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IMPLEMENTATION OF LES/SFMDF FOR PREDICTION OF

NON-PREMIXED TURBULENT FLAMES
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Large eddy simulation (LES) is conducted of two experimental flame configurations. The first

is the flame studied in the experiments of the Combustion Research Facility at the Sandia

National Laboratories (SNL) and the Technische Universität Darmstadt (TUD), namely

Flame D.1–3 This is a turbulent piloted non-premixed methane jet flame. The second flame

is also studied by the Combustion Research Facility at the Sandia National Laboratories

and at the Thermal Research Group at the University of Sydney.4–11 This is a turbulent

bluff-body stabilized hydrogen-methane jet flame. The subgrid scale (SGS) closure in LES

is based on the scalar filtered mass density function (SFMDF) methodology.12 The SFMDF

is the mass weighted probability density function (PDF) of the SGS scalar quantities.13 A

flamelet model14,15 is used to relate the scalar composition to the mixture fraction. The

modeled SFMDF transport equation is solved by a hybrid finite-difference (FD) / Monte

Carlo (MC) scheme. This is the first LES of realistic turbulent flames using the transported

PDF method as the SGS closure. The results via this method capture some of the important

features of the flames as observed experimentally.

Keywords: LES, FDF, PDF, turbulent reacting flows, diffusion flame, non-premixed

combustion, subgrid scale closure, Monte Carlo simulation.
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1.0 INTRODUCTION

There has been significant progress in developments of subgrid scale (SGS) closures for large

eddy simulation (LES) of turbulent reacting flows. Several recent reviews are available.13,16–23

One such closure is via the filtered density function (FDF) methodology, first introduced by

Givi24 and Pope.25 The FDF is the counterpart of the probability density function (PDF)

method which has proven quite effective in Reynolds averaged simulations (RAS).13,26 The

approach has proven particularly useful for prediction of reacting flows.12,13,21,24,25,27–41 The

fundamental property of the PDF is the closed form nature of the chemical source term

appearing in the transport equation governing the FDF. This property is very important

as evidenced in several applications of FDF for LES of a variety of turbulent reacting

flows.12,30–32,34,37,42 The developments in FDF can be summarized as follows; Colucci et al.30

developed a transport equation for the scalar FDF (SFDF) in constant density turbulent

reacting flows, Jaberi et al.12 extended the methodology for LES of variable density flows by

consideration of the “scalar filtered mass density function” (SFMDF) which is essentially the

mass weighted SFDF. Gicquel et al.33 developed the velocity FDF (VFDF) method in which

the effects of velocity SGS convection appear in closed form. Drozda43 and Sheikhi et al.44

developed the velocity-scalar FDF (VSFDF) method in which the effects of velocity, scalar,

and velocity-scalar SGS convection appear in closed form. Work is in progress on extending

the VSFDF method to variable density flows by developing the velocity-scalar filtered mass

density function (VSFMDF).45

A review of the current state of progress in FDF is available.23 The encouraging results

attained thus far warrant further improvements and implementations of this methodology

for a wider class of reacting flows. The specific objective of this work is to implement the

SFMDF for LES of hydrocarbon diffusion flames.
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LES/SFMDF is conducted of two experimental flame configurations. The first is the

flame studied in the experiments of the Combustion Research Facility at the Sandia National

Laboratories (SNL) and the Technische Universität Darmstadt (TUD), namely Flame D.1–3

This is a turbulent piloted non-premixed methane jet flame. The second flame is also

studied by the Combustion Research Facility at the Sandia National Laboratories and at

the Thermal Research Group at the University of Sydney.4–11 This is a turbulent bluff-body

stabilized hydrogen-methane jet flame. These flame are labeled as the Sandia/TUD and the

Sydney/Sandia, respectively.

Piloted jet flames have been the subject of broad investigations by other computational

and modeling methodologies.42,46–49 In the experiments, three turbulent flames are

considered: Flames D, E and F. The geometrical configuration in these flames is the same,

but the jet inlet velocity is varied. In Flame D, the fuel jet velocity is the lowest and the flame

is close to equilibrium. The jet velocity increases from flames D to E to F, with noticeable

non-equilibrium effects in the latter two. Only Flame D is considered in this work. The

objective is to assess the predictive capability of the LES/SFMDF in capturing the essential

flow field characteristics.

The bluff-body stabilized flames have also been studied by several investigators.9,50–58

These flames produce complex flow patterns characteristic of practical combustors, and are

therefore important for industrial applications. In the experiments, a variety of operating

conditions are considered. The most complete set of measurements, however, has been

compiled for the hydrogen-methane flames. These flames are considered at 50%, 75% and

91% blow-off (extinction). Here, only the 50% blow-off case is considered. The objective is

to further assess the predictive capability of the LES/SFMDF. This is an important step

before considering of the flames with strong extinction and reignition phenomena.

2



Both flames are simulated via the near-equilibrium chemistry model. This model

is constructed by considering the one-dimensional counterflow (opposed-jet) laminar

flame14,15,59–62 in which the chemical reaction is modeled via detailed chemical kinetics.63,64

It is useful to note that the approach here is fundamentally different from those followed in

previous flamelet based SGS models. In most previous contributions,48,54,65–68 the FDF of

the mixture fraction is assumed (e.g. beta or other distribution). Here, a modeled transport

equation for the FDF is considered. This represents a much more systematic approach.

3



2.0 FORMULATION

This chapter provides the descriptions of the governing equations, mathematical formulation

of the FDF, the proposed modeling of the FDF transport, the chemical reaction model, and

the numerical solution procedure for LES/SFMDF.

2.1 GOVERNING EQUATIONS

Implementation of LES involves the use of the spatial filtering operation13,69

〈Q(x, t)〉ℓ =

∫ +∞

−∞

Q(x′, t)G(x′,x)dx′ (2.1)

where G denotes the filter kernel of width ∆L, and 〈Q(x, t)〉ℓ represents the filtered value

of the transport variable Q(x, t). In variable density flows it is convenient to consider

the Favré filtered quantity, 〈Q(x, t)〉L = 〈ρQ〉ℓ/〈ρ〉ℓ. We consider spatially invariant and

localized filter functions, G(x′,x) ≡ G(x′ − x) with the properties70 G(x) = G(−x), and
∫ ∞

−∞
G(x)dx = 1. Moreover, we only consider “positive” filter functions71 for which all the

moments
∫ ∞

−∞
xmG(x)dx exist for m ≥ 0.

The flow field to be simulated is unsteady, three-dimensional (3D), and involves gaseous

(single-phase) hydrocarbon combustion. Newton’s law of viscosity, Fourier’s law of heat

conduction and Fick’s law of mass diffusion are employed. The caveats in the use of these

laws in reacting flows are recognized.72,73 The primary transport variables are the fluid

density ρ, the velocity vector ui, i = 1, 2, 3 along the xi direction and at a time t, the

pressure p, the mass fractions of Ns species, Yα (α = 1, 2, . . . , Ns), and the total specific

enthalpy h.
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The transport variables satisfy the conservation equations of mass, momentum, species’

mass fractions, and enthalpy (energy).72,73 The filtered form of these equations is:

∂〈ρ〉ℓ
∂t

+
∂〈ρ〉ℓ〈ui〉L

∂xi

= 0 (2.2)

∂〈ρ〉ℓ〈uj〉L
∂t

+
∂〈ρ〉ℓ〈ui〉L〈uj〉L

∂xi

= −
∂〈p〉ℓ
∂xj

+
∂ 〈τij〉ℓ
∂xi

−
∂Tij

∂xi

(2.3)

∂〈ρ〉ℓ〈φα〉L
∂t

+
∂〈ρ〉ℓ〈ui〉L〈φα〉L

∂xi

= −
∂ 〈Jα

i 〉ℓ
∂xi

−
∂Mα

i

∂xi

+ 〈ρSα〉ℓ (2.4)

where the scalar fields are denoted by φα ≡ Yα, α = 1, . . . , Ns, φσ ≡ h =
∑Ns

α=1 hαYα, and

Sα is the production rate of species α. Equations (2.2,2.3,2.4) are closed by the constitutive

relations,74

〈p〉ℓ ≈ 〈ρ〉ℓ R〈T 〉L

Ns
∑

α=1

〈Yα〉L
Wα

(2.5)

where R is the Universal Gas Constant, Wα is the molecular weight of species α and T is the

temperature. τij and Jα
i denote the viscous stress tensor and the scalar fluxes, respectively.

〈τij〉ℓ ≈ 〈µ〉ℓ

(

∂ 〈ui〉L
∂xj

+
∂ 〈uj〉L
∂xi

−
2

3

∂ 〈uk〉L
∂xk

δij

)

(2.6)

〈Jα
i 〉ℓ ≈ −〈ρ〉ℓ 〈D〉L

∂ 〈φα〉L
∂xi

(2.7)

〈µ〉ℓ = Pr

〈

k

cp

〉

ℓ

, 〈D〉L =
1

〈ρ〉ℓ Le

〈

k

cp

〉

ℓ

,

〈

k

cp

〉

ℓ

= µref

(

〈T 〉L
Tref

)0.7

(2.8)

where µ is the molecular coefficient of viscosity, Pr is the Prandtl number, D is the molecular

diffusion coefficient, Le is the Lewis number, and a power law relationship is used for the ratio

of k, thermal conductivity, and cp, the mixture averaged specific heat at constant pressure.

Subscript ref denotes a reference state.

The SGS closure problem is associated with Tij = 〈ρ〉ℓ(〈uiuj〉L − 〈ui〉L〈uj〉L) and

Mα
i = 〈ρ〉ℓ(〈uiφα〉L − 〈ui〉L〈φα〉L), respectively denoting the SGS stresses and SGS fluxes.

