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Alpha 1-antitrypsin deficiency (ATD) is an autosomal recessive disorder 

characterized by mutations in SERPINA1. Since α1-antitrypsin (α1-AT) is the predominant 

serine peptidase inhibitor in extracellular fluids, decreased α1-AT secretion results in a 

loss-of-function phenotype manifested by peptidase-inhibitor imbalance, connective tissue 

matrix destruction, and susceptibility to chronic obstructive lung disease. In contrast, the 

accumulation of aggregation-prone alpha-1 antitrypsin-Z (ATZ) variant in liver cells leads 

to a toxic gain-of-function phenotype characterized by liver failure and carcinogenesis. 

Curiously, only ~10% of all ATZ homozygous individuals develop severe liver disease. 

This observation suggests that additional genetic disease modifiers and/or environmental 

conditions make an important contribution to disease severity and outcome.  Our current 

understanding of these factors is incomplete and effective therapeutic options are very 

limited.  

I report here the development of a C. elegans model of ATZ deficiency that 

recapitulates the ER transport defect associated with ATD.  Furthermore, we identified key 

components of the disposal mechanism of ATZ in C. elegans, which parallels those in 

mammalian systems. Lastly, I developed a semi-automated high content genome-wide 

RNAi screen technology and used this method to identify <100 genes that modify the 

accumulation of ATZ. Many of these genes implicated in playing a role in the disposal of 

ATZ are novel and provide a source of potential ATZ genetic modifiers for future study.  
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1.0  INTRODUCTION 
 
 
 

 
1.1  OVERVIEW 

 
 

α1-antitrypsin deficiency (ATD) is an autosomal recessive disorder characterized by 

mutations in SERPINA1 [1]. Phenotyopically, ATD can present with pulmonary 

dysfunction caused by the loss of the protective mechanisms of α1- antitrypsin (α1-AT) 

in the lungs [2] and/or hepatic dysfunction due to protein accumulation in the 

endoplasmic reticulum (ER) of hepatocytes [3].  The prevalence of ATD is estimated to 

be 1 to 3% of the Caucasian population [4]. However, current data suggest that less 

than 10% of people living with ATD in the United States have been diagnosed, 

suggesting that a portion of individuals has few or no symptoms of the disease [5]. This 

disparity suggests that additional genetic disease modifiers and/or environmental 

conditions make an important contribution to disease severity and outcome. In patients 

presenting with ATD associated liver disease, the primary cellular phenotype is the 

presence of accumulated α1-AT in the ER of hepatocytes [6]. The mechanism 

underlying the accumulation of α1-AT in the ER is largely unexplained. Therefore, the 

primary objective of this dissertation is to determine the underlying mechanisms that 

result in α1-AT accumulation. To accomplish this objective, I used a C. elegans model 

system to identify genes involved in the accumulation of the Z mutant of α1- antitrypsin 

(ATZ), through the use of phenotypic analysis and RNAi screening approaches.  
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This chapter provides an introduction to the work presented in this dissertation. It 

includes an overview of 1) the general features of serpins and serpin associated 

diseases, 2) characterization of ATD, 3) description of current models of ATD, 4) 

molecular mechanisms of protein folding and degradation and 5) transgenic C. elegans 

models of human diseases.  

 

 
1.2   SERPINS 

 

Serpins (serine protease inhibitors) are the largest family of protease inhibitors [7]. 

Serpins are unique among the protease inhibitors as they employ a suicide substrate-

like mechanism to covalently bond to their targets. In their native inhibitory form, serpins 

posses an exposed reactive-center loop (RCL) which acts as bait resembling the 

substrates of proteases, through the identity of the P1 and P1’ residues (met358 and 

ser359, respectively)  [8, 9]. When proteases attempt to cleave the RCL it becomes 

trapped in a covalent complex that is subsequently removed from the system [10]. 

Serpins are comprised of 330 - 500 amino acids [7].  Serpins have been identified in all 

multicellular eukaryotes; 36 have been identified in humans (29 inhibitory and 7 non-

inhibitory), 32 have been identified in Drosophila, and C. elegans have 9 (of which 5 

appear functional) [11, 12]. The function and specific targets of many of these serpins 

are unknown. In the following sections, I will summarize the functions, biochemistry, 

structures, and diseases associated with serpins.  
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1.2.1 Serpin Function  

 

The primary function of serpins is to regulate the proteolytic activity of serine proteases, 

which are involved in biological processes such as coagulation, fibrinolysis, complement 

activation, inflammation, tumor metastasis, and extracellular matrix remodeling [11].  In 

addition to inhibiting serine proteases, serpins can inhibit caspases, and papain-like 

cysteine proteases [13-15]. Alternatively, a subset of serpins have lost inhibitory activity 

and serve as hormone transporters or molecular chaperones [11, 16].  In humans, 

serpins are classified into 16 different serpin clades encoding both inhibitory and non-

inhibitory serpins. Furthermore serpins can be divided based upon cellular location; 

extracellular and intracellular. The following sections discuss the function of extracellular 

and intracellular serpins in humans.  

 

1.2.1.1 Extracellular serpins 

The majority of human serpins are extracellular and perform a wide variety of inhibitory 

functions. For example, antithrombin plays a key role in controlling a proteolytic cascade 

essential for blood coagulation [17].  Specifically, antithrombin is the principle inhibitor of 

thrombin and coagulation factor X [18, 19]. Additional inhibitory functions of extracellular 

serpins include: antitrypsin (neutrophil eleastase inhibitor), antichymotrypsin (cathepsin 

G inhibitor), and C1 inhibitor (C1 esterase inhibitor) [3, 20-23]. In addition to inhibiting 

proteases, several extracellular serpins also perform non-inhibitory roles. For example, 

thyroxine-binding globulin (TBG) serves as a transporter for thyroxine [7, 24].  
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1.2.1.2 Intracellular serpins 

Studies have identified serpins that are not secreted and instead perform roles within 

the cell [25]. Determining the protease targets of intracellular inhibitory serpins has been 

difficult, possibly because many of these proteins appear to have overlapping protein 

expression and proteolytic inhibitory profiles [11]. However, several lines of evidence 

suggest that some of the inhibitory intercellular serpins have cytoprotective roles, 

whereby they prevent cells from undergoing protease-induced cell death [26]. For 

example, SERPINB9 has been shown to inhibit the cytotoxic granule protease 

granzyme B, therefore preventing the activation of cell death pathways [27].  As with the 

extracellular serpins, the intracellular subfamily contains non-inhibitory members as well. 

For example, the serpin maspin (SERPINB5) is an intracellular non-inhibitory serpin. 

While the protein pathways in which maspin plays a role are not know, maspin seems to 

be important for preventing metastasis in prostate and breast cancers [28-33].  

 

1.2.2  Serpin Structure  

 

All serpins share a common tertiary structure (Figure 1.1). Serpins fold into a 

metastable structure that consists of three β sheets (A, B and C), eight - nine α helices 

and a RCL [34]. The RCL extends outward from the serpin scaffold and presents itself 

as a pseudosubstrate for target proteases. Once a proteases binds to the RCL, and 

cleaves between the P1 and P1’ residues (α1-AT contains met358 and ser359 

respectively), the serpin undergoes an extensive conformational change [7]. The amino-
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Figure 1.1 Serpin Structure 

Serpin structure consists of three β sheets (A= red, B= green, C= yellow), nine α-helices 

(gray) and the RCL (blue). A. Native serpin structure. B. Initial binding event between 

serpin and target peptidase (turquoise). C. Diagram of conformational rearrangement of 

serpin structure to trap target peptidase (blue strand highlights insertion of RCL into β-

sheet A. Image obtained from Silverman et al. (2001) [11]. 

B C A 
B. C. A. 
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terminal portion of the RCL irreversibly inserts into the center of β-sheet A, forming an 

additional strand in β- sheet A (Figure 1.1). This conformational change results in the 

transition from a stressed to a relaxed conformational state [35]. Additionally, the 

protease active site is distorted preventing the release of the protease (Figure 1.1). 

Since both the serpin and the protease are now inactive, the serpin-protease complex is 

rapidly degraded. The exact mechanisms that degrade serpin-protease complexes are 

unclear, however, studies have shown that lipoprotein-related protein (LRP) specifically 

binds to and promotes the internalization of some extracellular serpin complexes 

(SERPINA1, SERPINC1, and SERPINI1) [36, 37],  whereas intracellular serpins seem 

to be degraded at least in part by the proteasome [38][Luke & Silverman, unpublished 

data]. 

 

1.2.3 Inhibitory Function  

 

Metastability of the native state and the ability of serpins to undergo controlled 

conformational changes upon cleavage of RCL is central to the inhibitory activity of 

serpins. As such, slight mutations in the serpin framework can lead to protein misfolding 

and dysfunctional serpins [39]. Human diseases that are associated with mutations that 

affect the structure/function of serpins are termed serpinopathies [40-42].   

The serpinopathies are a group of conformational diseases in which mutations 

facilitate serpin protein misfolding, polymerization, and/or aggregation [43].  Examples 

include; ATD (cirrhosis, emphysema), α1-antichymotrypsin (cirrhosis, emphysema), 

antithrombin (thrombosis), C1 esterase inhibitor (angioedema) and heparin-cofactor II 

(thrombosis), all of which lead to protein misfolding, intracellular aggregation, cellular 



	   7	  

injury and distinct disease phenotypes [41-44]. Another example is familial 

encephalopathy with neuroserpin (NS) inclusion bodies (FENIB), which is due to 

missense mutations in the NS gene. These mutations cause an autosomal dominant 

neurological disorder characterized by progressive deterioration of cognition, memory 

and visuospatial skills [45, 46]. At least 5 different missense NS mutations have been 

identified, and based on their location within the serpin scaffold, they confer different 

degrees of instability relative to the native fold [47]. The more destabilizing mutations 

(G392R > G392E > H338R >S52R > S49P) are associated with a greater number and 

more pervasive distribution of inclusions, and an earlier onset and more severe 

progression of dementia and progressive myoclonus epilepsy [47, 48]. Transient 

transfection of the mutant genes into cell lines also shows that the more destabilizing 

mutations result in the formation of longer polymers and a greater degree of ER 

retention [49, 50].  

 

 

1.3  α1-  ANTITRYPSIN DEFICIENCY 

 

α1-AT is an inhibitory serpin produced primarily in hepatocytes and secreted into the 

blood stream, where it functions to protect the lungs from degradation by neutrophil 

elastase. ATD, like FENIB, results from a missense mutation in the α1-AT gene 

resulting in polymers and/or aggregates formation.  ATD can present with pulmonary 

dysfunction caused by the loss of the protective mechanisms of α1-AT in the lungs [2] 

and/or hepatic dysfunction due to protein accumulation in the ER of hepatocytes (Figure 

1.2) [3]. As the archetypical member of the serpin family, α1-AT has been well 
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Figure 1.2 α1- Antitrypsin Expression in Liver Cells  

Photomicrograph of hepatocytes obtained from a patient with ATZ. PAS (periodic acid 

Schiff stain used to identify AT glycoprotein) positive inclusions (purple) caused by ATZ 

accumulation in the ER of hepatocytes. Image obtained from: http://en.wikipedia. 

org/wiki/File:Alpha-1_antitrypsin_deficiency.PAS_Diastase.jpg#file Imaged by Jerad M 

Gardner, MD.,  Accessed June 18, 2011.  
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characterized. Therefore, in the following sections I will review the genetics, 

epidemiology, clinical manifestations, and protein characteristics of α1-AT.  

 

1.3.1 Genetics of α1-AT  

 

The α1-AT gene (SERPINA1) is located on the protease inhibitor cluster locus at 

14q31-32.3 [51]. The gene spans 12.2 Kb in length and contains seven exons and six 

introns [52]. Studies have identified over 120 different alleles, each producing a different 

phenotypic variant [51]. Originally, α1-AT isolates were named based upon mobility 

during electrofocusing [53]. Normal wild type α1-AT was termed M, as it had a medium 

rate of mobility and all other variants were named A-L and N-Z based on whether they 

ran more proximal or distal to the M band [53].  

α1-AT isolates can be broadly classified into three categories (Table 1.1).  The 

first category is characterized by normal plasma levels, of which the M variants are the 

most common (approximately 95% frequency in the United States) [54, 55].  The 

second category is characterized by reduced plasma levels of circulating α1-AT. In this 

category, the two most common deficient alleles are Z and S. The Z allele is caused by 

a single point mutation (Glu342Lys) and is the most common deficiency mutant (ATZ) 

[55]. Similar to the Z allele, the S allele is also caused by a single point mutation 

(Glu264Val) but is associated with higher levels of circulating α1-AT as compared to 

ATZ [56]. The third category, null mutant is characterized by no detectable levels of 

circulating plasma α1-AT, and is commonly associated with an increased risk of 

developing emphysema (Table 1.1) [57].   
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Table 1.1 AT Variants and Mutants 
 
  

Category Allele 
Mutation 

site (exon) 
Sequence compared to base 
allele 

    
Normal Variants M1(Ala213) V  
 M1(Val213) III Ala213  ->  Val 
 M2 II Arg101  ->  His  
 M3 V Glu376  ->  Asp  
 M411 II Arg101  ->  His   
       
Deficiency Mutants Z V Glu342 ->  Lys 
 S III Glu264 ->  Val  
 Mmalton II Phe52 ->  Delete 
 Siiyama II Ser53  -> Phe 
       

Null Mutants NullHongKong M2 Leu318  ->  delete   -> 5' shift  ->  
stop334  

 NullSaar V Glu376 -> stop codon-> truncation from 
carboxyl terminus 
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1.3.2 Epidemiology of α1- AT  

 

Although AT variants have been described in every major racial group, an accurate 

account of frequency of ATD is difficult due to the large phenotypic variations amongst 

ATD individuals [51]. To try to determine the prevalence of ATD a number of population 

screenings have occurred. For example, in the 1970’s a large nationwide α1-AT 

deficiency screen of newborns was carried out by Laurell and Sveger in Sweden [58]. 

Of the 200,000 individuals studied, 127 were identified as being homozygous for the Z 

allele and were followed for signs of disease progression. In this study, only 8%-10% of 

ZZ homozygotes developed clinically significant liver disease [58].   

Since 1960’s, when Laurel and Eriksson originally described ATD, gene 

frequency for ZZ homozygotes has been reported for different populations. The highest 

prevalence of ATD is reported in northern and western European countries [57, 59]. In 

the United States, it is estimated than ATD affects 1 in 2000 live births [1]. By utilizing 

computer modeling, it has been estimated that there are over one million people with 

severe ATD. If these estimates are accurate then ATD is one of the most common 

hereditary disorders [57].   

 

1.3.3 Clinical Manifestations of & Treatments For α1-AT  

 

ATD is associated with higher incidence of emphysema and cirrhosis. Patients with 

clinical manifestations of lung disease usually present with symptoms of shortness of 

breath, coughing, wheezing, and fatigue. Most ZZ homozygote patients are commonly 
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diagnosed as adults while in their 30’s or 40’s.  Because ATD has many of the same 

symptoms as other common lung disease, such as COPD or asthma, it is often initially 

misdiagnosed.  One study has shown that there was a seven year lapse between the 

onset of symptoms and the diagnosis of ATD [5].   

Patients with ATD can also present with liver disease such as inflammation and 

cirrhosis [60]. ATD resulting in liver disease occurs in two age groupings; infants and 

adults. Approximately 10% of infants with ATD develop severe liver disease and 

accounts for a high portion of liver transplants in children [61]. As adults, only a small 

population of ATD patients develop liver disease. Specifically, liver disease is 

associated with the ER retention of ATZ in the hepatocyte cells, resulting in damage 

and cirrhosis (Figure 1.3). Currently, no patients expressing the null alleles (such as Null 

Hong Kong or Saar) have presented with liver disease [60]. These findings suggest that 

individuals with only certain mutations in α1-AT are prone to the development of liver 

disease [60].  

Currently, the treatment options for α1-AT deficiency are very limited.  In patients 

with cirrhosis or liver failure, ATD can be treated by organ transplantation [5].  The only 

approved treatment for ATZ related lung disease is intravenous α1-AT augmentation 

therapy, which boosts circulating levels of α1-AT [51]. Additionally, long-acting 

bronchodilators and inhaled corticosteroids can relieve the symptoms associated with 

COPD [62].  

 



	   13	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Common Manifestations of ATZ 

ATZ is caused by a single point mutation in exon 5 of the  AT gene. The Z allele results 

in polymerization and decreased serum concentrations, which can ultimately result in 

liver cirrhosis and/or emphysema. Image adapted from Fregonese and Stolk (2008) [63].   
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1.3.4 Protein Characterization of α1-AT  

 

α1-AT is a 52-kDa glycoprotein produced primarily in hepatocytes, but also expressed 

in mononuclear phagocytes and neutrophils [52]. It inhibits a variety of serine 

peptidases, but its primary target is neutrophil elastase. As such, it has its greatest 

affect in the lungs, where it acts as an acute phase protein to protect against proteolytic 

damage caused by neutrophil elastase. Normal α1-AT plasma levels range from 20-53 

µM [60]. Individuals with deficient alleles (Z or S) are associated with plasma levels that 

are (ZZ) 10-15% or (SS) 50-60%, compared to wild type levels, while null alleles (NHK 

or Saar) are associate with no circulating α1-AT [60].   

The classical form of ATD is caused by a single point mutation, Z (Glu342Lys), in 

the α1-AT protein [55]. The substitution of a negatively charged glutamic acid with a 

positively charged lysine causes a destabilization of the serpin conformation by 

eliminating a crucial salt bridge that helps maintain the integrity of β-sheet A. This 

mutation distorts the relationship between the RCL and β-sheet A. This change in 

conformation results in the formation of higher ordered polymers causing the formation 

of complex aggregates in the ER of liver cells (Figure 1.4) [64].   

The pathogenesis effect of the Z mutation is twofold. First, α1-AT is the major 

inhibitor of peptidase neutrophil elastase, which during an inflammatory response can 

destroy normal lung tissue [65, 66]. Thus, α1-AT protects the lungs by neutralizing 

misdirected neutrophil elastase through utilization of the irreversible serpin-protease 

complex, which is then targeted for degradation [67]. Therefore, retention of ATZ in liver  
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Figure 1.4 α1- Antitrypsin Z Variant Results in Polymerization	  

A. Z variant of α1- antitrypsin eliminates a crucial salt bridge that helps maintain the 

integrity of β-sheet A (red) resulting in a destabilization of the serpin structure. B. β-

sheet A can then accept the loop of another ATZ molecule to form a dimer, which 

extends into a polymer (red, yellow, and blue each represent an individual molecule of 

ATZ).  Reproduced from Lomas and Mahadeva, (1998) [40] and Silverman et al., (2001) 

[11]. 

	  Z 
A. B. 



	   16	  

cells significantly reduces the amount of α1-AT available to act as elastase inhibitors, 

causing a loss-of-function phenotype [65]. This reduction in serum levels of α1-AT 

results in premature development of emphysema, asthma, chronic bronchitis and 

bronchiectasis (Figure 1.3) [59]. Additionally, the retention and subsequent 

polymerization of α1-AT in the hepatocytes appears to be toxic, causing a gain-of-

function phenotype resulting in liver disease (Figure 1.3 and 1.4).  

 

 

1.4   CURRENT MODELS OF α1- ANTITRYPSIN DEFICIENCY 

 

The expression of liver disease among homozygous ATZ patients is highly variable with 

clinical manifestations ranging from asymptomatic to fatal [4, 5]. This heterogenity 

suggests that additional genetic and/or environmental factors play an important role in 

development of liver disease. Currently, studies in yeast, mammalian cell lines, and 

transgenic mouse models have been employed to elucidate the molecular mechanisms 

of ATZ-induced liver disease. The following sections will highlight these model systems 

and how they have advanced out understanding of ATD.  

 

1.4.1 Cell Culture Models 

 

Mammalian cell lines indicate that the proteasomal and autophagic pathways may be 

limited in ATZ patients, thereby causing increased severity of the disease [68].  Studies 

by Wu and colleagues utilized skin fibroblast cell lines isolated from ATZ homozygous 
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patients that presented with or without liver disease [69]. Pulse chase experiments on 

fibroblasts transduced with ATZ showed that the cell lines cultured from patients 

exhibiting liver disease exhibit a decrease in the degradation of ATZ.  This study 

suggested that differences exist in quality control recognition and/or disposal 

mechanisms in patients presenting with liver disease compared to those that do not 

present with liver disease. This study also suggested that improved ATZ clearance may 

help prevent liver disease [69].  

Furthermore, studies completed by Kamimoto et al., utilized embryonic stem (ES) 

cells that were deficient for the Atg5 gene (necessary for initiation of autophagy) to 

examine the effect autophagy has on ATZ accumulation [70]. Specifically, pulse-chase 

analysis of Atg5 -/- ES cells transfected with ATZ showed significant reduction in the 

degradation of ATZ [70].  Additionally, in the absence of autophagy, aggregation of ATZ 

increased to the extent that large aggregates were found both in the ER and also in the 

cytoplasm of the cells.  These data suggested that the degradation of ATZ, through 

autophagy, is likely to be fundamentally important in preventing liver damage caused by 

ATZ [70].   

 ATZ is also eliminated through the ubiquitin proteasome system [71]. Qu et al. 

showed a role of the proteasomal degradation pathway in the elimination of ATZ in a 

cell culture model [72]. Human fibroblasts transfected with ATZ showed inhibition of 

ATZ degradation when cell lines were exposed to proteasome inhibitors [72]. The 

reduced clearance of ATZ provided evidence that the proteasome plays a role in ATZ 

degradation. Overall, cell lines have indicated that the proteasomal and autophagic 
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pathways might be limited in ATZ patients causing increased severity of the disease 

[68].   

 

1.4.2 Yeast Models 

 

Yeast are simple single-celled organisms they share many of the same biological 

properties of mammals. Importantly, they have been shown to have similar aspects of 

protein synthesis, signaling, trafficking, and degradation. Yeast have been utilized to 

help elucidate the mechanism of liver disease associated with ATZ.  For example 

Werner and colleagues showed that a portion of ATZ is eliminated by the ubiquitin 

proteasome system [71]. An AT yeast expression system was utilized to monitor 

degradation of ATZ during pulse-chase analysis. Wild-type yeast strains degraded the 

majority (~94%) of ATZ, while a yeast proteasome mutant (pre1-1 pre2-2) strain cleared 

less than half (~39%). The reduced clearance of ATZ provided parallel evidence that the 

proteasome plays a role in ATZ degradation.  

Research utilizing the ATZ yeast expression model is notable for establishing 

ATZ as an ERAD substrate and identifying BiP, a molecular chaperone, as important for 

ATZ turnover [71, 73-75]. Furthermore, screens of yeast mutants for defects in the ER 

degradation of human ATZ have been completed. In one screen, atg6, was identified as 

a key player in ATZ disposition [76, 77]. Specifically, atg6 is required for initiation of 

formation of autophagosomes in autophagy [77]. Additionally, atg16, another autophagy 

gene, is important for degradation of aggregated ATZ that accumulates at high levels 

after protein expression. Furthermore, yeast overexpressing ATZ distributed the 
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accumulated protein to the autophagic pathway [77]. These results confirmed the 

importance of autophagy, in addition to the proteasome, in the disposal of ATZ.   

 

1.4.3 Mouse Models 

 

A number of different ATZ transgenic mouse model have been developed [78-80]. ATZ 

transgenic mice (PiZ) exhibit the hallmarks of the human deficiency including; 

development of PAS-positive intracellular globules of ATZ aggregates, liver disease and 

hepatocellular carcinoma [78-81]. Studies completed by the Perlmutter laboratory 

utilized PiZ transgenic mice to examine hepatocytes for damage caused by expression 

of ATZ [82]. Results indicated two types of hepatocytes within the PiZ mouse, those 

with PAS-positive accumulations and those without accumulations. ATZ globule 

containing cells showed activation of caspases, NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B cells), and autophagy, but a block in proliferation.  ATZ 

globule-devoid hepatocytes showed an increase in proliferation, suggesting that the 

globule-deficient cells are younger (possibly before globule formation) or are better able 

to eliminate the accumulated protein through the activation of autophagy [82]. 

Transgenic mice with liver-specific inducible expression of ATZ were also 

developed [83]. This system is advantageous because it allows for characterization of 

early cellular responses to ATZ. Furthermore, constitutively active systems may adapt 

to the expression of ATZ over time, and therefore the inducible system removes this 

bias [83]. The inducible system utilizes a tetracycline (Tet) controlled expression system, 

in which the ATZ transgene was downstream of a Tet response element (TRE) [84]. In 



	   20	  

this Tet-off system the tetracycline is removed, which allows binding of the TRE to occur, 

resulting in the transactivation of the ATZ gene.  Studies showed that inducing ATZ 

expression activated caspases, NF-κB , and Bap31 (endoplasmic reticulum associated 

degradation (ERAD) protein) but not the unfolded protein response (UPR) [83]. 

Mouse studies were also important for establishing autophagy as an important 

mechanism for ATZ degradation. The ATZ inducible transgenic mice were mated to 

GFP-LC3 mice. LC3 is a cytosolic protein that is processed and inserted into the 

phagophore. During enhanced autophagy, the distribution of GFP-LC3 changes from 

diffuse to punctate. This feature is used to monitor increases in autophagy. Under 

starved conditions the GFP-LC3 mouse generates GFP positive puncta.  Studies 

utilizing the transgenic mouse with inducible expression of ATZ mated with GFP-LC3 

resulted in accumulation of GFP positive puncta spots [70]. These results indicated that 

autophagy is activated by aggregated ATZ and the changes it specifically imposes on 

the cell. Overall, the mouse studies suggested that the accumulation of ATZ is toxic, 

which is due, in part, to the limited capacity of protein quality control systems to 

eliminate the misfolded protein 

In summary, studies in yeast, mammalian cell lines, and transgenic mice have 

started to elucidate the molecular mechanisms of ATZ-induced liver disease. 

Importantly, this research has shown that misfolded ATZ accumulates in hepatocytes 

and that multiple degradation pathways are required for its elimination. In mammals, 

studies indicate that aggregated or insoluble proteins are degraded via the autophagic 

pathway [64, 77]; whereas, the soluble misfolded oligomers are degraded via the 

proteasomal pathway [70, 76, 85-88].  The next section of this dissertation will examine 
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general protein folding, how proteins transverse the secretory pathway, and cellular 

mechanisms for degradation of abnormal proteins.  

