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ON THE VARIANCE OF ELECTRICITY PRICES IN DEREGULATED

MARKETS

Claudio M. Ruibal, PhD

University of Pittsburgh, 2006

Since 1990 many countries have started a deregulation process in the electricity wholesale

market with a view to gaining in efficiency, lowering prices and encouraging investments. In

most of the markets these objectives have been attained, but at the same time prices have

shown high volatility. This is mainly due to certain unique characteristics of electricity: it

cannot be easily stored; and the flow across lines is dependent on the laws of physics.

Electricity price variance has been studied very little. Variance is important for con-

structing prediction intervals for the price. And it is a key factor in pricing derivatives,

which are used for energy risk management purposes.

A fundamental bid-based stochastic model is presented to predict electricity hourly prices

and average price in a given period. The model captures both the economic and physical

aspects of the pricing process, considering two sources of uncertainty: availability of the units

and demand. This work is based on three oligopoly models —Bertrand, Cournot and Supply

Function Equilibrium (SFE) due to Rudkevich, Duckworth, and Rosen— and obtains closed

form expressions for expected value and variance of electricity hourly prices and average

price.

Sensitivity analysis is performed on the number of firms, anticipated peak demand and

price elasticity of demand. The results show that as the number of firms in the market
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decreases, the expected values of prices increase by a significant amount. Variances for the

Cournot model also increase. But the variances for the SFE model decrease, taking even

smaller values than Bertrand’s. Thus if the Rudkevich model is an accurate representation

of the electricity market, the results show that an introduction of competition may decrease

the expected value of prices but the variances may actually increase.

Price elasticity of demand severely affects expected values and variances in the Cournot

model. So does the firms’ anticipated peak demand in the SFE model. Market design and

market rules should take these two parameters into account.

Finally, using a refinement of the model it has been demonstrated that an accurate

temperature forecast can reduce significantly the prediction error of the electricity prices.

Keywords: Electricity Prices, Deregulated Electricity Markets, Electricity Price Variance,

Cournot Model, Bertrand Model, Supply Function Equilibrium, Rudkevich and Duck-

worth and Rosen’s Formula, Stochastic Load, Hourly Prices, Average Prices, Edge-

worth Expansion, Method of Cumulants, Volatility, Energy Risk Management, Electricity

Derivatives Prices, Value-at-Risk, Conditional Value-at-Risk.
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1.0 INTRODUCTION

This dissertation describes an engineering approach to a challenging economic problem re-

lated to electricity prices. Deregulating electricity markets is still in early stages. Conse-

quently, markets are not yet mature enough and their behavior is not easily understood.

The recently exhibited extreme volatility of prices provides an impetus for understanding

the pricing process in order to be able to predict electricity prices more accurately. Obtaining

estimates of the expected values of electricity prices is not sufficient for this purpose. At a

minimum, estimates of the variances of prices are also necessary.

1.1 MOTIVATION

Many countries are in the process of restructuring and deregulating their electric power in-

dustry in order to introduce competition into the production markets. Electricity production

was long considered a natural monopoly. However, decade-long experiments carried out by

a number of countries as well as by some regions in the United States have shown that

competition is quite feasible. According to economic theory, competition provides consumer

benefits: low prices, reliable services, predictable bills and future value-added services. In

short, competition offers efficiency which means that the right amount of electricity is pro-

duced by the cheapest generators and consumed by those customers who value it most. In

deregulated markets electricity prices are set by the market itself for every hour. Since the

1



deregulation process started, wholesale electricity prices have however shown a great amount

of variability.

This variability is extreme compared with other markets. Some examples of volatilities1

for daily prices follow (see Weron [88]):

• treasury bills and notes have a volatility of less than 0.5%

• stock indices have a moderate volatility of about 1-1.5%

• commodities like crude oil or natural gas have volatilities of 1.5-4%

• very volatile stocks have volatilities not exceeding 4%

• 2000 Nord Pool electricity price volatility was 11%

• 2000 California/Oregon Border(COB) electricity price volatility was 15%

• 2000 Cinergy electricity price volatility was 37%.

On one hand, large variability can be expected because of the special features of electric-

ity: it cannot be stored, it has to be produced whenever it is needed, demand is stochastic,

there are many physical limitations to production and transmission. On the other hand, the

relative immaturity of the electricity markets also helps contribute to the variability. It is

expected that the effect of the second factor may be reduced (and in fact it has been) as

time passes by and people who influence markets learn from experience.

This variability brings uncertainty to the price. The exposure to uncertainty, that is

when some expected result is affected by an unknown event, is called risk. As in other

more mature markets, the presence of risk gives rise to a derivatives market emerging for

the purpose of hedging risk. This is also the case in electricity markets. A sound derivative

valuation is needed in order to make these markets work properly. The market value of a

derivative is closely related to the volatility of spot prices.

A derivatives market is not self standing. It is closely linked to the spot market. They

influence each other. Spot prices are affected by the existence of derivatives markets.

1Volatility is defined as the yearly normalized standard deviation of price returns. Price return is defined
as the difference between prices over a period divided by the price at the beginning of the period.
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The operating policies and strategic decisions of competing firms, under deregulation,

are such that these tend to maximize profits. In order to do this, however, it is necessary to

be able to predict prices. When predicting price one is interested in at least two important

quantities: the expected value, that is the price one expects to see in the future, and the

prediction error, that is how inaccurate the estimation may be.

Batlle [9] has classified the existing literature on electricity price models into three wide

groups according to the methods they use: game2 theory3 models, time series models, and

production cost models. To date it seems that no work has attempted to combine these

models to get the best from each one in order to form a more comprehensive and complete

model.

Game theory models have been used extensively. Their main advantage is capturing

the bidding process but with no consideration of the complicated engineering production

process.

Time series models are the most common because there are many well-known tools

that can be used to analyze the historical data. But they ignore both the bidding and

the engineering components of the pricing process. They are based on historical data from

which a model is extracted, calibrated and validated. They lack the flexibility of adapting

to structural changes like technology upgrades, increase in the number of competing firms

and new rules. Any change requires a new model, or at least new parameters that need to

be re-calibrated.

Production cost models are abundant in the literature about power markets because they

were useful before the deregulation trend had started. In regulated markets, while the price

is fixed, the firms want to predict cost. Cost is one of the ingredients of electricity price

but not the only one. These models try to capture the engineering process but they do not

portray the bidding behavior of competing firms.

2A game is defined as a set of players who must independently choose among a set of strategies to optimize
their individual payoff functions.

3Game theory is a combined branch of economics and mathematics that study the economic behavior.
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Under the important assumption of symmetric markets (i.e. firms are identical) and

without considering transmission constraints, this work attempts to develop a bottom-up

stochastic model for electricity prices based both on game theory and production cost models.

This model is used to get closed form expressions for the expected values and variances of

hourly prices and average prices in the real-time (spot) market.

1.2 CONTRIBUTIONS OF THIS WORK

From a theoretical point of view, this work is perhaps a first attempt to compute the variance

of electricity prices in deregulated markets using a bid-and-process-based stochastic model.

The model itself is the main contribution of this work. It is flexible and adaptable to

different supply systems, by calibrating the significant parameters. The conclusions are data

depending.

It integrates the physical and engineering processes and the bidding strategies to define

the price as a stochastic process. A supply model and a demand model capture the engi-

neering process. Three different bidding behaviors are considered: Bertrand, Cournot and

Supply Function Equilibrium (SFE). For each, the outcome is an expression of the hourly

price as a function of stochastic variables, related to demand and supply, whose probability

distributions can be ascertained. Thus the probability distribution of hourly prices can be

obtained. The first two models (supply and demand) and the last three models constitute

the warp and woof of the pricing process.

Under some assumptions, closed form expressions for the variance of both hourly real-

time prices and daily average prices are found. The statistics of hourly real-time prices are

useful from a very short-term perspective in order to ascertain the opportunity for offering

energy from a specific unit, or deciding the supply bid function, or withdrawing a unit to do

maintenance. The daily average price is useful for a longer term outlook, to make decisions

about investments and to forecast profitability.
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From a practical point of view, this work may help answer some of the following questions

that market participants may have:

• How can a generation company forecast prices to make its production plan? Which

electricity generating units will be called upon to produce on a given day? In order to

carry out the maintenance plan or substitute some units it will be useful to know the

variance of the merit-order index of the marginal unit.

• Will prices be attractive enough to promote investments so as to supply enough energy

in the future? A competitive market must be capable of growing at the same pace as

demand.

• What will the company’s cash-flow be in a given period? Revenues depend on prices and

on the amount of energy sold. In the computation of forecasted cash-flow the variance

of prices has an important role.

• What is the financial risk level for a new firm entering the market? How can one hedge

that risk? What will be the hedging cost? To cope with the volatility of prices financial

markets have developed derivatives to hedge the risk. The design of the derivatives, and

their costs, are mainly based on the variance of prices.

• How does the number of firms affect the mean and variance of price?

• What is the effect of price elasticity of demand4 on price variability? Electricity demand

elasticity is zero or very close to it because, in most of the markets where deregulation

is in place, it is only the wholesale market that is subject to it, keeping a regulated price

for end consumers. That means that the demand side is not sensitive to the variation in

the wholesale price of electricity in the short run.

1.2.1 Approach

This is a bottom-up or process-based approach, which means that the models try to capture

and integrate the dynamics of the generation process and the bidding process as well. This

4Price elasticity of demand is defined as the percentage change in quantity as a reaction to 1% change in
price.
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bottom-up approach should provide more accurate information than a statistical analysis of

historical data because the composition of the participating generators in a given market

will be ever-changing in number and technology. It also differs from a top-down perspective

in which economic factors play the most important role.

The stochastic model proposed in this dissertation captures the uncertainty of both the

load and the availability of the units. Due to the bidding rules prices depend heavily on the

generation cost structure of the system and on the magnitude of hourly load. This aspect

is crucial under deregulation, especially because the electricity prices have recently shown a

large variation. Electricity companies need to make decisions under uncertainty. The more

knowledge the participants have on the probability distribution of prices, the better off they

will be to compete.

Few models combine a process-based fundamental as well as stochastic approach, and at

the same time take into account the market equilibrium. None of the existing models has

addressed directly the topic of variance of electricity prices. See subsection 4.1.4.

The model presented in this work improves other models in the following respects:

• it uses a more realistic modeling of supply curves,

• it includes the effect of ambient temperature on the load,

• it considers forced outages of generation units,

• it takes into account the market structure (number of firms, installed capacity and mar-

ginal cost),

• it is based on market equilibrium.

Game theory plays an important role in this work. The market equilibrium mentioned

above proceeds from well known studies on oligopolistic games. Assumptions about the

firms’ behavior and knowledge of the market are made following standards of game theory.

This approach integrates the engineering aspects with the economic ones. There are

many valuable papers in Economics studying the electricity markets under deregulation (see
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sections 4.2 and 4.3 below). It is a hot and current topic, perhaps because deregulation

processes have recently started in many countries and they have shown signs of oligopolistic

behavior. But they do not take into account the underlying engineering processes. In general

they are theoretical studies on the market equilibrium. On the other hand, there are also

some important research work on electricity production-cost based pricing models but they

do not consider the bidding aspects of the process (see section 4.1.2 below).

1.2.2 Research objective

The objective here is to study the variance of the hourly real-time (spot) generation price,

using a fundamental model, that includes physical (engineering) and economic aspects. It

will study the propagation of uncertainty from demand and from the availability of generating

units to the wholesale hourly electricity price, considering three economic models. It will also

produce a closed form expression for the variance of the daily average real-time generation

price. Finally a stochastic model will be used to look at the extent to which the error in

predicted prices is reduced if an accurate temperature forecast is available.

1.2.3 Assumptions and limitations

The way that electricity prices are cleared in a deregulated market is extremely complex.

Many factors intervene in the process:

• market rules (bidding patterns, schedule, cap price, derivatives),

• market structure (number and size of the firms, market power),

• demand elasticity,

• transmission infrastructure,

• reliability regulations (capacity reserve, ancillary services),

• fuel cost,

• unit commitment,
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• forced outages,

• level of demand.

This work provides a simplified model in order to obtain several preliminary conclusions.

The assumptions for this work are as follows.

In real power markets there are large generating companies which actually influence the

wholesale electricity price, and there are many other small firms which are price-takers and

constitute a fringe in the power market. These last ones usually do not own the marginal

unit. The model only considers the large ones as competing firms. The model goes a step

further and assumes that the competing firms are symmetric. This assumption is far removed

from the real world but it is frequently made and needed for tractability purposes.

Transmission failures and transmission congestion are not included in the model because

transmission is not a binding issue in the majority of situations (locations and hours). Fuel

costs are random variables but the model assumes them to be deterministic because they do

not change much in the short term.

1.3 ORGANIZATION OF THE WORK

The first three chapters introduce the electricity markets. Chapter 2 explains the characteris-

tics of the power markets and the on-going deregulation trend. Chapter 3 covers fundamental

aspects of risk management and how this study may provide a tool for formulating this im-

portant topic in the context of a young derivative market for electricity. Chapter 4 describes

the basic economic theory for electricity prices and provides justification for the choice of

the models used in this work.

Chapters 5 and 6 are the core of the analysis and develop the formulas for the expected

value and variance of hourly price and the average daily price respectively. Chapter 7 gives
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numerical examples for the results obtained in chapters 5 and 6 using illustrative supply and

demand models. A code written in Matlab is used to run the model.

Chapter 8 depicts a stochastic model of the load and considers the use of ambient temper-

ature to forecast load more accurately. The objective is to show the extent of reduction in the

error of the predicted prices. Finally, chapter 9 states the conclusions and recommendations

for future work.
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2.0 ELECTRICITY MARKETS

Electricity is a very peculiar commodity both from engineering and economic perspectives.

There is no other commodity or product with similar characteristics. In order to understand

the economic problem it is necessary to know how the markets operate and the underlying

economic concepts. At the same time, it is important to get acquainted with the engineering

aspects of electricity generation. Both topics are closely interlinked.

This chapter describes the characteristics of electricity markets that make them special

and how they affect the pricing process. It also explains the deregulation trend in many

countries and how this influences prices. Several different types of electricity markets are

described. By the end of the chapter the object under study of this work is clearly defined.

2.1 WHY ARE ELECTRICITY MARKETS DIFFERENT?

2.1.1 The physics behind electricity

Electricity is not storable —at least it is not efficiently storable in great quantities. Its

demand must always be met in real time. Many exogenous events can influence both demand

and supply. Climatic events like high ambient temperature can change demand dramatically.

A thunderstorm can damage transmission lines and consequently curtail supply. Unit outages

and line congestion give rise to uncertainty of supply.
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Another important aspect that needs to be brought into consideration is transmission

congestion. Electricity follows physical transmission rules like:

• Electricity takes the path of least resistance.

• The transmission of power over the network is subject to a complex series of physical

interactions (e.g., Kirchhoff’s laws1).

• Electricity travels at the speed of light.

As a consequence, some paths may get congested putting at risk the security of infrastruc-

ture. Congestion may make it necessary to use more expensive units to supply energy to a

specific place. The speed of transmission requires a permanent control over the system to

avoid shortages or dangerous deviations (frequency, voltage). The time available to react

with a corrective action is very short.

2.1.2 Strategic analysis of the electricity industry

Michael Porter’s Five Forces model (Porter [58]) for industry analysis helps us to understand

the electricity industry. The model assumes that a company is driven by five forces. In par-

ticular the price is affected by them. These forces are: level of rivalry, threats of substitutes,

buyers’ power, suppliers’ power and barriers to entry (or, to the contrary, threats of entry).

Level of rivalry.

The experience on competition in commodity markets is vast and widespread. Under

perfect competition2 it is well known that price equals marginal cost3. But the electricity

1First Law: The current flow into any node in a circuit equals the current flow out.
Second Law: The voltage drops around any loop add up to zero.

2The market is under perfect competition when agents act competitively, have well-behaved costs and
good information, and free entry brings the economic profit level to zero. To act competitively is to take
the market price as given (agents are price takers). Well-behaved costs imply that short-run marginal cost
increases with output and the average cost of production stops decreasing when a supplier’s size reaches a
moderate level. Good information means that market prices are publicly available. Free entry ensures that
competitors are able to enter the market freely. Stoft [74], 1-5.2

3Marginal cost is defined as the cost of producing the last unit of output, or the cost of producing one
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markets around the world which have already been deregulated are far from being a perfect

market. In the transition from regulated monopolies towards deregulation, power markets

show different levels of oligopoly4 in which some evidence of market power5 has been found.

The special characteristics of the electricity market enumerated above make it relatively

easy for generators to exercise market power as compared to producers of other goods. The

market design (number and relative size of competing firms, auction type to clear the price)

obviously influences the degree of rivalry too.

Threats of substitutes.

Electricity cannot be easily substituted, especially in the short term. Research is being

conducted since long ago on substitutes for the main perishable sources of energy to produce

electricity: coal, fuel and gas. But there is nothing competing with electricity.

Buyers’ power.

Another characteristic of the electricity market is the very low price-elasticity of demand

at least during certain hours. This means that a variation in price has almost no influence

on the quantity to be sold. One explanation for this is that in most countries deregulation

takes place in the wholesale market, whereas the retail market is still regulated. As a result

the end user cannot react to the wholesale price and therefore cannot contribute to demand

elasticity.

Suppliers’ power.

Suppliers to the power generating companies are those that provide the “raw materials”

which are also commodities in the majority of cases (coal, fuel, gas). The suppliers are

scattered and have very little negotiating power. In other cases, nature is the supplier

(hydro, wind).

more unit of output. Often, these two costs coincide.
4An oligopoly is a market dominated by a few sellers. Each of them can affect the market but does not

control it. Each producer must consider the effect of a price change on the actions of the other producers.
5Market power is defined as the ability of a seller to reduce the output supplied to the market so as to

raise the market price, and to do so profitably [Hunt [38], Glossary].
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Barriers to entry.

Generating units are capital intensive which constitutes an entry barrier for new com-

petitors to the market. And access to the grid is needed. The procedure to supply power

to the grid also requires supervision on technical characteristics (voltage, frequency and

synchronization).

As a result of all these facts, which are very difficult to change in the short term, electricity

prices are very much dependent on the market design.

2.2 DEREGULATION TREND

Restructuring, competition and deregulation of power markets began less than two decades

ago6. Power markets around the world are wending their way towards deregulation. The

path is not easy. They are following the experience of the telecommunications and gas

industries but they are finding different challenges along the way.

Most of the OECD7 countries have reformed their power generation markets opening

them up to free competition. This is already the case in Finland, Germany, New Zealand,

Norway, Sweden, England and Wales in the UK and several states in the USA and Australia.

In a few years they plan to open them up completely to include even the retail market. By

the year 2006, more than 500 million people (and all large industrial users) in the OECD

area will be able to choose their electricity supplier. This accounts for nearly 50% of the

population of OECD countries.8 Table 2.1 shows the global explosion of deregulation.

In the United States of America the situation is very different from state to state. There

are three Independent System Operators (ISOs)9 in the Northeast: PJM, New York and

6UK started the process in 1988; USA in 1992.
7Organisation for Economic Co-operation and Development
8cfr. International Energy Agency [40].
9System operator independent from control by any single market participant or group of participants.
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Table 2.1: Deregulation by countries

Country Year Operator’s Name
UK 1990 England & Wales Electricity Pool
Chile 1990 Centro de Despacho Económico de Carga
Argentina 1992 Mercado Eléctrico Mayorista (MEM)
Norway 1992 Nord Pool
Colombia 1995 Bolsa de Enerǵıa de Colombia
Sweden 1996 Nord Pool
New Zealand 1996 New Zealand Electricity Market (NZEM)
Australia 1998 National Electricity Market (NEM)
Spain 1998 Operadora del Mercado Español de Electricidad (OMEL)
Finland 1998 Nord Pool
US 1998 California Power Exchange (CalPX)
Netherlands 1999 Amsterdam Power Exchange (APX)
US 1999 New York ISO (NYISO)
Germany 2000 Leipzig Power Exchange (LPX)
Germany 2000 European Energy Exchange (EEX)
Denmark 2000 Nord Pool
Poland 2000 Towarowa Gielda Energii (Polish Power Exchange, PolPX)
US 2000 Pennsylvania-New Jersey-Maryland (PJM) Interconnection
UK 2001 UK Power Exchange (UKPX)
UK 2001 Automated Power Exchange (APX UK)
Slovenia 2001 Borzen
Poland 2002 Platforma Obrotu Energia̧ Electryczna̧ (POEE)
France 2002 Powernext
Austria 2002 Energy Exchange Austria (EXAA)
US 2003 ISO New England
Italy 2004 Italian Power Exchange (IPEX)
Czech Republic 2004 Operátor Trhu s Elektřinou (OTE)
US 2005 Midwest ISO (MISO)
Belgium 2006 Belgian Power Exchange (Belpex)

(Sources: Weron [88], and others)
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New England which have full retail access10 . California and Texas have their own ISOs.

