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EXISTENCE AND STABILITY OF STANDING PULSES IN NEURAL NETWORKS

Yixin Guo, Ph.D.

University of Pittsburgh, 2003

This dissertation studies a one dimensional neural network rate model that supports localized

self-sustained solutions. These solutions could be an analog for working memory in the brain.

Working memory refers to the temporary storage of information necessary for performing different

mental tasks. Cortical neurons that show persistent activity are observed in animals during working

memory tasks. The physical process underlying this persistent activity could be due to self-sustained

network activity of the neurons in the brain.

The term ‘bump’ has been coined to imply a spatially localized persistent activity state that

is sustained internally by a network of neurons. Many researchers have analyzed the bump state

using firing rate models with either the Heaviside gain function or a saturating sigmoidal one.

These gain functions imply that neurons begin to fire once their synaptic input reaches threshold,

and the firing rate saturates to a maximal value almost immediately. However, cortical neurons

that exhibit persistent activity usually fire well below their maximal attainable rate. To resolve this

paradox, I study a single population rate model using a biophysically relevant firing rate function.

I consider the existence and the stability of standing single-pulse solutions of an integro-

differential neural network equation. In this network, the synaptic coupling has local excitatory

coupling with distal lateral inhibition and the non-saturating gain function is piece-wise linear. A

standing pulse solution of this network is a synaptic input pattern that supports a bump state. I

show that the existence condition for single-pulses of the integro-differential equation can be re-

duced to the solution of an algebraic system. With this condition, I map out the shape of the pulses

for different coupling weights and gains. By a similar approach, I also find the conditions for the
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existences of dimple-pulses and double-pulses. For a fixed gain and connectivity, there are at least

two single-pulse solutions – a “large” one and a “small” one. However, more than two single-pulses

can coexist depending on the parameter range. To have standing single-pulses, the gain function

and synaptic coupling are both important.

I also derive a stability criteria for the standing pulse solutions. I show that the large pulse is

stable and the small pulse is unstable. If there are more than two pulse solutions coexisting, the

first pulse is the small one and it is unstable. The second one is a large stable pulse. The third

pulse is wider than the second one and it is unstable. More importantly, the second single-pulse

(which could be a dimple pulse) is bistable with the “all-off” state. The stable pulse represents the

memory. When the network is switched to the “all-off” state, the memory is erased.
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Chapter 1

Introduction

1.1 Working memory and standing pulses

Working memory refers to the temporary storage of material necessary for performing different

tasks [6]. For example, to understand a sentence, you need to remember the beginning until you

get to the end. The physical process underlying working memory is persistent neural activity that

is sustained internally in the brain, rather than driven by external input [63].

Cortical neurons that show persistent activity during memory tasks are observed in animal

experiments [11, 25, 26]. For example, the animal’s delayed saccadic eye movement is guided by

the memory of the visual cue. Neurons in the dorsolateral prefrontal (PFC) cortex of monkeys are

found to display elevated firing activity during a memory task and then are switched off abruptly

when the memory is no longer required.

In the past three decades, different neural mechanisms that support persistent activity have

been proposed, such as ‘line attractors’ [61] or ‘bump attractors’ [3, 9, 41, 65]. A ‘bump attractor’

is a spatially localized stable persistent activity state.

A number of neural network models have been shown to support bump states. G.B. Ermentrout

[18] gives a thorough review of these models and their solutions obtained by different methods.

Amari studied a neural network [3, 34] with lateral-inhibition type coupling on a one-dimensional

domain. The network supports a pattern of excitation (above threshold activation) on an open and

finite interval on the domain. Amari calls this synaptic pattern a localized excitation, and later G.

B. Ermentrout calls it a standing pulse [18]. A standing pulse is a 1-D version of a bump attractor.

A localized excitation and a standing pulse refers to a synaptic input pattern that has only one

excited region on a finite and open interval. More recently, different excitation patterns have been

discovered [31, 43, 42]. These new patterns have excited regions composed of a union of two (or

more) disjoint, finite and open intervals. They can be regarded as standing pulses because they are

localized and stationary. To avoid confusion, in this thesis, I call a standing pulse with only one
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finite and open excited region a (standing) single-pulse or 1-pulse. I call a standing pulse with two

disjoint, finite and open interval excited regions a (standing) double-pulse or 2-pulse.

1.2 Previous work

1.2.1 Amari’s model

In [3], Amari shows the existence of localized excitations for a neural network modeled by the

following equation:

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f [u(y, t)]dy + h+ s(x, t) (1.1)

This equation describes neuronal behavior in a lateral-inhibition network of a single-layer of neurons

along a one-dimensional spatial domain. Function u(x, t) is the synaptic input to neurons located

at position x ∈ (−∞,∞) at time t ≥ 0, and it denotes the level of excitation of a neural element.

The coupling function w(x) determines the connection between neurons. The nonnegative and

monotonically non-decreasing function f [u], called the gain function, denotes the firing rate at x

at time t. In Amari’s model, f [u] is the Heaviside function Θ(u),

f [u] = Θ(u) ≡





0 u ≤ 0

1 u > 0

In the absence of s(x, t), i.e., s(x, t) = 0, Amari studies the existence and the stability properties

of stationary solutions of (1.1), i.e. solutions of

u(x) =

∫ ∞

−∞
w(x− y)f [u(y)]dy + h. (1.2)

A neuron at x is excited when u(x) > 0. Let

R[u] = {x|u(x) > 0}

be the excited region of u(x). A solution u(x) of (1.2) for which R[u] = (0, a) is a bounded,
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Figure 1.1. A network of N integrate-and-fire neurons.

——————————————————————————

connected, open interval is defined to be a single-pulse solution. Amari proves that equation (1.2)

has zero, one or two single-pulse solutions for a general form of lateral-inhibition connections w(x).

He develops a stability criterion that shows when two single-pulse solutions coexist with the “large”

of them being stable and the ”smaller” being unstable.

1.2.2 Integrate-and-fire networks

Laing and Chow [41] study the properties of bumps in networks of spiking neurons using an

integrate-and-fire model. They consider a network of N integrate-and-fire neurons (figure 1.1)

whose membrane potential, vi, obeys

dvi
dt

= Ii − vi +
∑

j

wijαj(t), αj(t) = exp(−βt) (1.3)

Ii is the input current applied to neuron i. The connection weight between neurons i and j is wij .

In a one-population network, each neuron excites nearby neurons and inhibits distant ones (figure

1.2.) Each time the voltage reaches the threshold from below the neuron fires. The voltage then

immediately resets to vi = 0, and a synaptic pulse αj(t) is sent to all connected neurons.

From the integration of differential equation (1.3), they obtain the spike response form

vi(t, s) = Ii + η(t− s) + ui(t) (1.4)

with synaptic input

ui(t) =
∑

l∈spikes

∑

j∈neurons

wijε(t− tlj)

where ε(t) is a synaptic filter and ε(t) =

∫ t

0
es−tα(s)ds.
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——————————————————————————

They also write

ui(t) =
∑

j

wij

∫ ∞

0
ε(s)Aj(t− s)ds (1.5)

where Aj(t) is the “activity” of neuron j and

Aj(t) =
∑

l

δ(t− tlj)

where the sum over l is over all past firing times.

For a large network, input to a neuron is almost constant if the firing times of the neurons are

uncorrelated. Then the neural activity is simply the firing rate of a neuron given synaptic input

u(t), i.e. Aj(t) = A(t) = f [u(t)]. For integrate-and-fire neurons, when the threshold is scaled to 1,

(see figure 1.3)

f [u] =





1

ln
(

u
u−1

) u > 1

0 u ≤ 1

(1.6)

For a continuous network with infinitely many neurons, the sum in (1.5) becomes an integral.
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Figure 1.3. Neural activity f [u] for integrate-and-fire networks.

——————————————————————————

Therefore

u(x, t) =

∫

Ω
w(x− y)

∫ ∞

0
ε(s)f [u(y, t− s)]dsdy (1.7)

If α(t) = δ(t), then ε(s) = e−s. Differentiating (1.7), yields a population rate model

∂u(x, t)

∂t
= −u(x, t) +

∫

Ω
w(x− y)f [u(y, t)]dy (1.8)

Laing and Chow [41] compare stationary pulse profiles of the population rate model (1.8) and

the network of integrate-and-fire neurons (1.3). Figure (1.4) is a space-time raster plot of the

firing times of a stationary pulse from a numerical simulation of a network of 100 integrate-and-

fire neurons. Figure (1.5) shows the profiles (◦, +, ×) of the average firing rate (neural activity)

for the integrate-and-fire with three different values of β. The solid line is the profile from the

population rate model. It corresponds to the stationary solution of the equilibrium equation (1.9).

The agreement is very good especially for small values of β.

u(x) =

∫

Ω
w(x− y)f [u(y)]dy (1.9)
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1.3 Motivation

In [3], Amari approximates the firing rate by the Heaviside gain function. This means that

neurons fire above threshold and saturate to their maximum rate immediately. The Heaviside gain

function makes the equilibrium equation (1.2) mathematically tractable. However it neglects a very

important biophysical fact that though persistent activity is observed at firing rates of around 25

to 60 Hz, neurons can fire much faster and the saturating rate could be as high as 500 Hz. In other

words, persistently active neurons fire at rates far below their saturated maximum. To examine this

situation, I consider the Amari-like one-population rate model (1.8) using biophysically relevant

firing rate functions (1.11).

Model (1.8) is of the same form as Amari’s model except it has a different gain function f [u].

This can be seen by a change of variables v = u− uT , where uT is the threshold. This gives

∂v(x, t)

∂t
= −v(x, t) +

∫

Ω
w(x− y)f [v(y, t)]dy − uT (1.10)

In this case, −uT < 0 is equivalent to h < 0 in Amari’s model.

The neural activity (1.6) for integrate-and-fire neurons is the reciprocal of a logarithmic function

when the synaptic input u is above threshold. It is difficult to analyze the population rate model

(1.8) with this firing rate function. However we can approximate this firing rate function by a

piecewise-linear function with the following form (see figure 1.6)

g[u] =





α(u− uT ) + β u > uT

0 u ≤ uT
(1.11)

where α > 0, β > 0 and uT > 0 is the threshold.

Pinto and Ermentrout [53] consider a two-population Amari-like model (1.12)-(1.13) and look

at the stability of the standing pulses:

ut = −u+

∫ ∞

−∞
wee(x− y)Θ[u(y, t)− uT ]dy −

∫ ∞

−∞
wie(x− y)v(y, t)dy (1.12)

τvt = −v +

∫ ∞

−∞
wei(x− y)Θ[u(y, t)− uT ] (1.13)
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where Θ is the Heaviside function. Here u and v represent the average neural activity in a population

of excitatory (e) and inhibitory (i) neurons, respectively, at spatial point x and time t. wjk is

the coupling weight function representing the strength of connectivity from population j to k

(j, k ∈ {e, i}). wjk are bounded, nonnegative, even, and normalized. fj is the firing rate of

population j. For fast inhibition, i.e. τ = 0, v = wei ∗Θ, where the notation ∗ means convolution.

Substituting this into (1.12) yields

ut = −u+ (wee − wie ∗ wei) ∗Θ(u− uT ). (1.14)

Hence model (1.12)-(1.13) becomes the Amari model for fast inhibition with linear gain.

In [53], Pinto and Ermentrout use a singular perturbation technique to construct stationary

standing single-pulse solutions of the two-population network with a general nonlinear firing rate

function. But this construction results in only one standing single-pulse solution.

Pinto and Ermentrout [53] uses the pulse width to study the stability of standing single-pulses

of system (1.12)-(1.13). They also analyze the linear stability of standing single-pulses. For the

fast inhibition network, their results are consistent with Amari’s. For more realistic inhibitory

dynamics, i.e. τ > 0, they demonstrate the loss of stability to a Hopf bifurcation. In their stability

analysis, they adopt the saturating Heaviside gain function.
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Coombes et.al [12] study the stationary patterns of

u(x, t) =

∫ ∞

−∞
w(x− y)

∫ t

−∞
η(t− s)f [u(y, s)]dsdy (1.15)

When η(t) = e−t, one can derive the Amari model (1.10) by differentiating both sides of (1.15).

Using a sigmoidal firing rate function f [u] =
1

1 + e−β(u−uT )
(as β →∞, f [u] = Θ(u),) they derive

an associated fourth order Hamiltonian system. Through this Hamiltonian system, they are able

to find standing single-pulses and multiple-pulses. To analyze the stability of standing pulses, they

develop an eigenvalue problem for a general firing rate function. But they only solve the eigenvalue

problem for the Heaviside gain function case.

Laing and Troy [43, 42] also study the Amari model with a lateral-inhibition type of connection

function w(x) that has exactly one zero on (0,∞). They determine a simple set of assumptions

on w(x) and gain function f for which (1.8) has stationary single-pulse solutions [43]. They also

investigate the existence and the stability of double-pulse solutions of the same model [42]. They

find that double-pulse solutions exist but none of them are stable. However, they find both stable

and unstable double-pulse solutions when they replace the w(x) with only one zero on (0,∞) by

an oscillatory w(x) with three positive zeros.

In [43], Laing et al. study (1.8) using an oscillatory connection function and a continuous and

saturating gain function f [u] = 2e−r(u−uT )2
Θ(u − uT ) where b > 0, r > 0 and threshold uT > 0.

In the limiting problem in which r = 0, f [u] becomes the Heaviside function. When r > 0, their

f [u] saturates at 2. In this case, they show the existence of ‘multiple-pulse’ solutions by using an

ordinary differential equation derived from the equilibrium equation of (1.8).

More recently, Rubin and Troy [58] consider Amari’s model with the Heaviside gain function

and an off-center synaptic architecture as an alternative to recurrent excitation. They show the

existence of an unique single-pulse solution. This is different from the lateral inhibition network

when two or more single-pulses can coexist. They also give a rigorous linear stability calculation

to show that the unique single-pulse is stable.

In the work I mention above [12, 43, 53, 58, 42], the authors either use the Heaviside gain

function or a saturating sigmoidal one. Amari’s model with a non-saturating gain function has

not been investigated. Therefore, I study Amari’s model with the nonstaturating piece-wise linear
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gain function (1.11). Notice that when α = 0, (1.11) becomes the Heaviside gain function provided

β = 1. Hence, my model generalizes Amari’s.

Another reason to adopt gain function (1.11) is that I need a function that can support bistability

with an inactive state. This piece-wise linear gain function serves this purpose. Both Amari’s

model and the integrate-and-fire model [41] have bistability with the pulse and the “all-off” resting

state both being stable. Bistability is important because the population network is an analogue

of working memory. The stable pulse represents the memory. When the network is switched to

“all-off” state, the memory is erased.

Laing and Chow [41] have shown numerically that the activity profile of the population rate

model (1.8) matches the the activity profile of the integrate-and-fire model (1.3). I ask the following

questions about the following population rate model with the non-saturating firing rate function

(1.11):

∂u(x, t)

∂t
= −u(x, t) +

∫

Ω
w(x− y)f [u(y, t)]dy

• When does a single-pulse (or a localized excitation) exist?

• When is it stable?

• What is the maximal firing rate?

To answer the above questions, I show the existence of stationary single-pulse solutions of (1.8)

first. Then I investigate when a single-pulse exists according to the changes of the slope α in the

gain function, the connection parameters a and A and also the threshold uT . I also map out the

parameter range for the maximum firing rates when single-pulses exist. Finally, I derive a criteria

to test the stability of single-pulses.

Remark 1.1. This thesis mainly investigates the existence and the stability of single-pulse so-

lutions. However it does not mean that single-pulse solutions are the only form of solutions of

the population rate model (1.8). There could be different forms of solutions, such as double-pulse

solutions or even multiple-pulse solutions [31, 42].
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1.4 Outline

The work in this dissertation will explore the population rate model (1.8) with a non-saturating

firing rate function in the form of (1.11). In Chapter 2, I show the existence of time-independent

single-pulse solutions u(x) of (1.8). I demonstrate the coexistence of two single-pulse solutions.

One is “larger” and “wider”, and the other is “smaller” and “narrower”. I also discover that more

than two pulse solutions can coexist. Upon proving the existence of the single-pulse solution, I

further investigate in what range of parameters a, A, α and uT such a solution exists and what the

firing rates are.

In chapter 3, I examine the stability of single-pulse solutions by adding a small perturbation

to it. After linearizing the dynamical system (1.8) around the stationary single-pulse solution, I

derive an eigenvalue problem with two boundary (threshold points) terms which come from the

discontinuity in the piece-wise linear firing rate function. Using a combination of analytical and

numerical methods, I show that the ‘larger” and “wider” single-pulse is stable and the other one is

unstable. My stability analysis generalizes Amari’s.

During the study of stationary single-pulse solutions of (1.8), other solutions were also discov-

ered. For example, there can also exist double-pulses, which are solutions that have two disjoint

open and finite intervals for which the synaptic input u(x) is above threshold. In chapter 4, I give

my strategy for constructing a double-pulse solution and discuss future directions.
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Chapter 2

Stationary single-pulses

A stationary solution is a time-independent solution of the rate equation

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f [u(y, t)]dy (2.1)

The stationary solution of (2.1) satisfies the equilibrium equation (2.2)

u(x) =

∫ ∞

−∞
w(x− y)f [u(y)]dy (2.2)

where f [u] is a piece-wise linear firing rate function. It is zero below threshold and linear with

a positive slope above threshold. When the slope is set to zero, the piece-wise linear function

becomes the Heaviside function. Therefore Amari’s case is a special case in my study. I choose an

exponential form of synaptic coupling function w(x) because its Fourier transform is a polynomial in

the transform variable. Then, I am able to apply a Fourier transform to decompose the convolution

that appears on the right side of (2.2).

The bulk of the work in this chapter is on single-pulse solutions. The strategy to construct the

single-pulse solutions is to convert the integral equation (2.2) into a fourth order ordinary differential

equation (ODE). The ODE includes singular terms from the discontinuity in the firing rate function.

A stationary single-pulse solution u(x) of the rate equation corresponds to a homoclinic orbit of

the ODE. A proof for the existence of a single-pulse then becomes a proof for the existence of a

homoclinic orbit. Since the ODE has discontinuities across the threshold points, the ODE on the

real line is reduced to three different linear ODEs on three regions separated by threshold points. I

then match the solutions of the ODEs at the threshold points by a system of five equations. From

this system, I am able to construct different single-pulse solutions. I can also follow solutions as the

slope of firing rate function or synaptic coupling is changed in the network using the continuation

program AUTO (used within the program XPPAUT [16]). With the help of AUTO and symbolic

program packages, I am able to map out the parameter regimes for the existence of the single-pulses
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for the firing rate model, which has never been done before.

2.1 Connection and firing rate

The neural network (2.1) has lateral-inhibition type connection w(x) for which excitatory con-

nections dominate for proximate neurons and inhibitory connections dominate at a greater distance.

In general, w(x) satisfies the following six properties.

1. w(x) is symmetric, i.e. w(−x) = w(x),

2. w(x) > 0 on an interval (−x0, x0), and w(−x0) = w(x0) = 0,

3. w(x) is decreasing on (0, x0];

4. w(x) < 0 on (−∞,−x0) ∪ (x0,∞);

5. w(x) is continuous on <, and w(x) is integrable on <;

6. w(x) has a unique minimum xm on <+ such that xm > x0, and w(x) is strictly increasing on

(xm,∞).

In order to apply Fourier Transform to the equilibrium equation (2.2), the connection function

is specified as:

w(x) = Ae−a|x| − e−|x|. (2.3)

where a,A are parameters who satisfy condition A > 1 and a > 1 to guarantee that w(x) has the

shape shown in figure 2.1.

For the exponential connection (2.1), x0 =
lnA

a− 1
, xm =

ln aA

a− 1
. The area of the connection

function w(x) above the x-axis represents the excitation in the network, and the area below the

x-axis shows how much inhibition is in the same network. The total area is 2(Aa − 1). The amount

of excitation and inhibition depend on the ratio of A and a. If A > a, i.e. 2(Aa − 1) > 0, excitation

dominates in the network. If 2(Aa − 1) < 0, inhibition dominates. In the balanced case, A = a, i.e.

2(Aa − 1) = 0. From the analysis and numerical simulations I have done, to stabilizing the bump

state, there cannot be too much excitation in the network. This will be illustrated in section 2.7.4.
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The piece-wise linear gain function is of the form:

f [u] =





α(u− uT ) + β if u > uT

0 otherwise
(2.4)

where u is the synaptic input, α > 0 is the slope, uT > 0 is the threshold, and β > 0 is the jump

u
T

u0

f

α

Figure 2.2. Piecewise-linear Gain function.

