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Complex motor behaviors enable mammals to adapt to their internal and external environments. 

The lateral hypothalamic area (LHA) contributes importantly to autonomic and endocrine 

regulation, behavioral states, and energy balance. Orexin (Orx) neuropeptides, produced 

exclusively by LHA cells, are crucial in the integration of sleep and arousal. The LHA projects 

densely to the ventral tegmental area (VTA), a dopamine (DA) region that is essential for 

modulating goal-directed behaviors. Extensive investigations of reward function implicate the 

LHA-VTA connectivity, an arrangement not yet characterized in detail at the ultrastructural 

level. The present research sought to clarify the precise interactions of LHA axons with VTA 

cells. Considering reported physiological responses of VTA cells to LHA stimulation and Orx 

actions, we hypothesized that both projections interact heavily with DA and GABA cell groups 

in the VTA, and that LHA axons provide a predominant inhibitory innervation. We used 

immunocytochemistry to visualize DA or GABA neurons in combination with 1) tract tracer 

identification of LHA axons or 2) immunolabeling for Orx. Electron microscopic analysis of the 

VTA revealed that, while the bulk of LHA and Orx projections pass through the VTA, their 

connections with DA and GABA neurons are a complementary mixture of excitatory and 

inhibitory synapses. The details of morphology herein suggest many different mechanisms of 

signal transmission by which LHA axons might contribute information concerning interoceptive 

state to the adaptive performance of complex motor behaviors modulated by the VTA. 
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1.0 GENERAL INTRODUCTION 

 

1.1 A Question of Basic Anatomy 

 

The perspective of the present research comes not from the question of whether lateral 

hypothalamic area (LHA)-ventral tegmental area (VTA) connections are reward substrates per 

se. Rather, the primary goal of these studies is to characterize the basic anatomy of this pathway 

that has, for many decades, served as a valuable tool in the study of complex behaviors and 

reward function. Understanding better the precise interactions of LHA neurons with VTA cell 

groups might contribute useful information relevant to the study of motivated behavior, and more 

specifically, to the study of what pathways might drive adaptive mammalian behavior in 

accordance with interoceptive signals of the body and stimuli in the external environment. Much 

evidence generated in the field of reward research and appetitive behavior has strongly inferred 

connectivity between the LHA and VTA. Evidence, such as dopamine (DA) efflux in terminal 

regions in response to LHA stimulation, is often interpreted in a manner that implicates a 

presumed LHA-VTA connectivity in the processing of motivated or rewarding behavior. A 

general overview of existing research will be given to make the case for hypothesizing that 

specific ultrastructural interactions exist between LHA neurons and VTA DA and GABA cell 

groups. 
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1.2 Neural Pathways Involved in LHA Function   

 

The mammalian hypothalamus acts as a homeostatic control center, as neurons in this region and 

their associated circuitry exert regulatory control over an extensive part of the internal milieu 

(Rinaman, 2007; Ter Horst and Luiten, 1987; van den Pol, 2003). An array of metabolic, 

endocrine, autonomic, and behavioral responses serves to maintain the body’s internal 

homeostasis, a process in which the LHA plays a key role, especially in energy balance and food 

intake (Schwartz et al., 2000).  

          The circuitry described in the following paragraphs focuses on pathways relevant to LHA 

function (Berthoud, 2004; Johnstone et al., 2006). Internal state signals gain access to 

hypothalamic nuclei through various routes, including metabolite sensors, hormone receptors, 

and neural afferents, including intrahypothalamic pathways. Hypothalamic areas involved in 

hunger and satiety interact and are influenced by signals regarding circadian rhythm, energy and 

metabolic state. Reciprocal connections between the LHA and the arcuate, paraventricular, and 

dorsomedial nuclei, and an input to ventromedial nuclei, are thought to integrate endocrine and 

autonomic information. Integrated information from the LHA may contribute to goal-directed 

movement in the external environment that partakes in the maintenance of the body’s internal 

homeostasis. 

          The LHA projects to the thalamus, motor and sensory cortices, and limbic system 

components. In 1952, MacLean introduced the term limbic system to designate the forebrain 

structures relevant to feeding, sexual, and defense behaviors and associated with higher neural 

processing of autonomic and endocrine responses for visceral regulations (Mogenson et al., 

1980). The prefrontal cortex (PFC) and limbic system components, including the hippocampus, 

 2



extended amygdala, and nucleus accumbens (NAc), mediate cognitive, memory, emotional, and 

reward processing, and these areas have reciprocal projections with the LHA (Berthoud, 2004). 

          Arousal/attention systems of the midbrain and pons (VTA, substantia nigra pars compacta, 

pedunculopontine/laterodorsal and raphe nuclei, locus coeruleus) receive LHA input and project 

efferents back to the LHA. Midbrain regions controlling sensory-motor coordination also have 

reciprocal connections with the LHA. Finally, reciprocal pathways exist between the LHA and 

the parabrachial nucleus and nucleus of the solitary tract, brainstem areas important in visceral 

sensory processing. 

          Of particular relevance to motivated behavior are mesocorticolimbic pathways (Kalivas 

and Volkow, 2005). The VTA sends DA and GABA projections to its major terminal fields, the 

NAc and PFC (Swanson, 1982; Van Bockstaele and Pickel, 1995). Synaptic connections have 

been clearly demonstrated between identified DA and GABA cell populations and these areas, 

the laterodorsal tegmentum (LDT) in addition (Carr et al., 1999; Carr and Sesack, 2000a; Carr 

and Sesack, 2000b; Carr and Sesack, 2000c; Omelchenko and Sesack, 2005; Sesack and Pickel, 

1992b). In addition, pathways connecting the LHA, PFC, NAc shell, and amygdala have been 

strongly implicated in incentive motivation for natural reinforcers (Hur and Zaborszky, 2005; 

Kelley, 2004).  

          Complex circuitry involving the LHA and VTA highlights the presence of an important 

pathway connecting one region involved in internal homeostasis, the LHA and its associated 

circuitry, with a region important in goal-directed motor behavior, the VTA. Therefore, I propose 

that the LHA may be an important area that relays integrated signals regarding internal 

homeostasis to the VTA and its associated circuitry. It is important to note, however, that the 

LHA may not be the only hypothalamic area to serve this role, as several other hypothalamic 
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nuclei shown to project directly to the VTA (Geisler et al., 2007; Geisler and Zahm, 2005) may 

contribute alternately and/or additionally to the full expression of goal-directed behavior. As of 

yet, anatomical substrates by which LHA neurons might influence VTA function have not been 

described in detail. 

 

1.3 The Importance of the LHA 

 

The hypothalamus sends projections along the medial forebrain bundle (MFB) to the VTA and 

contributes to the initiation of goal-directed behaviors (Mogenson et al., 1980). The LHA plays a 

significant role in multiple functions including regulation of the autonomic nervous system, 

sensory motor integration, arousal, sleep, and ingestive behavior (Bernardis and Bellinger, 1996; 

Gao and van den Pol, 2001). Electrical stimulation of the MFB at the level of the LHA has been 

shown to elicit behavioral activation, including defensive attack, drinking, feeding, and mating, 

while electrolytic lesions of the LHA disrupt these complex responses (Bernardis and Bellinger, 

1996; Elmquist et al., 1999; Mogenson et al., 1980). Such range of functions gives basis to 

suggest that the LH may mediate integrative functions related to emotion, reward, aversion, and 

learning (Ono et al., 1986).  

          A classical view that identifies the LHA as the “feeding center” (Anand and Brobeck, 

1951) has since been redefined by the identification of signaling molecules of intra- and 

extrahypothalamic pathways involved in feeding and energy balance (Berthoud, 2004; Elmquist 

et al., 1999; Hoebel, 1997; Huang et al., 2007; Stanley et al., 1996; Stricker and Zigmond, 1984; 

Williams et al., 2001; Woods et al., 1998). LHA microinjections of kainic acid that destroyed 

cell bodies and spared passing fibers, including those of DA, produced inability to eat and drink, 
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but without the persistent disturbances of arousal and sensory-motor function typically observed 

in animals with LHA electrolytic lesions, likely involving passing fibers (Grossman et al., 1978; 

Grossman and Grossman, 1982). These studies suggest that the observed ingestive behavior 

effects are associated with LHA neuronal loss, and not destruction of fibers of passage, and 

support the role of LHA neurons as major contributors to a network supporting appetitive 

locomotion. 

          The recent discovery of the orexin peptide (Orx; also called hypocretin) has generated 

significant growth in the research field of sleep/wake regulation, and emphasizes the importance 

of LHA function in behavioral state regulation (de Lecea et al., 1998; Sakurai, 2007; Sakurai et 

al., 1998). Orx is synthesized exclusively in the LHA (Swanson et al., 2005) and projects widely 

throughout the neuraxis (Peyron et al., 1998; van den Pol, 1999), including to all components of 

the ascending arousal system where its effects are primarily excitatory (Saper et al., 2001; 

Sutcliffe and de Lecea, 2002). In human narcoleptic patients, Orx cells are absent, critically 

implicating Orx deficit as the cause of the sleep disorder narcolepsy (Thannickal et al., 2003). 

Subsequently, it was then shown that disruption of the Orx neuropeptides, cells, or receptors 

produce symptoms of narcolepsy in dogs, rats, and mice (Chemelli et al., 1999; Hara et al., 2001; 

Mochizuki et al., 2004). Manifold roles for Orx, reputed a behavioral state integrator, have 

emerged in appetite, autonomic/endocrine/metabolic regulations, cognition, and reward-seeking 

(Burdakov and Alexopoulos, 2005; Carr and Kalivas, 2006; Kelley et al., 2005; Nishino, 2007; 

Wise, 2006) and suggest Orx signaling as a functional link between behavioral state and adaptive 

behavior (Sakurai, 2007). Of particular interest, a potential role of Orx in addiction has drawn 

much attention to the precise mechanisms by which it exerts its actions in the VTA (Borgland et 

al., 2006; Harris et al., 2005). 
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          Evidence from mutant mice suggests an important signaling role for Orx-containing 

neurons in the formation of adaptive food-seeking responses to metabolic challenge. Orx/ataxin-

3 transgenic mice, in which Orx neurons are ablated, fail to increase wakefulness and activity in 

response to food deprivation compared to wild-type mice (Yamanaka et al., 2003). Under 

restricted feeding, Orx-neuron ablated mice failed to engage in normal increases in wakefulness 

and locomotor activity during food-anticipatory periods (Mieda et al., 2004). This study also 

showed that Orx neuron activity in wild-type mice increased during the food-anticipatory period. 

Because the VTA is a region that supports locomotor activity, it may be argued that Orx 

afferents to the VTA provide metabolic signaling relevant to and in coordination with 

approach/exploratory behaviors occurring during feeding or other high-arousal states. 

          Another high-arousal state that the LHA is involved in is sexual behavior. While the 

medial preoptic area of the hypothalamus is well established to play a major role in regulating 

male sexual behavior (Dominguez and Hull, 2005), the LHA has also been shown to influence 

copulatory behavior by an inhibitory action of serotonin (Lorrain et al., 1997; Lorrain et al., 

1999) and by orexin (Muschamp et al., 2007), both interacting with VTA DA neurons.  

   

1.4 The Importance of the VTA Dopamine and GABA Systems 

 

As described in 1964 by Dalhström and Fuxe, and later by other researchers (e.g. (Swanson, 

1982), the A10 DA system is located in the VTA and exerts a profound influence in the 

modulation of complex behaviors (Blackburn et al., 1992; Mogenson et al., 1980) that in turn, 

help to maintain internal homeostasis. More specifically, mesolimbic DA neurons are not reward 

neurons per se, but instead predict changes in reward magnitude and thus influence selection in 
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approaching incentives that preserve homeostasis (Koob, 1996). More conservatively, DA (in the 

NAc) may be thought of as a behavior reinforcer (Hoebel, 1997). According to Schultz, 

“…dopamine function is characterized by a multitude of processes involved in mediating the 

reactivity of the organism to the environment to assure the survival of the animal” (Schultz, 

2007b). 

          VTA DA neurons make important contributions to reward processing, motivation, 

learning, attention, decision-making, adaptive behavior, and stress response (Blackburn et al., 

1992; Hernandez et al., 2006; Mogenson et al., 1980; Schultz, 1998; Thierry et al., 1976; Wise, 

2005). While DA transmission has been the focus of intense research in such functions named 

here, defining its exact role remains controversial (Kiyatkin, 2002) and difficult to unravel 

(Schultz, 2007b). Considering this range of behavioral processes, the time courses over which 

changes in DA activity occur do appear to play important and differing roles in many brain 

functions, and these roles differ in relation to the temporal dynamics of the particular function 

(Schultz, 2007b). 

          Studies utilizing measurements of DA efflux as a result of stimulating the MFB have 

contributed a myriad of behavior-linked observations that may attribute particular roles to DA 

transmission, especially its release in the NAc. The question often remains, however, regarding 

what aspect of the observed behavior that DA efflux pattern may encode (Garris et al., 1999; 

Neill et al., 2002). An important issue relates to the fact that as many as 50 topographically 

identified fiber systems ascend and descend the MFB at the level of the LHA (Veening et al., 

1982). Therefore, many authors acknowledge that the extent of DA’s involvement may be 

contingent upon precise electrode placement and various stimulation parameters (e.g., electrode 
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tip size, pulse duration, current intensity) (Hernandez et al., 2006; Ikemoto and Wise, 2004; 

Murray and Shizgal, 1996; Neill et al., 2002; Yeomans, 1989).  

          Given these considerations, such thorough examinations have contributed valuable insight 

in behavior-associated DA activity, specifically, how reinforcing effects of natural rewards and 

drugs of abuse are related to mesocortolimbic DA activity (White, 1996). During LHA electrical 

stimulation or feeding, DA efflux increased in the nucleus accumbens, suggesting a potential role 

for DA in feeding behavior (Hernandez and Hoebel, 1988). Using intracranial electrical 

stimulation of DA neurons in rats previously trained to self-stimulate, subsequent experimenter-

delivered stimulation always elicited DA release, while during subsequent self-stimulation, DA 

release was rarely observed (Garris et al., 1999). The authors point out that this dissociation 

indicates the brain’s use of potent mechanisms to suppress release from mesolimbic DA neurons, 

and invite further investigation of underlying mechanisms that down-regulate DA release with 

the aim to “define the link between transient biochemical regulation of neuronal processes and 

behaviour” (Garris et al., 1999). 

          Activity modes and activity mode switching of VTA DA neurons are thought to play 

important roles in reward-related and decision-making processes in response to novel and salient 

events (Cooper, 2002; Heien and Wightman, 2006; Overton and Clark, 1997; Schultz, 1998; 

White, 1996). Three modes of DA neuron activity observed in vivo include an inactive, 

hyperpolarized state, a single-spike firing mode (tonic activity), and a burst firing mode (phasic 

activity) (Grace et al., 2007). Afferent input has been shown to dynamically regulate phasic and 

tonic DA transmission (Floresco et al., 2003). In particular, glutamatergic afferents to the VTA 

are thought to exert potent influence on DA cell activity and are crucial for the production of 

burst firing (Grace et al., 2007; Kitai et al., 1999; Lodge and Grace, 2006b) which conveys 
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motivationally relevant information to forebrain areas (Overton and Clark, 1997). It has recently 

been shown that active input from the LDT to the VTA is essential for gating the responsiveness 

of DA neurons to glutamate input (Grace et al., 2007; Lodge and Grace, 2006b).  

           Approximately one-third of VTA neurons are non-DA (presumed to be GABA neurons) 

(Swanson, 1982). This large population of non-DA cells in the VTA was later confirmed to 

contain GABA (as described in (Van Bockstaele and Pickel, 1995)). The presence of numerous 

GABA neurons among VTA DA neurons suggests a target, other than DA neurons, for afferent 

input. Consistent with this idea, the firing rate of VTA non-DA (GABA-immunoreactive) 

neurons appears to be dependent on afferent input (Steffensen et al., 1998). Presumed VTA 

GABA neurons display variable discharge profiles associated with MFB stimulation (Steffensen 

et al., 2001). If afferents of VTA neurons influence the responsiveness of DA and GABA 

neurons, the LHA may be an important contributor as well.  

 

1.5 Evidence of Connectivity Between the LHA and VTA  

 

Olds and Milner observed that rats will learn to press a lever for electrical stimulation of the 

lateral hypothalamus (Olds and Milner, 1954) and continue to work vigorously for stimulation 

even during limited times of food availability (Routtenberg and Lindy, 1965). Since then, a 

literary history spanning over six decades has uncovered some possible neural substrates, 

including circuitry linking the LHA and VTA, by which brain stimulation mediates rewarding 

effects. Hoebel and colleagues have hypothesized that hypothalamic output circuits facilitating 

specific behavior reflexes connect to the VTA, stimulating DA release in the forebrain for the 

reinforcement of currently activated sensory-motor pathways (Hoebel et al., 1989). 
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          The LHA innervation to the VTA has been demonstrated by anterograde autoradiography 

(Saper et al., 1979) and neural tract tracing (Phillipson, 1979). More recent examination of this 

pathway using the specific anterograde tracer PHAL provides congruent support that VTA-

projecting axons from LHA neurons forms a substantial fiber pathway (Geisler and Zahm, 2005). 

