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Ad hoc networking has received considerable attention in the research community for

seamless communications without an existing infrastructure network. However, such net-

works are not designed with security protection in mind and they are prone to several security

attacks. One such simple attack is the packet dropping attack, where a malicious node drops

all data packets, while participating normally in routing information exchange. This attack

is easy to deploy and can significantly reduce the throughput in ad hoc networks.

In this dissertation, we study this problem through analysis and simulation. The packet

dropping attack can be a result of the behavior of a selfish node or pernicious nodes that

launch blackhole or a wormhole attacks. We are only interested in detecting this attack but

not the causes of the attack. In this dissertation, for simple static ad hoc networks, anal-

ysis of the throughput drop due to this attack along with its improvement when mitigated

are presented. A watchdog and a newly proposed “cop” detection mechanisms are studied for

mitigating the throughput degradation after detection of the attack. The watchdog mechanism

is a detection mechanism that has to be typically implemented in every node in the network.

The cop detection mechanism is similar to the watchdog mechanism but only a few nodes

opportunistically detect malicious nodes instead of all nodes performing this function. For

multiple flows in static and mobile ad hoc networks, simulations are used to study and com-

pare both mechanisms. The study shows that the cop mechanism can improve the throughput

of the network while reducing the detection load and complexity for other nodes.
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1.0 INTRODUCTION

Ad hoc networks have been used in many applications which mandate a dynamic network

set up in the absence of fixed infrastructure. Originally, ad hoc networks were conceived

for applications related to battlefields, Mars exploration, and disaster recovery [1]. The

design of ad hoc networks has been mainly focused on proper operation. With technology

advancements, an ad hoc device is expected to be cheap and affordable such that mass

usage is possible for various applications. Thus, it is possible that eventually malicious

nodes also become easy to deploy in ad hoc networks and they cause among other impacts,

performance degradation. One easy attack that can be deployed by malicious nodes is the

“packet dropping attack”, which is an attack where a malicious node participates in routing

information exchanges but it drops all data packets passing through it. This attack causes

a significant performance reduction in ad hoc networks, especially in static networks. There

are several other possible attacks as discussed in [2], [3], [4], [5], [6] and [7].

1.1 PACKET DROPPING ATTACKS IN AD HOC WIRELESS

NETWORKS

In ad hoc networks, a node performs both terminal and routing functions to form an

infrastructureless network. Therefore, a node is assumed to be helpful to other nodes to

forward packets toward the correct destination. When a node does not forward packets for

others, but silently or intentionally drops them, it is called a “packet dropping attack.”

In ad hoc networks, packets may be dropped for several reasons (outside of honest causes

such as collisions, channel errors, or buffer overflows). First, packets are dropped in the

1



situation when a node aims on saving its own energy. This is mainly because, in a wireless

environment, the most energy is consumed in the transmit mode. If a node does not forward

packets, it does not use its own energy for packet transmission and preserves its energy

longer.

Second, when a node is trying to save its bandwidth, the packets are dropped. Bandwidth

is also considered as a scarce resource in a wireless environment. If the node does not

forward packets for others, it will have more bandwidth to send (or receive) its own packets.

Therefore, its transmission capacity will be increased. In both scenarios, the node is regarded

as selfish, where it does not purposefully plot to degrade the network throughput but acts

to preserve its own resources [8] and [9].

Third, a malicious node can deploy a blackhole or wormhole attack to drop packets. In

a blackhole attack, a malicious node exchanges routing information with other nodes but

it will drop all data packets intentionally. In a wormhole attack, two or more nodes in the

network form a wormhole using a wired connection, other wireless channels, or exploiting

protocol vulnerabilities in order to create a route that is either really short or appears to be

short such that a source believes that the best way to reach a destination is to go through the

malicious nodes. In all cases, all data packets will be dropped without considering energy or

bandwidth saving factors. Other malicious attacks can also cause packets to be dropped as

well.

As mentioned earlier there are honest reasons why a node may simply drop data packets

after correctly participating in route discovery. Packets are dropped if a node malfunctions

and cannot perform the regular function of forwarding packets. Such node behavior is

unpredictable. When a network is congested, packets cannot be forwarded to other nodes

and they are also dropped. Congestion in ad hoc networks could occur depending on ad hoc

network applications. Lastly, wireless channels are known to be unreliable. Burst channel

errors due to interference, fading, etc. could occur while a node is sending packets over an

open air interface. Like interference, when a network is jammed, data packets cannot be sent

or received at any node in a jammed area. Packets from a non-jammed area cannot be sent

through the jammed area and they are also dropped. However, the nodes in the jammed

area may not have intentions to drop packets otherwise.

2



A summary of packet dropping is shown in Figure 1.1. Throughout the body of this

dissertation, we will mainly focus on the characteristics of the attack without considering

the causes of packet dropping because the final result is performance degradation in ad hoc

networks. A node which drops all data packets is called a malicious node in this work.������ ���		
�� 
�
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Figure 1.1: Packet dropping summary

1.2 RESEARCH BACKGROUND

Originally, an ad hoc network was conceived for military and disaster recovery appli-

cations due to its characteristics for rapid deployment and absence of infrastructure. The

design of ad hoc networks mainly focused on the usability and performance of the network.

As technology advancements bring about cheaper devices and better energy efficiency, the

use of ad hoc networks in wider areas of applications such as wireless Internet services be-

comes likely. Individuals may use ad hoc devices for group communications in an ad hoc

fashion without centralized management. In this case, a node can either be cooperative or

uncooperative to its neighbors in order to save its own energy or bandwidth. With slight
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modifications, a device could be easily changed to become selfish or malicious (e.g., by not

forwarding packets to its neighbors). The packet dropping attack can largely reduce the

overall network throughput.

A large body of existing literature in ad hoc networks addresses misbehaving node de-

tection mechanisms. However, most proposed mechanisms require additional computational

power from all ad hoc nodes participating in the same network. Such detection mechanisms

may not be suitable for practical use due to the extra intensive computational processes that

need to be implemented in all ad hoc devices (which are normally resource limited).

In one of the earliest detection approaches, Marti et al. proposed simple mechanisms,

called watchdog and pathrater, to detect a misbehaving node in order to choose the most

reliable path for packet forwarding [10]. In watchdog mechanism, a node promiscuously

listens to its next-hop neighbor and counts the number of non-forwarded packets. If the

counter is over a threshold, the source will be notified. Then, a pathrater calculates a new

path using the most reliable link and uses it to send subsequent packets. The performance of

the proposed detection mechanism has several weaknesses, i.e., ambiguous collision, receiver

collisions, limited transmission power, false misbehavior, collusion, and partial dropping, as

described in [10]. The COllaborative REputation mechanism (CORE) [11] and Cooperative

Of Nodes: Fairness In Dynamic Ad-hoc NeTworks (CONFIDANT) [12] protocols propose

to use a reputation system for improvement of the detection performance.

Most of the proposed works require detection functions to be implemented by every node.

This not only introduces an extra task in each node, which is generally not computationally

efficient for a small device having limited resources but also introduces trust issues. If every

node is detecting packet dropping attacks, and communicating the presence of malicious

nodes to other nodes, this mandates an assumption of trust between every pair of nodes in

the network. Without such a trust relationship assumption and implementation of security

measures to verify and enforce trust, a malicious node in the system could easily falsify the

reputation value [13].
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1.3 MOTIVATION, APPROACH AND RESEARCH CONTRIBUTIONS

In summary, most of the research literature focuses on implementing packet dropping

attack detection mechanisms in every node regardless of the node’s capability or considera-

tion of trust issues. A simpler detection technique is preferable for resource limited devices.

Tradeoffs should be considered between the detection effectiveness and efficiency of the de-

tection mechanism. A question that needs to be answered is whether it is possible to have

fewer nodes that detect packet dropping attacks, and what impact it has on the system’s

performance. This is the focus of this dissertation.

This work is motivated by the above question as well as the following observations.

In real world scenarios beyond ad hoc networks, police officers are trusted agents who are

authorized and dedicated to catch criminals while civilians only carry out their regular task.

In this research, we consider the deployment of special nodes that are dedicated towards

the detection of packet dropping attacks as explained next. The use of special nodes is also

motivated by the recent research area of opportunistic networking [14] that has increasingly

gained more attention in the networking research community. Opportunistic networking

introduces heterogeneity in the type of nodes into the network in order to improve the

overall network performance. For example, mobile nodes in a sensor network could be used

to collect and disseminate data in a sparsely connected quasi-static network.

Inspired by the real world scenario and the ideas from opportunistic networking, a ma-

licious node detection mechanism is proposed in this dissertation, which we call the Cop

mechanism. In this mechanism, nodes are classified into two categories: a Cop node and

a regular node. A Cop node acts like police officers to opportunistically detect a malicious

node or an uncooperative node while regular nodes only perform normal functions without

worrying about detecting attackers. This scheme reduces the load for detection function in

all regular nodes. The Cop detection mechanism aims on mitigation of the impact of packet

dropping attacks launched by a malicious node. The idea here is as follows. The Cop uses

a threshold-based approach with the Dynamic Source Routing protocol. The Cop passively

operates in a promiscuous mode. When a malicious node is detected, a Cop node sends

an alarm message to a corresponding source, which will try to route all subsequent packets
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through a diverted route that does not pass the malicious node. Therefore, the network

throughput is increased. However, this scheme has some tradeoffs, i.e., the use of special

nodes in the network (increasing the number of nodes to be deployed) and longer detection

times.

The following is a list of contributions of this dissertation:

• Studied the effect of packet dropping attack on performance in wireless ad hoc networks

using both analysis and simulations

• Proposed the use of a special node (heterogeneity in the network) to perform detection

of packet dropping attacks in wireless ad hoc networks

• Analyzed the throughput for watchdog and cop mechanisms in static ad hoc networks

using a probability tree and probability weighted averages (see Chapter 4)

• Compared detection mechanisms in various wireless scenarios

• Identified system parameters for choosing a detection mechanism in the network and

parameters to guard against the attack

• Recommended design guidelines to facilitate selection of an appropriate detection mech-

anism and parameters

1.4 ORGANIZATION

This dissertation is organized as follows. Chapter 2 reviews the background and liter-

ature on ad hoc networks and attack mitigation. Chapter 3 presents a system model of

detection mechanisms, namely the watchdog and cop mechanisms along with pseudo-codes

for node and detection mechanism implementation. Chapter 4 presents a simple throughput

analysis for a static ad hoc network with and without the detection mechanisms. Chapter

5 studies the detection mechanisms in various scenarios using simulations. Based on the

studies in Chapters 4 and 5, Chapter 6 gives a design guideline for choosing a proper de-

tection mechanism and parameters for selection. Lastly, contributions and future work are

described in Chapter 7.
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2.0 BACKGROUND AND LITERATURE REVIEWS

This chapter first presents background on ad hoc wireless networks and routing issues.