——————————————————————————
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from rest to firing. The gain function can also be written as

f [u] = [α(u− uT ) + β]Θ(u− uT ) (2.5)

where Θ(u− uT ) is the Heaviside function such that Θ(u− uT ) =





1 if u > uT

0 otherwise
.

Gain function (2.5) does not saturate with a positive slope α. From this point on, I set β = 1.

The gain function (2.5) turns into the Heaviside function when α = 0. A different type of network

with oscillatory connections and a continuous firing rate has been treated in [43]. Besides a different

neuronal connectivity, the other major difference between their work [43] and this work is that their

firing rate saturates to a maximum.

2.2 Constant solutions

One may first look into the constant solution of equation (2.2). It is obvious that zero is a

solution of (2.2) for any positive threshold uT , β = 1, and any values of parameters a, A, α.

Suppose equation (2.2) has a non-trivial constant solution u0 and u0 > uT . The integral equation

becomes

u0 =

∫ ∞

−∞
w(y)f [u0]dy

i.e.

u0 = f [u0]

∫ ∞

−∞
w(y)dy

With the exponential connection,

∫ ∞

−∞
w(y)dy = 2(

A

a
− 1), the constant solution satisfies

u0 = 2f [u0](
A

a
− 1) (2.6)

From (2.6), for the piece-wise linear gain function, one can explicitly state when there are non-trivial
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constant solutions as the ratio
A

a
is either smaller than one or larger than one by the following two

propositions

Proposition 2.1. When A < a, for fixed a, A, uT , α > 0, there exists a non-trivial constant

solution if both uT + 4αuT < 2 and t < 1− uT
2(1− 2αuT )

are true.

Proof of proposition 2.1: Let t =
A

a
, then t− 1 < 0 because A < a, and 2α(t− 1)− 1 < 0. The

latter inequality gives t < 1 +
1

2α
.

Substituting f [u] = α(u0 − uT ) + 1 into (2.6), the non-trivial constant solution u0 is

u0 =
2(1− αuT )(t− 1)

2α(t− 1)− 1

A non-trivial constant solution u0 must satisfies two conditions:

(i) u0 > 0 and (ii) u0 > uT .

Since u0 > 0, 1− αuT must be positive. Therefore, αuT < 1.

From condition (ii), the following inequalities must be satisfied,

2(1− αuT )(t− 1)

2α(t− 1)− 1
> uT

2(1− αuT )(1− t) > uT − 2αuT (t− 1)

2(1− t) > 4αuT (1− t) + uT

2(1− 2αuT )(1− t) > uT (2.7)

For (2.7) to be true, 1− 2αuT > 0 must be true. Therefore, 2αuT < 1, i.e., 4αuT < 2.

From (2.7), t < 1− uT
2(1− 2αuT )

1 +
1

2α
−
[
1− uT

2(1− 2αuT )

]
=

1− αuT
2α(1− 2αuT )

> 0

Since 1− uT
2(1− 2αuT )

must be larger than zero, uT + 4αuT < 2 must be true. To satisfy both

(i) and (ii), both uT + 4αuT < 2 and t < 1− uT
2(1− 2αuT )

must be true. ♦

For the case in which A
a > 1, the following proposition is proven.
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Proposition 2.2. For fixed a, A, such that A > a, positive α and threshold uT , there is a non-trivial

constant solution of equation (2.2) when either of the following conditions is satisfied:

(a) 2αuT < 1 and
1

2α
+ 1 < t < 1 +

uT
2(2αuT − 1)

.

(b) αuT > 1 and 1− uT
2(1− 2αuT )

< t <
1

2α
+ 1.

Proof of proposition 2.2: t is defined as the ratio of A and a. Then t− 1 > 0 since A > a.

Substituting f [u] = α(u0 − uT ) + 1 into (2.6) yields

u0 =
2(1− αuT )(t− 1)

2α(t− 1)− 1
(2.8)

u0 must satisfy:

(i) u0 > 0 and (ii) u0 > uT .

In order for u0 > 0, (1− αuT ) and 2α(t− 1)− 1 are either both positive or both negative.

Case 1: Both (1− αuT ) and 2α(t− 1)− 1 are positive. Then αuT < 1 and t >
1

2α
+ 1.

From u0 > uT , the following inequality is derived

2(t− 1)(1− 2αuT ) > −uT (2.9)

Right hand side of inequality (2.9) is negative. If (1− 2αuT ) > 0, i.e., 2αuT < 1, the inequality is

satisfied. Hence there exists a constant solution when 2αuT < 1 and t >
1

2α
+ 1.

When 2αuT − 1 = 0, inequality (2.9) is satisfied.

If (1− 2αuT ) < 0, (2.9) can be written as

t− 1 <
uT

2(2αuT − 1)
(2.10)

Hence t < 1 +
uT

2(2αuT − 1)

(
> 1 +

1

2α
.

)
Combining this condition with the conditions derived

from u0 > 0, there is a non-trivial constant solution if 2αuT < 1 and
1

2α
+ 1 < t < 1 +

uT
2(2αuT − 1)

.

Case 2: Both (1− αuT ) and 2α(t− 1)− 1 are negative. Then αuT > 1 and t <
1

2α
+ 1.

From u0 > uT , the following inequality is derived

2(t− 1)(1− 2αuT ) < −uT (2.11)
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(1− 2αuT ) is always negative because αuT > 1.

(2.11) is satisfied if t > 1− uT
2(1− 2αuT )

. One can also show that 1− uT
2(1− 2αuT )

< 1 +
1

2α

as long as αuT > 1. Combining this with the two conditions derived from u0 > 0, there exists a

constant solution when αuT > 1 and 1− uT
2(1− 2αuT )

< t <
1

2α
+ 1. ♦

The non-trivial constant solution is stable. It is bistable with the stable zero constant solution.

uT

u0

y

w
0 f[u

0 ]

Figure 2.3. Bistability of constant solutions. The solid circles are the two stable constant solutions.
w0 is the integral of w(x) on its domain .

——————————————————————————

2.3 Single-pulse solutions

The main goal to study equation (2.2) is to find a stationary single-pulse solution that satisfies

the following:

Definition 2.1. Single-pulse solution:

u(x)





> uT if x ∈ (−xT , xT ), xT > 0

= uT if x = −xT , x = xT

< uT otherwise
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such that (u, u′, u′′, u′′′)→ (0, 0, 0, 0) exponentially fast as x → ±∞ and u, u′ ∈ L1(R). Here u, u′

are bounded and continuous on <. u′′, u′′′ and u′′′′ are continuous everywhere for x ∈ < except

x = ±xT and bounded everywhere on <, and. u(x) is symmetric with u′′(0) < 0; u(0) is the

maximum between −xT and xT ( figure2.4.)

I also observed a pulse where u′′(0) has opposite sign, i.e. u′′(0) > 0, which implies u(0) is no

longer the maximum of the pulse. I call this solution a dimple− pulse. I also observe that the

threshold uT is the controlling factor for the transition between a single-pulse and a dimple-pulse.

For fixed parameters a, A, α, there is a transition threshold. Above the transition threshold, there

are single-pulses. If uT is lower than the transition threshold, there exist dimple-pulses, instead of

single-pulses. Examples are shown in later sections.

I find that there exists a single-pulse solution not only when A > a, but also when A ≤ a.

Before I demonstrate the strategy of finding the single-pulse solution, I estimate a broad range on

which there is no single-pulse solution merely by studying the integral equation (2.2).

Theorem 2.1. For fixed a, A and β = 1, there is no single-pulse solution if both α <
a

2A
and

uT >
2A

a
are true.

Proof of theorem 2.1: Substituting the exponential connection function (2.3) and firing rate

function (2.5) into the integral equation (2.2),

u(x) =

∫ ∞

∞
(Ae−a|x−y| − e−|x−y|)[α(u(y)− uT ) + 1]Θ(u− uT )dy

Suppose there is a single-pulse solution as defined above when both α <
a

2A
and uT >

2A

a
are

satisfied. Then

u(0) =

∫ ∞

−∞
(Ae−a|y| − e−|y|)[α(u(y)− uT ) + 1]Θ(u− uT )dy

=

∫ xT

−xT
(Ae−a|y| − e−|y|)[α(u(y)− uT ) + 1]dy

≤
∫ xT

−xT
Ae−a|y|[α(u(y)− uT ) + 1]dy

=

∫ xT

−xT
Ae−a|y|αu(y)dy +

∫ xT

−xT
Ae−a|y|(1− αuT )dy (2.12)
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Let I := [−xT , xT ]. u(x) is continuous on I. Ae−a|y| is integrable on I and such that Ae−a|y| ≥ 0 for

all x ∈ I. By Mean Value Theorem for Integrals, ∃ c0 ∈ I s. t.

(2.12) = αu(c0)

∫ xT

−xT
Ae−a|y|dy + (1− αuT )

∫ xT

−xT
Ae−a|y|dy

≤ αu(c0)

∫ ∞

−∞
Ae−a|y|dy + (1− αuT )

∫ ∞

−∞
Ae−a|y|dy

= αPu(c0) + (1− αuT )P (2.13)

where P =

∫ ∞

−∞
Ae−a|y|dy =

2A

a
.

If αP < 1 and (1− αuT ) ≤ 0 are both true, u(0) < u(c0), c ∈ I, which can not be true because

u(0) is the maximum of u(x) on <.

From αP < 1, α <
a

2A
. From (1 − αuT ) ≤ 0, uT ≥

1

α
, i.e., uT ≥

1

α
>

1
a

2A

=
2A

a
. Therefore,

there is no single-pulse when both α <
a

2A
and uT >

2A

a
are both true. ♦

Theorem 2.1 is useful in indicating where a pulse cannot exist but it does not say how to find

a single-pulse.

2.4 Strategy to construct a single-pulse solution

The general approach to study the integral equation (2.2) is to derive an associated differen-

tial equation whose solutions are also solutions of the integral equation (2.2). Then I study the

associated differential equation.

I derive the differential equation by using Fourier transform

F [g(x)] =

∫ ∞

−∞
g(x)eisxdx

where g ∈ L1(R) and s ∈ R

and inverse Fourier transform

g(x) =
1

2π

∫ ∞

−∞
F [g(x)]e−isxds

Under all conditions of u(x) of equation (2.2), an application of Fourier transform to (2.2) is
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well-defined and turns the convolution into point-wise product

F [u] = F [w]F [f [u]]. (2.14)

Computing F [w], (2.14) gives

F [u] =
(2aA+ 2as2A− 2a2 − 2s2)F [f ]

(a2 + a2s2 + s2 + s4)
. (2.15)

Multiply both sides of (2.15) by the denominator of the right hand side and use the linear property

of the Fourier Transform and the identities

F [u′′] = −s2F [u];F [u
′′′′

] = s4F [u]

to obtain

F [u
′′′′ − (a2 + 1)u′′ + a2u] = F [2(aA− a2)f ] + 2(aA− 1)F [s2f ] (2.16)

By the definitions of u(x) and f(u),

F [u
′′′′ − (a2 + 1)u′′ + a2u]

and

F [2(aA− a2)f ]

are in L1(R).

Integrate F [s2f ] by parts to yield

F [s2f ]

=

∫ ∞

−∞
s2eisxf [u(x)]dx

=

∫ xT

−xT
s2eisxf [u(x)]dx

= f [u(xT )](−iseisxT + ise−isxT ) + f ′[u(x−T )]u′(xT )(eisxT + e−isxT )−
∫ xT

−xT
eisx

d2f [u(x)]

dx2
dx
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note that f [u(x)] ≡ 0 outside of (−xT , xT ). Obviously, F [s2f ] ∈ L1(R).

Applying Inverse Fourier Transformation, (2.16) gives a fourth order ordinary differential equa-

tion

u
′′′′ − (a2 + 1)u′′ + a2u = 2(aA− a2)f [u(x)] +

2(aA− 1)

{
f [u(xT )]∆′(x) + f ′[u(x−T )]u′(xT )∆(x)− d2f [u(x)]

dx2

}
(2.17)

where

∆′(x) = δ′(x− xT ) + δ′(x+ xT )

∆(x) = δ(x− xT ) + δ(x+ xT )

Here δ(x) and δ′(x) are defined as

δ(x) =

∫ ∞

−∞
eisxdx, δ′(x) = is

∫ ∞

−∞
eisxdx respectively.

If u(x) is a solution of (2.17) that satisfies all its properties as defined, (2.14)-(2.16) all hold,

then it follows that u(x) is also a solution of (2.2). So it suffices to find a single-pulse solution of

(2.17).

To show the existence of a single-pulse solution of (2.17), I construct such a solution (figure(2.4))

by decomposing ODE (2.17) into two linear differential equations (2.18) and (2.19).

u
′′′′ − (a2 + 1)u′′ + a2u = 2 a(A− a)f(u)− 2(aA− 1) d

2f(u)
dx2 if u > uT (region I) (2.18)

u
′′′′ − (a2 + 1)u′′ + a2u = 0 if u < uT (region II) (2.19)

The solution of (2.18) on region I, the solution of (2.19) on region II and the solution of (2.19) on

region III are called uI(x), uII(x) and uIII(x), respectively. Then uI(x), uII(x) and uIII(x) must be

connected together at −xT and xT to get a continuous and smooth u(x) on <. To do so, I match

uI(x) and uII(x) at xT by the five matching conditions (2.20)-(2.24). Since u(x) is symmetric,
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Figure 2.4. Single-pulse solution.
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similar matching conditions apply to uI(x) and uIII(x) at −xT :

uI(xT ) = uT (2.20)

uII(xT ) = uT (2.21)

u′I(xT ) = u′II(xT ) (2.22)

u′′I (xT ) = u′′II(xT )− 2(aA− 1)f(u(xT )) (2.23)

u′′′I (xT ) = u′′′II(xT )− 2(aA− 1)f ′(u(xT ))u′(xT ) (2.24)

(2.20)-(2.22) are obvious by the continuity of u(x) and u′(x). To get (2.23), integrate ODE (2.17)

on a small neighborhood of xT . Integrating ODE (2.17) twice, first with respect to x, second over

a small neighborhood of xT , (2.24) is obtained. Notice that u′′(x) and u′′′(x) are discontinuous at

xT , i.e. there are jumps in u′′(xT ) and u′′′(xT ).

ODE (2.19) in region II is rather simple. Only the family of solutions

uII(x) = Ee−ax + Fe−x E,F ∈ R (2.25)

satisfies the definition of single-pulse solution. Note that in region III, by symmetry,

uIII(x) = Eeax + Fex E,F ∈ R (2.26)
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Substituting f [u(x)] = α(u− uT ) + 1 on (xT , xT ) and
d2f [u(x)]

dx2
= αu′′(x), ODE (2.18) becomes

u
′′′′ − (a2 + 1− 2α(aA− 1))u′′ + (a2 − 2aα(A− a))u = 2a(A− a)(1− αuT ) (2.27)

The eigenvalues of ODE (2.27) are ω1, −ω1, ω2, −ω2 such that

ω2
1 = R+ S

ω2
2 = R− S

where

∆ = (a2 + 1− 2α(aA− 1))2 − 4(a2 − 2aα(A− a))

R =
(a2 + 1− 2α(aA− 1))

2

S =

√
∆

2
=

√
(a2 + 1− 2α(aA− 1))2 − 4(a2 − 2aα(A− a))

2

Imposing symmetry and u′(0) = 0, the general solution of ODE(2.27) can be written in the form

uI(x) = C(eω1x + e−ω1x) +D(eω2x + e−ω2x) +
2(A− a)(β − αuT )

a− 2α(A− a)
(2.28)

for x ∈ (−xT , xT ). xT ∈ R. C,D ∈ C. C,D could be real or complex, but overall uI(x) must be

real.

One of my goals is to find out how the shape of the single-pulse changes in terms of width and

height according to the connectivity and gain. For simplicity, I call xT the width of a pulse even

though it is actually the half width. The height of a single-pulse is u(0).
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2.5 Amari case (α = 0)

Amari generates a condition on which single-pulse solutions exist for the same network with a

general Gaussian like connection [3]. In this section, I will reevaluate the Amari case (α = 0) for

the exponential connection function, and I will show a quantitative condition of the existence of

the single-pulse solution on the parameters A and a. When α = 0, the gain function becomes the

Heaviside function Θ(u). The term 2(aA− 1)
d2f [u]

dx2
is no longer in ODE (2.18). The two ODEs

in region I and region II are simplified as follows:

u
′′′′ − (a2 + 1)u′′ + a2u = 2a(A− a)f [u] if u > uT (region I) (2.29)

u
′′′′ − (a2 + 1)u′′ + a2u = 0 if u < uT (region II) (2.30)

The solutions for (2.29) and (2.30) are

uI(x) = C(eax + e−ax) +D(ex + e−x) +
2(A− a)(β − αuT )

a− 2α(A− a)
(2.31)

uII(x) = Ee−ax + Fe−x (2.32)

respectively. Applying condition (2.20)-(2.24), I obtain a five equation system

Ee−axT + Fe−xT = uT (2.33)

C(eaxT + e−axT ) +D(exT + e−xT ) +
2(A− a)β

a
= uT (2.34)

aC(eaxT − e−axT ) +D(exT − e−xT ) = −aEe−axT − Fe−xT (2.35)

a2C(eaxT + e−axT ) +D(exT + e−xT ) = a2Ee−axT + Fe−xT − 2(aA− 1)β (2.36)

a3C(eaxT − e−axT ) +D(exT − e−xT ) = −a3Ee−axT − Fe−xT (2.37)

Set the left-hand side of (2.33) and (2.34) equal to each other. Solve four algebraic equations for

C, D, E, F in terms of xT 



C = −A
a
e−axT

D = e−xT

E =
A

a
(eaxT − e−axT )

F = −(exT − e−xT )
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Figure 2.5. Large single-pulse l and small single-pulse s. A = 2.8, a = 2.6, α = 0, uT = 0.3. (Left) Single-
pulse l: xl

T = 0.68633, height=u(0) = 0.79991. (Right) Single-pulse s: xs
T = 0.12985, height=u(0) = 0.37358.

——————————————————————————

Proposition 2.3. There are two pulse solutions when uT ≤
∫ lnA
a−1

0 w(x)dx and (
A

a
− 1) < uT for

A > a and 0 ≤ uT for A < a .

Proof of proposition 2.3 Substitute E, F into (2.33) or C, D into (2.34), I have the existence

function Φ(x)

Φ(x) =
A

a
(1− e−2ax)− (1− e−2x) (2.38)

Φ(xT ) = uT must be satisfied for a single-pulse. I can represent this in a figure 2.6 and 2.7. If

Φ(x) crosses the line y = uT twice, there are two single-pulse solutions (figure 2.6 (A < a) and 2.7

(A > a)). Since

lim
x→∞

Φ(x) =
A

a
− 1 =





< 0 if A < a figure 2.6

≥ 0 if A ≥ a figure 2.7

the lower limit of the threshold uT that supports two pulses is 0 ifA < a; the lower limit of the

threshold uT that guarantees two pulses is A
a − 1 when A > a.

The upper limit on threshold uT that supports two pulse solutions is the maximum of Φ(x).

Solving

dΦ

dx
= Ae−2ax − 2e−2x = 0
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s

xA/a−1

0.2

0

Φ

Figure 2.6. Existence function Φ(x) when A < a. α = 0, A = 2.6, a = 3. lim
x→∞

Φ(x) =
A

a
− 1 = −0.1333.

Φ(x) gives the range of threshold uT that supports two single-pulse solutions. Example: At uT = 0.2,
Φ(x) shows that we have a single-pulse solution l (l=large) which is wider and has width xl

T ; the second
single-pulse solution is narrower and has width xs

T (s=small) .

——————————————————————————

1 2 3xT
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s xT
P x

A/a−1

0.2

0.4

0

uT

uT
P

Φ

P

Figure 2.7. Existence function Φ(x) when A > a. α = 0, A = 2.8, a = 2.6, lim
x→∞

Φ(x) =
A

a
− 1 = 0.07692.

Example: At uT = 0.3, Φ(x) shows that there is a single-pulse solution l (l=large) which is wider and has
width xl

T = 0.68633; the second single-pulse solution is narrower and has width xs
T = 0.12985 (s=small). P is

the transition point where single-pulse l changes into a dimple-pulse d. The transition threshold uPT=0.15672.
xPT = 1.24379 .