 

 

1.5 PROTEIN FOLDING AND SECRETORY PATHWAY 

 

Protein folding is the process by which a polypeptide folds into its functional three-

dimensional structure (Figure 1.5). Proteins destined for secretion begin in the rough 

endoplasmic reticulum, which they enter as newly synthesized polypeptide. The 

polypeptides enter the ER as a result of the interaction between their emerging signal 

peptide and the signal recognition particle (SRP) complex. In eukaryotes, the SRP 

complex is a multimeric protein, which is comprised of 6 distinct polypeptides and a 

RNA molecule. The interaction of the SRP with the receptor is required for 

cotranslational protein targeting [89]. The requirements for this event and even the 

targeting of the ribosome to an ER translocation pore are still being investigated. 

Following the delivery of the nascent protein into the ER lumen, proteins must fold and 

assemble. Therefore, one of the main functions of the ER is to initiate protein folding, 

which is accomplished through a complex network of protein chaperones, enzymes, and 

co-factors [90-92]. These components are expressed within the ER lumen and help 

catalyze the folding and maturation of proteins that traverse the secretory pathway.  

Proteins with destinations beyond the ER are sorted and packaged into transport 

vesicles. ER vesicles are formed by the binding of COPII to the external side of the 

membrane, selection of cargo, and then budding from the ER membrane (Figure 1.5) 
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[93].  At this time it is still being investigated as to how the COPII vesicles are able to 

selectively recognize and sort the variety of proteins transported as cargo [94]. The 

vesicles are then directed towards the Golgi complex, uncoated, and fused to the cis-

Golgi membrane to deliver cargo to the Golgi complex. During transport from the ER to 

the Golgi complex the cell ensures that vesicles dock correctly through the use of 

targeting molecules termed SNAREs, which can be present on both vesicles 

(vSNAREs) and target membranes (tSNAREs). Proteins that are required in the ER and 

recycled vesicle components are retrograde transported back to the ER from the Golgi 

via COPI coated vesicles  [95].  

Proteins remaining in the Golgi then undergo cisternal migration in which they 

move from the cis-Golgi stack to the trans-Golgi (Figure 1.5). During this progression 

post-translational modification such as glycosylation and phosphorylation occurs.  

Additionally, sugars may be added to the proteins to help direct the protein to its final 

destination.  Proteins then undergo another round of sorting in the trans-Golgi network 

(TGN). Proteins are trafficked into more specialized compartments and shipped to their 

intended destinations by their placement into one of at least three different types of 

vesicles: exocytotic, secretory, and lysosomal.   

Exocytotic vesicles contain proteins destined for extracellular release. After 

packaging the vesicles bud off and move immediately towards the plasma membrane 

where they fuse and release their contents into the extracellular space. Secretory 

vesicles contain proteins destined for extracellular release. However, after the vesicles 

bud off they are stored in the cell until a signal is given for their release. When the 	  
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Figure 1.5 Protein Synthesis and Secretory Pathway 

Ribosomes synthesizing proteins bearing an ER signal sequence become bound to the 

rough ER. As translation is completed on the ER, the polypeptide chains are inserted 

into the ER membrane or cross it into the lumen. Some proteins remain resident in the 

ER, the remainder move into transport vesicles that fuse together to form new cis-Golgi 

vesicles. Each cis-Golgi cisterna, with its protein content, physically moves from the cis 

to the trans face of the Golgi stack (red arrows). As this cisternal progression occurs, 

many luminal and membrane proteins undergo modifications, primarily to attached 

oligosaccharide chains. Some proteins remain in the trans-Golgi cisternae, while others 

move via small vesicles to the cell surface or to lysosomes. Certain proteins move to the 

cell surface in transport vesicles and are secreted continuously (constitutive secretion). 

Retrograde movement via small transport vesicles retrieves ER proteins that migrate to 

the cis-Golgi and returns them to the ER. Similarly, cis- or medial-Golgi proteins that 

migrate to a later compartment are retrieved by small retrograde transport vesicles. 

Adapted from Glick and Malhotra (1988) [96] . 
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Figure 1.5 Protein Synthesis and Secretory Pathway 
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appropriate signal is received the vesicles move towards the plasma membrane and 

fuse to release their contents. Lysosomal vesicles contain proteins destined for the 

lysosome. When this vesicle fuses with the late endosomes it becomes a mature 

lysosome.   

The secretory pathway is a highly regulated process, and as a result, proteins 

are delivered and function in their correct environment. Examples of this specificity are 

that the ER retains chaperones, the Golgi maintains a concentration of oligosaccharide 

trimming enzymes, lysosomes receive digestive enzymes such as proteases, and 

receptors accumulates at the cell surface, all as a result of the secretory pathway. 

Furthermore, if a protein fails to fold correctly the cell is able to recognize the misfolded 

protein and activates different cellular responses (described below). 	  

 

 

1.6 ENDOPLASMIC RETICULUM QUALITY CONTROL  

 

The endoplasmic reticulum has a quality control system that is capable of recognizing 

misfolded proteins and targeting abnormal proteins for destruction. Proteins that enter 

the secretory pathway start by translocating into the ER, which contains molecular 

chaperones that assist in protein folding and enzymes that catalyze post-translational 

modifications. These proteins are essential in the quality control system, because 

proteins must obtain a correct state in order to be processed through the secretory 

pathway [97]. This quality control process involves the glycosylation of nascent proteins 

including N-linked glycosylation within the lumen of the ER and O-linked glycosylation 
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within the Golgi complex. In eukaryotes, most N-linked glycosylation begin with addition 

of a 14-sugar core (3 glucose, 9 mannose, and 2 N-acetylglucosamine molecules) to an 

asparagine in the polypeptide chain of the target protein. After transfer of the core 

oligosaccharide two glucoses are removed by glucosidases I and II, which generates a 

monoglucosylated protein that interacts with molecular chaperones calnexin and 

calreticulin. Cleavage of the remaining glucose by glucosidase II terminates the 

interaction with calnexin and calreticulin allowing correctly folded proteins to exit the ER.  

Although the exact mechanisms are still being defined, it is known that glucosyl 

transferase (GT), senses the folding status of newly synthesized proteins and 

specifically tags the oligosaccharide moieties of incompletely folded proteins by adding 

glucose residues to their N-linked glycans. This addition of glucose residues prevents 

incompletely folded proteins from exiting the ER while allowing them to re-enter the 

calnexin/calreticulin cycle [98].  Proteins persistently misfolded are retrotranslocated 

back to the cytoplasm, where they are degraded by the proteasome in a process termed 

ER-associated degradation (ERAD) [99-105]. 	  

 

1.6.1 Endoplasmic Reticulum Associated Degradation 

 

Proteins that fail to achieve the correct state are targeted by ERAD for protein 

degradation via the ubiquitin proteasome pathway. The process of ERAD contains six 

main steps: selection of substrate, targeting to ERAD, retrotranslocation of substrate 

into the cytosol, ubiquitylation/ de-ubiquitination and ultimately proteasomal degradation 

(Figure 1.6) [106]. 
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Figure 1.6 ERAD Mechanism 

A. ERAD begins with recognition of target substrate. B. Substrate is targeted to 

retrotranslocation machinery (E3 ligase). C. Retrotranslocation is initiated resulting in 

translocation of substrate into the cytoplasm.  D. Proteins are polyubiquintylated and 

further retrotranslocated from the ER into the cytoplasm. E. Substrates are targeted for 

degradation by the 26S proteasome.  Image adapted from Vembar and Brodsky (2008) 

[106]. 
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Recognition of potential ERAD substrates is incompletely understood. However, 

misfolded proteins maybe recognized and targeted to ERAD by displaying immature 

glycans, hydrophobic regions, or incorrect disulfide bonds. As previously described, N-

linked glycosylation is important for the correct adoption of the glycoprotein’s native 

structure. In this process, terminally misfolded proteins are extracted from the 

calnexin/calreticulin cycle and targeted for degradation by calnexin/calreticulin or EDEM 

(ER degradation enhancing alpha-mannosidade-like protein). These factors have been 

reported to accelerate ERAD of glycoproteins, however the exact mechanism is still 

unknown [107-109]. Substrate recognition may also involve exposure of hydrophobic 

regions [110]. If a protein is folded correctly then hydrophobic regions are usually 

located within the interior of the protein [110]. However, in an unfolded protein these 

regions may become exposed, leading to recognition by molecular chaperones that 

then target the misfolded protein for ERAD.  

 Lastly, substrate recognition may involve the formation of disulfide bonds. In the 

oxidizing environment of the ER oxidoreductases help establish disulfide bonds 

between thiol groups of cysteine pairs in the newly synthesized polypeptide. Disulfide 

bonds play an important role in the folding and stability of some proteins into their native 

state. The formation of disulfide bonds may require multiple breaks and reformation, 

which are catalyzed by disulphide isomerases. Disulphide isomerases have been 

suggested to work through a substrate-binding domain, which is vital in recognizing 

substrates for ERAD [111, 112]. 

 Once the substrate is recognized as a misfolded protein, it is targeted for 

retrotranslocation to the cytosol where it is ultimately destroyed by the proteasome. 
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ERAD degrades a variety of misfolded proteins, which differ in structure, conformation 

and physical properties. Studies in yeast show, depending on the location of the 

substrate, different components of the ERAD pathway are utilized for targeting 

substrates for degradation. For instance, proteins with misfolded luminal domains are 

monitored by ERAD- luminal (ERAD-L) pathway.  ERAD-L substrates seem to require 

ER to Golgi transport, the molecular chaperone BiP, the transmembrane protein Der1p, 

and Hrd1p (E3 ubiquitin ligase) [113].  ERAD-L substrates interact with BiP/GRP78, 

which targets the protein to Der1p for translocation into the cytosol and ultimately 

degradation by proteasome. In contrast, substrates with misfolded cytosolic domains 

are monitored by ERAD-cytosolic (ERAD-C) pathway.  ERAD-C differs from ERAD-L in 

a variety of ways: substrates are not transported from the ER to the Golgi, and ERAD-C 

utilizes Doa10p as its E3 ubiquitin ligase [114]. Furthermore, substrates with misfolded 

membrane domains are monitored by ERAD-membrane (ERAD-M) pathway. ERAD-M 

is mostly undefined, but it appears that lesions on the membrane-spanning domain use 

the E3 ligase, similar to that used in ERAD-L. Furthermore, certain ERAD substrates 

require overlapping components, suggesting these processes are not mutually 

exclusive [115-117].  

 The ubiquitin-proteasome system (UPS) is the final destination for all ERAD 

substrates. However, the UPS is located in the cytoplasm, therefore, terminally 

misfolded proteins have to be retrotranslocated from the ER into cytoplasm.  Two 

separate protein complex candidates have been identified in involvement in the 

retrotranslocation channel, Sec61 and Derlin [118-121]. However, like many 

components of ERAD, the retrotranslocation mechanism and components are still being 
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investigated, and those likely depend on the substrate being translocated into the 

cytosol. Additionally, the cell-division cycle (Cdc48) complex has been found to play an 

important role in the retrotranslocation of substrates [122]. Cdc48 is a hexameric AAA-

ATPase that associates most commonly with the adapters ubiquitin fusion degradation 

1 (Ufd1) and nuclear protein localization 4 (Npl4). This complex is recruited to the ER 

membrane and binds with a large number of ER-resident components (Der1p, Hrd1, 

GP78 (in mammals), and Doa10 (yeast)). The Cdc48 complex transports substrates 

from the ER into the cytosol utilizing its ATPase activity. 

 The last step in ERAD involves the degradation of the substrate by the UPS and is 

discussed in detail in section 1.7.1. Overall ERAD is a protein quality control process 

that results in the degradation of misfolded proteins from the ER. Substrates are 

identified and targeted by a variety of molecular chaperones that ultimately result in the 

ubiquitination of substrates. The substrates are retrotranslocated into the cytosol where 

they are degraded by the ubiquitin proteasome system. ERAD appears to be highly 

conserved in higher organism yet many of the specific components are still being 

investigated and defined [106].  

 

1.6.2 Unfolded Protein Response 

 

The unfolded protein response (UPR) is a cellular stress response that becomes 

activated once ERAD is overwhelmed. It is an intracellular signaling pathway with two 

main goals; initially to restore normal function to the cell by halting protein translation 

and then to activate signaling pathways that lead to increasing the production of 

molecular chaperones involved in protein folding [123-125] (Figure 1.7). The target 
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Figure 1.7 Unfolded Protein Response  

ER stress stimulates the activation of PERK, ATF6 and IRE1. PERK phosphorylates 

eIF2α, which inhibits general protein translation. PERK also allows the translation of 

ATF4, which activates transcription of chaperones such as BiP. ATF6 undergoes 

specific proteolysis in the Golgi apparatus, which leads to activation of target genes 

such as XBP1. IRE1 catalyzes the alternative splicing of XBP1 mRNA leading to 

expression of the active XBP1 transcription factor. Image adapted from Fulda et al. 

(2010) [126] 
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genes of the UPR encode factors that are involved in many different processes, such as 

phospholipid biosynthesis, protein maturation in the ER, and secretory pathway function 

[127].  

 UPR is initiated by the activation of the transmembrane serine kinase 

endonuclease, IRE1. Current studies are indentifying factors involved in the activation of 

IRE1. One model suggests, that in the presence of high levels of misfolded protein, 

BiP/GRP78 dissociates from IRE1, which allows BiP/GRP78 to become available to 

bind to misfolded proteins [128]. The release of IRE1 from its complex with BiP/GRP78 

results in the activation of IRE1 [128, 129].  A second model proposes that unfolded 

proteins interact directly with IRE1 ER-lumenal domain, resulting in the activation of 

IRE1 [130]. Regardless of the method, IRE1 activates itself through transautophos-

phorylations, resulting in an activated domain, which is able to then cleave a mRNA 

substrate of XBP1 (X-box binding protein). Cleavage of XBP1 results in removal of a 

252bp intron. The removal of the intron allows the transcription factor XBP1 to be 

efficiently translated [131, 132]. The now activated XBP1 transcription factor is 

translocated into the nucleus and upregulates stress genes by binding to stress element 

promoters in the nucleus. [127]. 

 In addition to the activation of IRE1, two other stress receptors (PERK and ATF6) 

are activated during ER stress. PKR-like ER kinase (PERK) is an ER transmembrane 

kinase that phosphorylates the α subunit of eukaryotic initiation factor 2 (eIF2α) which 

leads to the reduction of translation initiation complexes and therefore general protein 

translation.  Paradoxically, this allows eIF2α-independent translation of ATF4 (activating 

transcription factor 4), current studies suggest this is due to internal ribosome entry 
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sequence (IRES), which may confer translational advantage to mRNA under certain 

cellular conditions, such as when global translation is down regulated [133].  ATF4 in 

turn activates transcription of protein chaperones such as BiP/GRP78. Furthermore, 

activating transcription factor 6 (ATF6) undergoes proteolysis in the Golgi membrane 

leading to its activation of target genes such as XBP1.  Together these three stress 

receptors (IRE1, PERK, & ATF6) block protein translation, increase protein chaperone 

expression and enhance ERAD pathways allowing for a reduction in accumulated 

misfolded proteins (Figure 1.7). 

 

 

1.7 CELLULAR MECHANISMS FOR DEGRADATION OF PROTEINS  
 
 

An important cellular process is the maintenance of proteins in their native structure. It 

is estimated that ~25% of all newly synthesized secretory proteins misfold and are 

subsequently degraded [105]. There are a number of cellular mechanisms that degrade 

unnecessary (damaged or modified) proteins in eukaryotic cells. The following sections 

will discuss the proteasomal and autophagic degradation pathways. 

 

1.7.1 Ubiquitin Proteasome System 

 

In the cytosol, the majority of proteins are eliminated by the ubiquitin (Ub) proteasome 

system [134]. The UPS is a complex system that requires two major steps for 

degradation of targeted proteins. Step one is selection of target proteins by covalent 

attachment of ubiquitin, targeting the protein substrate for degradation. Step two 

involves the degradation of targeted proteins by the 26S proteasome [135-139].  
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1.7.1.1 Poly-Ubiquitination of target substrates 

Proteins targeted for degradation by UPS are first tagged with Ub [135-139].  Ubiquitin 

is a small 76 amino acid protein that is abundantly expressed in all eukaryotic cells. 

Ubiquitination is an enzymatic, post-translational modification in which an isopeptide 

linkage between the C-terminal glycine of ubiquitin and usually an amino group of a 

lysine residue in the target protein [139]. The process of protein substrate ubiquitination 

occurs in a series of steps. First ubiquitin is activated in an ATP requiring reaction by an 

E1 ubiquitin-activating enzyme.  This initial step ultimately results in a thiol ester linkage 

between the C-terminal carboxyl group of ubiquitin and the E1 cysteine sulfhydryl group 

[136].  The second step is the transfer of ubiquitin from E1 to the active site cysteine of 

a ubiquitin conjugating enzyme E2. The E2 enzyme acts as a carrier of ubiquitin that, 

with the help of E3 ligase, transfers the ubiquitin to targeted substrates. E3 ligase can 

function in the transfer of ubiquitin onto the substrate, or it can function as an adaptor to 

facilitate the positioning and transfer of ubiquitin from the E2 directly onto the substrate. 

E3 enzymes are therefore responsible for the specificity of the target selection for 

ubiquitination [135-139]. Both E2 and E3 enzymes exists as large families, therefore in 

the ubiquitination cascade, an E1 can bind to dozens of E2’s, which can bind to 

hundreds of E3s.  Once a protein is monoubiquitinated, additional ubiquitins can be 

added resulting in the formation of a polyubiquitinated chain (Figure 1.8). Specifically, 

polyubiquitinated chains form from the C-terminal gly-76 covalently linking to one of 

seven lysine residues (K6, K11, K27, K33, K48 and K63) [140]. Lys-48 and lys-11 are 

the most common linkage sites, while lys-63 appears to have a non-proteolytic role.  Of 

important note, studies in yeast investigating lys-11 have shown that when ER stress is    
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Figure 1.8 Protein Ubiquitination Pathway 

Ubiquitin (Ub) is activated by E1 enzymes that transfers Ub to E2 carrier, which 

interacts with E3 ligase to target the protein substrate for degradation. Polyubiquitination 

of substrate is required to target proteins for destruction by the proteasome. Figure 

adapted from Nandi et al. (2006) [139] 



	   36	  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 26S Proteasome 

The 26S proteasome is essential in the degradation of proteins that have been tagged 

with ubiquitin.  A. Structure of the 26S proteasome composed of the 20S core protease 

complex (yellow and blue) and the 19S regulatory particle that is composed of the lid 

and base components (green, orange, red).  B.1. 19S regulatory particle (red) 

recognizes the polyubiquintylated protein (purple). B.2. The tagged protein is unfolded 

and translocated through the base complex into the 20S core particle. B.3. Once inside 

the 20S core the protein is exposed to proteases and broken down. B.4. The short 

peptides are then released to be reused by the cell in the formation of new proteins. 

Figure adapted from Sullivan, Shirasu, Deng (2003) [141] 
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artificially induced lys-11 linked chains are enhanced, additionally the mutation K11R 

results in growth defects and activation of UPR [140].  These results suggested that lys-

11 plays an important role in ERAD [140] [136].   

 

1.7.1.2 Degradation of polyubiquitinated substrate by 26S proteasome  

The 26S proteasome recognizes, processes, and ultimately degrades target protein 

substrates.  The 26S proteasome is an ~2.5 MDa complex that is comprised of different  

subunits that function together to degrade proteins into short (7-8) amino acid peptide 

sequences that are recycled for use within the cell [136, 139, 142].  The 26S 

proteasome is comprised of two 19S regulatory caps and a 20S core catalytic complex 

structure (Figure 1.9).  The 19S regulatory cap is composed of two distinct structures 

the lid and base units (Figure 1.9). The lid recognizes ubiquitinated proteins while the 

base is responsible for unfolding and threading the protein into the 20S core. Therefore, 

the 19S structure allows for the recognition of polyubiquitinated proteins, de-

ubiquitination, unfolding, and then transfer of those proteins into the lumen of the 20S 

catalytic core for destruction, thus preventing nonspecific proteolysis [137, 139, 142-

144]. The 20S core contains the proteolytic activity that is ultimately responsible for the 

destruction of the target proteins [145]. The 20S core is a hollow barrel shaped structure 

comprised of four (2 α and 2 β) stacked heptameric rings (Figure 1.7) [137, 139, 142]. 

Once the targeted protein enters the 20S core, three catalytic sites (trypsin, 

chymotrypsin, and caspase sites) degrade target substrates resulting in short amino 

acid peptides sequences that are recycled for use in the cell [137, 139, 141, 142].  
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1.7.2 Autophagic Pathway 

 

Eukaryotic cells have two conserved mechanisms to degrade proteins, the proteasome 

(described above) and the lysosome. The lysosome is designed to degrade larger and 

more complex substrates [146-148].  The lysosome is a double membrane organelle 

that contains different hydrolyases and proteases that work in an acidic environment to 

non-discriminately degrade proteins transported into the compartment. Autophagy is the 

process that transports macromolecules into the lysosome during times of nutrient 

starvation or other physiological conditions [139, 142, 149].  Autophagy is a tightly 

regulated process that plays a normal part in cell growth, development, and 

homeostasis.  A variety of autophagic processes exist (macroautophagy, 

microautophagy, chaperone mediated autophagy (CMA)) all having in common the 

degradation of intracellular components via the lysosome.   

Briefly, macroautophagy involves the sequestering of cytosol, organelles, and/or 

proteins in a double-membrane vesicle called an autophagosomes.  Autophagosomes 

form from the elongation of precursors and is initiated by class III phosphoinositide 3-

kinases and autophagy-related gene (Beclin-1) [150]. The autophagosome is a 

transport vesicle, and is targeted to the lysosome.  The outer membrane of the 

autophagosomes fuses in the cytoplasm with the lysosome to form the 

autophagolysosome. The inner membrane vesicle (autophagic body) is released into 

the lumen of the lysosome where the contents are degraded [151].  Macroautophagy is 

activated during nutrient starvation, and it becomes the initial source of amino acids and 

other essential macromolecules [149].  Conversely, microautophagy involves the 
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sequestering of cytosol, organelles, and/or proteins, however, instead of an 

autophagosome (macroautophagy) the engulfing membrane is the lysosome itself [152]. 

Microautophagy has been associated with degradation of long-lived proteins within the 

cells and appears unresponsive to starvation as a stimulus [153]. CMA functions 

similarly to macroautophagy and microautophagy, however substrate proteins are 

directly translocated through the lysosomal membrane into the lumen without the 

formation of intermediate vesicles.   

Autophagy is essential in helping to maintain the balance of proteins in the cell. 

Regardless of the form of autophagy it is mediated through the lysosomal degradation 

pathway. Autophagy can be induced by both external and internal stimuli (such as 

nutrition or mTOR inactivation).  The autophagic response has been described in 

various pathophysiological conditions, including ATD.  

 

 
1.8 C. elegans AS A MODEL SYSTEM  

 

Studies designed to understand the mechanism of ATZ-induced liver disease have lead 

to significant insights into the cellular responses to misfolded or aggregation-prone 

proteins, which include characterization of disposal and ER-stress induced signaling 

pathways (mentioned above). However, additional studies are required to understand 

how genetic modifiers influence how ATZ is processed, secreted, and/or degraded. 

Although transgenic mouse lines, cell culture and yeast models are useful for studying 

ATD, there are some disadvantages: for instance both yeast and cell culture lack 

advanced multicellular processes, whereas mouse lines are expensive and time 
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consuming to study for long term effects. Therefore, we sought to develop a different in 

vivo model that would permit a more comprehensive evaluation of the genes involved in 

the cellular response to and disposal of ATZ.  For this reason we have developed a C. 

elegans model of ATZ.  

Sydeny Brenner in the early 1970’s completed groundbreaking research into the 

molecular and developmental biology of C. elegans establishing it as a model organism 

[154]. There are many advantages to utilizing C. elegans as a model for ATD: 1) the 

small size (~1000 cells; ~1.5 mm in length as an adult), 2) the transparency (cells can 

be visualized using a standard dissecting microscope), 3) the ease of propagation (over 

300 progeny can be hatched from a single worm), 4) the ease of animal manipulation, 

5) large numbers that can be grown, 6) the short life cycle (3 days), 7) the short life 

span (20 days), 8) the knowledge of the entire genome, 9) ease of genetic screens 

(mutagenesis and RNAi) and 10) the cost efficiency [155]. Furthermore, transgenic 

animals are generated with relative ease and provide a wealth of information regarding 

how a gene is regulated and function it performs within the context of a whole organism. 

In a null mutant background, altered (mutated) copies of a gene can be easily 

reintroduced to study structure-function relationships. In some cases where a null fails 

to yield an overt phenotype, overexpression of a gene may provide insights into protein 

function [156]. Transgenes fused to one or more fluorescent proteins or affinity tags can 

be exploited for the study protein-protein interactions and target protein identification 

[157].  
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1.8.1 C. elegans a Model for Studying Human Diseases 

 

The number of human disease-related genes that share at least modest homology (E < 

10-10 on BLASTP searches) with C. elegans genes ranges from 40-75% [158-163]. 

However, this degree of relatedness may still be an underestimate as the rapid 

divergence of non-essential domains and exon shuffling may impair the ability of the 

BLASTP algorithm to detect high-scoring segment pairs between orthologous genes 

[164]. For example, the C. elegans orthologue of vertebrate P53, cep-1, which also 

contains the five signature domains and residues commonly mutated in human 

malignancies, was detected only after using a combination of the squid P53 as the 

query, PSI-BLAST and the Block Maker tool [165]. Moreover, even if a human disease-

related gene does not have an orthologue in C. elegans, there is still a high likelihood 

that a homologous gene, a protein domain or the constituents of an associated 

biochemical pathway (especially if it encompasses a core cellular function like signal 

transduction, synaptic transmission or membrane trafficking) are conserved to the 

extent that this model system can be exploited to lend insight into human pathobiology 

[166, 167]. 

