the percentage of the 

training set students who got the corresponding pretest problem correct (recorded as prior probabilities as 

described in section 4.4.2), and (2) by the student’s actions during tutoring on steps related to the rule 

such as correct actions, help requests and errors.  

 Table 5.2 displays FT’s and DT’s number of response types for the first-message-opportunity 

subsets pretest-wrong and pretest-right.  FT’s and DT’s responses are significantly different, χ2(2)=91.0, 

p<.001.  FT’s response pattern is the same for both pretest-wrong and pretest-right, with 56-58% of 

responses null and the remainder prompt.  DT’s response patterns significantly differ between pretest-

wrong and pretest-right:  χ2(2)=7.59, p=.023.  For the pretest-wrong scenarios, DT selected relatively 

more teach responses (51%), and for the pretest-right scenarios, DT selected relatively more null and 

prompt responses (69%).  DT thus tends to provide more explicit help when students are more likely to 

need it, and to provide less explicit help, if any, when students are less likely to need it.  
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Table 5.2:  FMO responses for all scenarios, percentages:  pretest wrong & right, FT & DT 

 
 

  Response Type 
Subset  Null  Prompt  Hint  Teach  Do 
           
Pretest-wrong    

FT  56 44 0 0  0 
DT  27 23 0 51  0 

    
Pretest-right    

FT  58 42 0 0  0 
DT  41 28 0 31  0 

 
 
 
5.4.4 The tutors’ response distributions for help requests 
 
 
 

Table 5.3:  Distributions of response types for help requests, percentages 

 
 

  null prompt hint teach do 
RT  0 26 19 26 29 
FT  0 43 17 22 18 
DT  0 17 5 60 18 

 
 
Table 5.3 displays the tutors’ distributions of response types for help requests.  None of the tutors selected 

the null response for help requests because not responding to a help request was considered bad user 

interface design.  FT displayed the same general trend described in section 5.4.1 to select more of the less 

explicit response types (e.g., prompt) and fewer of the more explicit response types (e.g., teach, do).  DT 

likewise exhibited its tendency to select many teach responses and few hint responses (discussed in 

sections 5.4.2.1 and 5.4.2.2).  Indeed, nearly 2/3 of the teach responses that DT issued were for help 

requests, probably because the very fact that the student requested help (in the absence of help abuse) 

increased the likelihood that the student needed more explicit help.  DT’s responses were significantly 

different from FT’s, χ2(3)=60.8, p<.001. 
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5.4.4.1 FT and DT response distributions for FMO help requests 
 
 
 

Table 5.4:  FMO responses for help requests, percentages:  pretest wrong & right, FT & DT 

 
 

  Response Type 
Subset  Null  Prompt  Hint  Teach  Do 
           
Pretest-wrong    

FT  0 100 0 0  0 
DT  0 34 0 66  0 

    
Pretest-right    

FT  0 100 0 0  0 
DT  0 44 0 56  0 

 
 
 
Table 5.4 shows FT’s and DT’s distributions of responses for first-message-opportunity help requests.  

FT always selected prompt while DT split its responses between prompt and teach, and this difference 

between FT and DT was significant, χ2(1)=63.3, p<.001.  DT selected teach 66% of the time for the 

pretest-wrong scenarios and a little less often, 56% of the time, for the pretest-right scenarios, again 

exhibiting a tendency to provide more explicit help when the student is more likely to need it, but this 

difference was not significant, χ2(1)=.726, p=.394. 

 
 
5.4.5 The tutors’ response distributions for errors  
 
 
 

Table 5.5:  Distributions of response types for errors, percentages 

 
 

  null prompt hint teach do
RT  45 13 7 21 14
FT  68 6 10 10 6
DT  39 12 3 45 1

 
 
 
Table 5.5 shows the tutors’ distributions of response types for errors.  Non-null responses to errors are 

considered proactive (i.e., unsolicited) help because the student has not asked for help.  RT returned 
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significantly more null responses than any other response type because it randomly decided to provide 

proactive help about 50% of the time, so about 50% of the time it decided not to provide proactive help – 

i.e., to return a null response.  FT returned an even larger number of null responses because its policy is 

not to provide proactive help for first errors and 68 out of the 100 error scenarios were first errors.  DT 

tended to select null or teach responses.  DT’s responses were significantly different from FT’s, 

χ2(4)=39.5, p<.001. 

 
 
5.4.5.1 FT and DT response distributions for FMO errors  
 
 
 

Table 5.6:  FMO responses for errors, percentages:  pretest wrong & right, FT & DT 

 
 

  Response Type 
Subset  Null  Prompt  Hint  Teach  Do 
           
Pretest-wrong    

FT  82 18 0 0  0 
DT  41 14 0 45  0 

    
Pretest-right    

FT  92 8 0 0  0 
DT  38 35 0 27  0 

 
 
 
For first-message-opportunity errors, FT always selected null for first errors and prompt for second errors.  

Most first-message-opportunity scenarios were first errors (for second errors that remained first-message-

opportunities, RT must have selected null for the first error).  FT’s response selections differed 

significantly from DT’s, χ2(2)=27.7, p<.001.  DT selected from among null, prompt and teach, tending to 

select relatively more teach responses for pretest-wrong scenarios (when students were more likely to 

need explicit help) and more null and prompt responses for pretest-right scenarios, but this difference was 

not significant:  χ2(2)=3.27, p=.195.  

 
 

 92



5.4.6 The tutors’ response distributions for step starts  
 
 
 

Table 5.7:  Distributions of response types for step starts, percentages 

 
 

  null prompt hint teach do
RT  49 7 15 16 13
FT  100 0 0 0 0
DT  72 9 0 19 0

 
 
 
Table 5.7 shows the tutors’ distributions of response types for step start scenarios (when a student selects 

a step to start working on it).  Any help provided for these scenarios is considered proactive (i.e., 

unsolicited) because the student is not asking for help at the time that it is provided.  As with error 

scenarios, RT returned significantly more null responses than any other response type because it 

randomly decided to provide proactive help about 50% of the time, so about 50% of the time it decided 

not to provide proactive help – i.e., to return a null response.  FT followed its policy to never respond 

(i.e., to always respond null) to step start scenarios.  DT likewise selected mostly null responses but also a 

few prompt and teach responses, and this made DT’s responses significantly different from FT’s, 

χ2(2)=24.4, p<.001.  

 
 
5.4.6.1 FT and DT response distributions for FMO step starts  
 
 
 

Table 5.8:  FMO responses for step starts, percentages:  pretest wrong & right, FT & DT 

 
 

  Response Type 
Subset  Null  Prompt  Hint  Teach  Do 
           
Pretest-wrong    

FT  100 0 0 0  0 
DT  46 17 0 37  0 

    
Pretest-right    

FT  100 0 0 0  0 
DT  86 7 0 7  0 
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66 of 75 step start scenarios were also first-message-opportunity scenarios.  Not all step start scenarios are 

first-message-opportunity scenarios because sometimes a student selects a step to resume work on it after 

previously receiving help but not successfully completing it.  Again, FT always selected null for these 

scenarios regardless of the situation and, not surprisingly, its responses were significantly different from 

DT’s:  χ2(2)=22.2, p<.001.  DT chose mostly the null response for pretest-right scenarios but chose 

relatively more teach and prompt responses for pretest-wrong scenarios (when students were more likely 

to need explicit help), and this difference was significant:  χ2(2)=12.5, p=.002.  

 
 
 
 

5.5 THE JUDGES’ EVALUATIONS 
 
 
5.5.1 The judges’ comments 
 
 
As part of their evaluations of each scenario, the judges were asked to write down two types of freeform 

entries:  (1) optional comments about any of the scenario’s response options, and (2) a required comment 

about the single best response, which could have been “none” (no response), one of the response options 

given for the scenario, or a response that the judge made up.   

This study focuses on the judges’ numeric ratings of the scenario response options rather than 

their comments.  Nevertheless, many of their comments were informative.  They will be used within this 

text to help illustrate and interpret some of the numeric results.  Furthermore, some of the comments may 

be considered surprising and so may inspire further investigation.  

Some of the interesting points made by the judges along with representative quotes are listed 

below.  In the list, the notation “Best response” indicates that the comment was made about the single best 

response for a scenario.   

 

1. Regarding selecting successively more explicit help (FT’s policy of selecting help in order of 

increasing explicitness:  prompt, hint, teach, do): 

a. Successively explicit help is often preferred:  Best response – “C [prompt] is the best, 

although it might be too difficult.   If it is, use A [hint] next time.”  

b. Don’t always start out with the least explicit help:  Best response – “Since the student 

didn't solve the pretest problem, [help] must be more clear than A [hint] or C [prompt].  E 

[teach].”  
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c. Don’t always progress from less to more explicit help:  Best response – “If D [teach] 

doesn't help, next time give E [prompt] as a hint “” 

d. Don’t always get more explicit a step at a time:  Best response – “There is no history.  

If A [prompt] doesn't work, next time use B [teach].”  

e. It’s okay to repeat a help message:  Best response – “B [teach] didn't help last time [on 

the current step], but it's still the best tip.  If it doesn't help, next time give the exact 

answer.” 

2. Judges react to help abuse or avoidance:   

a. Help abuse:  Best response – “The student abuses help -- he/she is only waiting for the 

exact answer.  A [null].”  

b. Help avoidance:  Best response – “E [do] because he has to at least try using help more” 

3. Consider whether a response worked before: 

a. Responses that worked before:  Best response – “Well, since B [hint] worked before, let's 

choose B, although I don't know how this tip is easier or more clear than the others.  B 

[hint].”  

b. Responses that didn’t work before:  Best response – “If E [teach] doesn't help (it didn't 

before), use the empty message next time.” 

4. No help in response to a help request is okay16:  Best response – “The student seems to make 

lots of mistakes and ask for a lot of help: it might be that he doesn't take the time to think, so no 

help will trigger that,  hopefully.” 

5. Sometimes just provide an example:  Best response – “Taking the first response [teach] and 

using just the example is better.”  

6. The tutors’ prompt and hint messages are sometimes similar:  Best response – “A [hint] and E 

[prompt] are equally good.  E [prompt].” 

 
 
5.5.2 The judges’ individual ratings 
 
 
Comparisons were conducted between DT Tutor (DT) and the other two tutors: the Fixed-Policy Tutor 

(FT) and the Random Tutor (RT).  Table 5.9 summarizes the results of a repeated-measures ANOVA with 
                                                      
16 It is likely that the judge assumes that the tutor would somehow let the student know, implicitly or explicitly, that 
it has received the help request, for to do otherwise would probably be bad user interface design – e.g., the student 
might think the tutor has crashed.  The judge probably just doesn’t want the tutor to provide help. 

 95



tutor ratings as the dependent variable, tutor (DT, FT and RT) and judge (judge 1, 2 and 3) as within-

subjects variables, and scenario type (help request, error or step start) as the between-subjects variable.  

As the table shows, there were main effects for tutor, judge, and scenario type at level p<.001, and the 

interactions between these variables were significant as well.  In other words, ratings were significantly 

influenced by the tutor being rated, the judge doing the rating, and the type of scenario.  The focus here is 

on effects for tutor, both the main effect and the two-way interactions for Judge x Tutor and Scenario 

Type x Tutor.  These interactions are described in the following subsections.  

 
 
 

Table 5.9:  Tutor x Judge x Scenario Type, repeated-measures ANOVA 

 
 

Source  df  F 
Between subjects 

Scenario Type (S)  2  36.33** 

     
Within subjects 

Tutor (T)  2  21.42** 

Judge (J)  2  52.99** 
J x T   4  18.28** 

S x T  4  5.49** 
J x S  4  26.25** 
T x J x S  8  3.53* 
     
*p = .001.   **p < .001     

 
 
 
5.5.2.1 Judge x Tutor ratings 
 
 
Table 5.10 shows the mean rating for each tutor over all scenarios, both by each judge and the overall 

mean rating for all judges combined.  Figure 5.1 shows the same information graphically.  The ratings for 

DT are higher than the ratings for FT and RT, both for each judge and for the mean of all judges.  

Pairwise tests of statistical significance comparing DT and the other tutors using composite judges’ 

ratings will be described in section 5.6.   

The ratings for FT are higher than the ratings for RT except from Judge 3.  The exception for 

Judge 3 reflects an interaction between tutor and judge – i.e., the influence of the different tutors on the 

ratings depends in part on which judge is doing the rating.  This interaction is discussed in section 5.5.2.5 

below. 
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Table 5.10:  Tutor x Judge, mean ratings:  RT vs. FT vs. DT 

 
 

  Tutor 
Rater  RT  FT  DT 
       

Judge 1  3.14  3.35  3.44
Judge 2  2.89  3.19  3.39
Judge 3  2.75  2.55  3.22

      
  All judges  2.93  3.03  3.35
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Figure 5.1:  Tutor x Judge, mean ratings:  RT vs. FT vs. DT17

 
 
 

                                                      
17 The error bars in Figure 5.1 and in all other figures within this thesis represent the standard error of the mean.  At 
the time of this writing, the Microsoft Excel software used for these figures supports only one size of error bar per 
column type (e.g., in this figure, one error bar size for RT, one for FT, and one for DT).  Therefore, the error bars 
shown are the largest standard error of the mean applicable for the column type.  This is a conservative 
representation – the errors are generally smaller except on one column of each type.  
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5.5.2.2 Scenario Type x Tutor Ratings 
 
 
Table 5.11 shows the mean rating for each tutor by all judges for each scenario type (help requests, errors, 

step starts and first message opportunities) and overall.  Figure 5.2 shows the same information 

graphically.  The ratings for DT are higher than the ratings for FT and RT for each scenario type and 

overall (“All Scenarios”), although just barely so in the case of help requests (pairwise tests of 

significance are described in section 5.6).   

FT is rated higher than RT overall as well as for first message opportunities and help requests.  

However, it is rated lower for both errors and step starts.  Thus, this view of the data also shows an 

interaction, this time between scenario type and tutor – i.e., the influence of the different tutors on the 

ratings depends in part on the scenario type.  These  interactions are discussed in the following sections. 

 
 
 

Table 5.11:  Tutor x Scenario Type, mean ratings:  RT vs. FT vs. DT 

 
 

  Tutor 
Scenario Subset  RT  FT  DT 
       

Help Requests  3.18  3.51  3.56 
Errors  2.40  2.24  2.99 

Step Starts  3.04  2.97  3.35 
First Message Opportunities  2.97  3.06  3.44 

      
All Scenarios  2.93  3.03  3.35 
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Figure 5.2:  Tutor x Scenario Type, mean ratings:  RT vs. FT vs. DT 

 
 
 
5.5.2.3 Scenario Type x Tutor Interaction for Errors 
 
 
FT was rated lower than RT for errors because FT always selects a null response (i.e., no response) the 

first time the student makes an error, and for error scenarios the judges rated null responses the lowest as 

shown in Table 5.12.  Consequently, on the 68 of 100 error scenarios that involved the student’s first 

error, FT received low ratings for its response while RT received a variety of ratings for its randomly 

selected responses.  Figure 5.3 and Figure 5.4 show the differences in judges’ ratings of RT and FT for 

first errors and subsequent errors, respectively.  For the 32 error scenarios that involved second or 

subsequent errors, FT was rated more highly than RT.   
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Table 5.12:  Error scenario ratings, means by each judge and overall 

 
 

  Tutorial Response Type 
Rater  Null  Prompt  Hint  Teach  Do 
           

Judge 1  1.50  2.82  3.76  3.89  2.46 
Judge 2  1.79  3.52  3.66  3.85  1.21 
Judge 3  1.08  3.34  3.23  4.28  2.13 

           
All Judges  1.46  3.23  3.55  4.01  1.93 
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Figure 5.3:  First error scenario ratings by each judge:  RT vs. FT 
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Figure 5.4:  Subsequent error scenario ratings by each judge:  RT vs. FT 

 
 

 101



5.5.2.4 Scenario Type x Tutor Interaction for Step Starts 
 
 
FT was rated lower than RT for step starts because FT always selects a null response (i.e., no response) 

for step starts and the mean judges’ rating for the null response was the second lowest of all the tutorial 

response options, after do responses, as shown in Table 5.13.  However, notice that the low mean rating 

for null responses is due to Judge 3, who rated null much lower than the other judges did, at 1.59 versus 

3.91 and 3.43.  Figure 5.5 shows that Judge 3 was the only judge who rated FT lower than RT for step 

starts, but it was by a large enough amount to affect the relative means of FT and RT over all judges.  

 
 
 

Table 5.13:  Step start scenario ratings, means by each judge and overall 

 
 

  Tutorial Response Type 
Rater  Null  Prompt  Hint  Teach  Do 
           

Judge 1  3.91  3.59  3.80  2.95  2.01 
Judge 2  3.43  3.92  3.33  3.03  1.16 
Judge 3  1.59  3.67  3.37  4.13  1.96 

           
All Judges  2.97  3.72  3.50  3.37  1.71 
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Figure 5.5:  Step start scenario ratings by each judge:  RT vs. FT 

 
 
 
5.5.2.5 Judge x Tutor Interaction for Judge 3 
 
 
As mentioned in section 5.5.2.1, there is an interaction between tutor (RT, FT and DT) and judge (Judge 

1, 2 and 3), particularly for Judge 3, who rated FT lower than RT overall while the other judges rated FT 

higher than RT overall (see Figure 5.1).   

 Judge 3 rated FT higher than RT for help requests but lower than RT for errors and step starts, as 

shown in Figure 5.6.  For errors, as described in section 5.5.2.3, Judge 3 rated FT lower than RT because 

FT selected only null responses on first error scenarios (68 of 100 error scenarios) and all of the judges – 

particularly Judge 3 – rated null responses lower than other responses for error scenarios (see Table 5.12 

and Figure 5.3).   

 For step starts, Judge 3 was the only judge who rated FT lower than RT, as described in section 

5.5.2.4 and shown in Figure 5.5.  Again, this was because FT selected only null responses for step starts 

and Judge 3 rated these responses particularly low (see Table 5.13). 
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Figure 5.6:  Tutor x Scenario Type, Judge 3:  RT vs. FT 

 
 
 
5.5.3 Composite judges’ ratings 
 
 
A composite set of judges’ ratings, properly constructed from the ratings of the three judges, has the 

potential to represent the population of skilled tutors (the judges were all skilled tutors, as described in 

section 5.2.1) better than any one of the three skilled tutors who participated in this study.  This section 

will motivate, justify and describe the method used to construct the composite judges’ ratings used in this 

evaluation.   

 
 
5.5.3.1 Similarities among judges’ ratings for all responses 
 
 
Agreement between the three judges’ ratings is shown in Table 5.14.  Agreement was calculated in two 

ways.  First, Pearson correlation coefficients were computed for each of the judge’s ratings for all three 

tutors’ responses on all scenarios.  The coefficients are significant but not high, revealing a relatively 

large amount of variation in opinions among these judges, who were intentionally uncoached in order to 

leave their intuitions undisturbed.  Second, for each judge’s preferred tutorial response for each scenario, 

the mean rating (on a scale of 1 to 5) of that tutorial response by the other two judges was computed.  
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Table 5.14 shows the mean value of this measure over all scenarios.  This measure reflects agreement 

about each judge’s most preferred response for each scenario, which were not necessarily the responses 

that any of the tutors selected.  None of the agreement measures was low enough to warrant throwing out 

all of the ratings of any of the judges for being unreasonably outside the norm. 

 
 
 

Table 5.14:  Agreement among judges, all scenarios 

 
 

Comparison 
Pearson’s 

correlation 
coefficient 

Rating by the 
Other Judges 

vs. Judge 2 r=.526** 

Judge 1 
vs. Judge 3 r=.360** 

3.38 

vs. Judge 1 r=.526** 
Judge 2 

vs. Judge 3 r=.447** 
3.72 

vs. Judge 1 r=.360** 
Judge 3 

vs. Judge 2 r=.447** 
3.71 

** p < .001 

 
 
 
5.5.3.2 Contrasts in ratings for subsets of scenarios 
 
 
We have already seen some systematic contrasts in the judges’ ratings for subsets of the scenarios:  (1) 

Figure 5.1 and section 5.5.2.5 showed that Judge 3 rated FT lower than RT overall, in contrast to Judges 1 

and 2; and (2) section 5.5.2.4 described how FT was rated lower than RT for step start scenarios due to 

the influence of Judge 3, who rated the null response much lower than did the other judges (1.59 versus 

3.91 and 3.43 – see Table 5.13).   

 For step start scenarios, which are opportunities to provide proactive help when the student first 

selects a step to start working on it, null responses are widely accepted.  Forgoing providing unsolicited 

help gives the student a chance to complete the step on her own, potentially reaping the benefits of 

knowledge construction and promoting her feeling of independence.  In fact, FT, gives only null 
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responses for these scenarios, and indeed even considering whether to provide proactive help in such 

situations is one of the major differences between FT and DT.  Therefore, it appears that Judge 3 may be 

outside the tutor norm for step start scenarios.  This disparity in the judges’ ratings is reflected in low 

Pearson’s correlation coefficients between Judge 3 and the other judges on step start scenarios, shown in 

Table 5.15. 

 
 
 

Table 5.15:  Agreement among judges, step start scenarios 

 
 

Comparison 
Pearson’s 

correlation 
coefficient 

Significance Rating by the 
Other Judges 

vs. Judge 2 r=.545 p<.001 
Judge 1 

vs. Judge 3 r=.089 p=.183 
3.23 

vs. Judge 1 r=.545 p<.001 
Judge 2 

vs. Judge 3 r=.200 p=.003 
3.55 

vs. Judge 1 r=.089 p=.183 
Judge 3 

vs. Judge 2 r=.200 p=.003 
3.59 

 
 
 
But Judge 3 was not the only judge who may have been outside the tutor norm for a subset of scenarios.  

For instance, for the 75 first-message-opportunity help requests, Judge 1 gave null responses relatively 

high ratings, averaging 3.34, while Judge 3 gave null responses relatively low ratings, averaging 1.25.  

Most tutors, including computer tutors, do respond in some way (i.e., with a non-null response) to help 

requests  – to do otherwise would probably be bad user interface design.  (However, it is likely that Judge 

1 anticipated that the tutor would provide some sort of response – just not help – as mentioned in section 

5.5.1 and discussed in section 6.6.3.1).  For these scenarios, it may be Judge 1’s ratings that are outside 

the tutor norm.  This disparity in the judges’ ratings shows up in the agreement measures for first-

message-opportunity help requests, shown in Table 5.16:  (1) a Pearson’s correlation coefficient of only 

r=.177 between Judge 1 and Judge 3, and (2) a mean rating by the other judges of only 2.76 for Judge 1. 
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Table 5.16:  Agreement among judges, first-message-opportunity help requests 

 
 

Comparison 
Pearson’s 

correlation 
coefficient 

Significance Rating by the 
Other Judges 

vs. Judge 2 r=.377 p<.001 
Judge 1 

vs. Judge 3 r=.177 p=.008 
2.76 

vs. Judge 1 r=.377 p<.001 
Judge 2 

vs. Judge 3 r=.306 p<.001 
3.66 

vs. Judge 1 r=.177 p=.008 
Judge 3 

vs. Judge 2 r=.306 p<.001 
3.64 

 
 
 
5.5.3.3 Composite judges’ ratings use the median rating for each response 
 
 
For constructing composite ratings from the ratings of our three judges to represent the population of 

skilled tutors, the goal was to discount ratings that were outside the norm without coarsely excluding any 

of the judges’ ratings.  To this end, the median rating for each response was used rather than the more 

commonly applied mean.  The median discounts the effect of the magnitude of outlying ratings while still 

taking their existence into account.  For instance, for the three ratings 1, 4, and 5, the median, which is 4, 

reflects the majority consensus of a rating toward the top end of the 1 to 5 scale, while discounting the 

magnitude of the outlying rating of 1 (in fact, it is unaffected by the magnitude of ratings at or below the 

median value).  The mean for this set of values, 3.33, is affected by the magnitude of the outlying rating.  

Furthermore, the median discounts the magnitude of any outlying rating, regardless of the source, so it 

functions just as well regardless of which judge’s ratings are outliers for a particular subset of scenarios.  

With outlying ratings for individual responses thus discounted by using the median of the three judges’ 

ratings, composite ratings for sets of responses were computed as the mean of the median ratings for each 

response. 
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5.6 COMPARING COMPOSITE RATINGS OF THE TUTORS 
 
 
Using composite judges’ ratings constructed as described in section 5.5.3.3, DT Tutor (DT) was 

compared with the other two tutors:  the Fixed-Policy Tutor (FT) and the Random Tutor (RT).  Table 5.17 

summarizes the results of a repeated-measures ANOVA with composite judges’ ratings as the dependent 

variable, tutor (DT, FT and RT) as the within-subjects variable, and scenario type (help request, error or 

step start) as the between-subjects variable.  As the table shows, there were main effects for tutor and 

scenario type at level p<.001, and the interaction between tutor and scenario type was significant as well, 

p=.001.    