——————————————————————————

finds x =
lnA

2(a− 1)
. Thus Φ reaches its maximum at

Φ(x) =
A

a
(1− e−a lnA

a−1 )− (1− e− lnA
a−1 ) =

∫ lnA
a−1

0
w(x)dx (2.39)
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This proves the proposition. ♦

Proposition 2.3 does not immediately imply that there are two-single pulses. This is because

sometimes for a small threshold there can be a dimple-pulse. For example, in figure 2.7, P is the

transition point where the single-pulse l transforms into a dimple-pulse d. At threshold uPT , there

is a pulse solution u(x) such that u′′(0) = 0. When the threshold is between A
a − 1 ≥ 0 and uPT ,

the large single-pulse l becomes a dimple-pulse d, but small single-pulses remain as single-pulses.

The transition point P is identified numerically using AUTO. I continue u′′(0) with a initial value

of u′′(0) calculated from a known pulse solution while changing threshold uT . The threshold value

where u′′(x) crosses zero is the transition point P .

2.6 Eigenvalue structure

For the case of α 6= 0, once a, and A are fixed, the eigenvalues ω1,−ω1, ω2,−ω2 change only while

α changes. All possible eigenvalue structures must be discussed. The following tables enumerate

all the possible forms of ω1 and ω2.

E1 E2 E3 E4 E5 E6

4 > 0 4 > 0 4 > 0 4 = 0 4 < 0 ∆ > 0
R < 0 < |R| R < 0 < S R < 0 < |R|
|R| < S 0 < S < R S < |R| |R| = S

ω1 real real imaginary = ω2 = ω∗2, complex =
√

2R

ω2 imaginary real imaginary = ω1 = ω∗1, complex 0

α (α4,∞) (−∞, α1) (α3, α4) α1, α3 (α1, α3) α4

Table 2.1. Eigenvalue chart when A > a.

E1 E2 E3 E4 E5 E6

4 > 0 4 > 0 4 > 0 4 = 0 4 < 0 ∆ > 0
0 < R < S 0 < S < R R < 0 < S < |R| 0 < R = S

ω1 real real imaginary = ω2 = ω∗2, complex =
√

2R

ω2 imaginary real imaginary = ω1 = ω∗1, complex 0

α (−∞, α0) (α0, α1) (α3,∞) α1, α3 (α1, α3) α0

Table 2.2. Eigenvalue chart when A < a.

Here α0, α1, α2, α3, α4 are in the order shown in figure (2.8). α1 and α3 are given by solving
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E1 E2 E3 E4 E5 E6

4 > 0 4 > 0 4 > 0 4 = 0 4 < 0
0 < R < S 0 < S < R R < 0 < S < |R| R = S

ω1 real imaginary = ω2 = ω∗2 , complex
ω1 ∅ real imaginary = ω2 = ω∗1 , complex ∅
α (−∞, α1) (α3,∞) α1, α3 (α1, α3)

Table 2.3. Eigenvalue chart when A = a.

equation

∆ = (a2 + 1− 2α(aA− 1))2 − 4(a2 − 2aα(A− a)) (2.40)

for α. When R > 0 and ∆ > 0, solving R − S = 0 gives α0 =
a

2(A− a)
. When R < 0 and ∆ > 0,

solving R+ S = 0 gives α4 =
a

2(A− a)
.

Remark 2.1. Although both α0 and α4 have the same expression, they do not co-exist. When

A < a, α0 =
a

2(A− a)
< 0 and when A > a, α4 =

a

2(A− a)
> 0.

There are three common cases: both eigenvalues ω1,2 are real, both are complex and both are

imaginary. α1 and α3 are decided by ∆, which is a quadratic form in α, given by

∆ = 4(aA− 1)2α2 + [4(aA− 1)(a2 + 1) + 8a(A− a)]α+ (a2 − 1)2

I will start from the case in which both ω1 and ω2 are real.

Even though from table 2.1 to 2.3, α < 0 are taken into account for possible eigenvalue struc-

tures, I only consider the case of firing rate with a positive slope, i.e., α > 0. α = 0 with the general

coupling weight function is fully treated in [3] and reevaluated in section 2.5.

Remark 2.2. For all values of ω1 and ω2, uII(x) and uIII(x) always have the form (2.25) and

(2.26) respectively.

2.7 Real ω1 and ω2

2.7.1 Construction of single-pulse solutions

When α ∈ (0, α1), both ∆ and R are positive, so ω1 and ω2 are real (figure 2.9.) uI(x) and
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Figure 2.8. Plots of ∆ and R.

——————————————————————————
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α
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α
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∆

R

Figure 2.9. Real eigenvalue range (the segment in red color on the x-axis).

——————————————————————————

uII(x) have the following form.

uI(x) = C(eω1x + e−ω1x) +D(eω2x + e−ω2x) +
2(A− a)(β − αuT )

a− 2α(A− a)
(2.41)

uII(x) = Ee−ax + Fe−x (2.42)

When eigenvalues ω1 and ω2 are real, C and D must be real to have real uI(x). Applying uI(x)

and uII(x) in the forms of (2.41) and (2.42), to the matching condition (2.20)-(2.24).
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Ee−axT + Fe−xT = uT (2.43)

C(eω1xT + e−ω1xT ) +D(eω2xT + e−ω2xT ) +
2(A− a)(β − αuT )

a− 2α(A− a)
= uT (2.44)

ω1C(eω1xT − e−ω1xT ) + ω2D(eω2xT − e−ω2xT ) = −aEe−axT − Fe−xT (2.45)

ω2
1C(eω1xT + e−ω1xT ) + ω2

2D(eω2xT + e−ω2xT ) = a2Ee−axT + Fe−xT

−2(aA− 1)β (2.46)

ω3
1C(eω1xT − e−ω1xT ) + ω3

2D(eω2xT − e−ω2xT ) = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.47)

For appropriate parameter values, using Mathematica [67], I am able to solve this five equation

system from (2.43) to (2.47) for five unknowns C,D,E, F and xT , which give me the explicit formula

of uI(x) and uII(x). To get a whole picture of a single-pulse, I plot uI(x) on (−xT , xT ), uII(x) on

(xT ,∞) and uIII(x) on (−∞, xT ). Figure (2.10) shows a graph of single-pulse obtained in this

fashion by Mathematica [67] when the parameter set (a,A, α, β, uT ) is (2.6, 2.8, 0.15, 1, 0.400273).

The solution is (C,D,E, F, xT ) = (−0.8532, 1.16865, 2.94108,−0.89571, 0.41902). The height uI(0)

of the pulse is 0.77892. Its width is xl
T = 0.41902. Another solution of system (2.43)-(2.47) given by

Mathematica [67] shows that there exists a small (in amplitude) and narrow single-pulse solution

(right panel of figure 2.11) for the same set of parameters. The height and the width of this pulse

are uI(0) = 0.6123 and xs
T = 0.2582 respectively.
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Figure 2.10. Construction of large single-pulse l.
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x
T

2 4−x
T

x

−0.15

0.85

u

u
T

x
T

2 4−x
T

x

−0.15

0.65

u

u
T

Figure 2.11. Large single-pulse l and small single-pulse s. A = 2.8, a = 2.6, α = 0.15, uT = 0.3. (Left)
Single-pulse l: xl

T = 0.41092, height=u(0) = 0.77892. (Right) Single-pulse s: xs
T = 0.2582, height=u(0) =

0.6123.

——————————————————————————
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2.7.2 Existence function Φ(x) for real ω1 and ω2

Eliminate the threshold uT , which only appears in (2.43) and (2.44) from system (2.43)-(2.47)

to get an equivalent four-equation system

C(eω1xT + e−ω1xT ) +D(eω2xT + e−ω2xT ) +
2(A− a)β

a− 2α(A− a)
=

a

a− 2α(A− a)
(Ee−axT + Fe−xT ) (2.48)

ω1C(eω1xT − e−ω1xT ) + ω2D(eω2xT − e−ω2xT ) = −aEe−axT − Fe−xT (2.49)

ω2
1C(eω1xT + e−ω1xT ) + ω2

2D(eω2xT + e−ω2xT ) = a2Ee−axT + Fe−xT

−2(aA− 1)β (2.50)

ω3
1C(eω1xT − e−ω1xT ) + ω3

2D(eω2xT − e−ω2xT ) = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.51)

Equations (2.48)-(2.51) form a linear system in C, D, E, F . To obtain an existence function Φ(x),

I construct coefficient vectors

m1 =




eω1xT + e−ω1xT

ω1(eω1xT − e−ω1xT )

ω2
1(eω1xT + e−ω1xT )

ω3
1(eω1xT − e−ω1xT )



, m2 =




eω2xT + e−ω2xT

ω2(eω2xT − e−ω2xT )

ω2
2(eω2xT + e−ω2xT )

ω3
2(eω2xT − e−ω2xT )



,

m3 =




a
a−2α(A−a)

a

−a2

a3 − 2aα(aA− 1)



, m4 =




a
a−2α(A−a)

1

−1

1− 2α(aA− 1)



, m0 =




(A−a)β
a−2α(A−a)

0

−2(aA− 1)β

0



.

Let DETxT (α) =

∣∣∣∣ m1 m2 m3 m4

∣∣∣∣ , where |.| is the determinant. For a fixed set of param-

eters (a,A, α, β, uT ) = (2.6, 2.8, 0.15, 1, 0.400273), the solution (C,D,E, F, xT ) = (−0.8532, 1.16865,

2.94108,−0.89571, 0.41902) is given by Mathematica withDETxT (α) equal to −243.2415568475316.

I use this solution as an initial guess to continue system (2.43)-(2.47) using AUTO while following

DETxT (α) as α decreases to 0 and then increases to α1. The value of DETxT (α) is recorded and

plotted in figure 2.12. It shows that DETxT (α) 6= 0 as α < α1. Therefore I can always solve the

linear system (2.48)-(2.49) for C, D, E, F by Cramer’s rule.
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DET
α

1

Figure 2.12. DET with real ω1 and ω2. Example: a = 2.6, A = 2.8, α = 0.15, uT = 0.400273. DETxsT =
−327.6453262677492, DETxl

T
= −243.2415568475316. Saddle node ? = (0,−624.918866676). Remark:

ω1 6= ω2 . At α = α1, ω1 = ω2, this will be discussed in Section (2.10).

——————————————————————————

Now I demonstrate that this is not only true on the DET curve in Figure 2.12 but also

true in an open set W of (α, a,A, xT ). For fixed α = 0.15 and uT = 0.400273, one can define

system (2.48)-(2.51) as a map f(C,D,E, F, a,A, xT ) from an open set U ⊂ <7 to <4 such that

f(C,D,E, F, a,A, xT ) = 0 at the point

(C0, D0, E0, F 0, a0, A0, x0
T ) = (−0.8532, 1.16865, 2.94108,−0.89571, 2.6, 2.8, 0.41902).

Let x = (C,D,E, F ) and y = (a,A, xT ). Obviously, fx = DETxl
T

(α) 6= 0 (on the upper branch

of DET in Figure 2.12), then by the Implicit Function Theorem, there exist open sets V l ⊂ <7

and W l ⊂ <3 with (C0, D0, E0, F 0, a0, A0, x0
T ) ∈ V l and (a0, A0, x0

T ) ∈ W l, having the following

property: to every y ∈W l there corresponds a unique x such that f(x,y) = 0, i.e. (C,D,E, F ) =

g(a,A, xT ), where g is a differentiable mapping of W l into <4. Similarly, for the same α and uT

on the lower branch of DET curve in Figure 2.12, there is an open set V s and W s. Generally, for

fixed threshold, for any α ∈ (0, α1), there are open sets W l or W s ⊂ <3. The union of them is an

open set W ′ of (a,A, xT ). Then there is an open set W = (0, α1)×W ′ ⊂ <4.
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For any (α, a,A, xT ) ∈W , solve E and F by Cramer’s Rule.

E =

∣∣∣∣ m1 m2 m0 m4

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣ e−axT
,

F =

∣∣∣∣ m1 m2 m3 m0

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣ e−xT
.

Substitute E(x) and F (x) back into Φ(x) = E(x)e−ax + F (x)e−x

Φ(x) = Ee−ax + Fe−x =

∣∣∣∣ m1 m2 m0 (m3 −m4)

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣
.

Plotting Φ(x) gives figure 2.13.

1 2 3xT
lxT

s xT
P x

0.2

0

uT

uT
P

Φ

P

Figure 2.13. Existence function Φ(x). α = 0.15, A = 2.8, a = 2.6. At uT = 0.400273, Φ(x) has a single-
pulse l which has width xl

T = 0.4109; the second single-pulse s is narrower with width xs
T = 0.2582. At P ,

threshold uPT = 0.1489, u′′(0) of the pulse at P is 0.

——————————————————————————

2.7.3 Transition point P between single-pulses and dimple-pulses

Φ(x) gives us the range of thresholds uT on which there exist two pulse solutions; a large pulse

l (or dimple-pulse d) and a small pulse s, or only one small single-pulse solution. The x-value of
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u
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P

Figure 2.14. Plot of u′′(0) when α = 0.15,A = 2.8,a = 2.6. P is the transition point between single-pulse l
and dimple-pulse d. When threshold uPT = 0.1489, u′′(0) of the pulse = 0.

——————————————————————————

the intersection of uT and Φ(x) is the width of a pulse. In figure 2.13, xs
T is the width of the small

single-pulse s, and xl
T is the width of the large single-pulse l. At P , the threshold is uPT = 0.14838,

and u′′(0) = 0 for the pulse solution in figure 2.15. Dimple-pulses appear if the threshold is between

uPT = 0.1489 and the limit of Φ(x) as x→∞ (figure 2.13.) Figure 2.14 is the AUTO plot of u′′(0).

The threshold when u′′(0) crosses zero is the transition threshold uPT .

2 4 x

−0.3

0.85

u

u
T

Figure 2.15. Example of P-pulse: a = 2.6, A = 2.8, α = 0.15, uPT = 0.14838. The width of this pulse
xPT = 1.27978. And u′′(0) = 0.

——————————————————————————
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2.7.4 Loss of pulse with too much excitation or inhibition in the network

After introducing function Φ(x), I can explain why too much excitation in the network can

eliminate a single-pulse. More excitation in the network means the ratio A/a > 1. If this ratio is

too big, the following example illustrates what can happen. When A = 5, a = 1.5 and α = 0.04.

Function Φ(x) looks like figure 2.16. There is no longer a big single-pulse (or a dimple-pulse.)

1 2 3
x0

1

2

u

Figure 2.16. Φ(x) with too much excitation: A = 5, a = 1.5, α = 0.04. There is only pulse s, no pulse l.

——————————————————————————

When the ratio A/a < 1, more inhibition than excitation is in the network. If there is too much

inhibition in the network, say A/a = 0.1 and A = 1.1, the positive part of Φ(x) almost disappears

(figure 2.17). Obviously, single-pulse solution no longer exist for positive threshold.

0 1 2 3
x

−0.9

−0.7

−0.5

−0.3

−0.1

0.1

φ

Figure 2.17. Φ(x) with too much inhibition: A = 1.1, a = 11, α = 0.15. There is neither pulse s nor pulse
l.

——————————————————————————
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2.8 Complex ω1 and ω2 with nonzero real part

As shown in figure 2.9, ω1 and ω2 are both real only when α is in the interval (0, α1). Sometimes,

this interval can be very small. For instance, when A = 2.5 and a = 1.5, by solving the equation

∆ = 0 for α, α1 = 0.0725, α3 = 0.7126. Both eigenvalues are real only in a tiny range (0, 0.0725). I

must go beyond that range (0, α1). In this section I will check if there exists a single-pulse solution

when α > α1. In between α1 and α3, ∆ < 0, therefore both ω1 and ω2 are complex (figure 2.18.)

It can be proved that α1 and α3 are both positive (See A.1 in Appendix).

α
4

α
1

α
2

α
3

α
0

α
0

∆

R

Figure 2.18. Complex eigenvalue range.

——————————————————————————

Proposition 2.4. Both α1 and α3 are positive and they are never equal to each other, i.e. ∆(α) = 0

always has two different roots. (See proof A.1 in Appendix).

Proposition 2.5. For the balanced case in which A = a, α1 < 1/2, α3 > 1/2. When A becomes

larger, α1 moves closer to α3, but never reaches it. (See proof A.2 in Appendix).

For fixed A and a, by Proposition 2.4 and Proposition 2.5, there is always an interval of α in

which both eigenvalues are complex. When ∆ < 0, ω1 and ω2 are complex conjugate to each other

and they have non-trivial real parts. Let w1 = p+ iq, w2 = p− iq with p 6= 0 and p, q ∈ <.
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2.8.1 Construction of a single-pulse with complex ω1 and ω2

To guarantee a real uI(x), C and D must be complex. Imposing symmetry, one can have

C = D∗. Suppose C = CR + iCI , then D = CR − iCI . Substituting C, D, ω1 and ω2 into general

form (2.28) for uI(x) to yield

uI(x) = 4CR cos(qx) cosh(px)− 4CI sin(qx) sinh(px) +
2(A− a)(β − αuT )

a− 2α(A− a)

Now write the solution in a real form as

J cos(qx) cosh(px) +K sin(qx) sinh(px) +
2(A− a)(β − αuT )

a− 2α(A− a)

where J = 4CR and K = −4CI . Applying the same boundary conditions (2.20)- (2.24), obtain the

following 5 equations:

Ee−axT + Fe−bxT = uT (2.52)

J cos(qxT ) cosh(pxT ) +K sin(qxT ) sinh(pxT ) +
2(A− a)(β − αuT )

a− 2α(A− a)
= uT (2.53)

(Kp− Jq) cosh(pxT ) sin(qxT ) + (Jp+Kq) cos(qxT ) sinh(pxT ) = −aEe−axT − Fe−xT (2.54)

(Jp2 + 2Kpq − Jq2) cosh(pxT ) cos(qxT ) + (Kp2 − 2Jpq −Kq2) sinh(pxT ) sin(qxT ) =

a2Ee−axT + Fe−xT − 2β(aA− 1) (2.55)

(Kp3 − 3Jp2q − 3Kpq2 + Jq3) cosh(pxT ) sin(qxT )+

(Jp3 − 3Kp2q − 3Jpq2 −Kq3) sinh(pxT ) cos(qxT ) = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.56)

Numerically solving J,K,E, F, xT in these five equations using Mathematica [67], one can obtain

the explicit form of uI(x). The plots of pulse l and s are shown in figure 2.20
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Figure 2.19. Big single-bump.
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Figure 2.20. Two single-pulses: A = 2.8, a = 2.6, α = 0.6178, uT = 0.3. (Left) Single-pulse l: xl
T = 0.58384,

height=u(0) = 1.0901. (Right) Single-pulse s: xs
T = 0.21317, height=u(0) = 0.5744.

——————————————————————————

2.8.2 Existence function Φ(x)

Eliminate the threshold −uT from (2.52) and (2.53) and rearrange terms.

J cos(qxT ) cosh(pxT ) +K sin(qxT ) sinh(pxT ) +
2(A− a)β

a− 2α(A− a)
=

a

a− 2α(A− a)
(Ee−axT + Fe−xT ) (2.57)

−J [q sin(qxT cosh(pxT )− p cos(qxT ) sinh(pxT )] +K[p cosh(p sin(qxT cosh(pxT )) + q cos(qxT ) sinh(pxT )]

= −aEe−axT − Fe−xT (2.58)

J [(p2 − q2) cos(qxT ) cosh(pxT )− 2pq sin(qxT ) sinh(pxT )]+

K[(p2 − q2) sin(qxT ) sinh(pxT ) + 2pq cos(qxT ) cosh(pxT )] = a2Ee−axT + Fe−xT − 2β(aA− 1) (2.59)
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J [(q3 − 3p2q)q sin(qxT ) cosh(pxT ) + (p3 − 3pq2) cos(qxT ) sinh(pxT )]+

K[(p3 − 3pq2) sin(qxT ) cosh(pxT )− (q3 + 3p2q) cos(qxT ) sinh(pxT )] = (−a3 + 2aα(aA− 1))Ee−axT+

(−1 + 2α(aA− 1))Fe−xT (2.60)

Fix parameters (a,A) = (2.6, 2.8) and uT = 0.400273. Starting from the small single-pulse solution

s, (J,K,E, F, xT ) = (0.44644,−3.09450, 1.344130,−0.460306, 0.213173), I follow DETxT (α), the

value of the coefficient matrix of system (2.57)-(2.60) on the interval (α1, α3) in AUTO. This is the

upper curve in figure (2.21). Repeat the same procedure to obtain the lower curve in figure (2.21)

using solution (0.962175, -1.57206, 5.85067, -1.58116, 0.58385) for a large single-pulse as starting

point.

Remark 2.3. DET 6= 0 except at α = α1 and α = α3, which will be discussed in section (2.10).