The C. elegans model system has been used to study a variety of human 

diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and 

Muscular Dystrophy [168]. The majority of these models involve the accumulation of a 

misfolded protein that results in a disease phenotype. For instance, Parkinson's disease 

(PD) is a neurodegenerative disorder that has been characterized by the abnormal 

accumulation of alpha-synuclein (α-syn) protein in the brain [169]. Recently a C. 
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elegans model of PD has been used to identify gene products that were neuroprotective 

[170]. Specifically, this model over expresses the α-syn protein resulting in the 

accumulation of α-syn in the neurons of the worms.  Utilizing this model ~900 possible 

targets were screened through RNAi methods, resulting in 20 candidate gene products 

that when inhibited led to an enhanced misfolding of α-syn in the worm.  Ultimately this 

research led to the identification of VPS41, which encodes a conserved protein 

necessary for lysosomal biogenesis and ultimately a potential target for therapeutic 

treatments of PD [171].   

 C. elegans  has also been used to gain an understanding of Huntington's disease 

(HD). HD is caused by repeated stretch of glutamines in the polyQ region of the 

Huntington gene, HTT. The normal range of glutamine repeats is fewer than 36, 

however when that number is exceeded, the HTT gene has different characteristics 

resulting in the gradual damage to specific areas of the brain.  In C. elegans most of the 

research has been based upon the toxicity associated with polyglutamine repeats. This 

transgenic approach uses different polyglutamine (polyQ) repeat lengths fused directly 

with GFP and a promoter that drives expression in body wall muscle of the worm [172].   

Expression of GFP::Q82 resulted in aggregate formation and induction of stress 

response proteins.  Furthermore, a large scale RNAi screen identified genetic modifiers 

of the polyQ accumulations, which included a large set of genes involved in protein 

folding and degradation [173]. This research suggests that modeling human diseases in 

C. elegans may provide insights into the mechanism of cellular injury and the 

endogenous mechanisms that have evolved to regulate protein folding [168]. 
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1.9 DISSERTATION OVERVIEW 
 
 

The best-studied serpinopathy is ATD, which is most commonly caused by a mutation 

that results in a substitution of the amino acid, glutamic acid at position 392 to a lysine 

(known as the Z mutation). Since α1-AT is the predominant serine peptidase inhibitor in 

extracellular fluids, decreased α1-AT secretion results in a loss-of-function phenotype 

manifest by peptidase-inhibitor imbalance, connective tissue matrix destruction and 

susceptibility to chronic obstructive lung disease. In contrast, the accumulation of 

aggregation-prone ATZ in liver cells leads to a toxic gain-of-function phenotype 

characterized by liver failure and carcinogenesis. Only ~10% of all ATZ homozygous 

individuals develop severe liver disease [174]. This observation suggests that other 

genetic and/or environmental factors play key roles in determining disease severity and 

outcome [175]. Our current understanding of these factors is incomplete and effective 

therapeutic options are very limited. This work describes the development of a C. 

elegans model of ATZ deficiency, characterization of the phenotypes associated with 

ATZ accumulation, the targeted investigation of protein quality control, and an unbiased 

RNAi screen to identify modifier genes important for ATZ disposition.   
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2.0 THE DEVELOPMENT, CHARACTERIZATION, AND VALIDATION OF 

A C. elegans MODEL OF THE SERPINOPATHY, α-1 ANTITRYPSIN 
DEFICIENCY 

 
 
 
 

2.1 INTRODUCTION 
 
 
The serpinopathies are a group of conformational diseases in which a genetic mutations 

facilitate serpin protein misfolding, polymerization, and aggregation [43]. The 

accumulation of misfolded serpins lead to tissue damage and degenerative diseases 

[41-44]. Examples include a1-antitrypsin (AT) deficiency, hereditary angioedema, 

familial encephalopathy with neuroserpin inclusion bodies (FENIB), and thrombophilia. 

Most serpinopathies are a result of mutations occuring most frequently in or near the 

hinges of the reactive site loop and the shutter region that underlies the opening of the 

β-sheet A [41].  

The best-studied serpinopathy is AT deficiency (ATD). ATD is caused most 

commonly by a mutation that results in a substitution of the amino acid, glutamic acid at 

position 342 to a lysine (known as the Z mutation). This change in charge destabilizes 

the hinge region, making the AT protein more susceptible to polymerization. These 

protein polymers are poorly secreted and accumulate within the ER of liver cells [6]. 

Since AT is the predominant serine peptidase inhibitor in extracellular fluids, decreased 

AT secretion results in a loss-of-function phenotype manifested by peptidase-inhibitor 

imbalance, connective tissue matrix destruction, and susceptibility to chronic obstructive 
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lung disease. In contrast, the accumulation of aggregation-prone α1-antitrypsin Z (ATZ) 

in liver cells leads to a gain-of-toxic-function phenotype, characterized by liver failure 

and carcinogenesis [82]. Indeed, ATD is the most common genetic cause of pediatric 

liver disease and the most frequent diagnostic indications for liver transplantation during 

childhood.  

Curiously, only 10% of all ATZ homozygous individuals develop severe liver 

disease [174]. This observation suggests that other genetic modifiers and/or 

environmental factors play key roles in determining disease severity and outcome. Our 

current understanding of these other factors is incomplete and effective therapeutic 

options are limited. Model systems have provided valuable insights into different human 

diseases associated with aggregation-prone proteins. For example, transgenic worms 

and Drosophila have enhanced our understanding of Alzheimer’s disease, Parkinson’s 

disease, Huntington’s disease, Duchenne muscular dystrophy and diabetes [173, 176]. 

Thus, the simple model organism, such as C. elegans, may be useful for unraveling 

genetic modifiers associated with ATD. Moreover, C. elegans is becoming the system of 

choice to study cell biological processes in vivo and may provide insights into the 

cellular mechanisms that protect against protein misfolding.  

C. elegans are a well-established model organism with a proven track record. 

Their small size (1.5 mm as an adult), short life cycle (2–3 days), high fecundity (300 

progeny in 3 days), easy genetic manipulation, and ease of culture, makes them an 

excellent, low-cost, alternative to other model organisms [154]. Transgenic animals can 

be generated with relative ease and well-established reverse and forward genetic tools 

are available. This chapter will focus on the development, characterization, and 
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validation of the C. elegans model of α1-antitrypsin deficiency. Emphasis is given to 

comparing the C. elegans model with the ER transport defect in hepatocytes that are 

associated with the human disease [6].   

 

 

2.2 MATERIALS & METHODS 

 

2.2.1. AT Constructs 

 

Overlap extension PCR introduced synthetic introns in AT cDNA. Briefly, large 

oligonucleotides primers consisting of ~50 nt of synthetic intron and ~22 nt 

complementary sequence to AT coding region were used to amplify small regions of the 

AT cDNA. The amplified fragments were joined together utilizing overlap extension PCR 

to generate larger fragments that contained intronic regions. The resulting PCR product 

contains the entire AT fragment with inserted synthetic introns (~70 bp) that enhance 

transgene expression in the worm.  The completed AT fragment was  flanked with Kas 1 

recognition sites and cloned into a modified pPD95.85 expression vector (A. Fire, 

Stanford University) which generated Pnhx-2sGFP::ATM.  To create the Z mutation of AT, 

site-directed mutagenesis of Pnhx-2sGFP::ATM with Quickchange II (Stratagene, CA) 

with primers (F:GGCTGTGCTGACCATCGATAAGAAAGGGACTGAAGCTGC) and (R:GCAGCTTCAGTCCCT 

TTCTTATCGATGGTCAGCACAGCC) was used to change Glu 342 to Lys.  All PCR reactions used 

in these studies utilized Phusion high fidelity DNA polymerase (New England Biolabs, 

MA). All of the constructs were sequenced confirming correct constructs. 
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2.2.2. Creation of Transgenic Strains 

 

Standard microinjection techniques were used to generate AT transgenic C. elegans 

[177].  Briefly, animals were co-injected with Pmyo-2mRFP (10 ng/µl) and either 

sGFP::ATZ or sGFP::ATM (70 ng/µl) expression constructs into the gonad of adult N2 

(wild type) hermaphrodites. For each DNA construct, injections yielded multiple 

transgenic lines propagating extra-chromosomal arrays. 

 

2.2.3.  Creation of Integrated Strains 

 

Extrachromosomal arrays were integrated by exposure of transgenic animals to gamma 

irradiation. Approximately 300 L4 transgenic animals with ~25% transmission frequency 

were washed with Phosphate Buffered Saline (PBS; NaCl 8 g/l, KCl .2g/l, Na2HPO4• 

2H2O 1.44 g/l, KH2PO4 .24g/l, pH 7.4) and irradiated with 3500 Rads of gamma 

radiation. Animals were transferred to NGM/OP50 plates for recovery. Positive 

transgenic lines were identified and selected on the basis of 100% transmission to 

subsequent generations. To remove background mutations that may have arisen from 

irradiation, integrated lines were outcrossed to N2 (WT) animals at least 6 times before 

experimentation.  
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2.2.4.  Strains and Culture Conditions  

 

Strains used in this experiments were N2 (Bristol strain), CB4856 (Hawaiian 

polymorphic strain), VK413 (Pnhx-2GFP), VK414 (Pnhx-2sGFP), VK689 (Pnhx-2sGFP::ATM), 

VK694 (Pnhx-2sGFP::ATZ), and VK472 (Pnhx-2sATZ).  Standard conditions were used for 

C. elegans culturing, propagation, and maintenance at 22 °C as described by Brenner 

[154]. Worms were cultured on nematode growth medium (NGM) plates seeded with E. 

coli OP50 (NGM/OP50) [154].  

 

2.2.5.  Chromosome Mapping 

 

A SNP-based mapping strategy with the Hawaiian C. elegans strain CB4856 was 

utilized to determine the chromosomal location of a transgene integration site [178]. 

Hawaiian CB4856 males were crossed into sGFP::ATM and sGFP::ATZ animals. Fifty 

GFP animals and fifty non-GFP animals from the self-progeny of sGFP::AT/CB4856 

heterozygote hermaphrodites were picked into separate tubes, each containing 20 µL 

single-worm lysis buffer (50 mM KCl, 10 mM Tris pH 8.3, 2.5 mM MgCl2, 0.45% IGEPAL 

CA-630, 0.45% Tween 20, 0.01% (w/v) gelatin, 60 ug/ml proteinase K). They were lysed 

by freezing at -80 °C followed by incubation at 65 °C 1 hour and 95 °C 15 minutes to 

inactivate the proteinase K. The DNA was  added to a PCR master mix containing 424 

µL water, 52 µL 10X PCR buffer (10X: 22.5 mM MgCl2, 500 mM Tris-HCl, 140 mM 

(NH4)2SO4, pH 9.2 at 25 °C), 10.4 µL 10 mM dNTPs, and 3.12 µL Taq polymerase (5 

units/µl). Ten uM of each primer and 9.8 µL of the mutant mix or the non-mutant mix 
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was aliquoted into single PCR tubes. The DNA was amplified by PCR using the cycling 

conditions: 2' at 94 °C, 35 cycles of (15" at 94 °C, 45" at 60 °C, 1' at 72 °C), and a final 

incubation for 5' at 72 °C. After amplification, PCR products were digested in the tubes 

with the restriction enzyme DraI (New England Biolabs). Digestion reactions were 

incubated at 37 °C at least 4 hours. Samples were loaded onto a 1.0% agarose gel. The 

resulting gel displayed all 18 SNP markers, from left to right and from chromosome I to 

X. Each Mutant SNP was compared side-by-side to its non-Mutant control, so that the 

entire genome could be scanned for linkage. Chromosome mapping was completed for 

each isolated integrated AT transgenic line [178].  

 

2.2.6.  Imaging of Transgenic Lines 

 

Fluorescence expression patterns were observed utilizing a Zeiss Axioskop microscope 

(Thornwood, NY) equipped with DIC, polarization, and fluorescence optics. Adults were 

immobilized by mounting in 0.1 M sodium azide solution on a 2% agarose pad. Images 

used for fluorescence were captured at the identical exposure times, brightness, and 

contrast.  

 Transmission electron microscopy was used to determine the subcellular location 

of ATZ accumulations. Transgenic adult animals were selected, washed in PBS buffer, 

fixed, and embedded by standard methods [179]. Thin sections (~50 nm) were collected 

and examined on a transmission electron microscope (JEOL 12-10 TEM, 

Massachusetts). Results were obtained by examining over 25 micrographs from each 

worm line.  
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2.2.7.  Biochemical Characterization 

 

Nematode protein extracts were prepared by resuspending frozen worm pellets in PBS 

with a protease inhibitor cocktail (Roche, Indianapolis) and were sonicated intermittently 

for a total of 15 seconds (Sonifier 450 Output: 6). To remove cell debris, extracts were 

centrifuged at 16,000 rpm for 20 min at 4oC, and the supernatant collected. The 

supernatant (12 µl) was mixed with 3ul of 5x dissolving buffer (5 ml glycerol, 2.7 ml H20, 

2.13 ml of 0.5 M Tris pH 6.8) and  analyzed on 7.5% native PAGE.   

Alternatively, protein extracts were prepared from whole animal pellets in PBS 

containing proteinase inhibitors (Roche, Indianapolis). Samples were boiled 10 min with 

sample buffer containing 2% SDS and 200 mM DTT, and fractionated on a 10% 

SDS/PAGE gel. Both Native and SDS-PAGE gels were transferred to PVDF 

membranes. Blots were probed with a 1:1000 dilution of anti-GFP peptide polyclonal 

antiserum (Sigma), 1:10,000 dilution of anti-α1-antitrypsin (DiaSorin Inc, Stillwater) or 

1:1,000 anti-tubulin polyclonal antiserum (Sigma), respectively; and visualized by 

binding of horseradish peroxidase-coupled secondary antibody and chemiluminescence 

(ECL Lumi-Light, Roche, Germany).  

 

2.2.8.  Phenotypic Characterizations 

 

2.2.8.1.  Longevity Assay 

Twenty-five L4 larvae from each strain were transferred to NGM/OP50 plates. Following 

transfer (day 0), lifespan plates were incubated at 22 °C until final scoring for survival 
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was completed (survival was scored every day until all animals were dead). Animals 

were considered dead when there was no response to platinum wire prodding.  Animals 

were transferred to fresh NGM/OP50 plates every 3 days to prevent starvation, and to 

maintain original adult population. Animals that crawled off the media or desiccated 

were censored.  Each lifespan assay were repeated at least three times and showed 

similar trends in relative lifespan effects. The data were plotted with Kaplan- Meier 

survival curves and statistical analysis was competed utilizing the Logrank (Mantel-Cox) 

test.  

 

2.2.8.2.  Brood Size Assay 

 

Ten L4 animals were individually placed onto separate NGM/OP50 plates and 

incubated at 22 oC. Animals were transferred to fresh plates daily for 5 successive days 

or until animals stopped producing eggs. The number of eggs produced by each worm 

was recorded daily, and the total number of eggs summed to give brood size. The mean 

brood size and standard deviation of a particular strain was calculated and significance 

was calculated using the Student’s t-test. 

 

2.2.8.3.  Slow Growth Assay 

 

25 gravid adult hermaphrodites were transferred to fresh NGM/OP50 plates and allowed 

to lay eggs for approximately 2 hours at 22 oC.  The original 25 adults were removed 

from plates and the eggs were allowed to develop for 48 hours at 25 oC. Plates were  
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examined under a Leica dissecting microscope at 5X magnification to determine 

developmental stage.  All adult and L4 animals were removed and plates were 

incubated for another 48 hours. After a total of 96 hours the plates were reexamined to 

determine if embryos had reached adulthood. The growth defects mean result and 

standard deviation was calculated from three separate trials, and P-values were 

calculated using the Student’s t-test.  

 

 

2.3 DEVELOPMENT OF AT TRANSGENIC ANIMALS 
 

C. elegans is a powerful genetic and physiological system for modeling human diseases. 

As such, we created a C. elegans model of ER transport defect associated with ATD. 

Considerations for generation of AT transgenic animals included means to optimize 

transgene expression, promoter choice, and the use of a translational reporter 

(fluorescent protein). Many human genes are too large to be introduced efficiently by 

germline injection. Moreover, many human cDNAs are larger than some C. elegans 

genes. Studies in many species show that transgene expression is enhanced by the 

presence of intronic sequences [180, 181]. For that reason, synthetic introns were 

inserted into human AT cDNA by overlap extension PCR. The amplified AT fragment, 

containing synthetic introns, was cloned into the expression vector pPD95.85; which 

contains a multi-cloning site, flanking introns, and a 3’ UTR. Additionally, the pPD95.85 

vector has a synthetic signal peptide, which directed transgene expression to the 

secretory pathway (Figure 2.1).  
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Figure 2.1 AT Expression Vector 

Represents a schematic of the expression vector for expression of α1-antitrypsin in C. 

elegans. The nhx-2 promoter (Pnhx-2) is used to drive expression of the transgene in the 

intestinal cells of the worm, while the synthetic signal peptide directs transgene 

expression to the secretory pathway. Both the GFP and α1-AT cDNA had synthetic 

introns inserted to increase transgene expression. s = synthetic intron, utr = 

untranslated region 
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The promoter selection was based on directing expression to cells that most 

closely resemble the biological environment in which the human protein is synthesized. 

The majority of human AT is produced in hepatocytes; however, nematodes do not 

have a liver.  In C. elegans, the intestine acts as the metabolic center and performs 

biosynthetic and secretory functions of the worm [182].  Therefore, we utilized the 

intestinal specific promoter nhx-2 (Pnhx-2), which drives expression through all stages of 

postembryonic development (Figure 2.1) [182].  

 To follow the cellular disposition of ATZ in intestinal cells we elected to fuse the 

serpin to a fluorescent reporter (FR). FR tags obviate the need for fixation and antibody 

staining, and provide real time monitoring of proteins in live animals [157]. We fused the 

green fluorescent protein (GFP) to the 5’ end of the AT transgene creating a 

translational GFP::ATZ fusion gene (Figure 2.1). Since one mechanism of ATZ 

polymerization involves insertion of the reactive site loop of one molecule into β-sheet A 

of another ATZ molecule [40], we fused GFP on the N-terminal side of AT, to avoid 

interfering with this process.  

 The ATM and ATZ constructs were introduced by microinjection into the gonad of 

the worm. Specifically, sGFP::ATM or sGFP::ATZ plasmids (~70 ng/µl) were injected 

into the gonads of young N2 adult hermaphrodites (Figure 2.2 B). Multiple independent 

transgenic lines were isolated, which showed variable transmission rates and transgene 

expression patterns (Figure 2.2 C). As an independent means to help identify transgenic 

animals, a co-injection marker was used. Co-injection marker transgenes are 

incorporated concomitantly into the extrachromosomal array.  Co-injection markers 

often make use of a promoter that is specific to an anatomical structure remote from the  
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Figure 2.2 Flow Chart of Transgenesis 

A. Expression vectors were created expressing the transgene of choice. B. Plasmid 

DNAs (for the transgene of choice had a co-injection marker) were injected into the 

gonad of adult hermaphrodites. C. Multiple lines of transgenic progeny were isolated. D. 

Gamma radiation was utilized to integrate transgene. E. Fluorescent image of 

sGFP::ATZ transgenic animals (Coloration red=mRFP, green=GFP)  Figure adapted 

from Long et al., (2011) [183]. 

E. 
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region of interest. Additionally, co-injection markers are usually tagged with a different 

FR to minimize interference during multicolor imaging. Therefore, we utilized the head 

muscle promoter, myo-2 (Pmyo-2), tagged with mRFP. This co-injection marker was very 

distinctive, allowing for easy identification of transgenic animals (Figure 2.2 A). 

Successful injections resulted in transgenic animals displaying an mRFP expressing 

head region and GFP expression in the intestine (Figure 2.2 E).  

 After isolation of stable transgenic lines, the transgenes were integrated into the 

genome of the animals. Injected DNA plasmids form large extrachromosomal arrays 

that are passed onto subsequent generations in a non-Mendelian inheritance pattern 

[184]. Integration of transgenes results in stable and consistent (100%) transgene 

expression. We generated integrated lines by exposing transgenic animals to high 

doses (3500 Rads) of gamma radiation (Figure 2.2 D).  This ionizing radiation causes 

double-stranded DNA breaks [177].   Upon repair of these breaks, the 

extrachromosomal array may be incorporated into DNA of the animal. However, the 

radiation may also cause unintended mutations in other genes. Following the isolation 

of integrated transgenic lines, outcrossing was completed six times to remove any 

background mutations. Individual F1 strains were selected based on transgene 

expression levels and were expanded. Lastly, Single Nucleotide Polymorphism (SNP) 

mapping was completed on the different integrated transgenic lines to determine the 

relative location of the integration site (Figure 2.3, Table 2.1). In SNP-mapping, 

chromosomal specific SNP polymorphisms between wild-type N2 and CB4856 

Hawaiian DNA are used as genetic markers to map the transgenic insertion site [178].  
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Figure 2.3 Chromosome Mapping of Integrated Transgene 

Each pair of lanes shows results from SNP mapping at the indicated genetic map 

position, using DNA from either the GFP (+) or the non-fluorescent (-) F2 animals DNA 

derived from a N2 X Hawaiian cross. Linkage is visible as an increase in the proportion 

of closely linked N2 Bristol DNA in (+) lanes compared to the (–) lanes, and is visible in 

chromosome II (white arrow) for the ATZ transgenic line VK694.  
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Table 2.1: Summary of Independent AT Transgenic Lines  

Name Strain ID Expression/description Outcrossed 6X SNP mapped 
         
MR13.6  med. posterior globules     
MR14.5  no globules √ Chr 2.2 
MR17.1 VK689 small posterior globules √ Chr X.2 
MR18.1  high posterior globules     
         
Z6.1  med/high expressor √ Chr 1.3 
Z7.1  med/high expressor (slow growing)     
Z15.4  med/high expressor     
Z19.4  low/med expressor √ Chr X.2 
Z24.5  low/med expressor/posterior globules   Chr 1.3 
Z26.6  medium expressor √ Chr 3.1/3.2 
Z2.3.1  medium expressor / posterior globules     
Z25.3.1  medium expressor / mutiple globules  √ Chr X.2 
Z13.1.1  medium expressor / posterior globules     
         
ZR10.4 VK694 high expressor / multiple globules √ Chr 2.2 
ZR20.3  high expressor / multiple globules √ Chr X.2 
ZR21.4.2  medium expressor     
ZR30.1  medium expressor OC 2X Chr X.2 
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Chromosome mapping identifies chromosomal location [178]. Through these techniques, 

multiple independent transgenic lines were created, integrated, outcrossed, and SNP-

mapped (Table 2.1). 

 

 

2.4 CHARACTERIZATION OF AT TRANSGENIC ANIMALS  

 

The second target of this study was the comprehensive characterization of AT 

transgenic animals. We wanted to confirm that the in vivo model of ATZ recapitulated 

the pathogeneses of ATD in humans. This characterization was broken down into 

several independent studies including cellular accumulation and secretion studies, 

biochemical characterization of AT protein, and phenotypical characterization of 

sGFP::ATZ transgenic animals.  

 

2.4.1. Cellular Accumulation and Secretion 

 

 Control transgenic animals expressing Pnhx-2::GFP  showed homogenous diffuse 

expression of GFP throughout the intestine of the animal (Figure 2.4 A). Whereas Pnhx-

2sGFP showed diffuse GFP expression in the pseudocoelomic space outside of the 

intestine (Figure 2.4 B). These results suggest that the synthetic signal peptide was 

sufficient for directing GFP to the secretory pathway, resulting in the accumulation of 

GFP in the pseudocoelomic space. Transgenic animals expressing sGFP::ATM, the 

wild type AT protein, showed secretion of the GFP in the pseudocoelomic space with no 
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detectable intracellular accumulations (Figure 2.4 C). In contrast, sGFP::ATZ, 

developed large intracellular inclusions with no detectable secretion of ATZ (Figure 2.4 

D).  

 DIC imaging was used to determine if the globules present in sGFP::ATZ animals 

were caused by an accumulation of mutant ATZ or aggregating GFP. Transgenic Pnhx-

2::ATZ animals were created and imaged. Results from this imaging showed dilated 

cisternae in animals expressing ATZ alone, similar to what was visualized in sGFP::ATZ 

(Figure 2.4 E). 

 Transmission electron microscopy was used to characterize the location of the 

sGFP::ATZ accumulations to the ER of intestinal cells. Transgenic adult animals were 

selected, washed in PBS buffer, fixed, and embedded by standard methods [179]. 

Animals were  examined under a transmission electron microscope. Similar to DIC 

imaging, large intracellular accumulations were observed in the intestinal cells of 

sGFP::ATZ transgenic animals (Figure 2.5 B, C, D). These accumulations appeared to 

be surrounded by ribosomes, suggesting that the retention of ATZ is located in dilated 

rough ER cisternae (Figure 2.5 D). In contrast, no irregular structures were observed in 

the intestinal cells of animals expressing sGFP::ATM (Figure 2.5 A).   

 

2.4.2. Biochemical Characterization 

 

Studies show that human ATZ polymerizes within hepatocytes [3, 185]. Therefore, we 

determined whether ATZ protein within C. elegans was in the polymerized form, utilizing 

non-denaturing gels.  Under native conditions, sGFP::ATZ exhibited the properties of 
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Figure 2.4 Fluorescent and DIC Imaging of Transgenic Animals 

A. Adult worm harboring Pnhx-2GFP showed diffuse intracellular GFP expression within 

the intestinal cells. B and C. Pnhx-2sGFP and Pnhx-2sGFP::ATM transgenic animals 

secreted GFP into the extracellular pseudocoelomic space (asterisks). D. Pnhx-

2sGFP::ATZ animals accumulated ATZ within intestinal cell cytoplasm (red arrowheads) 

and failed to secrete detectable amounts of fusion protein into the pseudocoelomic 

space. E, Pnhx-2ATZ showed prominent intracellular inclusions (black arrowheads) that 

are comparable to those of the GFP accumulations shown in Pnhx-2sGFP::ATZ animals.  

For orientation in each paired set of figures, white arrowheads indicate corresponding 

basal surfaces of intestinal cells. (Figure Imaged by Stephen C. Pak, unpublished data) 
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Figure 2.5 Electron Micrographs of ATZ Globule-containing Intestinal Cells of 

Transgenic Animals.  

