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Background 

Prostate cancer is the second leading cause of cancer related death in men.  Current therapies for 

metastatic prostate cancer can only prolong progression, as most men eventually succumb to 

metastasis and then death. Therefore, there is continued urgency to identify novel therapeutic 

targets for advanced disease.  Previous reports have identified an increase in Translocator Protein 

(TSPO) expression in numerous cancer models, including prostate. Functionally, TSPO has been 

implicated in the regulation of apoptosis and cell proliferation.  Here, the role of TSPO in 

advanced prostate cancer is evaluated in an effort to establish the potential value of TSPO as a 

therapeutic target in advanced disease. 

 

Methodology and Principle Findings 

Immunohistochemical analysis using tissue microarrays was used to determine the expression 

profile of TSPO in human prostate cancer tissues.  We observed that TSPO expression increases 

with disease progression, as prostate cancer metastases had the highest expression. To 

demonstrate the effect of TSPO ligands PK11195 and lorazepam in prostate cancer, we utilized 

cell proliferation assays, cell death ELISAs, and a prostate cancer mouse xenograft study. Our 

findings provide the first evidence of the anti-tumor effects of lorazepam acting on TSPO. To 

determine the effect of modulating TSPO expression, we performed overexpression and 
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knockdown studies. These studies provided further evidence that lorazepam is acting through 

TSPO, as overexpression of TSPO conferred increased susceptibility to lorazepam while TSPO 

knockdown decreased susceptibility. Lastly, we investigated the role of TSPO multimers in 

prostate cancer. We found that TSPO multimers can be induced by reactive oxygen species and 

may be formed through a di-tyrosine covalent bond.  

 

Conclusions and Significance 

TSPO expression increases with prostate cancer progression.  The benzodiazepine lorazepam 

exerts its anti-cancer effects through its binding to TSPO.  Collectively, these data suggest that 

TSPO is an excellent therapeutic target for advanced disease and that our preclinical results 

demonstrating that the already existing FDA-approved drug lorazepam has anti-tumor effects 

could be easily translated to the prostate cancer patient population. These studies could lead to a 

significant change in the management of prostate cancer by providing a treatment option with 

minimal toxicity for use in advanced disease and could ultimately prevent prostate cancer deaths. 
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1.0  INTRODUCTION 

1.1 Prostate Development and Function 

 

In 1543, Andreas Vesalius was the first to identify a small organ that he referred to in his 

anatomical drawings as a “male accessory sex gland” [1]. A century later a pioneer of human 

anatomy, Gerard Blasius, published a treatise on comparative anatomy that described what 

would later be termed the prostate, as ‘‘glandulae’’ surrounding the neck of the bladder [2].  In 

1912, Lowsley reconstructed a newborn male prostate out of wax and this model provided a 

basis for illustrating the human prostate [3]. Several alternative models of prostate anatomy 

emerged over a period of 50 years and the currently accepted concept of prostate zones was 

eventually established in the early 1980s by a pathologist named John McNeal [4]. 

The beginning of human prostate growth begins around the 10th week of gestation and is 

induced by the production of testosterone by the fetal testis around 8 weeks. The initial 

outgrowths of the prostatic buds from the urogenital sinus (UGS) occur in response to the 

binding of 5a-dihydrotesterone (DHT) to androgen receptors localized in the surrounding 

mesenchymal tissue [5-7]. During the postnatal period, under the influence of androgens, the 

ducts form a lumen and the epithelium differentiates and begins synthesis of a variety of 

secretory products. Consistent among all the anatomical research on the prostate is the finding 

that origins of the prostatic ducts emerge in a ventral, lateral, and dorsal pattern from the UGS. 
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The zones described by McNeal differ from the lobes such that they are divided according to 

their function.  The three zones include the central, peripheral, and transitional with the 

peripheral zone constituting up to 70% of prostate adenocarcinoma (figure 1). These lobes and 

zones are now the standard reference for understanding the normal and diseased prostate [8].   

 

 

Figure 1. The adult human prostate gland. 

Sagittal section of the adult human prostate gland showing the different zones of the prostate. (Adapted 

from Abate-Shen 2000) 

 

Within the prostatic epithelium, there are three distinct cell types (figure 2). The 

predominant cell type is the secretory luminal cell, a differentiated androgen-dependent cell that 

produces prostatic secretory proteins.  These cells are also characterized by their expression of 

androgen receptor.  The second major epithelial cell type are the basal cells, which are found 

between the luminal cells and the underlying basement membrane, and which form a continuous 

layer in the human prostate.  The third epithelial cell type found in the prostate gland is the 

neuroendocrine cell, a minor population of cells believed to provide paracrine signals that 

support the growth of the luminal epithelial cells.  The luminal epithelial cells are the primary 

cell type to give rise to prostate carcinogenesis [9]. 
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Figure 2. Cell types of a human prostatic duct.  

(Adapted from Abate-Shen 2000) 

 

As part of the male reproductive system, the prostate gland’s primary role is to secrete a 

slightly alkaline fluid that constitutes approximately 25-30% of the volume of the seminal fluid. 

During ejaculation, the muscular glands of the prostate contract, propelling the fluid into the 

urethra where it combines with the sperm from the testes. The primary function of the prostatic 

fluid is to help neutralize the acidity of the vaginal tract, prolonging the lifespan of the sperm 

[10].   

  

1.2 Prostate Cancer Incidence and Risk Factors 

 

Prostate cancer is the most commonly diagnosed cancer in men, accounting for 

approximately 25% of new cancer diagnoses each year. Despite the continual decrease in 

prostate cancer mortality, it is estimated that nearly 29,000 men will die each year of prostate 

cancer-related deaths [11].  No definitive causes of prostate cancer have been identified; 

however, increasing age, a family history of the disease, and African American ancestry are 

strongly linked to its development [12].  
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Like many other cancers, incidence increases with age with more than 65% of all prostate 

cancers being diagnosed in men over the age of 65.  Age is not the only risk factor however, as 

incidence and death rates vary considerably among racial and ethnic groups [11]. African 

American men are the most at risk population for developing prostate cancer and have a more 

than twofold greater chance of dying from the disease when compared to Caucasian men of 

European descent [11]. A review of prostate cancer mortality rates around the world showed that 

Western Europe, Australia, and North America had the highest rates, whereas the Far East and 

India had the lowest [12].  

Differences in prostate cancer risk by race can be either endogenous, such as genetic 

differences or exogenous, such as dietary or detection.  It is estimated that 9% of prostate cancer 

cases are due to an inherited predisposition [12].  For many years researchers struggled to find a 

genetic link to prostate cancer.  It wasn’t until fairly recently, through the development of gene 

expression arrays, that researchers discovered somatic mutations in prostate tumors. The most 

common mutation in prostate cancer is a gene fusion between the transmembrane protease serine 

2 (TMPRSS2: 21q22.3) and a member of the erythroblast-transformation specific [13] gene 

family (ERG: 21q22.3) [14]. This fusion protein has been observed in approximately 50% of the 

tumors studied.  TMPRSS2 is an androgen-regulated gene and ERG is a transcriptional regulator 

[15, 16].  Several in vitro studies have suggested that overexpression of ERG can result in 

invasive prostate cancer cells [17].  Fusion of these genes results in an androgen-dependent 

induction of oncogenic transcription factor overexpression.  A study by Freedman et al. in 2006 

identified that chromosome 8q24 is significantly associated with susceptibility to prostate cancer 

in African American men [18].  Furthermore, men carrying the BRCA gene are also at an 

increased risk for prostate cancer, among other cancers [19]. Although theses few genetic 
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abnormalities have been identified, there is a continued effort to identify other genetic alterations 

using novel approaches such as genome-wide association studies which can detect germline 

single nucleotide polymorphisms (SNPs) associated with the disease [14].   

A variety of dietary factors have been implicated in the development of prostate cancer 

according to epidemiologic studies of migrants, geographic variations, and temporal studies.  

Evidence has been presented that consistently demonstrates an association between dietary fat 

and prostate cancer, particularly the consumption of saturated fat and red meat [20-22].  

Although an exact mechanism of action is unknown, the role of fat in increased prostate cancer 

incidence and mortality may be resulting from fat-induced alterations in hormonal profiles, the 

effect of fat metabolites as protein or DNA-reactive intermediates, or fat-induced elevation of 

oxidative stress [23].   

Another possible explanation for the disparity in mortality between racial groups may lie 

in differences in detection and treatment.  A recent study showed that African American men 

were significantly more likely than men of European descent to receive watchful waiting, which 

is an appropriate strategy for men with early-stage disease.  This difference in undergoing 

watchful waiting was not fully explained by clinical characteristics or life expectancy at time of 

diagnosis, suggesting that other factors may be involved in this decision.  These factors may 

include differences in access to health care resources, the patient desire to avoid treatment side 

effects or have the cancer removed, religious beliefs, and differences in the recommendations or 

preferences of physicians [24]. 
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1.3 Prostate Cancer Treatment 

 

Prostate specific antigen (PSA) is a serum protease that is expressed by epithelial prostate 

cells. It can be detected in the serum at low levels in men of all ages, but increases when the 

prostate enlarges.  PSA is used as a biomarker for prostate cancer because as the prostate cancer 

cells grow, the normal organized structure of the prostate becomes disrupted which results in a 

release of PSA into the bloodstream [25].  Serum testing for prostate specific antigen (PSA) and 

a digital rectal examination (DRE) are the two initial procedures used to detect prostate cancer 

[26].  Elevated PSA levels and/or an abnormal DRE suggest the presence of prostate cancer, 

indicating the need for needle biopsies.   

 If diagnosed with localized, prostate–confined disease, a radical prostatectomy can be 

curative. However, for those patients whose cancer has penetrated the prostate capsule, disease 

recurrence is likely [27]. Regrowth of the tumor following initial treatment is usually androgen-

dependent, relying on testosterone for survival and growth [28]. It is because of this dependency 

that androgen-ablation therapy, which induces apoptosis of androgen-dependent carcinoma cells, 

is the most common treatment for advanced prostate cancer. Unfortunately, through a 

combination of mechanisms that remain unclear, the vast majority of men will inevitably relapse 

with hormone-refractory prostate cancer (HRPC) [28]. HRPC is the lethal form of prostate 

cancer that progresses and metastasizes to distant organs. Chemotherapy has had very limited 

success in treating advanced prostate cancer therefore other therapeutic strategies must be 

employed. 

The importance of androgens in the prostate was first identified over 50 years ago by 

Charles Huggins who observed prostate cancer regression upon removal of the testes [29].  Since 
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then, androgen ablation therapy has been the main therapy for advanced disease.  Although 

removal of the testes is a very effective way to deplete androgen production, pharmacologic 

methods are much more preferred for blocking androgen function.  Some of these agents include 

gonadotropin-releasing hormone (GnRH) super-agonists, androgen receptor antagonists, and 5α-

reductase inhibitors.  GnRH agonists downregulate the GnRH receptor in pituitary gonadotropes, 

leading to the suppression of LH release and inhibition of testosterone secretion from the testis 

[28]. Androgen receptor antagonists, also called anti-androgens, bind with high affinity to the 

receptor thus blocking the binding of circulating testosterone or dihydrotestosterone (DHT) [28].  

Finasteride is used to decrease the levels of cellular DHT, the active metabolite of testosterone, 

by blocking the activity of 5α-reductase, the enzyme responsible for the conversion of 

testosterone to DHT [30].   

Radiation is another therapeutic option for prostate cancer patients.  Radiation therapy 

uses high-energy X-rays or gamma rays to kill the cancer cells.  There are two ways in which the 

high-energy rays can be delivered.  In external beam radiation therapy, a machine delivers the 

rays and the radiation is given in brief sessions.  The procedure itself is painless and lasts for just 

a few minutes.  The disadvantage to this treatment is that there is virtually no way to target only 

the cancer cells and as a result, both cancerous and some normal cells are exposed to the 

radiation.  The other type of radiation used to treat prostate cancer is brachytherapy.  In 

brachytherapy, the radiation comes from tiny, radioactive “seeds” inserted directly into the 

prostate.  Brachytherapy allows the physician to use a higher dose of radiation than is possible 

with external beam radiation.  Once the seeds are implanted they can continually give off rays 

for up to a year.  Disadvantages of this treatment are the side effects that include impotence, 

urinary incontinence, and bowel problems.   
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Although these therapies are initially very effective, their efficacy decreases as the cancer 

progresses and metastasizes. The dynamics of the transition from androgen dependence to a state 

of independence are not fully understood, nor have all of the key molecular players been 

identified. Therefore, there is continued urgency in the scientific community to identify and 

study novel molecular targets involved in the complicated process leading to advanced disease. 

 

 

1.4 Translocator Protein 

 

1.4.1 Translocator Protein Function  

 

Translocator protein (TSPO), previously known as the peripheral benzodiazepine 

receptor, was identified in 1977 [31]. The TSPO gene (Bzrp) is located on chromosome 22 

(22q13.31) and is highly conserved throughout evolution [32].  The TSPO promoter in both rat 

and humans does not contain a TATA box, but does contain multiple Sp1 boxes [33], 

characteristic of a housekeeping gene.  Knockout studies demonstrated that functional 

inactivation of the Bzrp gene induces an early embryonic-lethal phenotype [34].  TSPO is 

primarily localized to the mitochondria where it is best recognized for regulation of cholesterol 

transport from the outer to the inner mitochondrial membrane, the rate-determining step in 

steroidogenesis [35].  Although TSPO is widely expressed throughout the body, it is particularly 

enriched in steroidogenic tissues, such as gonads, adrenal gland, placenta and brain [36].   