In reacting flows, an additional model is required for the filtered reaction rates of the mass
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fractions, i.e. 〈ρSα〉ℓ , α = 1, . . . , Ns (at low Mach numbers, 〈ρSσ〉ℓ ≈ 0). It is the modeling

of the latter that SFMDF is the subject of.

The hydrodynamic SGS closure is based on models well established in non-reacting

flows.75,76 The first SGS model considered is the Smagorinsky-Yoshizawa77,78 closure.

Tij = −2 〈ρ〉ℓC
2
S∆2

L| 〈S〉L |

(

〈Sij〉L −
1

3
〈Skk〉L δij

)

+
2

3
〈ρ〉ℓCI∆

2
L| 〈S〉L |2δij (2.9)

where the 〈Sij〉L is the strain rate tensor

〈Sij〉L =
1

2

(

∂ 〈ui〉L
∂xj

+
∂ 〈uj〉L
∂xi

)

(2.10)

and

| 〈S〉L | =
√

2 〈Sij〉L 〈Sij〉L (2.11)

The values of the model constants CS and CI vary with applications. Pope13 suggests a

value for CS in the range of 0.1 to 0.24. Moin et al.79 suggest that CI ≈ 0.0175.

The second SGS model is the modified kinetic energy viscosity (MKEV) closure. It was

introduced by Jaberi et al.12 and is essentially a modified version of the model proposed by

Bardina et al.80. The SGS stresses are modeled by,

Tij = −2CR 〈ρ〉ℓ ∆LE
1

2

(

〈Sij〉L −
1

3
〈Skk〉L δij

)

+
2

3
CI 〈ρ〉ℓ Eδij (2.12)

where E = | 〈u∗i 〉L 〈u∗i 〉L − 〈〈u∗i 〉L〉g 〈〈u
∗
i 〉L〉g |, u

∗
i = ui − Ui, and Ui is a reference velocity

in the xi direction. In this work, the Ui is set to zero in the cross-stream and spanwise

directions, and to the average of the high- and low-speed streams in the streamwise direction

at the inlet. The subscript g denotes a secondary filter level with characteristic filter width

∆G > ∆L. Further improvements to the SGS closure can be made by implementing a

VSFDF methodology. The LES/VSFDF is essentially equivalent to a second order moment

closure43,44 in LES.

The subgrid eddy viscosity is expressed as νt = C2
S∆2

L| 〈S〉L | and νt = CR∆LE
1

2 for the

Smagorinsky and the MKEV SGS models, respectively. The SGS scalar fluxes are modeled

by a similar closure81

Mα
i = −〈ρ〉ℓDt

∂ 〈φα〉L
∂xi

(2.13)

where Dt = νt

Sct
is the subgrid diffusivity. Sct is the subgrid Schmidt number, and has the

same value for all of the scalar variables.
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2.2 SCALAR FILTERED MASS DENSITY FUNCTION

The “scalar filtered mass density function” (SFMDF), denoted by Fℓ, is formally defined as

Fℓ (φ;x, t) ≡

∫ +∞

−∞

ρ (x′, t) ζ(ψ,φ(x′, t))G(x′ − x) dx′ (2.14)

ζ(ψ,φ(x, t)) ≡ δ(ψ − φ(x, t)) ≡
Ns
∏

α=1

δ(ψα − φα(x, t)) (2.15)

where δ denotes the delta function and ψ denotes the sample space of the scalar array. The

term ζ is the “fine-grained” density,26,82 hence Eq. (2.14) defines the SFMDF as the mass

weighted spatially filtered value of the fine-grained density function. With the filter properties

specified in Sec. 2.1, Fℓ has all of the properties of a PDF.26

To further facilitate the mathematical development of the SFMDF, we define the mass

weighted conditional filtered mean of a variable Q(x, t) as

〈Q(x, t)|φ(x, t) = ψ〉ℓ ≡ 〈Q (x, t) |ψ〉ℓ (2.16)

〈Q (x, t) |ψ〉ℓ =

∫ +∞

−∞
Q (x′, t) ρ (x′, t) ζ (ψ;φ(x′, t))G (x′ − x) dx′

Fℓ (ψ;x, t)
(2.17)

Equation (2.17) implies the following properties of the SFMDF

(i) For Q(x, t) = c, 〈Q(x, t)|ψ〉ℓ = c (2.18a)

(ii) For Q(x, t) ≡ Q̂(φ(x, t)) 〈Q(x, t)|ψ〉ℓ = Q̂(ψ) (2.18b)

(iii) Integral property:

∫ +∞

−∞

〈Q(x, t)|ψ〉ℓ Fℓ(ψ;x, t) dψ = 〈ρ (x, t)〉ℓ 〈Q(x, t)〉L

(2.18c)

where c is a constant and Q(x, t) ≡ Q̂(φ(x, t)) denotes the case where the variable Q is fully

described by the scalar vector variable, φ(x, t). From Eqs. (2.18) it follows that the filtered

value of any function of scalar variable is obtained by integration over the scalar sample

space.

〈ρ (x, t)〉ℓ 〈Q(x, t)〉L =

∫ +∞

−∞

Q̂(ψ)Fℓ(ψ;x, t) dψ (2.19)
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The transport equation for the SFMDF is developed by considering a time derivative of

the fine-grained density function82,83

∂ζ(ψ;φ)

∂t
=
∂φα(x, t)

∂t

∂ζ(ψ;φ)

∂φα

= −
∂φα(x, t)

∂t

∂ζ(ψ;φ)

∂ψα

(2.20)

Substituting the scalar conservation transport equation for the first derivative on the RHS

of Eq. (2.20) we obtain the transport equation for the fine-grained density function

∂ρ̂(φ)ζ(ψ;φ)

∂t
+
∂ρ̂(φ)ui(x, t)ζ(ψ;φ)

∂xi

= −

(

−
∂Jα

i

∂xi

+ ρ̂(φ)Ŝα(φ)

)

∂ζ(ψ;φ)

∂ψα

(2.21)

An alternative form of Eq. (2.21) can be found by rewriting the scalar flux term

∂ρ̂(φ)ζ(ψ;φ)

∂t
+
∂ρ̂(φ)ui(x, t)ζ(ψ;φ)

∂xi

= −
∂

∂xi

(

ρ̂(φ)D
∂ζ(ψ;φ)

∂xi

)

+ ρ̂(φ)D
∂φα

∂xi

∂φβ

∂xi

∂2ζ(ψ;φ)

∂ψα∂ψβ

− ρ̂(φ)Ŝα(φ)
∂ζ(ψ;φ)

∂ψα

(2.22)

The transport equation for Fℓ (ψ;x, t) is obtained by filtering Eq. (2.21) (or Eq. (2.22))

according to Eq. (2.14). The result, after some algebraic manipulation, is

∂Fℓ(ψ;x, t)

∂t
+
∂ 〈ui(x, t)|ψ〉ℓ Fℓ(ψ;x, t)

∂xi

=
∂

∂ψα

[〈

∂Jα
i

∂xi

− ρ̂(φ)Ŝα(φ)





ψ

〉

ℓ

Fℓ(ψ;x, t)

ρ̂(ψ)

]

(2.23)

The same procedure, when applied to Eq. (2.22), yields

∂Fℓ(ψ;x, t)

∂t
+
∂ 〈ui(x, t)|ψ〉ℓ Fℓ(ψ;x, t)

∂xi

=
∂

∂xi

[

〈ρ〉ℓ 〈D〉L
∂

∂xi

(

Fℓ(ψ;x, t)

〈ρ〉ℓ

)]

−
∂2

∂ψα∂ψβ

(〈

ρ̂(φ)D
∂φα

∂xi

∂φβ

∂xi






ψ

〉

ℓ

Fℓ(ψ;x, t)

ρ̂(ψ)

)

−
∂

∂ψα

(

Ŝα(ψ)Fℓ(ψ;x, t)
)

(2.24)

where the following approximation is made

∂

∂xi

〈

ρ̂(φ)D
∂ζ(ψ;φ)

∂xi

〉

ℓ

≈ −
∂

∂xi

[

〈ρ〉ℓ 〈D〉L
∂

∂xi

(

Fℓ(ψ;x, t)

〈ρ〉ℓ

)]

(2.25)

The transport equations for SFMDF (Eq. (2.24)) contain conditionally filtered terms that

are unclosed. The second term on the left hand side represents the effect of the large-scale

and SGS convection. This is modeled by the conventional gradient diffusion

(〈ui|ψ〉ℓ − 〈ui〉L)Fℓ = −〈ρ〉ℓDt
∂

∂xi

(

Fℓ

〈ρ〉ℓ

)

(2.26)
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The second term on the right hand side of Eq. (2.24) is related to SGS mixing. The

closure adapted for the SGS mixing is based on the linear mean square estimation (LMSE)

model,82,84 also known as the interaction by exchange with the mean (IEM) model,85

−
∂2

∂ψα∂ψβ

(〈

ρ̂D
∂φα

∂xi

∂φβ

∂xi






ψ

〉

ℓ

Fℓ

ρ̂

)

=
∂

∂ψα

(Ωm (ψα − 〈φα〉L)Fℓ) (2.27)

where Ωm is the frequency of mixing within the subgrid. This is modeled by

Ωm(x, t) = CΩ
〈D〉L +Dt

∆2
L

(2.28)

The last term on the right hand side of Eq. (2.24) is due to the chemical reaction and appears

in closed form.