California has full retail access, but Texas does not —it is in process. Other states (Arizona,

Ohio, Montana, Illinois, Michigan and Virginia) have begun reforms too but they do not

have wholesale market institutions in place yet.11

At the inception of the deregulatory trend it was believed that an open market would

behave as one in which perfect competition prevails. This has not been the case with the

deregulated power markets. Rather their behavior has been closer to that of an oligopoly.

The goal of having a deregulated market is to improve efficiency on both the supply

and the demand sides. Competition provides much stronger cost-minimizing incentives than

regulated environments; it stimulates the creativity of suppliers to develop new energy-

saving technologies and to make sounder investments. On the demand side it promotes

energy conservation and ensures that electricity is consumed by the users who value it most.

The means to achieve efficiency through competition are open access, restructuring and

deregulation. Every producer should have open access to transmission lines which means

equal opportunity to sell the energy. Restructuring includes different actions to change

existing companies: incorporation, privatizing, divesting. Deregulation means ceasing to

regulate but not only by removing controls on prices and on the entry of competing suppliers

but also creating the right environment for competition. Supportive market conditions must

also be put into place to achieve efficiency.12

Deregulation also aims at stimulating investment. Electricity demand is growing at a

rate of 2.7 % in the world, and 2.5 % in the USA (Figure 2.1)13. In order to be able to

produce and deliver energy at the same growth rate, one needs to account for the fact that

the installation of base load generation and transmission facilities requires a great deal of

time.

Hunt [38], Glossary
10Retail access is the ability of different energy providers (retailers) to compete in the electricity market

to sell residential, commercial or industrial customers power at unregulated rates. Hunt [38], Glossary
11cfr. Hunt [38], 273–277.
12cfr. Hunt [38], 5–8.
13Source: http://www.eia.doe.gov/emeu/iea/table62.html
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Figure 2.1: Total electricity consumption 1991 – 2000

2.3 THE ELECTRIC POWER SYSTEM

This section explains how the production, transmission and distribution of electrical energy

occur. The knowledge of the engineering of electricity generation is necessary to understand

the pricing process. As discussed earlier, electricity has special characteristics that deeply

affect the market price.

Energy is produced by many different units that generate power from thermal, nuclear,

hydro or wind energy. The specifications, performance, cost and capacity of these units are

very different. The cheapest ones like nuclear, coal-fired and hydro units work continually

satisfying the base load demand. For the load peaks, the more expensive generator units

are called on to work in a merit order (based on respective price in order from cheapest to

most expensive) as consumers demand more energy. Each unit has some technical aspects to

deal with when they are called on to serve or to end serving. They require a period of time

to start up and a period of time to shut down. This conditions the dispatching of units to
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serve. It may be more convenient to keep a specific unit running instead of shutting it down

for a short time; or to start up a more expensive unit for a short time because a cheaper one

requires more time to start up, for example.

The cost of producing energy may be broken down into two main types: fixed and

variable costs. Fixed costs are those that do not depend on the amount of energy produced:

start-up, shut-down, maintenance and depreciation costs. Variable costs , on the contrary,

are proportional to the energy generated.

As demand needs to be met at every moment more units are called on to produce energy

at the pace it is needed. All the properties mentioned above are relevant to decide which

units will be called in and out, when, for how long, and the amount of energy to be produced

by each. When electricity production was a monopoly or was regulated (or where it is still

so), these decisions were taken in a centralized way, solving the so-called unit commitment

problem together with the economic dispatch problem. There are many models and attempts

to solve this very complex combinatorial optimization problem that have many variables and

constraints and a non-linear objective function. The objective of the optimization problem

is to minimize overall cost.

Under deregulation, the unit commitment problem still exists but its character has

changed radically. First, there is no single omniscient decision- maker but many agents

involved in the process with partial information. Second, the new objective function for each

competitor is maximizing profits, not minimizing costs. So a new and very relevant variable

comes into play: electricity price. Third, considering the characteristics of energy, especially

the need to meet demand at every moment, another institution must take on an important

role: the Independent System Operator (ISO). It is in charge of clearing the market spot

price, scheduling the units and monitoring the system to meet demand continuously.

A power transmission system is sometimes referred to as a power grid. The arcs are

wires and the nodes are either energy suppliers or consumers. Redundant paths and lines

are provided so that power can be routed from any power plant to any load center, along a
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Figure 2.2: Electricity marketplace

variety of routes, based on the economics of the transmission path and the cost of power.

A first level of the grid is the generation level (25 kV). As soon as electricity is produced

it is transformed into high voltage electricity (above 110 kV and up to 770 kV) to reduce

energy losses in the transmission process over long distances through high-voltage lines.

Transmission consists of delivering electricity from the power generation plants to large

consumer points like cities or industrial parks. Once there, electricity voltage must be

reduced for distribution purposes in the area to less than 50 kV. This voltage reduction

is done in consecutive steps in stations, substations and small transformers at the city,

neighborhood or block level, until the end consumer voltage (110 V or 220 V) is reached.

The last step of the delivery of energy is retailing which consists of managing the connection,

disconnection and billing of electricity consumers. See figure 2.2.

The market existing between generating companies and distribution companies, retailers

or large consumers is called the wholesale marketplace. Delivery is made along transmission

wires. Transmission companies usually neither buy nor sell energy, but charge a fee for trans-
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mitting electricity from one node to another. The marketplace existing between distribution

companies/retailers and end users is called the retail marketplace. Electricity is delivered

via distribution wires.

Electricity transmission and distribution are natural monopolies. Traditionally genera-

tion was also a monopoly everywhere. Although in many countries it is still so, in some

others the generation industry has been opened up to different competing actors creating a

wholesale market, a global trend that started in 1988 in the UK (see table 2.1). In some

countries, retailing activity has also been opened up to a free market following the wholesale

market trend, providing the opportunity for end consumers to select from different energy

retail suppliers. This is known as “retail access” or “customer choice”. This is the case of

UK, New Zealand, Australia, Argentina, Norway, Sweden, Spain, Alberta and many states

of the United States 14. But in most other countries the retail price is still regulated. In all

cases there are some intermediate actors that buy electricity at a spot price and sell it at

fixed rates, who have to absorb the volatilities of the spot prices without being able to pass

it on to their customers.

2.4 WHOLESALE POWER MARKETS

The challenge facing countries seeking deregulation, is how to design the new electricity

markets (the number and size of participants and rules) such that the decisions made by

the profit-maximizing independent companies contribute to an efficient market performance,

reliable power supply and cheap prices. The first deregulated market was the England and

Wales Electric Pool. Many others around the world followed. Each newcomer was looking

at the experiences of the existing ones. Some of them subsequently needed to be reformed.

This is the case with the England and Wales Electric Pool, which in 2001 adopted the New

Electricity Trading Arrangements (NETA), substituting the old Pool Rules. The California

14See Hunt [38], chapter 3.
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Power Exchange (CalPX) suspended trading on its markets in January 2001. In 2002, a new

design started up, operated by the California Independent System Operator (CAISO). For

details on market design Zhou, Grasso, and Niu [93] have given a very good review.

Deregulated electricity markets differ from one region or country to another in many

ways: number and size of the competing firms, bidding rules and existence of different types

of price. The following subsections present some market mechanisms.

2.4.1 Bilateral and mediated markets

There are two basic market types: bilateral markets and mediated markets. In bilateral

markets buyers and sellers trade directly (or through brokers). In mediated markets there

exists an intermediary who buys from the supplier and sells to the end-consumer. The most

rudimentary type of mediated market is a dealer market. A dealer buys and sells at his own

risk. There exist more organized forms of mediated markets — namely, exchanges and pools.

2.4.2 Exchange and pool

An exchange is a mediated, centralized market and provides security for traders. It is less

flexible than a bilateral market because traders must follow specific rules. It utilizes auctions

that give transparency to the market and constitutes a traditional method of competitive

market implementation. It uses simple (one-part) bids: energy quantity and its price. Due

to the lack of flexibility it can operate much cheaper, faster and closer to real-time than a

bilateral market. But marginal cost is not the only cost that generating firms have. There

are also start-up costs, no-load costs and ancillary services15 among others. The drawback

of an exchange is that a simple bid cannot capture this complexity.

15Those services are required to deliver electricity to end-users at stable frequencies and voltages; they
include frequency regulation or control, spinning reserves, non-spinning reserves, and reactive supply/voltage
control. (Hunt [38], Glossary)
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A pool is also a mediated auction market characterized by the existence of side payments

such as ancillary services and no-load costs. The side payments are useful to make up for

costs other than marginal costs. Pools utilize complex bids (at least two-part bids): energy

quantity and price, and other side items. Complex bids represent real costs better.

2.4.3 Pay-as-bid and marginal bid pricing

There are two main pricing methods: pay-as-bid and marginal bid pricing. In pay-as-bid

pricing all the generators that bid less than the clearing price will operate and be paid as

they bid. On the other hand, marginal bid pricing will pay the same clearing price to all the

generators that run. The latter is the most widely-used methodology in deregulated power

markets.

2.4.4 Day-ahead and real-time markets

Usually power markets are two-settlement systems . This means that the system operator

runs two energy markets: a day-ahead market and a real-time (spot) market. The day-ahead

market is essentially a forward contract market. It operates a day in advance of the real-time

market. Transactions in the day-ahead market are cleared against real-time spot prices in

the following way.

Suppose a day-ahead transaction for quantity Qc is at strike price K. Later on the real-

time transaction is for quantity Qa and the spot price is ST . In this case the supplier will

be paid and the consumer will be charged the amount:

QcK + (Qa −Qc)ST
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2.4.5 PJM market

PJM is a marginal bid pricing pool that operates a day-ahead energy market and a real-time

energy market, besides other markets like ancillary services and capacity. The day-ahead

energy market is a forward market in which day-ahead locational marginal prices (LMPs) 16

are calculated for each hour of the next operating day based on generation offers, demand

bids and bilateral transactions submitted to it. The real-time energy market is based on

current day operations in which real-time locational marginal prices (LMPs) are calculated

at five-minute intervals based on the actual system operating conditions. Technically PJM

refers to demand bids as bids and to supply offers as offers. Figure 2.317 describes the PJM

day-ahead market.

The day-ahead market matches supply with demand. The market is voluntary for the

demand side. That is the buyers do not need to submit bids. Even if the load bid into the

market is less than the PJM load forecast, PJM will commit units up to the forecast.

The re-bidding period, also called reliability run, is only for generation that was not

selected in the day-ahead market when the results were posted at 4 pm. Generators that

were not accepted in the day-ahead market are given an opportunity to re-bid if they like

to. This changed bid is also the bid that will be carried into the real-time, should this unit

be needed for energy. Loads cannot re-bid.

In the real-time market there is no call for new bids. Generators offered in the day-ahead

market and in the re-bidding period carry through to the real-time market. Loads pay spot

price if they need to purchase their energy from real-time markets. Real-time prices are

calculated using the real-time flow of energy with the generation offers from the day-ahead

market acting as a foundation.

16LMP are defined as the cost to serve the next MWh at a specific location. See page 26 for more details.
17Sources: PJM Training, PJM 101: The Basics: http://www.pjm.com/

22



Figure 2.3: PJM Day-ahead Market Time Line

2.5 PRICING ENERGY

Over the past few years, deregulated electricity markets have gained a lot of experience

regarding electricity prices and market configuration. They have succeeded in coordinating

the daily system operations but the level and volatility of electricity prices have been far

above expectations. There are two chapters on this topic in Ilic, Galiana, and Finck’s Power

Systems Restructuring. Engineering and Economics [39] from which I extract the main ideas

of this section: Chapter 4 (by Green [31]) and Chapter 7 (by Graves, Read, Hanser, and

Earle [29]).

Price spikes have been a problem since the beginning of regulation but, as time passes

by, electricity markets have been able to reduce price spikes considerably. Figure 2.418

shows the average hourly locational marginal price during the period July-August 1999 in

the PJM zone. There were many price spikes. But they have been dying down until 2004.

18Source: PJM, Energy Prices, 1999 LMP Duration Data & Graphs : http://www.pjm.com/
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Figure 2.4: Electricity prices for July-August, 1999 (PJM market)

Nevertheless, in 2005 there were again many hours in which the PJM system price was above

the $ 150 benchmark. Among other reasons this is due to significant increases in fuel cost for

the marginal units and in load, geographic expansion of the PJM zone and a hotter summer.

See table 2.2.

One tool used to cope with the volatility of prices is the existence of active and competi-

tive forward markets such as the day-ahead market. It allows customers to insure themselves

against price spikes. From the investor’s point of view, forward contracting helps to mitigate

the risks of building and maintaining new peaking capacity that may have only rare but

significantly profitable use.19

As seen in subsection 2.4.2, there are two main pricing systems: a) one-part markets

reflecting both marginal operating costs and capacity scarcity; and b) two-part markets

having separate energy and capacity markets. Electricity Pool of England and Wales (UK)

is an example of the first model and PJM Interconnection (USA) is an example of the second.

19See Graves, Read, Hanser, and Earle [29].
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Table 2.2: Price spikes

Hours with LMP above

Year $ 900 $ 700 $ 200 $ 150 Maximum price

1999 33 48 N/A 91 $ 999

2001 10 13 N/A 60 greater than $ 900

2002 1 N/A 20 less than $ 800

2003 1 11 $ 211

2004 5 $ 180

2005 35 234 N/A

(Source: PJM State of the Market 2002, 2003, 2004, and 2005 [56])

One-part markets tend to be more volatile than two-part markets. In the British power pool,

since privatization (in 1990) and up to 1997, price has not risen significantly but volatility

has risen dramatically.20

2.5.1 A one-part electricity market

Electricity Pool of England and Wales (the UK Pool) is a one-part market in which there

is only one payment, without side payments. It defines two prices: the Pool Purchase Price

(PPP) and the Pool Selling Price (PSP).

There are three components involved: the System Marginal Price (SMP), the Capacity

Payment and a residual Uplift. PPP is the price (£/MWh) awarded by the Pool for electricity

generated by generators and purchased at Grid Supply Points (GSPs). It is the sum of

SMP plus the Capacity Payment. PSP is the price (£/MWh) which suppliers pay for their

electricity, sold at Grid Supply Points (GSPs). It is the sum of PPP plus the residual Uplift.

The Uplift is the difference between PSP and PPP covering reserve, constrained running,

20See Graves, Read, Hanser, and Earle [29].
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forecasting errors, ancillary services and marginal plant adjustments. The Uplift is intended

to recover costs not met by SMP.

The SMP is the basis for pricing. Between 1990/1 and 1995/6, SMP accounted for 85%

of the demand-weighted Pool Selling Price (PSP). It is the marginal price of electricity,

established day-ahead in the Unconstrained Schedule21 through a matching of supply- and

demand-side price and quantity bids in the wholesale market, settled every half-hour. SMP is

equal to the average cost per MWh of the marginal generating unit. It includes incremental

price (i.e., the actual marginal cost), start-up and no-load costs. No-load cost is the cost of

running the unit unloaded.

Marginal unit price = Incremental price +
no-load cost × duration + start-up cost

total output

Capacity Payment is a component that encourages the reserve of capacity to prevent

outages. Every MW of capacity which is declared available in a half-hour receives a capacity

payment for that half-hour whether or not it is scheduled to be generated. It reflects the

cost to society of an outage. This depends on the Loss of Load Probability (LOLP) 22 and

the Value of Lost Load (VOLL)23. LOLP is calculated by the UK Pool to measure the risk

of a power cut while the VOLL is set by the British government.24

Capacity Payment = LOLP × (V OLL− SMP )

2.5.2 A two-part electricity market

PJM is a two-part market because it uses one price for electricity and one price for other

services (ancillary services, capacity). It defines locational marginal price (LMP) as the cost

to serve the next MWh at a specific location using the lowest price of all available generation

21The half hour by half hour schedule of generating units notionally required to meet forecast demand and
reserve, which is produced the day ahead of trading, ignoring transmission constraints.

22Loss of Load Probability is the probability that the electricity system will have a service interruption
due to a lack of generating capacity. (Hunt [38], Glossary)

23Value of Lost Load is the cost to end-use customers if power is cut off. (Hunt [38], Glossary)
24Sources: Green [31] and The Electricity Pool web site: www.elecpool.com
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while observing all transmission limits. In other words, the marginal cost to provide energy

at a specific location depends on marginal cost to operate generation, total load (demand)

and cost of delivery on transmission system. Its components are:

LMP = Generation Marginal Cost + Transmission Congestion Costs

+ Cost of Marginal Losses

LMPs are equal when the transmission system is unconstrained (ignoring loss compo-

nent), and they vary by location when the transmission system is constrained. Generators

get paid at generation bus LMP. Loads pay at load bus LMP. LMPs are settled every hour.

(Source: PJM web site [56])

2.5.3 Congestion management

Electricity travels through a complex wired grid following the laws of physics. There is no

way to control the path of electricity. If flow is larger than the line capacity the line will be

overloaded. The only thing that can be done to prevent overloading a line is by asking some

generators to produce less and others to produce more.

When the flow through a line (or many) reaches its transmission capacity a congestion

event is said to have occurred. Congestion management is the process of managing the use of

the transmission system so [that] transmission capacity constraints are not violated (Hunt

[38], Glossary).

Congestion management is one of the toughest problems in electricity market design

(Stoft [74], Section 1-2.2). There are many ways to handle this problem. The most efficient

one is nodal pricing adopted by PJM, New York and New England ISOs. The following quote

comes from 2004 PJM State of the Market [57]:

Congestion occurs when available, low-cost energy cannot be delivered to all loads as a result
of limited transmission facilities. When the least cost available energy cannot be delivered
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to load in a transmission-constrained area, higher cost units in that area must be dispatched
to meet the load.25 The result is that the price of energy in the constrained area is higher
than elsewhere and congestion exists. Locational Marginal Prices (LMPs) reflect the cost
of the lowest cost resources available to meet loads, taking into account the actual delivery
constraints imposed by the transmission system. Thus LMP is an efficient way of pricing
energy supply when transmission constraints exist. Congestion reflects this efficient pricing.
26

As the 2004 PJM State of the Market [57] shows in Section 6, Local Congestion (Figures

6-9 through 6-36), the congestion component of the LMP is very small: around 1% of the

annual average LMP.

2.5.4 Market power and market concentration

In an oligopoly, price can be manipulated by a number of large companies exercising what

is called market power. Market power can generally be defined as the ability of a particular

seller, or group of sellers, to influence the prices of a product to their advantage over a

sustained period of time.

There are two indices to measure the extent of market power. The Lerner Index (LI) and

the Price-Cost Margin Index (PCMI) defined as follows. Both measure the degree to which

the actual price of a product in a market deviates from the perfectly competitive price. The

LI considers the deviation over the actual price, while the PCMI does so over the perfectly

competitive price27. The definitions are:

LI =
Actual Price − Perfectly Competitive Price

Actual Price
× 100% (2.1)

PCMI =
Actual Price − Perfectly Competitive Price

Perfectly Competitive Price
× 100% (2.2)

25This is referred to as dispatching out of merit order. Merit order is the order of all generator offers from
lowest to highest cost. Congestion occurs when loadings on transmission facilities mean that the next unit
in merit order cannot be used and that a higher cost unit must be used in its place

262004 PJM State of the Market [57], Section 6
27The Perfectly Competitive Price is equal to the marginal cost of electricity generation.The US Depart-

ment of Justice (DOJ) merger guidelines state that a market can be considered competitive if PCMI is below
5%.
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The PCMI and the LI are connected in the following way:

LI =
PCMI

1 + PCMI
(2.3)

Market concentration refers to what the market share distribution is like in a given

market. It can be measured by the Herfindahl-Hirschmann Index (HHI), which is defined as:

HHI =
∑

S2
i (2.4)

where Si is the share of each firm in the market expressed as a percentage. HHI ranges

between a very small number for an extremely atomized market, and 10,000 for a monopoly.

Note that 10,000 divided by HHI yields a number that can be interpreted as the equivalent

number of identical-sized firms in the market.28

Market power and market concentration are obviously correlated. In general, the more

unconcentrated a market, the less market power can be exercised.29

An instrument to mitigate market power is forward markets. They reduce the capability

of dominant firms to manipulate prices in times of scarcity alleviating generation market

concentration concerns. They also encourage greater competition.

2.6 SUMMARY

Electricity prices are very complex and may include different components in different markets

according to the market design. In order to accomplish the objective of this work it is

necessary to make certain assumptions.