 
 
 

Table 5.17:  Tutor x Scenario Type, repeated-measures ANOVA:  RT vs. FT vs. DT 

 
 

Source  df  F 
Between subjects 

Scenario Type (S)  2  32.86** 

     
Within subjects 

Tutor (T)  2  20.77** 

T x S  4  4.79* 
     
*p = .001.   **p < .001     

 
 
 
Table 5.18 shows each tutor’s mean composite rating for each scenario type (help requests, errors, step 

starts and first message opportunities) and for all scenarios.  Figure 5.7 shows the same information 

graphically.  As with the individual judges’ ratings, the composite ratings for DT are higher than the 

ratings for FT and RT for each scenario type, although just barely so in the case of help requests.  

Pairwise tests of significance will be described shortly     
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Table 5.18:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT 

 
 

  Tutor 
Scenario Subset  RT  FT  DT 
       

Help Requests  3.23  3.59  3.66 
Errors  2.31  2.10  2.95 

Step Starts  3.11  3.19  3.55 
First  Message Opportunities  2.99  3.12  3.54 

      
All Scenarios  2.94  3.08  3.43 
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Figure 5.7:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT 

 
 
 
The interaction(s) between scenario type and tutor discussed in sections 5.5.2.2 through 5.5.2.4 still exist 

with the composite ratings, but they are smaller.  In particular, FT is no longer rated lower than RT for 

step starts.  This is because using the median judges’ rating discounted the influence of the outlying 

judge’s low ratings of FT’s null responses (discussed in section 5.5.2.4).  FT is still rated lower than RT 

for errors because the judges were unanimous in giving low ratings to null responses to errors, as 

discussed in section 5.5.2.3.   

 109



 Table 5.19 displays results of paired-sample t-tests comparing RT vs. DT and FT vs. RT for all 

scenarios and for each scenario type, along with effect sizes and mean composite ratings.  Effect sizes 

were calculated as the difference in means divided by the standard deviation of the control group:  either 

RT or FT as applicable in their comparisons with DT.  

 
 
 

Table 5.19:  Tutor x Scenario Type, composite ratings, paired t-tests:  RT vs. DT, FT vs. DT 
 
 

Comparison      
df  t  Sig.  Bonferroni 

Sig.*  Effect   
Size 

               

RT vs. DT  RT 
Mean 

 DT 
Mean 

          

All Scenarios  2.94  3.43  349  5.746  <.001  <.01  .35 
Help Requests  3.23  3.66  174  3.937  <.001  <.01  .33 

Errors  2.31  2.95  99  3.324  .001  .010  .49 
Step Starts  3.11  3.55  74  2.572  .012  .120  .30 

FMOs  2.99  3.54  187  5.057  <.001  <.01  .40 
               

FT vs. DT  FT 
Mean 

 DT 
Mean 

          

All Scenarios  3.08  3.43  349  5.251  <.001  <.01  .24 
Help Requests  3.59  3.66  174  1.078  .282  1.0  .06 

Errors  2.10  2.95  99  4.693  <.001  <.01  .61 
Step Starts  3.19  3.55  74  3.222  .002  .020  .22 

FMOs  3.12  3.54  187  4.351  <.001  <.01  .28 
               

* Significance with Bonferroni correction for 10 t-tests (Sig. x 10) 
 
 
 
5.6.1 Composite ratings:  Random Tutor vs. Decision-Theoretic Tutor 
 
 
As Table 5.19 shows, the composite judges’ rating for DT was higher than the composite rating for RT 

overall and for help requests, errors and first message opportunities, significant at level p<.01 with effect 

sizes ranging from .33 to .49.  Only for step start scenarios was DT not rated significantly higher than RT 

after the Bonferroni correction for multiple comparisons.  However, the significance before the 

Bonferroni correction was p=.012 and the Bonferroni correction is known to be very conservative to 

protect against Type I errors (Corston & Colman, 2003).  The effect size for step starts was still a healthy 

.30.  

 
 

 110



5.6.2 Composite ratings:   Fixed-Policy Tutor vs. Decision-Theoretic Tutor  
 
 
Referring again to Table 5.19, the composite judges’ rating for DT was higher than the composite rating 

for FT overall and for the subsets help requests, errors, step starts and first message opportunities, all with 

significance p=.02 or less and with effect sizes ranging from .22 to .61.  For help requests, however, DT, 

with mean 3.66, and FT, with mean 3.59, were rated approximately equivalently with a .06 effect size and 

a significance level (with Bonferroni correction) of approximately p=1.0.  Results for subsets of scenarios 

are further discussed in the following sections. 

 
 
5.6.2.1 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  Help requests 
 
 
Since DT’s and FT’s ratings were approximately the same for help requests, one might expect that DT 

and FT selected mostly the same tutorial responses in the same situations.  However, their patterns of 

responses were significantly different, as shown in Table 5.3 and confirmed with a Pearson’s chi-square 

test of association, χ2(3)=60.8, p<.001.   

 As discussed in section 5.4.4.1, FT and DT also behaved significantly differently for the subset of 

help requests that were also first-message-opportunity scenarios, for which FT always selected the prompt 

response according to its fixed-policy.  DT’s response selections varied:  For the pretest-wrong scenarios, 

DT selected prompt only 34% of the time and teach 66% of the time, receiving a mean composite rating 

of 4.00 while FT received a mean composite rating of 3.55 for its prompt responses.  A paired-samples t-

test found this difference in mean composite ratings to be significant, t(28) = 2.218, p=.035.  For the 

pretest-right scenarios, DT selected prompt slightly more often, 44% of the time, and received a mean 

composite rating of 3.80 while FT’s responses (again, all prompt) received a higher mean composite 

rating, 4.02, although this difference just failed to reach marginal significance, t(44) = 1.634, p=.109.  

Apparently, the judges generally preferred the teach response when the student was more likely to need 

explicit help and the prompt response when the student was less likely to need explicit help.  DT adjusted 

its response selections according to the same preference structure but did not adjust them enough when 

the student was less likely to need explicit help. 

 
 
5.6.2.2 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  Errors 
 
 
As discussed in section 5.5.2.3, FT received lower ratings than RT (and so also lower than DT) for error 

scenarios because it always selects a null response the first time the student makes an error.  68 out of the 
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100 error scenarios involved the student’s first error, and all of the judges gave low ratings to null 

responses after errors (see Table 5.12), so FT responded null and received a low rating for a majority of 

the error scenarios.  For first errors, DT’s mean composite rating, 2.88, was significantly higher than FT’s 

rating of 1.35, according to a paired-samples t-test, t(67)=8.516, p<.001, with a large effect size of 2.58.  

On the 32 error scenarios that did not involve the student’s first error, FT, with a mean composite 

rating of 3.69, was rated higher than DT, which had a mean of 3.09, t(31) = 2.094, p=.044.  This was in 

turn due to DT replying null on 13 of these 32 scenarios, for which it received a mean rating of only 1.23 

compared to FT’s mean of 3.10.  The bottom line is that our judges did not like null responses to errors.  

 
 

5.6.2.3 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  Step starts 
 
 
As with error scenarios, FT received lower ratings than DT for step start scenarios because of null 

responses.  Per its fixed policy, FT always selected null responses for step start scenarios, which are 

scenarios when a student selects a step to start working on it (before the student has had a chance to 

complete the step – correctly or in error – or to request help).  DT also selected null on 54 of the 75 step 

start scenarios, and for these scenarios, DT received the same ratings as FT.  On the 21 step start scenarios 

for which DT did not reply null, DT’s mean composite rating, 3.67, was significantly higher than FT’s 

mean composite rating of 2.38, t(20) = 3.959, p=.001, effect size .92.  DT’s significant advantage in 

ratings when it did not reply null led to a significant advantage over FT in ratings for step scenarios 

overall, 3.55 versus 3.19, as shown in Figure 5.7 and Table 5.19.  

 Sections 5.5.2.4 and 5.5.2.5 describe how Judge 3’s particularly low ratings of FT’s null 

responses on start steps resulted in a lower mean judges’ rating than even RT’s, at 2.97 versus 3.04.  

Using the median composite rating described in section 5.5.3.3, FT’s composite rating is no longer lower 

than RT’s, at 3.19 versus 3.11.  However, even the median composite rating did not rank null responses as 

high as response types prompt, hint and teach, as shown in Table 5.20.  Once again, our judges did not 

favor null responses.  
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Table 5.20:  Step start scenario composite ratings by response type 

 
 

  Tutorial Response Type 
  Null  Prompt  Hint  Teach  Do 
           
Composite (median) rating  3.19  3.75  3.53  3.25  1.24 

 
 
 
5.6.2.4 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  FMO scenarios 
 
 
First-message-opportunity (FMO) scenarios, described in section 5.4.3, have particular potential for 

revealing differences in the behaviors of FT and DT because when the tutors have an opportunity to 

provide the first help message for a step, they are not constrained to provide a message that is more 

explicit than the message(s) already provided.  DT’s responses were significantly different from FT’s 

responses for these scenarios, for which FT always provided either the null or the prompt response.  DT 

included the teach response in addition to null and prompt, and varied its responses according to the 

likelihood that the student needed explicit help.  These differences paid off in terms of the judges’ 

composite ratings.  As shown in Table 5.19, DT was rated significantly higher than FT for first-message-

opportunity scenarios, p<.01, effect size .28.  Looking more closely at first-message-opportunity 

scenarios, DT is rated more highly than FT both for pretest-wrong and for pretest-right scenarios as 

shown in Table 5.21.  For pretest-wrong scenarios, DT’s mean composite rating is significantly higher, 

p<.01, with effect size .55.  For pretest-right scenarios, DT’s mean composite rating is not significantly 

higher after the Bonferroni correction, p=.158.  

 
 
 

Table 5.21:  FMO scenarios, composite ratings, paired t-tests:  FT vs. DT  

 
 

Comparison  FT 
 

DT 
 

df  t  Sig.  Bonferroni 
Sig.*  Effect  

Size 
         

Pretest wrong 2.51  3.24 74 4.606 p<.001 p<.002 .55 
Pretest right 3.53  3.73 112 1.776 p=.079 p=.158 .14 

       
* Significance with Bonferroni correction for the 2 t-tests (Sig. x 2) 
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5.7 COMPARING ENHANCED VERSIONS OF THE TUTORS:  DTe vs. FTe 
 
 
The Fixed-Policy Tutor’s ratings were hurt a great deal by its null responses to first errors and step starts, 

as described in the preceding sections.  The question naturally arises as to how much better FT would be 

rated with a simple change to its fixed policy to not select null responses for these types of scenarios (and 

consequently to never select null responses, since these are the only types of scenarios for which FT 

selects them).   Consequently, an enhanced18 version of FT, FTe, was developed which never selects a 

null response.  Instead, for each scenario, FTe simply gives the next hint in its hint sequence.  For 

instance, if the student has not yet received any help for the current step, FTe would respond to a step start 

scenario with a prompt response.   

 It must be emphasized that calling this version of FT “enhanced” is not a claim that FTe is a more 

effective tutor than FT; rather, “enhanced” refers to the anticipated result that FTe will receive higher 

ratings than FT from this study’s judges.  Section 6.6.3.1 discusses this distinction.  

 To the extent that our judges did not favor null responses, DT was also hurt by its null responses.  

Therefore, in order to more fairly compare enhanced fixed-policy tutoring with the current decision-

theoretic tutor according to the judges’ apparent preferences, DT was likewise modified to never return 

null responses.  This modification to DT could have been accomplished in a number of ways.  The 

method used was a minor change to DT’s discourse coherence model, the same model used to emulate 

FT’s preference for successively more explicit tutorial responses (described in section 4.5.1.1), to 

consider null tutorial responses incoherent (just as null responses to help requests were already considered 

incoherent).  Another alternative would have been to modify DT’s utility model of tutorial response type 

preferences to assign null tutorial responses extremely low utility relative to the other tutorial response 

types.  No other aspect of DT was changed, with the result that the modified DT, called DTe for the 

purposes of this study, selected exactly the same tutorial responses as DT except in situations where DT 

would have selected a null response.  

 
 
 

                                                      
18 Enhanced according to our judges’ ratings 
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Table 5.22:  Tutor x Scenario Type, repeated-measures ANOVA:  FTe vs. DTe  

 
 

Source  df  F  p 
Between subjects 

Scenario Type (S)  2  .554 .575 
     

Within subjects 
Tutor (T)  1  2.939 .087 
S x T  4  1.291 .276 

 
 
 
Table 5.22 summarizes the results of a repeated-measures ANOVA comparing FTe and DTe with 

composite judges’ ratings as the dependent variable, tutor (FTe and DTe) as the within-subjects variable, 

and scenario type (help request, error or step start) as the between-subjects variable.  As the table shows, 

the differences in composite tutor ratings are only marginal, p=.087, and the other differences are 

insignificant.   

Table 5.23 lists composite ratings for FTe and DTe and repeats the composite ratings of RT, FT 

and DT for comparison purposes, including ratings for each scenario type (help requests, errors, step 

starts and first message opportunities) and for all scenarios.  Figure 5.8 shows the same information 

graphically.  Ratings for FTe and DTe are significantly higher than the ratings for FT and DT except for 

help request ratings, which are unchanged (FTe and DTe respond to help requests the same as FT and DT, 

respectively).  Among the enhanced tutors, the Fixed-Policy Tutor (FTe) is much closer to DT Tutor 

(DTe) than FT was to DT.  DTe holds a slight advantage over FTe both overall and for all scenario 

subsets except step starts, for which FTe’s mean rating is .01 larger than DTe’s.  Tests of significance will 

be discussed below.  
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Table 5.23:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT vs. FTe vs. DTe 

 
 

    Tutor 
Scenario Subset  RT  FT  DT  FTe  DTe
           

Help Requests  3.23  3.59  3.66  3.59  3.66 
Errors  2.31  2.10  2.95  3.54  3.72 

Step Starts  3.11  3.19  3.55  3.77  3.76 
First Message Opportunities  2.99  3.12  3.54  3.74  3.77 

          
All Scenarios  2.94  3.08  3.43  3.62  3.70 
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Figure 5.8:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT vs. FTe vs. DTe 

 
 
 
Table 5.24 displays results of paired-sample t-tests comparing FTe vs. DT and FTe vs. DTe for all 

scenarios and for subsets of scenarios, along with effect sizes and mean composite ratings.  Effect sizes 

were calculated as the difference in means divided by the standard deviation of FTe’s ratings.   The first 

set of rows shows that FTe’s ratings are nominally higher than DT’s ratings both overall and for all 

scenario subsets except for help requests, with effect sizes ranging from .17 to .53 (the negative signs in 

the table simply indicate that FTe’s mean was subtracted from DT’s mean).  For help requests, FTe is 
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unchanged from FT and so DT maintains its insignificant advantage.  Using paired-sample t-tests, the 

differences in ratings are marginally significant overall and significant for errors, p<.01, even with the 

Bonferroni correction for multiple t-tests, which is a conservative correction to protect against Type I 

errors (Corston & Colman, 2003). 

The second set of rows shows that FTe’s and DTe’s ratings are almost equivalent, with small 

effect sizes ranging from -.02 to .16.  The difference between FTe and DTe in means for all scenarios is 

marginally significant, p=.055, and the difference in means for errors is significant at p=.026.  However, 

taking into account the Bonferroni correction for multiple t-tests, these differences evaporate.  

 
 
 

Table 5.24:  Tutor x Scenario Type, composite ratings, t-tests:  FTe vs. DT, FTe vs. DTe 

 
 

Comparison      
df  t  Sig.  Bonferroni 

Sig.*  Effect   
Size 

               

FTe  vs. DT  FTe 
Mean 

 DT 
Mean 

          

All Scenarios  3.62  3.43  349  2.755  .006  .060  -.17 
Help Requests  3.59  3.66  174  1.078  .282  1.000  .06 

Errors  3.54  2.95  99  4.049  <.001  <.01  -.53 
Step Starts  3.77  3.55  74  1.269  .209  1.000  -.32 

FMOs  3.74  3.54  187  2.060  .041  .410  -.25 
               

FTe  vs. DTe  FTe 
Mean 

 DTe 
Mean 

          

All Scenarios  3.62  3.70  349  1.924  .055  .550  .08 
Help Requests  3.59  3.66  174  1.078  .282  1.000  .06 

Errors  3.54  3.72  99  2.261  .026  .260  .16 
Step Starts  3.77  3.76  74  .159  .874  1.000  -.02 

FMOs  3.74  3.77  187  .414  .679  1.000  .04 
               

* Significance with Bonferroni correction for the 10 t-tests (Sig. x 10) 
 
 
 
5.7.1 DTe vs. FTe:  first-message-opportunity scenarios 
 
 
DTe’s and FTe’s response selections and performance were compared on first-message-opportunity 

scenarios partitioned into pretest-wrong and pretest-right subsets (see section 5.4.3 for background about 

this method).  For these scenarios, FTe always selected the prompt response.  DTe’s response selections, 

on the other hand, varied, and the difference between the two tutors’ response selections was significant:  
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χ2(1)=117.1, p<.001.  For the 75 pretest-wrong scenarios, DTe selected the teach response 60% of the 

time and the prompt response 40% of the time.  For the pretest-right scenarios, DTe’s tendencies were 

reversed: it selected prompt 61% of the time and teach 39% of the time.  This difference among DTe’s 

selections was also significant:  χ2(1)=8.02, p=.005.  

 The differences in the two tutors’ response selections affected the ratings.  For pretest-wrong 

scenarios, DTe’s mean composite rating of 3.84 was significantly higher than FTe’s mean composite 

rating of 3.60, p=.035, effect size = .29.  For the pretest-right scenarios, FTe’s mean composite rating of 

3.82 was higher than DTe’s rating of 3.73, effect size .13, but this difference was not quite significant, 

p=.123.   

 This tendency with first-message-opportunity scenarios was previously observed for help requests 

in section 5.6.2.1 when comparing FT and DT (which selected the same responses as FTe and DTe, 

respectively, for help requests).  A similar pattern occurred for first-message-opportunity errors:  FTe 

always selected prompt.  For pretest-wrong error scenarios, DTe selected teach 64% of the time and its 

mean composite rating of 3.64 was marginally higher than FTe’s rating of 3.32, p=.09, effect size .38.  

For pretest-right error scenarios, DTe selected prompt 62% of the time and its mean composite rating of 

3.65 appeared to be slightly higher than FTe’s rating of 3.58, effect size .10, but this difference was not 

significant, p=.603.  The difference among DTe’s selections for pretest-wrong versus pretest-right 

scenarios was marginally significant, χ2(1)=3.02, p=.082.  
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6.0 DISCUSSION 
 
 
 
 

6.1 LEARNING PROBABILITIES 
 
 
Learning probabilities empirically was of lesser priority in the current study, for which the primary focus 

was a comparative assessment of DT Tutor’s (DT’s) tutorial action selection capabilities.  Still, prior and 

conditional probabilities are a fundamental any probabilistic network and a core influence on DT’s 

behavior.  The data collection phase of this study was designed specifically to facilitate learning 

probabilities empirically (in addition to providing data for the assessment phase).  The data collected for 

learning included (1) pretests and posttests covering every essential domain rule, and (2) 9,872 scenarios 

of student-tutor interactions, of which 5,287 were help events.  Only about half of the data collected from 

60 students was used for training (from the 30 students in the training set) in order to reserve some unseen 

data for the assessment phase.  The bulk of DT’s probabilities were learned empirically, including all of 

the key probabilities regarding student knowledge, the effects of the tutor’s actions on student rule 

knowledge and problem-solving progress, the student’s help style, and student performance.   

 
 
6.1.1 Techniques for learning probabilities 
 
 
Only basic techniques were used for learning DT’s probabilities.  The probability for each outcome of a 

distribution was simply calculated as the ratio of events with that outcome to the total number of like 

events.  Probability distributions were calculated independently, which, while taking into account direct 

conditional dependence between variables (as indicated by arcs from one node to another in the network 

structure), did not take into account indirect dependence between variables.  No prior knowledge of the 

probabilities was assumed19, which is equivalent to using the uniform density function (all values equally 

likely) to represent prior beliefs in a Bayesian approach.  Indeed, the method used for calculating 

probabilities empirically followed a strict frequentist approach rather than initializing probabilities based 

                                                      
19 This can be considered either objectivity or prior ignorance about these values.  In fact, some of the learned 
conditional probabilities were surprising, as discussed in this section. 
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on subjective beliefs and then updating them as in a Bayesian approach.  (However, some of DT’s prior 

and conditional probabilities are still specified subjectively.)  

Many more advanced techniques exist.  Heckerman (1995) and Neapolitan (2004) provide 

explanations and overviews.  Heckerman (1995, p. 17) folds such methods under the umbrella of 

probabilistic classification or regression functions, commenting that “… a Bayesian network can be 

viewed as a collection of probabilistic classification/regression models, organized by conditional-

independence relationships.”  Corbett (2000), in work for model-tracing tutors, learns parameters for 

Bayesian “knowledge tracing” equations by fitting equation parameters to model the performance of a 

representative group of students as they work through a curriculum; these parameters are periodically 

adjusted to fit individual students by means of regression equations.  A more traditionally Bayesian 

approach to learning parameters is to augment the Bayesian network to be learned (this can be extended 

to decision networks) with nodes to represent the uncertain parameter values to be learned.  CAPIT 

(Mayo & Mitrovic, 2001), one of few decision-theoretic tutors, uses such an approach by Cheng and 

colleagues (Cheng et al., 1998) to learn parameters for its 2-slice Bayesian networks which have only 

observable variables.  iTutor, the only other implemented decision-theoretic tutor (besides DT) of which 

the author is aware (Pek, 2003), uses methods similar to DT’s for learning probabilities empirically.  

None of these probabilistic tutors appear to attempt to learn the effectiveness of the various tutorial 

response types (e.g., prompt, hint, teach, do) to use as a partial basis for deciding how to respond to the 

student.   

Learning DT’s parameters presents an additional challenge because most of the entities 

represented by the nodes within its large dynamic decision network change as the student interacts with 

the tutor20.  Learning DT’s probabilities must also cope with hidden (unobservable) variables (which 

CAPIT does not have) and a training set with missing samples for some combinations of events.  While 

techniques exist to overcome these hurdles (see, e.g., Heckerman, 1995; Neapolitan, 2004), using 

advanced learning techniques would have been a relatively large additional undertaking for the current 

study.  Improved learning remains a high priority for future work. 

Another version of DT’s underlying decision-theoretic engine for selecting tutorial actions, a 

prototype for Project Listen’s Reading Tutor (Murray et al., 2001b), does already employ in a limited 

fashion the more advanced technique of augmenting the Bayesian network:  It includes Tutor Efficacys 

subnetworks with separate nodes to model the effectiveness of each tutorial action alternative.  The Tutor 

Efficacys subnetworks tune the model to the particular student, reducing the need to learn accurate 

conditional probabilities regarding the effects of tutorial actions on student knowledge.  It would be 
                                                      
20 Even most of the entities represented by nodes with the same name change because they represent the tutorial 
situation at different points in time.  An exception is the Student Help Styles nodes which are currently modeled as 
static over the course of a tutoring session.  
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straightforward to add Tutor Efficacy networks to DT and thus to begin learning online many of the key 

probabilities that were learned offline in this study.  

 
 

6.1.2 Learning about students’ rule knowledge in the presence of help abuse 
 
 
In the current study, learning related to the unobservable variable of students’ rule knowledge proved to 

be one of the biggest challenges.  Rule knowledge was estimated based on student performance on the 

pretest, during tutoring, and on the posttest.  For the 23 of 30 students who were not help abusers (help-

neutral students), these estimates seemed to provide reasonable results.  Estimating rule knowledge for 

help-abusing students, however, proved to be impracticable because their problem-solving and help-

seeking actions did not reliably reflect their knowledge.  Instead, other techniques were used:  In section 

4.4.3.5, the effects of help on help-abusing students’ rule knowledge were estimated as a percentage of 

the effects on help-neutral students’ rule knowledge.  In section 4.4.3.6, the effects of help on help-

abusers’ knowledge of problem-solving steps were estimated based on their problem-solving performance 

without regard to the (unreliable) estimate of their rule knowledge.  Thus, the inability to accurately trace 

help-abusers’ rule knowledge resulted in less precise modeling of help abusers.   

The basic reason for this imprecision in modeling help abusers’ rule knowledge was that their 

actions during tutoring did not reliably reflect their knowledge.  This obfuscation of observable evidence 

for unobservable variables cannot be cleared up simply by applying more advanced learning techniques.  

Instead, at least two lines of attack can be pursued.   