Then, existing literature on malicious node detection mechanisms will be explained in greater

detail. However, the focus of this work is detection mechanisms for packet dropping attacks,

which include mitigation of the impact of selfish nodes or malicious nodes.

2.1 BACKGROUND

2.1.1 Introduction to Ad Hoc Wireless Network

An ad hoc wireless network is an infrastructure-less network, which can be built on the

fly in a dynamic fashion. Unlike a wireless infrastructure network, an ad hoc network has

certain characteristics such as self-organization, lack of fixed infrastructure for support, and

communication using multi-hop routes [1].

An ad hoc network is a so-called a self-organized network because typically there is no

central authority among ad hoc mobile nodes. Therefore for all ad hoc nodes participat-

ing in the same ad hoc network to be able to function and communicate, each node must

implement common functions such as addressing, routing, power control, etc. Another im-

portant characteristic of an ad hoc network is the ability of a mobile node to move freely

while still connecting to other mobile nodes within the same network in an ad hoc fashion.

Specifically, a mobile node can move in any direction and is still able to participate in any

communication. Ad hoc networks may or may not comprise of mobile nodes, or may have a

mix of mobile and static nodes.

7



In term of power consumption, a mobile node usually operates with limited battery power

and reduced computational capability. If a mobile device uses high computational power or

increased communication, the battery will be dramatically drained out. Therefore, a trade-

off between the computational capability and power consumption in an ad hoc device is

always of interest. A sender and a receiver can be anywhere in an ad hoc network. However,

it may not possible for a sender to communicate with a receiver directly (i.e., over a single

hop) due to the limited distance of radio coverage. Thus, a transmitted packet may traverse

several hops to reach an intended receiver. Each intermediate node must forward the received

packets to its neighbor to complete the communications between a sender and a receiver.

Another example of an infrastructure-free wireless network is a Wireless Mesh Network

(WMN), which is used for providing low-cost Internet services. A WMN organizes its own

topology to suitably integrate several different types of networks together, i.e., the Internet,

and WLAN (Wireless Local Area Network) networks in order to form seamless communi-

cations. It consists of mesh routers and clients [15]. Mesh routers usually have limited

mobility. They are responsible for performing routing functions, to form a backbone of the

network, and interfacing with other networks. Mesh clients can be static or mobile while

accessing network resources via mesh routers. Both mesh routers and clients are normally

connecting to each other via wireless links to gain access to gateway routers which connect to

the Internet or other networks. Typically, mesh clients can communicate among themselves

via a mesh router.

There is no wired-infrastructure within the WMN. Therefore, each mesh router is nor-

mally assumed to forward packets for others to create a well connected network. However in

WMN, mesh routers could be owned by several authorities, companies, or even individuals

who add their wireless equipment to the network. Therefore, a cooperative assumption may

not be valid since a mesh router may not forward packets to its neighbors in order to save

bandwidth for its own communications as well as to preserve its energy resources. Such a

non-cooperative router is regarded as a selfish or a malicious router in this dissertation as

explained in Chapter 1. As we show later, the throughput performance can be impacted

significantly in the presence of selfish or malicious routers depending on their locations in

the network.
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In this dissertation, both ad hoc networks and WMN backbone networks are studied

in order to show how the performance degrades in the presence of malicious nodes. There

exist some differences between ad hoc networks and WMN backbones. Ad hoc networks

are concerned largely with energy efficiency since an ad hoc node is typically a small and

resource limited device. A WMN backbone network is concerned more with efficient usage

of bandwidth since mesh routers must form a well-connected backbone network. However

such routers are typically at fixed locations, where the power availability is not a problem.

2.1.2 Ad Hoc Routing

In a wireless infrastructure network, a packet is routed to a destination via routers.

However, there is no special routers in an ad hoc network and, hence, each ad hoc node

must perform routing functions in order to forward a packet to the destination. A routing

protocol is, therefore, needed to complete the communications. Based on route creation,

routing protocols can be classified into two categories which are (a) proactive and (b) reactive

routing protocols. A proactive routing protocol is a routing protocol that creates a route to

every node whether or not there is a packet to be sent to every destination. In contrast, a

reactive routing protocol is a routing protocol that creates a route to a specified destination

whenever there is a packet to be sent to that destination.

2.1.2.1 Proactive Routing Proactive routing is also sometimes called a table-driven

routing since each node creates a routing table to its neighbors and other nodes within the

network prior to sending a packet even though some routes may not be ever used. The

routing updates are periodically sent to its neighbors in order to keep an up-to-date routing

information related to the entire network. Such routing protocols are good for a low mobility

ad hoc network. Since routes are not continuously changed, routing update packets are not

necessarily sent very frequently. Consequently, the traffic load due to route updates can

be small. This routing technique has the advantage of low set-up delay since each node

already has a route to any destination within the network and packets are ready to be sent

out at anytime. However, the route information has to be maintained even though it may
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not be used. The routing load in the network is unnecessarily increased if the nodes are

mobile. A most commonly known proactive routing protocol for ad hoc networks is the

Destination-Sequenced Distance Vector (DSDV) protocol [16].

The DSDV protocol uses a packet sequence number to identify freshness of route infor-

mation. Each node is responsible to maintain its own routing table. Periodically, routing

update packets are sent to all neighbors. For each routing update packet created, the se-

quence number is typically increased to make sure that the packet is the latest routing update

packet.

2.1.2.2 Reactive Routing Reactive routing, also called on-demand routing, creates a

route only if there is a packet to be sent to a particular destination. In this case, it is not

necessary for an ad hoc node to update its routing table periodically. Thus, reactive routing

is suitable for a highly dynamic ad-hoc network (e.g., high mobility) since the network

topology could be changed dramatically and the routing protocol must adapt to the changes

quickly. Nevertheless, this approach has a certain amount of delay that arises due to the

setting up a route before any packet transmission. Examples of reactive routing protocols

are Dynamic Source Routing (DSR) protocol [17] and Ad hoc On-Demand Distance Vector

(AODV) routing protocol [18].

In the DSR protocol, when a node has a packet to send (and if it does not have a

route in its route cache for the destination under consideration), it will broadcast a route

request (RREQ) packet to its neighbors. Neighbor nodes must append their own address

in the RREQ packet and rebroadcast the RREQ packet to their neighbors. Finally the

RREQ packet is received at the destination and the intended destination node will send

a unicast packet (a route reply (RREP)) back to the sender over the reverse path of the

source route information that is recorded in the RREQ packet that it receives. To enhance

the performance of DSR protocol, additional mechanisms are used to learn new routes by

operating in a promiscuous mode to overhear any communications within its range as well as

snooping route reply (RREP) packets and then adding a new source route to its routecache.

This could save time and traffic overhead to send a route request in later communications.

AODV takes advantage of both DSR and DSDV protocols. It operates in an on-demand
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fashion similar to DSR and uses a sequence number and a routing table similar to DSDV.

When a sender has a packet to send, it will search its routing table for a route record to

the intended destination that has not expired. If a route record exists, it will send a packet

directly to the designated neighbor which is the next hop to the destination. If there is no

route record, it will broadcast a Route Request (RREQ) packet to its neighbors. When an

intermediate node receives this packet, it updates its routing table with the sender ID, which

is its current neighbor, and then rebroadcasts the packet to its neighbors. When an intended

receiver receives the RREQ packet, it checks the sequence number in the RREQ packet. If

this packet has a higher sequence number than was previously observed, this RREQ is a

fresher packet. The receiver notes the new sequence number. Then, it sends a Route Reply

(RREP) packet back to the sender.

Typically, the AODV packet has a smaller packet header than DSR since each inter-

mediate node has its own routing table and there is no source route information in each

packet header. In addition, it generates lesser traffic than DSDV since nodes do not have to

maintain routing records to all nodes in the network and simply maintain routing records

for destinations that are currently of interest.

In this dissertation, we use DSR as the routing protocol since it readily provides infor-

mation about all nodes that are along a route from a source to the destination. The work is

general, in that other routing protocols can also be considered for this work, but will need

modification to enable nodes to obtain the necessary information related to nodes on the

path to the destination.

2.2 LITERATURE REVIEW OF MITIGATION OF THE IMPACT OF

MISBEHAVING NODES IN WIRELESS AD HOC NETWORKS

Misbehaving nodes are nodes that do not perform normal node operations as previously

discussed in Chapter 1. They do not conform to normal operation and can cause network

performance degradation. In order to mitigate the impact of misbehaving nodes, several

mechanisms are proposed to solve the problem. The proposed works to mitigate the impact
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Figure 2.1: Misbehaving Node Mitigation Summary

of misbehaving nodes can be categorized into selfish node and malicious node mitigation

as summarized in Figure 2.1. In this chapter, mitigation of packet dropping attacks is the

focus. However, this attack behavior is similar to a selfish node behavior and the selfish node

mitigation is explained along with the malicious node mitigation.

2.2.1 Selfish Node Mitigation

Many research works contribute to selfish node mitigation in ad hoc networks. The

proposed mechanisms can be categorized into two approaches namely (i) incentive-based

approaches, and (ii) reputation-based approaches. An incentive-based approach aims on

discouraging a node from becoming selfish. A reputation-based approach aims on detecting

a selfish node and responding with appropriate action.

2.2.1.1 Incentive-based mechanisms In the incentive-based approach, a currency-

based or an incentive mechanism may be applied. Senders or receivers must pay for packets
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to be forwarded using virtual money or credits [19, 20, 21, 22, 23, 24, 25]. This mechanism

encourages a node to participate in packet forwarding activities. If a node does not forward

packets of others, it may not collect enough credits to send or receive its own packets.

Buttayan and Hubaux proposed the use of virtual currency, called nuglets [19]. When

a node forwards a packet for others, a nuglet counter of that node is incremented by one.

When a source node wants to send a packet, it must have enough nuglets (e.g., more than the

number of intermediate nodes required to reach a destination). If a source node has enough

nuglets, it can send packets. Otherwise, it must first collect more nuglets by forwarding

packets from other source nodes. A tamper proof device must be used to maintain the nuglet

counter. Miranda, et al. proposed an algorithm to discourage selfish behavior by keeping

track of each neighbor’s state. Three states – friend, foe or selfish are used [20]. Each node

continuously monitors its neighbors’ behavior and periodically exchanges a control message

containing every neighbor’s state information with its neighbors. Upon receiving a control

message, each node updates its neighbor’s state information as specified in the proposed

algorithm. Even though, a decentralized algorithm is used to avoid complicated payment

schemes, the overhead is still high due to periodic broadcasting of control messages by every

node within the network.