28The Federal Energy Regulatory Commission (FERC) adopted the DOJ/Federal Trade Commission (FTC)
guidelines which state that a market is “unconcentrated” if its HHI is less than 1,000, “moderately con-
centrated” if its HHI lies between 1,000 and 1,800, and “highly concentrated” if its HHI is greater than
1,800.

29See Rudkevich, Duckworth and Rosen [63].
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This analysis considers real-time prices which are intrinsically the stochastic variables

and present a high variability. The prices in this model are cleared in mediated markets

with the marginal-bid pricing method. In a one-part electricity market like the UK Pool, the

object of study is the SMP. In a two-part market like PJM Interconnection, it is the LMP

when the system is unconstrained.

This work does not consider either transmission constraints, or transmission costs or

costs from losses. Since transmission line congestion is not that common, the analysis given

here provides a close approximation to reality. The analysis becomes much more complex if

the transmission constraints and line losses are included in the model.
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3.0 ENERGY RISK MANAGEMENT

Until deregulation started electricity prices were fixed by a regulator. There was no way nor

need to predict prices: uncertainty did not exist. Under deregulation electricity prices became

uncertain. Now prices need to be predicted as accurately as possible. When predicting prices

one has to look for two measures: what she expects to see in the future; and how wrong she

may be, that is how far the actual price in the future might differ from the expected value.

Being exposed to uncertainty implies that somebody may be adversely affected by a

future unknown event. In that case it is said that he or she is facing risk. Risk is exposure

to uncertainty. In recognition of the prevailing uncertainty energy markets have recently

started to be transformed by derivatives and other instruments for risk management1.

This chapter introduces some concepts on risk management and describes the use of

derivatives in energy markets. It shows the strong dependence of the derivatives’ prices in

power markets on the expected value and variance of electricity prices, pointing out the

importance of a deeper study of these quantities. In measuring risk variance of prices also

plays an important role.

Its purpose is not to cover risk management extensively but to suggest several possible

uses for this dissertation’s derivations in this regard. Dragana Pilipović, in his Energy Risk.

Valuing and Managing Energy Derivatives [55], deals deeply with risk management in energy

markets.

1The process and tools used for evaluating, measuring and managing the various risks within a company’s
portfolio of financial, commodities and other assets
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3.1 FINANCIAL MARKETS

Derivatives are financial tools to hedge risk. A derivative instrument is called derivative

because its value derives from the value of some other variable (commodity, energy, stock or

any other financial instrument). The latter is called the underlier . The underlier may be a

cash instrument (stocks, commodities, interest rates) which has a value by itself or, in turn,

may be another derivative.

Some derivatives or commodities are traded on established exchanges, like the New York

Stock Exchange (NYSE) or the New York Mercantile Exchange (NYMEX), and are called

exchange traded . The role of the exchange is to guarantee or facilitate the agreement settle-

ment.

The derivatives themselves being holder’s rights (and issuer’s liabilities) have some mar-

ket value. It is necessary to value or price a derivative then. This is especially important

when an option2 is issued, since the issuer will want to charge a reasonable price —what is

called the premium— for the option. But after a derivative is issued, it has a market value

which is not constant but depends on expected spot prices and its volatility.

3.1.1 Forward and futures contracts

The simplest hedging tools are forward and futures contracts. Both are derivatives in which

two parties agree on a transaction that will take place some time in the future. It has four

components: i) the underlier, ii) the notional (or contractual) amount, iii) the delivery (or

strike) price and iv) the settlement (or expiration) date on which the transaction will take

place. The difference is that a forward is done directly between two parties (it is referred to

as over-the-counter OTC ) while a futures is settled in an exchange.

2An option is a contract that gives one party the right, but not the obligation, to perform a specified
transaction with another party.
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In energy markets forward and futures are used to hedge the risk of price variation. They

are called Contracts for Difference (CfD). Under a CfD, the buyer (long party) will pay and

the seller (short party) will receive the amount

QcK + (Qa −Qc)ST (3.1)

or, equivalently,

QaST + Qc(K − ST ) (3.2)

where

Qc and K are contract quantity and strike price respectively, and

Qa and ST are actual traded quantity and spot price at the settlement date T .

At settlement, the CfD has a market value for the buyer of

MF
T,T = Qc(ST −K) (3.3)

The quantities Qc and K are fixed at the moment of signing the CfD but ST is a random

variable.

Prior to settlement the market value of the forward incorporates the concept of forward

price. Forward and futures prices are directly tied to the spot price: they both are risk-

adjusted and net cost-adjusted expectations of the spot prices at forward points in time. A

graph of forward prices for different maturities is called a forward curve. When a forward

contract is entered the strike price K is set equal to the forward price F0,T seen at time 0

for the settlement date T . That is K = F0,T . Subsection 3.1.3 takes a closer look at forward

prices.

At any time u < T , that is before settlement, the forward market value for the long party

is given by

MF
u,T = Qc(Fu,T −K)e−f(T−u) (3.4)

where

f is the risk-free interest rate, and

Fu,T is the forward price at time u for the settlement date T .
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Note that at any time, the market value for the long party is positive if the forward price

is greater than the strike price. Therefore, the forward price is needed for forward valuation.

3.1.2 Volatility

Volatility is a key factor in the behavior of the derivative price process. It depicts the

magnitude of the randomness of the asset price and is used as an important input in the

valuation and risk management of a portfolio3. In option pricing, for example, the width of

the price distribution determines the probability that the option expires in-the-money4 and

how much intrinsic value it has. The wider the distribution, the more value the option has.

Price return is defined as the ratio between the difference between prices over a period

and the price at the beginning of the period:

dSu

Su

=
Su+du

Su

− 1 (3.5)

Volatility σ is defined as the price returns’ standard deviation normalized by time with

time du expressed in years:

σ =
StDev(dSu/Su)√

du
(3.6)

It is also the square root of the variance of price returns in a year. In other words, it is

the square root of the annualized variance of price returns. The relation between volatility

and variance of the spot price is given by

σ =

√
V aru[ST ]

Su

√
(T − u)

(3.7)

where

T is the settlement (or expiration) date

Su is the option price at day u

V aru[ST ] is the variance of the option price at the expiration date, seen at day u.

3A collection of assets and financial positions based on such assets.
4An option expires in-the-money, when it has an intrinsic value at the settlement date.
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There are three different volatilities to measure:

1. Historical volatilities are observed from historical data of spot prices. They provide us

with information about the past.

2. Market-implied volatilities come from the expected price of options in the future. As one

has the actual market option price, he can go backwards from the expected price in the

future and calculate the volatility implied in that option price. This volatility depicts

what the market considers the spot price will be at some point in the future. It gives

information about the future.

3. Model-implied volatilities, as the term suggests, depend on the model in use and its

parameters. Given the models for spot and forward prices, one can estimate the model-

implied volatilities.

This work helps to asses the market-implied volatility, reversing the process. The beliefs

of expected forward prices will not determine the volatility but the other way around: the

volatilities will set the forward prices. This model, in finding the variance of prices, will

provide a tool to compute the volatility through equation 3.7.

3.1.3 The forward price curve

Forward prices are key inputs to any derivatives pricing and risk management calculation.

They are closely related to spot prices, but they differ. Pilipović [55] explains why forward

prices are not —as a rule— equal to the expected spot prices.

Under some assumptions, at any given moment in time u < T , the forward price curve

is

Fu,T = Eu[ST ]e−λσ(T−u) (3.8)

where

Eu[ST ] is the expected value of the spot price at expiration date T seen at day u,

λ is the market cost of risk defined by λ =
(ν − f)

σ
(see Hull [37]),
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ν is the expected return, continuously compound, and

σ is the implied volatility of the stock price.

The forward price is proportional to the expected stock price and is affected also by the

volatility. This model by determining the expected value and variance may provide the tools

to set the forward prices.

3.2 MEASURING RISK

3.2.1 Value-at-Risk and conditional Value-at-Risk

Volatility is the traditional measure of risk in financial markets. But it fails to point out the

direction of the changes in price.

Value-at-Risk (VaR) is a measure of how much an investor can lose in a very bad scenario.

Rather than look only at the expected return and the variance of return, it studies what is

the most an investor can expect to lose —with 95% or 99% level of confidence— in a certain

period (a day, a month, a year). It can be expressed in dollars (or in any other currency) or

as a percentage.

VaR is becoming a very useful tool to measure risk, up to the point of being included

into industry regulations, although technically it is not a risk measure because it does not

fulfill the axiom of sub-additivity5. It looks at the 5% or 1% worst case scenarios of the

profit-and-loss (P&L) probability distribution. For example, if 95% of the cases the profit is

bigger than, say -4%, the VaR is -4% with 95% level of confidence.

Three methods are used to calculate VaR: from historical data, variance-covariance

method and Monte Carlo simulation.

5A function is called a coherent risk measure if it is monotonous, sub-additive, positively homogeneous,
and translation invariant. See Acerbi and Tasche [3] for an explanation of these terms
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1. The historical data method assumes that the future will develop the same way as the

past, from a risk perspective. VaR can be obtained from the worst case scenarios in the past.

2. The variance-covariance method assumes that the returns are normally distributed,

with mean µR and standard deviation σR. This opens the path to use the standard deviation

to assess the 1% or 5% worst case scenarios, using the well known formulas:

µR − 2.33σR for the VaR at 99% level of confidence and

µR − 1.65σR for the VaR at the 95% level of confidence.

3. Monte Carlo simulation involves developing a stochastic model for price and running

it several times. This method allows the analyst to modify parameters that can be expected

to change in the future. After running many trials, once again, the 1% or 5% worst case

scenarios provided the VaR at respective levels of confidence.

Despite its popularity, one of the shortcomings of VaR is that it indicates the minimum

loss attainable in the worst 1% or 5% of the scenarios. But it does not indicate how big the

losses may be. For this reason, Rockafellar and Uryasev [61] [62] presented the conditional

Value-at-Risk (CVaR). This measures the losses that may be in the tail of the probability

distribution. It is defined, at a given confidence level, as the expected loss given that the

loss is greater than or equal to the VaR. Once more, the probability distribution needs to

be known or simulated. Otherwise, it is necessary to make assumptions of normality under

certain conditions. CVaR also improves on VaR because it is a coherent risk measure.

With the assumption of normality the use of the expected value and variance of prices for

determining VaR and CVaR for electricity markets can be illustrated as follows. A generating

firm is considering entering in a forward contract to sell 10000 MWh at a strike price of

$30/MWh one month from now. By using the model presented in this work, the expected

value of the daily average price for the termination date is found to be $32/MWh and

the standard deviation $5/MWh. The VaR per MWh at 95% level of confidence is then

30 − (32 + 1.65 ∗ 5) = $ − 10.25/MWh. As the notional amount is 10000 MWh, the total

VaR at 95% level of confidence results $− 102, 500.

37



The CVaR, being the mean of the loss given that the loss is greater than the VaR, can

be computed by integration between −∞ and VaR. Assuming normal distribution as before,

it can be shown that CVaR for 95% level of confidence is µR − 2.05σR and for 99% level

of confidence is µR − 2.64σR. Similar tables to table 3.1 can also be constructed if the

distribution is lognormal instead. In the example, the total CVaR at 95% level of confidence

is [30− (32 + 2.05 ∗ 5)] ∗ 10000 = $− 122, 500.

Table 3.1: Values for VaR and CVaR for normal distribution

Confidence level VaR CVaR

90% µR − 1.28σR µR − 1.76σR

95% µR − 1.65σR µR − 2.05σR

99% µR − 2.33σR µR − 2.64σR

3.2.2 Expected returns – variance of return objective function

Markowitz [45] pointed out that the rule that investors maximize the expected value of

discounted returns when choosing portfolios must be rejected. Between two alternatives

with the same expected discounted return a rational agent will choose the one that has a

smaller variance. And depending on the level of risk aversion, the agent may choose an

alternative with a lower expected return but a smaller variance. The conclusion is that the

investor will choose what the author calls the efficient expected value-variance combination.

As the cited paper shows the portfolio selection process has two stages. The first one

starts with observations and experiences and produces beliefs about the future performance

of securities. The second stage consists of the portfolio selection based on the beliefs.

To apply the Markowitz’ expected value-variance objective function it is necessary to

form the beliefs about the future performance, that is to know the expected value and

variance. This work will help to get reasonable values for the expected values and variances.
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3.3 ELECTRICITY MARKETS

Energy markets are very different from money markets. Among other causes, energy has

many and complex fundamental price drivers that makes it hard to model them. Seasonality,

storage and delivery issues, exogenous events (weather related, wars, etc.), regulation and

centralization also affect the price. For more details see Pilipovic [55].

To give a snapshot on the development of derivatives in electricity markets, for example,

forty-eight different derivatives on electricity are currently traded at the New York Mercantile

Exchange (NYMEX): forty-seven different cash-settled futures 6 and one option.

3.3.1 The use of derivatives in electricity markets

A transmission company can conveniently hedge the energy cost by purchasing power several

months ahead. The hedge eliminates price exposure. It is particulary suited to electricity

markets because this purchase does not imply delivery in advance nor storage nor an initial

outlay of funds to pay. In the case of a cash-settlement forward the hedge does not need to

be put on with the ultimate supplier of energy - it can be done with any other counterpart.

This also adapts itself well to electricity markets in which the energy is not delivered directly

from the producer to the buyer but rather is done through the grid.

For example, a transmission company might enter into an OTC cash-settled option con-

tract to hedge the wholesale electricity price. It buys energy at the pool as usual. Should

it exercise the option the counterpart will not deliver electricity in exchange for payment.

It will instead pay the transmission company the option’s intrinsic value. In this manner,

the transmission company is protected against rising electricity prices without changing the

buying process at all. The day-ahead market is a forward market.

6In a cash or financial settlement , the underlier is not physically delivered. Instead, the derivative settles
for an amount of money equal to what the derivative’s market value would be at maturity/expiration if
it were a physically settled derivative. By the contrary, a derivative instrument is physically settled if the
underlier is to be physically delivered in exchange for a specified payment.
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3.3.2 The need of the variance of electricity prices in risk management

The literature on energy risk management emphasizes the need to estimate, calibrate or

obtain volatility of prices using procedures different from the approach given here. Skantze

and Ilic [71] model the forward price as a function of the expected value and variance of

spot prices. Denton, Palmer, Masiello, and Skantze [25] take volatility as a parameter of

the model they use, that must be calibrated from historical data. Burger, Klar, Müller, and

Schindlmayr [17] state that the volatilities can be calibrated with futures prices as historical

or implied volatilities. Roark, Skantze, and Masiello [60] use Monte Carlo simulation to

sample contracts for reserve from assumed distributions on prices.

Prices of derivatives are strongly related to volatility. There has been no work done

yet on getting the volatility of electricity prices from a stochastic fundamental model. This

work attempts to reverse the process that generates the market-implied volatilities. That is,

estimate the volatilities first and obtain the future prices.

The extreme youth of energies markets, in comparison to money markets, makes the

building of models more difficult. The lack of historical data complicates the process of

valuing derivatives. The market is still very “illiquid” that means that the present-day

market activity is quite small. There is not enough information on spot and forward prices

to understand the price drivers and to test models.

3.4 SUMMARY

As energy options markets develop (especially electricity markets), this study provides in-

sights into spot prices variance estimation, and hence volatility that can be used for deriv-

atives’ valuation and risk measure. Specifically, this model helps to asses the volatilities of

prices, reverting the process of calculating the market-implied volatilities. Instead of starting
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from the future prices and deducing from them the market-implied volatilities, this study

computes the volatilities and helps to determine the future prices consequently.

As described before, the forward prices are influenced by the expected value and the

volatility of electricity spot prices. Concepts as VaR and CVaR are based on the probability

distributions of electricity prices. In this matter, the model here presented is a useful tool

to estimate these risk measures. Moreover, the estimation of expectation and variance of

electricity prices are the first step for an investor to select investments following the expected

value-variance rule.
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4.0 MODELING ELECTRICITY PRICES IN COMPETITIVE MARKETS

Since deregulation started, researchers have made a great effort to study the behavior of

electricity prices in the new open markets. The number of related papers and books that

has been published in the past thirteen years is remarkable.

The objective of this chapter is to review the literature in the light of the work of this

dissertation, and to select and adapt the models for this purpose. The analysis is focused

in three significant models for oligopolies. By the end of the chapter the complete model

proposed here is well defined.

4.1 REVIEW OF ELECTRICITY MARKET MODELS

4.1.1 Game theory, production cost and time series models

Following Batlle [9], electricity price models can be classified into three categories: game

theory models, production-cost models and time series models.

Game theory models are concerned with the strategic behavior of the agents and its

influence on price. Market equilibrium strategies are such that, given the strategies of the

other players, any single firm is better off maintaining its strategy. This is known as the

Nash equilibrium, defined by Fudenberg and Tirole [28], 1.2 as:
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Nash equilibrium is a starting point of most applications of game theory. It is defined as
a profile of strategies such that each player’s strategy is an optimal response to the other
players’ strategies. (. . . )
Equilibrium is determined by the condition that all firms choose the action that is a best
response to the anticipated play of their opponents. (. . . )
Nash equilibria are “consistent” predictions of how the game will be played, in the sense
that if all players predict that a particular Nash equilibrium will occur then no player has
an incentive to play differently. A Nash equilibrium, and only a Nash equilibrium, can have
the property that the players can predict it, predict that their opponents predict it, and so
on.

On the other hand, production-cost (or fundamental) models simulate the energy produc-

tion and market operation mechanisms. They were developed for centralized power markets

and have been extended to the reformed free markets.

Time series models perform statistical analysis on the price data as time series without

capturing either the engineering or the economic aspects involved. Although this category

is the weakest one, because it does not account for the richness and peculiarity of electricity

markets, it uses well-developed statistical tools for analyzing the data. Mateo González,

Muñoz San Roque, and Garćıa-González [47] provide a wide taxonomy of these models.

The special features of electricity markets mentioned above (see section 2.1) should be

taken into consideration in the model when one is interested in explaining and measuring the

variability of prices. Financial or economic aspects alone do not explain the price evolution

thoroughly.

4.1.2 Production cost models

Methods for computing the expected production costs of a power generating system are well

developed and documented: see Caramanis, Stremel, Fleck, and Daniel [19], Mazumdar [48],

Mazumdar and Kapoor [49], Stremel, Jenkins, Babb, and Bayless [75]. There are two basic

approaches to this computation. The first formulation is due to Baleriaux, Jamoulle, and

de Guertechin [7] in which the time sequence in the chronological variation of the load is
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ignored and the computations are performed based on the load duration curve1. The second

is the use of the chronological simulation models that explicitly trace the evolution of the

system’s states over time using the Monte Carlo method (Breipohl, Lee and Chiang [15]).

Ryan and Mazumdar [65] and [66] pointed out that even under a load duration curve

(LDC) framework, the Baleriaux model is not capable of calculating the variance and higher

order moments of production costs over a given time interval. In order to calculate such

higher order statistics of the production costs, the Baleriaux model needs to be suitably

enhanced so that the statistical dependence between the amounts of energy produced by

different units for every hour within the study interval can be accounted for. These correla-

tions can be evaluated only when the stochastic processes underlying the generator outages

as well as the chronological load sequence are considered.

Using this model, several authors (Huang and Hobbs [36]; Kapoor and Mazumdar [42];

Lee, Lin, and Breipohl [44]; Ryan [64]; Shih and Mazumdar [69]; Shih, Mazumdar, and

Bloom [68]) have provided analytical expressions for the mean and variance of the produc-

tion costs as well as for the hourly average marginal costs over a given interval. This model

has also been used in the Monte Carlo chronological simulation of production costs. In

general, chronological models have great flexibility in modeling operating policies and con-

straints. However, they can also require substantial computational effort especially because

the Monte Carlo method needs repeated runs of the random scenarios to obtain statistically

significant estimates. Variance reduction methods to reduce the number of required Monte

Carlo runs for the production simulation with explicit accounting of the chronological con-

straints were proposed by Mazumdar and Kapoor [50] and Valenzuela and Mazumdar [79].

Similar methods have also been proposed by Breipohl, Lee, Huang, and Feng [16] and by

Marnay and Strauss [46].

1A load duration curve is the demand of all hours of the year, sorted from highest to lowest. In a load
duration curve graph it is possible to read how many hours in a period of time (say, a year) the load is above
or equal to a given amount.
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4.1.3 Electricity market modeling trends

There is a comprehensive and original review on the modeling trends for the electricity market

in the publication by Ventosa, Báıllo, Ramos, and Rivier [84]. It classifies the numerous

papers under different criteria and describes the strengths, weaknesses and main uses of

each group.