α
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α
3

0.61780
α

20

DETxT
l

DETxT
s

10

DET

Figure 2.21. DET with complex ω1 and ω2. Example: a = 2.6, A = 2.8, α = 0.6178, uT = 0.400273.
DETxs

T
= 23.09342539459342, DETxl

T
= 6.7982341398391818. Remark: ω1 6= ω2 . At α = α1 and

α = α3, ω1 = ω2, this will be discussed in Section (2.10).

——————————————————————————

Since DET 6= 0 for fixed a, A and uT , The linear system (2.57)-(2.60) can be solved for J ,

K, E, F . Then the existence function Φ(x) (figure (2.22)) is obtained in the analogous fashion

explained in section (2.7.2).

However, Φ(x) for complex ω1,2 has major differences from the Φ(x) for real ω in section

(2.7.2). Here, Φ(x) oscillates. After its first local minimum between P1 and P2 (figure 2.22,) it

keeps oscillating (sometimes the amplitude of the oscillations is too small to see.) Additionally,
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Figure 2.22. Existence function Φ(x). α = 0.6178, A = 2.8, a = 2.6. At uT = 0.400273, Φ(x) shows that
there is a single-pulse l which is wider and has width xl

T = 0.58385; the second single-pulse s is narrower
and has width xs

T = 0.21317. As we increase uT to the maximum of Φ(x), pulse s and l become one. At P ,
uPT = 0.0767, xPT = 1.454, u′′(0) = 0. At both P1 and P2, threshold is 0.063, u′′(0) > 0, and widths are 1.6
and 1.9 respectively. See figure 2.23.

——————————————————————————

when the threshold is between the first local minimum and the next local maximum, there are

more than two pulse solutions. For example, from the existence function Φ(x) with complex ω1,2,

I identify one small single-pulse s, and two dimple-pulses (figure 2.23.) The phenomenon of three

pulses coexisting cannot be observed for Amari’s model or for section 2.7.2 because in those cases

the existence function Φ(x) always approaches an asymptote without any oscillations as x increases.

Oscillations only occur when ω1 or ω2 are complex.
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Figure 2.23. Dimple-pulses. A = 2.8, a = 2.6, α = 0.6178, uT = 0.063. (Left) Dimple-pulse at P1: xd
T = 1.6.

(Right) Dimple-pulse at P2: xd
T = 1.9.

——————————————————————————
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2.9 Imaginary ω1 and ω2

Here there are at least two single-pulse solutions if α is not bigger than a critical value, and I

lose the large single-pulse l as soon as α reached that value.

When α > α3, ∆ > 0, R < 0 and S =

√
∆

2
< |R|. The real parts of ω1 and ω2 are both zero.

Suppose that w1 = iq1, w2 = iq2 with q1, q2 ∈ <. According to Table 2.1, Table 2.2 and Table 2.3,

when A ≤ a, both ω1 and ω2 are imaginary if α > α3 (Figure 2.24.) When A > a, both ω1 and ω2

are imaginary if α3 < α < α4 =
a

2(A− a)
(Figure 2.25.) Notice that α 6= a

2(A− a)
. Otherwise the

constant term in uI(x) becomes ∞. Thus
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Figure 2.24. Imaginary eigenvalue (A ≤ a).

α
4

α
1

α
2

α
3

α
0

α
0

∆

R

Figure 2.25. Imaginary eigenvalue (A > a).
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uI(x) = J cos(q1xT ) +K cos(q2xT ) +
2(A− a)(β − αuT )

a− 2α(A− a)

Applying the boundary condition to uI(x) and uII(x) yields

J cos(q1xT ) +K cos(q2xT ) +
2(A− a)(β − αuT )

(a− 2α(A− a))
= uT (2.61)

Ee−axT + Fe−xT = uT (2.62)

−q1J sin(q1xT )− q2K sin(q2xT ) = −aEe−axT − Fe−xT = 0 (2.63)

−q2
1J cos(q1xT )− q2

2K cos(q2xT ) = a2Ee−axT + Fe−xT − 2(aA− 1)β (2.64)

q3
1J sin(q1xT ) + q3

2K sin(q2xT ) = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.65)

43



Both single-pulses s and l exist. (See figure 2.26.)
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Figure 2.26. Single-pulses. A = 2.8, a = 2.6, α = 0.999, uT = 0.400273. (Left) Single-pulse l: xl
T =

0.7160624397376277, height=u(0) = 1.784986781128356. (Right) Single-pulse s: xs
T = 0.1946261544329597,

height=u(0) = 0.5593035435768856.

——————————————————————————

2.9.1 Φ(x) and a critical value of α

After I eliminate threshold uT from the above system, I have the following linear system in J ,

K, E, F .

J cos(q1xT ) +K cos(q2xT ) +
2(A− a)β

(a− 2α(A− a))
=

a

(a− 2α(A− a))
(Ee−axT + Fe−xT ) (2.66)

−q1J sin(q1xT )− q2K sin(q2xT ) = −aEe−axT − Fe−xT (2.67)

−q2
1J cos(q1xT )− q2

2K cos(q2xT ) = a2Ee−axT + Fe−xT − 2(aA− 1)β (2.68)

q3
1J sin(q1xT ) + q3

2K sin(q2xT ) = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.69)

Let m1 =




cos(q1xT )

−q1 sin(q1xT )

−q2
1 cos(q1xT )

q3
1 sin(q1xT )




, m2 =




cos(q2xT )

−q2 sin(q2xT )

−q2
2 cos(q2xT )

q3
2 sin(q2xT )




,
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m3 =




a
a−2α(A−a)

a

−a2

a3 − 2aα(aA− 1)




, m4 =




a
a−2α(A−a)

1

−1

1− 2α(aA− 1)




, m0 =




(A−a)β
a−2α(A−a)

0

−2(aA− 1)β

0




.

Then, by Cramer’s Rule,

J =

∣∣∣∣ m0 m2 m3 m4

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣
, K =

∣∣∣∣ m1 m0 m3 m4

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣
,

E =

∣∣∣∣ m1 m2 m0 m4

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣ e−axT
, F =

∣∣∣∣ m1 m2 m3 m0

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣ e−xT
,

where |.| is determinant. The determinant DETxT (α) =

∣∣∣∣ m1 m2 m3 m4

∣∣∣∣. For the param-

eter set (a,A, uT , β) = (2.6, 2.8, 0.400273, 1), DETxs
T

(0.9987153) = −0.0876436218375472 for the

single-pulse s, and DETxl
T

(0.9987153) = −0.1467101420392571 for pulse l. Using them as initial

points, I obtain two branches of DETxT (α) by AUTO as α value is gradually increased (figure 2.27.)

The red one is the DET value for single-pulse l. The black one is the DET value for single-pulse

s. In the branch of pulse s, DETxT (α) has no zero, so pulse s is always there. But in the other

branch for the large l, DETxT (α) is zero as α approaches a critical value α0. For example, with

the given parameter set and the help of AUTO, I find that as α = 1.403937241, DET is very small

number 6.81111707640769736 × e−7. The height of pulse l is

u(0) = J +K +
2(A− a)(β − αuT )

a− 2α(A− a)

=

∣∣∣∣ (m1 −m2) m0 m3 m4

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣

As α approaches the critical value α0, the numerator

∣∣∣∣ (m1 −m2) m0 m3 m4

∣∣∣∣ is a continuous

function in α, and it is a finite number as α = α0. But the denominator

∣∣∣∣ m1 m2 m3 m4

∣∣∣∣ is

zero as α = α0. Therefore, the height u(0) of the large pulse goes to infinity. Therefore, I lose the
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Figure 2.27. DET with imaginary ω1 and ω2. Example: a = 2.6, A = 2.8, α = 1.3, uT = 0.400273.
DETxs

T
= −169.031206395783, DETxl

T
= −77.27219862125841. Remark: ω1 6= ω2 . At α = α1

and α = α3, ω1 = ω2, this will be discussed in Section (2.10).

——————————————————————————

large pulse.

Further studying the existence function I draw the same conclusion that I lose the single-pulse

l if α ≥ α0 (see figure 2.28.)

Φ(x) = Ee−ax + Fe−x =

∣∣∣∣ m1 m2 m0 (m3 −m4)

∣∣∣∣
∣∣∣∣ m1 m2 m3 m4

∣∣∣∣
,

When both ω1 and ω2 are imaginary, there is always the small single-pulse s but there is no

single-pulse l if α ≥ α0 at which determinant | m1 m2 m3 m4 | is zero. A third solution (the

third intersection of uT and Φ(x)) could also exist. I have not studied the properties of the third

solution.

2.9.2 Theoretical reasons for the existence of α0

There are theoretical reasons for the existence of α0 where the large pulse runs off to infinity.

As the height of the large pulse becomes very big, the width of the large pulse is still finite. This

can be observed both from the existence function Φ(x) and the continuation picture in section 2.11.

I must go back to the integral equation (2.2) to explain why there is such a phenomenon. (2.2) can
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Figure 2.28. Existence function Φ for imaginary ω1,2. A = 2.8, a = 2.6, uT = 0.400273. (Left) α = 1.4.
There is a single-pulse l, and xl

T = 0.8491539857774331, height=u(0) = 146.2227855915919, which is big
because α = 1.4 is close to α0 where DET = 0. (Right) α = 1.41 > α0. Single-pulse l no longer exist. The
vertical line in both pictures is an asymptote of Φ(x) because at that point the denominator of Φ(x) is zero.

——————————————————————————

be rewritten as

u(x) = (β − αuT )

∫ xT

−xT
w(x− y)dy + α

∫ xT

−xT
w(x− y)u(y)dy

1

α
u(x) =

1

α
(β − αuT )

∫ xT

−xT
w(x− y)dy +

∫ xT

−xT
w(x− y)u(y)dy

Let h(x) =
1

α
(β − αuT )

∫ xT

−xT
w(x− y)dy and µ =

1

α
.

Equation (2.2) becomes

µu(x) = h(x) +

∫ xT

−xT
w(x− y)u(y)dy (2.70)

Define a linear operator T : C[−xT , xT ]→ C[−xT , xT ] such that Tu =

∫ xT

−xT
w(x− y)u(y)dy, where

C[−xT , xT ] is a normed space.

I have shown many examples that the operator equation (2.70) has solutions u(x) on C[−xT , xT ].

By the Fredholm Alternative theorem [35], equation (2.70) has a solution for h(x) ∈ C[−xT , xT ] if

and only if the homogeneous equation

µu(x) =

∫ xT

−xT
w(x− y)u(y)dy
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has only the trivial solution u(x) ≡ 0.

The homogeneous equation is µu = Tu. When it has only the trivial solution, µ is not an

eigenvalue of operator T. If µ is an eigenvalue of T , i.e., equation µu = Tu has a non-trivial

solution, then equation (2.70) does not have a solution.

T is a compact operator on normed space C[−xT , xT ] [36]. There are some nice properties about

eigenvalues of a compact operator.

Theorem 2.2. The set of eigenvalues of a compact linear operator on a normed space is countable

(perhaps finite or even empty), and the only possible point of accumulation is µ = 0.

Theorem 2.2 is proven in [37]. From this theorem, it is known that all the eigenvalues of T

(could be infinitely many) can be arranged in a sequence converging to zero. It is also known that

each of the countable many eigenvalues is finite. Thus, there is the largest positive eigenvalue, say

µ1. When α happens to be the reciprocal of this largest positive eigenvalue, i.e., α =
1

µ1
, equation

(2.70) has no solution. This value of α is the critical value α0 =
1

µ1
where the large pulse solution

is lost.

Remark 2.4. The small single-pulse solution still exists at α = α0 =
1

µ1
. This is because for the

small single-pulse the value of xT is different. There is a different operator equation on a different

normed space.

2.10 Equal eigenvalues

As mentioned in previous sections, there are two special points, α1 and α3. At these two points,

∆ = 0 implying ω1 = ω2. If R > 0, ω1 = ω2 ∈ <. If R < 0, ω1 = ω2 = i
√
|R| ∈ =.

Remark 2.5. α2, at which R = 0, is not always between α1 and α3.

2.10.1 Real ω1 = ω2

First, I look at the case R > 0. Four eigenvalues are ω1, ω1, −ω1 and −ω1. ω1 =
√
R repeats

twice, so does −ω1 = −
√
R. Following is the general form for uI(x)

uI(x) = C1eω1x + C2xeω1x +D1e−ω1x +D2xe−ω1x +
2(A− a)(β − αuT )

a− 2α(A− a)
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Figure 2.29. equal eigenvalues α = α1 or α = α3.

——————————————————————————-

Because of the symmetry of uI(x), C1 = D1 and C2 = D2. uI(x) can be written as

uI(x) = C(eω1x + e−ω1x) +Dx(eω1x + e−ω1x) +
2(A− a)(β − αuT )

a− 2α(A− a)

Applying matching conditions (2.20)-(2.24) gives

C(eω1xT + e−ω1xT ) +DxT (eω1xT + e−ω1xT ) +
2(A− a)(β − αuT )

a− 2α(A− a)
= uT (2.71)

Ee−axT + Fe−xT = uT (2.72)

(Cω1 +D)(eω1xT − e−ω1xT ) +Dω1xT (eω1xT + eω1xT ) = −aEe−axT − Fe−xT (2.73)

(Cω2
1 + 2Dω1)(eω1xT + e−ω1xT ) +Dω2

1xT (eω1xT − eω1xT ) = a2Ee−axT + Fe−xT

−2(aA− 1)β (2.74)

(Cω3
1 + 3Dω2

1)(eω1xT − e−ω1xT ) +Dω3
1xT (eω1xT + eω1xT ) = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.75)

Since all four eigenvalues are real, there are no oscillations in the existence function Φ(x). Therefore

there are only two pulse solutions. One is a small single-pulse, and the other one is either a large

single-pulse or a dimple-pulse depending on the threshold uT .
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2.10.2 Imaginary ω1 = ω2

When α = α3, R < 0, then ω1 = ω2 =
√
R = i

√
−R. Let ω =

√
−R, where ω ∈ <.

The general solution uI(x) is

uI(x) = C1 cosωx+ C2 sinωx+D1x cosωx+D2x sinωx+
2(A− a)(β − αuT )

a− 2α(A− a)

Since uI(x) = uI(−x), we have C2 = D1 = 0. uI(x) can be written as

uI(x) = C cosωx+Dx sinωx+
2(A− a)(β − αuT )

a− 2α(A− a)

Applying matching conditions (2.20)-(2.24) gives

C cosωxT +D2xT sinωxT +
2(A− a)(β − αuT )

a− 2α(A− a)
= uT (2.76)

Ee−axT + Fe−xT = uT (2.77)

(D − Cω) sinωxT +DωxT cosωxT = −aEe−axT − Fe−xT (2.78)

(2Dω − Cω2) cosωxT −Dω2xT sinωxT = a2Ee−axT + Fe−xT −

2(aA− 1)β (2.79)

(Cω3 − 3Dω2) sinωxT −Dω3xT cosωxT = (−a3 + 2aα(aA− 1))Ee−axT +

(−1 + 2α(aA− 1))Fe−xT (2.80)

There are oscillations in the existence function Φ(x) because all the eigenvalues are imaginary.

Therefore, more than two pulses can coexist (figure 2.30) depending on the threshold uT .

2.11 Continuation

I have covered all the different situations. Now I consider general images on how parameters a,

A, α affect localized excitations, i.e stationary pulses. I first fix the connectivity and threshold to

study the relation between stationary pulses and the slope α in the gain function. In figure 2.32

and 2.33, the x-axis is α. The y-axes are width and height of the single-pulse, respectively.

Note the large pulse l and the small pulse s collide into a saddle node bifurcation. I can always
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Figure 2.30. Existence function Φ(x) with imaginary ω1 = ω2. A = 2.8, a = 2.6, α = α3, uPT = 0.0967003.
The three empty circles are small single-pulses. The three solid circles are large single-pulses. The triangle
is a dimple-pulse. Point P is where the dimple-pulse (figure 2.31) breaks into a double-pulse (Chapter 4).
The ×s are neither single-pulses nor a dimple-pulses, and they are not valid solutions.

——————————————————————————

give a lower bound u−T for threshold uT so that the saddle node is exactly at α = 0 :

u−T =

∫ lnA
a−1

0
w(x)dx

If I set threshold uT =

∫ lnA
a−1

0
w(x)dx, I obtain figure 2.34 and 2.35.

2.12 Conclusions

The eigenvalue structure is important for determining how many pulses exist. For real ω1 and

ω2, there is no oscillation in the existence function Φ(x). There are at most two pulses, a small

single-pulse and a large one. Amari’s case (α = 0) belongs to this regime. The large single-pulse

can transform to a dimple-pulse depending on the threshold value (figure 2.15.) If ω1 and ω2 are

complex, there are oscillations in the existence function Φ(x) (figure 2.22, figure 2.30) There could

be a small single-pulse and two large pulses. The two large ones could be dimple-pulses depending
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Figure 2.31. The transition from a dimple-pulse to a double-pulse at P . The threshold is uPT =
0.0967003, and u(0) = 0.0967003 .
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Figure 2.32. Widths of single-pulse l (upper branch) and s (lower branch). a = 2.6, A = 2.8, uT =
0.400273.α ∈ [α∗, α0), there are two single-pulses. α ∈ [α0,∞), there is only one single-pulse solution.
Saddle node α = α∗ is where the large single-pulse l and the small single-pulse s become one. α0 is where
the large pulse l runs off to infinity.
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Figure 2.33. Heights of single-pulse l (upper branch) and s (lower branch). a = 2.6, A = 2.8, uT = 0.3.
α ∈ [α∗, α0), there are two single-pulses. α ∈ [α0,∞), there is only one single-pulse solution. Saddle node
α = α∗ is where the large single-pulse l and the small single-pulse s become one. α0 is where the large
single-pulse l runs off to infinity.

——————————————————————————

0 α
1

α
3

2α0
α

0.5

1

 Width

Figure 2.34. Widths of single-pulse l (upper branch) and s (lower branch). a = 2.6, A = 2.8, uT = 0.3.
α ∈ [α∗, α0), there are two single-pulses. α ∈ [α0,∞), there is only one single-pulse solution. Saddle node
α = 0 is where the large single-pulse l and the small single-pulse s become one. α0 is where the large
single-pulse l runs off to infinity.

—————————————————————————–
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Figure 2.35. Heights of single-pulse l (upper branch) and s (lower branch). a = 2.6, A = 2.8, uT = 0.400273.
α ∈ [α∗, α0), there are two single-pulses. α ∈ [α0,∞), there is only one single-pulse solution. Saddle node
α = 0 is where the large single-pulse l and the small single-pulse s become one. α0 is where the large
single-pulse l runs off to infinity.

——————————————————————————

on the threshold (figure 2.23.) There also exists a transition point where a dimple-pulse breaks into

a double-pulse (defined in Chapter 4). Examples are in section 2.10.2: figure 2.30 and figure 2.31.

The slope α governs the eigenvalue structure once a and A are fixed. When α is in the regime

where ω1,2 are real, there are at most two single-pulses solutions. When α is in the regime that ω1,2

are complex, there are oscillations in the existence function. Oscillations sometimes result in the

coexistence of more than two single-pulses depending on the threshold uT . This implies that the

gain function plays a role equally important as connection function. As α increases, single-pulses

exist continuously until α reaches the critical value α0. Once α reaches α0, pulse s is still there,

but pulse l runs off to infinity.

There are three ways that the large pulse l can disappear. First, for fixed α and uT , if the

excitation is too much, i.e., ration A/a grows bigger and bigger, the width of the large pulse becomes

wider and eventually the pulse breaks off (see section 2.7.4.) Secondly, with fixed excitation, i.e.,

fixed a and A, if the gain is too big, i.e., α is big, the large pulse eventually runs off to infinity.

This is fully demonstrated in section 2.9. The third way is that the stable large pulse coalesces

with the unstable small pulse and form a saddle node bifurcation. This is demonstrated in section
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2.11. The stability of the large pulse and the instability of the small pulse will be shown in chapter

3.

2.13 Behavior in 4-parameter space

There are four parameters I want to vary. But it is not possible to plot a 4-D picture including

all the parameters. I reduce the 4-D parameter space to 3-D by using α as x−axis, a/A as y−axis

and uT as z−axis.