Combining Eqs. (2.26), (2.25) and (2.27) with Eq. (2.24) provides the modeled SFMDF

transport equation

∂Fℓ(ψ;x, t)

∂t
+
∂ 〈ui(x, t)〉ℓ Fℓ(ψ;x, t)

∂xi

=
∂

∂xi

[

〈ρ〉ℓ (〈D〉L +Dt)
∂

∂xi

(

Fℓ(ψ;x, t)

〈ρ〉ℓ

)]

+
∂

∂ψα

(Ωm (ψα − 〈φα〉L)Fℓ(ψ;x, t)) −
∂

∂ψα

(

Ŝα(ψ)Fℓ(ψ;x, t)
)

(2.29)

This equation may be integrated to obtain transport equations for the moments. The

equations for the first Favré filtered moment, 〈φα〉L, and the generalized variance, σ2
α =

〈φ2
α〉L − 〈φα〉

2
L are

∂ 〈ρ〉ℓ 〈φα〉L
∂t

+
∂ 〈ρ〉ℓ 〈ui〉L 〈φα〉L

∂xi

=
∂

∂xi

(

〈ρ〉ℓ (〈D〉L +Dt)
∂ 〈φα〉L
∂xi

)

+ 〈ρ〉ℓ 〈Sα〉L (2.30)

∂ 〈ρ〉ℓ σ
2
α

∂t
+
∂ 〈ρ〉ℓ 〈ui〉L σ

2
α

∂xi

=
∂

∂xi

(

〈ρ〉ℓ (〈D〉L +Dt)
∂σ2

α

∂xi

)

+ 2 〈ρ〉ℓ (〈D〉L +Dt)
∂ 〈φα〉L
∂xi

∂ 〈φα〉L
∂xi

− 2Ωm 〈ρ〉ℓ σ
2
α

+ 2 〈ρ〉ℓ (〈φαSα〉L − 〈φα〉L 〈Sα〉L) (2.31)

9



2.3 STOCHASTIC SYSTEM

The most convenient means of modeling and solving the FDF transport equation is via the

“Lagrangian Monte Carlo” procedure.26,86 The basis of this procedure is the same as that

in recent RAS87–89 and LES/FDF.12,30,32,33 Therefore, here only some of the fundamental

properties of the methodology will be described. With the Lagrangian procedure, the FDF

is represented by an ensemble of computational “stochastic elements” (or “particles”) which

are transported in the “physical space” by the combined actions of large scale convection

and diffusion (molecular and subgrid). In addition, transport in the “composition space”

occurs due to chemical reaction and SGS mixing. These physical processes are described by

the set of stochastic differential equations (SDEs).90–92 The diffusion process92 is considered

for this purpose,

dXi(t) = mi(X (t), t)dt+ Σij(X (t), t)dWj (2.32)

where Xi is a vector of i = 1, . . . , n diffusion processes, mi is the drift vector, Σij is the

diffusion tensor, and Wj (j = 1, . . . ,m) denotes the Wiener-Lévy processes.

The SDEs used in this work are

dx+
i =

[

〈ui〉L +
1

〈ρ〉ℓ

∂ 〈ρ〉ℓ (〈D〉L +Dt)

∂xi

]

dt+
√

2(〈D〉L +Dt) dWi (2.33)

dφ+
α =

[

−Ωm

[

φ+
α − 〈φα〉L

]

+ Sα

(

φ+
)]

dt (2.34)

where the x+ and φ+ denote Lagrangian position and composition (mixture fraction),

respectively. The Fokker-Planck equation corresponding to Eqs. (2.33) and (2.34) is

equivalent to Eq. (2.29).26 Thus, the solution of these SDEs represents the SFMDF in the

probabilistic sense.
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2.4 CHEMICAL REACTION MODEL

Both flames are simulated via a near-equilibrium chemistry model. This model is constructed

by considering the one-dimensional counterflow (opposed jet) laminar flame14,15,59–62 in which

the chemical reaction is modeled via detailed chemical kinetics.63,64 At low strain rates, χ,

all of the thermo-chemical variables are related to the “mixture fraction.” The “flamelet”

table constructed in this way can be used in conjunction with LES/SFMDF predictions of

the mixture fraction. For flames under non-equilibrium, e.g. when flame extinction and

reignition are expected, it is required to employ more realistic finite-rate kinetics models.

Reasonable candidates for such models are the 25-step skeletal mechanism of Smooke et

al.,74 12-step mechanism of Sung et al.,93 4-step mechanism of Seshadri et al.,94 or the 2-step

mechanism of Williams.95 Work is currently in progress96 on using several of the reduced

mechanisms via the In Situ Adaptive Tabulation methodology developed by Pope.97

For a constant strain rate, the SGS statistics of the thermo-chemical variables are directly

related to the mixture fraction, Z(x, t)

Q(x, t) = Q(Z(x, t)) (2.35)

Therefore,

〈ρ(x, t)〉ℓ 〈Q(x, t)〉L =

∫ +∞

−∞

Q(Z(x, t)) Fℓ(ψZ ;x, t) dψ (2.36)

2.5 NUMERICAL PROCEDURE

The SFMDF is solved via a hybrid Eulerian-Lagrangian finite difference (FD)/ Monte Carlo

(MC) procedure.12,30,44 For numerical solution of the hydrodynamic field in LES/SFMDF,

we use a high-order accurate FD procedure. This discretization procedure is based on

the “compact parameter” scheme98 which yields fourth order spatial accuracy. A second

order accurate symmetric predictor-corrector sequence is employed for time integration of

Eqs. ((2.2)-(2.4)). In addition to the Favré filtered quantities, Eqs. ((2.2)-(2.4)) also provide

information needed to compute the SGS eddy viscosity and SGS eddy diffusivity coefficients.
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The filtered pressure, 〈p〉ℓ, is obtained from the filtered equation of state, 〈p〉ℓ = 〈ρ〉ℓ 〈RT 〉L

where R is the gas constant for a mixture and 〈RT 〉L is obtained from the energy equation.

The coupling between the finite difference and Monte Carlo procedures is enacted by the

heat release source term in the energy equation.

Simulations are conducted on a fixed and equally spaced, by a length ∆, grid

points. Standard characteristic boundary conditions21,99 are implemented for the continuity,

momentum and energy transport equations. A zero derivative boundary conditions are

imposed for the scalar values at the outlet and lateral boundaries.

The MC solver provides the Favré filtered scalar field by considering a set of Np particles

that evolve according to the diffusion process described by Eqs. (2.33) and (2.34). Each

particle carries the information pertaining to its position x
(n)
i and scalar value, φ

(n)
α for

n = 1 . . . Np. The scalar values change due to the SGS mixing and the chemical reaction. This

process is numerically split into two parts. First, scalar values of each particle are updated via

a SGS mixing model. Second, the reaction rates, S
(n)
α , are computed based on updated scalar

values and the scalar values. Finally, the SDEs are temporally integrated. The simplest way

of performing this integration is via the Euler-Maruyamma approximation100–102

X
(n)
i (tk+1) = X

(n)
i (tk) +m

(n)
i (X (tk), tk) ∆t+ Σ

(n)
ij (X (tk), tk) ∆t

1

2 ξ
(n)
j (tk) (2.37)

where ξ(n)(tk) is an independent standardized Gaussian random variable. Higher order

numerical schemes are also available for stochastic differential equations,100,102 but caution is

advised when selecting one. Since the diffusion terms Σ
(n)
ij depend on the state variable, X (n),

the numerical scheme may alter the solution in a way inconsistent with the true nature of the

undiscretized set of SDEs.103 The numerical scheme must be consistent with Itô-Gikhman

calculus.104,105 Equation (2.37) exhibits this property.

To understand the operational procedures of the hybrid configuration, the elements of

the computation are shown, for a two-dimensional case, in Fig. 1. This figure shows the

MC particles randomly distributed and freely moving within the domain. This transport is

Lagrangian, thus the solution is free of constraints associated with typical convection on fixed

grid points. Statistical information is obtained by considering an ensemble of NE particles

residing within an ensemble domain of characteristic length ∆E and centered around a FD
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grid point. The ensemble approach is necessary as the probability of finding a single, or

multiple for that matter, particle(s) at a given finite-difference grid point is zero.106 The

process of ensemble averaging of a MC variable is further illustrated in Fig. 2. This figure

shows the FD and MC representations of the mixture fraction. By averaging the values

carried by the particles residing within an ensemble domain, we obtain the Favré filtered

values of the mixture fraction. The size of the ensemble domain cannot be established

a priori.26 The ideal condition for accurate statistics requires ∆E → 0 and NE → ∞.

For a fixed number of particles in the computational domain, large ensemble domain size

decreases statistical error, but increases the spatial resolution error. The latter causes

excessive diffusion. For a fixed ensemble domain size, small number of particles diminishes

the reliability of the statistics. For reliable statistics with minimal numerical dispersion,

it is desired to minimize the size of ensemble domain and maximize the number of MC

particles.26 In this way, the ensemble statistics would tend to the desired filtered values. The

transfer of information from FD grid points to the MC particle locations is accomplished

via interpolation. The size of the ensemble domain and the number of particles within

it is in general determined by a consistency analysis.30,33,40,44,51,87,88 This analysis can be

performed because some filtered quantities are obtained by MC, some by FD, and some

by both methods. That is, there is a “redundancy” in determination of some quantities.

In general, the consistency analysis can be performed for any filtered quantity for which a

FD transport equation is solved and where all the unclosed terms are evaluated from MC.