The first and preferred method is investigating methods to decrease help abuse and other under 

desirable help-seeking behaviors in the first place (e.g., Aleven et al., 2004; Baker et al., 2004).  Within 

this study, 27 of the 60 students were dissuaded from requesting help as described in section 4.2.1.1, item 

4.  As described in (Murray & VanLehn, 2005), help-dissuaded students requested help less often 

(however, recall from section 4.4.1 that not all help abusers requested help excessively), students who 

requested less help scored higher on the posttest, and help-dissuaded students marginally gained more 

than their non-dissuaded counterparts.  However, 3 of 7 help abusers in the training set were dissuaded 

from requesting help (one was the student who never requested help but made 132 errors), so more must 

be done.  Anderson and colleagues (1995, p. 198) found that linking progress through the tutor with help-

seeking behavior “is an effective way of dealing with hint abusers.”  This strategy seems to have had at 

most limited success as evidenced by observations of continuing problems with help misuse (e.g., Aleven 

& Koedinger, 2000; Aleven et al., 2004).  Aleven and colleagues (2004), and Baker and colleagues (e.g., 

2004), among others, are actively investigating alternatives, including developing an agent to tutor 

students about help use. 
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Failing prevention of help abuse, more accurate assessment of help-abusers’ rule knowledge 

would help to build more accurate models.  While help abusers performed relatively poorly during 

tutoring (judging by their numbers of help requests and errors as shown in Table 4.1), their pretest scores, 

which assessed their rule knowledge, were nominally higher and statistically equivalent compared to 

help-neutral students.  Therefore, this study’s pretest seemed to be a more accurate indicator of help-

abusers’ rule knowledge than their performance while using the tutor.  The reason for the pretest’s 

accuracy was probably that there was no help available for it and students were motivated to do their best 

in order to be able to continue participating in the study.  Designing additional assessment tools with 

comparable accuracy (which includes arranging student motivations to encourage them to do their best) to 

be interleaved with, or part and parcel of, tutoring could help to obtain more accurate assessment of help-

abusers’ rule knowledge and how it is influenced by a computer tutor.  In addition, a probabilistic tutor 

like DT can be initialized with student-specific prior probabilities from more accurate assessment tools.  

DT used population parameters learned from the training set for the assessment phase of this study, but it 

could just as easily use student-specific prior probabilities obtained from the pretest.   

 
 

6.1.3 Learning with sparse data 
 
 
Despite collecting 9,872 scenarios, including 5,287 help events, during the data collection phase, this 

study still encountered problems of learning conditional probabilities with sparse data (refer to section 

4.4.3.2).  Only about half of the data available was used for learning (the training set) in order to reserve 

data for the assessment phase, so more data is available.  Still, an even larger number of events would be 

needed to have adequate samples to learn more than 448 conditional probabilities using a frequentist 

approach without prior beliefs (with reasonably accurate prior beliefs, probabilities could be learned with 

less data), particularly for combinations of events that occurred only rarely or not at all during the data 

collection phase.   

 The solution used in this study was to aggregate subsets of similar events to learn probabilities at 

a coarser grain size.  As discussed in section 4.4.3.2, events were combined for each of the 4 sets of 

similar rules:  (1) select equation form, (2) apply operator, (3) find equation form, and (4) select operator.  

All the rules within each set shared a general difficulty level, similar concepts and somewhat similar 

(template-based) help messages.  For rare types of events, such as help events when a find equation form 

rule was unknown, sparse data even for the set of rules made it necessary to compute conditional 

probabilities by aggregating across all sets of rules the events that satisfied the other criteria for the event 

type.  Such approximations for rare events should not have much effect on DT’s performance since the 
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events are rare by definition and the maximum effect of an incorrect estimate on DT’s behavior would 

only be a change in the type of tutorial response that DT provides (prompt, hint, teach or do).  

 
 
6.1.4 Some surprises in the learned probabilities 
 
 
There were surprises in the learned probabilities regarding the effectiveness of the various tutorial help 

types (prompt, hint, teach, do).  First, help types prompt and hint seemed to be about equally effective for 

helping students learn rules (section 4.4.3.5 and Table 4.5) and complete steps (sections 4.4.3.6 and 

4.4.3.7, Table 4.6).  This is consistent with several comments by judges that the prompt and hint messages 

were sometimes similar (section 5.5.1, item 6).  The information content of prompt and hint messages 

was supposed to be different:  Prompt messages were supposed to point out relevant information that was 

already present in the interface but not to provide any new information.  Hint messages were supposed to 

offer some information that was not already present in the interface, but not necessarily to point out 

relevant information that was already present.  Hint messages were modeled as having a more negative 

impact on the student’s feeling of independence because the student may not feel that she can succeed 

independently if she needs substantive help from the tutor.  Since the effectiveness of prompt and hint 

messages turned out to be similar but hint had a more negative impact on the student’s feeling of 

independence, DT was more likely to select prompt and so it selected only a small number of hint 

responses, as discussed in section 5.4.2.2.  Apparently, the prompt and hint messages should be either 

more clearly differentiated or merged.  

 Second, help type teach was only about as effective as help types prompt and hint for helping 

students to learn rules.  Teach messages were intended to provide all the information necessary to 

understand the rule related to the current step and thus to help the student complete the step successfully.  

At the other extreme, prompt messages were not supposed to provide any explicit information about the 

rule related to the current step.  It is possible that the teach messages were too long.  Anderson and 

colleagues (1995) advise minimizing presentation of instruction while problem solving and to make help 

messages “as short and to the point as possible” (p.198).  Anecdotal evidence that the teach messages 

may have been too long is that the judges sometimes preferred as a help message just the example(s) from 

teach messages (section 5.5.1, item 5).  Perhaps students didn’t want to read about rules, preferring 

instead learning by doing – indeed, help type do was particularly effective, as discussed below.   

 For helping students with problem steps (as opposed to learning rules), help type teach was more 

effective than prompt and hint, as expected (sections 4.4.3.6 and 4.4.3.7, Table 4.6).  Perhaps this is 

because the teach messages were so explicit that students could use them as a recipe instead of 

understanding the underlying concepts.  Indeed, this researcher found no way to provide complete teach 
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messages for the rules of type select operator without actually giving the answers away (although the 

answers were embedded within relatively long messages), as discussed in section 3.3.1.4.  For select 

operator rules, teach was even more effective than do at helping students complete the step (see Table 

4.6).   

 Third, the biggest surprise was that do help messages were most effective for helping students to 

learn rules (section 4.4.3.5 and Table 4.5).  Do messages were designed to tell the student exactly what to 

enter to complete the current step but not to provide any information about the related rule.  The fact that 

do messages were most effective for learning rules is evidence that students were assembling information 

that was not available in the interface or in the help message.  A likely explanation, consistent with 

research about how students learn, is that students “self-explained” (Chi et al., 1989), or explained to 

themselves, the example provided by the current problem situation and its solution as presented in the do 

help message, inferring the missing information.  Alternatively, they might have remembered rule 

information that was presented in the tutorial that they studied before using the tutor.  However students 

assembled the rule information, their process seemed to be more effective for learning and retention than 

receiving the information in a teach help message.  The surprising finding that do was most effective 

should be verified in other situations in order to more exactly characterize when and why it is most 

effective.   

 These surprises about the effectiveness of the various tutorial help types illustrate the importance 

of extensively testing a computer tutor with students to learn how its actual effects may differ from the 

anticipated effects.  

 
 
6.1.5 Expected patterns in the learned probabilities 
 
 
Many of the patterns in the learned probabilities were not surprises.  Finding anticipated patterns is 

evidence that even the Random Tutor (which was used to interact with students for learning probabilities) 

functioned as planned in many respects and that many of the learned probabilities are reasonable.  Some 

examples follow:  

1. Help-abusing students were much more likely to click the general Help! button (section 4.4.3.8 

and Table 4.7) and to request help of all kinds (section 4.4.3.9 and Table 4.8). 

2. Help-abusing students were much more likely to click Cancel when help was not provided, 

probably because they did not get proactive help (section 4.4.3.8 and Table 4.7). 

3. Help-abusing students were much more likely to know a step result when given bottom-out do 

help than when given other types of help like teach (section 4.4.3.6 and Table 4.6). 
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4. Help-abusing students were much less likely to guess successfully and more likely to slip (section 

4.4.3.4 and Table 4.4). 

5. Help-neutral students were more likely to make an error than to make a help request (section 

4.4.3.9 and Table 4.8). 

6. Help-neutral students were much more likely to know a step when they knew the related rule 

(section 4.4.3.7 and Table 4.6).  

7. The probabilities of guessing and slipping were inversely correlated (section 4.4.3.4 and Table 

4.4).  

8. Some rules were more difficult than others, as assessed on the pretest for prior probabilities 

(section 4.4.2, Table 4.2, Table 4.3), for students to guess and to apply without slipping (section 

4.4.3.4 and Table 4.4), and for students to apply even with the tutor’s help (section 4.4.3.7 and 

Table 4.6).  

9. For the easiest rules (the find equation form rules), help-neutral students who knew the rule 

almost never failed on related steps regardless of the tutor’s help type (section 4.4.3.7 and Table 

4.6).  

 

 

 

 
6.2 TUNING UTILITIES 

 
 
As discussed in section 4.5, there was no empirically verifiable way to determine DT’s utilities for the 

current study.  Therefore, the experimenter performed minor tuning until DT seemed to perform 

reasonably on several representative scenarios according to the experimenter’s  subjective  preferences. 

 DT attempts a delicate balance of considerations regarding multiple competing objectives.  For 

the current study, DT considered the tutorial state attributes of discourse coherence and discourse 

relevance, tutor response preferences, and the student’s knowledge, help style, feeling of independence 

(part of the student’s affective state), and problem-solving progress.  While there is evidence that human 

tutors consider multiple tutorial state attributes in deciding how to respond to the student (e.g., Lepper et 

al., 1993; Merrill et al., 1992), few other computer tutors consider attributes other than student knowledge 

probabilistically, and none consider so many attributes in combination or use decision theory to do it.  

Another decision-theoretic tutoring system, CAPIT (Mayo & Mitrovic, 2001), considers only a single 

 125



attribute for its utility and so has no need for a multiattribute utility function.  The only other implemented 

decision-theoretic tutoring system, iTutor (Pek, 2003), does consider 3 tutorial state attributes:  (1) value 

of information for student assessment, (2) distance between domain concepts, and (3) whether to end the 

tutoring session.  iTutor, like DT, uses a linearly-additive multiattribute utility function (discussed in 

section 4.5.2 and below) but it is unclear how iTutor obtains the weights for each subutility.  

 Defining a suitable multiattribute utility function is essential for DT to consider multiple 

attributes of the tutorial state.   As discussed in section 4.5.2, the additive independence condition for 

using a linearly-additive multiattribute utility function was technically not satisfied because there were 

interactions between preferences for different attributes.  But a linearly-additive multiattribute utility 

function was the only available option and according to Clemen (1996, p. 585) such a function may still 

be suitable for modeling purposes “[i]f minimal interactions exist.”   With this perspective, and given the 

available options, the experimenter’s utility function was modeled as a linearly-additive multiattribute 

utility function, U(x1,…,xm) = ∑1
m wiUi(xi), where Ui(xi) is the utility of attribute xi and wi is the weight 

allotted to attribute xi.  Two tasks were then required for tuning DT’s utilities:  (1) determining each 

subutility Ui(xi), and (2) defining the weights wi for the linearly-additive multiattribute utility function.   

All of DT’s subutilities were left untuned except for the utility of tutor response preferences, 

which was tuned primarily to counteract DT’s tendency to select response do (which in turn stemmed 

from the surprising finding while learning probabilities that the do response was most effective at getting 

the student to learn both the step and the related rule).  As discussed in section 4.5.2, it would probably be 

more accurate to model the underlying reasons why the experimenter’s response type preferences differed 

from DT’s actual responses (before tuning), but modeling is an approximate task and so tuning the utility 

of tutor response preferences satisficed for the current study.  However, the underlying reasons need to be 

investigated as part of future work.  First, as discussed in section 6.1.4, the surprising finding that do was 

most effective should be verified in other situations in order to more exactly characterize when and why it 

is most effective.  This information will help to model underlying reasons for selecting response type do 

or not.  Second, for any situations where the do response turns out to be most effective in terms of the 

student’s cognitive state but is still not preferred, the reasons why it is still not preferred need to be further 

investigated.  One likely possibility is influences of the do response on the student’s affective state such 

as the student’s feeling of independence (because the student may feel like she cannot function 

independently without the tutor telling her exactly what to do).  If this is the case, DT’s model of student 

independence needs to be further refined, probably as part of a more sophisticated model of several 

aspects of the student’s affective state.  

Utility for tutor response preferences was also tuned to slightly favor teach responses, as 

described in section 4.5.1.7.  One side effect of this seems to be that DT selected the teach response more 
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often than the other responses – probably too often, as discussed in section 5.4.2.1.  This was probably an 

overadjustment in tuning that could be rectified simply by changing the utility for the teach response to be 

the same as the utilities for prompt and hint.  

Section 4.5.2 described the weighting system developed for the weights wi in the linearly-additive 

multiattribute utility function.  The weights were arranged to both (1) implement a priority system among 

sets of attributes, and (2) to facilitate a delicate balance among attributes of the same priority.  This 

system seemed to work well for the study’s purposes.  But there are more possibilities for tuning the 

weights that deserve mention.  First, it is easily possible to turn on or off entire submodels of DT’s model 

of the tutorial state.  For instance, DT has in the past (e.g., Murray et al., 2004) incorporated a model of 

the student’s morale in addition to the student’s independence as part of its model of the student’s 

affective state.  For the current study, the model of morale, which was primitive just like the model of 

independence, was regarded as insufficiently differentiated from the model of independence to be worth 

including.  So student morale was at first eliminated from DT’s consideration by simply giving it a 

multiattribute utility weight of zero (later, the morale submodel was removed as unnecessary).  As 

another example, DT could easily be made to behave just like the Fixed-Policy Tutor by zeroing out all 

weights except the weight for discourse coherence, along with small changes to the Discourse Coherence1 

model to exactly match the Fixed-Policy Tutor’s slightly stronger constraints (see sections 4.5.1.1 and 

5.2.2.3) – in fact, this capability proves that DT has a superset of the Fixed-Policy Tutor’s capabilities.  

Zeroing out of weights can also be used to test subsets of DT’s components in isolation, as was done in 

(Murray et al., 2004).  Finally, and less drastically than zeroing out weights, DT’s behavior can easily be 

adjusted to favor the student’s cognitive state over the student’s affective state, or the student’s rule 

knowledge over the student’s problem-solving progress, etc., simply by changing the relative strengths of 

the corresponding weights.  

Future work includes implementing a more accurate multiattribute utility function, of course, but 

perhaps more importantly seeing what can be done to further improve the fidelity of the current linear 

function.  The importance of refining DT’s supporting models, such as its model of the student’s affective 

state, has already been mentioned.  In addition, with completion of the current study, the test data can now 

be used for tuning DT’s utilities to the judges’ preferences.  In future studies, experiments can be 

conducted to learn how to tune DT’s performance to improve its effectiveness with students.  
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6.3 RANDOM VS. DECISION-THEORETIC:  SUPPORT FOR HYPOTHESIS 1 
 
 
The judges, who were skilled tutors, clearly rated DT Tutor (DT) higher than the Random Tutor (RT).  

Based on the composite ratings of the judges, DT’s ratings were higher both overall and for the subsets of 

help requests, errors, and first message opportunities, significant at the level p<.01 (see Table 5.19).  For 

one subset, step starts, was DT’s mean composite rating was not higher enough to be significant, p=.120, 

although that was using a Bonferroni correction for 10 t-tests (multiplying the paired-sample t-test 

significance by a factor of 10), which is known to be very conservative to protect against Type I errors 

(Corston & Colman, 2003).  Effect sizes ranged from .30 to .49, meaning that the differences between DT 

and RT were not just statistically significant but also large enough to make an impact.  DT’s advantage in 

ratings was robust among all three judges’ individual ratings (e.g., see Table 5.10 and Figure 5.1).  

 These results support Hypothesis 1:  According to ratings by skilled human tutors, tutorial action 

selections by decision-theoretic methods can be better than selections made randomly among relevant 

tutorial actions. 

 
 
 
 

6.4 FIXED-POLICY VS. DECISION-THEORETIC TUTORING 
 
 
6.4.1 Fixed-Policy Tutor vs. Decision-Theoretic Tutor:  Support for Hypothesis 2 
 
 
The judges rated DT Tutor (DT) higher than the Fixed-Policy Tutor (FT) overall and for the scenario 

subsets of errors, start steps and first-message-opportunity scenarios with substantial effect sizes ranging 

from .22 to .61, all with significance p<.02 or better (see Table 5.19).   DT was not rated higher than FT 

only for help requests – for these, DT’s mean composite rating of 3.66 was nominally higher than FT’s 

rating of 3.59 with an effect size of only .06. 

 With DT significantly surpassing FT both overall and for all major subsets of scenarios other than 

help requests, and with DT rated nominally but insignificantly higher than FT for help requests, these 

results support Hypothesis 2:  According to ratings by skilled human tutors, tutorial action selections by 

decision-theoretic methods can be better than selections made by a fixed policy that emulates the fixed 

policies of theory-based, widely accepted and highly effective computer tutors.  
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6.4.2 FT vs. DT:  Adapting the tutor’s response type to the situation 
 
 
Fixed-policy tutors such as FT use a time-tested and proven, even theoretically-based (e.g., Anderson et 

al., 1995) policy for selecting the response type for tutorial actions.  However, this policy considers very 

few attributes of the tutorial situation.  FT and similar tutors (see, e.g., Anderson et al., 1995) consider 

only (1) whether the student has just made a help request or the nth error, where n is the policy’s 

threshold number of errors for providing help, and (2) the most recent response type for the current step 

(in order to select the response type that is one level more explicit or else to repeat the most explicit 

response type, do).  The result is set of response selections that are all the same regardless of other 

attributes of the tutorial situation such as the student’s knowledge (and the associated likelihood that the 

student needs explicit help), the student’s affective state, and whether the student misuses help (e.g., 

abuse or avoidance).  As discussed in section 5.4, FT’s response is always null for first error and step start 

scenarios.  For first-message-opportunity scenarios, FT’s response is always either null (for first errors 

and step starts) or prompt (for subsequent errors and help requests).  After its first response, FT always 

follows in lock step its sequence of increasingly explicit help.   

 FT’s simple policy was designed to emulate the policies of model-tracing tutors, which do not 

volunteer help unless the student appears to be floundering (e.g., making multiple errors in a row) 

(Anderson et al., 1995).  This policy, along with the policy of providing successively more explicit hints, 

was designed to motivate students to do as much of the work as possible themselves, based on 

psychological research showing that students remember material better when then they generate it 

themselves.  However, even the architects of the model-tracing tutors and the theory behind them admit 

that “these may not be the best choices” since, for example, “[s]ome students stubbornly refuse to seek 

help even when they need it” and “students are often annoyed with the vague initial messages and decide 

there is no point in using the help facility at all” (Anderson et al., 1995, p. 199).  Once students begin 

clicking past vague initial help messages, as many as 82-89% of students using one model-tracing tutor 

click all the way through to bottom-out help, which explicitly tells the student exactly what to do (Aleven 

& Koedinger, 2000).   

Human tutors, on the other hand, “are capable of taking a variety of events and conditions into 

account” (McArthur et al., 1990, p. 231) in deciding when and how to provide help.  As Lepper and 

colleagues (1993, p. 85) observed, human tutors “sometimes seek to forestall errors, sometimes intervene 

as soon as errors occur; at other times they may allow errors to occur.”  These decisions involve 

“complicated tradeoffs about when and how to provide new information and assistance” (Lepper et al., 

1993, p. 85) as they “pay simultaneous and continuous attention to the both the cognitive and affective 

state of the learner” (p. 78).  Merrill and colleagues (1992) found that expert human tutors maintain a 
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“delicate balance” (p. 280) between allowing students freedom and giving them sufficient guidance, and 

that the “content and timing of feedback appear to depend critically on the consequences of the particular 

error or impasse encountered” (p. 283).  The very effectiveness of tutorial help “may arise because of the 

contingency of feedback style and content on the nature of the student’s error” (Merrill et al., 1995, p. 

346).  Since human tutors’ decisions are tied so closely to the cognitive and affective state of the learner, 

Lepper and colleagues (Lepper et al., 1993, p. 100) expect that expert tutors will employ different 

strategies for different students, particularly for students “… who differ widely in their abilities or their 

motivations.”   

DT, like human tutors, considers multiple tutorial state attributes to decide when and how to 

provide help.  These attributes include the student’s knowledge, affective state, help style, problem-

solving progress, and focus of attention.  The result is that DT’s responses likewise vary based on tutorial 

state attributes, as described in section 5.4.  For first-message-opportunity scenarios, a particularly 

revealing set of 188-190 of the 350 scenarios (see section 5.4.3), DT’s responses varied based on the 

likelihood that the student would need explicit help (using the metric of whether the student got the 

corresponding pretest item right or wrong, as discussed in section 5.4.3) both overall and for the scenario 

subsets of help requests, errors, and step start scenarios.  DT provides proactive help for both errors 

(including first errors) and for step start scenarios, but not always.  For step start scenarios, the likelihood 

that DT will provide proactive help and the help that it provides vary significantly according to how likely 

the student is to need explicit help.  DT’s use of decision theory to balance multiple, potentially 

competing considerations is designed to help it respond reasonably to an unlimited variety of situations – 

even unanticipated situations – without having to come up with a fixed-policy for every combination of 

probabilistic beliefs about tutorial state attributes.   

DT’s variations in responses in accordance with multiple tutorial state attributes paid off in 

generally higher ratings from the human judges.  In addition to significantly higher ratings than FT both 

overall and for the major subsets of scenarios other than help requests (for which DT’s ratings advantage 

was insignificant), a particularly telling result was for the first-message-opportunity subsets of pretest-

wrong and pretest-right:  Not only did DT’s responses vary significantly for these two subsets, but its 

ratings were significantly higher for the pretest-wrong subset with a substantial effect size and also 

marginally higher for the pretest-right subset before the significance was diluted by the conservative 

Bonferroni correction for multiple t-tests.  Even for help requests (for which DT was not rated 

significantly higher than FT), DT was rated significantly higher for the pretest-wrong subset of first-

message-opportunity scenarios with a substantial effect size.  For the pretest-right subsets of first-

message-opportunity scenarios, FT’s performance was generally improved relative to DT’s (although FT 

never quite held a significant advantage), probably because of a better fit between FT’s policy of 

 130



providing either null or prompt help (depending on the scenario type) and the fact that pretest-right 

students were less likely to need explicit help. 

The advantages that DT holds in situations that expose the variability of its responses and its 

sensitivity to the tutorial context are evidence that no single tutorial response, or even fixed series of 

responses, is best for every student in every tutorial situation.  

 
 

6.4.3 Examples of judges’ preferences for more explicit help than FT would select 
 
 
For many scenarios, DT’s responses were similar to FT’s, offering either no help or one of the less 

explicit help messages when DT thought the student was less likely to need explicit help, and for these 

scenarios DT and FT usually received similar ratings from the judges.  However, for scenarios where DT 

thought that the student was more likely to need explicit help, DT’s more explicit response selections 

were often quite different from FT’s selections, with correspondingly different ratings.  The subsections 

below provide examples of such scenarios for help requests, errors, and step starts.  

 
 
6.4.3.1 Example of preferences for more explicit help for a help request 
 
 
In this scenario, the student was working on the problem step of integrating equation dh/di=6*i2 with 

respect to i, for which the correct entry is h=2*i3 (integration operations neglected the arbitrary constant 

of integration in order to simplify the problem space for students, as described in section 3.1.1, item 1).  

The student had gotten the integration item correct on the pretest, and before the current problem step had 

made 33 correct entries, 14 errors, and 16 help requests.  On this step, however, the student had made 3 

errors in a row without any help from the tutor, with the successive incorrect entries h=i3, h=12*i3, and 

h=18*i3.  The student had then asked for help and the tutor had responded with a prompt message, “Apply 

integrate to dh/di=6*i2, then simplify the resulting equation.”  The student had then requested more help 

by clicking “Explain Further.”  The ratings for this scenario were based on the various tutors’ responses to 

this last help request. 

 FT, following its policy, selected the next least explicit help, the hint message: 
 

1. Use the reverse of the power rule to transform dh/di=6*i2 into a regular equation 
2. Then simplify the resulting equation 
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DT, on the other hand, selected the teach message: 
 

integrate transforms a derivative equation into a regular equation using the reverse of 
the power rule 

Example – operand: da/db = 12 * b3    a = 12/4 * b4    result: a = 3 * b4 

(1) Change the LHS into the variable from the numerator of the derivative 
expression 

(2) Add 1 to the exponent 
(3) Divide the RHS by the new exponent 
(4) Simplify the resulting equation 

 
The only other options for help messages, besides the previously provided prompt message, were no 

message at all or the do message:  “Enter equation h=2*i3.”  

 The judges unanimously gave FT’s response a rating of 3 (the middle rating) and DT’s response a 

rating of 5 (the highest rating).  Judge 2, in selecting the teach response as best, commented, “It looks like 

the student doesn't know how to integrate, although he got it right on pretest.”  Judge 3 commented that 

“A [teach] is the best, since the student simply need to refresh how to integrate.”  (Judge 1 made no 

comment.)  Apparently, the judges felt that more explicit help was preferable given the student’s recent 

performance.  

