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Biologic scaffolds composed of extracellular matrix (ECM) have been successfully used as 

templates for the constructive remodeling of numerous tissues in preclinical studies and human 

clinical applications. The mechanisms by which ECM induces remodeling are largely unknown, 

but the degradation products of ECM may play key roles in constructive remodeling. This 

dissertation investigated the hypothesis that ECM degradation products possess chemoattractant 

properties for progenitor cell (PC) populations that participate in constructive remodeling.  

We investigated different methods of in vitro degradation of ECM and determined 

physiologically relevant methods of degradation yielded degradation products with 

chemoattractant activity. Both pepsin and collagenase digestion of ECM resulted in 

chemoattraction of two distinct PC populations.  

We then investigated if ECM degradation products from a given tissue have more potent 

chemoattractant properties for PCs derived from the same tissue type than for PCs derived from 

other tissues. Although ECM derived from skin, liver, small intestine, and urinary bladder were 

all chemoattractive for at least one PC population, a tissue-specific chemotactic effect was not 

observed in studies using skin, liver, and intestinal PCs. However, results showed that the age 



and species from which ECM is harvested has an effect on the chemoattractant potential of the 

ECM for some PC populations.  

We investigated if prevention or retardation of ECM degradation in vivo would reduce 

bone marrow-derived PC involvement in constructive remodeling, yielding a different 

histomorphologic outcome than normal ECM degradation. Bone marrow-derived cells (BMCs) 

participated in the early remodeling of wounded mouse skin treated with rapidly degrading ECM 

scaffolds. By 28 days post-surgery, the number of BMCs returned to normal levels, suggesting 

that these cells do not participate in long-term constructive remodeling of mouse skin. Slowly 

degrading chemically crosslinked ECM scaffolds did not recruit more BMCs than are found in 

normal uninjured mouse skin at any time investigated. Wounds treated with rapidly degrading 

ECM appeared to remodel more rapidly than other treatment groups. These results suggest that 

scaffold type affects the temporal remodeling of injured mouse skin and that while BMCs 

participate in remodeling of skin wounds in mice, local tissue cells may also play an important 

role. 
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1.0 INTRODUCTION AND SPECIFIC AIMS 

 

 

Biologic scaffolds composed of extracellular matrix (ECM) have been successfully used as 

templates for the constructive remodeling of numerous tissues in preclinical studies and human 

clinical applications [1-15]. ECM scaffolds are rapidly degraded in vivo [16, 17] and have been 

shown to recruit bone marrow derived cells to the site of remodeling [18, 19]. These marrow 

derived cells remain in the remodeling site beyond the stages of inflammation, integrate into the 

remodeled tissue, and may differentiate into site-appropriate mature cell types [19]. The 

mechanisms by which ECM induces remodeling are largely unknown, but it appears that the 

degradation products of ECM scaffolds may play key roles in the cell recruitment and 

constructive remodeling effect. Furthermore, because ECM produced by the resident cells of 

each tissue is optimized for that particular tissue, the composition of ECM harvested from 

different tissues will vary. It is logical or at least plausible therefore, that ECM derived from a 

particular tissue may generate degradation products that preferentially recruit cells that are 

lineage directed for that same tissue. 

This dissertation is based upon the findings of preliminary studies which show: 1) ECM 

scaffolds used in preclinical studies recruit bone marrow-derived cells which remain at the site of 

remodeling long beyond the stages of inflammation, and these cells appear to differentiate into 

site-appropriate cell types [18, 19]; 2) ECM scaffolds derived from several tissues including 

porcine small intestine, liver, and urinary bladder can be chemically degraded in vitro, generating 
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degradation products with chemotactic and antibacterial activities [20-22]; 3) prevention or 

retardation of ECM scaffold degradation by chemical cross-linking results in less constructive 

remodeling than an ECM scaffold that is allowed to degrade normally [23]. 

The central hypothesis of this dissertation is that degradation products of ECM scaffolds 

possess chemoattractant properties for tissue-specific, lineage-directed progenitor cells and bone 

marrow-derived progenitor cells that participate in constructive remodeling. The long-range 

objective of this work is to develop methods to induce migration of progenitor cells to tissue sites 

in need of repair, thereby stimulating a regenerative tissue response rather than scar tissue 

formation. 

 

1.1 EXTRACELLULAR MATRIX IN REGENERATIVE MEDICINE 

 
The ECM of each tissue or organ is secreted by resident cells of that tissue, thus providing tissue 

specific ECM the appropriate composition and structure to maintain normal structure and 

function of that tissue. ECM is composed of structural proteins, functional proteins, 

glycosaminoglycans, proteoglycans, cytokines, and growth factors [24]. 

Biologic scaffolds composed of ECM have been successfully used as inductive templates 

for tissue regeneration in various preclinical and clinical applications, including orthopedic, 

esophageal, lower urinary tract, dermal, cardiovascular, central nervous system, and other 

surgical applications [1-14, 23, 25-36]. Regardless of the tissue or organ from which the ECM 

scaffold is prepared (for example, porcine small intestine or urinary bladder), implantation of the 

scaffold results in site-specific constructive remodeling of the injured tissue with the remodeled 

tissue appearing grossly and histologically similar to healthy native tissue [2, 6, 15, 23, 24, 26]. 
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These results suggest that a common mechanism for remodeling is induced by the ECM, 

regardless of its tissue of origin, that simultaneously allows for cell recruitment and/or cell 

proliferation and the cell differentiation and spatial organization processes that define each 

anatomic location. 

Various off-the-shelf biologic scaffold devices composed of ECM have become 

commercially available in recent years. Table 1 lists many of the commercially available ECM 

devices. These ECM scaffolds are derived from several different tissue sources, including 

porcine small intestinal submucosa (SIS-ECM), porcine skin, fetal bovine skin, human skin, 

human fascia lata, porcine pericardium, bovine pericardium, and horse pericardium. Approved 

applications of commercially available ECM devices include treatment of partial and full 

thickness wounds, superficial and second degree burns, venous leg ulcers, soft tissue repair and 

reinforcement, spinal and cranial repair, pelvic reconstruction, treatment of urinary incontinence, 

and reconstruction of blood vessels in the neck, leg and arms.  
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Table 1. List of commercially available medical devices composed of ECM 

 
 
Product Company 

 
Material 
 

AlloDerm Lifecell Human skin 
AlloPatch® Musculoskeletal Transplant Foundation Human fascia lata 

Axis™ dermis Mentor Human dermis 

Bard® Dermal Allograft Bard Cadaveric human dermis 

Bio-Blanket® Kensey Nash  Bovine dermis 
CollaMend Bard Porcine dermis 
CuffPatch™ Arthrotek 

 
Porcine small intestinal 
submucosa (SIS) 

DurADAPT™ Pegasus Biologicals Horse pericardium 

Dura-Guard® Synovis Surgical Bovine pericardium 

Durasis® Cook SIS 
 

Porcine small intestinal 
submucosa (SIS) 

Durepair® TEI Biosciences Fetal bovine skin 

FasLata® Bard Cadaveric fascia lata 

Graft Jacket® Wright Medical Tech Human skin 

Oasis® Healthpoint 
 

Porcine small intestinal 
submucosa (SIS) 

OrthADAPT™ Pegasus Biologicals Horse pericardium 

Pelvicol® Bard Porcine dermis 

Peri-Guard® Synovis Surgical Bovine pericardium 

Permacol™ Tissue Science Laboratories Porcine skin 

PriMatrix™ TEI Biosciences Fetal bovine skin 

Restore™ 
 

DePuy 
 

Porcine small intestinal 
submucosa (SIS) 

Shelhigh No-React® 
Patch 

Shelhigh 
 

Bovine or porcine 
pericardium 

Stratasis® 
 

Cook SIS 
 

Porcine small intestinal 
submucosa (SIS) 

SurgiMend™ TEI Biosciences Fetal bovine skin 

Surgisis® 
 

Cook SIS 
 

Porcine small intestinal 
submucosa (SIS) 

Suspend™ Mentor Human fascia lata 

TissueMend® TEI Biosciences Fetal bovine skin 

Vascu-Guard® Synovis Surgical Bovine pericardium 

Veritas® Synovis Surgical Bovine pericardium 
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Table 1 (continued) 
Xelma™ Molnlycke ECM protein, PGA, water 

Xenform™ TEI Biosciences Fetal bovine skin 

Zimmer Collagen Patch ® Tissue Science Laboratories Porcine dermis 

 

 

Processing methods used to prepare these ECM devices vary, and can greatly affect the 

biologic response of the patient treated with the device. The use of harsh decellularization 

methods to produce an ECM scaffold from tissue can disrupt structural and functional 

components of the ECM, which can affect host cell interaction with the ECM scaffold (for 

example, cell migration and adhesion) as well as reducing the bioactivity of the scaffold. 

Chemical crosslinking of an ECM scaffold, a processing step commonly used to produce many 

of the commercially available ECM scaffold devices, slows or prevents the degradation of the 

scaffold, which can affect the remodeling response. Chemical crosslinking is commonly used 

when producing ECM scaffolds because the molecular crosslinks are thought to prevent 

antigenic recognition and increase mechanical strength. It is our hypothesis that degradation of 

ECM scaffolds plays a key role in the constructive remodeling process and that preventing or 

slowing degradation by chemical crosslinking reduces the constructive modeling benefits of 

ECM scaffolds. This hypothesis is the focus of the third specific aim of this dissertation. 

 

1.2 ECM DEGRADATION 

 
Degradation of the ECM scaffold appears to play a key role in a constructive remodeling 

process. Scaffolds used for tissue engineering and regenerative medicine applications are 

degraded in vivo by several different mechanisms. Cell-mediated and enzymatic reactions are 
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important mechanisms of scaffold degradation, and are closely related to each other. 

Immediately following implantation of a scaffold material, the host’s innate immune system 

responds to the presence of the scaffold. Inflammatory cells, including neutrophils, monocytes, 

and lymphocytes, infiltrate the implantation site.  Neutrophils and macrophages can phagocytose 

or degrade the scaffold, depending on the scaffold composition [37]. Phagocytes are capable of 

producing oxidants, such as the superoxide anion and several others generated by the Haber-

Weiss cycle, which can participate in the degradation of scaffolds [38]. Activated neutrophils 

and macrophages release a variety of enzymes that can contribute to scaffold degradation, 

including collagenases, elastases, gelatinases, cathepsin G, proteinase 3, plasminogen activator, 

and phospholipase [39]. Other enzymes secreted by various cell types and present in various 

tissues, particularly members of the matrix metalloproteinase (MMP) family of enzymes, are 

likely also involved in scaffold degradation [40]. 

Biologic scaffolds composed of porcine ECM degrade rapidly and are completely 

resorbed within 90 days [14, 16, 41]. Scaffolds composed of bovine type I collagen cross-linked 

with hexamethylene diisocyanate used in a murine myocardium model have been shown to be 

degraded by high levels of MMP-8 secreted by neutrophils [42]. Collagen-based scaffolds are 

normally degraded by collagenases, which attack the triple helix at a specific location. The 

collagen molecule fragments resulting from this reaction denature to gelatin at physiological 

temperatures and are then cleaved to oligopeptides by nonspecific proteases [43].  

Chemical crosslinking of biologic scaffold materials decreases or halts the rate of 

degradation by these naturally occurring mechanisms [43]. The slow degradation rate can be 

beneficial in applications that require extended mechanical support from the scaffold, but 

crosslinking can also lead to a prolonged and more intense inflammatory response to the scaffold 

6 



than would occur if the chemical crosslinking was not present [23]. It has recently been shown 

that peripheral blood monocytes are necessary for the early and rapid degradation of SIS-ECM 

scaffolds in a rat abdominal wall reconstruction model, and that chemically crosslinked SIS-

ECM was resistant to macrophage-mediated degradation [44]. These findings underscore the 

importance of host cell interactions in the complex process of ECM degradation and remodeling 

in vivo, as well as the effects of chemical crosslinking on this process. 

1.2.1 Matricryptic Molecules and Sites 

 
During ECM degradation, in addition to the release of constituent growth factors, many large 

insoluble molecules present within the matrix are broken down into low molecular weight 

fragments which possess biological activities that are not possessed by the parent molecules. 

These matrix-derived bioactive fragment molecules are known as matricryptic molecules, 

matricryptins, or matrikines [45]. In addition to proteolysis-generated bioactive fragments, 

functional sites of the parent molecules that are hidden and inactive within the ECM can also 

become active due to structural or conformational changes [45, 46]. Such sites are known as 

matricryptic sites [45]. Some of the ECM molecules that have been shown to possess these 

properties are collagen (types I, II, IV, VIII, XIV, XV, and XVIII) [47-51], fibronectin [52], 

elastin [45, 53, 54], laminin [46, 55], hyaluronan [56-58], perlecan [59], and osteopontin [60]. 

This phenomenon also applies to other non-matrix proteins such as plasminogen, calreticulin, 

1-antitrypsin, and latent TNF- [61, 62]. 

The major enzymes involved in cleavage of ECM molecules are the matrix 

metalloproteinases and the bone morphogenetic protein 1 and tolloid family of 

metalloproteinases. Serine proteinases, members of the cysteine proteinase family, and the 
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aspartic proteinase family are also involved in ECM degradation.  Conformational changes can 

be caused by cell-generated tension or by cells binding to other ECM molecules or cell-surface 

receptors [46]. Therefore, a number of mechanisms of ECM degradation can result in bioactive 

fragment molecules. Table 2 summarizes some of the matrix components and the bioactive 

fragment molecules produced by degradation. 
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Table 2. Summary of ECM components with bioactive fragment molecules 

 
Parent Molecule Fragment Molecule Biologic Activity 
Collagen I Trimer carboxyl propeptide 

fragments 
Chemotactic for endothelial cells, 
dermal fibroblasts, peripheral 
monocytes [47] 

Collagen II Chondrocalcin 
Other fragments 

Cartilage calcification 
Inhibit collagen synthesis and 
MMP secretion by chondrocytes 
[47] 

Collagen IV Arresten, canstatin, tumstatin, 
a6 chain of NC1 domain 
Site exposed by degradation 
from human umbilical vein 
endothelial cells 

Anti-angiogenic [48] 
 
Required for angiogenesis and 
tumor growth in vivo [49] 

Collagen VIII Vastatin Inhibits proliferation and induces 
apoptosis of bovine aortic 
endothelial cells [50] 

Collagen XIV Fragment from N-terminal Chemotactic for neutrophils [47] 
Collagen XV Restin Anti-angiogenic (inhibits 

endothelial cell migration) [51] 
Collagen XVIII Endostatin 

 
 
 
Fragment from NC1 domain 

Anti-angiogenic (inhibits 
endothelial cell migration and 
proliferation [51], inhibits 
branching morphongenesis [47]) 
Induce migration of neural and 
non-neural cells in C. elegans [47]

Elastin VGVAPG sites Chemotactic for monocytes[45, 
63] and fibroblasts [54, 63] 

Fibronectin Anastellin Block growth of cultured human 
dermal microvascular endothelial 
cells [52] 

Laminin-1 More than 20. Most potent: 
A13, C16  
 
B1 chain 

Angiogenic (bind to endothelial 
cell integrins, promote adhesion 
and tube formation) [55] 
Anti-angiogenic [55] 

Laminin-5 
 

DIII Induces migration of mammary 
epithelial cells [46] 

Hyaluronan 3-10 disaccharide unit 
degradation products 

Angiogenic (stimulates 
endothelial cell proliferation and 
migration) [56-58] 
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Table 2 (continued) 
Perlecan 
(proteoglycan in 
basement 
membrane) 

Endorepellin Anti-angiogenic (inhibits 
endothelial cell migration, 
collagen-induced endothelial tube 
morphongenesis, blood vessel 
growth in chorioallantoic 
membrane and Matrigel plug 
assays) [59] 

Osteopontin 
(secreted 
glycoprotein in 
ECM) 

GRGDS-containing fragment 
produced by thrombin 
cleavage 

Haptotaxis [60] 

 

 

Numerous bioactive fragment molecules are produced by the degradation of various 

ECM components, suggesting that degradation of ECM scaffolds would generate degradation 

products possessing a variety of bioactivities. The first specific aim of this dissertation 

investigates molecules with chemoattractant capability that are released by in vitro degradation 

of ECM scaffolds.   

1.2.2 Bioactive Degradation Products of ECM Scaffolds 

 
ECM scaffolds implanted in vivo in preclinical studies have been shown to result in constructive 

remodeling, promote angiogenesis, and be resistant to bacterial infection [7, 11, 19, 23, 64-67]. 

In vitro studies have further shown that degradation of ECM derived from several tissues 

generates low molecular weight peptides with biological properties such as chemotactic, 

mitogenic, angiogenic, and antimicrobial activity [20-22, 68]. In contrast, intact ECM has been 

shown not to possess such activity [69], suggesting that these biological activities are associated 

with the products of ECM degradation, rather than molecules present in intact ECM.  Low 

molecular weight peptides isolated from acid-hydrolyzed SIS-ECM have been shown to possess 
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chemotactic activity for primary murine adult liver, heart, and kidney endothelial cells and to 

promote vascularization in vivo in Matrigel plug assays [21]. Studies also suggest that 

subcutaneous implantation of porcine SIS-ECM induces migration of bone marrow-derived cells 

to the site of constructive remodeling [18], and that this phenomenon is associated with complete 

ECM degradation. Bone marrow-derived cells were also shown to be recruited to the site of SIS-

ECM-induced remodeling in a mouse tendon, and appeared to integrate into the remodeled tissue 

and differentiate into site-appropriate mature cell types [19]. It has also recently been shown that 

ECM subjected to in vivo degradation and remodeling possesses chemoattractant activity for 

multipotential progenitor cells in vitro [70]. The second specific aim of this dissertation 

investigates the effect of ECM source (tissue, species, and age) on chemoattractant activity of 

ECM degradation products for lineage-directed progenitor cells.   

In summary, non-chemically crosslinked porcine-derived ECM scaffolds have been 

shown to induce constructive remodeling of injured tissue, and the results of several studies 

suggest that the degradation products of these scaffolds recruit cells that participate in the 

constructive remodeling. Bioactive fragment molecules are produced by the degradation of 

various ECM components, and ECM scaffolds have been shown to generate degradation 

products with bioactivities that are not present within intact ECM scaffolds. This dissertation 

investigates the hypothesis that degradation products of ECM scaffolds possess chemoattractant 

properties for tissue-specific, lineage-directed progenitor cells and bone marrow-derived 

progenitor cells that participate in constructive remodeling. 
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1.3 MECHANISMS OF CHEMOTAXIS 

 
 

Chemotaxis is the migration of cells in response to an external concentration gradient of a 

particular substance. The first step of chemotaxis is the binding of the chemoattractant molecule 

to its specific receptor on the cell. This binding step triggers chemotactic signals within the cell 

and activates several downstream effectors of migration such as cell polarity. In order for cells to 

migrate directionally, as in a chemoattractant gradient, cytoskeleton rearrangements that promote 

F-actin polymerization at the front of the cell and actomyosin assembly at the back of the cell 

must occur. These cytoskeleton rearrangements result in leading-edge formation at the cell front, 

oriented in the direction of chemotaxis, and retraction at the trailing edge. The forces that drive 

cell movement are produced by protrusions from the leading edge driven by the outward 

extension of actin filaments and by actomyosin-based contraction, which breaks adhesions to the 

substrate. During chemotaxis, many cell types secrete chemokines that relay the chemoattractant 

signal to neighboring cells, thereby amplifying the chemotactic response [71, 72]. This 

dissertation investigates the in vitro chemotaxis of progenitor cells in response to degradation 

products of ECM scaffolds, as well as the in vivo recruitment of bone marrow-derived progenitor 

cells by ECM scaffolds. 

 

1.4 SPECIFIC AIMS 

 
Specific Aim #1: To determine if bioactive degradation products of ECM scaffolds can be 

produced in vitro by methods that mimic physiologic conditions. 

Hypothesis1: ECM scaffolds can be degraded in vitro by methods that mimic in vivo events, and 

the resultant degradation products possess chemotactic activity. 
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Rationale: Results from in vivo studies suggest that degradation of ECM scaffolds is necessary 

for constructive remodeling to occur. In addition, ECM scaffolds have been degraded in vitro by 

chemical and physical methods, generating bioactive degradation products. If these bioactive 

degradation products are also produced in vivo, then physiologic degradation processes must be 

active. We will mimic the in vivo processes in an in vitro environment and determine if 

chemoattractant molecules are released. 

 

Specific Aim #2: To determine if degradation products of ECM have tissue-specific 

preferential chemoattractant properties for progenitor cells derived from their respective 

tissue. 

Hypothesis2: ECM degradation products from a given tissue have more potent chemoattractant 

properties for progenitor cells derived from that same tissue or lineage directed to become cells 

of that tissue, compared to progenitor cells derived from other tissues.  

Rationale: Since ECM degradation products recruit bone marrow-derived cells to the site of 

remodeling where these cells appear to differentiate with a site-appropriate phenotype, it is 

plausible that tissue-specific, lineage-directed progenitor cells may also be recruited by ECM 

degradation products. It would be logical for local, lineage-committed progenitor cells to be 

preferentially recruited to the site of remodeling and participate in the constructive remodeling 

process. 
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Specific Aim #3: To determine if prevention of ECM scaffold degradation affects the 

involvement of progenitor cells in the remodeling response in vivo. 

Hypothesis3: Prevention or retardation of ECM degradation in vivo by chemical crosslinking of 

the scaffold reduces progenitor cell involvement in remodeling, yielding a different outcome 

with histologic characteristics that are less constructive and desirable than would have resulted if 

the progenitor cells had been allowed to participate in the remodeling process. 

Rationale: If degradation of the ECM scaffold causes the recruitment of progenitor cells which 

participate in the constructive remodeling of the tissue, then prevention or retardation of scaffold 

degradation should reduce the participation of progenitor cells in remodeling and yield a 

histologically different result than an ECM scaffold subjected to normal degradation and 

remodeling. 
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2.0 SPECIFIC AIM 1: ECM DEGRADATION IN VITRO 

 
 

2.1 BACKGROUND 

 
Previous work has shown that non chemically crosslinked ECM scaffolds are rapidly degraded in 

vivo [16, 17] and that these inductive acellular scaffolds are repopulated by host cells, resulting 

in site-specific constructive remodeling of injured tissue, rather than being subjected to the 

default adult mammalian wound healing process of scar tissue formation [2, 7, 15-17, 23, 73]. 

ECM scaffolds have been shown to recruit bone marrow-derived cells that participate in the 

long-term constructive remodeling of tissue in vivo [18, 19] and it has recently been shown that 

ECM subjected to in vivo degradation and remodeling possesses chemoattractant activity for 

multipotential progenitor cells in vitro [70]. 

In vitro studies have demonstrated that degradation products of ECM possess bioactive 

properties that likely play a role in ECM-induced constructive remodeling. A low molecular 

weight fraction of small intestinal submucosa (SIS-ECM) digested using acid and heat has been 

shown to possess chemoattractant activity for primary endothelial cells in vitro and to promote 

vascularization in vivo [21]. In addition, certain fractions of acid and heat degraded SIS-ECM, 

urinary bladder submucosa, urinary bladder matrix (UBM-ECM) and liver ECM have all been 

shown to possess antibacterial activity in vitro [20, 22]. 