Consistent with these results, injection of FG into the VTA revealed a considerable number of 

retrogradely labeled neurons in the LHA, located predominantly ipsilateral to the injection site 

with fewer cells contralateral (Fadel and Deutch, 2002; Zahm et al., 2001). 

          The LHA projection to the VTA supports neurochemical signaling of a mixed phenotype. 

The LHA is the forebrain area expressing the largest proportion of type 2 vesicular glutamate 

transporter mRNA-positive/VTA-projecting neurons, and thus, provides a considerable 

glutamate afferent to the VTA (Geisler et al., 2007) that may capably control DA burst firing 

(Overton and Clark, 1997). Several neuropeptides, having predominant or at least potential 

origin in the LHA, have been shown to project to the VTA. These include dynorphin, melanin-

concentrating hormone (MCH), cocaine- and amphetamine-regulated transcript (CART), 

neurotensin, and Orx (Bittencourt et al., 1992; Dallvechia-Adams et al., 2002; Fadel and Deutch, 

2002; Pickel et al., 1993; Woulfe and Beaudet, 1992; Zahm et al., 2001). Hypothalamic 

modulation of these neuropeptides likely influences their actions in the VTA (Dallvechia-Adams 

et al., 2002). These studies demonstrate that at least individual subpopulations of LHA cells 

project to the VTA, and even synapse onto VTA DA neurons (Dallvechia-Adams et al., 2002; 

Pickel et al., 1993; Woulfe and Beaudet, 1992). 

          Coupled to these data, LHA peptide Orx exerts activating effects onto VTA DA and 

presumed GABA neurons (Korotkova et al., 2003). Intra-VTA infusion of Orx increases DA 

efflux in the PFC, but not the NAc (Vittoz and Berridge, 2006). Orx activity critically enhances 
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glutamate signaling in the VTA, a mechanism that may explain the conditioned-place preference 

for addictive drugs (Borgland et al., 2006; Harris et al., 2005). These studies suggest a prominent 

interaction of Orx and VTA neurotransmission. However, the morphological substrates by which 

Orx might exert its actions in the VTA remain to be characterized.  

          Electrophysiological study offers evidence for excitatory and inhibitory projections from 

the LHA to the VTA. Stimulation of the LHA in cats resulted in short and long latency excitation 

as well as antidromic activation of the VTA, and inhibition in half of the responsive neurons. In 

some of these neurons, the short latency onset of inhibition is suggestive of an inhibitory 

pathway that is monosynaptic (Edinger et al., 1977). Additionally, some neurons with high 

spontaneous activity displayed a late post-excitatory suppression in response to LHA stimulation, 

raising the possibility that local recurrent inhibitory circuits may be present (Edinger et al., 

1977). A study in rats showed that high proportions of VTA neurons, likely to be DA and non-

DA based on differential firing correlates, responded to LHA stimulation with suppression 

followed by activation (Maeda and Mogenson, 1981). Putative non-DA neurons displayed 

predominant suppression with short onset latencies, again, suggestive of monosynaptic 

transmission (Maeda and Mogenson, 1981). Overall, these findings suggest that LHA electrical 

stimulation evokes a mixed excitatory and predominant inhibitory influence onto VTA neurons. 

          Parametric single-unit recordings suggest that the rewarding effects of MFB self-

stimulation are mediated, at least in part, by small myelinated, fast-conducting fibers with short 

refractory periods (Yeomans, 1979; Yeomans et al., 1988). Psychophysical inspection of reward-

relevant elements infers that at least some of the directly activated fibers responsible for 

rewarding self-stimulation are long, thin myelinated fibers descending the MFB (therefore ruling 

out catecholamine fibers) and connecting the LHA and VTA in series (Bielajew and Shizgal, 
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1986; Shizgal, 1989; Shizgal et al., 1980; Wise and Bozarth, 1984). In vivo recordings showed 

that fast conduction velocity and short refractory period of VTA non-DA (shown to be GABA-

immunoreactive) neurons (Steffensen et al., 1998) are within range for a neuronal transducer of 

rewarding self-stimulation (Bielajew and Shizgal, 1982; Yeomans, 1979). The potential role of 

non-DA mechanisms subserving rewarding self-stimulation (Arvanitogiannis et al., 1996; 

Yeomans and Baptista, 1997; Yeomans, 1989) raises immediate consideration of other signaling 

systems, including GABA neurons in the VTA that may serve as an integrator of brain 

stimulation reward (Lassen et al., 2007). 

          Electrophysiology combined with neurochemical evidence directly implicates LHA-VTA 

connectivity in mediating rewarding brain stimulation. Local perfusion of tetrodotoxin (TTX) in 

the VTA blocked extracellular DA increases in both the VTA and NAc induced by electrical 

self-stimulation of the LHA and strongly inhibited self-stimulation as well, confirming that these 

effects depend on synaptic input to the VTA (You et al., 2001). In contrast, TTX perfusion in the 

NAc only slightly decreased self-stimulation rates, while effectively blocking stimulation-

induced increases in NAc DA levels (You et al., 2001), suggesting that synaptic transmission 

within the NAc is not as critical in mediating self-stimulation and that NAc DA levels are not 

predictive of self-stimulation response. Furthermore, LHA self-stimulation induced a TTX-

sensitive increase in glutamate in the VTA while having no effect on NAc glutamate levels (You 

et al., 2001). While this study further characterizes DA-related effects and infers a synaptic 

substrate of rewarding self-stimulation, the specific cell sources of synaptic input (and glutamate 

transmission) are unidentified. 
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1.6 Summary and Conclusion 

 

In summary, psychophysical and parametric studies strongly infer the reward-relevant 

connectivity of the LHA and VTA. Electrophysiological and neurochemical evidences reveal 

that both VTA DA and GABA neurons are influenced by the LHA, suggesting the existence of a 

functional connection. Finally, previous microscopy studies confirm LHA afferents of the VTA, 

suggesting an anatomical substrate whereby this hypothalamic structure communicates 

information concerning the internal milieu to the performance of complex motor tasks, such as 

copulation and foraging, and perhaps even to behavioral phenomenon, as in non-ingestive food 

hoarding (Shizgal et al., 2001).  

          The collective findings support the need to confirm the putative connectivity of the LHA 

and VTA. Therefore, the main hypothesis of the present research predicts that the LHA 

projection interacts with morphological features of the VTA and synapses onto DA and GABA 

neurons. The goal of this research is first, to characterize the ultrastructure of the LHA projection 

to the VTA in order to establish the morphological substrates by which LHA axons interact with 

DA and GABA neurons in this region (Chapter 2). The use of specific anterograde tracer PHAL 

will provide the additional benefit of tracing this projection from LHA cells and not fibers of 

passage. The second goal is to characterize the ultrastructural interactions of Orx neurons, a 

LHA-specific subset of neurons, with structures in VTA, including both DA and GABA neurons 

(Chapter 3). The content of Chapter 3 appears as it does in publication form (Balcita-Pedicino 

and Sesack, 2007). 
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2.0 THE LATERAL HYPOTHALAMIC PROJECTION TO THE RAT VENTRAL 

TEGMENTAL AREA: ULTRASTRUCTURAL INTERACTIONS WITH DA AND GABA 

NEURONS 

 
2.1 Abstract 

 

Extensive functional and anatomical evidence suggests that the lateral hypothalamic area (LHA), 

a forebrain region important for internal homeostasis, mediates a critical regulation of ventral 

tegmental area (VTA) dopamine (DA) neurons that, in turn, modulate goal-directed behavior. 

Although a substantial projection from the LHA to the VTA has been described in light 

microscopic studies, the synaptic organization of this pathway has not been examined at the 

electron microscopic level. We sought to address this issue by using immunoperoxidase 

detection of the selective anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) in 

combination with immunogold-silver labeling for the DA synthetic enzyme tyrosine hydroxylase 

(TH) or for GABA. Ultrastructural examination of the VTA revealed that many LHA varicosities 

and axons, including myelinated axon fibers, pass through the VTA or appose dendrites without 

synapsing. A substantial synaptic input also derives from the LHA, with the majority of synapses 

being of the symmetric type and contacting TH- or GABA-labeled dendrites with roughly equal 

frequency. LHA axons forming asymmetric synapses were also observed and tended to synapse 

preferentially onto TH-labeled dendrites. These findings suggest that the LHA mediates a 

complex synaptic regulation of both DA and GABA VTA neurons. Many LHA terminals 

contained dense-cored vesicles and exhibited intricate associations with glial processes, 

suggesting additional extra-synaptic modes of communication. These observations have 

important implications for understanding the mechanisms whereby LHA neurotransmission in 
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the VTA may serve as a functional link between internal homeostatic needs and approach-

avoidance behaviors that facilitate adaptive behavior. 

 

2.2 Introduction 

 

The VTA is the locus of mesolimbic and mesocortical DA neurons (Moore and Bloom, 1978; 

Ungerstedt, 1971) and exerts a profound influence on the modulation of motivated behaviors 

(Mogenson et al., 1980; Schultz, 2007b). Long lines of evidence have implicated midbrain DA 

neurons in reward, locomotor activity, attention, and decision-making (Blackburn et al., 1992; 

Hernandez et al., 2006; Mogenson et al., 1980; Wise, 2005). This literature has developed 

alongside extensive studies that have identified the LHA as an area that integrates interoceptive 

signals and participates in somatic motor systems that help to achieve homeostasis, such as 

nutrient ingestion, mating and defensive behaviors (Bernardis and Bellinger, 1996; Berthoud, 

2004; Cabeza de Vaca and Carr, 1998; Carr, 2002; Elmquist et al., 1999; Fulton et al., 2006b; 

Hoebel, 1997; Huang et al., 2007; Lorrain et al., 1997; Stanley et al., 1996; Stricker and 

Zigmond, 1984; Williams et al., 2001; Woods et al., 1998). This convergence of research in 

ingestive behavior and reward (Berthoud, 2004; Kelley, 2004; Saper et al., 2002; Shizgal et al., 

2001; Wise, 2005) raises important questions regarding the functional role of the projection from 

the LHA to the VTA. 

          The hypothalamus sends projections along the medial forebrain bundle (MFB) to the VTA 

and contributes to the initiation of goal-directed behaviors (Mogenson et al., 1980). Neural tract 

tracing demonstrates a dense axonal projection from the LHA to the VTA (Geisler and Zahm, 

2005; Phillipson, 1979) that includes neuroactive peptides (Fadel and Deutch, 2002; Zahm et al., 
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2001). However, the synaptic organization of the LHA-VTA projection has not been extensively 

examined in ultrastructural studies. To date, the only electron microscopic study describing a 

possible LHA-derived input to the VTA demonstrated that axons containing melanin-

concentrating hormone (MCH) synapse onto VTA neurons (Dallvechia-Adams et al., 2002). 

While the MCH input probably derives mainly from the LHA (Bittencourt et al., 1992; Swanson 

et al., 2005), it could also arise from other hypothalamic sources. Furthermore, it is unlikely to 

compose the bulk of the pathway from the LHA to the VTA. For example, retrograde tract-

tracing studies indicate that Orx-containing cells in the LHA and PFA comprise 20% of the VTA 

projection (Fadel and Deutch, 2002) and that the LHA is a major source of glutamate afferents to 

the VTA (Geisler et al., 2007). Other transmitter phenotypes are expressed in the LHA, including 

GABA and other peptides, and these probably contribute to the projections to the VTA (Chou et 

al., 2001; Geisler and Zahm, 2006; Meister, 2007).  

          A likely role of the LHA in regulating the activity of VTA DA neurons is suggested by 

physiological studies. Many investigators attempting to define the anatomical substrate for 

rewarding brain stimulation have emphasized the importance of LHA-VTA connectivity within 

the continuum of the MFB (Arvanitogiannis et al., 1996; Wise, 2005; Wise and Bozarth, 1984; 

Yeomans, 1989). Psychophysical inspection infers that at least some of the directly activated 

fibers responsible for rewarding self-stimulation descend the MFB and connect the LHA and 

VTA in series (Bielajew and Shizgal, 1986; Shizgal, 1989; Shizgal et al., 1980). Moreover, 

electrical self-stimulation of the LHA increases DA efflux in the NAc, a major VTA terminal 

field, and this effect is blocked by intra-VTA perfusion of tetrodotoxin, confirming that these 

effects depend on synaptic input to the VTA (You et al., 2001).  
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          More direct cellular electrophysiological studies report that a high proportion of VTA 

neurons respond to LHA stimulation and that the dominant response is suppression of firing rate, 

in some cases followed by a post-suppression activation. Non-DA (putative GABA) neurons in 

particular display predominant suppression (Maeda and Mogenson, 1981). Therefore, both 

electrophysiological and anatomical evidence supports a multi-phenotype projection from the 

LHA to the VTA that synapses directly onto DA and GABA cells and functions in reward 

relevant behaviors. 

          In order to understand the potential impact of the LHA on VTA cell population activity, 

and its functional implications, it is important to identify the precise morphological substrates by 

which these areas might communicate information pertinent to motivated behavior, decision-

making processes, and survival. The present study hypothesizes that LHA axons interact heavily 

with both DA and GABA cells in the VTA, providing a predominant inhibitory-type of synaptic 

input to both VTA cell groups. To investigate the ultrastructure of this pathway, we used 

immunoperoxidase detection of the anterograde tract-tracer Phaseolus vulgaris leucoagglutinin 

(PHAL) (Gerfen and Sawchenko, 1984; Wouterlood and Groenewegen, 1985) in combination 

with immunogold-silver labeling for the DA synthetic enzyme tyrosine hydroxylase (TH) or 

GABA. We performed electron microscopic examination of axons originating from LHA and 

PFA neurons and interacting with VTA neuronal phenotypes in the rat. Elucidating these 

anatomical foundations may contribute to understanding the functional links between the 

systems that regulate energy homeostasis and those that regulate motivated behavior. 
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2.3 Materials and Methods 

 

2.3.1 Animals 

Six adult male Sprague Dawley rats were maintained on a 12:12 hr light:dark cycle (start of light 

at 7 am) and allowed access to food and water ad libitum. Animals were handled according to 

procedures recommended by the NIH Guide for the Care and Use of Experimental Animals and 

approved by the Institutional Animal Care and Use Committee at the University of Pittsburgh. 

 

2.3.2 Anterograde Tracer Injections 

Naïve rats, weighing 301-351 g (average 325 g) at the time of surgery, were deeply anesthetized 

with chloral hydrate (8%; 0.6 ml/100 g, i.p.; 2 rats) or a mixture composed of ketamine, xylazine, 

and acepromazine (34, 7, and 1 mg/kg, respectively) administered at 0.8 ml/kg, i.m. (4 rats). 

Anesthesia supplements were given approximately every 30-60 min or as needed. The fur was 

shaved along the crown between the ears and rats were then placed in a stereotaxic frame. Core 

body temperature was regulated using a thermostatically-regulated heating pad. An incision was 

made from the forehead to the back of the head, centered between the ears. The scalp was then 

retracted and a burr hole was drilled in the skull. PHAL (Vector Laboratories, Burlingame, CA) 

was injected by iontophoresis into the LHA bilaterally as a 2.5% solution in 0.01 M phosphate 

buffered saline (pH 7.4; PBS) using borosilicate glass capillary tubes with 25-50 μm tip 

openings. The stereotaxic coordinates relative to bregma were: −2.5 mm posterior and 1.4 mm 

lateral. A ventral coordinate of 8.4 mm was used based on the position of the skull surface above 

the site of injection, rather than at bregma. The dura mater was pierced with a scalpel blade 

immediately before lowering the glass pipette tip into the targeted area. The brain tissue was 
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allowed to settle for 5 min before beginning iontophoretic injection. Each injection was delivered 

for 20 min using an alternating (7 sec on/7 sec off), positive current of 5 μA delivered by a 

constant current device. The tip was then left in place for another 5 min before being removed 

from the brain. The scalp incision was cleaned with saline, closed with staples and treated with 

Neosporin ointment containing pain medication. Animals were placed in a plastic cage on top of 

a heating pad until fully mobile and then returned to their home cages for 10-14 days to allow 

transport of the tracer. 