From section (2.7.2), (2.8) and (2.9), for a fixed set (a,A, α), the first local maximum of Φ(x)

is the maximum threshold that a pulse solution exists. I identify this maximum at which the large

single-pulse l and the small single-pulse s coalesce into one pulse in a saddle node bifurcation. I first

set A = 1.5, then vary the ratio a/A and α to identify the maximum uT that supports single-pulse

solutions. I then calculate the firing rate fmax, which is the maximum of the firing rate function

with the single-pulse solution supported by the maximum threshold. Then I plot the maximum uT

and fmax to obtain two surfaces for maximum uT vs a/A and α and fmax vs a/A and α. Below

the surface of maximum uT vs a/A and α, and above surface uT = 0, there could be only one

single-pulse s, coexistence of a single-pulse s and a single-pulse l (or a dimple-pulse d but in a

smaller global range), or coexistence of more than two pulses. Next I increase A by step size 0.5 and

repeat the above procedure to generate many surfaces described above. Globally I have a general

idea of where there are pulse solutions (figure 2.36 and 2.37.) Notice that there are edges where

the surfaces tends not to converge. That is where the large single-pulse runs off to infinity, and the

corresponding α is the α0 that is introduced in section (2.9.1). In general, if there is not too much

excitation or inhibition and the firing rate is low, there are single-pulse solutions.
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Figure 2.36. Global picture 1: Maximum threshold vs α and a/A.

——————————————————————————

56



0

0.5

1

1.5

0.5
1

1.5
2

2.5
3

3.5
4

1

2

3

4

5

6

αa/A

f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max
f
max

Figure 2.37. Global picture 2: Maximum point of firing rate vs α and a/A .
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Chapter 3

Linear stability of standing pulses

In order for persistent activity to serve as a working memory, standing pulses must be stable

to small perturbations. The goal is to examine the stability of

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f [u(y, t)]dy. (3.1)

to small perturbations. In this chapter, I will first review Amari’s techniques of analyzing linear

stability [3]. Since the firing rate function I adopt does not saturate, these techniques do not apply

to the work in this thesis. I will examine the stability of the stationary pulse solution of (3.1) by

adding a small perturbation and linearizing around the stationary solution. I derive an eigenvalue

problem with two boundary (threshold points) terms which again comes from the discontinuity in

the piece-wise linear firing rate function. It is difficult to analyze the eigenvalue system because

of the boundary terms. A combination of analytical and numerical methods is used to fulfill this

task. This stability analysis generalizes Amari’s.

3.1 Amari’s analysis for standing pulse stability

I first introduce Amari’s techniques [3] to analyze the linear stability. Amari uses a Heaviside

firing rate function Θ(u) in (3.1). Let u(x, t) be a standing single-pulse solution at time t. The

excited region for u(x, t) is R[u(x, t)] = (x1, x2). And let

c1 =
∂u(x1, t)

∂x
c1 > 0

c2 = −∂u(x2, t)

∂x
c2 > 0

After a short time dt, u(x, t) changes to u(x, t+ dt). The excited region at time t+ dt is

R[u(x, t+ dt)] = (x1(t+ dt), x2(t+ dt)).
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Then the boundary of the excited region satisfies

u(xi(t), t) = uT

u(xi + dxi, t+ dt) = uT

where xi + dxi = xi(t+ dt) (i = 1, 2). A Taylor expansion of (3.2) around u(xi, t) gives

u(xi, t) +
∂u(xi, t)

∂x
dxi +

∂u(xi, t)

∂t
dt = uT .

Thus

∂u(xi, t)

∂x
dxi +

∂u(xi, t)

∂t
dt = 0,

dxi
dt

= − ∂u(xi, t)/∂t

∂u(xi, t)/∂x

From (3.1),
∂u(xi, t)

∂t
= −u(xi, t) +

∫ x2(t)

x1(t)
w(xi − y)Θ[u(y, t)]dy. Thus

dx1

dt
= − 1

c1
[−u(x1, t) +

∫ x2

x1

w(x1 − y)dy] =
1

c1
[uT −W (x2 − x1)] (3.2)

dx2

dt
=

1

c2
[−u(x2, t) +

∫ x2

x1

w(x2 − y)dy] =
1

c2
[−uT +W (x2 − x1)] (3.3)

Here W (x) =

∫ x

0
w(y)dy and W (x) is an odd function.

Let ∆(t) = x2(t)−x1(t). ∆(t) is the width of a single-pulse solution at time t. (3.3)-(3.2) yields

d∆

dt
= (

1

c1
+

1

c2
)[W (∆)− uT ] (3.4)

Equation (3.4) can be further simplified to the following if the single-pulse is symmetric, i.e. c1 = c2.

d∆

dt
=

2

c
[W (∆)− uT ] (3.5)
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This simple equation gives the condition for stability. The equilibrium of equation (3.5) is given by

W (∆)− uT = 0.

The conditionW (∆) = uT gives two single-pulse solutions (figure 3.1.) When ∆ = ∆l
T ,
dW (∆)

d∆
|∆=∆l

T
< 0,

which means the width ∆ of the single-pulse always is attracted toward the equilibrium. Therefore,

this single-pulse solution is stable. When ∆ = ∆s
T ,
dW (∆)

d∆
|∆=∆s

T
> 0. This means the width ∆ of

the single-pulse is repelled from the equilibrium ∆s
T . This single-pulse solution is unstable.

∆Τ
s ∆Τ

l
∆

uT

0

W

Figure 3.1. Function W (∆) =

∫ x

0

w(y)dy. At uT , W (∆) shows that we have a single-pulse solution that is

wider and has width ∆l
T (l=large;) the second single-pulse solution is narrower and has width ∆s

T (s=small).

——————————————————————————

3.2 Eigenvalue problem

In this section, I derive the eigenvalue problem by linearizing the dynamical system around a

stationary solution. Let u(x) be the stationary standing pulse at time t = 0. After a short time

period t, u(x) evolves into u(x, t) = u(x)+v(x, t), where v(x, t) = εv(x)eλt is the small perturbation.

ε > 0 is small and v(x) is a bounded and continuous function. The boundaries −xT and xT of u(x)

change to x1(t), x2(t) respectively. x1 and x2 are functions of time t. Let x1(t) = −xT + ∆1(t),

x2(t) = xT +∆2(t), and c =
du(x)

dx
|x=−xT where ∆1(t) and ∆2(t) are the changes of the boundaries

−xT and xT respectively, and c > 0.
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Lemma 3.1. Under the above assumption,

∆1(t) = −v(−xT )eλt

c
, ∆2(t) =

v(xT )eλt

c
.

Proof of Lemma 3.1: By the definition of x1(t) and u(x1, t),

u(x1, t) = u(−xT + ∆1(t), t) = uT ,

where uT is the threshold. Linearize u(x, t) around x = −xT to get

u(−xT , t) + ux(−xT , t)∆1(t) = uT

u(−xT ) + v(−xT , t) + ux(−xT , t)∆1(t) = uT

v(−xT , t) +
∂

∂x
[u(−xT ) + v(xT , t)]∆1(t) = 0

Ignoring high order terms,

v(−xT , t) + u′(−xT )∆1(t) = 0

∆1(t) = −v(−xT , t)
c

= −v(−xT )eλt

c

where c is the slope of u(x) at xT , i.e. c = u′(−xT ) and c > 0.

Similarly,

v(xT , t) + u′(xT )∆2(t) = 0

therefore,

∆2 =
v(xT , t)

c
=
v(xT )eλt

c
♦

Theorem 3.1. Linearizing (3.1) around stationary solution u(x), one can obtain the eigenvalue

problem

(1 + λ)v(x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy (3.6)
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Proof of theorem 3.1: From (3.1)

∂u(x, t)

∂t
+ u(x, t) =

∫ ∞

−∞
w(x− y)[α(u(y, t)− uT ) + 1]Θ(u− uT )dy

∂v(x, t)

∂t
+ u(x) + v(x, t) =

∫ x2

x1

w(x− y)[α(u(y, t)− uT ) + 1]dy (3.7)

Right-hand side of (3.7) is

∫ xT

−xT
w(x− y)[α(u(y)− uT ) + 1]dy + α

∫ xT

−xT
w(x− y)v(y, t)dy + I1 + I2

where

I1 =

∫ −xT
x1

w(x− y)[α(u(y) + v(y, t)− uT ) + 1]dy

I2 =

∫ x2

xT

w(x− y)[α(u(y) + v(y, t)− uT ) + 1]dy

Since u(x) is the stationary solution, it satisfies

u(x) =

∫ xT

−xT
w(x− y)[α(u(y)− uT ) + 1]dy

(3.7) becomes

vt(x, t) + v(x, y) = α

∫ xT

−xT
w(x− y)v(y, t)dy + I1 + I2 (3.8)

Now let

F (x, y, t) =

∫ y

0
w(x− s)[α(u(s) + v(s, t)− uT ) + 1]ds.

Obviously,

∂F

∂y
= w(x− y)[α(u(y) + v(y, t)− uT ) + 1]

F (x, x1, t) = F (x,−xT + ∆1, t)
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= F (x,−xT , t) +
∂F

∂y
|y=−xT ∆1 + h.o.t.

= F (x,−xT , t) + w(x+ xT )[α(u(−xT ) + v(−xT , t)− uT ) + 1]∆1 + h.o.t.

One can ignore all the high order terms including v(−xT , t)∆1, which is −c∆2
1. Then

F (x, x1, t) = F (x,−xT , t) + w(x+ xT )∆1

Similarly,

F (x, x2, t) = F (x, xT , t) + w(x− xT )∆2.

I1 and I2 can be written as

I1 = F (x,−xT , t)− F (x, x1, t) = w(x+ xT )∆1

I2 = F (x, x2, t)− F (x,−xT , t) = w(x− xT )∆2

Now (3.8) becomes

vt(x, t) + v(x, t) = α

∫ xT

−xT
w(x− y)v(y, t)dy + w(x+ xT )∆1 + w(x− xT )∆2 (3.9)

Substitute ∆1, ∆2 derived in Lemma 3.1 and v(x, t) = εv(x)eλt into (3.9), to obtain

(1 + λ)v(x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+

∫ xT

−xT
w(x− y)v(y)dy ♦

If the real parts of all the eigenvalues λ are negative, the stationary solution u(x) is stable. If

the real part of one of the eigenvalues is positive, u(x) is unstable. The two terms w(x− xT )
v(xT )

c

and w(x+ xT )
v(−xT )

c
in (3.10) result from the boundary −xT and xT where the jump occurs in

the gain function. These two terms do not have any contribution both within the boundary, i.e.

(−xT , xT ) and outside the boundary i.e. (−∞,−xT ) ∪ (xT ,∞).
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3.3 Linear stability analysis of Amari’s case

In the case of α = 0, (3.1) has the form

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)Θ[u(y, t)]dy (3.10)

where Θ(u) is the Heaviside function. Applying the eigenvalue equation (3.6) to (3.10) yields

(1 + λ)v(x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c

Substitute boundaries −xT and xT to the above equation

(
1 + λ− w(0)

c

)
v(xT )− w(2xT )

c
v(−xT ) = 0

−w(2xT )

c
v(xT ) +

(
1 + λ− w(0)

c

)
v(−xT ) = 0

This system has non-trivial solution only when the determinant of the coefficient matrix is equal

to 0. Set the determinant of the following matrix equal to 0 and solve for λ.




1 + λ− w(0)
c −w(2xT )

−w(2xT ) 1 + λ− w(0)
c




Then

λ =
w(0)± w(2xT )

c
− 1

When α = 0, one can explicitly solve for λ upon the existence of the single-pulse solution that gives

us the width xT . And the value of λ is in agreement with Ref. [53].

Lemma 3.2. When α = 0, u′(−xT ) = w(0) − w(2xT ) and u′(−xT ) = −u′(xT ), where u(x) is the

stationary single-pulse solution.
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Proof of lemma 3.2: The stationary single-pulse solution of (3.10) satisfies

u(x) =

∫ xT

−xT
w(x− y)dy (3.11)

Changing variables, (3.11) becomes

u(x) =

∫ x−xT

x+xT

w(y)dy (3.12)

Differentiating u(x) yields

u′(x) = w(x+ xT )− w(x− xT )

Therefore u′(−xT ) = w(0)− w(2xT ), and u′(xT ) = w(2xT )− w(0) = −u′(−xT ) ♦

Consider the example: a = 2.4, A = 2.8, uT = 0, 400273, α = 0. There exist two single-

pulses. From lemma 3.2, one of the eigenvalues is λ =
w(0)− w(2xT )

w(0)− w(2xT )
− 1 = 0. For the pulse l,

xl
T = 0.607255 and c = 1.94506 gives λ =

w(0) + w(2xT )

c
− 1 = −0.165986 < 0. Pulse l is stable.

For pulse s xs
T = 0.21325, c = 1.44675 gives λ =

w(0) + w(2xT )

c
− 1 = 0.488339 > 0. Thus, the

small single-pulse is unstable.

3.4 Properties of the eigenvalue problem

In this section, I prove a number of properties of the eigenvalue problem. These properties are

critical to the stability analysis of standing pulses.

Lemma 3.3. The gain function f [u] = [α(u− uT ) + 1]] Θ(u− uT ) can be written as f [u] = F [u] +

Θ(u− uT ), where F [u] = α(u− uT )Θ(u− uT ).

Proof of lemma 3.3

It is obvious by distributing Θ(u− uT ) into the parenthesis (see figure 3.4.) ♦

Suppose

φ1(x) =
1

2a

∫ ∞

−∞
e−a|x−y|(Fu + Θu)v(y)dy
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T

u

1

Θ

Figure 3.2. Function F [u] and the Heaviside function Θ(u− uT ).

——————————————————————————

φ2(x) =
1

2

∫ ∞

−∞
e−|x−y|(Fu + Θu)v(y)dy

Lemma 3.4. The RHS of (3.6) can be written as 2(aAφ1 − φ2), i.e.

(1 + λ)v = 2(aAφ1 − φ2)

Proof of lemma 3.4:

(1 + λ)v = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy

=

∫ ∞

−∞
w(x− y)

δ(x− xT ) + δ(x+ xT )

c
v(y)dy +

∫ ∞

−∞
w(x− y)Fuv(y)dy

=

∫ ∞

−∞
w(x− y)Θuv(y)dy +

∫ ∞

−∞
w(x− y)Fuv(y)dy

= A

∫ ∞

−∞
e−a|x−y|(Fu + Θu)v(y)dy −

∫ ∞

−∞
e−|x−y|(Fu + Θu)v(y)dy

= 2(aAφ1 − φ2) ♦

Lemma 3.5. φ1 and φ2 satisfy the following ODEs respectively

−φ′′1 + a2φ1 = (Fu + Θu)v (3.13)

−φ′′2 + a2φ2 = (Fu + Θu)v (3.14)
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Proof of lemma 3.5: Differentiate φ1 once and twice.

φ′1 =
1

2

[∫ x

−∞
e−a(x−y)(Fu + Θu)vdy +

∫ ∞

x

ea(x−y)(Fu + Θu)vdy

]
(3.15)

φ′′1 =
a

2

[∫ x

−∞
e−a(x−y)(Fu + Θu)vdy +

∫ ∞

x

ea(x−y)(Fu + Θu)vdy − 2(Fu + Θu)v

]
(3.16)

−(3.15) + a2(3.16) yields

−φ′′1 + a2φ1 = (Fu + Θu)v

−φ′′2 + a2φ2 = (Fu + Θu)v can be obtained in the same fashion. ♦

Lemma 3.6. lim
x→±∞

φ1,2 = 0 and lim
x→±∞

φ′1,2 = 0 provided that v(x) is bounded on (−∞,∞) and

exponentially decays to zero as x→ ±∞

Proof of lemma 3.6: When x >> xT

φ1(x) =
1

2a

∫ ∞

−∞
e−a|x−y|(Fu + Θu)v(y)

=
1

2a

[
α

∫ xT

−xT
e−a|x−y|v(y)dy +

∫ xT

−xT
e−a|x−y|

(δ(x− xT ) + δ(x+ xT ))

c
v(y)dy

]

=
1

2a

[
α

∫ xT

−xT
e−a(x−y)v(y)dy + e−a|x−xT |

v(xT )

c
+ e−a|x+xT | v(−xT )

c

]

=
1

2a

[
αe−ax

∫ xT

−xT
eayv(y)dy + e−a(x−xT ) v(xT )

c
+ e−a(x+xT ) v(−xT )

c

]

It is clear that lim
x→∞

φ1 = 0 provided that v(x) is bounded on [−xT , xT ].

When x << −xT < 0,

φ1(x) =
1

2a

[
αeax

∫ xT

−xT
e−ayv(y)dy + ea(x−xT ) v(xT )

c
+ ea(x+xT ) v(−xT )

c

]

Hence lim
x→−∞

φ1 = 0.

φ′1 =
1

2

[
−
∫ x

−∞
e−a(x−y)(Fu + Θu)vdy +

∫ ∞

x
ea(x−y)(Fu + Θu)vdy

]
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As x→∞,

lim
x→∞

φ′1 = lim
x→∞

{
−1

2

∫ x

−∞
e−a(x−y)(Fu + Θu)vdy

}

= lim
x→∞

{
−e
−ax

2

[
α

∫ xT

−xT
eaydy + eay

v(xT )

c

]}

As x→ −∞

lim
x→∞

φ′1 = lim
x→−∞

{
−1

2

∫ ∞

x
ea(x−y)(Fu + Θu)vdy

}

= lim
x→∞

{
−e

ax

2

[
α

∫ xT

−xT
eaydy + eaxT

v(xT )

c

]}

Similarly, one can prove that lim
x→±∞

φ2 = 0 and lim
x→±∞

φ′2 = 0.

Therefore, lim
x→±∞

φ1,2 = 0, lim
x→±∞

φ′1,2 = 0. ♦

Theorem 3.2. Eigenvalue λ in (3.10) is real.

Proof of Theorem 3.2: aAφ̄1(3.13)− φ̄2(3.14) gives

aAφ̄1(−φ′′1 + a2φ1)− φ̄2(−φ′′2 + φ2) = (Fu + Θu)v(aAφ̄1 − φ̄2) (3.17)

where φ̄1,2 are the complex conjugates of φ1,2. Integration by parts gives

∫ ∞

−∞
φ̄1φ

′′
1dx = φ̄1φ

′
1|∞−∞ −

∫ ∞

−∞
φ̄′1φ

′
1dx =

∫ ∞

−∞

∣∣φ′1
∣∣2 dx

and similarly

∫ ∞

−∞
φ̄2φ

′′
2dx =

∫ ∞

−∞

∣∣φ′2
∣∣2 dx. From lemma 3.4

1

2
(1 + λ)v = aAφ1 − φ2

1

2
(1 + λ̄)v̄ = aAφ̄1 − φ̄2

Integrating both sides of (3.17) gives

aA

(∫ ∞

−∞
|φ′1|

2
dx+ a2

∫ ∞

−∞
|φ1|2 dx

)
−
(∫ ∞

−∞
|φ′2|

2
dx+

∫ ∞

−∞
|φ2|2 dx

)
=

1

2
(1 + λ̄)

∫ ∞

−∞
|v|2 (Fu + Θu)dx
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∫ ∞

−∞
|v|2 Θudx =

1

c

∫ ∞

−∞
|v|2 (δ(x− xT ) + δ(x+ xT )) dx =

1

c

(
|v(xT )|2 + |v(−xT )|2

)
Hence

1

2
(1 + λ̄) =

aA
(∫∞
−∞ |φ′1|

2 dx+ a2
∫∞
−∞ |φ1|2 dx

)
−
(∫∞
−∞ |φ′2|

2 dx+
∫∞
−∞ |φ2|2 dx

)

∫∞
−∞ Fu |v|

2 + 1
c

(
|v(xT )|2 + |v(−xT )|2

) (3.18)

The right-hand side of (3.18) is real, therefore λ has to be real. ♦

Theorem 3.3. Eigenvalue λ in (3.10) is bounded by λb ≡ 2k0
c +2αk1xT−1 where k0 is the maximum

of |w(x)| on [0, 2xT ] and |w(x− y)| ≤ k1 for all (x, y) ∈ J × J, J = [−xT , xT ] .