The three main stated trends are: optimization models, equilibrium models and simula-

tion models. The first of these three focus on the profit maximization problem for one firm

while the other two sets of models represent the overall market behavior of all the competing

firms. Equilibrium models can handle simplified markets models. Simulation models, on the

other hand, are more suitable for dealing with more complex problems.

The attractiveness of optimization models is that very well-known robust optimization

algorithms exist to solve them. But the disadvantage lies in their not considering the reaction

of competitors in the market to the firm’s optimal strategy in the model. They are not

suitable for medium- and long-term decisions.

Equilibrium models are the most numerous of the three. The many papers on these

models are mainly based on two types of market equilibrium: Cournot equilibrium and

Supply Function Equilibrium (SFE). In both cases the underlying concept is the Nash

equilibrium mentioned earlier. Later on the two equilibria will be considered in greater

details. In Cournot competition the players offer quantities while in SFE competition they

offer supply curves (quantity-price). Cournot models are more tractable but the assumptions

are less realistic. On the contrary, SFE models better capture the bid process but, in general,

they give rise a system of differential equations which are much more difficult to solve. In a

very few cases, however, is it possible to get a closed form solution.

These models have been used for many purposes that include market power analysis,

market design, medium-term electricity pricing, economic planning, investment planning

and congestion management.
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Simulation models can handle complex equilibrium models which otherwise would need

cumbersome mathematical calculation and computing time. They can also capture the

iterative characteristic of electricity markets which provides players with the opportunity to

learn from previous interactions and thus adjust their strategies.

4.1.4 Fundamental stochastic models

As it was mentioned in chapter 1, few models have a fundamental and stochastic approach

at the same time.

One of these models is proposed by Skantze, Gubina, and Ilic [70]. Their model is

founded on the assumption of inelastic demand and on an exponential supply function. The

spot price at time t is given by

Pt = eaLt+bt (4.1)

where

a is a fixed parameter characterizing the bid curve slope (the same for every t),

Lt is the market clearing quantity in hour t and

bt denotes the position or shift of the curve.

The stochasticity of load is modeled in Lt while that of supply is done in bt. The factors

included on the load side are seasonality, uncertainty, mean reversion and stochastic growth.

The factors considered on the supply side are the stochastic availability of generation, un-

certain fuel costs, unit commitment and import/export from and to other markets. They

consider the expected value of the price but not the variance.

A second fundamental stochastic model is due to Vehviläinen and Pyykkönen [83]. This

model considers the case of the Nordic market in which more than half of the production

is hydro-electric power based and approximately one fourth is nuclear power, both of which

have zero or very low variable costs. They model some fundamental factors separately and

then combine them into a market equilibrium model. The factors under consideration are:
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climate data (temperature and precipitation), hydro-balance (temperature below zero, snow-

pack level, snow melting, hydro-inflow, hydro reservoir level, hydro spill), demand and base

load supply.

For the market equilibrium they assume that demand is not elastic, so the supply price

function gives the spot price at the level of inelastic demand. They use Monte Carlo simu-

lation to obtain the distribution of the spot price.

4.1.5 The selection of a framework model

The research objective is to study the variance of electricity prices. Necessarily an appropri-

ate price model must be selected. The following conclusions help to do it.

First, time series models were discarded because they fall short of capturing the internal

characteristics of the production process and the market mechanisms.

Second, an integrated simplified game theory / production cost model is preferred to

combine equilibrium aspects with the market and generation processes.

Third, the model to be used must necessarily be a probabilistic one. The model should

recognize the different sources of uncertainty and propagate them on to the output price.

Fourth, in all the countries where deregulation is in place power markets are oligopolies.

Therefore, an imperfect-market equilibrium model matched with a stochastic production-

cost model has been developed. The uncertainty sources chosen are demand and units’ avail-

ability. This combined model considers the influence of economic issues in electricity pricing

such as market power, capacity withholding, bidding strategies and market concentration.

This work uses three paradigmatic equilibrium models for imperfect-market (Bertrand,

Cournot, and a specific SFE), which are described in section 4.2. A comparison of the three

parallel approaches may provide useful information to market designers.
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The specific SFE model selected is Rudkevich, Duckworth, and Rosen’s formulation (see

subsection 4.3.2) because of the following reasons:

• It represents a Nash equilibrium, which means that it is stable and predictable.

• It uses realistic stepwise supply functions.

• It considers a number of competing firms.

• It explains markups over marginal costs depending on demand level, daily peak demand,

cost of supramarginal units which is intuitive or, at least, coherent.

• It gives a closed form expression for the electricity price, enabling derivation of the

expected value and variance.

• It is possible to carry out sensitivity analysis on it.

One drawback of the formula is that it only applies to a symmetrical market consisting

of identical firms. This assumption is not very realistic.

4.2 BASIC MODELS ON ELECTRICITY PRICING

In the current literature three major models are in use for (imperfect) electricity markets: the

Bertrand model, Cournot model and Supply Function Equilibrium (SFE) model. Cournot

and Bertrand models constitute the two often used paradigms of imperfect competition.

4.2.1 Bertrand model

In the Bertrand (1883) model firms compete in price. They simultaneously choose prices and

then must produce enough output to meet demand after the price choices become known. In

the assumption that each firm has enough capacity to meet demand, the Nash equilibrium

price in this model is the marginal cost which is the same as the case of perfect competition.
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One of the reasons to introduce competition into power markets is to reduce the price

of electricity. It was thought that under competition the prices would drop to the marginal

cost level. It is generally admitted that the design of the British Pool was based on the

assumption that Bertrand competition would prevail. However, this is not what happened.

A first example of the use of Bertrand competition in electricity was proposed by Hobbs

[34] for studying the restructuring of the industry in the US. The rationale for retaining this

paradigm is as follows. Electricity cannot be stored. If a generator has extra capacity it will

be interested in selling electricity if and only if the price is above the cost of production. It

will thus be subject to short-term price competition, hence leading to a Bertrand assumption.

The latter is equivalent to perfect competition. It supposes marginal cost pricing when supply

and demand curves meet in a single location and all producers have the same marginal costs.

However, empirical studies (Wolfram [92]) have shown that prices in some imperfect markets

are sustained well above marginal costs.

4.2.2 Cournot model

The other basic non-cooperative equilibrium is the Cournot (1838) model. In this model

competition is in quantities. Firms simultaneously choose the quantities they will produce,

which they then sell at the market-clearing price (the price for which demand is met by

supply). An auctioneer will clear the market equating demand and production.

The point made by the proponents of this model (Borenstein and Bushnell [13], Bat-

stone [10], Wen and David [87]) is that a large proportion of energy transactions are done

by long-term contracts for which the price is fixed. Taking away the amount of electricity

contracted, the remaining demand for electricity is much more elastic than that of the whole

market. Small variations in price will produce large changes in demand. So firms will choose

the quantities that optimize their profit. Under these situations the Cournot model is a

more accurate representation of the market. Since generation capacities present significant

constraints in electricity markets, the assumption underlying the Bertrand model that com-

49



petition is over prices and the firms have enough capacity to meet demand is not sustainable.

Cournot models prevail over Bertrand models in the current literature on electricity markets.

4.2.3 Supply Function Equilibrium (SFE) models

A new model has been used in recent papers (Green and Newbery [32], Bolle [12], Newbery

[52] [53], Rudkevich, Duckworth and Rosen [63], Visudhipan and Ilic [85] [86], Baldick, Grant

and Kahn [5], Guan, Ho, and Pepyne [33], Baldick and Hogan [6], Baldick [4]). This approach

is based upon the work of Klemperer and Meyer [43] and was applied to a pool model by

Green and Newbery [32]. A supply function relates quantity to price. It shows the prices

at which a firm is willing to sell different quantities of output. The SFE model applies very

well to the market structure of many restructured electricity markets, such as New Zealand,

Australia, Pennsylvania-New Jersey-Maryland Interconnection (PJM) and California Power

Exchange. In these markets the bid format is precisely a supply function.

In this model competition is neither over price (as in Bertrand models) nor quantity (as

in Cournot models) but in supply functions. Bertrand and Cournot models are limits of SFE

models. The Bertrand model is the limiting case in which the supply function is constant

in price for any quantity, which means that the producer is bidding a price at which it is

willing to sell any quantity. On the other hand, the Cournot model is the limiting case in

which the supply function is constant in quantity for any price, meaning that the producer

is bidding quantity that will be sold at the market-clearing price.

The problem with the use of SFE models is that in general there is not a unique equi-

librium. There are often an infinite number of solutions lying between the Cournot and

Bernard equilibria, which represent their upper and lower limits in price respectively. The

existence of many equilibria makes it difficult to predict the likely outcome of strategic inter-

action between players. There are some factors that reduce the range of feasible equilibria:

uncertainty of demand and capacity constraints.
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SFE models better explain the markups of electricity prices which empirical studies have

shown to be above the Bertrand equilibrium but below the Cournot model. It is close to

the Cournot equilibrium at peak time when capacities are almost saturated and close to the

Bertrand equilibrium when there is a significant capacity excess.

4.3 MORE ON SUPPLY FUNCTION EQUILIBRIUM MODELS

4.3.1 Basic papers on Supply Function Equilibrium

The basic paper for Supply Function Equilibrium models is by Klemperer and Meyer [43].

They model an oligopoly facing uncertain demand in which each firm chooses as its strategy

a supply function relating quantity to price. In the absence of uncertainty, there exists an

enormous multiplicity of equilibria in supply functions, but uncertainty dramatically reduces

the set of equilibria. Under uncertainty and considering a linear demand function and a linear

marginal cost, they prove the existence of a unique Nash equilibrium in supply functions for

a symmetric oligopoly2 producing a homogenous good if the random exogenous shock has full

support. The exogenous shock ξ is the random variable(s), not under our control (weather,

failures) which is(are) the source of uncertainty. Having full support means that it can take

any value with the restriction that demand D(p, ξ) > 0 and price p > 0.

Green and Newbery [32] apply the work of Klemperer and Meyer [43] to study the

British electricity spot market at the time of the structural changes in 1992, and show that

two dominant generating firms following Nash equilibrium strategies in supply schedules will

price electricity with high markups over marginal cost. In their model they consider first a

symmetric duopoly. In this case the symmetric solution is

dq

dp
=

q

p− C ′ (q)
+ Dp (4.2)

2An oligopoly is symmetric if all the players have identical costs, capacity and knowledge.
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in which

p is the spot price

q is the supply quantity

C(q) is the cost of producing the quantity q

C ′(q) is its marginal cost

D(p, ξ) is the demand curve given ξ

ξ is a random exogenous shock

Dp is the partial derivative of D with respect to p.

The meaning of the exogenous shock ξ is that the demand D as a function of price p

can be modified by external causes like ambient temperature, humidity, lack or excess of

any other energy source that are not under control. The demand curve can be shifted up or

down because of these or other reasons that happen randomly. Klemperer and Meyer [43]

assume that the second order partial derivative Dpξ = 0 for all (p, ξ).

Equation (4.2) is central to the Supply Function Equilibrium theory on which this work

is based. For this reason, the following paragraphs and figure 4.1 are taken from Green and

Newbery [32] to justify equation (4.2).

Consider points (q, p) such that

C ′(q) < p < C ′(q)− q

Dp
(4.3)

Then at such points 0 < dq/dp < ∞, and the trajectory of the differential equation through
this point has a well-defined positive directional slope. It can be shown that all such trajec-
tories pass through the origin, where they have the same slope. The next step is to consider
the stationaries whose equations define the lower and upper limits in equation (4.3). Con-
sider the first equation p = C ′(q). This is the supply schedule of a perfectly competitive
firm, and along this curve (shown as the lower dotted line in figure 4.1), dq/dp = ∞, so
dp/dq = 0. Any trajectory that intersects the lower stationary reaches it with horizontal
slope at a point such as B in figure 4.1, and once it has crossed the stationary it will have
a negative slope.
If the trajectory reaches the upper stationary (the dashed line in figure 4.1) at a point such
as C, its slope there will be dq/dp = 0, so dp/dq = ∞. It will cross the stationary vertically
and then bend back. The upper stationary has a simple interpretation as the Cournot supply

52



A

C

B

Supply

Marginal cost

Cournot solution

Demand

load

price/cost

O

Figure 4.1: Supply function equilibrium solutions of Green and Newbery equation

schedule, for if firm j has unresponsive output kj, then firm i is an effective monopolist
with qi = D(p, ξ)− kj. The profit-maximizing choice of p satisfies

qi + [p− C ′(qi)]Dp = 0 (4.4)

or
p = C ′(q)− q

Dp
(4.5)

In general, therefore, the duopoly supply schedule lies between the competitive and Cournot
schedules along a trajectory such as OA in figure 4.1. Candidates for equilibrium supply
schedules must not intersect either stationary over the range of possible price-output pairs.

The last sentence of the quote means that a point such as A (where the trajectory cross

either (upper or lower) stationary must be outside the segments OC or OB respectively. In

figure 4.1, if BC is the maximum demand, then all feasible solutions to equation (4.2) lie

between the curves OC (maximum supply function) and OB (minimum supply function).

Therefore, there are infinitely many solutions. As it was mentioned above, Klemperer and

Meyer [43] proved uniqueness in the specific case of linear demand, linear marginal cost and
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full support for the exogenous shock. In figure 4.1, this means that the demand CB can be

in any place. Note that if demand BC moves to the right (or up, which is the same), the set

of of feasible solutions is reduced. In the limit to infinite there is only one solution.

The effect of supply constraints is to narrow the range of feasible equilibria. In the

asymmetric case less output would be sold at a higher price.

To justify equation (4.5) note that the profit of firm i can be expressed as

πi(p) = p[D(p, ξ)− kj]− C(D(p, ξ)− kj) (4.6)

The first order condition is

dπi(p)

dp
= [D(p, ξ)− kj] + pDp − C ′(D(p, ξ)− kj)Dp = 0 (4.7)

and considering that the residual demand for firm i is qi = D(p, ξ)−kj, last equation becomes

dπi(p)

dp
= qi + pDp − C ′(qi)Dp = 0 (4.8)

which is the same equation (4.4)

4.3.2 A specific case of SFE: Rudkevich, Duckworth, and Rosen

The two preceding papers, Klemperer and Meyer [43] and Green and Newbery [32], were the

basis for further research on application of SFE to electricity markets. Since their publications

many authors have applied SFE to study different market scenarios.

Rudkevich, Duckworth and Rosen [63] calculated the electricity prices that would result

from a pure pool market with identical profit-maximizing generating firms, bidding stepwise

supply functions. They extended the theoretical concepts developed by Klemperer and Meyer

[43] and Green and Newbery [32], and proposed a new formula for the instantaneous market-

clearing price when generating firms adopt bidding strategies given by the Nash equilibrium

using several assumptions:
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• the generating firms are identical in size and have identical supply curves;

• the supply curves are stepwise;

• there is zero price elasticity of demand;

• generating firms have perfect information about one another’s production cost curves;

• generating firms have equal accuracy in predicting demand.

The Nash equilibrium market-clearing price of electricity in a pool is a function of:

• the particular electric system’s production cost curve (i.e., the size of the steps of capacity,

and the increases in variable cost between these steps);

• the instantaneous demand for electricity;

• the maximum anticipated demand in the overall period for which bids are submitted;

• the number of identical generating firms bidding in the pool;

and is given by:

P (Q) = dk +
m−1∑

j=k

(dj+1 − dj)

(
Q

Cj

)n−1

(4.9)

where

P is the instantaneous market-clearing price of electricity in a given time interval.

Q is the instantaneous demand in a given time interval.

k is the dispatch order number of the generating unit that is on the margin in that time

interval.

n is the number of identical firms.

dk is the variable cost of the marginal unit.

j, dj are respectively the dispatch order number and the variable cost of the generating units

that are above the margin in that time interval and are expected to be on or below the

margin in some other time interval during the 24-hour period.

m is the dispatch order number of the most expensive unit expected to run during the 24-

hour period.

Cj is the total capacity of all generating units with dispatch order not exceeding j.
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It is important to note that in the above formula Q is always less than Cj, which means

that the effect on price of generating units beyond the marginal one decreases with the

increase of the dispatch order number.

The formula (4.9), being a solution of a differential equation, needed a boundary condi-

tion. Rudkevich, Duckworth, and Rosen made the assumption that the price at peak demand

is the marginal cost of the peak marginal unit, taking the lowest SFE possible.

Considering the nature of electricity markets, Rudkevich, Duckworth, and Rosen’s for-

mula is selected as a third model of market equilibrium for the following reasons:

• it assumes stepwise supply functions, as is the case in most actual markets,

• the structure of the market (e.g., number of firms) is reflected in the formula,

• it builds the price adding to the marginal cost other terms that depend on the generating

units profile, on the daily peak demand and on the relation between the latter and the

installed capacity.

4.4 THE COMPLETE MODEL

The objective of this work is to get an expression for the price variance considering uncer-

tainty of supply and demand and market equilibrium. In deregulated markets prices result

above marginal costs, contrary to what was originally thought. The reason is that power

markets are not perfect: only a few players actually influence the price.

After reviewing how the electricity markets work (chapter 2), the need for tools for energy

risk management (chapter 3) and the literature on electricity pricing models (the present

chapter), this section defines the model with its attributes and limitations.
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4.4.1 Supply model and the grid

It is assumed that power generation system consists of n symmetric firms which own a total

of N generating units. Each one owns an identical set of N/n units. Each unit i in the set

is assumed to have the following technical characteristics:

• variable cost di [$/MWh]

• capacity ci [MW]

• mean time to failure λ−1
i [hour]

• mean time to repair µ−1
i [hour]

Mean time to failure and mean time to repair are considered to be exponentially distrib-

uted. The steady state of the units is assumed.

This work admits the possibility of importing energy from an external market at a certain

price. This source is modeled as an expensive dummy generating unit of unlimited capacity.

This assumption assures that load is met at every moment.

Transmission constraints are not considered in this study. It can be seen as a one-node

model in which there is only one price.

4.4.2 Market model

It is a pay-as-bid market. There exists a day-ahead market and a spot market. The firms

simultaneously submit supply curve offers in the day-ahead market. A merit-order sorting

based on the offers is used to dispatch the units to meet demand. There exists an Independent

System Operator (ISO) that clears the day-ahead market by considering the offers and the

expected demand. The offers stay the same for the spot market and are used to meet the

actual demand the following day, setting the spot price.
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4.4.3 Bidding strategies

Three bidding models are studied:

• the Bertrand model in which firms offer their marginal costs

• the Cournot model in which firms offer quantities that optimize the expected profit

• the SFE model in which firms offer a supply curve (quantity-price combination) based

on the Rudkevich, Duckworth, and Rosen’s equilibrium formula.

4.4.4 Demand model

In the first approach (chapters 5 and 6), the hourly demand is considered a normal random

variable with mean µt, standard deviation σt and covariances σr,t. σt is considered to be

small enough with respect to µt to negate the possibility of a negative load. This approach

is called load model 1.

In the second approach (chapter 8) hourly demand is modeled as a regression equation

with temperature as an independent deterministic variable plus a remaining stochastic term

for each hour. This last component is studied in two ways. The first one is considering

each hourly remaining term as normally distributed but not independent. This is called load

model 2. The second way is considering the remaining terms as a time series. This is called

load model 3. It is assumed that temperature can be forecasted accurately for the next 24

hours. The time series component reflects the correlation between loads at consecutive hours

and also between the same hours on the same weekdays of consecutive weeks.

For the numerical examples, this work considers demand and prices only for weekdays

given that weekends and holidays have a different daily pattern. For the Cournot model,

demand is assumed to be linear with respect to price and to have certain price elasticity.

A range of elasticity values is considered. Instead of using the elasticity defined as a ratio

that measures the change in quantity respect to change in price, the first derivative Dp of
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demand with respect to price, which also measures that relationship, is used. For the SFE

model, the assumption is zero elasticity of demand.

4.4.5 Time line

At the moment of doing the calculations (hours, days, weeks or months in advance), the

demand estimate, the temperature forecast and the steady state of the generating units are

known. To make decisions on the offer curve on the day-ahead, a more accurate temperature

and load forecast will be at hand for the following 24 hours. The model does not take into

account the actual working status of the units, but the steady state of them.

The objective is to predict prices to make decisions. In the short- and medium-term

(weeks, months) the estimates may be useful to schedule units’ maintenance, to do cash-flow

projections, and to make decisions on Contracts-for-Differences (CfD). In the very-short-term

(tomorrow, days), pricing and unit commitment decisions will be based on this knowledge.

4.4.6 Price under study

This work models the spot (real time) price of energy. It may be the System Marginal Price

(SMP) of a one-part market or the Locational Marginal Price (LMP) of a two-part market.