While instructive, these in vitro studies investigated bioactive degradation products 

within ECM that was digested using acid and extreme heat, which may not be physiologically 
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relevant. The objective of the present study was to determine if bioactive degradation products of 

ECM scaffolds can be produced in vitro by methods that mimic physiologic conditions more 

closely than in previous studies. In particular, this chapter focused on in vitro chemoattractant 

activity of ECM degradation products for progenitor cells.  

 

2.2 MATERIALS AND METHODS 

2.2.1. Preparation of UBM-ECM degradation products 

 
UBM-ECM was prepared from the urinary bladders of market weight pigs (~110 – 130 kg) as 

previously described [74]. In brief, urothelial cells were removed by soaking the urinary bladders 

in 1.0 N saline. Connective and adipose tissue were removed from the serosal surface of the 

urinary bladder, and the tunica serosa, tunica muscularis externa, tunica submucosa, and most of 

the tunica muscularis mucosa were mechanically removed, leaving a biomaterial composed of 

only the basement membrane and the subjacent tunica propria of the tunica mucosa.  

Decellularization was completed by treatment with 0.1% peracetic acid/4% ethanol for two hours 

followed by rinsing with phosphate buffered saline (PBS) and deionized water. Complete 

decellularization was confirmed by both 4'-6-Diamidino-2-phenylindole (DAPI) nuclear staining 

and hematoxylin and eosin staining. The UBM-ECM was then lyophilized in sheet form, frozen, 

and comminuted into a particulate form using a Wiley Mill with a #60 mesh screen [75].  

UBM-ECM was digested in vitro using pepsin. Pepsin, a digestive protease found in the 

stomach, hydrolyzes only peptide bonds and does not hydrolyze non-peptide amide or ester 

bonds. Pepsin preferentially cleaves at the carboxyl side of phenylalanine and leucine and at the 

carboxyl side of glutamic acid residues. Pepsin does not cleave at valine, alanine, or glycine 
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linkages [76]. Particulate lyophilized UBM-ECM was added to 1 mg/ml pepsin (Sigma) in 0.01 

N HCl for a final concentration of 10 mg UBM-ECM/ml suspension. The suspension was mixed 

on a stir plate at room temperature for 48 h, at which time no visible pieces of UBM-ECM 

remained. Pepsin control samples were prepared by mixing the pepsin digestion solution (1 

mg/ml pepsin in 0.01 N HCl) at room temperature for 48 h. 

UBM-ECM was also digested in vitro using crude collagenase. Crude collagenase 

produced by Clostridium histolyticum consists of two forms of the collagenase enzyme as well as 

other enzymes such as an elastase and nonspecific proteases [77]. Collagenases attack the triple 

helix of the collagen molecule at a specific location, resulting in the N-terminal fragment  (about 

two-thirds of the molecule) and the C-terminal fragment. At physiologic temperatures, these 

fragments are spontaneously denatured to gelatin and the gelatinized fragments are then cleaved 

to oligopeptides by nonspecific proteases [43]. Particulate lyophilized UBM-ECM was added to 

50 g/ml collagenase (Sigma) in 250 M CaCl2 in PBS for a final concentration of 10 mg UBM-

ECM/ml suspension. The suspension was then placed on a rocker at 37ºC for 24 h, at which time 

no visible pieces of UBM-ECM remained. The collagenase activity was then quenched by 

addition of ethylenediaminetetraacetic acid (EDTA) to a final concentration of 50 mM EDTA. 

Collagenase control samples were prepared by mixing 50 g/ml collagenase in 250 M CaCl2 in 

PBS, placing the solution on a rocker at 37ºC for 24 h, and quenching the collagenase activity by 

adding EDTA to a final concentration of 50 mM EDTA. 

Attempts at in vitro degradation of UBM-ECM by culture of primary human white blood 

cells or a CD14-expressing subpopulation of primary human white blood cells on UBM-ECM 

sheets were not successful. However, control groups used in these in vitro white blood cell 

mediated-degradation experiments demonstrated that soaking UBM-ECM sheets in cell culture 
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medium resulted in the release of molecules with chemoattractant activity for multipotential 

cells. To further examine this effect, UBM-ECM sheets were soaked in PBS or Dulbecco’s 

Modified Eagle’s Medium (DMEM) in six-well plates in 95% air/5% CO2 at 37ºC for 18 hours. 

Controls of PBS and DMEM alone were also incubated in six-well plates in 95% air/5% CO2 at 

37ºC for 18 hours. Supernatants were then collected from the wells.  

2.2.2 SDS-PAGE analysis of UBM-ECM digests 

 
 
An SDS-PAGE analysis was conducted for each of the UBM-ECM digests and supernatants. For 

the UBM-ECM pepsin digest, SDS-PAGE analysis was performed using a 7.5% polyacrylamide 

gel with a prestained protein standard [78]. For the UBM-ECM collagenase digest, a 

bicinchoninic acid (BCA) assay (Pierce Biotechnology, Rockford, IL) was performed to estimate 

protein concentration of the UBM-ECM collagenase digest. Based on BCA assay results, 

approximately 10 g protein was loaded into each lane of a 12.5% polyacrylamide gel, with a 

prestained protein standard (Bio-Rad, Hercules, CA) in the range 10–250 kD. The gel was run at 

a voltage of 80 V until the dye front entered the separating gel, then at a constant voltage of 100 

V until the dye front reached the bottom of the gel. The gel was stained with Imperial Protein 

Stain (Pierce Biotechnology). For the UBM-ECM releasates in PBS or DMEM, the supernatants 

and control samples were loaded into each lane of a 12.5% polyacrylamide gel, with a prestained 

protein standard (Bio-Rad, Hercules, CA) in the range 10–250 kDa. The gel was run and stained 

as described for the UBM-ECM collagenase digest. 
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2.2.3 Chemotaxis assay with MRL blastema-like cells 

 
 
MRL blastema-like cells (MRL-B cells) were isolated from the ears of MRL/MpJ mice, a strain 

of mice that has been shown to have a unique regenerative capacity [79-82], as previously 

described [68]. Briefly, a 2.0 mm hole was punched through the ear of each mouse. Unlike other 

mouse strains, in MRL mice the site of the hole punch exhibits a blastema-like structure and 

closes with typical site appropriate tissue architecture and no scarring within 4 weeks after the 

time of punching [79]. Eleven days after creating the hole punch, cells were isolated from the 

healing edge of the hole. These isolated MRL-B cells were then cultured in DMEM 

supplemented with 10% fetal calf serum (FCS), 2 mM glutamine, 100 U/ml penicillin, and 100 

g/ml streptomycin in 95% air/5% CO2 at 37ºC. MRL-B cells were shown to express molecules 

associated with progenitor cell populations and tissue regeneration, including Tenascin-C, Thy1, 

Dlk/Pref-1, Msx1, Thrombospondin, and Tbx5 [68]. Cells used in these studies were passage 13-

17. 

In vitro chemotaxis of MRL-B cells toward pepsin and collagenase digests of UBM-ECM 

was evaluated using a 48-well micro-chemotaxis chamber (Neuro Probe, Gaithersburg, MD). 

When the MRL-B cells reached 70-90% confluency, they were starved overnight in DMEM 

containing 0.5% heat inactivated FCS before use in chemotaxis assays the following morning. 

Then the MRL-B cells were trypsinized, neutralized, centrifuged, resuspended in serum-free 

DMEM and incubated in suspension for 1 h at 37ºC. 

UBM-ECM pepsin digest samples were diluted in serum-free DMEM to concentrations 

ranging from 10 to 200 g UBM-ECM digest/ml. UBM-ECM collagenase digest samples were 

diluted in serum-free DMEM to concentrations ranging from 10 to 1000g UBM-ECM 
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digest/ml. A negative control for each sample was prepared by diluting the pepsin or collagenase 

control sample in serum-free DMEM at the same ratios as the UBM-ECM digest samples. 

Undiluted UBM-ECM releasates in PBS and DMEM and negative controls of PBS and DMEM 

alone were also evaluated. A positive control of 10% heat inactivated FCS in DMEM was also 

included in each assay. Samples were loaded to the lower chamber of each well of the 

chemotaxis chamber. A 12 μm pore size polycarbonate filter coated with 0.05 mg/ml collagen I 

(BD Biosciences, San Jose, CA) divided the lower and upper chamber of each well. 

Approximately 30,000 cells were added to the upper chamber of each well. The chemotaxis 

chamber was incubated at 37ºC for 3 h. Cells that had not migrated through the pores of the filter 

were removed and migrated cells were fixed and stained with Diff-Quick staining kit for manual 

cell counting or permeabilized and stained with DAPI for ImageJ software-assisted cell counting.  

Three random fields from each well, located in the upper left, upper right and lower 

central regions of each well, were photographed at 200X magnification and migrated cells were 

counted from these fields, by manual counting or ImageJ software. Samples were tested in 

quadruplicate for each chemotaxis assay performed. The percentage change in migrated cells in 

response to UBM-ECM digest/releasate samples compared to negative control samples was 

calculated for each assay performed. To compare results between different assays, the percentage 

change was normalized by the percentage change induced by the positive control for each assay. 

Reported results are expressed as mean and standard error of the mean (SEM) of percentage 

change in migration normalized by positive control from one to three assays (n = 1-3 

independent assays, with samples run in quadruplicate in each assay, for n = 4-12 samples 

tested). The statistical significance between samples was determined by Student’s t-test with  = 

0.05. 
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2.2.4 Chemotaxis assay with neonatal human epidermal keratinocytes 

 
 
Neonatal human epidermal keratinocytes (HEKn) were obtained from Cascade Biologics and 

cultured in EpiLife medium (Cascade Biologics, Portland, OR) supplemented with human 

keratinocyte growth supplement (HKGS; Cascade Biologics), yielding final supplemented 

medium concentrations of 0.2% v/v bovine pituitary extract, 5 μg/ml bovine insulin, 0.18 μg/ml 

hydrocortisone, 5 μg/ml bovine transferrin and 0.2 ng/ml human epidermal growth factor. HEKn 

were cultured according to the manufacturer’s instructions under a humidified atmosphere in 

95% air/5% CO2 at 37ºC. This cell population has been shown to express Rex-1, a putative stem 

cell marker, and other stem cell markers such as Oct 4 and cMyc [83]. Cells used in these studies 

were passage 4–7. 

In vitro chemotaxis of HEKn toward pepsin and collagenase digests of UBM-ECM was 

evaluated using a 48-well micro-chemotaxis chamber (Neuro Probe). When the HEKn reached 

70–80% confluency, they were starved overnight in unsupplemented EpiLife medium before use 

in chemotaxis assays the following morning. Then the HEKn were trypsinized, neutralized and 

centrifuged according to HEKn product instructions, resuspended in unsupplemented EpiLife 

medium and incubated in suspension for 1 h at 37ºC.   

UBM-ECM pepsin and collagenase digest samples were diluted in unsupplemented 

EpiLife medium to concentrations ranging from 50 to 500 μg UBM-ECM digest/ml. A negative 

control for each sample was prepared by diluting the pepsin or collagenase control sample in 

unsupplemented EpiLife medium at the same ratios as the UBM-ECM digest samples. A positive 

control of 10% HKGS in unsupplemented EpiLife medium was also included in each assay. 

Samples were loaded to the lower chamber of each well of the chemotaxis chamber. An 8 μm 

pore size polycarbonate filter coated with 0.05 mg/ml collagen I (BD Biosciences, San Jose, CA) 
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divided the lower and upper chamber of each well. Approximately 30,000 cells were added to 

the upper chamber of each well. The chemotaxis chamber was incubated at 37ºC for 3 h. Cells 

that had not migrated through the pores of the filter were removed and migrated cells were fixed, 

permeabilized and stained with DAPI.  

Three random fields from each well, located in the upper left, upper right and lower 

central regions of each well, were photographed at 200X magnification and migrated cells were 

counted from these fields using ImageJ software. Samples were tested in quadruplicate for each 

chemotaxis assay performed. The percentage change in migrated cells in response to UBM-ECM 

digest samples compared to negative control samples was calculated for each assay performed. 

To compare results between different assays, the percentage change was normalized by the 

percentage change induced by the positive control for each assay. Reported results are expressed 

as mean and SEM of percentage change in migration normalized by positive control from three 

to five assays (n = 3-5 independent assays, with samples run in quadruplicate in each assay, for n 

= 12-20 samples tested). The statistical significance between samples was determined by 

Student’s t-test with  = 0.05. 

 

2.3 RESULTS 

 
SDS-PAGE analysis of UBM-ECM releasates in PBS and DMEM showed that both releasate 

samples contained peptides ranging from 10-250 kD while the PBS and DMEM control samples 

did not (Figure 1A). The two releasates showed similar protein profiles, although the PBS-UBM-

ECM releasate showed slightly stronger staining than the DMEM-UBM-ECM releasate. SDS-

PAGE analysis of UBM-ECM pepsin digest and UBM-ECM collagenase digest showed that 
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both digests contained peptides over a wide range of molecular weights (Figure 1B and C). The 

two digests showed differences in their protein profiles. The pepsin digest of UBM-ECM showed 

strongest staining in bands located at 100-184 kD, while the collagenase digest of UBM-ECM 

showed strongest staining in bands located at less than 20 kD. These differences in protein 

profiles suggest that degradation of the UBM-ECM using the two different enzymes yields 

different degradation products. 

More MRL-B cells migrated in response to UBM-ECM releasates in PBS and DMEM 

than in response to the PBS and DMEM control samples (p<0.05, Figure 2). There was no 

significant difference between the chemoattractant activity of PBS-UBM-ECM and DMEM-

UBM-ECM releasates for MRL-B cells (Figure 3). 

Pepsin digested UBM-ECM showed chemoattractant activity for MRL-B cells at 

concentrations of 100 and 200 g/ml (p<0.05, Figure 4), but not at lower concentrations. 

Collagenase digested UBM-ECM showed chemoattractant activity for MRL-B cells at 1000 

g/ml (p<0.05, Figure 5), but not at lower concentrations. Pepsin digestion of UBM-ECM 

appeared to result in stronger chemoattractant activity for MRL-B cells than collagenase 

digestion or incubation in PBS or DMEM (Figures 3-5). 

At 50 and 100 g/ml, both pepsin and collagenase digested UBM-ECM showed 

chemoattractant activity for HEKn (p<0.05, Figure 6). At 100 g/ml, collagenase digested UBM-

ECM showed significantly stronger chemoattractant activity for HEKn than did pepsin digested 

UBM-ECM. Pepsin digested UBM-ECM also showed significant chemoattractant activity for 

HEKn at 200 and 500 g/ml, while at these concentrations the collagenase and EDTA within the  
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collagenase digested UBM-ECM and its control solution completely inhibited HEKn migration, 

overshadowing any chemoattractant activity that these UBM-ECM degradation products may 

have possessed. 

 

 

 

Figure 1. SDS-PAGE analysis of: (A) UBM-ECM releasates and controls; (B) UBM-ECM 
pepsin digest [78]; and (C) UBM-ECM collagenase digest. 
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Figure 2. Migration of MRL-B cells in response to UBM-ECM releasates and controls. 
Mean  standard deviation (n = 4); * = p< 0.05 compared to PBS and DMEM control 
samples. Equivalent trends were observed on one further occasion. 
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Figure 3. Chemoattractant activity of UBM-ECM releasates for MRL-B cells. Mean SEM 
(n=2 independent assays with samples tested in quadruplicate in each assay); * = p< 0.05 
compared to PBS and DMEM control samples 
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Figure 4. Chemoattractant activity of pepsin digest of UBM-ECM for MRL-B cells. Mean  
SEM (n = 2- 3 independent assays with samples tested in quadruplicate in each assay); * = 
p< 0.05 compared to pepsin control samples 
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Figure 5. Chemoattractant activity of collagenase digest of UBM-ECM for MRL-B cells. 
Mean  SEM (n = 1-2 independent assays with samples tested in quadruplicate in each 
assay); * = p< 0.05 compared to collagenase control sample 
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Figure 6. Chemoattractant activity of pepsin and collagenase digests of UBM-ECM for 
HEKn. Mean  SEM (n = 3-5 independent assays with samples tested in quadruplicate in 
each assay); * = p< 0.05 compared to collagenase or pepsin control sample, # = p< 0.05 
compared to UBM-ECM pepsin digest at 100 g/mL 

 

2.4 DISCUSSION 

 
The present study demonstrates that molecules produced by degradation of UBM-ECM with 

either pepsin or collagenase have chemoattractant activity for two progenitor cell populations, a 

multipotential population of cells harvested from the healing ear of the MRL mouse and a 

population of human epidermal keratinocyte stem/progenitor cells. In addition, incubation of 

UBM-ECM in PBS or DMEM also resulted in the release of molecules that have chemoattractant 

29 



activity for multipotential cells harvested from the healing ear of the MRL mouse. These 

findings are an interesting corollary to an in vivo study that investigated the regenerative process 

that occurs in the MRL mouse ear, in which it was shown that basement membrane degradation 

occurred more rapidly in healing ears of MRL mice than in C57BL/6 mice and that MMP-2 and 

MMP-9 were upregulated in MRL mice compared to expression in C57BL/6 mice [80]. These 

results suggest that ECM degradation may be an important factor in this unique mammalian 

regenerative process, as well as in ECM scaffold induced constructive remodeling.  

The pepsin digest of UBM-ECM showed chemoattractant activity for the MRL-B cells at 

a lower concentration than did the collagenase digest of UBM-ECM.  In contrast, the collagenase 

digest of UBM-ECM showed stronger chemoattractant activity for the HEKn at one 

concentration than did the pepsin digest of UBM-ECM. These differences in chemoattractant 

activity hint at the complexities of the effects of the different molecules produced by different 

digestion methods on a given cell type, and also suggest that different progenitor cell populations 

respond differently to the same molecules. Similarly, a recent study has shown that UBM-ECM 

digested using pepsin or papain resulted in molecules that had chemoattractant activity for MRL-

B cells but inhibited migration of several mature endothelial cell populations [68]. Pepsin 

digested UBM-ECM also enhanced proliferation of MRL-B cells and inhibited proliferation of 

mature endothelial cells [68]. Taken together, along with the observation from this study that 

UBM-ECM soaked in PBS released molecules with chemoattractant activity for multipotent 

cells, these in vitro results may partially explain some of the mechanisms that take place as 

degrading ECM scaffolds recruit cell populations that facilitate constructive remodeling in vivo.  

We speculate that when an ECM scaffold is implanted, degradation molecules with 

chemoattractant activity for progenitor cells may be released by hydrolysis, and intact growth 
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factors within the ECM may be released as well. As host cells, including inflammatory cells, 

interact with the implanted ECM, the ECM is further degraded by various proteolytic enzymes, 

resulting in the release of different matricryptic molecules over time. Some of these matricryptic 

molecules may have chemoattractant activity for different cell populations that are thereby 

recruited to the site of ECM remodeling. Multipotent progenitor cells are among the recruited 

cells, originating both from the bone marrow and local tissue stem cell niches. Several studies 

have shown that stem and progenitor cells are able to proliferate in hypoxic environments [84-

86], suggesting that recruited progenitor cells could proliferate at the site of ECM remodeling 

during the early stages, before the remodeled tissue becomes well vascularized. As tissue 

remodeling continues, the progenitor cells may differentiate into site appropriate cell types, as 

suggested in an in vivo mouse tendon repair study [19]. Also as the remodeling tissue matures, 

mature endothelial cells and other cell types may be recruited by matricryptic molecules and 

other signaling molecules (e.g., HIF-1, SDF-1, VEGF) present in the remodeling tissue milieu. 

Much remains to be determined about the specific molecules, the temporal patterns, and the 

mechanisms involved in these processes. 

In vitro digestion of ECM using enzymatic methods such as pepsin or collagenase is 

more similar to the processes by which ECM is degraded in vivo than previous studies in which 

ECM was degraded in vitro using acid and extreme heat. Other more physiologic methods of in 

vitro degradation of ECM were examined in this study, including human white blood cell-

mediated degradation and purified MMP-mediated degradation of UBM-ECM, but the results of 

these methods of degradation did not show positive chemotactic effects in this assay system. Of 

the two successful in vitro degradation methods described in this study, collagenase digestion is 

likely more physiologically relevant, but pepsin digests can be evaluated for in vitro 
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chemoattractant activity for keratinocyte stem/progenitor cells and likely other cell populations 

over a greater range of concentrations. In addition, pepsin digestion does not require the addition 

of other chemicals to quench the pepsin activity, which comparatively would simplify 

purification of the ECM digests and analysis of fractionated digests. Furthermore, cleavage of 

ECM molecules by pepsin digestion occurs at more specific amino acid locations than by 

collagenase digestion, which may be beneficial for long-term goals of identifying 

chemoattractant molecules with the ECM degradation products. 

 

2.5 LIMITATIONS AND FUTURE WORK 

 
This study investigated in vitro degradation of UBM-ECM using several methods, including 

pepsin, collagenase, a heterogeneous population of primary human white blood cells, CD14+ 

primary human white blood cells, and purified matrix metalloproteinases (MMP-2 and MMP-9). 

The white blood cell and purified MMP-mediated degradation methods did not show positive 

chemotactic results. Other enzymatic methods of in vitro degradation of UBM-ECM that would 

be interesting and physiologically relevant include other MMPs, elastase, lysozyme, and cysteine 

proteases such as cathepsin G, cathepsin K, caspases, and calpains. It would also be of interest to 

continue investigating human white blood cell-mediated degradation of ECM. In particular, 

much recent and ongoing work in our laboratory has shown polarization of macrophages toward 

M1 and M2 phenotypes in response to different biomaterials [87, 88]. It would be interesting to 

analyze the degradation products of UBM-ECM seeded with M1-polarized macrophages (or 

crosslinked UBM-ECM that drives macrophages toward an M1 phenotype) compared to 

degradation products of UBM-ECM seeded with M2-polarized macrophages. 
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In addition, the two progenitor cell populations that were investigated in this study 

showed slightly different migratory responses to the UBM-ECM degradation products. The 

addition of another progenitor cell population to the study would have been interesting. Human 

umbilical cord blood-derived multi-lineage progenitor cells (BioE, St. Paul, MN) were 

investigated in pilot studies, but it was challenging to obtain sufficient numbers of these cells for 

chemotaxis assays. Haptotactic and chemokinetic effects of the chemotaxis assay were not 

directly investigated in this study, and it is important to note that the chemoattractant activity of 

the ECM digests evaluated in the present study represent the net bioactivity of molecules present 

within each of the digests. This net effect of chemoattractant activity is logical and relevant from 

an in vivo injury repair perspective. 

 



 
 
 
 
 
 
 
 
 
 

3.0 SPECIFIC AIM 2: TISSUE-SPECIFIC CHEMOATTRACTANT DEGRADATION 
PRODUCTS OF ECM 

 
 
 

3.1 BACKGROUND 

 
 
Biological scaffolds composed of naturally occurring extracellular matrix (ECM) have been 

successfully used as templates for the constructive remodeling of numerous tissues in preclinical 

studies and human clinical applications [1-12, 89]. The mechanisms by which ECM induces 

constructive remodeling are largely unknown, but it appears that the degradation products of 

ECM scaffolds play a key role in the cell recruitment and constructive remodeling effect [20-22, 

68, 70]. ECM scaffolds that are not chemically crosslinked (e.g. not carbodiimide-treated) are 

rapidly degraded in vivo [14, 16, 41] and have been shown to recruit bone marrow-derived cells 

to the site of remodeling [18, 19]. These marrow-derived cells remain in the remodeling site 

beyond the time period of an expected inflammatory response, integrate into the remodeled 

tissue, and may differentiate into site-appropriate mature cell types [19]. 