Proof of theorem 3.3: Define a linear operator L: C [−xT , xT ]→ C [−xT , xT ] such that

Lv(x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy

The norm on C [−xT , xT ] is defined as

‖.‖ = max
x∈J
|v(x)|

Function w(x − y) is continuous on square J × J. The eigenvalue problem derived in section 3.2

gives

(1 + λ)v = Lv (3.19)

Taking the norm of both sides of (3.19),

(1 + λ)‖v‖ = ‖Lv‖

‖Lv‖ =

∥∥∥∥w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy

∥∥∥∥

= max
x∈J

∣∣∣∣w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy

∣∣∣∣

≤ max
x∈J

∣∣∣∣w(x− xT )
v(xT )

c

∣∣∣∣+ max
x∈J

∣∣∣∣w(x+ xT )
v(−xT )

c

∣∣∣∣+ max
x∈J

∣∣∣∣α
∫ xT

−xT
w(x− y)v(y)dy

∣∣∣∣
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≤ |w(x− xT )| ‖v(x)‖
c

+ |w(x+ xT )| ‖v(x)‖
c

+ α

∫ xT

−xT
max
x∈J
{|w(x− y)|} ‖v(y)‖ dy

≤ 2k0
‖v(x)‖
c

+ 2αk1xT‖v(x)‖

where

k0 = max
x∈J
|w(x− xT )| = max

x∈J
|w(x+ xT )|

since w(x) is symmetric. And |w(x− y)| ≤ k1 for all (x, y) ∈ J × J. Therefore

(1 + λ)‖v(x)‖ = ‖Lv(x)‖ ≤ 2k0
‖v(x)‖
c

+ 2αk1xT‖v(x)‖

λ ≤ 2k0

c
+ 2αk1xT − 1 ≡ λb. ♦

Theorem 3.4. Define operator L: C [−xT , xT ]→ C [−xT , xT ] such that

Lv(x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy

Then L is a compact operator on C [−xT , xT ]

Proof of theorem 3.4: Operator

T1(v(x)) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
: C [−xT , xT ]→ C [−xT , xT ]

is linear. The bound of T1 follows from

‖T1v‖ = max
x∈J

∣∣∣∣w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c

∣∣∣∣

≤ |w(x− xT )|‖v(x)‖
c

+ |w(x+ xT )| ‖v(x)‖
c

≤ 2k0
‖v‖
c

Let vn be any bounded sequence in C [−xT , xT ] and ‖vn‖ ≤ c0 for all n. Let yn = T1vn. Then

‖yn‖ ≤ ‖T1‖‖vn‖. Hence sequence yn is bounded and equicontinuous. Since w(x, t) = w(x − t) is

continuous on J × J and J × J is compact, w is uniformly continuous on J × J. Hence, for any
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given ε > 0, there is a δ > 0 such that for t = xT and all x1, x2 ∈ J satisfying |x1 − x2| < δ

|w(x1 − xT )− w(x2 − xT )| < c

2c0
ε.

Consequently, for x1, x2 as before and every n, one can obtain

|yn(x1)− yn(x2)| =

∣∣∣∣[w(x1 − xT )− |w(x2 − xT )]
vn(xT )

c
+ [w(x1 + xT )− w(x2 + xT )]

vn(−xT )

c

∣∣∣∣

< |w(x1 − xT )− |w(x2 − xT )| c0

c
+ |w(x1 + xT )− w(x2 + xT )| c0

c

<
c

2c0
ε
c0

c
+

c

2c0
ε
c0

c
= ε

This proves the equicontinuity of yn. By Ascoli’s theorem, yn has a convergent subsequence. vn is a

arbitrary bounded sequence and yn = T1vn. By the compactness criterion: an operator is compact

if and only if it maps every bounded sequence xn in X onto a sequence Txn in Y which has a

convergent subsequence. The compactness of T1 follows from this criterion.

Using similar technique, one can prove the integral linear operator

T2(v(x)) = α

∫ xT

−xT
w(x− y)v(y)dy

is compact. The proof is given in [38]. The sum of two compact linear operators, T1 + T2, is

compact. ♦

Theorem 3.5. λ = −1 is the only possible accumulation point of the set of all λ values in the

eigenvalue problem. And every spectral value λ 6= −1 of L is an eigenvalue of L.

Proof of theorem 3.5: Let γ = (1 + λ), the eigenvalue problem becomes

γv(x) = Lv(x),

and the linear operator L is compact on the normed space C [−xT , xT ] . γ is the eigenvalue of

operator L. By theorem 2.2 proved in [37]: the only possible point of accumulation is γ = 0, i.e.,

λ = −1.

The second part of the theorem can be easily derived from the following property of eigenvalues
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of compact operators proven in [39]. Let T : X → X be a compact linear operator on a Banach

space X. Then every spectral value γ 6= 0 of T (if it exists) is an eigenvalue of T. γ 6= 0 corresponds

to λ 6= −1 for compact operator L. Therefore, every spectral value λ 6= −1 of L is an eigenvalue of

L. ♦

Remark 3.1. This theorem shows that if the compact operator L has infinitely many eigenvalues, on

can arrange them in a sequence converging to −1. Theorem 3.5 also implies that the only possible

continuous spectrum is −1. There is no continuous spectrum when λ > −1. Therefore, all the

spectral values λ such that λ > −1 are eigenvalues.

Theorem 3.6. 0 is an eigenvalue.

Proof of theorem 3.6: Consider the equilibrium equation

u(x) =

∫ ∞

−∞
w(x− y)f [u(y)]dy

=

∫ xT

−xT
w(x− y) {α [u(y)− uT ] + 1} dy (3.20)

where u(x) is a stationary standing pulse solution. After a change of variables p = x − y, (3.20)

becomes

u(x) =

∫ x−xT

x+xT

w(p) {α [u(x− p)− uT ] + 1} dy (3.21)

Differentiating (3.21) with respect to x yields

u′(x) = w(x+ xT ) [α(u(−xT )− uT ) + 1]− w(x− xT ) [α(u(xT )− uT ) + 1]

+α

∫ x+xT

x−xT
w(p)u′(x− p)dp (3.22)

Since u(−xT ) = u(xT ) = uT and u′(−xT ) = c = −u′(xT ),

u′(x) = w(x+ xT )
u′(−xT )

c
− w(x− xT )

−u′(xT )

c
+ α

∫ x+xT

x−xT
w(p)u′(x− p)dp

= w(x− xT )
u′(xT )

c
+ w(x+ xT )

u′(−xT )

c
+ α

∫ xT

−xT
w(x− y)u′(y)dy (3.23)
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(3.23) is the eigenvalue problem (3.10) with eigenvalue satisfying 1 + λ = 1, resulting in λ = 0.

The corresponding eigenfunction is u′(x).Therefore, λ = 0 is an eigenvalue of (3.10) corresponding

to eigenfunction u′(x). ♦

3.4.1 The discontinuity of the eigenfunctions at the boundaries

Consider the following eigenvalue equation

(1 + λ)v(x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
+ α

∫ xT

−xT
w(x− y)v(y)dy (3.24)

where v′(x), v′′(x) and v′′′(x) are continuous on (−∞,−xT ), (−xT , xT ) and (xT ,∞). They have

discontinuities at −xT and xT because w′(x) is discontinuous at 0. In order to know the jumps of

v′(x), v′′(x) and v′′′(x) at the boundaries −xT and xT , I first prove proposition 3.1.

Proposition 3.1. If W (x) =

∫ xT

−xT
w(x− y)v(y)dy with x ∈ (−∞,∞). Then W (x) and W ′(x) are

continuous at the boundaries −xT and xT . But W ′′(x) and W ′′′(x) are discontinuous at −xT and

xT .

Proof of proposition 3.1:

It is obvious that W (x) is continuous on (−∞,∞) by the continuity of v(x) and w(x) on

(−∞,∞). By change of variable,

W (x) =

∫ xT

−xT
w(x− y)v(y)dy =

∫ x−xT

x+xT

w(z)v(x− z)dz.

W ′(x) = w(x+ xT )v(−xT )− w(x− xT )v(xT )−
∫ x−xT

x+xT

w(z)v′(x− z)dz

W ′(x) is continuous on (−∞,∞).

For x ∈ (−∞,∞), and x 6= −xT , xT ,

W ′′(x) = w′(x+ xT )v(−xT )− w′(x− xT )v(xT ) + w(x+ xT )v′(−x+
T )− w(x− xT )v′(x−T )

−
∫ x−xT

x+xT

w(z)v′′(x− z)dz
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Since w′(x ± xT ) appears in W ′′(x) and w′(x ± xT ) are discontinuous at the boundaries x = xT ,

W ′′(x) is discontinuous at the boundaries. I use the notation [·] to represent the jump at the

boundary, i.e., [W ′′(xT )] is the jump of W ′′(x) at xT . Then

[
W ′′(xT )

]
= −

[
w′(0)

]
v(xT )

[
W ′′(−xT )

]
=

[
w′(0)

]
v(−xT )

When x 6= −xT , xT ,

W ′′′(x) = w′′(x+ xT )v(−xT )− w′′(x− xT )v(xT ) + w′(x+ xT )v′(−x+
T )− w′(x− xT )v′(x−T )

+ w(x+ xT )v′′(−x+
T )− w(x− xT )v′′(x−T )−

∫ x−xT

x+xT

w(z)v′′′(x− z)dz

[
W ′′′(xT )

]
= −

[
w′′(0)

]
v(xT )−

[
w′(0)

]
v′(x−T )

[
W ′′′(−xT )

]
=

[
w′′(0)

]
v(−xT ) +

[
w′(0)

]
v′(−x+

T ) ♦

The eigenvalue problem (3.24) can be written as

c(1 + λ)v(x) = w(x− xT )v(xT ) + w(x+ xT )v(−xT ) + cαW (x) (3.25)

v(x) is continuous on (−∞,∞). v(x) has no jumps at −xT and xT .

[v(−xT )] = [v(xT )] = 0

Differentiating (3.25) once for x 6= −xT and x 6= xT , I obtain

c(1 + λ)v′(x) = w′(x− xT )v(xT ) + w′(x+ xT )v(−xT ) + cαW ′(x)

v′(x) is discontinuous at the boundaries because of the discontinuity of w′(x) at the boundaries
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and the jumps of v′(x) at the boundaries come from w′(0). Therefore

[
v′(xT )

]
=

1

c(1 + λ)

[
w′(0)

]
v(xT ),

[
v′(−xT )

]
=

1

c(1 + λ)

[
w′(0)

]
v(−xT ).

Differentiating (3.25) twice to get the jumps of v(x) at −xT and xT .

c(1 + λ)v′′(x) = w′′(x− xT )v(xT ) + w′′(x+ xT )v(−xT ) + cαW ′′(x) x 6= −xT , xT

There are jumps of v′′(x) at −xT and xT that come from either W (−xT ) or W (xT ). However no

jumps come from w′′(0) because w′′(0−) = w′′(0+). And the jumps of v′′(x) at −xT and xT are

[
v′′(xT )

]
=

α

1 + λ

[
W ′′(xT )

]
= − α

1 + λ

[
w′(0)

]
v(xT ),

[
v′′(−xT )

]
=

α

1 + λ

[
W ′′(−xT )

]
=

α

1 + λ

[
w′(0)

]
v(−xT ).

c(1 + λ)v′′′(x) = w′′′(x− xT )v(xT ) + w′′′(x+ xT )v(−xT ) + cαW ′′′(x) x 6= −xT , xT .

The jumps of v′′′(x) at −xT and xT are

[
v′′′(xT )

]
=

1

c(1 + λ)

[
w′′′(0)

]
v(xT ) +

α

1 + λ

[
W ′′′(xT )

]

=
1

c(1 + λ)

[
w′′′(0)

]
v(xT )− α

1 + λ

[
w′(0)

]
v′(x−T ),

[
v′′′(−xT )

]
=

1

c(1 + λ)

[
w′′′(0)

]
v(−xT ) +

α

1 + λ

[
W ′′′(xT )

]

=
1

c(1 + λ)

[
w′′′(0)

]
v(−xT ) +

α

1 + λ

[
w′(0)

]
v′(−x+

T )

To calculate the jumps explicitly, one must know [w′(0)] and [w′′′(0)].

w(x) =





Ae−ax − e−x if x ≥ 0

Aeax − ex if x < 0
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w′(x) =




−aAe−ax + e−x if x ≥ 0

aAeax − ex if x < 0

w′′(x) =





a2Ae−ax − e−x if x ≥ 0

−a2Aeax − ex if x < 0

w′′′(x) =




−a3Ae−ax + e−x if x ≥ 0

a3Aeax − ex if x < 0

w′(0+) = 1− aA, w′(0−) = aA− 1

w′′(0+) = a2A− 1, w′′(0−) = a2A− 1

w′′′(0+) = 1− a3A, w′′′(0−) = a3A− 1

Hence,

[
w′(0)

]
= w′(0+)− w′(0−) = −2(aA− 1)

[
w′′(0)

]
= w′′(0+)− w′′(0−) = 0

[
w′′′(0)

]
= w′′′(0+)− w′′′(0−) = 2(1− a3A)

These results lead directly to the following theorem.

Theorem 3.7. The continuous eigenfunction v(x) on (−∞,∞) in (3.10) has the following jumps

in its first order, second order and third order derivatives at the boundary −xT and xT .

[v(xT )] = 0

[
v′(xT )

]
=

2α(1− aA)

1 + λ
v(xT )

[
v′′(xT )

]
=

2(aA− 1)

c(1 + λ)
v(xT )

[
v′′′(xT )

]
=

2(1− a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T )

[v(−xT )] = 0

76



[
v′(−xT )

]
=

2α(1− aA)

1 + λ
v(−xT )

[
v′′(−xT )

]
=
−2(aA− 1)

c(1 + λ)
v(−xT )

[
v′′′(−xT )

]
=

2(1− a3A)

c(1 + λ)
v(−xT )− 2α(aA− 1)

1 + λ
v′(−x+

T ).

3.5 Reduction of the eigenvalue problem to ODE

In this section, I reduce the eigenvalue problem to ordinary differential equations. In section

3.4.1, I have shown that v′(x), v′′(x) and v′′′(x) have discontinuities at the boundaries −xT and

xT . I will not reduce the eigenvalue problem to a uniform ODE valid on (−∞,∞). I first derive

the ODE from (3.10) on [−xT , xT ], then I derive the ODEs for <− J where J = [−xT , xT ].

3.5.1 ODE on [−xT , xT ]

Let T (x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c
. Then

T (x) =
[
Ae−a(x−xT ) − e−(x−xT )

] v(xT )

c
+
[
Ae−a(x+xT ) − e−(x+xT )

] v(−xT )

c

T ′′(x) =
[
a2Ae−a(x−xT ) − e−(x−xT )

] v(xT )

c
+
[
a2Ae−a(x+xT ) − e−(x+xT )

] v(−xT )

c

T (iv)(x) =
[
a4Ae−a(x−xT ) − e−(x−xT )

] v(xT )

c
+
[
a4Ae−a(x+xT ) − e−(x+xT )

] v(−xT )

c

It is a simple calculation to show that

T (iv)(x)− (1 + a2)T ′′(x) + a2T (x) = 0

Set

I1(x) = α

∫ x

−xT
Ae−a(x−y)v(y)dy, I2(x) = α

∫ x

−xT
e−(x−y)v(y)dy

I3(x) = α

∫ xT

x
Aea(x−y)v(y)dy, I4(x) = α

∫ xT

x
e(x−y)v(y)dy
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Then

α

∫ xT

−xT
w(x− y)v(y)dy = I1 − I2 + I3 − I4

I ′1 = −aI1 + αAv(x), I ′2 = −I2 + αv(x)

I ′3 = aI3 − αAv(x), I ′4 = I4 − αv(x)

The eigenvalue problem (3.10) is

(1 + λ)v(x) = T (x) + I1 − I2 + I3 − I4 (3.26)

Differentiating (3.26) repeatedly gives

(1 + λ)v′(x) = T ′(x)− aI1 + I2 + aI3 − I4 (3.27)

(1 + λ)v′′(x) = T ′′(x) + a2I1 − I2 + a2I3 − I4 + 2α(1− aA)v(x) (3.28)

(1 + λ)v′′′(x) = T ′′′(x)− a3I1 + I2 + a3I3 − I4 + 2α(1− aA)v′(x) (3.29)

(1 + λ)v
′′′′

(x) = T (iv)(x) + a4I1 − I2 + a4I3 − I4 + 2α(1− a3A)v(x)

+2α(1− aA)v′′(x) (3.30)

Take (3.26)-(3.29) as a linear system of I1, I2, I3 and I4.

I1 − I2 + I3 − I4 = (1 + λ)v(x)− T (x) (3.31)

−aI1 + I2 + aI3 − I4 = (1 + λ)v′(x)− T ′(x) (3.32)

a2I1 − I2 + a2I3 − I4 = (1 + λ)v′′(x)− 2α(1− aA)v(x)− T ′′(x) (3.33)

−a3I1 + I2 + a3I3 − I4 = (1 + λ)v′′′(x)− 2α(1− aA)v′(x)− T ′′′(x) (3.34)

Taking (3.33)− a2(3.31) gives

I2 + I4 =
1

a2 − 1

[
(λ+ 1)v′′ + (2αaA− 2α− a2λ− a2)v + a2T − T ′′

]
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Substitute I2 + I4 into (3.31)

I1 + I3 = I2 + I4 + (λ+ 1)v − T

=
1

a2 − 1

[
(λ+ 1)v′′ + (2αaA− 2α− λ− 1)v + T − T ′′

]

Substituting both I1+I3 and I2+I4 into (3.30), one can obtain the fourth order ordinary differential

equation for x ∈ [−xT , xT ]

(1 + λ)v
′′′′ −

[
(1 + λ)(a2 + 1) + 2α(1− aA)

]
v′′ +

[
(λ+ 1)a2 − 2αa(A− a)

]
v = 0 (3.35)

3.5.2 ODE on x ∈ (−∞,−xT ] and [xT ,∞).

I first derive the ODE that is valid on [xT ,∞). When x ∈ [xT ,∞),

T (x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c

=
[
Ae−a(x−xT ) − e−(x−xT )

] v(xT )

c
+
[
Ae−a(x−xT ) − e−(x−xT )

] v(−xT )

c

It can be shown that T (x) satisfies

T ′′ + (1 + a)T ′ + aT = 0

Let I1 = αA

∫ xT

−xT
e−a(x−y)v(y)dy and I2 =

∫ xT

−xT
e−(x−y)v(y)dy, then I ′1 = −aI1 and I ′2 = −I2. The

eigenvalue equation becomes

(1 + λ)v = T + I1 − I2 (3.36)

Differentiate (3.36) w.r.t x once and twice.

(1 + λ)v′(x) = T ′ − aI1 + I2 (3.37)

(1 + λ)v′′(x) = T ′′ + a2I1 − I2 (3.38)
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Add a(3.36)+(a+1)(3.37)+(3.38) to obtain

(1 + λ)
[
v′′ + (a+ 1)v′ + av

]
=

[
T ′′ + (a+ 1)T ′ + aT

]
+

[
a2I1 − I2 + (a+ 1)(−aI1 + I2) + a(I1 − I2)

]
= 0

Therefore the ODE on [xT ,∞) is

v′′ + (a+ 1)v′ + av = 0

The ODE on (−∞,−xT ] can be derived in the same manner. Consider

T (x) = w(x− xT )
v(xT )

c
+ w(x+ xT )

v(−xT )

c

=
[
Aea(x−xT ) − e(x−xT )

] v(xT )

c
+
[
Aea(x−xT ) − e(x−xT )

] v(−xT )

c

T (x) satisfies

T ′′ − (1 + a)T ′ + aT = 0

Let I1 = αA

∫ xT

−xT
ea(x−y)v(y)dy and I2 =

∫ xT

−xT
e(x−y)v(y)dy, then I ′1 = aI1 and I ′2 = I2. Then the

eigenvalue equation becomes

(1 + λ)v = T + I1 − I2 (3.39)

Differentiate (3.39) w.r.t x once and twice:

(1 + λ)v′(x) = T ′ + aI1 + I2 (3.40)

(1 + λ)v′′(x) = T ′′ + a2I1 + I2 (3.41)

(3.39), (3.40) and (3.41) can be combined to give

(1 + λ)
[
v′′ − (a+ 1)v′ + av

]
=

[
T ′′ + (a+ 1)T ′ + aT

]
+
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[
a2I1 + I2 − (a+ 1)(aI1 + I2) + a(I1 + I2)

]
= 0

Therefore the ODE on (−∞,−xT ] is

v′′ − (a+ 1)v′ + av = 0

One can combine the ODE on (−∞,−xT ] and the one on [xT ,∞) by using one uniform ODE on

(−∞,−xT ] ∪ [xT ,∞) such that

v
′′′′ − (1 + a2)v′′(x) + a2v(x) = 0

Remark 3.2. As shown in the derivation of the ODEs, the contribution from the two boundary

terms are zero both within the boundary and outside the boundary. Thus these boundary terms

contribute to the eigenvalue problem only at the boundaries.