Zhong proposed “Sprite”, a simple cheat-proof credit-based system, for use in a central-

ized manner [21]. In the Sprite mechanism, a node will keep the “record of receipt” at the

reception of a packet. From time to time, a node must report the recorded information to

a Credit Clearance Service (CCS), to determine the amount of charges or credits to every

node involved in the packet transmissions.

Raghavan, et al. proposed a priority forwarding mechanism for “self-interested” nodes

to participate in packet forwarding [22]. Packet forwarding is classified into priced priority

forwarding and unpriced best-effort forwarding. A node that forwards priority packets will

receive credits. Each node will be charged, from the credit account, a certain price in order

to send priority packets. Nodes may send packets with no charge using a best-effort mode.

This scheme tries to motivate each node to forward priority packets to gain more credits for

their own packets. A node with no credits can also send packets but other nodes treat its

packets with best-effort forwarding only.
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Crowcroft proposed to use congestion prices, i.e., bandwidth and energy, for modeling

of an incentive scheme [23]. The proposed mechanism deploys directional wireless antennas

to send packets through multiple routes to a destination. Power and bandwidth prices are

dynamically adapted using a rate control model in [26] and it operates in a distributed

fashion. Specifically, each node updates its prices based on current power and bandwidth

usage.

Focusing on fairness as well as collaboration, the Fee Arbitrated Incentive Architecture

(FAIR) is proposed [24]. The term fairness here means that the amount of benefits that a

node will receive is proportional to the amount of contribution that a node makes towards

network operation. The node must collaborate to help other nodes route packets to their

destinations in order to send its own packets. Feedback schemes are proposed to dynamically

adjust the FAIR performance. Three resource constraints, including energy, bandwidth and

processor constraints, are used in performance optimization.

Typically, a motivation-based approach uses a per-packet-based approach to model the

credit or incentives, but Zhang proposed a Secure Incentive Protocol (SIP) that uses a

session-based approach [25]. However, SIP assumed the use of a tamper-proof module,

similar to the work in [19]. In the SIP protocol, a session initiator and a session responder

(a source-destination pair) will be charged for a service and intermediate nodes are rewarded

with credits when they forward packets for a source-destination pair. SIP consists of three

phases, i.e., Session initialization phase, Data forwarding phase and Rewarding phase. Each

intermediate node is awarded a number of credits based on the number of forwarded packets.

Asymmetric key cryptography is used for securing the protocol from credit fraudulence and

other attacks.

Normally in an incentive scheme, a source node does not know the exact price to pay for

sending a packet but Hauspie and Simplot-Ryl proposed to use a virtual money mechanism

over a route discovery protocol for a source node to know the exact price to be charged for

each packet sent on a route [27].

The proposed works described above attempt to solve the problem of selfishness by

means of algorithms that motivate a selfish node to forward packets. A game-theory model

can be applied to this problem assuming that the nodes are rational. Each node tries to
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maximize its own benefits or utility (for example, throughput and energy). Formal game

theoretical models have been proposed to motivate a selfish node to forward packets in order

to optimize the throughput perceived at each node as well as to motivate it to cooperate.

Various proposed mechanisms use different game strategies based on different design goals.

Srinivasan proposed to use a Generous TIT-FOR-TAT (GTFT) strategy in an acceptance

algorithm which is used to determine whether to accept or reject a relay request at each node

in order to optimize the network throughput [28].

Eidenbenz proposed connectivity and reachability games for topology control games in

static ad hoc networks [29]. In this work, a node must choose its radius to reach a destination

and the choice of radius is a strategy. Urpi modeled a forwarding strategy using a Bayesian

game for a frame level cooperation depending on their energy level [30].

Anderegg proposed a new routing protocol, called Ad hoc-VCG, to guarantee the dis-

covery of the most cost-effective route [31]. It is a reactive routing protocol with the design

objective of truthfulness. This protocol is robust against a single cheating node but it may

fail in a scenario when two or more selfish nodes cooperate in maximizing their total pay-

ments because they can collaborate in an overpriced payoff.

Ileri proposed a pricing algorithm to encourage node forwarding by reimbursing for-

warding based on user-and-network centric incentive mechanisms [32]. The objective is to

maximize network and utility in bits per joule with the prices of channel use, reimbursement

forwarding, transmitter power control and forwarding and destination preferences.

Cai proposed a CAP-SV protocol (Contribution rewArd routing Protocol with Sharpley

Value) [33]. In CAP-SV protocol, a payment scheme uses Sharpley-Value, a well-known

concept in game theory, to allocate pay-off for each node. The same authors proposed

another protocol, called Transmission power rEcursion Auction Mechanism (TEAM) routing

protocol, to motivate selfish nodes to focus on transmission power efficiency and truthfulness

[34]. TEAM is designed to optimize the aggregate transmission power between a source and

a destination. It shows a significant message complexity improvement over the Ad hoc-VCG

protocol.

Zhong proposed integration of game theory with routing and cryptographic techniques

towards a secure and incentive routing protocol [35]. The key idea is that the link cost is
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determined by two nodes in order to charge an appropriate price without cheating, and the

protocol uses hash chains to deliver payments securely.

Eidenbenz proposed a COMMIT protocol based on VCG payment scheme [36]. In COM-

MIT protocol, a sender must commit for a maximum affordable payment before the request

is processed. If a network can accept the offer, then, a sender can send a packet. Marbach

proposed to use game theory for relaying data packets in the scenario where a node is allowed

to freely determine the price and bandwidth usage for both its own and others’ traffic [37].

Bandyopadhyay proposed to use a repeated game for each packet to model the coop-

eration problem [38]. In each stage of the game, a node can choose to cooperate or not

cooperate but it will be punished if it does not cooperate for several stages, called a ”pun-

ishment” phase. However, if it decides later on to cooperate, it has to forward packets for

others for several stages, called a ”parole” stage and after that other nodes will forward its

packets in a ”rehabilitation” phase.

In summary, these proposed incentive algorithms aim towards solving the cooperation

problem in ad hoc networks but they also introduce complexity in ad hoc nodes. Huang,

et.al. suggested that a motivation-based approach is complex and should be used only for

specific applications rather than general applications [39].

In addition, incentive schemes may not be fair to all nodes, especially nodes located at

the edge of a network, since some nodes may not get enough credits to send their own packets

when they do not have much chance to forward packets for others being located at the edge.

The cooperation problems are modeled as mathematical models using game theory. However,

most models are based on several assumptions which may not be practically feasible in a

real ad hoc network. Moreover, the complexity, need for tamper-proof chips, etc. of this

approach are key issues which makes it impractical for use in a real network.

2.2.1.2 Reputation-based mechanisms A reputation-based mechanism usually uses

a reputation system in order to detect and rate a selfish node. Reputation can be defined

as the performance of a node participating in the base protocol as seen by others [40]. A

node’s reputation is used to decide whom to trust and to encourage every node in a network

to be trustworthy. Typically, a selfish node (or malicious node) may drop data packets to
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preserve its energy (or harm the network performance). A detection mechanism will use the

statistics of non-forwarded packets at each node to determine whether a node is a selfish (or

malicious) node.

Wireless ad hoc networks use air as the communications medium where signal typically

propagates in all directions due to the use of omnidirectional antennas. Therefore, if two

nodes are within communications range, they can communicate directly to each other. A

passive acknowledgement (PACK) technique uses this property wherein a node overhears its

own packet being forwarded by its neighbor since all neighbors must be within range. The

“Watchdog” mechanism [10] was proposed to be used over the DSR routing protocol. It

monitors all neighbors’ behavior by operating in a promiscuous mode. A sender listens to

its neighbors and keeps counting the number of non-forwarded packets in order to detect

whether its neighbor forwards recently received packets or not. If the counter is over a

threshold limit, it will report to a pathrater mechanism. After the detection phase, the

“Pathrater” mechanism [10] is used in a response phase to evaluate each path to ensure that

packets from a sender to a receiver are forwarded through the most reliable path, or a path

with a high-rating.

There is no punishment action in Watchdog/Pathrater directed towards a selfish node.

Simulation results show that the detection-based approach gives a throughput of 82% while

with a normal DSR protocol the throughput is 68% in a scenario where mobile nodes have

a 0 pause time and 40% of nodes are selfish. A major drawback of this mechanism lies in its

battery power consumption since every node has to constantly listen to the medium [41].

“CORE”, a collaborative reputation mechanism [11], is proposed that uses “Watchdog”

as the monitoring mechanism. A reputation table is created at each node to keep track

of reputation values of other nodes. Only positive rating factors can be distributed among

nodes since a selfish node may send false negative rating factors to other nodes and may

cause disruption of the reputation system. This mechanism devises a penalty action towards

a selfish node by denying all services given to it. Michiardi proposed the use of cooper-

ative game and non-cooperative game approaches to evaluate the effectiveness of CORE

mechanism to detect and rate neighbors for their reputation [42].

Another proposed reputation mechanism is “CONFIDANT”, Cooperation Of Nodes:
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Fairness In Dynamic Ad-hoc NeTworks [12]. CONFIDANT has four main components

namely a monitor, a reputation system, a path manager, and a trust manager. These com-

ponents are required to be implemented in every node. Each node monitors its neighbors

by listening to the transmission of the next node or by watching routing protocol behavior.

A trust manager is used to manage ALARM messages, which are sent when a misbehaving

node is detected. The reputation system is used to rate every node in a network. A path

manager is responsible to rank a path according to a security metric, e.g., reputation of

the node in the path and to get rid of any path containing a selfish node. In addition, a

path manager will penalize a selfish node by denying all services to it. Through a study the

protocol performance, the authors showed that the throughput given by CONFIDANT in a

scenario when a third of nodes behave selfishly is very close to the throughput of a normal

network condition without selfish nodes.

“CineMA”, Cooperation Enhancement in MANETs, is proposed to respond to a selfish

node by limiting the number of packets forwarded by it [43]. CineMA uses the same penalty

scheme as in CORE and CONFIDANT. Unlike CORE and CONFIDANT, CineMA only

needs a group of nodes to perform necessary functions. It consists of three main modules

including a Watchdog module, a reputation system module, and an interface queue module.

A Watchdog module performs system monitoring to collect information. A reputation sys-

tem uses collected information to determine the level of cooperation based on the number

of received packets and the number of forwarded packets. These values are also used, at the

interface queue module, to limit the amount of packets which a selfish node is allowed to

transmit. CineMA requires the use of a cryptographic mechanism to ensure secure commu-

nications among all nodes implementing CineMA functions. Although, overall throughput

and performance of CineMA have not been proven, a major advantage of CineMA is that it

can limit the sending rate of a selfish node.

All previous works discussed so far use Watchdog mechanism as a major part of the

protocols. The watchdog mechanism itself has several weaknesses, i.e., ambiguous collisions,

receiver collisions, inability to detect packet drops using limited transmission power, false

misbehavior, collusion and partial dropping [10].

