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The class of proteins known as immunophilins, that are cis-trans prolyl isomerases perform 

diverse chaperone roles.  The immunophilins FKBP52 and FKBP51 (FK506 Binding Proteins) 

are adapter proteins involved in the trafficking of the glucocorticoid receptor (GR), in which 

FKBP52 facilitates binding of retrograde molecular motor protein dynein and the GR, while 

FKBP51 binds only the GR.  This body of work presents:   1. An analysis of the FKBP family of 

proteins and their potential for involvement of neuropathogenesis and identifies FKBP52 and 

FKBP51 as an evolutionarily divergent duo in mammals, 2.  The changes in gene and protein 

levels of these immunophilins in the frontal cortex of patients with HIV and Major Depressive 

Disorder (MDD), and 3. A role for FKBP52 in the ligand-activated redistribution of GR in 

neurons. 

Using primary human mixed neuron-glia cultures, we tested the hypothesis that 

immunophilin ligands, like FK506, may alter the kinetics of FKBP52 or FKBP51-mediated 

trafficking of the GR in neurons. We treated the neuron-glia cultures with hydrocortisone with or 

without FK506 pretreatment, and found that FK506 altered the distribution of GR. By knocking 

down expression of FKBP52 using siRNA in a differentiated neuroblastoma cell line, 

hydrocortisone-mediated nuclear translocation of GR was slowed.  
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Treatment of neuroblastoma cells media supplemented with 10% conditioned media of 

HIV-infected microglia lead to increased expression of both immunophilins. In a parallel study, 

we assessed the transcriptional and postranscriptional levels of the GR adapter proteins FKBP52 

and FKBP51 in autopsy tissues from the frontal cortex of patients with MDD with and without 

HIV. We found increased expression of both proteins in HIV infected patients. FKBP51 was 

increased in MDD while expression of FKBP52 was the highest in the HIV population with 

MDD. 

These data support the hypothesis that the immunophilins described here modulate the 

cellular function of the GR in the brain and expression levels may be related to mood disorders. 

In general, viral infection and inflammation increase expression, of both immunophilins, which 

may alter the cortisol-induced trafficking of GR. 
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1.0  INTRODUCTION 

1.1 OVERVIEW 

FK506-Binding proteins (FKBP’s) are a class of proteins expressed in all prokaryotic organisms. 

In multicellular organisms, they are expressed in many tissues and in vertebrates, particularly 

highly expressed in the brain [1, 2]. The higher molecular weight immunophilins arose through 

classic gene duplication and increased in size by fusion of the classic immunophilin domain that 

forms the FKBP12 protein to other protein modules, such as tetratricopeptide repeat (TPR) 

domains, signal sequences, calcineurin (CaN) binding domain, and transmembrane domains [3, 

4].   The function of immunophilins varies depending on its modules and localization, but the 

function of the immunophilin-domain as a rotamase is to serve as a molecular chaperone, 

promoting stability, maintenance of a particular conformation, and proper folding [5, 6].  The 

high molecular weight immunophilins, FKBP52 and FKBP51 are only expressed in multicellular 

organisms, FKBP51 expressed exclusively in vertebrates, and the evolution of the high 

molecular weight immunophilins has diverged greatly to serve different functions in more 

complex organisms compared to other prolyl isomerases [7]. 

FKBP12 is expressed in the brain is more highly expressed in neuroinflammation and 

neurodegeneration [8].   Neurodegenerative diseases such as Parkinson’s disease (PD), 

Alzheimer’s disease (AD), and amytrophic lateral sclerosis (ALS) are often characterized by 
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selective loss of a particular neuronal phenotype and by abnormal accumulation of proteins in the 

later stages of disease [9]. Proteins often found in these accumulations are: α-synuclein, hyper-

phosphorylated tau, ubiquitin, β-amyloid, and neurofilament.  These proteins are ubiquitously 

expressed in neurons and in other cells types, so why are dopaminergic neurons susceptible to 

degeneration and accumulation of protein aggregates in PD?  Why spinal cord neurons in ALS?  

Why hippocampal neurons in AD?   In the frontal cortex, synaptic density and dendtric 

arborization is reduced in Major Depressive Disorder (MDD), thought to be due to excessive 

glucocorticoid signaling [10-12] [13].  There must be a distinctive biochemical milieu to specific 

neuronal phenotypes rendering them susceptible to degeneration.  Indeed, there seems to be 

divergent mechanisms of toxicity among the various neuronal phenotypes leading to convergent 

outcomes:  synaptic loss, neuronal degeneration, and aggregation of ubiquitously expressed 

proteins.  In Chapter 2, the functions and properties of immunophilins are broadly reviewed in 

the context of evolution and neural cell biology. We review some of the observed biochemical 

and genetic properties of immunophilins and apply these properties to possible mechanisms of 

neuronal function, specifically synaptic plasticity and stability. 

 The sequence analysis performed in Chapter 2 recognized that the amino acid 

sequence of immunophilin FKBP51 falls within the FKBP52 clade, and both of these genes 

diverge greatly in humans compared to other organisms.  These two proteins are thought to be 

involved in modulation of hormone signaling and differentially regulate the function of the GR 

[14].  Abberrant glucocorticoid signaling and hypercortisolemia are thought to be contributors to 

the physiologic basis for MDD [13, 15-17].  With that in mind, in Chapter 3, we aimed to study 

whether these proteins and genes are differentially expressed in patients suffering from Major 

Depressive Disorder (MDD) compared to the normal population.  Since hypercortisolemia [18, 
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19]and MDD [20]are comorbid to HIV and the fact that cytokines produced by HIV-infected 

cells [21, 22]impairs GR signaling [23-26], we included in our study patients with HIV infection 

who suffered from MDD as well .  We found changes in expression of the immunophilins most 

strongly correlated to HIV infection. 

In Chapter 4, we determine whether these immunophilins modulate the trafficking of the 

GR in neurons.  There is abundant literature on the effects of glucocorticoid excess and brain 

function [27, 28]. The widely accepted model is that chronic glucocorticoid signaling in neurons 

renders them vulnerable to degeneration leading to decreased volume of brain structures such as 

the hippocampus [17]. The decreased volume is not necessarily due to neuronal loss per se, but 

rather reduction in the size of neurons and their synaptic and dendritic fields [29].  While this 

model may be accurate, we still know little about the molecular events that occur in a neuron 

making it “vulnerable” to GR activity. Furthermore, although some neural populations are 

identified as particularly susceptible to cortisol-induced vulnerability (for example the CA1 and 

CA3 fields of the hippocampus), no molecular mechanism explains how this occurs [30].   

Identifying and studying mechanisms like the steroid co-activation or repression of GR-mediated 

signaling may offer an explanation for the molecular basis of depression and offer routes for 

novel interventions. 
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1.2 OVERVIEW OF STUDY ONE - A REVIEW OF THE INVOLVEMENT OF THE 

IMMUNOPHILIN FAMILY OF PROTEINS IN THE MOLECULAR BASIS FOR 

NEUROLOGIC DISEASE 

Neurodegenerative diseases such as PD, AD, and ALS are often characterized by selective loss 

of a particular neuronal phenotype and by abnormal accumulation of proteins in the later stages 

of disease. Theoretically, to identify etiology of these diseases, one approach would be to 

identify the specific properties that characterize the susceptible neuronal phenotype. For 

example: How is a dopamine (DA) neuron different from other neurons?  Answering this 

question assists in answering the corollary question:  Why is it susceptible to degeneration in 

PD?  The presence of DA, its intermediates and oxidative byproducts, the presence of the 

dopamine transporter (DAT), tyrosine hydroxylase (TH), vesicular monamine transporter 2 

(VMAT2), and D2-DA receptors provide a singular biochemical environment to the 

dopaminergic neuron.  The human brain is equipped with more extensive basal ganglia than 

other mammals, possessing as much as 590,000 DA neurons compared to 165,000 in Macaca, 

while the overall brain size is increased only 2-3 times, approximately in correlation to body 

weight [31].  Humans and not monkeys suffer from PD, therefore not only identifying the unique 

properties of susceptible neuronal populations, but identifying unique properties of the human 

physiologic milieu and aging could lead to uncovering the etiology of neurodegenerative disease.  

It has been long reported that immunophilins are expressed in levels 50-times higher in 

the brain compared to other tissues and that immunophilins are specifically expressed higher in 

the basal ganglia, substantia nigra, and hippocampus compared to the other brain regions [1].  

We have shown recently by immunohistochemistry that immunophilin FK506-binding protein of 

12 kD (FKBP12, gene ID FKBP1A) is expressed at higher levels in cells expressing TH and 
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DAT than other neuronal types [32].  The observation that immunophilin ligands have 

neurotrophic effects coupled with the reported higher expression of immunophilins in 

dopaminergic neurons is noteworthy and warrants further study [33, 34].  The review provided in 

Chapter 2 serves to link the various studies of genetics, biochemistry, and bioinformatics of 

immunophilin proteins to the molecular mechanisms of brain disease. 

1.3 OVERVIEW OF STUDY TWO - IMMUNOPHILIN FKBP52 AND FKBP51 

EXPRESSION IN THE FRONTAL CORTEX IN HIV AND MAJOR DEPRESSIVE 

DISORDER 

In Chapter 3, we investigate through autopsy studies whether the expression levels of FKBP52 

and FKBP51 are different in the brains of depressed patients compared to controls.  The rationale 

for studying the levels of immunophilins in the frontal cortex of depression patients lies in the 

basic premise that depression has a physiological basis in the brain.  The volume and metabolic 

activity of the prefrontal cortex (PFC) is reduced in severe depression [35]. The PFC facilitates 

complex cognitive operations and responds to external cues that could control the function of the 

amygdala, hypothalamus, and brain stem. Cortisol, in humans, alters processes associated with 

PFC functions, including inhibitory control, attention regulation, and planning [36]. In rats, 

cortisol causes a reorganization of PFC dendritic fibers [29]. Cortisol-induced impairment of the 

PFC leads to disinhibition of the hypothalamus-pituitary-adrenal (HPA) axis, which leads to 

enhanced cortisol secretion: this highlights the feed-forward mechanism of the glucocorticoid 

cascade hypothesis of depression that is discussed below [17]. 
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Particularly relevant to depression, the amygdala is involved in regulation of emotion and 

behavior.  In depression, the amygdala shows increased activity, which inhibits the function of 

the PFC and activates the HPA [37]. Cells of the amygdala express the GR and corticosteroids 

enhance amygdala activity, facilitating the embedding of emotion-related memory [38]. 

Hyperactivity of the amygdala enhances cortisol release, which in turn increases amygdala 

activity. Thus the amygdala is involved in a self-perpetuating cycle of hyperactivity that leads to 

deleterious effects on the PFC, hippocampus, and brain-stem; and ultimately is clinically 

manifested as depression [39].  

The volume and the function of the hippocampus are reduced in patients suffering from 

major depression [40]. The volume and functional loss are due to reduced synaptic and dendritic 

densities and neuronal size rather than loss of neurons [41].  Activation of the GR in 

hippocampal neurons promotes long-term depression, alters hippocampal morphology, and alters 

cognitive ability [42-44].  Furthermore, damage to the hippocampus impairs its ability to 

contribute to feedback inhibition of the HPA axis, so excess cortisol signalling contributes to 

changes that further promote its secretion [39]. The expression of the GR co-activator FKBP52 

and the inhibitor FKBP51 is high in the hippocampus compared to other brain regions Figure 1-

1, and may be involved in GR-mediated effects of cortisol on the hippocampus.  

The glucocorticoid-cascade hypothesis postulates a feed-forward mechanism of 

decreased feedback inhibition with increased sensitivity of the brain to cortisol. With aging and 

stress over time, long-term exposure to cortisol decreases the ability of the hypothalamus to 

downregulate secretion of corticotrophin releasing hormone (CRH) after a stressor. While the 

levels of circulating cortisol may not increase with age, older animals show a longer recovery 

time from stress-induced cortisol surges than younger ones. The longer duration of elevated 
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cortisol also causes a decreased sensitivity to the feed-back inhibition loop, further exacerbating 

the problem [17]. 

FKBP52 (gene ID FKBP4) consists of two classic immunophilin domains at the N-

terminus, followed by tetratricopeptide repeat (TPR) domains, and a calmodulin-binding domain 

[45]. Yeast and lower life-forms do not express FKBP52. The promoter region of the gene 

contains a binding site for Sp1, an important transcription factor for constitutively active genes 

[46]. It also contains a consensus binding sequence for heat-shock factor therefore it is important 

to note that increased expression may be inducible. FKBP52 is expressed in all tissues. 

Figure 1-1, compiled from the Allen Brain Map, shows through in situ hybridization that 

the FKBP4 gene is expressed in the cortex, and particularly enriched in CA1 and CA3 region of 

the hippocampus, as well as the thalamus and cerebellum of the mouse [47]. GR expression is 

also enriched in these regions but it has not yet been determined whether expression of FKBP4 is 

altered in these regions during disease-state. 
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Figure 1-1.  FKB52 and FKBP51 Expression is Enriched in the Hippocampus, Dentate Gyrus, the 

Cerebral Cortex and the Cerebellum of the Mouse.  Data were mined from the Allen Brain Map [48, 49] and 

images of fluorescence in situ hybridization for mRNA encoding the androgen receptor (AR), glucocorticoid 
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receptor (GR), FKBP52, and FKBP51 in sagital sections of the adult male mouse brain.  For orientation, the 

Nissl stain is labeled for relevant brain regions are outlined:  cortex (CTX), hippocampus (HIP), dentate 

gyrus (DG), thalamus (TH), and hypothalamus (HY).  

 

In an autopsy study of patients with major depression, there were more neurons in the 

paraventricular region of the hypothalamus expressing CRH than in control brains [50]. Through 

these neurons, norepinephrin secretion is promoted by cortisol [51]. However, cortisol acts in a 

negative manner on the hypothalamic CRH neurons that signal to the pituitary. In depressed 

patients, this negative feedback loop is deficient at reducing elevated cortisol levels [36]. The 

precise means by which cortisol secretion may be inhibited (through feedback) is not yet 

established but it is reasonable to propose that it may be mediated by GR [17], and thus may be 

affected by the co-activator and inhibitor, FKBP52 and FKBP51, of GR that are the focus of the 

current body of work. Mice lacking GR have increased corticosterone levels and reduced anxiety 

suggesting that GR function plays a role in emotion and behavior [52]. Based on these 

observations it is feasible that decreased FKBP52 (the coactivator) and increased FKBP51 (the 

inhibitor) would have similar (and possibly reversible or controllable) effects as decreasing GR. 

Conversely, increased FKBP52 and decreased FKBP51 would promote aberrantly increased GR 

signaling.  In Chapter 3, we tested these hypotheses.  
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1.4 OVERVIEW OF STUDY THREE - MODULATION OF DISTRIBUTION OF 

GLUCOCORTICOID RECEPTOR IN NEURONS 

In Chapter 4, we determine whether the immunophilin ligand, FK506 alters association of 

the GR with adapter proteins.  Furthermore, we use microscopy to determine whether the cellular 

localization, particularly to the nucleus, and formation of GR-complexes in the nucleus was 

altered by FK506 or by knocking down expression of FKBP52. 

The rationale for studying glucocorticoid signaling in neurons is that chronically elevated 

cortisol due to stress causes pathology in the brain.  Glucocorticoids, particularly cortisol in 

humans, are secreted by the adrenal glands in response to signals from the 

hypothalamus/pituitary. While the hypothalamus and pituitary are largely involved in regulating 

autonomic functions, and cortisol secretion is part of circadian rhythm (i.e. elevated after 

awakening and decreasing throughout the day), the HPA axis is also involved in the stress 

response and is integrated into other “higher” functional areas of the brain as well. 

In response to stress, both emotional and physical, CRH is secreted by the hypothalamus, 

signaling to the pituitary to release adrenocorticotropic hormone (ACTH), which enters the blood 

stream and eventually stimulates cells of the adrenal cortex to increase the production of 

corticosteroids, mainly glucocorticoids.  Glucocorticoids have a vast array of systemic effects on 

almost all organs of the body, known overall as the “flight or fight” response. 

Like other tissues, the brain contains GR, and activation of GR affects neuronal function. 

The brain responsed to glucocorticoids leads to feedback inhibition of the HPA axis to reduce 

CRH secretion and returns the body to normal metabolic state.  “Higher” functions, such as 

emotion can induce this response to signals that arise from the prefrontal cortex, amygdala, and 

hippocampus, which in turn will prompt the hypothalamus to initiate a stress response. 
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 The effects of glucocorticoid excess and brain function have been abudantly 

reported [28, 53]. A model that is widely accepted is that chronic glucocorticoid signaling in 

neurons renders them vulnerable to degeneration, leading to decreased volume of brain structures 

such as the hippocampus [17]. The decreased volume is not necessarily due to neuronal loss, but 

rather reduction in the size of neurons and their synaptic and dendritic fields [29].   

While this model may be accurate, the molecular events leading to vulnerability are 

poorly understood. Furthermore, although some neural populations are identified as particularly 

susceptible to cortisol-induced vulnerability (for example the CA1 and CA3 fields of the 

hippocampus), no molecular mechanism explains how this occurs [30].  

Identifying and studying mechanisms like the steroid co-activation or repression of GR-

mediated signaling may offer an explanation for the molecular basis of depression and offer 

routes for therapeutic interventions. 
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2.0  INVOLVEMENT OF THE IMMUNOPHILIN FAMILY OF PROTEINS IN THE 

MOLECULAR BASIS FOR NEUROLOGIC DISEASES, A REVIEW 

2.1 ABSTRACT 

FK506-Binding Proteins (FKBP’s), called immunophilins, are involved in a wide variety of 

biochemical and cellular functions.  Some FKBP’s expressed in the brain, genes FKBP1A, 

FKBP1B, FKBP4, FKBP5, (protein names FKBP12, FKBP12.6, FKBP52, and FKBP51, 

respectively) are more highly expressed in neuroinflammation and neurodegeneration.  FKBP8 

(protein FKBP38) is important for neurodevelopment.  We outline here diverse biochemical and 

cellular functions of immunophilins that are of interest to the molecular basis for a wide variety 

of neuropathologic conditions, including stress-related neuropathies, α-synucleinopathies, ß-

amyloidopathies, and diseases involving mitochondrial function.  FKBP’s are involved in 

hormone signaling, protein folding, and signal transduction modulation.  Many are abundantly 

expressed in neurons of the hippocampus, in all layers of the frontal cortex, and in the basal 

ganglia.  Many of the biochemical mechanisms underlying these functions are very recently 

discovered and could some day prove pertinent to the pathogenesis of various diseases of the 

central nervous system.  The review serves to link the various new studies of genetics, 

biochemistry, bioinformatics of immunophilin proteins to the molecular mechanisms of brain 

disease. 
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2.2 INTRODUCTION 

FK506-binding proteins (FKBP’s) are a family of prolyl isomerases that catalyze the cis/trans 

orientation about proline residues; a rate-limiting step in the folding of many proteins [7].  New 

data suggest that some of these FKBP’s may have recently evolved to perform specific functions 

apart from generalized protein folding, particularly in the brain.  The biochemical and cellular 

functions of these FKBP’s indicate that they may play a role in the pathogenesis of some 

neurodegenerative and cognitive disorders.  In some neurodegenerative and cognitive diseases 

FKBP’s are upregulated, downregulated, or mutated [8].   The purpose of this review is to 

discuss the recent discoveries of the molecular and cellular functions of the FKBP’s with regard 

to brain specific functions; specifically their roles in protein folding and trafficking, apoptosis, 

and signal transduction modulation.  Elucidating how these three processes are regulated by 

immunophilins, of high abundance in the brain, may prove important to understanding some 

features of the molecular pathogenesis of neurodegeneration or even mechanisms of 

neuroprotection [1]. 
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2.3 MOLECULAR PROPERTIES OF FK506 BINDING PROTEINS 

2.3.1 FK506 Binding-Protein Gene Family 

There are 13 human genes in the protein family of FKBP’s, they comprise part of the 

Immunophilin class of isomerases, their activity is to flip the peptide bond about a proline from 

cis to trans position, also called rotamase.  They are called “immunophilins” because they were 

originally identified as “receptors” for immunosuppressive drugs such as FK506 (tacrolimus) 

and cyclophilin [54-56].  While protein binding partners are identified, no endogenous small 

molecule ligand, in other words cofactor, has been identified for immunophilins in humans, 

however the possibility exists and will be discussed below.  FK506 was shown to have 

neurotrophic effects in vitro and in vivo, there is debate as to the “importance” of which FKBP 

mediates this effect and how, however discussion of the neurotrophic effects of immunophilin 

ligands is beyond the scope of this dissertation, for a review on that topic see Gold (2003) [34, 

57].   Instead, we will highlight how the molecular functions may be involved in the 

pathogenesis of various neurodegenerative or cognitive diseases.  In order to do so, we must first 

discuss the basic molecular properties of FKBP’s. 

The FKBP’s are one of three disctinct families in the rotamase (cis/trans isomerase 

enzymes) class of proteins, the other two are the cyclophilins and parvulins.  Pemberton and Kay 

(2005) compared the prolyl isomerase repertoires of human, fruit fly, nematode, and yeast [58, 

59].  They performed analyses of the amino acid sequences and constructed dendograms 

depicting the evolutionary history of prolyl isomerase repertoires in these species, revealing that 

FKBP’s are expanded in human more than would be expected compared to the other isomerases.  

The repertoires of the organisms have both isomerases with common function and those that 
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appear distinct for any given organism.   The proportion of cyclpohilins and parvulins with cross-

species orthologues is high, whereas the proportion seen with the FKBP’s is low by comparison.  

They concluded that cyclophilins and parvulins have evolved to perform conserved functions, 

while the FKBP’s have evolved to fill divergent or ever-changing niches within constantly 

evolving organisms [60].  This theme is revisited when we consider the role of FKBP4 and 

FKBP5 in humans and monkeys, and how slight alterations in expression led to physiological 

differences between Homo sapiens and monkeys.  There are large inserts in the monkey FKBP51 

protein that does not exist in the human analogue.  Biochemical analysis showed that the monkey 

FKBP51 protein does not bind GR as efficiently as the human [61], which helps to stabilize it in 

the HSP90 complex [14, 62].  X-ray crystallography attributes this inefficiency due to 

conformational differences leading to GR to not have efficient access to its binding location in 

the monkey FKBP51 protein [63].  The general glucocorticoid resistance in New World monkeys 

is attributed to both higher expression of its lack of ability to chaperone and stabilize the GR 

[63]. 

To illustrate the role of divergent evolution in the higher molecular weight 

immunophilins, a cladogram of the FKBP52, FKBP51, and FKBP12 protein sequences across 

various phyla was constructed and is described below in Section 2.2.1.1.  Clearly, the FKBP12 

amino acid sequence was highly conserved and the FKBP52 and FKBP51 sequences diverged. 

The FKBP family of proteins arose through classic gene-duplication of the archetypal 

immunophilin FKBP12 (gene name FKBP1A).  All other FKBP’s arise from duplication of this 

gene and transposing throughout genomes to other functional modules, such as the 

tetratricopeptide repeat domains (TPR), calcium-binding domains, or signal sequences [64].    

Figure 2-1 shows the crystal structure of the FKBP52 protein and its protein modules.  The N-
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terminal [65] and C-terminal[66] crystal structures were solved separately. Table 1-1 lists all of 

the FKBP’s in humans, their sizes, their domain architecture, and their cellular location.  Given 

that FKBPs may perform the rate-limiting step in protein folding pathways, and the expansion of 

the FKBP family described by Pemberton and Kay (2005), it could be that they are evolving to 

serve this increased requirement for chaperoning in higher organisms and in specific cell-types, 

driven independently within each organism or tissue, thus leading to their observed lack of cross-

phyla orthology. A recent bioinformatics report on the evolution of the FKBP12 gene supports 

the notion the cyclophilins are evolving to perform specific conserved functions within the 

different organisms, while the FKBPs are evolving, in most cases, to meet the more individual 

needs for protein chaperoning [59, 60].  
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Figure 2-1.  Crystal structure of the Human FKBP52 Protein Depicting FKBP-Binding Domains, 

TPR Domains, and CaM-Binding Domain.  Sample large molecular immunophilin FKBP52 showing modular 

domains of two FK506-Binding Protein (FKBP) Domains, tetratricopeptide repeat (TPR) domains, and C-

terminal calmodulin (CaM) binding domains. 

 

Table 2-1. Summary Information for the Human Immunophilin - FK506 Binding Proteins.  The 

thirteen immunophilin genes are shown with summaries of function, cell compartment.  For reference, 

PubMed Gene identification is given with key citations on structure and function.  Modular structures are 

listed to illustrate genetic expansion of FKBP genes and divergence of function.  FK506 Binding domain 

(FKB), TM (transmembrane), TPR (tetratricopeptide repeat), CaM-BD (calmodulin binding domain), Efh 

(E-F hand). 
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Table 2-1.  Summary Information for Human Immunophilin – FK506 Binding Proteins. 

FKBP PubMed 
GeneID 

Molec Weight 
(kD) 

Brain Level Cell 
Compartment 

Modular 
Structure 

Function Citation 

FKBP1A 2280 12 high Cytoplasm 1X FKB Protein Folding and 
Trafficking, Ca 
mobilization 
Intracellular 
signalling modulation 

[67-71] 

FKBP1B 2281 12.6 low Cytoplasm 1X FKB Protein Folding and 
Trafficking, Ca 
Mobilization 

[72, 73] 

FKBP2 2286 13 moderate ER membrane 1X FKB 
1XTM 

ER Chaperone [74, 75] 

FKBP3 2287 25 low Nuclear 2X FKB Transcription 
Cofactor, Protein 
trafficking 

[76-78] 

FKBP4 2288 52 or 59 high Cytoplasm 3X FKB  
3X TPR 

Hormone Receptor 
Trafficking 

[45, 79-
82] 

FKBP5 2289 51 high Cytoplasm 3X FKB  
1X TPR  
1X CaM-BD 

Hormone Receptor 
Modulation and 
Trafficking 

[63, 79, 
81] 

FKBP6 8468 36 none Nuclear 1X FKB  
1X TPR 

Mitosis, 
Chromosome 
Segregation 

[83, 84] 

FKBP7 14231 23 low ER 1X FKB 
2X Efh 

ER Chaperone [85] 

FKBP8 23770 38 moderate ER - Mt memb 1X FKB 
2XTPR  
1X TM 

Protein Trafficking, 
Apoptosis, Ca 
Signaling, 
Proteasome 

[86-91] 

FKBP9 11328 63 moderate ER 4XFKBP 
2XEFh 

ER Chaperone   

FKBP10 60681 65 none ER 4XFKB 
2XEFh 

ER Chaperone [92, 93] 

FKBP11 51303 19 none ER membrane 1X FKBP 
1XTM 

Protein Folding [94, 95] 

FKBP14 55033 22 none ER 1X FKB 
2XEFh 

ER Chaperone [96, 97] 

 

 

2.3.1.1 Amino Acid Sequence Analysis of Three Immunophilin Proteins  

Comparison of amino acid sequences of proteins over evolutionary history tell much about 

biochemical niches.  For example, the amino acid sequences of histones remained quite constant 

from early eukaryotes to complex mammals [98].  While the biochemical milieu of cells expands 

with gene-duplications and modular formation of new proteins, the diversity of proteins expands 
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as mutations are selected for or against.  Since other authors showed that immunophilin genes 

comprise a class of genes undergoing fast evolution [59], we sought to compare homologous 

proteins to the immunophilins FKBP52 and FKBP51.  The analysis provided insight into the 

comparison between humans and recent ancestors. 