 

2.3.3 Fixation and Tissue Sectioning 

On the day of sacrifice, the tracer-injected rats, weighing 301-400 g (average of 353 g), were 

deeply anesthetized with sodium pentobarbital 60-100 mg/kg, i.p., then injected with a zinc 

chelator, sodium diethyldithiocarbamate (Sigma, St. Louis, MO), 1 g/kg, i.p. to prevent 

artifactual silver deposition (Veznedaroglu and Milner, 1992). After 15 min, the rats were killed 

by transcardial perfusion with solutions in the following order: approximately 10 ml of 1000 

U/ml heparin saline (Elkins-Sinn); 50 ml of 3.75% acrolein (Electron Microscopy Sciences, Fort 

Washington, PA) in 2% paraformaldehyde (Electron Microscopy Sciences); 400 ml of 2% 

paraformaldehyde made in 0.1 M phosphate buffer, pH 7.4 (PB). Brains were post-fixed in 2% 

paraformaldehyde for 30 min then rinsed in PB. Sections through the rostro-caudal extent of the 

LHA and VTA were sliced on a vibratome at a thickness of 50 µm. For each animal, a series of 6 

adjacent tissue sets was collected in cold PB. The tissue sections were processed for either light 

or electron microscopy. Unless otherwise noted, all incubations and rinses were carried out at 

room temperature and with continuous gentle agitation. All sections were treated with 1% 

sodium borohydride (Sigma) in PB for 30 min, rinsed extensively in PB, rinsed in 0.1 M tris-
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buffered saline (pH 7.6; TBS), and transferred for 30 min to blocking solution in TBS containing 

1% bovine serum albumin, 3% normal goat serum, and either 0.3% or 0.04% Triton X-100 

(Sigma) for light or electron microscopy, respectively. Sections were then treated with primary 

antibodies in blocking solution for single labeling with immunoperoxidase or dual labeling with 

immunoperoxidase plus immunogold-silver. 

 

2.3.4 Single Labeling Immunocytochemistry 

To assess tracer injections within the LHA and anterograde transport to the VTA, PHAL was 

visualized using immunoperoxidase detection of rabbit anti-PHAL antibody (Vector, No. L-

1110; 1:1000). After overnight incubation (14-16 hr), tissue was rinsed in TBS, incubated for 30 

min in biotinylated goat anti-rabbit secondary antibody (Vector, No. BA-1000; 1:400), rinsed 

again and exposed for 30 min to avidin-biotin peroxidase complex (ABC elite, Vector). After 

rinsing in TBS, bound peroxidase was reacted for 3.5-5 min with 0.022% diaminobenzidine 

(Sigma) and 0.003% hydrogen peroxide in TBS to produce a visible product. The peroxidase 

reaction was stopped by rinsing in TBS. Sections for light microscopic analysis were rinsed in 

PBS, mounted on slides, then dehydrated and coverslipped. A few single-label PHAL sections 

through the VTA were prepared for electron microscopic examination (see below) to ensure 

exclusive anterograde transport. Otherwise, most sections were further processed through 

immunogold-silver incubation steps.  

 

2.3.5 Double Labeling Immunocytochemistry 

Alternate tissue sections were processed for dual immunoperoxidase labeling of PHAL and 

immunogold-silver detection of either TH or GABA in soma and dendrites in the VTA. Sections 
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were incubated simultaneously with anti-PHAL and either mouse anti-TH (Chemicon, Temecula, 

CA; #MAB318; 1:5000) or mouse anti-GABA (Sigma; #A-0310; 1:1000-2000) antibodies. 

Following detection of PHAL by avidin-biotin peroxidase (described above), the tissue was 

transferred from PBS rinses and incubated for 30 min in washing buffer containing 0.8% bovine 

serum albumin, 0.5% fish gelatin, and 3% normal goat serum (Sigma) in PBS. The tissue was 

exposed overnight to washing buffer containing goat anti-mouse, 1 nm gold-conjugated 

secondary antibody (Amersham, Piscataway, NJ; 1:50). Tissue sections were rinsed in washing 

buffer followed by PBS, and then treated with 2% glutaraldehyde (Electron Microscopy 

Sciences) in PBS for 10 min without agitation. The sections were rinsed thoroughly in PBS 

before processing for silver enhancement of gold-conjugated antibody. Sections were transferred 

through three 1 min rinses in 0.2 M sodium citrate buffer (pH 7.4) and then incubated for an 

empirically determined time (4-6 min) in silver solution (IntenSE M, Amersham). The tissue was 

then rinsed twice in citrate buffer and twice in PB before preparation for electron microscopy.  

 

2.3.6 Tissue Preparation for Electron Microscopy 

The labeled sections were processed for electron microscopic analysis by incubation for 1 hr in 

2% osmium tetroxide (Electron Microscopy Sciences) in PB followed by rinsing in PB. The 

tissue was then dehydrated in ascending concentrations of ethanol followed by propylene oxide 

and then immersed overnight in a 1:1 mixture of propylene oxide and epoxy embedding resin 

(EMbed-812, Electron Microscopy Sciences). The propylene oxide/epoxy mixture was then 

replaced with pure epoxy resin for 2 hr. The sections were embedded between sheets of plastic 

and cured for up to 48 hr at 60oC. Ultrathin sections (60-75 nm) through the VTA were collected 

in serial order onto copper mesh grids. The grids were counterstained with 5% uranyl acetate and 
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Reynold’s lead citrate and analyzed on either a Zeiss 902 or FEI Morgagni 268 transmission 

electron microscope. Analog micrographs were developed to desired contrast and brightness 

using darkroom procedures, and then transferred to digital form. Digital electron micrographs 

were collected using an AMT-XR 60 camera (Advanced Microscopy Techniques Corp., 

Danvers, MA) and adjusted to matching contrast and brightness using Photoshop. Digital light 

microscopic images were likewise adjusted. 

 

2.3.7 Antibody Specificity 

The antibody against PHAL has been used widely in previous studies to visualize the 

anterograde axonal transport of this tracer (Gerfen and Sawchenko, 1984; Sesack and Pickel, 

1992b). Its specificity is evidenced by the absence of staining in brain regions that do not receive 

afferents from the site of injection. We have used the antibodies against TH and GABA 

repeatedly for labeling structures in the VTA and, in addition to others, described the specificity 

of these reagents in previous publications (Aston-Jones et al., 2004; Carr and Sesack, 2000c; 

Lewis et al., 1994; Omelchenko and Sesack, 2005; Sesack et al., 1995; Van Bockstaele and 

Pickel, 1995; Waselus et al., 2005). The monoclonal TH antibody was raised against an N-

terminus 59-61 kDa protein isolated from PC12 cells. According to the supplier, western blot 

analysis indicates that it does not recognize other monoamine synthesizing enzymes. The GABA 

antibody raised in mouse was directed against GABA that had been purified and conjugated to 

bovine serum albumin. As described by the manufacturer, dot blot immunoassay confirms that 

the antibody does not recognize structurally related amino acids. 
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2.3.8 Ultrastructural Analysis 

For each animal, 2-6 sections through the rostral VTA (-4.8 to -5.8 mm from Bregma) (Paxinos 

and Watson, 1998) were examined for the presence of PHAL labeling. Sections singly labeled by 

immunoperoxidase for PHAL were assessed for the specific confinement of transport to axonal 

compartments within the VTA. Tissue sections dually labeled by immunoperoxidase for PHAL 

and by immunogold-silver for TH or GABA were used for determining the synaptic organization 

of the LHA input to the VTA in relation to these neuronal phenotypes. In these samples, analysis 

was restricted to the surface where the tissue interfaces with the plastic resin and where 

penetration of both gold and peroxidase immunoreagents was maximal. 

          We estimated the area of tissue sampled based on the number of grid squares analyzed, the 

area of a grid square (3,025 µm2), and an estimation of the percentage of each square that 

contained tissue versus plastic resin. For tissue dually labeled for PHAL and TH, the area 

sampled ranged from 95,288 to 257,125 µm2 per animal (Table 1). For tissue labeled for PHAL 

and GABA, sampling ranged from 106,631 to 331,238 µm2 per animal (Table 1).  

          Neuronal elements were identified by morphological features as described by Peters and 

Palay (Peters and Palay, 1991). Axons were small diameter structures containing microtubules 

and occasional vesicles and often localized to bundles. Varicosities were identified as being 

larger in diameter and having more numerous vesicles and mitochondria. Synapses were defined 

by parallel thickenings of the pre- and postsynaptic membranes, intercleft filaments, and vesicle 

accumulations along the presynaptic density. Asymmetric synapses (correlated with an 

excitatory physiology) were distinguished from symmetric synapses (correlated with inhibition) 

by their more prominent postsynaptic thickening (Carlin, 1980). Perikarya were distinguished 

from proximal dendrites by the presence of a nuclear membrane. Dendrites typically contained 
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large areas of cytoplasm accommodating mitochondria, microtubules, and few vesicles, and were 

postsynaptic to axon terminals. Glial processes were identified by thin and irregular contours, 

relatively vacant cytoplasm, and occasional formation of tight junctions. 

          Specific immunoperoxidase labeling for PHAL was defined as a flocculent, electron dense 

material within axons. In most cases, PHAL-labeled profiles were examined in serial sections to 

determine whether synaptic contacts were formed, to distinguish symmetric and asymmetric 

synapses, and/or to observe complex spatial interactions with surrounding structures. 

Occasionally, a PHAL-immunoreactive (-ir) terminal contacted more than one structure and was 

counted as a single PHAL profile making multiple interactions. Immunogold-silver labeling for 

TH or GABA was defined as specific when profiles contained at least three separate gold 

particles and occurred within fields that contained at least one other instance of specific 

immunogold labeling. This ensured sampling of only tissue depths where penetration of the less 

sensitive immunogold reagents was adequate. 

 

2.4 Results 

 
2.4.1 Light Microscopic Immunolabeling for PHAL in the Rat LHA and VTA 

The density of LHA afferents to the VTA observed in the present study agrees well with 

previous light microscopic reports (Geisler and Zahm, 2005; Phillipson, 1979). Within the LHA, 

immunoperoxidase detection of PHAL (Fig. 1A) revealed staining in numerous cell bodies and 

dendrites. Labeled perikarya appeared in sharp contrast to a background cloud of diffuse 

peroxidase deposit. Also labeled were fine mesh-like networks of axon fibers that surrounded the 

labeled cells. The area of the largest cluster of PHAL-labeled cell bodies was interpreted as the 

central core of each PHAL injection, based on prior characterizations (Gerfen and Sawchenko, 
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1984). The earliest studies with PHAL noted that the effective injection site (i.e. the source of 

anterograde transport) was confined to the region containing clearly labeled cells (Gerfen and 

Sawchenko, 1984). This strategy for defining injection sites was used here. However, 

investigators have noted more recently a weaker expression of PHAL within soma at the 

injection site, making it more difficult to define the site of effective transport. Hence, we cannot 

be certain that some minor transport to the VTA did not originate from structures in the 

immediate vicinity of the LHA.  

          A PHAL injection was considered to be well-placed and thus included in electron 

microscopic analyses if it was centered within the LHA (Paxinos and Watson, 1998) and did not 

involve the following areas, some of which send separate projections to the VTA (Geisler and 

Zahm, 2005): dorsomedial, ventromedial, zona incerta, subthalamic nucleus, and lateral preoptic 

area. Cases were also excluded if the pipette tip directly entered the mammillothalamic tract or 

internal capsule. In some cases it was possible that subthalamic neurons situated near the lateral 

edges of the LHA may have taken up tracer even though the injection site did not encompass the 

subthalamic nucleus proper. In addition to cases in which the injection site was mainly within the 

LHA, some animals had one of the bilateral injections centered mainly in the perifornical area 

with occasional diffusion to lateral parts of the LHA (i.e. lateral to the fornix).  

Immunolabeling of PHAL anterogradely transported to the VTA (Fig. 1B) revealed axons that 

were heavily beaded (Fig. 1B, inset). PHAL injections centered in the LHA produced a dense 

distribution of labeled axons throughout the rostral VTA, especially lateral to the fasciculus 

retroflexus where beaded fibers were tightly packed and oriented relatively perpendicular to the 

coronal plane. Dorsal, medial and ventral to this dense zone, axons appeared to traverse the VTA 

within the coronal plane. Axon fiber staining was less dense following PHAL injections centered 

 25



mostly in the perifornical area. Light microscopic examination of VTA sections labeled with 

immunogold-silver for TH (Fig. 1C) revealed perikarya and proximal and distal dendritic 

branches with a distribution matching previous reports (Swanson, 1982).  
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Ch. 1, Figure 1 

Ch. 1, Figure 1: Light microscopic images of coronal sections through the rat brain 

showing representative injection sites and transport of PHAL and immunocytochemistry 

for TH. 
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Ch. 1, Figure 1: Light microscopic images of coronal sections through the rat brain showing 

representative injection sites and transport of PHAL and immunocytochemistry for TH.  

A: This PHAL injection site is centered in the LHA and also includes the region immediately 

adjacent to the entopeduncular nucleus. The injection site is bounded laterally by the internal 

capsule (ic), dorsally by the mammillothalamic tract (mt) and ventrally by the fornix (f); 3V, 

third ventricle. B: The anterograde transport of PHAL to the VTA is observed in numerous 

axons with a highly branched and beaded morphology in a region lateral to the fasciculus 

retroflexus (fr) and dorsal to the mammillary peduncle (mp). Arrows indicate the same cluster of 

beaded axons at low and high magnification (inset). C: Immunogold-silver labeling for TH 

appears within perikarya and proximal (large arrows) and distal (small arrows) dendrites. Scale 

bar represents 500 μm in A and B and 62.5 µm in C and inset. 
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2.4.2 Electron Microscopic Visualization of LHA Axons within the VTA 

Immunoperoxidase labeling for PHAL, anterogradely transported from the LHA, was observed 

in axon fibers, and not within dendrites or soma, in the VTA. PHAL immunoreactivity appeared 

flocculant and evenly diffuse within axon membrane bounds, with the most intense staining 

surrounding vesicles. The majority of LHA axons appeared to be fibers passing through the 

VTA, including some myelinated axons (Fig. 2A) ranging in size from 0.6 to 3.3 μm in diameter 

taken at the widest width. Other passing LHA axons were small unmyelinated fibers traveling 

within bundles of axons with similar morphology (Fig. 2B), and varicosities that lacked contact 

with surrounding dendrites (Fig. 2B,C). Often, glial processes encircled LHA varicosities (Fig. 

2B) and many of these axons contained dense-cored vesicles (Figs. 2C; 3C,D), consistent with 

the localization of many peptides in LHA neurons. The majority of LHA axons were apposed to 

dendrites in the VTA without forming synaptic specializations at these sites of contact (Table 1). 

The remaining contacts were synapses primarily onto dendrites and rarely onto soma. LHA 

terminals exhibited synapses with symmetric (presumably inhibitory; Fig. 2E,G) morphology 

more frequently than asymmetric synapses (presumably excitatory; Fig. 2D,F). Both types of 

synapses were observed onto proximal (Fig. 2E) and, sometimes, more distal (Fig. 2F,G) 

dendrites, including infrequent dendritic spines. Occasionally, single LHA axons synapsed onto 

multiple adjacent dendrites (data not shown).  
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Ch. 1, Figure 2 

Ch. 1, Figure 2:  Electron micrographs of the rat VTA illustrating the ultrastructural 

characteristics of fibers labeled by immunoperoxidase for PHAL transported from the 

LHA.  
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Ch. 1, Figure 2:  Electron micrographs of the rat VTA illustrating the ultrastructural 

characteristics of fibers labeled by immunoperoxidase for PHAL transported from the LHA.  

A: LHA axons are occasionally myelinated (LHA-ma). B: Most LHA fibers are either 

varicosities (LHA-v) or passing axons (LHA-a) that do not contact dendrites. Asterisks indicate 

glial processes encircling the LHA-v; near the LHA-a, the glial process contains immunogold-

silver labeling for GABA. C: Some LHA varicosities (LHA-v) contain numerous dense-cored 

vesicles (arrowheads). D-G: LHA terminal axons (LHA-t) occasionally form synapses of 

asymmetric type (black arrows in D,F) and, more commonly, of symmetric morphology (white 

arrows in E,G) onto unlabeled dendrites (ud). In some cases these dendrites are notably distal 

(F,G). The distal dendrite in G also receives a second synapse from an unlabeled terminal (ut). 

Scale bars = 0.5 μm. The scale bar in E also applies to B and C; the scale bar in G also applies to 

A and D. 
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2.4.3 Ultrastructural Relationships between LHA Axons and TH-ir and GABA-ir 

Structures in the VTA 

Immunogold-silver labeling for TH was observed in dendrites and perikarya in the VTA. Within 

this tissue, LHA axons synapsed onto both proximal and distal dendrites that were either labeled 

or unlabeled for TH. Some of these synapses had asymmetric morphology, in which case the 

majority of the targets were immunoreactive for TH (Fig. 3A; Table 1); the remaining targets 

were unlabeled. The more numerous symmetric synapses contacted TH-labeled (Fig. 3B) and 

unlabeled dendrites with roughly equal frequency (Table 1). In some cases, LHA terminals 

synapsed onto unlabeled structures in the immediate vicinity of TH-labeled dendrites (Fig. 3C). 

Other LHA axons were apposed to TH-labeled or unlabeled dendrites without synapsing on these 

structures (Fig. 3D). The presence of dense-cored vesicles and the envelopment of these axons 

by glial processes suggest possible non-synaptic modes of communication. Occasionally, LHA 

axons were spatially separated from TH-labeled dendrites by glial processes. Serial analysis of 

such axon profiles often confirmed the continuation of this glial separation across multiple 

sections. 
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Ch. 1, Figure 3 

Ch. 1, Figure 3:  Electron micrographs of the rat VTA depicting dual immunoperoxidase 

labeling for PHAL transported in LHA terminals and immunogold-silver labeling for TH. 
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Ch. 1, Figure 3:  Electron micrographs of the rat VTA depicting dual immunoperoxidase 

labeling for PHAL transported in LHA terminals (LHA-t) and immunogold-silver labeling for 

TH in dendrites (TH-d).  