Most, if not all, tissues and organs within the adult human body harbor multipotential 

stem and progenitor cell populations that are specific for the tissue or organ within which they 

reside. These tissue-specific stem and progenitor cells play important roles in tissue homeostasis 

and repair following injury, and are found within bone marrow, muscle, adipose tissue, lungs, 

liver, small intestine and skin, among other tissues [90-100]. Human keratinocyte stem and 

progenitor cells have been well characterized and numerous markers have been identified for 
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these cells, including keratinocyte stem and progenitor cell marker β1 integrin [101-104], 

keratinocyte stem cell markers cytokeratin 15 (CK15) [104-106] and cytokeratin 19 (CK19) 

[101, 107], as well as Rex-1, a putative human stem cell marker [83, 108, 109]. Liver stem and 

progenitor cells are thought to exist within the adult and fetal liver. Fetal liver progenitor cells 

have been isolated and shown to have bipotential capability of differentiating into hepatocytes 

and bile duct cells both in vitro and in vivo [110-113]. While consensus has not yet been reached 

on immunophenotypic markers of liver progenitor cells, many recent reports agree on epithelial 

cell adhesion molecule (EpCAM), CD44, and CK19 [114]. The small intestine has long been 

accepted to harbor a population of multipotent stem cells within the base of the intestinal crypts 

[115, 116]. The IEC-6 rat small intestinal epithelial cell line has been shown to have 

morphologic and immunochemical characteristics consistent with undifferentiated cells derived 

from the crypts of the small intestine [117], and several reports have used this cell line as a 

model small intestinal progenitor cell population [118-120]. 

Because ECM produced by the resident cells of each tissue is uniquely suited with regard 

to composition and structure for that particular tissue, the composition of ECM harvested from 

different tissues will vary [74, 121, 122]. It is logical and possible that ECM derived from a 

particular tissue may generate degradation products that recruit progenitor cells that are lineage-

directed for that same tissue. Furthermore, it is known that fetal tissue has a greater regenerative 

capacity, particularly in skin wounds, than adult tissue [123]. Differences between fetal and adult 

wound healing are likely due to differences in both the cell population and the ECM [123]. 

The objective of the present study was to determine if degradation products of ECM 

scaffolds possess preferential chemoattractant activity for tissue-specific, lineage-directed 

progenitor cells derived from the same tissue type as that from which the ECM is prepared.  The 
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effects of age and species of the tissue from which ECM is harvested on the chemoattractant 

activity of degradation products of ECM were also investigated. Skin and liver-derived ECM and 

progenitor cells were the main focus of this study, and the chemotactic response of small 

intestinal progenitor cells to digests of porcine small intestine, urinary bladder, and liver-derived 

ECM was also investigated. A diagrammatic overview of the types of cells and ECMs 

investigated in the chemotaxis studies is shown in Figure 7. 

 

 

Figure 7.  Overview of the types of cells and ECMs investigated in chemotaxis studies 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Response of skin and liver-derived progenitor cells to degradation products of skin 
and liver-derived ECM 

 

3.2.1.1 Preparation of ECM from fetal and adult tissues Human fetal skin ECM (hfS-ECM) 

was prepared from fetal skin samples obtained from elective pregnancy termination at 18–23 

weeks gestation, in a protocol approved by the University of Pittsburgh Institutional Review 

Board (IRB# 0504158). Fetal skin was immersed in water at 4ºC for 4–18h to facilitate the 

removal of excess connective tissue. The tissue was then placed in 0.02% trypsin (Sigma, St. 

Louis, MO)/0.05% ethylenediaminetetraacetic acid (EDTA; Sigma) at 37ºC for 1 h, then placed 

on a rocker in 3% v/v Triton-X (Sigma) at 4ºC for 48 h, and finally in 4% w/v deoxycholic acid 

(Sigma) at 4ºC for 24 h. 

Human adult skin ECM (hS-ECM) was prepared from an adult skin sample obtained 

from elective surgery, in a protocol approved by the University of Pittsburgh IRB (IRB# 

0511186). The skin was immersed in water at 4ºC for 4–18 h to facilitate the removal of excess 

connective tissue. The epithelium was removed from the skin sample and the remaining tissue 

was then placed in 0.02% trypsin/0.05% EDTA at 37ºC for 3 h, then placed on a rocker in 3% 

v/v Triton-X at 4ºC for 48 h, and finally in 4% w/v deoxycholic acid at 4ºC for 24 h. To remove 

adherent adipose tissue, the sample was incubated in 1-propanol (Sigma) for three 2 h washes on 

an orbital shaker at room temperature. The sample was then washed extensively in water to 

remove all traces of alcohol. 

Porcine adult skin ECM (pS-ECM) was prepared from skin obtained from a local abattoir 

immediately after the death of pigs weighing approximately 100–120 kg. Connective tissue and 

the epithelium were removed from the skin samples and the remaining tissue was placed in 
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deionized water at 4ºC for 24 h. The tissue was then placed in 0.02% trypsin/0.05% EDTA at 37 

ºC for 5 h, then placed on a rocker in 3% v/v Triton-X at 4◦C for 48 h, and finally in 4% w/v 

deoxycholic acid at 4ºC for 48 h. 

Human liver was harvested from the cadaver of a 43-year-old male that died from cardiac 

arrest, in a protocol approved by the University of Pittsburgh IRB. Porcine livers were obtained 

from a local abattoir immediately after the death of pigs weighing approximately 100-120 kg. 

Porcine liver ECM (pL-ECM) and human liver ECM (hL-ECM) were prepared as previously 

described [74, 121]. Briefly, hL-ECM and pL-ECM were prepared by slicing lobes of liver to 3 

mm thick sheets, then rinsing the sheets in deionized water with agitation on an orbital shaker for 

a total of three 20-minute rinses. Slices were then placed on a polypropylene mesh and subjected 

to uniform manual pressure to burst the hepatocytes. The tissue was returned to a flask and 

submerged in 0.02% trypsin/0.05% EDTA for 1 h at 37˚C, agitated at room temperature in 3% 

(v/v) Triton X-100 for 1 h, then in 4% (w/v) deoxycholic acid for 1 h. The tissue was rinsed with 

deionized water and massaged between each treatment step. 

Following these processing steps, all ECMs were treated with 0.1% peracetic acid/4% 

ethanol for 2 h and rinsed with deionized water and phosphate-buffered saline (PBS). Complete 

decellularization was confirmed by both 4 -6-diamidino-2-phenylindole (DAPI) nuclear staining 

and hematoxylin and eosin (H&E) staining of 5 μm thick sections of the ECMs. The ECM sheets 

were then frozen and lyophilized. Lyophilized hS-ECM, pS-ECM, hL-ECM, and pL-ECM sheets 

were frozen and comminuted into a particulate form using a Waring commercial blender and 

Wiley Mill [75]. Due to quantitative limitations for hfS-ECM material and loss of material 

associated with use of the Wiley Mill, hfS-ECM was manually cut into small pieces. 
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3.2.1.2 Preparation of ECM degradation products Each type of ECM (hfS-ECM, hS-ECM, pS-

ECM, hL-ECM, pL-ECM) was digested using pepsin. Particulate lyophilized ECM was added to 

1 mg/ml pepsin (Sigma) in 0.01 N HCl for a final concentration of 10 mg ECM/ml suspension. 

The suspension was mixed on a stir plate at room temperature for 48 h, at which time no visible 

pieces of ECM remained. Pepsin control samples were prepared by mixing the pepsin digestion 

solution (1 mg/ml pepsin in 0.01 N HCl) at room temperature for 48 h. 

3.2.1.3 SDS–PAGE analysis of ECM digests A bicinchoninic acid (BCA) assay (Pierce 

Biotechnology, Rockford, IL) was performed to estimate protein concentration of each type of 

ECM pepsin digest. Based on BCA assay results, uniform quantities of protein were loaded into 

each lane of a 12.5% polyacrylamide gel, with a prestained protein standard (Bio-Rad, Hercules, 

CA) in the range 15–250 kDa. The gel was subjected to a voltage of 80 V until the dye front 

entered the separating gel, then at a constant voltage of 100 V until the dye front reached the 

bottom of the gel. The gel was stained with Imperial Protein Stain (Pierce Biotechnology). 

3.2.1.4 Culture and Characterization of HEKn Neonatal human epidermal keratinocytes 

(HEKn) were obtained from Cascade Biologics and cultured in EpiLife medium (Cascade 

Biologics, Portland, OR) supplemented with human keratinocyte growth supplement (HKGS; 

Cascade Biologics), yielding final supplemented medium concentrations of 0.2% v/v bovine 

pituitary extract, 5 μg/ml bovine insulin, 0.18 μg/ml hydrocortisone, 5 μg/ml bovine transferrin 

and 0.2 ng/ml human epidermal growth factor. HEKn were cultured according to the 

manufacturer’s instructions under a humidified atmosphere in 95% air/5% CO2 at 37ºC. Cells 

used in these studies were passage 4–7. 
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HEKn were plated into CultureSlides (BD Falcon, Franklin Lakes, NJ) and cultured as 

described above. The cells were fixed in 4% paraformaldehyde in PBS for 15 min and 

permeabilized in 0.1% Triton X-100 in PBS for 5 min (except the cells for β1 integrin staining), 

then blocked in 1% bovine serum albumin and 0.1% Tween 20 in PBS for 30 min at room 

temperature. The cells were then incubated with primary antibodies for 1 h at room temperature 

and subsequently incubated with Alexa Fluor 594- and/or Alexa Fluor 488-conjugated secondary 

antibodies (Molecular Probes, now a part of Invitrogen) for 1 h at room temperature. The cells 

were washed in PBS and mounted using Vectashield mounting medium containing DAPI to 

counterstain the nuclei (Vector Laboratories, Burlingame, CA), and examined using a Nikon 

Eclipse TE-2000-E fluorescence microscope and Nikon Elements Advanced Research 

quantitation software. For each primary antibody, the cells of 9–12 fields were photographed and 

counted. The primary antibodies used in this study were: rabbit anti-human Rex-1 antibody, 

raised in the Laboratory of Dr. Lorraine Gudas at Weill Medical College of Cornell University (1 

: 10 dilution); mouse monoclonal anti-human CK15 and CK19 antibodies (1 : 200 dilution), 

purchased from Novocastra (Newcastle on Tyne, UK); and mouse monoclonal anti-human β1 

integrin antibody (1 : 200 dilution) purchased from Chemicon (now a subsidiary of Millipore). 

Reported results are expressed as the mean and standard error of mean (SEM) of the percentage 

of cells staining positive for each antibody. 

3.2.1.5 Chemotaxis assay with HEKn In vitro chemotaxis of HEKn toward ECM pepsin digests 

was evaluated using a 48-well micro-chemotaxis chamber (Neuro Probe, Gaithersburg, MD). 

When the HEKn reached 70–80% confluency, they were starved overnight in unsupplemented 

EpiLife medium before use in chemotaxis assays the following morning. Then the HEKn were 
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trypsinized, neutralized and centrifuged according to HEKn product instructions, resuspended in 

unsupplemented EpiLife medium and incubated in suspension for 1 h at 37ºC.   

HEKn were first tested in this assay for chemotaxis in response to growth factors, 

including recombinant human epidermal growth factor (EGF) at 10, 50, and 100 ng/mL in 

unsupplemented EpiLife medium and transforming growth factor alpha (TGF-) at 10 and 50 

ng/mL in unsupplemented EpiLife medium. 10% HKGS was evaluated as a potential positive 

control sample in these assays. HEKn were then tested for chemotaxis in response to ECM 

degradation products. Pepsin digests of hfS-ECM, hS-ECM, pS-ECM, hL-ECM, and pL-ECM 

were diluted in unsupplemented EpiLife medium to concentrations of 100, 200, 500 and 1000 μg 

ECM digest/ml. A negative control for each sample was prepared by diluting the pepsin control 

sample in unsupplemented EpiLife medium at the same ratios as the ECM pepsin digest samples. 

A positive control of 10% HKGS in unsupplemented EpiLife medium was also included in each 

assay. Samples were loaded to the lower chamber of each well of the chemotaxis chamber. An 8 

μm pore size polycarbonate filter coated with 0.05 mg/ml collagen I (BD Biosciences, San Jose, 

CA, USA) divided the lower and upper chamber of each well. Approximately 30,000 cells were 

added to the upper chamber of each well. The chemotaxis chamber was incubated at 37ºC for 3 

h. Cells that had not migrated through the pores of the filter were removed and migrated cells on 

the bottom side of the filter were fixed, permeabilized and stained with DAPI.  

Three random fields from each well, located in the upper left, upper right and lower 

central regions of the filter from each well were photographed at 200X magnification and 

migrated cells were counted from these fields, using ImageJ software. Samples were tested in 

quadruplicate for each chemotaxis assay performed. The percentage change in migrated cells in 

response to ECM pepsin digest samples compared to negative control samples was calculated for 
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each assay performed. To compare results between different independent assays, the percentage 

change was normalized by the percentage change induced by the positive control for each assay. 

Reported results are expressed as mean and standard error of the mean (SEM) of percentage 

change in migration normalized by positive control from four assays (n = 4 independent assays, 

with samples run in quadruplicate, for n = 16 samples tested). The statistical significance of the 

difference between human fetal skin ECM pepsin digest and all adult ECM pepsin digest sample 

values was determined by one-way ANOVA with  = 0.05 followed by post-hoc Tukey’s test 

with  = 0.05. The statistical significance of the difference between adult skin and liver ECM 

pepsin digest sample values and the statistical significance of the difference between adult 

porcine and human ECM pepsin digest sample values were determined by Student’s t-test with  

= 0.05.  

3.2.1.6 Culture and characterization of human fetal liver cells Primary cells were isolated from 

human fetal livers at 16-18 weeks gestation by 1 mg/ml collagenase II + 1 mg/ml of 

hyaluronidase treatment followed by 0.05% trypsin/EDTA, and cultured on a rat epithelial feeder 

layer. The mammary tumor cell line, LA7 (ATCC® number CRL-2283™), was used as a feeder 

layer. Only epithelial cells from primary tissue expand on these feeder cells [124]. The LA7 cell 

line was grown in DMEM/F-12 supplemented with 5% heat inactivated fetal calf serum (HI-

FCS), 1% penicillin/streptomycin, 50 nM hydroxycortisone, and 5 g/ml insulin in a humidified 

atmosphere in 95% air/5% CO2 at 37ºC. Upon confluence, the cells were trypsinized with 0.05% 

trypsin/EDTA and -irradiated at 17,000 rads to render the cells mitotically inactive. Cell culture 

flasks were then seeded at an approximate density of 70,000 cells/mm2 to generate a monolayer 

of feeder cells.  Primary human fetal liver cells were grown on these feeder layers with 

DMEM/F-12 supplemented with 0.5% HI-FCS, 25 g/ml gentamicin and 1% insulin-transferrin 
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supplement (ITS). After roughly 2 passages, the cells were stained with CD26-PE (DPPIV) and 

CD227-FITC (MUC1). CD26+CD277+ cells were sorted with a BD FACSVantageSE Cell 

Sorter. CD26 is considered to a hepatocyte marker, while CD227, is considered a biliary marker. 

CD26+CD227+ cells were expanded on the LA7 feeder cell layer as described previously. Flow 

cytometric analyses at later passages have shown that these cells have a stable CD26+CD227+ 

phenotype. These cells were also shown to express the candidate liver stem cell marker EpCAM 

and the mesenchymal stem cell marker CD73. The cells are negative for expression of candidate 

liver stem cell marker CD49f [125]. Cells used in these studies were passages 5-7 after the 

CD26/CD227 sort. 

3.2.1.7 Chemotaxis assay with human fetal liver cells In vitro chemotaxis of human fetal liver 

cells toward ECM pepsin digests was evaluated using a 48-well micro chemotaxis chamber. 

When human fetal liver cells reached 80-90% confluency, they were starved overnight in serum-

free DMEM before use in chemotaxis assays the following morning. The human fetal liver cells 

were then trypsinized, neutralized, resuspended in serum-free DMEM, and incubated in 

suspension for one hour at 37ºC. 

Pepsin digests of hfS-ECM, hS-ECM, pS-ECM, hL-ECM, and pL-ECM were diluted in 

serum-free DMEM to concentrations of 100, 500 and 1000 μg ECM digest/ml. A negative 

control for each sample was prepared by diluting the pepsin control sample in serum-free 

DMEM at the same ratios as the ECM pepsin digest samples. A positive control of 10% heat 

inactivated FCS in serum-free DMEM was also included in each assay. Samples were loaded to 

the lower chamber of each well of the chemotaxis chamber. A 12 μm pore size polycarbonate 

filter coated with 0.01 mg/ml fibronectin (Sigma) divided the lower and upper chamber of each 

well. Approximately 60,000 cells were added to the upper chamber of each well. The chemotaxis 
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chamber was incubated at 37ºC for 6 h. Cells that had not migrated through the pores of the filter 

were removed and migrated cells on the bottom side of the filter were fixed, permeabilized and 

stained with DAPI.  

Three random fields from each well, located in the upper left, upper right and lower 

central regions of the filter from each well were photographed at 200X magnification and 

migrated cells were counted from these fields, using ImageJ software. Samples were tested in 

quadruplicate for each chemotaxis assay performed. The percentage change in migrated cells in 

response to ECM pepsin digest samples compared to negative control samples was calculated for 

each assay performed. To compare results between different independent assays, the percentage 

change was normalized by the percentage change induced by the positive control for each assay. 

Reported results are expressed as mean and SEM of percentage change in migration normalized 

by positive control. Results are from two to five assays (n = 2-5 independent assays, with 

samples run in quadruplicate, for n = 8-20 samples tested), with the exceptions of hS-ECM and 

pS-ECM at 1000 g/mL, which were tested in one assay (n = 1 independent assay with samples 

run in quadruplicate, for n = 4 samples tested). The statistical significance of the difference in 

values between samples was determined by one-way ANOVA with  = 0.05. 

3.2.2 Response of intestinal progenitor cells to degradation products of porcine adult ECM 

 

3.2.2.1 Preparation of ECM from small intestine, urinary bladder and liver Porcine adult 

urinary bladder matrix (UBM-ECM) was prepared as previously described [74]. In brief, 

urothelial cells were removed by soaking the urinary bladders in 1.0 N saline. Connective and 

adipose tissue were removed from the serosal surface of the urinary bladder, and the tunica 

serosa, tunica muscularis externa, tunica submucosa, and most of the tunica muscularis mucosa 
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were mechanically removed, leaving a biomaterial composed of only the basement membrane 

and the subjacent tunica propria of the tunica mucosa. Porcine adult small intestinal submucosa 

(SIS-ECM) was prepared as previously described [1, 126]. In brief, the mesenteric tissues were 

removed from the small intestine and after rinsing, the tunica serosa, tunica muscularis externa, 

and the luminal portion of the tunica mucosa including most of the lamina propria were 

mechanically removed. The remaining layers of the tunica submucosa and basilar portion of the 

tunica mucosa, including the muscularis mucosa and the stratum compactum of the lamina 

propria, represented SIS. Porcine adult liver ECM (pL-ECM) was prepared as described in 

section 3.2.1.1. 

Decellularization of all ECMs was completed by treatment with 0.1% peracetic acid/4% 

ethanol for two hours followed by rinsing with PBS and deionized water. Complete 

decellularization was confirmed by both DAPI nuclear staining and H&E staining. The UBM-

ECM, SIS-ECM, and pL-ECM were then lyophilized in sheet form, frozen, and comminuted into 

a particulate form using a Wiley Mill with a #60 mesh screen [75]. 

3.2.2.2 Preparation of ECM degradation products Each type of ECM (UBM-ECM, SIS-ECM, 

pL-ECM) was digested using pepsin. Particulate lyophilized ECM was added to 1 mg/ml pepsin 

(Sigma) in 0.01 N HCl for a final concentration of 10 mg ECM/ml suspension. The suspension 

was mixed on a stir plate at room temperature for 48 h, at which time no visible pieces of ECM 

remained. Pepsin control samples were prepared by mixing the pepsin digestion solution (1 

mg/ml pepsin in 0.01 N HCl) at room temperature for 48 h. 

3.2.2.3 Culture of rat small intestinal epithelial cells The IEC-6 rat small intestinal epithelial 

cell line was obtained from the American Type Culture Collection (ATCC, Manassas, VA). IEC-

6 cells were cultured in DMEM supplemented with 5% fetal calf serum, 1X 
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penicillin/streptomycin, 2.5 μg/ml gentamicin, and 0.1 U/ml bovine insulin (DMEM-IEC6) 

under a humidified atmosphere in 95% air/5% CO2 at 37ºC. Cells used in these studies were 

passage 26 and 27. 

3.2.2.4 Chemotaxis assay with rat small intestinal epithelial cells In vitro chemotaxis of IEC-6 

cells toward ECM pepsin digests was evaluated using a 48-well micro chemotaxis chamber. 

When IEC-6 cells reached 70-80% confluency, they were starved overnight in serum-free 

unsupplemented DMEM (DMEM-SF) before use in chemotaxis assays the following morning. 

Then, IEC-6 cells were trypsinized, neutralized, centrifuged, resuspended in DMEM-SF, and 

incubated in suspension for one hour at 37ºC.  

Pepsin digests of UBM-ECM, SIS-ECM, and pL-ECM were diluted in DMEM-SF to a 

concentration of 500 g ECM digest/mL. A negative control sample was prepared by diluting the 

pepsin digestion solution in DMEM-SF at the same ratio as the ECM pepsin digest samples. A 

positive control of DMEM-IEC6 was also included in each assay. Samples were loaded to the 

lower chamber of each well of the chemotaxis chamber. An 8 m pore size polycarbonate filter 

coated with 0.05 mg/ml collagen I divided the lower and upper chamber of each well. 

Approximately 30,000 cells were added to the upper chamber of each well. The chemotaxis 

chamber was incubated at 37ºC for 3 hours. Cells that had not migrated through the pores of the 

filter were removed and migrated cells on the bottom side of the filter were fixed, permeabilized, 

and stained with DAPI.  

Three random fields from each well, located in the upper left, upper right and lower 

central regions of the filter from each well were photographed at 200X magnification and 

migrated cells were counted from these fields, using ImageJ software. Samples were tested in 

quadruplicate for each chemotaxis assay performed. Reported results are expressed as the mean 
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and standard deviation of migrated cells from one representative assay (n=4 samples tested) of 

two assays performed. Statistical significance of the difference in values between samples was 

determined by one-way ANOVA with  = 0.05 followed by post-hoc Tukey’s test with  = 0.05. 

 

3.3 RESULTS 

 

SDS–PAGE analysis of hfS-ECM, hS-ECM, pS-ECM, hL-ECM, and pL-ECM digests (Figure 8) 

showed that all five ECM digests contained numerous peptides in the size range 15–250 kDa. 

Certain peptides appeared to be present in all five ECM digests, while others were only present 

in one type of ECM digest, suggesting that there were variations in molecules released by pepsin 

digestion of the different ECMs. Bands that were present in all five ECM digests showed 

different intensities, suggesting quantitative differences between the amounts of the respective 

molecules. 