Cross and transverse sections of early larval stage worms expressing A. sGFP::ATM or 

B. sGFP::ATZ transgenes. Arrowheads point to large intracellular inclusions. C. Close-

up of an ATZ inclusion.  D. Higher magnification of the boxed area from C. Arrowheads 

point to ribosomes of the dilated ER. Int = intestinal lumen. (Figure Imaged by Stephen 

C Pak, unpublished data) 
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monomers, soluble oligomers, and higher order polymers (Figure 2.6 A). In contrast, 

sGFP::ATM was soluble with mobility relative to its molecular mass (Figure 2.6 A).  

Furthermore, SDS-PAGE were used to confirm fusion protein production of 

sGFP::AT. Under denaturing conditions, total worm lysates were fractionated by SDS-

PAGE. Proteins were transferred to nitrocellulose membranes and AT, GFP, and tubulin 

(loading control) protein bands were visualized by probing with anti-AT, anti-GFP, and 

anti-tubulin antibodies, respectively.  (Figure 2.6 B). As expected, the lysates of the 

parental N2 worms did not react with anti-GFP or AT but only with the loading control 

tubulin (lane 1). In contrast, a protein band migrating at ~80 kDa was detected in the 

lysates of animals expressing sGFP::ATM (lane 6) and sGFP::ATZ (lane 2-5) in parallel 

blots for AT and GFP (Figure 2.6 B). This finding showed that no cleavage of the fusion 

protein occurred within the animals. 

 

2.4.3. Phenotypic Characterization 

 

In humans ATD can be associated with severe disease phenotypes [6, 40, 186-188]. 

Therefore, we assessed the overall health of sGFP::ATZ transgenic animals by 

assessing lifespan, brood size, and growth of transgenic animals. 

 

2.4.3.1 Longevity 

For longevity experiments, twenty-five L4 animals were placed onto OP50/NGM plates. 

The number of alive and dead animals was recorded daily.  Death of the animal was 

characterized by a lack of response to touch. Upon completion of the study, Kaplan- 
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Figure 2.6 Biochemical Characterizations of AT  

A. Higher ordered polymer formation was analyzed by native gel electrophoresis. Worm 

lysates from ATZ transgenic animals showed similar polymer formation as control lane 

containing human AT polymers (p). Similarly worm lysates from ATM transgenic 

animals showed monomer formation similar to control recombinant AT monomers (m). 

N2 animals were the negative control showing no AT protein. B. Immunoblot of worm 

lysates after SDS-Page gel probed with anti-human AT, anti-GFP , and anti-tubulin 

(loading control). Lanes 1= N2, Lane 2-5 are separate transgenic sGFP::ATZ lines 

(2=ZR20.30, 3=Z19.4, 4=ZR10.4, 5=Z25.3.1), Lane 6= sGFP::ATM.  Lane 7 is 

recombinant AT protein at ~60 kD.  The GFP and AT fusion proteins have a combined 

weight of ~87 kD.  Tubulin is ~55 kD.    
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Meier survival curves showed that expression of sGFP::ATZ transgene resulted in a 

decreased lifespan (p<0.001, Log-Rank test (Figure 2.7 A) [189].  

 

2.4.3.2  Brood Size 

Brood size was ascertained by measuring the total number of embryos laid over a five-

day period. Ten L4 animals were placed onto individual OP50/NGM plates and 

incubated at room temperature. The adults were transferred to new OP50/NGM plates 

daily. The number of progeny were counted daily and totaled to determine brood size 

(Figure 2.7 B). Animals expressing sGFP::ATZ transgene exhibited a significant 

reduction in brood size compared with animals expressing sGFP::ATM (p<0.001, one-

tailed t-test ). Additionally, sGFP::ATM showed a decrease compared to N2 animals, 

suggesting that overexpression of wild type AT had a negative effect on the health of 

the animal (p<0.01).  

 

2.4.3.3 Growth  

To test the effects of sGFP:ATZ on C. elegans development we measured the time of 

progression from embryo to adult. Whereas ~100% of wild-type (N2) embryos 

progressed to adulthood in 48 hours, only 10% of sGFP::ATZ transgenic embryos 

progressed to the L4/young adult stage (Figure 2.7 C). The sGFP::ATZ animals often 

required up to 96 hours to reach adulthood (Figure 2.7 D). In contrast, expression of 

sGFP::ATM had a minimal effect on developmental timing.   
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Figure 2.7 Phenotypic Analysis of Transgenic Animals  
	  
A. Kaplan-Meier curve showing sGFP::ATZ transgenic animals displayed a significant 

decrease in lifespan compared with sGFP::ATM and N2 animals. B. sGFP::ATZ animals 

showed decrease brood size (p<0.01). C. Post embryonic developmental delay assay 

showing ATZ animals exhibit severe developmental delays. D. Development of 

transgenic animals 96 hours after being laid, showing that ATZ animals enter into 

adulthood 
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2.5 DISCUSSION  

 

Modeling aspects of human disease phenotypes in C. elegans allows for the dissection 

of complex molecular pathways that contribute to the disease process. For these 

reasons, we have produced transgenic C. elegans strains that model the ER transport 

defect associated with the liver disease of ATD patients.  In humans, ATD is caused 

commonly by a genetic mutation (Z) resulting in protein misfolding, oligomerization and 

aggregation [3, 40, 185]. The accumulation of abnormal ATZ proteins within the liver 

cells leads to tissue injury and degenerative diseases in humans [40]. Consistent with 

the role the Z mutation plays in human disease, transgenic sGFP::ATZ animals develop 

intracellular accumulation in the intestinal cells with no discernible secretion of ATZ 

(Figure 2.4 D). In contrast, sGFP::ATM transgene was secreted into the 

pseudocoelomic space surrounding the intestinal cells (Figure 2.4 C). These studies 

indicated that the fate of ATM and ATZ in C. elegans recapitulates that which occurs in 

humans: secretion of ATM and intracellular retention of ATZ.  

To exclude the possibility that the observed phenotypes were specific to 

intestinal cells, our laboratory also developed sGFP::ATM and sGFP::ATZ transgenic 

animals that expressed these proteins in hypodermal seam cells [156]. The Psrp-

2sGFP::ATZ animals displayed a similar GFP accumulation phenotype in the 

hypodermal seam cells as Pnhx-2sGFP::ATZ displayed in the intestinal cells (data not 

shown). These studies showed that the accumulation of sGFP::ATZ was not unique to 

intestinal cells, but was a general feature of the aggregation prone protein, ATZ.  
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 Although unlikely, it was conceivable that aggregation of sGFP::ATZ was due to 

GFP and not ATZ in this system. To test this possibility, we generated Pnhx-2ATZ 

transgenic animals. DIC imaging showed dilated cisternae, similar to what was 

visualized in sGFP::ATZ (Figure 2.4 E). These images showed that the intracellular 

inclusions are caused by the agregating ATZ, and not GFP (Figure 2.6 A). 

In humans, ATZ aggregates are retained within the ER [1, 186]. In C. elegans 

transmission electron microscopy (TEM) and immunohistochemical studies showed that 

sGFP::ATZ was also retained within dilated ER cisterna (Figure 2.5 B,C,D). These 

studies support sGFP::ATZ accumulated in the ER of intestinal cells, which is similar to 

what is observed in humans with ATD.  

Biochemically, ATZ polymerizes in hepatocytes [3, 5, 40, 185, 190, 191]. Protein 

lysates from transgenic sGFP::ATZ and sGFP::ATM animals showed that retained 

sGFP::ATZ and secreted sGFP::ATM were also in polymerized and monomeric forms, 

respectively (Figure 2.6 B). Taken together these studies suggest that sGFP::ATZ 

exhibited cellular and biochemical properties similar to those observed in humans with 

ATD.  

 ATZ accumulation in humans can be associated with severe liver disease [6, 40, 

186-188]. Therefore, we determined whether expressing sGFP::ATZ affected the overall 

health and well being of the animals.  The accumulation of mutant ATZ, in C. elegans, 

results in decreased life spans, decreased brood sizes and increased embryonic 

developmental delays (Figure 2.7 A,B,C,D). Overall, these studies indicated that 

expression of mutant ATZ in C. elegans was harmful to the animals. Some of these 

observations resemble those observed in the PiZ mouse, and in humans with ATD [3, 
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60, 78-81].  

 By developing a transgenic model that recapitulates the ER transport defect 

associated with ATD, we are better equipped to identify genes that modify the ATZ 

phenotypes. Studies show that the proteasomal pathway is responsible for the 

elimination of misfolded soluble proteins, whereas the autophagy-lysosome pathway is 

specialized for degradation of insoluble aggregates and higher order polymers [70, 76, 

85-88]. Therefore, we next want to determine if the disposal mechanism of sGFP::ATZ 

in C. elegans parallels those in mammalian systems (Chapter 3). Furthermore, the 

robust expression of sGFP::ATZ transgene makes this system a candidate for a high-

throughput genome-wide RNAi screening, to determine if any additional genes or 

pathways play a pivotal role in the disposal of sGFP::ATZ in C. elegans (Chapter 4).  
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 3.0 PATHWAY DIRECTED IDENTIFICATION AND CHARACTERIZATION OF 

GENETIC MODIFIERS AFFECTING ATZ ACCUMULATION 

 
 
  
 

3.1 INTRODUCTION 
 
 
α-1 antitrypsin (α1-AT) is an secreted glycoprotein that is synthesized predominantly by 

hepatocytes, and acts as the major inhibitor of neutrophil elastase in extracellular fluids 

[60, 192]. Classical α-1 antitrypsin deficiency (ATD) is an autosomal recessive disorder 

caused by the Z (E342K) mutation (ATZ) [1]. This non-conservative mutation results in 

protein misfolding and the accumulation of ATZ in the endoplasmic reticulum (ER) of 

hepatocytes [3, 6].  Consequently, ATZ is poorly secreted with plasma levels <10% of 

normal. ATD patients can present with a loss-of-function phenotype characterized by 

elastase-mediated chronic obstructive pulmonary disease [2] and/or a gain-of-function 

phenotype characterized by aggregation prone protein mediated hepatic injury [3, 6, 40, 

42, 191, 193-196].  

 The expression of liver disease among homozygous ATZ patients is highly 

variable [4, 5]. This heterogenity suggests that additional genetic and/or environmental 

factors play an important role in development of liver disease.  Studies designed to 

understand the mechanism of ATZ-induced liver disease have lead to significant 

insights into the cellular responses to misfolded or aggregation-prone proteins, which 

include characterization of disposal and ER-stress induced signaling pathways. 
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However, additional studies are required to understand how genetic modifiers influence 

how ATZ is processed, secreted, and/or degraded. 

 Studies in yeast, mammalian cell lines, and transgenic mouse models indicate that 

there are multiple ATZ elimination pathways. Werner and colleagues showed that a 

portion of ATZ is eliminated by the ubiquitin proteasome system (UPS) [71]. In this 

study, a yeast expression system was utilized to monitor degradation of ATZ during 

pulse-chase experimentation. Specifically, wild-type yeast strains degraded the majority 

(~94%) of ATZ, while a yeast proteasome mutant (pre1-1 pre2-2) strain cleared less 

than half (~39%). The reduced clearance of ATZ provides evidence that the proteasome 

plays a role in ATZ degradation. Qu et al., showed a similar role of the proteasomal 

degradation pathway in the elimination of ATZ in a cell culture model [72]. Specifically, 

human fibroblast cell lines transfected with ATZ showed inhibition of ATZ degradation 

when its cell lines were exposed to proteasome inhibitors [72].  

 The study by Werner et al. also showed that ATZ can serve as a substrate for the 

endoplasmic reticulum associated degradation (ERAD) pathway [71].  ERAD is a 

process in which proteins that fail to achieve their correct conformational state are 

subjected to degradation via the UPS pathway. ERAD is comprised of specific steps 

including the selection of ERAD substrates, the targeting of substrates for degradation, 

and the retrotranslocation of the substrates into the cytoplasm where ubiquitination and 

proteasomal degradation of the targeted substrates occur [71, 197, 198]. However, 

ERAD chaperones and proteins that identify ATZ as a substrate, and the components 

that target and mediate its retrotranslocation into the cytoplasm for degradation have 

not yet been completely delineated [103, 104, 199, 200]. 
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 In addition to the degradation of ATZ via the ERAD pathway, the autophagy-

lysosome pathway has also been identified as a quality control system associated with 

the degradation of ATZ [201-203]. In studies by Teckman and Perlmutter, a transfected 

fibroblast cell lines expressing ATZ, but not wild-type AT protein (ATM), contained a 

large number of autophagosomes [64]. Additionally, an increased number of 

autophagosomes were identified in both the liver cells of the ATZ mouse model as well 

as in patients with ATD [64, 204].  

 Several investigations have been focused on elucidating the molecular 

components in both the ERAD/ proteasomal and autophagy pathways that facilitate the 

degradation of ATZ.  Since misfolded ATZ accumulates in hepatocytes as oligomers, 

polymers, and higher order aggregates it was not surprising that multiple degradation 

pathways are required for its elimination. In mammals, it appears that aggregated or 

insoluble proteins are degraded via the autophagic pathway [64, 77]; whereas, the 

soluble misfolded monomers and oligomers are degraded via the proteasomal pathway 

[70, 76, 85-88].   

 Although ATZ misfolds and accumulates in the ER, in some systems it does not 

appear to induce the unfolded protein response (UPR) [205]. The UPR is a ER stress 

response pathway that initiates an intracellular signaling network that transcriptionally 

up-regulates a specific set of genes whose role is to alleviate ER stress by increasing 

the elimination of unfolded proteins [123-125]. Typically, the UPR becomes activated 

once ERAD is overwhelmed by the accumulation of misfolded proteins. Currently, it is 

unknown why ATZ does not activate the UPR. One hypothesis attributes this lack of 

response to inherent properties of ATZ that results in it not being recognized as a 
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misfolded protein capable of triggering the UPR sensors [205].  A better understanding 

of why ATZ does not trigger the UPR may lead to the identification of other genetic 

modifiers that modulate ATZ accumulation.  

 Utilizing the C. elegans ATZ model, the goal of my dissertation is to help elucidate 

the genetic modifies of ATZ accumulation and degradation. This model should provide 

essential insights into protein synthesis, trafficking, and degradation, as these pathways 

are well conserved between C. elegans and humans [206-213].  Earlier studies validated 

the C. elegans model of ATZ pathogenesis (Chapter 2 and unpublished data).  

Therefore, by using the C. elegans ATZ model to identify genetic modifiers that affect 

the disposition of ATZ, we can gain additional insight into the human disorder. In this 

chapter, I utilized RNAi-based experimentation to specifically knockdown genes from 

the different degradation pathways. The results show that ATZ is partially degraded by 

both the proteasomal degradation pathway and autophagy response, confirming past 

studies.  Furthermore, I provide new data showing that ATZ is also partially degraded 

through a novel pathway. 

 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Worm Strain and Culture Conditions 

  

N2, CB360 (unc-51(e369)), RB545 (pek-1(ok278)), and RE666 (ire-1(v33)) strains were 

obtained from Caenorhabditis Genetics Center (CGC), (http://www.cbs.umn.edu/CGC/), 
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which is supported by NIH funding. Strains VK694 (Pnhx-2sGFP::ATZ), VK643 (Pnhx-

2sGFP::ATSaar), VK1223 (Pnhx-2sGFP::ATNHK), VK1267 (Pnhx-2CPL-1::YFP), VK1269 

(Pnhx-2CPL-1PPM2::YFP), VK737 (Phsp-4::GFP) were all generated by co-injecting the 

plasmid with Pmyo-2::mRFP at a final concentration of 70 ng/µl and 10 ng/µl, respectfully 

into the gonad of adult N2 hermaphrodites. Strains VK1093 (Pnhx-2mCherry::lgg-1), 

VK1243 (Pnhx-2UB::R::mCherry) and VK1244 (Pnhx-2UB::M::mCherry) were generated by 

co-injecting the plasmid with Pmyo-2::GFP at a final concentration of 70 ng/µl and 10 

ng/µl. Strains VK1751 (Pnhx-2sGFP::ATZ;pek-1(ok278)) and VK1757 (Pnhx-

2sGFP::ATZ;ire-1(v33)) were generated by standard genetic crosses.  Animals were 

maintained at 22 oC on nematode growth medium (NGM) plates spotted with 

Escherichia coli OP50 (NGM/OP50) [214].  

 

3.2.2 Preparation of Animals for RNAi Screening 

 

Twelve to fifteen adult transgenic animals were placed on two 10 cm NGM/OP50 plates.  

Approximately 7 days later, early-staged larval animals were isolated by differential 

sedimentation and then transferred to five 50 cm NGM/OP50 plates.  The larvae were 

incubated at 22 oC until the majority of the animals were in the L4 larval stage, 

approximately 30-48 hours later depending on the transgenic strain. 
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3.2.3 Animal Sorting Using the COPASTM BIOSORT 

 

The use of the COPASTM BIOSORT (Union Biometric, Holliston, MA) allowed for the 

reduction in assay variability due to the selection of a more homogenous population of 

animals based upon size and fluorescence intensity [215]. Animals were cultivated as 

described above and sorted using the COPASTM BIOSORT as described with the 

following modifications: PBS was used to wash the animals and as sheath fluid for 

sorting using the COPASTM BIOSORT [215]. Furthermore, animals were sorted onto 

NGM plates not into microtiter plates. Approximately 300 L4/young-adult animals were 

sorted for each treatment.  

 

3.2.4 RNAi Bacterial Preparation and Induction 

 

All RNAi clones were obtained from the Ahringer RNAi feeding Library (Geneservice 

Limited, Cambridge, UK), except for unc-51(RNAi) and hrd-1(RNAi) which were 

purchased from Open Biosystems (Huntsville, USA). RNAi cultures were grown as 

previously described with slight modifications [216]. Briefly, 1 ml of an overnight 

bacterial RNAi culture was inoculated into a 50 ml culture of Luria Bertani broth (LB; 

containing 10 g tryptone, 5 g yeast extract, 10 g NaCl and 50 µg/ml ampicillin per liter). 

These cultures were incubated, by shaking, at 37 oC until an OD600 of 0.5 was obtained. 

IPTG (4 mM final concentration) was added to cultures, which were then incubated at 

RT for 3-4 hours to induce production of dsRNA.  Induced cultures were centrifuged at 
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5,000 rpm for 10 minutes to pellet bacteria. Pellets were resuspended in 5 ml of fresh 

LB and stored at 4 oC.  

 

3.2.5 RNAi Assay Procedure 

 

Induced RNAi cultures were inoculated onto 15 mm NGM plates containing 50 mg/L 

amp, 4 mM FUDR, and 1 mM IPTG [216]. Plates were incubated overnight. 

Approximately 300 larval stage 4 (L4) or young adult (YA) transgenic worms were 

sorted onto each RNAi plate seeded with a specific RNAi culture.  Plates were 

incubated in a 22 oC for 48 hours.  Animals were imaged utilizing the ArrayScan VTI.  

Due to their severe growth defect only 100 Pnhx-2sGFP::ATZ;Unc-51(e1369), were 

sorted to each RNAi plate. 

 

3.2.6 Image Acquisition 

 

 Worms were washed off RNAi plates and pelleted by gravity settlement. Approximately 

100 animals were transferred into three separate wells of a 96-well optical bottom plate 

and anesthetized with a 4 mM Levamisole solution prior to image capture. Images were 

acquired with the ArrayScan VTI HCS Reader (Cellomics, Thermofisher, Pittsburgh, PA, 

USA) fitted with a 5x objective and a 0.63x coupler.  The images were captured utilizing 

a 2-channel (TRITC and GFP) assay previously described [215].  Valid objects (adult 

worms) were automatically selected using the SpotDetector BioApplication (Cellomics). 

All strains utilized the above method except for the Pnhx-2sGFP::ATZ;Unc-51(e369), 
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Approximately 30 animals were placed into three separate wells of a 384-well optical 

bottom plate and imaged utilizing the 2.5x objective imaging one field capturing the 

entire well.    

 

3.2.7 Statistical Analysis  

 

Statistical analysis of data was performed using PrismH (Graphpad Software). 

Statistical significance of the spot total area between various transgenic lines and empty 

vector (L4440) feed controls were determined utilizing an unpaired, two-tailed, t-test.  

 

 

3.3 DEVELOPMENT OF C. elegans STRAINS FOR CONTROL OF RNAi INDUCED 

MODULATION OF DEGRADATION AND SIGNALING PATHWAYS 

 

I utilized RNAi clones corresponding to gene sets involved in different degradation 

pathways to determine whether transgenic C. elegans strains use these pathways to 

eliminate ATZ. RNAi-mediated gene silencing has become a useful genetic tool for the 

analysis of gene function in C. elegans and other species [217]. RNA interference 

(RNAi) is a process where double-strand RNA is introduced into cells, which triggers the 

degradation of mRNA. As a consequence, the corresponding protein is depleted or 

knocked down, leading to the loss of protein function (the mechanism is detailed in 

Chapter 4) [218, 219]. In C. elegans, animals can be fed bacteria expressing dsRNA, 

which triggers a systemic RNAi response throughout the worm [220, 221]. However, 
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before investigating the disposal mechanisms of ATZ, it was important to develop a set 

of control strains to ensure that feeding the corresponding RNAi bacterial clone elicited 

the desired RNAi effect. The following sections established transgenic C. elegans 

strains that control for the function of the ERAD, UPS, UPR and autophagy pathways 

(Table 3.1). 

 

3.3.1 ERAD Substrate Controls 

 

ER luminal or transmembrane proteins that fail to achieve their correct conformational 

state are identified, targeted, and translocated to the cytosol where they are eliminated 

via the UPS [71]. This ERAD pathway eliminates a variety of malfolded proteins, which 

differ in structure, conformation and physical properties [222-225]. Studies in yeast 

show that depending on the location of the substrate, different components (E3 ubiquitin 

ligases and molecular chaperones) of the ERAD pathway are utilized for targeting 

substrates for degradation [115-117, 198]. 

 Since ATZ is a secreted glycoprotein retained in the ER lumen and based on 

previous data in other models, it should serve as an ERAD substrate in C. elegans [226-

228]. However, before assessing this possibility it was necessary to determine how 

RNAi of different ERAD components would effect the disposition of known luminal 

ERAD substrates. Therefore, we developed three separate control transgenic strains 

expressing well-described luminal ERAD substrates (α1-AT mutant Null Hong Kong, 

α1-AT mutant Saar, and a cathepsin L mutant), each of which is described and 

validated in the following sections.   
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3.3.1.1  α1-AT mutants as ERAD substrates 

Studies of α1-AT null mutants Hong Kong and Saar show that they are possible ERAD 

luminal substrates and are targeted for degradation via the proteasome [83, 229-232]. 

Null Hong Kong (NHK) results from a frameshift mutation causing the synthesis of a 

truncated protein [233]. This thirty-three C-terminal amino acids truncation results in a 

protein that is devoid of the RSL and several β-strands in the C-sheet [233]. In humans, 

NHK is associated with a total lack of circulating α1-AT [233]. α1-AT variant Saar is 

caused by a point mutation that introduces a premature stop codon, and leads to 

truncation of the C-terminus of α1-AT. Similar to NHK, Saar results in a dysfunctional 

misfolded serpin that is completely retained in the ER, does not form insoluble polymers 

or aggregates, and is efficiently degraded by ERAD [229, 230].  

 We generated transgenic C. elegans strains expressing Pnhx-2sGFP::ATNHK (NHK) 

and Pnhx-2sGFP::ATSaar (Saar) after mutagenesis of the Pnhx-2sGFP::ATZ construct 

(detailed in Chapter 2). Specifically, the NHK construct had a deletion of leucine at 

position 318 causing a frameshift, resulting in a premature stop codon at amino acid 

position 334.  The Saar constructs were created by frameshift mutation at position 363, 

resulting in the addition of 13 spurious residues followed by a premature stop codon. As 

expected, transgene expression of both NHK and Saar is relatively low, with similar 

expression patterns of small accumulations in the posterior intestinal region in N2 

animals (data not shown).  

I utilized transgenic animals expressing NHK and Saar to investigate the 

effectiveness of ERAD RNAi knockdown of gene function (Figure 3.1 A,C). Both NHK 

and Saar showed significant accumulation following RNAi treatment for some (cdc-48,  
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3.1. Transgenic Control Lines 

 

 

Control  Transgenic Construct Abbr. Fluorescent 
Tag 

Baseline 
description 

RNAi knockdown 
of pathway 

ERAD     

 Pnhx-2sGFP::ATNHK NHK GFP 
Low level diffuse 
expression 
intestinal cells 

Increase in 
accumulation 

 Pnhx-2sGFP::ATZSaar Saar GFP 

Very low levels 
of expression, 
small 
accumulations in 
intestinal cells 

Increase in 
accumulation 

 Pnhx-2CPL-1PPM2::YFP PPM2 YFP Accumulated  in 
intestinal cells 

Increase in 
accumulation 

Proteasome     

 Pnhx-2Ub::R::mCherry Ub::R mCherry Low signal Increase in 
accumulation 

 Pnhx-2Ub::M:mCherry Ub::M mCherry Diffuse signal 
throughout worm No change 

UPR     

 Phsp-4::GFP Hsp-4 GFP 
Normal  
expression in 
spermatheca  

Under ER stress 
conditions diffuse 
signal throughout 
body of the worm 

Autophagy     

 Pnhx-2mCherry::lgg-1  Lgg-1 mCherry 
Diffuse signal 
throughout 
intestinal cells 

Change in diffuse 
to punctate 
pattern in 

intestinal cells  
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Figure 3.1 Inactivation of cdc-48, sel-1, and hrd-1 Results in the Accumulation of 

ERAD Substrates  

Transgenic animals expressing different ERAD substrates fused to fluorescent tags 

were exposed for 48 hours to ERAD RNAi’s (n=300 worms for each condition). Animals 

were anesthetized and imaged utilizing the ArrayScan VTI.  Panels A, C, & E show 

quantification of fluorescence in intestinal cells upon RNAi inactivation of ERAD genes 

(x-axis).  Panels B, D, & F show florescence images after each transgenic line was 

exposed to control (vec) or ERAD RNAi’s: cdc-48, sel-1, or hrd-1. A&B. NHK transgenic 

animals, C&D. Saar transgenic animals, E&F. PPM2 transgenic animals.  Note: 

Inactivation of cdc-48, sel-1, or hrd-1 results in the accumulation of ERAD substrates. 