Side payments or other components of the price are not the object of this study. Formulas

for the expected value and variance of hourly prices (chapter 5) and of the average of hourly

prices (chapter 6) are derived. The price average can be done in a 24-hour period, or for

peak hours or for off-peak hours.
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4.4.7 Limitations of the model

The most significant limitation is the assumption of symmetry that means that all the

competing firms are supposed to be identical in number and characteristics of units, capacity,

and knowledge of the market. This assumption is far removed from reality. It is necessary,

though, in order to retain the closed form expressions. It can be partially justified by noting

that only a few firms really influence price: those that usually owns the marginal unit. It is

assumed that those are not the small firms, which are price-takers, but the large ones. So

there is a first filter for small companies which provide energy for base load. Only the big

firms are considered identical. Even if the firms were actually identical, the randomness of

the availability of units would break the theoretical and assumed symmetry.

Another important limitation is that the model does not consider transmission con-

straints. Line congestion forces some units to stop generating because one or more lines are

saturated. That means that the merit order is broken. Other more expensive units must

be called on to supply energy to those nodes where the congested lines can not transmit

electricity. This is the reason for having different prices in different locations: the Locational

Marginal Prices (LMP). This limitation may be acceptable considering that this is the case

only in a few locations during few hours. In PJM 2005 State of the Market [57], table 7.6

shows that in 2004 the congestion-event hours 3 were on the average 2.2% of the total an-

nual hours, while in 2005 the average went up to 5.1%. In terms of prices the congestion

component of the LMP is very small as it was in 2004: around 1%.4

A third limitation is that the unit commitment problem is neglected. In real markets,

minimum up and down times have significant repercussion on the units that are called on

to serve energy. Sometimes it is more economic to keep a more expensive unit running

instead of turning it off, closing-down a cheaper one for a period because this has smaller

start-up and shut-down costs or less technical constraints. The unit commitment problem

is a challenging problem in itself. Attempting to consider it here would be quite difficult.

3The convention is that if congestion occurs for 20 minutes or more in an hour, the hour is congested.
4See figures 7.9 to 7.40 in PJM 2005 State of the Market [57].
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A fourth one is that fuel costs are assumed to be deterministic in this model which in

real word are also random variables. A plausible defense is that fuel prices do not have large

variances, especially in the short-term.

4.5 SUMMARY

After reviewing the literature on electricity pricing and the different models that have been

used, this chapter describes the model profile considered in this work highlighting its as-

sumptions and limitations.

This model is unique; and contributes to the state of the art in the following respect:

• it fills in the gap in the literature combining a fundamental approach (both in the gen-

erating process and in the pricing process as well) with a stochastic outlook;

• the stochasticity includes uncertainty from the load and from the availability of the units;

• it considers Nash equilibrium solutions, which, according to game theory, are considered

the prevailing outcomes for the prices;

• no other work has been done up to date, using an analytical model to compute the

variance of electricity prices.

This work incorporates stochastic behavior to classic and modern theory on oligopolies

done for deterministic scenarios. Thus, it enhances the formulas presented in this chapter

to cover more realistic situations. The consideration of three bidding behaviors enriches the

understanding of the model giving lower and upper bounds of prices and their variances.

Furthermore, the use of closed form expressions enables to adapt the model to different

markets and to change the system configuration in the same markets. The cost that is

paid to get these insights are some assumptions that are removed from real markets, and

constitute limitations to the model, especially those related to symmetry of firms.

61



5.0 MEAN AND VARIANCE OF THE HOURLY PRICE

In a deregulated market, price is a random variable resulting from various sources of uncer-

tainty: demand, fuel costs, reliability of the generating units, bidding behavior, transmission

congestion.

Utility managers classify the load (demand) in three main segments: base load, interme-

diate load and peak load. Base load is power that is used continuously and it is the cheapest:

large coal-fired and nuclear stations usually supply it. Intermediate load is electricity needed

for several hours a day, or even the whole day, but not every day. Utilities use more expen-

sive units to provide intermediate load: some hydro plants and Combined Cycle Turbines.

Peak load is electricity used to meet extreme demand. It is not needed very often, just a

few hours a day or a week. The machines used to meet peak load are much more expensive:

e.g., combustion turbines.

To estimate the profitability (measured as revenues minus costs) of base load units utility

managers can rely on monthly or even annual average prices. Those units are expected to run

without interruption. To calculate intermediate load units’ profitability, a monthly average

is not good enough. As these units run for several hours a day, but not every day, the

generating companies may need to estimate the electricity price for the day(s) the units will

be in use. Given that the volatility of electricity prices is high, the expected value alone will

not be sufficient for purposes of prediction. At a minimum, the variance of the daily average

will be also needed. Finally, for the profitability analysis of peak load units, the expected

value and the variance of the hourly price must be at hand.
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The study of the hourly prices are useful for scheduling maintenance of the individual

units, and to decide on what kind of units are more needed: base, intermediate or peak load

units.

This chapter focuses on the expected value and variance of hourly prices, to predict the

price of electricity for a given hour. The following chapter studies the expected value and

variance of the daily average price. The same techniques can be used for obtaining estimates

for weekly or monthly average prices.

5.1 CONDITIONAL EXPRESSIONS FOR THE MEAN AND VARIANCE

OF THE HOURLY PRICE

Ignoring unit commitment constraints, it is assumed that the system consists of N +1 gener-

ating units, which are dispatched in an ascending merit order , based on the production cost

of each one. Utilities will offer energy (quantity and price), unit by unit, to the Independent

System Operator (ISO). The latter will order the units by offered price, and dispatch the

units from the cheapest to the more expensive ones, until the demand is met. This is the

case with PJM and many other electricity markets.

Conditioning on the marginal unit1 J(t), the expected value of the price can be written

as follows

E[p(t)] =
N+1∑
j=1

E[p(t)|J(t) = j]Pr[J(t) = j] (5.1)

where j is the merit order index. j = 1, 2, 3, ..., N + 1.

The variance can be calculated as

V ar[p(t)] = E[p(t)2]− E2[p(t)] (5.2)

1Marginal unit is the last unit called on to produce electricity to meet demand.
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where E[p(t)2] can be computed conditioning on J(t), as was done before

E[p(t)2] =
N+1∑
j=1

E[p(t)2|J(t) = j]Pr[J(t) = j] (5.3)

In order to get the expected value and the variance of the price at the time t the proba-

bility mass function of J(t) is needed. The following section summarizes Valenzuela’s work

[76] on this topic.

5.2 PROBABILITY DISTRIBUTION OF THE MARGINAL UNIT

First note that

Pr[J(t) = j] = Pr[J(t) > j − 1]− Pr[J(t) > j] (5.4)

Among many other sources of uncertainty which influence the randomness of J(t), two

are being considered: the load at time t, L(t), and the availability of the generating units.

The following random variables capture the availability of generators

Yi(t) =





1 if unit i is up at time t

0 if unit i is down at time t

It is assumed that Yi(t) and Yj(t) are independent for i 6= j.

ci is defined to be the capacity of the unit i. It follows that
∑j

i=1 ciYi(t) is the available

capacity of the first j units at time t.

The model assumes a failure rate of unit i being λi and the repair rate being µi. The

mean time to fail is consequently the inverse
1

λi

; and the mean time to repair is
1

µi

.
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Thus the steady-state proportion of time that the generating unit i is up is pi =
µi

λi + µi

and the complement proportion of time that the generating unit is down is qi = 1 − pi =
λi

λi + µi

, also known as Forced Outage Rate (FOR) .

Defining L(t) to be the load at time t, note that the events [J(t) > j] and [L(t) −
∑j

i=1 ciYi(t) > 0] are equivalent. J(t) > j means that the marginal unit is beyond unit j,

which implies that the load L(t) is larger than the available capacity up to unit j, L(t) >
∑j

i=1 ciYi(t) . So

Pr[J(t) > j] = Pr[L(t)−
j∑

i=1

ciYi(t) > 0] (5.5)

An auxiliary variable is defined

Xj(t) = L(t)−
j∑

i=1

ciYi(t) (5.6)

with a cumulative distribution function Gj(x; t) = Pr[Xj(t) ≤ x].

Thus, Xj(t) is the excess of load that is not being met by the available generated power

up to generating unit j. It is assumed that L(t) and Yi(t) are independent for all i. Equation

(5.5) can be written as

Pr[J(t) > j] = Pr[Xj(t) > 0]

= 1−Gj(0; t) (5.7)

And thus equation (5.4) reduces to

Pr [J (t) = j] = Gj (0; t)−Gj−1 (0; t) (5.8)

Assuming the random variable components of Xj(t) to be independent, for a relatively

large j, the distribution of Xj(t) can be modeled as normal, by the Central Limit Theorem.

But the normal approximation is not valid for small values of j, and may not be very accurate

when computing the tail probabilities for any j. Valenzuela [76] shows that the Edgeworth

expansion is a better approximation in these cases.
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The Edgeworth expansion of the distribution function of Xj(t) is given in Cramer [20]

Gj(x; t) ∼= Φ(z) +

[
1

6

K3j

K2j(t)3/2
(1− z2) +

1

24

K4j

K2j(t)2
(3z − z3)

+
1

72

K32
j

K2j(t)3
(−15z + 10z3 − z5)

]
φ(z) (5.9)

where z = zj(x; t) =
x−K1j(t)√

K2j(t)
, Φ(z) is the standard normal cumulative probability dis-

tribution function, φ(z) is the standard normal probability density function with mean zero

and unit variance; and

K1j(t) = E [Xj (t)] = µt −
j∑

i=1

cipi (5.10)

K2j(t) = V ar [Xj (t)] = σ2
t +

j∑
i=1

c2
i piqi (5.11)

K3j =

j∑
i=1

c3
i piqi(pi − qi) (5.12)

K4j =

j∑
i=1

c4
i piqi(p

2
i − 4piqi + q2

i ) (5.13)

where µt and σ2
t are the mean and variance of L(t) respectively; ci is the nominal capacity

of unit i; pi is the proportion of time that unit i is up; and qi is the proportion of time that

unit i is down; pi + qi = 1.

pi can be computed through pi =
µi

λi + µi

where λ−1
i is the mean time to failure and µ−1

i

is the mean time to repair for unit i.
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5.3 EXPECTED VALUE AND VARIANCE OF MARGINAL COST

For results to be later derived it is useful to compute the expected value and the variance of

dJ(t). They are calculated as follows conditioning on J(t) once again

E[dJ(t)] =
N+1∑
j=1

E[dJ(t)|J(t) = j]Pr[J(t) = j] =
N+1∑
j=1

E[dj]Pr[J(t) = j] (5.14)

Similarly

V ar[dJ(t)] = E[d2
J(t)]− E[dJ(t)]

2 =
N+1∑
j=1

E[d2
j ]Pr[J(t) = j]− E2[dJ(t)] (5.15)

If dj has a distribution, with mean E[dj] and variance V ar[dj] the formulas above hold

and equation (5.15) can be written as

V ar[dJ(t)] =
N+1∑
j=1

{
V ar[dj] + E2[dj]

}
Pr[J(t) = j]− E2[dJ(t)] (5.16)

In the rest of this work the dj’s will be considered as known and deterministic constants.

So, equations (5.14) and (5.15) can be written as

E[dJ(t)] =
N+1∑
j=1

djPr[J(t) = j] (5.17)

V ar[dJ(t)] =
N+1∑
j=1

d2
jPr[J(t) = j]− E2[dJ(t)] (5.18)
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5.4 EXPECTED VALUE OF THE EQUIVALENT LOAD

In order to consider the uncertainty of the load and the reliability of the units as well, the

random variable called equivalent load is defined as

L̄J(t)(t) = L(t) +

J(t)∑
i=1

[1− Yi(t)]ci (5.19)

The equivalent load is the load that could have been delivered if all the units up to the

marginal were working. The expected value of the equivalent load is

E[L̄J(t)(t)] =
N+1∑
j=1

E[L̄J(t)(t)|J(t) = j]Pr[J(t) = j] (5.20)

The cumulative capacity up to generating unit j is defined to be Cj =
∑j

i=1 ci

Note that the events [J(t) = j] and [Cj−1 < L̄J(t)(t) ≤ Cj] are equivalent.

So,

E
[
L̄J(t) (t) |J (t) = j

]
= E

[
L̄J(t) (t) |Cj−1 < L̄J(t) (t) ≤ Cj

]

= E
[
L̄j (t) |Cj−1 < L̄j (t) ≤ Cj

]
(5.21)

L̄j (t) is defined as the equivalent load at time t assuming that J (t) = j.

An approximation of the expected value and variance of the equivalent load is described

in appendix A.1, using Edgeworth formula. For the purpose of this study, a simpler approx-

imation of E[L̄J(t)(t)|J(t) = j] will be used. The reason for doing this is that none of them

is an exact derivation; and the latter, being close enough, is much easier to compute.

There are many reasonable approximations to the equivalent load: Cj−1,
Cj−1 + Cj

2
, Cj.

The selected one in this work is

E[L̄J(t)(t)|J(t) = j] ∼= Cj (5.22)
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This is justified by considering that, if Cj−1 < L̄J(t)(t) ≤ Cj, the difference Cj − L̄J(t)(t)

is smaller than cj. In practice, a power market has many units, such that an error smaller

than the capacity of a single unit is negligible, from a practical point of view. In appendix

A.3, a table shows the difference between outputs of the model in chapters 5 and 6 in the

two extreme cases: approximating L̄J(t)(t) with Cj and with Cj−1. The differences turn to

be very small, justifying the selected approximation.

Substituting equation (5.22) in equation (5.20), the following approximation holds

E[L̄J(t)(t)] ∼=
N+1∑
j=1

CjPr[J(t) = j] (5.23)

5.5 BERTRAND MODEL

Under the Bertrand model, the market-clearing price is the marginal cost. That is

p(t) = dJ(t) (5.24)

So, using equation (5.17) the expected price at hour t is:

E[p(t)]B = E[dJ(t)] =
N+1∑
j=1

djPr[J(t) = j] (5.25)

Similarly, the variance can be calculated using equation (5.18):

V ar[p(t)]B = V ar[dJ(t)] =
N+1∑
j=1

d2
jPr[J(t) = j]− E2[p(t)]B (5.26)
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5.6 COURNOT MODEL

Green and Newbery [32] derive the Cournot model formula for the basic case of a symmetric

duopoly:

p(t)Cournot = dJ(t) − q(t)

Dp

(5.27)

where q(t) =
L(t)

2
and Dp < 0 is the derivative of the total system demand D(t, p) with

respect to price. Following Green [30], it is assumed in this work that the total demand

D(t, p) is a linear function of price. L(t) is the demand realization at time t, which has to

be met.

The expression for q(t) is obtained based on the fact that firm i faces the residual demand

qi(t) = L(t)−q−i(t), where q−i(t) is the quantity provided by the rest of the competing firms.

In equilibrium and under a symmetric duopoly, qi(t) = q−i(t) = q(t), then q(t) =
L(t)

2
.

The formula (5.27) can be generalized for the case of n symmetric firms. In this case, the

residual demand for firm i is also qi(t) = L(t)− q−i(t). In equilibrium and under symmetry,

q(t) = L(t)− (n− 1)q(t). Then, q(t) =
L(t)

n
.

Two more considerations must be made. The first is that when the reliability of the

generating units is taken into consideration the symmetry is lost. The second is the need to

distinguish between the quantity offered and the actual quantity produced. Denoting q(t)

as the quantity offered by each firm, actual supply is

nq(t)−
J(t)∑
i=1

[1− Yi(t)]ci

At any time t, actual supply must equal actual demand. Therefore,

L(t) = nq(t)−
J(t)∑
i=1

[1− Yi(t)]ci (5.28)
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Consequently, to capture the uncertainty of the state of the generating units in equation

(5.27) the following expression is used

q(t) =
L(t) +

∑J(t)
i=1 [1− Yi(t)]ci

n
=

L̄J(t)(t)

n
(5.29)

as an approximation, because the symmetry has been lost.

Another way to visualize the last equation is by considering that companies must “sup-

ply” energy to account for the actual load plus the energy “lost” through outages, which

is referred to the equivalent load. This heuristic formula is not rigorous, but it should be

applicable for the purpose of determining the price under the merit order procedure used

in the power markets. If a unit is out on forced outage, the ISO calls on the following one

in the merit order. The effect on the price is exactly the same as a demand increase in the

same amount as that of the capacity of the failed units.

When D(p, t) is linear with respect to p, equation(5.27) can be generalized by

p(t)C = dJ(t) −
L̄J(t)(t)

nDp

(5.30)

The expected value of p(t) following the Cournot model is

E[p(t)]C = E[dJ(t)]− E

[
L̄J(t)(t)

nDp

]
= E[dJ(t)]− 1

nDp

E[L̄J(t)(t)] (5.31)

Substituting equation (5.17) and considering the approximation given by (5.23) in equa-

tion (5.31):

E[p(t)]C ∼=
N+1∑
j=1

djPr[J(t) = j]− 1

nDp

N+1∑
j=1

CjPr[J(t) = j]

=
N+1∑
j=1

(
dj − Cj

nDp

)
Pr[J(t) = j] (5.32)
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The variance can be calculated using equation (5.2):

V ar[p(t)]C = V ar

[
dJ(t) − 1

nDp

L̄J(t)(t)

]

= E

[(
dJ(t) − 1

nDp

L̄J(t)(t)

)2
]
− E2

[
dJ(t) − 1

nDp

L̄J(t)(t)

]

=
N+1∑
j=1

E

[(
dJ(t) − 1

nDp

L̄J(t)(t)

)2

|J(t) = j

]
Pr[J(t) = j]− E2[p(t)]C

∼=
N+1∑
j=1

(
dj − Cj

nDp

)2

Pr[J(t) = j]− E2[p(t)]C (5.33)

5.7 SUPPLY FUNCTION EQUILIBRIUM MODEL

Rudkevich, Duckworth, and Rosen’s [63] formula for deterministic load is as follows

p(t) = dJ(t) +
M−1∑

i=J(t)

(di+1 − di)

(
L(t)

Ci

)n−1

(5.34)

where M is the dispatch order number of the most expensive unit expected to run during

the 24-hour period.

As discussed earlier, the outage of units has the same effect on price as a shift upwards of

the load, in the same amount of the power that cannot be delivered. In order to consider the

uncertainty of the load and the availability of the units simultaneously, the same procedure

that has been used for the Cournot model is applied here: using the equivalent load L̄J(t)(t)

defined in equation (5.19) instead of the actual load LJ(t).

The following heuristic formula comes from modifying equation (5.34)

p(t) = dJ(t) +
M−1∑

i=J(t)

(di+1 − di)

(
L̄J(t)(t)

Ci

)n−1

(5.35)
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Substituting equation (5.35) into equation (5.1) and using the approximation given in

equation (5.22) the expected value can be expressed by

E[p(t)]R =
N+1∑
j=1

E


dJ(t) +

M−1∑

i=J(t)

(di+1 − di)

(
L̄J(t)(t)

Ci

)n−1

|J(t) = j


 Pr[J(t) = j]

∼=
N+1∑
j=1

[
dj +

M−1∑
i=j

(di+1 − di)

(
Cj

Ci

)n−1
]

Pr[J(t) = j] (5.36)

Similarly, the variance can be calculated in (5.2) as

V ar[p(t)]R =
N+1∑
j=1

E





dJ(t) +

M−1∑

i=J(t)

(di+1 − di)

(
L̄J(t)(t)

Ci

)n−1



2

|J(t) = j


 Pr[J(t) = j]

−E2[p(t)]R (5.37)

Using the approximation given in (5.22) the variance results

V ar[p(t)]R ∼=
N+1∑
j=1

[
dj +

M−1∑
i=j

(di+1 − di)

(
Cj

Ci

)n−1
]2

Pr[J(t) = j]− E2[p(t)]R (5.38)

5.8 SOME COMMENTS ON RUDKEVICH, DUCKWORTH, AND

ROSEN’S FORMULA

As Klemperer and Meyer [43] have shown, a supply function satisfying the definition of a

Nash Equilibrium is generally not unique.

Rudkevich, Duckworth, and Rosen’s formula is based on the assumption that the price at

the peak will equal the marginal cost of the last unit used. In equation (5.35) M denotes the

marginal unit at daily peak. M is then a random variable, with two sources of uncertainty:

the peak load, and the state of the units Yi at the peak hour.
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The peak load is the maximum of L(t) , t = 1, 2, 3, ....., 24. Under the assumption

that L(t) follows a Gauss-Markov process, the distribution of the peak load has a quite

complicated analytical form. Furthermore, the distribution of M is also quite difficult. As

the choice of the SFE is arbitrary, the perception of what M is going to be is more useful

than the actual distribution of M .