Here, the filtered density, the Favré filtered mixture fraction and the Favré filtered mixture

fraction variance are used. The boundary conditions for the Monte Carlo simulation require

no special treatment. Particles are free to leave the computational domain as guided by the

SDEs. If at any time conditions exist at some location on the boundary that require particles

to enter the computational domain away from the inlet, then the values assigned to those

particles yield a zero derivative boundary condition at that location

In an attempt to reduce the computational cost and maintain a nearly uniform particle

distribution in a variable density flow, the MC particles enter the computational domain

uniformly but carry a weight (ω) that is proportional to the filtered density at the inlet.

This strictly numerical treatment is somewhat analogous to grid compression in FD schemes.
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Figure 3 shows the sample instantaneous contours of the ensembled particle weights (i.e.
∑

n∈(∆E)3 ω
(n)) and the particle number density (i.e.

∑

n∈(∆E)3(1)) at each FD grid point.

In practice, the particles evolve according to the discrete weighted SFMDF, denoted by FN ,

FN(ψ,x; t) = ∆m

Np
∑

n=1

ω(n)δ(ψ − φ(n))δ(x − x(n)) (2.38)

where ω(n) is the weight of the nth particle and ∆m is the unit mass. The SFMDF is the

expectation of the discrete SFMDF26

Fℓ(ψ,x; t) = 〈FN(ψ,x; t)〉 (2.39)

where the brackets represent ensemble averaging. By integrating Eq. (2.39) over the scalar

sample space and within the ensemble domain volume, it can be shown that107

〈ρ〉ℓ ≈
∆m

(∆E)3

∑

n∈(∆E)3

ω(n) (2.40)

The Favré filtered value of a quantity Q̂(φ(x, t)) is obtained by a weighted average

〈

Q̂(φ(x, t))
〉

L
≈

∑

n∈(∆E)3 ω(n) Q̂(φ(n))
∑

n∈(∆E)3 ω(n)
(2.41)

Equations (2.40), and (2.41) are approximations due to statistical errors associated with finite

ensemble domain size and particle number density. In the limit of ∆E → 0 and NE → ∞

they become exact.26 An alternate formulation for the filtered density may be obtained from

Eq. (2.41), by considering Q̂(φ(x, t)) = 1/ρ(φ(x, t)),

∑

n∈(∆E)3 ω(n)
(

1/ρ(φ(n))
)

∑

n∈(∆E)3 ω(n)
≈

〈

1

ρ(φ(x, t))

〉

L

=
1

〈ρ〉ℓ
(2.42)

where ρ(φ(n)) is the fluid density of the nth MC particle. This particle “localized” fluid

density can be assumed proportional to the particle weight,

ρ(φ(n)) =
∆m

(∆E)3
NE0 ω

(n) (2.43)
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where NE0 is the nominal particle number density. Combining Eqs. (2.42) and (2.43) yields

a modified formulation for the filtered density,

〈ρ〉ℓ ≈
∆m

(∆E)3

NE0

NE

∑

n∈(∆E)3

ω(n) (2.44)

Equation (2.44) essentially considers an average particle weight in an ensemble domain as

representative of the weights in that domain. This formulation, therefore, accounts for the

local variations in the particle number density and decreases the level of oscillations in the

filtered density values. With uniform weights, Eqs. (2.40), and (2.41) become

〈ρ〉ℓ ≈
∆m

(∆E)3
NE (2.45)

〈

Q̂(φ(x, t))
〉

L
≈

1

NE

∑

n∈(∆E)3

Q̂(φ(n)) (2.46)

Equation (2.45) implies that the filtered density is proportional to the particle number

density.26 As such, the particle number density significantly decreases in the regions of high

temperature. The implementation of variable weights allows for the increase of the particle

number density without a proportional increase outside of the reaction zones.
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∆

∆E 1
2

3

Figure 1: Numerical procedure. Elements of computation as used in a typical LES/FDF.

Solid squares denote the FD points, and the circles denote the MC particles. Also shown

are three different ensemble domains: 1 (∆E = ∆/2, NE ≈ 10), 2 (∆E = ∆, NE ≈ 40),

3 (∆E = 2∆, NE ≈ 160).
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Figure 2: Visualization of the different types of variables present in the hybrid solver. From

left-to-right: FD, MC, and ensemble averaged MC (see Figure 1) mixture fraction. The data

shown are those of Sandia/TUD simulations as discussed in chapter 3.
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Figure 3: Instantaneous contours of the ensembled particle weights (left) and the particle

number density per ensemble domain (right) for the MC simulation. The data shown are

that of Sandia/TUD simulations as discussed in chapter 3.
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3.0 RESULTS

The LES/SFMDF is used for prediction of two flame configurations. The first is considered

in the experiments of the Combustion Research Facility at the Sandia National Laboratories

(SNL) and the Technische Universität Darmstadt (TUD).1–3 This is a turbulent piloted

non-premixed methane jet flame. The second is considered by the Combustion Research

Facility at the Sandia National Laboratories and the Thermal Research Group at the

University of Sydney.4–11 This is a turbulent bluff-body stabilized hydrogen-methane jet

flame. These flame are labeled as the Sandia/TUD, and the Sydney/Sandia, respectively.

The LES/SFMDF is used in conjunction with the MKEV hydrodynamic SGS model, except

where explicitly noted otherwise.

3.1 SANDIA/TUD FLAME

3.1.1 Configuration

The Sandia/TUD piloted flames have been studied experimentally by Barlow et al.,1,2 and

Schneider et al.3 In the experiments, three turbulent flames are considered: Flames D, E

and F. Figure 4 schematically shows the flame configuration. The central jet is maintained

at a temperature of 294 K and is composed of 25% methane (CH4) and 75% dry air by

volume. Such partial premixing reduces the formation of the soot precursors. The pilot is

a lean mixture of acetylene (C2H2), hydrogen (H2), air, carbon dioxide (CO2) and nitrogen

(N2) with the same equilibrium composition as the fuel jet and a temperature of 1880 K. The

energy release of the pilot is approximately 6% that of the main jet. The coflow is composed
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of air at a temperature of 291 K. The geometrical configuration in all Sandia/TUD flames

is the same, but the jet inlet velocity is varied. The jet velocity increases from flames D

to E to F increasing the probability of localized non-equilibrium effects. In Flame D, the

fuel jet bulk velocity is the lowest, 49.6 m/s, and the flame is close to equilibrium with a

single reaction zone occurring near the stoichiometric mixture fraction, Zs = 0.351. Only

Flame D is considered in this work. The objective is to assess the predictive capability of

the LES/SFMDF in capturing the essential flow features. This is a necessary step before

consideration of the non-equilibrium flames (E and F). The jet diameter DJ = 7.2 mm,

and the pilot diameter is 18.2 mm. The Reynolds number, based on the jet diameter, is

Re = 22, 400.

Sandia/TUD piloted jet flames have been the subject of broad investigations by other

computational and modeling methodologies.42,46–49

3.1.2 Numerical Specifications

The values of the flow variables at the inlet are set to those available from the experiments.

This includes the velocity, the turbulent intensity, and the mixture fraction. The flow is

excited by superimposing oscillating axisymmetric and helical perturbations onto the velocity

profile at the inlet. This procedure is similar to that of Danaila and Boersma,108 with

the amplitude of the forcing adjusted to match the experimental turbulent intensity of the

streamwise velocity at the inlet. The key simulation parameters are presented in Table 1. The

simulations are conducted on a 3D Cartesian mesh with uniformly spaced grid points. The

computational domain spans a region of 18DJ × 10DJ × 10DJ in the streamwise (x) and the

two lateral (y, z) directions, respectively. The number of grid points is 91× 101× 101 in the

x, y, and z directions, respectively. The filter size is set equal to ∆L = 2(∆x∆y∆z)1/3, where

the ∆x, ∆y, and ∆z are the grid spacing in the corresponding directions. The size of the

ensemble domain in the MC simulation is set equal to the filter size. There are approximately

40 particles in each ensemble domain. Per results of extensive previous studies12,30,33,44 the

number is sufficient to yield an excellent statistical accuracy with minimal dispersive errors.

In total, there are about 2.1 million MC particles within the computational domain at all
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Table 1: Sandia/TUD: Summary of the LES/SFMDF parameters and reference quantities.

Parameter Description Value

CI MKEV model parameter 0.0

CR MKEV model parameter 0.026

CΩ SGS mixing frequqency 8

Le Lewis number 1

Pr Prandtl number 0.75

Sc Schmidt number 0.75

Sct SGS Schmidt number 0.75

tref [s] Reference time 1.45 × 10−4

Tref [K] Reference temperature 291

νref [m2/s] Kinematic viscosity 1.58 × 10−5

times. The simulation results are monitored to ensure that the particles fully encompass and

extend well beyond the regions of non-zero vorticity and reaction. First the consistency and

accuracy of the simulations are assessed. Next, the predictive capability of the LES/SFMDF

is demonstrated by comparing the flow statistics and resolved PDFs with the experimental

data. The statistics are obtained by long-time averaging of the filtered fields during several

flow through times. The collection of the data is initialized after the flow has swept the

domain during the initial two flow through times. Simultaneously, the PDFs are constructed

based on the LES/SFMDF data resolved at the FD grid points residing within a circular

band of width ∆. The center of each band is located at a radial location where experimental

data are available. The notations Q and RMS(Q) denote the time-averaged mean and root

mean square values of the variable Q, respectively. The radial (r =
√

y2 + z2) profiles of the

streamwise velocity† at the inlet are compared to the experimental data in Figure 5.