Error bars represent standard deviations from a representative experiment; statistical 

significance  determined using unpaired, two-tailed, t-test; ***p<0.001, **p<0.01. 
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Figure 3.1 Inactivation of cdc-48, sel-1, and hrd-1 Results in the Accumulation of 

ERAD Substrates
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sel-1, or hrd-1) but not all ERAD associated genes. These studies suggested the null 

mutants of α1-AT are eliminated by the hrd-1 E3 ligase complex and follow a classical 

cdc-48 pathway to the proteasome (Figure 3.1 A-D). Accumulation of GFP in the 

intestine of transgenic animals was quantified via the ArrayScan VTI (Figure 3.1 B,D).  

 

3.3.1.2. Pre-Pro mutant of cathepsin L as an ERAD substrate 

Cathepsins are cysteine aspartic or serine proteases found in membrane bound 

structures [234]. The cysteine cathepsins are primarily targeted to the lysosome in 

mammalian cells and are activated by a combination of the acidic pH and post-

translational processing [235, 236].  The cathepsins are synthesized in the ER as 

inactive preproenzymes prior to lysosomal delivery. The N-terminal pre-region contains 

the signal sequences whereas the pro-region has been shown to control catalytic 

activity and enzymatic targeting [236, 237].  

The pro-region of the protein is also necessary for correct folding. Mutational 

analysis of the preproregion of cathepsin L-like proteases showed that three tryptophan 

residues are essential for proper folding of the prodomain (W28, W31 and W52). 

Proteins containing these mutations are retained in ER and eliminated by ERAD, with a 

combination of W28 and W31 causing the most severe misfolding [236].   

ClustalW alignments between mammalian and C. elegans cathepsin L proteins 

showed that the three tryptophan residues were conserved (Miedel, M. T., Silverman G. 

A. and Luke, C. J., unpublished). Thus, we created transgenic C. elegans strains 

expressing either wild-type cathepsin L (CPL-1) or a mutant CPL-1 (W28A and Y31A, 

collectively known as PPM2) (Miedel, M. T., Silverman G. A. and Luke, C. J., 
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unpublished). These transgenes were driven by nhx-2 promoter and yellow 

fluorescence protein (YFP) was fused to the C-terminus for visualization of transgene 

expression. The wild-type CPL-1 (Pnhx-2CPL-1::YFP) transgenic worms showed diffuse 

punctate fluorescence  that co-localized with lysotracker or Alexa-Fluor647 Dextran (10 

KDa MW), suggesting progression of CPL-1 through the secretory pathway and 

eventual targeting to the late endosomal and lysosomal compartments. Additionally, 

some of the CPL-1::YFP was seen in the pseudocoelomic space and in the oocytes 

suggesting that a portion of the wild-type CPL-1 was secreted and taken up by the eggs 

(Miedel, M. T., Silverman G. A. and Luke, C. J., unpublished). 

Conversely, transgenic animals expressing Pnhx-2CPL-1ppm2::YFP,  accumulated 

YFP in the intestinal cells of worms. Co-injection of the Pnhx-2CPL-1ppm2::YFP with a Pnhx-

2dsRED::KDEL plasmid (KDEL is a ER-retention signal, resulting in dsRED expression 

in the ER of the worms) showed that CPL-1ppm2::YFP co-localized with the dsRED 

fluorescence, suggesting that the CPL-1ppm2::YFP was accumulating in the endoplasmic 

reticulum of the intestinal cells. There was no detectable trafficking of CPL-1ppm2::YFP to 

the lysosomal compartment or the pseudocoelomic space.  

I investigated the effect of ERAD RNAi on CPL-1ppm2::YFP  disposition.  The Pnhx-

2CPL-1ppm2::YFP  animals showed marked accumulation following treatment with cdc-48 

(RNAi), sel-1(RNAi), or hrd-1(RNAi), results similar to those shown for strains 

expressing NHK and Saar (Figure 3.1 E,F). Taken together these studies suggested 

that the CPL-1ppm2::YFP was a serviceable ERAD substrate in C. elegans. 
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3.3.2 Ubiquitin Tagged mCherry as a Marker of Proteasome Activity 

 

The UPS is the final destination for most ERAD substrates [139]. The degradation of 

targeted proteins by the UPS requires two significant steps. First, proteins are targeted 

to the proteasome by the covalent attachment of ubiquitin. Second, the targeted 

proteins are deubiquitinated and then degraded by the 26S proteasome (described in 

section 1.7) [135].   

 Ubiquitin fusion degradation (UFD)-targeted fluorescent reporters allow for the 

functional analysis of the UPS within cells [135]. UFD-targeted reporter constructs utilize 

a fluorescent protein reporter (such as GFP or mCherry) fused to the C-terminus of 

ubiquitin [135]. Normal expression of the reporter is relatively low, due to the fast 

turnover of ubiquitinated products. However, inhibition of the UPS allows for the 

accumulation of the reporter proteins, which are detected by fluorescence microscopy 

[238, 239].  Some UFD-targeted reporter constructs have been modified to use the N-

end rule signals to target reporter substrates for degradation [240]. Briefly, the N-end 

rule states that certain N-terminal amino acids trigger ubiquitination of the protein, which 

are subsequently targeted for degradation [238, 241].  

 Based on these findings, we have created transgenic C. elegans strains 

expressing Pnhx-2Ub::R::mCherry. This construct contains an UFD-targeted reporter 

(mCherry), which was fused to the C-terminus of UB. Expression was targeted to the 

intestine by using the nhx-2 reporter. Specifically, this Pnhx-2Ub::R::mCherry transgene 

was constructed by mutation of a residue (V77R) just after the C-terminal gly-gly 

residues of ubiquitin. The resulting product can be targeted directly for degradation 

(UFD substrate) or deubiquitination and reubiquitination (N-end rule substrate) [238]. As 
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expected, the transgenic animals expressing Pnhx-2Ub::R::mCherry showed no 

detectable accumulation of mCherry under normal conditions (Figure 3.2 B (vector)). As 

a control, I also constructed a Pnhx-2Ub::M::mCherry construct, which contains the 

mutation (V77M). This protein is deubiquitinated but the  N-terminal methionine residue 

does not trigger ubiquitination and therefore stabilizes the mCherry protein in the cytosol 

[238]. As expected, this control showed diffuse mCherry fluorescence throughout the 

intestine of the worm (Figure 3.2 D vector).   

I then utilized the Pnhx-2Ub::R::mCherry and Pnhx-2Ub::M::mCherry transgenic 

animals to test the effects of RNAi on proteasomal activity. The transgenic animals were 

fed RNAi for 48 hours and then imaged to determine changes in fluorescence. Knocking 

down a proteasome subunit by rpt-5 (RNAi) resulted in a significant increase in 

fluorescence in Pnhx-2Ub::R::mCherry animals (Figure 3.2 A,B) and, as expected, had no 

effect on the Pnhx-2Ub::M::mCherry expressing animals (Figure 3.2 C,D). Interestingly, 

when certain components of ERAD (cdc-48, npl-4, ufd-1) were inhibited by RNAi, the 

transgenic Pnhx-2Ub::R::mCherry  animals showed an increase in fluorescence (Figure 

3.3 A,B). However, neither sel-1 nor hrd-1 showed an effect on fluorescence (data not 

shown). These data confirmed that cdc-48 and its cofactors play a role in the elimination 

of cytosolic and or ER proteins targeted for degradation [242, 243]. 

 

3.3.3 PHsp-4::GFP as a Marker of UPR induction  

 

BiP/ Grp78 is an ER molecular chaperone required for correct protein folding, sensing 

ER stress, and targeting unfolded proteins for degradation [91, 197, 244, 245]. The C.   
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Figure 3.2 RNAi’s that Inhibit Degradation of Pnhx-2Ub::R::mCherry 

A. Quantification and B. Fluorescence images of Pnhx-2Ub::R::mCherry transgenic 

worms (n=300) fed RNAi clones for the indicated genes (x-axis). Fluorescence of Pnhx-

2Ub::R::mCherry worms fed RNAi clones were compared to the animals fed empty RNAi 

feeding vector (L4440).  C. Quantification and D. Fluorescence images of Pnhx-

2Ub::M::mCherry transgenic animals showed no variation in steady state levels of 

mCherry fluorescence. Error bars represent standard deviations from a representative 

experiment; statistical significance determined using unpaired, two-tailed, t-test; 

**p<0.01, *p<0.05. 
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Figure 3.2 RNAi’s that Inhibit Degradation of Pnhx-2Ub::R::mCherry 
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Figure 3.3 ER Stress Results in Phsp-4::GFP Accumulation 

A. Image of an adult wild-type worm expressing GFP under the UPR-inducible hsp-4 

promoter (Phsp-4::GFP ) under normal conditions.  B. Image of an adult Phsp-4::GFP 

transgenic worm after heat shock at 30 oC for 1 hour. White arrows (in panels A & B) 

indicate the spermatheca. C. Quantification and D. Images of GFP fluorescence of Phsp-

4::GFP transgenic worms (n=300) that were exposed to different ERAD (RNAi) of 

indicated genes (x-axis) for 48 hours. Fluorescence of Phsp-4::GFP worms fed different 

RNAis were compared to animals fed empty RNAi feeding vector (L4440). Error bars 

represent standard deviations from a representative experiment; statistical significance  

determined using unpaired, two-tailed, t-test; ***p<0.001, **p<0.01.
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elegans homolog of BiP is hsp-4. In previous studies, an hsp-4::GFP transcriptional 

reporter driven by the endogenous BiP (hsp-4) promoter shows low level of baseline 

expression (except for that in the spermatheca) but is transcriptionally upregulated in 

the gut and epidermises in response to ER stress, heat shock and activation of some of 

the UPR activators [206, 208, 210].  However, in the presence of ER stress, RNAi of ire-

1 or xbp-1 blocks hsp-4 expression [206].  

As a control for UPR activation, we generated an GFP reporter driven by the hsp-

4 promoter. Under baseline conditions Phsp-4::GFP expression was detected in the 

spermatheca (Figure 3.3 A) [206, 208, 210]. However, when the Phsp-4::GFP animals 

were stressed by heat shock at 30oC for one hour, Phsp-4::GFP was markedly induced in 

the intestine of transgenic animals (Figure 3.3 B).  Similarly, when UPR was activated 

by ERAD inhibition via RNAi (cdc-48, sel-1, hrd-1 or cup-2), Phsp-4::GFP was induced in 

a manner similar to that of heat shock (Figure 3.3 C,D).  These results confirmed that 

Phsp-4::GFP can serve as a sensor for UPR activation.   

 

3.3.4 Lgg-1 as a Marker of Autophagy 

 

Autophagy is a cell stress response pathway that delivers cytosolic proteins and 

damaged organelles to lysosomes for degradation and recycling [126, 246].  Specifically, 

cytoplasmic components are surrounded by double-membrane that eventually forms a 

closed vesicle (autophagosome) and this structure fuses with late endosomes or 

lysosomes for degradation. LC3/Atg8 is a cytosolic protein that is processed and 

inserted into the initial membrane (phagophore). Thus, during enhanced  
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Figure 3.4 Induction of Autophagy by Starvation  
 
Fluorescence images of Pnhx-2mCherry::lgg-1 worms fed (upper panel) or starved (lower 

panel) for 48-hours.  

 

fed 

starved 
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autophagy, the distribution of LC3 changes from diffuse to punctate. This feature can be 

used to monitor an increase in the number of autophagosomes [247, 248].  

Lgg-1/Atg-8 is the C. elegans homolog of LC3 [211]. We created C. elegans 

strains expressing the Pnhx-2mCherry::lgg-1 (Lgg-1) transgene. This construct utilizes the 

nhx-2 promoter to drive expression of the lgg-1 in intestinal cells.  Under normal 

conditions, transgenic animals displayed diffuse fluorescence pattern throughout the 

intestine of the worm (Figure 3.4, top panel).  However, when autophagy is induced by 

starvation, the fluorescence became punctate, suggesting an increase in formation of 

autophagosomes (Figure 3.4, bottom panel).  

 

3.3.5 Control for Promoter Expression 

 

To determine if an RNAi clone had a nonspecific effect on the nhx-2 promoter, we 

generated transgenic C. elegans strains expressing Pnhx-2sGFP. This control strain was 

created utilizing the nhx-2 intestinal promoter to drive expression of GFP in the intestine 

of the worm. These transgenic animals display diffuse fluorescence throughout the 

intestine of the animals. Overall, the Pnhx-2sGFP transgenic animals showed relatively 

stable expression (Figure 3.5 A,B,C,D). 
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Figure 3.5 RNAi Effects on Promoter Expression 

Quantification of fluorescence of Pnhx-2GFP transgenic worms (n=300) that were 

exposed to different A. Autophagy, B. ERAD/proteasome, C. UPR or D. Proteasome  

RNAis (x-axis). Error bars represent standard deviations from a representative 

experiment; statistical significance determined using unpaired, two-tailed, t-test; 

***p<0.001, **p<0.01, *p<0.05. 
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3.4 ATZ ACCUMULATION AFTER RNAi INDUCED MODULATION OF 

DEGRADATION AND UPR SIGNALING PATHWAYS 

 

The goal of these investigations was to help elucidate the genetic modifies of ATZ 

accumulation and degradation by utilizing the C. elegans ATZ model in combination 

with RNAi-based knockdown of genes from the well-defined degradation pathways.  

The following sections present the results of the Pnhx2sGFP::ATZ transgenic animals 

upon RNAi-mediated gene silencing of the autophagy/ lysosomal and ERAD/UPS 

pathways. In addition, I analyzed the effects of ATZ accumulation on the UPR to 

determine if this signaling pathway was involved in directing the disposition of the non-

canonical ERAD substrate.  

 

3.4.1 ATZ Accumulation After Autophagy RNAi 

 

The autophagy-lysosome pathway has been identified as a quality control system 

associated with the degradation of ATZ in other model systems [201-203]. To determine 

whether autophagy was responsible for effecting the disposition of sGFP::ATZ in C. 

elegans, I inhibited autophagy by RNAi in Pnhx-2sGFP::ATZ animals. If autophagy plays 

a role in the degradation of ATZ in C. elegans, then silencing genes critical for 

autophagy activation should result in an increase in ATZ accumulation. Transgenic 

animals expressing sGFP::ATZ were exposed to different autophagy RNAi’s for 72 

hours and then assayed for total florescence utilizing the ArrayScan VTI imaging 

platform. Bec-1(RNAi), lgg-1(RNAi), let-512(RNAi), and unc51(RNAi) all resulted in a 
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significant increase in fluorescence (Figure 3.6 A,B). None of these RNAi’s altered the 

expression of Pnhx-2sGFP (Figure 3.5 A). Thus, it is unlikely that these results were due 

to a transcriptional effect on the nhx-2 promoter. In contrast to ATZ, inhibition of 

autophagy had no effects on the prototypical luminal ERAD substrates NHK and PPM2 

(Figure 3.6 C,D). Taken together, these results suggested that a portion of misfolded 

sGFP::ATZ was eliminated via the autophagy pathway. These results are consistent to 

those observed in studies utilizing mammalian cell cultures and mouse models of ATZ 

[201-203].  

 

3.4.2 ATZ Accumulation After ERAD RNAi 

 

To determine whether ERAD was responsible for effecting the disposition of sGFP::ATZ, 

I performed ERAD(RNAi) on Pnhx2sGFP::ATZ animals. If ERAD plays a role in 

degrading ATZ, then silencing genes in the ERAD pathways should increase ATZ 

accumulation. Control strains and Pnhx2sGFP::ATZ were assayed for total fluorescence 

using the ArrayScan VTI 48 hours after starting RNAi treatment.  Knockdown of five 

genes (cup-2, ufd-1, npl-4, sel-1, and hrdl-1), which are associated with different 

functions within the ERAD pathway, mediated a significant increase in fluorescence 

(Figure 3.7 A,B). Most notably, knockdown of the E3 ligase hrdl-1, the C. elegans 

ortholog of GP78, showed a modest but significant increase in fluorescence. This result 

suggested that at least a portion of misfolded sGFP::ATZ was eliminated via  
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Figure 3.6 Response of P nhx-2sGFP::ATZ Animals to Autophagy RNAI’s 

A. Quantification and B. Fluorescence images of Pnhx-2sGFP::ATZ transgenic animals 

(n=300) that were treated with bec-1(RNAi), lgg-1(RNAi), let-512(RNAi), or unc51(RNAi) 

(x-axis).  All RNAi’s resulted in a significant increase in fluorescence. C. Quantification 

of Pnhx-2sGFP::ATNHK D. Pnhx-2sCPL-1PPM2::YFP transgenic animals fed autophagy 

RNAi’s (x-axis). Error bars represent standard deviations from a representative 

experiment; statistical significance determined using unpaired, two-tailed, t-test; 

***p<0.001, **p<0.01 *p<0.05.
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Figure 3.7 Response of Pnhx-2sGFP::ATZ Animals to ERAD RNAi’s 

Transgenic animals (n=300) expressing Pnhx-2sGFP::ATZ were exposed to ERAD RNAis 

for 48 hours. Animals were anesthetized and then imaged utilizing the ArrayScan Vti. A. 

Quantification and B. Images of GFP fluorescence of Pnhx-2sGFP::ATZ transgenic 

animals that were fed differing RNAi clones (x-axis). Inactivation of cup-2, ufd-1, sel-1, 

and hrdl-1 by RNAi results in an increase in accumulation.  Cdc-48(RNAi),  showed a 

significant decrease in sGFP::ATZ accumulation. Error bars represent standard 

deviations from a representative experiment; statistical significance determined using 

unpaired, two-tailed, t-test; ***p<0.001, **p<0.01 
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Figure 3.7 Response of Pnhx-2sGFP::ATZ Animals to ERAD RNAi’s 
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this E3-mediated ERAD pathway. Recent studies also suggested that gp78 may 

ubiquitinate and facilitate partial degradation of ATZ [227]. Of note, the increase in 

sGFP::ATZ after these RNAi clones was unlikely due to a transcriptional effect, as none 

of these RNA’s, with the exception of ufd-1 and marc-6, increase in Pnhx-2sGFP::ATZ 

expression (Figure 3.5 B).  

One of the core components of ERAD is cdc-48/VCP/p97, which is the cytosolic 

AAA+ATPase involved in the retranslocation of misfolded proteins from ER to the 

cytosol [207, 249]. If ERAD was essential for eliminating a portion of ATZ, then cdc-

48.1/ cdc-48.2 (collectively known as cdc-48) RNAi should result in an increase in 

sGFP::ATZ. However, my results showed a significant decrease in sGFP::ATZ 

accumulation (Figure 3.6 A,B). This result was opposite of that observed with other 

ERAD substrates (NHK, SAAR, and PPM2) (Figure 3.1 A,C,D). Since ATZ is localized 

to the ER and cdc-48 to the cytosol, this result suggested that down-regulation of cdc-

48 could have an indirect effect on ATZ disposition. Since ERAD inhibition activates the 

UPR and UPR signaling increases autophagy, I reasoned that the decrease in 

sGFP::ATZ in animals exposed to cdc-48(RNAi) was secondary to increased autophagy.  

 

3.4.2.1 Cdc-48 RNAi Does Not Stimulate the Elimination of ATZ by Autophagy  

 

To determine if cdc-48 (RNAi) was activating autophagy, we crossed unc-51 (autophagy 

deficient) mutants with sGFP::ATZ animals, which resulted in an autophagy deficient, 

sGFP::ATZ expressing line Pnhx-2sGFP::ATZ;unc51(e369). Since autophagy has been 

linked with disposal of ATZ, it was not surprising that the resulting Pnhx2sGFP::ATZ;  
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Figure 3.8 Pnhx-2sGFP::ATZ;unc-51(e369)  

A. Fluorescence images of an adult Pnhx-2sGFP::ATZ animal (left) and an adult Pnhx-

2sGFP::ATZ; unc-519(e369) (right) transgenic animal. B. Quantification and C. images 

of fluorescence of Pnhx-2sGFP::ATZ;unc-51(e369) transgenic worms that were fed 

different RNAi’s (x-axis) for 48 hours (n=100). The quantification of fluorescence of Pnhx-

2sGFP::ATZ;unc-51(e369) worms fed an RNAi clone was compared to that of the 

animals fed empty vector (RNAi). Error bars represent standard deviations from a 

representative experiment; statistical significance determined using unpaired, two-tailed, 

t-test; ***p<0.001, **p<0.01, *p<0.05. 
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Figure 3.8 Pnhx-2sGFP::ATZ;unc-51(e369)  
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unc51(e369) animals displayed an increase in sGFP::ATZ accumulation (Figure 3.7 A).  

When the Pnhx-2sGFP::ATZ;unc51(e369) animals were exposed to cdc-48(RNAi) they 

still showed a significant decrease in ATZ (Figure 3.7 B,C). These findings suggested 

that knockdown of cdc-48 decreased the accumulation of ATZ by a non-autophagy and 

non-proteasomal pathway. 

 

3.4.3 ATZ Accumulation After Proteasome RNAi 

 

To determine whether the proteasome was involved in the disposition of sGFP::ATZ, I 

performed proteasomal (RNAi) on Pnhx2sGFP::ATZ animals. If the proteasome was 

important in the degradation of ATZ, then impairing proteasomal function by RNAi 

should result in an increase in ATZ accumulation. Control strains (Pnhx-2Ub::R::mCherry 

and Pnhx-2Ub::M::mCherry)  and Pnhx-2sGFP::ATZ were exposed to rpt-5(RNAi) and rpn-

10(RNAi) for 48 hours. Rpt-5 is a AAA ATPase base component of the 19S regulatory 

particle that is shown to reversibly bind to ubiquitinated proteins and deliver them to the 

20S core particle for degradation. Rpn-10 is a non-ATPase base component of the 19S 

regulatory particle that recognizes polyubiquitinated proteins. Both rpt-5 and rpn-10 are 

essential for ubiquitin-mediated proteolytic degradation of targeted substrates [250, 251]. 

Knockdown of rpn-10 resulted in no change in accumulation (Figure 3.9 A). However, 

the control line Pnhx-2Ub::R::mCherry showed no increase in fluorescence, suggesting 

that rpn-10(RNAi) was not effective (Figure. 3.9 B).  



	   104	  

Figure 3.9 Response of Pnhx-2sGFP::ATZ animals to Proteasome RNAI’s 

A. Quantification Pnhx-2sGFP::ATZ transgenic animals (n=300) that were treated with rpt-

5(RNAi) and rpn-10(RNAi).  Rpt-5(RNAi) resulted in a significant decrease in 

fluorescence.  B. Quantification Pnhx-2Ub::R::mCherry control transgenic animals 

(n=300) that were treated with rpt-5(RNAi) and rpn-10(RNAi). As expected rpt-5(RNAi)  

resulted in an increase in fluorescence, however rpn-10 did not block the proteasome 

and therefore was eliminated from  analysis. C. Quantification Pnhx-2sGFP::ATNHK and D. 

Pnhx-2CPL-1PPM2::YFP  transgenic animals (n=300) that were treated with rpt-5(RNAi) 

and rpn-10(RNAi).  Rpt-5(RNAi) resulted in a significant decrease in fluorescence.   

Error bars represent standard deviations from a representative experiment; statistical 

significance determined using unpaired, two-tailed, t-test; ***p<0.001, **p<0.01, *p<0.05. 
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Figure 3.9 Response of Pnhx-2sGFP::ATZ Animals to Proteasome RNAI’s 
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Surprisingly, rpt-5(RNAi) resulted in a significant decrease in sGFP::ATZ 

accumulation (Figure 3.9 A). Since the control strain, Pnhx-2Ub::R::mCherry, showed an 

increase in accumulation, the rpt-5(RNAi) appeared to be effective in inhibiting 

proteasome function (Figure 3.9 B).  These results suggest that the inhibition of 

proteasomal function may be having a complex effect on ATZ accumulation. Similar to 

ATZ, inhibition of proteasome had comparable effects on the prototypical luminal ERAD 

substrates, NHK and PPM2. When either control strains were treated with rpt-5(RNAi) it 

resulted in a decrease in expression of protein (Figure 3.9 C,D). These results suggest 

that proteasome inhibition may be having a complex effect on protein accumulation.   

 

3.4.4 ATZ Accumulation After UPR RNAi 

 

Although ATZ misfolds and accumulates in the ER, in some systems it does not appear 

to induce the unfolded protein response (UPR) [205]. To determine whether Pnhx-

2sGFP::ATZ animals induce the UPR;  we co-injected either the Pnhx-2sGFP::ATZ or 

Pnhx-2sGFP::ATM plasmid with Phsp-4::mCherry plasmid. The latter construct served as a 

sensor for UPR activation. Transgenic animals expressing Pnhx-2sGFP::ATZ;Phsp-

4::mCherry showed a marked increase relative to control Pnhx-2sGFP::ATM;Phsp-

4::mCherry (Figure 3.10). These findings suggested that sGFP::ATZ expression in C. 

elegans constitutively activated the UPR.  

If ATZ constitutively activated the UPR, and the UPR enhances both the ERAD-

UPS and autophagy-lysosome protein degradation pathways, silencing of the UPR 

could result in an increase in sGFP::ATZ accumulation. Since UPR signaling is initiated  
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Figure 3.10 Constitutively Activated UPR in Pnhx-2sGFP::ATZ;Phsp-4::mCherry 

Fluorescence images of transgenic animals expressing A. Pnhx-2sGFP::ATM;Phsp-

4::mCherry (top three panels) or B. Pnhx-2sGFP::ATZ;Phsp-4::mCherry (bottom three panels). 

Images illustrate UPR activation as demonstrated by high level of hsp-4::mCherry 

expression. White arrows represent the low level of hsp-4::mCherry expressed in the 

Pnhx-2sGFP::ATM;Phsp-4::mCherry animals.  
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through three main activators, IRE-1, ATF-6, or PEK-1 [126], I first determined the 

effectiveness of their RNAi’s on Phsp-4::mCherry  animals under basal conditions (no ER 

stress). Knockdown of atf-6, but not of ire-1 or pek-1 induced the hsp-4 promoter 

(Figure 3.11). Thus under basal conditions inhibition of atf-6 activated the UPR.  