 
 

6.4.3.2 Example of preferences for more explicit help for an error 
 
 
In this scenario, the student was working on the problem step of selecting the equation form for substitute 

operand 1.  Before the current problem step, the student had made 39 correct entries, 48 errors and 4 help 

requests.  The student had an extensive history related to the rule for required for this problem step.  First, 

the student had gotten the related item wrong on the pretest.  Then, on a previous problem for which the 

correct entry was g=f(h), the student had selected equation form dh/di=f(i) in error, received the proactive 

prompt “To use substitute to create an equation of form g=f(i), substitute operand 1 must be in what 

form?”  The student then made three successive errors – dg/dh=f(h), dh/di=f(i) [again] and dh/dg=f(g) – 

before receiving a proactive hint message: 

 
substitute operand 1 must be a regular equation involving: 
… (1) one variable that is in g=f(i) 
… (2) one variable that is not in g=f(i) 

 
The student then made another incorrect entry, g=f(i), before receiving the do help message proactively – 

“Select equation form g=f(h)” – and entering the correct equation. 
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 On the current step, for which the correct entry was t=f(u), the student started out by making an 

error, v=f(u).  The ratings for this scenario were based on the various tutors’ responses to this error.   

FT selected the null response (no help message) for this, the student’s first error on the current 

step.  DT, on the other hand, selected the teach help message: 

 
when substitute’s operands have the following forms: 
… operand 1: <variable 1> = f(<variable 2>) 
… operand 2: <variable 2> = f(<variable 3>) 

the resulting equation will have this form: 
… result: <variable 1> = f(<variable 3>) 

Example: To create an equation of the form a=f(c) when the other variable in the 
Accepted Equations is b, operand 1’s equation form must be a=f(b) 

 
Judges 1 through 3 rated FT’s response 1, 2, and 1 respectively (a median rating of 1) while rating DT’s 

response 5, 5, and 3 (a median rating of 5).  Judge 3, in selecting the do help message as the best response, 

commented, “Neither of the tips helped this student before.  Let's try to give the exact answer. D [do].”  

(Judges 1 and 2 did not comment.)  For this scenario, it appears that the judges considered events that 

occurred prior to the current step (FT considers only events for the current step) to decide to provide 

explicit help immediately after the student’s first error.   Judge 3’s comment provides direct evidence for 

this interpretation. 

 
 
6.4.3.3 Example of preferences for more explicit help for a start step scenario 
 
 
In this scenario, the student was working on the problem step of selecting an operator, for which the 

correct entry was chain rule.  Prior to the current step, the student had made 9 correct entries, 13 errors 

and 2 help requests.  The student had gotten the related pretest item correct.  On a previous step for which 

the correct entry was also chain rule, the student had received a proactive prompt message when she 

clicked on the step in the interface’s Goals Window:  “Select operator(s) that will efficiently transform 

Accepted Equation(s) into an equation of the form dq/ds=f(s).”  But the student had made an error by 

selecting operator substitute.  The next time the student clicked on the step in the goals window, she 

received a proactive teach message: 
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When: 
(1) at least 2 out of 3 of the first two given equations and evaluate operand 1’s 

equation form are in derivative form 
… and … 
(2) evaluate operand 1’s equation form, dq/ds=f(s) is in derivative form 

operator chain rule minimizes transforming equations between regular and derivative 
form 
 

(Note that this teach message gives the correct entry away as discussed in section 3.3.1.4.)  The student’s 

next entry was correct. 

 On the current step, for which the correct entry was chain rule, the student again received the 

prompt help message when she clicked on the step in the Goals Window:  “Select operator(s) that will 

efficiently transform Accepted Equation(s) into an equation of the form dx/dz=f(z).”  She then made two 

consecutive errors, selecting substitute and then differentiate after substitute.  The student’s next action 

was once again to click on the step in the Goals Window to resume working on it.  The ratings for this 

scenario were based on the various tutors’ responses to this start step scenario.  

 FT selected the null response, as it always does for start step scenarios.  DT selected the teach 

response:  

 
When: 
(3) at least 2 out of 3 of the first two given equations and evaluate operand 1’s 

equation form are in derivative form 
… and … 
(4) evaluate operand 1’s equation form, dx/dz=f(z) is in derivative form 

operator chain rule minimizes transforming equations between regular and derivative 
form 
 

Judges 1 through 3 rated FT’s response 1, 2, and 1 respectively (a median rating of 1) while 

rating DT’s response 5, 3, and 5 (a median rating of 5).  Judge 3, in selecting the teach help 

message as best, commented “Neither C [prompt] nor D [hint] worked before, while E [teach] 

did.  So, E [teach].”  (Judges 1 and 2 did not comment.)  All of the judges’ ratings make it clear 

that they prefer for the tutor to provide help for such step start scenarios.  In addition, Judge 3’s 

comment once again provides evidence that the judges (who were skilled tutors) consider aspects 

of the tutorial state beyond the student’s performance on the current step.  

 
 

6.4.4 FT vs. DT:  The role of proactive help  
 
 
Clearly, a major reason why DT surpassed FT in the judges’ ratings was DT’s use of proactive  help (i.e., 

non-null responses), which FT never uses for step start and first error scenarios.  DT does not have a 
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policy about whether to provide proactive help for such scenarios (DT bases its decisions on underlying 

factors such as the student’s knowledge and affective state), but it did provide proactive help on 62% of 

the first error scenarios and on 28% of the step start scenarios.  The only subset of scenarios for which 

DT’s ratings were not substantially higher than FT’s ratings was for help requests, the one major subset 

for which proactive help does not apply (because the help is by definition reactive to the student’s help 

request). 

For first error scenarios (see section 5.6.2.2), the judges rated DT’s mixture of responses 

significantly higher than FT’s null responses with a large effect size.  But for scenarios involving 

subsequent errors, for which FT always provided proactive help but DT sometimes did not, FT was 

actually rated higher than DT, this time because of DT’s decisions not to provide proactive help. 

For start step scenarios (see section 5.6.2.3), DT did not provide proactive help for 72% of the 

scenarios, and for these scenarios it received the same rating as FT.  But DT’s proactive help for 28% of 

the step start scenarios was rated enough higher than FT’s null responses that DT was rated significantly 

higher for step start scenarios overall.  

 
 

6.4.4.1 Effects of enhancing a fixed policy 
 
 
The considerable impact of proactive help on the ratings inspired a test to see if a simple change to FT’s 

policy would enable it to perform as well as DT according to the judges’ ratings.  An enhanced21 FT, FTe, 

was created with a policy identical to FT’s except it always provided proactive help.  Like FT, when FTe 

did provide help (proactive or reactive), it selected its responses in order of successive explicitness.   

 FTe was rated at least nominally higher than DT except for help requests, for which FTe was 

unchanged from FT because help requests do not involve proactive help.  Even after the conservative 

Bonferroni correction for multiple t-tests, FTe’s overall rating was marginally significantly higher than 

DT’s and FTe’s rating for errors was significantly higher than DT’s, with substantial effect sizes.  This 

comparison showed that the judges preferred even more proactive help than DT was giving.   

 The change to FT to create FTe was created post hoc, after observations of the judges’ ratings 

made it clear that such a change would probably lead to an improvement over FT’s ratings.  Since the post 

hoc change led to a large improvement, it seemed that the only way to fairly compare the improved fixed-

policy tutor to an equivalent decision-theoretic tutor would be to give DT the benefit of the same change.  

DT’s design gives it a superset of FT capabilities, as discussed in sections 6.2.  Changes to DT are usually 

made subtly since it chooses responses based on the underlying reasons for choosing one response over 

                                                      
21Again, enhanced according to the judges’ ratings 
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another such as effects on the student’s knowledge and affective state.  But subtle changes to DT’s model 

of underlying tutorial state attributes would seem to invite post hoc changes that could go beyond the 

simple change made to FT’s policy.  So instead, a simple change was made to DT’s discourse coherence 

model so that DT would always provide proactive help but otherwise would behave exactly as it had 

before.   

 The ratings for the resulting “enhanced” DT, DTe, appear to be slightly higher than the ratings for 

FTe both overall and for the major scenario subsets except step start scenarios, for which DTe’s ratings 

were .01 less.  An ANOVA showed a marginal difference between the tutors.  According to paired-

sample t-tests, DTe’s ratings were marginally higher overall and significantly higher for errors, but the 

conservative Bonferroni correction diluted the differences to insignificance and effect sizes were small.  

According to these results, DTe’s advantage over FTe is small if it exists at all.  

 However, a closer look at first-message-opportunity scenarios (see section 5.4.3 for background) 

revealed some advantages in the variability of DTe’s responses.  For all first-message-opportunity 

scenarios, FTe selected response prompt, the least explicit of the non-null help types.  DTe’s response 

distribution was significantly different from FTe’s and it varied significantly between the pretest-right and 

pretest-wrong subsets.  For pretest-wrong scenarios, DTe’s ratings were marginally higher than FTe’s 

with a healthy effect size.  For first-message-opportunity errors, DTe’s ratings for pretest-wrong scenarios 

were marginally higher than FTe’s and its ratings for pretest-right scenarios were nominally higher but 

not significant.   

 Comparisons with FTe show that a fixed-policy selected after seeing the test data (or at least after 

seeing a representative sample of training data) can do just about as well at selecting tutorial responses as 

decision-theoretic methods, at least at DT’s current stage of development.  FT’s current policy can easily 

be enhanced (at least according to the judges’ ratings) to provide proactive help and then be competitive 

with DT’s and DTe’s performance.  FT’s and FTe’s policies remain relatively simple, although FT is 

representative of the policies of many highly effective model-tracing tutors, and so they still significantly 

lag DT and DTe in their sensitivity to the context of the multi-attribute tutorial state.  Theoretically, a 

fixed policy can be used to implement policies of arbitrary complexity – at the extreme, consisting of a 

table lookup of what to do in each unique situation (although policies about real-numbered attributes like 

probabilities would have to be discretized).  Of course, anything that can be implemented as a fixed 

policy can also be implemented in DT, since DT’s action selection capabilities are a superset of FT’s.  

And DT is still at a relatively early stage of development as well (see section 6.2 about tuning DT), so its 

capabilities can also be further improved.   
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6.4.5 Should you choose fixed-policy or decision-theoretic tutoring?  
 
 
The bottom line in choosing a method for making tutorial decisions is bang for the buck:  which 

technology delivers the desired capabilities for the least development and maintenance costs (in time and 

money).  These are software engineering issues that must be quantified for a sufficient resolution, and 

comparing time and costs are not the focus of this thesis.  Still, several person-months spent developing 

DT and a day or two spent developing FT have qualified the author to make a few comments.  

Clearly, if the desired behavior of the tutor is unambiguously defined, only simple capabilities are 

required, and only simple changes to the tutor’s behavior are anticipated over the life of the tutor, fixed 

policy is best.  A simple fixed policy is more predictable in its behavior, easier to implement, and easier to 

make simple changes to.  It’s not even close.  

However, as the desired behavior of the tutor becomes more ambiguous, the required capabilities 

increase, or as the need for flexibility in the tutor’s behavior increases, decision-theoretic tutoring 

becomes more attractive.  In situations where it is not clear what the tutor’s behavior should be – e.g., 

when there is a conflict between satisfying the cognitive and affective needs of the student (del Soldato & 

du Boulay, 1995) – decision theory can be used as a principled way to balance competing objectives by 

unifying considerations regarding both the probabilities and the utilities of the possible outcomes.   

For similar reasons, decision theory is useful when the tutor must be capable of balancing 

multiple objectives, such as goals regarding the student’s knowledge, affective state, and task progress.  

Human tutors must balance competing objectives (Merrill et al., 1992) and this is natural for a decision-

theoretic system.  An equivalent (rule-based) fixed-policy tutor requires either a complex set of “non-

trivial” rule antecedents or a “quite sophisticated” conflict resolution algorithm (McArthur et al., 1990, p. 

232) as the number of combinations of conditions and objectives to consider grows exponentially with 

each tutorial state attribute modeled.  

If the factors or priorities influencing complex tutorial behaviors change over time, it can be 

easier to change the complex behavior of a decision-theoretic tutor.  For example, DT’s behavior can 

easily be entirely changed simply by modifying one or more weights for the utilities that correspond to 

components of its model of the tutorial state:  At the extremes, DT will ignore tutorial attributes if their 

corresponding utilities are zeroed out, or focus on just one attribute if its utility is much larger than the 

others.  In between, DT will emphasize one attribute (e.g., student domain knowledge) at the expense of 

another (e.g., task progress such as solving problems) if corresponding changes are made to the attributes’ 

relative weights.   

At a more detailed level, a decision-theoretic tutor’s behavior in specific situations can be more 

difficult to predict and control because of the multitude of parameters (e.g., prior and conditional 
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probabilities, utilities) that determine its behavior.  However, DT’s capabilities are a superset of FT’s, as 

described in section 6.2.  If the tutor will face specific situations for which the desired responses are 

known in advance, DT can be configured to provide the desired responses in those situations, just as DTe 

was created by configuring DT to always provide proactive help (see section 6.4.4.1).   

For fixed-policy systems, which are usually rule-based, it is usually easy to predict and control 

behavior when it is controlled by a small set of rules.  But rule-based systems can become unwieldy and 

hard to maintain as the number of conditions (e.g., the number and detail of the attributes in the tutorial 

state representation) and the number of outcomes (e.g., desired tutorial behaviors) increase.  Rules for a 

tutor designed to approach the complexity of human tutoring can become quite complex:  

… the antecedent conditions of those “if-then” rules are often nontrivial.  Rather than 
associating some relatively simple event with a fixed response, factors such as K goals 
for the student, inferences about the student’s knowledge, overall pedagogical policy, and 
local history of events appear to modulate the selection of techniques in ways we have 
only begun to clarify. (McArthur et al., 1990, p. 232)  
 

Finally, it must be noted that cost/benefit tradeoffs change over time as new tools are developed which 

can lighten the effort of building one kind of tutor or another – tools such as shell systems, graphical 

network development environments, and tutor development kits – and as the state of the art advances, 

leading to increased expectations for the capabilities of computer tutors.  

 
 
 
 

6.5 SHOULD COMPUTER TUTORS PROVIDE PROACTIVE HELP? 
 
 
An inescapable conclusion from the analysis of the judges’ ratings is that they generally preferred 

providing proactive help to not providing it, both for errors (including first errors) and for step start 

scenarios.  Section 6.4.4 discussed the large role of proactive help in DT Tutor’s (DT’s) ratings advantage 

over the Fixed-Policy Tutor (FT), and section 6.4.4.1 described large gains in ratings when FT and DT 

were modified to always provide proactive help.   

 Not only did this study’s judges (who were skilled tutors) indicate that they preferred providing 

proactive help, but other studies have found that skilled and expert human tutors actually do proactively 

help students, at least in subtle ways.  For instance, McArthur and colleagues (1990) observed that their 

expert tutors appeared to devote as much effort towards structuring problem-solving tasks for students as 

they did to critiquing weaknesses in the students’ performances.  Their tutors seemed to make a priority of 

structuring problem-solving tasks for students so that they were neither too difficult nor too easy, which 

in many cases minimized the students’ errors.  Lepper and colleagues (1993) found that their expert tutors 
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sometimes endeavored to prevent students from making errors and sometimes intervened as soon as errors 

occurred.  Their tutors also sometimes forewarned their students about the difficulty of upcoming 

problems, even in cases where the problems weren’t actually any more difficult, apparently in order to 

inoculate their students from the negative affective consequences of failure and to set up opportunities for 

their students to feel a sense of achievement.  Fox (1993, p. 61) noticed that her skilled tutors were more 

likely than Galdes’ tutors (1990) “to step in with some form of assistance” rather than sit back and wait 

for students to ask for help.  Fox observed her tutors asking questions before students got stuck, often to 

frame the problem and the solution.  Fox likened her tutors’ framing to scaffolding (Vygotsky, 1978), 

whereby the teacher structures the task so that it is always within the learner’s grasp and then gradually 

fades the assistance away as the learner’s abilities increase.  Thus, skilled and expert human tutors often 

help their students – quite subtly in many cases – in order to both (1) minimize student errors, 

floundering, and the negative affective consequences of failure, and (2) increase the likelihood of student 

success and the associated positive affective consequences. 

 The computer tutors in this study, with their limited help response types of null, prompt, hint, 

teach, and do, obviously can’t match the subtlety of expert tutors.  But they can use even their limited 

repertoire to help prevent student errors and impasses, and conversely increase the likelihood of student 

successes, along with the associated affective consequences.  Our judges preferred that they do.  This 

study was not designed to measure differences in learning depending on whether proactive help is 

provided, and so it cannot say definitively whether computer tutors should provide it.  However, human 

tutors remain the gold standard for teaching effectiveness and so the study of their actions is widely used 

to inform the design of computer tutors (e.g., Fox, 1993; Lepper et al., 1993; McArthur et al., 1990; 

Merrill et al., 1992; Putnam, 1987).  For the same reason, their opinions (e.g., the ratings and comments 

of the judges in this study) carry some weight, particularly when they coincide with actions observed in 

human-human tutoring.  Together, the actions and judgments of skilled and expert human tutors strongly 

suggest that proactive help by computer tutors may be fertile ground for filling the gap between computer 

and human tutors, with a potential for cognitive and affective benefits with the students they teach.  

 But if computer tutors should try providing more proactive help, when should they provide it?  

Despite the preference of this study’s judges for proactive help at most opportunities, both the actions of 

expert tutors and educational theory suggest that tutors should not provide proactive help all the time.  

Lepper and colleagues (1993, p. 85) found that expert tutors “sometimes seek to forestall errors, 

sometimes intervene as soon as errors occur; at other times they may allow errors to occur.”  Their tutors’ 

decisions apparently involved “complicated tradeoffs about when and how to provide new information 

and assistance” (p. 85).  Merrill and colleagues (1992, p. 283) observed that for their expert tutors the 

timing of feedback appeared “to depend critically on the consequences of the particular error or impasse 
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encountered,” and that the very effectiveness of tutorial help “may arise because of the contingency of 

feedback style and content on the nature of the student’s error” (1995, p. 346).  When proactive help is 

always provided, there is no opportunity to fade the scaffolding (Vygotsky, 1978) and thereby to spur 

students to become independent practitioners of the skills they are learning.  

 Therefore, proactive help is more likely to be effective to the extent that it correctly anticipates 

the cognitive and affective consequences of providing or not providing the help.  Obviously, proactive 

help is unnecessary when a student could with some effort complete a step on her own, at which time it 

may thwart a chance for learning and for the positive affective consequences of independent achievement.  

Conversely, proactive help when a student would otherwise flounder can save time, provide valuable 

information at a time when the student is prepared and motivated to learn it, and prevent the negative 

affective consequences of frustration and failure.  DT Tutor attempts to look ahead for just such purposes:  

to anticipate the effects of its actions on the tutorial situation, including the student’s cognitive and 

affective states, and to select the tutorial action (including the null action) that it probabilistically expects 

will have the most utility. 

 
 
 
 

6.6 LIMITATIONS AND FUTURE WORK 
 
 
Limitations fall into three basic categories:  the limitations of decision-theoretic approaches, the 

limitations of  DT Tutor (DT) in particular, and the limitations of the current study.  These are discussed 

in separate subsections below in increasing levels of detail corresponding to their relevance to the current 

study, along with plans for future work to overcome many of these limitations.  

 
 
6.6.1 Limitations of decision-theoretic approaches 
 
 
A common criticism of decision-theoretic approaches, or more generally probabilistic approaches, is that 

they require specification of too many numeric parameters.  A variety of methods have been proposed to 

reduce the number of parameters required, from canonical distributions for conditional probability tables 

such as noisy-OR and noisy-AND (e.g., Henrion, 1989; Pearl, 1988) that require at most a few 

parameters, to purely qualitative networks (Wellman, 1990).  DT breaks no new ground in this respect, 

but it does employ rule-based construction of conditional probability tables (see section 3.2.12) to 

facilitate automatic creation of thousands of conditional probability table entries from a much smaller 
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number of parameters.  Efficiency in specifying DT’s parameters may be further improved by, for 

instance, employing canonical conditional probability tables.  

 A second common criticism is that probabilistic approaches require too much computational 

overhead.  While all modern probabilistic approaches leverage conditional independence relationships 

and other structure in the probability space for efficient inference, either exact or approximate, 

probabilistic approaches still generally require much more computation than, say, a typical fixed-policy 

approach.  This is becoming less of a problem as computational hardware and software continue to 

improve.  The version of DT used in this study seemed to be able to consistently provide sub-second 

response time as described in section 5.3. 

 
 
6.6.2 Limitations of DT Tutor 
 
 
A major reason why DT is able to provide sub-second response time, as described in section 5.3, is that 

its problem solver and user interface together constrained the number of possible next steps that the 

student could work on to at most two, sharply reducing the number of decision alternatives faced by the 

previous version of DT, which considered the possibility of tutoring on each step in the problem solution 

space – even steps that had already been completed.  The previous version of DT may have been under-

constrained since students and tutors rarely revisit steps that have already been completed22.  However, 

with the current version of DT students occasionally expressed a desire to take problem-solving shortcuts 

that were not permitted, so it is probably over-constrained.  Allowing more flexible problem solutions 

while still tracking the student’s focus of attention probabilistically and maintaining acceptable response 

time are important topics for future research.  

 A related limitation, similarly important for future work, is supporting student help requests and 

topics that aren’t strictly related to the next problem-solving step.  For instance, a student might want to 

inquire directly about any rule in the domain rather than limiting queries to topics related to the currently 

possible problem-solving steps and their related rules.   

 In addition to supporting a wider variety of student queries, DT’s repertoire of actions should be 

extended to query students.  Such a capability could be used, for instance, in tandem with allowing 

additional flexibility in problem solutions (discussed above) to control the potential explosion in 

possibilities for the next step by asking disambiguating questions when DT is unsure about the student’s 

focus of attention or problem solution plans.  Decision-theoretic approaches like DT’s support value of 

                                                      
22 A prominent exception is post-problem reflection (e.g., Katz & Lesgold, 1994), especially for domains where 
performance is too time-critical to be interrupted for tutoring until afterwards 
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information computations (Howard, 1966) to figure out the most what information would be most 

valuable to obtain from the student.  

 For efficiency reasons, DT dynamically modifies the arcs and decision alternatives considered in 

its Tutor Action Cycle Networks to correspond to the currently possible tutor and student actions in the 

current problem solution state, as described in section 3.2.  This seems to work well in practice and to be 

reasonable since, due to the interface and problem solution constraints discussed above, at any point in 

time, some student actions are simply not possible and so there is no need for the tutor to consider helping 

on those actions either.  But since these dynamic modifications depend on the problem solution state, DT 

can lookahead only as far as the student’s next action because it must wait to observe that action before it 

can create network slices further in the future.  This constraint prevents DT from predicting and planning 

for multiple student-tutor interactions into the future.  Lifting this constraint could permit DT to plan 

more sophisticated tutorial strategies dynamically.  

 Another important limitation of DT at present is its modeling of the student’s affective state.  

While DT’s tutorial action selection engine implemented a relatively early approach for modeling the 

student’s affective state (Murray & VanLehn, 2000) and it was the first to do so decision-theoretically, 

this has not been the main thrust of the research to date.  The version of DT used for this study models 

only the student’s feeling of independence, and in a relatively primitive way.  Previous versions of DT 

(e.g., Murray & VanLehn, 2000; Murray et al., 2004) also modeled the student’s morale, although in a 

similarly primitive way.  By now, much more detailed models of the student’s affective state exist, as 

discussed in section 2.2.4.3.  However, most of the models implemented so far neither model uncertainty 

about the user’s affective state nor satisfactorily resolve what the tutor should do when there is a conflict 

between the best tutorial action based on affective outcomes and the best tutorial action based on 

cognitive or other outcomes.  Conati (e.g., 2002), like DT, uses a dynamic decision network solution for 

these issues, along with a much more detailed model of the user’s affective state, although the models of 

the user’s cognitive state that have been published so far seem to be underspecified.  Even with a simple 

model of the student’s affective state as just one of several outcomes considered, DT is able to move 

beyond simply presenting a kinder, gentler or more entertaining interface to adapting its tutoring based on 

the anticipated effects of its tutorial actions on the affective and cognitive state of the student, just as 

expert human tutors appear to do (Lepper et al., 1993).  Thus, DT is able to select actions with subtler 

affective impact, such as proactive help before the student experiences failure.  Within DT’s framework, 

models related to various attributes can vary in richness and detail depending on the needs and 

capabilities of the application.  At least for human tutors, the student’s affective state can be as least as 

important a consideration as the student’s cognitive state (Lepper et al., 1993), so improving DT’s model 

of the student’s affective state will be important work towards improving its capabilities as a tutor. 
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6.6.3 Limitations of the current study 
 
 
6.6.3.1 The method of comparing the tutors 
 
 
Probably the most important limitation of the current study is that its design did not provide solid proof 

about the most important bottom line:  effectiveness at helping students learn.  The traditional method of 

comparing tutors is to compare student gains (e.g., pretest to posttest) when using the tutors to be 

compared.  Let’s call this method gains comparison.  The advantage of gains comparison is that it 

provides solid information about how much students learn.  Let’s call this study’s method identical 

scenarios comparison because it involved comparing the actions selected by various tutors for identical 

scenarios.   