A,B: Some TH-d receive asymmetric (black arrow) or symmetric (white arrow) synapses from 

LHA-t. C: A single LHA-t in the vicinity of a TH-d forms a symmetric synapse (white arrow) 

onto an unlabeled dendrite (ud). D: A LHA-t is extensively ensheathed by glia (asterisks) and 

apposes (thin black arrow) a proximal TH-d. Arrowheads (in C,D) indicate dense-cored vesicles. 

Scale bars = 0.5 μm. The scale bar in B also applies to A; the scale bar in D also applies to C. 
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Ch. 1, Table 1. LHA Axons Contacting Dendrites in the VTA 

All PHAL + TH PHAL + GABA

Number of rats 6 6 6
Number of sections 34 17 17
Area of tissue examined (µm2) 2,117,500 1,010,350 1,107,150
Total number of PHAL-ir axons observed 1679 942 737
Total number of contacts observeda 350/1679 (21%) 208/942 (22%) 142/737 (19%)

114/208 (55%) 63/142 (44%)

     Number (%) of appositions 219/350 (63%) 136/208 (65%) 83/142 (58%)
77/136 (57%) 39/83 (47%)

     Number (%) of asymmetric synapses 29/350 (8%) 19/208 (9%) 10/142 (7%)
13/19 (68%)b 3/10 (30%)b

     Number (%) of symmetric synapses 102/350 (29%) 53/208 (25%) 49/142 (35%)
24/53 (45%) 21/49 (43%)

a includes synapses and appositions with no glial separations
b not significantly different, Fisher's exact test

Tissue labeled for

Table 1. LHA Axons Contacting Dendrites in the Rat VTA

        onto labeled dendrites

     onto labeled dendrites

        onto labeled dendrites

        onto labeled dendrites

 

          Immunogold-silver labeling for GABA was observed in axons, dendrites, soma, and glial 

processes in the VTA. Within this tissue, LHA axons forming asymmetric synapses were 

typically directed to unlabeled dendrites and less frequently observed to contact GABA-positive 

dendrites (Fig. 4A,B; Table 1). Conversely, symmetric synapses formed by LHA axons were 

more equivalently distributed to GABA-labeled (Fig. 4C,D) and unlabeled dendrites (Table 1). 

Other LHA axons were apposed to either labeled or unlabeled dendrites without synapsing. 

Occasionally, LHA axons containing immunoperoxidase labeling for PHAL also displayed 

immunogold-silver labeling for GABA (Fig. 4D). When these dually-labeled axons formed 

synapses, they were typically of the symmetric type.  
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Ch. 1, Figure 4 

Ch. 1, Figure 4:  Electron micrographs of the rat VTA depicting dual immunoperoxidase 

labeling for PHAL transported in LHA terminals synapsing onto dendrites containing 

immunogold-silver labeling for GABA. 

Ch. 1, Figure 4:  Electron micrographs of the rat VTA depicting dual immunoperoxidase 

labeling for PHAL transported in LHA terminals (LHA-t) synapsing onto dendrites containing 

immunogold-silver labeling for GABA (GABA-d). 

A,B: Serial sections through a LHA-t illustrate an asymmetric synapse (black arrows) onto a 

dendrite containing sparse immunoreactivity for GABA-d. C-D: More commonly, GABA-ds 

receive symmetric synapses (white arrows) from LHA-ts, some of which also contain GABA 

(LHA+GABA-t in D). In D, a terminal singly labeled for GABA (GABA-t) also synapses onto 

the GABA-d. Scale bar = 0.5 μm.  
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2.5 Discussion 

 

The present study represents the first detailed ultrastructural examination of LHA afferents to the 

VTA. The major findings are generally consistent with our hypothesis and demonstrate that: 1) 

the majority of fibers in this pathway pass through the VTA without synapsing, 2) over a third of 

the contacts made are synaptic, mainly exhibit morphological features correlated with inhibitory 

physiology, and occur with similar incidence onto DA and GABA neurons, 3) the less common 

excitatory-type synapses show a trend toward preferentially contacting DA neurons, 4) LHA 

axons have ultrastructural features suggestive of extra-synaptic transmission via neuropeptides.  

 
 
2.5.1 Methodological Considerations 

The use of PHAL allowed us to trace and visualize axons in the VTA that originate from cell 

bodies at the site of injections confined to specific hypothalamic areas. Iontophoretically 

delivered PHAL is transported specifically by neurons whose dendrites extend into the core of 

the injection site, and not by passing axons, as previously shown by failure to label axons in 

terminal fields of PHAL-injected fiber tracts (Gerfen and Sawchenko, 1984). Hence, this 

technique enables the precise study of axons originating from LHA-PFA neurons by excluding 

the many passing fibers of the MFB (Veening et al., 1982) that may also project to the VTA. 

Furthermore, differences in the density of cells taking up tracer in the LHA and/or PFA can be 

correlated with the observed density of axonal labeling in the VTA to make qualitative 

assessments of the relative topography of the projection from the hypothalamus. 

          Efforts were made to control for false negative counts that may be due to limited 

penetration of antibodies (Sesack et al., 2006). TH and GABA antigens in high abundance in 
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dendrites were labeled with the less sensitive immunogold reagents, an approach that has been 

used successfully in prior studies by this laboratory. However, we have noted a restriction in the 

ability of antibodies to dually label axon varicosities in tissue prepared for electron microscopy. 

For example, in GABA-labeled tissue, symmetric synapses of PHAL-ir terminals rarely 

exhibited immunoreactivity for GABA, an observation at odds with previous studies showing an 

abundance of LHA cells that express GAD mRNA (Meister, 2007; Rosin et al., 2003). Factors 

that may have contributed to this issue include the inability to label an entire pathway with tract 

tracing, spatial interference between multiple antibodies accessing the same small compartment, 

and the unequal sensitivity of the two immunolabeling methods used. Hence, it is important to 

acknowledge a potential underestimation of GABA labeling, particularly within axon terminals.  

 

2.5.2 Ultrastructural Features of the LHA Projection to the VTA 

The ultrastructural observation that many LHA axons seemed to be fibers of passage is 

inconsistent with the light microscopic appearance of this pathway, which suggests extensive 

synaptic contacts within the VTA. Of course, many LHA axons did synapse onto VTA dendrites, 

and a number of passing fibers may simply be en route to more caudal portions of the VTA. Our 

finding of a small proportion of myelinated LHA axons in the VTA is consistent with prior 

electrophysiological estimates of conduction velocity, which suggest that less than 10% of the 

axons passing through the MFB are myelinated (Yeomans, 1989). Although we did not conduct a 

complete analysis of size, the approximate diameter of the myelinated LHA axons observed 

within the VTA matches the range (0.5 to 2 µm) estimated by prior physiological analysis of 

axons connecting the LHA and VTA that support MFB self-stimulation (Shizgal et al., 1980). 
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           The finding of numerous dense-cored vesicles in LHA axons suggests that this projection 

is likely to include many neuropeptides, consistent with studies demonstrating dense LHA inputs 

to the VTA containing Orx, dynorphin, neurotensin, cocaine- and amphetamine- regulated 

transcript (CART), and MCH (Bittencourt et al., 1992; Chou et al., 2001; Dallvechia-Adams et 

al., 2002; Fadel and Deutch, 2002; Geisler and Zahm, 2006). Dense-cored vesicles are typically 

localized at non-synaptic regions of the plasma membrane, suggesting neuropeptide release 

outside of classically defined junctions and consequent volume transmission (Agnati et al., 1995; 

Thureson-Klein and Klein, 1990). As described in the introduction, some of these peptides may 

derive from additional sources outside the LHA. In this regard, dynorphin-containing axons from 

striatal sources exhibit a distinctive convergence pattern onto VTA dendrites (Pickel et al., 1993) 

that was not observed for LHA axons in the present study. 

          Glial processes and LHA axons were observed in several discriminate conformations 

suggesting directive, dynamic control of neurochemical signaling (Hatton, 2004) of adjacent 

LHA axons with the surrounding environment. Glial leaflets surrounding or separating LHA 

varicosities from dendrites might serve as barriers against synaptic contact with adjacent 

dendrites, while promoting non-synaptic communication with other targets, particularly in the 

case of peptide release from extrasynaptic dense-cored vesicles (Oliet et al., 2001; Piet et al., 

2004; Sykova, 2004). The prominence of such glial arrangements around LHA axons noted here 

raises the question of whether glia in the VTA might express receptors and/or transporters that 

could influence the synthesis, transmission, and degradation of neurochemicals released from 

LHA fibers. 

          The fact that the majority of LHA fibers in the VTA were passing axons and non-

contacting varicosities, does not trivialize the remaining 25% of this pathway that contacted 
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dendrites. That the majority of synapses formed by LHA terminals had symmetric morphology 

suggests that this pathway is predominantly inhibitory to the VTA. This is consistent with the 

extensive localization of GABA neurons throughout the LHA, as visualized by GAD mRNA 

(Meister, 2007; Rosin et al., 2003). Our findings also agree with the predominant suppression of 

VTA cell activity reported following electrical stimulation of the LHA (Maeda and Mogenson, 

1981). Future studies using postembedding methods are needed to verify that the majority of 

symmetric synapses formed by LHA axons contain immunoreactivity for GABA.  

          The presence of less numerous synapses of the asymmetric (presumed excitatory) type 

suggests that the LHA also mediates a more modest excitatory influence on VTA neurons. 

Whether these synapses release glutamate as a transmitter requires investigation by 

postembedding techniques. However, the finding of asymmetric synapses is entirely consistent 

with a recent study using retrograde tract-tracing to demonstrate that the LHA is a major source 

of VTA afferents that express the type 2 vesicular   transporter (Geisler et al., 2007). Moreover, 

quantitative estimates suggest that the LHA may be the second largest source of glutamate 

afferents to the VTA. Hence, despite being less common, asymmetric synapses formed by LHA 

axons probably mediate an important excitatory influence on VTA cells. The tendency to 

observe these synapses more often onto DA neurons suggests that the LHA may mediate a 

preferential excitatory input onto DA versus GABA cells. Such signaling capacity gives reason 

to consider whether an excitatory projection from the LHA directly regulates the DA burst 

activity that signals behaviorally relevant events (Schultz, 1998).  

          The smaller proportion of asymmetric LHA synapses onto GABA dendrites, relative to 

those onto DA dendrites, suggests that VTA GABA cells receive limited excitatory drive from 

the LHA. However, direct inputs may not be the only means by which VTA cells are activated 
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by LHA inputs. Preliminary data from our lab demonstrates local connections of presumed 

GABA neurons within the VTA onto other GABA cells as well as onto DA neurons 

(Omelchenko and Sesack, 2006). Hence, symmetric, presumably inhibitory synapses from the 

LHA onto VTA GABA cells provide the potential circuitry for disinhibitory influences on either 

DA or GABA neurons.  

 
 
2.5.3 Functional Implications  

The present data indicate that the LHA to VTA pathway mediates a complex mixture of 

excitation, inhibition, disinhibition and peptide modulation. Collectively, these afferents are 

likely to provide a critical regulation of VTA cell activity that ultimately contributes to approach 

or avoidance behaviors. The finding of primarily symmetric synapses formed by LHA axons 

agrees with a mainly suppressive physiology of this pathway and suggests that the main effect of 

the LHA on VTA DA neurons is to reduce firing and hence to favor avoidance behavior (Ono et 

al., 1986). On the other hand, the asymmetric synapses formed by LHA axons tend to synapse 

primarily onto DA cells, suggesting that LHA afferents might also directly increase DA cell 

activity and release in forebrain target areas (Hernandez and Hoebel, 1988; You et al., 2001) in a 

manner that facilitates approach to rewarding stimuli. 

          Extensive additional experimentation is needed to directly connect specific cell phenotypes 

in the LHA with specific populations of neurons in the VTA. For example, it remains to be 

determined whether LHA axons in the VTA synapse preferentially onto DA or GABA cells that 

project to the PFC or to the NAc, the two major terminal fields of this system. A projection from 

the LHA to mesoprefrontal neurons would likely provide information regarding interoceptive 

experience to facilitate cognitive functions and executive motor control. An LHA input to 

 41



mesoaccumbens neurons would be expected to provide information regarding appetitive state to 

facilitate approach/avoidance behaviors. Given the large number of neurochemical phenotypes in 

the LHA to VTA projection, it is likely that the LHA as a whole contacts all the major cell 

populations in the midbrain. However, more discrete studies might reveal that subsets of LHA 

afferents are directed toward particular VTA cell types as defined by forebrain target and 

transmitter phenotype.  

          In fact, the complex results of the present study highlight the need for more targeted 

investigations of phenotypically discrete pathways from the LHA to the VTA, as exemplified by 

the analysis of the orexin projection in Chapter 3. A profound synaptic influence from orexin 

axons to VTA DA neurons is predicted based on the size of this pathway (Fadel and Deutch, 

2002), the excitatory physiology of the peptide (Korotkova et al., 2006) and the demonstration of 

mainly asymmetric synapses formed by orexin axons in other target regions (Horvath et al., 

1999b). This prediction is examined specifically in Chapter 3. Additional studies to address other 

LHA phenotypes and their synaptic targets in the VTA are necessary in order to enhance 

understanding of this complex but critical afferent system.  
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3.0 OREXIN AXONS IN THE RAT VENTRAL TEGMENTAL AREA SYNAPSE 

INFREQUENTLY ONTO DOPAMINE AND GABA NEURONS 

 
 

3.1 Abstract 

 
Cells in the ventral tegmental area (VTA) facilitate motivated behaviors, and the activity of VTA 

neurons is regulated by dense projections from the lateral hypothalamic area (LHA). Orexin 

(Orx) neurons in the lateral and perifornical hypothalamus play important roles in arousal, 

feeding and energy metabolism. Orx cells contribute substantially to the LHA projection to the 

rat midbrain. However the morphological features of Orx fibers in the VTA and whether they 

synapse onto dopamine (DA) or GABA neurons have not yet been investigated. We utilized 

immunoperoxidase and immunogold-silver staining to examine the morphological features and 

synaptic incidence of Orx-labeled axons in the VTA. We then combined immunoperoxidase 

labeling for Orx with immunogold-silver labeling for GABA or for tyrosine hydroxylase (TH) in 

DA neurons. Electron microscopic analysis revealed that the majority of Orx-labeled axons in 

the VTA were passing fibers. The less common Orx varicosities were occasionally apposed to 

TH- or GABA-labeled dendrites without synapsing. Only a small proportion of Orx-positive 

axons synapsed onto dendrites or soma. The synapses included both asymmetric and symmetric 

types and targeted TH- and GABA-labeled profiles with equal frequency. These findings suggest 

that most Orx fibers in the VTA are axons passing to caudal brainstem structures. However, Orx 

does mediate some direct synaptic influence onto VTA DA and GABA neurons. Additional non-

synaptic effects are suggested by the presence of numerous dense-cored vesicles. These studies 

have important implications for understanding the mechanisms whereby Orx can alter behavior 

through regulating VTA DA and GABA cell activity. 
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3.2 Introduction 

 
Dopamine (DA) and GABA neurons in the ventral tegmental area (VTA) modulate locomotor 

activity and support motivated behaviors via projections to cortical, limbic, and brainstem 

structures (Laviolette and van der Kooy, 2001; Redgrave et al., 1999; Steffensen et al., 2001). 

Physiological recording studies in primates indicate that the patterns of DA cell activity during 

reward prediction tasks reflect their afferent drive from excitatory and inhibitory sources 

(Schultz, 1998). Hence, it is essential to identify the specific afferents that drive the behavioral 

response properties of DA neurons as well as GABA cells in the ventral midbrain. Convergent 

information reaches the VTA by way of extensive afferent projections from the cortex, basal 

ganglia, and various diencephalic and brainstem structures (Geisler and Zahm, 2005; Phillipson, 

1979). Among these afferents, inputs from the hypothalamus provide one of the principal fiber 

pathways to the VTA (Geisler and Zahm, 2005; Phillipson, 1979), suggesting that hypothalamic 

afferents substantially influence the motivated behaviors regulated by this region (Hernandez and 

Hoebel, 1988; Lorrain et al., 1999).  

          Anterograde and retrograde tracing studies indicate that the lateral hypothalamic area 

(LHA) in particular projects densely to the VTA (Berk and Finkelstein, 1982; Phillipson, 1979; 

Saper et al., 1979; Villalobos and Ferssiwi, 1987) via axons that exhibit a terminal-like 

morphology (Fadel and Deutch, 2002; Geisler and Zahm, 2005). The LHA contributes to the 

regulation of sleep-wakefulness, ingestive behavior, and reward functions (Bernardis and 

Bellinger, 1996; DiLeone et al., 2003; Gerashchenko and Shiromani, 2004), suggesting that it 

influences the fine-tuning of VTA neural activity by conveying information regarding arousal, 

energy metabolism, and the salience of internal and external stimuli. LHA neurons include a 

number of neurochemical phenotypes that might project to the VTA, including GABA, 
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glutamate and several neuropeptides (Bittencourt et al., 1992; Chou et al., 2001; Crocker et al., 

2005; Dallvechia-Adams et al., 2002; Rosin et al., 2003; Zahm et al., 2001). Among these 

peptides, it has been estimated that 20% of the cells in the LHA and perifornical area (PFA) that 

project to the VTA express immunoreactivity for orexin (Orx) (Fadel and Deutch, 2002). 