TSPO associates with peripheral benzodiazepine receptor (PBR)-associated protein 1, 

which interacts with the C-terminal end of TSPO and induces its dimerization [37], and protein 
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kinase A regulatory subunit RIα-associated protein, believed to recruit PKA to organelles rich in 

TSPO [38].  The 18-kDa TSPO also forms a multimeric complex with the adenine nucleotide 

translocase (ANT) and the voltage-dependent anion channel (VDAC), which is crucial for 

benzodiazepine binding [39]. Together these TSPO-associated proteins indicate two clearly 

identified functions of the TSPO: regulation of steroidogenesis and apoptosis [40]. 

 

1.4.2 Translocator Protein Pharmacologic Profile 

 

As its earlier name suggests, the peripheral benzodiazepine receptor, now TSPO, binds 

benzodiazepines such as diazepam, 4-chlorodiazepam, lorazepam, or Ro5-4864 with relatively 

high (uM) affinity [40].  Benzodiazepine receptors are found in both the central and peripheral 

nervous system, but unlike its central-type counterpart, TSPO has no anxiolytic or anticonvulsant 

effects and has distinct mechanistic and pharmacologic properties [41, 42].  There are also a 

wide variety of endogenous ligands that have been identified for TSPO including diazepam 

binding inhibitor (DBI; also called endozepine), porphyrins (protoporphyrins IX, heme) and 

cholesterol which bind with very high (nM) affinity.  Binding studies have shown that lorazepam 

can inhibit binding of the high affinity TSPO ligand Ro5-4864 [43].  Although lorazepam is 

classically considered a ligand of the central-benzodiazepine receptor, the study by Park et al. 

suggests that it can also bind TSPO. The effects of lorazepam in peripheral tissue, such as the 

prostate, have yet to be explored. 
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1.4.3 Translocator Protein Structure and Di-Tyrosine Bonds 

 

Structurally, TSPO is 18-kDa in size and consists of 5 

transmembrane domains [44].  TSPO is primarily localized 

to the mitochondria where its 5 α-helices are embedded in 

the outer membrane [45].  TSPO antibodies have identified 

immunoreactive proteins of higher molecular weight than the 

expected 18-kDa in cell and tissue extracts.  A previous study reported that these higher 

molecular weight bands are the result of di-tyrosine bonds that covalently link TSPO monomers 

through reactions mediated by reactive oxygen species [46]. This linkage can occur between two 

tyrosine residues in the same molecule (intramolecular), or between two molecules 

(intermolecular); the latter leads to a higher molecular weight product [13]. Figure 3 shows di-

tyrosine bond formed between two tyrosine residues.  

 

1.4.4 Translocator Protein and Apoptosis 

 

The mitochondrial permeability transition pore (MPTP) is a multiprotein complex that 

forms at the contact site between the inner and outer mitochondrial membranes and plays a 

critical role in apoptosis.  The proteins VDAC, ANT, and TSPO are believed to make up this 

complex along with hexokinase, creatine kinase, and cyclophilin D; however, the exact protein 

composition of the MPTP continues to be debated [47].  Under normal physiological conditions 

the pore is dynamic, opening and closing to transport metabolites across the mitochondrial 

membrane in order to maintain transmembrane potential.  The MPTP during apoptosis, however, 

is continuously open, releasing apoptotic factors into the cytosol, such as cytochrome c, Smac, 

Figure 3. Di-tyrosine bond. 



 11 

and apoptosis inducing factor [47].  The anti-apoptotic protein Bcl-2 interacts directly with 

VDAC and ANT and functions to suppress permeabilization of the mitochondrial membrane via 

the MPTP [48].  Without the inhibition of permeabilization by Bcl-2, the MPTP opens, liberating 

a flood of caspase and nuclease activators into the cytosol [47].  In this cascade of events, 

opening of the MPTP appears to be an irreversible step that commits the cell to undergo death, 

suggesting that opening of the MPTP is a point-of-no-return for apoptotic induction [49]. 

The opening of the MPTP, a critical step in the apoptotic process, leads to the disruption 

of the mitochondrial membrane integrity.  The TSPO antagonist 1-(2-chlorophenyl)-N-methyl-N-

(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195) associates with the MPTP complex via 

its high-affinity binding to TSPO and promotes opening of the pore [50].  In cancer, failure of 

apoptotic induction leads to cellular resistance to anticancer therapies.  Studies demonstrated that 

PK11195 enhances the sensitivity of cancer cells to tumor necrosis factor-α, CD95, and 

chemotherapeutic agents such as paclitaxel, docetaxel, and doxorubicin [51, 52].  Furthermore, 

numerous studies show that specific TSPO ligands can directly induce apoptosis in human 

cancer cells, including cells derived from hepatocellular, colorectal, and esophageal cancer [52-

54].  Overexpression of the antiapoptotic regulator Bcl-2 confers cellular protection against 

chemotherapeutic agents, and this cytoprotective effect is largely reversed by PK11195 [50].  

More recently, Li et al. reported that PK11195 disrupts mitochondrial integrity, directly resulting 

in release of cytochrome c into the cytosol [55].  Together these data supports that TSPO is 

intricately involved in the apoptotic process and that antagonism of TSPO may directly induce 

apoptosis in cancer cells.  
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1.4.5 Translocator Protein and Cholesterol 

 

Aberrant cell proliferation and increased invasive and metastatic behavior are hallmarks 

of advanced prostate cancer.  Previous studies propose a role for cholesterol in the mechanisms 

underlying cell proliferation and prostate cancer progression.  Prostate cancer cells process 

critical cell survival cues via specialized membrane microdomains that are dependent on 

cholesterol for signal transduction [56].  TSPO is a high-affinity cholesterol-binding protein with 

its primary known role to transport cholesterol across the mitochondrial membrane [34, 35].  

Although the primary function of TSPO is the regulation of steroidogenesis in the mitochondria, 

TSPO expression in nonsteroidogenic tissues as well as in other cellular compartments, including 

the nucleus, suggests that there may be alternative roles for TSPO.  In 1999, Hardwick et al. 

observed that TSPO expression, nuclear localization, and TSPO-mediated cholesterol transport 

into the nucleus are involved in human breast cancer cell proliferation and aggressiveness [57].  

Similarly, studies have shown that nuclear TSPO is associated with proliferative capacity of 

Erlich tumor cells [58].  Although the exact role of nuclear membrane cholesterol remains 

unknown, some propose it may be involved in the regulation of cell cycle related proteins, such 

as cyclin dependent kinases [59].  Together these studies suggest that nuclear TSPO can regulate 

the movement of cholesterol into the nuclear membrane and that this regulation is related to its 

modulation of cell proliferation. 
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1.4.6 Translocator Protein and Cancer 

 

Numerous studies show increased TSPO expression in various malignancies, including 

those of the breast, prostate, colon, ovary, and endometrium [60-63].  A relationship between cell 

proliferation and TSPO expression has been observed in breast cancer cell lines [64].  Similarly, 

it has been reported that TSPO antagonists induce inhibition of cell proliferation in numerous in 

vitro models [60, 65-67].  In addition, it has been shown that TSPO overexpression correlates 

with the progression of breast, colorectal, and prostate cancers [68].   

While prostate cancer was one of the first malignancies recognized to have elevated 

TSPO levels, few studies have examined the role of TSPO in neoplastic transformation of the 

prostate.  Initial reports identified elevated expression of TSPO in R-3327 Dunning AT-1 

prostate tumors [61].  Follow-up studies demonstrated that orchiectomized Dunning G rats had 

increased TSPO density in prostate tumors; altered expression was reversed following 

testosterone replacement [69], suggesting that TSPO expression may be regulated by androgens.  

More recently, immunohistochemical analysis has demonstrated significantly increased TSPO 

expression in human prostate cancer tissues when compared with benign prostatic hypertrophy 

and normal tissues [68].  However, despite these findings, few studies have investigated the role 

of TSPO in prostate cancer further.   
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1.5 PURPOSE 

 

The rationale behind this research is 1) TSPO is elevated in human prostate cancer 2) 

TSPO antagonism inhibits prostate cancer cell growth and survival 3) TSPO multimers are 

believed to play a functional role in disease yet no one has investigated this further.  

It is hypothesized that TSPO is a key factor involved in the progression to advanced 

prostate cancer through its actions as a regulator of apoptosis and cell proliferation. Our goal is 

to fully elucidate the changes that occur in TSPO in hormone refractory prostate cancer and 

determine how these changes impact disease development.  The studies presented here are 

imperative in order to determine how changes in TSPO expression and form alter cellular 

function and examine the potential application of the TSPO antagonist, lorazepam, in cancer 

therapeutics. 

 

 

1.6 MATERIALS AND METHODS 

 

 

1.6.1 Cell Lines and Culture Conditions 

 

Human prostate cancer cell lines PPC-1, LNCaP and DU145 (obtained from ATCC) were 

maintained in RPMI-1640 (Invitrogen; Grand Island, NY) supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin (P/S). LN05, LNCaP cells that have been deprived 

of androgens since 2005, was maintained in RPMI without phenol red with 10% charcoal 
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stripped FBS and 1% P/S.  The human prostate cancer cell line LAPC4 (obtained from Dr. Rob 

Reiter, UCLA) was maintained in IMDM (Invitrogen) supplemented with 10% FBS and 1% P/S. 

LA98, the LAPC4 cell line deprived of androgens since 1998, was maintained in IMDM without 

phenol red (Invitrogen) supplemented with 10% charcoal stripped FBS and 1% P/S. Human 

embryonic kidney cells, HEK293 (obtained from ATCC), and human cervical cancer cells, HeLa 

(obtained from ATCC), were maintained in DMEM supplemented with 10% FBS and 1% P/S.   

 

1.6.2 Tissue Microarrays and Immunocytochemistry 

 

For these studies we used prostate tissue arrays (progression array, metastasis array and PSA 

failure array) from the in-house Western Pennsylvania Tumor Bank to directly compare TSPO 

staining intensity in the tissue specimens. Samples from benign kidney, breast, colon, testis and 

adrenal are included as positive and negative tissue controls for TSPO and are sampled in 

duplicate with sections at diagonally opposite ends of the block to eliminate positional staining 

artifacts.   

There were 16 cases of normal donor prostates, 24 of non-neoplastic prostatic tissues 

adjacent to malignant glands (NAT), 24 of benign prostatic hyperplasia (BPH), 22 of prostatic 

intraepithelial neoplasia (PIN), 86 of prostatic adenocarcinoma (PCa), and 175 of metastatic 

prostate carcinoma (Met) from 35 patients with 25 separate sites of metastasis.  Samples of 

benign testis and adrenal were also included on each TMA as positive controls for TSPO 

expression (n=2 each).   

Immunohistochemical stains were performed on five-micron sections of TMA blocks.  

The sections of all the groups were deparaffinized and rehydrated through a graded series of 
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ethanol incubations.  Heat induced epitope retrieval was performed using decloaker, followed by 

rinsing in TBS buffer for 5 minutes.  Slides were then loaded on Dako Autostainer.  The primary 

anti-TSPO antibody (working dilution 1:350) was a polyclonal rabbit antibody (Trevigen; 

Gaithersburg, MD).  The immunolabeling procedures were carried out according to 

manufacturers’ instruction using Dako Envision Labeled Polymer-HRP anti rabbit (Dako; 

Glostrup, Denmark).  Slides were then counterstained in hematoxylin, step dehydrated and 

coverslipped. A prostate optimization MRA block was used as positive control for each 

antibody. Both the extent and intensity of immunopositivity were considered when scoring the 

expression of TSPO. Briefly, the intensity of positivity was scored from 0 to 3 as follows: 0 as 

non-stained, 1 as weak, 2 as moderate, and 3 as strong as positive control.  The extent of 

positively stained cells was estimated using the same 0-3 scale. Semiquantitative analysis of 

TSPO expression in the human tissues were carried out in a blinded fashion by a board certified 

GU pathologist Dr. Anil Parwani using a 4-tier scoring method for intensity (0,1,2,3) added to 

percent expression in epithelia (intensity  + (% x 3)). The final composite score was determined 

after adding the intensity and extent of positivity in the respective lesions.  

 

1.6.3 Immunoblotting 

 

TSPO 

Human prostate cancer cells (PPC-1, DU145, LAPC4, LA98, LNCaP, LN05), HEK293, and 

HeLa cells were lysed in lysis buffer (20mM Tris-HCl, 135mM NaCl, 10% glycerol, and 1% 

Triton-X).  Human hepatocyte lysate was obtained from Dr. Steven Strom, University of 

Pittsburgh and Jurkat cell lysate was obtained from Upstate (now Millipore; Billerica, MA). 
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Protein concentration was determined and an equal amount of protein (10 µg) was separated on 

10% SDS–PAGE under reducing conditions. Proteins were electrotransferred onto PVDF 

membranes (Millipore; Billerica, MA) and blocked in 4% milk in PBST (PBS supplemented 

with 0.2% Tween20) for 1 hour at room temperature. Immunodetection of TSPO was carried out 

using the goat anti-TSPO polyclonal antibody (Novus Biologicals; Littleton, CO) at a dilution of 

1:1000 at 4°C overnight.  The membrane was washed in PBST and incubated with a donkey anti-

goat secondary HRP-linked antibody (Santa Cruz Biotechnology; Santa Cruz, CA) at a dilution 

of 1:2000 for 1 hour at room temperature. Immunoreactivity was visualized using ECL 

(Amersham Life Sciences; Piscataway, NJ). Membranes were blotted for β-actin (Sigma Aldrich; 

St Louis, MO) at a dilution of 1:4000 as a control for protein loading. 