The second term of the right side of equation (5.35) varies from day to day. This means

that each day the firms bid different supply functions, according to the forecasted peak unit.

In practice, this is the case. The PJM website shows historical bid data, unit by unit. The

supply function for each unit is not the same every day.

It is assumed that the firms can forecast M with great precision. Therefore, it will

be considered to be a deterministic variable, based on historical data. According to the

perception of M , the supply function bid will be greater or smaller. It is supposed that all

the firms have the same ability to predict M . Rudkevich, Duckworth, and Rosen [63] take the

lowest SFE, which intersects the marginal cost curve at the point of maximum anticipated

demand for that day.

Looking at figure 5.1, if the anticipated maximum demand for the day is the line BC, the

set of feasible solutions, as it was shown, is composed of curves passing through the origin

O and crossing the demand between the points B and C like the curves OC’ and OB’. The

lowest SFE is then the curve OB that crosses the demand curve at point B with slope zero.

B is the anticipated realization of the maximum demand for that day met by supply. Recall

that the straight line OB is the Bertrand solution which is the marginal cost. In other words,

the curve OB is the solution selected by Rudkevich, Duckworth, and Rosen.

On the other hand, the highest SFE is the supply schedule based on the assumption

that each firm behaves as a monopolist in the particular hour of anticipated peak demand,

capped by the maximum allowed price. This is point C in figure 5.1. The highest SFE is

the curve OC, that crosses the demand curve at point C with infinite slope. Recall that the

straight line OC is the Cournot solution.
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Figure 5.1: Rudkevich, Duckworth, and Rosen’s supply function equilibrium solution

Over time, in a repeated game, firms might employ a “tit-for-tat” pricing strategy, by

gradually raising their bid prices. Raising prices can be seen as taking higher values of M ,

which can go up to N , the total number of generators in the market. In figure 5.1, the

curve OB’ is a Rudkevich, Duckworth, and Rosen’s solution taking a higher M . In this way,

Rudkevich, Duckworth, and Rosen’s formula has been generalized to cases other than the

lowest SFE. The study includes sensitivity analysis on M to assess the repercussion on the

expected value and on the variance of prices.

5.9 SUMMARY

This chapter finds expressions for the expected value and variance of hourly electricity prices,

conditioning on the probability distribution of the marginal unit. The concept of equivalent
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load is used to capture the uncertainties of both the load and the reliability of units. It uses

the fact that an outage of a unit is equivalent (for pricing purposes) to an increase of load

in the same amount of energy as the capacity of the failed unit. The formulas explicitly

use system parameters such as number of firms in the market, number of generating units,

elasticity of demand, installed capacity, which allows us to perform sensitivity analysis and

to adapt the model to a change in the system parameters.
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6.0 AVERAGE ELECTRICITY PRICE

Average electricity prices are useful for medium-term decisions, in which the information

on hourly prices is not that useful. The extreme volatility of electricity prices makes it

difficult for the companies to survive in such an unpredictable environment. The firms rely

on a reasonable forecast of the prices. For derivatives pricing, and to hedge the risk against

significant changes in the market price of electricity, the average price for peak and off-peak

hours are of interest. And so they are for making decisions about investments on capacity.

This chapter derives formulas for the expected value and variance of average prices. The

objective is to predict accurately the average price for a given day; or the average for some

specific hours.

6.1 DAILY LOAD PROFILE

A load-weighted average is considered, as a more general approach. The simple average is a

special case.

The weights of the hourly loads are given by

wt =
L(t)∑H
t=I L(t)

where I is the initial hour and H is the final hour of the period under consideration.

77



The load-weighted average price for period I to H is

p̄(I, H) =
H∑

t=I

wtp(t) (6.1)

If I = 1 and H = 24, p̄(I, H) is the load-weighted average daily price.

Note that wt and p(t) are correlated, wt being also a random variable. Nevertheless, this

work anticipates that, in general, wt will have much less variability compared to pt.

6.2 EXPECTED VALUE AND VARIANCE OF AVERAGE PRICE

The expected value is straightforward:

E[p̄(I, H)] =
H∑

t=I

wtE[p(t)] (6.2)

using E[p(t)] as derived in the preceding chapter for each bidding model.

The variance requires a more thorough analysis, because p(r) and p(t) are correlated for

any pair r, t. Its formula is

V ar[p̄(I,H)] =
H∑

t=I

w2
t V ar[p(t)] + 2

H∑
t=I

H∑
r=t+1

wrwtcov[p(r), p(t)] (6.3)

where the expression for V ar[p(t)] has been derived in the preceding chapter for each bidding

model. But still an expression for cov[p(r), p(t)] is needed.

Using that

cov[p(r), p(t)] = E[p(r)p(t)]− E[p(r)]E[p(t)] (6.4)
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only a formula for E[p(r)p(t)] needs to be found, given that E[p(r)] and E[p(t)] have been

derived in the previous chapter. Conditioning on J(r) and J(t), the following expression

holds

E[p(r)p(t)] =
N+1∑
m=1

N+1∑

l=1

E[p(r)p(t)|J(r) = m, J(t) = l]Pr[J(r) = m, J(t) = l] (6.5)

Sections 6.4, 6.5 and 6.6 give computations of E[p(r)p(t)|J(r) = m, J(t) = l] for the

three models under consideration.

Valenzuela [76] has obtained an approximate expression for Pr[J(r) = m, J(t) = l] using

the Edgeworth expansion formula. The following section summarizes his work.

6.3 MARGINAL UNIT’S BIVARIATE PROBABILITY DISTRIBUTION

Note that

Pr[J(r) = m, J(t) = l] = Pr[J(r) > m− 1, J(t) > l − 1]

−Pr[J(r) > m, J(t) > l − 1]

−Pr[J(r) > m− 1, J(t) > l]

+Pr[J(r) > m, J(t) > l] (6.6)

The events [L(r) −∑m
i=1 ciYi(r) > 0, L(t) −∑l

i=1 ciYi(t) > 0] and [J(r) > m, J(t) > l]

are equivalent. Denoting by pml(r, t) the joint probability of the two events, and using the

variables Xm(r) and Xl(t) defined in equation (5.6), the following equalities hold

pml(r, t) = Pr[J(r) > m, J(t) > l] = Pr[Xm(r) > 0, Xl(t) > 0] (6.7)

Using this notation, equation (6.6) becomes

Pr[J(r) = m, J(t) = l] = pm−1,l−1(r, t)− pm,l−1(r, t)− pm−1,l(r, t) + pm,l(r, t) (6.8)
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The joint probability distribution of [Xm(r), Xl(t)] can be approximated by a bivariate

normal distribution for relatively high values of m and n, because L(r) and Yi(r) are as-

sumed to be independent, for any given r. This normal approximation does not provide

accurate answers when computing tail probabilities and for small values of m or l. A better

approximation is obtained using the Edgeworth expansion.

Iyengar and Mazumdar [41] give the Edgeworth approximate expansion of the joint

probability distribution of [Xm(r), Xl(t)]:

pml(r, t) ∼=
∫ ∞

am(r)

∫ ∞

al(t)

φ2[z1, z2; ρml(r, t)]

{
1 +

1

6

K30

K
3
2
20

H30[z1, z2; ρml(r, t)]

+
1

2

K21

K20K
1
2
02

H21[z1, z2; ρml(r, t)] +
1

2

K12

K
1
2
20K02

H12[z1, z2; ρml(r, t)]

+
1

6

K03

K
3
2
02

H03[z1, z2; ρml(r, t)]

}
dz1dz2 (6.9)

where

am (r) = − K10√
K20

(6.10)

al (t) = − K01√
K02

(6.11)

ρml (r, t) is the correlation coefficient between Xm (r) and Xl (t) given by

ρml (r, t) =
K11√

K20K02

(6.12)

φ2[z1, z2; ρ] is the probability density function of the bivariate standard normal distribution

with correlation coefficient ρ

φ2[z1, z2; ρ] =
1

2π
√

1− ρ2
exp

[ −1

2 (1− ρ2)

(
z2
1 − 2ρz1z2 + z2

2

)]
(6.13)
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Kij is the bivariate cumulant of order (i, j) of [Xm (r) , Xl (t)] given by

K10 = E [Xm (r)] = µr −
m∑

i=1

cipi (6.14)

K01 = E [Xl (t)] = µt −
l∑

i=1

cipi (6.15)

K20 = V ar [Xm (r)] = σ2
r +

m∑
i=1

c2
i piqi (6.16)

K02 = V ar [Xl (t)] = σ2
t +

l∑
i=1

c2
i piqi (6.17)

K11 = Covar [Xm (r) , Xl (t)] = σr,t +

min(m,l)∑
i=1

c2
i piqie

−δi|t−r| (6.18)

K12 = K21 =

min(m,l)∑
i=1

c3
i piqi (pi − qi) e−δi|t−r| (6.19)

K30 =
m∑

i=1

c3
i piqi (pi − qi) (6.20)

K03 =
l∑

i=1

c3
i piqi (pi − qi) (6.21)

where µr, µt, σ2
r , σ2

t and σr,t are the means, variances and covariances of the hourly loads.

The expressions for K11 and K12 hold only if the up and down times are independently

exponentially distributed, as it is assumed in this work. In them, δi = λi + µi

Note that using the notation defined in equations (5.10) to (5.12) the following equalities

hold:

K10 = K1m (r)

K01 = K1l (t)

K20 = K2m (r)

K02 = K2l (t)

K30 = K3m

K03 = K3l
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Hij[z1, z2; ρ] are the bivariate Hermite polynomials :

H30[z1, z2; ρ] =
(z1 − ρz2)

3 − 3(z1 − ρz2)(1− ρ2)

(1− ρ2)3
(6.22)

H21[z1, z2; ρ] =
(z1 − ρz2)

2(z2 − ρz1) + 2ρ(1− ρ2)(z1 − ρz2)− (1− ρ2)(z2 − ρz1)

(1− ρ2)3

(6.23)

H12[z1, z2; ρ] =
(z2 − ρz1)

2(z1 − ρz2) + 2ρ(1− ρ2)(z2 − ρz1)− (1− ρ2)(z1 − ρz2)

(1− ρ2)3

(6.24)

H03[z1, z2; ρ] =
(z2 − ρz1)

3 − 3(z2 − ρz1)(1− ρ2)

(1− ρ2)3
(6.25)

6.4 BERTRAND MODEL

The previous section provides an approximation of the bivariate probability distribution

function for the marginal unit at two different hours Pr[J(r) = m, J(t) = l]. This section

computes the variance of the average price for the Bertrand model.

Knowing that p(t) = dJ(t) for Bertrand model from equation (5.24) the following equality

holds

E[p(r)p(t)|J(r) = m, J(t) = l]B = dmdl (6.26)

Using this in equation (6.5) and the resulting expression in equation (6.4), the covariance

of prices at two different hours is expressed by

cov[p(r), p(t)]B =
N+1∑
m=1

N+1∑

l=1

dmdlPr[J(r) = m, J(t) = l]− E[p(r)]BE[p(t)]B (6.27)

where E[p(r)]B and E[p(t)]B are derived as in equation (5.25).
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Finally, the variance of the average price for the Bertrand model is obtained from equation

(6.3) using

V ar[p̄(I, H)]B =
H∑

t=I

w2
t V ar[p(t)]B + 2

H∑
t=I

H∑
r=t+1

wrwtcov[p(r), p(t)]B (6.28)

where V ar[p(t)]B is calculated using equation (5.26).

6.5 COURNOT MODEL

This section derives the variance of the average price for Cournot model, assuming that the

demand D(p, t) is linear with respect to p.

Using equation (5.30) and the approximation of equation (5.22), the following expressions

hold

E[p(r)p(t)|J(r) = m, J(t) = l]C = E

[
dJ(r)dJ(t) − dJ(r)

L̄J(t)(t)

nDp

− dJ(t)

L̄J(r)(r)

nDp

+
L̄J(r)(r)L̄J(t)(t)

n2D2
p

|J(r) = m, J(t) = l

]

= dmdl − dm

nDp

E[L̄J(t)(t)|J(t) = l]

− dl

nDp

E[L̄J(r)(r)|J(r) = m]

+
1

n2D2
p

E[L̄J(r)(r)L̄J(t)(t)|J(r) = m, J(t) = l]

∼= dmdl − dmCl

nDp

− dlCm

nDp

+
CmCl

n2D2
p

=

(
dm − Cm

nDp

) (
dl − Cl

nDp

)
(6.29)
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Using this in equation (6.5) and the resulting expression in equation (6.4) the covariance

of prices at two different hours is expressed by

cov[p(r), p(t)]C ∼=
N+1∑
m=1

N+1∑

l=1

(
dm − Cm

nDp

)(
dl − Cl

nDp

)
Pr[J(r) = m, J(t) = l]

−E[p(r)]CE[p(t)]C (6.30)

where E[p(r)]C and E[p(t)]C are computed as in equation (5.31).

Finally, the variance of the average price for the Cournot model is obtained from equation

(6.3) using

V ar[p̄(I, H)]C =
H∑

t=I

w2
t V ar[p(t)]C + 2

H∑
t=I

H∑
r=t+1

wrwtcov[p(r), p(t)]C (6.31)

where V ar[p(t)]C is calculated using equation (5.33).

6.6 SUPPLY FUNCTION EQUILIBRIUM MODEL

This section will compute the variance of the average price for the Rudkevich, Duckworth,

and Rosen’s model.

Using Rudkevich, Duckworth, and Rosen’s formula (equation (5.35)) and the approxima-

tion of equation (5.22) as it has been done for the Cournot model, the following expression

holds

E[p(r)p(t)|J(r) = m, J(t) = l]R ∼=
[
dm +

M−1∑
i=m

(di+1 − di)

(
Cm

Ci

)n−1
]

×
[
dl +

M−1∑

i=l

(di+1 − di)

(
Cl

Ci

)n−1
]

(6.32)
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Using this in equation (6.5) and the resulting expression in equation (6.4) the covariance

of prices at two different hours is expressed by

cov[p(r), p(t)]R =
N+1∑
m=1

N+1∑

l=1

[
dm +

M−1∑
i=m

(di+1 − di)

(
Cm

Ci

)n−1
]

×
[
dl +

M−1∑

i=l

(di+1 − di)

(
Cl

Ci

)n−1
]

Pr[J(r) = m, J(t) = l]

−E[p(r)]RE[p(t)]R (6.33)

where E[p(r)]R and E[p(t)]R are computed as in equation (5.36).

Finally, the variance of the average price for the Rudkevich, Duckworth, and Rosen’s

model is obtained from equation (6.3) using

V ar[p̄(I, H)]R =
H∑

t=I

w2
t V ar[p(t)]R + 2

H∑
t=I

H∑
r=t+1

wrwtcov[p(r), p(t)]R (6.34)

where V ar[p(t)]R is calculated using equation (5.38).

6.7 SUMMARY

The expected value of the average price is straightforward and can be easily computed from

section 6.2, using the expected values of hourly prices derived in the preceding chapter for

each bidding model.

Sections 6.4, 6.5 and 6.6 present derivations for the variance of the average price for

the three bidding models respectively. The derivations were done using the Edgeworth

approximate expansion of the joint probability distribution Pr[J(r) = m, J(t) = l], shown

in section 6.3.
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7.0 NUMERICAL RESULTS

This chapter provides numerical examples, using the formulas obtained in previous chap-

ters. A supply model, an aggregate load model and the three bidding models are used.

The objective is to compare results across the three bidding models. Sensitivity analysis is

conducted on the number of firms in the market, on the price elasticity of demand and on

the anticipated peak load, in order to obtain the conclusions.

7.1 SUPPLY MODEL

The system will comprise twelve identical sets of eight generators each. The total number of

units in the system will be ninety-six. Table 7.1 shows the characteristics of the generating

units: capacity, production cost, mean time to failure, mean time to repair, and the steady

state proportion of time that it is able to generate power. The total nominal capacity is

18000 MW.

The model considers:

• that infinite amount of energy can be bought outside the system at $75/MWh.

• 4 ownership scenarios of the system: 3, 4, 6, and 12 identical firms, with 4, 3, 2, and 1

8-unit groups each respectively.

• that all the firms forecast the load with the same accuracy.
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It is assumed that the generators are dispatched in a pre-arranged merit order, based on

the offered prices. There exists a positive correlation between bids and production costs.

Table 7.1: Supply model

unit capacity mean time to fail mean time to repair energy cost 1 - FOR
i ci(MW) λ−1

i (hour) µ−1
i (hour) di($/MWh) pi

1 400 1100 150 6.00 0,88
2 350 1150 100 11.40 0,92
3 150 960 40 11.40 0,96
4 150 1960 40 14.40 0,98
5 200 950 50 22.08 0,95
6 100 1200 50 23.00 0,96
7 50 2940 60 27.60 0,98
8 100 450 50 43.50 0,90

7.2 BIDDING MODELS

Three bidding strategies are considered: the Bertrand model, Cournot model and a specific

case of Supply Function Equilibrium (SFE): Rudkevich, Duckworth, and Rosen’s model.

These strategies are the three primary equilibrium models of imperfect competition. They

have in common the assumption that each competing firm seeks to maximize its profit by

taking into account the market conditions, its own cost structure, and estimation of the

behavior of the rivals. The key difference between the models is the strategic competing

variable: price, quantity, or supply function, respectively. The choice of the strategy has

an impact on the level of competition among the firms and the outcome of the equilibrium

price.
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7.3 AGGREGATE LOAD MODEL

Load data from PJM for weekdays of Spring 2002 (March 21 to June 20, 2002) is used in

these illustrations. Table 7.2 shows the mean and standard deviation of the hourly load. It

is assumed that hourly loads follow a normal probability distribution. Standard deviations

are small enough with respect to the mean so that the probability of negative loads can be

neglected. The data points used in the model were scaled by a factor of 0.75 to fit into the

supply model.

Table 7.2: Actual aggregate load model

hour mean standard deviation
t µt(MWh) σt(MWh)
1 24392 2323
2 23256 2088
3 22686 1917
4 22449 1815
5 22854 1769
6 24570 1812
7 27676 1981
8 30283 2072
9 31579 2256

10 32403 2613
11 33135 3091
12 33505 3598
13 33644 4061
14 33889 4519
15 33844 4895
16 33767 5140
17 33717 5166
18 33498 4942
19 33147 4476
20 32913 3973
21 33296 3541
22 32347 3432
23 29663 3079
24 26800 2651

For the Cournot model, a non-zero price elasticity of the demand is proposed. A linear

demand function is used having the form D(t, p) = a(t)+pDp with Dp < 0 being deterministic
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and constant across all hours t, and a(t) being a random variable different for every hour.

For the Rudkwevich model, zero price elasticity of demand is required.

7.4 SENSITIVITY ANALYSIS

Keeping always the same 96-unit system, four scenarios of ownership were investigated:

• 12 identical firms with 8 units each,

• 6 identical firms with 16 units each,

• 4 identical firms with 24 units each, and

• 3 identical firms with 32 units each.

Sensitivity analysis was then performed on the parameters, in the range and with the

reference values given in table 7.3. For the Cournot model, five cases of first derivative Dp

of demand with respect to price were considered for sensitivity analysis purposes: Dp =

−300,−250,−200,−150,−100 (MWh)2/$, reflecting a descending order of price elasticity of

demand . For the Rudkevich model, five beliefs about the anticipated peak demand were

taken into account to measure sensitivity, expressed as a ratio (the peak-demand-to-full-

capacity ratio, PDFCR) : 0.6, 0.7, 0.8, 0.9 and 1. Bertrand model results play the role of

lower bound in all the cases, except for the variances where the Rudkevich model gives the

lowest values. This issue will be commented upon later.

Table 7.3: Parameters considered for sensitivity analysis

Reference
Parameter Range value
- number of firms 3 – 12 6
- demand slope (MWh)2/$ (Cournot model) -300 – -100 -200
- peak-demand-to-full-capacity ratio (PDFCR) (Rudkevich model) 0.6 – 1.0 0.8
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7.5 RESULTS

The number of firms in the market affects the expected value of the price and the variance. In

all the cases, when the number of firms increases, the results tend to the Bertrand solution.

Especially, the cost and capacity of each unit influence the expected value and variance of

price to an important extent.

7.5.1 Hourly prices

Figure 7.1 shows that the expected values and variances of hourly prices for the Cournot

model follow a similar profile to the Bertrand model, but always stay above it. Only two

cases of demand elasticity are shown (the highest and the lowest), to keep the graphics clear.

The other three cases fall between them.

Both expected values and variances can reach high values when the elasticity of demand

is low. For different values of demand elasticity, expectations and variances with twelve firms

remain around one half those when there are only three firms in the market.