The flamelet table for a constant strain rate of χ = 100 1/s is used to relate the

†Unless otherwise stated all of the LES/SFMDF variables in this chapter, except for the filtered density,
are Favré filtered. This prefix will be omitted henceforth for clarity.
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thermo-chemical variables to the mixture fraction. The choice of the strain rate is consistent

with previous studies of Sandia flames.52 The values of the temperature and several mass

fractions as obtained by the flamelet model are compared to the experimental data in

Fig. 6. The values for various strain rates are shown. The best agreement is obtained

with χ = 100 1/s. It can also be observed that at low strain rates the experimental data are

not predicted well on the fuel rich side (Z > Zs) of the flame.

The computational costs associated with LES/SFMDF depends, obviously, on the

parameters of the simulations. For the case reported here, the simulations required about

110 hours of CPU time on a SUN Fire 4800 with 6 processors. This includes the times

required for consistency tests and ensemble averaging of data. The computational time for

LES without including SGS effects30 is about 10-12 times less. However such simulations

yield erroneous predictions and in many cases lead to numerical instabilities. For further

comparative assessment of the computational requirements of the FDF in comparison to

non-FDF methods, we refer to previous work.12,30,33,44

3.1.3 Consistency of the LES/SFMDF

The objective of this subsection is to demonstrate the consistency of the LES/SFMDF in

the Sandia/TUD simulations. Typically, this is accomplished by considering various values

of the ensemble domain sizes and particle densities. The simplest consistency check is via

flow visualization. For example, Fig. 7 shows the instantaneous contours of the filtered

mixture fraction field as obtained by the FD and the MC methods. The central jet lies in

the middle along the streamwise coordinate, surrounded by a pilot where the temperature

is the highest and encircled by the air coflow. Due to the presence of helical instabilities,

the instantaneous flow is asymmetric. The similarity of the results in the two figures is

observed at all other times and is also observed for the temperature. This consistency is

further assessed by comparing statistics of the redundant quantities. The consistency can be

demonstrated in increasing detail by considering both instantaneous and the time averaged

values of the redundant variables. These are the density, mixture fraction and the mixture

fraction variance.
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Figures 8 and 9 show the instantaneous density field. The two results are very close.

The MC filtered density in both figures is calculated using Eq. (2.44). The key differences

between the two methods are exemplified by the presence of numerical oscillations in the

FD and statistical variability errors. The consistency results for the instantaneous and time

averaged mixture fraction are shown in Figs. 10–13. The instantaneous scatter plots for

the four adjacent streamwise segments of the computational domain show that the level

of correlation is reasonable. The corresponding time averaged results show a very good

agreement. This indicates that the level of scatter observed in the instantaneous data is a

result of combined effects of the numerical oscillations in the FD and localized stochastic

diffusion in the MC. Both effects are largely diminished by the time averaging. Furthermore,

these results indicate that for the mean of the mixture fraction, the statistical errors

associated with a finite number of particles are small. The correlation is further quantified

by calculating the correlation coefficients for the FD and MC data residing within several

streamwise segments of the computational domain. Figure 13 shows the temporal evolution

of the correlations coefficients calculated for the eight adjacent streamwise segments. The

values vary little with time hence implying a consistent LES/SFMDF at all times. Similarly

to the mixture fraction, the mixture fraction variance is also subjected to the consistency

analysis. The instantaneous and time averaged results are shown in Figs. 14–17. As before,

the scatter plots for the four adjacent streamwise segments of the computational domain

are considered. The instantaneous correlation is affected by a combined effect of numerical

oscillations in the FD and a combination of stochastic diffusion and statistical errors in the

MC. The MC also overpredicts the FD result in both instantaneous and time averaged results.

This is consistent with previous studies.12,30,43,44 Figure 17 shows the temporal evolution of

the correlations coefficients calculated for the eight adjacent streamwise segments. While

the values are lower than those for the mixture fraction, they vary little with time again

suggesting a similar level of consistency of the mixture fraction variance at all times.
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3.1.4 Comparisons with Experimental Data

The capability of the method to predict the hydrodynamics field is demonstrated by

comparison with the (reported) flow statistics. The mean and the RMS values of the

streamwise and radial velocities are shown in Figs. 18 and 19, respectively. The region

close to the inlet is dominated by the molecular diffusion and the jet exhibits a laminar-like

behavior. Farther downstream, the growth of perturbations is manifested by the formation

of large scale coherent vortices. The figures indicate that the flow is adequately excited and

the predicted results are in good agreement with data.

The comparison of the time averaged mixture fraction and temperature statistics with

the data are shown in Fig. 20. While most of the experimental data are linearly interpolated

for comparison, the figure shows a good qualitative agreement.

The radial distribution of the mixture fraction is shown to compare well with data

(Fig. 21). Similar agreement is observed at other available streamwise locations. The mean

temperature values in Fig. 22 are overpredicted on the fuel rich side. This is due to the

premixing of methane with air as indicated previously.48

The “resolved” RMS values of the mixture fraction and temperature are in good

agreement with data (Figs. 21, 22). However, the “total” RMS values, including the

contributions of both the resolved and the SGS fields, are higher than values reported

experimentally. The contribution of the SGS to the total scalar energy is about 20% which

is expected in LES. The higher values of the total RMS, as predicted by LES/SFMDF, are

not due to MC numerical dispersion because the FD results do indeed yield the same values.

The level of SGS variance can be decreased by increasing the magnitude of CΩ. However,

this would not alter the total RMS values as well. It is possible that some contributions to

this variance is not included in the measurements due to finite probe size. Higher resolution

measurements would determine the allocations of scalar variance to the resolved and the

SGS fields.

The statistics of the mass fractions (denoted by Y ) of several of the species are compared

with data in Figs. 23–27. The reactants’ mass fractions are underpredicted and the products

are overpredicted on the fuel rich side of the flame. The mean values of the mass fractions
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of the major and the minor species compare well with experimental data. All of the results

indicate the adequacy of the flamelet table in relating the thermo-chemical variables to the

mixture fraction, and also the good predictive capability of the LES/SFMDF for this flame.

The PDFs of the resolved scalar fields are compared with those measured experimentally.

Figure 28 specifies the spacial locations where the PDFs are constructed. Figures 29

and 30 show the PDFs of the resolved mixture fraction and temperature, respectively. The

comparison of the resolved PDFs at select radial locations with the experimental data is

shown in Fig. 31 for the mixture fraction and Fig. 30 for the temperature. The overall

agreement between LES/SFMDF and experimental measurements is good. The most visible

differences appear for the mixture fraction at: x/DJ = 7.5 and r = 0.0 mm, where the

LES/SFMDF predicts a sharp peak of the fuel rich mixture while the experiment indicates

a broader PDF, and at x/DJ = 7.5 and r = 16.0 mm where the LES/SFMDF predicts

a bimodal PDF while the experiment shows a narrow PDF of the oxidizer mixture. The

discrepancies can be partly attributed to the experimental errors. The latter are most

pronounced in the pure fuel or oxidizer streams where the experiments over- and under-

predict the mixture fraction, respectively. However, at r = 16 mm, LES/SFMDF appears

to predict an intermittent vortical structures that convect a small amount of pilot mixture.

The discrepancies between the PDFs of the temperature at r = 8 mm and r = 12 mm can

be attributed to the excessive diffusion of the temperature in the simulations.
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Figure 7: Sandia/TUD: Instantaneous contours of the mixture fraction as obtained by FD

(left) and MC (right) at t = 287.95tref . The four iso-surfaces displayed are 0.08 (blue), 0.26,

0.6, and 0.98 (white).
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Figure 8: Sandia/TUD: Instantaneous contours of the density obtained by FD (left) and

MC (right) at z/DJ = 0 and t = 143.98tref .
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Figure 20: Sandia/TUD: Time averaged contours of the mean values of the mixture fraction

(left) and temperature (right). Beyond the first and the end points, the horizontal lines

denote the locations of the experimental data. These data are interpolated at all other

locations.
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Figure 24: Sandia/TUD: Profiles of the mean and the RMS values of the water mass fraction.

Resolved LES/SFMDF, Total LES/SFMDF, • Sandia experiment.
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Figure 25: Sandia/TUD: Profiles of the mean and the RMS values of the oxygen mass

fraction. Resolved LES/SFMDF, Total LES/SFMDF, • Sandia experiment.
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Figure 28: Sandia/TUD: Locations (•) where the PDFs are constructed. The experimental

data are available at the streamwise locations of x/DJ = 7.5 and x/DJ = 15.
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Figure 29: Sandia/TUD: PDFs of the resolved mixture fractions at several streamwise

locations. The legends denote the radial (r [mm]) locations.
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Figure 30: Sandia/TUD: PDFs of the resolved temperature at several streamwise locations.

The legends denote the radial (r [mm]) locations.
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Figure 31: Sandia/TUD: PDFs of the resolved mixture fraction at streamwise locations of

x/DJ = 7.5 (top) and x/DJ = 15 (bottom) at selected radial locations (r[mm], see Figure 28).

LES/SFMDF, t Experimental data.
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Figure 32: Sandia/TUD: PDFs of the resolved temperature at streamwise locations of

x/DJ = 7.5 (top) and x/DJ = 15 (bottom) at selected radial locations (r[mm], see Figure 28).