Therefore, a “TWOACK” mechanism [44],[45] is proposed in replacement of the Watch-
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dog mechanism and it is a network-layer acknowledgement-based scheme that can be added

to any source routing protocol. TWOACK mechanism can guarantee that a data packet has

reached a node two hops away. A TWOACK acknowledgement packet is introduced to notify

a node that a sent packet is forwarded to a node that is two hops away. If the node does not

receive any TWOACK packets within a specific timeout period, a counter is incremented by

the number of non-forwarded packets. If a selfish node is detected, a route error (RERR)

packet will be sent back to the source node. Other nodes can overhear RERR packets and

keep a record of a selfish node such that a path through such a node will be avoided. The

study shows that in a scenario when 40 percent of nodes behave selfishly, TWOACK deliv-

ers throughput of 85-90% while regular DSR without a selfish node delivers a throughput

of only 70-75%. This, however, requires additional transmissions (the TWOACK) for ev-

ery transmitted packet which incurs additional energy penalty compared to the Watchdog

mechanism.

Table 2.1 summarizes all detection based mechanisms proposed in the literature.

Table 2.1: Reputation-based Approach Summary - Selfish Node Mitigation

Literatures Based Highlights Detection
Protocol Functionality

Watchdog [10] DSR • Using watchdog mechanism and avoid using
a selfish node in a path

All nodes

CORE [11] All • Using weighted average rating to combine
direct and indirect reputations

All nodes

• Only positive reputation is exchanged
• Selfish node is isolated upon detection

CONFIDANT [12] DSR • Using weighted average rating to combine
direct and indirect reputations

All nodes

• Alarm is sent upon detection
• Selfish node is isolated from network

CineMA [43] DSR • Use number of received and forward packets
as level of cooperation

Some nodes

• Limit the network usage upon detection
TWOACK [44] DSR • Using TWOACK packets to guarantee for-

warding packets in two hops
All nodes

• Avoid using a selfish node path
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2.2.2 Malicious Node Mitigation

Malicious node mitigation can be classified into two categories: (i) prevention and pro-

tection, (ii) detection and response. A prevention mechanism guards against a malicious

node’s attack by applying cryptographic mechanisms such as encryption and authentication.

However, it cannot guard against insider attacks. A detection and response mechanism

detects misbehavior activities and responds to an attack.

In this dissertation, the main focus is on addressing detection and response mechanisms

as well as their impact on overall performance of an ad hoc network.

2.2.2.1 Protection Mechanisms A protection mechanism applies cryptographic tech-

niques to secure communications over an ad hoc network in order to prevent any malicious

activity. Most research works focus on securing a routing protocol which is a key component

for a wireless ad hoc network to operate properly. The two most important security services

for a secure a routing protocol are authentication and data integrity services. Various types

of secure routing protocols can be classified, based on the usage of cryptographic techniques,

into three categories including (i) usage of secret key cryptography, (ii) usage of public key

cryptography and (iii) usage of both secret key and public key cryptography. A summary of

protection mechanisms is shown in Table 2.2.

1. Using Secret Key Cryptography :

A secure routing protocol uses secret key cryptography to protect the routing information

through the means of encryption. When secret key cryptography is applied, a secret key has

to be pre-shared or distributed off-line before a secure communication can be established.

Each node will then use a secret key during a communication session with the other party.

Such secret keys can also be used to establish trust relationships, but key distribution will

be expensive here.

Typically, in secure routing over an ad hoc network, authentication is more important

than confidentiality. For this reason, Perrig, et. al., proposed a broadcast authentication

protocol called Time Efficient Stream Loss-tolerant Authentication protocol (TESLA) [46].

In TESLA, each packet is signed using a secret key. Then, the key will be disclosed within
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a specific time interval. Therefore, any node can validate all packets received during that

time interval. This scheme required that all nodes must maintain time synchronization. In

this case, a secret key has to be shared between a sender and a receiver.

TESLA has been used in various ad hoc routing protocols including Ariadne based on the

DSR protocol [47] and Secure Efficient Ad hoc Distance Vector (SEAD) based on the DSDV

protocol [48]. In addition, TESLA can be applied to guard against a strong attack, called a

wormhole attack using Packet Leashes [3], which adds information, e.g. synchronized clock,

to each packet to restrict the maximum travel distance of a packet.

Although, TESLA can securely protect against a malicious attack, it is considered not

practical because time synchronization among all independent ad hoc nodes is very difficult

to achieve.

Another approach, called A Secure Routing Protocol (SRP) [49], proposed to use a

Message Authentication Code (MAC) for verification of packet authenticity. Typically, the

MAC is added to secure the header field of existing on-demand routing protocols.

2. Using Public Key Cryptography

Public key cryptography is applied for data and identity authentication using a digital

signature. Before sending out a packet, a sender node must sign a digital signature using

its private key. Then, any node can, later, verify authenticity of a received packet using a

sender’s public key. It is assumed that public keys of all participating nodes must be known

in advance. Therefore, a Certificate Authority (CA) or PGP-like key distribution is required

for a public key distribution.

Secure routing protocols that use public key cryptography include Authenticated Routing

for Ad hoc Network (ARAN) [50, 51], Secure Link State Routing Protocol (SLSP) [52], Secure

AODV [53], AODV-S [54], SecAODV [55], Security-aware Adaptive DSR Protocol (SADSR)

[56], and Secure DSR (SDSR) [57].

Generally, public key cryptography is computational intensive [58] and may not suitable

for resource-limited devices.

3. Using both Secret Key and Public Key Cryptography :
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Another proposed approach applies both secret key and public key cryptography for a

secure communications. Secret key cryptography is used for a secure routing information

exchange and public key cryptography is used for message and identity authentication as

well as secret key distribution.

Both secret key and public key cryptography are suggested to be used in several protocols.

Bhargava [59] and Awerbuch [60] proposed to use secret key cryptography for confidentiality

and public key cryptography for authentication. This approach combines advantages of

both cryptography techniques. However, it still requires a high computational capability

and consumes the battery power in all ad hoc nodes.

Table 2.2: Protection Mechanism Summary - Malicious Node Mitigation

Security Mechanism Literature Based Routing Protocol
Secret Key Ariadne [47] DSR
Cryptography SEAD [48] DSDV

Packet Leash [3] -
SRP [49] Reactive

Public Key ARAN [50][51] Reactive
Cryptography SLSP [52] Proactive

SAODV [53] AODV
AODV-S [54] AODV
SecAODV [55] AODV
SADSR [56] DSR
SDSR [57] DSR

Both EADM [59] AODV
ODSBR [60] Reactive

2.2.2.2 Detection and Response Mechanisms Detection-and-response mechanisms

are used whenever a prevention mechanism fails. The failure could occur due to a security

breach by a malicious attacker or a misbehaving insider. Therefore, a detection mechanism

is necessary to secure a network against such attacks as well as minimize magnitude and

scope of a successful attack.

Detection mechanisms can be classified based on detection analysis into three categories

including (i) anomaly-based detection, (ii) specification-based detection and (iii) signature-

based detection.
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1. Anomaly-based Detection

Much of the literature uses anomaly-based detection for intrusion detection mainly be-

cause the mobility characteristic of an ad hoc network makes it difficult for specification-based

and signature-based detections to accurately detect an intrusion.

Patcha [61] proposed an extension to the Watchdog scheme to detect colluding nodes

or a wormhole attack and improve the performance of a watchdog scheme. The proposed

mechanism classifies ad hoc nodes into two types: ordinary nodes and trusted nodes. Or-

dinary nodes perform all regular activities. Watchdog functions are implemented only in

trusted nodes. In actual implementation, an extension to AODV protocol must be done

to support new packet types. In addition, three threshold counters must be maintained at

nodes implementing Watchdog functions.

In the Watchdog scheme itself, detection of misbehaving nodes relies only on a passive

acknowledgement hearing from neighbor nodes. Therefore, information collected may take

sometime in order to determine misbehaving nodes. Overall, the Watchdog detection rate

can be low.

Overseeing this problem, Kargl [9] proposed a Mobile Intrusion Detection System (Mo-

bIDS) scheme to be used over the Secure DSR (SDSR) protocol [57]. The main goal of

MobIDS is to improve the detection rate. MobIDS sensors collect information from both

an activity-based overhearing mechanism or a Watchdog mechanism and probing packets.

Each node has to listen to the wireless channel and send probe packets to detect an attack.

Therefore, this mechanism requires more memory and processing power at each node.

Another detection mechanism is proposed by Medidi, et.al. for improvement over pre-

viously proposed mechanisms to detect a packet dropping attack by correlated inter-layer

information [62]. A detection manager is implemented at a source node. Two main modules

are required including a data collection module and a data analysis module. The data col-

lection module will collect local information, e.g. DSR route request, route error messages,

ICMP time exceed and TCP time-out. Only useful information is then extracted and fed into

a data analysis module. This detection mechanism is shown to effectively detect an attack

and the false positive rate is low. However, keeping a record of data required consumes a

large amount of memory as well as processing power to analyze all data.
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A distributed probing technique is proposed to detect a malicious packet dropping attack

[63]. Probing packets are sent regularly to various destinations. At the reception of a probing

packet, a node must respond. If a node does not respond to the probing packets, it will be

regarded as a malicious node. After detection, a new path must be chosen in order to

avoid using the path passing through a malicious node. The author also suggested the use

of cryptographic techniques to secure probing packets. The disadvantage of the probing

technique is the high overhead due to the distribution of probing packets.

Wang [64] proposed an intrusion detection technique to identify “a false destination

sequence number attack”, where a malicious node sends a higher sequence number than

a normal sequence number for the destination such that it will then use the fake routing

information. Typically, DSDV or AODV routing protocols are vulnerable to such attack since

both protocols use a sequence number to determine freshness of routing packets received. In

this technique, a sender node keeps monitoring a route request packet broadcasted back in

order to detect whether a sequence number in the route request packet has been modified.

Patwardhan [65] proposed an intrusion detection mechanism for SecAODV [55], based

on threshold-based anomaly detection, to detect a data packet dropping attack, which drops

all data packets but forwards routing packets. Operations of the proposed mechanism uses

the Watchdog mechanism and counts the number of non-forwarded packets until it is reaches

a threshold.

Overall, all of the above proposed mechanisms use simple algorithms to detect a malicious

node. More complex algorithms used in detection mechanisms will be presented next.

A Sinkhole Intrusion Detection System (SIDS) [66] is proposed to detect a sinkhole or a

blackhole attack in DSR protocol. Three parameters are introduced including (i) sequence

number discontinuity or duplication, (ii) previous image ratio, and (iii) route add ratio. A

sequence number discontinuity is an average value of differences between the current and the

last sequence numbers at every node.