Similarly, approximately 40% of cells in the LHA and PFA that are antidromically activated 

from the VTA are immunoreactive for Orx (Mileykovskiy et al., 2005).  

          The peptides, Orx A and Orx B (also known as hypocretins 1 and 2) are synthesized in a 

small number of hypothalamic cells, discretely concentrated in the LHA and PFA (Date et al., 

1999; Sakurai et al., 1998). Orx neurons project widely throughout the central nervous system 

and contribute to a multitude of physiological functions, including behavioral state regulation, 

energy homeostasis, endocrine/autonomic function, and sleep/wake regulation (Horvath et al., 

1999a; Sakurai et al., 1998; Siegel, 2004; Sutcliffe and de Lecea, 2002; van den Pol et al., 1998; 

Willie et al., 2001; Zheng et al., 2005). The fact that relatively few Orx neurons project to many 

distinct nuclei suggests an orchestrated influence of Orx on a range of neurotransmitter systems. 

In particular, Orx fibers project to modulatory nuclei involved in the regulation of behavioral 

state, including the basal forebrain, tuberomammillary nucleus, raphe nuclei, locus coeruleus, 

and pedunculopontine tegmentum (Baldo et al., 2003; Peyron et al., 1998). For most of these 

projections, ultrastructural studies have shown direct synaptic inputs from Orx axons to the 

principal monoamine cells (Horvath et al., 1999b; Torrealba et al., 2003; Wang et al., 2003; Wu 

et al., 2004; Yamanaka et al., 2002).  

          The VTA also receives an Orx innervation (Baldo et al., 2003; Cutler et al., 1999; Fadel 

and Deutch, 2002; Korotkova et al., 2002; Peyron et al., 1998), although it is not known whether 

Orx afferents synapse onto DA neurons or onto GABA cells, the major population of non-DA 
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neurons in this region (Carr and Sesack, 2000b; Swanson, 1982; Van Bockstaele and Pickel, 

1995). Both of the Orx receptor subtypes 1 and 2 have been localized to the VTA (Marcus et al., 

2001; Narita et al., 2006) and shown to be expressed by DA and non-DA neurons (Korotkova et 

al., 2003). Moreover, electrophysiological studies indicate that Orx increases the firing rate of 

both DA and non-DA cells in the VTA via direct postsynaptic actions (Korotkova et al., 2003).  

In the present study, we performed dual-labeling immunocytochemistry and semi-quantitative 

electron microscopic analysis to examine the morphological features and synaptic incidence of 

Orx axons that innervate the rat VTA and their synaptic input to DA and GABA neurons. 

Considering the functional significance of the VTA and Orx systems in arousal-associated 

behavior, and in light of the reported electrophysiological actions of Orx, we hypothesized that 

Orx-containing fibers would synapse extensively onto both DA and GABA cells.  

 

3.3 Materials and Methods 

 

3.3.1 Fixation and Tissue Sectioning 

Twelve adult male Sprague Dawley rats weighing 250-450 g were maintained on a 12:12 hr 

light:dark cycle (start of light at 7 am) and allowed access to food and water ad libitum. Animals 

were handled according to procedures recommended by the NIH Guide for the Care and Use of 

Experimental Animals and approved by the Institutional Animal Care and Use Committee at the 

University of Pittsburgh. Data for electron microscopy was collected from all 12 animals (Table 

1). Tissue from 9 of these animals was also used for light microscopic observations. 
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Ch. 2, Table 1. Animals Used for Orx Electron Microscopy Experiments 

Condition 1 2 3 4 5 6 7 8 9 10 11 12

orxA x x x x
orxA preadsorbed x
orxA AP x x x
orxA AP, preadsorbed x
orxA + TH x x x x x
orxA + GABA x x x
orxB + TH x
orxB + GABA x
orxA glutaraldehyde fixative x
orxB glutaraldehyde fixative x
orxA gold x x x
orxB gold x x x

AP = affinity purified; all other cases are unpurified antibody
Orx was labeled by immunoperoxidase unless indicated as "gold" (immunogold-silver). 

Animal

Table 1. Animals Used for Orx Electron Microscopy Experiments

 

Naive rats were deeply anesthetized with sodium pentobarbital 60-100 mg/kg, i.p. and then 

treated for 15 min with the zinc chelator sodium diethyldithiocarbamate (Sigma, St. Louis, MO), 

1 g/kg, i.p. to prevent artifactual silver deposition (Veznedaroglu and Milner, 1992).  Eleven rats 

were sacrificed by transcardial perfusion with solutions in the following order: approximately 10 

ml of 1000 U/ml heparin saline (Elkins-Sinn), 50 ml of 3.75% acrolein (Electron Microscopy 

Sciences, Fort Washington, PA) and 2% paraformaldehyde (Electron Microscopy Sciences) in 

0.1 M phosphate buffer, pH 7.4 (PB), and 400 ml of 2% paraformaldehyde in PB. Brains were 

post-fixed in 2% paraformaldehyde for 30 min. In order to test for the fixation-dependence of 

immunostaining, the remaining rat was perfused transcardially with 500 ml of 0.1% 

glutaraldehyde in 4% paraformaldehyde in PB, which was also used as the post-fixing solution. 
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Sections through the rostro-caudal extent of the LHA and VTA were sliced on a vibratome at a 

thickness of 50 µm. For each animal, a series of 6 adjacent tissue sets was collected in cold PB. 

Unless otherwise noted, all rinses and incubations were carried out at room temperature and with 

continuous gentle agitation. The tissue sections were processed for either light or electron 

microscopy. All sections were treated with 1% sodium borohydride (Sigma) in PB for 30 min, 

rinsed extensively in PB, rinsed in 0.1 M tris-buffered saline (pH 7.6; TBS), and transferred for 

30 min to blocking solution in TBS containing 1-2% bovine serum albumin, 3-5% normal goat 

serum, and either 0.3% or 0.04% Triton X-100 (Sigma) for light or electron microscopy, 

respectively. Sections were then treated with primary antibodies in blocking solution for single 

labeling with immunoperoxidase, single labeling with immunogold-silver, or double labeling 

with immunoperoxidase plus immunogold-silver. 

 

3.3.2 Single Labeling with Immunoperoxidase  

Orx within perikarya in the LHA or within axons in the VTA was visualized using one of three 

antibodies (see Table 1): 1) unpurified rabbit polyclonal anti-Orx A (Calbiochem, La Jolla, CA; 

#Ab-2; 1:1000-2:000), 2) affinity purified rabbit anti-Orx A (Calbiochem, #Ab-1; 2-5 µg/ml) or 

3) rabbit anti-hypocretin 2 (i.e., anti-Orx B; generous gift from Dr. A.N. van den Pol, Yale 

University; 1:2500). After overnight incubation (14-16 hr), tissue was rinsed in TBS, incubated 

for 30 min in biotinylated goat anti-rabbit secondary antibody (Sigma; 1:400), rinsed again and 

exposed for 30 min to avidin-biotin peroxidase complex (ABC elite, Vector Laboratories, 

Burlingame, CA). After rinsing in TBS, bound peroxidase was reacted for 3.5 min with 0.022% 

diaminobenzidine (Sigma) and 0.003% hydrogen peroxide in TBS to produce a visible product. 

The peroxidase reaction was stopped by rinsing in TBS followed by rinses in 0.01 M phosphate 
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buffered saline (pH 7.4; PBS). Sections for light microscopic analysis were mounted on slides, 

dehydrated and coverslipped. Electron microscopic sections were placed in PB for subsequent 

osmication, or otherwise remained in PBS for double labeling immunocytochemistry.  

 

3.3.3 Single Labeling with Immunogold-silver 

As immunoperoxidase labeling sometimes obscures subcellular details, tissue sections through 

the VTA from three animals (Table 1) were processed by immunogold-silver labeling for either 

OrxA or OrxB in order to achieve optimal detection of the morphological features and synapses 

formed by Orx-labeled axons in the VTA. Adjacent sections were incubated in blocking solution 

containing either unpurified rabbit polyclonal anti-Orx A (1:1000) or rabbit anti-Orx B (1:1000 

for one animal, otherwise, 1:2500). After incubation overnight for 18-22 hr, the sections were 

rinsed twice in blocking solutions, then rinsed twice in washing buffer containing 0.8% bovine 

serum albumin, 0.5% fish gelatin, and 3% normal goat serum (Sigma) in PBS. Sections were 

incubated for 30 min in washing buffer and exposed overnight to washing buffer containing goat 

anti-rabbit, 1 nm gold-conjugated secondary antibody (Amersham; 1:50). Tissue was then rinsed 

in washing buffer followed by PBS, and then treated with 2% glutaraldehyde (Electron 

Microscopy Sciences) in PBS for 10 min without agitation. The sections were rinsed thoroughly 

in PBS before processing for silver enhancement of gold-conjugated antibody. Sections were 

processed through three 1 min rinses in 0.2 M sodium citrate buffer (pH 7.4) and then incubated 

for an empirically determined time (4-6 min) in silver solution (IntenSE M, Amersham). Tissue 

was then rinsed twice in citrate buffer and twice in PB before preparation for electron 

microscopy. 
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3.3.4 Double Labeling Immunocytochemistry 

Tissue sections through the VTA from six animals (Table 1) were processed for dual 

immunoperoxidase labeling of Orx A or Orx B and immunogold-silver detection of either the 

DA synthetic enzyme tyrosine hydroxylase (TH) or GABA in soma and dendrites in the VTA. 

We used the more sensitive immunoperoxidase method (Chan et al., 1990) for detecting the 

antigen in least abundance, in this case Orx. For these studies, sections were incubated 

simultaneously with anti-Orx and either mouse anti-TH (Chemicon, Temecula, CA; #MAB318; 

1:8000) or mouse anti-GABA (Sigma; #A-0310; 1:2000) antibodies. Following detection of Orx 

by avidin-biotin peroxidase (as described above), the tissue was transferred out of PBS rinses 

and into washing buffer (also described above). After a 30 min incubation, the tissue was 

exposed overnight to washing buffer containing goat anti-mouse, 1 nm gold-conjugated 

secondary antibody (Amersham, Piscataway, NJ; 1:50). The sections were subsequently treated 

as described earlier for single labeling with immunogold-silver.  

 

3.3.5 Tissue Preparation for Electron Microscopy 

The labeled sections were prepared for electron microscopic examination by incubation for 1 hr 

in 2% osmium tetroxide (Electron Microscopy Sciences) in PB. The tissue was then dehydrated 

in ascending concentrations of ethanol followed by propylene oxide and then infiltrated 

overnight in a 1:1 mixture of propylene oxide and epoxy embedding resin (EMbed-812, Electron 

Microscopy Sciences). The propylene oxide/epoxy mixture was then replaced with pure epoxy 

resin for 2 hr. The sections were flat-embedded and cured for up to 48 hr at 60oC. Ultrathin 

sections (60-75 nm thick) through the VTA were collected in serial order onto copper mesh grids 
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or onto formvar-coated slot grids. The grids were counterstained with 5% uranyl acetate and 

Reynold’s lead citrate and analyzed on either a Zeiss 902 or FEI Morgagni 268 transmission 

electron microscope. Analog micrographs were developed to desired contrast and brightness 

using darkroom procedures, and then transferred to digital form. Digital electron micrographs 

were collected using an AMT-XR 60 camera (Advanced Microscopy Techniques Corp., 

Danvers, MA) and adjusted to matching contrast and brightness using Photoshop. Digital light 

microscopic images were similarly adjusted. 

 

3.3.6 Specificity and Controls 

Both the purified and unpurified Orx A antibodies were directed against amino acid residues 14-

33 (CRLYELLHGAGNHAAGILTL) of the human Orx A peptide. The specificity of the 

purified Orx A antibody was demonstrated previously by abolition of staining following 

preadsorption with the antigenic peptide (Akiyama et al., 2004). In addition, Orx 

immunoreactivity was nearly eliminated in hypothalamic regions of transgenic Orx/ataxin-3 

mice in which Orx-containing neurons were postnatally-ablated at 15 weeks of age (Akiyama et 

al., 2004). 

          Previous studies in the rat brain have also demonstrated the specificity of the unpurified 

Orx A antibody by various tests; some of these were conducted following in-house affinity 

purification (Hara et al., 2001; Nambu et al., 1999; Sakurai et al., 1998; Zheng et al., 2005). In 

all cases, preadsorption with excess synthetic Orx A abolished the labeling of neurons in the 

hypothalamus. In addition, Orx-immunoreactivity was shown not to be eliminated by 

preincubation with NPY or angiotensin II (Nambu et al., 1999). Moreover, this Orx A antibody 

was shown to stain prepro-orexin cDNA transfected but not mock transfected cells (Nambu et 

 51



al., 1999). Finally, immunostaining of tissue from the Orx neuron-ablated transgenic Orx/ataxin-

3 mice resulted in nearly complete elimination of Orx fiber-immunoreactivity (Hara et al., 2001).  

          The polyclonal Orx B antibody was raised against 27 of the 28 amino acids in the Orx B 

sequence, as described in detail by van den Pol and colleagues, who also performed the tests for 

specificity (de Lecea et al., 1998; van den Pol, 1999; van den Pol et al., 1998). These tests 

included abolition of staining following preadsorption with the immunizing peptide, common 

distribution of hypothalamic neurons labeled by this antibody or by in situ hybridization staining 

for preprohypocretin mRNA, and similarity of immunoreactivity patterns using separate antisera 

raised in different animals as well as another antiserum raised against the preprohypocretin 

sequence. The specificity of this Orx B antiserum has been further characterized in rat and 

primate (Horvath et al., 1999a; Horvath et al., 1999b), frog (Galas et al., 2001), human (van den 

Pol, 1999), hamster (Mintz et al., 2001), mouse (Li et al., 2002; van den Pol, 1999), and goldfish 

(Huesa et al., 2005).  

          In the present study, specificity was further tested by preadsorption controls (see Table 1). 

For the purified Orx A antibody, this consisted of incubating Orx A peptide at 2 µg/ml with 25 

µg of the immunizing peptide (Calbiochem) for 1 hr before application to the tissue. For the 

unpurified Orx A antibody, 25 µg of Orx A peptide (Calbiochem) was added to a 1:1000 dilution 

of the antibody, again for 1 hr prior to tissue application. In both cases, light microscopic 

staining in the LHA was eliminated, as was axon varicosity labeling in the VTA at the 

ultrastructural level. Moreover, removal of the primary antibody from some tissue sets resulted 

in no detectable immunoreactivity, thus indicating the specificity of the secondary antibody. 

          The majority of data for the present study was acquired from sections labeled with the 

unpurified Orx A antibody. In three animals, immunolabeling with this antiserum was directly 
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compared to tissue labeled with the affinity purified antibody. In all cases, the patterns of 

immunoreactivity were indistinguishable, although the intensity of labeling was notably less for 

the affinity purified antibody leading to an apparent reduction in the density of labeled axons in 

the VTA. Both purified and unpurified Orx A immunoreagents were also compared to the Orx B 

antibody. The latter produced more intense signal by light microscopic observation and more 

evident beading of axons in the VTA. Nevertheless, electron microscopic examination of the 

VTA revealed no detectable difference in the frequency of axon varicosities labeled with Orx B 

compared to tissue treated with the unpurified Orx A antibody. This was true both in animals 

perfused with acrolein as well as in the one control animal in which glutaraldehyde was used as 

an alternative fixative. Hence, the quantitative results for labeled axons from tissue exposed to 

Orx A or B antisera were combined. 

          We have used the antibodies against TH and GABA extensively for labeling structures in 

the VTA, and previous publications from us and others have described the specificity of these 

reagents (Aston-Jones et al., 2004; Carr and Sesack, 2000c; Lewis et al., 1994; Omelchenko and 

Sesack, 2005; Sesack et al., 1995; Van Bockstaele and Pickel, 1995; Waselus et al., 2005). The 

monoclonal TH antibody was raised against an N-terminus 59-61 kDa protein isolated from 

PC12 cells. As described by the supplier, western blot analysis indicates that it does not 

recognize other monoamine synthesizing enzymes. The GABA antibody raised in mouse was 

directed against GABA that had been purified and conjugated to bovine serum albumin. 

According to the manufacturer, the antibody does not recognize structurally related amino acids 

in dot blot immunoassay.  
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3.3.7 Ultrastructural Analysis 

For each animal, 2-9 flat-embedded sections through the VTA were examined for the presence of 

Orx labeling. The majority of coronal sections were at rostral levels between -5.3 and -5.8 mm 

relative to Bregma  (Paxinos and Watson, 1998), which contains the densest population of VTA 

DA neurons (Swanson, 1982), and a few sections were also included that were more rostral or 

more caudal. Preliminary examination of these surrounding levels indicated no obvious 

differences in the frequency of Orx-immunoreactive (-ir) varicosities.  