LES/SFMDF, t Experimental data.
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3.2 SYDNEY/SANDIA BLUFF-BODY FLAME

3.2.1 Configuration

The bluff-body flames have been the subject of extensive investigations.4–9,109–111 The

Sydney/Sandia configurations, considered here, have been studied by Masri et al.4–6 and

Dally et al.7–9 Their data are available online.10,11 The bluff-body flames are stabilized

by complex recirculation zones next to the bluff-body surface that are characteristic of

practical combustors. Moreover, the boundary conditions are simple and well defined,

providing a convenient benchmark to study the turbulence-chemistry interactions. In the

experiments, several geometries, flow configurations, and fuels are considered. The schematic

representation of these flames is shown in Fig. 33. The central round fuel jet is surrounded

by a round bluff-body and air coflow. The jet diameter, DJ=3.6 mm and the bluff-body

diameter, DB=50 mm. The recirculation zone immediately follows the bluff-body surface.

Downstream of the recirculation zone, there is a neck zone which provides a controlled

region where the turbulent mixing rate is significant and flame blow-off (extinction) can

occur.9 Further downstream, the flame exhibits a jet like behavior. The most complete set of

experimental measurements, consisting of both hydrodynamic and scalar field data for both

non-reacting and the reacting cases, have been compiled for the hydrogen-methane flames.

For a given geometry and fuel, the non-reacting cases are distinguished by their corresponding

bulk jet velocities, UJ , while the reacting flames are distinguished by their blow-off parameter.

The recirculation zones differ in length from ∼ 1.0DB for the non-reacting cases to ∼ 1.6DB

for the reacting cases. The lengthening is caused by the density stratification within the

reaction zone. All cases exhibit a double counter-rotating vortex structure which controls

flow and mixing in the recirculation zone. The inner vortex is adjacent the fuel stream

and the outer vortex lies between the inner vortex and the coflow. Three complex mixing

layers develop between the coflow and the outer vortex, the outer and inner vortices, and

the inner vortex and the jet. The flames are stabilized by the hot products circulated

toward the bluff-body surface by the middle mixing layer of the counter-rotating vortices.

These products provide a continuing ignition source. At large jet velocities, the inner vortex
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breaks down causing a portion of the air stream that would be otherwise heated, mixed

and convected towards the bluff-body by the counter-rotating motion of both vortices, to be

transported downstream.

The non-reacting cases considered here are characterized by the bulk jet velocities of

50, 61, 85, and 143 m/s and the coflow velocity, UCO, of 20 m/s. Air is used for both

the fuel and coflow streams for UJ = 61 m/s. This case provides data for hydrodynamics

validation. The remaining three cases consider CNG‡ and air for the fuel and coflow streams,

respectively.

The reacting case considered is characterized by the Reynolds number of 15, 800 based on

fuel jet diameter and bulk jet velocity. The bulk jet and the coflow velocities are 118 m/s and

40 m/s, respectively. This corresponds to the conditions at 50% blow-off. The flame’s 100%

blow-off velocity is UBO=235 m/s. In the experiments, the blow-off parameter increases from

50% to 75% to 91% increasing the localized extinction in the neck zone, and changing the

structure of the recirculation zone. In this work, the lower level of flame blow-off is selected

to allow for more accurate representation of chemical reaction via the flamelet chemistry

model. The objective is to further assess the predictive capability of the LES/SFMDF in

capturing the essential flow field characteristics. The jet is maintained at a temperature of

298 K and is composed of 50% hydrogen (H2) and 50% methane (CH4) by volume.8 The

dilution of hydrogen in methane reduces the formation of soot. The coflow is maintained at

about room the temperature and is composed of air. The bluff-body is a ceramic surface

that heats up to an average of 1003 K during operation. Hossain et al.55 showed that the

effects of the radiative heat transfer on the temperature and other major species are small.

However, the inclusion of radiation heat transfer significantly improves the predictions of the

hydroxyl radical.56 The stoichiometric value of the mixture fraction is Zs = 0.05.

The bluff-body flames as described here have been the subject of broad previous

investigations via other computational and modeling methodologies.9,50–58

‡CNG is typically composed of 90% methane, with the remaining fraction made up of butane and other
hydrocarbons.
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Table 2: Sydney/Sandia: Summary of the LES/SFMDF parameters and reference quantities.

Parameter Description Value

CI MKEV/Smagorinsky model parameter 0.0/0.0

CR MKEV model parameter 0.026

CS Smagorinsky model parameter 0.2

CΩ SGS mixing frequqency 4

Le Lewis number 1

Pr Prandtl number 1

Sc Schmidt number 1

Sct SGS Schmidt number 1

tref [s] Reference time 3.05 × 10−5

Tref [K] Reference temperature 283

3.2.2 Numerical Specifications

The values of the flow variables at the inlet are set to those available from the experiments,

including the velocity, turbulent intensity, and the mixture fraction. The flow is excited by

superimposing oscillating axisymmetric and helical perturbations onto the velocity profile at

the inlet. This procedure is similar to that of Danaila and Boersma,108 with the amplitude

of the forcing adjusted to match the experimentally obtained turbulent intensity of the

streamwise velocity at the inlet. The key simulation parameters are presented in Table 2.

The simulations are conducted on a 3D Cartesian mesh with uniformly spaced grid points.

The computational domain spans a region of 30DJ ×22.5DJ ×22.5DJ in the streamwise (x),

and the two lateral (y, z) directions, respectively. The number of grid points is 101×151×151

in the x, y, and z directions, respectively. The filter size is set equal to ∆L = 2(∆x∆y∆z)1/3,

where the ∆x, ∆y, and ∆z are the grid spacing corresponding directions. The size of the

ensemble domain in the MC simulation is set equal to the filter size. There are approximately

40 particles in each ensemble domain. Per results of extensive previous studies12,30,33,44 this
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number is sufficient to yield an excellent statistical accuracy with minimal dispersive errors.

In total, there are about 6.8 million MC particles within the computational domain at all

times. The simulation results are monitored to ensure that the particles fully encompass

and extend well beyond the regions of non-zero vorticity and reaction. First, the consistency

and the accuracy of the simulations are assessed. Next, the predicative capability of the

LES/SFMDF is demonstrated by comparing the results with the experimental data. The

statistics are obtained by long-time averaging of the Favré filtered fields during several

flow through times. The collection of the data is initialized after the flow has swept the

domain during the initial four flow through times. The PDFs are constructed based on the

LES/SFMDF data resolved at the FD grid points residing within a circular band of width

∆. The center of each band is located at a radial location where experimental data are

available. The notations Q and RMS(Q) denote the time-averaged mean and root mean

square values of the variable Q, respectively. The radial (r =
√

y2 + z2) profiles of the

streamwise velocity at the inlet are compared with the experimental data in Figure 34. The

parameter RB denotes the radius of the bluff-body. The RMS of the velocity components on

the bluff-body surface are set, such that the flow is properly excited at x/DB = 0.3. This,

or similar, approximation is appropriate when no attempt is made to resolve the near wall

region, and the flow is dominated by large recirculation zones.51

The flamelet table with a constant strain rate of χ = 100 1/s is used to relate the

thermo-chemical variables to the mixture fraction. The choice of the strain rate is consistent

with previous studies of bluff-body flames52 and experimental assessments.8 Figure 35

shows the comparison of the flamelet tables for several thermo-chemical variables with

the experimental data. The temperature, oxygen (O2) and hydrogen (H2) mass fractions

are well represented. However, the carbon dioxide (CO2) and carbon monoxide (CO) are

underpredicted, while water and hydroxyl radical (OH) are overpredicted. Although, a

complex chemical mechanism for hydrocarbon combustion (GRI mechanism63,64) is used

to generate the flamelet table, modifications may be needed in applications to turbulent

flames.56,112

The computational costs associated with LES/SFMDF depends, obviously, on the

parameters of the simulations. For the case reported here, the simulations required about
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540 hours of CPU time on a SGI Altix with 6 processors. This includes the times required

for consistency tests and ensemble averaging of data. The computational time for LES

without including SGS effects30 is about 10-12 times less. However such simulations

yield erroneous predictions and in many cases lead to numerical instabilities. For further

comparative assessment of the computational requirements of the FDF in comparison to

non-FDF methods, we refer to previous work.12,30,33,44

3.2.3 Comparisons with Experimental Data

Tables 3 and 4 show the specifications of the experiments and simulation data, respectively.

The experimental flow fields of the reacting cases HM1E-S(1-2) considered at Sydney

are meant to represent the same flame conditions as the HM1 experiments considered at

Sandia. However, the wind tunnel in Sydney did not provide the same exact hydrodynamic

conditions. The streamwise velocities are UJ = 118m/s and UC = 40m/s in the HM1,

but UJ = 108m/s and UC = 35m/s in the HM1E-S experiments. The new jet and coflow

velocities were chosen such that the HM1 and HM1E-S flames are equally proportional

(within 50% blow-off) from their corresponding blow-off velocities. To facilitate comparisons

of the flow statistics of the HM1E-S data with those of HM1 and LES/SFMDF, the former’s

values of the streamwise velocity are scaled by a ratio of the bulk jet velocities; that is

118/108.

The consistency of the LES/SFMDF results is briefly assessed by examining the

instantaneous and the time averaged contours of the mixture fraction (Fig. 36). The

similarity of the results in the instantaneous figures is observed at all other times. The

time averaged values also indicate good agreementS between the FD and the MC.