 

Akt and p27 

PPC-1 cells were plated at a density of 3 x 105 cells/well in 6-well plates.  Cells adhered 

overnight and were then treated with TSPO antagonists PK11195 or lorazepam at 50µM. Protein 

was collected at the following time points: 0, 15m, 30m, 1hr, 2hr, and 4hr. Protein concentration 

was determined and an equal amount of protein (20 µg) was separated on 10% SDS–PAGE as 

described above. Immunodetection of Akt was carried out using the rabbit anti-pAKT and rabbit 

anti-AKT polyclonal antibodies (Cell Signaling; Davers, MA) at a dilution of 1:1000 at 4°C 

overnight.  The membranes were washed in PBST and incubated with an anti-rabbit secondary 

HRP-linked antibody (Santa Cruz Biotechnology; Santa Cruz, CA) at a dilution of 1:2000 for 1 

hour at room temperature. Immunoreactivity was visualized using ECL (Amersham Life 

Sciences). Membranes were blotted for β-actin (Sigma Aldrich) at a dilution of 1:4000 as a 

control for protein loading. 
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1.6.4 MTT Cell Viability Assay 

 

PPC-1 human prostate cancer cells were plated at 5 x 103 cells/well in 96-well plates (Falcon-BD 

Biosciences; San Jose, CA) and adhered overnight at 37°C.  The next day cells were treated with 

benzodiazepines lorazepam, estazolam, or temazepam  (Sigma-Aldrich; St Louis, MO) or TSPO 

ligands PK11195 or Ro5-4864 (Sigma-Aldrich) at varying concentrations (0.1µM-100µM) or 

vehicle (EtOH or DMSO) for 48 hours at 37°C.  The cells were then incubated for 4 hours with 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) (Chemicon; Billerica, 

MA) according to the manufacturer’s protocol. The optical density was measured at a wavelength 

of 570 nm using the SpectraMax M2e absorption spectrophotometer (Molecular Devices; 

Sunnyvale, CA).  This was repeated in three independent experiments. 

 

1.6.5 Cell Proliferation Assay 

 

PPC-1 and LN05 cells were plated at a density of 5 x 104 cells/well in 6-well plates.  Cells 

adhered overnight and were then treated with TSPO antagonists PK11195 or lorazepam at 

10µM, 50µM or 100µM or vehicle (EtOH or DMSO, respectively) for 72 hours.  Cells were 

trypsinized and cell proliferation was measured by direct cell counting using a Coulter Counter 

(Beckman-Coulter; Fullerton, CA). This was repeated in three independent experiments. 
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1.6.6 Cell Death ELISA 

 

LNCaP, LN05, and PPC-1 cells were plated at a density of 5 x 104 cells/well in 6-well plates.  

Cells adhered overnight and were then treated with TSPO antagonists PK11195 or lorazepam 

(PPC-1) at 10µM, 50µM or 100µM or vehicle (EtOH or DMSO, respectively) for 18 hours.  A 

spectrophotometric apoptosis ELISA was used to quantify histone-associated DNA fragments 

present in the cell lysates according to manufacturer’s instructions (Roche Diagnostics; 

Indianapolis, IN).  Briefly, the standard solution and samples were added to the wells of a 96-

well plate coated with a monoclonal antibody. After incubation, the plate was washed, and an 

enzyme-labeled antibody was added. After further incubation, the plate was washed again and 

treated with the substrate and the optical density was determined at 405 nm using the 

SpectraMax M2e absorption spectrophotometer (Molecular Devices). This was repeated in three 

independent experiments. 

 

1.6.7 Flow Cytometry for Annexin V Analysis 

 

Human LNCaP and PPC-1 prostate cancer cells were plated in 100 mm plates and once cells 

reached approximately 70% confluence, cells were treated with 50µM or 100µM PK11195 

TSPO antagonist or vehicle (EtOH) for 18 hours.  For flow cytometry using the Annexin V 

assay, cells were collected and double-stained with fluorescein isothiocyanate-conjugated 

Annexin V (PharMingen; San Diego, CA) and propidium iodide (PI).  Cells were counted and 

Annexin V was added according to the manufacturer’s recommendations to 1 x 105 cells for each 

condition (in 100 µl of Annexin V binding buffer) in duplicate with PI used at a final 
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concentration of 5 µg/ml.  Annexin V positive cells were considered apoptotic and their 

percentage of the total number of cells was calculated.  Cells taking up vital dye PI were 

considered dead.  Samples of 10,000 cells were analyzed by FACScan flow cytometer with 

LYSIS II software package (Becton Dickinson). 

 

1.6.8 Combination Therapy Studies 

 

PPC-1 and LN05 cells were plated at 3 x 105 cells/well in 6-well plates. Cells adhered overnight 

and were then treated with docetaxel (1nM) or docetaxel plus varying concentrations of 

PK11195 or Lorazepam (1nM-100µM) for 48 hours.  Cells were trypsinized and the number of 

cells was measured by direct cell counting using a Coulter Counter (Beckman-Coulter). This was 

repeated in three independent experiments. 

 

1.6.9 TSPO Antagonism in vivo 

 

PPC-1 cells were grown to 80% confluence in growth media. Cells were dissociated with trypsin, 

washed twice in Hank's balanced salt solution (HBSS) and 20 male athymic nu/nu mice (Charles 

River Laboratories; Wilmington, MA) received subcutaneous flank injections of 1 x 106 cells per 

100 µl of HBSS. Mice were weighed and tumors were measured with calipers twice a week and 

tumor volumes were calculated (tumor volume = length x width x height x 0.5236). When the 

average tumor size reached approximately 100 mm3 the mice were randomized into 2 groups (10 

mice per arm) and given either lorazepam or vehicle (DMSO). Treatments were administered 

intraperitoneally at 40mg/kg lorazepam or vehicle (DMSO) 7 days a week for ~35 days. Once a 
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mouse’s tumor burden reached 2 cm the mouse was sacrificed and the tumor was removed, 

weighed, fixed in 4% paraformaldehyde, and embedded in paraffin for analysis.  

 

1.6.10 Immunohistochemistry 

 

Five-micron sections of paraffin-embedded tumors were quenched in 3% hydrogen peroxide for 

15 minutes and stained following citrate-steam antigen retrieval with TEC-3 Ki-67 (M7249; 

Dako, Caripinteria, CA) or PECAM (Santa Cruz Biotechnology) primary antibodies. A 

biotinylated secondary antibody was used, followed by streptavidin-conjugated horseradish 

peroxidase and 3,3′-diaminobenzidine chromogen (K0690; Dako).  For labeling apoptotic nuclei, 

tissues were deparaffinized and treated with 0.3% H2O2 for 30 minutes to eliminate endogenous 

peroxidases. The DNA nick labeling reaction was carried out using 50U/ml Klenow (Roche 

Diagnostics), 2mM dNTP (Promega: Madison, WI) with 0.5nM biotin-16-dUTP (Roche 

Diagnostics) in buffer A (0.05M Tris, pH 7.5; 5mM MgCl2; 0.058mM MESNA; and 0.05% 

bovine serum albumin) for 60 min at 37°C. The sections were then rinsed in PBS and incubated 

with 50mg/ml Peroxidase-Z-Avidin (Zymed Laboratories; San Francisco, CA) in PBS with 0.5% 

BSA for 30 min at 37°C. After rinsing, the labeling was visualized using a diaminobenzidine 

solution (90mg DAB (Sigma) in 150ml PBS, 600ul NiCl, + 60ul H2O2 30%).  As a positive 

control, adjacent tissue sections were treated with DNaseI (0.1 mg/ml). All of the tissues were 

scored in a blinded fashion by 2 independent observers.  
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1.6.11 Tumor Growth Modeling 

 

A nonlinear mixed effects approach to examine tumor growth longitudinally was implemented to 

describe the growth characteristics of the PPC-1 cells under vehicle and lorazepam treated arms.  

This was done using the NONMEM V 1.1 (Icon development solutions, Ellicott City MD USA).  

Specifically, the nonlinear mixed effects approach allowed the data to be probed with respect to 

both the shape of the growth curves, with exponential, gompertz and logistic models tested and 

compared using the Akaike Information Criterion (AIC). The mean PPC-1 cell volume was used 

for the calculations (3.43 ± 0.03 µm3). The Gompertz Model provided the best fit: 

 

 

1.6.12 Stable Transfections 

 

TSPO overexpression 

A vector containing TSPO cDNA (pCMV6-TSPO) was purchased from Origene (Rockville, 

MD) and the empty vector was used as a negative control for all experiments. HEK293 cells 

were transfected using Lipofectamine (Invitrogen; Carlsbad, CA), stable clones selected by 

neomycin resistance and TSPO expression levels were analyzed by immunoblot analysis as 

described above.  The HEK293 cells overexpressing TSPO will be referred to as HEK293 TSPO. 

 

TSPO knockdown 

Four shRNA directed against TSPO were purchased from SABiosciences (Frederick, MD) and 

screened for TSPO knockdown. The TSPO shRNA (GAGCAGTGTCCTGTGCTTTCT) 
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demonstrated the most efficient knockdown and therefore used in the subsequent experiments.  A 

nonsense shRNA construct was used as a negative control for all experiments. PPC-1 cells were 

transfected using Lipofectamine (Invitrogen; Carlsbad, CA), stable clones selected by neomycin 

resistance and TSPO expression levels were analyzed by immunoblot analysis as described 

above.  PPC-1 TSPO knockdown cells will be referred to as PPC-1 shTSPO and control cells 

PPC-1 NC. 

 

1.6.13 Susceptibility to Lorazepam and Cell Proliferation 

 

TSPO Overexpression 

HEK293 and HEK293 TSPO cells were plated at a density of 3 x 105 cells/well in 6-well plates.  

Cells adhered overnight and were then treated with 50µM lorazepam for 48 hours. Following 

treatment, cells were trypsinized and counted using a Coulter Counter.  This was repeated in 

three independent experiments.  

 

HEK293 and HEK293 TSPO cells were plated at a density of 5 x 104 cells/well in 6-well plates 

and adhered overnight.  Cell counts were done each day for 3 days using a Coulter Counter.  This 

was repeated in three independent experiments.  

 

TSPO Knockdown 

PPC-1 NC and PPC-1 shTSPO Y1 and Y2 cells were plated at a density of 3 x 105 cells/well in 

6-well plates.  Cells adhered overnight and were then treated with 50µM lorazepam for 48 hours. 
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Following treatment, cells were trypsinized and counted using a Coulter Counter. This was 

repeated in three independent experiments.  

 

PPC-1 NC and PPC-1 shTSPO Y1 and Y2 cells were plated at 5 x 103 cells/well in triplicate in a 

24-well dish in regular growth medium and adhere overnight.  Cells were washed once with PBS 

and serum free medium was added and the cells incubated for 24 hours in order to arrest the cell 

cycle.  The following day 1µCi/ml 14C-Thymidine (Amersham 50Ci/ml) was added in regular 

growth medium and incubated for 16 hours.  Cells were washed twice in ice-cold PBS then 

incubated with 10% trichloro acetic acid for 5 mins on ice.  Cells were solubilized by adding 

500uL 1N NaOH.  Radioactivity was quantified using Wallac 1470 Gamma Counter (Perkin 

Elmer Life Sciences; Turku, Finland). This was repeated in three independent experiments.  

 

1.6.15 Colony Formation Assay 

 

PPC-1 NC and PPC-1 shTSPO Y1 and Y2 cells were plated at a density of 2 x 103 cells/well in 

duplicate in 100mm dishes.  Cells adhered overnight and were then treated with 50µM or 100µM 

lorazepam for 72 hours.  Regular growth medium was replaced and the cells grew at 37°C for 14 

days.  Cells were stained with 0.01% crystal violet in 20% MeOH and individual colonies were 

blindly counted by 2 different observers. This was repeated in three independent experiments.  
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1.6.16 Wound Healing Assay 

 

PPC-1 NC and PPC-1 shTSPO Y1 and Y2 cells were plated in triplicate in regular growth 

medium and grown to confluence in a 24-well dish.  Scratches were made using a 200µl pipette 

tip and cells were washed twice in PBS to remove detached cells.  Three pictures of each well 

were taken at 0 and 24 hour time points. This was repeated in three independent experiments.  

 

1.6.17 Soft Agar Colony Formation Assay 

 

To make the bottom layer of agar, 1ml of regular growth medium was added to 1 ml 1.2% 

BactoAgar for each well. PPC-1 NC and PPC-1 shTSPO Y1 and Y2 cells were plated in 

triplicate at 1 x 104 cells/well in 6-well plates in 1.5ml regular growth medium added to 0.5ml 

1.2% BactoAgar and incubated at 37°C for 14 days.  Individual colonies were counted in 4 

different fields at a magnification of 4x using a light microscope.  This was repeated in 3 

independent experiments. 