The previous image ratio is a ratio of the number of verified images to the number of total

images received. The number of verified images is the number of route-broadcast packets

received at a node from a certain neighbor that can be traced and verified to the earlier

broadcast packets transmitted by other nodes having the same source-destination, sequence
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number and with appropriately inserted route records.

A route add ratio is the ratio of the number of routes passing through a node to the

number of routes added to the node’s routing table. SIDS uses fuzzy rules to determine

thresholds for the above parameters in order to detect a sinkhole attack. Specifically, appro-

priate thresholds can be assigned through a system training process to learn normal behavior

as well as sinkhole behavior of each network topology. SIDS has shown to give high detection

accuracy with zero-percent false-positives. Nonetheless, it may not be practical for a rapidly

deployed ad hoc network due to the overhead in the training process.

Huang [67] proposed automatically constructing anomaly detection models by using a

data mining method that uses cross-feature analysis to capture the inter-feature correlation

patterns in normal traffic. Features are constructed from route related features, (e.g., route

add count, route remove count, route find count) and traffic related features, (e.g., packet

type, flow direction). By collecting the information from normal traffic, the feature patterns

are used as normal profiles for detecting an attack. The proposed work aims to efficiently

detect a blackhole attack and a selective packet dropping attack.

Zhang [68] proposed to use anomaly detection models by using information from the

routing protocols, i.e., percentage of changed routes (PCR) and percentage of changes in

sum of hops of all the routes (PCH). In the training process, these values are collected to

create a normal profile, which is used for comparing with current activity to detect an attack.

The authors suggested to use GPS to provide location and velocity of nodes for local data

sources. It is not easy to have GPS in all nodes in practical networks.

Awerbuch et.al. [69] proposed a new versatile protocol called ODSBR protocols which

can detect several types of attacks, i.e., a black-hole attack, a flood rushing attack, and a

Byzantine wormhole attack. ODSBR protocol is a source routing protocol that uses end-to-

end acknowledgements from a destination to detect the presence of a blackhole attack. After

the number of lost packets is over a threshold, ODSBR enters a probing mode to detect the

location of the attack. The protocol also performs a hop-by-hop authentication and integrity

checking of route discovery packets to prevent the flood rushing attack. A wormhole attack

appears to the protocol as a failure link between two nodes. If it is detected, a wormhole

link weight will be increased in order to avoid the link. The performance is significantly
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improved over AODV routing protocol. However, it also introduces a high overhead to the

routing protocol.

Gonzalez et.al. [70] proposed a new detection algorithm to detect a misbehaving node,

which does not forward data packets by using a flow conservation principle. They claimed

to solve the weakness of the watchdog mechanism by using information from the neighbors

of an analyzed node, instead of overhearing the transmission. The algorithm generates more

overhead to the network for detection but the result does not show comparison with other

works.

2. Specification-based Detection

Tseng proposed a specification-based intrusion detection system for AODV [71]. There

are two types of nodes, a regular node and a network monitor node. The network monitor

(NM) nodes are nodes that detect incorrect RREQ and RREP messages using a finite state

machine (FSM). The NM nodes are distributed within the network and will listen and keep

the last received RREQ and RREP messages for source and destination nodes in a tree-like

structure to ease the tracking of an attack.

AODV Extended Finite State Automaton (AODV EFSA) [5] also applies the same tech-

nique using a finite state machine to keep track of events in order to detect misbehav-

ior activities. Specification-based detection is also suggested to be used together with an

anomaly-based detection to effectively detect many types of attacks in an ad hoc network.

However, it introduces high complexity in the implementation.

3. Signature-based Detection

A signature-based detection called AODVSTAT [72] applies a State Transition Analysis

Technique (STAT), which was developed in a wired network, for attack detection in AODV

routing protocol. In STAT, an attack signature is described by a sequence of actions that

an attacker performs to compromise system security. AODVSTAT uses sensors to perform

a stateful analysis of packet streams to detect signs of intrusion. AODVSTAT can detect

one-hop and distributed attacks to AODV routing protocol with low false-positive rates.

Table 2.3 summarizes the detection mechanisms that have been currently proposed in
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research community.

Table 2.3: Detection Mechanism Summary - Malicious Node Mitigation

Literature IDS type Based Protocol All Nodes? Detected Attacks
Patcha [61] Anomaly AODV Some - Blackhole

- Warmhole
MobIDS [9] Anomaly SDSR All - Blackhole
Medidi [62] Anomaly DSR Source - Blackhole
Just [63] Anomaly DSR Some - Blackhole
Wang [64] Anomaly DSDV, AODV Senders - False destination sequence
Patwardhan [65] Anomaly SecAODV All - Blackhole
SIDS [66] Anomaly DSR All - Blackhole
Huang [67] Anomaly AODV, DSR All - Blackhole

- Selective packet dropping
Zhang [68] Anomaly AODV, DSR All - Packet Dropping

- Routing Modification
ODSBR [69] Anomaly Source routing all - Blackhole

- Flood rushing
- Byzantine wormhole

Tseng [71] Specification AODV Some - Route modification
- Spoofing
- Dropping

AODV EFSA [5] Specification AODV All - Flooding
and Anomaly - Route Modification

- Rushing attack
- Dropping (data+routing)

AODVSTAT [72] Signature AODV Some - Spoofing
- False sequence number
- Dropping packets
- Resource depletion

2.3 LIMITATION OF CURRENT WORK

To mitigate the selfish or malicious node problem in ad hoc networks, specifically packet

dropping attacks, two approaches are proposed – incentive-based approach, and reputation-

based approach. Each proposed approach aims to either effectively detect packet dropping

nodes or motivate all nodes to cooperate in forwarding data packets for others.
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However, Huang, et al. claimed that incentive or motivation-based approaches are still

in a developing stage and perhaps cannot be used publicly yet [39]. A reputation-based

approach faces problems with how a reputation value is defined and calculated, how to

detect disreputable behavior, and how to distribute the reputation information [73]. In

addition, a reputation-based approach has been shown to be effective only in a static ad hoc

network environment [74]. Moreover, a trust relationship has to be set up between every

pair of nodes. This is because, when a node updates reputation values, a message must be

sent to inform its neighbors. Without a trust relationship assumption, a malicious node can

falsify a reputation value and cause corruption in the reputation system [13].

For the IDS system, most of the proposed works require a detection function to be

implemented in every node. However, an ad hoc node may be a small and resource limited

device. It is not computationally efficient and not practical to deploy detection functions in

each node.

In this dissertation, the Cop mechanism is also proposed to detect malicious or selfish

nodes that perform packet dropping attacks using only a few special nodes, called Cop

nodes. Each node only trusts Cop nodes, not its neighbors. The Cop mechanism is an

adaptation of the watchdog mechanism that reduces the number of detecting nodes and

introduces opportunistic detection. The Cop mechanism has several advantages. First, the

Cop is simple but yet effective in detecting a malicious node accurately (as we show later).

Secondly, only a small modification is required in regular nodes. Trust relationships need

be maintained only with Cop nodes and not between all pairs of nodes. However, it is not

the best solution for all scenarios. Therefore, trade-offs between the Cop and Watchdog

mechanisms are studied in this work.
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3.0 SYSTEM MODELS AND EXPERIMENTAL DESIGN

From a review of the research literature, we see that a malicious node can degrade the

throughput performance significantly (although systematic analysis or simulation is lacking

in the research literature). A simple solution to mitigate the problem of packet dropping

attacks is to use a watchdog mechanism as proposed in [10]. However, a new mechanism is

called a Cop mechanism is proposed here to help save the energy consumed by deploying

the detection function in every node by assigning only a few special nodes for the detection

function. The Cop mechanism also reduces the number of trust relationships necessary and

is motivated by the general concept of introducing heterogeneous nodes in ad hoc networks.

Other nodes in the network that employ the Cop mechanism for detection are regular nodes

without any detection function. Watchdog and Cop mechanisms can improve the overall

network throughput by detecting malicious nodes and in the case of the Cop, perhaps assist

nodes in forwarding packets that were otherwise dropped.

In the watchdog architecture, two types of nodes are considered. The first type is a

regular node with a built-in watchdog mechanism to detect its neighbors’ activity. The

second type is a malicious node, which drops all data packets but responds to all routing

information exchange. In order to save energy in the watchdog mechanism, it is possible to

allow all nodes to perform the detection function with a duty cycle, that is for x% of the

time. The result from this scheme will be shown in Chapter 5.

In the Cop architecture, there are three types of ad hoc nodes. The first type is a regular

node, which is responsible for exchanging routing information and sending or forwarding data

packets to a destination. The second type is a Cop node, which is responsible for listening to

the wireless channel and detecting deviant behavior of other nodes. If a misbehaving activity

is detected, a Cop node will send out alarm messages to its neighbors and also the sender
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node. The Cop node optionally helps forwarding packets for a regular node. The third type

is a malicious node, which is similar to the malicious node in the watchdog architecture. The

numbers of Cops, malicious nodes, and regular nodes can be different, as also the nature of

their placement and movement in the network.

3.1 ASSUMPTIONS

In Cop and Watchdog implementation, the following assumptions are applied.

1. Trust Relationship

- In Watchdog implementation, all nodes trust their neighbors.

- In Cop implementation, all nodes trust only Cop nodes but need not trust their

neighbors.

2. Behavior

- All Cop nodes always have good behavior and have higher energy than regular nodes.

3. Wireless Channel

- There is no wireless channel error. All nodes use omni-directional antennas for bi-

directional communications.

3.2 REGULAR NODE MODEL

A regular node must be slightly modified to accommodate operations of the node func-

tioning as Cop. When a regular node receives an alarm message from Cop, it checks route-

cache information and removes all paths that contain a malicious node. Additionally, it

forwards the packet back to a source node, which will respond by finding a new path not

passing through the malicious node. The source node has to be alerted in order to update

the source route information for the next data packets to be sent. At the receiving of an

alarm message, a regular node creates a badnode table to record a malicious node’s address.

A regular node will ignore any routing information exchange with all malicious nodes listed
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in the table. The operation of a regular node is explained in a diagram as shown in Figure

3.1.

Regular Node Activity

Initialization

Receive

Alarm ?

Record Selfish Node ID

Remove all path that 

includes the Selfish Node 

ID

No
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Receive

RREQ/

RREP?

Drop RREQ/RREP 

packet

Sender = 

Selfish  

node ?