For the Rudkevich model, for low anticipated peak demand, market concentration does

not affect that much the results in both expectations and variances. The expected values

and variances of hourly prices for the Rudkevich model are shown in figure 7.2. Only two

cases of anticipated peak load are given for the sake of clarity. The results for PDFCR=0.6

were equal or very close to the Bertrand solution; therefore they are not included.

In figure 7.2.a, for PDFCR=0.8 the curve of expected values is flatter than in the other

cases, and between hour 9 and hour 22, the differences between ownership scenarios are

very small. As was expected, all the prices are above Bertrand hourly prices. When the

anticipated peak demand is high (close to 1), then the differences are striking. Rudkevich

expected prices for low demand hours are more affected by the fluctuation in demand than

the expected prices for peak hours. This produces the effect of leveling of prices.
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Rudkevich model variances of hourly prices (figure 7.2.b) are less disparate for the dif-

ferent ownership scenarios for PDFCR=0.8. The lower the anticipated peak demand is, the

closer the solutions are to Bertrand’s curve.

Note that, for peak hours, except in the case of 12 firms, Rudkevich’s variances are

smaller than Bertrand’s. The reason for this is that Rudkevich’s supply functions have

smaller slopes than the marginal cost at peak hours. This can be better illustrated by a

diagram.

Figure 7.3.b shows examples1 of Rudkevich supply functions, together with the marginal

cost function (Bertrand solution). It is necessary to note that Rudkevich offer curves, for an-

ticipated peak load ratio less than one, continue beyond the anticipated peak load coinciding

with the marginal cost curve.

In the on-peak load range 19500-20500 MWh (labeled B) the slopes of the Rudkevich

supply functions are lower than the slope of the marginal cost. Thus a fluctuation in the

load at that range produces smaller variations in the prices for the Rudkevich model —for

any value of the anticipated peak load— than for Bertrand’s. On the contrary, in the off-

peak load range 13500-14500 MWh (labeled A) some of the slopes of the Rudkevich supply

functions are lower, while some are higher than the slope of the marginal cost. In this case,

the variances under the Rudkevich model may be smaller or larger than those for Bertrand’s.

In figure 7.3.a, a Cournot solution (for a specific value of Dp whose value is not important

for this purpose) is shown. Note that the slope of the Cournot solution curve always has

a higher slope than the marginal cost curve. Then the variances of hourly prices for the

Cournot model remain always above those for the Bertrand model. Two vertical lines help

to compare slopes for the same load level.

Furthermore, the fewer the number of firms in Rudkevich’s model, the higher are the

expected values, but the smaller are the variances, something which is not intuitive. This

1These examples do not come from the supply model that is used in this work. They come from other
hypothetical supply model, but they are useful for illustrating the point of interest here.
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can be illustrated by figure 7.4, in which Rudkevich supply functions can be compared for

three firms and twelve firms. Especially for a large load, the curves for three firms are flatter

than those for twelve. This explains that the variances for three firms are smaller than those

for twelve.In conclusion, the Rudkevich model has smaller variances than any other model.

7.5.2 Average prices

Two 4-hour averages are studied: at on-peak hours and at off-peak hours. All the cases for

Cournot and Rudkevich are shown in the graphics.

Average for hours 13 to 16: on-peak hours

Figure 7.5 shows the expected values and variances of average price between hours 13

and 16 for the three bidding models, with sensitivity analysis. Results for the Bertrand

model are insensitive to all the parameters, and are taken as references.

As could be intuited, in all the cases the expected values increase when the number of

firms decreases. When the number of firms is large, there is no oligopoly any more, and the

behavior tends to the perfect competition case.

As also could be expected, Cournot average prices (figure 7.5.b) increase when demand

is more inelastic (i.e., Dp decreases in absolute value). The increase may be very high with

respect to Bertrand prices.

Rudkevich expected values (figure 7.5.a) increase with the daily peak load to full capacity

ratio, implying that a bigger peak load for a given day will drag up all the hourly prices of

that day. But markups are not that large for anticipated peak loads less than or equal to

90% of total capacity.

For the Cournot model, variances of average prices (figure 7.5.d) are always above the

Bertrand model case. They also increase when the number of firms decreases, and when

demand is more inelastic.
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On the contrary, Rudkevich model variances of average prices (figure 7.5.c) have quite a

different behavior. The first thing to point out is that the variances are below that for the

Bertrand model for most of the chosen values of peak-demand-to-full-capacity ratio. The

reason for this was explained in the preceding subsection. See figure 7.3.b.

Second, the variances increase with the number of firms. The explanation for this is again

that when the number of firms increase, the market tends to the perfect competition scenario,

so the variances get close to that of the Bertrand model. In addition, with fewer companies

in the market, Rudkevich prices go up and flatten more quickly and, therefore, the slopes of

the supply curves are smaller for relatively higher values of the peak-demand-to-full-capacity

ratio. See figure 7.4.

Third, for values of peak-demand-to-full-capacity ratio PDFCR increasing from 0.6 to

0.9, the variances of average prices decrease in this range of on-peak load. The reason can

be explained through figure 7.3.b. In the range 20500-22000 MWh (labeled C), the slope

of the curve for anticipated peak load = 20000 MWh is the same as marginal cost curve’s

(Bertrands’s)2. For anticipated peak load = 21000 MWh the slope has a very flat part

between 20000 and 20500 MWh, and beyond this range, it follows the marginal cost curve.

So, the variances are smaller than those for anticipated peak load = 20000 MWh. For

anticipated peak load = 22000 MWh, the variances are even lower. But for anticipated peak

load = 23000 MWh, variances may increase.

Average for hours 3 to 6: off-peak hours

Figure 7.6 shows the expected values and variances of average prices between hours 3

and 6 for the three models, including sensitivity analysis. The behavior of the expected

values, for both models —Cournot and Rudkevich— (figures 7.6.a and .b) are similar to the

average for hours 13 to 16, discussed above. Variances of average prices for the Cournot

model (figure 7.6.d) show the same patterns as those of the average for hours 13 to 16, but

they are much smaller.

2Rudkevich offer curves, for anticipated peak load ratio less than one, continue beyond the anticipated
peak load coinciding with the marginal cost curve.
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Once more, the variances of average prices for Rudkevich (figure 7.6.c) have a different

behavior. This time, they are above the Bertrand model for most of the cases. This may

be explained by the fact that Rudkevich offers for low levels of demand have steeper slopes

than Bertrand. This can be seen in figure 7.3.b. At very low load level, say 6000-8000 MWh

of the supply model used in the figure 3, the slopes of Rudkevich supply functions are higher

than those of the marginal cost curve.

In figure 7.6.c variances of average prices are not monotonic with respect to the number

of firms (the lines cross each other). The reason for this may be that the approximation

methods that were used are not very accurate when the variances are small.

7.6 SUMMARY

The number of firms and the cost-capacity structure of the supply model play an important

role when the expected values and variances are compared for the different models. The

latter is reflected in the Bertrand solution operating as a benchmark in most of the cases.

Cournot solutions are very sensitive to the demand elasticity. The more elastic the

market, the cheaper the prices and the smaller the variances. Electricity markets are rather

inelastic; and it is not an easy task to change this. In part this is so, because the end

consumer does not have the opportunity to choose, or is not affected by the changes of

prices in the wholesale market. This way the consumers can not react to changes in prices

that would provide elasticity to the wholesale market. As times passes by, more markets are

offering open access to the end consumers making the market more elastic.

Rudkevich results have less pronounced fluctuations than Cournot outputs. The sensitiv-

ity around the anticipated peak load is more important for off-peak hours. The Rudkevich

3Be aware of that the supply model used in the figure is not the one used in this work, but the example
is useful anyway.
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model helps to level the prices across hours. The variances of hourly prices are usually

smaller for the Rudkevich model than for the Bertrand model. On the contrary, variances

for the Cournot model are always above Bertrand’s. But the variances of average prices in

the Rudkevich model follow different profiles. In peak hours, variances of average prices are

lower than the Bertrand model. In off-peak hours variances are higher.

It seems that designing a wholesale power market to encourage Rudekvich model be-

havior, with a suitable number of competing firms, would result in a better performance

of the market: lower prices and smaller variances. If the Rudkevich model is an accurate

representation of the electricity market, the results show that an introduction of competition

may decrease the expected value of prices but the variances may actually increase with the

increase of the number of competing firms in the market.
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Figure 7.1: Expected values and variances of hourly prices (Cournot model)
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Figure 7.2: Expected values and variances of hourly prices (Rudkevich model)
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Figure 7.3: Supply functions for 6 firms

98



Figure 7.4: Rudkevich supply functions for 12 and 3 firms

99



Figure 7.5: Expected values and variances of average prices between hours 13 and 16
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Figure 7.6: Expected values and variances of average prices between hours 3 and 6
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8.0 STOCHASTIC MODEL OF THE LOAD

The sources of uncertainty that this work considers are the fluctuations of demand and the

availability of the units. A question arises at this moment: Can we predict electricity prices

more accurately if we can better explain the variability of demand?

Some previous work (see Valenzuela, Mazumdar and Kapoor [81]) showed that part of

the load variance can be explained by the effect of temperature. This chapter studies how

much the predicted quantities of the expected values and variances of hourly prices and

average price change when one takes into account the information available on temperature.

A stochastic model is used: the same as that in Valenzuela [76], who calibrated it based on

a data set containing hourly load and temperature readings for weekdays during March to

September 1996.

Three load models are considered here. The first one takes the hourly loads L(t) as

normally distributed and not independent, as in chapters 5 and 6. The second uses the

information on temperature to explain the load and its variation. The third, in addition to

using the previous information, considers explicitly the correlation of the load from one hour

to the next using a time series approach.
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8.1 REGRESSION EQUATIONS FOR HOURLY LOAD WITH

TEMPERATURE AS INDEPENDENT VARIABLE

Ambient temperature is an important factor affecting the magnitude of the short-term vari-

ation in the load as Valenzuela and Mazumdar [77] and Valenzuela, Mazumdar, and Kapoor

[81] show. This and the following sections investigate the change in the expected value and

variance of electricity price when the effect of temperature is taken into account. The model

is the same as in Valenzuela [76], and it is used in two steps.

This section covers the first step, in which the effect of temperature is removed from the

load model; and the remaining terms x(t) for each t are considered normally distributed. In

the second step, it uses the full stochastic model by Valenzuela [76].

Figure 8.1: Demand versus temperature at noon in NE United States (1995-96)

Based on plots like the one shown in figure 8.11, for each hour t of a 24-hour period,

Valenzuela found the following regression equations in which the hourly load L(t) is the

response and the hourly temperature τt(
◦F) is the independent variable.

L(t) = β0,t + β1,tτt + β2,t(τt − 65)δ(τt) + x(t) t = 1, 2, ..., 24 (8.1)

1Source: Valenzuela [76]
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Where δ(τt) is defined as

δ(τt) =





0 if τt ≤ 65

1 if τt > 65
(8.2)

The data set was used to estimate the regression coefficients β.,t shown in table 8.1.

Table 8.1: Least-square estimates of regression coefficients

hour t β0,t β1,t β2,t

(MWh) (MWh/◦F) (MWh/◦F)
1 1266.488 -3.043 24.923
2 1228.883 -3.098 23.214
3 1200.436 -2.784 21.825
4 1210.148 -3.110 23.743
5 1252.080 -3.378 25.518
6 1396.442 -4.181 26.683
7 1615.254 -5.040 24.353
8 1730.754 -4.980 25.635
9 1722.957 -4.150 25.587

10 1725.510 -4.286 25.880
11 1779.210 -5.160 26.604
12 1810.045 -5.940 27.871
13 1801.092 -6.194 27.849
14 1828.385 -6.812 28.760
15 1837.352 -7.484 29.619
16 1860.203 -8.327 30.908
17 1890.890 -8.823 30.870
18 1973.484 -10.534 33.116
19 2046.137 -11.728 33.575
20 2055.195 -11.765 33.010
21 2003.196 -10.099 32.082
22 1699.140 -4.486 28.454
23 1524.169 -3.820 28.715
24 1392.461 -3.821 28.062

First the effect of temperature is subtracted from the load, to compute the expected

value and variance of the remaining x(t) for each t. The new expected value and variance of

hourly load are given by

E[L(t)] = β0,t + β1,tτt + β2,t(τt − 65)δ(τt) + E[x(t)] (8.3)

V ar [L(t)] = V ar [x(t)] (8.4)

104



One more thing is needed to work with the new model: the computation of the covariance

σr,t between the load at time t and the load at time r, used in equation (6.18). It is

assumed that the temperature can be forecasted accurately, so temperature is considered

as a deterministic variable. Then, all the randomness comes from the term x(t), and the

covariance is then

Covar [L(t), L(r)] = Covar [x(t), x(r)] (8.5)

The Covar[x(t), x(r)] are computed from the historical data set, once the effect of temper-

ature is removed.

Given a temperature forecast, the new expected values, variances and covariances of the

load computed as above in this section, are used as µt, σt, and σr,t in the model of chapters

5 and 6. Thus, different expected values and variances of prices are obtained.

8.2 TIME SERIES FOR HOURLY LOAD WITH TEMPERATURE AS

INDEPENDENT VARIABLE

As a second step, the complete model by Valenzuela [76] is used. The hourly load L(t) is

described by equations (8.1) and (8.2) in which x(t) is a time series —from now on denoted

by the symbol xt— following an ARIMA (1,120,0) process of the form

xt = xt−120 + ρ(xt−1 − xt−121) + zt (8.6)

where zt is Gaussian white noise with mean zero and variance σ2
z = 2032.55 (MWh)2, and

the estimated ρ, the autocorrelation coefficient for a 1-hour lag, is .879.

The load can be predicted using the following procedure for t = 1, 2, . . . , 24: 1. Based on

forecasted temperature, compute its effect on hourly load. 2. Compute x̂t as a time series,

based on previous data. 3. Compute L̂(t) as the sum of steps 1 and 2.
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8.3 MEAN AND VARIANCE OF THE HOURLY LOAD USING THE TIME

SERIES REPRESENTATION

For each t = 1, 2, ..., 24, L̂(t), the expected value of L(t) can be calculated given that the

values of the time series are known up to time t = 0.

L̂(t) = β0,t + β1,tτt + β2,t(τt − 65)δ(τt) + x̂t t = 1, 2, ..., 24 (8.7)

where x̂t can be recursively computed by

x̂t = xt−120 + ρ[x̂t−1 − xt−121] (8.8)

The recursion provides the following expression with x̂0 = x0 and xt−120 being known

terms

E[xt] = x̂t = xt−120 + ρt(x0 − x−120) (8.9)

V ar[xt] can be recursively computed by

V ar [xt] = ρ2V ar [xt−1] + σ2
z (8.10)

Following the recursive computation and knowing that V ar [x0] = 0 because x0 is known,

the variance of xt can be expressed by

V ar[xt] =
t−1∑
i=0

ρ2iσ2
z (8.11)

Note that the limit for t going to infinity is

lim
t→∞

V ar[xt] =
σ2

z

1− ρ2
(8.12)

as Box and Jenkins [14] show for an AR(1) process.

The new values change the probability distribution function of the marginal unit of

section 5.2. The coefficients K1j(t) in equation (5.10) and K2j(t) in equation (5.11) are
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modified because µt and σt changed respectively. K3j and K4j remain the same. Section

8.6 presents an example.

Therefore, new results for the expected values and variances of hourly prices are obtained.

Section 8.8 discusses the numerical results.

8.4 COVARIANCE BETWEEN LOADS AT DIFFERENT HOURS USING

THE TIME SERIES REPRESENTATION

Covariance of xt and xr is necessary to compute the variance of average prices, and it is

given by

Covar [xt, xr] = E[xtxr]− E[xt]E[xr] (8.13)

Without loss of generality, let r be such that r = t + k, with k >= 0. From equation

(8.8) the following equalities hold

E[xr] = E[xt+k] = xt+k−120 + ρ(E[xt+k−1]− xt+k−121)

= xt+k−120 + ρ2(E[xt+k−2]− xt+k−122)

...

= xt+k−120 + ρk(E[xt]− xt−120) (8.14)

with xt+k−120 being a known term, because t + k can be 24 at most, and it is assumed that

the time series’ terms xi are known for i ≤ 0

Extending (8.6) recursively for xr, xr can be written

xr = xt+k−120 + ρk(xt − xt−120) + ρk−1zt+1 + ρk−2zt+2 + ... + ρzt+k−1 + zt+k (8.15)
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Then, considering that xt+k−120 and xt−120 are known terms,

E[xtxt+k] = E[xt[xt+k−120 + ρk(xt − xt−120 +
k−1∑
i=0

ρizt+k−i)]]

= E[xt]xt+k−120 + ρkE[x2
t ]− ρkE[xt]xt−120 (8.16)

Therefore, the covariance is

Covar[xt, xr] = E[xt]xt+k−120 + ρkE[x2
t ]− ρkE[xt]xt−120

−E[xt]xt+k−120 − ρkE[xt]
2 + ρkE[xt]xt−120

= ρk(E[x2
t ]− E[xt]

2)

= ρkV ar[xt]

= ρk

t−1∑
i=0

ρ2iσ2
z r = t + k, k ≥ 0 (8.17)

The limit when t goes to infinity is the well known result

lim
t→∞

Covar[xt, xt+k] = ρk σ2
z

1− ρ2
(8.18)

The new expected values, variances and covariances of hourly loads, found in section 8.3

and in this section, are used as in chapter 6, to compute the expected value and variance of

the average price using this new stochastic model of load. From equations (6.14) to (6.18),

using the new estimates, the new cumulants K10, K01, K20, K02 and K11 are derived. On

the contrary, K12, K30 and K03 remain unchanged. Consequently, equations (6.10), (6.11)

and (6.12) provide the new am(r), al(t) and ρml(r, t) respectively.

A new bivariate probability distribution function of the marginal unit at two different

hours Pr[J(r) = m, J(t) = l] is obtained through equation (6.8), with the new values of

pml(r, t) computed using equation (6.9). Section 8.7 presents an example. Therefore, this

model provides different results for the expected value and variance of average price. Section

8.8 discusses the numerical results.
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8.5 NUMERICAL COMPARISON OF EXPECTED VALUES AND

VARIANCES OF HOURLY LOADS

In this and the following sections, the model of chapters 5 and 6 uses the load and temperature

data sets from which Valenzuela obtained the regression coefficients β.,t, the autocorrelation

coefficient ρ of the time series and the variance σ2
z of the Gaussian white noise. In the

present chapter, the supply model is composed of six sets of eight generating units with the

characteristics of table 7.1, instead of twelve sets, as in the previous chapter. The are forty-

eight units in the system, having a maximum capacity of 9000 MW. The Valenzuela model

(mean and standard deviation of the load and of the remaining terms xt, the regression

coefficients β.,t and the standard deviation σz of the Gaussian noise) is scaled by a factor =

4, to fit into the supply system. As a numerical example, the expected value and variance

of the hourly load for a specific day (09/20/96) are computed using these three models, and

are compared to the actual hourly load of that day.

Model 1 considers that L(t) comes from a normal distribution for each t, as in section 7.3.

The L(t) are not independent. The mean µt, the standard deviation σt and the covariances

σr,t were obtained from the historical data set of load L(t).

Model 2 uses the known effect of temperature and the remaining term x(t) has a normal

distribution for each t, as in section 8.1. The x(t) are not independent. The mean µt, the

standard deviation σt and covariances σr,t were obtained using equations (8.3)-(8.5) with

historical data of temperature and load.

Model 3 also takes into account the temperature effect but considers xt as an ARIMA

process, as in sections 8.2, 8.3 and 8.4. The mean µt, the standard deviation σt and co-

variances σr,t were obtained using equations (8.9), (8.11), and (8.17) respectively with the

historical data on temperature and load.

Tables 8.2 and 8.3 give the expected values and variances of hourly load using the three

models, for a given forecasted temperature, and the actual load for 09/20/96. Figure 8.2
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graphically show the same information. As expected, the variances for model 2 turn out to

be smaller for every hour than those for model 1.

Model 1 show large variances, especially for on-peak hours. Model 2 and 3, on the

contrary, have smaller variances, which proves that a great part of the variance of the hourly

load is explained by the temperature effect. This is the main reason for considering models

2 and 3 as refinements of model 1.

Models 2 and 3 are close to each other for the expected values as is expected. But there

are significant differences for the variances. Model 3 fails to capture the cyclic nature of the

load. For some hours (e.g., 4 to 15) the results of method 3 are more accurate than the

outputs of method 2. This is because the remaining term x(t) of load, after removing the

effect of temperature, show a smaller variance than the theoretical variance of the time series

model. Furthermore, for some hours (e.g., 6 to 10) even the variance of the load is smaller

than that of the time series model. See table 8.3.