 

 

Figure 2-2.  Cross-Phyla Cladogram of FKBP4, FKBP5, and FKBP1A Analogues. In 

order to identify homologous proteins in various species for the immunophilins FKBP51, 

FKBP52, and FKBP12, the Homologene database available online through the National 

Center for Biological Informatics and the National Library of Medicine was used.  The 

cladogram was constructed using the JalView Java Alignment Editor, the amino acid 

sequences of identified homologous proteins were sorted using the ClastalW Multiple 

Sequence Alignment algorithm and the tree was constructed using the Neighbor Joining 

Using Percent Identitity algorithm [99].  The NCBI Accession numbers are as follows (from 

top to bottom of the tree):  NP_508026.1, NP_002005, XP_534923.1, NP_34349.1, 

  19



NP_004108.1, XP_001172411.1, XP_538880.2, NP_0334350.1, NP_001012174.1, 

NP_524895.2, XP_508927.2, XP_342764.3, NP_189160.3, NP_001021722.1, NP_000792.1, 

NP_032045.1, XP_001053006.1, XP_001167897.1, NP_523792.2, NP_014264.1, AB028739. 

 

 

In Figure 2-2, the horizontal distance between nodes corresponds to sequence similarity 

of homolgues.  The large distances between those of the higher molecular weight 

immunophilins, FKBP4 and FKBP5, indicate fast genetic divergence throughout evolution, 

particularly among vertebrates, compared to the amino acid sequence for the FKBP12 protein 

(green box).  There exists a plant homologue for FKBP52 in Arabadopsis thalasinia (*), and the 

distance between it and the node for animals is shorter than that between Pan troglodytes and 

Homo sapiens, indicating that among mammals, this gene has changed to occupy different 

biochemical niches, perhaps to be cell-, tissue-, or organism-specific.  Interestingly, the FKBP51 

clade falls within the FKBP52 clade (red box), indicating its recent emergence and high 

similarity with FKBP52.  Since FKBP51 is a modulator for the hormone-receptor chaperone 

function of FKBP52, this phenomenon suggests a recent emergence of the capacity to modulate 

hormone function and introduce a higher level of complexity for increasingly complex 

organisms.  With regard to function in the nervous system, this represents at least one pinpoint of 

difference between humans and recent ancestors. 

2.3.2 FK506 Binding Protein Biochemical Properties 

The FKBP domain consists of a single α-helix with five ß-pleated sheets, the last sheet being 

interrupted by a turn, and the whole structure resembling a miniature “beta barrel” [100]. A loose 
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consensus sequence for the target proteins is the hydrophobic side chains of the leucine-leucine-

proline sequence [101]. The active site of the FKBP domain, which performs the isomerase 

function, is a hydrophobic pocket deep in the middle of the barrel and the conserved residues 

necessary for activity are not continuous but located on different ß-sheets and facing inside the 

pocket [102].   The crystal structure of FKBP12 with FK506 bound is illustrated in Figure 2-3, 

the prolyl isomerase active site is highlighted in yellow of the ribbon structure, and color coded 

for hydrophobicity in the three-dimensional structure [102]. Active-site residues are non-

continuous and come together inside the hydrophobic pocket [100]. This is important because the 

mechanism of  

 

Figure 2-3.  Ribbon Diagram and 3-D Structure of FKBP12 With FK506 Bound. The prolyl 

isomerase active site is highlighted in yellow of the ribbon structure, and color coded for hydrophobicity in 

the three-dimensional structure [102]. Active-site residues are non-continuous and come together inside the 

hydrophobic pocket [100]. 
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the isomerase enzymatic activity is to lower the polarity of the microenvironment surrounding 

the substrate proline allowing for twisting of the proline residue about the backbone of the target 

protein [103] [6].  Any substitution that would increase the polarity of the active site would cause 

loss of isomerase function, but not necessarily loss of binding (due to the high hydrophobicity of 

the pocket), which would imply that natural competitive inhibitors could easily evolve by 

substitution mutation, or that chaperone function may be “allowed” to be independent of 

isomerase activity.  Indeed, this is the case with the FKBP4/FKBP5 interaction discussed below, 

and may explain why pharmacologic ligands that bind the active pocket do not necessarily 

inhibit interaction of the target proteins.  This is an important point to consider for the 

mechanism of drug interactions.  Binding of small organic molecule ligands (like FK506) to the 

active site of the FKBP domain may simply lower the polarity of the microenvironment, and 

increase the energy of dissociation of the hydrophobic pocket of the FKBP domain from the 

substrate proline on the target proteins. For example CaN (CaN) is a target of FKBP12 normally, 

and the presence of FK506 causes FKBP12 to bind irreversibly and permanently inhibit the 

phosphatase activity of CaN [54, 104, 105].  A molecule that inhibits the FKBP-to-target 

interaction would have to bind the hydrophobic pocket of the FKBP domain, but have polar 

moieties further away, sufficient to “repel” the non-polar substrate region of the target protein. 

2.3.3 Immunophilin Ligands 

Endongenous small molecule ligands as cofactors have not yet been identified for FKBP’s, 

though it is possible that they exist.  In a few diverse systems, small molecules like amino acid 

threonine, nitric oxide, glutathione, ATP, and GTP have been identified to regulate some signal 

transduction modulation pathways by cytoplasmic FKBP’s that are of high abundance in the 
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brain [106]; a general mechanism by which these are thought to function is shown in Figure 2-5. 

In yeast, FKBP12 is shown to control methionine and aspartate metabolic flux [107].  The 

synthesis of methionine/serine/threonine in yeast follows a pathway beginning with the 

phosphorylation of aspartate by aspartokinase.  The posphorylation of aspartate by aspartokinase 

is feedback-inhibited by the end-product, threonine, which binds in the active site but is not 

posphorylated.  The feedback inhibition is facilitated by FKBP12, and in fact, without FKBP12, 

toxic amounts of metabolic intermediates accumulate if downstream enzymes are also mutated 

[108].  The precise molecular mechanism of the modulation is unknown, though it could be that 

FKBP12 stabilizes the inactive form of aspartokinase, potentially holding the inhibitory 

threonine in place [108]. The immmunophilin FKBP52 binds ATP and GTP in the FKB-Domain 

II, which is isomerase-inactive owing to a phenylalanine to tryptophan (increasing polarity) 

amino acid substitution [45, 106]. The physiologic function of FKBP52 with regard to hormone 

receptor signaling is discussed below. Whether ATP/GTP binding has a biologic consequence on 

these functions is unknown, though it is tempting to speculate that ATP/GTP binding could be 

another level of hormone signaling modulation.   

Aracena et al (2005) showed that S-nitrosylation of the ryanodine receptor (RyR) causes 

decreased affinity of FKBP12, increasing the activity of the calcium channel, leading to a model 

whereby NO selectively increases ryanodine receptor sensitivity to Ca2+ activation due to s-

nitrosylation-induced decrease in the interaction of the channel with FKBP12 [109].   Figure 2-4 

illustrates how FKBP12 modulates function of the RyR, in which the closed conformation is 

favored with FKBP12 bound, therefore upon ryadonine binding and opening of the channel, if 

FKBP12 is bound, the time spent open is shorter, allowing less Ca2+ through.  This is an example 

of the general mechanism for FKBP-mediated signal transduction modulation



  

Figure 2-4. FKBP12 Modulates  Function of the Ryadonine 

Receptor (A) with FKBP12 bound, the RyR open conformation 

duration is shorter, allowing less Ca 2+ to pass from the mitochondria to 

the cytoplasm, large arrow pushing equilibrium toward left in (A).  (B) 

Glutathione blocks binding of FKBP12 and its modulation, allow for 

redox-control of Ca 2+ gating mediated through FKBP12, larger arrow 

pushing equilibrium toward right in (B). 

 

Figure 2-5.  The Mechanism of Signal Transduction 

Modulation Mediated By Immunophilins and the roles for cofactors 

and drugs.  Binding of the immunophilin to the transducing protein 
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(top), which could be an enzymeor ion channel, modulates its function 

(middle).  Further attenuation is achieved by the presence of cofactors 

or exogenous immunophilin ligands (bottom).  Stars indicate 

downstream signaling.
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whereby the immunophilin acts as an accessory to transmembrane proteins, which is shown in 

Figure 2-5. 

Finally, binding of glutathione to the ryanodine receptor causes increased affinity of 

FKBP12 and homologous protein FKBP12.6 to the channel, decreasing its “open” state, 

indicating redox regulation of  the ryanodine receptor facilitated by FKBP12/12.6 [73, 109].  

Furthermore, there is evidence that glutathione binds the RyR at the FKBP12-binding site [73, 

109].  This interaction is reminiscent of the FKBP12-FK506-CaN interaction.  In the 

pharmacologic (FK506) interaction, the molecule binds the immunophilin, but in natural 

instances, it is the protein target that is modified by small molecules which changes 

immunophilin-binding affinity.  In the context of neurons, this may be of importance because the 

redox conditions are unusual, there are neurotransmitters, cofactors, and ion gradients present in 

neurons that are different from other systems that have been characterized (for example cardiac 

muscle cells or lymphocytes).  Figure 2-5 highlights the general proposed mechanisms that were 

outlined here by which immunophilins modulate signal transduction, as well as the role for drugs 

like FK506, rapamycin, or GPI1046 and endogenous cofactors like NO or glutathione.  Further 

study of mechanisms of immunophilin function in the biochemical milieu of neurons and 

neuronal sub-types (eg. dopaminergic, glutamergic, GABA-ergic) may uncover interesting 

interactions of importance to neural function and survival. 

2.4  FK506 BINDING PROTEINS IN PROTEIN FOLDING AND TRAFFICKING 

Because proline isomerization can be a rate-limiting step in the synthesis and proper folding of 

proteins, it was originally hypothesized that the main function of FKBP’s would be as molecular 
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chaperones, assisting in general protein folding.  This was found to not entirely be the case.  The 

immunophilin domain is promiscuous with regard to its binding and isomerase activity.  In large 

molecular weight FKBP’s, specificity is conferred by the other functional modules and 

subcellular localization.  For example, FKBP52 and –51 interact with androgen and GR 

complexes in all tissues (including the brain) through the TPR domains [110].  FKBP38 interacts 

with Bcl through its immunophilin domain and shuttles it from the Golgi to mitochondria via 

FKBP38’s  C-terminal signal sequence.  The low molecular weight immunophilins (FKBP12, -

12.6, -13) interact with a wide range of proteins and bind with varying degrees of affinity.  The 

FKBP’s localized in the lumen of the ER bind Ca2+ and have general chaperone function to 

facilitate folding of many proteins, but the ER-localized FKBP’s are not substantially expressed 

in the brain and we will exclude them from our discussion [74, 75, 111].  Cytosolic 

immunophilins are involved in the trafficking of hormone complexes, folding of soluble proteins, 

trafficking and stablization of transmembrane proteins; the involvement of these interactions in 

the context of brain function is poorly understood, but once could apply the modulation-function 

of immunophilins to specific cellular processes and extrapolate the cellular processes to neuronal 

and brain functions. 

2.4.1 FKBP12 As Accessory to Transmembrane Proteins 

The archetypal immunophilin, FKBP12, is involved in the stabilization of a number of 

membrane-bound proteins including TGFß-Receptor, ryadonine receptor, inositol triphosphate 

receptor [69, 112-116]. An intriguing interaction that has received little attention in neuroscience 

is the FKBP12 to p-glycoprotein interaction. P-glycoproteins (PGP), components of multi-drug 

resistance genes (MDR), also called ABC (ATP binding cassette); are key functional 

components of the MDR3 system in the blood-brain barrier [117].  The PGPs and relatives form 
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an important transmembrane transport system that pumps xenobiotics and other molecules that 

had passed into brain capillary endothelial cells back into the blood; preventing the passage of 

undesirable molecules from blood into the brain and also ridding the brain of endogenously 

produced toxins [118].  There is currently an immense amount of study on the blood-brain 

barrier and its role in neurodegeneration, CNS infection, acute brain injury, and 

pharmacokinetics. Studies of PGP and FKBP’s have been published in non-mammalian cellular 

systems such as Saccharomyces  and Arabadopsis [119].  The major theme is that function of the 

PGP is dependent upon an FKBP.  In Arabadopsis, it is the immunophilin AtFKBP42, and yeast, 

it is the FKBP1A orthologue called fpr1 (yeast do not express the high molecular weight 

immunophilins). 

In drug sensitive yeast, FKBP12 was shown to be necessary for function of p-

glycoprotein and proper function of MDR3 at the plasma membrane [119].  In an FKBP12-null 

strain, PGP-mediated drug resistance is severely compromised, but transfection with both wild-

type and mutant FKBP12 lacking isomerase activity restores PGP function.  An MDR3-FKBP12 

complex has not been detected by coprecipitation or affinity chromatography, so the interaction 

may be indirect or transient or the detection-methods may have been insufficient or the 

interaction does not occur in mammalian cells [119].  The p-glycoprotein is a 12-pass 

transmembrane protein synthesized at the rough ER membrane and trafficked through the trans-

Golgi to be expressed at the cell surface. The authors speculated that hydrophobic residues of 

FKBP12 may allow proper folding of the cytolosic portions of the p-glycoprotein as it folds to be 

a functionally mature protein expressed at the plasma membrane [119].  Hemenway and Heitman 

(1996) specifically addressed and excluded roles for CaN and cyclophilin A in p-glycoprotein 

function [119].  Some studies on the effects of FK506 and its binding proteins operated under the 

assumption that all FKBP12 effects are mediated through the inhibition of CaN, but this is shown 

not to be the case here and elsewhere. 
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 In Arabadopsis, the immunophilin involved in MDR function is a large molecular 

weight and transmembrane FKBP, AtFKBP42 [120].  This protein has homology with both 

human FKBP52 (FKBP4) and FKBP38 (FKBP8) [121].  It resembles FKBP52 in general domain 

architecture of having N-terminal FKBPs, three TPR domains, and a calmodulin-binding domain 

(CaM-BD).  Like FKBP38, AtFKBP42 contains a transmembrane C-terminus, but is located at 

the plasma membrane (while FKBP38 is located at cytosolic leaflet of the outer mitochondrial 

membrane) [121] [120].  The AtFKBP42 protein was originally discovered in the dwarf mutant 

uca (ultracurvata) [122].  This mutant displayed dwarfed stems and a developmental defect 

caused by hyperactive signaling of a plant steroid, auxin, due to dysfunctional MDR complex 

[122].  The AtFKBP42-to-MDR interaction has been mapped to the segment of the MDR protein 

(called AtPGP1) harboring the second ATP-binding cassette. Weiergraber et al (2006) speculate 

that binding of AtFKBP42 might regulate access of ATP to the MDR or facilitate its ATPase 

activity [121].  This interaction, if applicable to the MDR genes that function in the mammalian 

blood brain barrier, would be pertinent to brain pathologies associated with function of the blood 

brain barrier as well as pharmacokinetics of drugs intended to act in the CNS.  It remains to be 

elucidated however, whether any of the cytosolic immunophilins play a real-life in vivo role in 

the blood brain barrier, though the molecular evidence points to [119, 121, 123]facilitative role 

to the function of the p-glycoproteins [124]. 

 Both cyclosporine A and FK506 are known to inhibit the p-glycoprotein and 

confer drug sensitivity to cancer cells expressing the p-glycoprotein.  One study determined that 

pharmacologic suppression of peptide-prolyl isomerase and CaN activities were not responsible 

for the inhibition of p-glycoprotein function [123].  They conclude that the FK506 and 

cyclosporine A – inhibition of p-glycoprotein must be independent of isomerase activity and 

CaN function.  These results are in-line with the yeast genetic results whereby mutant FKBP12 

was isomerase-inactive and yet still restored MDR function [119].  However, the mammalian 
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FKBP-repertoire is larger than the yeast’s and chaperone activity on the MDR may be mediated 

by cytosolic immunophilins other than FKBP12.   It would be interesting to see whether, which, 

and how immunophilins regulate the function of the MDR at the blood brain barrier.   

The simplest protein of the immunophilin family, FKBP12 may have the largest variety 

of protein targets.  It binds to and influences the function of intracellular calcium channels, TGFß 

receptor, and CaN [54, 104, 105, 112, 114].  A recent report of preliminary data showed that 

FKBP12 interacts with the intracellular domain of the amyloid precursor protein (APP) and that 

the interaction is inhibited competitively by the neurotrophic ligand FK506 [125].  Further 

studies are underway to determine the specific effect of FKBP12-binding to the intracellular 

domain of APP.  The general theme of FKBP12 function is to prevent aberrant signaling or to 

stabilize transmembrane proteins. Determining whether FKBP12 influences cleavage of APP by 

the proteolytic enzymes ß- and γ- secretases would show a direct role for FKBP12 in the 

pathogenesis of Alzheimer’s Disease.  The observed upregulation of FKBP12 in Alzheimer’s 

Disease may be an attempt by neurons to modulate APP cleavage in an as yet-undetermined 

fashion [8, 126]. 

2.4.2 FKBP12 and Soluble Protein Targets 

FKBP12 was shown to accelerate the aggregation of α-synuclein in vitro [71].  The role of α-

synuclein in neuroprotection and neurodegeneration is reviewed extensively in Sidhu et al (2004) 

[127].  α-Synuclein has emerged as a central player in the pathophysiology of dopaminergic 

degeneration among other forms of neurodegeneration, the term “synucleinopathy” was invented 

and propagated from this role [128-130].  Though the wild-type normal function of α-synuclein 

may be to regulate dopamine content and synaptic tone in dopaminergic neurons, the inherent 

hydrophobicity of the α-synuclein lends its susceptibility to form oligomers in solution.  The 



soluble oligomers of α-synuclein may be toxic to neurons by disrupting the synaptic vesicle 

packaging and trafficking machinery as well as the protein trafficking and recycling systems of 

neurons; particularly at the synapse, locations at significant distances from the cell bodies.  

Removal of oligomeric α-synuclein from solution by forming insoluble aggregates may be 

cytoprotective to the neurons because in aggregated form, it cannot interact with the cellular 

vesicle and protein trafficking and recycling machinery [127].  Although α-synuclein does not 

have the Leu-Leu-Pro sequence that is loosely the consensus binding sequence for FKBP12, it 

does contain a number of prolines and hydrophobic stretches.  Gerard et al showed that fibril 

formation of α-synuclein is accelerated by FKBP12 in an enzymatic fashion that is blocked by 

isomerase inhibition [71].   Figure 2-6 illustrates a possible pathway showing α-synuclein 

associated with vesicles, perhaps regulating synaptic tone, and FKBP12 promoting aggregate 

formation. The physiologic significance of this action remains to be seen, but it is a very 

interesting observation that would link the protein folding / chaperone function of FKBP12 

directly to a phenomenon observed frequently in α-synucleinopathies. 

 

 

 

Figure 2-6.  Model that FKBP12 Accelerates Fibril Formation of α-Synuclein in an Enzymatic 

Fashion.  FKBP12 causes insoluble fibril formation of α-synuclein in an enzymatic fashion. It is thought 
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formation of insoluble fibrils is protective to protein processing machinery from insoluble α-synuclein 

protofibrils.  

2.4.3 FKBP52/59 and Hormone Receptor Activation 

The gene product of FKBP4 is an immunophilin of 52 kD and 59 kD, and there is no known 

functional difference between the two forms. Both were shown to bind to the molecular motor 

dynein through the FKBP domain I.  Dynein is a retrograde molecular motor that shuttles protein 

or vesicle cargo retrogradde along microtubules.  FKBP52 colocalizes with microtubules, binds 

specifically to dynein by its N-terminal prolyl isomerase domain, and its enzymatic activity is 

required for this interaction [131-134].  FKBP52 was determined to be the same protein as 

“HSP56” that co-immunoprecipitates with the gluccorticoid receptor (GR) / HSP90 complex.  

Hormone activation and nuclear translocation of the GR is dependent on the FKBP52 binding 

through its TPR domain and by N-terminal isomerase activity on dynein [110] and we illustrate 

this function in Figure 2-7.  The relevance of GR signaling in neurons has been demonstrated 

and it is hypothesized that expedited nuclear translocation is important in specialized mammalian 

cells like neurons, where the traveling distance may be long [14].  The FKBP52 knockout mouse 

displays decreased prostate development, malformed seminal vesicles, and reproductive 

abnormalities that correlate to decreased androgen levels or inadequate androgen receptor (AR) 

response [135-137].  Loss of FKBP51 appears to be neutral with respect to developmental 

control by AR, although the double-knockout FKBP5-/FKBP4- is perinatal lethal [135].  

Hormone-induced reporter activity of AR is increased with FKBP52 overexpression and 

decreased with FKBP52 knock-down by siRNA [137].  Since the AR also binds other chaperone 

molecules that promote ubiquitination and degradation, it is hypothesized that the presence of 

FKBP52 or the activities of other co-chaperones will influence whether the AR is degraded or 

functional. 
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 Certain species of New World primates have general resistance to 

glucocorticoids.  Since they do in fact express the GR, which binds to cortisol, the mechanism of 

the resistance was puzzling.  It was found that a soluble cytosolic factor, FKBP51, from the 

cytosol of monkey lymphocytes inhibits binding of cortisol to GR [61].  Furthermore, FKBP51 

expression is 13-fold higher in these primates, and that FKBP52 expression less than one-half 

compared to humans; effectively rendering them resistant to the GR-mediated effects of cortisol 

[138] [139].  Firstly, differences in the amino acid sequences in the protein regions linking the 

immunophilin domains to the TPR domains is highly variable comparing human to monkey [61].  

Secondly, the promoter regions may be different, the monkey gene may have more constitutive 

promoters elements and the human may have more inducible promoter elements, a thorough 

genetic analysis could determine this. FKBP51 does not have a functional isomerase domain and 

acts as a competitive inhibitor of FKBP52 in the context of GR signaling [63, 82].   Figure 2-7 

illustrates the molecular mechanism of GR-modulation by immunophilins, the cell may control 

its “competency” to respond to cortisol by its expression levels of FKBP51 and FKBP52.  An 

analysis of the amino acid sequences of the FKBP52 and FKBP51 genes in Figure 2-1 showed 

relatively recent emergence of the FKBP51 protein, and in fact, the FKBP51 clade falls within 

the FKBP52 clade.  This finding suggests that FKBP51 and FKBP52 are closely related, and that 

FKBP52 must have environmental pressure for divergence.  With these proteins, the 

environment is the cell, and the differing pressures may be differing chaperoning needs. 

 

 



 

Figure 2-7.  FKBP52 and FKBP51 Modulate Activation of Glucocorticoid Receptor (GR).  The GR is 

in complex with HSP90 (90) and FKBP51 (-51).  Upon cortisol (C) binding, an immunophilin switch from -51 

to FKBP52 (-52).  Through -52, the GR complex is linked to the molecular motor protein dynein, shuttling it 

toward the nucleus.  This interaction may be important in large cells with extensive microtubule polymers, 

extensive endoplasmic reticulim networks where diffusion may be limited.  These immunophilins -51 and -52 

are expressed in the brain, as shown in Figure 1-1 and in large pyramidal neurons shown in Section 3.3.5. 

 

Recent studies of the molecular properties of FKBP51 and FKBP52 found that they 

differentially regulate dynein interaction with GR in mammalian cells [79].  FKBP52 facilitates 

the interaction of GR with dynein, and thus the shuttling of the activated receptor to the nucleus, 

where GR-steroid action can take place [131]. FKBP51 inhibits this interaction and GR-steroid 

complexes cannot carry out its effects on gene transcription [14].  This activator/inhibitor 

interplay would be particularly important in cells where the distance between the receptor and 

the nucleus is long, such as neurons.  Since the steroid receptor and its coactivator and inhibitor 

are highly expressed in regions of the brain that are affected by excessive cortisol in depression, 

these immunophilins may play a role in the molecular basis and pathogenesis of stress-related 
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mental illnesses such as late-life depression, major depressive disorder, and post-traumatic stress 

disorder. 

A genome-wide scan determined that single nucleotide polymorphisms (SNP’s) are 

linked to unipolar depression in the gene encoding FKBP51 (gene ID FKBP5) [140, 141].  The 

specific molecular consequences of these SNP’s are not known [142].  This study linked 

polymorphisms in FKBP5 gene to increased recurrence of depressive episodes and rapid 

response to drugs.  The authors identified two polymorphisms that affect FKBP51 protein levels 

in the blood, but not the mRNA levels.  The group also identified functional polymorphisms in 

the GR gene that associate with different responsiveness to the dexamethasone-suppression-test 

after treatment for depression [143]. 

 As previously mentioned, the involvement of immunophilins FKBP52 and 

FKBP51 in brain pathologies is tightly related to HPA axis function and the role that 

glucocorticoids would play in brain function or dysfunction.  A widely accepted model of the 

role of HPA axis dysregulation leading to MDD is that chronic glucocorticoid signaling in 

neurons renders them vulnerable to degeneration leading to decreased volume of brain structures 

such as the hippocampus [144].  The decreased volume is not necessarily due to neuronal loss 

per se, but rather reduction in the size of neurons and their synaptic and dendritic fields [11, 

145]. 

While this model may be accurate, we still know little about the molecular events that 

occur in neurons making them “vulnerable” to GR activity.  Furthermore, although some neural 

populations are identified as particularly susceptible to cortisol-induced vulnerability (for 

example the CA1 and CA3 fields of the hippocampus), no molecular mechanism explains how 

this occurs (for review of aging, stress, and the hippocampus, see Miller, 2005) [43, 144, 146, 

147].  The glucocorticoid-cascade hypothesis first put forward by Sapolsky postulates a feed-

forward mechanism of decreased feedback inhibition with increased sensitivity of the brain to 
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cortisol [13, 17].  With aging and stress over time, long-term exposure to cortisol restrains the 

ability of the hypothalamus to downregulate secretion of corticotropin-release hormone after a 

stressor [148].  While the levels of circulating cortisol may not increase with age, older animals 

show a longer recovery time from stress-induced cortisol surges than younger ones [149].  The 

longer duration of elevated cortisol also causes a unresponsiveness to the feed-back inihibition 

loop, further exacerbating the problem. The regulation of protein trafficking by the interplay of 

FKBP52 and FKBP51 with the GR and dynein complex may be critically important to changes 

in the brain caused by chronic stress. 

FKBP4 and FKBP5 genes are expressed in the cortex and particularly enriched in CA1 

and CA3 regions of the hippocampus, as well as the thalamus and cerebellum of the mouse.  GR 

expression is also enriched in these regions; it would be interesting to determine whether 

expression of FKBP4 or FKBP5 is altered in these regions during disease-state. 

2.5 EMERGING ROLES FOR FKBP38 IN NEURAL CELL FUNCTION AND 

DEVELOPMENT 

2.5.1 FKBP38 and Apoptosis 

The gene product of FKBP8 is FKBP38 and it consists of an N-terminal immunophilin domain, 

three TPR domains, followed by a C-terminal CaM-BD.  The immunophilin domain lacks 

specific aromatic residues that are essential for FK506 binding and its rotamase activity must be 

activated. Additionally, FKBP38 contains a mitochondrial signal sequence. Like FKBP4, the 

FKBP8 gene has a CCAAT box and two Sp-1 binding sites in the promoter region.  Also similar 

to FKBP4, the protein product has regulatory function through its capacity to facilitate protein 

trafficking.  It is expressed in the forebrain and at particularly high levels in the hippocampus 



[150].  An FKBP8-promoter region in a β-galactosidase reporter showed that the FKBP8 gene 

contains a specific forebrain promoter, the protein is involved in neurodevelopment, apoptosis 

(see Figure 2-8), and proteasomal function [151]. 

  

Figure 2-8.  FKBP38 Regulates Apoptosis Through Its Protein-Trafficking Function of Bcl2.  