 For identical scenarios comparison, there is some reason to believe that being favored by the 

judges is not a guarantee that a tutoring approach is most effective at helping students learn.  One 

weakness was that sometimes it placed FT in situations (scenarios) in which it would not have placed 

itself.  The scenarios were created by the interaction of students and the Random Tutor, which selected 

randomly from the response types.  Care was taken to select for evaluation only scenarios whose relevant-

action-histories did not violate FT’s constraint of never giving a less explicit response after a more 

explicit response, as discussed in section 5.2.2.2.  This was so that FT’s policy would still seem rational in 

context (e.g., FT did not have to decide what response to select after a student had been given a teach 

response followed by a prompt response).  DT likewise abided by the explicitness constraint, as discussed 

in section 4.5.1.1, so neither tutor was placed in irrational situations.  Still, FT sometimes did have to 

decide, for instance, what response to provide after the student was provided with an initial hint response 

even though FT would have provided an initial prompt response.  Even so, evidence from the judges’ 

ratings of first message opportunities indicates that, to do well in the ratings, FT must respond well after 

an initial help message that it did not provide.  The reason is that the judges rated FT’s selections for first-

message-opportunity scenarios lower than DT’s, as discussed in section 5.6.2.4.  Therefore, for 

subsequent responses, the judges must have preferred a tutor that would continue well after the initial 

responses that they preferred – i.e., after initial responses that FT would not provide.  

 More evidence that the judges’ ratings may not have always favored the most effective tutorial 

actions comes from their ratings for certain types of scenarios.  One judge rated null responses to help 

requests highly, as discussed in section 5.5.3.2, and another judge occasionally concurred in commenting 

that no help would be the best response for a particular help request (see the judges’ comments in section 

5.5.1).  No response to a help request would probably be bad user interface design since without any 

response (i.e., with a null response) the student might think the tutor has crashed.  But it is likely that, 
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rather than no response at all, what the judges had in mind was some sort of response that either explicitly 

or implicitly refused to provide help for a student who abuses help.  For example, the judge might prefer 

to provide some sort of meta-help message (see, e.g., Aleven et al., 2004) like “Why don’t you try this 

one on your own before asking for help?”  Anomalies in any single judge’s ratings were effectively 

handled by using a median composite rating (section 5.5.3.3).   

 Another questionable set of ratings could not be handled as an anomaly because of general 

unanimity among the judges:  a preference to provide proactive help at most opportunities, both for error 

scenarios (section 5.6.2.2) and for step start scenarios (section 5.6.2.3).  Whether computer tutors should 

provide proactive help in such situations remains controversial.  FT’s policy for proactive help follows the 

policies of most model-tracing tutors (Anderson et al., 1995), which are theory-based, widely-accepted 

and highly effective.  Most model-tracing tutors do not provide proactive help the first time the student 

makes an error and never provide proactive help for step start scenarios.  Indeed, very few if any ITSs 

other than DT provide proactive help for step start scenarios.  But the decision to endow DT with the 

capability to provide proactive help is based on the fact that  human tutors do sometimes provide 

proactive help for such situations (e.g., Lepper et al., 1993; Merrill et al., 1995), so it may well be that 

more computer tutors should provide proactive help – this is discussed in section 6.5.   

The issue underlying whether to rely on the judges’ assessments is that even if human experts 

unanimously believe in some tutoring practice, that is not proof that the practice leads to the most 

learning.  For instance, social and psychological factors may favor tutorial actions that make students 

more comfortable or happy but not necessarily bettered tutored, at least in the short term.  Indeed, 

Graesser and colleagues (1995), in their observations of naturalistic tutoring, noted that tutors’ “politeness 

goals are sometimes incompatible with cognitive pedagogical goals” (p.516), and Lepper and colleagues 

(1990) found that their tutors used indirect methods “despite their belief that more directive methods may 

sometimes have clear instructional benefits” (p.234).  But attention to the student’s affective state may 

pay off in ways such as student interest and persistence which could lead to greater long term gains, both 

during the course of the tutoring session and in the future (Aist et al., 2002; Lepper et al., 1990; Lepper et 

al., 1993).  Human tutoring remains the gold standard for educational effectiveness (Bloom, 1984) and so 

the practices of human tutors are widely researched to inform the design of computer tutors (Fox, 1993; 

Lepper et al., 1993; McArthur et al., 1990; Merrill et al., 1992; Putnam, 1987).   

Finally, for identical scenarios comparison, there is the issue of whether the judges’ stated 

preferences (in terms of their ratings of the scenario responses) reflect their actual tutoring practices.  

Human beliefs and opinions are notoriously susceptible to inaccuracies and to environmental influences 

such as framing effects (e.g., Tversky & Kahneman, 1974).  There is no getting around this issue; it is a 

potential problem for any study that seeks to benefit from the nuanced and multi-dimensional yet 
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potentially faulty considerations reflected in human opinion.  The best this study could do was to present 

the scenarios as accurately as possible and to avoid biasing the tutors in any way.   

The scenario descriptions presented to the judges (described in section 5.2.2.1 with a sample in 

Appendix F) provided a good deal of information about the student’s general performance (e.g., number 

of correct entries, errors and help requests), the student’s performance on any previous steps that used the 

same rule, and about the current tutorial situation.  However, the scenario descriptions do not purport to 

provide whatever information the judges might have considered had they been actually tutoring the 

students (the information that human tutors consider remains an open research issue, and likely varies by 

tutor), although they included details that human tutors may not usually track, such as the exact number of 

previous help requests.   

Bias for or against specific tutors was avoided by having the judges rate all possible tutorial 

responses for each scenario, which were ordered randomly in the scenario descriptions, without telling the 

judges that ratings for different tutors would be compared.  However, it is possible that something about 

the experimental setup or the presentation of the various possible responses biased the judges to prefer 

some responses to others.   

 On the other hand, gains comparison has weaknesses too.  By itself, it does not provide detailed 

information about the advantages or disadvantages of the actions by which the tutors being compared earn 

their learning gains.  For example, Approach A may garner an advantage by rarely providing proactive 

help, discouraging some students from relying on help that they don’t really need – i.e., from abusing help 

– and thereby eliciting more learning.  This strategy might not work as well with students who don’t ask 

for help even when they need it – i.e., students who avoid using help – but as long as there are more help 

abusers than help avoiders in the student population, Approach A will garner a net gain for the student 

population.  Comparing net gains reveals only the net effect and not the means by which those gains were 

made.  To gather more detailed information, gains comparison could be supplemented with other methods 

– e.g., detailed log analysis – to try to unravel the micro-effects that sum up to the observed macro-effects 

in student gains.  But even in combination with supplemental methods, gains comparison can rarely 

compare the behavior of different tutoring approaches in identical tutorial situations with real students.  

There are just too many combinations of student characteristics and student-tutor interactions for identical 

tutorial situations to occur naturally more than rarely, especially when different tutoring approaches 

(which presumably behave differently) are being compared.  Identical scenarios comparison is designed 

to make just such comparisons.  

 Identical scenarios comparison can also be used to gather detailed information about the effects of 

tutorial actions for use in adjusting a tutor’s behavior.  In this study, this information was gathered when 

students used the Random version of the tutor (RT) during the tutorial data collection phase.  RT selected 
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tutorial actions randomly both to provide a control condition and to support measuring the effects of 

individual tutorial actions while controlling for the accumulated effects of sequences of tutorial actions by 

randomizing over the sequences in which the individual tutorial actions occurred.  As described in section 

4.4, the effectiveness of tutorial actions was estimated from log data by observing each training set 

student’s immediate and longer-term success after receiving tutorial help.  For DT, this data was used to 

determine conditional probabilities that model the effects of the tutorial action alternatives.  Tuning DT’s 

tutorial model also tunes DT’s behavior since DT uses this model to decide which tutorial alternative to 

select.  Alternatively, effectiveness data could be used to alter the policy of a fixed-policy tutor to favor 

the most effective tutorial actions.   

 In the assessment phase of this study, information was gathered about the judges’ preferences 

among the tutorial action alternatives in the test set scenarios.  Their numerically expressed preferences 

were used to comparatively assess the tutorial action selections of DT, RT and the Fixed-Policy Tutor 

(FT), both overall and for many types of situations, including help requests, errors, step starts, and first-

message-opportunities of various types.  For the sake of fairness in the comparative assessment, these 

preferences were not used to tune the behavior of any of the tutors.  Since the assessment, however, the 

preferences have already been the source of inspiration for developing enhanced versions of FT and DT 

(FTe and DTe, respectively), described in section 5.7, to test the effects of a simple change to FT’s policy 

intended to improve its ratings.   

 Besides numeric ratings, the judges made comments (see section 5.5.1) that may provide a rich 

source of information for future research and development.  Among the interesting points made were (1) 

they often do not follow the constraint to select successively more explicit help, (2) they don’t mind 

repeating a help message, (3) they explicitly consider what help did or not work previously when deciding 

what kind of help to provide next, and (4) no help in response to a help request is okay.   

 While identical scenarios comparison cannot definitively determine which tutoring approach 

leads to more student gains, it can be used to compare the response selections of different tutoring 

approaches in identical situations based on skilled tutors’ (or even experts’) opinions.  It can compare 

performance both overall and in a variety of situation types.  As in this study, it can also be used to 

objectively estimate the effectiveness of tutorial action alternatives and to gather information about how 

skilled tutors (or even expert tutors) think.  This information can in turn be used to make further 

improvements not only to decision-theoretic tutors, but also to fixed-policy and other types of computer 

tutors.  
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6.6.3.2 Some other limitations of the current study 
 
 
In the data collection phase, the methods used to learn DT’s probabilities were basic, as discussed in 

section 6.1.1.  Quite a bit of knowledge engineering went into determining the structure of DT’s 

probabilistic networks, as described in section 3.2, so it was not necessary to learn their structure for the 

purposes of the current study.  However, it is likely that Bayesian structure learning would provide 

valuable insights into which elements of DT’s networks are most critical.  For learning DT’s probabilities, 

using Bayesian techniques to incorporate priors (even subjective) and take into account indirect as well as 

direct dependence relationships would be an  important improvement.  Use of Bayesian priors could help 

to improve learning with sparse data (even though almost 10,000 scenarios were collected) as well, as 

long as the priors are reasonable.  Now that the assessment phase has been completed, data from both the 

training and test sets can be combined to partially alleviate the sparseness problem.   The study 

encountered serious problems with determining the rule knowledge of help abusers, as described 

throughout much of section 4.4.  To deal with help abuse, prevention is preferred but additional 

assessment methods may be required, as discussed in section 6.1.2.  

 There was no empirically verifiable way to determine DT’s utilities for the current study.  The 

methods used to tune DT according to the experimenters’ preferences, described in section 4.5 and 

discussed in section 6.2, proved quite workable both for implementing priorities and for enabling DT to 

attempt a delicate balance among multiple competing objectives.  But still it was necessary to make some 

adjustments by trial and error, which were necessarily inexact.  Imbalances in utilities may have been one 

reason that DT seemed to respond with teach too often and with hint too seldom, as described in sections 

5.4.2.1 and 5.4.2.2.  Certainly, DT’s utilities could benefit from more attention.  Now that the assessment 

phase has been completed, DT’s utilities could be tuned to the judges’ preferences (to the extent that they 

have a consensus).  Future experiments can be conducted to tune DT’s utilities to improve its 

effectiveness with students.  

 Finally, DT’s help messages did not perform as expected.  As discussed in section 6.1.4, the 

prompt and hint messages appeared to be too similar, both in content and in effectiveness.  Teach 

messages were only about as effective as prompt and hint messages for helping students to learn rules, 

which was their express purpose.  And the do messages turned out to be most effective at helping students 

to learn rules, even though the do messages say nothing about rules.  The reasons for these inconsistencies 

must be better understood.  Increased understanding would probably improve both the help messages and 

DT’s model of the student.  

 
 
 

 147



6.7 CONCLUSIONS 
 
 
The contributions of this work consist of, first, an innovative design for a decision-theoretic engine to 

make tutorial action selections.  Second, this engine was fleshed out into a complete ITS and its action 

selections were compared with an important competing technology by a panel of judges in order to begin 

to evaluate the potential of decision-theoretic tutoring.  

 
 
6.7.1 A decision-theoretic architecture for making tutorial action selections 
 
 
DT Tutor (DT) was the first tutoring system to be based upon a dynamic decision network (DDN) and 

thereby to gain the advantages of such a representation (Murray & VanLehn, 2000).  Any tutor is 

necessarily uncertain about the student’s changing knowledge and affective state, as these are 

unobservable.  A DDN’s Bayesian network representation (Pearl, 1988) handles uncertainty in a 

theoretically rigorous manner while supporting relatively efficient computation by capitalizing on 

structure in probabilistic relationships.  The network’s probabilities can be obtained from any 

combination of the best information available, including expert and other subjective opinions, logic (e.g., 

for deterministic relationships), theoretical results (e.g., from pedagogical, cognitive and psychological 

theory), and empirical findings.  These probabilities can be based on population data, tuned to the 

individual, and adapted online (e.g., Mayo & Mitrovic, 2001; Murray et al., 2004).  The dynamic 

capability of the DDN representation supports modeling the evolution of the student’s changing 

knowledge and affect as well as other changing elements of the tutorial state (e.g., the state of the 

discourse between tutor and student).   

In addition, a tutor is likely to have multiple objectives – e.g., increasing the student’s knowledge, 

helping the student solve problems, and bolstering the student’s affective state (Lepper et al., 1993) – and 

it may be impossible to achieve all objectives simultaneously (Graesser et al., 1995).  A DDN’s utility 

model can be used to balance tradeoffs among any number of competing tutorial objectives, facilitating a 

rich model of the tutorial state.  Thus, a DDN can be used to seamlessly integrate considerations 

regarding uncertain, changing beliefs and priorities regarding any number of tutorial state attributes.  

DT’s tutorial action selection engine leverages this capability to build a rich model of the tutorial state, 

including discourse coherence, the tutor’s preferences, and the student’s knowledge, feeling of 

independence, problem-solving progress, help style, and focus of attention (through discourse relevance). 

Decision-theoretic representations are based on the well-founded theoretic underpinnings of 

probability and decision theory, give them what has been called a normative basis for making rational 

decisions (Keeney & Raiffa, 1976).  Therefore, a potential benefit of using a decision-theoretic 
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representation for tutoring is clarifying a rationale for tutorial decisions (Jameson et al., 2001) and thus 

perhaps coming to a deeper understanding of tutoring.  

  Although not a requirement of the approach, modeling a spectrum of tutorial state attributes 

gives DT a flexible basis for making decisions.  For instance, DT explicitly models tradeoffs between 

action types such as prompt, hint, teach, and do in terms of their effects on task progress, student 

knowledge and student affect, among other attributes, with none of the action types dominant along all 

dimensions. As a result, DT might progress directly from prompting about a step to teaching the related 

rule, or possibly instead telling the student exactly how to do the step, as described in section 5.4.  A 

fixed-policy tutor can achieve the same behavior by fiat.  For instance, the Cognitive Tutors (Anderson et 

al., 1995) and Andes1 (Conati et al., 2002) always work through a sequence of hints starting with the least 

specific until they terminate at a bottom-out hint that is equivalent to DT’s action type do.  Because they 

use a fixed tutorial strategy, they do not need to explicitly represent tutorial state attributes such as student 

affect, so their representational requirements may be less complex.  However, they pay for their simplicity 

by being less flexible.  As illustrated in section 5.4, DT can adapt its behavior to a variety of 

circumstances.  Moreover, DT uses the same sets of considerations to provide proactive as well as 

reactive help, which Andes1 and the Cognitive Tutors do not.  

An important element of DT’s design is looking ahead to explicitly predict the effects of the 

tutor’s actions. While this is natural for a decision-theoretic application, it is rare for an intelligent 

tutoring system. Modeling the tutor’s influence on the tutorial state enables the tutor to select the actions 

that it believes will be most beneficial to the student and to the resulting tutorial state. This requires 

probabilistically predicting how the tutor’s actions will influence, for example, the student’s knowledge, 

affective state, and focus of attention.  

A novel component of DT’s representation is its model of the student’s focus of attention. 

Separate representations for the student’s focus of attention and knowledge allow the system to 

probabilistically predict both the topic(s) of the student’s next turn, based on the student’s focus of 

attention, and the type(s) of action(s) in the student’s next turn (e.g., whether the action(s) will be 

correct), based on the student’s knowledge.  Modeling the student’s focus of attention also enables DT to 

be a cooperative discourse partner and to address topics at times when the student is likely to be 

interested. 

A decision-theoretic agent automatically adjusts its actions to maximize attainment of its current 

objectives in light of its current beliefs.  This makes it easy to change DT’s behavior simply by changing 

its objectives.  An effective way to do this is to change the weights associated with DT’s linearly-additive 

multiattribute function, as discussed in section 6.2.  For instance, the weight corresponding to a tutorial 

state attribute can be zeroed either to permanently remove that attribute from consideration or to remove it 
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temporarily for ablation testing (Murray et al., 2004).  An extreme example is that DT can be made to 

behave just like the Fixed-Policy Tutor simply by zeroing out all weights except for discourse coherence 

along with a slight change to DT’s Discourse Coherence1 model to match exactly the Fixed-Policy 

Tutor’s slightly stronger constraint (see section 4.5.1.1).  Less drastically, DT’s behavior can easily be 

adjusted to favor one attribute over another simply by changing the relative strengths of the corresponding 

weights. 

DT’s tutorial action selection engine is also flexible enough to be applied to diverse domains with 

relatively minor modifications.  Besides the domain of calculus related-rates problems used for DT, the 

tutorial action selection engine has also been applied to a prototype for Project Listen’s Reading Tutor 

(Murray et al., 2001a, 2001b), a tutoring system that listens to children as they read aloud.  

 
 

6.7.2 Development and assessment of a decision-theoretic tutor 
 
 
Given all the potential capabilities of decision-theoretic tutoring, it was time to put them to the test.  

Therefore, DT’s action selection engine was fleshed out into a complete tutoring system with the 

development of (1) a student interface (section 3.3) and (2) a domain expert server to create problem 

solution graphs, solve domain problems, check student equations and log tutor-student interactions ( 

section 3.1).  Besides DT, two other tutors were developed for comparison purposes:  (1) a Random Tutor 

(RT), which selected randomly from among relevant tutorial actions, and (2) a Fixed-Policy Tutor (FT), 

which followed a fixed policy similar to that of the Cognitive Tutors (Anderson et al., 1995) to select 

tutorial actions.  All tutors shared the same student interface and help messages; the only difference 

between them was their method of selecting tutorial actions.  Data was collected from 60 students in the 

form of pretests, posttests, and logged interactions with the Random Tutor.  Data from half the students, 

the training set, was used to learn key probabilities for DT’s dynamic decision networks, and DT utilities 

were tuned according to the experimenter’s subjective preferences.  Then three human judges, who were 

all skilled tutors in DT’s domain, rated the responses of all three tutors to a representative sample of 350 

identical scenarios from the test set of logged interactions with the Random Tutor.   The 350 scenarios 

consisted of 175 help requests, 100 errors, and 75 step starts, which were opportunities to provide 

proactive help when a student first selects a step to begin working on it (section 5.2.2.2).  

 The first result, albeit informal, was that DT’s response time, which had been problematic for 

larger networks (Murray & VanLehn, 2000; Murray et al., 2004), was no longer a problem due to 

limitations on the problem solution space created by the domain expert server and implemented by the 

student interface (section 5.3).   
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 Next, DT was compared to RT and to FT according to the judges’ ratings.  The only previous 

comparisons of decision-theoretic tutoring were with no tutoring at all (CAPIT: Mayo & Mitrovic, 2001), 

with “self-learning and consulting the teacher when required” (iTutor: Pek, 2003, p. 136), and with 

randomized action selection (CAPIT: Mayo & Mitrovic, 2001).  The Fixed-Policy Tutor’s policy was 

designed to emulate the action selection policy of Cognitive Tutors, which can be considered a fair 

representative of the state-of-the-art, with documented success (e.g., Anderson et al., 1995; Koedinger et 

al., 1997) in use by thousands of students in hundreds of schools.  Therefore, this study’s comparison 

posed a stiffer test than previous comparisons with decision-theoretic tutoring.  

 First, DT’s ratings were compared to RT’s.  According to the judges’ ratings, both individual and 

composite, DT’s action selections were decidedly better than RT’s action selections both overall and for 

the subsets of help requests, errors, and first message opportunities, significant at the level p<.01 (section 

6.3).  Only for step start scenarios was DT’s mean composite rating was not higher enough to be 

significant, p=.120, although that was using the very conservative Bonferroni correction for 10 t-tests 

which increased the original significance of p=.012 by an order of magnitude.  Effect sizes ranged from 

.30 to .49, which is large enough to make an impact.  This was solid support for Hypothesis 1:  According 

to skilled tutors, tutorial action selections by decision-theoretic methods can be better than selections 

made randomly among relevant tutorial actions. 

 Next, DT’s ratings were compared to FT’s – the stiffer test.  The judges rated DT higher than the 

Fixed-Policy Tutor (FT) overall and for the scenario subsets of errors, start steps and first-message-

opportunity scenarios with substantial effect sizes ranging from .22 to .61, all with significance p<.02 or 

better (see section 6.4.1).  DT was not rated higher than FT only for help requests; for these, DT’s mean 

composite rating of 3.66 was nominally higher than FT’s rating of 3.59 with an effect size of only .06.  

With DT significantly surpassing FT both overall and for all major subsets of scenarios other than help 

requests, and with DT about equal to FT (although nominally higher) for help requests, these results 

support Hypothesis 2:  According to skilled tutors, tutorial action selections by decision-theoretic 

methods can be better than those of a tutor that emulates the fixed policies of theory-based, widely 

accepted and highly effective tutors. 

 In addition, DT adapted its response type to multiple attributes of the tutorial situation (section 

6.4.2) while FT adhered to its fixed policy, which considered only the discourse state as follows:  (1) 

never provide proactive help (i.e., responding null) for step start and first-error scenarios, and (2) 

otherwise provide the help message that is minimally more explicit than any help messages previously 

provided for the same step.  DT’s variations in responses in accordance with multiple tutorial state 

attributes paid off in generally higher ratings from the human judges.  A particularly telling result was for 

first-message-opportunity scenarios divided according to whether the student got the corresponding 
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pretest problem wrong or right:  DT’s ratings were significantly higher for the pretest-wrong subset with a 

substantial effect size and also marginally higher for the pretest-right subset before the significance was 

diluted by the conservative Bonferroni correction. 

 A large part of DT’s success relative to FT can be traced to its provision of proactive help 

(section 6.4.4).  Therefore enhanced versions of DT and FT – DTe and FTe – which always responded 

with proactive help, were created to see if a simple change to FT’s fixed policy (to always provide 

proactive help) would cause a fixed policy tutor to be rated as highly as a decision-theoretic tutor (section 

6.4.4.1).  FTe was in fact rated marginally higher than DT overall and significantly higher than DT for 

errors, p<.01, even after the conservative Bonferroni correction and with an effect size for errors of .53.  

For help request responses, which are reactive help, results were unchanged (DT nominally but 

insignificantly higher than FTe) because the change to FTe’s and DTe’s policies affected only proactive 

help.  These results showed that the judges preferred even more proactive help than DT was giving.  

Comparing DTe and FTe, DTe was rated nominally but insignificantly higher than FTe overall and for all 

scenario subsets except step starts (for which FTe had an advantage of .01), with small effective sizes.   

However, DTe compared to FTe, like DT compared to FT, showed significantly more variability 

in responses and sensitivity to the tutorial state (section 6.4.4.1).  For example, for all first-message-

opportunity scenarios, FTe selected response prompt, the least explicit of the non-null help types.  DTe’s 

response distribution was significantly different from FTe’s and it varied significantly between the 

pretest-right and pretest-wrong subsets.  For the pretest-wrong scenarios, DTe’s ratings were marginally 

higher than FTe’s with a healthy effect size.  Also,  for first-message-opportunity errors, DTe’s ratings for 

pretest-wrong scenarios were marginally higher than FTe’s and its ratings for pretest-right scenarios were 

nominally higher but not significant.   

Comparisons with FTe show that a fixed-policy selected post hoc can do just about as well at 

selecting tutorial responses as decision-theoretic methods, at least at DT’s current stage of development.  

FT’s current policy can easily be enhanced (at least according to the judges’ ratings) to provide proactive 

help and then be competitive with DT’s and DTe’s performance.  FT’s and FTe’s policies remain 

relatively simple and so they still significantly lag DT and DTe in their sensitivity to the context of the 

multiattribute tutorial state.  Theoretically, a fixed policy can be used to implement policies of arbitrary 

complexity – at the extreme, consisting of a table lookup of what to do in each unique situation.  Of 

course, anything that can be implemented as a fixed policy can also be implemented in DT, since DT’s 

action selection capabilities are a superset of FT’s (see section 6.2).  And DT is still at a relatively early 

stage of development as well (see, e.g., sections 6.1 and 6.2 about determining DT’s numeric parameters), 

so its capabilities can also be further improved. 

 152



A theme throughout the judges’ ratings is that they generally preferred more proactive help to less 

(see section 6.5).  While this result may be partially an artifact of the limitations of the assessment method 

(e.g., relying on human judgment – see section 6.6.3.1), it was robust across judges, tutors, and scenario 

types.  Furthermore, several studies (e.g., Fox, 1993; Lepper et al., 1993; McArthur et al., 1990) human 

tutors sometimes provide proactive help, at least when broadly defined to include subtle types of help 

such as structuring tasks so that their students are less likely to fail.  Therefore, the implication that more 

computer tutors should consider providing  proactive help, at least as an important topic for further 

investigation. 