Yes

Yes

No

No

Send Alarm back to 

Source

Figure 3.1: Regular Node Diagram

3.3 MALICIOUS NODE MODEL

One of the functions of a malicious node is regular routing information exchange with

its neighbors to set up a route to a destination. Another main function is to drop all data

packets that pass through it. In addition, it will also drop all alarm messages in order to

protect itself from other nodes. The selfish node model is shown in Figure 3.2.
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Figure 3.2: Malicious Node Diagram

3.4 WATCHDOG MODEL

A basic Passive ACKnowledgement (PACK) detection mechanism, called watchdog, is

studied for comparison with the Cop mechanism. In the watchdog mechanism, all nodes are

required to implement watchdog algorithm for malicious node detection. After finished the

transmission, each sender or forwarder continues listening to the wireless channel to check

whether its next hop neighbor forwards the packets onward to the next node or not. If its

neighbor does not forward the received packet within a time-out period and the number of

non-forwarding packets is over a maximum threshold, it will send an alarm message to a

source node. After receiving an alarm message, a source node will find a new route which

does not pass through the malicious node. Note that each node only keeps track of its own

packets from its neighbors. The pseudo code of watchdog mechanism is shown in Figure 3.3.

An energy saving scheme for the watchdog mechanism is to perform the detection function

(i.e., listening to see if its own packets are forwarded) x% of the time, (for e.g. 50%).
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/* Watchdog Pseudo-code */

if sender/forwarder overhears a data packet
{

if expected packets
{

recorded as a forwarded packet
status(nexthop) = good

}
if sent packets Time-Out
{

if count(non-forwarded pkt) > threshold
{

if status(nexthop) != good
{

send alarm packet to source
status(nexthop) = malicious

}
}

}
}

Figure 3.3: Watchdog Pseudo code
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The algorithm is changed by adding a timer check for the detection function to work as

it is designed. When the detection function is off, all nodes simply perform regular node

functions. When the detection function is on, all nodes detect their neighbor activities for

a malicious node. This mechanism can save the energy but it could increase the detection

time to detect a malicious node.

3.4.1 Watchdog Parameters

Two parameters are important for the watchdog mechanism. The first parameter is

the maximum threshold and the second parameter is the time-out. The maximum threshold

depends on the data rate in the network. The time-out is used for avoiding a false accusation

of a regular node. The relationship between the watchdog parameters and the data rate is

shown in Chapter 4.

3.5 COP NODE MODEL

The Cop architecture is implemented over the DSR routing protocol using ns-2 network

simulator version 2.30. Initially, one ad hoc node acts as Cop which can detect and respond

to a malicious node. Specifically, the Cop keeps moving around within a network area in

order to find a malicious node. Note that a Cop can optionally help forwarding packets to

its neighbors. While moving, the Cop listens to the wireless channel in a promiscuous mode

and keeps records of overheard data packets. The Cop will keep track of all neighbor node

behavior. If a node forwards a packet to its neighbor and Cop overhears that communications,

the node status is changed from neutral to good status. If a node does not cooperate in data

packet forwarding, the number of non-forwarded packets (or the reputation value) is recorded

by the Cop. A malicious node is detected if the number of non-forwarded packets exceeds

a maximum threshold. To avoid false accusation, a hold-down timer will be activated when

the maximum threshold is reached. If the timer is expired and a suspicious node has not

forwarded any packets, the Cop will send an alarm message to a source node. After receiving
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an alarm message, a source node will find a new route which does not include a malicious

node. However, a source node may still use a route containing a malicious node. Therefore,

the Cop will resend an alarm message to the source node to ensure that the malicious node

is no longer included in a route. The pseudo code of Cop mechanism is illustrated in Figure

3.4.

There are two schemes in the case of the Cop mechanism. In the first scheme, a Cop

does the detection function only. The Cop node does not help in forwarding packets. In

the second scheme, a Cop detects malicious nodes and helps with forwarding packets. The

difference between the two mechanisms is in the implementation. Since a cop node does not

forward any packets in the first scheme, it is not able to learn a route to notify a source

after a malicious node is detected. The cop node then broadcasts an alarm message to its

neighbors, which will find a route and forward it to the source node. This is an efficient

scheme but it causes high routing overhead. In the second scheme, a cop node knows the

route to the source and it can send an alarm packet directly to the source. This scheme

helps reducing the routing overhead but the alarm message is prone to be dropped by any

malicious nodes that have escaped detection.

3.5.1 Cop Parameters

From the Cop implementation’s perspective, the performance of Cop depends largely on

three parameters, (1) the maximum threshold, (2) a hold-down timer, and (3) Cop’s traveling

speed. The maximum threshold parameter depends on the traffic load in the network. The

hold-down timer is used for avoiding a false accusation when a cop is not yet in a coverage

area of a regular node but the maximum threshold is reached. Therefore, the hold-down

timer parameter depends on the traveling speed of the Cop. These three parameters will

affect the malicious node detection time as well as the false positive rate. Therefore, these

parameters must be set correctly according to the network load and the speed of the Cop

node.

To illustrate the effect of these parameters on the Cop performance, we use an explanation

with sample results shown in Figure 3.5. The average numbers of sent packets and received
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/* Cop Node Pseudo-code */

if overhearing a data packet
{

counter(nexthop)++
if sender != source

{
status(nexthop) = good

}
if counter(nexthop) > Threshold
{

timer starts
if timer > maxTimer
{

if status(nexthop) != good
{

send alarm packet to source
status(nexthop) = malicious

}
}

}
}

Figure 3.4: Cop Pseudo code
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packets in a 5-second time interval are plotted against the simulation time. The topology is

similar to Example 4 in Chapter 4. In this case, only one active connection is established over

an 8-node network carrying a load of 10 packets per second. The Cop travels at a speed of 10

meters per second and the maximum threshold is set to 100 packets. The hold-down timer

is set to be 10 and 250 seconds. The experiment is done over a 1000-second simulation time

and it is assumed that a malicious node and Cop are active after 200 seconds of simulation

time.

It is shown that with a larger hold-down timer, the Cop takes a longer time to detect a

malicious node. Before a malicious node is detected, packets will be dropped and, therefore,

overall network throughput is decreased. The longer the detection time, the larger the

reduction in network throughput. In other words, if the Cop detects a malicious node faster,

the network throughput will be improved faster. However, a false alarm is possible when the

parameters are set improperly.
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(a) Hold-down Timer = 10 sec. (b) Hold-down Timer = 250 sec.

Figure 3.5: The effect of Hold-down timer in Cop mechanism
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3.6 EXPERIMENTAL DESIGN

This dissertation is divided into two major studies, an analytical study and a simu-

lation study. For the analytical study, simple static ad hoc networks are considered for

mathematical tractability in order to understand how the packet dropping attack impacts

the throughput performance of the network and how detection mechanisms improve the

throughput when a malicious node is detected. Moreover, the effect of detection parameters

is studied.

In the simulation study, more complex scenarios, i.e., both static ad hoc networks,

MANETs, and WMNs, were simulated to compare both detection mechanisms along with

their variations. In addition, wireless channel effects are studied (although by parameteriz-

ing them) to show the performance impact on not only the attack performance but also the

detection performance. The details of each study is explained below.

3.6.1 Analytical study

The objective of this study is to explain the impact of the packet dropping attack in static

ad hoc networks and throughput improvements due to the detection mechanisms in term

of throughput performance. The analysis is described and compared with simulations for

validation. Examples are used to clarify analytical calculations. Each example has different

number of nodes but similar node density. However, locations and the numbers of malicious

nodes are different depending on the example scenario. The analysis shows the throughput

in term of the detection time. Since the detection time depends on detection parameters,

traffic loads are varied with different detection parameters in order to observe the throughput

variations. Simulations are used to validate the analysis with 30 repetitions.

3.6.2 Simulation study

The main goal of this study is to compare the performance of detection mechanisms,

namely, watchdog and cop mechanisms, in terms of throughput, routing overhead and de-

tection efficiency ratio. The detection efficiency is a new performance metric and will be
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explained in more detail in Chapter 5. Three different types of networks, static ad hoc

networks, mobile ad hoc networks (MANETs), and wireless mesh networks (WMNs) are

studied. The experimental design factors and values are shown in Table 3.1. However, the

experimental design results in large sets of results and we show only interesting results in

this dissertation. The number of repetitions is 30 simulation runs. The responses to the

system are throughput, routing overhead, and detection efficiency ratio.

Table 3.1: Experimental Design Factors in Simulation Study

Experimental Design Factors Level 1 Level 2
General - Number of nodes 16 49
General - Simulation area 500 × 500 m2 1000 × 1000 m2

MANETs - pause time 0 sec. 60 sec.
MANETs - speed 1 m/s 10 m/s
WMNs - Number of gateways 1 2
Wireless - Transmission range 250 m. 500 m.
Watchdog 100% detection 50% detection
Cop 1 Mobile cop 4 Static cops
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4.0 THROUGHPUT ANALYSIS OF DETECTION MECHANISMS

4.1 INTRODUCTION

In this chapter, we present a simple analysis for understanding and studying how the

packet delivery ratio (throughput) in ad hoc networks is impacted by packet dropping attacks

and how the detection mechanism improves the packet delivery ratio in the network. To

simplify the analysis, static ad hoc networks are considered. More complicated scenarios

including mobility are studied in the next chapter using simulations.

4.2 DETECTION MECHANISMS

As explained in the previous chapters, the watchdog mechanism is the one that is pri-

marily used in the research literature for detecting packet dropping attacks. We propose

the Cop mechanism to alleviate the burden on all nodes to perform the packet dropping

attack detection function as well as to reduce the number of trust relations that have to be

established in the network. In this chapter, we consider the analysis of these two detection

mechanisms. For completeness, a brief summary of the two mechanisms is provided below.

4.2.1 Watchdog

The watchdog approach uses threshold-based detection to detect malicious nodes. Hence-

forth such nodes are assumed to simply drop packets after participating in routing functions.

Moreover, unless otherwise mentioned they drop all data packets. The source node and the
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forwarding node keep monitoring their next hop node’s activity (unless otherwise mentioned,

all the time). When a packet is forwarded to the next node, the monitoring node will mark

the packet as “forwarded” in its buffer. In addition, it keeps increasing a non-forwarded

packet counter if a packet is not forwarded. If the counter is over a maximum threshold and

a suspicious node still does not forward any data packets, an alarm message is sent to notify

the source, which will record the suspicious node as a malicious node and eliminate it in the

routecache. The source will drop all other routing packets related to the malicious node and

find a new route without the malicious node in the path.

4.2.2 Cop

As described in Chapters 1 and 3, we propose a new approach to help protect ad hoc

networks from packet dropping attacks by introducing a special node, called Cop. The idea

behind this paradigm is that one or more Cops are the only nodes which perform monitoring

and detection functions to protect the network from the attack. Cop nodes are assumed to

be trustworthy and detect the attack by either moving within the network and monitoring

malicious activity or by static placement in the network so as to cover the area that needs

monitoring. The Cop detection mechanism is similar to the watchdog mechanism, which

uses threshold-based detection but onlyCops keep monitoring the wireless channel for their

neighbors’ activities. Other nodes in the network perform routing and forwarding functions

but not the detection function. By introducing suchCops, it is possible that the energy in the

rest of the network nodes can be prolonged so that the network’s objectives are met better.