FKBP38 (-38) has a weak mitochondrial signal sequence as transmembrane region, with the functional 

domain on the cytoplasmic side.  FKBP38 can be present on the outer mitochondrial membrane or the Golgi 

apparatus, its subcellular localization may be altered by posttranslational modification like phosphorylation 

or association with CaM.  The protein Bcl2 is anti-apoptotic by inactivating Bax.  Bcl2’s association with -38 

stabilizes Bcl2; and when -38 is either returned to the Golgi or degraded, Bcl2 becomes inactive or is 

degraded; and Bax activates apoptosis. 

 

FKBP38 is thought to play a major role in the neurotrophic and neuroprotective properties 

of immunophilin ligands FK506 and GPI-1046.  The mechanism underlying FKBP38-mediated 

neuroprotection is a current topic of study and debate and may be related to its interactions with 

Bcl2. In Figure 2-8, the antiapoptotic role for FKbP38 by means of protein trafficking is 

illustrated.  An antiapoptotic protein, Bcl2 localizes to the ER, Golgi, and mitochondria. Its 

presence in the mitochondria suppresses apoptosis in a variety of ways: preventing release of 
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proteases and caspases, regulating Ca2+ homeostasis, and neutralizing death effector properties of 

Bax. 

 It was initially believed that FKBP38 was an inherent inhibitor of CaN; it was 

hypothesized that the binding site of the FKBP12/FK506 complex was structurally similar to the 

FKBP38 binding site and that FKBP38 itself was an endogenous inhibitor of CaN [90]. This was 

found to be partly true.  FKBP38 does not have inherent isomerase activity, but is activated only 

in the presence of Ca2+ at concentrations found intracellularly after Ca2+ bursts and in complex 

with calmodulin (CaM) [89].  FKBP38 is only enzymatically active and only binds to CaN when 

complexed with Ca2+/CaM.  The phosphatase CaN was shown to bind to Bcl2 in a maltose-

binding-protein and amylose column system and FKBP38/Ca/CaM interrupted the interaction.  

This effect is abolished in the presence of the neuroprotective immunophilin ligand GPI 1046. 

One mechanism of neuroprotection may be that the immunophilin ligand prevents the 

FKBP38/Ca/CaM complex from interrupting the Bcl2/CaN interaction and there is less cytosolic 

CaN and potentially more dephosphorylated Bcl2.  Bcl2 is shown to be dephosphorylated by 

PP2A and interacts with CaN in neuronal tissue [152, 153]. Interestingly, when activated by 

Ca2+/CaM, FKBP38 increases the solubility of Bcl2 [154]. 

The physiologic function of the Bcl2/FKBP38 interaction may be cell-specific.  In yeast 

L40 and human embryonic kidney (HEK)-293 cells, FKBP38 was observed to associate with 

Bcl2 directly and target Bcl2 to mitochondria. In SH-SY5Y cells, FKBP38 was found to only 

interact with Bcl2 in the presence of the Ca 2+/CaM complex [87, 155]. It was observed that:  1.  

phosphorylated Bcl2 localizes primarily to the ER, 2. phosphorylated Bcl2 has lower affinity for 

FKBP38, 3. cells depleted in FKBP38 have a switch from mitochondrial to ER localization of 

Bcl2 [156].  It is believed that FKBP38 may somehow mediate post-translational modifications 

of Bcl2 in its large unstructured loop by direct binding to this loop [154, 157]. Ubiquitination and 

phosphorylation regulate the stability, activity, or localization of Bcl2 and diverse stimuli cause 
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these modifications [158, 159]. It would be interesting to determine whether FKBP38-modulates 

ubiquitination of Bcl2, which then changes in response to excitation, neurotoxin, neuronal 

stressors, or neuronal growth factors.  Presenilins –1 and –2 were shown to bind to FKBP38 and 

inhibit its interaction with Bcl-2 [88].  Familial Alzheimer’s disease – linked mutations in 

Presenelins 1 and 2 cause enhanced inhibition of FKBP38 activity; this may be important for the 

anti-apoptotic role of Bcl-2 as well as the function of the proteasome as described below. 

2.5.2 FKBP38 and the Proteasome 

Of particular interest to the study of molecular pathology of Parkinson’s and Alzheimer’s 

Diseases, FKBP38 was recently shown to bind to components of the 26S proteasome and 

localize it to the cytosolic leaflet of the mitochondrial membrane similar to its role in shuttling 

Bcl-2 to the mitochondrial membrane.  The 26S proteasome is present in the cytoplasm and 

nucleus.  In the cytoplasm, the proteasome is associated with different organelles to fulfill 

compartment-specific functions.  Nakayama (2007) presents evidence that FKBP38 tethers the 

proteasome to the mitochondrial membrane, increasing the amount and activity of the 

proteasome [91].  Since a yeast orthologue to the S4 subunit, called Rpt2, is responsible for 

gating of the 20S proteasome, it may be that FKBP38 modulates gating in addition to serving as 

an adapter protein for trafficking [160].   

The ubiquitin-oxproteasome system is important to neurodegenerative diseases like 

Alzheimer’s and Parkinson’s diseases as well as synaptic homeostasis (see Ross, 2004 and 

Hegde, 2002 for reviews [161-163]).  Since mitochondria are present in high numbers near the 

synapse and important for maintaining a healthy synapse as an energy supply, FKBP38 may play 

a role in maintaining synaptic integrity by serving as a link between mitochondria and the 

ubiquitin-proteasome system [164].  The degradation and clearance of poly-ubiquitinated 
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proteins is vital to function of the synapse at which there are high amounts of membrane and 

membrane-bound proteins, 20% of the surface area of the average synaptic vesicle is actually 

occupied by membrane-bound proteins [165].  The effects of depletion or inhibition of FKBP38 

on the synapse is unknown, but the data suggest that FKBP38 would be important for 

maintaining synaptic homeostasis by facilitating the function of the proteasome and allowing for 

healthy clearance of poly-ubiquitinated proteins and preventing toxic accumulation of proteins 

targeted for proteolytic degradation. 

2.5.3 FKBP38 and Neurodevelopment 

With respect to neurodevelopment, FKBP38 is also shown to be an important factor for 

dorsoventral patterning of the central nervous system.  A mouse knockout of FKBP38 resulted in 

ventralization of the developing neural tube.  In other words, in development of the neural tube, 

the markers for the ventral components were expanded (e.g. Foxa2), there was defective 

dorsoventral patterning, and the most-dorsal neural tube markers (e.g. WNT1) were absent.  The 

authors showed that loss of the FKBP8 gene caused ligand-independent activation of sonic 

hedgehog pathway and conclude that FKBP38 is required to suppress sonic hedgehog signaling 

in neural tissue [166]. The molecular mechanism is as yet unknown but the phenomenon seems 

to be specific to neural tissues. Exaggerated sonic hedgehog signaling in humans leads to a 

variety of diseases including holoprosencephaly and cancers of the skin and brain and is 

reviewed by Nieuwenhuis and Hui (2005); it remains to be seen if perhaps loss FKBP38 function 

could be a factor in these conditions [167]. 
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2.6 CONCLUSION 

The immunophilins represent a family of proteins with diverse functions and mechanisms 

throughout many different species and even many different tissues in a given organism. Many 

biochemical, bioinformatics, and genetic studies have discovered a wide array of functions 

ranging from stablization of calcium release channels, modulation of p-glycoprotein, influencing 

apoptosis, hormone receptor signaling, and many more.  These molecular functions have specific 

roles in pathogenesis in the central nervous system.  Although the specific and direct links 

between Immunophilin → Target Protein →  Molecular Basis of Disease have not yet been 

uncovered, the wide range of studies from various systems covering many biochemical pathways 

seem to be converging toward that goal.  Since small molecule ligands are already developed that 

bind to immunophilins, modulate their functions, cross the blood brain barrier, and are approved 

for clinical use in another context the immunophilins FKBP12, FKBP12.1, FKBP38, FKBP51, 

and FKBP52 may be prime pharmacologic targets for a host of neurodegenerative conditions.  

Furthermore, since the cellular and brain-regional distribution of immunophilins is altered in 

neurodegeneration, the immunophilins and their ligands may serve as good diagnostic or 

imaging tools in the future.  The field is very close to linking the diverse molecular functions 

outlined here to the biochemical milieu of neurons and the brain. The human brain is exceedingly 

complex and uniquely susceptible to loss of homeostasis leading to neurodegeneration, 

discoveries about the functions of immunophilins, that may be specifically adapted with 

increased brain complexity, may lead to insights regarding the pathogenesis of 

neurodegeneration. 
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3.0  EXPRESSION OF IMMUNOPHILINS FKBP52 AND FKBP51 IS INCREASED IN 

FRONTAL CORTEX OF HIV+ PATIENTS AND DIFFERENTIALLY EXPRESSED IN 

DEPRESSION 

Patients infected with HIV have a higher risk of developing MDD than the population at large. 

This may be due a biological effect related to chronic viral infection in the brain.  Immunophilins 

FKBP52 and FKBP51 are expressed in cortical neurons and differentially regulate the function 

of the GR.  Previous reports have shown genetic variants in the gene encoding FKBP51 called 

FKBP5 are linked to unipolar depression, to traumatic dissociation, and to response to drugs; 

however these findings are controversial and the genetic link was not found in a subsequent 

study.  We sought to determine whether immunophilins are upregulated in the frontal cortex 

during HIV infection by comparison of protein and gene expression in an HIV cohort.  

Furthermore, in order to determine whether the interplay between FKBP52 and FKBP51 plays a 

role in depression, we compared protein and gene expression in the frontal cortex of patients 

with and without MDD who were or were not infected with HIV.  We found an upregulation of 

both immunophilins in HIV infected brain.  In MDD, FKBP5 is upregulated.  In the HIV+ 

population with MDD, FKBP5 is highly variable, and FKBP4 is significantly upregulated 

compared to controls. 
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3.1 INTRODUCTION 

Immunophilins are a class of chaperone and adapter proteins that are widely expressed in most 

tissues, but particularly highly expressed in the brain, predominantly in neurons [1, 168].  

FKBP52 and FKBP51 are the products of the FKBP4 and FKBP5 genes, respectively.  FKBP52 

functions as an adapter protein in the GR -HSP90 complex that links the hormone-bound 

receptor complex to the molecular motor dynein, allowing for shuttling of the activated receptor 

complex to the nucleus [79].  In contrast to FKBP52, the FK506-binding domain of FKBP51 

lacks isomerase function, but is shown to bind the GR through the tetratricopeptide repeat 

domains and therefore functions as a competitive inhibitor to formation of the GR-FKBP52-

dynein complex [61, 138]. Sapolsky‘s glucocorticoid-cascade hypothesis proposes a feed-

forward mechanism of decreased feedback inhibition with increased sensitity of the brain to 

cortisol.  The action of the GR in the brain may be central to the molecular mechanism whereby 

the HPA axis feedback loop is dysregulated in the hypercortisolemia observed in depression [13, 

149].  Therefore, the modulation of GR signaling in the cortex may be a site of regulation that 

could affect the susceptibility of neurons to lose synaptic and dendritic density, which is found in 

hypercortisolemia and depression [11, 169]. 

A genome-wide scan identified single nucleotide polymorphisms (SNP’s) linked to 

unipolar depression in the FKBP5 gene [140].  The specific molecular consequences of these 

SNP’s are not known.  Polymorphisms were linked to increased recurrence of depressive 

episodes and rapid response to drugs.  The authors identified two polymorphisms that link to 

decreased FKBP51 protein levels in the blood. The same polymorphisms in FKBP5 were linked 

with peritraumatic dissociation in traumatically injured children, who had been victims of a 
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motor vehicle accident or assault [141].  A subsequent study failed to definitively assign the 

designated SNP’s association with monopolar depression or affective disorder [142].  However, 

FKBP5 may play a role only in some depression cases, with other genes involved in the 

glucocorticoid system responsible for disturbances of the HPA-axis during depressive episodes. 

Since the frequency of MDD is significantly elevated in people with HIV infection [19, 

20, 170, 171], we sought to determine whether there was a relationship between HIV infection, 

MDD, and the expression of immunophilins in the frontal cortext.  Neuropathologically, in MDD 

there is reduced cortical glial density as well as dendritic and synaptic simplification.  Our lab 

previously showed an increase, in deep grey matter, of the related protein FKBP12, which we 

hypothesize to be a protective response for the basal ganglia [19, 20, 170, 171]. Our study here 

shows an increase in FKBP51 and FKBP52 in HIV, however expression of FKBP5 is not 

significantly higher in HIV+ individuals with MDD. 

3.2 MATERIALS AND METHODS 

3.2.1 Demographic Information and Analysis 

Fresh frozen tissue was kindly donated by the Stanley Foundation and the California NeuroAIDS 

Tissue Network.  Standard universal precaution following University of San Diego California 

Enviornmental Health and Safety procedures was observed in handling fresh frozen tissue, 

including personal protective wear consistenting of goggles, lab coats, double latex gloves.  Also 

engineering designs using covered bucket centrifuges, biosafety cabinet, and sealed and covered 

biohazard waste and sharps containers.  Personnel attended laboratory safety training in blood 

born pathogens an chemical hygiene. Twelve cases from each group were studied with an age 

rage of 24-63.  The cases were divided five study groups:   control, MDD, MDD with psychosis 



  45

(MDDPsyc), HIV+, and HIV+ with MDD (see Table 1).  The cause of death in the control group 

was mainly cardiac arrest, while the depressed groups cause of death was predominantly suicide.  

The cause of death for the two HIV groups was not recorded by the CNTN, nor was brain pH, 

general scizophrenia is the only disease where pH is routinely ascertained.  The postmortem 

interval (PMI) was generally within 24 hours (the average in the CNTN cohort approximately 12 

hours and approximately 35 hours from the Stanley Foundation cohort).  For RNA and protein 

analysis, slices were cut from the frontal cortex, included all cortical layers, and care was taken 

to avoid meninges. 
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Table 3-1.  Demographic Description of Patients in Study 

Patient ID Age Sex PMI pH Cause of Death   Patient ID Age Sex PMI pH Cause of Death 
Control   HIV+ 

1 48 M 12 6.51 CARDIAC   38 45 M 12     
2 24 M 17 6.6 MVA   39 57 M 12     
3 50 F 35 6.31 CARDIAC   40 35 M 5     
4 44 M 27 6.82 AC ALCOH POIS   41 55 M 5     
5 35 M 31 6.59 MVA   42 57 M 12     
6 63 M 40 6.91 CARDIAC   43 54 M 12     
7 50 M 11 6.5 CARDIAC   44 49 M 10     
8 63 M 37 6.5 CARDIAC   45 37 F 1     
9 34 M 9 6.56 MVA   46 40 M 10     
10 56 F 29 6.78 CARDIAC   47 47 F 12     
11 56 F 31 6.66 OBESITY   48 46 M 12     
12 39 F 24 6.88 CARDIAC   Mean 46.6 9M, 2F 8.8     

Means 46.8 8M, 4F 25.3 6.64     HIV+ MDD 
MDD   49 43 M 12     

13 32 F 19 6.8 SUIC   50 43 M 31     
14 47 F 25 6.88 SUIC   51 34 M 10     
15 56 M 38 6.59 SUIC   52 55 M 120     
16 33 M 25 6.86 SUIC   53 59 M 12     
17 45 F 29 6.9 CARDIAC   54 54 M 11     
18 24 M 21 6.61 SUIC   55 35 M 10     
19 56 F 15 6.59 BURNS   56 38 M 7     
20 44 M 24 6.52 CARDIAC   57 38 M 10     
21 34 M 24 6.79 SUIC   58 39 M 12     
22 53 M 21 6.64 CARDIAC   59 34 M 4     
23 45 M 29 6.75 SUIC   Mean 44.7 12M, 0F 15.2     

24 45 F 13 6.58 SUIC         
Means 42.8 7M, 5F 23.6 6.71           

MDD Psychosis        
25 48 F 24 6.36 SUIC        
26 40 M 52 6.48 OD        
27 28 M 26 6.7 SUIC        
28 28 F 40 6.68 SUIC        
29 62 M 65 6.57 SUIC        
30 28 F 40 6.68 SUIC        
31 32 F 19 6.7 SUIC        
32 63 M 31 6.6 SUIC        
33 51 F 36 6.3 UNKNOWN        
34 40 F 49 6.72 SUIC        
35 35 M 36 6.6 SUIC        
36 36 F 32 6.74 PULM EMBOL         

Means 41.5 5M, 7F 35.8 6.59           



Possible confounding variables to a human postmortem study that would affect the results 

are taken into consideration. They are:  age, brain pH, postmortem interval (PMI, or time elapsed 

between death and autopsy).   Gene expression of the genes of interest, FKBP4 and FKBP5, 

could correlate to these variables and tests for linear correlation were performed and are 

illustrated in Figures 3-1, 3-2, and 3-3.  Since gene expression is calculated as Fold-Change = 2 -

ΔΔCT, a value of 0.5 corresponds to a two-fold decrease, therefore, a Log2 scale for the y-axis is 

used so that 0.5 and 2 are equidistant from baseline; regression analyses for correlation account 

for this. Expression was plotted versus age, PMI, and brain pH and Pearson’s Test for 

Correlation was performed and nonlinear (Log2y = m x +b where m is the slope and b is the y 

intercept) regressions are plotted in Figures 3-1, 3-2, and 3-3. For all three characteristics, there 

were no correlations with gene expression, R2 < 0.50. 

 

a b 

Figure 3-1.  Age Does Not Correlate With Gene Expression of FKBP4 (A) or FKBP5 (B).  Gene 

expression from  cortical grey matter all the patients listed in Table 3-1 is determined by qPCR using the 

∆∆CT method and normalizing the gene of interest to GAPDH expression as explained in Section 3.2.3. Fold-

Control is plotted versus age.  Linear regression shows no correlation for either gene with Age. 
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a b 

Figure 3-2.  Brain pH Does Not Correlate With Gene Expression of FKBP4 (A) or FKBP5 (B).  Gene 

expression from cortical grey matter of patients listed in Table 3-1 for whom brain pH data were available is 

determined by qPCR using the ∆∆CT method and normalizing the gene of interest to GAPDH expression as 

explained in Section 3.2.3. Fold-Control is plotted versus Brain pH.  Linear regression shows no correlation 

for either gene with Brain pH. 

 

 

 

a b 

Figure 3-3.  Postmortem Interval (PMI) Does Not Correlate With Gene Expression of FKBP4 (A) or 

FKBP5 (B). Gene expression from cortical grey matter of patients listed in Table 3-1 is determined by qPCR 

using the ∆∆CT method and normalizing the gene of interest to GAPDH expression as explained in Section 

3.2.3. Fold-Control is plotted versus PMI.  Linear regression shows no correlation for either gene with PMI. 
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In examining Table 3-1, one can see that the HIV+ specimens obtained from the CNTN 

had more males, and this is shown by Chi-square analysis in Table 3-2.  The HIV-negative 

groups obtained from the Stanley Foundation had stastically indistinguishable male:female 

compositions, Table 3-3. T-tests comparing expression in non-HIV males to expression in non-

HIV females of the two immunophilin genes found no difference between the sexes with respect 

to immunophilin expression, which are plotted in Figure 3-4, showing 95% confidence intervals 

interquartile ranges.  Since there was no difference between male and female expression of 

FKBP4 (p = 0.179) and FKBP5 (p=0.716), sex is unlikely to be a confounder to the analysis.  No 

other study known to the authors has assessed gene expression in the brain of FKBP4 or FKBP5 

or that age, PMI, sex, brain pH correlate to gene expression.  One study showed expression of 

FKBP5 in peripheral blood mononuclear cells correlating to blood plasma cortisol levels in a 

specific subpopulation of patients who are homozygous for the T allele at locus rs1360780, 

which is a polymorphism analyzed in this work (Materials Section 3.2.5 and Results Section 

3.3.3) [140]. 

 

Table 3-2.  Sex composition of study groups by HIV status.  Chi-square analysis indicates there are 

significantly more males in the HIV groups (p=0.006) than non-HIV groups. 

  NonHIV HIV χ2 p 
Male 21 21 
Female 15 2 

0.006 

 

 

Table 3-3.  Sex composition of nonHIV groups by diagnosis.  The sex composition is balanced in the 

non-HIV groups by mental diagnosis (p=0.709). 

  Control MDD MDD/Psyc χ2  p 
Male 8 7 6 
Female 4 5 6 

0.709 

 



 

a b 

Figure 3-4.  Expression of FKBP4 (A) and FKBP5 (B) is the same in male and female. Gene 

expression from cortical grey matter of patients listed in Table 3-1 is determined by qPCR using the ∆∆CT 

method and normalizing the gene of interest to GAPDH expression as explained in Section 3.2.3. Non-HIV 

patients are divided into male and female groups and Fold-Control plotted, illustrated is a box-and-whisker 

plot showing the standard deviation about the mean in the box and the interquartile range in the whiskers.  

Student’s t test comparing male versus female expression showed no significant difference based on sex for 

expression of FKBP4  p = 0.179 (A) or FKBP5 (B) p = 0.716.  

 

 

3.2.2 FKBP52 and FKBP51 Protein Determination 

One hundred mg tissue was cut and homogenized in 0.9 mL ice-cold lysis buffer 

consisting of 50 mM Tris-HCl, 1% sodium dodecyl sulfate, 150 mM NaCl, 1 mM EDTA, 1 mM 

phenylmethylsulfonyl fluoride, 1 μg/mL aprotinin, 1 mM Na3VO4, pH 7.4. 50 μg of total protein 

from each case was electrophoreased in 10% polyacrylamide gels and transferred to 

polyvinylidene fluoride (PVDF) membranes.  Western blotting analysis for immunophilins 
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FKBP52 and FKBP51 was performed using Mouse anti FKBP52 (Stressgen SRA1400) at 

1:5000, and rabbit (Rb) anti FKBP51 (Abcam ab2901) at 1:1000 and primary antibody was 

incubated overnight, shaking, 4°C.  Secondary antibodies were horseradish peroxidase 

conjugated donkey (Dk) anti Mouse and Dk anti Rb, respectively, at 1:5000, purchased from 

Jackson Immunoresearch.  The chemiluminescence signal was developed according to 

manufacturer’s protocols (Perkin Elmer NEL103001)  and quantitated using densitometric 

analysis with Image J software, the detailed steps are expounded on in Appendix A, changes are 

expressed as Fold-Actin, and Normalized Fold-Actin. 

3.2.3 FKBP4 and FKBP5 Gene Expression Determination 

For RNA isolation, 100 mg of tissue was cut and homogenized in ice cold TRIzol reagent 

(Invitrogen) and by following manufacturer’s instructions.  RNA quality was assessed by 

spectrophometry, whereby A260/A280, abosorbances at 260 nm and 2680 nm were measured, an 

A260/A280 ration greater than or equal to 1.8, downstream analysis is only performed when this 

criterion was met.  cDNA synthesis was performed using 1ug of RNA using the SuperScript III 

kit from Invitrogen.  For quantitative PCR, 40ng cDNA per reaction was used and  20X 

prevalidated fluorescently-labeled (using carboxyfluorescence, 5-FAM) probes were purchased 

from Applied Biosystems.  For FKBP5, assay Hs00188025_m1; for FKBP4, assay 

Hs00427038_g1; and for GAPDH,  assay Hs02758991_g was used.  TaqMan master mix (2X) 

purchased from Applied Biosystems was used in 20μL reactions on 96 well-plates and assays 

were performed at the University of San Diego Center for AIDS Research Genomics Core.  Gene 

expression is reported as fold-control versus the median of the control-group using the ΔΔ-CT 

method comparing to housekeeping gene GAPDH whereby ΔCT=CTGAPDH–CTGene , 

ΔΔCT=ΔCTControl-ΔCTDisease, and Fold-Control = 2 –ΔΔCT. A test for normality showed that not all 
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groups are distributed in a Gaussian curve, therefore non-parametric statistical analyses were 

performed, which included Kruskal Wallace Rank Sums test and Dunn’s Multiple Comparison to 

compare the groups.  

3.2.4 HIV-Induced In Vitro Changes in FKBP4 and FKBP5 Transcript  

To test the hypothesis that neuronal exposure to HIV leads to increased immunophilin 

expression, we utilized the neuroblastoma cell line, SH-SY5Y, after differentiation, exposed to 

supernatant from primary human microglia infected with HIV-BaL.  HIV-BaL is a macrophage-

tropic (m-tropic) HIV-1 strain (Catalogue Number 11446 of the NIH AIDS Research and 

Reference Reagent Program, Bethesda, MD), obtained through the Center for AIDS Research at 

the University of California San Diego (La Jolla, CA).  SH-SY5Y cells were plated at 5x105 

cells/well in six-well plates coated with laminin by incubating with 2 μg/mL laminin in H2O 

(Sigma L2020) overnight at 37°C.  SH-SY5Y cells were grown in media composed of 1:1 

mixture of Ham’s F-12 Media (Gibco 31765-035) and DMEM (Gibco 11960-044) supplemented 

with glutamate, sodium bicarbonate (Gibco 25080-094), pyruvate (Gibco P333-1000), and 10% 

fetal bovine serum (Gibco 16140-071).  After three days in culture, 80% confluency, the media 

were supplemented with 1 μg/mL retinoic acid for differentiation; media were changed daily 

until cells showed neuritic networks, typically 3-5 days.  Microglia were obtained from primary 

human fetal CNS tissue and grown in DMEM, 10% fetal bovine serum, 25 mM HEPES buffer 

(Gibco 15630-130), 1 mM L-glutamine (Gibco 21051-024) at 37°C 5% CO2 for two weeks and 

exposed to HIV.  HIV was propagated in microglial for seven weeks, with media changes every 

three days.  Supernatant was stored at -20°C and viral production was assessed by quantitation of 

the viral capsid protein, p24, by using ELISA (Perkin Elmer NEK050B001KT), a realiable 

method for monitoring viral production clinically [172].  Apendix B shows the p24 
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concentrations during the viral propagation.  After differentiation of SH-SY5Y cells, media were 

changed, and cultures were supplemented with 10% HIV-infected microglia supernatant.  Four 

conditions were assessed:  Media alone, Day 15 HIV-Microglia supernatant, Day 15 

HIV+Microglia supernatant, and Day 0 HIV+Microglia supernatant.  The “Days” correspond to 

the days-of-infection of the microglia.  Media exposed to virus and pipette tips exposed to said 

media were treated in a 10% aqueous bleach solution prior to disposal. Quantitative real-time 

polymerase chain reaction (qPCR) for FKBP4 and FKBP5 was performed as described in 

Section 3.2.3. 

3.2.5 FKBP5 Genotyping of Patient Cohort 

Genotyping of previously published alleles of the FKBP5 gene, implicated in mood 

disorders, was performed. Genomic DNA from the patients was isolated from the tissue 

following manufacturer’s instructions using the DNeasy kit (Qiagen #69504).  Genotyping was 

performed using 20ng DNA following manufacturer’s protocols of the SNP Genotyping Assay 

from Applied Biosystems: an A/C substitution in the 3’ untranslated region of FKBP5 gene, SNP 

rs3800373, (Applied Biosystems Assay ID C_27489960_10) and  a C/T substitution in Intron 1 

of the FKBP5 gene, SNP rs1360780 (Applied Biosystems Assay ID C_8852038_10).   A five by 

three table was constructed of the possible genotypes with the five test-groups and Chi Square 

analysis compared the expected genotype frequencies with the actual frequencies observed. 

Expected frequencies are determined by genotype frequency in North American Caucasian 

population deposited in NCBI SNP database; for rs3800373 record ID ss2334697 and for 

rs1360780 record ID ss4777328 were used [173].  Because the published genotype frequencies 

were used in for a Caucasian population, non-caucasians were removed from our patient panel 
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for genotyping analysis.  Two by five tables were constructed. Allelic frequencies and Chi-

square analysis compared the expected versus observed frequencies. 