While the method used for assessing the tutors did have limitations, especially for determining 

the bottom line – effectiveness with students (see section 6.6.3.1) – it did provide information that would 

not have been obtained in a more traditional study of bottom-line effectiveness.  First, it provided raw 

data for learning many of DT’s key probabilities.  Second, it can be used to compare the response 

selections of different tutoring approaches in identical situations.  Any number of tutors can be assessed 

this way by running them against the logged data – that is how FTe and DTe were assessed even though 

their creation had not been anticipated.  Perhaps most importantly, it can  be used to gather both 

quantitative and qualitative information about how skilled tutors – or even experts – think.  In fact, the 

same scenarios can  still be assessed by other judges.  In short, data from both the data collection and 

assessment phases of the study remain a rich source of information about tutoring.  This information can 

be used to make further improvements not only to decision-theoretic tutors, but also to fixed-policy and 

other types of computer tutors. 

Finally, an issue that may describe the bottom line for many readers of this report:  Should you 

choose fixed-policy or decision-theoretic tutoring?  For successful resolution, this question must be 

quantified in terms of performance needs versus development and maintenance costs – software 

engineering issues that this study was not designed to investigate.  However, this study has produced 

some useful guidelines (see section 6.4.5 for a more detailed discussion):  If the desired behavior of the 

tutor is unambiguously defined, only simple capabilities are required, and only simple changes to the 

tutor’s behavior are anticipated over the life of the tutor, fixed policy is best, no contest, because of its 

ease of implementation.  However, as the desired behavior of the tutor becomes more ambiguous, the 

required capabilities increase, or as the need for flexibility in the tutor’s behavior increases, decision-

theoretic tutoring becomes more attractive.  Furthermore, the cost/benefit ratio may change over time as 

new tools are developed (e.g., probabilistic network development tools such as SMILE, which was used 

for this study) and as the state of the art advances, leading to increased expectations for the capabilities of 

computer tutors. 
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Calculus Tutor Tutorial 

 
Figure A1:  Calculus Tutor screen shot 

 
Introduction 

 
The Calculus Related Rates Problem Tutor, or Calculus Tutor for short, helps you solve calculus related-
rates problems using calculus, algebra, and a goal-oriented problem-solving procedure.  This tutorial 
explains all that you need to know to begin solving problems using the Calculus Tutor.  Try to remember 
as much of this information as you can, but the Calculus Tutor will help you with things you forget.  

A screen shot of the Calculus Tutor’s interface is shown in Figure A1.  At the top left is the problem 
number and top-level goal, in this case  “Problem P2: Transform the given equations and evaluate to find 
dx/dz=<number> when z=3.”  Beneath the problem statement is the Goals Window, which you will click 
on to progress through the problem.  The large window beneath the Goals Window that currently says 
“Interface Help” is the Dialog Window where the Calculus Tutor’s prompts and help will be displayed.  
Along the right side of the screen is the Accepted Equations Window, which at the beginning of the 
problem lists two given equations plus an equation that gives a numeric value for one of the variables 
(z=3).  As you create additional equations, they will be added to this list along with the operators and 
operands used to create them.  Beneath the Accepted Equations Window is a small Equation Entry 
Window for entering equations.  It includes an Exponent button for entering exponents.  At the bottom 
of the screen are buttons to request “Help!”, select a New Problem, or Quit the tutor.   
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Calculus Related-Rates Problems 
 
Calculus related-rates problems typically give you equations describing how a set of related variables 
change with respect to one another and ask you to figure out some other relationship amongst the 
variables.  The problems you will solve all give you two equations and ask you to figure out a third 
equation.  To solve the problems, you will transform the two given equations using mathematical 
operations, or operators, from calculus and algebra.   

We use the symbols “*” for multiplication and “/” for division.   

You must simplify each equation that you create by carrying out all multiplications, divisions, additions, 
subtractions and exponentiations.  For example: 

 
x = 10/2 * 33-1 * z2+1      x = 5 * 32 * z3      x = 5 * 9 * z3      x = 45*z3 

 
 
 
 

Operators 
 

The next two sections describe the calculus and algebra operators that you will use with the Calculus 
Tutor.  Each operator transforms one or two operands, which are the inputs to the operation performed by 
the operator.  As we describe the operators, we use the term LHS to describe the part of the equation on 
the left-hand-side of the equals (=) sign, and the term RHS to describe the part of the equation on the 
right-hand-side of the equals sign.   

 
 
Calculus Operators 
 
These calculus operators all transform or create derivative equations, such as dx/dy=6*y2.  Derivative 
equations are equations that contain a derivative expression, such as dx/dy.  We call equations that don’t 
have a derivative expression regular equations.  The d in the derivative expression dx/dy stands for 
“change,” so dx/dy stands for “change in x with respect to change in y.”  Similarly, du/dv stands for 
“change in u with respect to change in v.”  

Two important calculus operators are differentiate and integrate.  This section will teach you one rule for 
each operator.  Then you will learn two operators for transforming derivative equations, chain rule and 
flip derivative.  These operators just involve algebra and so hopefully they won’t seem too hard once you 
read their explanations.
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differentiate 
 
The differentiate operator transforms a regular equation into a derivative equation.  There are many rules 
for differentiation, but for the Calculus Tutor you just need to learn the power rule: 

Example 1: operator: differentiate operand:  x=2*y3 

   result:  dx/dy = 3 * 2*y2.  Simplifying, dx/dy=6*y2 

(1) Change the LHS into a derivative expression – e.g., dx/dy: 

- The numerator is d followed by the variable on the LHS of the operand.  For the example  
above, x is the variable on the LHS of operand x=2*y3, so the numerator is dx.  

- The denominator is d followed by the variable on the RHS of the operand.  For the 
example above, y is the variable on the RHS of operand x=2*y3, so the denominator is dy.   

(2) Multiply the RHS by the exponent.  For the example above, the exponent is 3, so the RHS 
becomes 3*2*y3. 

(3) Subtract 1 from the exponent.  For the example above, the RHS becomes 3*2*y3-1, or 3*2*y2 

(4) Simplify the resulting equation.  For the example above, dx/dy=3*2*y2 becomes dx/dy=6*y2. 

Example 2: operator: differentiate operand:  u=5*v2 

   result:  du/dv=2*5*v1.  Simplifying (note: v1=v), du/dv=10*v 

 

 

integrate 

The integrate operator is the reverse of the differentiate operator.  It transforms a derivative equation into 
a regular equation.  For the Calculus Tutor, you just need to learn the reverse of the power rule.    

Example 1: operator: integrate operand:  dx/dy=6*y2 

   result:  x=6/3 * y3.  Simplifying, x=2*y3 

(1) Change the LHS into a single variable – e.g., x.  The variable comes from the numerator of the 
derivative expression.  For the example above, from the numerator of dx/dy we get x.  

(2) Add 1 to the exponent on the RHS.  For the example above, the RHS becomes 6*y2+1, or 6*y3.  

(3) Divide the RHS by the new exponent.  For the example above, the new exponent is 3, so the 
RHS becomes 6/3*y3. 

(4) Simplify the resulting equation.  For the example above, x=6/3*y3 becomes x=2*y3. 

Note:  Technically, the integrated equation is x=2*y3+ c, where c is any constant number and is called the 
arbitrary constant of integration, but we will not use the “+ c” within Calculus Tutor. 

Example 2: operator: integrate operand:  dj/dk=2*k    (note:  k=k1) 

   result:  j=2/2*k2.  Simplifying, j=k2 
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chain rule 

The chain rule operator combines 2 derivative equations to form another derivative equation.   To use the 
chain rule, multiply both sides of the 2 derivative equations together.  For example, given equations 

Example 1: operator: chain rule operand 1: dq/dr=5 
   operand 2: dr/ds=2*s3 

          result:  dq/dr * dr/ds = 5 * 2*s3.  Simplifying (the dr’s cancel out), dq/ds=10*s3 

(1) Multiply the two LHSs together.   For the example above, we dq/dr * dr/ds. 

(2) Multiply the two RHSs together.  For the example above, we get 5 * 2*s3. 

(3) Simplify the resulting equation.  For the example above, the dr’s cancel out, so dq/dr * dr/ds = 5 * 
2*s3 becomes dq/ds=10*s3. 

In the Calculus Tutor, the chain rule operands and result will always be in the following forms: 

operand 1: d<variable 1> / d<variable 2> = <number>   – e.g., dq/dr=5 
operand 2: d<variable 2> / d<variable 3> = f(<variable 3>)   – e.g., dr/ds=2*s3 

result:    d<variable 1> / d<variable 3> = f(<variable 3>)    – e.g., dq/ds=10*s3 

where <number> stands for any number (e.g., 5) and f(<variable 3>) stands for some function of variable 
3.  Note that f(<variable 3>) is different in operand 2 than in result, just as  2*s3 is different than 10*s3.  
When operand 1 and operand 2 are multiplied together, the d<variable 2> term cancels out. 

Using chain rule, given a derivative equation relating one variable to a second variable (e.g., q to r in 
dq/dr=5), and another derivative relating the second variable to a third variable (e.g., r to s in dr/ds=2*s3), 
we can combine the derivatives to form a derivative relating the first variable to the third variable (e.g., q 
to s in dq/ds=10*s3). 

Example 2: operator: chain rule operand 1: du/dv = 4 
   operand 2: dv/dw = w5 

          result:  du/dv *  dv/dw = 4 * w5.  Simplifying, du/dw=4*w5 

 

flip derivative 

The flip derivative operator transforms a derivative equation by taking the multiplicative inverse of both 
sides of the equation.   

Example 1: operator: flip derivative operand:  df/de=5 
   result:  de/df=1/5 

(1) Take the multiplicative inverse of the LHS.  For the example above, df/de becomes de/df. 

(2) Take the multiplicative inverse of the RHS.  For the example above, 5 becomes 1/5.  

(3) Simplify the resulting equation if necessary.    

In the Calculus Tutor, you will use flip derivative only on equations that have a constant number on the 
RHS, so the algebra for taking the multiplicative inverse should be easy.  

Example 2: operator: flip derivative operand:  da/db = 1/7 
   result:  db/da = 7 
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Algebra Operators 
 
 
 
substitute 
 
The substitute operator uses algebra to combine two regular equations that have a variable in common 
into a third regular equation.   

Example 1: operator: substitute operand 1: j=5*k2 

   operand 2: k=2*m3 

      result:  j = 5 * (2*m3)2.  Simplifying, j = 5*22*m3*2    j = 5*4*m6    j=20*m6 

(1) Substitute the variable on the RHS of operand 1 with the expression for it from the RHS of 
operand 2.  For the example above, we substitute k in operand 1 with the expression 2*m3 from 
operand 2, yielding j = 5 * (2*m3)2. 

(2) Simplify the resulting equation.  For the example above, first we carry out the exponentiation 
(2*m3)2, yielding j = 5*22*m3*2, then we carry out the remaining exponentiation and 
multiplications to get j=20*m6. 

In the Calculus Tutor, substitute’s operands and result will always be in the following forms: 

operand 1: <variable 1> = f(<variable 2>)    – e.g., j=5*k2 

operand 2: <variable 2> = f(<variable 3>)     – e.g., k=2*m3 

result:     <variable 1> = f(<variable 3>) – e.g., j=20*m6 

 
Using substitute, given a regular equation relating one variable to a second variable (e.g., j to k as in 
j=5*k2), and another regular equation relating the second variable to a third variable (e.g., k to m as in 
k=2*m3), we can combine the equations to form a regular equation relating the first variable to the third 
variable (e.g., j to m as in j=20*m6).  

Example 2: operator: substitute operand 1: x=3*y 
   operand 2: y=4*z2 

          result:  x=3*(4*z2).  Simplifying, x=12*z2 
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evaluate 
The  evaluate operator is the same as substitute except that one equation specifies a numeric value for the 
variable in common between the two equations.   

Example 1: operator: evaluate operand 1: s=4*t2 

   operand 2: t=3 

      result:  s = 4*32.  Simplifying, s = 4*9    s=36 

(1) Substitute the variable on the RHS of operand 1 with the numeric value for it from the RHS 
of operand 2.  For the example above, we substitute t in operand 1 with the value 3 from operand 
2, yielding s = 4*32. 

(2) Simplify the resulting equation.  For the example above, first we carry out the exponentiation 32, 
yielding s = 4*9, then we carry out the multiplication to get s=36. 

In the Calculus Tutor, the operands and result will always be in the following forms: 

operand 1: <variable 1> = f(<variable 2>)     – e.g., s=4*t2 

operand 2: <variable 2> = <number>      – e.g., t=3 
result:    <variable 1> = <number>   – e.g., s=36 

   OR 

operand 1: d<variable 1> / d<variable 2> = f(<variable 2>)   – e.g., de/df=5*f3 

operand 2: <variable 2> = <number>      – e.g., f=2 

result: d<variable 1> / d<variable 2> = <number>   – e.g., de/df=40 

Example 2: operator: evaluate operand 1: de/df = 5*f3 
   operand 2: f=2 

          result:  de/df=5*23.  Simplifying, de/df = 5*8      de/df=40 

 

restate 
 
The restate operator uses algebra to transform a regular equation by reversing which variables are on the 
LHS and RHS.   

Example 1: operator: restate operand:  m=½*n1/5 
   result:  n=32*m5 

(1) Use algebra to isolate the variable on the RHS.  For the example above: 

- Multiply both sides of the equation by 2 to get 2*m=n1/5 
- Take both sides to the 5th power to get 25*m5=n 

(2) Swap the LHS and RHS.  For the example above, 25*m5=n becomes n=25*m5.  

(3) Simplify the resulting equation.  For the example above, we carry out the exponentiation 
25, yielding n=32*m5. 

Example 2: operator: restate operand:  a=4*b 
   result:  b=1/4*a 

Example 3: operator: restate operand:  v=w3 
   result:  w=v1/3 
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Equation Forms 
 
 
In order to talk in a general way about how to do calculus related-rates problems, and in order to use the 
Calculus Tutor, we need to be able to talk about types of equations rather than just particular equations.  
Instead of saying that the differentiate operator transforms the equation x=2*y3 into dx/dy=6*y2, and 
separately saying that the differentiate operator transforms the equation x=y4 into dx/dy=4*y3, we would 
like to be able to say more generally that the differentiate operator transforms the type of equation with x 
on the LHS and an algebraic expression involving y on the RHS into the type of equation with dx/dy on 
the LHS and an algebraic expression involving y on the RHS.  And since statements like “an algebraic 
expression involving y on the RHS” are long-winded, we would like to say that more briefly as well.  To 
speak about types of equations, or equation forms, we need just a couple of symbols: 
 

1. Instead of “an algebraic expression involving y on the RHS”, we say f(y), which stands for “some 
function of y.”  Similarly, some function of z is f(z), and so on.  Within the Calculus Tutor, f(y) 
means y along with perhaps some numbers and arithmetic symbols for multiplication, division, 
exponentiation, etc., but no other variables.  Examples: 

- 2*y3 is f(y) 

- 6*y2 is f(y) 

- b is f(b) 

- 2*u*v2 is not f(u) and not f(v) – it is f(u,v) 

Important Note: Within the Calculus Tutor, f(y) means some function of y, but not a 
particular function of y.  For example, the operator differentiate transforms 
equation x=2*y3 into equation dx/dy=6*y2.  In terms of equation forms, we 
say that differentiate transforms equation form x=f(y) into dx/dy=f(y).  But 
that does not mean that f(y) is the same in x=f(y) and dx/dy=f(y), just as 2*y3 
is not the same as 6*y2.  

 
2. For a type of equation that has no variables (like y or z) on the RHS, we say the RHS has some 

value <number>, which stands for any constant number.   Examples: 

- 2 is <number> 

- 6*32 is <number>.  (Simplifying, 6*32  6*9  54, which is a number) 

- 2*b is not <number>  
 
That is all the notation we need to describe equation forms in the Calculus Tutor.  Every equation form 
will be as follows: 

On the LHS: Either a regular variable, such as x, or a derivative expression such as dx/dy.  

On the RHS: Either a function of a variable, such as f(x), or <number>. 

If the LHS of an equation or equation form is a derivative expression, we say that it is in derivative form; 
otherwise, we say that it is in regular form. 
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Table A1:  Equation Form Examples 

 
 

 
Equation Form 

 Sample 
Equation 

  
Comments 

     
x=f(y)  x=2*y3   
     
dx/dy=f(y)  dx/dy=6*y2  Note that the actual function represented by f(y) 

here is different than the actual function 
represented by f(y) in the previous example  

     
v=<number>  v=34   
     
dv/dk=<number>  dv/dk=16  Note that the actual number represented by 

<number> here is different than the actual 
number represented by <number> in the previous  
example 

 
 
 
Equation Forms for the Operators 
 
Each operator transforms one or more operands from one equation form into another.  For instance, 
differentiate transforms an operand with equation form x=f(y) into equation form dx/dy=f(y).  Similarly, 
chain rule transforms 2 operands, one with equation form dx/dy=<number> and one with equation form 
dy/dz=f(z), into equation form dx/dz=f(z).   

Of course, the actual variables in these equation forms may be different.  For instance, differentiate 
can also transform equation form u=f(v) into du/dv=f(v).  It is the patterns in the equation forms that 
are important.  Regardless of the variables in differentiate’s operand, the pattern for differentiate’s 
resulting equation form is: 

- d 
- the variable on the LHS of the operand – e.g., x in x=f(y) or u in u=f(v) 
- / 
- d 
- the variable on the RHS of the operand – e.g., y in x=f(y) or v in u=f(v) 
- = 
- f (<variable>), where <variable> is the variable on the RHS of the operand – e.g., y in x=f(y) 

or v in u=f(v) 

For operators with 2 operands (chain rule, substitute and evaluate) the order of the operands is 
important to the Calculus Tutor.  For instance, chain rule requires the following order for its operands:  

operand 1:  dx/dy=<number> 
operand 2:  dy/dz=f(z) 

Sample equation forms for the operators are listed in Table A2.  Now would be a good time for you to 
verify that your understanding of the operators fits with the equation forms listed.   
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Knowing the operators’ equation forms will be useful for transforming equations using the Calculus 
Tutor.  We will use them both to select operators and to select equation forms for operators’ operands, as 
described below.  

1. Selecting which operator(s) to use.  For instance, if we need to find an equation of form dx/dy=f(y), 
we can reason that we must use operator differentiate or chain rule since these are the only operators 
that result in an equation form like dx/dy=f(y), as can be seen in the Sample Equation Forms, Result 
column of Table A2.  A later section describes heuristics (rules of thumb) to make selecting operators 
easier.  

2. Selecting which equation form(s) we need to find.  For instance, if we have decided that we will 
use operator differentiate to find equation form du/dv=f(v), we know that we must find or create an 
equation corresponding to the equation form for differentiate’s operand, u=f(v).    

 
 

Table A2:  Sample equation forms for the operators 

 
          Sample Equation Forms          Sample Equations 
         
Operator  Operand(s)  Result  Operand(s)  Result 
         
         
differentiate  u=f(v)  du/dv=f(v)  u=3*v4  du/dv=12*v3 

         
         
integrate  dh/di=f(i)  h=f(i)  dh/di=6*i2  h=2*i3 

         
         
flip derivative  dm/dn=<number>  dn/dm=<number>  dm/dn=1/4  dn/dm=4 
         
         
chain rule  1. ds/dt=<number>  ds/dv=f(v)  1. ds/dt=5  ds/dv=10*v4 

  2. dt/dv=f(v)    2. dt/dv=2*v4   
         
         
restate  b=f(c)  c=f(b)  b=1/8*c3  c=2*b1/3 

         
         
substitute  1. q=f(r)  q=f(s)  1. q=4*r3  q=108*s6 

  2. r=f(s)    2. r=3*s2   
         
         
evaluate  1. x=f(z)  x=<number>   1. x=2*z4  x=162  
  2. z=<number>    2. z=3   
         
  1. dp/dq=f(q)  dp/dq=<number>  1. dp/dq=5*q2  dp/dq=80 
  2. q=<number>    2. q=4   
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The Calculus Tutor’s Problem-Solving Procedure 
 
 
The Calculus Tutor uses a quite general goal-oriented problem-solving procedure.  The procedure works 
by setting any subgoals that are necessary to achieve the top-level goal.  The subgoals then become the 
current goals.  If any of the current goals are not already achieved, then new subgoals (sub-subgoals) are 
set to achieve the current goals.  This procedure continues, setting further subgoals (sub-sub-subgoals, 
etc.) as necessary, until all of a goal’s subgoals have been achieved, at which point the goal has been 
achieved.  When all of the top-level goal’s subgoals have been achieved, the problem has been solved.   

For each problem, you will be given a top-level goal of applying the evaluate operator to create an 
equation with a specific form (e.g., x=<number> or dx/dz=<number>) when one of the variables has a 
numeric value (e.g., when z=3).  An example was provided in Figure A1. You will also be given two 
equations in the Accepted  Equations window, plus an equation that states a numeric value for one of the 
variables (e.g., z=3).  Evaluate operand 2 is always the equation that states a numeric value for one of the 
variables. 

Your first subgoal is deciding the equation form for evaluate operand 1.  Once that equation form has 
been decided, your next subgoal becomes deciding whether you can find an equation with that form 
among the Accepted Equations or whether you must use an operator to create the equation.  If you must 
use an operator, your next subgoal becomes deciding what that operator will be.  Once you decide on the 
operator, your next subgoal becomes deciding the equation form(s) for the operator’s operand(s).  This 
process continues, establishing further subgoals if necessary, until you can use an Accepted Equation as 
an operand.  Once you have found the equation(s) for an operator’s operand(s), you can apply the 
operator to create a new equation.  As subgoals are achieved, you will eventually find or create evaluate 
operand 1, at which point you can apply the evaluate operator to achieve the top-level goal.   
 
This goal-oriented procedure may sound complicated, but after a while its regular pattern becomes 
evident.  Furthermore, the Calculus Tutor will lead you every step of the way as you click on goals 
within the Goals Window.  With the Calculus Tutor’s help on the problem-solving procedure, there are 
4 skills that you will need.  Each of these is explained in turn below: 

1. Applying operators.  Rules and examples for applying the 4 calculus and 3 algebra operators are 
described in the Operators section above.  

2. Selecting an Accepted Equation that matches a sought equation form.  The relationships between 
equation forms and actual equations are described in the Equation Forms section above.  For instance, 
if the equation form you are looking for is dx/dy=f(y) and the Accepted Equations are dy/dz=3*z2 and 
dx/dy=5*y4, select equation dx/dy=5*y4. 

3. Specifying equation form(s) for operand(s).  This skill is described in the Equation Forms for the 
Operators section above.  For instance, to apply differentiate to create an equation with the form 
dx/dy=f(y), the equation form for the differentiate operand must be x=f(y).  

4. Selecting operators to find equation forms.  An explanation of this final skill is provided in the next 
section, Heuristics (Rules of Thumb) for Selecting Operators.  
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Heuristics (Rules of Thumb) for Selecting Operators 
 
With 4 calculus operators, 3 algebra operators, and 2 given equations (3 counting the equation that states 
a numeric value for one of the variables), you could do a lot of work applying operators and generating 
new equations without ever achieving the problem goal.  That is why the Calculus Tutor uses a goal-
oriented problem-solving procedure – to avoid extra work.  With the goal-oriented problem-solving 
procedure and the heuristics listed below, you will be able to solve the problems efficiently with minimal 
wasted effort.  The Calculus Tutor will require you to follow these heuristics. 
 
First of all, the operator for the top-level goal, evaluate, is given, so you never have to worry about 
selecting it – the Calculus Tutor won’t even give you the choice. 
 
1. If there is an operator that will achieve a sought equation form in one step, you must use that 

operator.  For instance, if you need to use an operator to create an equation of form dx/dy=f(y) to 
achieve the current goal, and one of the Accepted Equations has form x=f(y), then you must use 
operator differentiate to achieve the goal in one step.  This heuristic will be used for selecting among 
the operators differentiate, integrate, flip derivative, and restate as summarized in Table A3 below.  
For each operator, check if you can see how it transforms the Accepted Equation form into the sought 
equation form in one step.  

 
 

Table A3:  Operator selection heuristics:  differentiate, flip derivative, integrate, & restate 

 
Sought Equation 
Form 

 Accepted Equations 
include equation of form 

  
Use Operator 

     
dp/dq=f(q)  p=f(q)  differentiate 

    
du/dv=<number>  dv/du=<number>  flip derivative 
     
x=f(y)  dx/dy=f(y)  integrate 
     
c=f(d)  d=f(c)  restate 

 
 

2. The 2 out of 3 heuristic for evaluate operand 1:  If at least 2 out of 3 of evaluate operand 1’s 
equation form and the first two given equations (not counting the equation that states a numeric value 
for one of the variables) are in derivative form, use operator chain rule as the combining operator for 
evaluate operand 1.  Otherwise, use operator substitute as the combining operator.  See Table A4 
(next page) for complete details. 
 
The reason for this heuristic is more complex, plus it involves one more wrinkle, so it is explained in 
further detail below.  If you don’t want to bother with the explanation or this explanation isn’t helpful 
to you, you can just skip to the table.  