3.6 Properties of the eigenfunction v(x)

From section 3.5, the three ODEs on three different intervals are:





v′′ − (a+ 1)v′ + av = 0 ODE I on (−∞,−xT ]

(1 + λ)v
′′′′ −Bv′′ + Cv = 0 ODE II on [−xT , xT ]

v′′ + (a+ 1)v′ + av = 0 ODE III on [xT ,∞)

Where B = (1 + λ)(a2 + 1) + 2α(1− aA) and C = (λ+ 1)a2 − 2αa(A− a)

Suppose that v1(x), v2(x) and v3(x) are the solutions of ODE I, ODE II and ODE III, respec-

tively (see figure 3.6.) The three ODEs are all linear with constant coefficients. The continuous

and bounded solution v(x) is defined as the following

v(x) =





v1(x) on (−∞,−xT ]

v2(x) on [−xT , xT ]

v3(x) on [xT ,∞)
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v1(x) matches v2(x) at −xT and v2(x) matches v3(x) at xT .

0−xT xT

x
ODE I                   ODE II                 ODE III

v1(x)                       v2(x)                   v3(x)

Figure 3.3. Valid ODEs on different sections and their solutions.

——————————————————

Consider ODE II on [−xT , xT ]. If v2(x) is a solution, then v2(−x) is also a solution Thus, both

the even function
v2(x) + v2(−x)

2
and the odd function

v2(x)− v2(−x)

2
are solutions of ODE II.

Therefore, it suffices to consider either even or odd solutions of ODE II separately.

Theorem 3.8. If v(x) is the eigenfunction corresponding to eigenvalue λ, then v(x) is either even

or odd.

Proof of theorem 3.8: Define a function T2(x) s.t.

T2(x) = α

∫ xT

−xT
w(x− y)v2(y)dy

When v2(x) is even, T2(x) is an even function because

T2(−x) = α

∫ xT

−xT
w(−x− y)v2(y)dy = α

∫ xT

−xT
w(−x+ y)v2(−y)dy

= α

∫ xT

−xT
w(x− y)v2(y)dy = T2(x)

Similarly, for odd v2(x), T2(x) is odd because

T2(−x) = α

∫ xT

−xT
w(−x− y)v2(y)dy = α

∫ xT

−xT
w(−x+ y)v2(−y)dy

= −α
∫ xT

−xT
w(x− y)v2(y)dy = −T2(x)
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The eigenvalue problem can be written as

(1 + λ)v(x) = w(x− xT )
v2(xT )

c
+ w(x+ xT )

v2(−xT )

c
+ α

∫ xT

−xT
w(x− y)v2(y)dy

= w(x− xT )
v2(xT )

c
+ w(x+ xT )

v2(−xT )

c
+ T2(x)

Since v(x) is continuous on <, v(xT ) and v(−xT ) can be replaced by v2(xT ) and v2(−xT ), respec-

tively. Then

(1 + λ)v(−x) = w(−x− xT )
v2(xT )

c
+ w(−x+ xT )

v2(−xT )

c
+ T2(−x)

= w(x+ xT )
v2(xT )

c
+ w(x− xT )

v2(−xT )

c
+ T2(−x)

If v2(x) is even,

(1 + λ)v(−x) = w(x+ xT )
v2(−xT )

c
+ w(x− xT )

v2(xT )

c
+ T2(x)

= (1 + λ)v(x)

If v2(x) is odd,

(1 + λ)v(−x) = w(x+ xT )
v2(xT )

c
− w(x− xT )

v2(xT )

c
− T2(x)

= −
[
−w(x+ xT )

v2(xT )

c
+ w(x− xT )

v2(xT )

c
+ T2(x)

]

= −
[
w(x+ xT )

v2(−xT )

c
+ w(x− xT )

v2(xT )

c
+ T2(x)

]

= −(1 + λ)v(x) ♦

Theorem 3.9. The matching conditions at −xT are identical to those at xT when v(x) is an odd

or an even function.

Proof of theorem 3.9: This is shown with a direct calculation of the matching conditions of

v′(x), v′′(x) and v′′′(x) at both −xT and xT .

Case 1. v(x) is even, i.e. v(−xT ) = v(xT ) and v′(−x+
T ) = −v′(x−T ). Defining the jump of v at
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x as [v(x)] = v(x+)− v(x−), the follow equalities are derived

[v(−xT )] = − [v(xT )]

[
v′(−xT )

]
=

[
v′(xT )

]

[
v′′(−xT )

]
= −

[
v′′(xT )

]

[
v′′′(−xT )

]
=

[
v′′′(xT )

]

From theorem 3.7, the matching conditions at −xT are

[v(−xT )] = 0

[
v′(−xT )

]
=

2α(1− aA)

1 + λ
v(−xT )

[
v′′(−xT )

]
=
−2(aA− 1)

c(1 + λ)
v(−xT )

[
v′′′(−xT )

]
=

2(1− a3A)

c(1 + λ)
v(−xT )− 2α(aA− 1)

1 + λ
v′(−x+

T )

This can be re-expressed as

[v(−xT )] = − [v(xT )] = 0

[
v′(−xT )

]
=

[
v′(xT )

]
=

2α(1− aA)

1 + λ
v(−xT )

[
v′′(−xT )

]
= −

[′′v(xT )
]

=
−2(aA− 1)

c(1 + λ)
v(−xT )

[
v′′′(−xT )

]
=

[
v′′′(xT )

]
=

2(1− a3A)

c(1 + λ)
v(−xT )− 2α(aA− 1)

1 + λ
v′(−x+

T )

which gives us the matching conditions at xT

[v(xT )] = 0

[
v′(xT )

]
=

2α(1− aA)

1 + λ
v(xT )

[
v′′(xT )

]
=

2(aA− 1)

c(1 + λ)
v(xT )

[
v′′′(xT )

]
=

2(1− a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T )
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Now start with the right matching conditions at xT from theorem 3.7

[v(xT )] = 0

[
v′(xT )

]
=

2α(1− aA)

1 + λ
v(xT )

[
v′′(xT )

]
=

2(aA− 1)

c(1 + λ)
v(xT )

[
v′′′(xT )

]
=

2(1− a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T )

and derive the following matching conditions

[v(xT )] = − [v(−xT )] = 0

[
v′(xT )

]
=

[
v′(−xT )

]
=

2α(1− aA)

1 + λ
v(xT )

[
v′′(xT )

]
= −

[
v′′(−xT )

]
=

2(aA− 1)

c(1 + λ)
v(xT )

[
v′′′(xT )

]
=

[
v′′′(−xT )

]
=

2(1− a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T )

which gives the matching conditions at −xT :

[v(−xT )] = 0

[
v′(−xT )

]
=

2α(1− aA)

1 + λ
v(−xT )

[
v′′(−xT )

]
=
−2(aA− 1)

c(1 + λ)
v(−xT )

[
v′′′(−xT )

]
=

2(1− a3A)

c(1 + λ)
v(−xT )− 2α(aA− 1)

1 + λ
v′(−x+

T )

Therefore the matching conditions at −xT and xT are the same.

Case 2: v(x) is odd, i.e. v(−xT ) = −v(xT ) and v′(−x+
T ) = v′(x−T ). Here

[v(−xT )] = [v(xT )]

[
v′(−xT )

]
= −

[
v′(xT )

]

[
v′′(−xT )

]
=

[
v′′(xT )

]

[
v′′′(−xT )

]
= −

[
v′′′(xT )

]
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Similarly, the matching conditions at −xT are

[v(−xT )] = [v(xT )] = 0

[
v′(−xT )

]
= −

[
v′(xT )

]
=

2α(1− aA)

1 + λ
v(−xT )

[
v′′(−xT )

]
=

[
v′′(xT )

]
=
−2(aA− 1)

c(1 + λ)
v(−xT )

[
v′′′(−xT )

]
= −

[
v′′′(xT )

]
=

2(1− a3A)

c(1 + λ)
v(−xT )− 2α(aA− 1)

1 + λ
v′(−x+

T )

which is the same as the matching conditions at xT

[v(xT )] = 0

[
v′(xT )

]
=

2α(1− aA)

1 + λ
v(xT )

[
v′′(xT )

]
=

2(aA− 1)

c(1 + λ)
v(xT )

[
v′′′(xT )

]
=

2(1− a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T ).

To complete the proof, I can derive the matching conditions at −xT from the matching conditions

at xT . ♦

3.7 Solutions of ODE II

Assume that A, B, a, α, uT and xT are all fixed. The solution structure of ODE II depends on

λ. In this section, I give possible solutions for ODE II depending on eigenvalue λ.

ODE II on [−xT , xT ] is

(1 + λ)v(iv) −Bv′′ + Cv = 0

The characteristic equation of ODE II is

(1 + λ)ω4 −Bω2 + C = 0
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Where

B = (1 + λ)(a2 + 1) + 2α(1− aA), C = (λ+ 1)a2 − 2αa(A− a).

Let

∆ = B2 − 4BC

= (a2 − 1)2λ2 + 2(a2 − 1)(a2 − 1− 2aAα− 2α)λ−

(a2 − 1)(1− a2 + 4α+ 4aAα) + 4α2(1− aA)2

B is a linear function in λ and ∆ is a quadratic function in λ. If ∆ is negative, there will be complex

characteristic values of ODE II. If ∆ is positive, I may or may not have complex characteristic values

for ODE II. It depends on both B and ∆. For fixed A, a and α. ∆ is a parabola with two zeros λl

and λr. λl represents the left zero of ∆, and λr represents the right zero of ∆. In order to decide

the structure of the solution of ODE II, the following lemmas are needed (See proofs in Appendix.)

Lemma 3.7. λB, the zero of B is always between −1 and λr. When a3 > A, λl < λB < λr. When

a3 < A, λB < λl < λr.

By lemma 3.7, there are two possible pictures to describe the relations between λl, λr and λB

(see figure 3.4 and 3.5.)

0λl λrλB

λ

∆1/2 B

∆1/2

Figure 3.4. Plots of
√

∆ and B. When λl < λ < λr,
√

∆ is complex. a = 2.4, A = 2.8, α = 0.22.

——————————————————————————
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0 λr

λ

∆1/2

B

∆1/2

λΒ λΙ λl

Figure 3.5. Plots of
√

∆ and B. When λl < λ < λr,
√

∆ is complex. a = 1.2, A = 3.2, α = 0.08.

——————————————————————————

Lemma 3.8. (i). When a3 > A, λl < λB < λr, B does not intersect the left branch or the right

branch of
√

∆ (figure 3.4.)

(ii). When a3 < A, λB < λl < λr, B intersects only the left branch of
√

∆ once at λI (figure

3.5.)

Corollary 3.1. Suppose ω1, −ω1, ω2 and −ω2 are the four characteristic values of ODE II,

(i) When λl < λB < λr, table 3.1 shows all the possibilities of ω1 and ω2.

(ii) When λB < λl < λr, table 3.2 shows all the possibilities of ω1 and ω2.

1 2 3 4 5 6

λ = −1 −1 < λ < λl λ = λl λl < λ < λr λ = λr λ > λr
B < 0 B < 0 B > 0 or B < 0 B > 0 B > 0

∆ > 0, |B| <
√

∆ ∆ = 0 ∆ < 0 ∆ = 0 ∆ > 0

ω1 real ω1, ω2 imaginary ω1, ω2 complex ω1,ω2 real ω1, ω2 real

ω2 imaginary ω1 = ω∗2 ω1 = ω∗2 ω1 = ω2

Table 3.1. Characteristic value chart when λl < λB < λr.

Form chart 3.1 and 3.2, there are three possible forms of solution v2(x): 1) both ω1 and ω2 are

real; 2) both ω1 and ω2 are complex; 3) ω1 is real and ω2 is imaginary.

3.7.1 Solution v2(x) when λ ≥ λr and λI ≤ λ < λl

The solution v2(x) of ODE II is either even or odd. Suppose the even v2(x) is ve
2(x) and the

odd v2(x) is vo
2(x).
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1 2 3 4 5 6

−1 < λ < λI λI ≤ λ < λl λ = λl λl < λ < λr λ = λr λ > λr
B < 0 or B > 0 B > 0 B > 0 B < 0 B > 0 B > 0

∆ > 0, |B| <
√

∆ ∆ > 0, |B| >
√

∆ ∆ = 0 ∆ < 0 ∆ = 0 ∆ > 0

ω1 real ω1, ω2 real ω1, ω2 real ω1, ω2 complex ω1,ω2 real ω1, ω2 real

ω2 imaginary ω1 = ω2 ω1 = ω∗2 ω1 = ω2

Table 3.2. Characteristic value chart when λB < λl < λr.

When λ ≥ λr and λI ≤ λ ≤ λl, both ω1 and ω2 are real. In general, one can write ve
2(x) of

ODE II in the following exponential form

ve
2(x) = c3(eω1x + e−ω1x) + c4(eω2x + e−ω2x)

Let µ1 = eω1x + e−ω1x, µ2 = eω2x + e−ω2x

However, one cannot write ve
2(x) in the above form c3µ1 + c4µ2. As λ → λr, λl, ω1 → ω2 and

µ1 → µ2, which means that µ1 and µ2 become dependent. µ1 and µ2 have to be independent at

λ = λr, λl, λI . Therefore, I adopt the following form for ve
2(x)

ve
2(x) = c3(eω1x + e−ω1x) + c4

(eω1x + e−ω1x)− (eω2x + e−ω2x)

ω1 − ω2

Let ε = ω1 − ω2, where ω1 > ω2. As ω1 → ω2, ε→ 0. Rewrite ve
2(x) as

ve
2(x) = c3(eω1x + e−ω1x) + c4

(eω1x + e−ω1x)− (e(ω1−ε)x + e−(ω1−ε)x)

ε

= c3(eω1x + e−ω1x) + c4
(eω1x + e−ω1x)− (eω1xe−εx + e−ω1xeεx)

ε

As ε→ 0, replace eεx by 1 + εx, e−εx by 1− εx, then

ve
2(x) = c3(eω1x + e−ω1x) + c4

εx(eω1x − e−ω1x)

ε

= c3(eω1x + e−ω1x) + c4x(eω1x − e−ω1x)

= 2c3 cosh px+ 2c4x sinh px
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Similarly, vo
2(x) can be written as

vo
2(x) = c3(eω1x − e−ω1x) + c4

(eω1x − e−ω1x)− (eω2x − e−ω2x)

ω1 − ω2

3.7.2 Solution v2(x) when λl < λ < λr

Here both ω1 and ω2 are complex. Let ω1 = p + iq, ω2 = p − iq. When v2(x) is even, write

ve
2(x) as

ve
2(x) = 2c3 cos qx cosh px+ 2c4

sin qx

q
sinh px (3.42)

As λ→ λl or λr, q → 0,

v2(x)→ 2c3 cos qx cosh px+ 2c4x sinh px (3.43)

vo
2(x) can be written as

vo
2(x) = 2c3 cos qx sinh px− 2c4

sin qx

q
cosh px

where p =

√√
B2 + |∆|

2(1 + λ)
cos θ, p =

√√
B2 + |∆|

2(1 + λ)
sin θ and θ =

1

2
arctan

√
|∆|
B

3.8 Stability criteria

By theorem 3.7, v1(x) and v2(x) must match at −xT , and v2(x) must match v3(x) at xT . By

theorem 3.9, no matter if v2(x) is even or odd, the matching conditions at −xT are same as the

matching conditions at xT . Therefore, it suffices to apply the matching condition to v2(x) and

v3(x) at xT for both even v2(x) and odd v2(x). In general, the matching conditions can be written
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as

T1 :





[v(xT )] = v3(xT )− v2(xT ) = 0

[v′(xT )] = v′3(xT )− v′2(xT ) =
2α(1− aA)

1 + λ
v(xT )

[v′′(xT )] = v′′3(xT )− v′′2(xT ) =
2(aA− 1)

c(1 + λ)
v(xT )

[v′′′(xT )] = v′′′3 (xT )− v′′′2 (xT ) =
2(1− a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T )

where v(xT ) = v3(xT ) and v′(x−T ) = v′2(xT ).

There are two unknown coefficients c3 and c4 in v2(xT ). c5 and c6 are the unknown coefficients

in v3(xT ). If I simplify the above system and substitute numbers for a, A, α, xT , uT given by the

stationary solution u(x), I obtain a 4×4 homogeneous linear system with 4 unknown free parameters

c3, c4, c5, c6. The coefficient matrix of this system must be singular for some λ in order to have

a non-trivial solution (c3, c4, c5, c6), which means the determinant D(λ) of the coefficient matrix

must be equal to zero for some λ. The λ for which D(λ) = 0 is an eigenvalue and it determines the

stability of the stationary solution. If there exists a λ such that 0 < λ < λb and D(λ) = 0, then

the standing pulse is unstable. If there is no positive λ such that 0 < λ < λb and D(λ) = 0, the

standing pulse is stable. This approach is similar to the Evans Function [20, 21, 22, 23].

3.8.1 Examples

Consider the stationary pulse solutions for a = 2.4, A = 2.8, α = 0.22, uT = 0.40073 and β = 1.

There are two single-pulse solutions. One has higher amplitude and bigger width. I call it ul(x).

The other one is called us(x) which is slightly above threshold and much narrower than ul(x). From

chapter 2, I am able to explicitly calculate both single pulse solutions and they are given as

ul(x) =





0.665 cos(0.31x) cosh(1.49x)− 3.775 sin(0.31x) sinh(1.49x) + 0.328, −xT ≤ x ≤ xT
6.237e−2.4|x| − 1.61e−|x|, otherwise

where xT = 0.683035.
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us(x) =





0.216 cos(0.31x) cosh(1.49x)− 8.031 sin(0.31x) sinh(1.49x) + 0.328, −xT ≤ x ≤ xT
1.203e−2.4|x| − 0.416e−|x|, otherwise

where xT = 0.202447.

Using the stability criteria, the large pulse turns out to be stable and the small pulse is unstable.

For the small pulse, there exists a positive value λ ≤ λb such that D(λ) = 0. There is no positive

value of λ ≤ λb such that D(λ) = 0, therefore the large pulses stable.

3.8.2 Stability of the large pulse ul(x)

I first calculate the upper bound for λ. The upper bound λb for the large pulse and small pulse

are different because λb depends on xT . Let λl
b be the upper bound of λ for the large pulse and λs

b

be the upper bound for the small pulse. For the following parameter set, I calculate λl
b = 1.25917

and λs
b = 1.66628. by theorem 3.3

{a = 2.4, A = 2.8, α = 0.22, uT = 0.40073}

For the above set of parameters. v3(x) always has the following form.

v3(x) = c5e
−ax + c6e

−x

However, the form of v2(x) depends on ω1 and ω2. For this specific set of parameters, λl =

−0.627692 and λr = 0.192861. When 0 ≤ λ ≤ λr = 0.192861, both ω1 and ω2 are complex.

Therefore

v2(x) =





2c3 cos qx cosh px+ 2c4
sin qx

q
sinh px v2(x) is even

2c3 cos qx sinh px− 2c4
sin qx

q
cosh px v2(x) is odd

where p, q are real, and c3, c4 are unknown.

Plug ve
2(x) and v3(x) into system T1. This system is a very complicated 4 × 4 linear system

in c3, c4, c5 and c6. I do not show the actual system here. Mathematica [67] can calculate the
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determinant of the coefficient matrix. The determinant D(λ) is a function of λ. Plotting D(λ)

against λ on domain [0, λr] to obtain figure 3.6. Repeat the same procedure to vo
2(x) to get figure

λr λb
b0 1

λ

10

20

30

D(λ)

Figure 3.6. Plot of D(λ) when both ω1 and ω2 are complex. v2(x) is even. a = 2.4, A = 2.8, α = 0.22,
xT = 0.683035, λr = 0.192861, λl

b = 1.25917.

——————————————————————————

3.7 of D(λ). When 0.192861 = λr ≤ λ ≤ λl
b = 1.25917, v2(x) has the following exponential form

λr λb
b0 1

λ

10

20
D(λ)

Figure 3.7. Plot of D(λ) when both ω1 and ω2 are complex. v2(x) is odd. D(λ) passes through the origin
where λ = 0. a = 2.4, A = 2.8, α = 0.22, xT = 0.683035, λr = 0.192861, λl

b = 1.25917.

——————————————————————————
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because both ω1 and ω1 are real.

v2(x) =





c3(eω1x + e−ω1x) + c4
(eω1x + e−ω1x)− (eω2x + e−ω2x)

ω1 − ω2
v2(x) is even

c3(eω1x − e−ω1x)− c4
(eω1x − e−ω1x)− (eω2x + e−ω2x)

ω1 − ω2
v2(x) is odd

Plotting D(λ) for both even v2(x) and odd v2(x) gives figure 3.9 and figure 3.9. Combining

λr λb
b0 1

λ0

50

D(λ)

Figure 3.8. Plot of D(λ) when both ω1 and ω2 are real. v2(x) is even a = 2.4, A = 2.8, α = 0.22,
xT = 0.683035, λr = 0.192861, λl

b = 1.25917 .