          Sections singly labeled for Orx by immunoperoxidase were mainly assessed for adequacy 

of immunoreactivity, comparison of Orx A and B and purified and unpurified antibodies, effect 

of different fixation protocols, and completeness of preadsorption controls. Sections singly 

labeled for Orx by immunogold-silver were used for determining the synaptic incidence of Orx 

axons in the VTA. In this case, sampling was conducted throughout ultrathin sections, both at the 

surface and deep to the interface with plastic resin, as long as specific gold labeling was evident 

(see below). Tissue sections dually labeled by immunoperoxidase for Orx and by immunogold-

silver for TH or GABA were used both for determining synaptic incidence and for identifying 

the synaptic targets of Orx axons. In the latter case, sampling was restricted to the surface 

interface where penetration of both gold and peroxidase immunoreagents was maximal.  

          For tissue on mesh grids, we estimated the area sampled based on the number of grid 

squares analyzed, their dimensions (3,025 µm2 for 400-mesh or 5,329 µm2 for 300-mesh grids), 

and an estimation of the percentage of each square that contained tissue versus embedding resin. 

Estimating the amount of tissue sampled on slot grids was more difficult and was extrapolated 

from the number of Orx+ varicosities analyzed and the mean density of labeled profiles (number 

per unit area) sampled on mesh grids for each animal. For tissue labeled with Orx-immunogold, 
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the total estimated amount of tissue sampled was 958,760 µm2 from 3 animals for Orx A, and 

561,243 µm2 from 3 animals for Orx B. For tissue labeled with Orx by peroxidase and TH by 

gold-silver, the area sampled ranged from 170,913 to 499,881 µm2 per animal, for a total of 

1,868,513 µm2 from 6 animals. For tissue dually labeled for Orx and GABA, sampling ranged 

from 413,574 to 761,544 µm2 per animal, for a total of 2,109,843 µm2 from 4 animals.  

          Neuronal profiles were identified by morphological features as described by Peters and 

Palay (Peters and Palay, 1991). Axons were small diameter structures often localized in bundles 

that contained microtubules and occasional vesicles. Varicosities were identified as being larger 

in diameter and having more numerous vesicles and mitochondria. Synapses were defined by 

parallel thickenings of the pre- and postsynaptic membranes, filaments in the cleft, and 

accumulation of vesicles along the presynaptic density. Asymmetric synapses (correlated with an 

excitatory physiology) were distinguished from symmetric synapses (correlated with inhibition) 

by their more pronounced postsynaptic thickening (Carlin, 1980). Perikarya were identified by 

the presence of a nucleus. Dendrites typically contained large areas of cytoplasm with few 

vesicles, exhibited mitochondria and microtubules, and received synaptic input from axons. Glial 

processes were identified by irregular contours and thin, vacant cytoplasm. 

          Specific immunoperoxidase labeling for Orx was defined as a flocculent, electron dense 

material within axons. In most cases, Orx-ir profiles were examined in serial sections to 

determine whether synaptic contacts were formed, to distinguish symmetric and asymmetric 

synapses, and/or to analyze complex spatial interactions with surrounding structures. 

Occasionally, an Orx-ir varicosity contacted more than one structure and was counted as a single 

Orx profile making multiple interactions. Specific immunogold-silver labeling for Orx was 

defined as clusters of at least two gold particles associated with a dense-cored vesicle or at least 
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four gold particles within a varicosity that showed additional gold particles in serial sections. All 

immunogold-containing varicosities were photographed throughout the extent of available serial 

sections. The criteria for specific gold-silver labeling prevented the assessment of Orx labeling 

within passing axons, most of which contained only single gold particles and no dense-cored 

vesicles.  Hence, the presence of Orx within fibers of passage was determined solely by 

immunoperoxidase labeling. For sections in which immunogold-silver was used to localize TH 

or GABA, specific labeling was defined as dendritic profiles containing at least three separate 

gold particles and occurring within fields containing at least one other instance of specific 

immunogold labeling. This ensured that the immunogold reagents had penetrated to this depth. 

 

3.3.8 Estimation of Synaptic Incidence 

Initial assessments of VTA sections revealed that many Orx-labeled axons were fibers of passage 

and that varicose portions of these axons formed few observable synapses. Nevertheless, true 

synaptic incidence is often underestimated when synaptic specializations represent only a small 

proportion of the overall varicosity size (Umbriaco et al., 1994). The use of serial sections can 

aid the determination of synaptic frequency, but a complete set of sections through all Orx-ir 

varicosities was not always available for this study. Hence, we utilized the approach of Umbriaco 

(Umbriaco et al., 1994) to extrapolate an estimated synaptic incidence from randomized single 

sections according to the formula of Beaudet and Sotelo (Beaudet and Sotelo, 1981): 

extrapolated synaptic frequency (%) =  observed synaptic frequency (%) 
                                                                            (ls/D) x (2/π) + (t/D) 
 
where D = mean diameter of varicosities, ls = mean length of synapses, and t = mean thickness 

of ultrathin sections, in this case 0.057 mm, as determined using the small fold method (De 

Groot, 1988). 
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          Synaptic incidence was estimated from all Orx-immunoreactive varicosities sampled in 

tissue singly labeled by immunogold-silver for Orx or dually labeled by immunoperoxidase for 

Orx and gold-silver for TH or GABA. Orx varicosities photographed in only one section were 

considered as random encounters and were therefore included in the data set. For Orx profiles 

photographed in serial sections, one section was chosen from the series using a random number 

generator for analysis of size and synaptic incidence (Umbriaco et al., 1994). The diameter of 

each Orx varicosity in mm was measured by hand using a transparent flexible ruler and then 

adjusted to µm according to the enlargement scale. For elongated profiles, the diameter was 

taken at the widest point perpendicular to the long axis. Synaptic length was defined by the 

beginning and end of parallel membrane thickenings along the widened cleft region, taking into 

account any slight curvature of the synapse. The extent of apparent intercleft filaments aided in 

taking these measurements.  

 

3.4 Results 

 

3.4.1 Light Microscopic Labeling for Orx in the Rat LHA and VTA 

As expected from prior studies (Baldo et al., 2003; Date et al., 1999; de Lecea et al., 1998; 

Nambu et al., 1999; Peyron et al., 1998; Sakurai et al., 1998; Swanson, 1982; Swanson et al., 

2005) immunoperoxidase labeling for Orx A within the hypothalamus (Fig.1A) was detected in 

cell bodies, proximal dendrites, and fibers encompassing mainly the lateral and perifornical 

areas. Preadsorption with the immunizing peptide abolished this immunoreactivity (Fig.1B). 

Within the VTA, Orx-immunoreactivity was moderately distributed within axons (Fig.1C), some 

of which had a long and straight morphology, while others had shorter intervaricose segments 
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between prominent beads (Fig. 1C, inset). In adjacent tissue sections stained by immunogold-

silver for TH, labeled soma and dendrites were visible within the region innervated by Orx axons 

(Fig.1D).  
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Ch. 2, Figure 1 
 

Ch. 2, Figure 1: Light micrographic images depicting coronal sections through the rat 

hypothalamus and VTA.  
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Ch. 2, Figure 1: Light micrographic images depicting coronal sections through the rat 

hypothalamus (A,B) and VTA (C,D).  

A: Immunoperoxidase labeling for the unpurified Orx A antibody is localized mainly in the 

lateral and perifornical hypothalamic areas within soma, dendrites, and fibers. B: Orx-ir is 

undetectable in an adjacent section through the hypothalamus incubated in unpurified Orx A 

antibody preadsorbed with the antigenic peptide. C: Orx A-ir is visible within axons in the VTA. 

The arrow points to an axon with markedly beaded morphology shown at higher magnification in 

the inset. D: Immunogold-silver labeling for TH is visible within soma and dendrites (arrow) of 

DA neurons in the VTA region innervated by Orx fibers. The dorsal (d) and lateral (l) orientation 

for A-D is shown in B. Abbreviations: 3V, third ventricle; f, fornix; ic, internal capsule; ml, 

medial lemniscus. Scale bar in D represents 500 µm in A,B; 250 µm in C; 62.5 µm in D; 31.25 

µm in C inset. 
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3.4.2 Electron Microscopic Visualization of Orx within the VTA 

By ultrastructural examination of immunoperoxidase-labeled tissue, the vast majority of Orx-ir 

fibers in the VTA appeared to be either passing axons (Fig. 2A) or en passant varicosities (Fig. 

2B) (85%; 780/913; Table 2), while only 15% (133/913; Table 2) made appositional (Fig. 2C) or 

synaptic contact (Fig. 2D,E) with dendrites or soma. Few Orx-ir axons were myelinated. Within 

Orx-ir axons or varicosities, peroxidase staining was often intensely concentrated over dense-

cored vesicles (Fig. 2A,B) in addition to more diffuse flocculent staining of nearby small clear 

vesicles. Some Orx-ir axons contained no dense-cored vesicles, while others contained both 

labeled and unlabeled dense-cored vesicles. Electron microscopic examination of VTA sections 

exposed to Orx antibody preadsorbed with the immunizing peptide revealed staining only within 

rare unidentified structures with small diameter. No peroxidase staining was detected within 

axon varicosities in these control sections. 
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Ch. 2, Figure 2 

Ch. 2, Figure 2:  Electron micrographs of the rat VTA illustrating the ultrastructural 

characteristics of fibers labeled by immunoperoxidase for Orx A or Orx B. 
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Ch. 2, Figure 2:  Electron micrographs of the rat VTA illustrating the ultrastructural 

characteristics of fibers labeled by immunoperoxidase for Orx A (B,C) or Orx B (A,D,E). 

A: Most Orx axons (Orx-a) pass through the VTA within bundles of unlabeled axons (a). B: 

Other Orx-labeled profiles are varicosities (Orx-v) that do not contact dendrites; some of these 

are surrounded by glial processes (asterisks). C: Occasionally, some Orx-varicosities are 

apposed (small arrow) to unlabeled dendrites (ud) without exhibiting obvious synaptic 

specializations. In many cases, Orx-ir profiles contain intensely-labeled dense-cored vesicles 

(arrowheads in A and B). D,E: Orx-vs infrequently form synapses of asymmetric (black arrow in 

D) or symmetric (white arrow in E) type onto unlabeled dendrites (ud), either distal (D) or more 

proximal (E). In E, an unlabeled terminal (ut) appears to synapse onto the same dendrite as the 

Orx-v. Scale bar in E represents 0.5 µm in A-E. 
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Ch. 2, Table 2. Orx-ir Axons Contacting Dendrites in the Rat VTA 

All Orx Orx + TH Orx + GABA

Number of rats 6 6 4
Area of tissue examined (µm2) 3,978,356 1,868,513 2,109,843
Total number of Orx-ir axons observed 913 481 432
Total number of Orx-ir varicosities observed 334/913 (37%) 159/481 (33%) 175/432 (41%)
Total number of contacts observedb 133/913 (15%) 69/481 (14%) 64/432 (15%)

Number (%) of appositions 87/913 (10%) 48/481 (10%) 39/432 (9%)
25/48 (52%) 21/39 (54%)

Number (%) of synapses 46/913 (5%) 21/481 (4%) 25/432 (6%)
10/21 (48%)c 7/25 (28%)c

animal 1 3/4 2/4
animal 2 1/4 3/4
animal 3 1/1 2/11
animal 4 2/3 -
animal 5 2/6 -
animal 6 1/3 0/6

a includes profiles labeled for either Orx A or Orx B
b includes synapses and appositions with no glial separations
c not significantly different, Fisher's exact test

   onto labeled dendrites

   onto labeled dendrites

Tissue labeled for

Table 2. Orx-ira Axons Contacting Dendrites in the Rat VTA

 

          Of all Orx-labeled axons in the VTA, approximately 10% (87/913; Table 2) involved 

appositions to dendrites that exhibited no synaptic specializations (Fig. 2C). If calculated as a 

proportion of just Orx-ir varicosities, these appositions constituted 26% (87/334). Of all Orx-

labeled axons, only 5% (46/913; Table 2) formed identifiable synapses; this figure corresponded 

to 14% of Orx-positive varicosities (46/334). These synapses included either asymmetric (28/46, 

61%; Fig. 2D) or symmetric (18/46, 39%; Fig. 2E) types, most commonly onto proximal or 

distal dendritic shafts.  

 64



          Consistent with observations from immunoperoxidase-labeled tissue, immunogold-silver 

labeling for Orx was also found mainly in passing axons (Fig. 3A,B) and non-synaptic 

varicosities (Fig. 3C,D). However, the conservative criteria for identifying specific gold labeling 

(see Materials and Methods) led to the exclusion of most passing axons; consequently these 

structures were poorly represented in the sample of Orx-ir profiles obtained with immunogold-

silver. Within labeled profiles, it was common to observe gold-silver particles for Orx 

accumulated around dense-cored vesicles. Immunogold-silver visualization of Orx also revealed 

some labeled profiles forming synaptic contacts. These had either asymmetric (63%, Fig. 3E) or 

symmetric (38%, Fig. 3F) morphology in similar proportion to that observed using 

immunoperoxidase. 
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Ch. 2, Figure 3 

Ch. 2, Figure 3: Electron micrographs of the rat VTA illustrating the ultrastructural 

characteristics of axons labeled by immunogold-silver for Orx A or Orx B.  
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Ch. 2, Figure 3: Electron micrographs of the rat VTA illustrating the ultrastructural 

characteristics of axons labeled by immunogold-silver for Orx A (A,D,E,F) or Orx B (B,C).  

In most Orx-ir profiles, gold particles are accumulated around dense-cored vesicles (black 

arrowheads). Occasionally, unlabeled dense-cored vesicles are evident within the same profiles 

(white arrowhead in D). A,B: Most Orx-labeled fibers are passing axons (Orx-a) surrounded by 

bundles of unlabeled axons (a). C: Some Orx-ir profiles are varicosities (Orx-v) that do not 

contact dendrites and are commonly surrounded by glial processes (asterisks). D: A long Orx-ir 

axon with multiple varicose portions was examined in many serial sections, and the varicosities 

were never observed to form synaptic contacts. E,F: Some Orx-vs are encircled by glial 

processes (asterisks) and exhibit asymmetric (black arrow in E) or dual symmetric synapses 

(white arrows in F), onto unlabeled dendrites (ud), one of which also receives synaptic input 

from an unlabeled axon terminal (ut).  Scale bar in F represents 0.5 µm in A-F. 
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          Previous ultrastructural studies of other target areas have reported evidence of Orx-ir 

dendrite-like profiles (Guan et al., 2005; Guan et al., 2003; Wang et al., 2003), despite the fact 

that true dendrites containing Orx are not possible outside of the hypothalamus. We also 

observed such structures in the rat VTA (Fig. 4A) with both purified and unpurified Orx A 

antibodies, with the Orx B antiserum, and with either immunoperoxidase or immunogold-silver 

localization. However, further analyses revealed evidence suggesting that such dendrite-like 

profiles are in fact axons sectioned in planes that do not readily allow clear morphological 

identification. For example, some of these unusual Orx-ir profiles contained isolated dense-cored 

vesicles (Fig. 4B), small clusters of vesicles (Fig. 4C), and/or microtubules (Fig. 4D) that might 

be missed in different planes of section. Hence, our observations indicate that all Orx-ir profiles 

in the VTA are likely to be axons, despite the occasional absence of morphological features that 

would unequivocally identify them as axonal. 
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Ch. 2, Figure 4 

Ch. 2, Figure 4:  Electron micrographs illustrating immunoreactivity for Orx B or Orx A 

within profiles whose morphology is not readily indicative of axons.  
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Ch. 2, Figure 4:  Electron micrographs illustrating immunoreactivity for Orx B (A,B) or Orx A 

(C,D) within profiles whose morphology is not readily indicative of axons.  

A: An Orx profile contains light immunoperoxidase labeling and is apposed (small arrow) to an 

unlabeled dendrite (ud) but contains no obvious axonal features. B: An Orx profile labeled by 

immunogold-silver exhibits an intensely stained dense-cored vesicle (arrowhead) but does not 

otherwise exhibit obvious morphological characteristics of an axon. C: This Orx profile contains 

a few labeled vesicles only within the region that forms an asymmetric synapse (large arrow) 

onto an unlabeled dendrite (ud). A different plane of section through this profile might reveal no 

other morphological features of an axon. D: In a longitudinal plane of section, an Orx profile 

contains immunoreactivity only in the region surrounding dense-cored vesicles. The identity of 

this profile as an axon is further suggested by the presence of microtubules (white arrows). Scale 

bar in D represents 0.5 µm in A-D. 
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3.4.3 Estimation of Synaptic Incidence 

Based on a random sample of sections through Orx-ir varicosities (see Materials and Methods), 

these profiles were estimated to have a mean diameter of 0.63 µm (± 0.26 stdev) and a mean 

synaptic length of 0.37 µm (± 0.19 stdev). The observed synaptic incidence within this random 

set of sections was 14%, and section thickness was estimated at 0.06 µm. These characteristics 

were then used to calculate an extrapolated synaptic incidence for Orx-ir varicosities of 30% 

(Beaudet and Sotelo, 1981; Umbriaco et al., 1994).  