3.2.6 Immunohistochemistry 

Paraffin embedded tissue from the frontal cortext of the patients described above were 

provided by the CNTN.   In order to ascertain which cortical layers and cells in the brain 

expressed the immunophilins, 14 μm sections were immunolabeled for FKBP52 and FKBP51.  

Sections were incubated overnight at 50°C and deparrafinized in Citrisolve (2X 5 min), and 

rehydrated by serial incubation in 100%, 90%, 70% ethanol in water, and then washed in PBS 

with 0.2% Tween-20 followed by antigen unmasking by incubation in 10 mM sodium citrate ph 

6.4 on high setting, 125°C and 15 pounds per square inch, in a pressure cooker for 10 min.  

Endogenous peroxidases were blocked in 0.3% H2O2 in methanol.  Following blocking in 10% 

normal donkey serum (NDS), primary antibody was incubated overnight at 4°C in PBS-T with 

5% NDS. Antibodies:  Mo anti FKBP52 (Stressgen #SRA-1400, 1:200), Rb anti FKBP51 

(Novus NB300-519, 1:100).  After washing 3X5 min in PBST, secondary antibody was 

incubated 2hr at room tempurature (Dk anti Rb and Dk anti Mouse – HRP conjugated).  Staining 

was visualized following manufacturer’s instructions with Nova Red (Vector Laboratories) and 

sections were counterlabeled by immersion in Meyer’s Haematoxylin for 5 min. 
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3.3 RESULTS 

3.3.1 Protein Analysis 

The Western blots illustrated in Figure 3-5 and Figure 3-7 showed a wide variation in expression 

of both immunophilin proteins in the Control group, Patients 1-12 in blue, indicating that 

expression varies in the population at large, and likely is dependent on many physiologic factors.   

Plots showing Fold-Actin calculated by densitometric analysis, whose detailed analyses are 

described in Appendix A, are illustrated to the right of the immunoblots. Since exposure levels 

were different among the blots, in order to compare across all patients and all groups from the 

five immunoblots on one graph, the Fold-Actin values were normalized to the average Control-

value on a particular immunoblot, and is illustrated in Figure 3-6, the blue bar indicates the 

standard deviation about the mean of the Control Group (1.056±0.3641). FKBP52 was elevated 

in HIV group (Pink, Patients 38-39) compared to Control (Blue, Patients 1-12), p = 0.0084.  In 

comparing HIV with HIV/MDD (Red, Patients 49-60), the HIV/MDD group, although more 

variable than Control did not elevate to the same as HIV without MDD. Indeed patient 54 

seemed to lack FKBP52 in the sampled section altogether.  Among the MDD and 

MDD/Psychosis Groups, expression of FKBP52 is more variable than control, with the MDD 

mean above the standard deviation of the mean Control, however not stastically different.   

FKBP51 

The immunoblots and Fold-Actin graphs for FKBP51 across the five study groups are 

illustrated in Figure 3-7.  In order to compare all patients across the five immunoblots, the same 

normalization procedure was performed with the FKBP51 densitometry values and plotted in 

Figure 3-8, the blue bar indicates the standard deviation about the mean for the Control Group 

(1.06±0.43). 



 

Figure 3-5.  Western Analysis of FKBP52 in MDD and HIV/MDD Patients.  Tissue was dissected 

(100 μg) from frozen tissue of cortical grey matter of the cases listed in Table 3-1.  Tissue was homogenized 

and 50 μg total soluble protein was run separated by PAGE.  Cases representing each study group were 

included in every gel.  After trasfer and immobilization on PVDF membrane, proteins were probed by 
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Western blot for FKBP52. Membranes were stripped of antibodies and reprobed for Actin.  Densitometry 

determined Area Under the Curve for FKBP52 and Actin signal, and Fold-Actin = AreaFKBP52 / AreaActin, and 

plotted to the right are corresponding Fold-Actin values as detailed in Section 3.2.2 and Appendix A.   

 

 

 

 

Figure 3-6.  FKBP52 Protein Level is Increased in HIV Group.  Normalized Fold-Actin values are 

calculated from the Fold-Actin values determined in Figure 3-5.  Values are normalized to controls on their 

respective gels, Normalized Fold-Actin = Fold-ActinPatient / Fold-ActinControlMean as detailed in Appendix B.  

The area within the bar delineates the standard deviation about the mean (μ±σ).  Two-way ANOVA and 

Dunn’s Multiple Comparison test were used to test for significance (* p < 0.05). 
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Figure 3-7.  Western Analysis of FKBP51 in MDD and HIV/MDD Patients. Tissue was dissected (100 

μg) from frozen tissue of cortical grey matter of the cases listed in Table 3-1.  Tissue was homogenized and 50 

μg total soluble protein was run separated by PAGE.  Cases representing each study group were included in 
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every gel.  After trasfer and immobilization onPVDF membrane, proteins were probed by Western blot for 

FKBP51. Membranes were stripped of antibodies and reprobed for Actin.  Densitometry determined Area 

Under the Curve for FKBP51 and Actin signal, and Fold-Actin = AreaFKBP51 / AreaActin, and plotted to the 

right are corresponding Fold-Actin values as detailed in Section 3.2.2 and Appendix A. 

 

 

 

Figure 3-8.  FKBP51 Protein is Altered in MDD Groups Compared to Control and Trended Toward 

Elevated in HIV. Normalized Fold-Actin values are calculated from the Fold-Actin values determined in 

Figure 3-5.  Values are normalized to controls on their respective gels, Normalized Fold-Actin = Fold-

ActinPatient / Fold-ActinControlMean as detailed in Appendix B. The area within the bar delineates the standard 

deviation about the mean (μ±σ).  Two-way ANOVA and Dunn’s Multiple Comparison test were used to test 

for significance at p < 0.05. 

3.3.2 Immunophilin Gene Expression 

Figure 3-9 shows the fold-control of the (a) FKBP4 and (b) FKBP5 gene expression across the 

five study groups.  In order to represent the natural variation in the population at large, fold-
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control was calculated against the median ΔCT value from the Control Group. Therefore half of 

the Controls appear above and half below 1.  As shown in Figure 3-9, the majority of patients in 

the two HIV+ populations showed higher expression of FKBP4 and FKBP5 above the Control 

median. For the FKBP4 gene, HIV+ patients exhibited a fold-increase of 3.2±2.6 (mean± standard 

deviation) and HIV+MDD patients exhibited a fold-increase of 3.1±3.3. For the FKBP5 gene, 

HIV+ patients showed 13.5±15.8 fold increase over Control and HIV+MDD patients showed 

9.6±12.7 fold increase over Control.  In the HIV+MDD population, FKBP5 was more variable in 

the patient populations, ranging from 0.7-44.3 -fold change in HIV+MDD and in HIV+ from 1.4-

50 -fold increase. 

 

Figure 3-9.  FKBP4 (A) and FKBP5 (B) Expression is Increased in HIV and HIV with MDD. Gene 

expression from cortical grey matter of patients listed in Table 3-1 is determined by qPCR using the ∆∆CT 

method and normalizing the gene of interest to GAPDH expression as explained in Section 3.2.3.  Fold-

Control is plotted for each of the study groups,  represent individual patients and bars represent median 

within the group.  One-way ANOVA with Dunn’s Multiple Comparison Test tested for significant difference 

among the groups (* p<0.05). 
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In the HIV negative MDD group, there is a trend toward increased expression of FKBP5 with 

median expression 2.4 fold higher than control (Figure 3-9b), however, no change is apparent for 

FKBP4 this group.  The HIV+ groups with and without MDD show expression levels of both 

FKBP4 and FKBP5 trending toward being elevated than the three HIV- groups.   This suggests 

that the viral infection contributes more than depression to the increased immunophilin 

expression.  The HIV infection is the contributing variable here, the factors causing differences 

in FKBP4 and FKBP5, the proteins for these genes were found in neurons in Section 3.3.5, and 

neurons do not get infected by the virus. Therefore, it is likely that factors of long-term, chronic, 

subtle CNS inflammation, increased cytokine and interleukin production, due to HIV infection 

and the interaction between infected monocytes and glia with the neuronal cells cause the 

upregulation. 

We hypothesized that there would be a balance between FKBP4 and FKBP5 expression 

and the balance would be disrupted in MDD, MDD/Psychosis, or HIV/MDD.  In plotting the 

FKBP4 expressionon the y-axis, and FKBP5 expression on the x-axis, we analyzed possible 

correlation of expression between the two genes.  Pearson’s test for correlation showed a 

moderate correlation between FKBP4 and FKBP5 (R2 = 0.55, p = 0.0085, goodness of fit, and 

probability that the non-zero slope is due to chance) expression in the Control ( ) group which 

is absent in all other groups (Figure 3-10). In the MDD ( ) and MDD/Psych ( ) groups, the 

curve was flat, (p = 0.52 and 0.49, respectively) and no correlation (R2 = 0.15 and 0.08, 

respectively). For both HIV ( ) and HIV/MDD ( ), the curves were shifted upwards, but flat 

with no correlation (R2 = 0.04 and 0.04, p = 0.74 and 0.66, respectively). 

In the tissue acquired from the CNTN, we had available patient history of the MDD and 

MDD/Psych patients regarding their most recent MDD episode and it was either within the last 1 

month or 6 months of death.  The FKBP4 and FKBP5 expression was higher in the MDD 



patients who had MDD episodes within 1 month, but did not reach statistical significance, p = 

0.11 and p = 0.15 respectively (Figure 3-11). 

 

 

Figure 3-10.  Correlation of FKBP4 and FKBP5 Expression in Frontal Cortex Separated by Group. 

Gene expression from cortical grey matter of patients listed in Table 3-1 is determined by qPCR using the 

∆∆CT method and normalizing the gene of interest to GAPDH expression as explained in Section 3.2.3.  Fold-

Control is plotted for each of the study group, plotting the FKBP4 expressionon the y-axis, and FKBP5 

expression on the x-axis. Pearson’s test for correlation showed a correlation between FKBP4 and FKBP5 (R2 

= 0.55, p = 0.0085, goodness of fit, and probability that the non-zero slope is due to chance) expression in the 

Control ( ) Group. In the MDD ( ) and MDD/Psych ( ) groups, the curve was flat, (p = 0.52 and 0.49, 

respectively) and no correlation (R2 = 0.15 and 0.08, respectively).  For both HIV ( ) and HIV/MDD ( ) 

there was no correlation and the curves were flat (R2 = 0.04 and 0.04, p = 0.74 and 0.66, respectively). The 

curves represent linear regression of the FKBP4 versus FKBP5 (solid bold = Control, black = MDD,  black 

dashed = MDD/Psych, grey solid = HIV, grey dashed = HIV/MDD). 
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Figure 3-11.  Expression of FKBP4 (A) and FKBP5 (B) in the CNTN Groups Separated by Most 

Recent Episode. Gene expression from cortical grey matter of patients for whom MDD clinical data awere 

available is determined by qPCR using the ∆∆CT method and normalizing the gene of interest to GAPDH 

expression as explained in Section 3.2.3.  Patients are divided based on MDD Episode Within 1 Month or 

Within 6 Months and Fold-Control plotted,  represent individuals and bars represent median.  Student’s t 

test comparing the two groups’ expression showed a nonsignificant trend based on most recent MDD episode 

for expression of FKBP4 , p = 0.11 (A); or FKBP5, p = 0.15 (B). 

3.3.2.1 Correlation of Gene and Protein Expression 

Gene expression and corresponding level of proteins they encode do not always correlate.  

In eukaryotes, gene expression of mRNA and protein translation occur in different 

compartments, the nucleus and the cytoplasm, respectively; allowing for modulation on many 

levels.  The amount of mRNA of a particular transcript is affected by direct active transcription 

from the genome.  Polyadenylation of the pre-mRNA affects its stability and transport from the 

nucleus.  There are hundreds of RNA-binding proteins that modify, edit, stabilize, or degrade 

mRNA.  Trans-acting RNA’s also modify the stability of RNA, for example micro-RNA or 

short-interfering RNA’s [174].  Any of these factors acting alone or in concert could affect 
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mRNA levels irrespective of the amount of gene-product.  Conversely, these factors could 

change the rate of protein translation without changing mRNA levels.  The corresponding protein 

is altered by gene translation and protein turnover.  Processes such as the ubiquitin, small 

ubiquitin-like modification (SUMO), and proteasome systems can modify specific protein levels 

without a corresponding change in mRNA levels [175, 176]. 

The FKBP4 and FKBP5 gene expressions trended toward increase in HIV and 

HIV/MDD, most significantly for FKBP4 in the HIV group (Figure 3-9).  The mean values for 

the FKBP52 protein were higher in HIV and HIV/MDD, and protein levels were much more 

variable in all groups than gene expression.  The mean values of FKBP51 protein trended toward 

higher in MDD, HIV, and HIV/MDD.  This indicates that perhaps gene transcription is induced 

by some unidentified factor in HIV-infection, for example, chronically activated microglia 

secreting TGF-ß, IL-1α, or IL-1ß [21-24, 177, 178].  Perhaps protein levels are altered by 

mechanisms independent of mRNA levels in the MDD/Psyc or MDD groups.  It would be 

desirable to know whether mRNA levels correspond to protein levels.  In order to determine 

whether the gene transcript levels and the protein levels that we observed correlate, we plotted 

gene expression versus  protein levels determined above for the individual cases.  We performed 

Spearman’s test for correlation setting.  P-values are reported, derived from the R2 value of the 

Spearman’s rank-test, which indicate the probability that a non-zero slope of linear regression is 

due to chance, p < 0.05 is considered significant. 

Figure 3-12 shows the correlation plots of FKBP4 expression versus FKBP52 protein 

amounts for (a) Control, (b) MDD, (c) MDD/Psyc, (d) HIV, (e) HIV/MDD, and all groups (f) 

Combined.  The gene expression and corresponding protein levels did not correlate.  Figure 3-13 

shows the correlation plots of FKBP5 expression versus FKBP51 protein amounts for each study 

group and groups combined.  In the MDD and HIV groups, gene transcript-levels did correlate 

positively with protein levels (Figure 3-13b and 3-13d, respectively).  In the HIV/MDD group, 



FKBP5 gene and FKBP51 protein correlated negatively (Figure 3-13e).  When all groups are 

combined (Figure 3-13f), FKBP5 and FKBP51 protein do not correlate.  This suggests complex 

regulation of the immunophilin genes and proteins. 

 

Figure 3-12.  Gene Expression of FKBP4 and Protein  Levels of FKBP52 do not correlate.   Control 

group (A), MDD (B), MDD/Psyc (C), HIV (D), HIV/MDD (E),  all groups combined (F) are plotted separately. 

Gene expression from cortical grey matter of patients listed in Table 3-1 is determined by qPCR using the 

∆∆CT method and normalizing the gene of interest to GAPDH expression as explained in Section 3.2.3, and 

Fold Control for FKBP4 is plotted on the y axes. Normalized Fold-Actin values representing FKBP52 

Expression are calculated from the Fold-Actin values determined in Figure 3-5.  Values are normalized to 

controls on their respective gels, FKBP52 Protein Expression = Fold-ActinPatient / Fold-ActinControlMean as 

detailed in Appendix B and is plotted on the x axes,  represent individual cases.  Lines illustrate linear 

regression and Pearson’s Test for Correlation R2 values for correlation and p values for probability that a 

non-zero slope is due to chance are reported. 
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Figure 3-13.  Gene Expression of FKBP5 versus Protein Levels of FKBP51. Gene Expression of 

FKBP5 and Protein  Levels of FKBP51 correlate positively in the MDD group (B) and negatively in the 

HIV/MDD group (E) .   Control group (A), MDD (B), MDD/Psyc (C), HIV (D), HIV/MDD (E),  all groups 

combined (F) are plotted separately.  Gene expression from cortical grey matter of patients listed in Table 3-1 

is determined by qPCR using the ∆∆CT method and normalizing the gene of interest to GAPDH expression as 

explained in Section 3.2.3, and Fold Control for FKBP5 is plotted on the y axes. Normalized Fold-Actin values 

representing FKBP51 Expression are calculated from the Fold-Actin values determined in Figure 3-5.  Values 

are normalized to controls on their respective gels, FKBP51 Protein Expression = Fold-ActinPatient / Fold-

ActinControlMean as detailed in Appendix B and is plotted on the x axes,  represent individual cases.  Lines 

illustrate linear regression and Pearson’s Test for Correlation R2 values for correlation and p values for 

probability that a non-zero slope is due to chance are reported. 
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3.3.3 Single Nucleotide Polymorphism Analysis 

Using the allelic discrimination assay, we tested two polymorphisms: rs38000373, an A to C 

transversion substitution in the 3’ untranslated region (3’UTR) of the FKBP5 gene and 

rs1360780, which is a C to T transition substitution in the second intron of the FKBP5 gene.  

SNP rs1360780 is located in a region where transcription factors may bind, where hormone 

response elements (HRE) are located as shown in Figure 3-14, this may alter transcription and 

has been implicated in mood disorders [179, 180].  SNP rs3800373 is located in a region which 

may alter stability and half-life of the mRNA molecule. 

The SNP rs3800373 had associations with MDD and MDD/Psych groups.  The 

heterozygous genotype, AC, and the minor allele homozygous CC, were significantly more 

frequent than expected based on Hardy-Weinberg assumptions of the North American Caucasian 

population and previously published allelic and genotype frequencies (Table 3-4) [173].  The 

HIV/MDD groups did not have the same deviation from expected as noted in the HIV negative 

MDD group.  The MDD with Psychosis group had increased frequency of the C allele compared 

with the North American Caucasian population and the Control group in this study (Table 3-5). 

In the genotype frequencies of the Intron II polymorphism were were significantly 

different in the MDD/Psych group from North American Caucasian population.  The  AC and 

CC genotypes were increased in the MDD Psychosis as well as significant increase in the minor, 

C, allele; Tables 3-5 and 3-6.  A possible confound may be associated with our observation that 

the Control and the HIV populations differed from the Expected values. 

 



 

Figure 3-14.  Transcription Factor Binding Sites and SNP Locations on FKBP5 Gene.  The genomic 

organization of the FKBP5 gene is illustrated, exons are numbered with black bars, distance between bars 

represent relative lengths of the introns.  The locations of the two polymorphisms, rs1360780 and rs3800373 

are indicated by  and location of hormone responsive elements are indicated with . 

 

Table 3-4.  Genotype Frequencies for SNP rs 3800373 of FKBP5 Gene.  Genotypes of each case in Table 3-1 

was determined from genomic DNA by allelic discrimination assay described in Section 3.2.5.  Based on the 

published allelic frequencies f(A) = 0.688, f(C) = 0.312, Expected genotype frequencies are calculated based on 

Hardy-Weinberg equilibrium and compared to Observed genotypes for the study groups. χ2 analysis 

comparing Expected  with Observed values determines significant deviation in the patient groups from the 

population, significance is considered at p < 0.05. 

 Expected Observed 
  AA AC CC AA AC CC

χ2 
p-Value 

Control (n=13) 5.4 7.0 0.5 8 4 1 0.232 
MDD (n=11) 5.0 6.5 0.5 7 2 2 0.015 
MDD Psych (n=10) 4.6 6.0 0.5 2 6 2 0.037 
HIV (n=9) 3.8 4.9 0.4 2 6 1 0.350 
HIV MDD (n=8) 3.3 4.3 0.3 3 5 0 0.790 
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Table 3-5.  Allelic Frequencies for SNP rs3800373 of FKBP5 Gene. Genotypes of each case in Table 

3-1 was determined from genomic DNA by allelic discrimination assay described in Section 3.2.5.  Based on 

the published allelic frequencies f(A) = 0.688, f(C) = 0.312, Expected allele frequencies are calculated based on 

group size  and compared to Observed genotypes for the study groups. χ2 analysis comparing Expected with 

Observed values determines significant deviation in the patient groups from the population, significance is 

considered at p < 0.05. 

 Expected Observed
  A C A C 

χ2 

p-value 
Control (n=26) 18 8 20 6 0.371 
MDD (n=22) 15 7 16 6 0.691 
MDD Psych (n=20) 14 6 10 10 0.070 
HIV (n=18) 12 6 10 8 0.225 
HIV MDD (n=16) 11 5 11 5 0.997 

 

 

 

Table 3-6.  Genotype Frequencies for SNP rs1360780 of FKBP5 Gene. Genotypes of each case in 

Table 3-1 was determined from genomic DNA by allelic discrimination assay described in Section 3.2.5.  

Based on the published allelic frequencies f(C) = 0.758, f(T) = 0.242, Expected genotype frequencies are 

calculated based on Hardy-Weinberg equilibrium and compared to Observed genotypes for the study groups. 

χ2 analysis comparing Expected  with Observed values determines significant deviation in the patient groups 

from the population, significance is considered at p < 0.05. 

 Expected Observed 
  CC CT TT CC CT TT 

χ2 
p-Value 

Control (n=13) 7.5 4.8 0.8 7 3 3 0.026 
MDD (n=12) 6.9 4.4 0.7 4 7 1 0.238 
MDD Psych (n=11) 6.4 4.0 0.6 3 6 2 0.062 
HIV (n=9) 6.3 4.0 0.6 1 7 1 0.033 
HIV MDD (n=8) 4.6 2.9 0.5 3 5 0 0.290 

 

 

Table 3-7.  Allelic Frequencies for SNP rs1360780 of FKBP5 Gene. Genotypes of each case in Table 

3-1 was determined from genomic DNA by allelic discrimination assay described in Section 3.2.5.  Based on 

the published allelic frequencies f(A) = 0.688, f(C) = 0.312, Expected allele frequencies are calculated based on 

group size  and compared to Observed genotypes for the study groups. χ2 analysis comparing Expected with 
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Observed values determines significant deviation in the patient groups from the population, significance is 

considered at p < 0.05. 

 Expected Observed
  C T C T 

χ2 

p-value 
Control (n=28) 20 6 17 9 0.215 
MDD (n=24) 18 6 15 9 0.128 
MDD Psych (n=24) 17 5 12 10 0.020 
HIV (n=22) 14 4 9 9 0.011 
HIV MDD (n=22) 12 4 11 5 0.510 

 

3.3.4 Immunophilin Response in Cultured Neuronal Cells Exposed to HIV 

In order to test the hypothesis that HIV infection leads to increased expression of immunophilins 

in neuronal cells, differentiated SH-SY5Y cells were exposed to media supplemented with 10% 

HIV-infected microglia-conditioned medium.  In order to determine whether factors secreted by 

microglia in the absence of infection would alter expression, cells were given conditioned media 

from HIV negative microglia grown in parallel with, were cultivated from the same source and 

grown in identical conditions, except that the HIV+ group were exposed in vitro to HIV.  In order 

to allow for soluble factors from the conditioned media to have an effect on translation of 

induced genes, RNA was harvested at 6 hours from the exposed SH-SY5Y cells, and  in order to 

determine whether any induction would be sustained, RNA was harvest at 24 hours. Figure 3-15 

shows increased FKBP4 expression after 6 hours of exposure to HIV-infected microglia, which 

returns to baseline by 24 hours, while exposure to HIV-negative supernatant did not lead to an 

appreciable change in FKBP4 expression. 

 

                                 A                                                          B 



 

 

Figure 3-15.  Expression of FKBP4 in SH-SY5Y Cells Exposed to HIV-Conditioned Media.  

Differentiated SH-SY5Y cells were exposed for 6 Hours (A) or 24 Hours (B) to conditioned 10% Conditioned 

Media from HIV-infected microglia.  Microglia had been infected with HIV for 15 days, with media removed 

every third day.  On day 15, supernatant  (Sup) was removed and used to supplement the SH-SY5Y media to 

10% Conditioned Media.  Control Media were supplemented with Microglia media, D15 M Sup is 

supplemented from non-infected microglia grown in parallel to the HIV infection, D0 HIV Sup is 

supplemented from supernatant of the microglia cultures immediately prior to HIV – infection, D15 HIV Sup 

is supernatant from the actual infection.  RNA was isolated and qRT-PCR for FKBP4 gene using the ∆∆CT 

method comparing FKBP4 expression with GAPDH and calibrating Control Media.  Fold-changes are plotted 

and two-way ANOVA compares among the groups (* p <0.01). 

 

                       A                                                                    B 
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Figure 3-16.  Expression of FKBP5 in SH-SY5Y Cells Exposed to HIV-Conditioned Media. 

Differentiated SH-SY5Y cells were exposed for 6 Hours (A) or 24 Hours (B) to conditioned 10% Conditioned 

Media from HIV-infected microglia.  Microglia had been infected with HIV for 15 days, with media removed 

every third day.  On day 15, supernatant  (Sup) was removed and used to supplement the SH-SY5Y media to 

10% Conditioned Media.  Control Media were supplemented with Microglia media, D15 M Sup is 

supplemented from non-infected microglia grown in parallel to the HIV infection, D0 HIV Sup is 

supplemented from supernatant of the microglia cultures immediately prior to HIV – infection, D15 HIV Sup 

is supernatant from the actual infection.  RNA was isolated and qRT-PCR for FKBP5 gene using the ∆∆CT 

method comparing FKBP4 expression with GAPDH and calibrating Control Media.  Fold-changes are plotted 

and two-way ANOVA compares among the groups (* p <0.01). 

 

In contrast to the gene encoding the GR-adapter protein, FKBP4, the inhibitory FKBP5 

gene did not change after six hours, but did increase after 24 hours, Figure 3-16.  Indicating a 

temporal difference between how the two genes respond to stressors.  Microglial supernatant 

alone was not enough to induce a change in expression in either gene.  Exposure to supernatant 

of HIV– infected microglial lead to an increase in the immunophilin genes; FKBP5 expression 

increased later than FKBP4.  Microglia infected with HIV secrete cytokines and chemokines 

such as tumor necrosis factor-α (TNF-α), interluekin 1 α and ß (IL-1α and IL-1ß) [181]. The 
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increase in FKBP4 may have been a transient increase in reponse to such factors, while the 

increase in FKBP5 could have been a secondary, later effect. 

3.3.5 Immunohistochemistry of FKBP52 and FKBP51 in Frontal Cortex 

The tissue distribution of the immunophilins in the brain has not yet been studied.  Although it 

has been shown that FKBP4 is expressed in the brain [182], and in situ hybridization shown in 

Chapter 1 from the rat brain showed expression in the cellular cortical layers of the rat brain, it is 

unknown which cells in the brain express these immunophilins.  To that end, we utilized paraffin 

embedded frontal cortex tissue obtained from the CNTN and immunolabeled FKBP52 and 

FKBP51.  For comparison, the classic cortical layer diagram from Brodmann  [181] is illustrated 

in Figure 3-17, with Golgi stain on the left showing cytoplasm, Nissl stain in the middle showing 

cell bodies, and myelin stain on the right showing axons [183]. 

FKBP52 immunohistochemistry is illustrated in Figure 3-19 and FKBP51 

immunohistochemistry is illustrated in Figure 3-20.  Negative Controls (Figure 3-18) shows no 

background Nova Red staining, and purple nuclei stain of the Hematoxylin counterstain. We 

found that FKBP52 was expressed in the large pyramidal cells of layer III and V.  It stained 

cytoplasm in the cell bodies.  It was also expressed in a subset of, what may be, interneurons of 

Layer IV.  FKBP51 was seen more in processes.  Immunoreactivity was also seen in a subset of 

cells in Layer III and in Layer V, though this qualitative assessment seems to show FKBP51 in 

fewer pyramidal cells than FKBP52.  FKBP51 stained, like FKBP52, in a subset of smaller cell 

bodies in Layer IV.  In addition, FKBP51 was present in axonal tracts of the cortical white 

matter. 