3.2.3.1 Non-Reacting Flows. The non-reacting experiments, B4C1-S(1-3), consider

air at both the fuel and coflow streams. The bulk streamwise velocity of 61 m/s and the

coflow streamwise velocity of 20 m/s are considered. The simulations are conducted with

both the MKEV and the conventional Smagorinsky models. No LES/SFMDF simulations

are conducted for these flows. Therefore, only the values of the scalar field statistics resolved
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Table 3: Sydney/Sandia: Experimental specifications.11

Label Fuel(Ratio†) UJ
‡ UCO

‡ Available data Year

B4C1-S1 Air 61 20 U, V , 1995

RMS(U), RMS(V )

B4C1-S2 Air 61 20 U, V , RMS(U), 12/01/1999

RMS(V ), RMS(UV )

B4C1-S3 Air 61 20 U, V , RMS(U) 12/15/1999

RMS(V ), RMS(UV )

B4C2-50 CNG 50 20 Z, RMS(Z)

B4C2-85 CNG 85 20 Z, RMS(Z)

B4C2-143 CNG 143 20 Z, RMS(Z)

HM1 H2 : CNG 118 40 U, V , 1995

(1 : 1) RMS(U), RMS(V )

HM1 H2 : CH4 118 40 Z, T , Yα
§, RMS(Z), 1995

(1 : 1) RMS(T ), RMS(Yα),

PDFs

HM1E-S1 H2 : CNG 108 35 U, V , RMS(U), 01/21/2000

(1 : 1) RMS(V ), RMS(UV )

HM1E-S2 H2 : CNG 108 35 U, V , RMS(U), 02/11/2000

(1 : 1) RMS(V ), RMS(UV )

†Volumetric.
‡[m/s]
§O2, N2, H2, H2O, CO, CO2, OH, NO
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Table 4: Sydney/Sandia: Simulation specifications.

Label Fuel(Ratio†) UJ
‡ UCO

‡ Re§ νref [m2/s]¶ SGS model

MKEV Air 61 20 13,899 1.58 × 10−5 MKEV

SMAG Air 61 20 13,899 1.58 × 10−5 Smagorinsky

LES-50 CH4 50 20 10,580 1.7013 × 10−5 MKEV

LES-85 CH4 85 20 17,987 1.7013 × 10−5 MKEV

LES-143 CH4 143 20 30,260 1.7013 × 10−5 MKEV

LES/SFMDF H2 : CH4 118 40 15,800 2.6886 × 10−5‖ MKEV

(1 : 1)

†Volumetric.
‡[m/s]
§Reynolds number based on DJ and UJ

¶Kinematic viscosity at standard conditions.113
‖Value yields Re number reported for the reacting bluff-body experiments at 50% blow-off.

by the LES are considered. The recirculation zone with the double vortex structures captured

by the experiments and LES are shown via the time averaged streamwise velocity contours

with superimposed streamlines and velocity vectors in Fig. 37. Both of the SGS models

capture the two recirculation zones well. The length of the recirculation region behind

the bluff-body surface is slightly overpredicted. The counter-rotating vortices are also

predicted slightly further downstream of their experimentally reported counterparts. The

instantaneous snapshots of the streamwise velocity, streamlines, and velocity vectors are

shown in Fig. 38. The radial profiles of the mean and the RMS values of the streamwise

velocity are shown in Figs. 39, and those of the radial velocity are shown in Fig. 40 for

several downstream locations. Both the mean and the RMS values compare well with the

experiments.

The non-reacting experiments, B4C2, consider a “cold” methane fuel stream with the

bulk streamwise velocities of 50, 85, and 143 m/s, and the air coflow stream with the

streamwise velocity of 20 m/s. Only the mixture fraction statistics are measured in these
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experiments. The time averaged streamwise velocity with superimposed streamlines and

velocity vectors are shown in Fig. 41. As observed previously, a set of two counter-rotating

vortices forms behind the bluff-body surface. The recirculation region shortens as the fuel

stream velocity increases. In addition, the two vortices reposition themselves with the inner

vortex shifting downstream with respect to the outer one. The shift is accompanied by

a loss in inner vortex’s circulation strength that becomes most noticeable in LES-143. In

the latter case the jet’s large streamwise velocity causes the inner vortex to partially break

down. The instantaneous and the time averaged 3D contours of the mixture fraction are

shown in Fig. 42. Different mixing structures are observed in the instantaneous values as

the streamwise velocity of the fuel stream increases. The time averaged plots accentuate the

shortening of the recirculation zone. This is highlighted by the “cone” of the mixture fraction

iso-surface of 0.06. Figures 43 and 44 show the radial profiles of the mean and the RMS

values of the mixture fraction at several downstream locations. The general agreement of

the mean values is satisfactory with the largest discrepancy occurring near the centerline for

the case with the lowest streamwise velocity (LES-50). The RMS values are also predicted

well with the discrepancies occurring on the oxidizer side of the bluff-body surface and near

the centerline farthest downstream of the inlet. The general trends are also captured by the

simulations. For example, at the centerline, the value of the mixture fraction mean is the

lowest for the LES-50 case but downstream of the bluff-body surface this value is the largest

for the same case. Also downstream of the bluff-body surface, the RMS values are the lowest

for the LES-143 followed by LES-50 and LES-85. Both trends are present in the experiments.

The correct representation of such trends in the simulations suggests a successful capture of

important mixing structures.

3.2.3.2 Reacting Flows. The capability of the LES/SFMDF to predict the reacting

flow field is demonstrated here. The time averaged streamwise velocity contours with the

streamlines and velocity vectors superimposed are shown in Fig. 45. This figure shows the

recirculation region and the two characteristic counter-rotating vortices. The recirculating

zones are well captured by the simulations. However, there are a few discrepancies that are

manifested by the relative position of the inner and outer vortices. In the HM1 experiment,
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as well as in the simulation, the inner vortex is located behind the outer vortex. However,

in the HM1E-S experiments the situation is reversed. The recirculating region extends to

about ∼ 1.6DB, as compared to about ∼ 1DB in the isothermal cases, due to the density

gradient and the heat release. The central jet more easily penetrates the low density region.

The mean profiles of the streamwise and the radial velocities at several downstream locations

are shown in Figs. 46 and 48, respectively. The corresponding RMS profiles are shown in

Fig. 47 and Fig. 49. The comparisons show good overall qualitative agreement with the

experimental data. The mean and the RMS values of the streamwise velocity show an

excellent agreement with the HM1E-S data. The mean and the RMS values of the radial

velocity are underpredicted at downstream locations. The discrepancies may be attributed,

at least in part, to the experimental errors in the measurements caused by the spacial

resolution effects.9 The radial profiles of the mean and the RMS values of the mixture fraction

are shown in Figs. 50 and 51, respectively. The mean values are in excellent agreement

with the experiment, while the total and resolved RMS values are overpredicted in the fuel

stream in the recirculation zone. The radial profiles of the mixture fraction RMS exhibit

three regions of interest in the recirculation zone (x/DB < 1.6). These regions correspond to

the inner, central, and outer mixing layers located at r/RB ≈ 0.2, 0.5, 0.9, respectively. In

the experiments, the downstream RMS values corresponding to the inner and central layers

are approximately equal. The RMS value of the central mixing layer increases downstream

of the recirculation zone. The LES/SFMDF, however, predicts the RMS value of the inner

layer as the largest in the recirculation zone. The RMS values corresponding to the outer

mixing layer are slightly overpredicted at all downstream locations.

The radial profiles of the mean and the RMS values of the temperature are shown in

Figs. 52 and 53, respectively. The near field mean values compare well with the experimental

data. The downstream locations, however, are overpredicted on the oxidizer stream side of

the bluff-body. The overprediction can be traced to that of the temperature on the fuel

lean side (Z < Zs) of the flamelet table (see Fig. 35). Similar, over-, or under-predictions

are present in the species’ mean and RMS values (see Appendix ). The mean temperature

is the highest in the central mixing layer region where the hot products of combustion

are convected toward the bluff-body by the counter-rotating vortical structures. The
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experimental temperature RMS values are overpredicted by the total RMS values and are

generally well predicted by the resolved RMS values with the exception of the oxidizer stream

side of the bluff-body at downstream locations. Similarly to the mixture fraction RMS, the

effects of the three mixing layers, generated by the counter-rotating vortical structures, are

pronounced at x/DB = 0.8 and r/RB ≈ 0.2, 0.5, 0.9 by the peaking RMS values of the

temperature.

3.2.3.3 PDF Comparisons. The PDFs of the resolved scalar fields as predicted by

LES/SFMDF are compared with those measured experimentally. Figure 54 shows the

locations where the PDFs are constructed. Figures 55 and 56 show the PDFs of the resolved

mixture fraction and temperature, respectively. The comparison of the LES/SFMDF results

at select radial locations with the experimentally available PDF data is shown in Fig. 57

for the resolved mixture fraction and Fig. 56 for the resolved temperature. The overall

agreement between LES/SFMDF and the experiment is very good.
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Figure 33: Sydney/Sandia: Flame configuration.
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(a) FD (b) MC

(c) FD (d) MC

Figure 36: Sydney/Sandia: Comparison of the instantaneous (a, b), and the time averaged

(c, d) contours of the mixture fraction. The six iso-surfaces shown are of 0.07 (blue), 0.15,

0.34, 0.45, 0.63, 0.9 (white). The axis are normalized by the diameter of the fuel stream.
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Figure 37: Sydney/Sandia: Time averaged recirculation features as predicted by experiments

and LES. The color contours denote the streamwise velocity. Superimposed are the

streamlines and the velocity vectors.
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Figure 38: Sydney/Sandia: Instantaneous recirculation features as predicted by the LES.

The color contours denote the streamwise velocity. Superimposed are the streamlines and

the velocity vectors.
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Figure 39: Sydney/Sandia: Radial profiles of the mean and the resolved RMS values of the

streamwise velocity for the non-reacting flow. MKEV, SMAG, • B4C1-S1,

� B4C1-S2, � B4C1-S3.
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Figure 40: Sydney/Sandia: Radial profiles of the mean and the resolved RMS values of the

radial velocity for the non-reacting flow. MKEV, SMAG, • B4C1-S1, � B4C1-S2,

� B4C1-S3.
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Figure 41: Sydney/Sandia: Time averaged recirculation features as predicted by the LES.