 

3.4.4 Ultrastructural Relationships between Orx Axons and TH-ir Structures in the VTA 

Immunogold-silver labeling for TH was observed within perikarya and dendrites. Many Orx-

labeled axons were observed in the neuropil adjacent to these structures, but most were separated 

from TH-ir profiles by glial processes (Fig. 5A) or intervening structures. Nevertheless, some 

Orx-ir axons were directly apposed to TH-labeled dendrites without exhibiting synaptic 

specializations (Fig. 5B,C). Other Orx-ir profiles synapsed onto unlabeled dendrites in the 

immediate vicinity of TH-labeled structures (Fig. 5D-F). In only a few cases were Orx-ir axons 

found to synapse onto TH-labeled structures (10/481, 2% of all axons; 10/159, 6% of all 

varicosities; Table 2), including distal and proximal dendrites and, less frequently, cell bodies. 

These synapses included both asymmetric (Fig. 6A-D) and symmetric (Fig. 6E) types. Given that 

synaptic incidence is underestimated using the approach here, it is likely that additional synapses 

of Orx-ir varicosities onto TH-labeled dendrites were overlooked. 
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Ch. 2, Figure 5 

Ch. 2, Figure 5:  Electron micrographs of the rat VTA depicting axons labeled by 

immunoperoxidase for Orx A or Orx B in relationship to dendrites containing 

immunogold-silver labeling for TH. 
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Ch. 2, Figure 5:  Electron micrographs of the rat VTA depicting axons labeled by 

immunoperoxidase for Orx A (A,B) or Orx B (C-F) in relationship to dendrites containing 

immunogold-silver labeling for TH (TH-d). 

A: An Orx axon (Orx-a) is separated from a TH-d by a glial process (asterisks). B: A glial 

process surrounds an Orx-a that is apposed (small arrow) to a TH-d. C: A single Orx-a is 

apposed without synapsing (small arrows) to both proximal and distal TH-ds. D-F: An Orx-v 

shown in three serial sections lies within a field of multiple TH-ds but only forms an asymmetric 

synapse onto an unlabeled dendrite (ud). In A and B, arrowheads indicate dense-cored vesicles. 

Scale bar in F represents 0.5 µm in A-F. 
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Ch. 2, Figure 6 

Ch. 2, Figure 6:  Electron micrographs of the rat VTA illustrating infrequent synapses of 

varicosities labeled for Orx A onto TH-labeled dendrites. 
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Ch. 2, Figure 6:  Electron micrographs of the rat VTA illustrating infrequent synapses of 

varicosities labeled for Orx A onto TH-labeled dendrites (TH-d). 

A-C: Serial sections through an Orx-ir varicosity (Orx-v) reveals an asymmetric synapse (black 

arrow) onto a relatively distal TH-d. The Orx-v contains both unlabeled dense-cored vesicles 

(white arrowheads) and dense-cored vesicles darkened by immunoperoxidase reaction product 

for Orx (black arrowheads). D: An Orx-v forms a synapse with asymmetric morphology (the 

black arrow indicates postsynaptic dense material) onto a proximal TH-d. Small arrows point to 

filaments spanning the synaptic cleft. E: Peroxidase labeling for Orx is concentrated mainly in 

dense-cored vesicles (arrowheads) within an Orx-v forming a symmetric synapse (white arrow 

indicates parallel membranes and accumulated presynaptic vesicles) onto a TH-d. Scale bar in E 

represents 0.5 µm in A-E. 
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3.4.5 Ultrastructural Relationships between Orx Axons and GABA-ir Structures in the 

VTA 

Immunogold-silver labeling for GABA was observed within perikarya, dendrites, axons and glia 

within the VTA. In GABA-labeled tissue, some Orx-ir varicosities were separated from GABA-

labeled structures by glial processes (Fig. 7A). In other cases, Orx-labeled axons were directly 

apposed to GABA-ir dendrites (Fig. 7B) without being observed to form synaptic contacts. Only 

infrequently were Orx-ir axons found to synapse onto proximal or distal dendrites 

immunoreactive for GABA (7/432, 2% of all axons, 7/175, 4% of all varicosities; Table 2); such 

synapses were either symmetric (Fig. 7C) or asymmetric (Fig. 7D). Again, these figures probably 

underestimate the actual incidence of Orx-ir varicosities synapsing onto GABA-labeled neurons. 

Other Orx-labeled axons synapsed onto unlabeled dendrites in the neuropil adjacent to GABA-

positive structures. The frequency with which Orx-ir varicosities were observed to synapse onto 

GABA- versus TH-labeled dendrites was not significantly different. 

          It should be noted that in one animal, GABA immunoreactivity was observed within a few 

large Orx-labeled varicosities within the dorsal VTA at a rostral level between the medial 

lemniscus and fasciculus retroflexus. It may be that a discrete subgroup of Orx terminals uses 

GABA as a cotransmitter (but see (Rosin et al., 2003)). Alternatively, these Orx axons may have 

the capacity to take up GABA from the extracellular space. Additional analyses are needed to 

distinguish between these possibilities.  
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Ch. 2, Figure 7 

Ch. 2, Figure 7: Electron micrographs of the rat VTA demonstrating infrequent 

associations of varicosities immunoreactive for Orx A with dendrites containing 

immunogold-silver labeling for GABA. 
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Ch. 2, Figure 7: Electron micrographs of the rat VTA demonstrating infrequent associations of 

varicosities immunoreactive for Orx A with dendrites containing immunogold-silver labeling for 

GABA (GABA-d). 

A: An Orx varicosity (Orx-v) is separated from a GABA-d by a glial process (asterisks). B: An 

Orx-v apposes a GABA-d without synapsing (small arrow) and both structures are separated 

from a GABA-labeled soma (GABA-s) by a glial process (asterisks). C: A proximal GABA-d 

receives a symmetric synapse (white arrow) from an Orx-v. D: A GABA-d receives an 

asymmetric synapse (black arrow) from an Orx-v that is partially enveloped by a glial process. 

Arrowheads indicate dense-cored vesicles. Scale bar in C represents 0.5 µm in A-C; scale bar in 

D represents 0.5 µm in D. 
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3.5 Discussion 

 

The present study represents the first ultrastructural examination of Orx in the VTA. The major 

findings are that the majority of Orx fibers projecting to the VTA appear to pass through this 

region without synapsing, and that the Orx varicosities that do form synapses exhibit no obvious 

preference for DA versus GABA neurons. Hence, Orx afferents appear not to mediate a 

substantial synaptic innervation of either VTA DA or GABA cells. Nevertheless, Orx may 

contribute to excitatory and inhibitory signaling within the VTA via non-synaptic mechanisms in 

addition to sparse synaptic inputs.  

 

3.5.1 Methodological Considerations  

As with most ultrastructural immunocytochemical studies, the major technical concern is the 

extent of false-negative observations due to limited antibody penetration in sections processed 

with low detergent levels. This limitation was minimized by examining the upper surface of the 

tissue where reagent penetration was optimal. Moreover, the comparable results obtained with 

multiple Orx antibodies support the validity of the findings. Nevertheless, the observation that 

immunoreactivity for Orx was sometimes restricted to the region of dense-cored vesicles 

suggests that the absence of Orx-containing dense-cored vesicles from portions of axons may 

have lead to an underestimation of this fiber population. However, this limitation is unlikely to 

have contributed to the observation of a low synaptic incidence for Orx-ir axons in the VTA. 

First, axons containing other peptides localized to dense-cored vesicles are readily observed to 

form synapses in this region (Dallvechia-Adams et al., 2002; Pickel et al., 1993; Sesack and 

Pickel, 1992a). Second, Orx-ir fibers in more caudal brainstem structures form numerous 

 79



synapses onto target neurons (Horvath et al., 1999b; Wang et al., 2003). Finally, the possible 

under-detection of Orx-immunoreactivity was unlikely to have affected differentially the 

observation of contacts onto DA versus GABA cells.  

          The seemingly low incidence of synapses formed by Orx-ir profiles in the VTA in part 

reflects the use of single or a limited number of serial sections, which can underestimate true 

synaptic frequency (Beaudet and Sotelo, 1981; Umbriaco et al., 1994). Indeed, extrapolation of 

an estimated synaptic incidence from randomized single sections reveals that approximately one-

third of Orx-ir varicosities do form synapses in the VTA. However, this estimate is based only on 

Orx-ir varicosities and does not include the considerably larger number of profiles that are fibers 

of passage. Hence, the extent to which the overall population of Orx axons in the VTA forms 

synapses is rather low.  

 

3.5.2 Ultrastructural Features of Orx Axons in the VTA  

Given that only a small population of Orx neurons projects diffusely throughout the brain and 

spinal cord (Peyron et al., 1998; van den Pol, 1999), it is to be expected that Orx axons terminate 

strongly at some sites while traversing other sites along major pathway streams. Our findings 

indicate that the VTA is more a region of passing than terminating Orx axons, consistent with the 

description of Orx fibers as traversing midbrain areas via a ventral descending pathway (Peyron 

et al., 1998). On the other hand, our preliminary findings with anterograde tract-tracing indicate 

that the LHA as a whole provides extensive synaptic inputs to DA and GABA neurons in the 

VTA (Balcita-Pedicino and Sesack, 2005). Hence, Orx and non-Orx inputs from the LHA appear 

to differ substantially in their synaptic incidence within this region.  
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          The frequent observation of Orx-ir dense-cored vesicles in passing axons and varicosities 

suggests that these peptide storage and release compartments (Thureson-Klein and Klein, 1990) 

are abundant along the fiber pathway traversing the VTA. Given the extensive connections 

formed by Orx axons in downstream targets, including the dorsal raphe and locus coeruleus 

(Baldo et al., 2003; Date et al., 1999; Horvath et al., 1999b; Liu et al., 2002; Peyron et al., 1998; 

van den Pol, 1999; Wang et al., 2003), it is possible that many Orx-ir dense-cored vesicles 

observed within the VTA represent peptide trafficking to caudal release sites. Nevertheless, 

dense-cored vesicles are capable of exocytosis at extrasynaptic sites (Thureson-Klein and Klein, 

1990), making it possible that Orx-ir dense-cored vesicles form a substrate for volume 

transmission within the VTA (see below). 

          The finding that some Orx-positive varicosities containing dense-cored vesicles did form 

symmetric or asymmetric synapses in the VTA suggests that Orx may exert peptidergic influence 

in coordination with fast release of inhibitory or excitatory neurotransmitters, respectively 

(Carlin, 1980). One likely candidate for co-release with Orx is glutamate, given that vesicular 

glutamate transporters are expressed by LHA neurons and extensively colocalized with Orx 

(Rosin et al., 2003; Ziegler et al., 2002). The observation that some Orx terminals formed 

symmetric synapses suggests possible cotransmission of orexin and GABA. However, co-

expression of mRNA markers for Orx and GABA has not been observed (Rosin et al., 2003). 

This is also consistent with estimates from the tuberomammillary nucleus, in which more than 

90% of Orx terminals were found to colocalize glutamate but not GABA (Torrealba et al., 2003). 

Finally, the fact that we observed unlabeled as well as labeled dense-cored vesicles within some 

Orx-positive varicosities suggests that Orx is colocalized with other peptides, the most likely 
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candidates being dynorphin and neuronal activity-regulated pentraxin (NARP) (Chou et al., 

2001; Crocker et al., 2005; Lu et al., 2002). 

 

3.5.3 Relationships between Orx Varicosities and DA and GABA Neurons 

Although Orx can be released extrasynaptically from dense-cored vesicles, the juxtaposition of 

axons to dendritic elements via appositions or synapses should facilitate Orx communication by 

shortening the extracellular diffusion distance. The relatively equal frequency of contacts 

involving Orx-ir axons and either DA (TH-labeled) or GABA targets suggests that Orx mediates 

comparable signaling to these cell populations. The observation of Orx synapses onto unlabeled 

profiles in both TH- and GABA-labeled tissue sections further suggests that Orx might interact 

with another VTA cell population, such as the glutamate neurons reported recently (Kawano et 

al., 2006; Yamaguchi et al., 2007). The common observation of glial processes enveloping 

portions of Orx-ir axons suggests that astrocytic diffusion barriers (Hatton, 2004; Oliet et al., 

2004) may either facilitate or prevent extrasynaptic Orx communication at particular sites. 

Finally, Orx may mediate important presynaptic actions to enhance glutamate synaptic 

transmission in VTA DA cells (Borgland et al., 2006; Carr and Kalivas, 2006). 

          The finding of only a few synapses formed by Orx-ir axons onto DA neurons differs 

markedly from the extent of such contacts reported in other monoamine nuclei. Within the locus 

coeruleus, the substantially denser Orx innervation involves multiple synapses onto single 

neurons (Horvath et al., 1999b). Orx inputs to histaminergic cells in the tuberomammillary 

nucleus (Yamanaka et al., 2002) and cholinergic cells in the basal forebrain (Wu et al., 2004) 

also appear to involve extensive synaptic contacts. Where it has been measured, the frequency of 

synapse formation has been estimated to range from 25% in the dorsal raphe nucleus (Wang et 
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al., 2003) to 54% in the tuberomammillary nucleus (Torrealba et al., 2003), although these 

studies did not extrapolate from single section observations to a more true synaptic incidence. 

Moreover, Orx-induced excitation of noradrenergic, serotonergic, cholinergic, and histaminergic 

neurons is TTX-insensitive, indicating a direct postsynaptic action in all these regions (Horvath 

et al., 1999b; Liu et al., 2002; Wu et al., 2004; Yamanaka et al., 2002). Orx also acts indirectly 

via a less potent excitation of local inhibitory GABA cells, at least in the dorsal raphe. Such 

indirect inhibitory effects may serve as a negative feedback mechanism recruited when activity 

in the Orx system is high (Liu et al., 2002).  

          In the VTA, electrophysiological evidence also supports a direct, postsynaptic (i.e. TTX-

insensitive) excitatory action of Orx on DA neurons (Korotkova et al., 2003; Uramura et al., 

2001). Interestingly, both extracellular and whole cell patch clamp recordings in vitro show that 

25-40% of DA cells are unresponsive to Orx, even at high concentrations (Korotkova et al., 

2006; Korotkova et al., 2002). Moreover, the same laboratory reported no Orx-evoked response 

of DA cells in the substantia nigra where the Orx innervation density is lower than in the VTA. 

Our finding of only a few synapses from Orx-ir axons onto DA dendrites in the VTA is at least 

consistent with these reports, although it does not immediately explain the Orx-induced increase 

in firing or oscillatory activity in the majority of DA neurons in this region (Korotkova et al., 

2003).   

          In some neurochemical studies, intracerebroventricular injections or direct microinfusion 

of Orx A into the VTA leads to an increase in extracellular DA levels within the prefrontal 

cortex that is not accompanied by a similar increase in the nucleus accumbens (Hagan et al., 

1999; Vittoz and Berridge, 2006). This finding raises the interesting possibility that Orx afferents 

to the VTA selectively target the mesoprefrontal and not the mesoaccumbens DA population.  
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The smaller number of VTA neurons with cortical versus striatal targets (Swanson, 1982) would 

be consistent with the low number of synapses observed in the present study. Nevertheless, at 

least one other group has shown an influence of intra-VTA Orx on DA release in the nucleus 

accumbens (Narita et al., 2006). In any case, further experiments are needed to determine 

whether these two DA populations express different degrees of Orx input or levels of Orx 

receptors.  

          Orx also increases the firing rate of non-DA (presumably GABA) neurons in the VTA and 

substantia nigra, apparently through a direct postsynaptic mechanism that is more potent than the 

action on DA cells (Korotkova et al., 2002; Korotkova et al., 2003). The present observation of 

only a few synapses of Orx-ir axons onto VTA GABA neurons again appears to be at odds with 

these electrophysiological findings. Hence, for either DA or GABA neurons, the strength of 

Orx’s electrophysiological influence exceeds what would be predicted on the basis of the 

synaptic connections identified here. It therefore seems parsimonious to conclude that the actions 

of Orx on VTA cells are mediated primarily via a non-synaptic influence. This suggestion is 

consistent with the expression of both Orx 1 and Orx 2 receptors by these cells and their ability 

to respond to extrasynaptically applied Orx peptide (Cluderay et al., 2002; Korotkova et al., 

2003; Lu et al., 2000; Marcus et al., 2001; Narita et al., 2006; Uramura et al., 2001).  

 

3.5.4 Functional Considerations  

Orx neurons are important regulators of behavioral state within and across sleep-wake stages 

(Mochizuki et al., 2004; Saper et al., 2001). Consistent with this role, Orx cells provide a 

relatively dense innervation to monoamine cell groups known to be involved in states of arousal 

and vigilance: the basal forebrain, tuberomammillary nucleus, dorsal raphe nucleus, and locus 
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coeruleus (Saper et al., 2001). In this context, the VTA stands out as a relative exception. Indeed, 

the present findings of minimal synaptic input to VTA DA neurons is consistent with reports that 

these cells display no obvious and consistent changes in firing rate across different stages of 

sleep and waking in unrestrained rats (Miller et al., 1983) and cats (Trulson and Preussler, 1984). 