——————————————————————————

λr λb
b0 1

λ0

50

D(λ)

Figure 3.9. Plot of D(λ) when both ω1 and ω2 are real. v2(x) is odd. a = 2.4, A = 2.8, α = 0.22,
xT = 0.683035, λr = 0.192861, λl

b = 1.25917.

——————————————————————————

D(λ) with complex and real characteristic values gives figure 3.10 (even v(x)) and figures 3.11 (odd
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v(x).) From figure 3.10, D(λ) has no zero. In figure 3.11, D(λ) = 0 only when λ = 0. There is no

positive λ that satisfies D(λ) = 0. Hence, the large pulse solution is stable. Figure 3.11 shows that

λ = 0 is an eigenvalue. This result is consistent with theorem 3.6.

λr λb
b0 1

λ0

50

D(λ)

Figure 3.10. Plot of D(λ) when v2(x) is even a = 2.4, A = 2.8, α = 0.22, xT = 0.683035, λr = 0.192861,
λl
b = 1.25917. There is no positive λ such that D(λ) = 0, λ ≤ λl

b.

——————————————————————————

3.8.3 Instability of the small pulse us(x)

Let λs
b be the upper bound for the small pulse. For the following set of parameter, λs

b = 1.66628

by theorem 3.3.

{a = 2.4, A = 2.8, α = 0.22, uT = 0.40073}

Repeating the same procedure to plot D(λ) for both ve
2(x) and vo

2(x) as in section 3.8.2. The positive

eigenvalue λ = λ∗ such D(λ∗) = 0 in figure 3.12 implies the instability of the small single-pulse.

The plot of D(λ) corresponding to vo(x) in figure 3.13 identifies the zero eigenvalue.
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λr λb
b0 1

λ0

50

D(λ)

Figure 3.11. Plot of D(λ) when v2(x) is odd. a = 2.4, A = 2.8, α = 0.22, xT = 0.683035, λr = 0.192861,
λl
b = 1.25917. There is no positive λ such that D(λ) = 0, λ ≤ λl

b. When v2(x) is odd, D(λ) does identify the
zero eigenvalue..

——————————————————————————

3.8.4 Stability of the dimple-pulse ud(x) and the instability of the third pulse

When there are only two single-pulses, the large pulse could be a dimple-pulse instead of a

single-pulse. This dimple pulse is stable by the stability criteria (figure 3.14 and 3.15.) There

could be three pulses coexisting (examples in section 2.8.2 and 2.10.2.) Applying the same stability

criteria to the third pulse, it shows that the third pulse is unstable. For example, the third pulse

(the right dimple-pulse shown in figure 2.23) at P2 (figure 2.22) in section 2.8.2 is unstable (figure

3.16.)
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λr λb
sλ∗ 1

λ

−80

−40

0

40

D(λ)

Figure 3.12. Plot of D(λ) when v2(x) is even a = 2.4, A = 2.8, α = 0.22, xT = 0.683035, λr = 0.192861,
λs
b = 1.66628. λ∗ = 0.603705 There is one positive λ = λ∗ such that D(λ∗) = 0, λ∗ ≤ λs

b.

——————————————————————————

λr λb
s0 1

λ0

50

D(λ)

Figure 3.13. Plot of D(λ) when v2(x) is odd. a = 2.4, A = 2.8, α = 0.22, xT = 0.683035, λr = 0.192861,
λs
b = 1.66628. There is no positive λ such that D(λ) = 0, λ ≤ λs

b. When v2(x) is odd, D(λ) = 0 at λ = 0
identifies the zero eigenvalue..

——————————————————————————
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λr λb0 1
λ0.846137

25

50

75

D(λ)

Figure 3.14. Plot of D(λ) when v2(x) is even a = 2.4, A = 2.8, α = 0.22, xT = 2.048246, λr = 0.192861,
λd
b = 2.48147. There is no positive λ such that D(λ) = 0.

——————————————————————————

λr λb0 1
λ

25

50

75

D(λ)

Figure 3.15. Plot of D(λ) when v2(x) is odd. a = 2.4, A = 2.8, α = 0.22, xT = 2.048246, λr = 0.192861,
λs
b = 2.48147. There is no positive λ such that D(λ) = 0, λ ≤ λd

b . When v2(x) is odd, D(λ) does identify
the zero eigenvalue because D(λ) = 0 at λ = 0. This is consistent with theorem.

——————————————————————————
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λb1
λ0

50

50

100

D(λ)

λr

Figure 3.16. Plot of D(λ) when v2(x) is even a = 2.6, A = 2.8, α = 0.6187, xT = 1.98232, c = 0.588426,
λr = 1.93376, λs

b = 9.52688. There is a positive λ such that D(λ) = 0.

——————————————————————————
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Chapter 4

Double-pulse solutions and future directions

In this chapter, I investigate double-pulse (2-pulse) solutions of equation

u(x) =

∫ ∞

−∞
w(x− y)f [u(y)]dy (4.1)

where f [u(x)] is the gain function

f [u] = [α(u− uT ) + β]Θ(u− uT ) α, uT , β > 0 (4.2)

w(x) is coupling function

w(x) = Ae−a|x| − e−|x| A > 1, a > 1. (4.3)

Both f [u] and w(x) are described in section 2.1.

A double-pulse (2-pulse) refers to a standing pulse (or localized excitation) with two disjoint,

finite and open intervals (excitation regions).

Definition 4.1. Double-pulse solution: A solution u(x) of (4.1) is called a double-pulse or a

2-pulse if there are x1 > 0 and x2 > 0 such that

u(x)





> uT if x ∈ (x1, x2) ∪ (−x2,−x1), x1,2 > 0

= uT if x = −x2,−x1, x1, x2

< uT otherwise

with

(u, u′, u′′, u′′′)→ (0, 0, 0, 0)
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Figure 4.1. Double-pulse sketch.

exponentially fast as x → ±∞. Here u, u′ are bounded and continuous on <. u′′, u′′′ and u′′′′ are

continuous everywhere for x ∈ < except x = ±x1,2 and bounded everywhere on <, and. u(x) is

symmetric with u′′(0) > 0; u(0) is the minimum between −x1 and x1 (seefigure 4.1).

4.1 Construction of double-pulse

The approach to find and construct a double-pulse is similar to that for a single-pulse as detailed

in section 2.4. The coupling weight w(x) is the same exponential function (2.3). Applying a Fourier

Transform to (4.1), I obtain the same equation as (2.16)

F [u
′′′′ −

(
a2 + 1

)
u′′ + a2u] = F [2

(
aA− a2

)
f ] + 2 (aA− 1)F [s2f ] (4.4)

The F [s2f ] in equation (4.4) is different from the one in (2.16) because F [s2f ] is related to the

threshold points. For a double-pulse, there are four threshold points −x1,2 and x1,2 instead of just

the two ±xT for a single-pulse. Hence, I must recalculate F [s2f ] and re-derive the fourth order ODE
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to look for a double-pulse solution. Consider

F
[
s2f
]

=

∫ ∞

−∞
s2eisxf [u (x)] dx

= −is
∫ x2

x1

(
eisx
)′
f [u (x)] dx− is

∫ −x1

−x2

(
eisx
)′
f [u (x)] dx

= −iseisxf [u (x)] |x2
x1

+

∫ x2

x1

iseisx
df [u (x)]

dx
dx− iseisxf [u (x)] |−x1

−x2
+

∫ −x1

−x2

iseisx
df [u (x)]

dx
dx

= −iseisx2f [u (x2)] + iseisx1f [u (x1)] + eisx2f ′ [u (x2)]u′ (x2)− eisx1f ′ [u (x1)]u′ (x1)

−
∫ x2

x1

eisx
d2f [u (x)]

dx2
dx− ise−isx1f [u (−x1)] + is−isx2f [u (−x2)]

+e−isx1f ′ [u (−x1)]u′ (−x1)− e−isx2f ′ [u (−x2)]u′ (−x2)−
∫ −x1

−x2

eisx
d2f [u (x)]

dx2
dx

= −is
(
eisx2 − e−isx2

)
f [u (x2)] + is

(
eisx1 − e−isx1

)
f [u (x1)]

−f ′ [u (x1)]u′ (x1)
(
eisx1 + e−isx1

)
+ f ′ [u (x− 2)]u′ (x2)

(
eisx2 + e−isx2

)

−
(∫ x2

x1

eisx
d2f [u (x)]

dx2
dx+

∫ −x1

−x2

eisx
d2f [u (x)]

dx2
dx

)

Apply the inverse Fourier Transform to obtain the fourth order ODE on x ∈ (−∞,∞)

u(′′′′) − (a2 + 1)u′′ + a2u = (4.5)

2a(A− a)f [u(x)] + 2(aA− 1)
{
f [u(x2)]∆′2(x)− f [u(x1)]∆′1(x)

}
−

2(aA− 1)
{
f ′[u(x1)]u′(x1)∆1(x) + f ′[u(x1)]u′(x1)∆2(x)

}
−

2(aA− 1)
d2f [u(x)]

dx2

where

∆1(x) = δ(x− x1) + δ(x+ x1)

∆2(x) = δ(x− x2) + δ(x+ x2)

∆′1(x) = δ′(x− x1)− δ′(x+ x1)

∆′2(x) = δ′(x− x2)− δ′(x+ x2)

102



Integrating the fourth order ODE (4.5) over (x1− ε, x1 + ε) (ε→ 0) gives the jump of u′′′(x) at x1.

u
′′′

(x+
1 )− u′′′(x−1 ) = −2(aA− 1)f ′[u(x1)]u′(x1)

Integrating the fourth order ODE with respect to x to get a third order ODE, then integrating the

third order ODE over (x−1 , x
+
1 )

u
′′
(x+

1 )− u′′(x−1 ) = −2(aA− 1)f [u(x1)]

Similarly, the jumps at x2 are

u
′′′

(x+
2 )− u′′′(x−2 ) = 2(aA− 1)f ′[u(x2)]u′(x2)

u
′′
(x+

2 )− u′′(x−2 ) = 2(aA− 1)f [u(x2)]

Now I have ten equations for the matching conditions at both x1 and x2.

uI(x1) = uT (4.6)

uII(x1) = uT (4.7)

uII(x2) = uT (4.8)

uIII(x2) = uT (4.9)

u′I(x1) = u′II(x1) (4.10)

u′′I (x1) = u′′II(x1) + 2(aA− 1)f(u(x1)) (4.11)

u′′′I (x1) = u′′′II(x1) + 2(aA− 1)f ′(u(x1))u′(x1) (4.12)

u′II(x2) = u′III(x2) (4.13)

u′′II(x2) = u′′III(x2)− 2(aA− 1)f(u(x2)) (4.14)

u′′′II(x2) = u′′′III(x2)− 2(aA− 1)f ′(u(x2))u′(x2) (4.15)

In Region I and III, ODE (4.5) can be reduced to

u
′′′′ − (a2 + 1)u′′ + a2u = 0 (4.16)
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Solution of (4.16) on I is in the form of uI(x) = C(eax + e−ax) + D(ex + e−x). In region III,

uIII(x) = Ge−ax +He−x.

In region II , ODE (4.5) can be reduced to

u
′′′′ − (a2 + 1)u′′ + a2b2u = 2ab(bA− a)f [u(x)]− 2(aA− 1)

d2f [u(x)]

dx2

where f [u(x)] = α(u− uT ) + β and
d2f [u(x)]

dx2
= αu′′(x).

It can be further simplified to

u
′′′′ −

[
a2 + 1 + 2α(aA− 1)

]
u′′ + (a2 − 2aα(A− a))u = 2a(A− a)(β − αuT ) (4.17)

The ODE for double-pulse on region II is the same as ODE (2.27). Therefore, the four eigenval-

ues ω1,2 and −ω1,2 of ODE (4.17) have the same structures as those of ODE (2.27) for single-pulses

in section 2.6. Hence the eigenvalues ω1,2 of ODE (4.17) satisfies

ω2
1 = R+ S (4.18)

ω2
2 = R− S (4.19)

where

∆ = (a2 + 1− 2α(aA− 1))2 − 4(a2 − 2aα(A− a))

R =
(a2 + 1− 2α(aA− 1))

2
S =

√
∆

2

ω1,2 could be both real, both complex, or one real and complex for the other. There is no need

to go over all similar details as for single-pulses. I only give the solution forms here.

If ω1,2 are real, the solution of ODE (4.17) in region II can be written as

uII(x) = Eeω1(x−x1+x2
2

) + Fe−ω1(x−x1+x2
2

) + Seω2(x−x1+x2
2

) + Te−ω2(x−x1+x2
2

) +
2(A− a)(β − αuT )

a− 2α(A− a)
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where E, F , S, T ∈ <. (Figure 4.2)

If ω1,2 are both complex, let ω1 = p+ iq, then

uII(x) = 2Eepx cos qx− 2Fepx sin qx+ 2Se−px cos qx+ 2Te−px sin qx+
2(A− a)(β − αuT )

a− 2α(A− a)

where p = <ω1 ∈ <, q = =ω1 ∈ < and ω1 is the complex conjugate of ω2. E, F , S, T ∈ <. (Figure

4.3)

If ω1 is real and ω2 is complex, ω1 satisfies (4.18) and q =

√√
∆−R

2
, then

uII(x) = Eew1x + Fe−w1x + 2S cos qx+ 2T sin qxf +
2(A− a)(β − αuT )

a− 2α(A− a)

where E, F , S, T ∈ <.

−x
1

−x
2

x
1

x
2

x

−0.3

0.8

u

uT

Figure 4.2. Double-pulse for Amari case in which α = 0. A = 2.8, a = 2.6, α = 0, uT = 0.26, x1 = 0.279525,
x2 = 1.20521.

——————————————————————————
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Figure 4.3. Double-pulse with complex ω1,2. A = 2.8, a = 2.6, α = 0.98, uT = 0.26, x1 = 0.19266,
x2 = 1.38376.

——————————————————————————

4.2 Future directions

There are a number of directions to extend this work. One continuation of this work is to

analyze the stability of double-pulses. Laing and Troy [42] develop criteria for the existence and

stability of 2-pulse solutions for Amari’s model with the Heaviside gain function. Their results

imply that lateral inhibition type of coupling is not sufficient to produce stable 2-pulses. I would

like to explore if the model with the non-saturating piece-wise linear gain function (4.2) can support

stable double-pulse patterns. I will use a similar approach as the stability analysis of single-pulses

(Chapter 3.) But the analysis of double-pulses will be much more complicated because there are

more threshold points. This study will generalize part of Laing and Troy’s to non-saturating gain.

In the one population rate model, I use a lateral-inhibition coupling such that each neuron in the

network excites nearby neurons and inhibits distant ones. However, a neuron is either excitatory

or inhibitory but cannot be both. Therefore, I will consider a two-population rate model:

ut(x, t) = −u(x, t) +

∫ ∞

−∞
wee(x− y)fe[u(y, t)]dy −

∫ ∞

−∞
wie(x− y)fi[v(y, t)]dy (4.20)

vt(x, t) = −v(x, t) +

∫ ∞

−∞
wei(x− y)fe[u(y, t)]dy −

∫ ∞

−∞
wii(x− y)fi[v(y, t)]dy (4.21)

Here, u and v represent the average neural activity in a population of excitatory (e) and inhibitory
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(i) neurons, respectively, at spatial point x and time t; wjk is the coupling weight function rep-

resenting the strength of connectivity from population j to k (j, k ∈ {e, i}); fj is the firing rate

of population j. This two-population rate model is derived from a corresponding spiking neuron

model using averaging methods.

Pinto and Ermentrout [52] study the two-population rate model with a linear fi, the Heaviside

fe and lateral-inhibition type of connectivity. I can investigate this two-population rate model using

a non-saturating piece-wise linear function (4.2) for fe. My goal is to show the existence of standing

pulses and examine their stability. Gutkin et al. [32] investigate a one-dimensional conductance-

based network including both excitatory and inhibitory neurons. I can do a similar study of the

corresponding spiking model. Then I can compare the neural activity of the two-population rate

model with the simulations of the spiking model. I hope to find the correspondence between the

rate model and the spiking model in the same manner as Laing and Chow [41].
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Appendix

Appendix

Proposition A.1. Both α1 and α3, the roots of equation ∆ = 0, are positive and they are never

equal to each other, i.e. ∆(α) = 0 always has two different positive roots α1 and α2. And

α1 =
a3A+ a2 − aA− 1− 2

√
aA

2(aA− 1)2
(A.1)

α3 =
a3A+ a2 − aA− 1 + 2

√
aA

2(aA− 1)2
(A.2)

Proof of proposition A.1: Rearrange ∆ and write it as a quadratic form of α.

∆ = 4(aA− 1)2α2 + [4(aA− 1)(a2 + 1) + 8a(A− a)]α+ (a2 − 1)2 (A.3)

The constant term (a2 − 1)2 is positive because a > 1. Thus, there is no zero solution for ∆ = 0

and the two solutions have the same sign, either both positive or both negative. Now we eliminate

the possibility that both are negative by contradiction. Suppose the two roots, α1 and α3 are both

negative. Then the following must be true.

4(aA− 1)(a2 + 1) + 8a(A− a)

4(aA− 1)2
< 0

4(aA− 1)(a2 + 1) + 8a(A− a) < 0 (A.4)

Simplify (A.4),

A <
3a2 + 1

a(a2 + 3)
(A.5)

Since A > 1,
3a2 + 1

a(a2 + 3)
> 1, which means (a − 1)3 < 0. Therefore, a < 1, which contradicts the
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assumed condition on parameter a. So α1 and α3 must be both positive. Solve ∆ = 0 and simplify

to obtain

α1 =
a3A+ a2 − aA− 1− 2

√
aA

2(aA− 1)2
(A.6)

α3 =
a3A+ a2 − aA− 1 + 2

√
aA

2(aA− 1)2
(A.7)

Proposition A.2. For the balanced case in which A = a, α1 < 1/2, α > 1/2. When A gets bigger,

α1 moves closer to α3, but never reaches it.

Proof of proposition A.2: Replace A by a. ∆ becomes

∆ = (a2 + 1− 2α(a2 − 1))2 − 4a2 (A.8)

Solve two equations

∆ = a2 + 1− 2α(a2 − 1) = 2a (A.9)

∆ = a2 + 1− 2α(a2 − 1) = −2a (A.10)

(A.10) gives α1 =
a− 1

2(a+ 1)
, therefore α1 <

a+ 1

2(a+ 1)
=

1

2
. (A.9) gives α3 =

a+ 1

2(a− 1)
, therefore

α3 >
a− 1

2(a− 1)
=

1

2
.

Lemma A.1. λB, the zero of B is always between −1 and λr. When a3 > A, λl < λB < λr. When

a3 < A, λB < λl < λr.

Proof of lemma A.1: Set

B = (1 + λ)(a2 + 1) + 2α(1− aA) = 0

The zero of B is

λB = −a
2 + 1 + 2α− 2aAα

a2 + 1
= −1 +

2α(aA− 1)

a2 + 1
.

Since both a and A are bigger than unity and α is positive, λB > −1. ∆ is a quadratic function in
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λ and it has two zeros. The left zero is

λl =
1− a2 + 2aAα+ 2α− 4α

√
aA

a2 − 1

The right zero is

λr =
1− a2 + 2aAα+ 2α+ 4α

√
aA

a2 − 1

The difference between λr and λB is

λr − λB =
4aα(a+A) + 4α

√
aA(a2 + 1)

a4 − 1
> 0

Therefore −1 < λB < λr.

The difference between λB and λl is

λB − λl =
4α(
√
aA− 1)(a2 −

√
aA)

a4 − 1
.

The sign of λB − λl depends on a2 −
√
aA.

If a2 −
√
aA is positive, i.e. a3 > A, then λl < λB < λr.

If a2 −
√
aA is negative, i.e., a3 < A, then λB < λl < λr. ♦

Lemma A.2. (i). When a3 > A, λl < λB < λr, B does not intersect the left branch or the right

branch of
√

∆. (ii). When a3 < A, λB < λl < λr, B intersects only the left branch of
√

∆ once at

λI .

Proof of lemma A.2: It is not difficult to see that B does not intersect the right branch of
√

∆

for both (i) and (ii).
√

∆ is linear in λ with slope a2− 1 for large λ. The slope of B is a2 + 1. Both

a2 − 1 and a2 + 1 are positive and a2 + 1 > a2 − 1, therefore, B and the right branch of
√

∆ never

meet. When λl < λB < λr, B < 0 for λ < λB and
√

∆ > 0 for λ < λl < λB. Therefore B and
√

∆

never intersect. In (ii), B intersects the left branch of
√

∆ at λI =
2Aα− 2aα− a

a
. ♦
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