Interestingly, knockdown of the ERAD or autophagy pathways resulted in significant 

increases in hsp-4::GFP expression, suggesting that the UPR was activated (Figure 

3.11).  

 To determine if silencing of UPR activators altered sGFP::ATZ accumulation, 

transgenic animals expressing Pnhx-2sGFP::ATZ were exposed to different UPR RNAi 

for 48 hours and then assayed for total florescence utilizing the ArrayScan VTI imaging 

platform. Atf-6(RNAi) did not alter sGFP::ATZ accumulation (Figure 3.12 A). However, 

pek-1(RNAi) resulted in a significant increase in sGFP::ATZ accumulation (Figure 3.12 

A,B). Whereas, ire-1(RNAi) resulted in a significant decrease in sGFP::ATZ 

accumulation (Figure 3.12 A,B).  In contrast to ATZ, inhibition of ire-1 resulted in an 

increase in accumulation of CPL-1PPM2::YFP, whereas inhibition of xbp-1, atf-6, and 

pek-1 had no significant effect (Figure 3.12 C).   

To confirm these effects of the UPR RNAi’s, I crossed Pnhx-2sGFP::ATZ  animals 

with pek-1(ok275)  or ire-1(v33)  loss-of-function mutants. Similar to RNAi, the Pnhx-

2sGFP::ATZ; pek-1(ok275) displayed a significant increase  in sGFP::ATZ accumulation 

(Figure 3.13 A vs. B, D). The Pnhx-2sGFP::ATZ; ire-1(v33)  displayed a marked decrease 

in sGFP::ATZ accumulation, which was also consistent with the RNAi screening results 

(Figure 3.13 A vs. C). However, the Pnhx-2sGFP::ATZ; ire-1(v33)   



	   109	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Response of Phsp-4::GFP  to RNAi’s 

Fluorescence quantification of Phsp-4::GFP animals fed different RNAi’s (x-axis) were 

compared to animals fed vector RNAi.  Error bars represent standard deviations from a 

representative experiment; statistical significance determined using unpaired, two-tailed, 

t-test; ***p<0.001, **p<0.01, *p<0.05.  
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Figure 3.12 Response of Pnhx-2sGFP::ATZ to UPR RNAI’s 

A. Quantification and B. images of fluorescence of Pnhx-2sGFP::ATZ transgenic animals 

that were fed ire-1(RNAi), pek-1(RNAi), xbp-1(RNAi), and atf-6(RNAi)). Ire-1 showed a 

significant decrease in fluorescence, while pek-1 knockdown resulted in a significant 

increase in fluorescence. C. Quantification of Pnhx-2CPL-1PPM2::YFP transgenic animals 

that were fed UPR RNAi’s. Error bars represent standard deviations from a 

representative experiment; statistical significance determined using unpaired, two-tailed, 

t-test; ***p<0.001, **p<0.01, *p<0.05. 
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animals displayed severe growth defects and embryonic lethality making quantification 

of fluorescence difficult. Nevertheless, even at the earliest stages of development, the 

amount of sGFP::ATZ was qualitatively decreased relative to the same stage Pnhx-

2sGFP::ATZ animals. Taken together these studies suggested that different 

components of the UPR had differential effects on sGFP::ATZ accumulation. 

IRE-1 inactivation appeared to decrease sGFP::ATZ accumulation. Conceivably, 

this decrease was due to activation of the “blocked UPR” response, in which a non-

canonical UPR system involving the scavanger-like receptor, Abu gene family, which 

facilitates the elimination of misfolded proteins [252]. Activation of the UPR via ire-1 

involves ire-1 mediated activation of the transcription factor xbp-1 and it is the down-

regulation of this factor that triggers the blocked UPR response or up-regulation of the 

Abu genes. To determine whether the effect of ire-1 knockdown on sGFP::ATZ 

accumulation occurred via decreased processing of xbp-1, I treated Pnhx-2sGFP::ATZ 

animals with xbp-1(RNAi) (Figure 3.12 A).  Treatment did not affect sGFP::ATZ 

accumulation (Figure 3.12 A). These findings suggested that the ire-1(RNAi) decrease 

in sGFP::ATZ accumulation was not due to a decrease in xbp-1 activation and up-

regulation of the Abu genes.   

Recent studies show that ire-1 activation has a function independent of its 

nuclease activity, of which the latter cleaves the mRNA encoding xbp-1 resulting in 

activation and translation of xbp-1 [123-125]. This independent function, Regulated Ire1-

Dependent Decay (RIDD), results in the rapid turnover of mRNAs separate of xbp-1 

activity [284]. RIDD studies indicate that both ire-1 activation and ER stress are required 

for activation of this pathway [285].  Since, expression of ATZ in C. elegans induced 	  
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Figure 3.13 Pek-1(ok275) and Ire-1(v33) Mutations Alter ATZ Accumulation 

Images of A. Pnhx-2sGFP::ATZ B. Pnhx-2sGFP::ATZ;pek-1(ok275) C. Pnhx-2sGFP::ATZ;ire-

1(v33) D. Quantification of fluorescence. Note: quantification of Pnhx-2sGFP::ATZ;ire-

1(v33) was not completed because of the severe embryonic lethality  prevented growth 

of sufficient number of animals.  Error bars represent standard deviations from a 

representative experiment; statistical significance determined using unpaired, two-tailed, 

t-test; ***p<0.001.  
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hsp-4 activation (i.e., ire-1 activation), and knockdown of ire-1 would further increase 

ER stress, it is conceivable that the residual ire-1 activity activated the RIDD pathway, 

which could preferentially degrade ATZ mRNA.  

 

 

3.5 DISCUSSION 

 

The aim of this project was to use a targeted RNAi approach to identify genetic 

modifiers that effect ATZ accumulation.  Although systemic RNAi in C. elegans is a 

powerful tool to study gene function, the effectiveness of each RNAi must be assessed  

by using appropriate controls. Thus, before studying the effects of different RNAi’s on 

sGFP::ATZ accumulation, we constructed a series of transgenic lines to follow the 

effects of autophagy, ERAD, or UPR RNAi’s on prototypical luminal ER substrates or 

cellular sensors.  

My results indicated that sGFP::ATZ was partially degraded through the 

autophagy pathways. Knockdown of autophagy genes via RNAi resulted in significant 

increases in sGFP::ATZ accumulation, however no changes were observed in any of 

the ER luminal substrate controls (NHK/ PPM2). These results suggest that ATZ 

accumulation are processed differently than other ER luminal misfolded proteins. 

Furthermore, our results in C. elegans are consistent with studies on ATZ disposition in 

other systems [201-203]. 

ERAD is comprised of different components that specify the selection of ERAD 

substrates, the targeting of substrates for degradation, ubiquitination, and 

retrotranslocation of the substrates into the cytoplasm for proteasomal degradation [71, 
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197, 198]. HRD-1 is one of three RING finger E3 ubiquitin ligases found in C. elegans 

[253]. In mammals HRD-1 is found in a stoichiometric complex with SEL-1, which 

stabilizes and modulates HRD-1 activity [122, 254, 255].  Additional studies have 

suggested that SEL-1 facilitates protein degradation through its interactions with 

transmembrane ERAD components CUP-2 (DERLIN1) as well as cytoplasmic CDC-48 

(p97). Together, these data suggest that some ERAD substrates utilize the HRD-1/ 

SEL-1 complex to target substrates for ubiquitination and then subsequent targeting for 

retrotranslocation. Ubiquitinated proteins are degraded in the cytoplasm, therefore 

terminally misfolded proteins have to be retrotranslocated from the ER into cytoplasm. 

Cup-2 is the C. elegans homolog of Derlin1, which is a transmembrane protein that has 

been implicated as a retrotranslocation channel [118-121]. Furthermore, the majority of 

misfolded proteins extracted from the ER require the cytosolic AAA+ATPase cell-

division cycle (Cdc-48) complex [122]. The CDC-48 complex utilizes its ATPase activity 

to segregate ubiquitinated ERAD substrates and/or extract substrates from the ER into 

the cytosol for degradation by the proteasome [122, 255].  

We constructed three different types of transgenic strains expressing luminal 

ERAD substrates where disposition has been well studied; α1-AT mutant Null Hong 

Kong, α1-AT mutant Saar, and cathepsin L mutant (PPM2). All three strains showed an 

increase in protein accumulation upon RNAi knockdown of the ERAD components; hrd-

1, sel-1, cup-2, and cdc-48. Based on these data, all three transgenes encoded luminal 

ERAD substrate dependent upon ubiquitination by the HRD-1/SEL-1 ubiquitin ligase 

complex, retrotranslocation into the cytosol via the CUP-2 transmembrane protein, and 

then targeted to the proteasome via interaction with CDC-48 for destruction.   
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In direct contrast to the three “prototypical” luminal substrates (NHK, Saar, and 

PPM2), only a portion of sGFP::ATZ was eliminated by ERAD, and that occured with 

the utilization of different ERAD components. Most notably, knockdown of the E3 ligase 

hrdl-1, the C. elegans ortholog of GP78, showed a modest but significant increase in 

ATZ accumulation. This result suggested that at least a portion of misfolded sGFP::ATZ 

was eliminated via the gp78 E3-mediated ERAD pathway instead of the HRD-1 E3 

ligase utilized by the other three ERAD substrates, including the α1-AT mutants NHK 

and Saar. Recent studies utilizing HEK 293 cells co-transfected with gp78 and ATZ 

resulted in a decrease in ATZ expression [227]. Furthermore, siRNA for gp78 also 

resulted in an increase in ATZ accumulation. This study suggests that gp78 could 

ubiquitinate ATZ which could help facilitate the partial degradation of ATZ [227].  

In this work, hrd-1 knockdown resulted in no effect on sGFP::ATZ degradation, 

suggesting that this E3 ligase was not essential for targeting ATZ with ubiquitin. 

However, HRD-1 binding partner, SEL-1, was found to have a significant effect on the 

accumulation of ATZ. Most commonly, SEL-1 has been associated with HRD-1 complex 

for degradation of glycoproteins through ERAD [256-258]. SEL-1 is a type-1 

transmembrane glycoprotein with the bulk of the protein composed of repetitive copies 

of the short tetratricopeptide-like repeats, exposed to the ER lumen. Recent studies 

suggest that SEL-1 has other functions in the ER lumen, including interactions with the 

transmembrane ERAD components CUP-2 as well as cytoplasmic CDC-48 [256-258]. 

One interesting study compared Sel1L knockout mice with Hrd1L knockout mice, 

resulting in similarities and differences between the two mutants [258]. Importantly 

severe growth defects and morphological brain abnormalities in Sel1L mutants are not 
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shown in Hrd1L mutants. This data suggests that Sel1L protein may also function in an 

Hrd1L independent manners [258]. Similarly, the Pnhx-2sGFP::ATZ  transgenic animals 

showed a significant accumulation of sGFP::ATZ upon sel-1 (RNAi), while hrd-1 (RNAi) 

showed no significant change in ATZ disposition. These data suggested that SEL-1 is 

interacting with ATZ in an HRD-1 independent fashion and most likely by utilizing the 

gp78 E3 complex.   

One of the core components of ERAD is cdc-48, which is the cytosolic 

AAA+ATPase involved in the retranslocation of misfolded proteins from ER to the 

cytosol [207, 249]. Our results showed a significant decrease in sGFP::ATZ 

accumulation upon knockdown of cdc-48 (RNAi).  This result was opposite that 

observed with other luminal ERAD substrates (NHK, SAAR, and PPM2). Since ATZ is 

localized to the ER and cdc-48 to the cytosol, this result suggested that down-regulation 

of cdc-48 had an indirect effect on ATZ disposition. Since ERAD inhibition activates the 

UPR, which in turn can stimulate autophagy, I hypothesized that the decrease in 

sGFP::ATZ in animals exposed to cdc-48 (RNAi) was due to increased autophagy. 

However, cdc-48(RNAi) of autophagy deficient ATZ transgenic animals (Pnhx-

2sGFP::ATZ; unc51(e369)) still resulted in a significant decrease in ATZ. This study 

suggested that knockdown of cdc-48 decreased the accumulation of ATZ by a non-

autophagy, non-proteasomal pathway. Future studies will be aimed at elucidating the 

mechanism that causes reduction of ATZ accumulation upon knockdown of cdc-48. For 

instance, cdc-48 has been shown to complex with components outside of the ERAD 

pathway, including a phosphatase in the insulin/ insulin-like signaling pathway (IIS) 

[259].  
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In C. elegans, the IIS pathway is comprised of a phosphorylation cascade that 

ultimately modulates longevity, stress resistance, and reproductive development [260-

263]. Briefly, insulin and IGF-I hormones signal through dimeric (daf-2) receptor tyrosine 

kinases to activate phosphoinositide 3-kinase, which in turn activates the 

serine/threonine kinases, AKT/PKB and PDK-1. AKT-1 phosphorylates DAF-16, which 

inhibits DAF-16 from entering the nucleus. Elimination of signaling through the DAF-2 

pathway results in the dephosphorylation of DAF-16 and results in translocation into the 

nucleus. DAF-16 is a FOXO transcription factor that promotes the expression of many 

genes that mediate the effects of decreased IIS such as stress resistance and 

increased longevity [260, 264-266].  This cascade is highly regulated by different 

phosphatases.  PP2A is a ubiquitously expressed phosphatase that dephosphorylates 

AKT-1 resulting in an activation of AKT-1, which in turn phosphorylates DAF-16 

preventing its translocation into the nucleus [267]. If PP2A is overexpressed it causes 

AKT-1 to become less active.  As a result, AKT-1 does not efficiently phosphorylate 

DAF16, resulting in an increase in the nuclear localization of DAF-16.  This increase in 

the transcription factor DAF-16 promotes the expression of many genes including those 

associated with stress resistance. A recent study indicate that PP2A forms a complex 

with CDC-48 [259]. Our hypothesis is that if cdc-48(RNAi) is knocked down it causes a 

decrease in PP2A activity, resulting in deactivation of AKT1 consequentially DAF-16 

enters the nucleus. Thus, this result would phenocopy the effects of decrease IIS and 

reduced IIS decreases the accumulation of other aggregation prone proteins [87]. 

Similarly, Pnhx-2sGFP::ATZ; daf-2(e1370) animals showed a decrease in sGFP::ATZ 
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accumulation (data not shown), suggesting that reduced IIS is having an effect in these 

animals as well.  

I had next investigated the effect of proteasome inhibition through the use of the 

proteasomal RNAi rpt-5. Surprisingly, rpt-5(RNAi) resulted in a significant decrease in 

sGFP::ATZ accumulation (Figure 3.9 A). Since the control strain, Pnhx2Ub::R::mCherry, 

showed an increase in accumulation, the rpt-5(RNAi) appeared to be effective inhibiting 

proteasome function (Figure 3.9 B).  These results suggest that the inhibition of 

proteasomal function may be having a complex effect on ATZ accumulation. Since cdc-

48 delivers ubiquinated substrates to the proteasome, inhibition of the proteasome 

could have a similar effect as cdc-48 and paradoxically activate another elimination 

pathway. Alternately the 48 hour RNAi treatment may have been sufficient to decrease 

overall global protein synthesis, a known effect of proteasomal inhibition [122, 243]. 

Currently, we are developing a time-course experiment utilizing a fluorescent plate 

reader to allow for the monitoring of sGFP::ATZ accumulation in real-time.   

Unlike the mouse model, transgenic animals expressing Pnhx-2sGFP::ATZ appear 

to activate the UPR response. Transgenic Pnhx-2sGFP::ATZ;Phsp-4::mCherry showed a 

marked increase in hsp-4 activation relative to Pnhx-2sGFP::ATM;Phsp-4::mCherry  

suggesting that sGFP::ATZ expression in C. elegans  constitutively activated the UPR. 

Interestingly, IRE-1 inactivation appeared to decrease ATZ accumulation that was not 

due to a decrease in xbp-1 activation and up-regulation of the Abu genes.  Recent 

studies show that ire-1 activation has a function independent of its nuclease activity. 

This independent function, termed RIDD, results in the rapid turnover of mRNAs 

separate of xbp-1 activity [284]. RIDD studies indicate that both ire-1 activation and ER 
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stress are required for activation of this pathway [285].  Since, expression of ATZ in C. 

elegans induced hsp-4 activation (i.e., ire-1 activation), and knockdown of ire-1 would 

further increase ER stress, it is conceivable that ire-1 activity activated the RIDD 

pathway, which preferentially degrades ATZ mRNA. Results from the other ERAD 

luminal substrates (NHK and PPM2), showed that UPR was activated upon RNAi 

inhibition of ire-1. These data together suggest that ATZ accumulation is not processed 

in the canonical pathway as other ERAD luminal substrates.   

Utilizing the C. elegans ATZ model, the goal of this research was to elucidate 

genetic modifies of ATZ accumulation and degradation using an RNAi based approach. 

I have identified several genes that when eliminated modified ATZ accumulation, 

suggesting that they play a role in the metabolism of ATZ (findings summarized in Table 

3.2). Our data suggest a significant degree in conservation of the pathways associated 

with the disposal of aggregation prone proteins, as C elegans, yeast, and higher 

vertebrates use components of ERAD and autophagy pathways to help restore 

proteostasis. Moreover, the studies in C. elegans reveal the presence of an undefined 

pathway, animals treated with cdc-48(RNAi) showed a marked decrease in ATZ 

accumulation that did not involve autophagy or UPS (Figure 3.14).  
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Figure 3.14 Fate of ATZ in Transgenic C. elegans 

Generalized model showing the possible fate of misfolded ATZ (blue). The misfolded 

protein can be degraded via ERAD; utilizing the E3 ligase HRDL-1, ER membrane 

protein SEL-1, and retrotranslocated to the cytosol via the transmembrane protein CUP-

2. After this point ATZ is probably polyubiquitinated (red circles= ubiquitin) and possibly 

interacts with CDC-48 to be targeted for destruction by the 26S proteasome. The 

misfolded ATZ is also degraded via a novel mechanism, the autophagy pathway and a 

portion is probably retained as accumulations in the ER.  
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Table 3.2. Summary of Effects Resulting from Knockdown of Genes (RNAi) 
 

 
+++ = Strong change in fluorescence  ++ = Moderate change in fluorescence   + = Weak change in fluorescence 
 − = No change in fluorescence   ↑= Increase in fluorescence   ↓= Decrease in fluorescence

Gene Description Worm Line 
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ERAD           

Cdc-48 
VCP/p97; AAA+ATPase, 
retrotranslocation of misfolded 
proteins 

+++↑ +++↑ +++↑ ++↑ __ +++↑ __ ++↓ + ↓ 

Cup-2 Derlin-1; ER transmembrane protein, 
forms a receptor __ __ __ +↑ __ ++↑ ++↓ ++↑ __ 

Npl-4 Nuclear protein localization, binding 
partner of cdc-48 __ __ __ +↑ __ ++↑ __ +↑ __ 

Ufd-1 Ubiquitin fusions degradation, 
binding partner of cdc-48 __ __ __ +↑ __ ++↑ ++↑ +↑ __ 

Sel-1 Hrd-3; E3 ligase adapter protein +++↑ +++↑ +++↑ __ __ +++↑ __ +++↑ +++↑ 

Hrd-1 E3 ligase +++↑ +++↑ +++↑ __ __ +++↑ __ __ __ 
Hrdl-1 GP78; E3 ligase __ __ __ __ __ +↑ __ ++↑ __ 
Marc-6 Doa10; E3 ligase __ __ __ +↑ __ +↑ ++↑ __ __ 

Autophagy          
Bec-1 ATG6; PI3 kinase complex __ __ __   ++↑ __ +++↑  

Let-512 Vps-34; Class III PI3 kinase __ __ __   +↑ __ +++↑  

Lgg-1 ATG8; microtubule associated 
anchor protein __ __ __   __ __ + ↑  

Unc-51 ATG1; ser/thr protein kinase __ __ __   +++↑ __ +++↑  

Proteasome          

Rpt-5 AAA+ATPase 19S regulatory particle 
proteasome base 

↓ ↓ ++↓ +↑ __  __ +++↓  

UPR           

Ire-1 
Ire-1 kinase related, transmembrane 
thr/ser kinase and endonucluclease 
of Xbp-1 

__ __ +↑   __ __ +++↓  

Atf-6 
ATF6a, transcription factor that 
induces BiP  associated anchor 
protein 

__ __ __   +++↑ __ __  

Pek-1 Elongation initiation factor kinase __ __ __   __ __ +++↑  

Xbp-1 bZip transcription factor; increases 
ERAD __ __ __   ++↓ __ __  
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4.0 DETERMINING GENETIC MODIFIERS INVOLVED IN THE DISPOSITION OF ATZ 

THROUGH THE USE OF AN UNBIASED GENOME-WIDE RNAi SCREEN 

 

 

 
4.1 RNAi IN C. elegans 

 
 
RNAi-mediated gene silencing was discovered in C. elegans and is now used 

commonly to identify specific gene function.  Over a decade ago, Fire and Mello 

discovered that microinjecting C. elegans with double stranded RNA (dsRNA) caused a 

specific gene silencing effect that spread systemically throughout the organism [218]. 

Furthermore, soaking worms in dsRNA solution and  feeding worms with E. coli 

expressing dsRNA had the same effect [220, 268].  

RNAi is initiated by the RNase III-like enzyme Dicer, which cleaves long double-

stranded RNA molecules into short (~20 nucleotides) double stranded fragments, 

siRNAs [269-272].  Each siRNA is incorporated into an endoribonuclease-containing, 

RNA-induced silencing complex (RISC), and are unwound into two single-stranded 

RNAs (ssRNAs).  The passenger strand is degraded, while the guide strand base pairs 

with a complementary sequence of messenger RNA (mRNA). Within the RISC complex, 

an argonaute protein degrades the mRNA [273]. Thus, RNAi is a form of post-

transcriptional gene silencing (Figure 4.1).   
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Figure 4.1: RNAi Process 
 
RNAi processing in C. elegans. First, the dsRNAs is processed into siRNAs by the 

enzyme Dicer.  Next the siRNAs assemble into RNA-induced silencing complexes 

(RISCs).  The ssRNA strands subsequently guide the RISCs to complementary RNA 

molecules, where they cleave and destroy the mRNA. Adapted from Ambion’s online 

appendix accessed: http://www.ambion.com/ techlib/append/RNAi_mechanism.html 
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4.1  PAST RNAi SCREENS 

 

Different RNAi screening strategies have been used to interrogate the C. elegans 

genome; including at least 15 different genome-wide RNAi screens utilizing the RNAi 

feeding technique [274-280]. In addition, candidate-based approaches using a small 

(40-2000) subset of genes for analysis, have been instrumental in identifying a genes 

involved in aging, cell death, development, and other different cellular processes [217, 

281-283].   

 The first genome-wide RNAi screen assayed for overt changes in C. elegans 

post-embronic growth, development, morphology and movement after feeding ~17,000 

bacterial clones [217]. RNAi suppression of ~10% of the genes produced a detectable 

phenotype. In addition, this screen revealed functions for ~1200 genes that were 

previously unknown [217]. Other genome-wide RNAi screens in C. elegans identified 

genes important for embryonic development [217, 281], and aging [282, 283].  

 In addition to the identification of gene function through phenotypic analysis, 

genome-wide RNAi screens have been conducted utilizing markers for identification of 

specific phenotypes.  For example, a genome-wide RNAi screen was used to identify 

genes regulating body fat storage [277]. Candidate genes were knocked down via RNAi 

and changes in fat storage were assessed by monitoring levels of Nile red staining, 

which visualizes fat storage droplets [277]. RNAi knockdown of 112 genes increased fat 

storage, while 305 genes reduced fat storage.  Several of the new fat regulatory genes 

are conserved in humans [277]. These results identified inactivation of insulin, serotonin, 

and tubby signaling all of which increased body fat content. The results of this screen 
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helped to increase understanding about fat storage and obesity in addition to illustrating 

the importance of genome-wide RNAi screens in C. elegans.  

 Fluorescent protein expressing transgenic animals are another tool utilized in 

genome-wide RNAi screens. An example of this type of assay is illustrated in an RNAi 

screen for modifiers of poly-agglutination aggregation [173]. In this model, animals 

expressing polyglutamine stretches fused to the yellow-fluorescent protein (YFP) served 

as a model for the protein aggregation disorder, Huntington’s disease. The misfolded 

protein accumulated in the muscle cells as illustrated by YFP expression. The screen 

identified 186 potential genes that modulate poly-Q accumulations [173]. The identified 

genes corresponded to five functional classes of polyglutamine regulators; translation, 

RNA metabolism, proteins synthesis, protein folding, and protein degradation [173].  

 

 

4.2 CONSIDERATIONS FOR RNAi SCREENING 

 

Although RNAi screens have become a powerful tool for unraveling molecular pathways 

in C. elegans, they are still labor intensive and technically challenging, especially if the 

changes in phenotype are subtle. Therefore, the initial goal of this study was to develop 

an automated high throughput genome-wide RNAi screening technology that would 

address current challenges in genome-wide RNAi screens. In the following section I will 

be addressing those current issues. 
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The three major technical challenges associated with past genome-wide RNAi 

screens are: 1) labor and time intensive 2) variability in screening results due to a 

narrow dynamic range (e.g. signal to background) and 3) operator bias and fatigue 

when manually selecting phenotypic outputs. As illustrated in Figure 4.2, the screening 

strategy developed in this chapter addresses these challenges by automating many of 

the labor-intensive components associated with past genome-wide RNAi screens. 

 Adapting RNAi screens to an all liquid workflow would greatly facilitate 

automation of the screening process. This was achieved by adapting current liquid 

culturing methods in combination with the COPASTM BIOSORT worm sorter and 

ArrayScan VTI imaging platform to allow us to achieve a fast high throughput, non-

subjective screen.  The COPASTM BIOSORT worm sorter, which is a large particle 

(animal) flow cell, is used to automatically select animal of a designated size and/or 

fluorescence and dispense them into the wells of a 96-well microtiter plate.  By using a 

combination of COPASTM BIOSORT and a integrated transgenic line the variability of 

expression associated with transgenic populations is minimized.  