HEKn in culture were found to express human Rex-1 [83, 108, 109], CK15 [104-106] 

and CK19 [101, 107] mRNA (Figure 9), markers known to be present in keratinocyte stem cell 

populations. Fluorescent immunolabeling demonstrated that Rex-1 signal was present in both the 

cytoplasm and the nucleus of HEKn, and the Rex-1 signal in the nucleus was greater than that in 

the cytoplasm (Figure 10A). CK15 and CK19 signals were detected in the cytoplasm of HEKn 

(Figure 10B, C). β1 integrin, a cell surface marker found on both skin stem cells and progenitor 

cells [101, 102, 104, 127], was present in the cytoplasmic membrane of HEKn (Figure 10D). 

Quantification of the fluorescently immunolabeled cell populations showed that 100% of HEKn 

stained positively for β1 integrin (Figure 11). Approximately 26% of HEKn stained positively 

for Rex-1 and CK15 and approximately 12% of HEKn stained positively for CK19 (Figure 11). 
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CK15 and CK19 were often co-localized with Rex-1. These results indicate that the HEKn 

population used in chemotaxis assays consisted of approximately 26% keratinocyte stem cells, 

and that the remainder were more differentiated skin progenitor cells. 

In vitro chemotaxis assays using HEKn showed that a significantly higher number of 

cells migrated in response to EGF at 10, 50, and 100 ng/mL and TGF- at 10 and 50 ng/mL than 

in response to the negative control of unsupplemented EpiLife medium (Figure 12). 10% HKGS 

also significantly increased HEKn migration compared to the negative control.  

Pepsin-digested hfS-ECM showed strong, dose dependent chemoattractant activity for 

HEKn. A >500% increase in HEKn migration was observed at 1000 μg/ml hfS-ECM pepsin 

digest compared to the negative control (Table 3). 

Pepsin digests of porcine skin and porcine liver ECM showed significant chemoattractant 

activity for HEKn at 200, 500, and 1000 μg/ml, however there were no differences between the 

chemoattractant activity of the porcine skin and porcine liver ECM digests (Figure 13). Pepsin 

digests of human skin and human liver ECM did not show chemoattractant activity for HEKn, 

however at 1000 μg/ml the human skin ECM digest showed significantly less inhibition of 

HEKn migration than human liver ECM digest (p<0.05, Figure 13). Pepsin-digested hfS-ECM 

showed significantly stronger chemoattractant activity for HEKn than hS-ECM pepsin digest at 

200 μg/ml, significantly stronger chemoattractant activity than all other ECM digests at 500 

μg/ml, and significantly stronger chemoattractant activity than hS-ECM, pS-ECM, and hL-ECM 

pepsin digests at 1000 g/mL (p<0.05, Figure 13). pS-ECM pepsin digest showed significantly 

stronger chemoattractant activity than hS-ECM pepsin digest at 200, 500 and 1000 μg/ml 

(p<0.05, Figure 13).  pL-ECM pepsin digest showed significantly stronger chemoattractant 

activity than hL-ECM at 500 and 1000 μg/ml (p<0.05, Figure 13). 
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Migrated and fixed HEKn on chemotaxis chamber filters were fluorescently 

immunolabeled for Rex-1, CK15 and CK19. Nearly all HEKn that had migrated in response to 

hfS-ECM pepsin digest stained positive for Rex-1, CK15 and CK19, suggesting that hfS-ECM 

was particularly chemoattractant for keratinocyte stem cells compared to keratinocyte progenitor 

cells (Figure 14). 

All skin and liver ECM digests tested showed chemoattractant activity for human fetal 

liver cells (Figure 15). There appeared to be a trend of hfS-ECM pepsin digest showing stronger 

chemoattractant activity than the other ECM digests at 100 and 500 g/mL, but ANOVA results 

showed that there were no significant differences between the chemoattractant activity of the 

different skin and liver ECM digests for the human fetal liver cells at any of the concentrations 

tested. 

The 500 g/mL pepsin digests of UBM-ECM and SIS-ECM showed significant 

chemoattractant activity for IEC-6 cells (p<0.05, Figure 16), while the 500 g/mL pepsin digest 

of pL-ECM did not significantly increase IEC-6 cell migration compared to negative control 

(Figure 16). The number of IEC-6 cells that migrated in response to the SIS-ECM digest was not 

significantly different from the number of cells that migrated in response to the UBM-ECM 

digest.  
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Figure 8. Pepsin digests of human fetal skin ECM (hfS), human adult skin ECM (hS), 
porcine adult skin ECM (pS), human adult liver ECM (hL), and porcine adult liver ECM 
(pL) were separated on 12.5% SDS-PAGE. Protein bands were visualized by Imperial 
protein stain and photographed. 
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Figure 9. mRNA expression of human Rex-1, cytokeratin 15 (CK15), and cytokeratin 19 
(CK19) in cultured HEKn by RT-PCR analysis 
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Figure 10. Fluorescent immunolabeling of cultured HEKn for: (A) Rex-1; (B) cytokeratin 
15 (CK15); (C) cytokeratin 19 (CK19); (D) 1 integrin 
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Figure 11. Quantification of HEKn staining positive for Rex-1, CK15, CK19 and 1 
integrin. Mean  SEM (n = 9-12). No error bars are shown for 1 integrin because 100% of 
HEKn stained positive in all photographed fields. 

53 



 

 

 

Figure 12. Migration of HEKn in response to unsupplemented EpiLife medium (negative 
control) and EpiLife medium containing human keratinocyte growth supplement, EGF, or 
TGF- . Mean  standard deviation (n = 4). Equivalent trends were observed on three 
further occasions. 
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Table 3. Summary of data from one representative HEKn chemotaxis assay, including 
number of migrated cells for each sample tested in quadruplicate, mean of migrated cells, 
standard error of the mean (SEM), p value from a t-test comparing each sample to its 
negative control, and calculated percentage change in migrated cells for each sample 
compared to its negative control 
 
Sample Mean Standard Error p-value % Change from Negative Control
10% HKGS 133 146 112 100 123 10.3 0.000 485
EpiLife medium 29 19 22 14 21 3.1 -- --
100 g/mL hfS-ECM digest 19 18 27 30 24 3.0 0.019 68
Pepsin control for 100 g/mL hfS-ECM digest 8 15 16 17 14 2.0 -- --
200 g/mL hfS-ECM digest 33 39 22 18 28 4.8 0.016 96
Pepsin control for 200 g/mL hfS-ECM digest 14 14 17 12 14 1.0 -- --
500 g/mL hfS-ECM digest 26 49 28 30 33 5.3 0.001 393
Pepsin control for 500 g/mL hfS-ECM digest 6 6 8 7 7 0.5 -- --
1000 g/mL hfS-ECM digest 35 39 19 35 32 4.4 0.000 540
Pepsin control for 1000 g/mL hfS-ECM digest 6 4 6 4 5 0.6 -- --

Migrated Cells
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Figure 13. Chemoattractant activity of pepsin digests of hfS-ECM, hS-ECM, pS-ECM, hL-
ECM and pL-ECM for HEKn. Mean  SEM (n=4 independent assays with samples tested 
in quadruplicate in each assay); # = p< 0.05 versus hS-ECM, ## = p<0.05 versus hS-ECM, 
pS-ECM, hL-ECM, ### = p<0.05 versus all other ECMs, * = p<0.05 versus same tissue 
from other species, + = p<0.05 versus different tissue from same species 
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Figure 14. Quantification of positive staining for keratinocyte stem cell markers on HEKn 
that had migrated in response to hfS-ECM pepsin digest. Mean  SEM (n=5-6) 

57 



 

 

 

Figure 15. Chemoattractant activity of pepsin digests of hfS-ECM, hS-ECM, pS-ECM, hL-
ECM and pL-ECM for human fetal liver cells. Mean  SEM (n=1-5 independent assays 
with samples tested in quadruplicate in each assay); there were no statistical differences 
between the different ECMs. 
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Figure 16. Chemoattractant activity of pepsin digests of UBM-ECM, SIS-ECM, and pL-
ECM at 500 g/mL for IEC-6 cells. Number of migrated cells  standard deviation (n=4); * 
= p<0.05 versus pepsin control. Equivalent trends were observed on one further occasion. 

 

 

3.4 DISCUSSION 

 
The present study demonstrates that the degradation products of human fetal skin-derived ECM 

possess stronger chemoattractant activity for skin-specific lineage-directed stem and progenitor 

cells than do the degradation products of porcine adult skin, porcine adult liver, human adult 

skin, and human adult liver-derived ECM. Interestingly, the cells that migrated in response to the 
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degradation products of human fetal skin-derived ECM were enriched for keratinocyte stem 

cells, suggesting that these molecules were particularly chemoattractant for keratinocyte stem 

cells compared to keratinocyte progenitor cells. In addition, the degradation products of porcine 

adult skin and liver-derived ECM showed stronger chemoattractant activity for skin-specific 

lineage-directed stem and progenitor cells than did the degradation products of human adult skin 

and liver-derived ECM. There were no significant differences in chemoattractant activity 

between degradation products of porcine adult skin and porcine adult liver-derived ECM for 

skin-specific stem and progenitor cells. These results suggest that ECM degradation products 

from younger tissue sources may have more potent chemoattractant activity for local tissue stem 

or progenitor cells than older tissue sources, and that the species of the tissue source also has an 

effect on chemoattractant activity.  

All of these degradation products of skin and liver-derived ECM showed chemoattractant 

activity for a candidate liver progenitor cell population, but there were no significant differences 

in the chemoattractant activity between the different tissue sources for the ECMs for this cell 

population. Degradation products of ECM derived from the adult porcine small intestine and 

urinary bladder showed chemoattractant activity for small intestinal progenitor cells, but there 

were no significant differences in the chemoattractant activity between the different tissue 

sources for the ECMs for the small intestinal progenitor cell population. The present study 

suggests that pepsin digests of skin, liver, and small intestinal ECM do not have preferential 

chemoattractant properties for progenitor cells derived from their respective tissue. However, for 

some lineage-directed progenitor cell populations, the age and species of the tissue from which 

ECM is harvested appear to have a greater effect on chemoattractant activity than tissue type. 
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The early gestation (<24 weeks) human fetus, unlike the later-gestation fetus or adult, is 

able to heal incisional skin wounds without scarring [128]. This scarless wound-healing ability of 

fetal skin may be due to the fetal cells and/or the fetal ECM. Fetal platelets, inflammatory cells 

and fibroblasts all demonstrate differences from their adult counterparts that may contribute to 

the scarless wound-healing phenomenon. Fetal ECM contains a higher proportion of type III 

collagen and a greater concentration of hyaluronic acid than the ECM of adult skin. Unwounded 

fetal skin at gestational ages associated with scarless wound healing has also been shown to 

express low levels of TGFβ1, high levels of TGFβ3 and increased expression of matrix 

metalloproteinases, a family of proteases associated with ECM degradation and remodeling 

[123]. Although the present study does not address the relative contribution of cells vs. ECM to 

scarless fetal wound healing, it appears clear that the ECM, which represents the secreted 

product of local cells, contains signaling molecules that can affect stem and progenitor cell 

activity such as chemotaxis. 

ECM scaffolds implanted in vivo in preclinical studies have been shown to result in 

constructive remodeling, promote angiogenesis and resist bacterial infection [21, 24, 64, 65, 

129]. In vitro studies have shown that degradation of ECM derived from several tissues 

generates low molecular weight peptides with biological properties such as chemotactic, 

angiogenic and antimicrobial activity [20-22]. In contrast, intact ECM does not possess such 

activity [69], suggesting that these biological activities are associated with the products of ECM 

degradation, rather than molecules present in intact ECM. Low molecular weight peptides 

isolated from acid-hydrolyzed small intestinal submucosa (SIS-ECM) have been shown to 

possess chemotactic activity for primary murine adult liver, heart and kidney endothelial cells 

and to promote vascularization in vivo in Matrigel plug assays [21]. Previous studies have also 
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shown that porcine SIS-ECM used for subcutaneous implantation or tendon repair in mice 

induces migration of bone marrow-derived cells to the site of constructive remodeling [18, 19], 

and that this phenomenon is associated with complete degradation of the ECM scaffold. The 

present study adds a new perspective to the role of the ECM in response to injury; specifically, 

that local, tissue-specific lineage-directed progenitor and stem cells may be selectively recruited 

to the appropriate site. 

In the context of regenerative medicine, the findings of the present study support the 

concept of progenitor cell recruitment associated with ECM scaffold remodeling and its potential 

upon constructive remodeling of tissues. The findings also suggest that the chemoattractant 

activity of ECM degradation products for progenitor and stem cells decreases as the age of the 

tissue from which the ECM is harvested increases. Given the known phenomenon of scarless 

fetal wound healing [123] and the greater capacity for wound healing in young children 

compared to adults [130], these results are not surprising. The apparent greater chemotactic 

activity of adult porcine vs. human tissue may be the result of the relative age of the two ‘adult’ 

species. Six to seven month-old pigs are considered mature but are unlikely to be as ‘aged’ as 

adult humans, who can by definition be any number of years older than 21. A more 

comprehensive study with different ages of animals would be necessary to fully address this 

issue. 

The concept of functional matricryptic peptides is not new. During ECM degradation, 

many large insoluble molecules present within the matrix are reduced to fragments which 

possess biological activities that are not possessed by the parent molecules. In addition to 

proteolysis-generated bioactive fragments, functional sites of the parent molecules that are 

hidden and inactive within the ECM can also become active due to conformational changes [46]. 
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Some of the ECM molecules that have been shown to possess this property are collagen [47-51], 

fibronectin [52], elastin [45, 63], laminin [46, 55], and hyaluronan [56-58], all of which are 

present in ECM scaffold materials [24]. 

It is important to note that the chemoattractant activity of the ECM digests evaluated in 

the present study represent the net activity of bioactive molecules present within each of the 

digests. This net effect of chemoattractant activity is logical and relevant from an in vivo injury 

repair perspective. It is unclear whether the concentrations of ECM digests evaluated in the 

present study are the same as the concentrations that occur in vivo during the process of ECM 

degradation, and whether the chemoattractant molecules released by pepsin digestion of ECM 

would also be released during in vivo degradation. However, a recent study has confirmed that in 

vivo degradation of UBM-ECM can produce bioactive matricryptic peptides that cause in vitro 

chemotaxis of multi-potential progenitor cells [70]. The specific peptides/molecules responsible 

for these chemoattractant effects have not yet been identified and clearly this is an important next 

step. 

The results of this study suggest that degradation products of ECM possess 

chemoattractant activity for local tissue progenitor and stem cells, that this chemoattractant 

activity may decline as a function of the age of the tissue from which the ECM is harvested, and 

that ECM may vary between different species. These findings add a new perspective to the role 

of ECM in wound healing and the differences between fetal and adult wound healing. Although 

fetal ECM is not a likely candidate for tissue engineering/regenerative medicine applications 

because of the scarce availability of the raw material, the findings of the present study could be  
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applied to the development of methods to induce migration of lineage-directed progenitor cells to 

tissue sites in need of repair, thereby facilitating a regenerative tissue response rather than default 

scar tissue formation. 

 

3.5 LIMITATIONS AND FUTURE WORK 

 
There were a few limitations to the present study that should be noted. The human adult skin 

sample was obtained from a person undergoing elective surgery and the human adult liver was 

obtained from a cadaver and was considered unsuitable for organ transplantation. The 

composition of these tissues may differ from those of a healthy human donor, and any pathology 

that may be associated with the donor tissue may also affect the chemoattractant potential of the 

ECM degradation products.  

Differences in the decellularization procedures of the different tissues from which ECM 

was prepared in this study may also affect the chemoattractant potential of the different tissues. It 

would be logical for ECM prepared from tissues that were exposed to more harsh chemicals or 

longer decellularization processes to lose some of their native bioactivity due to these processing 

steps, and chemoattractant activity of ECM degradation products may be similarly affected.  

Since the degradation products of human fetal skin ECM showed the strongest 

chemoattractant activity for the skin progenitor cells, it would have been logical to also 

investigate chemoattractant activity of pepsin digested human fetal liver ECM for skin and liver 

progenitor cells. However, sufficient human fetal liver ECM to complete these studies could not 

be obtained in a timely manner.   
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The response of non-lineage-directed stem or progenitor cells to these ECM degradation 

products would also be of interest. Human umbilical cord blood-derived multi-lineage progenitor 

cells (BioE, St. Paul, MN) were investigated in pilot studies, but it was challenging to obtain 

sufficient numbers of these cells for chemotaxis assays.  

Haptotactic and chemokinetic effects of the chemotaxis assay were not directly 

investigated in this study. However, we have shown that migration of HEKn in response to 

pepsin digested hfS-ECM is not dependent on collagen coating of the chemotaxis assay filter. 

Additionally, other studies within our laboratory have shown that migration of human 

perivascular progenitor cells in response to pepsin digested UBM-ECM is due to chemotaxis 

rather than chemokinesis. 

Finally, identifying the specific molecules responsible for the chemoattractant activity of 

the ECM digests is an important next step. This work would include evaluating the effect of 

these ECM digests and purified chemoattractant molecules in vivo. A pilot study evaluating 

subcutaneous injection of pepsin digested human fetal skin ECM digest has been performed in 

mice, and others in the laboratory are working toward identification of chemoattractant 

molecules within ECM digests and additional in vivo studies.



 
 
 
 
 

 

4.0 SPECIFIC AIM 3: EFFECTS OF PREVENTION OF ECM DEGRADATION ON 
CELL RECRUITMENT AND CONSTRUCTIVE REMODELING IN VIVO 

 

 

4.1 BACKGROUND 

 
 
Biologic scaffolds composed of naturally occurring ECM have been used as inductive templates 

for the constructive remodeling of numerous tissues [1-13]. Previous studies have shown 

differences between the host response to chemically crosslinked and non-chemically crosslinked 

ECM scaffolds in abdominal wall repair in vivo [23, 44, 87]. In one of these studies, RestoreTM, a 

commercially available non-chemically crosslinked multilayer small intestinal submucosa (SIS-

ECM) device, was compared to several chemically crosslinked commercially available ECM 

devices: CuffPatchTM, PermacolTM, and TissueMend®. Histological analyses of samples taken up 

to 4 months after implantation showed that a foreign body response with fibrosis and 

accumulation of multinucleated giant cells occurred in animals implanted with heavily cross-

linked ECM devices, while the non-cross-linked SIS-ECM device completely degraded and 

induced constructive remodeling [23]. These findings suggest that scaffold degradation plays a 

key role in the constructive remodeling response induced by non-chemically crosslinked ECM 

scaffolds. Other recent studies, and the studies described in the previous chapters, have shown 

that degradation products of ECM scaffolds have chemoattractant activity for several cell 

populations [21, 68, 70, 131], suggesting that scaffold degradation specifically plays a role in 

recruiting cells that participate in ECM-induced constructive remodeling. 
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Bone marrow-derived cells have been shown to contribute to constructive remodeling 

induced by ECM scaffolds. In one study, ECM scaffolds composed of porcine SIS-ECM and 

urinary bladder submucosa (UBS-ECM), as well as scaffolds composed of poly(L)lactic-co- 

glycolic acid (PLGA), a PLGA-UBS composite material, and type I collagen were implanted in 

dorsal subcutaneous tissue of chimeric mice expressing glucose phosphate isomerase 1a (Gpi-1a) 

in all bone marrow cells. After 56-days the SIS-ECM and UBS-ECM scaffolds had been 

completely resorbed and replaced by differentiated host tissues and no evidence for active 

inflammation was seen at these sites. Gpi-1 isoenzyme results showed that scaffolds composed of 

SIS-ECM, UBS-ECM, and the PLGA-UBS composite were populated with a significant number 

of bone marrow-derived cells 56 days after implantation. Histological evaluation showed that 

these bone marrow-derived cells were phenotypically consistent with endothelial cells and 

fibroblasts but their specific phenotype was not confirmed. These results suggest that in vivo, 

resorbable ECM scaffolds recruit bone marrow-derived cells to the implant site, and that the 

bone marrow-derived cells participate in the long-term constructive remodeling process [18]. 

In a similar study, the Achilles tendons of a chimeric mouse model in which all bone 

marrow cells expressed green fluorescence protein (GFP) were resected and replaced with a 

single-layer sheet of SIS-ECM. Compared to control mice treated with an autologous Achilles 

tendon graft, the SIS-ECM-treated mice showed more marrow-derived cells at 4 weeks after 

implantation at the implant site. These cells remained uniformly distributed throughout the SIS-

ECM at 8 and 16 weeks post-implantation, a time point long after the inflammatory response had 

diminished and the tendon had fully remodeled. The control mice contained no GFP-positive 

cells at the tendon remodeling site at the 8 and 16 week time points. The results of this study 

confirmed that bone marrow-derived cells recruited to and populating the SIS-ECM-treated 
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tendons represent a population of cells that can become site-specific cells (i.e., cells that 

normally reside in tendon tissue), such as fibroblasts or endothelial cells [19]. 

Bone marrow-derived cells consist of a hematopoietic population and a mesenchymal 

population. Hematopoietic stem cells give rise to monocytes/macrophages, lymphocytes, 

neutrophils, eosinophils, erythrocytes, megakaryocytes, and mast cells [132]. Bone marrow-

derived mesenchymal stem cells are able to differentiate into bone marrow stromal cells, 

osteocytes, chondrocytes, myotubes, tendon/ligament fibroblasts, adipocytes and other cell types 

found within connective tissues [133]. Bone marrow-derived cells have been shown to contribute 

to epithelial populations in several organs, including the skin [134, 135], and have also been 

shown to differentiate into endothelial progenitor cells [136-138] and fibrocytes in skin [139, 

140]. 

Bone marrow-derived cells have been shown to populate normal uninjured mouse skin 

and to contribute to wound healing in mouse skin [139, 141]. Both hematopoietic and 

mesenchymal bone marrow-derived cells have been observed in normal uninjured skin and in 

remodeling skin. Bone marrow-derived cells were also found to be responsible for the production 

of collagen type III in normal and remodeling skin [139]. Collagen type I, a mature collagen that 

promotes keratinocyte attachment and migration, is the predominant collagen type in normal 

skin. Collagen type III, immature collagen, is the other major collagen present in normal dermis. 

Collagen type III provides additional tensile strength to the skin and is deposited in the initial 

phase of wound healing. Type III collagen is then gradually replaced with type I collagen [142]. 

The Herovici stain has been shown to be a useful method to differentiate between type I and type 

III collagen in histological sections [143, 144]. 
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 The objective of the present study was to determine if prevention of ECM scaffold 

degradation by chemical crosslinking affects the involvement of progenitor cells in the 

remodeling of wounded mouse skin and yields a histologically different result than an ECM 

scaffold subjected to normal degradation and remodeling. Remodeling induced by the two ECM 

treatment groups was also compared to the remodeling of untreated wounds and wounds repaired 

with autologous tissue. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Preparation of UBM-ECM and UBM-ECM-X Scaffolds 

 
Urinary bladder matrix (UBM-ECM) was prepared from the urinary bladders of market weight 

pigs (~110 –130 kg) as previously described [74]. In brief, urothelial cells were removed by 

soaking the urinary bladders in 1.0 N saline. Connective and adipose tissue were removed from 

the serosal surface of the urinary bladder, and the tunica serosa, tunica muscularis externa, tunica 

submucosa, and most of the tunica muscularis mucosa were mechanically removed, leaving a 

biomaterial composed of only the basement membrane and the subjacent tunica propria of the 

tunica mucosa. Decellularization was completed by treatment with 0.1% peracetic acid/4% 

ethanol for two hours followed by repeated rinsing with phosphate buffered saline (PBS) and 

deionized water. Complete decellularization was confirmed by both 4 -6-diamidino-2-

phenylindole (DAPI) nuclear staining and hematoxylin and eosin (H&E) staining of 5 μm thick 

sections of the UBM-ECM. Crosslinked UBM-ECM (UBM-ECM-X) was prepared by soaking 

UBM in 10 mM carbodiimide overnight. UBM-ECM and UBM-ECM-X sheets were frozen, 

lyophilized and sterilized by exposure to ethylene oxide for 16 hours.  
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 Retardation of UBM-ECM degradation after crosslinking was verified by incubating 1 mg 

pieces of UBM-ECM and UBM-ECM-X in 5 mL of 5% acetic acid for 4 days at 37ºC and 

quantifying protein released from each material into the acetic acid using the BCA Protein Assay 

(Pierce). Reported results are expressed as the mean  standard error of the mean (SEM) from 

one representative assay (n=2 samples tested) of three assays performed. The statistical 

significance between samples was determined by Student’s t-test with  = 0.05. 