 



 

Figure 3-17.  Cellular layers of human cortex showing (left) Golgi stain cytoplasm, (middle) Nissl 

stain cell bodies, (right) myelin sheaths, from Brodmann (1912) [183]. 
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Figure 3-18.  No Primary Antibody Control - Frontal Cortex.  Paraffin embedded section from the 

frontal cortex was subjected to immunohistochemistry protocol in Section 3.2.6, lacking primary antibody.  

Sections were cut at 8 μm thick, mounted on glass slides, deparaffinized, rehydrated, permeablized in 1% 

Triton-X100. Endogenous peroxidases were blocked in 0.3% H2O2 in methanol.  Sections were incubated in a 

pressure cooker at 125°C 10 min.  Sections incubated in secondary antibody (HRP conjugated Donkey anti 

Mouse and Donkey anti Rabbit, 1:1000) 2 hr RT, and after washing, incubated with Nova Red.  Sections were 

counterlabeled with hematoxylin (5 min).  Sections were imaged in a 40X objective. Non-specific or 

endogenous peroxidase reaction in dark red was not observed.
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Figure 3-19.  Immunohistochemical staining for FKBP52 in Frontal Cortex from parafin embedded tissue.  Paraffin embedded section from the 

frontal cortex was subjected to immunohistochemistry protocol in Section 3.2.6.  Sections were cut at 8 μm thick, mounted on glass slides, 

deparaffinized, rehydrated, and permeablized in 1% Triton-X100.  Endogenous peroxidases were blocked in 0.3% H2O2 in methanol.   Sections were 

incubated in a pressure cooker at 125°C, 10 min for antigen unsmasking and blocked in 10% normal donkey serum.  Sections were then incubated with 

primary antibody (Mouse anti FKBP52, 1:200) overnight at 4°C, then after washing, incubated with secondary antibody (HRP conjugated Donkey anti 

Mouse, 1:1000) for 2 hr at RT, finally after washing, immunoperoxidase reaction was developed with Nova Red.  Specific staining is dark red.  Sections 

were counterlabeled with hematoxylin (5 min) and imaged in a 40X objective.  10X images created the composite image (left).  Cytoplasmic neuronal 
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staining is indicated by , perinuclear staining is indicated at .  Specific neuronal staining for FKBP52 was observed in Cortical Layers II, III, IV, 

and V. 

 

Figure 3-20.  Immunohistochemical staining for FKBP51 in Frontal Cortex from parafin embedded tissue. Paraffin embedded section from the frontal 

cortex was subjected to immunohistochemistry protocol in Section 3.2.6.  Sections were cut at 8 μm thick, mounted on glass slides, deparaffinized, 

rehydrated, and permeablized in 1% Triton-X100.  Endogenous peroxidases were blocked in 0.3% H2O2 in methanol.   Sections were incubated in a 

pressure cooker at 125°C, 10 min for antigen unsmasking and blocked in 10% normal donkey serum.  Sections were incubated with primary antibody 

(Rabbit anti FKBP51, 1:100) overnight at 4°C, then after washing, incubated with secondary antibody (biotin conjugated Donkey anti Rabbit, 1:1000) 

for 2 hr at RT, then in ABC complex for 30 min at RT, finally after washing, immunoperoxidase reaction was developed with Nova Red.  Specific 
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staining is dark red.  Sections were counterlabeled with hematoxylin and imaged in a 40X objective.  10X images created the composite image (left).  

Cytoplasmic neuronal staining is indicated by , axonal tract staining is indicated at .  Specific staining for FKBP51 was observed in Cortical 

Layers III, IV, V, and VI.
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3.4 DISCUSSION 

3.4.1 Immunophilin FKBP51 and FKBP52 Expression in HIV and MDD 

The observation of unequal variance of transcriptional levels of both FKBP4 and FKBP5 

determined in Section 3.3.2 among the groups is biologically interesting, it indicates variation in 

the population and that there are other mechanisms at play and that expression was more variable 

in the MDD, MDD/Psychosis, HIV, and HIV/MDD groups.  The interplay between FKBP51 and 

FKBP52 in modulating the effects of cortisol at the cellular level may be of some consequence.  

We observed higher FKBP5 gene transcription, median fold-change being 2.4-fold higher 

in the MDD group that did not reach statistical significance (Figure 3-9).  The Control group had 

two outliers at 4-fold and 6-fold higher than the median of the Control groups.  They were 

Patient 3 and Patient 9.  There was nothing particularly irregular regarding the demographics of 

these two patients, falling close to the average brain pH, spanning the age range at 24 years and 

50 years.  The PMI’s for these two patients were lower than the average (25.3 hours) at 17 hours 

and 9 hours.  FKBP5 is known to be responsive to cortisol [14].   Hypercortisolemia as a 

manifestation of HPA axis dysregulation is a component in MDD and other mood disorders.  If 

the MDD patients were chronically hypercortisolemic, it would follow that FKBP5 would be 

elevated.  It would be technically challenging to analyze the cortisol content of the post-mortem 

tissue, as it has been in storage at -80°C and the levels measured would be indicative of the 

physiologic factors at the time and cause of death and not reflective of chronic conditions. Binder 

et al showed that FKBP5 was elevated in the blood of patients with unipolar depression, but only 

when the patient had the minor variant of the rs1360780 locus in the 3’UTR of FKBP5.  This and 
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other SNP’s of FKBP5 are associated with peritraumatic dissociative disorder, and PTSD, 

discussed below. 

In HIV patients, immunophilin expression is elevated although not statistically significant 

except in the case of FKBP4 gene and the FKBP52 protein for the HIV group. The HIV/MDD 

group has an outlier with low expression of FKBP52 with the mean fold-control falling above 

the range of standard deviation of the Control (Figure 3-6).  Although gene expression of FKBP5 

trended toward higher in the HIV and HIV/MDD groups, the protein expression for 9/12 of the 

HIV patients fell within the standard deviation of the Control Group, with 3 above.  The gene 

may be induced in HIV, but the protein levels may not be sustained at higher levels.  The HIV 

status seems to contribute more to elevated immunophilin expression than MDD status because 

in MDD and MDD/Psyc, the expressions were highly variable; while being more variable, 

showed a trend toward higher expression in both HIV groups. 

The observed increase in immunophilin expression may be a result of chronic 

neuroinflammation and activation of microglia resulting from the HIV infection.  The number of 

infiltrating macrophages and activated microglia are better predictors of HIV encephalitis than 

viral load per se [184, 185].  The immunohistochemistry in Section 3.3.5 showed expression of 

the two immunophilins in neuronal populations and it is important to note that neurons are not 

infected by HIV, as they do not express the viral receptor CD4 or coreceptor CCR5, but rather 

microglia and monocytes are.  HIV-infected monocytes secrete chemokines and cytokines such 

as TNF-α, IL-1α and IL-1ß [178, 184].  These two cytokines in particular were shown to alter 

GR signaling without altering cellular GR concentration [23, 25, 26, 177].  Our  in vitro data in 

Figure 3-16 showing transient early increase in FKBP4 and later increase in FKBP5 could help 

explain this phenomenon. Gene transcription was elevated following exposure to conditioned 

media of HIV-infected microglia, shown in Section 3.3.4.   These data are also in-line with a 

previous study whereby Achim and Avramut showed higher expression of the immunophilin 
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FKBP12 in the HIV infected brain [8]. If the immunophilins share similar promoter regions, 

containing SP1 binding elements and CCAAT boxes, discussed in Section 2.2.1, it would make 

sense that immunophilin genes may be inducible by mechanisms of neuroinflammation such as 

cytokine signaling mentioned above.  

The specific mechanisms of immunophilin upregulation in HIV is undetermined, but they 

are likely to be different pathways because the timing of the upregulation was different.  FKBP4 

upregulation preceded FKBP5 upregulation (Figue 3-16). The temporal difference between 

FKBP4 and FKBP5 induction may be a caused by a feedback loop whereby increased FKBP52 

protein causes more transcriptionally active GR-signaling, and subsequent increase in FKBP5, 

and the FKBP4 induction was transient.  How this loop plays out in the chronically infected 

brain remains to be determined.  Furthermore, with HPA axis-regulated elevated cortisol levels, 

it could be possible that GR signaling in the brain is altered in HIV depending on the cellular 

levels of FKBP52 protein, which we show is increased in a subset HIV patients, Figure 3-6.  By 

conditioning media from a cell-free supernatant of HIV-infected microglia, we observed an 

increase in immunophilin expression. Our observations may be a cellular mechanistic 

explanation for the previously published studies showing cytokines, secreted by HIV-infected 

microglia, alter GR signaling.  Treating SH-SY5Y cells with combinations of TNFα, IL-1α, and 

IL-1ß, knocking-down expression of their receptors, or expressing a dominant-negative mutant 

of the receptors, then subsequently measuring FKBP4 and FKBP5 expression would test this 

new hypothesis. 

3.4.2 Balance of FKBP4 and FKBP5 Genes 

Figure 3-11 illustrated a positive correlation between FKBP4 and FKBP5 expression in 

the Control group.  This correlation disappeared in the MDD and MDD/Psychosis groups.  These 



  82

data imply that there may be a homeostatic balance of FKBP51 and FKBP52 that is dysregulated 

in mood disorders.  In the HIV and HIV/MDD group, the correlation also disappeared, and the 

expression levels of both immunophilins is elevated, which is consistent with the elevation other 

immunophilins in HIV observed by Avramut et al [32]. 

Clinical data for the HIV patients from the CNTN groups were available.  The HIV/MDD 

patients had all presented at the clinic with an MDD episode within the past 6 months and a 

subset had presented within 1 month.  The gene expression of both FKBP4 and FKBP5 trended 

toward elevated in the group presenting with an MDD episode within 1 month compared to the 

6-month.  The small sample size did not allow for statistical significance, but it is interesting 

nonetheless, indicating that these genes could play a role in an MDD episode through the HPA 

axis dysregulation and GR dysfunction observed in MDD. 

3.4.3 Polymorphism Analysis of FKBP5 in MDD 

To test for the potential association of two polymorphisms of the FKBP5 gene with MDD 

in our cohort, we performed allelic discrimination assays for two SNP’s, rs1360780 and 

rs3800373, which had been previously shown to associate with various mood disorders.  Our 

sample size is quite low for gene association study, however our autopsy collection is unique in 

having prospectively acquired clinical data on the presence of MDD.  A standardized clinical 

instrument at the HIV Neurobehavioral Research Center (San Diego, CA) [186] and the Stanley 

Foundation (Bethesda, MD) [187]verified MDD in the cohort, and it is important to perform the 

genotyping of our cohort despite the small sample size.  In contrast, other autopsy psychiatric 

studies do not have MDD diagnoses verified by a standardized instrument rather by either 

retrospective analysis of clinical notes or by interviews with family members.  We therefore are 

confident in our clinical groupings. 
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In genotyping, we did not seek to identify new biomarkers, but rather confirm and further 

characterize our study groups. Furthermore the abstract mathematical association of a 

polymorphism with a mental diagnosis, while interesting, is not indicative of function.  The basis 

of a polymorphism linkage to MDD may be in underlying regulation of GR signaling as a 

function of the gene product itself leading to dysfunction in disease.  The disease, in this case 

MDD, is a well-defined description of symptoms but the identification of gene polymorphisms 

associated with a psychiatric diseases is misleading in that a polymorphism is an actual physical 

entity with potential functional consequences in cellular and physiologic mechanisms. 

These two SNP’s are associated with unipolar depression, peritraumatic dissociative 

disorder, PTSD, and MDD: disorders hallmarked by HPA axis dysfunction [140, 141, 143, 188].  

Rather than being biomarkers for a specific disease like MDD, identification of SNP’s in 

psychiatric disorders is informative in two aspects.  First, identification of a SNP with potential 

functional consequences in the cell can relate to the function of its specific gene products and 

relate to the etiology of disease in order to uncover basic biochemical processes.  In that case, 

processes in frontal cortical neurons.  Secondly, in reality the SNP’s associate more with a 

physiologic mechanism than a set of diagnostic criteria, for example HPA axis disregulation than 

MDD. The SNP may point toward underlying physiologic mechanisms but it is developmental 

chance or environment that lead to progression of a specific set of symptoms to classify the 

disorder as a particular disease. 

The SNP, rs1360780, located in Intron II, which contains HRE’s, potential alternative 

promoter regions, and distal enhancer elements, had genotype frequencies significantly different 

from expected in Control, and HIV.  Since genotype should be independent of HIV infection, 

and also Control should be similar to North American Caucasian population, it is unclear 

whether the increase in TT genotype of the MDD/Psychosis is of consequence.   The expected 

nubers in our Chi Square analysis were derived from published genotype frequency data in the 
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GeneCard database for the North American Caucasian population, whose sample size was only 

24, Gene Card identifier ss4777328 [189].  

Our sample size is quite small for population genetics-studies, but the observation with 

regard to the 3’ UTR is interesting nonetheless.  We found that the rs3800373 CC genotype more 

frequent in the MDD and MDD/Psychosis group, Table 3-4, this SNP is located in the 3’UTR of 

the mRNA, and could potentially affect protein translation.  In Figure 3-8, we show higher 

protein levels of the FKBP5 gene product, FKBP51, in portions of the MDD and 

MDD/Psychosis groups as compared to Control, while in Figure 3-9, we do not find a change in 

transcription levels, it may be that this 3’UTR polymorphism affects translation efficiency.  Our 

data comparison methods, based on comparing to Controls, precludes determining whether 

higher protein amounts are found in the minor C allele, but it would be an interesting next-step.  

Furthermore, new research on micro-RNAs show that mRNA stability, based on micro-RNA 

binding in 3’UTRs affects the half-life of certain transcripts [190].  This would be another 

possibility of another level of modulation of cellular FKBP51 levels and thereby modulation of 

glucocorticoid signaling and HPA axis function. 

The SNP’s studied here were identified to be associated with MDD by Binder et al. 

through a genome scan in a region of chromosome 6 that encompassed the TULP1, FLJ25390, 

CLPS, and FKBP5 genes.  Four SNP’s were identified to associate with MDD in FKBP5 and 

strong association was made to rs1360780.  The minor allele was associated with both an 

increased recurrence of episodes and response to therapeutic drug treatment.  Indicating that the 

SNP may be functionally related to HPA axis. This study utilized 339 normal controls and 294 

MDD patients [140].  A similar study, however, failed to find association of the two SNP’s 

rs1360780 with response to antidepressive medication when the medication was controlled 

specifically to be 20 mg / day fluoxetine and that age had a large impact on medication-response 
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[191].  The genetic background of the two studies was different as well, the Binder study-group 

being German and the Tsai study-group being Chinese. 

The SNP’s rs3800373, rs1360780, and rs4713902 in FKBP5 gene associated with bipolar 

disorder in a large family-based study.  The study recruited a total number of 1,188 individuals in 

317 families with 554 bipolar offspring. The minor alleles had a dominant effect in increasing 

risk for bipolar disorder with p = 0.03 for rs3800373 and p = 0.13 for rs1360780 [192]. 

The two SNP’s analyzed in the current study also correlated to PTSD in adults who had 

suffered child abuse as adults.  This study utilized 725 normal controls, 175 patients, who had 

childhood traumatic experiences such as witness violence or assault; with a subset being abuse-

victims.  Both rs3800373 and rs1360780 correlated to development of PTSD in patients only in 

the patient subset of abuse [188]. 

A study analyzing peritraumatic dissociation in medically injured children found an 

association with FKBP5 polymorphism [141].  Forty-six medically injured children.  Medical 

injury is defined simply as injuries requiring professional medical attention, they resulted mainly 

from motor vehicle accidents, physical assault by a non-relative, or falls.  This study was similar 

to ours in that it was hypothesis-driven and targeted the specific SNP’s:  rs3800373 and 

rs1360780.  They found that the minor alleles correlated with dissociation during the accident 

(p<0.05 for both SNPs) and stronger correlation with dissociation since the accident (p<0.001 

and p<0.03 for rs3800373 and rs136078, respectively) [141]. 

One other study failed to identify FKBP5 as a genetic marker in mood disorders using 

affective psychosis as a study group [142].  This study grouped manic-depressive and MDD 

patients together in “affective psychosis,” 188 patients with 248 control subjects.  It was a case-

controled prospective study that recruited and followed individuals prior to diagnosis.  Although 

no significant association was made with MDD, there was a nominal association of two-locus 
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haplotype, meaning both alleles transmitted together on the same chromosome, of rs1360780 (C) 

and rs3800373 (T). 

A recent interesting genotyping experiment recruited 64 normal individuals and subjected 

them to psychosocial stress and measured recovery from stress based on physiologic parameters 

and subjective self-reporting [193].  This is unique from the other FKBP5 association analyses in 

that it is a before-after experiment measuring physiologic responses in the absence of disease.  

There was a profound genetic effect of FKBP5 on cortisol response during “anticipation” period 

of the stress and impaired recovery of the cortisol secretory response following the psychosocial 

stress administration.  Further, Ising et al reported delayed recovery in self-reporting of anxiety.  

Interestingly, there was no association with the ACTH response [193].  ACTH is secreted by the 

pituitary to signal to cells of the adrenal medulla for secretion of glucocorticoids, namely 

cortisol.  ACTH secretion is stimulated by CRF from the hypothalamus, which itself is 

stimulated in response to external stress and stimuli.  If the ACTH response is independent of 

FKBP5 allele while cortisol and self-reported anxiety do associate with the FKBP5 

polymorphism, it may be that FKBP5’s role in mood disorders is more closely tied with the 

cortisol response in the brain than peripheral stress response. 

Table 3-8 summarizes the findings of eight genotyping studies that analyzed the FKBP5 

SNP’s that we have studied in our CNTN / Stanley Foundation cohorts of MDD and HIV.  In 

general, either SNP associates which a mood disorder.  The disorders studied here all have in 

common that they are mood disordered characterized, in part, by dysfunction HPA axis.  These 

results, along with ours, support the notion that FKBP5 and its gene product, the protein 

FKBP51, could be involved in glucocorticoid signaling in the brain and dysregulation lead to 

disorder.  That the SNP’s are located in non-coding regions, implies the mRNA stability or 

protein translation are key factors in homeostasis. 
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Future work to uncover the functional consequences of the SNP’s could provide 

interesting insights into the molecular basis neuropathology caused by HPA axis dysregulation.  

For example, micro-RNA’s in the 3’UTR could affect mRNA turnover or protein translation 

while  enhancer or promoter elements in the Intron I could affect gene transcription.  In fact, one 

study did identify alternate intronic promoters for FKBP5 gene that produces shorter versions of 

the mRNA .  A SNP in a particularly important location could affect expression of these smaller 

transcripts that have downstream, unforeseen consequences on the balance of FKBP51 protein 

consentration, and further downstream on GR signaling in pertinent cell types such as neurons in 

the frontal cortex. 
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Table 3-8.  Summary of Previous Studies Involving FKBP5 SNP's rs1360780 and rs3800373 

Citation Disease n Significant SNPs Notes 

 [140] MDD 

294 Dis. 

339 Cont. rs1360780 Screened region of Chr 6 

[192] Bipolar 

491 Dis. 

1118 Total 

rs3800373 

rs1360780 

rs4713902 

Family-based study. Effect of minor 

allele is dominant 

 [188] PTSD 

175 Dis. 

725 Cont. 

rs1360780 

rs3800373 

Correlated to PTSD scale score, 

p<0.05 

 [141] 

Dissociation  

Disorder 46 Total 

rs1360780 

rs3800373 

SNP's increased risk for developing 

disorder after traumatic stress. 

 [193] 

Healthy-Psychosocial 

Stress 64 Total 

rs1360780 

rs3800373 

Impaired cortisol secretory response, 

delay reduction of anxiety. 

[191] 

MDD and Dysthymic 

Disorder 125 Dis. rs3800373 

No correlation, age significant factor 

in response to 20 mg/day fluoxetine 

  [142] Affective Psychosis 

188 Dis. 

248 Cont. 

rs3800373 

rs1360780 

rs4713902 

No correlation, prospective study, 2-

locus haplotype associated weakly 

[194] MDD 

1809 Dis. 

739 Cont. 

rs1360780 

rs4713902 

-780 associated with MDD, -902 

associated with remission. Not 

significant in American Black pop. 

 

3.4.4 Immunohistochemistry of FKBP51 and FKBP52 

The goal of the immunohistochemical analysis was to determine whether neurons express 

the immunophilins and in which cortical layers.  A more detailed stereological analysis would be 

dependent on availability of tissue of good quality.  The majority of the cases analyzed were 

sections unsuitable for quantitive analysis, but qualitative illustration of neuronal expression is 
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shown here.  For immunohistochemistry of FKBP51 and FKBP52, twenty-four cases were 

analyzed, two slides each.  The optimal antibody concentration was determined and example 

stainings are illustrated in Figures 3-19 and 3-20.  The slides were paraffin embedded tissue from 

the frontal cortex provided by the CNTN, therefore it should be noted that the slides were from 

HIV+ individuals.  The Stanley Foundation provided frozen sections mounted on glass slides and 

we were unable to satisfactorily immunolable them.  Although the materials available were 

unsuitable for quantitative analysis, the qualitative assment of FKBP51 and FKBP52 expression 

in layers of the frontal cortex is informative. 

This is the first immunolabeling for FKBP51 and FKBP52 in the frontal cortex known to 

the author.  The immunohistochemistry of FKBP51 and FKBP52 illustrated in Figures 3-19 and 

3-20 showed that they are expressed mainly in pyramidal neurons in Layers II and V of the 

cortex and in a subset of smaller cell bodies of Layer IV.  In addition, FKBP51 was also 

expressed in axonal tracts of the neuropil. The distribution of expression of FKBP51 and 

FKBP52 in cortical tissue is in certain neuronal populations of the cortex may be relevant to 

mood disorders [10-12, 195]. Chronic corticosteroid exposure in rats caused reorganization of 

the dendritic fibers in neurons of the external pyramidal layer of the cortex, showing decreased 

distal Golgi-staining and arborization and increased proximal dendrites to the pyramidal neurons 

[10].  Chronic glucocorticoid exposure led to a decrease in serotonin and catecholamine receptor 

sites in the frontal cortex [195]. Since these layers specifically stain in neurons for the 

immunophilins FKBP52 and FKBP51 which are intraceullar modulators of GR signaling, our 

findings could implicate that if these cells coexpress the GR, they may have an ability to 

individually regulate GR signaling and this system may be dysregulated in the chronic 

neuroinflammation characterized by activated microglia and monocytes [196], leading to 

vulnerability to developing mood disorders like MDD. 
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3.4.5 Limitations and Further Questions 

There were some limitations to the study presented here in both the methods and materials 

worthy of note, and some possible future experiments that would overcome them and confirm 

findings presented here. 

The tissue available for analysis is from the frontal cortex, and is fresh frozen tissue.  

While staff conducting the autopsy and tissue-archiving may take precautions and perform 

excellently, the fact remains that the brain is from a deceased individual and that gene expression 

and protein expression reflect a combination of genetic predisposition, chronic environmental 

conditions, chronic physiologic factors, and the acute physiologic state of the brain at the time of 

death.  Our five study groups are:  Control, MDD, MDD/Psyc, HIV, and HIV/MDD.  These 

disease conditions are what we wish to be our independent variable and in an ideal scientific 

situation, measurement of protein and gene quantities would be the dependent variable:  solely 

dependent on the disease condition. In reality these measurements also depend on physiologic 

factors surrounding the conditions at the time of death. Postmortem degradation of protein and 

RNA are also limitations, which we control for by normalizing to housekeeping genes and 

proteins, though this procedure itself is imperfect. We control for these factors by taking into 

account PMI, brain pH (when data available), and match the cohorts for age and sex.  

Furthermore, well-defined prospective study groups strengthen confidence in psychiatric 

classification of the cases. 

Both the Western and the gene expression analyses were from sections cut from the 

frontal cortex.  The brain is a hetereogeneous organ with respect to cell type and cell density.  

We avoided the meninges, but microvasculature cannot be avoided with our method, laser 

microdissection may avoid microvasculature.  The immunohistochemistry showed no staining in 

vascular endothelial cells, so differences in vascularity from sample to sample would not affect 
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the signal of the genes and proteins of interest, but could affect the signal of actin and GAPDH, 

the housekeeping protein and gene used to normalize for protein loading and RNA stability.  For 

Western blot, analyzing all the samples from each group would have given a better idea of the 

spread of expression.  Another way for normalization would have been to compare to an 

unrelated control; for example:   signal from the same quantity of RNA  or protein isolated from 

SH-SY5Y cells, comparing all the groups (including the Control group) to the signal from the 

cultured cells rather than comparing the disease groups to the Control group. 

The Western analysis is susceptible to noise from factors unrelated to the actual sample.  

The transfer of the proteins from the polyacrylamide gel to the PVDF membrane must be even.  

The chemilumniscent reaction emitting light onto the film can also be variable, the developing 

time of the film must be consistent, and densitometric analysis is subject to the limitation of how 

dark the film can be (based on the chemical composition of the film, which may vary from lot to 

lot and by manufacturer), how many scales of grey the scanner can detect, and the analysis is 

limited to the range of greyscale (0-255) embedded in an 8-bit tagged image format file (TIFF) 

image in ImageJ.  By running a representation from each sample group on a gel and only 

comparing within-gel for calculating fold-control, we subjected all the samples from a given gel 

to the same constraints and biases, so the result is a relative determination; relative to the Control 

samples run at the same time.  Other methods like enzyme-linked immunosorbant assay (ELISA) 

or quantitative mass-spectometry could overcome some of these limitations. To date, there are no 

commercially available ELISA’s for the proteins of interest, commercially available antibodies 

have not been tested for this application, and standards like recombinant purified protein are 

costly.  Matrix-assisted laser desorption ionization – time of flight (MALDI-TOF) mass 

spectrometry has been used for analysis of proteins in a mixture, however, the technique is best 

suited to identification rather than quantification; as there may be high background from 

abundant proteins. 
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The qPCR determination of FKBP4 and FKBP5 were subject to similar constraints as the 

protein determination.  Fold-control was calculated using the ΔΔCT method, that first compares 

amplification of the transcript of interest (FKBP4 and FKBP5) to a housekeeping gene that 

should remain stable (GAPDH), and then calibrating to a Control.  Our study compared the 

disease groups to the median of the Control, and also compared all the Controls to that particular 

median.  Therefore the median Control was calibrated to be 1.00, and the other Controls were 

above and below this value, representing the spread in the normal population.  Another method 

available of analyzing gene expression using qPCR would be calculating copy-number of 

transcripts.  This method would neccessitate the construction of standard curves for each sample 

would have been more costly, requiring a larger volume of reagents and destruction of a greater 

quantity of precious samples.  Northern blotting for the genes of interest would also have been 

possible, however, all the limitations from Western blotting would apply and Northern analysis 

would not be superior to qPCR. 

In Section 3.3.4, we analyzed the gene expression of FKBP4  and FKBP5 after exposure 

of SH-SY5Y cells to 10% conditioned media of HIV-infected microglia.  The SH-SY5Y cells 

are a well-estabilished neuronal cell line, and in cell culture, provide a homogenous population 

for quantitative analysis that overcomes the limitations of heterogenous cell populations 

described above.  The reponses of SH-SY5Y cells may be more realiably quantified owing to 

homogeneity, but may not extrapolate perfectly to in vivo human brain conditions.  They are a 

neuroblastoma cell line that can be differentiated to dopaminergic neuronal phenotype.  The 

region of the brain studied here, the frontal cortex, consists primarily of glutamatergic neurons 

and γ–aminobutyric acid (GABA)-ergic interneurons.  We extrapolate our data to make 

assumptions about chronic conditions of HIV-infection and MDD, while cell culture treatments 

and analyses are inherently models of acute insult.  Nevertheless, we have shown as a first-step 

that immunophilins are upregulated in neuronal cells in culture in response to HIV-infected 
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conditioned media.  Animal models of HIV infection, for example comparing immunophilin 

expression in the transgenic mouse model of astrocytic secretion of HIV gp120 [197], a 

component of the HIV envelope shown to induced neuroinflammation, with control mice would 

be informative.  Even this model has limitations owing to the genetic divergence of the FKBP4 

and FKBP5 genes in recent evolution described in Section 2.2.1.1. Therefore a human model was 

desired to show a direct interaction between HIV-infected microglia and neurons that removed 

the external variables surrounding autopsy studies described above, and so a reproducible 

neuronal cell line was utilized. 