A third consideration is whether robust statistical methods can be used to 

calculate a dynamic range and confidently identify RNAi clones resulting in the desired 

effect. Many RNAi screens utilize a labor-intensive manual scoring system to identify 

phenotypic changes during the first round of screening. Manual scoring methods are 

susceptible to operator fatigue and subjective assessment, leading to a high number of 

false positives and/or a large number of unidentified hits. Utilizing the automated 

fluorescence microscope ArrayScan VTI allows us to automate data acquisition and 
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Figure 4.2: RNAi Schematic for High Throughput RNAi Screen 

 Worm preparation is performed concurrently with the preparation of the RNAi bacteria.  

The SpotDetector BioApplication analyzes the change in transgene expression (GFP). 

The data analysis output is stored indefinitely and can be reanalyzed at any time.  
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analysis. The instrument, ArrayScan VTI, consists of an inverted light microscope 

(Axiovert 200M, Carl Zeiss) configured with a motorized objective turret with Plan-

Neofluar objectives, a motorized 5-position filter cube turret, a mechanized stage, a 12-

bit cooled CCD camera and controller software. Samples are illuminated for 

fluorescence imaging in up to 4 different spectra using a mercury-based light source. 

Different types of analysis modules (Thermo Scientific BioApplications) automatically 

convert 16-bit monochromatic images into numeric data [284]. Utilizing the ArrayScan 

VTI in conjunction with a fluorescent reporter protein allows for the real time imagining 

and analysis of changes in fluorescence (protein accumulations) in the animals.  

A further consideration is the reproducibility of an RNAi screen.  Currently, there 

is poor reproducibility when comparing results between laboratories conducting 

genome-wide RNAi screens on similar phenotypes. Variations in screening methods are 

likely to account for these discrepancies. Therefore, the initial goal of this study was to 

develop an automated high throughput genome-wide RNAi screening technology that 

would reduce labor while improving overall sensitivity, specificity, and reproducibility. 

Successful development of this strategy was then utilized to complete a genome-wide 

RNAi screen for genetic modifiers of sGFP::ATZ protein accumulation in the worm.  
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4.3 MATERIALS AND METHODS 

 

4.3.1 Worm Strains and Culture Conditions 
  
 
Strain VK694 (Pnhx-2sGFP::ATZ) was generated by co-injecting YA with the plasmids 

Pnhx-2sGFP::ATZ and Pmyo-2::mRFP at a final concentration of 70 ng/ul and 10 ng/ul, 

respectively. The extra-chromosomal array was integrated by gamma irradiation as 

described [177].  Animals were maintained at 22 oC on nematode growth medium 

(NGM) plates seeded with Escherichia coli OP50 (NGM/OP50) [214].  

 

4.3.2 Preparation of Animals for RNAi Screening 

 

Twelve to fifteen adult sGFP::ATZ transgenic animals were placed on five 10 cm 

NGM/OP50 plates.  Approximately 7 days later, early-staged larval animals were 

isolated by differential sedimentation and then transferred to ten 50 cm NGM/OP50 

plates.  The larvae were incubated at 22 oC until the majority of the animals were in the 

L4 larval stage, approximately 48 hours later.   

 

4.3.3 Animal Sorting Using the COPASTM BIOSORT 
 
 
As previously described, the COPASTM  BIOSORT (Union Biometric, Holliston, MA) 

allowed for the reduction in assay variability, which resulted in a tightly control 

population based upon size, and fluorescence intensity [215]. Animals were cultivated 

as described above and sorted using the COPASTM BIOSORT as previously described 
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[215] with the following modifications: PBS was used to wash the animals for sorting 

and as sheath fluid for sorting using the COPASTM BIOSORT.  One hundred L4/young-

adult animals were sorted into each well of a 96-well optical bottom plate (Figure 4.2).  

Approximately 50,000 transgenic worms were required for each 96-well plate and the 

sorting time was ~45 minutes per plate.  Upon completion of sorting the induced RNAi 

cultures were added (vide infra).  

 

4.3.4 RNAi Bacterial Preparation and Induction 

 

RNAi clones were obtained from the Ahringer RNAi feeding Library (Geneservice 

Limited, Cambridge, UK) [285]. A sterile pinning device was used to replicate each 

RNAi library plate into a 96-well deep well plate containing 400 µl of Luria Bertani broth 

(LB), [containing 10 g Tryptone, 5 g yeast extract, 10 g NaCl and 50 µg/ml ampicillin per 

liter] [216] . 

 

4.3.5 RNAi Assay Procedure 

 

To each well of a 96-well plate seeded with animals 40 µl of the induced RNAi culture 

was added. Next, 5-fluorodeoxyuridine (FUDR) was added to each well to prevent eggs 

from developing. The addition of FUDR allowed only the original worm population to be 

scored.  Plates were incubated in a 22 oC shaking incubator for 48 hours.  To prevent 

evaporation, plates were placed into moist sealed plastic containers.  Plates were 

imaged after 48-hours utilizing the ArrayScan VTI.   
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4.3.6 Image Acquisition 

 

 Worms were anesthetized with a 4 mM Levamisole solution prior to image capture. 

Images were acquired with the ArrayScan VTI HCS Reader (Cellomics, Thermofisher, 

Pittsburgh, PA, USA) fitted with a 5x objective and a 0.63x coupler.  The images were 

captured utilizing a 2-channel (TRITC and GFP) assay previously described [215].  The 

data were normalized by dividing the total GFP area by the number of animals per well.  

 

4.3.7 Analysis of Hits 

 

A z-score was determined for each RNAi using each 96-well plate as its own intrinsic 

control.   Since RNAi has been shown to have intrinsic variability, RNAi that has a z-

score above or below 2.35 must be retested to eliminate false positives [287]. A z-score 

was calculated by subtracting the population mean from an individual raw sore and then 

dividing the difference by the population standard deviation as illustrated in the following 

equation:  z = (x - µ) / σ  where x= raw score, µ = mean of the population and σ = the 

standard deviation of the population.  

 

4.3.8 Hit Verification 

 

Utilizing the methods described in sections 4.3.2 – 4.3.7, RNAi clones yielding absolute 

z-score ≥ 2.35 were verified by repeating the assay in triplicate (n=300 animals. These 

values are then compared to the transgenic strain fed on control RNAi (L4440 feeding 

vector) for statistical significance through a Students two-tailed t-test.   
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4.4 RNAi SCREEN PARAMETERS 

 

4.4.1 Controls for RNAi Screen 

 

To identify genes that alter the accumulation of sGFP::ATZ, I used a C. elegans strain 

expressing the transgene, Pnhx-2sGFP::ATZ (detailed explanation in Chapter 2). The use 

of a sGFP::ATZ fusion protein enables the assessment of misfolded protein 

accumulation. We utilized the promoter, nhx-2, which drives expression of Pnhx-

2sGFP::ATZ  transgene in the intestinal cells, as such sGFP::ATZ accumulates in the 

intestinal cells of the animal (Figure 2.3). sGFP::ATZ accumulations are seen as early 

as the L1 stage and continue to be displayed throughout all developmental stages.   

 To determine if changes in sGFP::ATZ fluorescence could also be identified after 

RNAi exposure, a time course experiment using GFP(RNAi) was conducted to 

determine the rate and extent of sGFP::ATZ elimination. E. coli strains expressing 

double-stranded RNA for GFP, was fed to L4/YA sGFP::ATZ animals. The animals were 

imaged utilizing the ArrayScan VTI. Based on these studies, sGFP::ATZ had a half-life of 

~24 hours and was undetectable within 48 hours of exposure to RNAi (Figure 4.3). 

These studies suggested that the accumulated sGFP::ATZ can be reversed by RNAi 

and that it occurs within a time frame that animals can survive in the liquid culture. 
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t1/2=	  ~26h 

t1/2= 
~26h 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Figure 4.3: GFP Half-life 
 
 
Pnhx-2sGFP::ATZ animals were exposed to GFP RNAi for various lengths of time (X 

axis).  At each time point worms were imaged for total amount of GFP spots (Y axis). 

Results show that almost all GFP accumulations are eliminated by 48 hours.  Image 

adapted from work performed by  Gosai, Kwak, Long, and Pak. 
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4.5 QUALITY OF HIGH CONTENT ASSAY  

 

It was essential to verify that the screening method yielded reproducible results before 

proceeding with an entire genome-wide RNAi screen.  To test the assay conditions, I 

harvested a large transgenic population of sGFP::ATZ animals.  One hundred L4/YA 

animals, with similar GFP expression levels, were sorted using the COPASTM BIOSORT 

into each well of a 96-well optical bottom plate.  The transgenic worms were fed with 

either an empty vector (L4440) or GFP(RNAi) and incubated for 48-hours. Animals were 

anesthetized and imaged employing the ArrayScan VTI.  The SpotDetector 

Bioapplication program was utilized, the mRFP channel to count the number of animals 

by identifying the number of mRFP positive heads (Figure 4.4 A).  This assay counted 

the number of red-heads in each well, this confirmed that the COPASTM BIOSORT was 

accurately placing the correct number of animals into each well and were almost 

identical in all wells (Figure 4.4 B).  Using the GFP channel the SpotDetector program 

also indentified the number, size and total fluorescence of the GFP positive 

accumulations within the intestinal cells of the worms (Figure 4.4 A).  For our analysis I 

used total GFP spot area but analysis of the other parameters yielded similar trends 

(data not shown). The total GFP spot area was then divided by the number of animals 

to determine an average florescence per animal for each well (Figure 4.4 B).  The 

SpotDetetor Bioapplication program showed a wide dynamic range between GFP(RNAi) 

and vector (RNAi) controls (Figure 4.4 A,B,C).  
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Figure 4.4: Validation of RNAi Screening Methods 

Data analysis of transgenic animals post 48 hour exposure to L4440 (vec) or GFP RNAi. 

100 worms were sorted into wells of a 96-well plate and imaged using the ArrayScan VTI. 

A. Representative fluorescent images of one field of mRFP (red) heads and GFP 

intestinal accumulations. B. Comparison of total head count, total GFP spot area, total 

GFP spot count, and total GFP spot intensity (n=36 wells or 3,600 worms) C. Scatter 

plot comparing total GFP spot area per well between controls.  
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This data was used to calculate the Z’-factor, a commonly used metric to assess 

overall assay quality [286].  Values between 0.5 and 1 are considered excellent and 

indicate a quality assay format. The Z’-factor for this experiment was 0.52. These 

findings suggest that GFP(RNAi) and vector(RNAi) could be used to define a robust 

assay with a wide dynamic range.     

 

 

4.6 GENOME-WIDE RNAi SCREEN  

 

After establishing a robust assay for HCS using the sGFP::ATZ animals, I preformed a 

genome-wide RNAi screen. The Arhinger feeding library contains E. coli strains 

expressing double-stranded RNAs for 16,757 genes, which covers approximately 86% 

of the C. elegans genome [276].  The RNAi library is arrayed by chromosome number 

and consists of 203 96-well plates.  Transgenic sGFP::ATZ animals were sorted into a 

96-well microtiter plate, utilizing the COPASTM BIOSORT to select a tightly gated 

population of animals (Figure 4.5 A).  After a 48 hour RNAi exposure the worms were 

immobilized and imaged utilizing the ArrayScan VTI.  The ArrayScan VTI equipped with a 

5x objective and 0.63x coupler acquires 9 fields to cover the entire well of a 96-well 

plate (Figure 4.5 B). Imaging takes ~60 to 80 minutes per 96-well plate, therefore 

limiting the number of plates that can be imaged in one day. In theory, an entire 

genome-wide RNAi screen can be performed by one person in ~20 days. Utilizing these 

established conditions all ~17,000 RNAi’s were examined.  
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Figure 4.5:  Genome-Wide RNAi Library Screen 

A. Sorting parameters B. Visualization of 9 fields imaged by the ArrayScan VTI C. 

Representative of z-score analysis from one 96-well plate from genome-wide screen. 

Z-score is used to compare effect of RNAi on transgene expression of GFP; X-axis 

represents well position and Y–axis represents z-score value.  D. Distribution of 

Chromosome I z-scores (Chromosome I is comprised of 2,445 clones dispersed over 

29, 96-well plates)  
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Upon completion of imaging, a z-score value for each RNAi clone was calculated.  

A z-score indicates how many standard deviations an observation is above or below the 

mean.   In this analysis, I considered any RNAi clone that had an absolute z-score  > 

2.35 as a potential hit (Figure 4.5 C,D) [287].  A second round of screening verified this 

list of potential gene candidates.   

The secondary screening of all potential candidates was completed in liquid 

culture using similar methods and conditions used in the original screen, except that: 1) 

RNAi cultures were tested in triplicate (n=300), 2) the RNAi controls vector(RNAi) and 

GFP(RNAi) were included on each individual plate, and 3) each experiment was 

completed in duplicate on separate days.  A two-tailed t-test was then used to 

determine if there was a significant difference in the amount of sGFP::ATZ 

accumulations in RNAi treated animals as compared to that of the vector(RNAi) controls 

between the GFP positive accumulations in sGFP::ATZ animals exposed to empty 

feeding vector and a potential positive RNAi (Figure 4.6 A & B).   

 

 

4.7 GENOME WIDE RNAi SCREENING RESULTS 

 

From the initial screen I identified 245 clones for the secondary screen of which 108 

RNAi clones recapitulated the initial sGFP::ATZ accumulation phenotype. Of the 108 

positive cloned, 104 genes that enhanced the sGFP::ATZ accumulation and the 

remaining 4 decreased sGFP::ATZ accumulations (Table 4.1). Based on Wormbase 

annotations for the genes I manually classified the list of genetic modifiers of  
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Figure 4.6: Validation of RNAi Screen Hit Daf-16.  

A. Comparison of total GFP spot area and B. Fluorescent images from sGFP::ATZ 

animals fed vector or daf-16 RNAi (mRFP= head region, GFP= ATZ Intestinal 

inclusions) 
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Table 4.1 Modifiers of sGFP::ATZ Accumulations 

Sequence 
name 

Gene 
name Description z-Score 

Ortholog 
and/or 
Homolog 

Other 
Screen 
Hit 

RNA Synthesis and Processing       

F48F7.1 alg-1 Argonaute like gene 1; protein involved in the production of small temporal RNA  3.06 H,M Nollen 
F18H3.3 pab-2 Poly(A)-binding protein 2 2.89 H, Y   

Y46G5A.4 phi-10 Protein involved in embryogenesis 2.6 H, Y Nollen 
T07A9.8   Protein involved in positive regulation of growth rate 2.54 H, M, Y   

F42A6.7 hrp-1 single-stranded DNA binding protein that interacts with telomeres  2.52 H, M, Y  

C04A2.2 egl-27 Part of an ATP-dependent complex with nucleosome remodelling and histone 
deacetylation  2.47 H, M   

K11E4.5 nhr-71 Protein containing a nuclear hormone receptor C4-type zinc finger domain 2.35 -  
Protein Synthesis         

Y39B6A.35  Member of the queuine tRNA-ribosyltransferase family 3.85 H, M  

C14B9.7 rpl-21 Member of the ribosomal protein L21e family 2.9 H, M, Y Nollen 
F42C5.8 rps-8 Ribosomal protein small subunit 8 2.72 H, M, Y  

K02A4.1 bcat-1 reversibly transaminates branched-chain L-amino acids to control their metabolism 
and acts in apoptosis 2.61 

H, M, Y   

W01B11.3  Protein involved in larval growth; embryogenesis; and the regulation of DNA 
transposition 2.45 H, M, Y  

T20B12.3   Protein involved in positive growth regulation 2.37 H, M, Y   

Protein Chaperones     

ZC395.10   moderate similarity to a region of butyrate-induced transcript 1  2.94 H,Y   
Y41E3.11  Protein involved in positive growth regulation and lipid storage 2.68 H, M  

Vesicle           
ZK180.4 sar-1 Vesicle coat complex COPII 3.71 H, M, Y  

Y113G7A.3 sec-23  Vesicle coat protein complex II (COPII)-coated vesicle component  3.56 H, M, Y   
Insulin Signaling Pathway    

R13H8.1 daf-16 forkhead family transcription factor  3.7 H, M   
par2.3 aak-1 AMPKalpha homlog 2 which is an AMP-activated protein kinase  3.21 Y  

Y62F5A.b age-1 Aging alteration 1; protein involved in dauer larva formation -2.36 H, M, Y   

Cell Stress Response     

C03C10.6   region of moderate similarity to a region of mouse 9030205A07Rik; which is 
required for drinking behavior 3.63 

H, M   

C07B5.5 nuc-1 Nuclease 1; endonuclease that is involved in DNA degradation during apoptosis 3.47 H, M  
ZK1193.5 dve-1  required for the mitochondrial unfolded protein response signaling 3.34 -   

C41C4.4 ire-1  serine/threonine protein kinase and stress-activated endoribonuclease  3.32 H, M, Y  
Y75B7B.2    potential enzymatic component of a DNA damage response pathway  3.11 H, M   

ZK455.7 pgp-3 multidrug resistance protein of the ATP-binding cassette (ABC) superfamily 2.92 Y  
C34E10.1 gop-3 Gro-1 operon 3 2.62 H, M, Y   

B0496.8  Member of the PET domain containing family 2.4 H, M  
F08B1.1 vhp-1 VH1-like phosphatase 1; MAPK phosphatase  -2.38 H, M   

RNAi response     

K12B6.1 sago-1  protein that acts with other argonaute proteins sequentially to direct gene silencing 4.29 -   
Transcription     

K08A2.b nhr-88 contains a nuclear hormone receptor C4-type zinc finger domain 3.27 H, M   

B0464.7 baf-1 required to stabilize segregated chromatin, required for proper nuclear assembly  3.25 H, M  
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F53H1.4   may be involved in chromatin-mediated transcription regulation 3.22 -   
Y104h12a.1 nhr-41 likely functions as a transcription factor 3.12 H, M  

Y32F6A.3 pap-1 encodes a poly (A) polymerase 3.1 H, M, Y   
F54F2.5 ztf-1 Protein containing a zinc finger C2H2 type repeat; which bind nucleic acids 2.82 -  

C07H6.7 lin-39 transcription factor involved in cell fate determination 2.48 M, H   
F13G11.1   DNA binding domain family 2.35 -  

Protein Transport         

T02C12.1 hum-5 unconventional class I myosin heavy chain 3.71 M, H, Y  

C43G2.2 bicd-1 Protein involved in locomotion  3.52 M, H   
C38C6.2 atg-2  transporter of small neutral amino acids and some larger aromatic amino acids 3.33 M, H, Y  

Y119D3_443.
c cdh-12 predicted to function in cellular adhesion 3.31 M, H   

R05G6.7  Member of the eukaryotic porin family 3.14 M, H, Y  
Protein Signaling         

C30F12.1  Protein involved in lipid storage and FGF receptor signal transduction 5.16 M, H  

Y47D3B.2 nlp-21 Protein of unknown function 3.04 -   

F49C5.6  Member of the 7-transmembrane chemoreceptor family of G protein-coupled 
receptors (GPCR) 2.98 

-  

F13A7.8   Member of the 7-transmembrane chemoreceptor family of G protein-coupled 
receptors (GPCR) 2.83 

-   

T10D4.10  Member of the 7-transmembrane chemoreceptor family of G protein-coupled 
receptors (GPCR) 2.6 

-  

ZC84.4   similarity to opiate receptor-like 1; which is a G protein-coupled receptor  2.58 -   

ZK262.11  Member of the 7-transmembrane chemoreceptor family of G protein-coupled 
receptors (GPCR) 2.36 

-  
Ubiquitin           

T07E3.4  serve as a link between a target protein and a ubiquitin-conjugating enzyme 4.79 -  
h06104.4 ubl-1 similar to Drosophila ubiquitin/ ribosomal protein S27a  2.94 M, H, Y   

Y82E9BL.15  serve as a link between a target protein and a ubiquitin-conjugating enzyme 2.84 -  

Catalytic Activity         

T03F6.3  Protein with high similarity to glucosamine-6-phosphate deaminase 2  3.53 M, H  
F18H3.3 pab-2 Poly(A)-binding protein 2 2.89 H, Y   

F59E12.13 fut-3 Fucosyl transferase 3 protein  2.89 H. M  
B0218.5   Protein involved in lipid storage 2.84 -   

C49F5.1 sams-1  S-adenosyl methionine synthetase 2.75 H, M, Y  
H32C10.1   Predicted phosphatase 2.74 H, M, Y   

H06I04.3  Putative SAM-dependent rRNA methyltransferase  2.7 H, M, Y  
M79.1 abl-1 putative tyrosine protein kinase  2.67 H, M   

T07A9.3 kgb-1  putative protein serine/threonine kinase  2.46 Y  
T01C8.5   Aspartate aminotransferase/Glutamic oxaloacetic transaminase  2.44 H, M, Y   

B0464.4 bre-3 encodes a protein similar to beta-glycosyltransferases 2.38 -  
B0546.2   Member of the ovarian tumor (OTU)-like cysteine protease family 2.38 H, M   

Embryogensi
s      
Y39A1A.13   Protein involved in morphogenesis and gametogenesis 4.49 -   

F39E9.2  functions in germ line mitosis; embryogenesis; and fertility 3.64 -  
F14D2.2   Protein involved in embryogenesis 3.49 -   

W02H5.b  Protein involved in embryogenesis 3.26 H  
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T22F3.3   Protein that is required for embryonic development 3.11 H, M, Y   
B0393.6  Protein involved in embryogenesis 2.95 -  

Y110A7A.d mat-1 Metaphase to anaphase transition 1; component of the anaphase-promoting complex 
required for embryogenesis 2.69 

H, M, Y   

W03H9.4  Protein involved in embryogenesis 2.47 H, M  

R107.6 cls-2 protein involved in embryogenesis and mitotic kinetochore assembly 2.42 H, M   

Miscellaneous Functions     

Y38E10A.d   Protein containing two C-type lectin domains 3.15 H   
C17C3.5  Protein involved in osmoregulation 2.97 -  

F09A5.4   Member of the Mob1 and phocein family 2.79 H, M, Y   

C23H4.1 cab-1 C terminus of AEX-binding protein 1; component of a neuronal transmission 
pathway  2.69 H, M  

Y39B6a.27   Member of the DUF895 domain of unknown function family 2.59 H, M   
Y37D8A.9 mrg-1 Mortality factor-related gene (MRG) family protein-1 2.56 H  

C50C3.8 bath-42 BTB and MATH domain containing 42; protein that interacts with RIC-3 to 
regulate maturation of nicotinic acetylcholine receptors 2.53 

-   

Y76A2B.3  Protein with high similarity to long-chain fatty acid Coenzyme A ligase 5  2.53 H, M, Y  

C33D9.1 exc-5 Excretory canal abnormal 5; putative RhoGEF domain protein  2.53 H, M   
F21D5.3  Protein containing a multicopper oxidase 2.51 Y  

C16H3.2 lec-9 Protein with high similarity to C. elegans LEC-8; which binds to glycolipid; 
involved in response to bacterium 2.5 

H, M   

C04A11.4 adm-2 Member of the reprolysin (M12B) zinc metalloprotease family 2.45 H, M  

F38A5.1   Protein involved in lipid storage 2.45 H, M, Y   
F10E7.11  Member of the Egl-27 and MTA1 homology 2 (ELM2) domain family 2.41 H, M  

F37C12.7   Protein involved in morphogenesis of an epithelium and locomotory behavior 2.35 H, M, Y   
F08B12.1  Member of the prominin family  -3.03 H, M  

Unknown No Described Functions       
C02D4.1 jud-4 Protein of unknown function 6.09 -  

K08D10.1   Member of the DUF1280 domain of unknown function family 5.08 -   
F28B12.1  Protein of unknown function 4.78 -  

R08C7.12   Protein of unknown function 4.01 -   
R09F10.3  Protein of unknown function 3.97 -  

Y39B6B.q   Member of the queuine tRNA-ribosyltransferase family 3.85 -   
T14G8.4  Protein of unknown function 3.83 -  

W03G1.5   Protein of unknown function 3.79 H, M   
B0464.8  Protein of unknown function 3.69 -  

F31D4.8   Protein of unknown function 3.15 -   
C33A12.3  Protein of unknown function 2.94 H, M  

T19D12.1   Protein of unknown function 2.71 Y   
R08C7.1  Protein of unknown function 2.59 -  

F25D7.2   Protein of unknown function 2.54 H, M   
K11H12.8  Protein of unknown function 2.54 H, M  

Y43F8B.12   Protein of unknown function 2.42 -   
ZK512.1  Protein of unknown function -2.47 -  

Y82E9BR.13   Protein involved in positive growth regulation -3.09 - Choe 
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sGFP::ATZ accumulations into the following major categories:  RNA synthesis and 

processing (7), cell stress response (9), transcription (8), Protein transport or signaling 

(12), catalytic activity (12), and unknown functions (18) (Table 1) [288].  Many of these 

genes identified have orthlogs in humans (62%), mice (55%), and yeast (33%) (Table 1) 

[288]. These findings suggested that modifiers of C. elegans ATZ accumulation could 

be conserved in humans.  

 

4.7.1 Comparison of RNAi screen candidates with other RNAi screens  

 

The RNAi clones identified in Table 4.1 may target genes that specifically protect 

against toxic sGFP::ATZ accumulations or possibly genes that protect against general 

protein accumulations. To examine if the genes identified were specific for ATZ 

accumulation, I compared our list of 104 genes that increase sGFP::ATZ accumulation 

with the published results of other protein misfolding RNAi screens including: 

polyglutamine repeat containing proteins (Huntington’s disease) [173], α-synuclein 

(Parkinson’s disease) [289], tau (frontotemporal dementia) [176], and SOD-G85R 

accumulation (Lou Gehrig’s disease) [280]. Additionally, I compared our screen results 

to those from a genome-wide hypertonic stress sensitivity screen, because this screen 

has been shown to have significant overlap (p<1.278e-10) with identified hits to the 

polyglutamine aggregation RNAi screen which suggests that the cellular mechanisms 

for dealing with hypertonic stress and misfolded proteins could be similar in C. elegans 

(Table 4.1 and Figure 4.7) [290].   
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Figure 4.7 Comparison of Genome-wide RNAi screens 

Venn Diagrams illustrating the distribution of common genes between the sGFP::ATZ 

genome wide screen and two other genome-wide screens in C. elegans. 
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To test for significant overlap in modifiers detected in other C. elegans models of 

protein aggregation disorders, I utilized a modified Fisher’s exact test [288]. None of the 

RNAi screens, showed a significant overlap of modifier genes. In fact, there was no 

overlap between the genes identified in enhancing α-synuclein or tau accumulation, as 

compared to those that enhanced sGFP::ATZ accumulation [176, 289]. Furthermore, 

the hypertonic stress screen and the SOD-G85R accumulation screens each only had 

one gene that overlapped with sGFP::ATZ screen results: Y82E9BR.13 and alg-1, 

respectively [280, 290]. The greatest overlap was with polyglutamine genome-wide 

RNAi screen, in which three genes were identified (p value= 0.116). Overall, no 

significant overlap was detected between our hits and those of other published screens 

(Figure 4.7), suggesting that the cellular response to accumulated sGFP::ATZ is 

different to the cellular response mechanism to different types of aggregated protein 

located in different cell types (intestine vs. muscle) and subcellular locations (ER vs. 

cytosolic).  