4.2.2 Chimeric mice preparation 

 
Forty-eight C57/BL6 mice were lethally irradiated and transplanted via tail injection with 

mononuclear cells from mice of the congenic strain C57BL-6-Tg(ACTB-EGFP)1Osb-J, in which 

all cells express green fluorescent protein (GFP).  The effect of this transplant was the universal 

expression of GFP by all hematopoietic stem cells. All native tissue was negative for GFP, 

allowing the detection of any bone marrow-derived cells in the remodeled tissue. To verify GFP 

bone marrow chimerism, blood samples were collected and analyzed with a BD FACSVantageSE 

Cell Sorter. Flow cytometric analysis showed that 83%  8% of cells from tail blood expressed 

GFP. 

4.2.3 Surgical technique  

 
Chimeric mice were anesthetized with inhalant isoflurane via nose cone. A 0.8 cm x 0.8 cm full-

thickness segment of the dorsal skin, consisting of the epidermis, dermis, subcutaneous adipose 

tissue, and panniculus carnosus muscle, was surgically excised (Figure 17). The excised skin was 

replaced with either UBM-ECM, UBM-ECM-X or the excised autologous tissue, and then 

secured in place with non-absorbable sutures. Control mice were left untreated after the wound 
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was created. At 4, 7, 14, and 28 days post-surgery, a subgroup from each treatment group was 

sacrificed (n=3 mice for each treatment and timepoint). The entire wound and surrounding area 

was harvested from each mouse and fixed in 4% paraformaldehyde, then embedded in paraffin, 

sectioned and mounted to glass slides.  

 

 

 

Figure 17. Representative image of Masson's trichrome stained excised mouse skin (100X 
magnification) 
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4.2.4 Wound size analysis 

 
The size of the wound area was measured from digital photographs of the dorsum of the mice 

after sacrifice, using ImageJ software. Reported results are expressed as the mean  SEM of 

measurements from three mice for each treatment and timepoint (n=3). The statistical 

significance between treatment groups was determined by one-way ANOVA with  = 0.05. 

 

4.2.5 Histological appearance of remodeling skin 

 
Masson’s trichrome staining was performed for evaluation of the morphology of the remodeling 

skin. The thickness of the remodeling skin of each sample at 14 and 28 days post-surgery was 

measured from Masson’s trichrome stained slides in three locations across the remodeling area 

for each sample at 40X magnification, using ImageJ software. The mean thickness was then 

calculated for each sample. Reported results are expressed as the mean  SEM of wound 

thickness for three mice for each treatment and timepoint (n=3). The statistical significance 

between treatment groups was determined by one-way ANOVA with  = 0.05. 

4.2.6 Collagen analysis of remodeling skin 

 
Herovici staining was performed to analyze quantities of mature and immature collagen 

(collagen type I and collagen type III, respectively) in the remodeling skin at 28 days post-

surgery. Four images of the remodeling area were taken from each slide and image analysis was 

performed using ImageJ software. To normalize for differences between different batches of 

Herovici stain, the pixels of area stained in the collagen type I red color range, collagen type III 
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blue color range, and the ratio of collagen type I:collagen type III were normalized to the same 

parameters measured in normal skin that was stained on the same slide. The mean results were 

then calculated for each sample. Reported results are expressed as the mean  SEM of area 

representing collagen type I staining, area representing collagen type III staining, and the ratio of 

collagen type I:collagen type III for three mice for each treatment (n=3). The statistical 

significance between treatment groups was determined by one-way ANOVA with  = 0.05 

followed by post-hoc Tukey’s test with  = 0.05. 

4.2.7 Bone marrow-derived cells in remodeling skin 

4.2.7.1 GFP expression For analysis of GFP-expressing cells, slides were deparaffinized with 

xylene and rehydrated through a graded ethanol series and then counterstained with DAPI and 

photographed at 200X magnification using the Olympus Fluoview 1000 confocal microscope 

with lasers scanning at wavelengths of 488 nm (GFP) and 405 nm (DAPI). Four images of the 

remodeling area were taken from each slide and quantification of the number of cells expressing 

GFP and total number of cells was performed for each image using ImageJ software. The 

percentage of cells in the remodeling skin expressing GFP was calculated from these 

measurements. The mean number of GFP-positive cells and percentage of GFP-positive cells 

was then calculated for each sample. Reported results are expressed as the mean  SEM of 

number of GFP-positive cells and percentage of GFP-positive cells for three mice for each 

treatment and timepoint (n=3). The statistical significance between treatment groups was 

determined by one-way ANOVA with a = 0.05 followed by post-hoc Tukey’s test with  = 0.05. 

To confirm that cells with fluorescent signal at the 488 nm wavelength were GFP-

positive cells, immunohistochemistry with an anti-GFP antibody was performed. Unstained 
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slides were deparaffinized with xylene and rehydrated through a graded ethanol series. Heat 

mediated antigen retrieval was performed using 10 mM citrate buffer, pH 6.0, for 15 minutes at 

95-100ºC. After cooling, slides were washed three times with tris-buffered saline (TBS)/Tween 

20 and then washed twice with PBS. Slides were then incubated in 2% bovine serum albumin 

(BSA) in PBS for 45 minutes at room temperature to prevent nonspecific antibody binding. 

Slides were washed three times with PBS and then incubated in primary antibody, rabbit 

polyclonal to GFP (Abcam ab6556) diluted to 1:1000 in 2% BSA in PBS, overnight at 4ºC. 

Slides were then washed 3 times with PBS, followed by incubation in 3% hydrogen peroxide in 

PBS for 30 minutes. Slides were washed three times with PBS, followed by incubation in 

secondary antibody, polyclonal goat anti-rabbit Ig-HRP (Dako P0448) diluted to 1:200 in 2% 

BSA in PBS, for one hour at room temperature. Slides were then washed twice with PBS, then 

once with tap water. ImmPACT DAB (Vector Laboratories SK-4105) was prepared according to 

product instructions and applied to slides at room temperature until staining developed. Slides 

were then washed in water for 5 minutes, counterstained with hematoxylin for 15 seconds, and 

washed with running water for 5 minutes. Finally, slides were dehydrated through a graded 

ethanol series and xylene, then coverslipped. 

4.2.7.2. Fluorescent immunolabeling for F4/80, CD45, von Willebrand factor and CD34 

Remodeling tissue at 28 days post-surgery was fluorescently immunolabeled for macrophage 

marker F4/80, hematopoietic cell marker CD45, endothelial cell marker von Willebrand factor, 

and CD34, which is expressed by several cell populations including hematopoietic stem cells, 

hair follicle bulge cells, endothelial cells, and mast cells. For fluorescent immunolabeling, 

unstained slides were deparaffinized with xylene and rehydrated through a graded ethanol series. 

For F4/80 and CD45 immunolabeling, heat mediated antigen retrieval was performed using 10 
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mM citrate buffer, pH 6.0, for 15 minutes at 95-100ºC. After cooling, slides were washed three 

times with TBS/Tween 20 and then washed twice with PBS. Slides were then incubated in 2% 

BSA in PBS for 45 minutes at room temperature to prevent nonspecific antibody binding. Slides 

were washed three times with PBS and then incubated in primary antibody, rat monoclonal to 

F4/80 (Abcam ab6640) diluted to 1:100 in 2% BSA in PBS or rat monoclonal to CD45 (BD 

Pharmingen 550539) diluted to 1:50 in 2% BSA in PBS, overnight at 4ºC. Slides were then 

washed 3 times with PBS, followed by incubation in secondary antibody, mouse adsorbed goat 

anti-rat IgG-Cy3 (Jackson ImmunoResearch Laboratories 112-165-167) diluted to 1:1000 or 

1:500 in 2% BSA in PBS, for one hour at room temperature. Slides were washed three times 

with PBS and coverslipped with an aqueous mounting medium containing DAPI (Vector 

Laboratories) and imaged using the Olympus Fluoview 1000 confocal microscope.  

For CD34 fluorescent immunolabeling, heat mediated antigen retrieval was performed 

using 10 mM citrate buffer, pH 6.0, for 15 minutes at 95-100ºC. After cooling, slides were 

washed three times with TBS/Tween 20 and then washed twice with PBS. Slides were then 

incubated in 2% BSA in PBS for 45 minutes at room temperature to prevent nonspecific 

antibody binding. Slides were washed three times with PBS and then incubated in primary 

antibody, rat monoclonal to CD34 (MEC-14.7) (Santa Cruz Biotechnology sc-18917), diluted to 

1:100 in 2% BSA in PBS, overnight at 4ºC. Slides were then washed three times in PBS, 

followed by incubation in secondary antibody, mouse adsorbed goat anti-rat IgG-Cy3 (Jackson 

ImmunoResearch Laboratories 112-165-167) diluted to 1:1000 in 2% BSA in PBS. Slides were 

then washed three times with PBS, three times with deionized water, and coverslipped with an 

aqueous mounting medium containing DAPI and imaged using the Olympus Fluoview 1000 

confocal microscope. 
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For von Willebrand factor fluorescent immunolabeling, proteinase K antigen retrieval 

was performed for 20 minutes at 37ºC, followed by three washes with PBS. Slides were then 

incubated in 2% BSA in PBS for 45 minutes at room temperature to prevent nonspecific 

antibody binding. Slides were washed once with PBS and then incubated in primary antibody, 

rabbit polyclonal to von Willebrand factor (Abcam ab6994) diluted to 1:100 in 2% BSA in PBS, 

overnight at 4ºC. Slides were then washed three times with PBS, followed by incubation in 

secondary antibody, human adsorbed goat anti-rabbit Ig-TRITC (Southern Biotech 4010-03) 

diluted to 1:500 in 2% BSA in PBS, for one hour at room temperature. Slides were then washed 

three times with PBS, three times with deionized water, and coverslipped with an aqueous 

mounting medium containing DAPI and imaged using the Olympus Fluoview 1000 confocal 

microscope. 

To quantify fluorescently immunolabeled cells, three images of the remodeling area were 

taken from each slide and quantification of the number of cells staining positive for F4/80, 

CD45, and CD34 was performed for each image using ImageJ software. The area staining 

positive for von Willebrand factor was measured for each of three images of the remodeling area 

from each slide using ImageJ software. The mean number of positive staining cells or area was 

then calculated for each sample. Reported results are expressed as the mean  SEM of number of 

positive staining cells for F4/80, CD45, and CD34 and area staining positive for von Willebrand 

factor for three mice for each treatment (n=3). The statistical significance between treatment 

groups was determined by one-way ANOVA with  = 0.05 followed by post-hoc Tukey’s test 

with  = 0.05. 
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4.3 RESULTS 

 
Quantitative analysis of protein released by in vitro degradation of UBM-ECM and UBM-ECM-

X showed that UBM-ECM released a greater quantity of protein than UBM-ECM-X (p<0.05, 

Figure 18). This result confirmed that UBM-ECM-X was more resistant to degradation than 

UBM-ECM. 

All wounds increased in size by 4 days post-surgery due to wound retraction (Figure 19). 

There were no significant differences in the sizes of the wounds between the different treatment 

groups. By 28 days post-surgery all wounds were closed and appeared normal upon gross 

inspection. 

Images of Masson’s trichrome stained remodeling tissue showed the progression of the 

healing wounds and morphological differences between the different treatment groups at all four 

timepoints examined (Figure 20). At 4 days post-surgery, the untreated group had formed a fibrin 

clot covering the wound area. The autologous repair and UBM-ECM treated wounds showed 

cells infiltrating both scaffolds and granulation tissue forming beneath the scaffolds. The UBM-

ECM-X scaffolds were not adherent to the underlying host tissue and showed little host cell 

interaction.  

At 7 days post-surgery, the untreated wounds began to form granulation tissue with a 

thick epithelial layer beneath the fibrin clot. The autologous repair wounds showed new tissue 

formation with many inflammatory cells present and the grafted autologous tissue being pushed 

up and removed from the wound. The UBM-ECM treated wounds had begun to form a highly 

cellular new tissue with a dense collagenous dermal layer and a thick epidermal layer. The 

UBM-ECM scaffolds were no longer visibly distinct in the Masson’s trichrome stained tissue 

sections and had likely degraded by 7 days post-surgery. The UBM-ECM-X treated wounds still 

77 



showed little scaffold degradation but some granulation tissue had begun to form beneath the 

scaffold.  

At 14 days post-surgery, all four treatment groups had the appearance of epithelialized 

new tissue. The untreated and UBM-ECM-X groups were highly cellular and had very thick 

epithelial layers. The autologous repair group still had the appearance of inflammation and some 

of the autograft was still present at the external surface of the wound area. For the UBM-ECM 

treated wounds, the inflammatory phase appeared to have subsided, epithelial thickness had 

decreased, hair follicles were beginning to form, and dermal matrix was reorganizing and less 

dense.  

By 28 days post-surgery the untreated and autologous repair groups consisted of a dense 

and highly cellular dermis with little hair follicle formation and a thinner epithelium than at the 

previous timepoint. The UBM-ECM and UBM-ECM-X groups showed nearly normal hair 

follicle morphology and a thinner epithelium than at the previous timepoint as well as 

reorganization of the dermis and formation of the adipose tissue layer.  

Measurements of the thickness of the remodeling skin showed no significant differences 

in thickness between the different treatment groups, or for any of the treatment groups compared 

to normal uninjured mouse skin (Figure 21).  

Herovici stained images of the remodeling mouse skin at 28 days post-surgery showed a 

mixture of immature type III collagen (stained blue) and mature type I collagen (stained red) 

fibers (Figure 22). Quantification of the areas stained for collagen type I and collagen type III 

showed no significant differences between the different treatment groups (Figure 23). The 

collagen type I:collagen type III ratio of the UBM-ECM treated group was higher than the 

autologous repair group (p<0.05, Figure 24). These results suggest that the UBM-ECM treated 
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group, with remodeled skin composed of more mature collagen and less immature collagen, had 

completed more of the remodeling process in 28 days than the autologous repair group. 

GFP-positive bone marrow-derived cells were visible throughout the remodeling skin in 

all treatment groups and timepoints (Figure 25). Immunostaining of the remodeling skin with 

anti-GFP antibody (Figure 26) confirmed the GFP fluorescence results. Quantification of the 

number of GFP-positive cells in the remodeling skin showed that at 4 days post-surgery the no 

treatment and autologous repair groups had more GFP-positive cells than normal uninjured skin 

(p<0.05, Figure 27). The autologous repair group had more GFP-positive cells than the UBM-

ECM-X treatment group at 4 days post-surgery (p<0.05, Figure 27). At 7 and 14 days post-

surgery, only the autologous repair group had more GFP-positive cells than normal uninjured 

skin (p<0.05, Figure 27). The autologous repair group had more GFP-positive cells than the 

UBM-ECM treatment group at 14 days post-surgery (p<0.05, Figure 27). At 28 days post-

surgery, none of the treatment groups had more GFP-positive cells than normal uninjured skin 

(Figure 27). The percentage of GFP-positive cells in the remodeling skin showed similar trends 

to the number of GFP-positive cells at 4 days post-surgery, with the no treatment and autologous 

repair groups having a higher percentage of GFP-positive cells than normal uninjured skin 

(Figure 28). At 7 days post-surgery, the autologous repair and UBM-ECM treatment groups had 

a higher percentage of GFP-positive cells than in normal uninjured skin (p<0.05, Figure 28). At 

14 days post-surgery, the percentage of GFP-positive cells in the UBM-ECM treatment group 

had decreased to normal levels, while the percentage of GFP-positive cells in the autologous 

repair group remained higher than in normal uninjured skin (p<0.05, Figure 28). At 28 days post-

surgery, none of the treatment groups had a higher percentage of GFP-positive cells than normal 

uninjured skin (Figure 28). The UBM-ECM-X treatment group did not have significantly more 
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GFP-positive cells or a significantly higher percentage of GFP-positive cells than normal 

uninjured skin at any of the timepoints examined, while the UBM-ECM treatment group was 

higher than normal at 7 days post-surgery. These results suggest that the degrading scaffold 

recruited GFP-positive bone marrow-derived cells while the non-degrading scaffold did not. The 

UBM-ECM treated group decreased to a normal percentage of GFP-positive cells by 14 days 

post-surgery while the autologous repair group did not, suggesting that a strong inflammatory 

response was still occurring in the autologous repair group at this timepoint.  

Images of fluorescently immunolabeled remodeling mouse skin at 28 days post-surgery 

(Figure 29) showed that cells staining positively for F4/80, CD45, CD34, and von Willebrand 

factor were present in all treatment groups. Quantification of F4/80-positive cells showed that 

only the autologous repair group had more F4/80-positive cells than normal uninjured mouse 

skin (p<0.05, Figure 30). Quantification of CD45-positive cells showed no significant 

differences in number of CD45-positive cells between the different treatment groups (Figure 31). 

Since not all GFP-positive cells were CD45-positive (i.e., of hematopoietic origin), these results 

suggest that mesenchymal bone marrow-derived cells also played a role in skin remodeling. 

Quantification of CD34-positive cells showed no significant differences in number of CD34-

positive cells between the different treatment groups (Figure 32). Quantification of the area 

staining positive for von Willebrand factor also showed no significant differences between the 

different treatment groups (Figure 33). 
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Figure 18. Quantification of protein released from UBM and UBM-X after in vitro 
degradation, verifying that carbodiimide crosslinking retards UBM degradation. Mean ± 
SEM (n=2); * = p<0.05 between UBM-ECM and UBM-ECM-X. Equivalent trends were 
observed on two further occasions. 
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Figure 19. Wound size at 4, 7, 14, and 28 days post-surgery. Mean ± SEM (n=3). All 
wounds were closed by 28 days post-surgery. 
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Figure 20. Representative images of Masson's trichrome stained remodeling mouse skin at 
4, 7, 14, and 28 days post-surgery (40X magnification) 
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Figure 21. Thickness of remodeling mouse skin after 14 and 28 days. Mean ± SEM (n=3) 
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Figure 22. Herovici stained remodeling mouse skin at 28 days post-surgery (200X 
magnification). (A) No treatment; (B) Autologous repair; (C) UBM-ECM; (D) UBM-ECM-
X 
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Figure 23. Herovici staining analysis of collagen type I and collagen type III in remodeling 
mouse skin at 28 days post-surgery. Mean ± SEM (n=3) 
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Figure 24. Herovici staining analysis of collagen type I:collagen type III ratio in remodeling 
mouse skin at 28 days post-surgery. Mean ± SEM (n=3); # = p<0.05 versus autologous 
repaired skin 
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Figure 25. Representative images of GFP bone marrow-derived cells (green) 
counterstained with DAPI (blue) in remodeling mouse skin at 4, 7, 14, and 28 days post-
surgery (200X magnification) 
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Figure 26. Representative images of remodeling mouse skin at 28 days post-surgery stained 
with anti-GFP antibody (brown) and counterstained with hematoxylin (blue) (200X 
magnification). (A) autologous repair; (B) UBM-ECM  
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Figure 27. Quantification of number of bone marrow-derived GFP-positive cells in 
remodeling mouse skin at 4, 7, 14, and 28 days post-sugery. Mean ± SEM (n=3); + = p<0.05 
versus normal uninjured skin, # = p<0.05 versus UBM-ECM-X at 4 days, * = p<0.05 versus 
UBM-ECM at 14 days 
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Figure 28. Quantification of percentage of bone marrow-derived GFP-positive cells in 
remodeling mouse skin at 4, 7, 14, and 28 days post-sugery. Mean ± SEM (n=3); + = p<0.05 
versus normal uninjured skin, # = p<0.05 versus UBM-ECM-X at 7 days, * = p<0.05 versus 
UBM-ECM at 14 days 
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Figure 29. Representative images of fluorescently immunolabeled UBM-ECM treated 
remodeling mouse skin at 28 days post-surgery (200X magnification). Blue: nuclei, green: 
GFP, red:(A) F4/80; (B) CD45; (C) CD34; (D) von Willebrand factor  
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Figure 30. Quantification of F4/80-positive cells in remodeling mouse skin at 28 days post-
surgery. Mean ± SEM (n=3); + = p<0.05 versus normal uninjured skin 
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Figure 31. Quantification of CD45-positive cells in remodeling mouse skin at 28 days post-
surgery. Mean ± SEM (n=3) 
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Figure 32. Quantification of CD34-positive cells in remodeling mouse skin at 28 days post-
surgery. Mean ± SEM (n=3) 
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Figure 33. Quantification of von Willebrand factor stained area in remodeling mouse skin 
at 28 days post-surgery. Mean ± SEM (n=3) 

 
 
 

4.4 DISCUSSION 

 
The present study demonstrates that scaffold type affects the temporal remodeling response of a 

full thickness skin injury in mice. Wound treatment with a non-chemically crosslinked rapidly 

degrading ECM scaffold resulted in better early remodeling and an earlier end of the 

inflammatory stage than other treatments, as shown by Masson’s trichrome stained images. At 

28 days post-surgery, the wounds treated with the non-chemically crosslinked ECM scaffold 

showed a more mature collagen profile than wounds repaired with autologous tissue. The 
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chemically crosslinked ECM scaffolds degraded more slowly and appeared to lag behind the 

remodeling of the rapidly degrading ECM scaffolds, as did the autologous repaired and untreated 

wounds. 

Bone marrow-derived cells participated in the early remodeling of wounded mouse skin 

but did not appear to participate in the long-term remodeling (beyond the levels found in normal 

uninjured mouse skin) for any of the treatment groups investigated. The rapidly degrading ECM 

scaffold, autologous repair, and untreated groups all recruited bone marrow-derived cells during 

early wound remodeling, but by 14 days post-surgery only the autologous tissue repaired group 

had more bone marrow-derived cells than normal uninjured mouse skin and by 28 days post-

surgery all treatment groups showed a normal number and percentage of bone marrow-derived 

cells in the remodeling tissue. The chemically crosslinked ECM scaffold group did not show a 

significantly higher than normal number or percentage of bone marrow-derived cells at any of 

the timepoints investigated, suggesting that the prevention/retardation of degradation may reduce 

the participation of bone marrow-derived cells in the early stages of tissue remodeling. 