Non-DA/GABA cells in the VTA do exhibit firing rate changes during sleep and wake states 

(Lee et al., 2001; Miller et al., 1983), and the present study shows that GABA VTA neurons 

receive some synaptic input from Orx axons. Nevertheless, it remains to be determined whether 

Orx influences the state-coupled changes in these GABA cells. 

          Recent electrophysiological studies indicate that Orx cells may provide activating signals 

to the VTA during exploratory behaviors (Mileykovskiy et al., 2005). Moreover, Orx containing 

projections from the LHA/PFA may serve to convey metabolic, endocrine and autonomic signals 

to the VTA in a manner that supports appropriate approach behaviors to salient stimuli such as 

food, water, and mates (Burdakov and Alexopoulos, 2005; Date et al., 1999; Sakurai, 2003; 

Sutcliffe and de Lecea, 2002; Thorpe et al., 2003; van den Pol et al., 1998). The present 

ultrastructural findings also contribute to the on-going consideration of Orx as a neuromodulator 

of reward-seeking behavior. Indeed, many studies directly implicate Orx actions in the VTA in 

drug-induced behaviors (Borgland et al., 2006; Carr and Kalivas, 2006; Harris et al., 2005; 

Narita et al., 2006; Scammell and Saper, 2005). Our findings suggest that the Orx signaling in 

the VTA that is most relevant for reward behaviors is likely to occur via volume transmission.  

          In conclusion, the present findings suggest that Orx’s contributions to neuromodulation of 

complex motor behaviors mediated by the VTA involve mainly non-synaptic mechanisms. 

Furthermore, it has been suggested that VTA afferents, including those from the LHA, comprise 

an interconnected neuronal network (Geisler and Zahm, 2005), suggesting that some of Orx’s 
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key actions may also be mediated via polysynaptic connections to reward-relevant forebrain 

areas.  
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4.0 GENERAL DISCUSSION 

 

The following discussion will include an overview of issues regarding the functional 

implications of lateral hypothalamic area (LHA)-ventral tegmental area (VTA) connectivity in 

studies of goal-directed behavior, a comparison of the LHA and orexin (Orx) projections with 

regard to their general organization in the VTA, a comparison of the LHA/Orx projections with 

previously demonstrated afferents of the VTA, some functional implications of the LHA 

projections in terms of VTA cell activity, a view of cataplexy as a failure of the Orx system to 

maintain goal-directed behavior during emotional states, future directions, and concluding 

remarks. 

  

4.1 The Structure-Function Question 

 

Over several decades, a vast and important literature has implicated an anatomical LHA-to-VTA 

connectivity in reward function. While our results demonstrate that this LHA projection is 

complex, and indeed synaptic, it is difficult to conclude for certain its functional importance with 

regard to VTA function, and in particular, to reward processing and approach/avoidance 

behavior. This issue is based on the fact that the LHA is the bed nucleus of the MFB, and the 

VTA is situated along this fiber system (Nieuwenhuys et al., 1982). Electrical stimulation of the 

MFB would then involve fibers of passage, making it difficult to attribute behavioral effects to 

one particular group of cells. Various manipulations of the LHA, no doubt, produce changes in 

approach/avoidance behaviors. Stimulation (electrical, neurochemical) and lesion (electrolytic, 

excitotoxic) of the LHA activates and depresses, respectively, behaviors such as feeding and 
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mating (Bernardis and Bellinger, 1996; Elmquist et al., 1999; Mogenson et al., 1980). In hungry 

animals motivated to obtain the food, LHA cells increase firing rate in association with the sight 

of food (Rolls, 1976 #368). Moreover, the LHA, including Orx cells, exhibits strong neuronal 

activity (indicated by Fos expression) during scheduled food presentation and feeding, as well as 

during food expectation (Johnstone et al., 2006). It is tempting to ask whether the VTA is 

involved in processing these changes. Alterations in VTA cell firing in response to LHA 

stimulation (e.g., electrical self-stimulation, experimenter delivered electrical stimulation, 

chemical/drug self-administration) often produce dopamine (DA) release in the NAc that may 

temporally correlate with task performance and encode certain behavioral features (Hernandez et 

al., 2006; Schultz, 2007a). Again, it is tempting to wonder whether these changes in VTA cell 

activity directly implicate LHA neurons, specifically those that contact VTA DA or GABA cells. 

Anatomical studies have shown that many hypothalamic nuclei are highly connected with the 

VTA (Geisler and Zahm, 2005). In particular, the VTA projects back to Orx cells (Yoshida et al., 

2006). Therefore, it is reasonable to posit that the complex hypothalamic-VTA circuitry 

represents an anatomical foundation by which the LHA may contribute an integrated, 

interoceptive-specific signal to VTA function. Interestingly, peripheral signals implicated in the 

central control of energy homeostasis, such as circulating leptin, appear to exert actions on the 

VTA DA mesoaccumbens pathway (Fulton et al., 2006a). As yet, the question of what exactly 

the LHA, as a whole, contributes to approach/avoidance behaviors mediated by the VTA remains 

difficult to answer. As the focus on Orx and its actions in the VTA produces rapidly emerging 

data, so does a more definitive role of the LHA with regard to VTA function. 
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4.2 Comparative View of the LHA and Orx Projections in the VTA 

 

The LHA and Orx projections share various morphological features, but demonstrate different 

synaptic organization in the VTA. In common with each projection, the majority of axons pass 

through the VTA, while the remaining axons that do form contacts, appose more often than 

synapse, onto dendrites, the primary target. In each study, out of all contacts made onto VTA 

structures, over one-third of LHA or Orx terminals form synaptic specializations. Also in 

common are varicose fibers exhibiting neuropeptide signaling characteristics. This similarity is 

not surprising considering the abundance of neuroactive peptides produced in the LHA. 

          Where the LHA and Orx projections greatly differ is the total number of labeled axons 

observed per area of tissue analyzed (Ch. 2, Table 1; Ch. 3, Table 2). Roughly three times more 

LHA axons are observed than Orx axons in the VTA. Interestingly, the LHA afferent synapses 

onto VTA structures 50 times more than the Orx projection, based on the number of synapses per 

area of tissue examined (Ch. 2, Table 1; Ch. 3, Table 2). This may represent a key functional 

distinction, in that the bulk of Orx signaling in the VTA may not require synaptic junctions by 

virtue of peptidergic signaling mechanisms, whereas the LHA as a whole may utilize a more 

extensive fast synaptic transmission, in addition to colocalized neuropeptide release. Moreover, 

when LHA neurons are strongly activated, neuropeptides may be preferentially released (Hokfelt 

et al., 2000). 

          Another discrepancy is the trend of predominant synaptic type provided by each 

projection. LHA axons tend to be inhibitory and Orx axons tend to be excitatory onto VTA 

dendrites. The Orx afferent exhibits no synaptic or synaptic-type preference for DA or GABA 

cells. In contrast, the excitatory component of the LHA projection appears to synapse 
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preferentially, yet not significantly, onto DA dendrites. Further quantitative analysis would be 

able to address whether a predicted LHA synaptic incidence, based on axon diameter, would 

reveal a doubling of the observed synaptic incidence, as was the case for the Orx projection 

visualized by immunogold-silver. However, it is important to acknowledge that PHAL tracer and 

its consequent visibility after immunolabeling completely fills axons of neurons that take up the 

tracer, whereas Orx labeling was sometimes observed in discrete accumulations along passing 

fibers and within axon terminals. Therefore, a potential caveat of making these comparisons is 

that the frequency of observed labeling may differ, in part, due to the labeling methodology used 

in combination with functional localization of Orx within axon fibers. 

 

4.3 Comparative View of the LHA Projection with Other Afferents of the VTA 

 

The prefrontal cortex (PFC) afferent to VTA DA neurons has been previously characterized at 

the ultrastructural level (Sesack and Pickel, 1992b). VTA dendrites receive axonal contacts from 

the LHA that are mainly non-synapsing appositions, in contrast to contacts from the PFC that 

were shown to be mostly synaptic, and primarily asymmetric onto small dendrites or spines. In 

complete contrast to PFC axons, a large portion of the synaptic LHA input is inhibitory and only 

occasionally synapses onto small dendrites. 

          In general, the laterodorsal tegmental (LDT) afferent to the VTA, as described previously 

(Omelchenko and Sesack, 2005), is more similar to the LHA than the PFC projection. 

Similarities between the LHA and LDT projections include the involvement of myelinated and 

unmyelinated axons, the comparable presence of dense-cored vesicles within axons, synaptic 

input present onto both distal and proximal dendrites, and less onto cells, and a substantial 
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portion of asymmetric synapses onto TH dendrites (an alike, statistically non-significant trend). 

Also fairly similar are the substantial proportions of synapsing axons out of all axon terminals. 

Whether the slight differences in serial section analysis and the use of biotinylated dextran amine 

tracer, as opposed to PHAL, in the LDT study may have produced differential tracer effects 

across the two studies is beyond the scope of consideration here.  

          Overall, the predominant inhibitory component of all the synapsing axons formed by the 

LHA appears to be one of the major characteristics that distinguish it from the PFC and LDT 

projections. With regard to synaptic axons in the VTA, the PFC provides predominantly 

excitatory input, innervating DA (GABA staining was not performed). The LDT provides an 

even mixture of inhibitory and excitatory afferents that innervate both DA and GABA. Whether 

PFC, LDT, and LHA afferents converge on similar target dendrites in the VTA remains a 

possibility that requires further experimentation.  

 

4.4 Functional Implications of the LHA projections in Terms of VTA Cell Activity 

 

Some studies of DA activity focus on the importance of phasic DA activity in response to 

behavior, for example Garris et al. (Garris et al., 1999). Other authors suggest that DA plays a 

crucial role in the maintenance of brain stimulation reward that accounts for activity changes that 

occur on a time scale of minutes (intermediate signaling) in addition to tonic (slow) and phasic 

(burst) release (Hernandez et al., 2006). Schultz reasons that intermediate DA signaling as well 

must be considered to account for DA activity changes associated with reproductive behavior, 

food procurement and consumption, and responses to acute stress (Schultz, 2002). The LHA is 

well positioned to contribute to DA signaling changes associated with hypothalamic features of 
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these behaviors. Furthermore, the Orx signaling in the VTA potentiates excitatory currents in DA 

neurons with a time course on the order of minutes and is a critical substrate for synaptic 

plasticity of afferents to DA neurons (Borgland et al., 2006). However, such speculation is 

indirectly supported at best. 

          Hernandez and colleagues propose a circuitry model describing the role of DA tone in 

brain stimulation reward (Hernandez et al., 2006). Our ultrastructural findings agree with some 

conceptual elements of this model. The schema defines DA tone as tonic and intermediate 

release that occurs over minutes and is as follows; our findings are included in brackets:  

1) The directly activated neurons of brain stimulation reward are non-DA.  

[Perhaps, these are LHA neurons]. 

2) The directly activated neurons project, either directly or indirectly, to other non-DA 

neurons that process spatiotemporal integration of the rewarding stimuli. 

      [LHA neurons project to GABA neurons in the VTA.]   

3) The processed signal is then relayed to subsequent stages of the circuitry responsible for 

the performance of brain self-stimulation. 

4) Efferent to the directly activated cells, DA tone modulates transmission between these 

neurons and their non-DA targets. 

      [LHA neurons may influence DA tone via their synaptic input, both inhibitory and  

       excitatory, onto VTA DA neurons.] 

5) Modulation of DA tone occurs by direct action of DA or by way of intermediate neurons 

which transmit the tonic DA input.  

 

 92



Furthermore, afferents to the LHA may serve to inactivate LHA-derived inhibition of DA 

neurons and in turn, facilitate tonic firing of DA neurons. In this regard, select neurons in the 

LHA may hold VTA DA neurons in a hyperpolarized state, in a manner similarly imposed by the 

ventral pallidum (Floresco et al., 2003; Lodge and Grace, 2006a), until they are released from 

inactivity.  

          Another model proposes that rewarding brain self-stimulation is mediated, in part, by LHA 

neurons that provide projections through the VTA that pass on to caudal brainstem regions where 

lesions reduce the rewarding effect (Neill et al., 2002). The Orx pathway to the VTA generally 

matches the traversing pathway implicated in this model. Altogether, this parallel comparison 

does not confirm, but only considers, the LHA neurons as a potential contributor to the 

rewarding effects of brain stimulation. 

 

4.5 Cataplexy: A Failure of Integrated Goal-directed Behavior 

 

Orx has been critically implicated in the sleep disorder narcolepsy that includes the symptom of 

cataplexy (Thannickal et al., 2003). In canines, defective Orx receptor 2 causes narcolepsy 

(Sutcliffe and de Lecea, 2002). Cataplexy is a sudden loss of muscle tone in response to 

emotional stimuli and, in canines, can be reliably elicited by the emotional stimulation of food 

presentation (Reid et al., 1998). A food-elicited cataplexy test often progresses as follows: during 

the presentation of food, the dog responds with vigorous arousal, often in pursuit of the food 

stimulus, and then suddenly falls motionless, yet consciously aware of the environment. It may 

be that a profound disruption of Orx signaling to monoamine arousal systems results in an 

orchestrated malfunction of complex behavioral states. 
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          While the basal forebrain cholinergic systems and locus coeruleus neurons (Reid et al., 

1998; Wu et al., 1999) have been implicated to play important roles in regulating cataplexy in 

narcoleptic canines, several lines of evidence implicate the VTA (Reid et al., 1998) and Orx 

actions in the VTA, as discussed by other researchers (Korotkova et al., 2003; Mileykovskiy et 

al., 2005). Intra-VTA administration of DA autoreceptor agonists and antagonists aggravate and 

reduce cataplexy, respectively, suggesting an involvement of the mesolimbic DA system in 

modulating cataplexy (Reid et al., 1996). In support of this, Orx projections to the 

pedunculopontine and LDT nuclei (Peyron et al., 1998) may indirectly influence VTA cell 

activity. Moreover, Orx neurons appear to make important contributions to enhancing the 

synchronous activity of monoaminergic and cholinergic cells (Siegel and Boehmer, 2006). 

          Perhaps the disruption of a differential Orx modulation of VTA mesoprefrontal versus 

mesoaccumbens pathways underlies the concurrence of sustained consciousness and motor 

failure during the presentation of salient, emotionally-arousing stimuli. Maybe relevant to this is 

the observation that DA efflux increases in the PFC, but not the NAc, in response to Orx infusion 

in VTA regions (Vittoz and Berridge, 2006). Orx neurons are strongly activated (express c-fos 

protein) at the onset of food presentation (Johnstone et al., 2006). The release of DA upon 

encountering novel and/or rewarding stimuli prepares an animal for maintained behavior 

(Schultz, 1998), and this initial DA response “could represent an essential component in the 

process of switching attentional and behavioural selections to unexpected, behaviourally 

important stimuli” (Redgrave et al., 1999). Therefore, I hypothesize that the involvement of Orx 

signaling in the mesocorticolimbic circuitry maintains integrated behavior in response to 

stimulus presentation. The LHA, via Orx signaling, may support a gating mechanism, such as 
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LDT-gated burst firing (Grace et al., 2007), whereby indirect afferent drive to the VTA 

mesocorticolimbic circuits integrates reward processing with reward procurement. 

 

4.6 Future Directions 

 

The VTA regulates behavioral responses by efferent projections to areas such as the PFC and 

NAc (Goldman-Rakic, 1998; White, 1996). Future investigation will continue to address the 

extent to which the LHA projects to specific VTA cell populations that compose mesoprefrontal 

and mesoaccumbens pathways; preliminary data exists. Ultrastructural information identifying 

potential sites of Orx actions in the VTA might be valuable in understanding mechanisms of 

Orx’s interactions with DA and GABA neurons in this region. Therefore, the attempt to localize 

Orx receptors in the VTA is ongoing. Unfortunately, the lack of effective antibodies has 

restricted our efforts. Since the lateral preoptic area of the hypothalamus sends a substantial 

glutamatergic afferent to the VTA (Geisler et al., 2007), it would be valuable to examine its 

ultrastructural interactions with VTA DA and GABA neurons. Finally, detailed examination of 

the LHA projection to the NAc shell may reveal ultrastructural interactions relevant to the study 

of appetitive behavior (Kelley, 2004).  

 

4.7 Conclusion  

 

The present findings demonstrate that LHA neurons, including the Orx population, provide a 

monosynaptic innervation of VTA DA and GABA cells. Neuropeptide signaling appears to be a 

potentially prominent mode of transmission used by LHA projections to the VTA. If LHA 
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projections convey information regarding interoceptive state of the body, then the LHA afferent 

to the VTA may be important in shaping particular components of approach/avoidance 

behaviors. It may be that the LHA, by its highly synaptic and peptidergic signaling to VTA 

neurons, influences the perceived value of natural rewards or the salience of stimuli. In this way 

the LHA may contribute to survival-relevant behavior by influencing other circuits that may 

support specialized functions, as such behavioral allocation and decision-making. Further 

investigation into the functional relevance of these anatomical findings, and in retrospect of 

existing findings, may have important implications in the study of eating disorders and substance 

abuse, in addition to the basic foundations of normal behavior. 
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