 

1.6.18 Matrigel Invasion Assay 

 

BD BioCoat™ Matrigel™ Invasion Chambers and Control Cell Culture Inserts (BD Biosciences; 

San Jose, CA) were purchased and rehydrated in 500ul serum free medium (RPMI) for 2 hours at 

37°C.  PPC-1 NC and PPC-1 shTSPO Y1 and Y2 cells were trypsinized and reconstituted at 2 x 

104 cells/ml in 0.5% FBS containing media. After rehydration, media was aspirated from the 

wells and inserts and 500µl of 10% FBS RPMI was added to the wells and 500ul of cells were 
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added to the insert (for a total number of cells plated of 1 x 104) and incubated at 37°C for 20 

hours.  The next day, media was removed from the inserts and the matrigel surface was 

“scrubbed” with a moist Q-tip to remove any non-invading cells.  Each insert was placed into 

500ul MeOH + 0.1% crystal violet for 5 mins to fix and stain the cells.  Inserts were then washed 

in H20 four times and dried at room temperature for 2 hours.  The number of cells that migrated 

through the control inserts and those that invaded through the matrigel were counted at a 

magnification of 10x using a light microscope.   

 

1.6.19 Mouse and Human Tissue 

 

Mouse tissues were obtained from the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) 

model of prostate cancer. This model uses the rat probasin promoter to directly express SV40 

early genes to prostate epithelium. Male TRAMP mice exhibit consistent prostate-specific 

patterns of expression and develop prostatic intraepithelial neoplasia that becomes invasive and 

metastasizes primarily to the lymph nodes and lungs.  Prostate, lymph nodes, and lung tissue 

were examined for these studies.  Human tissue was obtained from the Health Sciences Tissue 

Bank at the University of Pittsburgh.  Primary prostate cancer and prostate cancer lymph node 

metastases were examined for these studies. 

 

1.6.20 Transient TSPO Knockdown  

 

Short-interfering RNA (siRNA) directed against TSPO (5’CACUCAACUACUGCGUAUG 3’) 

or scrambled siRNA (Sigma) were transiently transfected into PPC-1 human prostate cancer cells 
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using Lipofectamine 2000 (Invitrogen) at approximately 90% confluence.  Cells were collected 

each day for 8 days and protein was extracted for western blot analysis using the Novus antibody 

against TSPO that was previously described in Methods 1.6.3. 

 

1.6.21 Breaking Di-Tyrosine Bonds 

 

PPC-1 human prostate cancer cell lysates were treated with 8M Urea, an agent previously 

described to break di-tyrosine bonds, for 1, 4, 6, 8, or 24 hours.  Cells were collected and protein 

was extracted for western blot analysis using the Novus antibody against TSPO that was 

previously described in Methods 1.6.3. 

 

1.6.22 Forming Di-Tyrosine Bonds 

 

PPC-1 

PPC-1 human prostate cancer cells were collected and lysed.  Lysates (20ug) were treated with 1, 

10, or 100µM hydrogen peroxide (H2O2), a source of reactive oxygen species, for 16 or 24 hours 

at 37°C.  Lysates were run on a 10% SDS-PAGE gel and immunoblot analysis was performed 

using the Novus antibody against TSPO that was previously described in Methods 1.6.3. 

 

MLL 

The rat prostate cancer cell line, MatLyLu (MLL,) was utilized for these studies because it lacks 

the endogenous 18kDa TSPO.  MLL cells were transfected with a vector containing TSPO 
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cDNA (pCMV6-TSPO) (Origene).  These cells will be referred to as MLL TSPO.  Lysates from 

MLL TSPO cells were collected, treated with H2O2, and screened as described above.  

 

1.6.23 Reactive Oxygen Species Scavenger Studies 

 

Reactive oxygen species (ROS) have been implicated in di-tyrosine bond formation in TSPO.  

PPC-1, MLL, and MLL TSPO clones 4 and 5 were treated with varying concentrations of ROS 

scavengers N-acetylcysteine, Vitamin C, Trolox, and Catalase (Sigma) for 8, 24, or 48 hours.  

Cells were collected, lysed, and protein was extracted for western blot analysis using the Novus 

antibody against TSPO that was previously described in Methods 1.6.3. 

 

1.6.24 Targeting a Tyrosine in TSPO for Site-Directed Mutagenesis 

 

In order to determine if tyrosine bond formation was responsible for the higher molecular weight 

bands, mutations to the tyrosines present in the TSPO protein sequence would be necessary.  The 

expertise of structural biologist Dr. Judith Klein-Seetharaman of the University of Pittsburgh was 

utilized to make an educated deduction as to which of the ten tyrosines to target first.  Using a 

process of elimination, it was decided that the tyrosine located at amino acid 34 is the most likely 

candidate based on its cellular availability and is highly conserved in nature among almost all 

species examined.   
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1.6.25 TSPO Construct Generation and Transfection 

 

The vector containing TSPO cDNA (pCMV6-TSPO) (Origene) was sent to GenScript 

(Piscataway, NJ) for site-directed mutagenesis of the tyrosine located at amino acid 34 of TSPO 

to phenylalanine. This construct will be referred to as TSPO SDM Y-F.  The TSPO SDM Y-F 

construct was transfected into PPC-1, HEK293, and MLL cells using Lipofectamine 

(Invitrogen).  TSPO expression was screened 72 hours post-transfection. 

 

1.6.26 Reactive Oxygen Species Inducer and Multimer Formation 

 

HEK293 and MLL cells transiently expressing the TSPO SDM Y-F construct were treated with 

the reactive oxygen species generating enzyme glucose oxidase at 1, 0.5, 0.1 .05. and .01 

units/ml for 6 hours at 37°C.  Cells were collected and protein was extracted for western blot 

analysis using the Novus antibody against TSPO that was previously described in Methods 1.6.3. 

 

 

 

 

 

 



 30 

2.0  TSPO AS A REGULATOR OF CELL PROLIFERATION AND APOPTOSIS IN 

PROSTATE CANCER 

 

2.1 INTRODUCTION 

The predictable pattern of progression in hormone-refractory prostate cancer, coupled 

with its plodding growth rate produces a large window for meaningful intervention, yet no 

therapy exists that reliably cures this form of the disease. As a particularly slow-growing disease, 

prostate cancer does not typically respond well to chemotherapy; thus, new therapeutic strategies 

are critical.   

Translocator Protein (TSPO), previously known as the peripheral benzodiazepine 

receptor, is a transmembrane molecule that is best known for transporting cholesterol across the 

mitochondrial membrane for cell signaling and steroid biosynthesis [35, 45].  TSPO has been 

shown to be overexpressed in numerous malignancies, including those of the breast, prostate, 

colon, ovary, and endometrium [60, 62, 70-72].  Furthermore, a correlation has been drawn 

between TSPO overexpression and the progression of breast, colorectal, and prostate cancers 

[68].  Functionally, it is suggested that TSPO takes part in the regulation of apoptosis through its 

interactions with the mitochondrial permeability transition pore [50, 73]. Studies have shown that 
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treatment of cancer cells with the TSPO antagonist PK11195 results in cell death [52-54, 65]. 

TSPO also plays a role in cell proliferation, as a correlation between TSPO expression and 

cancer cell proliferation has been observed in human astrocytomas [74] and breast cancer [75] 

while TSPO antagonism inhibits cell proliferation [66, 67, 76, 77]. In addition, studies have 

shown that TSPO inhibition results in cell cycle arrest in numerous cancer models. [50, 52, 60, 

66, 78]. 

Initial reports identified elevated expression of TSPO in rat R-3327 Dunning AT-1 

prostate tumors [70]. Follow-up studies demonstrated that orchiectomized Dunning rats with 

Dunning G tumors also had increased TSPO density in prostate tumors; however, treatment with 

testosterone repressed TSPO ligand binding, suggesting a role for testosterone in TSPO 

expression levels in these hormone-sensitive prostatic tumors [79].  TSPO density is decreased in 

the male genital tract but not the heart after castration, indicating TSPO levels are affected in 

organs regulated by the trophic influence of testosterone [80].  While downregulation of TSPO 

during androgen depletion occurs in normal male rat urogenital tissues, the receptor is 

upregulated in genitourinary cancer cells with androgen withdrawal.  Immunohistochemical 

studies found significantly increased TSPO expression in human prostate cancer tissues when 

compared with benign prostatic hyperplasia and normal tissues [68]. However, despite these 

promising findings, few studies have investigated the role of TSPO in prostate cancer further. 

In this study, the goals were to 1) verify the expression profile of TSPO in human 

prostate cancer 2) determine the functional effects of modulating TSPO using pharmacologic 

agents targeting TSPO and 3) investigate the therapeutic potential of lorazepam for advanced 

prostate cancer.  
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2.2 RESULTS 

 

2.2.1 TSPO expression is increased in human prostate cancer.   

 

To determine relative expression levels of TSPO in human tissue, we performed 

immunohistochemical analysis of prostate cancer tissue microarrays [81]. As shown in Figure 

4A & B-G, we observe significantly increased expression of TSPO in prostatic intraepithelial 

neoplasia (average score: 3.0/6), primary prostate cancer (4.1/6), and prostate cancer metastases 

(4.8/6) compared to normal donor (2.0/6), normal tissue adjacent to tumor (2.1/6), and benign 

prostatic hyperplasia (1.8/6). Furthermore, TSPO expression increases with progression, as 

prostate cancer metastases have the highest expression levels. Testes and adrenals are 

steroidogenic tissues documented as having relatively high TSPO expression and were therefore 

used as positive controls.    

 Increased expression of TSPO is also observed in vitro with elevated expression in prostate 

cancer cell lines PPC-1, DU145, LAPC4, LA98, LNCaP, and LN05 compared to the human 

embryonic kidney cell line (HEK293), T lymphocytes (Jurkat), a tumorigenic cervical cancer cell 

line (HeLa), and human hepatocytes (Hep) (Figure 5).  It is important to note that the 36kDa 

band observed is not unique to these studies, as higher molecular weight bands have previously 

been reported in western blots using antibodies against TSPO [82, 83]. 
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Figure 4. TSPO expression is increased in human prostate cancer tissues.  

(A) relative expression of TSPO by immunohistochemistry (IHC) in normal donor prostate (donor), 

normal prostate tissue adjacent to tumor (NAT), benign prostatic hyperplasia (BPH), prostatic 

intraepithelial neoplasia (PIN), primary prostate cancer (PCA), and prostate cancer metastases (MET) by 

scoring of TMA cores. (B-G) Representative results of TSPO staining in normal donor prostate (B) NAT 

(C), BPH (D), PIN (E), PCa (F), and PCa metastasis (G). Arrow indicates PIN and primary prostate 

cancer glands. * indicates statistical significance p<0.05 

 

 
Figure 5. TSPO expression is increased in human prostate cancer cell lines.  

TSPO expression in human prostate cancer cell lines PPC-1, DU145, LAPC4, LA98, and LNCaP, LN05 

compared to human embryonic kidney cells (HEK293), human T lymphocytes (Jurkat), human cervical 

cancer cells (HeLa), and human liver hepatocytes (Hep).  

 

Gleason grading is a way to score prostate cancer tissue based on the architecture of the 

cancerous prostate glands.  The Gleason grading scale ranges from very well differentiated cells 

(grade 1) to very poorly differentiated (grade 5).  Two different Gleason grades are assigned to 

the tissue, representing the primary tissue structure and the secondary tissue structure, for a 
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Gleason score ranging from a possible 2 (1+1) up to 10 (5+5).  Analyses of prostate tumor 

Gleason sum and stage were carried out to identify whether TSPO is altered with disease 

progression. TSPO levels were high in all tumor specimens compared to normal adjacent glands 

and TSPO expression increased with increasing grade and stage in the TMA specimens (Table 

1). TSPO levels in adenocarcinoma were significantly higher than PIN or NAT when matched 

for stage except in stage II specimens in which PIN regions demonstrated TSPO levels 

equivalent to regions of NAT.  There was also a significant change in TSPO levels with Gleason 

sum. High TSPO levels are evident in Gleason ≤6 (4.02 ±0.93) samples compared to the adjacent 

normal glands (NAT; 2.44 ±0.63) and increased with Gleason sums 7 (4.16 ±0.95), Gleason 8 

(4.48 ±0.90) and Gleason 9 (4.58 ±1.11).  

 PSA failure is defined as a rise of PSA in the serum following treatment with surgery or 

radiation. Assessment of TSPO expression in the PSA failure array shows a significant 

difference in the NAT glands of patients with PSA failure compared with the NAT of patients 

who remain disease free (Table 1). However there was no difference in the PIN or 

adenocarcinoma expression of TSPO in the primary tumors of patients with PSA failure 

compared to disease free patients. The PSA failure array did not contain specimens from patients 

that have remained disease free, so the samples on the progression array were used for this 

comparison and matching control tissue was used as comparison between TMAs to assure IHC 

scoring remained the same across separate arrays.   
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2.2.2 TSPO antagonism has anti-proliferative and pro-apoptotic effects in vitro.  