 

4.7.2 Confirmation of Hit Analysis Utilizing Genetic Mutant  

 

Given the inherent variability associated with RNAi knock down, I confirmed modifiers 

effects in a genetic loss-of-function mutant background.  For example, daf-16(RNAi) 

enhanced sGFP::ATZ accumulation. To determine if the similar phenotype occurs in 

daf-16(m26) loss-of-function mutants, I crossed the loss-of-function mutant daf-16(m26) 

with Pnhx-2sGFP::ATZ transgenic line to produce a Pnhx-2sGFP::ATZ ;daf-16(m26) 

transgenic line. Pnhx-2sGFP::ATZ ;daf-16(m26) display a significant increase in total GFP 
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fluorescence, which is consistent with the RNAi screening results  These results 

confirmed that the RNAi screening method was successful at identifying a genetic 

modifier of the sGFP::ATZ accumulation. 

 

 

4.8 DISCUSSION 

 

In this study, I developed a high-throughput, semi-automatic genome-wide RNAi 

screening protocol that utilizes liquid culturing, large particle flow cell sorting, and 

automated image acquisition to quantify changes in a fluorescent reporter fusion protein. 

These studies demonstrate that an automated genome-wide RNAi screen can eliminate 

the labor intensiveness, subjective analysis and operator fatigue associated with past 

RNAi screens.   

 Several studies demonstrate the usefulness of both the COPASTM BIOSORT worm 

sorter and liquid culturing conditions to help accelerate and streamline genome-wide 

RNAi screens. However, the combination has not been used together frequently. 

Moreover, by adding the ArrayScan VTI as an automated imaging platform, an entire 

genome-wide RNAi screen can be performed by one person in ~20 days. Additionally, 

the output from the ArrayScan VTI imaging can be analyzed utilizing a variety of different 

parameters, including fluorescent spot count, number, or intensity. Furthermore, the 

images of each well are stored on a server and can be re-examined for RNAi effect and 

reanalyzed using different parameters.   
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I utilized the high throughput genome-wide RNAi screening protocol to identify 

genes that affect the accumulation of the aggregation prone protein ATZ, expressed in 

C. elegans. I identified 104 genes that affected the disposition of sGFP::ATZ.  The 

genes were classified into following major categories: RNA synthesis and processing, 

transcription, stress response, protein transport or signaling, catalytic activity, and 

unknown functions (Table 4.1).  Taken together this diverse collection of genes 

suggests that sGFP::ATZ is regulated by transcriptional, post-transcriptional and post-

translational processes.  

To identify genes specifically involved in the disposition of sGFP::ATZ and not in 

global protection against aggregation-prone proteins, I compared the list of 104 genes 

that increased sGFP::ATZ accumulation with those from RNAi screens targeting the 

accumulation of  polyglutamine repeat containing proteins (Huntington’s disease) [173], 

α-synuclein (Parkinson’s disease) [289], tau (frontotemporal dementia) [176], and SOD-

G85R accumulation (Lou Gehrig’s disease) [280]. A genome-wide RNAi screen for 

modifiers of polyglutamine aggregation, identified 186 genes corresponding to five 

functional classes: translation, RNA metabolism, proteins synthesis, protein folding, and 

protein degradation [173]. The authors suggest that these genes involved in RNA 

processing and protein synthesis may play an important role as sensors of protein 

damage [173]. However, when comparing those genes to those in our study, there were 

only three genes in common; F48F7.1 (alg-1), Y46G5A.4 (phi-10) and C14B9.7 (rpl-21).  

The genes alg-1 and phi-1 are involved in RNA synthesis and processing while rpl-21 is 

involved in protein synthesis.  This overlap suggests that active transcription of a subset 

of genes can regulate aggregation proteins. In support of this notion, I identified 
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additional seven genes involved in RNA synthesis and processing. The knockdown of 

genes identified in RNA synthesis and processing may result in RNA processing defects, 

or an increase in the synthesis of proteins by a defective translational machinery. Both 

outcomes could explain the observed increase in sGFP::ATZ accumulations, especially 

if these genes are involved in the proteostasis pathway [291]. Additionally, a number of 

transcription factors were also identified from the genome-wide RNAi screen, 

suggesting that those factors may be involved in the transcription of genes also in this 

network.  

The only RNAi identified in a screen for hypertonic stress induced protein 

aggregation and in our screen was Y82E9BR.13, which is a gene of unknown function 

that has no known ortholog in humans and therefore was not investigated further [290]. 

The lack of overlap between the different RNAi screens targeting aggregation prone 

proteins could be due to technical differences in experimental design. However, the 

difference maybe attributed to: the nature of the transgene (polyQ vs ATZ), cell type 

(muscle, intestine, neuronal) and the sub-cellular location (ER, cytoplasm) of protein 

aggregation.   

Several genes in the insulin/ insulin-like growth factor signaling (IIS) pathway 

were identified in our genome-wide RNAi screen. In C. elegans, the IIS pathway is 

comprised of a phosphorylation cascade that ultimately modulates longevity, stress 

resistance, and reproductive development [260-263]. Briefly, insulin and IGF-I 

hormones signal through dimeric (daf-2) receptor tyrosine kinases to activate 

phosphoinositide 3-kinase (age-1), which in turn activates the serine/threonine kinases, 

AKT/PKB and PDK-1. AKT-1 phosphorylates DAF-16, which inhibits DAF-16 from 
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entering the nucleus. Elimination of signaling through the DAF-2 pathway results in the 

dephosphorylation of DAF-16 and results in translocation into the nucleus. DAF-16 is a 

FOXO transcription factor that promotes the expression of many genes that mediate the 

effect of decreased IIS such as stress resistance and increased longevity [260, 264-

266].  When DAF-16 protein is eliminated via RNAi, sGFP::ATZ animals showed a 

significant increase in the total amount of sGFP::ATZ. Additionally, the Pnhx-

2sGFP::ATZ ;daf-16(m26) animals displayed a significant increase in total GFP 

fluorescence.  Since we used an nhx-2 promoter devoid of DAF-16 binding sites and 

nhx-2::GFP is not affected by DAF-16 (RNAi) (data not shown) we conclude that daf-16 

is important for the elimination of sGFP::ATZ.  

In daf-2 mutants, DAF-16 is translocated into the nucleus and promotes target 

gene expression. If this is correct then ATZ/daf-2 mutant animals would display a 

significant decrease in sGFP::ATZ accumulation consistent with activation of DAF-16. 

Indeed this is the case when we crossed the loss-of-function mutant daf-2(e1370) with 

sGFP::ATZ (data not shown). The Arhinger library does not contain a daf-2 (RNAi), 

however when age-1 (which is located downstream of daf-2), is knocked down the 

result phenocopies the daf-2 mutant.  Consistent with this result age-1(RNAi) showed a 

significant decrease in sGFP::ATZ accumulations in our  genome-wide RNAi screen.  

Interestingly the COPII vesicle components, sec-23 and sar-1, were both 

identified as potential hits from our genome-wide RNAi screen for sGFP::ATZ modifiers.  

COPII vesicles are involved in the anterograde transport of proteins from the ER to the 

Golgi membrane. Sar-1 is a small GTPase that initiates vesicle coat assembly, while 

sec-23 is a GTPase-activating protein that stimulates the GTPase activity of sar-1. 
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When the COPII components were knocked down via RNAi an increase in sGFP::ATZ 

was shown. In humans, ~10% of ATZ is secreted by hepatocytes, we suspect that the 

increase in sGFP::ATZ is due to retention of the small amount of soluble sGFP::ATZ, 

that is normally processed through the conventional ER to Golgi secretory pathway [3].    

Several novel groups of genes were also identified in our genome-wide RNAi 

screen. One group contained genes encoding for G-protein coupled receptors (GPCR’s). 

GPCR’s are transmembrane receptors that activate a variety of signal transduction 

pathways in mammalian cells [292]. In C. elegans, GPCRs often act as chemosensory 

receptors, but many are predicted to be neuropeptide receptors as well [293, 294]. 

Conceivably some of the GPCRs participate in sensing accumulated proteins or cell 

stress and transmit to downstream signaling pathways to restore proteostasis. GPCR’s 

are of great interest because ~40% of all prescription pharmaceuticals are targeted to 

G-protein coupled receptors [295].  

In conclusion, I establish a semi-automated high throughput quantitative 

genome-wide RNAi screen technology and used this method to identify ~100 genes that 

modify the accumulation of ATZ. Many of these genes implicated in playing a role in the 

disposal of ATZ are novel and provide a source of ATZ genetic modifiers for future 

study.  
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5.0  CONCLUSIONS AND FUTURE DIRECTIONS  

 

 

The goal of my dissertation was to generate a tractable genetic model that would 

facilitate the identification of modifiers affecting the severity of α1- antitrypsin deficiency. 

To accomplish this objective, I helped developed a C. elegans model of ATZ deficiency, 

and utilized this model to identify genes that modulated the accumulation of the Z 

mutant of α1- antitrypsin (ATZ). This analysis was accomplished through the use of 

phenotypic analysis and RNAi screening strategies. In summary, our studies showed 

that the C. elegans model recapitulates the ER transport defect associated with the liver 

disease of ATD patients, in which there is secretion of ATM and intracellular retention of 

ATZ. Expression of ATZ showed significant negative effects on the health of the animals. 

Both targeted and a global RNAi screen revealed multiple genes that effect the 

accumulation of ATZ and many of these genes may serve as future drug targets.    

 One limitation of this system is that ATZ is constitutively expressed in the animals. 

Although this mode of expression is similar to that in vivo, promoters that have 

constitutive expression may lead to cellular adaptation over time, which could activate a 

different set of modifiers than those that are known to function in the acute response to 

protein misfolding induced cellular stress. Thus, the genetic modifiers of protein stress 

pathway in this constitutive system may differ significantly from studies in transgenic 

mice, cell culture, or yeast systems which utilize inducible promoters that govern ATZ 

expression [83].  The future generation of inducible promoters in C. elegans  should 
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provide an opportunity to make a direct comparison between the effects of constitutive 

versus acute presentation of an aggregation prone protein in this genetic model. 

A second limitation of this system, is that the disposition of the accumulated 

proteins are more difficult to follow in C. elegans than in systems allowing conventional 

pulse-chase analysis. However, we are generating a transgenic ATZ strain utilizing a 

pTimer fluorescent tag. Fluorescent timers change color in a time-dependent fashion, 

providing the ability to monitor protein synthesis, maturation, and trafficking in real-time, 

in vivo [296]. In C. elegans, fluorescent timers have recently been utilized to visualize 

muscle development [296]. Our goal will be to utilize pTimer to monitor ATZ protein 

production and degradation in the animals.  The development of a transgene utilizing 

the pTimer in place of GFP could demonstrate how ATZ is processed in the C. elegans 

intestine.  

The aim of Chapter 3 was to determine if the disposal mechanism of sGFP::ATZ 

in C. elegans parallels those in mammalian systems. In general, studies show that the 

ERAD/ proteasomal pathway is responsible for the elimination of misfolded soluble 

proteins, whereas the autophagy-lysosome pathway is specialized for degradation of 

insoluble aggregates and higher order polymers [70, 76, 85-88]. The C. elegans ATZ 

expression strains were used to identify genes that modified the ATZ phenotype. My 

results confirmed a portion of the misfolded sGFP::ATZ was degraded through the 

autophagy pathways. Knockdown of all of the autophagy genes investigated via RNAi 

resulted in significant increases in sGFP::ATZ accumulation, which is consistent with 

studies on ATZ disposition in other systems [201-203]. Furthermore, co-injection of Pnhx-

2sGFP::ATZ and Pnhx-2mCherry::lgg-1 resulted in an increase in baseline expression of 
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lgg-1 puncta compared to Pnhx-2sGFP::ATM co-injected with Pnhx-2mCherry::lgg-1 (data 

not shown). These results suggested that autophagy was constitutively activated in ATZ 

animals.  The generation of a transgenic line by co-injection of the Pnhx-2sGFP::ATZ and 

Pnhx-2mCherry::lgg-1 into the loss-of-function autophagy mutant unc-51(e1269) should 

help confirm this notion by showing a diffuse lgg-1 expression pattern concomitant with 

an increase in ATZ accumulation.   

I also examined the rate that different ERAD and proteasome components had 

on ATZ accumulation. My results suggested that only a portion of ATZ is eliminated 

through ERAD. Interestingly, knockdown of cdc-48 resulted in a decrease in ATZ 

accumulation. Conceivably, this phenomenon might be attributed to an increase in 

autophagy. However, cdc-48(RNAi) of autophagy deficient ATZ transgenic animals 

(Pnhx-2sGFP::ATZ; unc51(e369)) still resulted in a significant decrease in ATZ. This 

study suggested that knockdown of cdc-48 decreased the accumulation of ATZ by a 

non-autophagy, non-proteasomal pathway.  

CDC-48 represents 1% of total cytosolic protein and is recruited by a myriad of 

adaptors to provide energy and/or mechanical force for wide-ranging cellular processes. 

For instance, cdc-48 has been shown to complex with the seriene/threonine 

phosphotase (PP2A) in the insulin/ insulin-like signaling pathway (IIS) [259]. One 

possibility is that cdc-48(RNAi) knockdown causes an increase in PP2A activity, 

resulting in a shut down of the insulin/ insulin-like growth factor signaling (IIS) pathway, 

thereby allowing DAF-16 to enter the nucleus. Thus, this result would phenocopy the 

effects of decreased IIS, which decreases the accumulation of other aggregation prone 

proteins [87], including  sGFP::ATZ (data not shown). Furthermore, when the loss-of-
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function mutant daf-16(m26) is crossed with Pnhx-2sGFP::ATZ transgenic line to produce 

a Pnhx-2sGFP::ATZ ;daf-16(m26) transgenic line animals display a significant increase in 

total GFP fluorescence, which is consistent with the IIS playing a role in the disposal of 

ATZ in C. elegans.   

Interestingly, rpt-5 (RNAi), which knocks down a regulatory component of the 

proteasome, resulted in a decrease in ATZ accumulation in C. elegans. This 

paradoxical result is at odds with the ERAD findings and suggested that the inhibition of 

proteasomal function may be having a complex effect on ATZ accumulation. Similarly, 

rpt-5 (RNAi)  reduced the accumulation of prototypical luminal ERAD substrates, NHK 

and PPM2. These paradoxical findings could be explained by the experiment design, as 

we assessed the animals 48 hours after initiation of RNAi treatment. This duration of 

RNAi treatment may be sufficient to decrease overall global protein synthesis. A 

decrease in overall protein synthesis is a known effect of proteasomal inhibition [122, 

243]. Additionally, the differential half-life of the ERAD substrates could result in the 

difference levels of accumulation between the ERAD and UFD substrates. The 

utilization of a shorter time course should help resolve this discrepancy.  

These disparate findings may also be specific to the inhibition of rpt-5. I have 

only investigated one other component of the proteasome, rpn-10, but knockdown via 

RNAi was ineffective.  Therefore, in future experiments additional components of the 

26S proteasome should be investigated.  Currently, our lab has the RNAi clones for ten 

of the different rpt and rpn components, all of which need to be first tested utilizing the 

Pnhx-2Ub::R::mCherry control line. Next RNAi clones can be tested on Pnhx-2sGFP::ATZ 

transgenic lines in a time-dependent fashion to determine if rpt-5 is unique in its 



	   158	  

decrease in ATZ accumulation or if decreased accumulation occurs with inhibition of 

any proteasome component.  

Another important aspect of this study was the assessment of the UPR response 

in transgenic animals expressing Pnhx-2sGFP::ATZ. Transgenic Pnhx-2sGFP::ATZ;Phsp-

4::mCherry animals showed a marked increase in hsp-4 activation relative to Pnhx-

2sGFP::ATM;Phsp-4::mCherry,  suggesting that sGFP::ATZ expression in C. elegans  

constitutively activated the UPR. Paradoxically, ire-1 inactivation appeared to decrease 

ATZ accumulation in an xbp-1 independent fashion. Recent studies show that ire-1 

activation has a function independent of its nuclease activity, of which the latter cleaves 

the mRNA encoding xbp-1 resulting in activation and translation of xbp-1 [123-125]. 

This independent function, Regulated Ire1-Dependent Decay (RIDD), results in the 

rapid turnover of mRNAs in a manner not dependent on xbp-1 activity [297]. RIDD 

studies indicate that both ire-1 activation and ER stress are required for activation of this 

pathway [298].   

Since, expression of ATZ in C. elegans induced hsp-4 activation (i.e., ire-1 

activation), and knockdown of ire-1 would further increase ER stress, it is conceivable 

that the residual ire-1 activity activated the RIDD pathway, which preferentially degrades 

ATZ mRNA. This hypothesis could be tested by also knocking down components of the 

RIDD pathway and assaying the level of ATZ mRNA by qRT-PCR compared to mRNA 

levels in ire-1(RNAi) treated ATZ animals. As an alternative hypothesis, the elimination 

of ire-1 could result in the stimulation of autophagy, and activation of this pathway could 

be responsible for the decrease in ATZ accumulation. Pnhx-2sGFP::ATZ; unc51(e369) 
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animals exposed to ire-1 RNAi should help determine whether ire-1 knockdown 

activates an autophagy dependent elimination of ATZ.    

The aim of Chapter 4 was to utilize an unbiased genome-wide RNAi screen to 

identify additional modifier genes or pathways that play a pivotal role in the disposal of 

sGFP::ATZ in C. elegans. Different RNAi screening strategies have been used to 

interrogate the C. elegans genome; including at least 15 different genome-wide RNAi 

screens utilizing the RNAi feeding technique [274-280]. However past screens have 

been limited by being labor intensive, subjective, and prone to operator fatigue. In this 

study, I developed a high-throughput, semi-automated genome-wide RNAi screening 

protocol that utilized liquid culturing, large particle flow cell sorting, and automated 

image acquisition to quantify changes in a fluorescent reporter fusion protein.  

 One technical limitation associated with this screening method is failure of the 

ArrayScan VTI to focus correctly on the individual animals. This could result in a 

population being eliminated from the analysis. However the use of the “red-heads” 

(Pmyo-2::mRFP co-injection marker) to auto-focus and the ability to scan archival images, 

although labor intensive, should help minimize this effect.  Future directions of this 

technology include rescreening of random plates from the feeding library to establish 

overall reproducibly, although preliminary studies showed plate-to-plate results were 

highly reproducible. Additionally, we could use different algorithms to re-analyze the 

data in attempts to reduce false positive rates. Recent studies in RNAi screening have 

suggested that the use of the strictly standardized mean difference (SSMD) reduces the 

false positive rates [299]. Since this technique resulted in quantifiable data, we should 

be able to reanalyze the data utilizing the SSMD instead of z-score to determine which 
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technique is more sensitive and specific.  

Utilizing this high throughput genome-wide RNAi screening protocol, I identified 

108 genes that affected the disposition of sGFP::ATZ.  The genes were classified into 

following major categories: RNA synthesis and processing, transcription, stress 

response, protein transport or signaling, catalytic activity, and unknown functions.  

Taken together, this diverse collection of genes suggests that sGFP::ATZ is regulated 

by transcriptional, post-transcriptional and post-translational processes.   

Interestingly, several genes in the insulin/ insulin-like growth factor signaling (IIS) 

pathway were identified in our genome-wide RNAi screen.  Elimination of signaling 

through the DAF-2 pathway results in the dephosphorylation of DAF-16 and results in 

translocation into the nucleus. DAF-16 is a FOXO transcription factor that promotes the 

expression of many genes that mediate the effect of decreased IIS such as stress 

resistance and increased longevity [260, 264-266].  When DAF-16 protein is eliminated 

via RNAi, sGFP::ATZ animals showed a significant increase in the total amount of 

sGFP::ATZ. In daf-2 mutants, DAF-16 is translocated into the nucleus and promotes 

target gene expression. If this pathway affected ATZ accumulation then the ATZ;daf-2 

mutant animals should display a significant decrease in sGFP::ATZ accumulation 

consistent with activation of DAF-16. Although, the Arhinger library does not contain a 

daf-2 (RNAi), when age-1 (which is located downstream of daf-2), was knocked down 

the results showed a decrease in ATZ accumulation. Independent investigations in our 

laboratory have shown that knockdown of the IIS pathway decreased the accumulation 

of in the disposal of ATZ. Therefore, future investigations will be directed at elucidating 
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the mechanism that the IIS pathway has on ATZ accumulation and possibly including 

potential drug targets of the IIS pathway.  

Further investigations of the results from the RNAi screen include retesting all 

108 potential RNAi clones utilizing the Pnhx-2GFP transgenic animals to test for effect of 

RNAi on promoter activity.  Therefore, any clones shown to have a significant effect on 

the nhx-2 promoter can be removed from future analysis.  Furthermore, a number of 

loss-of-function mutants are available from the 108 potential genes. To confirm RNAi 

results Pnhx-2sGFP::ATZ will be crossed with loss-of-function mutants, and imaged for 

resulting ATZ accumulation confirming RNAi screen results.  Moreover, due to the ease 

of the screening technique, we could possibly test the potential positive RNAi clones 

utilizing the other luminal ERAD substrate controls (NHK, Saar, PPM2) to determine if 

these results are specific to ATZ or can be applied to aggregation-prone proteins in 

general.    

In conclusion, I established a C. elegans ATZ model that recapitulates the ER 

retention aspect of liver disease in ATD patients. This transgenic animal will become a 

useful tool for both drug discovery in addition to future studies defining the molecular 

mechanisms of genetic modifiers that alter the disease phenotype.   
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APPENDIX A 
 
 

WORM STRAINS USED IN THIS STUDY 
 

 
Strain Name Abbr. Promoter Fluorescent 

Protein Description 

Bristol  N2 N2   Wild-type worms 
CB4856 Hawaiian polymorphic  HA   Wild-type worms 

VK689 Pnhx-2sGFP::ATM sGFP::
ATM nhx-2 GFP 

Secreted GFP expressed in 
pseudocoelomic space 
outside of intestinal cells 

VK694 Pnhx-2sGFP::ATZ sGFP::
ATZ nhx-2 GFP Accumulations in intestinal 

cells 

VK413 Pnhx-2GFP  nhx-2 GFP Intestinal expression of 
GFP 

VK414 Pnhx-2sGFP  nhx-2 GFP 
Secreted GFP expressed in 
pseudocoelomic space 
outside of intestinal cells 

VK471 Pnhx-2sATM  nhx-2   Wild-type 

VK472 Pnhx-2sATZ  nhx-2  Intracellular inclusions in 
intestinal cells 

VK643 Pnhx-2sGFP::ATZSaar Saar nhx-2 GFP 
Low levels expression, 
small accumulations in 
intestinal cells 

VK1223 Pnhx-2sGFP::ATNHK NHK nhx-2 GFP Low levels diffuse 
expression in intestinal cells 

VK1239 Psrp-2sGFP::ATM  srp-2 GFP Hypodermal expression, 
secretion of  GFP 

VK1240 Psrp-2sGFP::ATZ  srp-2 GFP Hypodermal expression, 
accumulation of GFP 

VK1093 Pnhx-2mCherry::lgg-1  Lgg-1 nhx-2 mCherry 

mCherry puncta in intestinal 
cells, associated with 
autophagosomes 
expression 

VK737 Phsp-4::GFP Hsp-4 hsp-4 GFP 

Basal expression in 
spermatheca, under ER 
stress conditions diffuse 
GFP throughout body  

VK739 Phsp-4::mCherry  hsp-4 mCherry 

Basal expression diffuse 
intestine, under ER stress 
conditions diffuse mCherry 
throughout body  

VK1267 Pnhx-2CPL-1::YFP CPL-1 nhx-2 YFP 
Low level diffuse YFP 
puncta associated with 
lysosomes 

VK1269 Pnhx-2CPL-1ppm2::YFP PPM2 nhx-2 YFP Low level diffuse expressio 
with a few accumulations in 
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intestinal cells 

VK1261 Pnhx-2dsRED::KDEL KDEL nhx-2 dsRED Diffuse red fluorescence 
associated with ER 

VK1243 Pnhx-2Ub::R::mCherry UB nhx-2 mCherry Low to no expression 

VK1244 Pnhx-2Ub::M::mCherry UBGM nhx-2 mCherry Diffuse mCherry expression 
throughout worm 

VK805 Pnhx-2sGFP::ATZ; daf-
2(e1370) 

ATZ; 
daf-2 nhx-2  

Loss of sGFP::ATZ 
accumulations in intestine 
when ATZ is expressed in 
the daf-2(e1360) 
background 

VK757 Pnhx-2sGFP::ATZ; daf-
16(m26) 

ATZ; 
daf-16 nhx-2 GFP 

Increase in sGFP::ATZ 
accumulations in intestine 
when ATZ is expressed in 
the daf-16(m26) 
background 

VK1377 Pnhx-2sGFP::ATM; Phsp-

4::mCherry 
ATM; 
hsp-4  GFP & 

mCherry 

Low level secreted GFP, 
low mCherry expression in 
intestinal cells 

VK1378 Pnhx-2sGFP::ATZ; Phsp-

4::mCherry 
ATZ; 
hsp-4  GFP & 

mCherry 

sGFP::ATZ expressed as 
accumulations in intestine, 
Induction of hsp-4::mCherry 

VK1751 Pnhx-2sGFP::ATZ; pek-
1(ok278) 

ATZ; 
pek-1  GFP sGFP::ATZ expression is 

increased   

VK1757 Pnhx-2sGFP::ATZ; ire-
1(v33) 

ATZ; 
ire-1  GFP sGFP::ATZ expression is 

decreased 
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