 
Explanation:  The trick to all the problems is that they all involve 3 variables, the top-level goal is to 
evaluate an equation involving variable 1 and variable 3, one of the given equations involves 
variable 1 and variable 2, and the other given equation involves variable 2 and variable 3.  To 
achieve the top-level goal, we must transform the given equations to create for evaluate operand 1 an 
equation involving variable 1 and variable 3.  Therefore, we must at some point combine (1) an 
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equation involving variable 1 and variable 2, and (2) an equation involving variable 2 and variable 3, 
to create an equation involving variable 1 and variable 3.  The only operators we have that combine 
variables in this way (so we call them combining operators) are chain rule and substitute.  So we 
know that at some point we’re going to have to use either chain rule or substitute.  In fact, we need to 
use chain rule or substitute only once because once we have created an equation involving variable 1 
and variable 3, we won’t need to combine these variables again.  Since we know we’re going to have 
to use either chain rule or substitute one time, we can simplify our search for a problem solution by 
deciding to use one of these two operators right away, when we are deciding which operator to use for 
evaluate operand 1. 

But which combining operator should we select?  Well, since chain rule involves only derivative 
equations (both for its operands and its result), it is usually more efficient when most of our equations 
are in derivative form, since fewer transformations between regular and derivative form will be 
required.  Similarly, substitute is usually more efficient when most of our equations are in regular 
form.  So if at least 2 out of 3 of the two given equations (not counting the equation stating variable 
3’s numeric value) and evaluate operand 1’s equation form are in derivative form, use chain rule as 
the combining operator; otherwise, at least 2 out of 3 of these equations must be in regular form, so 
use substitute as the combining operator. 
 
Here’s the wrinkle:  If, for example, the two given equations are in derivative form and evaluate 
operand 1’s equation form is in regular form, then our heuristic says to use chain rule as the 
combining operator.  This is correct, but the problem is that chain rule will result in a derivative 
equation while the evaluate operand 1’s equation form is in regular form.  We will need to integrate 
the equation that results from applying chain rule in order to create the regular equation form for 
evaluate operand 1.  This means we need to plan to use an operator  sequence, integrate after chain 
rule.  Similarly, if the two given equations are in regular form and evaluate operand 1’s equation 
form is in derivative form, we need to plan to use the operator sequence differentiate after 
substitute. 
 
All of this information is summarized in Table A4 below. 
 

 

 

Table A4:  2 out of 3 heuristic for selecting operator(s) for evaluate operand 1 

 
Equation form for 
first two given eqs & 
evaluate operand 1 

  
evaluate operand 1’s 
equation form 

  
Operator(s) for 
evaluate operand  1 

     
derivative  derivative  chain rule 
     
derivative  regular  integrate after chain rule 
     
regular  regular  substitute 
     
regular  derivative  differentiate after substitute 
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APPENDIX B.  Posttest 
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DT04-1 Experiment 
 

Posttest 
 
 
 

User ID:  ____________________________ 
 
 

Date:  __________ 
 
 
 
 

Please answer the following questions to the best of your ability. 
 

Your performance will have no impact on your record at the University of Pittsburgh.  
 

If you have any questions, please feel free to ask the experimenter. 
 

This test usually takes approximately 30 minutes to complete. 
 
 
 

THANKS FOR PARTICIPATING!   
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1. Specify the equation form for the differentiate operand by circling one expression for the left-
hand-side (LHS) and one expression for the right-hand-side (RHS). 

 
• find equation form dx/dy=f(y) using differentiate 

• differentiate operand: find equation form _______ 
 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   

 
 
 
 
2. Specify the equation form for the integrate operand by circling one expression for the LHS 

and one expression for the RHS. 
 

• find equation form y=f(z) using integrate  
• integrate operand: find equation form _______ 

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   
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3. Specify the equation form for chain rule operand 1 by circling one expression for the LHS 
and one expression for the RHS. 

 
• find equation form dx/dz=f(z) using chain rule 

• chain rule operand 1: find equation form _______ 
• chain rule operand 2:  

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   

 
 
 
 
4. Specify the equation form for chain rule operand 2 by circling one expression for the LHS 

and one expression for the RHS. 
 

• find equation form dx/dz=f(z) using chain rule 
• chain rule operand 1:  
• chain rule operand 2: find equation form _______ 

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   
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5. Specify the equation form for the flip derivative operand by circling one expression for the 

LHS and one expression for the RHS. 
 

• find equation form dx/dy=K using flip derivative 
• flip derivative operand: find equation form _______ 

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   

 
 
 
 
6. Specify the equation form for the restate operand by circling one expression for the LHS and 

one expression for the RHS. 
 

• find equation form y=f(z) using restate 
• restate operand: find equation form _______ 

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   
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7. Specify the equation form for substitute operand 1 by circling one expression for the LHS 
and one expression for the RHS. 

 
• find equation form x=f(z) using substitute 

• substitute operand 1: find equation form _______ 
• substitute operand 2:  

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   

 
 
 
 
8. Specify the equation form for substitute operand 2 by circling one expression for the LHS 

and one expression for the RHS. 
 

• find equation form x=f(z) using substitute 
• substitute operand 1:  
• substitute operand 2: find equation form _______ 

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   
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9. Specify the equation form for evaluate operand 1 by circling one expression for the LHS and 
one expression for the RHS. 

 
• find equation form x=K using evaluate 

• evaluate operand 1: find equation form _______ 
• evaluate operand 2: z=5 

 
 

LHS  RHS 
   

_____ = _____ 
   

x  f(x) 
y  f(y) 
z  f(z) 

dx/dy  K 
dx/dz   
dy/dx   
dy/dz   
dz/dx   
dz/dy   

 
 
 
 
10. Circle the single most efficient operator or operator sequence (according to the heuristics 

presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 
 

Accepted Equations 
1. dy/dz=8*z4  
2. x=2*y  
3. z=2 

 
Goal: find equation form x=f(z) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 
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11. Circle the single most efficient operator or operator sequence (according to the heuristics 
presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 

 
Accepted Equations 
1. z=y1/2 
2. dx/dy=15*z2 
3. x=5*z3 

 

Goal: find equation form y=f(z) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 

 
 
 
 
12. Circle the single most efficient operator or operator sequence (according to the heuristics 

presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 
 

Accepted Equations 
1. x=5*y3 
2. dx/dy=15*y2 
3. dz/dy=1/2  

 
Goal: find equation form dy/dz=K using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 
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13. Circle the single most efficient operator or operator sequence (according to the heuristics 
presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 

 
Accepted Equations 
1. z=y1/4  
2. x=5*y2 
3. z=4  

 
Goal: find equation form dx/dz=f(z) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 

 
 
 
 

14. Circle the single most efficient operator or operator sequence (according to the heuristics 
presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 

 
Accepted Equations 
1. dz/dy=4*y  
2. y=3*x3  
3. dx/dy=5*y2 

 

Goal: find equation form x=f(y) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 
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15. Circle the single most efficient operator or operator sequence (according to the heuristics 
presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 

 
Accepted Equations 
1. y=4*z5 
2. dy/dx=13*x2 
3. z=3 

 
Goal: find equation form dx/dz=f(z) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 

 
 
 
 
16. Circle the single most efficient operator or operator sequence (according to the heuristics 

presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 
 

Accepted Equations 
1. x=3*y2 
2. dz/dy=4*y3 
3. z=y4 

 

Goal: find equation form dx/dy=f(y) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 
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17. Circle the single most efficient operator or operator sequence (according to the heuristics 
presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 

 
Accepted Equations 
1. dz/dy=12*y2  
2. y=½*x  
3. z=4*y3 

 

Goal: find equation form x=f(y) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 

 
 
 
 
18. Circle the single most efficient operator or operator sequence (according to the heuristics 

presented in the tutorial) to derive the goal’s equation form from the Accepted Equations. 
 

Accepted Equations 
1. dy/dx=1/3   
2. dy/dz=2*z4 
3. z=3  

 
Goal: find equation form x=f(z) using operator(s) _______ 
 
Operators and operator sequences: 

 
chain rule 
differentiate 
differentiate after substitute 
flip derivative 
integrate 
integrate after chain rule 
restate 
substitute 
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19. Circle the equation in the list of Accepted Equations that corresponds to the goal’s equation 
form. 

 
Accepted Equations 
1. x=4*y5  
2. dx/dy=5 
3. x=80  

 

Goal: find equation form x=K using accepted equation _______ 
 

  
 
20. Circle the equation in the list of Accepted Equations that corresponds to the goal’s equation 

form. 
 

Accepted Equations 
1. y=3*z2  
2. dy/dz=5*z3 
3. dy/dz=14  

 
Goal: find equation form dy/dz=f(z) using accepted equation _______ 
 

  
 
21. Apply the operator differentiate to its operand and fill in the result in the space after 

“yielding”.   
 

• find equation form dx/dz=f(z) using operator differentiate yielding _____________ 
• differentiate operand:  x=2*z4  

 
 
 
22. Apply the operator integrate to its operand and fill in the result in the space after “yielding”.   
 

• find equation form dy/dx=f(x) using operator integrate yielding _____________ 
• integrate operand:  dz/dy=8*y3 

 
 
 
23. Apply the operator chain rule to its operands and fill in the result in the space after 

“yielding”.   
 

• find equation form dx/dz=f(z) using operator chain rule yielding _____________ 
• chain rule operand 1:  dx/dy=2 
• chain rule operand 2:  dy/dz=5*z4 
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24. Apply the operator flip derivative to its operand and fill in the result in the space after 
“yielding”.  

 
• find equation form dy/dz=K using operator flip derivative yielding _____________ 

• flip derivative operand:  dz/dy=½ 
 
 
 
25. Apply the operator restate to its operand and fill in the result in the space after “yielding”.  
 

• find equation form x=f(y) using operator restate yielding _____________ 
• restate operand:  y = ½ * x 

 
 
 
26. Apply the operator restate to its operand and fill in the result in the space after “yielding”.  
 

• find equation form x=f(y) using operator restate yielding _____________ 
• restate operand:  y=x1/2 

 
 
 
27. Apply the operator substitute to its operands and fill in the result in the space after 

“yielding”.  
 

• find equation form x=f(z) using operator substitute yielding _____________ 
• substitute operand 1:  x=2*y 
• substitute operand 2:  y=3*z3 

 
 
 
28. Apply the operator evaluate to its operands and fill in the result in the space after “yielding”.  
 

• find equation form dx/dz=K using operator evaluate yielding _____________ 
• evaluate operand 1:  dx/dz=5*z2 
• evaluate operand 2:  z=3 
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Tips for Using the Calculus Tutor 
 
 

The Calculus Tutor will lead you through the problems using the knowledge you have gained in the 
tutorial and helping you out as necessary.  Some tips for using the Calculus Tutor are listed below.  
 
 
1. To progress through the problems, click in the Goals Window on any goal that is 

highlighted in blue or red.  You may have to click on a goal more than once to get the 
Calculus Tutor to respond.  Then follow the prompts displayed in the Prompt Window. 

 
Colors used in Goals Window 

Blue: Click to pursue goal. 

Red: Error.  Click to correct the error. 

Black: Previously established correct entry.  

Green: Correct entry.  Entry will turn black after next click in Goals Window.  
 
 

2. When a message is displayed in the Prompt Window, the corresponding goal will be 
highlighted in bold type in the Goals Window.  

 
 
3. Simplify new equations before entering them in the New Equation Window.  All equations 

should have either a single variable or a derivative expression (e.g., x or dx/dz) on the left-
hand-side (LHS), and all multiplications, divisions and exponentiations should be carried out.  
Examples: 

• Instead of entering 1/2*(3*z2)=1/6*x, enter x=9*z2.  

• Instead of entering 1/2*(3*22)=dx/dz*1/6, enter dx/dz=36.  
 
 
4. To enter an exponent in the Equation Entry Window (e.g., the 2 in y2), you can either 

click on the Exponent button below the window, or enter the symbol ^ followed by the 
exponent – e.g., x=3*y^2 is automatically formatted as x=3*y2.  When you are through 
entering an exponent, you can click on the Exponent button to resume entering regular text.    
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Symbols & Definitions 
 
 

• * – Symbol for multiplication.  E.g., 2*2=4  

• / – Symbol for division.  E.g., 4/2=2  

• derivative expression – E.g., dx/dy  

• derivative equation – An equation with a derivative expression 

• derivative form – An equation or equation form with a derivative expression 

• equation form – E.g., for dx/dy=2*y3, the equation form is dx/dy=f(y) 

• f(<variable>) – A function of <variable>.  E.g.: for x=2*y3, x=f(y); for x=2*v, x=f(v) 

• given – An Accepted Equation that was given along with the problem statement 

• LHS – The left-hand-side of an equation.  E.g., x in x=2*y3 

• multiplicative inverse – Example 1: dx/dy  dy/dx.  Example 2: 5  1/5  

• <number> – In an equation form, <number> represents any number (no variables). 

• operator – A mathematical operation.  E.g., differentiate, chain rule, restate, etc. 

• operand – The input equation that is transformed by an operator 

• regular equation – An equation without a derivative expression 

• regular form – An equation or equation form without a derivative expression 

• RHS – The right-hand-side of an equation.  E.g., 2*y3 in x=2*y3  
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APPENDIX D.  Expanded Problem Screen Shots with Goal Numbers 
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[3]
[4]

[5] 
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APPENDIX E.  Screen Shots of Dialog Windows 
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APPENDIX F.  Sample Scenario Description 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Student’s next action – Help Request for problem P3, goal 5 – correct entry is Operator integrate 

substitute operand 2: find equation form h=f(i) using accepted equation / operator ______ 
 
Student History Correct Entries – 27 Errors – 48 Help Requests – 45  Help Requests Not Discouraged 
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Student and tutor actions related to the concept required for this step, heuristic: use operator integrate 

A. Pretest problem:  Correct 

B. Previous student and tutor actions in this or other problems:  

1. This step: problem P3, goal 5 – correct entry is Operator integrate 

Student: Clicked general “Help!” button 

Tutor: Select Operator window with message: 

Select operator(s) that will efficiently transform Accepted Equation(s) into an equation of the form h=f(i) 

Student: Clicked “Explain Further”  

Tutor: Message:  

Select the most efficient operator for transforming a derivative Accepted Equation into its regular form 
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Tutorial Response Ratings 
 
Evaluator ID: __________________  Date: ___________________ 
 
Rate the following possible tutorial responses to this situation on a scale of 1 to 5¸ where 1 is your worst rating and 5 is your best. 
Note:  These ratings are not comparisons among the possible responses.  You may give more than one response the same rating. 
 
 
Select Operator(s) window (unless otherwise specified) with one of the following messages:  
 
 

Rating Response 

A. _____ Select operator integrate 
 
 
B. _____ (No message) 
 
 
C. _____ Operator integrate can transform an Accepted Equation that is a derivative version of the goal's regular equation form  

 
Example:  Operator integrate can transform an Accepted Equation of form da/db=f(b) into an equation of form a=f(b) 

 
 
D. _____ Select the most efficient operator for transforming a derivative Accepted Equation into its regular form 
 
 
E. _____ Select operator(s) that will efficiently transform Accepted Equation(s) into an equation of the form h=f(i) 
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Any Comments About Tutorial Responses on Previous Page 
 
 
 
 
 
 
 
 
 
 
 
 
Your Best Tutorial Response 
 
If the tutor should respond, write your best single tutorial response given that the response must: 

-  take one turn  
- be related to a step that the student can take next in the interface  
- not ask the student to do something outside the interface  

If the tutor should not respond, write “none.”  
 
 

  
 
 
 
 



 
 
 
 
 

APPENDIX G.  Sample Help Messages 
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Sample Help Messages for Dialog Select Equation Form 
 
 
Prompt  
 

To use chain rule to create an equation of form dx/dz=f(z), chain rule operand 1 must be in what 
form? 

 
 
 

Hint 
 
chain rule operand 1 must be a derivative equation involving: 

... (1) one variable that is in dx/dz=f(z) 

... (2) one variable that is not in dx/dz=f(z) 
…(3) a number 

 
 

 
Teach 

 
When chain rule's operands have the following forms: 

... operand 1:  d<variable 1> / d<variable 2> = <number> 

... operand 2:  d<variable 2> / d<variable 3> = f(<variable 3>) 
 
the resulting equation will have this form: 
... result:  d<variable 1> / d<variable 3> = f(<variable 3>) 
 

Example: To create an equation of the form da/dc=f(c) when the other variable in the Accepted 
Equations is b, operand 1's equation form must be da/db=<number> 

 
 

Do 
 
Select equation form dx/dy=<number>: 
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Sample Help Messages for Dialog Select Operator(s) 
 
 
Prompt  
 

Select operator(s) that will efficiently transform Accepted Equation(s) into an equation of the 
form g=f(i) 

 
 
 

Hint 
 
Select the most efficient operator considering: 
(1) at least 2 out of 3 of the first two given equations and evaluate operand 1's equation form are 

in regular form 
(2) evaluate operand 1's equation form, g=f(i), is in regular form 
 

 
 

Teach 
 
When: 
(1) at least 2 out of 3 of the first two given equations and evaluate operand 1's equation form are 

in regular form 
... and ... 
(2) evaluate operand 1's equation form, g=f(i), is in regular form 
 
operator substitute minimizes transforming equations between regular and derivative form 

 
 
 

Do 
 
Select operator substitute 
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Sample Help Messages for Dialog Select Accepted Equation 
 
 
Prompt  
 

Match equation form dr/ds=f(s) with one of the accepted equations 
 

 
 

Hint 
 
Select an equation that has the same variables as equation form dr/ds=f(s) 
 

 
 

Teach 
 
Select an Accepted Equation by matching both the LHS and RHS of equation form dr/ds=f(s) as 
follows: 

- On the LHS, the equation form and the Accepted Equation must have the same variable or 
derivative expression.  For example, both should have a or both should have da/db  

- On the RHS: 
... If the equation form has, e.g., f(b), the Accepted Equation must have an expression using 

the same variable – e.g., 3*b5 – on the RHS 
... If the equation form has <number>, the Accepted Equation must have only a number on 

the RHS 
 

 
 

Do 
 
Select equation dr/ds=10*s2 
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Sample Help Messages for Dialog Enter Equation 
 
 
Prompt  
 

Apply differentiate to y=2*z4, then simplify the resulting equation 
 

 
 

Hint 
 
- Use the power rule to transform y=2*z4 into a derivative equation 
- Then simplify the resulting equation 
 

 
 

Teach 
 
differentiate transforms a regular equation into a derivative equation using the power rule 

Example - operand: a = 2 * b3   ==>   da/db = 3 * 2 * b2   ==>   result: da/db = 6 * b2 

(1) Change the LHS into a derivative expression: 
....... the numerator is d plus the variable on the operand's LHS 
....... the denominator is d plus the variable on the operand's RHS 
(2) Multiply the RHS by the exponent 
(3) Subtract 1 from the exponent 
(4) Simplify the resulting equation 

 
 
 

Do 
 
Enter equation dy/dz=8*z3 

 204



 
 
 
 
 

BIBLIOGRAPHY 
 
 
 
 
Aist, G., Kort, B., Reilly, R., Mostow, J., & Picard, R. (2002). Adding human-provided emotional 

scaffolding to an automated reading tutor that listens increases student persistence. In S. A. Cerri 
& G. Gouarderes & F. Paraguacu (Eds.), Intelligent Tutoring Systems, 4th International 
Conference, ITS 2002, 992. 

Albrecht, D.W., Zukerman, I., & Nicholson, A.E. (1998). Bayesian models for keyhole plan recognition 
in an adventure game. User Modeling and User-Adapted Interaction, 8, 5-47. 

Aleven, V., & Koedinger, K.R. (2000). Limitations of student control: Do students know when they need 
help? In G. Gauthier & C. Frasson & K. VanLehn (Eds.), Intelligent Tutoring Systems, 5th 
International Conference, ITS 2000, 292-303. 

Aleven, V., McLaren, B.M., & Koedinger, K.R. (2004). Toward Tutoring Help Seeking: Applying 
Cognitive Modeling to Meta-Cognitive Skills. In S. Karabenick & R. Newman (Eds.), Seventh 
International Conference on Intelligent Tutoring Systems, ITS 2004, 227-239. 

Anderson, J.R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University Press. 

Anderson, J.R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R. (1995). Cognitive Tutors: Lessons 
Learned. The Journal of the Learning Sciences, 4(2), 167-207. 

Anderson, J.R., & Lebiere, C. (1998). The atomic components of thought: Mahwah, NJ: Erlbaum. 

Arroyo, I., & Woolf, B.P. (2001). Improving student models by reasoning about cognitive ability, 
emotions and gender. In M. Bauer & P. J. Gmytrasiewicz & J. Vassileva (Eds.), User Modeling 
2001: Eighth International Conference, 265-267. 

Baker, R.S., Corbett, A.T., & Koedinger, K.R. (2004). Detecting Student Misuse of Intelligent Tutoring 
Systems. In S. Karabenick & R. Newman (Eds.), Seventh International Conference on Intelligent 
Tutoring Systems, ITS 2004, 531-540. 

Beck, J.E., & Woolf, B.P. (2000). High-level student modeling with machine learning. In G. Gauthier & 
C. Frasson & K. VanLehn (Eds.), Intelligent Tutoring Systems, 5th International Conference, ITS 
2000, 584-593. 

Binder, J., Koller, D., Russell, S.J., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden 
variables. Machine Learning Journal, 29(2-3), 213-244. 

 205



Bloom, B.S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as 
one-to-one tutoring. Educational Researcher, 13(6), 4-16. 

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes, Fourteenth Annual 
Conference on Uncertainty in Artificial Intelligence (UAI-98), 33-42. 

Cheng, J., Bell, D., & Liu, W. (1998). Learning Bayesian networks from data: An efficient approach 
based on information theory. On the World Wide Web: www.cs.ualberta.ca/~jcheng/bnpc.htm

Cheng, J., & Druzdzel, M.J. (2000). AIS-BN: An adaptive importance sampling algorithm for evidential 
reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 13, 155-188. 

Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., & Glaser, R. (1989). Self-explanations: How 
students study and use examples in learning to solve problems. Cognitive Science, 15, 145-182. 

Chiu, B.C., & Webb, G.I. (1998). Using decision trees for agent modeling: Improving prediction 
performance. User Modeling and User-Adapted Interaction, 8, 131-152. 

Clemen, R.T. (1996). Making Hard Decisions: An Introduction to Decision Analysis. New York: 
Duxbury Press, Wadsworth Publishing Company. 

Collins, A., & Brown, J.S. (1988). The computer as a tool for learning through reflection. In H. Mandl & 
A. Lesgold (Eds.), Learning Issues for Intelligent Tutoring Systems (pp. 1-18). New York: 
Springer-Verlag. 

Conati, C. (2002). Probabilistic Assessment of User's Emotions in Educational Games. Journal of Applied 
Artificial Intelligence, Special issue on "Merging Cognition and Affect in HCI", 16(7-8). 

Conati, C., Gertner, A., & VanLehn, K. (2002). Using Bayesian networks to manage uncertainty in 
student modeling. User Modeling and User-Adapted Interaction, 12(4), 371-417. 

Conati, C., & VanLehn, K. (1996). POLA: A student modeling framework for probabilistic on-line 
assessment of problem solving performance. In D. N. Chin & M. Crosby & S. Carberry & I. 
Zukerman (Eds.), Fifth International Conference on User Modeling (UM96), 75-82. 

Cooper, G. (1990). The computational complexity of probabilistic inference using Bayesian belief 
networks. Artificial Intelligence, 42, 393-405. 

Cooper, G., Horvitz, E., & Heckerman, D. (1989). A method for temporal probabilistic reasoning. 
Medical Computer Science KSL-88-30. Stanford, CA: Knowledge Systems Laboratory, Stanford 
University. 

Corbett, A., McLaughlin, M., & Scarpinatto, K.C. (2000). Modeling student knowledge: Cognitive tutors 
in high school and college. User Modeling and User-Adapted Interaction, 10, 81-108. 

Corbett, A.T., & Anderson, J.R. (1992). Student modeling and mastery learning in a computer-based 
programming tutor. In C. Frasson & G. Gauthier & G. I. McCalla (Eds.), Intelligent Tutoring 
Systems, Proceedings of the Second International Conference, ITS '92, 413-420. 

Corston, R., & Colman, A. (2003). A Crash Course in SPSS for Windows (2nd ed.): Blackwell 
Publishing. 

 206

http://www.cs.ualberta.ca/%7Ejcheng/bnpc.htm


Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-
hard. Artificial Intelligence, 60(1), 141-153. 

de Vicente, A., & Pain, H. (2002). Informing the detection of the students' motivational state: an 
empirical study. In S. A. Cerri & G. Gouarderes & F. Paraguacu (Eds.), Sixth International 
Conference on Intelligent Tutoring Systems, ITS 2002, 933-943. 

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Computational 
Intelligence, 5(3), 142-150. 

Dean, T., & Wellman, M.P. (1991). Planning and Control. San Mateo, California: Morgan Kaufmann. 

del Soldato, T., & du Boulay, B. (1995). Implementation of motivational tactics in tutoring systems. 
Journal of Artificial Intelligence in Education, 6(4), 337-378. 