 

We began our preliminary functional studies to identify cancer cell sensitivity to TSPO receptor 

blockade by screening a series of potential TSPO antagonists, including benzodiazepines 

temazepam, lorazepam, estazolam, and Ro5-4864, and the isoquinoline carboxamide PK11195.  

To examine the antagonistic effects of these compounds on cell viability, PPC-1 human prostate 

cancer cells were treated with these drugs at varying concentrations (0.1-100µM). Among all of 

the compounds examined, the benzodiazepine lorazepam and PK11195 demonstrated the most 

significant antagonistic properties (Figure 6). Additionally, the effect of these TSPO ligands on 

cell proliferation was examined and a decrease in cell number following treatment with either 

PK11195 or lorazepam was observed (Figure 7). 
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Figure 6. TSPO antagonism decreases cell viability in prostate cancer cells in vitro.   

MTT assay following 48 hour treatment of PPC-1 with PK11195 or Lorazepam. * indicates statistical 

significance p<0.05 

 

Figure 7. TSPO antagonism decreases cell proliferation in prostate cancer cells in vitro.   

Direct cell counting of PPC-1 and LN05 cells treated with varying concentrations of PK11195 or 

Lorazepam or vehicle for 48 hours. * indicates statistical significance p<0.05 
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 In other cancer in vitro models, TSPO antagonists have been shown to reduce cell survival 

through apoptosis. The next experiment was to determine whether the decrease in cell 

proliferation with treatment with PK11195 or lorazepam was actually due to an induction of 

apoptosis.  PPC-1 cells treated with PK11195 or lorazepam demonstrated a dose-dependent 

increase in apoptosis following treatment with PK11195 or lorazepam, while LNCaP and LN97 

cells only showed significant apoptotic induction at the highest concentration of PK11195 

(100µM) (Figure 8A). Using Annexin V staining and flow cytometry, a dose-dependent increase 

in apoptosis in PPC-1 cells treated with PK11195 was also observed (Figure 8B).  

 

A. 

   

  B. 

 

Figure 8. TSPO antagonism increases apoptosis in prostate cancer cells in vitro.  A. Cell death 

ELISA following 18 hour treatment with varying concentrations of PK11195 or Lorazepam or vehicle. B. 

Annexin V based flow cytometry of PPC-1 cells treated with PK11195. * indicates statistical significance 

p<0.05 
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2.2.3 TSPO Antagonism Modulates Survival and Cell Cycle Related Proteins 

 

The next goal was to elucidate the cellular signaling pathway by which TSPO ligands were 

exhibiting their anti-survival and anti-proliferative effects.  In a time dependent manner, 50µM 

PK11195 and lorazepam decreased phosphorylation of Akt (pAkt), a protein that is well 

characterized for its role in cell survival.  Lorazepam showed a quicker response, decreasing 

pAkt levels as early as 15 minutes after treatment (Figure 9).   

 The expression status of the cell cycle inhibitor p27 was also investigated.  Figure 9 

demonstrates an increase in p27 expression 1 hour after treatment with either PK11195 or 

lorazepam.  Interestingly, p27 levels in PK11195 treated cells went back down to baseline at 4 

hours, while p27 levels in lorazepam treated cells remained elevated. 

 

 

Figure 9. Time course decrease of pAkt and induction of p27 expression by TSPO antagonism.  

Immunoblots were reprobed for total Akt (to ensure that treatment with TSPO ligands did not affect total 

Akt levels) or B-actin (to ensure equal loading). Data are representative of three independent experiments.  
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2.2.4 In vitro analysis of combination TSPO antagonism and Taxotere (docetaxel) 

treatment in prostate cancer cells.  

 

Docetaxel is a cytotoxic agent that binds to the B subunit of tubulin, resulting in irreversible 

polymerization of microtubules. Stabilization of microtubules, which comprise the mitotic 

spindles, effectively paralyzes the cell in mitosis, leading to the initiation of the apoptotic 

cascade.  Using direct cell counting, the question of whether PK11195 or lorazepam could 

enhance the cellular response to docetaxel was tested.  Studies have suggested that TSPO 

antagonists may modulate the Akt survival pathway as well as promote opening of the 

mitochondrial permeability transition pore, the critical step in apoptosis induction. Therefore, we 

believe that there may be an enhanced effect when TSPO antagonists are combined with 

Docetaxel. PPC-1 and LN05 cells were treated with 1) vehicle 2) 1nM docetaxel or 3) 1nM 

docetaxel and PK11195 (or lorazepam) at varying concentrations (1nM-100µM) for 48 hours.  

Figure 10 demonstrates a significant combinatorial effect of docetaxel plus PK11195 but not 

docetaxel plus lorazepam (compare to Figure 6). 
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Figure 10. Effect of combination docetaxel + PK11195/lorazepam on prostate cancer cell growth.  

Direct cell counting of cells treated with docetaxel alone or docetaxel + PK11195/lorazepam 

D: docetaxel (10-9) * indicates statistical significance p<0.05 

 

 

2.2.5 TSPO Antagonism has Anti-Proliferative and Pro-Apoptotic Effects In Vivo.  

 

To examine the in vivo efficacy of TSPO inhibition, 20 athymic male mice received 

subcutaneous flank injections of prostate cancer cells. When tumors reached ~100-200 mm3, the 

mice were randomized into two treatment groups (10 mice per arm) such that each mouse 

received a daily dose of either 40 mg/kg lorazepam or vehicle (1% DMSO). Tumor 

measurements were recorded twice a week and mice were euthanized when tumors dimensions 

reached 2 cm. The tumor measurements demonstrate a divergence in tumor growth between 

lorazepam and vehicle treated mice: by week nine, lorazepam treated mice exhibited a 
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significantly smaller average tumor volume (2682 ± 539 mm3) when compared to vehicle treated 

mice (7392 ± 346 mm3) (Figure 11). 

A nonlinear mixed effects approach to examine tumor growth longitudinally was 

implemented to describe the growth characteristics of the PPC-1 cells under vehicle and 

lorazepam treated arms.  The gompertz model resulted in the lowest AIC and objective function 

values by approximately 25 points under the FOCE Interaction estimation method (p<0.001 for 

the objective function with 2df).  Individually, treatment groups were distinguishable with a 

covariate representing lorazepam treatment for the kappa (growth rate), gamma (time of 

maximum growth) and alpha (maximum tumor size) terms (p<0.001) individually.  However, 

once multiple factors were added, the effect of treatment on the alpha term (i.e., the projected 

maximum size asymptote for the tumor) was greatest, and the effect on the other two terms were 

no longer significant.  Specifically, the objective function changed from 1791.3 to 1728.8 with 

the addition of lorazepam treatment as a covariate on the alpha term.  This represents a 

statistically significant change with p<0.0001 for 1 degree of freedom.  In addition, the presence 

of lorazepam resulted in a predicted maximum tumor size approximately ½ as large as that 

predicted in the presence of vehicle (14900 vs 28400um3). 

 

 



 42 

 
Figure 11. TSPO antagonism decreases average prostate cancer tumor volume over time.   

Average tumor volume over time of athymic nude mice bearing PPC-1 xenograft tumors treated daily 

with Lorazepam (40mg/kg) or 1% DMSO. Tumor volume was measured twice weekly as described in the 

Materials and Methods section.  

 

Once the tumor burden reached 2 cm, the mice were sacrificed 2 hours after the last dose 

of vehicle or lorazepam, and tumors were removed and processed for analysis.  Tissue sections 

were stained for TSPO to determine if lorazepam treatment altered TSPO density [84, 85]. 

Lorazepam had an effect on cell proliferation, as there was a significant decrease in expression of 

the proliferation-associated protein Ki67 in mice treated with lorazepam compared to the vehicle 

group (Figure 12). Furthermore, lorazepam treatment did not affect vascularization, as the 

number of vessels per field was not significantly different between the two groups (Figure 12). 

TUNEL analysis reveals that lorazepam has pro-apoptotic actions in vivo, with the lorazepam 

treated group having significantly more apoptotic cells compared to the vehicle group (Figure 

12).  
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Figure 12. TSPO antagonism decreases cell proliferation and increases apoptosis in prostate cancer 

cells in vivo.   

Immunohistochemical staining of lorazepam or vehicle treated PPC-1 xenograft tumors for cell 

proliferation (Ki67), microvascular density (CD31), and apoptosis (TUNEL). Bars graphs represent 

average values of positive signal counted in four random fields (40X magnification) * indicates statistical 

significance p<0.05 

 

 

2.3 CONCLUSIONS 

 

In this series of experiments it was shown that TSPO expression is increased in human prostate 

cancer.  Furthermore, TSPO expression appears to increase with disease progression, as the 

prostate cancer metastases have the highest expression levels.  TSPO is also highly expressed in 
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prostate cancer cell lines, regardless of their androgen-sensitivity.   These data support previous 

reports that TSPO expression is elevated in numerous cancer models, including prostate. 

The in vitro TSPO antagonism studies presented here reveal that TSPO functions 

similarly in prostate cancer as it does in previously reported cancer models. Through 

pharmacologic inhibition, it was shown that TSPO can regulate critical cellular processes 

involved in transformation such as cell proliferation, cell survival, and cell death.  Further studies 

are required to fully elucidate the molecular mechanisms by which these TSPO ligands are 

exhibiting their antagonistic effects.   

The prostate cancer xenograft mouse study using lorazepam showed for the first time the 

anti-cancer properties of a benzodiazepine in vivo.  The effect that lorazepam had on tumor 

growth over time was quite significant, reducing the tumor volume to half of the size of the 

vehicle treated tumors.  Additionally, immunohistochemistry revealed that lorazepam exhibited 

similar anti-proliferative and pro-apoptotic properties in vivo as it did in vitro, evidenced by the 

decrease in the proliferative marker Ki67 and increase in TUNEL staining, indicative of an 

increase in cell death. Together, these studies provide additional insight into the role of TSPO as 

a modulator of apoptosis and proliferation, providing further evidence for its role as a potential 

therapeutic target for prostate cancer.   
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3.0 THE EFFECTS OF MODULATING TSPO EXPRESSION IN PROSTATE CANCER 

 

 

 

 

3.1 INTRODUCTION 

 

 

Numerous studies have suggested a correlation between TSPO overexpression and cancer 

aggressiveness.  For example, TSPO overexpression was found to be a prognostic indicator of 

the aggressive phenotype in breast, colorectal, and prostate cancers [65].  In addition, Rechichi et 

al. showed that increasing TSPO in glioma cells resulted in an increase in motility, 

transmigration, and proliferation [86].  The human TSPO expression analysis previously 

presented here suggests that TSPO levels increase with aggression as prostatic intrapithelia 

neoplasia (PIN) had relatively low expression, primary prostate cancer had an intermediate level 

of expression, and prostate cancer metastases had the highest levels of expression (see Figure 4).  

Collectively these studies suggest that TSPO may play a role in progression of cancer.   The 

studies presented in this chapter investigate the effects of modulating TSPO expression, both 

increasing and decreasing, on cellular phenotypes associated with advanced disease.  
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3.2 RESULTS 

 

 

3.2.1 TSPO overexpression in HEK293 human kidney cells. 

 

Figure 13 shows the drastic increase in TSPO expression (18kDa only) in HEK293 cells 

transfected with full length TSPO.  HEK293 cells overexpressing TSPO will be referred to as 

293-TSPO A/B and the empty vector control 293-C.   

 

A.      B. 

  

Figure 13. TSPO overexpression in HEK293 cells and TSPO antibody specificity. 

A) 293-C: empty vector control, TSPO A/B: HEK293 cells overexpressing TSPO. Immunoblots were 

reprobed for B-Actin to ensure equal loading. B) Peptide competition assay showing specificity of the 

TSPO Novus antibody in two human prostate cancer cell line lysates, PPC-1 and LN05. 

 

 

3.2.2 The effect of TSPO overexpression on susceptibility to lorazepam. 

 

Overexpression of TSPO in HEK293 cells (Figure 13) significantly increased susceptibility of 

the cells to TSPO antagonism (Figure 14). HEK293-TSPO cells and wild-type HEK293 cells 
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were treated with 50µM lorazepam and cell counts analyzed after 48 hrs.  Lorazepam 

significantly reduced cell numbers in 293-TSPO cells but not in the controls (Figure 14).  

 

 

 

Figure 14. TSPO overexpression increases susceptibility to lorazepam in HEK293 cells. 

Direct cell counting of 293 and 293-TSPO cells treated with lorazepam (50µM) for 48 hours. * indicates 

statistical significance p<0.05 

 

 

3.2.3 The effect of TSPO overexpression on cell proliferation. 

 

Although TSPO has been implicated in the regulation of proliferation, overexpression of TSPO 

in HEK293 cells had no effect on cell proliferation rates (Figure 15). Wild-type 293 cells, 293-

TSPO and 293-C cells were counted each day for 4 days to determine cell proliferation rates. 
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Figure 15. TSPO overexpression has no effect on HEK293 cell proliferation. 

Direct cell counting of 293, 293-C, and 293-TSPO A/B cells over time. 