However, the throughput performance with time is equal to or less than the throughput

performance over time using the watchdog mechanism since Cop nodes may not be within

every node’s transmission range all the time in order to detect malicious activity.
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4.3 THROUGHPUT ANALYSIS IN A STATIC AD HOC NETWORK

4.3.1 Overview

In this study, the focus is on the packet dropping attack and the corresponding detection

mechanisms mentioned above. The assumption here is that malicious nodes participate

in routing information exchange or otherwise act so as for it to be possible that they are

selected as intermediate nodes along routes from source nodes to destination nodes. However,

they will drop all data packets that they are supposed to forward. The watchdog and cop

mechanisms are studied in this chapter to mitigate the attack using packet delivery ratio

(throughput) as the performance metric.

To illustrate the general effect of the packet dropping attack and its mitigation, consider

Figure 4.1 that shows an example of a 15-node static ad hoc network with 2 sources and 2

destinations. Figure 4.1(a) illustrates a normal ad hoc network. The connection 1 (S1-D1)

has two paths, i.e., Path 1 and Path 2 and the connection 2 (S2-D2) also has two paths, i.e.,

Path 3 and Path 4. The connections are not interrupted since all nodes are regular nodes

and packets are delivered at the destinations. No packet is dropped intentionally.

Figure 4.1(b) shows a network with four malicious nodes, which drop all data packets.

In the case of connection 1, since Path 1 and Path 2 have to pass through malicious nodes,

packets from the source S1 cannot reach the destination D1 and this causes the throughput

to fall to zero. In the case of connection 2, if the source S2 chooses Path 3, all packets will

reach the destination D2 but if the source chooses Path 4, all packets will be dropped. We

assume that the selection of a path to the destination is equally likely if everything else is

equal (e.g., the number of hops). So on average, the throughput of connection 2 will be 50%.

So far we have not assumed any detection mechanism.

When a watchdog mechanism is implemented (where nodes check to see if their packets

are being forwarded), a malicious node is detected, and this information gets to source S1,

there is no other path that can reach the destination D1 and the performance cannot be

improved for connection 1 as shown in Figure 4.1(c). In the case of connection 2, if Path 4

is chosen, when the malicious node is detected, S2 can employ the alternative Path 3. All
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subsequent data packets will follow Path 3 to the destination D2.

The cop mechanism is shown in Figure 4.1(d). Two static cop nodes are added and

assigned to detect the malicious node and they also help in forwarding packets. Therefore,

after malicious nodes are detected, sources have two new paths, Path 5 and Path 6, to

destinations and all packets can reach the destinations. Figures 4.1(c) and (d) show how

the performance is improved when detection mechanisms are implemented. The important

question is how much improvement is possible after a malicious node is detected.

4.3.2 General Analysis

This chapter presents a simple analysis of Packet Delivery Ratio (PDR) in ad hoc net-

works with and without malicious nodes and with different detection mechanisms. We define

PDR as follows.

PDR =
Total number of received packets at destination

Total number of sent packets by source
(4.1)

In order to simplify our analysis, we make some assumptions:

• One source and one destination are considered in a grid network (single flow).

• Malicious nodes perform a 100% data packet dropping attack.

• The probability of choosing any path is equally likely for all paths with identical routing

metrics from a source to a destination.

• The chosen route is always the shortest path from the source to the destination.

• There is no more than 1 malicious node in any path.∗

Note: * - This assumption is relaxed in a future example with some modifications.

Implicit in the assumptions is that a malicious node does not modify routing packets to

have higher chances to be chosen as an intermediate node than other regular nodes. However,

the analysis can be applicable to such scenarios as well, except that the classification of paths

and probabilities of selecting them have to be modified to accommodate the fact that a route

which includes malicious nodes is more likely initially. Similarly, the analysis presented here

can be enhanced to include the impact of dropping only a fraction of data packets or other
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detection mechanisms. We do not consider such enhancements in this dissertation and

suggest them as part of future work.

Since the packet dropping attack is studied, the same assumptions as described previously

hold. A malicious node participates in routing information exchange but drops all data

packets. Therefore, a destination will not receive any data packets if a malicious node is

an intermediate node along a selected path and the PDR is zero since the total number of

received packets is zero.

When a detection mechanism is implemented (e.g., using a threshold based detection),

a malicious node can be detected and excluded from the network (we assume the Watchdog

mechanism for the time being). A new route will be created and all subsequent data packets

will follow the new path. However, more than one malicious node can be in the network

and a second malicious node can also be present in the newly set-up path. Detecting nodes

need to keep monitoring their neighbors and detect other malicious nodes and exclude them

from the network. Once all malicious nodes are detected, data packets can be received at

the destination. The performance depends on the probability of choosing a path to the

destination. When a malicious node is selected as an intermediate node, the PDR is zero (as

described above). In contrast, when a path contains only regular nodes, all packets will be

received at a destination and the PDR is one since total number of received packets equals

to total number of sent packets (note that we assume that there is no congestion or other

packet losses here).

The total number of paths with a given routing metric from a source to a destination

has to be known in order to calculate the probability of choosing a path that contains a

malicious node or one that has only regular nodes. When a malicious node is detected and

excluded from the network, the number of paths is changed and a new probability has to be

recalculated. This process is recursively continued until the last malicious node is detected.

A probability tree is used to analyze this problem as shown in Figure 4.2. There are n stages

to be considered for n malicious nodes as described next.

The average PDR can be computed using a probability weighted average of the number

of received packets at a destination for all possible cases. In our analysis, a constant bit

rate traffic is assumed and packets start sending at time 0. Therefore, the number of sent
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packets is constant for the observation duration. To analyze the average PDR performance,

parameters are defined as follows.

Let:

N = Set of non-detected malicious nodes

M = Set of all malicious nodes

n = Total number of malicious nodes

mi = A malicious node i

Ej = Event that j malicious node(s) is(are) already detected

T = Total observation time in seconds

R = Data rate in packets per second

Tdeti = Detection time when the ith malicious node is detected

With watchdog mechanism, the average PDR is shown in Equation 4.2:

PDRavg = P{choose path excluding nodes in M} × PDR(choose path excluding nodes in M)

+
n∑

i=1

P{choose path including node mi} × PDR(choose path including nodemi)(4.2)

where, PDR(choose path including node mi) is the PDR of choosing the node mi in the

path but there are other paths, that can be chosen after mi is detected at the time Tdeti . In

what follows, we use a shorter notation. P{choose path excluding nodes in M} is written as

P{not chooseM}, P{choose path including node mi} is written as P{choosemi} and so on.

Moreover,

PDR(choosemi) = P{not chooseM |E1} × PDR(not choose M |E1)

+
∑

i∈N

P{choosemi|E1} × PDR(choosemi|E1)

After a malicious node is detected, that node is excluded from all the paths from a

source to a destination. Therefore, P{choosemi|Ek} is the probability of choosing a path

containing mi which excludes the paths containing the first k detected malicious nodes.

The equation is recursively continued until the last malicious node is detected as follows:
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PDR(choosemi|E1) = P{not choose M |E2} × PDR(not choose M |E2)

+
∑

i∈N

P{choosemi|E2} × PDR(choosemi|E2)

...

PDR(choosemi|En−2) = P{not choose M |En−1} × PDR(not choose M |En−1)

+
∑

i∈N

P{choosemi|En−1} × PDR(choosemi|En−1)

PDR(choosemi|En−1) =
(

T − Tdetn

T

)

Here Tdetn is the time at which all n malicious nodes have been detected and excluded

from the network. The final result in the last equation arises due to the fact that once

the last malicious node has been detected, all of the packets reach the destination. This

assumes that there are paths that exist to the destination after all malicious nodes have

been detected, there is no congestion in the network, nor are there other reasons for packets

being dropped (e.g., channel errors or buffer overflows). It is also important to note that

P{choose mi|En−1} is the probability of choosing mi but excluding the paths containing the

previous (n− 1) detected malicious nodes. The total number of sent packets is RT and the

total number of received packets, after the last malicious node is detected, is R(T − Tdetn).

Hence the PDR is the ratio of these two quantities. This is a simple analysis that assumes

that malicious nodes are detected sequentially, one by one, and multiple malicious nodes are

not present along the same path. The analysis becomes more complicated otherwise.

When n malicious nodes are in the network, the total number of possible cases to be

considered is:

Total cases = n! +
n−1∑

i=0

n!

(n− i)!
(4.3)

The intuition behind this equation is as follows. The PDRavg is recursively computed

when a malicious node is detected until all malicious nodes are detected. This implies n!

because we assume that any one of the n malicious nodes may be detected first. While this is
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not really true because the malicious node that is detected first depends on the path selected

and detection mechanism, our assumptions limiting traffic to one flow and one malicious

node per path allows this approximation. Every time a malicious node is detected, one case,

where no malicious node is chosen, does not have more leaves in the tree and this implies

the last part of the equation as shown in Figure 4.2. For example in a static network with 3

malicious nodes, the total number of cases is 16, which comes from 2 parts: the probability

of choosing any one of the malicious nodes and the probability of not choosing a malicious

node. For the first part, there are 3 stages for this example and each stage depends on the

number of malicious node left to be detected. The first stage has 3 malicious nodes to be

detected and the second stage has 2 malicious nodes to be detected and the last stage has 1

malicious node to be detected. The total number of cases for choosing any malicious nodes

is 3×2×1 for all 3 stages. The second part is the cases for not choosing any malicious nodes.

The first stage has 1 possible case, the second stage has 3 possible cases and the last stage

has 6 possible cases. Total number of cases of not choosing any malicious nodes is 1+3+6.

Therefore, the total number of cases for this example is 16 cases.

Since the cop mechanism uses an algorithm similar to that of the watchdog mechanism,

the differences between the two mechanisms arises due to the fact that the only detecting

nodes are cop nodes. The cop node has to be in the transmission range of a forwarding node

and the intended receiver to correctly detect a malicious node. If a cop node is moving in

a network (mobile cop), it has a limited time to monitor each node’s activity. If it is static,

called a static cop, its performance is similar to the watchdog mechanism, but it may have

limited coverage. Therefore, the cop mechanism usually takes equal or longer detection time

than the watchdog mechanism. The PDR calculation is similar to the watchdog mechanism

but the difference is in the detection time.