Since untreated, autologous repair, and rapidly degrading ECM all recruited bone 

marrow-derived cells during early remodeling yet showed different remodeling outcomes over 

the timepoints examined, the phenotype of the bone marrow-derived cells at 28 days post-

surgery was examined. No significant differences in the phenotype of the bone marrow-derived 

cells were observed between the different treatment groups at this timepoint, but the phenotype 

of the bone marrow-derived cells that participated in early remodeling of the mouse skin may 

indicate differences in the cell populations recruited to the different treatment groups. 

Additionally, based on the presence of more macrophages than in normal skin at 28 days post-

surgery, a greater and more prolonged bone marrow-derived cell population response, and the 
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histological appearance of the remodeling tissue, the autologous repair group appeared to have a 

stronger and more prolonged inflammatory response than the other treatment groups. 

The role of macrophages, one type of bone marrow-derived cell, in ECM and autologous 

repaired tissues has been an area of interest. A recent study showed that circulating macrophages 

are at least partially responsible for early degradation of SIS-ECM scaffolds and autografts in a 

rat body wall repair model [44]. Carbodiimide crosslinked SIS-ECM scaffolds in this body wall 

repair study inhibited macrophage-mediated scaffold degradation for up to two weeks [44], while 

the carbodiimide crosslinked UBM-ECM scaffolds in the present study inhibited scaffold 

degradation for just one week. This difference suggests that anatomic location of the ECM-

induced repair affects the scaffold degradation rate. In addition, in contrast to the present study, a 

previous study showed that SIS-ECM repaired Achilles tendon in GFP bone marrow chimera 

mice recruited bone marrow-derived cells that participated in the long-term constructive 

remodeling of the tendon while autologous repair did not. These findings suggest that at least 

some of the mechanisms of ECM remodeling, such as the populations of cells recruited, may 

vary between different anatomic locations. 

Local cells also play an important role in remodeling mouse skin. In particular, local 

dermal fibroblasts and epidermal keratinocytes migrate into the wound site, along with bone 

marrow-derived cells [145]. Previous studies have shown that degradation products of ECM 

scaffolds have chemoattractant activity for multipotential cells [68], endothelial cells [21], and 

epidermal keratinocytes [131] in vitro. If the same chemoattractant activity is present in 

degrading ECM scaffolds in vivo, as was suggested by a recent study investigating the 

chemoattractant activity of remodeling ECM-repaired tendons for multipotent cells in vitro [70], 
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the recruitment of local cells may partially explain the more rapid remodeling induced by the 

rapidly degrading ECM scaffold in the present study.  

 

4.5 LIMITATIONS AND FUTURE WORK 

 
One limitation to the present study is that there were only three mice per treatment group and 

timepoint. With a typical degree of variability between results for different animals, it is difficult 

to draw firm conclusions from data with n=3. If additional animals had been available for the 

present study, increasing the sample size to eight mice per treatment group and timepoint would 

have given this study greater statistical power. Also if additional animals had been available, 

excised remodeling skin from additional mice could have been dispersed into single cell 

suspension, stained with antibodies, and analyzed by flow cytometry for additional quantitative 

analysis of cell phenotype using a wide panel of antigens and combinations of antigens. 

An additional limitation to the present study is that scaffold degradation was not 

completely prevented in this model by carbodiimide crosslinking. A future study could 

investigate differences in cell recruitment of naturally occurring ECM and chemically 

crosslinked ECM in GFP bone marrow chimera mice that have been injected with clodronate 

liposomes to deplete circulating monocytes/macrophages. Investigating these issues in a different 

organ model within the GFP bone marrow chimera mice, in which scaffolds degrade more 

slowly than in skin wounds, or in an anatomic location in which bone marrow-derived cells do 

not play a role in normal tissue homeostasis or long-term remodeling (such as the Achilles  
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tendon) may also address the hypothesis more completely. Despite the complicating factors 

inherent in in vivo studies, in vitro studies to show that prevention of ECM degradation prevents 

cell recruitment would be experimentally difficult/impossible to do. 

 



 

 
 
 

5.0 DISSERTATION SYNOPSIS 

 
 
 
ECM scaffolds have been shown to induce site-specific constructive remodeling of injured 

tissue, and the results of several previous studies suggest that the degradation products of these 

scaffolds recruit cells that participate in the constructive remodeling process. ECM contains 

intact signaling molecules (i.e., growth factors) and matricryptic molecules that are activated by 

ECM degradation. Additionally, ECM scaffolds have been shown to generate degradation 

products with bioactivities that are not present within intact ECM scaffolds. This dissertation 

investigated the hypothesis that degradation products of ECM scaffolds possess chemoattractant 

properties for progenitor cell populations that participate in constructive remodeling.  

The first specific aim investigated different methods of in vitro degradation of ECM, to 

determine if in vitro methods that were more physiologically relevant than methods used in 

preliminary studies yielded degradation products with chemoattractant activity. Both pepsin and 

collagenase digestion of UBM-ECM resulted in degradation products with chemoattractant 

activity for two distinct progenitor cell populations.  

The second specific aim investigated the hypothesis that ECM degradation products from 

a given tissue have more potent chemoattractant properties for progenitor cells derived from the 

same tissue type than for progenitor cells derived from other tissues. Although ECM derived 

from skin, liver, small intestine, and urinary bladder all showed chemoattractant activity for at 

least one progenitor cell population, a tissue-specific chemotactic effect was not observed in 
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studies using skin, liver, and intestinal progenitor cells in vitro. However, results showed that the 

age and species from which ECM is harvested has an effect on the chemoattractant potential of 

the ECM for some progenitor cell populations.  

The third specific aim investigated the hypothesis that prevention or retardation of ECM 

degradation in vivo would reduce bone marrow-derived progenitor cell involvement in 

constructive remodeling, yielding a different histomorphologic outcome than if ECM 

degradation had occurred normally. Bone marrow-derived cells participated in the early 

remodeling of wounded mouse skin treated with rapidly degrading UBM-ECM, as well as 

untreated and autologous repaired skin wounds. By 28 days post-surgery, the number of bone 

marrow-derived cells returned to similar numbers as found in normal uninjured mouse skin, 

suggesting that the marrow-derived cells do not participate in the long-term constructive 

remodeling of mouse skin. Chemically crosslinked UBM-ECM, which degraded more slowly 

than naturally occurring UBM-ECM, did not recruit more bone marrow-derived cells than are 

found in normal uninjured mouse skin at any time investigated in this study. Wounds treated 

with rapidly degrading UBM-ECM also appeared to remodel more rapidly than any of the other 

treatment groups and showed a more mature collagen profile at 28 days post-surgery than 

wounds repaired with autologous tissue. These results suggest that scaffold type affects the 

temporal remodeling of injured mouse skin and that while bone marrow-derived cells participate 

in remodeling of skin wounds in mice, local tissue cells may also play an important role. 

Suggested future work has been described at the end of each chapter. Overall, the work 

presented in this dissertation is a step toward understanding the cell recruitment involved in 

constructive remodeling induced by ECM scaffolds. Additional studies investigating other in 

vitro methods of ECM degradation, particularly matrix metalloproteinase and human white blood 
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cell mediated-degradation of ECM, would be of interest. Based on the finding that the age of the 

tissue from which the ECM is harvested has an effect on the chemoattractant potential of the 

ECM degradation products, the chemoattractant activity of ECM digests from other human fetal 

tissues should be evaluated. In addition, porcine ECM could be isolated from pigs over a variety 

of ages and evaluated for chemoattractant activity. Identification of the specific molecules 

responsible for the chemoattractant activity of the ECM digests is an important next step that is 

currently in progress. Finally, additional studies examining the recruitment of bone marrow-

derived cells by degrading and non-degrading ECM scaffolds in vivo could be performed in 

anatomical locations in which ECM degrades more slowly (such as the abdominal wall) or in 

which bone marrow-derived cells do not play a role in normal tissue homeostasis or long-term 

remodeling (such as the Achilles tendon), with the assistance of flow cytometry for additional 

quantitative analysis of cell phenotype using a wide panel of antigens and combinations of 

antigens.



APPENDIX A 

ANTIBACTERIAL ACTIVITY WITHIN DEGRADATION PRODUCTS OF BIOLOGIC 

SCAFFOLDS COMPOSED OF EXTRACELLLAR MATRIX 
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A.1 INTRODUCTION 

 
 
 
 
Biological scaffolds composed of extracellular matrix (ECM) have been successfully used as 

templates for the constructive remodeling of numerous tissues in preclinical studies and human 

clinical applications [1-12]. Such biological scaffolds have been surprisingly resistant to bacterial 

infection [64, 65, 129, 146], even in clinical applications that are at high risk for bacterial 

contamination [33, 147-149]. Generally, naturally occurring biomaterials such as those 

composed of purified collagen or intact ECM are more resistant to bacterial infection than 

synthetic biomaterials [64, 65, 129, 146, 150].  

Porcine-derived ECM composed of small intestinal submucosa (SIS-ECM) has been 

successfully used as a resorbable biological scaffold for tissue engineering applications in over 

500,000 human patients to date, and has shown resistance to deliberate bacterial infection in 

preclinical studies [64, 65, 129, 146]. Interestingly, the antibacterial activity associated with the 

SIS-ECM is not a property of the intact ECM itself [69], but rather of the degradation products of 

the ECM [22]. In vitro studies have shown that acid/heat digested SIS-ECM and acid/heat 

digested urinary bladder submucosa (UBS)-ECM both possess antibacterial activity against gram 

positive Staphylococcus aureus and gram negative Escherichia coli. The greatest antibacterial 

activity appears to be present in degradation peptides between 5-16 kDa [22].  

The objective of the present study was to determine if antimicrobial activity similar to 

that found in SIS-ECM and UBS-ECM is detectable in the degradation products of ECM 

105 



scaffolds derived from the liver (L-ECM) and superficial layers (tunica propria and basement 

membrane) of the porcine urinary bladder (UBM-ECM). These ECM materials have been 

studied as biologic scaffolds for tissue engineering/regenerative medicine applications and the 

presence of such activity within these materials could have significant clinical applications. 
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A.2 MATERIALS AND METHODS 

 
 
 

A.2.1 PREPARATION OF ECM POWDERS 

 
Porcine urinary bladders and livers were harvested from market weight pigs (~110 -130 kg) 

immediately following euthanasia. UBM-ECM was prepared as previously described [74, 75, 

151]. In brief, connective and adipose tissue were removed from the serosal surface of the 

bladder, and the tunica serosa, tunica muscularis externa, tunica submucosa, and most of the 

tunica muscularis mucosa were mechanically removed. The luminal urothelial cells of the tunica 

mucosa were dissociated by soaking in a 1.0 N saline solution, leaving a biomaterial composed 

of only the basement membrane and the subjacent tunica propria of the tunica mucosa, and the 

resident cell population of those two layers.  

L-ECM was prepared by slicing lobes of porcine liver to 5 mm sections, then rinsing the 

slices in deionized water with agitation on an orbital shaker for a total of three 30-minute rinses. 

Slices were then placed on a polypropylene mesh and subjected to uniform pressure to burst the 

hepatocytes. The tissue slices were returned to a flask and submerged in 0.02% trypsin/0.05% 

EDTA for 1 hour at 37°C, agitated at room temperature in 3% (v/v) Triton X-100 for 1 hour, 

then in 4% (w/v) deoxycholic acid for 1 hour. Tissue slices were rinsed with deionized water and 

massaged between each treatment step [74].  

Both types of ECM were decellularized by treatment with 0.1% peracetic acid/4% 

ethanol for two hours and rinsed with phosphate buffered saline (PBS) and deionized water. 
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Complete decellularization was confirmed by both 4'-6-Diamidino-2-phenylindole (DAPI) 

nuclear staining and hematoxylin and eosin staining. The ECMs were then lyophilized in sheet 

form, and frozen. The frozen sheets were comminuted into a particulate form using a Waring 

commercial blender and Wiley Mill with a #60 mesh screen [75]. 

 

A.2.2 DEGRADATION OF ECM 

 
ECM was digested using mild acid and heat.  Adapting a previously described procedure [22], 

lyophilized, particulate ECM was hydrated by placing 10 mg dry weight of ECM in 140 mL of 

1X PBS with protease inhibitors (5 mM  Benzoamide, 1 mM Phenylmethanesulfonyl fluoride 

(PMSF), and 10 mM N-ethylmaleimide (NEM)) and stirring for one to two hours, then filtering 

with vacuum through Whatman #42 filter paper in a Buchner Funnel.  The retentate material, 

which remained hydrated, was collected and suspended in 110 mL of 0.5 N acetic acid.  The 

suspension was transferred to a stirred, glass lined autoclave reactor (Autoclave Engineers, Erie, 

PA), heated to 120°C over 55 minutes, and held at 120°C for 30 minutes with constant stirring. 

The suspension was then cooled to 60°C in 2 to 4 minutes and then to room temperature in 15 to 

20 minutes. The acid-digested suspension was then removed from the autoclave reactor and 

filtered in series, through cheesecloth, Fischer P8 filter paper, and Whatman #42 filter paper, 

with the use of vacuum for the last two filtration steps.  The filtrate material was collected and 

snap-frozen on dry ice and ethanol at an angle to maximize surface area.  Samples were 

lyophilized, yielding a dry ECM digest capable of long-term storage. 

 

108 



A.2.3 AMMONIUM SULFATE PRECIPITATION OF ECM DIGESTS 

 
The lyophilized ECM digest was resuspended in [0.1 M sodium phosphate/0.15 M sodium 

chloride] pH 6.8, with 2 mM PMSF (Resuspension Buffer) at 200 mg dry sample mass per 

milliliter.  The sample was rocked at room temperature for 45 minutes to resuspend, centrifuged 

at 12000 rpm for 1 hour, and finally filtered through a 0.45 mm syringe filter.  A bicinchoninic 

acid (BCA) assay (Pierce Biotechnology, Rockford, IL) was performed to estimate protein 

concentration of the suspension.  The suspension was then diluted with Resuspension Buffer to a 

concentration of 10 mg protein per milliliter.  Ammonium sulfate was added to the suspension to 

saturation percentages of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 100%.  The 

saturation percentage was slowly increased by 10% daily, with constant stirring at 4°C to avoid 

localized precipitation of proteins.  At each percentage mark, the solution was centrifuged at 

12000 rpm resulting in the formation of a firm pellet.  The supernatant was removed from the 

tubes and stored at 4°C overnight.  2 mM fresh PMSF was added the following morning before 

adding additional salt.  The precipitated pellets were resuspended in Resuspension Buffer, snap 

frozen, and stored at -80°C. Samples of the supernatants and resuspended pellets were desalted, 

concentrated, and pH neutralized with Microcon YM-3 centrifugal filter devices, with a 3 kD 

molecular weight cutoff (Millipore, Billerica, MA). Desalted samples were snap frozen and 

stored at -80°C for further analysis. 

 

A.2.4 ANTIMICROBIAL ASSAY 

 
Tryptic soy agar plates were streaked with Staphylococcus aureus (American Type Culture 

Collection 29213, wound isolate) and Escherichia coli (American Type Culture Collection 
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25922, clinical isolate), and an isolated colony from each was used to inoculate 10 mL of tryptic 

soy broth.  The bacteria were grown in suspension overnight in a 37°C shaker.  The bacteria 

were then diluted to 5 x 105 CFU/mL [22], and 150 mL of bacterial suspension were added to 

each well of a 96-well microplate. 16.5 mL of each sample to be tested for antibacterial activity 

was added to the bacterial suspension.  Samples tested include desalted UBM-ECM or L-ECM 

digest ammonium sulfate fractions, a three-fold dilution of each fraction, a negative control of 

media alone, and positive controls of antibiotics (vancomycin for S. aureus and tetracycline for 

E. coli).  Each sample was tested in duplicate. The bacterial growth in each well was monitored 

over the course of 24 hours by absorbance readings at 570 nm with a BioRad 680 microplate 

reader. Statistical significance of the absorbance values between samples was determined by the 

paired t-test.  The absorbance reading of each UBM-ECM or L-ECM fraction was compared to 

the negative control of media alone for each time point.   
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A.3 RESULTS 

 
 
 
 
Degradation products from both UBM-ECM and L-ECM demonstrated antibacterial activity 

against both S. aureus and E. coli. All UBM-ECM and L-ECM digest desalted ammonium 

sulfate pellets and supernatants were tested for antibacterial activity. Those fractions 

demonstrating statistically significant inhibition of bacterial growth are shown in Figures 34, 35, 

and 36. The most potent antibacterial activity was present in the UBM-ECM pellet precipitated 

at 60% ammonium sulfate saturation. This sample effectively inhibited S. aureus growth for 24 

hours (Figure 34). This same sample also effectively inhibited E. coli growth for 9 hours (Figure 

35). The L-ECM digest precipitated with 60% ammonium sulfate showed strong antibacterial 

activity against both E. coli and S. aureus (Figures 34 and 35). Furthermore, the L-ECM pellet 

that precipitated at 40% ammonium sulfate saturation showed the greatest activity of all samples 

tested against S. aureus, inhibiting growth for the full 24 hours of the assay (Figure 34). These 

results suggest that there are multiple antibacterial molecules present in ECM degradation 

products, and that differences exist between antimicrobial peptides present in L-ECM and UBM-

ECM. 

The ECM digest samples that were diluted three-fold showed antibacterial activity only 

against S. aureus (Figure 36). The diluted samples of the UBM-ECM digest 60% ammonium 

sulfate pellet and L-ECM 40% ammonium sulfate pellet were equally as effective at inhibiting 

bacterial growth as the undiluted samples at the same ammonium sulfate saturation. The diluted 
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L-ECM digest at 60% ammonium sulfate concentration pellet also demonstrated a small amount 

of antibacterial activity against S. aureus. Interestingly, the UBM-ECM digest pellet that 

precipitated at 20% ammonium sulfate saturation, which had no measurable antibacterial activity 

when undiluted, strongly inhibited S. aureus growth when diluted three-fold (Figure 36).  

Absorbance readings at t=0 varied due to the opacity of some samples when added to the 

bacterial suspension. Some samples contained precipitates that dissolved after incubation with 

the bacterial suspension. Within a few hours of incubation these samples no longer appeared to 

be opaque by visual inspection; this observation was supported by absorbance readings. After 24 

hours, the appearance of wells containing samples that demonstrated a strong antibacterial effect 

showed a striking difference from wells in which bacterial proliferation occurred (Figure 37).   

A preliminary characterization of UBM-ECM and L-ECM fractions that showed 

antibacterial activity included determination of protein concentration by BCA assay. The UBM-

ECM pellets that precipitated at 60% and 20% ammonium sulfate saturation had protein 

concentrations of approximately 80 mg protein/mL, and 90 mg protein/mL, respectively. The L-

ECM pellets that precipitated at 40% and 60% ammonium sulfate saturation had protein 

concentrations of approximately 50 mg protein/mL and 10 mg protein/mL, respectively.  SDS-

PAGE was performed to estimate the molecular weight of the UBM-ECM fractions that 

demonstrated antibacterial activity, with an approximate molecular weight range of 7-15 kDa.   
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Figure 34. Effect of porcine urinary bladder (UBM-ECM) and liver (L-ECM) extracellular 
matrix digest ammonium sulfate fractions on Staphylococcus aureus growth. All 
absorbance values were statistically significant compared with the negative control of 
media with p < 0.05 except L-ECM digest 40% pellet at 2 h; L-ECM digest 60% pellet at 2 
and 3 h; UBM-ECM digest 20% pellet at 4, 5, 21, and 24 h; and UBM-ECM digest 60% 
pellet at 1 and 2h. 
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Figure 35. Effect of porcine urinary bladder (UBM-ECM) and liver (L-ECM) extracellular 
matrix digest ammonium sulfate fractions on Escherichia coli growth. All absorbance 
values were statistically significant compared with the negative control of media with p < 
0.05 except L-ECM digest 40% pellet at 0–4, 13, 23, and 24 h; L-ECM digest 60% pellet at 
0–2, 23, and 24 h; UBM-ECM digest 20% pellet at all time points; and UBM-ECM digest 
60% pellet at 0, 1, 5, 21, and 24 h. 

 

114 



 

 

Figure 36. Effect of diluted porcine urinary bladder (UBM-ECM) and liver (L-ECM) 
extracellular matrix digest ammonium sulfate fractions on Staphylococcus aureus growth. 
All absorbance values were statistically significant compared with the negative control of 
media with p < 0.05 except L-ECM digest 40% pellet at 1, 2, and 23 h; L-ECM digest 60% 
pellet at 0–3, and 8–24 h; UBM-ECM digest 20% pellet at 0–2, 4, and 24 h; and UBM-ECM 
digest 60% pellet at 0, 1, and 4 h. 
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Figure 37. Appearance of microplate containing Staphylococcus aureus after 24 hour 
incubation at 37ºC. The clear well, E8, contains liver extracellular matrix (L-ECM) digest 
40% ammonium sulfate pellet. The surrounding samples did not exhibit strong 
antibacterial activity 
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A4. DISCUSSION 

 
 
 
 
The present study demonstrates that the degradation products of UBM-ECM and L-ECM 

scaffold materials possess antibacterial activity against both S. aureus and E. coli. Urinary 

bladder-derived ECM has been used in numerous regenerative medicine applications, including 

bladder regeneration, urethral repair, and esophageal repair [12, 152, 153]. Liver-derived ECM 

has also been evaluated as a biologic scaffold for use in regenerative medicine [154]. 

The antimicrobial peptides present in the degradation products of UBM-ECM and L-

ECM were released by acid/heat digestion and fractionated by ammonium sulfate precipitation. 

Ammonium sulfate precipitation of the degraded ECM resulted in fractions that showed variable 

degrees of antibacterial activity against S. aureus and E. coli.  Certain fractions showed greater 

antibacterial activity at lower concentrations of total protein. These observations suggest that 

each ammonium sulfate fraction contains a complex mixture of proteins. This mixture may 

include both antimicrobial peptides as well as inhibitors of those peptides, the combination of 

which cause a net effect of antibacterial activity when present in specific concentrations. The full 

spectrum of antimicrobial activity of these low molecular weight peptides has not been 

determined, including their efficacy against anaerobic bacteria. 

Certain ammonium sulfate precipitated fractions from both ECMs maintained strong 

antibacterial activity against gram positive S. aureus for a longer period of time than against 

gram negative E. coli. While the antibacterial activity against S. aureus persisted for the full 24 
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hours of the assay, the antibacterial activity against E. coli declined as the antibacterial peptides 

present in the digest fractions either lost activity or were stoichiometrically overwhelmed by the 

bacteria. The short-term antibacterial effects of ECM degradation products may be particularly 

beneficial in preventing an implant infection by providing immediate protection while the host 

inflammatory cell response and humoral immune response become activated. In addition, as the 

ECM bioscaffold is subjected to progressive degradation in vivo and is remodeled by host 

tissues, antimicrobial peptides may continue to be released, providing a sustained antibacterial 

effect. 