 

 

3.2.4 TSPO knockdown in PPC-1 human prostate cancer cells. 

 

Figure 16 shows the drastic decrease in TSPO expression (18kDa only) in PPC-1 human prostate 

cancer cells transfected with shRNA directed against TSPO.  PPC-1 cells transfected with 

shTSPO will be referred to as shTSPO Y1 or Y2.   

 

 

Figure 16. TSPO knockdown in PPC-1 cells. 

PPC-1 Ctrl: empty vector control, shTSPO Y1/Y2: PPC-1 cells transfected with shRNA directed against 

TSPO. Immunoblots were reprobed for B-Actin to ensure equal loading. 
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3.2.5 The effect of TSPO knockdown on cell proliferation. 

 

A radiolabelled thymidine incorporation assay was used to determine the effect of TSPO 

knockdown on cell proliferation.  Figure 17 demonstrates that cell proliferation in the shTSPO 

Y2 clone was significantly affected by decreasing levels of TSPO; however the shTSPO Y1 

clone was not.   

 

Figure 17. TSPO knockdown has differential effects on proliferation in PPC-1 shTSPO clones.  

PPC-1 ctrl: empty vector control, PPC-1 shTSPO Y1/Y2: PPC-1 cells expression shTSPO. * indicates 

statistical significance p<0.05 

 

 

3.2.6 The effect of TSPO knockdown on cell susceptibility to lorazepam. 

 

Decreasing levels of TSPO had no effect on susceptibility of the cells to TSPO antagonism by 

direct cell counting (Figure 18).  PPC-1 empty vector controls and shTSPO Y1/Y2 clones were 

treated with 50µM lorazepam and cells were counted after 48 hours.  
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Figure 18. TSPO knockdown has no effect on PPC-1 cells susceptibility to lorazepam by direct cell 

counting. Control: PPC-1 empty vector control cells, shTSPO Y1/Y2: PPC-1 cells expressing shTSPO, 

NS: not significant.  

 

Preliminary evidence suggested that lorazepam was exhibiting its anti-cancer properties by 

working through TSPO. Therefore, it was expected that knocking down TSPO levels would 

decrease PPC-1 cells susceptibility to lorazepam induced inhibition of cell growth.  There 

appeared to be no significant effect of TSPO knockdown on susceptibility to lorazepam through 

direct cell counting (Figure 18).  To examine cell survival, a colony formation assay was utilized.  

PPC-1 empty vector controls and shTSPO Y1/Y2 clones were plated at a low density and treated 

with vehicle (DMSO), 50µM, or 100µM lorazepam for 48 hours.  Regular growth medium was 

added back and colonies grew for approximately 2 weeks, were stained, and then counted.  

Figure 19 shows a significant difference in susceptibility of control cells to lorazepam compared 

to cells expressing shTSPO.  The bar graph represents the percent of colonies relative to the 

vehicle.  
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Figure 19. TSPO knockdown decreases PPC-1 cells susceptibility by colony formation assay. 

Representative plates showing the colonies remaining following treatment with 50 or 100µM lorazepam. 

The bar graph represents the percent of colonies relative to the vehicle. * indicates statistical significance 

p<0.05 

 

3.2.7 The effect of TSPO knockdown on cell migration. 

 

TSPO expression analysis of human prostate cancer tissues revealed that TSPO increases with 

progression, as prostate cancer metastases have the highest expression (Figure 4).  This suggests 

that TSPO may be playing a role in metastatic-related events such as migration. A wound healing 

assay was used to determine a difference in the percent of control compared to shTSPO cells 

migrating into the wound.  Figure 20 demonstrates that cell migration was reduced by decreasing 

levels of TSPO, as indicated by the significant decrease in percent wound closure.  
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Figure 20. TSPO knockdown decreases cell migration in PPC-1 cells.  

Representative images showing a significant decrease in cell migration into a wound upon TSPO 

knockdown. Control: PPC-1 empty vector cells, shTSPO Y1/Y2: PPC-1 cells expressing shTSPO. * 

indicates statistical significance p<0.05 

 

 

3.2.8 The effect of TSPO knockdown on cell growth in suspension.  

 

Possessing the ability to grow in suspension is another characteristic of metastatic cancer cells.   

To determine if TSPO plays a role in this process, PPC-1 control and PPC-1 shTSPO cells were 

grown in soft agar.  After approximately 3 weeks, colonies were counted in 4 different fields and 

the number of colonies per field was averaged.  Knockdown of TSPO in PPC-1 cells resulted in a 
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significant decrease in the shTSPO Y2 clone but not the shTSPO Y1 clone, although a 

decreasing trend was observed (Figure 21). 

 

Figure 21. TSPO knockdown decreases PPC-1 cells ability to form colonies in suspension.  

Soft agar colony formation assay of PPC-1 empty vector control cells compared to PPC-1 shTSPO Y1/Y2 

clones. * indicates statistical significance p<0.05 

 

3.2.9 The effect of TSPO knockdown on cell invasion. 

 

The ability to invade through the extracellular matrix is a requirement for metastatic cancer cells 

leaving the primary site.  To determine if TSPO knockdown has an effect on this process, a 

Matrigel invasion assay was employed.  Figure 22 demonstrates a decreasing trend of invasion in 

PPC-1 cells expressing shTSPO compared to empty vector control cells; however these data 

were not significant. There appears to be fewer shTSPO PPC-1 cells that invade through the 

control chamber as well, indicating that the role of TSPO may have a greater impact on 

migration rather than invasion. 
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Figure 22. TSPO knockdown decreases cell invasion in PPC-1 cells.  

Matrigel invasion assay of PPC-1 empty vector control cells compared to PPC-1 shTSPO Y1/Y2 clones. 
PPC-1 Ctrl: PPC-1 empty vector cells, shTSPO Y1/Y2: PPC-1 cells expressing shTSPO. Control: inserts 

not containing matrigel, Matrigel: inserts containing matrigel. 
 

 

 

3.3 CONCLUSIONS 

 

The main purpose for the TSPO overexpression study was to provide further evidence that 

lorazepam was exerting its anti-cancer effects through TSPO.  Human embryonic kidney cells 

were utilized for these studies because they express relatively low endogenous levels of TSPO 

compared to numerous prostate cancer cell lines (Figure 5). It was hypothesized that HEK293 

cells overexpressing TSPO would be more susceptible to lorazepam treatment. The data 

presented here support this hypothesis, as shown by the decrease in cell numbers (approximately 

25%) following lorazepam treatment (Figure 14).  Although an increase in sensitivity to 

lorazepam was observed, the overexpression of TSPO alone did not alter the rate of cell 

proliferation, suggesting that modulation of cell proliferation is through TSPO ligand binding.  
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Similar to the overexpression studies, TSPO knockdown was performed to determine if 

modulating TSPO expression affects susceptibility to lorazepam.  Direct cell counting showed 

that decreasing TSPO levels had no effect on PPC-1 cells susceptibility to lorazepam (Figure 

18).  This may be due to the fact that only the monomeric form of TSPO (18kDa band) was 

efficiently knocked down; while the dimer (36kDa band) remained high, supporting that 

lorazepam may be acting through the dimeric form of TSPO.  In contrast, colony formation 

assays revealed a decrease in susceptibility in PPC-1 cells expressing shTSPO compared to the 

empty vector controls (Figure 19), suggesting TSPO may play a role in cell survival but not cell 

growth. 

TSPO expression analysis of human prostate cancer tissues revealed that TSPO increases 

with progression, as prostate cancer metastases have the highest expression (Figure 4).  This 

suggests that TSPO may be playing a role in metastatic-related events such as migration, growth 

in suspension, and invasion.  The studies presented here provide evidence for a role for TSPO in 

these processes as a decreasing trend in migration, growth in suspension, and invasion was 

observed.   
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4.0 THE ROLE OF TSPO MULTIMERS IN PROSTATE CANCER 

 

 

4.1 INTRODUCTION 

 

Studies over the past decade demonstrated that TSPO antibodies identify immunoreactive 

proteins of higher molecular weight than the expected 18-kDa in cell and tissue extracts. These 

molecular weights may correspond to TSPO multimers whose origin and formation are 

unknown.  The first paper reporting the isolation of the 18-kDa TSPO protein also identified 

proteins of 32-36 and 50-54-kDa molecular size that were radiolabeled by PK14105, a TSPO 

specific ligand, in CHO hamster ovary mitochondrial cell extracts [32]. Follow-up reports on the 

presence of a 32-36-kDa protein showed that these TSPO polymers bind exclusively to TSPO 

drug ligands [32, 87-90].  The observation that the 18-kDa TSPO protein was organized in 

clusters of 2-7 molecules on the Leydig cell mitochondrial membrane suggested for the first time 

the presence of TSPO multimers [91]. The hormone-induced appearance of bigger TSPO clusters 

simultaneous with the appearance of a higher initiation of cholesterol transfer into mitochondria 

and steroidogenesis indicated that the formation of these clusters might be part of a functional 

process [92]. 

It is well documented that cancer cells have increased levels of free radicals compared to 

normal, noncancerous cells.  A serendipitous connection was made when researchers observed 

that increased TSPO multimers corresponded to increased levels of intracellular reactive oxygen 

species (ROS) [46]. Additional studies found that treatment with reactive oxygen species 
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resulted in molecular mass complexes of TSPO ranging from 30-200kDa both in vitro and in 

vivo, suggesting a role for ROS in multimer formation [46]. 

Spectroscopic studies by Delavoie et al. strongly suggested that TSPO multimers are the 

result of di-tyrosine bonds that covalently link TSPO monomers through reactions mediated by 

reactive oxygen species [46].  The presence of TSPO trimers and tetramers suggested that there 

are at least two tyrosines per monomer involved in the polymer formation in a covalent manner.  

A di-tyrosine bond is an oxidative covalent cross-link between two tyrosines and is a product of 

normal posttranslational processes. Di-tyrosine crosslinking is identified as a marker for 

oxidative stress and has been detected in numerous pathologies.  The studies presented in this 

chapter investigate the functional significance of TSPO multimers in advanced prostate cancer. 

 

 

4.2 RESULTS 

 

 

4.2.1 TSPO Multimers in TRAMP and Human Tissue 

 

TSPO multimer expression was analyzed in lung, lymph node, and prostate tissue obtained from 

Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Figure 23 A demonstrates a 

significant increase in TSPO expression in normal compared to matching cancerous tissue, and 

particularly an increase in the 36-kDa band, corresponding to the dimeric form of TSPO.  Tissue 

from human primary prostate cancer was also examined and results showed no significant trend 

with increased multimers and disease aggressiveness (Figure 23 B).  
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Figure 23. TSPO multimers in TRAMP and human tissues. 

A. Increased TSPO multimer expression (36-kDa) in TRAMP lymph node metastases (LN-M), lung 

metastases (Lung-M), and primary prostate cancer (PCa) compared to corresponding nontumorigenic 

tissues. Number of mice screened included: 8 intact wildtype C57xFVB, intact TRAMP with primary 

tumor only, and intact TRAMP with mets (6 lung; 6 lymph node) B. TSPO multimer expression in human 

primary prostate cancer tissue (T) compared to normal tissue adjacent to the tumor (N).  Gleason grade 

had no effect on the levels of TSPO multimers present.  

 

 

4.2.2 Transient Knockdown of TSPO Multimers 

 

TSPO multimer status of PPC-1 cells treated with siRNA directed against TSPO was examined 

at 0, 24, 48, 72, 96, 120, 144, 168, and 192 hours post transfection.  After 48 hours the 18-kDa 

band was approximately 80% knocked down, while the 36-kDa band remained as high as the 

control (Figure 24).  The 36-kDa band was briefly decreased at 72 hours, but recovered by 96 

hours.  Interestingly, the 18-kDa band remained knocked down until 144 hours and did not fully 

recover until 192 hours (Figure 24).  A scrambled siRNA was used as a control. 
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Figure 24. TSPO multimer status following transfection with TSPO siRNA. 

Western blot analysis of TSPO expression in PPC-1 cells transfected with scrambled siRNA or siRNA 

directed against TSPO for 24-192 hours. C: control cells collected at time of transfection. 

 

 

4.2. 8M Urea Does Not Break Di-Tyrosine Bonds 

 

Previous studies have suggested that a solution of 8M Urea is sufficient to break di-tyrosine 

bonds.  PPC-1 cells treated with 8M Urea had no significant change in TSPO multimer status 

(Figure 25).  

 

 

Figure 25. 8M Urea does not break TSPO multimer bonds. 

Western blot analysis of PPC-1 cells treated with 8M Urea from 1-24 hours. C: untreated PPC-1 cells. 
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4.2.4 Hydrogen Peroxide Induces TSPO Multimer Formation 

 

Hydrogen peroxide (H2O2) generates reactive oxygen species and was therefore used in these 

studies to determine the effect of increasing ROS on TSPO multimer formation.  H2O2 treatment 

increased TSPO multimer formation (108-kDa band) in HEK293 cells overexpressing TSPO 

compared to HEK293 controls and HEK293 TSPO cells not treated with H2O2 (Figure 26). 

 

Figure 26. Hydrogen peroxide induces TSPO multimer formation in HEK293 cells. 

Western blot analysis of TSPO showing an increase TSPO multimer formation in HEK293 TSPO cells 

treated with H2O2 compared to HEK293 and untreated HEK293 TSPO cells. HEK293 TSPO: HEK293 

cells overexpressing TSPO.  