The color contours describe the streamwise velocity. Superimposed are the streamlines and

the velocity vectors.
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(a) LES-50

(b) LES-85 (c) LES-143

(d) LES-50 (e) LES-85 (f) LES-143

Figure 42: Sydney/Sandia: Instantaneous (a, b, c), and time averaged (d, e, f), contours

of the mixture fraction as predicted by the LES of several non-reacting flow configurations.

The six iso-surfaces are 0.06 (blue), 0.13, 0.34, 0.45, 0.63, 0.90 (white). The plot’s axes are

normalized by the diameter of the fuel stream.
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Figure 43: Sydney/Sandia: Radial profiles of the mean values of the mixture fraction as

predicted by the LES of several non-reacting flow configurations. LES-50, LES-85,

LES-143, • B4C2-50, � B4C2-85, � B4C2-143.
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Figure 44: Sydney/Sandia: Radial profiles of the resolved RMS values of the mixture fraction

as predicted by the LES of several non-reacting flow configurations. LES-50,

LES-85, LES-143, • B4C2-50, � B4C2-85, � B4C2-143.
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Figure 45: Sydney/Sandia: Time averaged recirculation features as predicted by the

LES/SFMDF. The contours denote the streamwise velocity. Superimposed are the

streamlines and the velocity vectors.
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Figure 46: Sydney/Sandia: Radial profiles of the mean value of the streamwise velocity for

the reacting flow. LES/SFMDF, • HM1, � HM1E-S1, � HM1E-S2.
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Figure 47: Sydney/Sandia: Radial profiles of the resolved RMS values of the streamwise

velocity for the reacting flow. LES/SFMDF, • HM1, � HM1E-S1, � HM1E-S2.
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Figure 48: Sydney/Sandia: Radial profiles of the mean values of the radial velocity for the

reacting flow. LES/SFMDF, • HM1, � HM1E-S1, � HM1E-S2.
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Figure 49: Sydney/Sandia: Radial profiles of the resolved RMS values of the radial velocity

for the reacting flow. LES/SFMDF, • HM1, � HM1E-S1, � HM1E-S2.

81



0

0.5

1

0

0.5

1

0 0.5 1 0
0

0.5

1

0 0.5 1 1.5

<
Z
>

L
<
Z
>

L
<
Z
>

L

x/DB = 0.3 x/DB = 0.4

x/DB = 0.8 x/DB = 1.1

x/DB = 1.4 x/DB = 1.8

r/RBr/RB

Figure 50: Sydney/Sandia: Radial profiles of the mean values of the mixture fraction for the

reacting flow. LES/SFMDF, • HM1.
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Figure 51: Sydney/Sandia: Radial profiles of the RMS values of the mixture fraction for the

reacting flow. Resolved LES/SFMDF, Total LES/SFMDF, • HM1.
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Figure 52: Sydney/Sandia: Radial profiles of the mean values of the temperature for the

reacting flow. LES/SFMDF, • HM1.
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Figure 53: Sydney/Sandia: Radial profiles of the RMS values of the temperature for the

reacting flow. Resolved LES/SFMDF, Total LES/SFMDF, • HM1.
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Figure 54: Sydney/Sandia: Locations (•) where the PDFs are available from the experiment.
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Figure 55: Sydney/Sandia: PDFs of the resolved mixture fraction at several streamwise

locations. The legend denotes the radial (r [mm]) locations.
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Figure 56: Sydney/Sandia: PDFs of the resolved temperature at several streamwise

locations. The legend denotes the radial (r [mm]) locations.
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Figure 57: Sydney/Sandia: PDFs of the resolved mixture fraction at (top-to-bottom rows)

x/DB = 0.3, 0.6, 0.9, 1.3, 1.8 and selected radial locations (r [mm], see Figure 54).

LES/SFMDF, t HM1.
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Figure 58: Sydney/Sandia: PDFs of the resolved temperature at (top-to-bottom rows)

x/DB = 0.3, 0.6, 0.9, 1.3, 1.8 and selected radial locations (r [mm], see Figure 54).
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4.0 CONCLUSION

The filtered density function (FDF) methodology25 is now at a stage that it can be used

for accurate large eddy simulation (LES) of complex turbulent reacting flows. This is

demonstrated in this work by utilizing the scalar filtered mass density function (SFMDF) for

LES of a piloted, non-premixed, turbulent, methane jet flame (Sandia/TUD)1–3 and a bluff-

body stabilized hydrogen-methane (Sydney/Sandia)9,50–58 jet flame. For these flames, the

thermo-chemical variables are related to the mixture fraction. This is done by construction

of a flamelet library (in a counter-flow jet flame) in which the chemical reaction is modeled

by detailed kinetics.63,64 It is useful to note that the approach here is fundamentally different

from those followed in previous flamelet based subgrid scale (SGS) models. In most previous

contributions,48,54,65–68 the FDF of the mixture fraction is assumed (e.g. beta or other

distributions). Here, a modeled transport equation for the mass weighted FDF of the

mixture fraction12 is considered. This equation is solved by a hybrid finite-difference (FD)

/ Monte Carlo (MC) method. After establishing the consistency and accuracy of the hybrid

solver, the predictive capability of the overall scheme is assessed by comparisons with the

experimental data. For these comparisons, the ensemble (long time averaged) values of

the hydrodynamic and thermo-chemical variables are considered. The resolved PDFs of

several thermo-chemical variables are also considered. Good overall agreements with the

experimental data are observed.

There are two ways by which this work can be continued. First, is extension

of LES/SFMDF for prediction of flames which experience extinction (such as Sandia

Flames E and F) and/or re-ignition (such as the higher blow-off value Sydney/Sandia

bluff-body flames). This would provide a more definitive assessment of the predictive

capabilities of the FDF methods. Such simulations require consideration of finite-rate
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chemistry, as demonstrated in probability density function (PDF) based Reynolds averaged

simulations (RAS) of Sandia flames,46,47 and bluff-body flames.51–53,57,58 Presently, it is

not computationally economical to implement very detailed kinetics in LES/FDF. But

implementation of reduced finite-rate kinetics schemes using in situ adaptive tabulation,

such as those used in RAS/PDF46,47,53 is within reach. Second, it is desirable to implement

the LES/SFMDF for prediction of other complex flame configurations. Accomplishments of

these tasks can be further expedited by reduction and optimization of the computational

requirements of the FDF.
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APPENDIX

ADDITIONAL LES/SFMDF DATA ON SYDNEY/SANDIA FLAME

This appendix provides additional scalar field data as predicted by the LES/SFMDF of the

Sydney/Sandia flames. The radial profiles for the mean values of the mass fractions of the

oxygen (O2), water (H2O), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2),

and hydroxyl radical (OH) are shown in Figs. 59, 61, 63, 65, 66, and 67, respectively. The

radial profiles of the RMS values of the oxygen, water, and carbon monoxide are shown in

Figs. 60, 62, and 64, respectively. The level of agreement between the experimental data and

LES/SFMDF is directly related to that of the flamelet table (Fig. 35). In general, the mean

values of the oxygen are underpredicted on the fuel lean side. The mean values of water

and hydroxyl radical are overpredicted. The mean values of carbon monoxide and dioxide

are underpredicted on the fuel rich side, although the agreement improves at downstream

locations. These features are also observed in the RMS values.
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Figure 66: Sydney/Sandia: Radial profiles of the mean values of the carbon dioxide mass
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of Modeling for Non-Premixed Turbulent Combustion, Combust. Flame, 60:105–122
(1998).

107



[66] DesJardin, P. E. and Frankel, S. H., Two-Dimensional Large Eddy Simulation of
Soot Formation in the Near-Field of a Strongly Radiating Nonpremixed Acetylene-Air
Turbulent Jet Flame, Combust. Flame, 119:121–132 (1999).

[67] Kempf, A., Forkel, H., Chen, J. Y., Sadiki, A., and Janicka, J., Large-Eddy Simulation
of a Counterflow Configuration with and without Combustion, Proc. Combust. Inst.,
28:35–40 (2000).

[68] Ladeinde, F., Cai, X., Sekar, B., and Kiel, B., Application of Combined LES
and Flamelet Modeling to Methane, Propane, and Jet-A Combustion, AIAA Paper
2001-0634, 2001.

[69] Sagaut, P., Large Eddy Simulation for Incompressible Flows, Springer-Verlag, second
edition, 2002.

[70] Ghosal, S. and Moin, P., The Basic Equations for the Large Eddy Simulation of
Turbulent Flows in Complex Geometry, J. Comp. Phys., 118:24–37 (1995).

[71] Vreman, B., Geurts, B., and Kuerten, H., Realizability Conditions for the Turbulent
Stress Tensor in Large-Eddy Simulation, J. Fluid Mech., 278:351–362 (1994).

[72] Williams, F. A., Combustion Theory, The Benjamin/Cummings Publishing Company,
Menlo Park, CA, 2nd edition, 1985.

[73] Kuo, K. K., Principles of Combustion, John Wiley, Hoboken, N.J., second edition,
2005.

[74] Smooke, M. D. and Giovangigli, V., Formulation of the Premixed and Nonpremixed
Test Problems, In Smooke117, pp. 1–28.

[75] Rogallo, R. S. and Moin, P., Numerical Simulation of Turbulent Flow, Ann. Rev. Fluid

Mech., 16:99–137 (1984).

[76] Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, Inc., La Cañada, CA,
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