Degradation of the ECM is one of the earliest events following tissue injury. ECM 

degrades rapidly and is completely resorbed within 90 days [14, 16, 155]. Degradation products 

of ECM derived from several tissues have previously shown biologic properties such as 

antimicrobial, chemotactic, and angiogenic activity [21, 22, 156]. The methods used in the 

present study to digest the ECM cause cleavage of inactive parent molecules and the production 

of bioactive fragment molecules. The degradation products of several types of collagen, 

fibronectin, and laminin are known to produce fragment molecules with angiogenic, anti-

angiogenic, and chemotactic properties [46-48, 61, 156, 157]. The present study suggests that 

antimicrobial activity can be added to the list of bioactive properties that result from ECM 

degradation. The harsh in vitro methods used in the present study may or may not relate to the 

degradation of ECM bioscaffolds that occurs in vivo. It seems improbable that the acid/heat 

digestion of different types of ECM would by chance produce bioactive peptides that are not 

created by physiological degradation processes. It remains to be shown however that in vivo 

degradation mechanisms generate the same types of bioactive peptides. 
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Naturally occurring antimicrobial peptides (AMPs) that play key roles in innate immunity 

have been isolated from plants (thionins), several insect orders (cecropins), amphibians 

(magainins), and mammals (defensins). Most AMPs have certain common features, including 

small size (12-100 amino acid residues), polycationic charge, amphipathic structure, and a 

common mechanism for killing bacteria, which involves direct electrostatic interaction with 

microbial cell membranes, followed by physical disruption of the membrane [158]. Most AMPs 

are produced as part of the innate immune defense system and stored in the granules of cells 

involved in immune response. AMPs are synthesized as propeptides that are activated by 

proteolytic cleavage, releasing the active antimicrobial peptide, which may have microbicidal 

effects against gram negative bacteria, gram positive bacteria, yeast, or enveloped viruses [158, 

159].  

At least eighteen AMPs, with a broad range of antimicrobial activity, have been 

identified from various porcine cells and tissues [158, 160-162]. The upper portion of porcine 

small intestine, when immersed in boiling water, frozen, and extracted with cold 0.5 M acetic 

acid [163] has been shown to possess several AMPs [160-162]. Using this method, a cecropin-

like AMP with activity against E. coli and other gram negative bacteria was the first porcine 

AMP to be purified and identified, in 1989 [162]. Since then, additional porcine AMPs have 

been isolated from the small intestine [160, 161], as well as from polymorphonuclear leukocytes 

and lymphocytes [158]. It may not be surprising then that both in vitro and in vivo antimicrobial 

activity was found in the SIS-ECM biologic scaffold [22, 64, 65, 129, 146]. One porcine 

defensin, pBD-1, was cloned and found to be expressed by the epithelia of both the 

gastrointestinal and respiratory tracts as well as in urinary bladder, liver, skin, kidney, lymph 

node, and others [164].  
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Naturally occurring AMPs that have been identified from porcine sources generally have 

molecular weights of less than 10kD [158], which coincides with the 5-16 kD molecular weight 

range of the fraction of SIS-ECM and UBS-ECM extracts that possess antimicrobial activity 

[22]. The present study shows that the UBM-ECM and L-ECM antibacterial peptides also exist 

within this molecular weight range based on SDS-PAGE analysis (not shown). However it is 

currently unknown if the ECM-derived antibacterial peptides are the same as any of the already 

identified porcine AMPs or represent novel AMPs. Further purification, isolation, and 

identification of these antimicrobial peptides from ECM degradation products will better 

elucidate the mechanism by which they are produced and their in vivo functionality. 

Antibacterial activity has now been shown in four different types of non-chemically 

cross-linked ECM, suggesting that this biological activity may be a common feature of all ECM. 

The findings of the present study lend support to the use of ECM biologic scaffolds for 

regenerative medicine applications, particularly for use in sites with high potential for bacterial 

contamination.  



 

 
 
 

BIBLIOGRAPHY 

 
 
 
 
1. Badylak, S.F., et al., Small intestinal submucosa as a large diameter vascular graft in the 

dog. J Surg Res, 1989. 47(1): p. 74-80. 
 
2. Badylak, S.F., et al., The use of xenogeneic small intestinal submucosa as a biomaterial 

for Achilles tendon repair in a dog model. J Biomed Mater Res, 1995. 29(8): p. 977-85. 
 
3. Badylak, S., et al., Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr 

Surg, 2000. 35(7): p. 1097-103. 
 
4. Badylak, S., et al., Extracellular matrix for myocardial repair. Heart Surg Forum, 2003. 

6(2): p. E20-6. 
 
5. Vaught, J.D., et al., Detrusor regeneration in the rat using porcine small intestinal 

submucosal grafts: functional innervation and receptor expression. J Urol, 1996. 155(1): 
p. 374-8. 

 
6. Kropp, B.P., et al., Regenerative urinary bladder augmentation using small intestinal 

submucosa: urodynamic and histopathologic assessment in long-term canine bladder 
augmentations. J Urol, 1996. 155(6): p. 2098-104. 

 
7. Kropp, B.P., et al., Experimental assessment of small intestinal submucosa as a bladder 

wall substitute. Urology, 1995. 46(3): p. 396-400. 
 
8. Dahms, S.E., et al., Free ureteral replacement in rats: regeneration of ureteral wall 

components in the acellular matrix graft. Urology, 1997. 50(5): p. 818-25. 
 
9. Atala, A., Experimental and clinical experience with tissue engineering techniques for 

urethral reconstruction. Urol Clin North Am, 2002. 29(2): p. 485-92, ix. 
 
10. Dejardin, L.M., S.P. Arnoczky, and R.B. Clarke, Use of small intestinal submucosal 

implants for regeneration of large fascial defects: an experimental study in dogs. J 
Biomed Mater Res, 1999. 46(2): p. 203-11. 

 
11. Badylak, S.F., Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. 

Transpl Immunol, 2004. 12(3-4): p. 367-77. 
 

121 



12. Badylak, S.F., et al., Esophageal reconstruction with ECM and muscle tissue in a dog 
model. J Surg Res, 2005. 128(1): p. 87-97. 

 
13. Gilbert, T.W., et al., Repair of the thoracic wall with an extracellular matrix scaffold in a 

canine model. J Surg Res, 2008. 147(1): p. 61-7. 
 
14. Badylak, S.F., et al., Small intestional submucosa: a rapidly resorbed bioscaffold for 

augmentation cystoplasty in a dog model. Tissue Eng, 1998. 4(4): p. 379-87. 
 
15. Nieponice, A., et al., An extracellular matrix scaffold for esophageal stricture prevention 

after circumferential EMR. Gastrointest Endosc, 2009. 69(2): p. 289-96. 
 
16. Record, R.D., et al., In vivo degradation of 14C-labeled small intestinal submucosa (SIS) 

when used for urinary bladder repair. Biomaterials, 2001. 22(19): p. 2653-9. 
 
17. Gilbert, T.W., A.M. Stewart-Akers, and S.F. Badylak, A quantitative method for 

evaluating the degradation of biologic scaffold materials. Biomaterials, 2007. 28(2): p. 
147-50. 

 
18. Badylak, S.F., et al., Marrow-derived cells populate scaffolds composed of xenogeneic 

extracellular matrix. Exp Hematol, 2001. 29(11): p. 1310-8. 
 
19. Zantop, T., et al., Extracellular matrix scaffolds are repopulated by bone marrow-derived 

cells in a mouse model of achilles tendon reconstruction. J Orthop Res, 2006. 24(6): p. 
1299-309. 

 
20. Brennan, E.P., et al., Antibacterial Activity within Degradation Products of Biological 

Scaffolds Composed of Extracellular Matrix. Tissue Eng, 2006. 12(10): p. 2949-55. 
 
21. Li, F., et al., Low-molecular-weight peptides derived from extracellular matrix as 

chemoattractants for primary endothelial cells. Endothelium, 2004. 11(3-4): p. 199-206. 
 
22. Sarikaya, A., et al., Antimicrobial activity associated with extracellular matrices. Tissue 

Eng, 2002. 8(1): p. 63-71. 
 
23. Valentin, J.E., et al., Extracellular matrix bioscaffolds for orthopaedic applications. A 

comparative histologic study. J Bone Joint Surg Am, 2006. 88(12): p. 2673-86. 
 
24. Badylak, S.F., The extracellular matrix as a scaffold for tissue reconstruction. Semin 

Cell Dev Biol, 2002. 13(5): p. 377-83. 
 
25. Badylak, S.F., et al., The use of extracellular matrix as an inductive scaffold for the 

partial replacement of functional myocardium. Cell Transplant, 2006. 15 Suppl 1: p. 
S29-40. 

 

122 



26. Chen, M.K. and S.F. Badylak, Small bowel tissue engineering using small intestinal 
submucosa as a scaffold. J Surg Res, 2001. 99(2): p. 352-8. 

 
27. Clarke, K.M., et al., Intestine submucosa and polypropylene mesh for abdominal wall 

repair in dogs. J Surg Res, 1996. 60(1): p. 107-14. 
 
28. Cobb, M.A., et al., Histology after dural grafting with small intestinal submucosa. Surg 

Neurol, 1996. 46(4): p. 389-93; discussion 393-4. 
 
29. Cobb, M.A., et al., Porcine small intestinal submucosa as a dural substitute. Surg 

Neurol, 1999. 51(1): p. 99-104. 
 
30. Kropp, B.P., et al., Rabbit urethral regeneration using small intestinal submucosa onlay 

grafts. Urology, 1998. 52(1): p. 138-42. 
 
31. Kropp, B.P., et al., Characterization of small intestinal submucosa regenerated canine 

detrusor: assessment of reinnervation, in vitro compliance and contractility. J Urol, 
1996. 156(2 Pt 2): p. 599-607. 

 
32. Lantz, G.C., et al., Small intestinal submucosa as a small-diameter arterial graft in the 

dog. J Invest Surg, 1990. 3(3): p. 217-27. 
 
33. Mantovani, F., et al., Reconstructive urethroplasty using porcine acellular matrix. Eur 

Urol, 2003. 44(5): p. 600-2. 
 
34. Musahl, V., et al., The use of porcine small intestinal submucosa to enhance the healing 

of the medial collateral ligament--a functional tissue engineering study in rabbits. J 
Orthop Res, 2004. 22(1): p. 214-20. 

 
35. Robinson, K.A., et al., Extracellular matrix scaffold for cardiac repair. Circulation, 

2005. 112(9 Suppl): p. I135-43. 
 
36. Suckow, M.A., et al., Enhanced bone regeneration using porcine small intestinal 

submucosa. J Invest Surg, 1999. 12(5): p. 277-87. 
 
37. Anderson, J.M., Inflammation, Wound Healing, and the Foreign-Body Response. 2 ed. 

Biomaterials Science: An Introduction to Materials in Medicine, ed. B.D. Ratner, 
Hoffman, A.S., Schoen, F.J., Lemons, J.E. 2004: Elsevier. 296-304. 

 
38. Coury, A.J., Chemical and Biochemical Degradation of Polymers. 2 ed. Biomaterials 

Science: An Introduction to Materials in Medicine, ed. B.D. Ratner, Hoffman, A.S., 
Schoen, F.J., Lemons, J.E. 2004: Elsevier. 411-430. 

 
39. Acute and Chronic Inflammation, in Robbins and Cotran Pathologic Basis of Disease, V. 

Kumar, Abbas, A.K., Fausto, N., Editor. 2005, Elsevier. p. 47-86. 
 

123 



40. Woessner, J.F., Nagase, H., Matrix Metalloproteinases and TIMPs. 2000, New York: 
Oxford. 

 
41. Gilbert, T.W., A.M. Stewart-Akers, and S.F. Badylak, A quantitative method for 

evaluating the degradation of biologic scaffold materials. Biomaterials, 2006. 
 
42. van Amerongen, M.J., et al., The enzymatic degradation of scaffolds and their 

replacement by vascularized extracellular matrix in the murine myocardium. 
Biomaterials, 2006. 27(10): p. 2247-57. 

 
43. Yannas, I.V., Natural Materials. 2 ed. Biomaterials Science: An Introduction to Materials 

in Medicine, ed. B.D. Ratner, Hoffman, A.S., Schoen, F.J., Lemons, J.E. 2004: Elsevier. 
127-136. 

 
44. Valentin, J.E., et al., Macrophage Participation in the Degradation and Remodeling of 

ECM Scaffolds. Tissue Eng Part A, 2009. 
 
45. Davis, G.E., et al., Regulation of tissue injury responses by the exposure of matricryptic 

sites within extracellular matrix molecules. Am J Pathol, 2000. 156(5): p. 1489-98. 
 
46. Schenk, S. and V. Quaranta, Tales from the crypt[ic] sites of the extracellular matrix. 

Trends Cell Biol, 2003. 13(7): p. 366-75. 
 
47. Ortega, N. and Z. Werb, New functional roles for non-collagenous domains of basement 

membrane collagens. J Cell Sci, 2002. 115(Pt 22): p. 4201-14. 
 
48. Mott, J.D. and Z. Werb, Regulation of matrix biology by matrix metalloproteinases. Curr 

Opin Cell Biol, 2004. 16(5): p. 558-64. 
 
49. Xu, J., et al., Proteolytic exposure of a cryptic site within collagen type IV is required for 

angiogenesis and tumor growth in vivo. J Cell Biol, 2001. 154(5): p. 1069-79. 
 
50. Xu, R., et al., NC1 domain of human type VIII collagen (alpha 1) inhibits bovine aortic 

endothelial cell proliferation and causes cell apoptosis. Biochem Biophys Res Commun, 
2001. 289(1): p. 264-8. 

 
51. Ramchandran, R., et al., Antiangiogenic activity of restin, NC10 domain of human 

collagen XV: comparison to endostatin. Biochem Biophys Res Commun, 1999. 255(3): 
p. 735-9. 

 
52. Ambesi, A., et al., Anastellin, a fragment of the first type III repeat of fibronectin, inhibits 

extracellular signal-regulated kinase and causes G(1) arrest in human microvessel 
endothelial cells. Cancer Res, 2005. 65(1): p. 148-56. 

 
53. Senior, R.M., G.L. Griffin, and R.P. Mecham, Chemotactic activity of elastin-derived 

peptides. J Clin Invest, 1980. 66(4): p. 859-62. 

124 



54. Senior, R.M., G.L. Griffin, and R.P. Mecham, Chemotactic responses of fibroblasts to 
tropoelastin and elastin-derived peptides. J Clin Invest, 1982. 70(3): p. 614-8. 

 
55. Ponce, M.L., et al., Identification of a potent peptide antagonist to an active laminin-1 

sequence that blocks angiogenesis and tumor growth. Cancer Res, 2003. 63(16): p. 5060-
4. 

 
56. Slevin, M., S. Kumar, and J. Gaffney, Angiogenic oligosaccharides of hyaluronan induce 

multiple signaling pathways affecting vascular endothelial cell mitogenic and wound 
healing responses. J Biol Chem, 2002. 277(43): p. 41046-59. 

 
57. Chen, W.Y. and G. Abatangelo, Functions of hyaluronan in wound repair. Wound Repair 

Regen, 1999. 7(2): p. 79-89. 
 
58. Deed, R., et al., Early-response gene signalling is induced by angiogenic 

oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high-
molecular-weight hyaluronan. Int J Cancer, 1997. 71(2): p. 251-6. 

 
59. Mongiat, M., et al., Endorepellin, a novel inhibitor of angiogenesis derived from the C 

terminus of perlecan. J Biol Chem, 2003. 278(6): p. 4238-49. 
 
60. Senger, D.R. and C.A. Perruzzi, Cell migration promoted by a potent GRGDS-containing 

thrombin-cleavage fragment of osteopontin. Biochim Biophys Acta, 1996. 1314(1-2): p. 
13-24. 

 
61. Cornelius, L.A., et al., Matrix metalloproteinases generate angiostatin: effects on 

neovascularization. J Immunol, 1998. 161(12): p. 6845-52. 
 
62. Pike, S.E., et al., Vasostatin, a calreticulin fragment, inhibits angiogenesis and 

suppresses tumor growth. J Exp Med, 1998. 188(12): p. 2349-56. 
 
63. Senior, R.M., et al., Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is 

chemotactic for fibroblasts and monocytes. J Cell Biol, 1984. 99(3): p. 870-4. 
 
64. Badylak, S.F., et al., Host protection against deliberate bacterial contamination of an 

extracellular matrix bioscaffold versus Dacron mesh in a dog model of orthopedic soft 
tissue repair. J Biomed Mater Res B Appl Biomater, 2003. 67(1): p. 648-54. 

 
65. Badylak, S.F., et al., Comparison of the resistance to infection of intestinal submucosa 

arterial autografts versus polytetrafluoroethylene arterial prostheses in a dog model. J 
Vasc Surg, 1994. 19(3): p. 465-72. 

 
66. El-Kassaby, A.W., et al., Urethral stricture repair with an off-the-shelf collagen matrix. J 

Urol, 2003. 169(1): p. 170-3; discussion 173. 
 

125 



67. Nieponice, A., T.W. Gilbert, and S.F. Badylak, Reinforcement of esophageal 
anastomoses with an extracellular matrix scaffold in a canine model. Ann Thorac Surg, 
2006. 82(6): p. 2050-8. 

 
68. Reing, J.E., et al., Degradation products of extracellular matrix affect cell migration and 

proliferation. Tissue Eng Part A, 2009. 15(3): p. 605-14. 
 
69. Holtom, P.D., et al., Porcine small intestine submucosa does not show antimicrobial 

properties. Clin Orthop Relat Res, 2004(427): p. 18-21. 
 
70. Beattie, A.J., et al., Chemoattraction of progenitor cells by remodeling extracellular 

matrix scaffolds. Tissue Eng Part A, 2009. 15(5): p. 1119-25. 
 
71. Bagorda, A. and C.A. Parent, Eukaryotic chemotaxis at a glance. J Cell Sci, 2008. 121(Pt 

16): p. 2621-4. 
 
72. Stephens, L., L. Milne, and P. Hawkins, Moving towards a better understanding of 

chemotaxis. Curr Biol, 2008. 18(11): p. R485-94. 
 
73. Badylak, S.F., The extracellular matrix as a biologic scaffold material. Biomaterials, 

2007. 28(25): p. 3587-93. 
 
74. Brown, B., et al., The basement membrane component of biologic scaffolds derived from 

extracellular matrix. Tissue Eng, 2006. 12(3): p. 519-26. 
 
75. Gilbert, T.W., et al., Production and characterization of ECM powder: implications for 

tissue engineering applications. Biomaterials, 2005. 26(12): p. 1431-5. 
 
76. Sweeney, P.J.a.W., J.M, Enzymes of Molecular Biology, ed. M.M. Burrell. 1993, Totowa, 

NJ: Humana Press. 290-291. 
 
77. Bond, M.D. and H.E. Van Wart, Purification and separation of individual collagenases 

of Clostridium histolyticum using red dye ligand chromatography. Biochemistry, 1984. 
23(13): p. 3077-85. 

 
78. Freytes, D.O., et al., Preparation and rheological characterization of a gel form of the 

porcine urinary bladder matrix. Biomaterials, 2008. 29(11): p. 1630-7. 
 
79. Clark, L.D., R.K. Clark, and E. Heber-Katz, A new murine model for mammalian wound 

repair and regeneration. Clin Immunol Immunopathol, 1998. 88(1): p. 35-45. 
 
80. Gourevitch, D., et al., Matrix metalloproteinase activity correlates with blastema 

formation in the regenerating MRL mouse ear hole model. Dev Dyn, 2003. 226(2): p. 
377-87. 

 

126 



81. Leferovich, J.M., et al., Heart regeneration in adult MRL mice. Proc Natl Acad Sci U S 
A, 2001. 98(17): p. 9830-5. 

 
82. Naviaux, R.K., et al., Retained features of embryonic metabolism in the adult MRL 

mouse. Mol Genet Metab, 2009. 96(3): p. 133-44. 
 
83. Mongan, N.P., K.M. Martin, and L.J. Gudas, The putative human stem cell marker, Rex-1 

(Zfp42): structural classification and expression in normal human epithelial and 
carcinoma cell cultures. Mol Carcinog, 2006. 45(12): p. 887-900. 

 
84. Csete, M., Oxygen in the cultivation of stem cells. Ann N Y Acad Sci, 2005. 1049: p. 1-8. 
 
85. Ivanovic, Z., et al., Primitive human HPCs are better maintained and expanded in vitro 

at 1 percent oxygen than at 20 percent. Transfusion, 2000. 40(12): p. 1482-8. 
 
86. Ma, T., et al., Hypoxia and stem cell-based engineering of mesenchymal tissues. 

Biotechnol Prog, 2009. 25(1): p. 32-42. 
 
87. Badylak, S.F., et al., Macrophage phenotype as a determinant of biologic scaffold 

remodeling. Tissue Eng Part A, 2008. 14(11): p. 1835-42. 
 
88. Brown, B.N., et al., Macrophage phenotype and remodeling outcomes in response to 

biologic scaffolds with and without a cellular component. Biomaterials, 2009. 30(8): p. 
1482-91. 

 
89. Badylak, S.F., Regenerative medicine approach to heart valve replacement. Circulation, 

2005. 111(21): p. 2715-6. 
 
90. Brittan, M. and N.A. Wright, Gastrointestinal stem cells. J Pathol, 2002. 197(4): p. 492-

509. 
 
91. Kim, C.F., et al., Identification of bronchioalveolar stem cells in normal lung and lung 

cancer. Cell, 2005. 121(6): p. 823-35. 
 
92. Vaananen, H.K., Mesenchymal stem cells. Ann Med, 2005. 37(7): p. 469-79. 
 
93. Herrera, M.B., et al., Isolation and characterization of a stem cell population from adult 

human liver. Stem Cells, 2006. 24(12): p. 2840-50. 
 
94. Moore, K.A. and I.R. Lemischka, Stem cells and their niches. Science, 2006. 311(5769): 

p. 1880-5. 
 
95. Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative 

medicine. Circ Res, 2007. 100(9): p. 1249-60. 
 

127 



96. Wilson, A. and A. Trumpp, Bone-marrow haematopoietic-stem-cell niches. Nat Rev 
Immunol, 2006. 6(2): p. 93-106. 

 
97. Levy, V., et al., Epidermal stem cells arise from the hair follicle after wounding. Faseb J, 

2007. 21(7): p. 1358-66. 
 
98. Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: a revolution in therapeutics-recent 

advances in stem cell biology and their therapeutic applications in regenerative medicine 
and cancer therapies. Clin Pharmacol Ther, 2007. 82(3): p. 252-64. 

 
99. Peault, B., et al., Stem and progenitor cells in skeletal muscle development, maintenance, 

and therapy. Mol Ther, 2007. 15(5): p. 867-77. 
 
100. Crisan, M., et al., A perivascular origin for mesenchymal stem cells in multiple human 

organs. Cell Stem Cell, 2008. 3(3): p. 301-13. 
 
101. Janes, S.M., S. Lowell, and C. Hutter, Epidermal stem cells. J Pathol, 2002. 197(4): p. 

479-91. 
 
102. Jensen, U.B., S. Lowell, and F.M. Watt, The spatial relationship between stem cells and 

their progeny in the basal layer of human epidermis: a new view based on whole-mount 
labelling and lineage analysis. Development, 1999. 126(11): p. 2409-18. 

 
103. Jones, P.H., S. Harper, and F.M. Watt, Stem cell patterning and fate in human epidermis. 

Cell, 1995. 80(1): p. 83-93. 
 
104. Roh, C. and S. Lyle, Cutaneous stem cells and wound healing. Pediatr Res, 2006. 59(4 Pt 

2): p. 100R-3R. 
 
105. Cotsarelis, G., Epithelial stem cells: a folliculocentric view. J Invest Dermatol, 2006. 

126(7): p. 1459-68. 
 
106. Lyle, S., et al., Human hair follicle bulge cells are biochemically distinct and possess an 

epithelial stem cell phenotype. J Investig Dermatol Symp Proc, 1999. 4(3): p. 296-301. 
 