The goal of our genotyping analysis of the two FKBP5 SNP’s was to further characterize 

our patient populations.  The technicalities and intpretations of the assay are straightforward.  

However, our sample size is inappropriate for extrapolating our findings to idenfication of a 

biomarker for MDD or MDD/Psyc.  Our study used very specific diagnostic criteria and 

specifically matched sex and age, analyzing the entire CNTN population disregarding these 

stricter criteria would provide more power to a genotyping study.  Other genotype studies ranged 

from 1,188 in a family-based bipolar genetic analysis to 64 subjects in an experimental before-

after functional analysis of normal individuals. 

MDD is a description of symptoms characterized mainly by depressive episodes 

consistening of:  depressed mood, anhedonia, eating disorder, hyper- or in- somnia, lethargy or 

agitation, self-loathing, impaired concentration, and suicidal thoughts [198].  A polymorphism is 

an actual physical entity with measurable physical consequences in a cell or tissue, identification 

of polymorphisms is useful for helping to uncover physiologic mechanisms underlying the 

symptoms, in case of this study, physiologic mechanisms regarding HPA axis dysregulation in 

the brain.  Physical manifestations of an FKBP5 SNP may be altered GR signaling in neurons 

followed by reduced synaptic and dendritic density, which leads in certain environments to 

MDD.  However, assuming that any one SNP of any one gene could be a biomarker for MDD, 
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would be analogous to assuming that a bacteria culture of the upper respiratory tract would 

diagnose rhinitis caused by allergy to pollen.  Rather, the SNP helps identify underlying cellular 

mechanisms and identify susceptibility and it is environment or developmental chance that leads 

to a particular disorder like MDD, bipolar disorder, PTSD, or peritraumatic dissociation. 

Immunohistochemistry is subject to limitations as well.  Our study used Nova Red as an 

idicator, and visualization of staining is dependent on peroxidase reaction and endogenous 

peroxidases must be blocked with a peroxide and methanol mixture as described in the Materials 

and Methods (Section 3.2.6).  Also, concurrent negative controls using no primary antibody will 

test for such false-positives.  The specificity of the antibody should be assured as well.  For this 

reason it is important to use the antibody at the lowest concentration that yields a signal.  

Competition of the antibody with a blocking peptide that would block binding of the antibody to 

antigens in the tissue would show specificity.  The best assurance would be by 

immunohistological analysis in knock-out mice that genetically lack the antigen of interest and 

comparing staining with control.  In the case of the FKBP51 and FKBP52 immunophilins, the 

expected staining patterns based on published mouse situ hybridization images was observed 

(Compare Figure 1-1 with Figures 3-29 and 3-20), and not all cell types and populations stained 

positive.  It is uncertain whether commercially available antibodies to FKBP51 or FKBP52 

would detect the mouse homologues owing to genetic divergence.  For example, our lab was 

unable to stain FKBP52 in a monoclonal mouse antibody generated against human FKBP52 

(Stressgen SRA1400) in a paraffin sections of Rhesus brain but we achieved successful staining 

in the corresponding region in human paraffin embedded sections. 

There are limitations to the materials and methods used here and there are further controls 

that could rule out possible false-positives.  However, the well-defined clinical characterization 

and age- and sex- matching in the autopsy patient groups strengthens its findings.  The detection 

and quantification of the proteins and genes is suitable based on available techniques.  The cell 
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cultures are a homogenous neuronal population lending itself to quantification.  The 

immunohistochemistry showed staining above background in specific populations. 

3.4.6 Conclusion 

We hypothesized that FKBP51, as modulator of the nuclear translocation of the GR, 

would be lower in MDD.  The rationale for the hypothesis is that those individuals whose 

neurons were not able to modulate GR signaling as effectively would be more vulnerable to 

cortical synaptic and dendritic simplification, neuropathologic conditions noted in depression 

[11, 169].  Instead, FKBP51 is increased at both the transcript and protein levels in MDD.  

However, FKBP52, the adapter protein that facilitates active GR trafficking was variable in both 

directions, elevated and decreased in MDD and MDD/Psych.  FKBP4 mRNA and protein is 

elevated in during HIV infection. In contrast to FKBP5, FKBP4 fold-change was not 

significantly increased in HIV, but in HIV+MDD. Perhaps immunophilins, as a class of 

chaperone and adapter proteins, are upregulated during chronic inflammation in response to 

cytokine signaling. If the agonist to GR signaling, in this case FKBP5 is not significantly 

upregulated to compensate for increased FKBP4 expression and thus increased ability of GR to 

be functionally active.  Cortical neurons would be rendered more susceptible to the effects of 

glucocorticoids and the cascade leading to subtle pathologies of depression. 
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4.0  IMMUNOPHILIN FKBP52 MODULATES THE DISTRIBUTION OF 

ACTIVATED GLUCOCORTICOID RECEPTOR IN NEURONS 

Mood disorders associated with dysfunction of HPA axis are common psychiatric conditions.  

The GR is a steroid-activated nuclear receptor that upon binding to cortisol translocates to the 

nucleus, targeting genes related to neuronal metabolism and plasticity.  In patients suffering from 

depression, elevated cortisol levels result in a decreased ability of neurons to return to resting 

conditions. 

 We investigated the molecular events associated with the FKBP52 and FKBP51 

response to cortisol exposure in neuronal cell cultures and subsequent effects on GR 

translocation.  We found that the immunophilin ligand FK506 inhibited nuclear translocation of 

the GR and expression of GR-responsive genes.  Furthermore, si-RNA knockdown of FKBP4 

gene, coding for FKBP52, inhibited cortisol-activated GR nuclear translocation. 

 We propose that immunophilins are key modulators of the cortisol-HPA axis 

response to stress and related chronic brain disorders.  Altering neuronal gene expression through 

immunophilin-mediated GR signaling pathways may represent a novel therapeutic avenue in 

psychiatric diseases.



 

4.1 INTRODUCTION 

 

Mood disorders associated with altered HPA axis function are common psychiatric conditions 

[199, 200].  In response to physical, emotional, and cognitive stress, CRH is secreted by the 

hypothalamus, signaling to the pituitary to release ACTH.  ACTH then enters the blood stream to 

stimulate cells of the adrenal cortex to increase the production of corticosteroids, mainly 

glucorticoids such as cortisol.  Glucocorticoids have an array of physiological effects to prepare 

the body for fight-or-flight, including effects on neurons and glia of the brain [27, 201]. 

The type II corticosteroid receptor, GR, has low affinity for cortisol and is expressed in 

the hypothalamus, hippocampus, and frontal cortex, and acts to mediate feedback inhibition of 

the HPA axis [202].  GR is a steroid-activated nuclear receptor, and upon cortisol-binding, GR 

translocates to the nucleus where it binds target DNA sequences as a positive or negative 

transcription factor to mediate mRNA production of genes related to neuronal plasticity, 

neuronal activation, and neuronal metabolism [203, 204].  In depressed patients, the negative 

feedback loop is deficient at reducing elevated cortisol levels, which is the basis of the 

dexamethasone suppression test for evaluation of HPA function [17]. The dexamethasone 

suppression test measures HPA axis function by oral administration of the synthetic GR agonist, 

dexamethasone, and measurement of the patient’s circulating cortisol and ACTH.  In normal 

individuals, the feedback inhibition loop of the HPA axis will cause cortisol and ACTH to be 

lowered and elevate to normal over time [205].  In HPA axis dyregulation, for example 
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Cushing’s Disease and MDD, cortisol and ACTH are not suppressed and patients are called 

“non-suppressors” [206].  The glucocorticoid cascade hypothesis claims that deficiency of the 

HPA axis to regulate circulating cortisol results in a feed-forward mechanism of increased 

cortisol levels during stress and a decreased ability to return to resting conditions, consequently 

all cells, including neurons, are subject to prolonged GR activation and its downstream effects 

[17]. 

This study analyzes the role of two adapter proteins, putative chaperones, to the GR, that 

are of the immunophilin protein class. Two immunophilins, FK506 Binding Protein of molecular 

weight 51 (FKBP51) and its related protein FKBP52, are thought to be involved at the cellular 

level in regulation GR signaling [14]. FKBP51 acts as a competitive inhibitor to its genetic 

relative FKBP52, whose gene ID is FKBP4 [14].  The protein products of FKBP4 were 

originally identified by co-precipitation of the activated GR/HSP90 complex as “HSP56” [207].  

Molecular studies have since clarified that it is actually two proteins of 52 and 59 kilodaltons, 

owing to two poly-adenylation sites of the FKBP4 gene sequence which would produce two 

differently-sized mRNA [208].  There is no known functional difference between the long or 

short form, for our purposes, FKBP52 and FKBP59 are synonymous and we will refer to the 

protein as FKBP52. 

 FKBP52 colocalizes with microtubules, binds specifically to dynein by its N-

terminal immunophilin (also known as prolyl isomerase) domain, and its enzymatic activity is 

required for this interaction [209].  The FKBP52 knockout male mouse displays decreased 

prostate development, malformed seminal vesicles, and reproductive abnormalities that 

correlated to decreased androgen levels or inadequate androgen receptor response [137].  The 

female knockout had no uterine receptivity for embryo implantation, a progesterone receptor-
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mediated event [136].   The effects of FKBP52 knockout on the developing or adult male and 

female mouse brain have not yet been studied.  FKBP52, through its TPR domains, links GR to 

the molecular motor protein dynein [210].  Dynein is a retrograde motor protein, this interaction 

between GR-FKBP52-dynein, may be of particular importance in cells such as neurons where 

the distance between the receptor and the nucleus may be long. 

There are data indicating that GR plays a role in MDD and mood disorders such as PTSD 

[205].  The administration of reserpine, a drug inducing depressive symptoms, causes altered GR 

signaling and glucocorticoid resistance [211].  In fact, transgenic mice that under- or overexpress 

GR have been used as models of depression or post-traumatic stress disorder (PTSD) [15, 212, 

213].  Pariante et al showed that antidepressants exert effects on GR function, not expression 

[23].  It is thought that prolonged high glucocorticoid levels cause GR to be saturated with 

ligand, signaling to the nucleus, following inactivation, leading to overburdening the recycling 

capacity of GR, and finally diminishing function of GR [205]. Decreased GR mRNA was found 

in the frontal cortex of postmortem tissue of depressed, bipolar, and schizophrenic patients [12].  

In a rat model of PTSD, which involves subjecting the mice to a single-prolonged stress, long-

term potentiation in the CA1 of the hippocampus was impaired, and administration GR 

antagonist RU40555 prevented this effect [214].   In this model, the rats exhibited enhanced 

contextual fear conditioning one week following the single-prolonged stress induction, and this 

effect was along prevented by concomitant administration of the GR antagonist [214].  

Interestingly, the abnormal glucocorticoid feedback regulation in HPA axis dysfunction was 

shown to occur at the level of the brain[215], indicating that GR signaling in the brain would be 

an interesting target of study for such diseases as MDD. 
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Species of New World primates have general resistance to glucocorticoids [216].  Since 

they do express the GR, which when purified, binds to cortisol, the mechanism of resistance was 

puzzling [217, 218].  It was found that a soluble factor, which turned out to be FKBP51, inhibits 

binding of cortisol to GR.  It turns out that expression of FKBP51 is 13-fold higher in these 

primates, and FKBP52 expression less than one-half compared to humans; effectively rendering 

the monkeys resistant to the effects of cortisol mediated by GR [61].  FKBP51 does not have a 

functional isomerase domain and acts as a competitive inhibitor of FKBP52 in the context of GR 

signaling [168].  These data, along with indications that GR function is dysregulated in the brain 

in MDD, indicate that FKBP52 / FKBP51 kinetics may be important in GR-mediated pathologies 

such as depression. 

There may be a genetic componant in variants on the gene encoding FKBP51 (gene ID 

FKBP5).  Single nucleotide polymorphisms (SNP’s) in the gene encoding the immunophilin 

FKBP51 were recently found to be linked to unipolar depression .  The functional significance of 

these SNP’s is unknown [140, 143].  A study by Binder et al linked polymorphisms in the 

FKBP5 gene to increased recurrence of depressive episodes and rapid response to drugs.  

Recently, they linked the FKBP5 polymorphisms with risk of post traumatic stress disorder 

(PTSD) symptoms in adults who suffered from abuse during childhood [188]. The same alleles, 

rs3800373 and rs1360780, were associated with increased occurance of peritraumatic 

dissociation in children after physical trauma requiring medical attention, for example motor 

vehicle accident or assault, [141], which is a risk factor for developing adult PTSD [219].  These 

findings warrant further investigation into the function of FKBP51 in neurons.   

Past studies have shown that FKBP52 and FKBP51 differentially regulate the function of 

the GR through the interaction of FKBP52 with dynein [14, 79, 132, 133, 209].  Although there 
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is conflicting evidence whether FK506, which dissociates both immunophilins from the GR, 

would enhance or inhibit nuclear translocation of the GR [220]. 

We hypothesized that inhibition or knockdown of FKBP52 would inhibit the effects of 

cortisol in neuronal cells. We investigated molecular functions of FKBP52 and FKBP51 in the 

context of cortisol exposure in neuronal cell cultures. Immunophilin ligand FK506, which is 

commonly used as an immunosuppressant in organ transplant patients, inhibited nuclear 

translocation of the GR and altered nuclear distribution of the FKBP51 chaperone in neurons. 

Knockdown by si-RNA of FKBP52 inhibited cortisol-activated GR nuclear translocation. 

4.2 MATERIALS AND METHODS 

4.2.1 Cells 

The neural cell line SH-SY5Y was used for protein extraction and immunoprecipitation.  SH-

SY5Y cells were also used for transfection with siRNA to knockdown FKBP52 translation and 

determine whether FKBP52 plays a role in nuclear translocation of GR.  Primary human neuron-

glia cultures were used in qualitative microscopic analyses. 

 SH-SY5Y cells were plated at 5x105 cells/well on glass coverslips in 24-well plates 

which had been coated with poly-L-ornithine and laminin by sequentially incubating overnight at 

37°C first with 0.1 mg/mL poly-L-ornithine hydrobromide in H2O solution (Sigma P5666) and 

then 2 μg/mL laminin in H2O  (Sigma L2020).   SH-SY5Y cells were grown in media composed 

of 1:1 mixture of Ham’s F-12 Media (Gibco 31765-035) and Dulbelco’s Modified Eagle Media 

(DMEM) (Gibco 11960-044) supplemented with 2 mM glutamine (Gibco), sodium bicarbonate 
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(Gibco 25080-094), sodium pyruvate (Gibco P333-1000), and 10% fetal bovine serum (Gibco 

16140-071), and 50 μg/mL penicillin and streptomycin (Invitrogen 15640-055).  After three days 

in culture, the media were supplemented with 1  μg/mL retinoic acid (Fisher Scientific 

AC41897) for differentiation, media were changed daily with the retinoic acid supplement until 

cells showed neuritic networks, typically 3-5 days.  

Human forebrain fetal tissue was acquired according to the University of California San 

Diego Internal Review Board guidelines through Advanced Bioscience Resources (Alameda, 

CA).  Tissue was processed as previously described, and detailed in Appendix B [34, 221].  Cells 

were seeded at 106 cells per well on glass coverslips coated with polyornithine and laminin in 24-

well plates and maintained in DMEM-F12 media (Gibco 12634-010) supplemented with 2mM 

glutamine, 5% human serum, and 10 μg/mL gentamycin sulphate (Gibco 15750) for four weeks 

with media-change every 3 days.  Toxicity of treatments to primary neuroglia cultures is 

measured by removing 50 μL aliquots of medium and measuring release of lactate 

dehydrogenase by following manufacturer’s protocol of the CytoTox LDH assay (Promega 

G1780), results are illustrated in Figure 4-1, indicating that none of the treatments were toxic 

according to measurement of LDH release. 

 

  102



 

Figure 4-1.  LDH Measurements From Exposure of Primary Human Neuron-Glia Cultures to 100 

nM Cortisol and 10 μM FK506.  Primary human neuron-glia cultures grown for 4 weeks on glass coverslips 

and exposed to 10 μM FK506, 100 nM cortisol, both FK506+cortisol, or media alone.  Supernatant (10 μL) 

was removed at 0, 30, 60, and 360 min and LDH activity measured by ELISA in CytoTox assay.  Positive 

control is a cell-lysis suspension from cultures grown in parallel.  The treatments were not toxic. 

4.2.2 Immunoprecipitation  

SH-SY5Y cells were grown to 80% confluency in T-75 flasks and cells were differentiated using 

10 μg/mL retinoic acid for three days.  Media were changed and supplemented with 10 μM 

FK506 (Fisher Scientific NC9444052) for 2 hr, 100 nM hydrocortisone (Sigma H6909) for 30 

min, or nothing prior to lysis.  Total protein was obtained by washing media 2 times 10 min in 

37°C PBS to remove media, incubating with 0.5 mL ice-cold lysis buffer consisting of 50 mM 2-

amino-2(hydroxymethyl)1,3-propanediol hydrochloride (Tris-HCl), pH 7.4, 150 mM NaCl, 0.2 
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mM Na3VO4, 1 mM phenylmethanesulfonyl fluoride, 1 mM ethylenediaminetetraacetic acid 

(EDTA), 5 μg/mL aprotinin, 1% Triton-X 100, and 0.1% sodium dodecyl sulfate (SDS).  Lysate 

was pre-cleared for non-specific binding by incubating with 1:100 streptavidin-coated magnetic 

beads (New England Biolabs S1420S) for 30 min, 4°C, and separated from solution using a 

magnetic microfuge tube rack (New England Biolabs S1506S) prior to incubation with primary 

antibodies.  Immunoprecipitation was performed by incubating pre-cleared lysate with primary 

antibody for 2 hr at room temperature, followed by biotinylated secondary antibody for 2 hr, and 

complexes were immobilized on streptavidin-coated magnetic beads (New England Biolabs 

S1420S) for 30 mins, 4°C, and separated from solution using a magnetic rack (New England 

Biolabs S1506S).  After immobilization, magnetic bead with antibody-protein complexes were 

washed 3X 30 mins 4°C with gentle rotation in wash buffer consisting of 10 mM Tris-HCl, 1 

mM EDTA, 1 mM ethyleneglycoltetraacetic acid, 150 mM NaCl, 1% Triton-X 100, 0.2 mM 

Na3VO4, 5 μg/mL aprotinin.  To maintain complexes caused by presence of ligands, all buffers 

were supplemented with vehicle (1:1,000 ethanol), 10 μM FK506, or 100 nM cortisol.   

Immunoprecipitation products were eluted in 100 μL SDS- PAGE tris-tricine buffer 

(Biorad 161-0744) and heated to 90°C for 3 min, followed by separation from magnetic beads 

using the magnetic tube rack, and eluate separated immediately by gel electrophoresis in 10% 

polyacrilamide gel (Biorad) for western blotting.  Antibodies used for immunoprecipitation: 

mouse anti FKBP52 (1:50, Stressgen #SRA-1400), rabbit anti FKBP51 (1:100 Novus NB300-

519), control antibody was mouse IgG (1:100, Jackson # 015-000-03).  
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4.2.3 Western Blotting 

Primary antibodies used for Western Blotting:  mouse anti dynein (1:200, Affinity Bioreagents 

MA1-070), rabbit anti GR (1:500, Novus Biologicals # NB300-610). For western blotting of 

immunoprecipitation product, HRP-conjugated secondary antibodies were purchased from 

Jackson Immunoresearch (anti mouse #115-035-166, anti rabbit #111-035-144) and incubated at 

1:10,000 at room temp for 2 hr.  Chemiluminescence was performed following manufacturer’s 

instructions of luminal reagent (Pierce Biologicals 32106).  Because the siRNA experiments 

were performed in 24-well plates, at low cell numbers, the protein yield and Western signal are 

low, therefore for western blotting of the siRNA lysates, therefore biotin-conjugated secondary 

antibodies were used from Jackson Immunoresearch (anti mouse # 715-065-151, anti rabbit 

#711-065-152, both 1:1,000, 2 hr room, temperature), and vector ABC kit was used for signal 

amplification (Vector laboratories PK-4002).  

4.2.4 PCR and siRNA Synthesis 

 Prior to treatments, to confirm that SH-SY5Y cells expressed the GR, FKBP52, and FKBP51, 

reverse transcriptase-PCR was performed using the following primers were utilized from the 

National Library of Medicine Genbank datase as markers for the human genes:  1.  For GR: F-

actacacatccctaatgtgtgcc and R-gcatgtaaagctgcagtagcc; expected size 337bp (GenBank Accession 

G06351),  2. For FKBP52:  F- agcggtgaaggctatgctaag and R- acttctcgttgttgctgtcca, expected size 

650bp; 3. For FKBP51:  F-gatccctcgaatgcaactctct and R-gaaaggcagcaaggagaaatga, expected size 

650bp.  After differentiation of the SH-SY5Y cells, RNA was isolated using Trizol according to 

the manufacturer’s protocols (Invitrogen 15596) and cDNA was synthesized using Superscript 
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III Reverse Transcriptase (Invitrogen 18064).  Forty PCR thermocycles were performed using 

2μL cDNA in 50µL PCR reactions of Platinum PCR Supermix (Invitrogen 12532).  PCR 

product was run on 1% agarose gel is Tris-Boric acid-EDTA buffer and visualized with ethidium 

bromide in UV. 

The Dicer siRNA Generation Kit (Gene Therapy Systems # T510001) was used to 

generate siRNA to FKBP52 following manufacturer’s protocols.  The mRNA sequence for 

human FKBP4 (Accession number NM_002014) was used to design primers to amplify a 650 

base-pair region of the mRNA spanning both Exon 2 and Exon 3, coding for the linker region 

between the two immunophilin domains, a region of high variation between individuals and very 

low homology with FKBP5.  The primers are: FKBP52-T7-F gcg-taatacgactcactatagggag-

agcggtgaaggctatgctaag, FKBP52-T7-R  gcg-taatacgactcactatagggag-acttctcgttgttgctgtcca 

(leader-T7 RNA polymerase promoter- target sequence). Differentiated SH-SY5Y cells were 

exposed to siRNA (250 ng siRNA, 3.5μL GeneSilencer reagent per well) for 24 hr prior to 

cortisol exposure.  Control siRNA, specific to green fluorescent protein (GFP), was generated 

using the template plasmid and primers for GFP supplied by the manufacturer. 

4.2.5 Cortisol and FK506 Exposure 

Differentiated SH-SY5Y cells or primary human neuroglia cultures were exposed to vehicle or 

10nM FK506 for two hours; followed by nothing or 100nM cortisol for various time points. Each 

treatment (vehicle, FK506, cortisol 30, 60, 180 min, and cortisol pre-treated with FK506) was 

performed in triplicate and cells were fixed in 4% paraformaldehyde for immunofluorescent 

labeling of GR and Hoechst 33342 (Molecular Probes H3570).  Primary neuronal cultures were 

labeled for GR (Mouse 1:50 AbCam ab9568), FKBP52 (Mouse 1:100, Stressgen SRA1400), or 
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FKBP51 (Rabbit 1:40 AbCam ab54992).  To determine cell types in culture, counter-labeling 

was performed.  To identify neuronal dendrites and soma: MAP2 (Mouse 1:500 Sigma M9942; 

or Rabbit 1:1000 Cell Signaling Technologies 4542).  To identify neuronal axons:  

Neurofilament (1:500 Rabbit Covance PRB574C or Mouse 1:1000 Cell Signaling Technologies 

2835).  To identify astrocytes:  GFAP (1:400 Mouse Cell Signaling 3670).  To identify 

microglia:  Ricinnus communis Agglutinin I (biotinylated RCA1, 1:1000 Vector Laboratories B-

1085).  Cells were permeablized in 1% Triton X 100 for 30 minutes at room temp, and washed 

three time briefly with phosphate buffered saline (PBS) with 0.2% TWEEN-20 prior to blocking 

for 1 hr with 10% normal donkey serum in PBS-Tween.  After fixing, washing, and blocking, 

cells were incubated with primary antibody overnight at 4°C.  To reduce non-specific antibody 

binding to extracellular debris previously observed using rabbit antibodies, the wash buffer was 

supplemented with 100 mM NaCl for primary antibodies generated in rabbit.  Donkey anti-

mouse and donkey anti-rabbit Alexafluor 488 and 546 antibodies and Alexafluor 647-conjugated 

streptavidin were used at 1:2000, and cells were incubated with secondary antibodies at room 

temp for 2 hr. 

4.2.6 Quantitative PCR 

To asses whether GR-responsive genes, FKBP5 and BCL21A are altered due to the presence of 

FK506, qPCR was performed. RNA was isolated from differentiated cells pretreated with or 

without 10 μM FK506 followed by 100 nM cortisol for various lengths of time. For  qPCR, 20 

ng cDNA per reaction was used and 6-carbosyfluorocein (FAM) -labeled 20X prevalidated 

probes were purchased from Applied Biosystems.  For FKBP5, assay Hs00188025_m1; for 

BCL21A, assay Hs00236329_m1; and for endogenous control we used the actin gene, ACTB,  
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assay 4352935E.  TaqMan master mix (2X), purchased from Applied Biosystems was used in 

20μL reactions on 96 well-plates and assays were performed at the University of San Diego 

Center for AIDS Research Genomics Core.  Gene expression is reported as fold-control versus 

the median of the control-group using the ΔΔ-CT method comparing to housekeeping gene 

ACTB whereby ΔCT=CTACTB–CTGene , ΔΔCT=ΔCTControl-ΔCTTreatment, and Fold-Control = 2 –

ΔΔCT.  Plotted are median fold-changes and error bars represent range as determined in triplicate. 

4.2.7 Imaging 

Images were acquired utilizing a 40X objective on a Carl Zeiss Axiovert 40 inverted fluorescent 

microscope with deconvolution capabilities.  For 3D imaging, 10 planes were imaged at 0.5 μm 

steps and deconvolved using the Nearest Neighbor algorithm in the image analysis software 

Slidebook 4.2 [222].  All the images for a particular experiment were acquired at the same time 

under identical parameters such as exposure time, intensity, binning, and Normalization settings 

following the conventions outlined in Slidebook 4.2 [222]. 

4.2.8 Quantitative Imaging of Glucocorticoid Receptor Nuclear Translocation in SH-

SY5Y Cells 

In order to quantify the nuclear and cytoplasmic staining of the GR in the SH-SY5Y cells, a 

method was adopted from Noursadeghi [223].  Basically, 10 fields from each treatment were 

acquired in a 40X object on a Carl Zeiss Axiovert 40 inverted microscope.  Fields were selected 

randomly to reduce bias, the user focused only using the blue channel.  For each field, 10 images 

were taken in 0.5 μm steps in the z-plane with 2X binning, green channel 1.75 sec, and blue 
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channel 0.650 sec.  After deconvolution, images were exported as tagged image format (TIF) 

files.  A representative image is shown in Figure 4-2a. 