 

 

4.2.5 Reactive Oxygen Species Scavengers Increase TSPO Monomers 

 

MLL cells lack the 18-kDa monomeric form of TSPO and were therefore used for these studies.  

Parental MLL and MLL cells overexpressing TSPO were treated with 4 different ROS 

scavengers at various time points. Different forms of ROS may be responsible for di-tyrosine 

bond formation; therefore we utilized four different ROS scavengers that targeted several of the 

intracellular sources of ROS. N-acetlycysteine dramatically increased the production of 
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glutathione, the most abundant ROS scavenger in many cells. Ascorbic acid and Trolox are 

water-soluble ROS scavengers, and catalase is an enzyme that functions to catalyze the 

decomposition of hydrogen peroxide to water and oxygen.  In these studies we found that ROS 

scavengers had no effect on MLL cells but “stabilized” the 18-kDa monomer in MLL cells 

overexpressing TSPO (Figure 27).  

      MLL 

 

MLL TSPO A 
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MLL TSPO B 

 

Figure 27. ROS scavengers increase TSPO monomers in MLL TSPO cells. 

Western blot analysis of TSPO expression in MLL and MLL TSPO cells (MLL TSPO A or B) treated 

with ROS scavengers N-acetylcysteine (NAC), Vitamin C (Vit C), or Trolox at .1, .5, 1µM or Catalase at 

1, 2.5, or 5 units/ml for 8, 24, or 48 hours.   

 

 

4.2.6 Y34F Mutagenesis Does Not Abolish TSPO Multimer Formation 

 

In an attempt to determine if di-tyrosine bonds were responsible for TSPO multimer formation, 

site-directed mutagenesis of a single tyrosine residue in TSPO was performed.  There are 10 

tyrosine residues in the TSPO protein (Figure 28), however we focused our attention on tyrosine 

34 (Y34).  Using the guidance of structural biologist Dr. Klein-Seetharaman, we identified Y34 

as the one most likely to be involved in bond formation because 1) it is highly conserved 

throughout evolution and 2) it is the most accessible TSPO tyrosine residue based on TSPO 
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structure (the majority of the others are embedded in the mitochondrial membrane spanning 

regions of TSPO – see figure 28). 

 

 

Figure 28. TSPO structure and location of tyrosines. 

Black circles indicate a tyrosine residue. C1/C2: cytoplasmic loops, M1/M2: mitochondrial loops. 

(modified from Joseph-Liauzun et al. 1998) 

 

A construct containing full length TSPO with a mutation of Y34 to phenylalanine (F34) 

was transiently transfected into HEK293, PPC-1, and MLL cells and screened 72 hours post-

transfection.  PPC-1 and HEK293 cells transfected with the SDM construct generated TSPO 

multimers at 108-kDa, corresponding to the TSPO 6-mer, suggesting that mutagenesis of this 

particular tyrosine in TSPO does not abolish multimer formation (Figure 29).  MLL cells 

endogenously express the 6-mer and the data suggested no difference in multimer levels in these 

cells (Figure 29). 
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Figure 29. Site-directed mutagenesis of Y34 does not abolish TSPO multimer formation. 

Western blot analysis of PPC-1, HEK293, and MLL cells transfected with a TSPO construct containing a 

mutation Y34  F34 72 hours post-transfection. SDM 1/2: pooled samples of cells transfected with the 

SDM construct. 

 

 

4.2.7 Glucose Oxidase Increases TSPO Monomers in MLL SDM Cells 

 

MLL cells overexpressing the TSPO construct containing the Y34  F34 mutation (MLL SDM) 

or MLL Neo (empty vector controls) were treated with the enzyme glucose oxidase at varying 

concentrations for 6 hours. Glucose oxidase was utilized because it is an enzyme that produces 

large amounts of hydrogen peroxide in the cell, thus increasing levels of ROS. Glucose oxidase 

treatment of MLL Neo cells resulted in a ~95% decrease in the 36-kDa band in all treatment 

conditions except at .01units/ml (Figure 30).  Interestingly, in the MLL SDM cells glucose 

oxidase decreased the 36-kDa while increasing the 18-kDa band.  Beta-actin was used as a 
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loading control but glucose oxidase treatment had an effect on this protein as well as TSPO. 

Therefore, GAPDH was run to ensure protein was present in those lanes (Figure 30). 

 

Figure 30. Glucose oxidase increases the 18-kDa TSPO monomer in MLL TSPO SDM cells. 

Western blot analysis of TSPO multimer expression of MLL Neo (empty vector control) and MLL SDM 

(mutated tyrosine) cells treated with glucose oxidase at 1, .5, .1, .05, and .01 units/ml for 6 hours. β-Actin 

and GAPDH were used as loading controls.  

 

 

 

 

4.3 CONCLUSIONS 

 

The purpose of these studies was to determine whether di-tyrosine bonds are responsible for the 

higher molecular weight bands observed in our studies as well as to investigate the mechanism 

by which these bonds are formed.  Immunoblot analysis of TSPO in TRAMP mouse tissues 

showed an increase in TSPO multimers (36-kDa bands) in both primary prostate cancer tissue 

and prostate cancer metastases compared to the matched normal tissues from the non-transgenic 

littermates. The monomeric 18-kDa band was ubiquitously expressed in all tissues, but the 
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increase in TSPO in cancer tissues occurs through elevated multimer (primarily 36-kDa) 

formation (Figure 23).  These data suggest that TSPO multimers may be playing a role in 

advanced disease, as they appear to correlate with an increase in disease progression.  Further 

evidence suggesting a functional importance for TSPO multimers was observed when TSPO was 

transiently down-regulated using siRNA directed against TSPO.  These studies demonstrated that 

the 18-kDa band of TSPO can be significantly decreased with siRNA for up to 144 hours post 

transfection, while the 36-kDa band is marginally decreased at 72 hours (Figure 24).  These data 

suggest that the dimeric form of TSPO is much more stable than the TSPO monomer. 

Experiments attempting to break the bonds were unsuccessful, as 8M Urea has no 

significant effect on multimer formation (Figure 25).  Conversely, hydrogen peroxide was shown 

to increase the 108-kDa band corresponding to a TSPO 6-mer  (Figure 26).  This supports 

previously published data suggesting that TSPO multimer formation is modulated by reactive 

oxygen species (ROS). 

Formation of these stable multimers is believed to occur through di-tyrosine bonds 

formed by ROS [34].  Based on this hypothesis, ROS scavengers were used to determine if 

TSPO multimers can be decreased by inhibiting ROS production in the cells.  Figure 27 

demonstrates that ROS scavengers increase the 18-kDa band in MLL TSPO cells, suggesting that 

TSPO monomers can be “stabilized” by decreasing ROS levels.  This was not observed in 

parental MLL cells, as these cells only express the dimeric form of TSPO.  

In 2003, Delavoie et al. published data proposing that TSPO multimers were formed by a 

covalent bond between 2 tyrosine residues [46].  Using the expertise of a structural biologist, the 

tyrosine most likely based on structure to be involved in bond formation (Y34) was mutated to a 

phenyalanine.  The hypothesis was that by creating an amino acid substitution of Y34 there 
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would be a decrease in TSPO multimers.  Figure 29 demonstrates that overexpression of the 

mutagenic construct in PPC-1, 293, and MLL cells results in an increase in the 108-kDa band.  

These data provide evidence that tyrosine 34 by itself is not critical for TSPO bond formation. 

However, the Y34F substitution alters TSPO dimerization either indirectly or directly since we 

observed an increase in the higher molecular weight multimers. These data suggest that mutating 

this residue alters multimer formation possibly by changing the structure of TSPO to more 

readily allow covalent bonds to form.  Alternatively, it is conceivable that tyrosine 34 forms a 

bond with another residue and a phenylanine substitution more readily promotes formation of a 

covalent bond with this other residue.   

Treatment of MLL cells overexpressing the mutated TSPO construct with glucose 

oxidase revealed an increase in the 18-kDa TSPO band and decrease in the 36-kDa band at 

relatively high concentrations (Figure 30).  These data do not support the hypothesis that ROS 

increase multimers and warrant further studies. Hydrogen peroxide treated cell lysates showed a 

dose dependent increase in multimer formation but the glucose oxidase treatment increased the 

18-kDa monomer.  This may be due to the difference in experimental procedures, as cell lysates 

were treated with hydrogen peroxide while living cells were treated with glucose oxidase. The 

reverse experiments would need to be performed to determine if the same phenotype is observed. 

The studies presented here provide further evidence that TSPO multimers are important 

for TSPO function; however, additional studies to identify pathways involved in the dimer 

formation and the tyrosines (or possibly other residues) that form the covalent bonds are required 

before a clear picture of the regulation of TSPO dimers and their impact on cell function can be 

made.   
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5.0 DISCUSSION 

 

 

The main goal of these studies was to characterize TSPO expression in human prostate cancer 

and to determine its role as a potential therapeutic target for advanced disease.  We have shown 

that TSPO expression is increased early in the neoplastic process, as prostatic intraepithelial 

neoplasia (PIN) has significantly increased levels of TSPO compared to normal prostate tissue 

and BPH (Figure 4).  Moreover, we have demonstrated that TSPO expression increases with 

progression, as prostate cancer metastases have significantly more TSPO expression than all 

other tissues examined, including PIN and primary prostate cancer. Expression analysis in vitro 

suggests that TSPO is highly expressed in prostate cancer cell lines differing in their invasive 

abilities and androgen-sensitivity (Figure 5). Together our data support previous studies 

reporting that TSPO density is elevated in high-grade astrocytomas [74], glioblastomas [93], and 

highly aggressive breast cancer cell lines [57] compared to low-grade brain lesions and non-

aggressive breast cancer cell lines. Similarly, Beinlich et al. reported that the TSPO ligand Ro5-

4864 has the highest affinity binding capacity to TSPO in highly aggressive, estrogen receptor 

(ER) negative, progesterone receptor (PR) negative breast cancer cell lines BT-20 and MDA-

MB-435-5 but binds with low capacity to TSPO in ER-positive, PR-positive nonaggressive 

MCF-7 and BT-474 breast cancer cell lines [94].  
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Several studies in the past decade have suggested that TSPO may play a role in 

carcinogenesis through its action as a modulator of cell proliferation and apoptosis. TSPO is 

highly expressed in steroidogenic cells, such as those of the testes and adrenals, of which TSPO 

ligands have been shown to regulate cell proliferation [95]. TSPO ligands have also been shown 

to affect proliferation and apoptosis in various tumors, such as astrocytomas, breast, esophageal, 

and colorectal [66, 74-76]. For our studies, we utilized one of the most common TSPO ligands, 

PK11195, as well as the benzodiazepine lorazepam, which has not previously been considered a 

TSPO antagonist.  We demonstrated that both PK11195 and lorazepam have anti-proliferative 

and pro-apoptotic properties in prostate cancer cells in vitro (Figure 7 & 8).  

Because lorazepam is a clinically approved drug that could easily be translated from 

preclinical studies to the prostate cancer patient population, we wanted to determine if lorazepam 

also exhibits anti-proliferative and pro-apoptotic actions in vivo. We observed a decrease in the 

length of time it took for the prostate cancer xenograft tumors to reach maximum size in the 

lorazepam treated mice compared to the vehicle group (Figure 11). Additionally, Ki67 

expression, a protein marker for cell proliferation, and TUNEL, a marker of apoptosis, was 

decreased and increased, respectively, in the lorazepam treated group compared to mice given 

vehicle only (Figure 12).  Together, these data further confirm that TSPO ligands modulate cell 

proliferation and apoptosis and provide continued evidence supporting the potential use of TSPO 

antagonists as anticancer drugs. 

In all of our in vitro studies, PK11195 exhibited more potent anti-proliferative and pro-

apoptotic effects than lorazepam (Figures 7 & 8).  This is likely due to the difference in binding 

affinity, as PK11195 binds TSPO at nanomolar concentrations (KD < 20nM) [96].  Furthermore, 

it has been reported that lorazepam is significantly less potent than PK11195 at displacing 
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various ligands from TSPO binding sites [43]. However, lorazepam appears to have fewer off-

target effects than PK11195 as the wildtype HEK293 cells with low TSPO expression had 

significant cell death with PK11195 but were minimally affected by lorazepam, while HEK293-

TSPO overexpressing cells were susceptible to death by both compounds. 

As demonstrated in Chapter 2, TSPO is highly expressed in human prostate cancer tissue 

and expression increases with progression. To understand the role of its up-regulation in 

advanced prostate cancer, we produced genetically modified human embryonic kidney cells, 

HEK293, and human prostate cancer cells, PPC-1, to overexpress and knockdown TSPO, 

respectively. HEK293 cells were chosen for the overexpression experiments because they 

express relatively low levels of TSPO compared to highly expressing prostate cancer cell lines, 

including PPC-1 cells.  These modified cell lines were then used to evaluate the influence of 

TSPO density on the common features that drive invasive/aggressive phenotypes.   