107. Larouche, D., et al., Keratin 19 as a stem cell marker in vivo and in vitro. Methods Mol 

Biol, 2005. 289: p. 103-10. 
 
108. Brivanlou, A.H., et al., Stem cells. Setting standards for human embryonic stem cells. 

Science, 2003. 300(5621): p. 913-6. 
 
109. Richards, M., et al., The transcriptome profile of human embryonic stem cells as defined 

by SAGE. Stem Cells, 2004. 22(1): p. 51-64. 
 

128 



110. Dan, Y.Y., et al., Isolation of multipotent progenitor cells from human fetal liver capable 
of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci U S A, 2006. 
103(26): p. 9912-7. 

 
111. Schmelzer, E., et al., Human hepatic stem cells from fetal and postnatal donors. J Exp 

Med, 2007. 204(8): p. 1973-87. 
 
112. Malhi, H., et al., Isolation of human progenitor liver epithelial cells with extensive 

replication capacity and differentiation into mature hepatocytes. J Cell Sci, 2002. 115(Pt 
13): p. 2679-88. 

 
113. Nowak, G., et al., Identification of expandable human hepatic progenitors which 

differentiate into mature hepatic cells in vivo. Gut, 2005. 54(7): p. 972-9. 
 
114. Dan, Y.Y. and G.C. Yeoh, Liver stem cells: a scientific and clinical perspective. J 

Gastroenterol Hepatol, 2008. 23(5): p. 687-98. 
 
115. Cheng, H. and C.P. Leblond, Origin, differentiation and renewal of the four main 

epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the 
four epithelial cell types. Am J Anat, 1974. 141(4): p. 537-61. 

 
116. Montgomery, R.K. and D.T. Breault, Small intestinal stem cell markers. J Anat, 2008. 

213(1): p. 52-8. 
 
117. Quaroni, A., et al., Epithelioid cell cultures from rat small intestine. Characterization by 

morphologic and immunologic criteria. J Cell Biol, 1979. 80(2): p. 248-65. 
 
118. Tai, C.C., et al., Induction of fibroblast growth factor 10 (FGF10) in the ileal crypt 

epithelium after massive small bowel resection suggests a role for FGF10 in gut 
adaptation. Dev Dyn, 2009. 238(2): p. 294-301. 

 
119. Hashimoto, T., et al., Regulation of ATP-sensitive potassium channel subunit Kir6.2 

expression in rat intestinal insulin-producing progenitor cells. J Biol Chem, 2005. 
280(3): p. 1893-900. 

 
120. Kojima, H., et al., Combined expression of pancreatic duodenal homeobox 1 and islet 

factor 1 induces immature enterocytes to produce insulin. Diabetes, 2002. 51(5): p. 1398-
408. 

 
121. Sellaro, T.L., et al., Maintenance of Hepatic Sinusoidal Endothelial Cell Phenotype In 

Vitro Using Organ-Specific Extracellular Matrix Scaffolds. Tissue Eng, 2007. 13(9): p. 
2301-10. 

 
122. Werb, Z. and J.R. Chin, Extracellular matrix remodeling during morphogenesis. Ann N 

Y Acad Sci, 1998. 857: p. 110-8. 
 

129 



123. Bullard, K.M., M.T. Longaker, and H.P. Lorenz, Fetal wound healing: current biology. 
World J Surg, 2003. 27(1): p. 54-61. 

 
124. Lagasse, E., personal communication, 2009. 
 
125. Manohar, R., personal communication, 2009. 
 
126. Freytes, D.O., et al., Biaxial strength of multilaminated extracellular matrix scaffolds. 

Biomaterials, 2004. 25(12): p. 2353-61. 
 
127. Jones, P.H. and F.M. Watt, Separation of human epidermal stem cells from transit 

amplifying cells on the basis of differences in integrin function and expression. Cell, 
1993. 73(4): p. 713-24. 

 
128. Adzick, N., Longaker, MT (Eds), Fetal Wound Healing. 1992, New York, NY: Elsevier 

Scientific Press. 
 
129. Shell, D.H.t., et al., Comparison of small-intestinal submucosa and expanded 

polytetrafluoroethylene as a vascular conduit in the presence of gram-positive 
contamination. Ann Surg, 2005. 241(6): p. 995-1001; discussion 1001-4. 

 
130. Illingworth, C.M., Trapped fingers and amputated finger tips in children. J Pediatr Surg, 

1974. 9(6): p. 853-58. 
 
131. Brennan, E.P., et al., Chemoattractant activity of degradation products of fetal and adult 

skin extracellular matrix for keratinocyte progenitor cells. J Tissue Eng Regen Med, 
2008. 2(8): p. 491-8. 

 
132. Metcalf, D., Concise review: hematopoietic stem cells and tissue stem cells: current 

concepts and unanswered questions. Stem Cells, 2007. 25(10): p. 2390-5. 
 
133. Caplan, A.I., Why are MSCs therapeutic? New data: new insight. J Pathol, 2009. 217(2): 

p. 318-24. 
 
134. Krause, D.S., et al., Multi-organ, multi-lineage engraftment by a single bone marrow-

derived stem cell. Cell, 2001. 105(3): p. 369-77. 
 
135. Van Arnam, J.S., et al., Engraftment of bone marrow-derived epithelial cells. Stem Cell 

Rev, 2005. 1(1): p. 21-7. 
 
136. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. 

Science, 1997. 275(5302): p. 964-7. 
 
137. Shi, Q., et al., Evidence for circulating bone marrow-derived endothelial cells. Blood, 

1998. 92(2): p. 362-7. 
 

130 



138. Timmermans, F., et al., Endothelial progenitor cells: Identity defined? J Cell Mol Med, 
2008. 

 
139. Fathke, C., et al., Contribution of bone marrow-derived cells to skin: collagen deposition 

and wound repair. Stem Cells, 2004. 22(5): p. 812-22. 
 
140. Bellini, A. and S. Mattoli, The role of the fibrocyte, a bone marrow-derived mesenchymal 

progenitor, in reactive and reparative fibroses. Lab Invest, 2007. 87(9): p. 858-70. 
 
141. Badiavas, E.V., et al., Participation of bone marrow derived cells in cutaneous wound 

healing. J Cell Physiol, 2003. 196(2): p. 245-50. 
 
142. Li, J., Kirsner, R.S., Extracellular matrix and wound healing. 2 ed. Wound Healing, ed. 

A.F. Falabella, Kirsner, R.S. 2005: Taylor and Francis. 40. 
 
143. Rawlins, J.M., et al., Quantifying collagen type in mature burn scars: a novel approach 

using histology and digital image analysis. J Burn Care Res, 2006. 27(1): p. 60-5. 
 
144. Fitzgerald, A.M., et al., Human skin histology as demonstrated by Herovici's stain: a 

guide for the improvement of dermal substitutes for use with cultured keratinocytes? 
Burns, 1996. 22(3): p. 200-2. 

 
145. Singer, A.J. and R.A. Clark, Cutaneous wound healing. N Engl J Med, 1999. 341(10): p. 

738-46. 
 
146. Jernigan, T.W., et al., Small intestinal submucosa for vascular reconstruction in the 

presence of gastrointestinal contamination. Ann Surg, 2004. 239(5): p. 733-8; discussion 
738-40. 

 
147. Kim, B.S., C.E. Baez, and A. Atala, Biomaterials for tissue engineering. World J Urol, 

2000. 18(1): p. 2-9. 
 
148. Kim, M.S., et al., Preparation of porcine small intestinal submucosa sponge and their 

application as a wound dressing in full-thickness skin defect of rat. Int J Biol Macromol, 
2005. 36(1-2): p. 54-60. 

 
149. Ruiz, C.E., et al., Transcatheter placement of a low-profile biodegradable pulmonary 

valve made of small intestinal submucosa: a long-term study in a swine model. J Thorac 
Cardiovasc Surg, 2005. 130(2): p. 477-84. 

 
150. Carlson, G.A., et al., Bacteriostatic properties of biomatrices against common 

orthopaedic pathogens. Biochem Biophys Res Commun, 2004. 321(2): p. 472-8. 
 
151. Freytes, D.O., R.S. Tullius, and S.F. Badylak, Effect of storage upon material properties 

of lyophilized porcine extracellular matrix derived from the urinary bladder. J Biomed 
Mater Res B Appl Biomater, 2006. 78(2): p. 327-33. 

131 



132 

 
152. Piechota, H.J., et al., Functional rat bladder regeneration through xenotransplantation of 

the bladder acellular matrix graft. Br J Urol, 1998. 81(4): p. 548-59. 
 
153. Sievert, K.D., et al., Homologous acellular matrix graft for urethral reconstruction in the 

rabbit: histological and functional evaluation. J Urol, 2000. 163(6): p. 1958-65. 
 
154. Lin, P., et al., Assessing porcine liver-derived biomatrix for hepatic tissue engineering. 

Tissue Eng, 2004. 10(7-8): p. 1046-53. 
 
155. Gilbert, T.W., et al., Degradation and remodeling of small intestinal submucosa in 

canine Achilles tendon repair. J Bone Joint Surg Am, 2007. 89(3): p. 621-30. 
 
156. Haviv, F., et al., Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor 

growth: design, synthesis, and optimization of pharmacokinetics and biological activities. 
J Med Chem, 2005. 48(8): p. 2838-46. 

 
157. O'Reilly, M.S., et al., Endostatin: an endogenous inhibitor of angiogenesis and tumor 

growth. Cell, 1997. 88(2): p. 277-85. 
 
158. Zhang, G., C.R. Ross, and F. Blecha, Porcine antimicrobial peptides: new prospects for 

ancient molecules of host defense. Vet Res, 2000. 31(3): p. 277-96. 
 
159. Carretero, M., et al., A cutaneous gene therapy approach to treat infection through 

keratinocyte-targeted overexpression of antimicrobial peptides. Faseb J, 2004. 18(15): p. 
1931-3. 

 
160. Agerberth, B., et al., Isolation of three antibacterial peptides from pig intestine: gastric 

inhibitory polypeptide (7-42), diazepam-binding inhibitor (32-86) and a novel factor, 
peptide 3910. Eur J Biochem, 1993. 216(2): p. 623-9. 

 
161. Agerberth, B., et al., Amino acid sequence of PR-39. Isolation from pig intestine of a new 

member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem, 
1991. 202(3): p. 849-54. 

 
162. Lee, J.Y., et al., Antibacterial peptides from pig intestine: isolation of a mammalian 

cecropin. Proc Natl Acad Sci U S A, 1989. 86(23): p. 9159-62. 
 
163. Chen, Z.W., et al., Isolation and characterization of porcine diazepam-binding inhibitor, 

a polypeptide not only of cerebral occurrence but also common in intestinal tissues and 
with effects on regulation of insulin release. Eur J Biochem, 1988. 174(2): p. 239-45. 

 
164. Zhang, G., et al., Molecular cloning and tissue expression of porcine beta-defensin-1. 

FEBS Lett, 1998. 424(1-2): p. 37-40. 
 
 


	TITLE PAGE

	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1
	Table 2
	Table 3
	LIST OF FIGURES
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Figure 16
	Figure 17
	Figure 18
	Figure 19
	Figure 20
	Figure 21
	Figure 22
	Figure 23
	Figure 24
	Figure 25
	Figure 26
	Figure 27
	Figure 28
	Figure 29
	Figure 30
	Figure 31
	Figure 32
	Figure 33
	Figure 34
	Figure 35
	Figure 36
	Figure 37
	PREFACE
	1.0 INTRODUCTION AND SPECIFIC AIMS
	1.1 EXTRACELLULAR MATRIX IN REGENERATIVE MEDICINE
	1.2 ECM DEGRADATION
	1.2.1 Matricryptic Molecules and Sites
	1.2.2 Bioactive Degradation Products of ECM Scaffolds

	1.3 MECHANISMS OF CHEMOTAXIS
	1.4 SPECIFIC AIMS

	2.0 SPECIFIC AIM 1: ECM DEGRADATION IN VITRO
	2.1 BACKGROUND
	2.2 MATERIALS AND METHODS
	2.2.1. Preparation of UBM-ECM degradation products
	2.2.2 SDS-PAGE analysis of UBM-ECM digests
	2.2.3 Chemotaxis assay with MRL blastema-like cells
	2.2.4 Chemotaxis assay with neonatal human epidermal keratinocytes

	2.3 RESULTS
	2.4 DISCUSSION
	2.5 LIMITATIONS AND FUTURE WORK

	3.0 SPECIFIC AIM 2: TISSUE-SPECIFIC CHEMOATTRACTANT DEGRADATION PRODUCTS OF ECM
	3.1 BACKGROUND
	3.2 MATERIALS AND METHODS
	3.2.1 Response of skin and liver-derived progenitor cells to degradation products of skin and liver-derived ECM
	3.2.1.1 Preparation of ECM from fetal and adult tissues Human fetal skin ECM (hfS-ECM) was prepared from fetal skin samples obtained from elective pregnancy termination at 18–23 weeks gestation, in a protocol approved by the University of Pittsburgh Institutional Review Board (IRB# 0504158). Fetal skin was immersed in water at 4ºC for 4–18h to facilitate the removal of excess connective tissue. The tissue was then placed in 0.02% trypsin (Sigma, St. Louis, MO)/0.05% ethylenediaminetetraacetic acid (EDTA; Sigma) at 37ºC for 1 h, then placed on a rocker in 3% v/v Triton-X (Sigma) at 4ºC for 48 h, and finally in 4% w/v deoxycholic acid (Sigma) at 4ºC for 24 h.
	3.2.1.2 Preparation of ECM degradation products Each type of ECM (hfS-ECM, hS-ECM, pS-ECM, hL-ECM, pL-ECM) was digested using pepsin. Particulate lyophilized ECM was added to 1 mg/ml pepsin (Sigma) in 0.01 N HCl for a final concentration of 10 mg ECM/ml suspension. The suspension was mixed on a stir plate at room temperature for 48 h, at which time no visible pieces of ECM remained. Pepsin control samples were prepared by mixing the pepsin digestion solution (1 mg/ml pepsin in 0.01 N HCl) at room temperature for 48 h.
	3.2.1.3 SDS–PAGE analysis of ECM digests A bicinchoninic acid (BCA) assay (Pierce Biotechnology, Rockford, IL) was performed to estimate protein concentration of each type of ECM pepsin digest. Based on BCA assay results, uniform quantities of protein were loaded into each lane of a 12.5% polyacrylamide gel, with a prestained protein standard (Bio-Rad, Hercules, CA) in the range 15–250 kDa. The gel was subjected to a voltage of 80 V until the dye front entered the separating gel, then at a constant voltage of 100 V until the dye front reached the bottom of the gel. The gel was stained with Imperial Protein Stain (Pierce Biotechnology).
	3.2.1.4 Culture and Characterization of HEKn Neonatal human epidermal keratinocytes (HEKn) were obtained from Cascade Biologics and cultured in EpiLife medium (Cascade Biologics, Portland, OR) supplemented with human keratinocyte growth supplement (HKGS; Cascade Biologics), yielding final supplemented medium concentrations of 0.2% v/v bovine pituitary extract, 5 μg/ml bovine insulin, 0.18 μg/ml hydrocortisone, 5 μg/ml bovine transferrin and 0.2 ng/ml human epidermal growth factor. HEKn were cultured according to the manufacturer’s instructions under a humidified atmosphere in 95% air/5% CO2 at 37ºC. Cells used in these studies were passage 4–7.
	3.2.1.5 Chemotaxis assay with HEKn In vitro chemotaxis of HEKn toward ECM pepsin digests was evaluated using a 48-well micro-chemotaxis chamber (Neuro Probe, Gaithersburg, MD). When the HEKn reached 70–80% confluency, they were starved overnight in unsupplemented EpiLife medium before use in chemotaxis assays the following morning. Then the HEKn were trypsinized, neutralized and centrifuged according to HEKn product instructions, resuspended in unsupplemented EpiLife medium and incubated in suspension for 1 h at 37ºC.  
	3.2.1.6 Culture and characterization of human fetal liver cells Primary cells were isolated from human fetal livers at 16-18 weeks gestation by 1 mg/ml collagenase II + 1 mg/ml of hyaluronidase treatment followed by 0.05% trypsin/EDTA, and cultured on a rat epithelial feeder layer. The mammary tumor cell line, LA7 (ATCC® number CRL-2283™), was used as a feeder layer. Only epithelial cells from primary tissue expand on these feeder cells [124]. The LA7 cell line was grown in DMEM/F-12 supplemented with 5% heat inactivated fetal calf serum (HI-FCS), 1% penicillin/streptomycin, 50 nM hydroxycortisone, and 5 (g/ml insulin in a humidified atmosphere in 95% air/5% CO2 at 37ºC. Upon confluence, the cells were trypsinized with 0.05% trypsin/EDTA and (-irradiated at 17,000 rads to render the cells mitotically inactive. Cell culture flasks were then seeded at an approximate density of 70,000 cells/mm2 to generate a monolayer of feeder cells.  Primary human fetal liver cells were grown on these feeder layers with DMEM/F-12 supplemented with 0.5% HI-FCS, 25 (g/ml gentamicin and 1% insulin-transferrin supplement (ITS). After roughly 2 passages, the cells were stained with CD26-PE (DPPIV) and CD227-FITC (MUC1). CD26+CD277+ cells were sorted with a BD FACSVantageSE Cell Sorter. CD26 is considered to a hepatocyte marker, while CD227, is considered a biliary marker. CD26+CD227+ cells were expanded on the LA7 feeder cell layer as described previously. Flow cytometric analyses at later passages have shown that these cells have a stable CD26+CD227+ phenotype. These cells were also shown to express the candidate liver stem cell marker EpCAM and the mesenchymal stem cell marker CD73. The cells are negative for expression of candidate liver stem cell marker CD49f [125]. Cells used in these studies were passages 5-7 after the CD26/CD227 sort.
	3.2.1.7 Chemotaxis assay with human fetal liver cells In vitro chemotaxis of human fetal liver cells toward ECM pepsin digests was evaluated using a 48-well micro chemotaxis chamber. When human fetal liver cells reached 80-90% confluency, they were starved overnight in serum-free DMEM before use in chemotaxis assays the following morning. The human fetal liver cells were then trypsinized, neutralized, resuspended in serum-free DMEM, and incubated in suspension for one hour at 37ºC.

	3.2.2 Response of intestinal progenitor cells to degradation products of porcine adult ECM
	3.2.2.1 Preparation of ECM from small intestine, urinary bladder and liver Porcine adult urinary bladder matrix (UBM-ECM) was prepared as previously described [74]. In brief, urothelial cells were removed by soaking the urinary bladders in 1.0 N saline. Connective and adipose tissue were removed from the serosal surface of the urinary bladder, and the tunica serosa, tunica muscularis externa, tunica submucosa, and most of the tunica muscularis mucosa were mechanically removed, leaving a biomaterial composed of only the basement membrane and the subjacent tunica propria of the tunica mucosa. Porcine adult small intestinal submucosa (SIS-ECM) was prepared as previously described [1, 126]. In brief, the mesenteric tissues were removed from the small intestine and after rinsing, the tunica serosa, tunica muscularis externa, and the luminal portion of the tunica mucosa including most of the lamina propria were mechanically removed. The remaining layers of the tunica submucosa and basilar portion of the tunica mucosa, including the muscularis mucosa and the stratum compactum of the lamina propria, represented SIS. Porcine adult liver ECM (pL-ECM) was prepared as described in section 3.2.1.1.
	3.2.2.2 Preparation of ECM degradation products Each type of ECM (UBM-ECM, SIS-ECM, pL-ECM) was digested using pepsin. Particulate lyophilized ECM was added to 1 mg/ml pepsin (Sigma) in 0.01 N HCl for a final concentration of 10 mg ECM/ml suspension. The suspension was mixed on a stir plate at room temperature for 48 h, at which time no visible pieces of ECM remained. Pepsin control samples were prepared by mixing the pepsin digestion solution (1 mg/ml pepsin in 0.01 N HCl) at room temperature for 48 h.
	3.2.2.3 Culture of rat small intestinal epithelial cells The IEC-6 rat small intestinal epithelial cell line was obtained from the American Type Culture Collection (ATCC, Manassas, VA). IEC-6 cells were cultured in DMEM supplemented with 5% fetal calf serum, 1X penicillin/streptomycin, 2.5 μg/ml gentamicin, and 0.1 U/ml bovine insulin (DMEM-IEC6) under a humidified atmosphere in 95% air/5% CO2 at 37ºC. Cells used in these studies were passage 26 and 27.
	3.2.2.4 Chemotaxis assay with rat small intestinal epithelial cells In vitro chemotaxis of IEC-6 cells toward ECM pepsin digests was evaluated using a 48-well micro chemotaxis chamber. When IEC-6 cells reached 70-80% confluency, they were starved overnight in serum-free unsupplemented DMEM (DMEM-SF) before use in chemotaxis assays the following morning. Then, IEC-6 cells were trypsinized, neutralized, centrifuged, resuspended in DMEM-SF, and incubated in suspension for one hour at 37ºC. 


	3.3 RESULTS
	3.4 DISCUSSION
	3.5 LIMITATIONS AND FUTURE WORK

	4.0 SPECIFIC AIM 3: EFFECTS OF PREVENTION OF ECM DEGRADATION ON CELL RECRUITMENT AND CONSTRUCTIVE REMODELING IN VIVO
	4.1 BACKGROUND
	4.2 MATERIALS AND METHODS
	4.2.1 Preparation of UBM-ECM and UBM-ECM-X Scaffolds
	4.2.2 Chimeric mice preparation
	4.2.3 Surgical technique 
	4.2.4 Wound size analysis
	4.2.5 Histological appearance of remodeling skin
	4.2.6 Collagen analysis of remodeling skin
	4.2.7 Bone marrow-derived cells in remodeling skin
	4.2.7.1 GFP expression For analysis of GFP-expressing cells, slides were deparaffinized with xylene and rehydrated through a graded ethanol series and then counterstained with DAPI and photographed at 200X magnification using the Olympus Fluoview 1000 confocal microscope with lasers scanning at wavelengths of 488 nm (GFP) and 405 nm (DAPI). Four images of the remodeling area were taken from each slide and quantification of the number of cells expressing GFP and total number of cells was performed for each image using ImageJ software. The percentage of cells in the remodeling skin expressing GFP was calculated from these measurements. The mean number of GFP-positive cells and percentage of GFP-positive cells was then calculated for each sample. Reported results are expressed as the mean ( SEM of number of GFP-positive cells and percentage of GFP-positive cells for three mice for each treatment and timepoint (n=3). The statistical significance between treatment groups was determined by one-way ANOVA with a = 0.05 followed by post-hoc Tukey’s test with  = 0.05.
	4.2.7.2. Fluorescent immunolabeling for F4/80, CD45, von Willebrand factor and CD34


	4.3 RESULTS
	4.4 DISCUSSION
	4.5 LIMITATIONS AND FUTURE WORK

	5.0 DISSERTATION SYNOPSIS
	A.1 INTRODUCTION
	A.2 MATERIALS AND METHODS
	A.2.1 PREPARATION OF ECM POWDERS
	A.2.2 DEGRADATION OF ECM
	A.2.3 AMMONIUM SULFATE PRECIPITATION OF ECM DIGESTS
	A.2.4 ANTIMICROBIAL ASSAY
	A.3 RESULTS
	A4. DISCUSSION

	BIBLIOGRAPHY