Model 3 was calculated as if the load at hour 24 of the preceding day was known. This

means that the model predicts the loads for the following 24 hours. This may not be the

actual case, in practice. PJM market, for example, requires the firms to submit the bids at

noon of the preceding day. That is, the firms have to predict the loads for the following 36

hours, although they will use only the last 24 hours to decide on the bids. Consequently, the

expected values and variances of model 3 will change.

Model 3 does not present advantages over model 2 to study the load variance. The

two parameters of the time series xt (the autocorrelation coefficient ρ and the white noise

variance σ2
z) which define the variance in equation (8.11) contain less information than the

data set on x(t).
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8.6 PROBABILITY DISTRIBUTION OF THE MARGINAL UNIT

With the data used in the preceding section, the probability distributions of the marginal

unit under the three load models are computed here.

Figures 8.3 - 8.5 show three sets of probability density functions of the marginal unit for

each hour t, corresponding to the different load models:

1. computed as in section 5.2 using the load data for every hour,

2. considering the temperature effect and computed as in section 8.1, and

3. computed as a time series, accounting for the effect of temperature, as in section 8.3.

The surface of model 1 appears to be lower and wider than the others, showing a larger

variance.

Looking more deeply into it, figure 8.6 shows the probability density functions of the

marginal unit at hours 7 and 17. Each graph shows three curves corresponding to the three

load models mentioned above.

At hour 7, model 3 provides a higher expected value. It does not seem to make a big

difference in the variances of the load. At hour 17, model 1 shows a larger variance.

8.7 MARGINAL UNIT’S BIVARIATE PROBABILITY DISTRIBUTION

There are
23 ∗ 24

2
= 276 bivariate probability distribution functions; and it is not practical

to show all of them. As an example, figures 8.7 - 8.9 depict the joint probability distribution

function of the marginal units at hours 7 and 12. Model 1 depicts a lower and wider surface

than models 2 and 3, which is consistent. The three surfaces are moved to the left, showing

that the load is usually bigger at 12 than at 7.
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8.8 RESULTS

After running the three load models, the outputs are compared to extract some conclu-

sions. Figure 8.10 shows the expected values and variances of hourly prices under three

load models and three bidding models. Rudkevich model was selected with a peak-load-to-

full-capacity ratio of 80% and Cournot model was selected with a demand-to-price slope of

Dp = −200(MWh)2/$. Rudkevich model’s expected values are close to Cournot model’s for

low demand hours, and closer to Bertrand model’s for peak hours. There do not appear to

be great differences between load models. On the contrary, the variances of hourly prices

show a huge difference between load models. Variances at peak hours are extreme for model

1, being twice to five times larger than in the other two models. Across bidding models,

Rudkevich model’s variances for hours 6 to 23 are half of Cournot model’s.

Figure 8.11 depicts the expected values and variances of average prices between hour

13 and hour 18 for the three load models and the three bidding models. In this case,

all Rudkevich’s and Cournot’s scenarios are shown. There are no big changes in expected

values of average prices across load models. Rudkevich model’s expected value of average

price increases a lot for a forecasted peak demand close to full capacity. Also, in this case,

variances of average price are much larger for model 1.

8.9 SUMMARY

As was anticipated, temperature plays an important role in the expected value and variance

of hourly prices and average prices. Forecasting temperature accurately can reduce the

variance of prices considerably.

Time series analysis of the load, somehow underestimates its cyclic nature. For example,

from historical data it appears that the variance of prices at early hours in the morning is
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very small. For these specific hours, the time series analysis does not provide more accurate

estimates. The reason is that the data set contains more information hour by hour than can

be captured by a single time series model.
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Table 8.2: Expected value of hourly load for 09/20/96 (3 models)

Hour Temperature Actual load Load model 1 Load model 2 Load model 3
t τt E[L(t)] E[L(t)] E[L(t)]

◦F MWh MWh MWh MWh
1 59 1087 1185 1104 1110
2 57 1041 1129 1069 1081
3 56 1028 1103 1059 1067
4 54 996 1092 1058 1074
5 53 1035 1115 1090 1084
6 52 1139 1214 1198 1239
7 50 1325 1382 1385 1463
8 52 1440 1504 1493 1549
9 55 1456 1559 1514 1600

10 59 1469 1581 1490 1561
11 64 1501 1616 1467 1521
12 68 1504 1632 1508 1575
13 72 1497 1630 1568 1604
14 73 1505 1644 1582 1575
15 77 1476 1629 1637 1635
16 77 1470 1616 1611 1634
17 79 1436 1612 1645 1619
18 77 1415 1591 1579 1573
19 75 1374 1565 1518 1533
20 70 1399 1544 1414 1496
21 63 1408 1569 1384 1435
22 61 1379 1583 1443 1413
23 59 1242 1431 1315 1285
24 58 1116 1283 1183 1119
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Table 8.3: Variance of hourly load for 09/20/96 (3 models)

Hour Load model 1 Load model 2 Load model 3
t V ar[L(t)] V ar[x(t)] V ar[xt]

(MWh)2 (MWh)2 (MWh)2

1 11050 5930 2027
2 8810 5132 3597
3 7546 4739 4814
4 6303 3805 5757
5 6065 3616 6488
6 5748 3376 7054
7 6433 3571 7493
8 5890 3049 7833
9 5337 2649 8096

10 7791 3017 8301
11 11382 2966 8459
12 16558 3865 8581
13 21638 4800 8676
14 27061 5084 8750
15 30767 6993 8807
16 33479 8626 8851
17 34680 9787 8885
18 33134 11899 8912
19 27981 12551 8933
20 23138 12303 8949
21 19910 10747 8961
22 17563 6914 8970
23 15263 5580 8978
24 13308 5665 8984
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Figure 8.2: Expected values and variances of hourly load for 09/20/96 (3 models)
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Figure 8.3: Probability distribution functions of marginal unit (Load model 1)
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Figure 8.4: Probability distribution functions of marginal unit (Load model 2)
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Figure 8.5: Probability distribution functions of marginal unit (Load model 3)
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Figure 8.6: Probability distribution functions of marginal unit at two hours
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Figure 8.7: Joint probability distribution function of marginal units (Load model 1)
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Figure 8.8: Joint probability distribution function of marginal units (Load model 2)
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Figure 8.9: Joint probability distribution function of marginal units (Load model 3)
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Figure 8.10: Expected values and variances of hourly prices
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Figure 8.11: Expected values and variances of average prices
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9.0 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

9.1 SUMMARY

The high volatility that wholesale electricity prices have shown in deregulated markets makes

it necessary for electricity generating companies and electricity distribution firms to predict

at least the expected value and variance of electricity prices, in order to make better decisions

and to survive in such a challenging environment. A reasonable estimate of variance is needed

as well to hedge the risk against significant changes in the market prices of electricity.

Deregulation, a global trend that started twenty-six years ago, was intended to provide

efficiency to the market: lower prices, sound investments and better service. Contrary to

expectations, electricity prices under deregulation have been above the marginal cost instead

of being equal to it. The electricity markets which have been opened to competition have

turned out to be oligopolies. This fact explains to some degree the high prices and their

large variability.

Other issues that affect the price and its variance are the peculiarities of the power

industry. Electricity can not be stored easily and in great quantities. Hence, it must be

produced and delivered instantly. Transmission has specific physical laws. Electricity takes

the path of less resistance and travels at the speed of light. Weather and other climatic

events, wars, severe changes in the prices of oil and other factors that cannot be controlled,

influence the power price.
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The exposure of participants in the wholesale power market to price variability, makes

it convenient to put in place an energy derivatives market, to hedge the risk associated with

the uncertainty. This gives rise to the need for derivatives valuation and risk measurement.

Consequently, it is also necessary to estimate beforehand the variance of prices.

For the reasons mentioned above, there have been many attempts to model electricity

prices. Chapter 4 presents the modeling trends and a classification of the different models

that exist in the literature. An important aspect to be considered is the behavior of the

competing firms which react to the market rules. Three paradigmatic models for oligopolies

are studied: the Bertrand model, the Cournot model, and the Supply Function Equilibrium

(SFE) model. Rudkevich, Duckworth, and Rosen’s solution was chosen as the a SFE be-

cause it is a realistic stepwise supply function and it has a nice closed form solution to the

theoretical model’s differential equation.

A fundamental stochastic model, combining the engineering process of production and

the economic process of bidding and clearing price, is presented in this work to obtain the

expected values and variances of hourly and average electricity prices. Some assumptions

(which are also limitations to the work) are needed to get a useful model. The most important

one is considering that the n firms competing in the market are identical.

The core of the dissertation lies in chapters 5 and 6 in which closed form expressions for

the expected values and variances for hourly and average prices are presented respectively

for the three bidding models in each case.

Chapter 5 relies mainly on the probability distribution function of the marginal unit.

Based on this, the expected values and variances of marginal cost and of the hourly prices

for the three bidding models are derived.

Chapter 6 presents the expressions for prices averaged over specified periods. Similar

to the previous chapter, the basis of this chapter is the bivariate probability distribution

function of the marginal unit at two different times.
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A code written in Matlab is used to run the model. Chapter 7 depicts the numerical

data for the inputs and for the outputs with the range of parameters to conduct sensitivity

analysis. The conclusions are presented in the following section.

Finally, a refinement of the model is given in chapter 8. The effect of temperature on

the load is studied, and it turns out that temperature can explain a great portion of the

variance of prices. Two models are shown as alternatives to the original one of chapters 5

and 6. In the first of these two models, the temperature effect is removed from the load by

regression equations and the remaining stochastic term is considered normally distributed

but not independent. The second studies this term as a time series making explicit the

autocorrelation of the data. Once again, the program written in Matlab is used to obtain

numerical examples and to derive the conclusions presented below.

9.2 CONCLUSIONS

The numerical results of chapter 7 are rich enough to derive some conclusions in the following

respects: price behavior with regard to market concentration, price reaction to demand

elasticity and installed capacity.

Computations made using the models of chapter 8 allow us to arrive at some conclusions

on the effect of temperature on expected prices and variances, and to assess the usefulness

of a time series analysis of the load.

9.2.1 Market concentration

Market concentration is an important factor in the determination of the expected value and

the variance of hourly and average prices, especially in the Cournot model for all values

of demand elasticity. In the Rudkevich model, at on-peak hours and for a not very high
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anticipated peak demand, market concentration does not affect prices as much as it does at

off-peak hours. With a small number of firms in the market prices tend to level off across

hours. In the Rudkevich model, the greater the number of firms, the lower the prices are

and the greater the variances.

What should be the most suitable and feasible number of firms in the market to assure

efficiency? This question is important in the designing of the deregulated markets and its

response depends on the cost-capacity structure and the market size. This work provides

insights to answer this question.

9.2.2 Price reaction to demand elasticity

The Cournot model helps us to understand and to measure the effect of price elasticity of

demand. As is to be expected, a large elasticity brings the prices down and the variances

as well. A significant part of the demand is totally inelastic because it is needed not matter

at what price. The remaining part of the demand shows more elasticity. A key factor is to

design the market structure in such a way that it provides this elasticity. In order to do

this, it is necessary to allow the end consumers to react to different prices in the wholesale

market even though they buy energy in the retail market. This change should be carefully

considered by the market designers as an important part of the deregulation process.

9.2.3 Installed capacity

The Rudkevich model has the advantage of showing the effect of the entire supply system

on the prices. Prices are affected by the cost-capacity structure of the market, even by those

units that are not running in a given hour. It is clear that if the market has much more

capacity than needed it can assure a better service because it has a lot of energy reserve, and

the buyers will appreciate that up to a certain point. Eventually, the firms will charge a bit

more to compensate for the investment on the excess capacity. Even for a market which does
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not have a large excess capacity, the perception of the firms about the daily peak demand

affects the price, under the Rudkevich model. The difference between an anticipated peak

demand of 90% and of 100% turns out to be important. Then, the question to think about

is how to influence the firms’ beliefs.

9.2.4 Effect of temperature on the expected prices and variances

Temperature can explain in great part the variance of the load. In the example shown in

chapter 8, for on-peak hours temperature explains up to 75% of the variance of the load and,

what is more useful for this work, of the variance of the prices. In calibrating a good model

to a real market the reduction of variance on prices can be important. This reduction in

variance and therefore in the prediction error, may help companies to forecast prices more

accurately and to make better decisions.

9.2.5 Time series analysis of the load

In addition to considering the effect of temperature a time series analysis was performed, to

study the correlation between hourly loads. The resulting expected values and variances of

the prices do no differ significantly from those obtained using just the temperature effect.

Temperature plays a more important role in determining the hourly load than the load in

the preceding hour. What is also true is that the hourly temperature are very correlated

between them. Thus, there does not appear much reason to perform a rigorous time series

analysis of the remaining term for this purpose.
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9.3 DIRECTIONS FOR FUTURE RESEARCH

This work can be extended in a number of ways, towards more realistic situations by in-

creasing its complexity. Some recommendations follow.

Calibrating the model for a real market. With real data from the cost-capacity struc-

ture, the actual offers, the actual hourly loads and the hourly prices, it will be possible to

choose the most suitable model for that market.

Incorporating fuel cost as another source of uncertainty. In the model, the fuel costs

were considered deterministic variables because their variability is not that great. But, in

fact, they are random variables that add uncertainty to the process.

Extending the model for asymmetric firms. In this case there will not be closed formulas

to work with but it will perhaps be possible to get results with optimization or simulation

techniques.

Incorporating transmission constraints. In fact, the prices in a market are location de-

pendent. Due to transmission constraints, prices in one node may differ from prices in

another node. The merit order is then broken. Optimization techniques are appropriate for

this problem.

Incorporating the unit commitment problem. The merit order is also broken several

times because of technical aspects of the generating units such as start-up costs and start-up

and shut-down times that make it more efficient to keep running more expensive units.
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APPENDIX

THE EQUIVALENT LOAD

A.1 EXPECTED VALUE AND VARIANCE OF THE EQUIVALENT LOAD

USING EDGEWORTH APPROXIMATION

The cumulative distribution function of the random variable L̄j (t) is denoted by Fj (x; t),

and the probability density function of L̄j (t) by fj (x; t).

Note that the cumulative distribution functions Fj(x; t) and Gj(0; t) (the latter defined in

section 5.2 as the cumulative distribution function of Xj(t)) are linked between them because

the correspondent random variables L̄j(t) and Xj(t) are obviously related. In the following

appendix, the formula for Pr[J(t) = j] is derived using the two cumulative distribution

functions, showing the relationship between them.

Using that

E
[
L̄j (t) |Cj−1 < L̄j (t) ≤ Cj

]
=

Cj∫
Cj−1

xfj(x; t)dx

Pr
[
Cj−1 < L̄j (t) ≤ Cj

] (.1)
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equation (5.20) becomes

E
[
L̄J(t) (t)

]
=

N+1∑
j=1

Cj∫
Cj−1

xfj (x; t) dx

Pr
[
Cj−1 < L̄j (t) ≤ Cj

]Pr [J (t) = j] (.2)

Because Pr [J (t) = j] = Pr
[
Cj−1 < L̄ (j) ≤ Cj

]
equation (.2) can be written as

E
[
L̄J(t) (t)

]
=

N+1∑
j=1

Cj∫

Cj−1

xfj (x; t) dx (.3)

To compute fj (x; t), the Edgeworth approximation given in Cramer [20] is used

fj(x; t) ∼= 1

K2j(t)1/2
φ(z)

[
1 +

1

6

K3j

K2j(t)3/2
(z3 − 3z) +

1

24

K4j

K2j(t)2
(z4 − 6z2 + 3)

+
1

72

K32
j

K2j(t)3
(z6 − 15z4 + 45z2 − 15)

]
(.4)

where

z = zj (x; t) =
x− K̄1j (t)√

K2j(t)
(.5)

K̄1j(t) = µt +
j∑

i=1

ciqi, and K2j(t), K3j and K4j are the same as defined in equations (5.11)

to (5.13).

A similar procedure is used to compute the variance

V ar
[
L̄j(t)

2
]

= E
[
L̄J(t)(t)

2
]− E2

[
L̄J(t)(t)

]
(.6)

where

E
[
L̄J(t)(t)

2
]

=
N+1∑
j=1

E
[
L̄J(t)(t)

2|J(t) = j
]
Pr [J(t) = j] (.7)

The conditional expectation of L̄j(t)
2 is

E
[
L̄J(t)(t)

2|J(t) = j
]

= E
[
L̄J(t)(t)

2|Cj−1 < L̄J(t)(t) ≤ Cj

]

=

Cj∫
Cj−1

x2fj(x; t)dx

Pr
[
Cj−1 < L̄j ≤ Cj

] (.8)
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Equation (.7) becomes

E
[
L̄J(t)(t)

2
]

=
N+1∑
j=1

Cj∫

Cj−1

x2fj(x; t)dx (.9)

Using this expression in equation (.6), the variance is given by

V ar
[
L̄J(t)(t)

]
=

N+1∑
j=1

Cj∫

Cj−1

x2fj(x; t)dx−




N+1∑
j=1

Cj∫

Cj−1

xfj(x; t)dx




2

(.10)

A point to note is that with due patience equations (.3) and (.10) can be evaluated in a

closed form.

A.2 RELATION BETWEEN EQUIVALENT LOAD AND EXCESS OF

LOAD NOT MET

In the preceding appendix, it was mentioned that Fj(x; t) and Gj(0; t), cumulative probability

distribution functions of L̄j(t) and Xj(t) respectively, are related. In this appendix, two

formulas are derived for Pr[J(t) = j] using both cumulative distribution functions, and

showing the relationship between them.

It can be shown that Gj(0; t) = Fj(Cj; t)

Recall that

Gj(0; t) = Pr [Xj(t) ≤ 0]

= Pr

[
L(t)−

j∑
i=1

ciYi(t) ≤ 0

]

= Pr

[
L(t)−

j∑
i=1

ciYi(t) +

j∑
i=1

ci ≤ Cj

]

= Pr
[
L̄j(t) ≤ Cj

]

= Fj(Cj; t)
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Similarly Gj−1(0; t) = Pr
[
L̄j−1(t) ≤ Cj−1

]
.

Note that J(t) = j implies Yj(t) = 1. Therefore, given that J(t) = j, then

L̄j(t) = L(t) +

j∑
i=1

(1− Yi (t))ci = L(t) +

j−1∑
i=1

(1− Yi(t))ci = L̄j−1(t)

So

Gj−1(0; t) = Pr
[
L̄j−1(t) ≤ Cj−1

]

= Pr
[
L̄j(t) ≤ Cj−1

]

= Fj(Cj−1; t)

And

Pr [J(t) = j] = Gj(0; t)−Gj−1(0; t)

= Fj(Cj; t)− Fj(Cj−1; t)

= Pr
[
Cj−1 < L̄j(t) ≤ Cj

]

A.3 EQUIVALENT LOAD APPROXIMATION

In section 5.4 an approximation of L̄J(t)(t) was performed to make the computations easier.

Table A1 shows the results of running the model in chapters 5 and 6 using the two possible

limits of L̄J(t)(t), namely Cj and Cj−1, for the 96-unit system. The parameter considered

for the Cournot model is a demand slope of −200 (MWh)2/$. For the Rudkevich model,

the capacity used at peak demand is assumed to be 81%. Expected values and variances

of average price between hours 14 and 15, and of prices at hours 5 and 20 are shown for

both models. The 96 units are supposed to be owned by 6 identical firms. Bertrand model’s

results are not affected by the approximation.
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Differences are very small in absolute values, as it can be seen, and also in percentage.

Thus the use of the approximation (namely, replacement of L̄J(t)(t) by Cj) appears to be

justified. The use of Cj gives always the upper bound to the expected value. It is not

necessarily the case for the variance.

Table A1: Justification of the use of an approximate equivalent load

using Cj using Cj−1 difference %

Expected Value of Average Price ($/MWh)
Cournot 33.64 33.45 0.19 0.6%
Rudkevich 23.58 23.49 0.09 0.4%

Variance of Average Price ($/MWh)2

Cournot 117.39 110.81 6.58 5.6%
Rudkevich 67.35 68.16 -0.81 -1.2%

Expected Value of Hourly Prices ($/MWh)
hour 5
Cournot 19.65 19.47 0.18 0.9%
Rudkevich 15.29 14.95 0.34 2.2%

hour 20
Cournot 31.58 31.43 0.15 0.5%
Rudkevich 22.16 22.04 0.12 0.5%

Variance of Hourly Prices ($/MWh)2

hour 5
Cournot 1.98 2.09 -0.11 -5.6%
Rudkevich 2.82 2.83 -0.01 -0.4%

hour 20
Cournot 55.67 54.08 1.59 2.9%
Rudkevich 22.76 23.33 -0.57 -2.5%
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