Transfection of a full-length TSPO construct into HEK293 cells resulted in a drastic 

increase in TSPO expression (Figure 13).  Our hypothesis was that by increasing TSPO 

expression in low expressing cells, we would increase the cell’s susceptibility to TSPO 

antagonists such as lorazepam.  Figure 14 supports this hypothesis by demonstrating a 25% 

decrease in cell proliferation in HEK293 cells overexpressing TSPO compared to normal, non-

transfected HEK293 cells treated with 50µM lorazepam.  These data suggest that lorazepam is 

exhibiting its anti-proliferative effects through TSPO. 

Transfection of shRNA directed against TSPO into PPC-1 cells resulted in a drastic 

decrease (~99%) in expression of the 18-kDa TSPO monomer but not the 36-kDa dimer (Figure 

16).  The inability to decrease the 36-kDa band is likely the result of a difference in stability of 

the monomer compared to the dimer.  To determine the effects of TSPO knockdown on cell 
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proliferation, a thymidine incorporation assay was utilized.  Using 2 different PPC-1 shTSPO 

clones, we observed an increase in proliferation rates in the Y1 clones and a significant decrease 

in the Y2 clones (Figure 17).  This discrepancy is likely due to clonal variation and could be 

resolved using the pooled clones or retroviral transfection.  Further experiments are necessary 

before any conclusions can be made regarding the effect of TSPO knockdown on cell 

proliferation.  

Similar to the overexpression studies, we hypothesized that by decreasing TSPO the cells 

would be less susceptible to lorazepam treatment.  Figure 18 shows that TSPO knockdown in 

PPC-1 has no significant effect on susceptibility to lorazepam as measured by cell proliferation.  

This may be due to the remaining 36-kDa TSPO dimer, which we believe is the functional unit 

of TSPO, therefore making the cells equally susceptible to the TSPO ligand.   Interestingly, using 

a colony formation assay, we observed a significant decrease in susceptibility of PPC-1 TSPO 

cells to lorazepam compared to the empty vector control cells (Figure 19).  At both 50 and 

100µM concentrations of lorazepam PPC-1 shTSPO clones not only survived the treatment but 

they grew faster and had larger colonies compared to the empty vector control cells.  Together 

these data suggest that decreasing TSPO does not affect modulation of cell proliferation rates by 

lorazepam but does affect the cells ability to survive the high concentration treatment. 

In 2008, Rechichi et al. found that TSPO overexpression improved the motility rate and 

transmigration capability of C6 rat glioma cells, demonstrating that the increase of TSPO 

expression levels may contribute to the acquisition of an invasive/aggressive phenotype [83].  

For our studies, we knocked down TSPO in order to determine if we could reduce the aggressive 

phenotype in characteristics of advanced disease such as migration, growth in suspension and 

invasion. 
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The ability of cells to migrate away from the primary tumor is a classic feature of 

advanced disease.  Using a wound healing/scratch assay, we observed that decreasing TSPO 

significantly decreases the cells ability to migrate into the wound, as indicated by a decrease in 

percent closure of the wound (Figure 20). This data implicates a role for TSPO in cell migration, 

however future studies would be necessary to determine the molecular mechanisms by which 

this modulation in migration is occurring. 

Similar to migration, the ability of a cancer cell to grow in suspension, such as when they 

travel through the bloodstream, is also a known characteristic of advanced cancer cells.  In our 

studies, we found that by decreasing TSPO in PPC-1 cells, we were able to significantly decrease 

the number of colonies formed in suspension in soft agar (Figure 21).   This is an indication of 

the cells ability to grow in suspension and not a differential effect in cell proliferation, as there 

was no difference in cell proliferation rates among the TSPO shRNA PPC-1 clones.  

In order for a cancer cells to migrate through the extracellular matrix they need to possess 

the qualities necessary for degradation of the extracellular matrix and increasing motility factors.  

To determine if TSPO plays a role in cancer cell invasion, we utilized a Matrigel invasion assay 

and found a decreasing trend in invasion of those cells with decreased levels of TSPO.  It is 

important to note that there was a slight, not statistically significant decrease in invasion through 

the Matrigel but there was a significant decrease in migration through the control inserts (Figure 

22).  This supports the wound healing/scratch assay results suggesting that knocking down TSPO 

affects cell migration but does not conclusively support a role for TSPO in cell invasion.  

Together these data suggest that TSPO expression may modulate regulation of motility factors 

such as the Rho family of GTPases, but does not affect cellular pathways leading to invasion, 
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such as those involved in the upregulation of matrix degrading factors such as matrix 

metalloproteinases.   

Collectively, these data are the first direct evidence that TSPO density influences prostate 

cancer cell aggressiveness and is consistent with previous reports that correlate TSPO expression 

level and tumor malignancy grade [97-100].  

To date, very little work has been devoted to understanding the significance of TSPO 

multimers, particularly in cancer.  Our interest in this aspect of TSPO research began when we 

observed that not only was TSPO expression increased in transformed TRAMP tissues, but also 

the 36-kDa band was significantly increased, particularly in the metastatic tissue (Figure 23A).  

TSPO multimer expression analysis was also examined in human primary prostate cancer 

compared to normal tissue, however the increasing trend in TSPO multimers with disease 

progression was not observed (Figure 23B).  The data was inconsistent which was not surprising, 

as human disease tissue is much more variable compared to tissue obtained from genetically 

identical transgenic mice.  

In an attempt to transiently knockdown TSPO protein levels, we observed an interesting 

phenomenon.  At 48 hours we were able to drastically decrease the 18-kDa TSPO band using 

siRNA directed against TSPO, however were not able to significantly knockdown the 36-kDa 

band (Figure 24).  The fascinating part of this experiment was that the 18-kDa band was 

decreased for up to 144 hours post-transfection, while the 36-kDa band maintained normal 

expression patterns up to 192 hours, with the exception of 72 hours where it was decreased 

slightly (Figure 24).  It is known that the half-life of the monomeric form of TSPO is 

approximately 3 days [101], however the unknown half-life of the dimer is likely to be much 

longer as indicated by the inability to decrease the dimer by decreasing the monomer.  These 
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data support our hypothesis that the 36-kDa dimeric form of TSPO is more stable than the 18-

kDa monomer, which may suggest that the dimeric form is the critical unit of TSPO.   

In 2003, Delavoie et al. was the first to suggest that the detergent-resistant, multimeric 

forms of TSPO were the result of covalent crosslinking between tyrosine residues on two or 

more TSPO proteins [46].  Di-tyrosine bonds have been implicated in protein aggregation in 

other disease models such as alpha-synuclein polymers in Parkinson’s disease and multiple 

systems atrophy [99].  Di-tyrosine bonds are believed to be a biomarker for oxidative stress, as 

reactive oxygen species are one of the driving forces behind the crosslinking [102].   

Previous attempts have been made to break these extremely stable bonds through 

treatment with denaturing agents including 8M Urea and guanidinium chloride [99].   Figure 25 

shows our unsuccessful attempt at breaking TSPO multimer bonds using 8M Urea.  Extended 

time and heat did not break the covalent bond suggesting that the bonds are very stable.  Because 

ROS have been implicated as the mechanism behind di-tyrosine bond formation, we determined 

the effect of hydrogen peroxide on TSPO multimer formation in HEK293 cells overexpressing 

the 18-kDa monomeric form of TSPO. We observed a dose-dependent increase in the TSPO 6-

mer (corresponding to 108-kDa) following treatment with hydrogen peroxide (Figure 26).  These 

studies support previous evidence suggesting that TSPO multimers are the result of di-tyrosine 

bond formation by ROS.  

It is well documented that cancer cells have higher levels of ROS compared to normal 

cells.  To further support the role of ROS in TSPO multimer formation, we utilized four different 

ROS scavengers to determine if decreasing intracellular levels of ROS could decrease TSPO 

multimers.  MLL cells were used because they lack an endogenous 18-kDa TSPO but highly 

express the 36-kDa form.  MLL cells overexpressing TSPO were also used to determine if 
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exogenous 18-kDa TSPO behaved differently in these cells.  Using variable conditions, we made 

an interesting observation.  Treatment of parental, MLL cells with ROS scavengers had no effect 

on TSPO multimer formation (Figure 27).  Treatment of MLL-TSPO cells however, increased 

the amount of 18-kDa TSPO, suggesting that by decreasing ROS we were able to decrease 

multimer formation by “stabilizing” the 18-kDa monomer (Figure 27).  It is important to note 

that although there was an increase in the 18-kDa band, there was not a corresponding decrease 

in the 36-kDa band, suggesting that the monomers that were being made by the foreign TSPO 

construct were being kept as monomers because of the lack of ROS which would have driven the 

immediate formation of the TSPO dimers.   

If tyrosine residues are responsible for TSPO multimer formation, then mutation of a 

critical tyrosine residue should abolish bond formation.  The TSPO protein has 10 tyrosine 

residues (Figure 28).  Using the expertise of structural biologist Dr. Klein-Seetharaman, we 

identified the most likely tyrosine involved in bond formation based on TSPO structure.  We 

concluded that there is one tyrosine (residue 34) that is highly conserved and readily accessible.  

A construct was designed that provided an amino acid substitution of the targeted tyrosine to a 

phenyalanine because it maintains the structure yet it lacks the hydroxyl group believed to be 

critical in bond formation.  This mutated TSPO construct was transiently transfected in HEK293 

(TSPO low expressing cells), PPC-1 (high expressing), and MLL (36-kDa expressing only).  

Figure 29 shows that despite the mutation in Y34, HEK293 and PPC-1 cells retained the ability 

to form the higher molecular weight multimers (108-kDa).  There was no significant difference 

in multimer formation in MLL cells likely due to the fact that they normally express the 108-kDa 

band, unlike HEK293 and PPC-1 cells.  These data suggest that Y34 by itself is not involved in 

di-tyrosine bond formation.  Future studies could include site-directed mutagenesis of the other 9 
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tyrosines and/or combinational mutations, which would determine if more than one tyrosine is 

involved, or tagging of the mutagenic construct such that the movement of a monomer to a 

multimer could be observed, therefore distinguishing between endogenous and exogenous TSPO. 

In our final multimer study, glucose oxidase, a hydrogen peroxide generating enzyme, 

was used to determine if TSPO multimers could be induced in MLL cells.  After treatment of 

MLL cells overexpressing the mutated TSPO construct (MLL SDM TSPO) with glucose 

oxidase, we observed an interesting yet conflicting result.  High concentrations of glucose 

oxidase abolished the 36-kDa band in both MLL empty vector control and MLL SDM TSPO 

cells.  However, in the MLL SDM TSPO cells the 36-kDa band decreased as the 18-kDa band 

increased (Figure 30).  These data do not support our ROS hypothesis, as we expected an 

increase in TSPO multimers with ROS treatment.  It is important to note however, that the 

transfected construct contained the mutated TSPO protein; therefore this data may provide 

evidence that implicates tyrosine 34 in di-tyrosine bond formation. Treatment with high 

concentrations of glucose oxidase depleted the 36-kDa band, possibly due to protein degradation 

(see β-actin in Figure 30), however the mutation may have caused the newly produced TSPO to 

be maintained as a monomer.  Much more work would need to be done before any correlations 

can be made between this tyrosine residue and TSPO multimer formation.  Those experiments 

could include transfection of the non-mutated TSPO construct into MLL cells and glucose 

oxidase treatment, transfection of the mutated TSPO construct into HEK293 cells and glucose 

oxidase treatment, glucose oxidase treatment of PPC-1 cells to determine if the 36-kDa band is 

abolished.   

Overall the multimer studies presented here are conflicting, neither convincingly 

supporting or refuting our hypothesis.  Although trends seem to suggest a role for ROS in TSPO 



 77 

bond formation, more work needs to be done to identify the pathways to fully comprehend this 

process.  Understanding the importance of TSPO multimers in cancer is critical because it may 

be the key to targeting TSPO antagonists.  If the dimer is the functional unit for TSPO, then 

finding a way to target the 36-kDa form may increase the anti-cancer effects of TSPO 

antagonists such as lorazepam.   

Although benzodiazepines have been used clinically for over 50 years, their application 

as a form of cancer therapy is novel.  We have shown that lorazepam, a benzodiazepine 

commonly prescribed to treat anxiety disorders, inhibits prostate cancer cell growth and survival.  

The studies presented here were designed to further elucidate the mechanism by which TSPO 

antagonists alter cancer cell proliferation and survival. In addition, this was the first study to 

examine the functional significance of TSPO multimers in cancer and identify the impact of the 

formation and inhibition of multimers. These studies were imperative in order to determine how 

modulation of TSPO expression and form alter cellular function while examining the potential 

application of lorazepam in cancer therapeutics. Antagonists for TSPO are already used in the 

clinic for other indications and demonstrate very minor side effects; therefore the translation of 

the preclinical results to the prostate cancer patient population could be readily achieved. 

Based on the data presented here there is a significant amount of work left to be done to 

confirm the role of TSPO antagonism by benzodiazepines.  Although the focus of our studies 

was on lorazepam, we are not limiting the possibility that other benzodiazepines may exhibit 

similar anti-cancer properties.  An epidemiologic study looking at the use of benzodiazepines 

and prostate cancer progression would provide substantial evidence as to whether or not 

benzodiazepines are viable treatment options for advanced prostate cancer patients.  The use of 

benzodiazepines could lead to a significant change in the management of prostate cancer by 
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providing a treatment option with minimal toxicity for use after failure of androgen-deprivation 

therapy and could ultimately prevent prostate cancer deaths. 
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