Fox, B.A. (1993). The Human Tutorial Dialogue Project: Issues in the Design of Instructional   Systems. 
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Galdes, D. (1990). An empirical study of human tutors: The implications for intelligent tutoring systems. 
Unpublished doctoral dissertation, Ohio State University, Columbus, OH.  

Ganeshan, R., Johnson, W.L., Shaw, E., & Wood, B.P. (2000). Tutoring diagnostic problem solving. In 
G. Gauthier & C. Frasson & K. VanLehn (Eds.), Intelligent Tutoring Systems, 5th International 
Conference, ITS 2000, 33-42. 

Gertner, A., Conati, C., & VanLehn, K. (1998). Procedural help in Andes: Generating hints using a 
Bayesian network student model, Fifteenth National Conference on Artificial Intelligence (AAAI-
98), 106-111. 

Gertner, A.S., & VanLehn, K. (2000). Andes: A coached problem solving environment for physics, 
Intelligent Tutoring Systems, 5th International Conference, ITS 2000, 133-142. 

Goleman, D. (1995). Emotional intelligence: Why it can matter more than IQ: New York: Bantam. 

Graesser, A.C., Person, N.K., & Magliano, J.P. (1995). Collaborative dialogue patterns in naturalistic 
one-to-one tutoring. Applied Cognitive Psychology, 9, 495-522. 

Grossmann-Hutter, B., Jameson, A., & Witttig, F. (1999). Learning Bayesian networks with hidden 
variables for user modeling, IJCAI-99 Workshop "Learning About Users", 29-34. 

Grosz, B.J., & Sidner, C.L. (1986). Attention, intentions, and the structure of discourse. Computational 
Linguistics, 12(3), 175-204. 

Heckerman, D. (1995). A tutorial on learning with Bayesian networks. MSR-TR-95-06: Microsoft 
Research. 

Henrion, M. (1989). Some practical issues in constructing belief networks. In L. N. Kanal & T. S. Levitt 
& J. F. Lemmer (Eds.), 3rd Conference on Uncertainty in Artificial Intelligence, 161-173. 

Henrion, M., Pradhan, M., Del Favero, B., Huang, K., Provan, G., & O'Rorke, P. (1996). Why is 
diagnosis in belief networks insensitive to imprecision in probabilities? In E. Horvitz & F. V. 
Jensen (Eds.), Twelfth Annual Conference on Uncertainty in Artificial Intelligence, 307-314. 

 207



Horvitz, E., & Barry, M. (1995). Display of information for time-critical decision making, Eleventh 
Conference on Uncertainty in Artificial Intelligence, 296-305. 

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., & Rommelse, K. (1998). The Lumiere project: 
Bayesian user modeling for inferring the goals and needs of software users, Fourteenth 
Conference on Uncertainty in Artificial Intelligence, 256-265. 

Horvitz, E., Jacobs, A., & Hovel, D. (1999). Attention-sensitive alerting, Fifteenth Conference on 
Uncertainty in Artificial Intelligence, 305-313. 

Howard, R.A. (1966). Information value theory. IEEE Transactions on Systems Science and Cybernetics, 
SSC-2, 22-26. 

Howard, R.A., & Matheson, J.E. (1984). Influence diagrams. In R. A. Howard & J. E. Matheson (Eds.), 
Readings on the Principles and Applications of Decision Analysis (pp. 721-762). Menlo Park: 
Strategic Decisions Group. 

Huang, C., & Darwiche, A. (1996). Inference in belief networks: A procedural guide. International 
Journal of Approximate Reasoning, 15, 225-263. 

Jameson, A. (1996). Numerical uncertainty management in user and student modeling: An overview of 
systems and issues. User Modeling and User-Adapted Interaction, 5(3-4), 193-251. 

Jameson, A., Grossman-Hutter, B., March, L., Rummer, R., Bohnenberger, T., & Wittig, F. (2001). When 
actions have consequences: Empirically based decision making for intelligent user interfaces. 
Knowledge-Based Systems, 14, 75-92. 

Katz, S., & Lesgold, A. (1994). Implementing post-problem reflection within Coached Practice 
Environments. In P. Brusilovsky & S. Dikareva & J. Greer & V. Petrushin (Eds.), Proceedings of 
the East-West International Conference on Computer Technologies in Education, 125-130. 

Keeney, R., & Raiffa, H. (1976). Decisions with Multiple Objectives. New York: Wiley. 

Koedinger, K.R., Anderson, J.R., Hadley, W.H., & Mark, M.A. (1997). Intelligent tutoring goes to school 
in the big city. International Journal of Artificial Intelligence in Education, 8, 30-43. 

Lepper, M.R., Aspinwall, L., Mumme, D., & Chabay, R.W. (1990). Self-perception and social perception 
processes in tutoring: Subtle control  strategies of expert tutors. In J. M. Olson & M. P. Zanna 
(Eds.), Self Inference Processes: The Sixth Ontario Symposium in Social Psychology (Vol. 6, pp. 
217-237): Hillsdale, NJ: Lawrence Erlbaum Associates. 

Lepper, M.R., Woolverton, M., Mumme, D.L., & Gurtner, J.-L. (1993). Motivational techniques of expert 
human tutors: Lessons for the design of computer-based tutors. In S. P. Lajoie & S. J. Derry 
(Eds.), Computers as Cognitive Tools (pp. 75-105). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Lin, Y., & Druzdzel, M.J. (1999). Stochastic sampling and search in belief updating algorithms for very 
large Bayesian networks, AAAI-1999 Spring Symposium on Search Techniques for Problem 
Solving Under Uncertainty and Incomplete Information, 77-82. 

 208



Martin, J., & VanLehn, K. (1995). Discrete factor analysis: Learning hidden variables in Bayesian 
networks. Technical Report. Pittsburgh, PA: Department of Computer Science, University of 
Pittsburgh. 

Mayo, M., & Mitrovic, A. (2001). Optimising ITS behaviour with Bayesian networks and decision 
theory. International Journal of Artificial Intelligence in Education, 12, 124-153. 

McArthur, D., Stasz, C., & Zmuidzinas, M. (1990). Tutoring techniques in algebra. Cognition and 
Instruction, 7(3), 197-244. 

Merrill, D.C., Reiser, B.J., Merrill, S.K., & Landes, S. (1995). Tutoring: Guided learning by doing. 
Cognition and Instruction, 13(3), 315-372. 

Merrill, D.C., Reiser, B.J., Ranney, M., & Trafton, J.G. (1992). Effective tutoring techniques: A 
comparison of human tutors and intelligent tutoring systems. The Journal of the Learning 
Sciences, 2(3), 277-306. 

Mostow, J., Huang, C., & Tobin, B. (2001). Pause the Video: Quick but quantitative expert evaluation of 
tutorial choices in a Reading Tutor that listens. In J. D. Moore & C. L. Redfield & W. L. Johnson 
(Eds.), Artificial Intelligence in Education, 343-353. 

Murray, R.C., & VanLehn, K. (2000). DT Tutor: A dynamic, decision-theoretic approach for optimal 
selection of tutorial actions. In G. Gauthier & C. Frasson & K. VanLehn (Eds.), Intelligent 
Tutoring Systems, 5th International Conference, ITS 2000, 153-162. 

Murray, R.C., & VanLehn, K. (2005). Effects of dissuading unnecessary help requests while providing 
proactive help. In C.-K. Looi & G. McCalla & B. Bredeweg & J. Breuker (Eds.), Artificial 
Intelligence in Education, 887-889. 

Murray, R.C., VanLehn, K., & Mostow, J. (2001a). A decision-theoretic approach for selecting tutorial 
discourse actions, NAACL 2001 Workshop on Adaptation in Dialogue Systems, 41-48. 

Murray, R.C., VanLehn, K., & Mostow, J. (2001b). A decision-theoretic architecture for selecting tutorial 
discourse actions, AI-ED 2001 Workshop on Tutorial Dialogue Systems, 35-46. 

Murray, R.C., VanLehn, K., & Mostow, J. (2004). Looking ahead to select tutorial actions: A decision-
theoretic approach. International Journal of Artificial Intelligence in Education, 14(3-4), 235-
278. 

Neapolitan, R.E. (2004). Learning Bayesian Networks. Upper Saddle River, NJ: Pearson Prentice Hall. 

Newell, A., & Simon, H.A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall, Inc. 

Ngo, L., Haddawy, P., Krieger, R.A., & Helwig, J. (1997). Efficient temporal probabilistic reasoning via 
context-sensitive model construction. Computers in Biology and Medicine, 27(5), 453-476. 

Paek, T., & Horvitz, E. (2000). Conversation as action under uncertainty. In C. Boutilier & M. 
Goldszmidt (Eds.), 16th Conference on Uncertainty in Artificial Intelligence (UAI-00), 455-464. 

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San 
Mateo, CA: Morgan-Kaufmann. 

 209



Pek, P.-K. (2003). Decision-Theoretic Intelligent Tutoring System. PhD dissertation, National University 
of Singapore. ftp://ftp.medcomp.comp.nus.edu.sg/pub/pohkl/pekpk-thesis-2003.pdf. 

Putnam, R.T. (1987). Structuring and adjusting content for students: A study of live and simulated 
tutoring of addition. American Educational Research Journal, 24(1), 13-48. 

Reye, J. (1995). A goal-centred architecture for intelligent tutoring systems. In J. Greer (Ed.), 
Proceedings of AI-ED 95 - World Conference on Artificial Intelligence in Education, 307-314. 

Reye, J. (1996). A belief net backbone for student modeling. In C. Frasson & G. Gauthier & A. Lesgold 
(Eds.), Intelligent Tutoring Systems, Third International Conference, 596-604. 

Reye, J. (1998). Two-phase updating of student models based on dynamic belief networks. In B. P. Goettl 
& H. M. Halff & C. L. Redfield & V. J. Shute (Eds.), Intelligent Tutoring Systems, Fourth 
International Conference, 274-283. 

Reye, J. (2004). Student modelling based on belief networks. International Journal of Artificial 
Intelligence in Education, 14, 63-96. 

Russell, S., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Englewood Cliffs, New 
Jersey: Prentice Hall. 

Schäfer, R., & Weyrath, T. (1997). Assessing temporally variable user properties with dynamic Bayesian 
networks. In A. Jameson & C. Paris & C. Tasso (Eds.), User Modeling: Proceedings of the Sixth 
International Conference, UM97, 377-388. 

Shachter, R., & Peot, M. (1992). Decision making using probabilistic inference methods, Eighth Annual 
Conference on Uncertainty in Artificial Intelligence, 276-283. 

Shute, V.J. (1995). SMART evaluation: cognitive diagnosis, mastery learning & remediation. In J. Greer 
(Ed.), Proceedings of AI-ED 95 - World Conference on Artificial Intelligence in Education, 123-
130. 

Singley, M.K. (1986). Developing Models of Skill Acquisition in the Context of Intelligent Tutoring 
Systems. PhD Thesis, Carnegie-Mellon University, Pittsburgh, PA.  

Singley, M.K. (1990). The reification of goal structures in a calculus tutor: Effects on problem solving 
performance. Interactive Learning Environments, 1, 102-123. 

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 
1124-1131. 

VanLehn, K., Ball, W., & Kowalski, B. (1989). Non-LIFO execution of cognitive procedures. Cognitive 
Science, 13, 415-465. 

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W.B. (2003). Why do only some events 
cause learning during human tutoring? Cognition and Instruction, 21(3), 209-249. 

von Winterfeldt, D., & Edwards, W. (1986). Decision Analysis and Behavioral Research: Cambridge: 
Cambridge University Press. 

Vygotsky, L. (1978). Mind in society: Cambridge, MA: Harvard University Press. 

 210

ftp://ftp.medcomp.comp.nus.edu.sg/pub/pohkl/pekpk-thesis-2003.pdf


Walker, M.A. (1996). Limited attention and discourse structure. Computational Linguistics, 22(2), 255-
264. 

Wellman, M.P. (1990). Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence, 
44(3), 257-303. 

 

 

 211


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 4.1:  Help abusers and their scores on help abuse measures 
	Table 4.2:  Learned prior probabilities for Calculus Tutor domain rules 
	Table 4.3:  Learned prior probabilities by rule type 
	Table 4.4:  P(guess) and p(slip) by rule type and help style 
	Table 4.5:  P(rule known) by rule type, help type and student help style 
	Table 4.6:  P(step known) by rule type, help type, rule known, and student help style 
	Table 4.7:  P(Cancel) and p(Help!) for Student Action Topic 
	Table 4.8:  P(Help Request) and p(Error) for Student Action Type 
	Table 4.9:  Utilities for tutor response preference 
	Table 4.10:  Weights for linearly-additive multiattribute utility function 
	Table 5.1:  Distributions of response types for all scenarios, percentages 
	Table 5.2:  FMO responses for all scenarios, percentages:  pretest wrong & right, FT & DT 
	Table 5.3:  Distributions of response types for help requests, percentages 
	Table 5.4:  FMO responses for help requests, percentages:  pretest wrong & right, FT & DT 
	Table 5.5:  Distributions of response types for errors, percentages 
	Table 5.6:  FMO responses for errors, percentages:  pretest wrong & right, FT & DT 
	Table 5.7:  Distributions of response types for step starts, percentages 
	Table 5.8:  FMO responses for step starts, percentages:  pretest wrong & right, FT & DT 
	Table 5.9:  Tutor x Judge x Scenario Type, repeated-measures ANOVA 
	Table 5.10:  Tutor x Judge, mean ratings:  RT vs. FT vs. DT 
	Table 5.11:  Tutor x Scenario Type, mean ratings:  RT vs. FT vs. DT 
	Table 5.12:  Error scenario ratings, means by each judge and overall 
	Table 5.13:  Step start scenario ratings, means by each judge and overall 
	Table 5.14:  Agreement among judges, all scenarios 
	Table 5.15:  Agreement among judges, step start scenarios 
	Table 5.16:  Agreement among judges, first-message-opportunity help requests 
	Table 5.17:  Tutor x Scenario Type, repeated-measures ANOVA:  RT vs. FT vs. DT 
	Table 5.18:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT 
	Table 5.20:  Step start scenario composite ratings by response type 
	Table 5.21:  FMO scenarios, composite ratings, paired t-tests:  FT vs. DT  
	Table 5.22:  Tutor x Scenario Type, repeated-measures ANOVA:  FTe vs. DTe  
	Table 5.23:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT vs. FTe vs. DTe 
	Table 5.24:  Tutor x Scenario Type, composite ratings, t-tests:  FTe vs. DT, FTe vs. DTe 
	Table A1:  Equation Form Examples 
	Table A2:  Sample equation forms for the operators 
	Table A3:  Operator selection heuristics:  differentiate, flip derivative, integrate, & restate 
	Table A4:  2 out of 3 heuristic for selecting operator(s) for evaluate operand 1 

	LIST OF FIGURES
	Figure 1.1:  Tutor action cycle network, high-level overview 
	Figure 3.1:  Problem solution graph for problem P1 
	Figure 3.2:  DT Tutor's Tutor Action Cycle Network 
	Figure 3.3:  Student Focus subnetworks in TACN 
	Figure 3.4:  Student Knowledge subnetworks in TACN 
	Figure 3.5:  Simplified CPT for a Student Knowledge step node 
	Figure 4.1:  Text discouraging help requests on 27 of 60 tip sheets 
	Figure 5.1:  Tutor x Judge, mean ratings:  RT vs. FT vs. DT  
	Figure 5.2:  Tutor x Scenario Type, mean ratings:  RT vs. FT vs. DT 
	Figure 5.3:  First error scenario ratings by each judge:  RT vs. FT 
	Figure 5.4:  Subsequent error scenario ratings by each judge:  RT vs. FT 
	Figure 5.5:  Step start scenario ratings by each judge:  RT vs. FT 
	Figure 5.6:  Tutor x Scenario Type, Judge 3:  RT vs. FT 
	Figure 5.7:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT 
	Figure 5.8:  Tutor x Scenario Type, composite ratings:  RT vs. FT vs. DT vs. FTe vs. DTe 
	Figure A1:  Calculus Tutor screen shot 

	PREFACE
	1.0 INTRODUCTION 
	1.1 RESEARCH PROBLEMS 
	1.1.1 Hypothesis 1:  Decision-theoretic can be better than random tutoring 
	1.1.2 Hypothesis 2:  Decision-theoretic can be better than fixed-policy tutoring 

	1.2 GENERAL APPROACH 
	1.2.1 A decision-theoretic approach 
	1.2.2 DT Tutor’s general architecture 
	1.2.2.1 High-level overview of DT Tutor’s architecture  



	2.0 SCIENTIFIC CONTRIBUTIONS AND RELATED WORK 
	2.1 COMPARATIVELY EVALUATE DECISION-THEORETIC TUTORING 
	2.2 A NOVEL ARCHITECTURE FOR TUTORIAL ACTION SELECTION 
	2.2.1 Making decisions 
	2.2.2 Deciding the type of tutorial action as well as the topic 
	2.2.3 Modeling change over time 
	2.2.4 Which attributes to model 
	2.2.4.1 Modeling observable and unobservable attributes 
	2.2.4.2 Modeling the user’s focus of attention 
	2.2.4.3 Modeling the user’s affective state 
	2.2.4.4 Predicting and learning from the user’s actions 



	3.0 TECHNICAL APPROACH  
	3.1 THE DOMAIN EXPERT 
	3.1.1 The calculus related-rates problem domain 
	3.1.2 Problem solutions generated by the domain expert 

	3.2 DECISION-THEORETIC ACTION SELECTION ENGINE 
	3.2.1 Tutor Action Cycle Network in more detail 
	3.2.2 Problem solution graph structure 
	3.2.3 Tutor Action Nodes 
	3.2.4 Student Action Nodes 
	3.2.5 Student Focus Subnetworks 
	3.2.5.1 Focus evolution and aging 

	3.2.6 Student Knowledge Subnetworks 
	3.2.7 Discourse State subnetworks 
	3.2.8 Student Independence nodes to model affect 
	3.2.9 Student Help Style nodes 
	3.2.10 Utility subnetwork 
	3.2.11 Filter nodes  
	3.2.12 Rule-based conditional probability table creation 

	3.3 THE STUDENT INTERFACE 
	3.3.1 Reification of goal structure in the Goals Window 
	3.3.1.1 An extended example of student interface displays 
	3.3.1.2 Immediate flag feedback 
	3.3.1.3 Correspondence between dialog windows and types of rules 
	3.3.1.4 Help messages 



	4.0 EVALUATION:  DATA COLLECTION PHASE 
	4.1 GOALS OF THE DATA COLLECTION AND TUNING PHASE 
	4.2 DESIGN OF THE DATA COLLECTION EXPERIMENT 
	4.2.1 Subjects 
	4.2.1.1 Printed materials 
	4.2.1.2 The Random Tutor 

	4.2.2 Procedure 

	4.3 PARTITIONING INTO TRAINING AND TEST DATA SETS 
	4.4 LEARNING PROBABILITIES EMPIRICALLY 
	4.4.1 Identifying student help style, including help abuse 
	4.4.2 Learning prior probabilities  
	4.4.3 Learning conditional probabilities  
	4.4.3.1 Learning conditional probabilities related to unobservable variables 
	4.4.3.2 Learning conditional probabilities with sparse data 
	4.4.3.3 Estimating rule knowledge as it changes over time 
	4.4.3.4 Estimating p(guess) and p(slip) 
	4.4.3.5 Estimating effects of help on student rule knowledge 
	4.4.3.6 Estimating effects of help on student step knowledge when rule unknown  
	4.4.3.7 Estimating effects of help on student step knowledge when rule known  
	4.4.3.8 Estimating conditional probabilities for Student Action Topic 
	4.4.3.9 Estimating conditional probabilities for student action type  


	4.5 TUNING UTILITIES 
	4.5.1 Utilities for each tutorial state attribute 
	4.5.1.1 Discourse coherence 
	4.5.1.2 Discourse relevance 
	4.5.1.3 Student rule knowledge 
	4.5.1.4 Student problem-solving progress  
	4.5.1.5 Student help style 
	4.5.1.6 Student independence 
	4.5.1.7 Tutor response preferences 

	4.5.2 Multiattribute utility function  


	5.0 EVALUATION:  ASSESSMENT PHASE 
	5.1 GOALS OF THE ASSESSMENT PHASE 
	5.2 DESIGN OF THE ASSESSMENT PHASE EXPERIMENT 
	5.2.1 Subjects 
	5.2.2 Materials 
	5.2.2.1 Printed materials 
	5.2.2.2 Scenario types and stratified sampling 
	5.2.2.3 The Fixed-Policy Tutor 

	5.2.3 Procedure 

	5.3 FAST RESPONSE TIME BY LIMITING PROBLEM SOLUTIONS 
	5.4 DISTRIBUTIONS OF RESPONSES SELECTED BY THE TUTORS 
	5.4.1 The Fixed-Policy Tutor’s overall distribution of response selections 
	5.4.2 DT Tutor’s overall distribution of response selections 
	5.4.2.1 DT Tutor’s large number of teach responses 
	5.4.2.2 DT Tutor’s small number of hint responses 

	5.4.3 First-message-opportunity scenarios:  pretest-wrong, pretest-right 
	5.4.4 The tutors’ response distributions for help requests 
	5.4.4.1 FT and DT response distributions for FMO help requests 

	5.4.5 The tutors’ response distributions for errors  
	5.4.5.1 FT and DT response distributions for FMO errors  

	5.4.6 The tutors’ response distributions for step starts  
	5.4.6.1 FT and DT response distributions for FMO step starts  


	5.5 THE JUDGES’ EVALUATIONS 
	5.5.1 The judges’ comments 
	5.5.2 The judges’ individual ratings 
	5.5.2.1 Judge x Tutor ratings 
	5.5.2.2 Scenario Type x Tutor Ratings 
	5.5.2.3 Scenario Type x Tutor Interaction for Errors 
	5.5.2.4 Scenario Type x Tutor Interaction for Step Starts 
	5.5.2.5 Judge x Tutor Interaction for Judge 3 

	5.5.3 Composite judges’ ratings 
	5.5.3.1 Similarities among judges’ ratings for all responses 
	5.5.3.2 Contrasts in ratings for subsets of scenarios 
	5.5.3.3 Composite judges’ ratings use the median rating for each response 


	5.6 COMPARING COMPOSITE RATINGS OF THE TUTORS 
	5.6.1 Composite ratings:  Random Tutor vs. Decision-Theoretic Tutor 
	5.6.2 Composite ratings:   Fixed-Policy Tutor vs. Decision-Theoretic Tutor  
	5.6.2.1 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  Help requests 
	5.6.2.2 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  Errors 
	5.6.2.3 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  Step starts 
	5.6.2.4 Decision-Theoretic Tutor vs. Fixed-Policy Tutor:  FMO scenarios 


	5.7 COMPARING ENHANCED VERSIONS OF THE TUTORS:  DTe vs. FTe 
	5.7.1 DTe vs. FTe:  first-message-opportunity scenarios 


	6.0 DISCUSSION 
	6.1 LEARNING PROBABILITIES 
	6.1.1 Techniques for learning probabilities 
	6.1.2 Learning about students’ rule knowledge in the presence of help abuse 
	6.1.3 Learning with sparse data 
	6.1.4 Some surprises in the learned probabilities 
	6.1.5 Expected patterns in the learned probabilities 

	6.2 TUNING UTILITIES 
	6.3 RANDOM VS. DECISION-THEORETIC:  SUPPORT FOR HYPOTHESIS 1 
	6.4 FIXED-POLICY VS. DECISION-THEORETIC TUTORING 
	6.4.1 Fixed-Policy Tutor vs. Decision-Theoretic Tutor:  Support for Hypothesis 2 
	6.4.2 FT vs. DT:  Adapting the tutor’s response type to the situation 
	6.4.3 Examples of judges’ preferences for more explicit help than FT would select 
	6.4.3.1 Example of preferences for more explicit help for a help request 
	6.4.3.2 Example of preferences for more explicit help for an error 
	6.4.3.3 Example of preferences for more explicit help for a start step scenario 

	6.4.4 FT vs. DT:  The role of proactive help  
	6.4.4.1 Effects of enhancing a fixed policy 

	6.4.5 Should you choose fixed-policy or decision-theoretic tutoring?  

	6.5 SHOULD COMPUTER TUTORS PROVIDE PROACTIVE HELP? 
	6.6 LIMITATIONS AND FUTURE WORK 
	6.6.1 Limitations of decision-theoretic approaches 
	6.6.2 Limitations of DT Tutor 
	6.6.3 Limitations of the current study 
	6.6.3.1 The method of comparing the tutors 
	6.6.3.2 Some other limitations of the current study 


	6.7 CONCLUSIONS 
	6.7.1 A decision-theoretic architecture for making tutorial action selections 
	6.7.2 Development and assessment of a decision-theoretic tutor 


	APPENDIX A. Calculus Tutor Tutorial
	APPENDIX B. Posttest
	APPENDIX C. Calculus Tutor Tips
	APPENDIX D. Expanded Problem Screen Shots with Goal Numbers
	APPENDIX E. Screen Shots of Dialog Windows
	APPENDIX F. Sample Scenario Description
	APPENDIX G. Sample Help Messages
	BIBLIOGRAPHY


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