 Ten fields from a particular treatment were opened in Image J software and converted to 

a stack to treat all images identically.  The green and blue color channels were separated and 

converted the greyscale bitmap as shown in Figure 4-2b.  A threshold was set for the blue image 

to delineate the nuclei, Figure 4-2c.  Image math, subtracting the thresholded image from the 

green image yielded the nuclear staining, Figure 4-2d, left.  Subtracting the inverted thresholded 

image from the green image yielded cytoplasmic staining, Figure 4-2d, right.  The text file of the 

intensity histograms was exported to Excel for analysis and summed across all ten images, 

Figure 4-2e shows histogram from one image. 
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Figure 4-2.  Quantification methods for nuclear and cytoplasmic fluorescent labeling of GR. Tagged 

image format (TIF) files were analyzed in Image J software.  A representative image is shown in (A). The 

green and blue color channels were separated and converted the greyscale bitmap (B).  A threshold was set 

for the blue image to delineate the nuclei (C).  Image math, subtracting the thresholded image from the green 

image yielded the nuclear staining (D left).  Subtracting the inverted thresholded image from the green image 

yielded cytoplasmic staining (D right).  The text file of the intensity histograms were exported to Excel for 

analysis and summed across all ten images, (E) shows histogram from one image. 
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 To account for variation in cell count, nuclear size, and cell size, the y-axis of the 

intensity histogram was converted to Frequency, rather than counts, by dividing each count of 

pixel intensity by the total number of counts, so the y axis is frequency of the intensity, F(I), and 

the x axis is intensity, I, Figure 4-12 in Results.  For fitting, the nuclear staining histograms were 

fitted to a Maxwell Boltzman Distribution using four parameters, F(I) = A + BI2e C(I^2+ D)  , where 

A, B, C, and D are fitting parameters.  A is the position of the curve relative to the y axis, D the 

position relative to the x axis, B determines upward the slope of the curve and C the downward 

tail.  The Solver tool of Excel was used to adjust the parameters and to generate a fitting line to 

maximize R2 comparing the experimental data to the fit line using a method outlined by Brown 

[224].  The geometric mean intensity was experimentally determined by integrating the intensity.  

The fit was confirmed in GraphPad Prism by plotting the fitted curve and the experimental data 

and using an F-test to compare the values.  The 95% CI are determined and plotted, and 95% CI 

of the geometric mean intensities, Î, reported.  For the cytoplasmic staining, the same procedure 

was carried out using an exponential decay equation whereby F(I) = A+ Be-k(I+C), where A is 

the position of the graph on the y axis, C the position on the x axis, B relates the slope from the y 

axis, and k relates tightness of inflection point.  Since the distribution of fluorescence intensity 

modeled a decay function, intensity at half-max value, I½, is calculated in GraphPad Prism and 

reported with 95% CI. 
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4.3 RESULTS 

4.3.1 FKBP52-Dynein-Glucocorticoid Complex in SH-SY5Y Cells 

It was first necessary to determine that differentiated SH-SY5Y cells would be appropriate to 

study the GR signaling system with respect to binding of immunophilins. PCR showed that GR, 

FKBP52, and FKBP51 are expressed in SH-SY5Y cells (Figure 4-3). 

 

Figure 4-3.  SHSY5Y Cells Express FKBP4, FKBP5, and NR3C1 (GR) Genes.  RNA was isolated 

from differentiated SH-SY5Y cells, and reverse transcriptase – PCR reaction performed using primers 

specific for human FKBP4, FKBP5, and NR3C1 (GR) genes.  The expected molecular weights were FKBP5 

600bp, FKBP5 650bp, and NR3C1 350 bp.  The PCR product was separated in 1% agarose gel and imaged in 

ultraviolet light with ethidium bromide staining. 
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In order to confirm that the proposed model of GR-FKBP complex formation occurs in 

neuronal cells, we utilized the neuroblastoma cell line SH-SY5Y.  We used co-

immunoprecipitation to determine whether the proposed model of Dynein-FKBP-GR complex 

formation was recapitulated in neuronal cells. Dynein co-immunoprecipitated with FKBP52 but 

not with FKBP51, Figure 4-4a.  GR co-immunoprecipitated with FKBP51 and FKBP52, Figure 

4-4b.  When 100 nM cortisol was added to the cell culture growth media for two hours, and to 

the lysis-, immunoprecipitation-, and wash- buffers, GR did not co-precipitate with FKBP51 but 

did with FKBP52.  Furthermore, when 10 μM FK506, a common immunophilin ligand was 

added, GR did not co-precipitate with either immunophilin.  The complex formation of dyein-to-

FKBP52-to-GR was recapitulated in this neuronal system, and 10 μM FK506 interrupted the 

interaction, Figure 4-4. 

 

Figure 4-4.  Co-immunoprecipitation of (A) Dynein and (B) GR with FKBP52 and FKBP51.  

FKBP51 and FKBP52 were immunoprecipitated from whole cell lysates according to Section 3.2.2.  Cells 

were preincubated in and immunoprecipation buffers supplemented with 100 nM cortisol or 10 μM FK506.  
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Immunoprecipitation products were eluted in tris-tricine running buffer and separated by SDS-PAGE and 

probed for dynein (74 kD) (A) or GR (97 kD) (B).  Dynein was detected with FKBP51.  GR was detected with 

FKBP52 only in the presence of cortisol. 

 

4.3.2 FK506 Inhibits Cortisol-Induced Redistribution of GR and FKBP51 in Neurons 

Since FK506 interrupted the FKBP52 interaction with dynein, we sought to determine whether 

there was a cellular consequence of FK506 to GR localization.  We imaged GR in neurons 

exposed to cortisol with and without pre-incubation with FK506. To this end, we expanded our 

study to include a primary human mixed neuron and glia culture system composed mainly of 

neurons and occassional astrocytes, Figure 4-5 shows Neurofilament/Microtubule Associated 

Protein-2 (MAP2) and Glial Fibrilary Acidic Protein (GFAP) immunofluorescence of the 

cultures used.   The GR was present in astrocytes (Figure 4-5a) which showed characteristic 

blebbing of processes (left), and stereotypical cell shape in culture (right).  The neurofiliment 

(NF) and MAP2 antigens together were used to identify the neurons (Figure 4-5b) that stained 

for the GR; as illustrated in Figure 4-5 and Figure 4-6.   Immunolabeling of GFAP and 

NF/MAP2 showed that the neuronal cells and astrocytes were distinct (Figure 4-5c) indicating 

that neurons and astrocytes at four weeks were mature as detailed in Appendix B. 
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Figure 4-5.  Characterization of primary human neuron-glia cultures.  Primary human neuron-glial 

cultures were cultivated according to Appendix B and cultured according to Section 4.2.1.  Cultures on glass 

coverslips were permeablized in 1% TritonX-100, blocked with normal serum, and incubated with primary 

antibody overnight at 4°C. Coverslips were incubated in Alexafluor 488 and Alexafluor 547 conjugated 

secondary antibodies at RT for 2 hr.  Nuclei were counterlabeled with Hoechst, 10 min RT (blue).  (A) 

Astrocytes labeled with anti-GFAP (green) and GR (red) indicate astrocytic expression of GR at 40X (left) 

and 100X (right).  (B) Neuronal cells were immunofluorescently labeled with neurofilament and MAP2 

(green) and GR (red).   (C)  Together neurons labeled for neurofilament and MAP2 (green) and astrocytes 

labeled for GFAP (red) in culture indicate maturation of neurons and approximately 1:1 mixture 

glia:neurons. 

 

 

Neuronal immunofluorescence for GR was apparent in nuclei without 100 nM cortisol, 

(Fig. 4-4b and 4-5, top).  In a time-dependent fashion, staining of nuclear GR increased with 

exposure to 100 nM cortisol, indicated at ∆s in Figure 4-6.  After 30 minutes of 100 nM cortisol 
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exposure, GR was present in the nucleus of more neurons and glia and was more apparent in the 

soma, too (Fig. 4-5, bottom-left), ∆s point to GR in soma and neuronal nuclei.  By180 minutes, 

abundant punctate staining for GR in the nucleus, as expected, (Fig. 4-5, bottom-right).  
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Figure 4-6.  Cortisol-induced nuclear translocation of GR slowed in primary human neuronal cultures with preincubation with 10 μM FK506.  

Primary human neuron-glial cultures were pre-treated with vehicle (1:500 ethanol) or 10 μM FK506 for 2 hr and subsequently treated with 100 nM 

Cortisol for 30, 60, 180 min.  Cells were labeled for neurons with MAP2 and neurofilment (green), immunostained for GR (red), and nuclei 

counterstained with Hoechst (blue).  More focal subnuclear staining of GR was apparent in a time-dependent manner with cortisol.  More cytoplasmic 

GR is delineated with  at 60 min at 180 min if pretreated with FK506.



With 10 μM FK506 present, the nuclear GR labeling remained more diffuse, however 

some punctate complexes did form.  GR stained in the soma of neurons in the presence of 10 μM 

FK506, in contrast non-FK506 controls had little cytoplasmic GR after 180 minutes of cortisol. 

treatment  Figure 4-6, bottom-right, ∆’s point to GR in soma in FK506-treated cells and the same 

area in non-FK506 control at 180 min cortisol exposure. 

Cortisol also induced increased nuclear staining of GR in glia cells as well at 60 min and 

180 min, as indicated by ∆ in Figure 4-6.  The sublocalization of the GR is more diffuse in the 

FK506 pretreated cultures. 

FKBP51 is a cytoplasmic chaperone-type protein, the putative inhibitor to the FKBP52 

adapter-protein that would link it to the motor protein dynein.  We found, as shown by others 

[62], that FKBP51 stained diffusely throughout the nucleus and cytoplasm of cells, shown in 

Figure 4-7, top; s point to FKBP51 staining in z-axis imaging in Figure 4-7.  In the presence of 

cortisol, the distribution of FKBP51 is not changed (Figure 4-7, middle).  However, with FK506 

treatment, FKB51 stains perinuclearly and in the soma of neurons (Figure 4-7, middle and 

bottom).  

Because FK506 apparently altered the cortisol-mediated distribution of GR in neuronal 

cells, we hypothesized that FK506 may alter gene transcription of a GR-responsive gene.  
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Figure 4-7.  Localization of FKBP51 in primary human neuronal cultures is altered in the presence 

of 10 µM FK506. Primary human neuron-glial cultures were pre-treated with vehicle (1:500 ethanol) or 10 

μM FK506 for 2 hr and subsequently treated with 100 nM Cortisol for 60 and 180 min.  Cells were labeled for 

neurons with MAP2 and neurofilment (green), immunostained for FKBP51 (red), and nuclei counterstained 
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with Hoechst (blue).  3-D reconstruction showed diffused nuclear staining of FKBP51 with and without 

cortisol present as idicated in top panels with .  Pretreatment with FK506 caused exclusion of FKBP51 from 

the nucleus.  

 

 

Figure 4-8.  SH-SY5Y Cells Express DAT, TH, Synapsin, D2DR, and ß-3-Tubulin.  Total cell lysate 

from differentiated SH-SY5Y cells treated with or without 10 μM FK506 for 24 hr was separated by SDS 

PAGE and transferred to PVDF membrane.  Lysates were probed for dopamine transporter (DAT), tyrosine 

hydroxylase (TH), synapsin, and D2-dopamine receptor.  Differentiated SH-SY5Y cells were grown on glass 

coverslips, fixed in 4% paraformaldehyde, permeablized in 1% triton-X100, and immunolabeled for 

Synapsin (red) and ß-III-tubulin.  Differentiated SH-SY5Y cells, with and without FK506, are of the 

dopaminergic neuronal phenotype. 
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Figure 4-9.  Differentiated SH-SY5Y Cells Show Neuritic Networks and Arborization.  SH-SY5Y 

cells were grown in glass coverslips coated with poly-ornithine and laminin, after differentiated in retinoic 

acid for 6 days, cells extend neuritic networks and arborization.  Cells were imaged in culture in phase 

contrast using 20X objective. 

 

 

For reproducibility and quantitation, the SH-SY5Y cell line is more efficacious than 

primary neuronal cells, and therefore was used for qPCR of these genes after exposure to 

cortisol, in the presence or absence of FK506.  First, we determined that the SH-SY5Y cells are 

appropriate in vitro models of neuronal cell system, through western blotting and fluorescence 

microscopy, we determined that they express the DAT, TH, Synapsin, and ß-3-tubulin; which 

are markers of neuronal differentiation (Figure 4-8).  The cells also show neuritic networks and 

arborization (Figure 4-9). Two genes, FKBP5 and Bcl2-L1, are induced by cortisol and GR-

mediated gene transcription [179, 225]. The FKBP5 gene encodes the FKBP51 protein, contains 

glucocorticoid-responsive elements, and has polymorphisms that are associated with mood 

disorders [140-142, 179].  The Bcl2-L1 gene encodes the protein Bcl-xL, a mitochondrial 

member of the Bcl2 family, thought to link mitochondria function, metabolism, and synaptic 
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transmission [226].  We found that FKBP5 and Bcl2L1 mRNA were both elevated 30% at 30 

min in response to exposure to cortisol, shown in Figure 4-10a and 4-10b.  FKBP5 expression 

returns to baseline at 24 hours, Figure 4-10a, while Bcl2L1 remains elevated for up to 48 hours, 

Figure 4-10b.  Treatment with FK506 did not totally ablate the FKBP5 response, but rather 

delayed it.  The Bcl2L1 response, however, remained below or close to baseline for 48 hours if 

FK506 was present.  These data are consistent with the model that pretreatment with FK506, in 

neurons, having altered the nuclear distribution, slows and inhibits GR-responsive gene 

induction. 

 

Figure 4-10.  FK506 Inhibits Cortisol - Induced Gene Expression of (A) FKBP5 and (B) Bcl2-l1 in 

Differentiated SH-SY5Y cells.  Differentiated SH-SY5Y cells were exposed 100 nM cortisol for up to 48 hr 

with ( )or without ( ) pretreatment with 10 μM FK506.  Saline controls are indicated by , plotted are 

mean and standard deviation of 3 measurements.  RNA was isolated and qRT-PCR was performed as 

described in Section 4.2.6, percent of control comparing to Time 0 for each treatment and time point for the 

(a) FKBP5 and (b) Bcl2-l1 transcripts are plotted.  One way ANOVA and Dunn’s multiple comparison tests 

compared the treatments (p < 0.05 for significance).  * Indicate significant difference at a particular timepoint 

of 100 nM Cortisol compared to Vehicle Control, and # indicate significant difference between 100 nM 

Cortisol compared to the FK506 pre-treated group.  There is low induction of FKBP5 (A) with cortisol 

treatment ( ) that is slowed but not abrogated by FK506 ( ).  Induction of Bcl2-l1 is abrogated by FK506l.  

The vehicle control ( ) elevated Bcl2-l1 (B) expression after 24 hr compared to Time point 0, which was not 

observed in the Cortisol +FK506 group ( ). 
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4.3.3 siRNA Knockdown of FKBP4 Slows GR Translocation 

 Since FKBP52 protein distribution is predominantly neuronal and acts to promote GR 

trafficking, we sought to determine whether FKBP4 siRNA would inhibit the nuclear 

translocation of GR.  For efficacy and consistency of siRNA delivery, the SH-SY5Y cell line 

was used.  Phase contrast image of cells shown in Figure 4-9.  Treatment of SH-SY5Y cells with 

100 μg/mL cycloheximide to inhibit protein translation and determine the half-life of FKBP52 

showed that FKBP52 is quite stable with a half-life of 13.6±2.2 hr (mean±95% confidence 

interval) and siRNA knockdown would require at least 24 hr (Figure 4-11a).  The siRNA 

experiment followed by cortisol exposure was performed in duplicate in biologically 

independent samples.  Exposure to 250 ng siRNA for 24 hr achieved 70% reduction in FKBP52 

protein, and at 24 hours there was a 15% reduction in mRNA of the FKBP4 gene (Figure 4-11b).   

Figure 4-11b shows Western Blots for FKBP52 and Actin on the same gel for protein loading 

control, the independent experiments are illustrated as Repitition (Rep) 1 and Rep 2.  Since our 

final measurement is of GR immunoreactivity, we wanted to ensure that any difference observed 

in GR localization was not due to changes in GR amount, and Western blot for GR showed no 

change in GR level in si-Control and si-FKBP4 (Figure 4-11b).   

The si-RNA exposures were performed in 24 well plates, and the protein yield is quite 

low from SH-SY5Y cells, therefore, we utilized the avidin-biotin-complex (ABC) system for 

amplification of western blot signal as described in the Materials and Methods.  It is for this 

reason also that Actin and FKBP52 were probed simultaneously.  A non-specific band occurs 

near 50kD and we wanted to confirm that we were measuring the correct band. To do so, whole 
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cell lysates from SH-SY5Y cells was separated by PAGE and transferred to a PVDF membrane, 

which was cut into three 2-lane strips, of 10 μg and 20μg protein.  Western blotting was 

performed as described in the Materials and Methods except that the strips were incubated 

separately, the first was treated like normal (Figure 4-11c, left), the second was incubated 

without primary antibody (Figure 4-11c, center-left), and the third was incubated without 

primary or secondary antibody (Figure 4-11c, center-right). Immunoprecipitation for FKBP52 

was performed and Western for FKBP52 on the Total protein compared to the 

immunoprecipitate showed also the same non-specific band in the protein lysate (Figure 4-11c, 

right), which binds to the ABC reagent, (Figure 4-11c, left). 
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Figure 4-11. Confirmation of siRNA knockdown of FKBP4 in SH SY5Y cells.  The half-life of 

FKBP52 was determined by incubating differentiated SHSY5Y cells with 100 μg/mL cycloheximide for 

various time points, and cell lysates were subjected to western and densitometry analysis, triplicate 

measurements and nonlinear regression to exponential decay (R2 = 0.852) determined that FKBP52 has a 

half-life of 13.6 (2.2) hr (mean and 95%CI) (A).  Differentiated SHSY5Y cells on glass coverslips in 24 well 

plates were exposed to 250 ng siRNA generated against the FKBP4 gene or against a control gene, encoding 

GFP provided by the manufacturer, for 24 hr; protein was isolated for Western and densitometry analysis 

and RNA isolated for qRT-PCR (B).  Two independent siRNA experiments are illustrated (B) and achieved a 

70% reduction in protein and 15% reduction in mRNA.  To ensure that a difference in GR 
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immunofluorescence was not due to altered GR protein content, GR was measured by Western analysis, 

triplicate measurements (mean and SD) of fold-control versus median control value are illustrated (B).  To 

test the appearance of non-specific bands in the western blots, membranes were developed with primary 

antibody (C-left), without primary antibody (C-middle) and without both secondary and antibody (C-right 

center), and determined that the non-specific band is from the avidin-biotin amplification system (C).  

Immunoprecipitation of FKBP52 from cell lysates and probing for FKBP52 by Western blot further 

confirmed that the non-specific band is a component in total protein, which could be removed through pre-

clearing the lysate (C-right) with streptavidin magnetic beads (C). 

 

4.3.3.1 Immunofluorescence Imaging and Quantification of Nuclear and Cytoplasmic GR 

After exposure to either si-FKBP4 or si-control, cells were exposed to 100 nM cortisol 

for 0, 15, 30, and 60 minutes.  Immunofluorescent labeling for GR showed nuclear translocation 

of the GR for both siFKBP4 and si-control.  We quantified the intensity of cytoplasmic and 

nuclear signals as described in the Methods and constructed intensity histograms, illustrated 

below representative images for each treatment (Figure 4-12).  The distribution was fit by 

nonlinear regression to model the intensity of nuclear and cytoplasmic signals across 10 images 

per treatment, of approximately 300 cells each and shows 95% confidence intervals.  For the 

nuclear staining, the geometric mean intensity Î is reported with 95% CI, for cytoplasmic 

staining, the intensity of half-maximal frequency, I1/2 is reported with 95% CI, as calculated from 

the nonlinear regressions as described in the Methods.  The values were compared by two-way 

ANOVA with p<0.05 set as statistically significant, and the F ratios are determined to compared 

the contribution of Time (with cortisol) or treatment with siRNA (Control or FKBP4) to 

observed changes in GR staining intensity.  Post test with Bonferroni’s correction for multiple 

comparison comparing intensity among the time points (0-60 min Cortisol) and comparing 
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within the time points (si-Control or si-FKBP4 for a particular time point) are calculated to 

determine the contribution of either factor to changes observed in nuclear or cytoplasmic 

fluorescence intensity.  

 

Figure 4-12. Quantification of nuclear and cytoplasmic immunofluorescent staining of GR after treatment 

with 100 nM cortisol and siRNA to FKBP4.  Differentiated SHSY5Y cells were grown on glass coverslips and 

exposed to 250 nmol control (top) and FKBP4 (bottom) siRNA for 24 hr and then 100 nM cortisol for 0, 15, 
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30, 60 min.  Following fixation, cells were fluorescently labeled for GR (green) and nuclei (blue).   Using 

Image J and Slidebook, nuclear and non-nuclear GR staining was partitioned according to the Methods and 

Supplementary Information and quantified in 10 images for each treatment.  Fluorescence histograms were 

plotted and fitted by non-linear regression to a Boltzman distribution for nuclear staining and exponential 

decay distribution for cytoplasmic staining and normalized, which are shown below representative images.   

Geometric mean (Î, for nuclear) and half-maximal (I1/2, for cytoplasmic) intensities with 95% confidence 

intervals are shown below the images.  The total percentage of nuclear fluorescence intensities among the 

conditions are plotted below the images.  Two-way ANOVA compared the effects of siRNA or time-with 

cortisol on Î (bottom center) , I1/2(bottom left), and %Nuclear GR (bottom right).  Significance is represented 

by * (p<0.01) between the siRNA groups at a particular timepoint and # represent significant difference due 

to time with cortisol.  Si-FKBP4 contributed to lower nuclear staining intensity, slower nuclear translocation, 

and higher cytoplasmic staining intensity. 

 

4.3.3.2 Analysis of Nuclear Fluorescence Intensity 

In the si-Control group, the geometric mean intensity (Î±95% confidence interval) 

increased in the nucleus from 103.00±7.33 to 140.97±7.96 and 124.54±3.32 at 30 min and 60 

min, respectively, indicating a rapid increase in nuclear GR staining. In the si-FKBP4 group, the 

baseline intensity was lower and fluorescence intensity slower than the si-Control group.  The 

increase was significant at each time point, increasing from baseline 85.56±3.5 to 100.4±8.7 at 

15 min to 108.94±5.98 at 30 min.  The effects of Time (with cortisol) and si-RNA (either Control 

of FKBP4) were analyzed by two-way ANOVA and Bonferroni’s post tests.   Time with cortisol 

had a significant effect on Î, F3,72 = 60.8; while the siRNA had a larger effect on Î, F1,72 = 206.3 

(p<0.0001).   
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The Bonferroni post test, correcting for multiple comparisons (Signficance set to p = 

0.05/4 = 0.0125), to compare the two siRNA groups at each time point indicated that nuclear Îsi-

Control is consistently higher at each time point than ÎsiFKBP4, Table 4-1, this is clear in the bar 

graphs at the bottom of Figure 4-12.  To test whether Time with 100 nM cortisol has an effect on 

nuclear GR intensity within the siRNA groups, Bonferroni’s post test (Significance set to p = 

0.05/6 = 0.00167) compared Î at each time point (15, 30, 60 mins) to time 0.  These data indicate 

that GR staining increased in the nucleus in both si-control and siFKBP4, illustrated in Figure 4-

12 and analyzed in Table 4-2.  The increase is more rapid and intense in the si-control than the 

si-FKBP4 group, indicated by the t-statistic being higher in the Control comparisons in Table 4-2 

and illustrated in Figure 4-12, bottom.  The t-statistic is reported because all the p values are 

below the threshold for calculation using GraphPad Prism software, larger t indicates more 

significant difference between Î’s. 

 

Table 4-1.  Bonferroni post test comparing nuclear ÎsiControl vs  ÎsiFKBP4 at each time point after 

treatment with 100 nM cortisol showing effect of si-RNA. 

Time (min) Î si Control Î si FKBP4 Difference pt      

0 103.00 85.56 -17.44 5.92 <0.001 

15 140.00 100.40 -39.60 13.43 <0.001 

30 124.50 108.90 -15.60 5.29 <0.001 

60 116.10 104.00 -12.03 4.08 <0.001 
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Table 4-2.  Bonferroni post test comparing nuclear Î0 vs ÎTime points at each siRNA group, showing 

effect of Time with 100 nM cortisol. 

tsiRNA, time Î0 Îtime Difference p      

Control, 15min 103.00 140.00 37.00 12.55 <0.0001 

Control, 30 min 103.00 124.50 21.50 7.29 <0.0001 

Control, 60 min 103.00 116.10 13.10 4.44 <0.0001 

FKBP4, 15min 85.56 100.40 14.84 5.04 <0.0001 

FKBP4, 30min 85.56 108.90 23.34 7.92 <0.0001 

FKBP4, 60min 85.56 104.00 18.44 6.26 <0.0001 

 

4.3.3.3 Analysis of Cytoplasmic Fluorescence Intensity 

Because the cytoplasmic fluorescence histogram fit a decay distribution, for cytoplasmic 

fluorescence, the intensity of max-maximal frequency, I1/2±95%CI, is reported in Figure 4-12. 

Time with cortisol had a significant effect on I1/2, F3,72 = 23.39; while the siRNA had a more 

significant effect on I1/2, F1,72 = 187.2.  We found significant difference between the siRNA 

groups, with increased cytoplasmic GR fluorescence intensity in the si-FKBP4 group at all time 

points except at 30 mins, Table 4-3. We found that changes in I 1/2 due to Time with cortisol 

were less striking than in the nucleus, Table 4-4.  
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Table 4-3.  Bonferroni post test comparing cytoplasmic IsiControl vs IsiFKBP4 at each time point, showing 

effect of siRNA group on cytoplasmic intensity. 

tTime (min) si Control si FKBP4 Difference p      

0 1.82 17.13 15.31 8.90 <0.0001 

15 3.87 14.44 10.57 6.15 <0.0001 

30 1.99 2.47 0.48 0.28 0.7803 

60 1.55 22.25 20.70 12.04 <0.0001 

 

 

Table 4-4.  Bonferroni post test comparing cytoplasmic I0 vs Itime point in each siRNA group, showing 

effect of Time with 100 nM cortisol on cytoplasmic intensity. 

tsiRNA, time I0 Itime Difference p      

Control, 15min 1.82 3.87 -2.05 1.19 0.238 

Control, 30min 1.82 1.99 -0.17 0.10 0.9206 

Control, 60min 1.82 1.55 0.27 0.16 0.8733 

FKBP4, 15min 17.13 14.44 2.69 1.57 0.1208 

FKBP4, 30 min 17.13 2.47 14.66 8.53 <0.0001 

FKBP4, 60 min 17.13 22.25 -5.22 2.98 0.0039 

 

4.3.3.4 Analysis of Percentage of GR in Nucleus 

By summing the nuclear fluorescence, accounting for intensity of pixels and pixel count; 

and by considering the total overall GR fluorescence; the percentage of GR intensity in the 

nucleus is calculated, plotted in the bottom Figure 4-12, and analyzed by two-way ANOVA and 

Bonferroni post test.  The percentage of GR intensity in the nucleus was affected by both factors, 

siRNA (F1,72 = 125.5) and by Time with cortisol (F3,72 = 10.52), the greater effect by siRNA. 
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The Bonferroni post test to compare the two siRNA groups at each time point indicated 

that the percentage of GR in the nucleus is higher in the siControl group than siFKBP4 group at 

15 min and 30 min (Table 4-5) and illustrated in the bar graph at the bottom of Figure 4-12.  To 

test whether Time with 100 nM cortisol has an effect on nuclear GR intensity within the siRNA 

groups, Bonferroni’s post test compared percentage of GR in the nucleus at each time point (15, 

30, 60 mins) to time 0.  The si-Control groups significantly increased GR in nucleus at 30 and 60 

mins, while the siFKBP4 groups had lower percent GR in the nucleus at 30 mins, and increased 

to si-Control level at 60 mins, Table 4-6.  This analysis is consistent with the Î and I½ analyses in 

that the nuclear translocation in the si-Control group is rapid, but slowed in the siFKBP4 group. 

 

Table 4-5.  Bonferroni post test comparing %GR in NucleussiControl vs %GR in NucleussiFKBP4 at each 

time point, showing effect of siRNA group on percent of GR in nucleus. 

tTime (min) %GR Nuc siControl %GR Nuc siFKBP4 Difference p      

0 79.85 77.65 -2.19 1.64 0.1054 

15 82.48 77.14 -5.34 3.99 0.0002 

30 89.32 68.58 -20.74 15.50 <0.0001 

60 84.27 82.55 -1.72 1.28 0.2047 
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Table 4-6.  Bonferroni post test comparing %GR in Nucleus Time0 vs %GR in Nucleus Time point in each 

siRNA group, showing effect of Time with 100 nM cortisol on %GR in Nucleus for each group. 

tsiRNA, time %GR Nuc T0 %GR Nuc Ttime Difference p      

Control, 15min 79.85 82.48 2.63 1.97 0.0527 

Control, 30 min 79.85 89.32 9.47 7.07 <0.0001 

Control, 60 min 79.85 84.27 4.42 3.30 0.0015 

FKBP4, 15min 77.65 77.14 -0.51 0.38 0.7051 

FKBP4, 30min 77.65 68.58 -9.07 6.78 <0.0001 

FKBP4, 60min 77.65 82.55 4.90 3.66 0.0005 

 

4.4 DISCUSSION 

4.4.1 FKBP52 and FKBP51 Co-Immunoprecipitations 

Past reports have shown that the GR exists in complex with heat shock proteins such as HSP90, 

HSP70, and the large molecular weight immunophilins FKBP52 and FKBP51 [79, 227-229].  

Davies et al propose that the first step in activation of the GR is a switch from being bound to 

FKBP51, which does not interact with dynein, to being bound to FKBP52, which does bind 

dynein [14].  Since these immunophilins are present in the brain, we hypothesized that their 

function in neurons and glia would be a form of modulation of cortisol-mediated glucocorticoid 

activation. Using a neural cell line and primary neuronal cultures in vitro, we show that this 

system is pertinent to neural and glia cells; and that the FKBP52/FKBP51 dynamics may be an 

intracellular feedback mechanism to GR signaling. 
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Using immunoprecipitation, we detected the molecular motor protein dynein in complex 

with FKBP52, but not FKBP51 (Figure 4-4).   Further, there appears to be more dynein present 

with FKBP52 when cells were pre-incubated, and immunoprecipitation and wash buffers were 

supplemented, with cortisol.  GR immunoprecipitated with FKBP52 only in the presence of 

cortisol, but not the ligand FK506 or control conditions (Figure 4-4).  GR was detected in 

immunoprecipitations with FKBP51, in small amounts, under control conditions or in the 

presence of cortisol, but not with FK506 present.  This observation is in line with previously 

published reports whereby FK506 disrupts the interaction between both FKBP52 and FKBP51 

with GR [210].  Furthermore, since GR was present with FKBP51 in the presence of cortisol, 

cortisol may not be sufficient for dissociation of GR from FKBP51, but is necessary for 

association of GR with FKBP52.   

Until recently, the effects of FK506 on GR-FKBP51 was not studied.  In 2008, a report 

showed also that FKBP51 nuclear localization was altered due to HSP90 inhibitor [62].  Using 

HeLa cells, Normal- (N-TM5 cells) and Glaucoma- (GTM-5 cells) Trabecular Meshwork cells, 

they showed cell-type dependency on the GR-FKBP51 interaction and FK506-effects, showing 

FK506 inhibiting GR-induction in the normal cells, but not in the glaucoma cells [62]. The co-

immunoprecipitation in Section 4.3.1 and the neuronal cells in Section 4.3.2 respond similarly to 

the GTM-5 cells. By this model, a cell could modulate its ability to respond to glucorticoids 

through GR by altering the concentration of these adapter proteins, FKBP51 and FKBP52. 

4.4.1.1 Limitations and Further Questions 

Immunoprecipitation depends upon binding of a specific antibody in solution to an epitope in a 

protein of interest, the antibody is immobilized on a solid substrate, and other components in the 

mixture are washed out.  Anything complexed with the protein of interest should remain bound 
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and eluted and further detected.  This method can yield false negatives and false positive.  Too 

stringent washing conditions may wash away a component in the mixture.  If an interaction is too 

transient or dependent upon a high concentration of specific ions, like Ca2+ or Mg2+, then 

components may be lost and not detected.  If it known or hypothesized that an interaction 

depends on a cofactor or ion, buffers can be supplemented with the putative cofactor.  For this 

reason, buffers were supplemented with cortisol or FK506 in the co-immunoprecipitation 

experiments to determine whether interactions depended upon or were interrupted by those two 

components. 

 Non-specific binding of either primary antibody, secondary antibody, or the immobilizing 

agent to any cell-lysate component can yield false-positives.  The lysate should be pre-cleared 

prior to incubation with primary antibody.  Our study used specific antibodies, but other antibody 

sets from various species could be used to yield cleaner results.  We immunoprecipitated for 

FKBP51 and FKBP52 and detected either GR or dynein by Western blot.  Ideally, we could 

immunoprecipitate GR or dynein and probe for the immunophilins to confirm that the interaction 

we detected is not a false-positive.  Although we were unable to immunoprecipitate GR using 

antibodies from AbCam (AbCam ab2768 and AbCam ab3578), recently AbCam ab3579 

antibody has been made available and is marketed for chromatin-immunoprecipitation and may 

work in our system, finally, Binder and coworkers were able to immunoprecipitate GR using a 

rabbit anti GR from Santa Cruz Biotechnology (sc1003). 

 Another technique commonly called “pulldown” could be utilized.  The classic method is 

to fuse theprotein of interest, for example FKBP52 using cloning techniques to glutathione-S 

transferase (GST), or GST-tagged.  The fusion protein would be incubated with lysate, 

supplemented with the cofactors of interest, and the GST-tagged FKBP52 and its binding-
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partners immobilized on a solid glutathione column.   The complexes would be eluted using free 

glutathione to compete away that glutathione column to GST interaction, and putative binding 

partners probed for. Since glutathione was shown to bind to the ryadonine receptor at the site 

FKBP12-binding, a different tag should be utilized for immunophilins, for example maltose-

binding protein, amylose column (amylose is polymerized maltose), and eluted using free 

maltose.  These pull-down methods would not be dependent upon combinations of antibody and 

species antibody and would yield clean results in the final Western blot. 

4.4.2 Immunofluorescence of GR and FKBP51 in Neuronal Cultures 

The GR is known to be a dynamic protein both in the nucleus and in the cytoplasm, 

involved in the formation of various DNA and protein complexes and also to undergo proteolysis 

inside the nucleus [230-233].  Since a portion of the GR may have already been involved in 

DNA-transcription factor complexes, prior to any cortisol exposure, our images seem to indicate 

that FK506 interrupts an interaction that would cause GR to be maintained in the nucleus or 

involved in focal protein complexes; putatively it interrupts the interaction with an immunophilin 

chaperone protein like FKBP51. At the longer time point, 180 minutes of cortisol exposure, 

fewer aggregates are formed in the nucleus and the distribution is more diffuse.  Furthermore, 

there is more cytoplasmic FKBP51 and GR staining noted in the presence of FK506.  This 

would support the notion that perhaps FKBP51-binding promotes stability of GR and the 

formation of foci, perhaps protecting it from proteolysis FKBP51, in this case, would be acting 

as a chaperone protein associated with GR in the nucleus. 

It is unknown what other proteins FKBP51 binds to in the nucleus, aside from GR.  It is 

also unknown whether FKBP51 binds GR when it is DNA-bound.  While the staining of GR in 
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the nucleus showed specific foci, which became more clear and distinct over time with cortisol, 

the FKBP51 nuclear staining remained diffuse.  GR likely is in complex with FKBP51 in the 

nucleus when it is not DNA bound or in foci, but rather soluble in the nucleus, potentially 

FKBP51 protects non-DNA-bound-GR from proteolysis in the nucleus or nuclear export; by 

potentially serving as an adapter protein to other chaperones like HSP90. Others have shown 

diffuse nuclear staining of FKBP51 in trabecular meshwork cells, (GTM-5 and NTM-5  cells), 

mouse embryonic fibroblasts (MEF), and rat intestinal epithelia (RIE) cells [62, 234].  After 

treatment with FK506, FKBP51 was excluded from the nucleus and showed cytoplasmic, 

potentially perinuclear staining, a similar staining pattern was observed in osteosarcoma cells 

(U2OS cell line) and in megakaryocytes (MK cells) [234, 235].  The differential localization of 

FKBP51, nuclear versus perinuclear, seems to be cell-type dependent.  This suggests that nuclear 

localization of FKBP51 is dependent on some component present in MEF cells, neurons, glia, 

GTM-5, NTM-5, REI cells that is not present in MK cells or U2OS.  Our observations in Section 

4.3.2 suggest that FK506 interrupts this interaction in neurons and glia. 

4.4.2.1 Limitations and Further Questions 

We showed increase GR nuclear localization and altered subnuclear localization due to 

addition of cortisol whereby GR staining formed distinct foci over time.  Pretreatment with 

FK506 altered this change, GR staining was more diffuse, and more was apparent in the 

cytoplasm.  Quantitative analysis of nuclear localization of GR or GR staining would increase 

our confidence in the significance of the results.  Quantification methods similar to the GR 

localization described in the Materials and Methods Section 4.2.8 could be adapted.  Because the 

study was performed in mixed-type cell culture from primary human forebrain tissue, the 
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cultures contained heteroegenous mixture of cell-types, neurons of different sizes, and 

extracellular debris, which showed up as background in fluorescence imaging.   

The quantification described in Section 4.2.8 was quite sensitive; results were 

confounded when a thin-layer green-pass light filter was misaligned on the fluorescence 

microscope. In imaging SH-SY5Y cells shown in Section 4.3.3, the experimenter only focused 

on nuclei through the blue filter in order to not bias the results, and only when the quantification 

showed skewed result, was the problem made aware.  The Nearest Neighbor Algorithm of 

deconvolution from 3-D steps is a stringent process and when background fluorescence signal 

from extracellular  debris is removed, true signal is also lost.  If the cultures from one coverslip 

differed too much from another coverslip, the differences due to high background or lost signal 

due to background subtraction could hide differences due to treatment.  Therefore a qualitative 

assessment is presented here. 

Nevertheless, other techniques could be quite informative regarding GR, FKBP52, and 

FKBP51 subnuclear, perinuclear, or cytoplasmic localization or dynamic trafficking.  Tracking 

of proteins in live cells using fluorescent-protein tags during cortisol and FK506 treatment would 

show how the localization changes over time.  Fluorescence-resonance energy transfer (FRET) 

of tagged proteins would show firstly whether GR and FKBP51 were interacting directly and 

secondly could quantify how the interaction changes based on treatments. 

It is unknown whether FKBP51 interacts with GR when the GR is DNA-bound.  Gel-

shift and super-shift assays could be performed to test this.  DNA of a known length containing 

GR-responsive elements could be incubated with cell lysate from cells expressing GR and 

FKBP51, the DNA-protein complexes that formed would be run in an agarose gel and imaged 

using ethidium bromide.  If proteins were bound to the DNA, the DNA band would be shifted to 
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higher molecular weight.  A supershift could be dected if antibodies to FKBP51 were added, 

further shifting the DNA band to higher molecular weight, indicating FKBP51 is presented in the 

GR-DNA complex.  Depleting the lysate of GR, using GR-knocked down cells or GR-knockout 

animal to obtain the lysate would show whether this putative interaction is GR-dependent.  

Whether FKBP51 binds GR while GR is DNA-bound would be informative, because FK506 

excluded FKBP51 from the nucleus.  FK506 is an FDA-approved drug in use as an 

immunosuppressant in organ transplants, if FK506 has an effect on GR signaling and aberrant 

GR signaling is implicated in mood disorders described in Chapter 2, then this drug or its 

analogue may be a target for controlling GR signaling. 

4.4.3 Knockdown of FKBP52 by siRNA Slows Cortisol-Induced GR Nuclear Localization 

In the cytoplasm, FKBP52 is hypothesized to be an accessory protein for GR trafficking to the 

nucleus. To test this hypothesis in neuronal cells, we knocked down FKBP52 by siRNA in 

differentiated SH-SY5Y cells.  We treated the FKBP52-deficient cells with cortisol and stained 

for GR using immunofluorescence.  FKBP52-deficiency did not totally abrogate nuclear 

translocation of GR.  As shown in Figure 4-12, in the si-Control group, the nuclear GR 

fluorescence intensity rapidly increased.  The statistical analysis showed that the cortisol-induced 

increase in nuclear GR localization in the FKBP52-deficient cells was slower and less robust.  

The FKBP52-deficient cells formed GR aggregates, but they were fewer and the less intense than 

those seen in controls and the staining remained diffuse in the nucleus.  In the FKBP52-

knockdown cells, GR could be seen in neuritic processes even after cortisol exposure, and the 

fluorescence intensity was measurably higher. 
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 We hypothesized that the nuclear translocation of GR would be abrograted by the 

absence of FKBP52.  We observed a significant reduction in the nuclear immunofluorescence 

signal for GR in the FKBP52 knockdown (Figure 4-12, bottom).  However, calculating 

percentage of GR signal in the nucleus only showed a 5% difference at 15 min, 20% difference 

at 30 min, and no difference at 60 min (Table 4-5).  The biological significance of 20% 

difference after 30 min of cortisol exposure is unclear.  We wish to extrapolate the data from this 

body of work toward chronic conditions like HIV-infection and MDD as discussed in Chapter 2, 

and the we see no difference in GR nuclear localization at 60 min, indicating the effect of 

FKBP52 must be in the kinetics of relatively early cortisol-induced GR trafficking.  However, if 

a spike in cortisol levels due to a stressful event caused ligand-induced GR signaling in neurons, 

and the physiologic cortisol levels disappated quickly, FKBP52 may play a role in these transient 

stress-induced short cortisol spikes. 

 A microtubule-associated protein called Double-cortin-like was recently shown to 

regulate the transport of GR in neuroprogenitor cells [236].  If SH-SY5Y cells express Double-

cortin-like, then this would be a factor independent of FKBP52 and FKBP51 regulating GR 

translocation.  A double-knockdown for both Double-cortin-like and FKBP52 would inform us 

as to the importance of these two factors.  The Double-cortin-like (DCL) mRNA is generated by 

splicing of the Double-cortin-like-kinase (DCLK) mRNA, and these transcripts are expressed in 

the brain, and splicing is differential throughout CNS development [237]. DCL is involved in 

cortical development and is expressed in migrating neuroprecursors in the developing mouse 

brain and disappears from cortical neurons in after embryonic day 13 from cortical projections 

and is only found in glial afterwards [238]. We showed in Section 3.3.5 that FKBP52 is 

expressed in cortical neurons of the adult human brain. It would be relevant to determine whether 
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the differentiated SH-SY5Y cells studied in Section 4.3.3 or the neuron-glial cultures studied in 

Section 4.3.2 express DCL as this protein may influence GR translocation in the cell culture 

system but not extrapolate to adult CNS studied in Chapter 3.  

4.4.4 Conclusion 

Taken together, these studies suggest that FK506 disrupts the interactions between the 

GR and both FKBP51 and FKBP52.  Cortisol is necessary for the association of FKBP52 with 

GR, but not sufficient for dissociation of FKBP51 from GR. Treatment with FK506 did not alter 

the ability of the GR to form nuclear agregates, but the aggregates were fewer and more diffuse.  

Also, there was appreciable GR present in the cytoplasm after 180 minutes if FK506 was present 

compared to cells that were not treated with FK506.  This is evidence that association of GR with 

immunophilins supports GR stability in the nucleus.  Based on this, we propose that changing the 

GR-immunophilin interaction, using FK506, affects the formation and stability of GR in 

neuronal nuclei. 

In conclusion, we propose that immunophilins may be modulators of the cortisol-HPA 

axis response to stress and related chronic brain disorders.  Altering neuronal gene expression 

through controlling GR-mediated signaling pathways may represent a novel and potent 

therapeutic intervention. 
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5.0  CONCLUSION AND FUTURE DIRECTIONS 

 

Figure 5-1.  Model of control of GR signaling in neurons by immunophilins; dysregulation in chronic 

inflammation or mood disorder.  The working model is that FKBP52 and FKBP51 balance to act as 

gatekeepers to GR signaling in mature neurons.  FKBP51 may act to promote stability of of GR in the 

nucleus and cytoplasm, while FKBP52 links GR to the retrograde molecular motor dynein.  Factors such as 

chronic stress, genetic components, or paracrine signaling from nearby activated microglia may cause an 

imbalance in immunophilin expression, leading to abberant GR signaling in the brain, and thus contributing 

to HPA axis dysfunction. 

 

This body of work presents a potential mechanism whereby neurons could regulate 

cellular glucocorticoid signaling. Figure 5-1 illustrates this model, chronic inflammation or 

environmental factors leading to mood disorder could lead to an imbalance in the levels of 

FKBP52 and FKBP1 which could lead to aberrant GR activation, either acute or chronic. That 
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may have lasting impact on neurons in the central nervous system. Cellular glucocorticoid 

signaling in neurons of the frontal cortex could have an impact on surrounding tissue by altering 

synaptic and dendritic fields.   The pathology of disease in psychiatric disorders is subtle and 

molecular etiology is likely subtle and complex as well.  Therefore, these high molecular weight 

immunophilin proteins, may be part of a feedback system that is a recent addition to the 

mammalian genetic milieu, which may be part of the biochemical basis for stress-related disease.  

5.1 IMMUNOPHILINS AND GLUCOCORTICOID RECEPTOR 

We show here the importance of FKBP52 in cortisol-induced trafficking of GR in neurons.  

However, more questions are raised about FKBP51.  The formation of puncta in the nucleus was 

inhibited by FK506, and FKBP51 was absent in the nucleus when FK506 was present.  Does 

FKBP51 affect the stability or dynamics of GR in the nucleus?  Which gene transcripts, specific 

to GR are altered?  Similar cell culture studies as those presented in Chapter 4 knocking down 

expression of FKBP51 will help answer some of these questions.  Furthermore, more 

sophisticated techniques described in Section 4.4.1.1 and 4.4.2.1 to measure kinetics of protein-

protein interactions with the immunophilins and hormone receptors may provide insights into 

cellular physiology of hormone receptor and adapter protein interplay. 

In Chapter 2, a simple phylogenetic analysis illustrated the divergence of the larger 

molecular weight immunophilin FKBP52 in mammals and primates.  FKBP51 is a recent 

addition to the immunophilin repertoire. Hormone and steroid signaling are important molecular 

regulators for development and function of tissues. The brain is sometimes said to be a slave to 

hormones. It is interesting that these two proteins, recently evolved and diverged, play a role in 
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subtle modulation of glucocorticoid signaling, a cell can regulate its “readiness” to respond to 

acutely elevated cortisol. In Chapter 3, we showed that in a human model of chronic viral 

infection (HIV), these proteins are dysregulated in a neuronal population that responds to chronic 

glucocorticoid exposure with decreased neuritic arborization, which may be pertinent to mood.   

Future studies that build on this body of work may reveal a molecular basis for mood disorders. 

 

5.2 IMMUNOPHILINS IN HIV AND DEPRESSION 

In Chapter 3, we uncovered some interesting information with regard to the expression of 

immunophilins FKBP52 and FKBP51 in HIV infection and depression. They appear to be 

increased in the frontal cortex of HIV-infected individuals (Section 3.3.1 and 3.3.2).  Since 

expression of the immunophilins seems to generally neuronal in the region analyzed; for 

example in large pyramidal neurons for FKBP51 and in pyramidal neurons and interneurons for 

FKBP52 (Section 3.3.5), the increase is likely not due to direct infection of a cell.  Rather, our 

evidence points to neuronal increase in immunophilin expression due to soluble factors secreted 

by HIV-infected microglia (Section 3.3.4). Since HIV-infected microglia produce the cytokines 

TNFα, IL-1α, and IL-1ß [184], and these cytokines can cause altered GR signaling[24-26, 177], 

and these protein play a role in GR signaling [81, 137], it would make sense that neuronal GR 

signaling is altered by HIV-infected microglia through changes in immunophilin expression due 

to cytokine production. 

HIV patients were shown to be hypercortisolemic [18, 19] and have an increased risk of 

developing MDD[171, 186].  The results presented here may point to immunophilins as a 
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molecular basis for susceptibility; however it is important to remember that the genes interact 

with the environment to produce the disease.  In this case, the environment is HIV-infection, not 

all HIV patients develop MDD, and there are other factors involved.  These factors may be 

psychosocial stress or drug abuse. 

We analyzed two SNP’s previously identified to be associated with PTSD, depression, 

and dissociative disorder that may be associated with our MDD population (See Summary in 

Table 3-8 and Discussion in Section 3.4.3).  The SNP’s may have different roles in MDD found 

in HIV and non-HIV patients.  The polymorphism located in Intron II, near a hormone 

responsive element, and the polymorphism located in the 3’UTR, may affect either transcription 

of the mRNA or translation of the protein, respectively.  Studies into the molecular consequences 

of these polymorphims would be interesting.  For instance, does the SNP located near on intronic 

hormone responsive element affect the transcription of FKBP5?  Does the SNP located in the 

3’UTR affect interaction with micro-RNA’s and affect mRNA stability and protein translation?  

Is it tissue specific? 

In order to determine whether the intronic SNP affects FKBP5 transcription, an 

experiment could be designed utilizing primary cells from a genotyped source.  Since FKBP5 is 

cortisol-responsive and the putative element we are testing is an HRE, treatment with cortisol 

would show differential effects in cells derived from CC, CT, or TT genotyped cases.  Isolation 

of DNA and amplification of the specific region or even de novo synthesis of the desired region 

using either the C or T allele at the appropriate place, followed by a gel-shift assay described in 

Section  4.4.2.1 could test whether the allele affects binding of transcription factors. 

In order to determine whether a micro-RNA targets the SNP in the 3’UTR of the FKBP5, 

Northern analysis, and functional analyses could be used.  The specific region containing the 
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SNP in 3’UTR of FKBP5 would be amplified by PCR from sources homozygous for the A or C 

allele (potentially using the same probes as the allelic discrimination assay described in Section 

3.2.5) and this product hybridized to a membrane. Micro-RNA from cells would then be isolated, 

radiolabeled, and used to probe PCR product.  To determine whether results would be tissue-

specific, micro-RNA’s from various tissues or brain regions, or from panels of patients could be 

isolated. Results from these studies may have social impacts on prevention strategies as well for 

diseases such as PTSD, MDD, peritraumatic disocciation; for example: screening soldiers for 

risk alleles before deployment and identifying susceptible populations to receive intervential 

behavioral, cognitive, or pharmacologic therapy.  These results would be interesting because it 

would provide a functional consequence of the SNP’s which may relate to the etiology of the 

diseases that they associate with, and provide insights for development of therapeutic strategies.  
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APPENDIX A 

DENSITOMETRIC ANALYSIS OF WESTERN BLOTS 

A.1 PURPOSE 

In order to compare protein levels in the autopsy study and obtain the data for Section 3.3.1, 

denistometretic measurements were taken of the Western Blots depicted in Figure 3-5 and Figure 

3-7 to obtain the plots.  To assess protein transfer, loading, and quality in the western blot 

polyvinylfluoridine (PVDF) membranes, protein stains were performed prior to further Western 

blotting. 

A.2 PROCEDURE 

The program Image J was utilized to measure the density of bands in Western blots illustrated in 

Section 3.3.1 [239].  Lanes were outlined and histograms of optical density were constructed.  

The area under the curve was measured for each band of the immunophilin proteins and actin. 

Fold-Actin = AreaFKBP / AreaActin.  Normalized Fold Actin as plotted in the y axis of Figures 3-6 

and 3-8 is calculated by comparing each Fold-Actin to the average Fold-Actin of the Control 

Group, Normalized Fold-Control = Fold-ActinControl / Fold-ActinPatient.  Although the 

densitometric analysis is not strictly quantitative and has a low signal to noise ratio compared to 
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other methods of measurement, calculating Fold-Actin is a way of accounting for protein 

degradation and loading errors, and is the mathematical basis for the ∆∆CT method for 

determining gene expression in quantitative PCR.  Since the tissue is human autopsy tissue with 

variable handling procedures and postmortem intervals shown in Table 3-1, there was unequal 

protein degradation from patient to patient, a normalization procedure is necessary for 

comparison. 
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A.3 RESULTS 
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APPENDIX B 

PRIMARY HUMAN NEUROGLIA FROM FETAL TISSUE 

B.1 TISSUE PREPARATION 

Human fetal forebrain tissue was acquired according to University of California San Diego 

Internal Review Board guidelines through Advanced Biosystems (Alameda, CA).  Tissue was 

transferred to a 50mL conical polystyrene tube and kept at 4°C in a Holding Media consisting of 

Hanks Balanced Salt Solution without Ca2+ with 1mM glutamine, and 10μg/mL gentamycin 

sulfate and 25mM HEPES. 

1.  Tissue was placed in holding media in a sterile Petri dish. 

2.  Menninges and blood vessels were separated from cellular tissue using forceps 

separating viable tissue from one petri-dish to the next. 

3.  Tissue was disaggregated by chopping with a scalpel and transferred to a new conical 

tube containing 4°C Holding Media. 

4.  To separate tissue and form a single cell suspension, tissue was drawn back and forth 

ten times in a 5mL glass pipette. 
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5.  The suspension was shaken gently and stored on ice for 10 minutes to allow 

extracellular matrix to settle to bottom.  

6.  Using a 10mL syringe the single cell suspension, supernatant, was removed and 

passed through a sterile nylon filter into empty 50mL conical tubes.  

7.  The filtered suspensions were centrifuged at 1000rpm, 4°C for 5 minutes 

8.  Pellets were resuspended in a single tube and cells were counted in Trypan Blue. 

9.  106 cells/mL were plated, and cultures maintained at 37°C, 5%CO2. 

Microglia were cultured in 175cm2 flasks in 20mL media consisting of high glucose 

DMEM supplemented with 10% human serum, 25mM HEPES, 10μg/mL gentamycin sulfate, 

2mM glutamine. 

Neurons are cultured on glass coverslips coated with polyornithine and laminin in 24-

well plates using 500μL meda consisting of Neurobasal media with B-27 supplement, 2mM 

glutamine, and 10μg/mL gentamycin sulfate. 

HIV BAL was obtained for the National Institutes of Health AIDS-Reagent Repository 

Program and microglia were exposed to 104pg of virus as determined by p24 ELISA.  Media 

were changed every three days and supernatant was saved for p24 measurements.  Supernatant 

for exposure to SH-SY5Y cells shown in Section 3.3.4 were used from Day 15 with p24 

measurements showing viral propagation in the graph below. 

ELISA p24 Measurements in Human Fetal Microglia Exposed to HIV-1 BAL at 
10ng/ml for 12hrs
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Mixed neuron-glia cultures were maintained in media for four weeks for differentiation 

according to previously reports.  Phase contrast images of a typical live culture is shown below, 

with MAP2 immunocytochemistry, and MAP2/Neurofilament (green) GFAP (red) 

immunofluorescence images. 
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