4.3.3 Detection time calculation

The analysis shows that PDR depends on the detection time, which is the time when a

malicious node is detected. Since we assume a threshold-based detection, the detection time

can be computed as follows.
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Let:

TH = Threshold

TO = Time-out

R = Data rate

The detection time for the watchdog mechanism is calculated as follows:

Tdet = Tstart +
TH

R
+ TO (4.4)

where,

Tdet = Detection time

Tstart = Time when a node is activated from the beginning to the time when a node starts

detecting a malicious node

The detection time calculation for mobile cop mechanism is different from that for the

watchdog mechanism in that a mobile cop node may not overhear the relevant communica-

tions all the time when it is mobile. It intermittently detects a malicious node when it is in

the range of both a sender and a forwarder in a static ad hoc network. The detection time

for mobile cop mechanism is as follows:

Tdet =





Tstart + TH
R

+ TO if TDD ≥ TH
R

+ TO

Tstart + TH
R

+ TO + kTIDD if TDD < TH
R

+ TO
(4.5)

Here TDD = Detection duration when a mobile cop node is in the range of a sender and a

forwarder to detect a malicious node

k = number of rounds that a mobile cop node needs to traverse to detect a malicious node

TIDD = Inter-detection duration when a mobile cop node waits to be in a range of a sender

and a forwarder to detect a malicious node

where, k is calculated as follows:

k =

⌊
TH
R

+ TO

TDD

⌋
(4.6)
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and TIDD is calculated as follows:

TIDD =
Distance

Cop speed
(4.7)

Here “Distance” is the total distance where a mobile cop is not in the range of both the

sender and forwarder to detect a malicious node. In this study, Tstart is 0 since a source node

starts sending packets at time 0. It is important to note that the detection time calculation

assumes knowledge of the location of a malicious node such that the detection duration time

and inter-detection duration time are known. This is for analysis purposes only. Since TIDD

is not a parameter for the watchdog mechanism, it confirms that the mobile cop mechanism

results in an equal or longer detection time compared to the watchdog mechanism. However,

TIDD is used when the watchdog mechanism does not perform monitoring 100% of the time

for detection and it will be discussed in the next chapter.

There is a special case when a source does not start sending packets after a mobile cop

is already in TDD period. The detection duration for the first round is not a full detection

duration. If TDD is greater than TH
R

+ TO, a mobile cop may need an extra round to come

back and detect a malicious node. This adds additional detection time to the mobile cop

mechanism. In practice, when TDD is equal to TH
R

+TO, a mobile cop cannot perfectly detect

a malicious node within 1 round, it also needs another round to come back and detect the

malicious node as well.

4.4 EXAMPLES

In this section, four examples are presented to explain the calculation of PDR described

in the previous section with concrete network topologies and malicious nodes when packet

dropping attack occurs along with the two detection mechanisms. The first 3 examples are

devoted to analyzing the watchdog mechanism and the last example is for both watchdog

and cop mechanisms. These examples compare analytical results with simulations.
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4.4.1 Example 1: 4-Node Network - Watchdog

A 4-node network is considered here as shown in Figure 4.3. All nodes are static. A

source sends packets to a destination through one of two paths. A malicious node (“m”)

drops all data packets that pass through it. Node “r” is a regular honest node and fully

functional to forward data packets.

��� � � ��� � ���� ��	 
	��� ���������� � �� �� � DS

m

r1

(a) 4-node network set-up (b) 4-node network topology

Figure 4.3: 4 Node network scenario

From the scenario presented, there are 2 paths between the source and destination, S-r1-

D and S-m-D. As per the assumptions, each path has an equal probability to be chosen by

the source. Therefore, P{choosem} = P{not choosem} = 1
2
. Data rate is “R” packets per

second and the simulation time is “T” seconds. The total number of sent packets is “RT”.

There is no congestion and no channel errors are considered in this case. Therefore, the total

number of received packets is “RT” when the source chooses the path S-r1-D.

PDR(not choosem) =
RT

RT
= 1

When the source chooses the path S-m-D, there will be no received packets at the destination.

Therefore,

PDR(choosem) =
0

RT
= 0

One of the paths gives a 100% PDR, but, on the other hand, the other path gives 0% PDR.
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In order to calculate the average PDR, Equation 4.2 is simply adapted to this scenario

as follows:

PDRavg = P{choosem} × PDR(choosem)

+ P{not choose m} × PDR(not choose m) (4.8)

There are 2 cases to be considered here. The first case is where only a malicious node

is in the network without the watchdog mechanism. The second case is where a malicious

node is in the network and the watchdog mechanism is implemented.

Case 1: Network with a malicious node but no watchdog implementation

We consider the average PDR in the system when a malicious node is in the network.

PDRavg = P{choosem} × PDR(choosem)

+ P{not choose m} × PDR(not choose m)

=
1

2
× 0 +

1

2
× 1

=
1

2

Case 2: Network with a malicious node and watchdog implementation

In this case, the watchdog mechanism is implemented in all nodes, except the malicious

node. When a malicious node is an intermediate node and is detected, the total number of

received packets is R(T − Tdet).

PDRavg = P{choosem} × PDR(choosem)

+ P{not choose m} × PDR(not choose m)

=
1

2
× R(T − Tdet)

RT
+

1

2
× 1

=
1

2
× (T − Tdet)

T
+

1

2

=
2T − Tdet

2T

= 1−
(

Tdet

2T

)
(4.9)
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From Equation 4.9, it is important to note that PDRavg relies on the detection time, as

described in the previous section. However, the detection time depends on both the threshold

setting and the traffic rate. When the sending rate is high, the detection time is faster than

when the sending rate is low with the same threshold setting.

4.4.1.1 Detection parameter analysis Based on the previous section, the detection

time can be calculated from the load in the network with the specified threshold and time

out settings. Figure 4.4 plots the detection time against load where one malicious node is

in the network as shown in Example 1. When the load is increased, the detection time is

decreased. In addition, a higher threshold and time out settings result in a longer detection

time.
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Figure 4.4: Detection time VS. Load for Watchdog mechanism

From Example 1, the throughput is plotted in Figure 4.5. The threshold and time-out

settings are varied in order to demonstrate the effect of parameter settings in terms of PDR

performance. The results show that when the load is increased with the same detection

threshold, the detection time is decreased. If a time-out is added to the mechanism, the
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detection time is increased by the time-out value that is additional to the detection time

when time-out is zero seconds.
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Figure 4.5: PDR VS. Load for Watchdog mechanism

In summary, Figure 4.5 shows that PDR depends on the detection time, which also

depends on the threshold, time-out, and load in the network.

The parameter analysis can be applied to other networks as well. The equations as shown

earlier can be used to calculate the detection time and PDR. However, the analysis has to

be completed such that all the parameters can be fully analyzed and the parameter analysis

can be plotted by varying the parameters.

4.4.2 Example 2: 9-node network - Watchdog

In this example, a larger network is considered. One source S, one destination D, and

two malicious nodes, m1 and m2, are considered in this scenario. The network setup and

network topology are shown in Figure 4.6.

From the network scenario, there are 6 shortest paths between the source and destination

as follows.
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Figure 4.6: 9 Node network scenario

Path1 = S − r2−m1 − r5−D

Path2 = S − r2−m2 − r5−D

Path3 = S − r2−m2 − r4−D

Path4 = S − r1−m2 − r5−D

Path5 = S − r1−m2 − r4−D

Path6 = S − r1− r3− r5−D

The probability of choosing m1 in the path (Path1) is 1
6
. However, m2 is in the middle of

the network topology and most of the paths use it as an intermediate node. The probability

of choosing m2 (Path2 to Path5) is 4
6
. Lastly, the probability of not choosing any path

containing a malicious node (Path6) is 1
6
. Like case 1 in the previous study, when no

detection mechanism is implemented and two malicious nodes exist in the network, PDRavg

is only 1
6
. When the watchdog mechanism is implemented, the PDRavg can be computed as

follows:

56



PDRavg = P{choosem1} × PDR(choosem1)

+ P{choosem2} × PDR(choose m2)

+ P{not choose m1&m2} × PDR(not choose m1&m2)

Since one malicious node is detected but the other malicious node is still in the network,

a new path that is selected by the source may have the other malicious node in it. Therefore,

the PDR{choose m1} has also two possible cases as shown in the following equation:

PDR(choosem1) = P{choosem2|E1} × PDR(choosem2|E1)

+ P{not choose m2|E1} × PDR(not choosem2|E1)

The probability values in this scenario are:

P{choosem1} =
1

6

P{choosem2} =
4

6

P{not choose m1&m2} =
1

6

P{choosem2|E1} =
4

5

P{not choose m2|E1} =
1

5

Figure 4.7 shows the complete probability tree for this example.

In order to simplify the analysis, Equation, Tdet1 and Tdet2 are used as the detection times

when the first and second malicious nodes are detected respectively. The final equation for

this analysis is:

PDRavg =
1

6
×

(4

5
× T − Tdet2

T
+

1

5
× T − Tdet1

T

)

+
4

6
×

(1

2
× T − Tdet2

T
+

1

2
× T − Tdet1

T

)
+

1

6

= 1−
(

11Tdet1 − 14Tdet2

30T

)
(4.10)

57



�������� ��	 
 ����������� �	 
 �������� ������ �	 
 ���
�������� � ���	 
 �������� ������ ����	 
 ����������� �� ���	 
 ������� ������ ����	 
 ��

Figure 4.7: Probability Tree for 9 node network scenario

4.4.3 Example 3: 16-node network (joint paths) - Watchdog

In this scenario, we relax one of the assumptions, which is that there is no more than 1

malicious node in a path. We investigate a 16-node network with 3 malicious nodes, which

share several paths. The network topology is shown in Figure 4.8.

The Equation 4.2 does hold with this scenario but it needs to be modified when we do

the probability calculation. This is a special scenario where the probability calculation is

specific to this scenario. From the scenario, multiple malicious nodes can be in the same

path between the source and the destination. The probability of choosing paths has to be

calculated when a malicious node is detected and the first malicious node in the path is

usually detected prior to other malicious nodes. Therefore, the probability is modified to

agree with the equation. In this scenario, the total number of shortest paths from the source

to the destination is 20 as follows.

Path1 = S − r1− r3− r6− r9− r11−D

Path2 = S − r1− r3−m3 − r8− r10−D

Path3 = S − r1− r3−m3 − r9− r11−D

Path4 = S − r1− r3−m3 − r8− r11−D
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Figure 4.8: 16 Node network scenario

Path5 = S − r1−m2−m3 − r9− r11−D

Path6 = S − r1−m2 −m3 − r8− r11−D

Path7 = S − r1−m2 −m3 − r8− r10−D

Path8 = S − r1−m2 − r5− r8− r11−D

Path9 = S − r1−m2 − r5− r8− r10−D

Path10 = S − r1−m2 − r5− r7− r10−D

Path11 = S −m1 −m2 −m3 − r9− r11−D

Path12 = S −m1 −m2 −m3 − r8− r11−D

Path13 = S −m1 −m2 −m3 − r8− r10−D

Path14 = S −m1 −m2 − r5− r8− r11−D

Path15 = S −m1 −m2 − r5− r8− r10−D

Path16 = S −m1 −m2 − r5− r7− r10−D

Path17 = S −m1 − r2− r5− r8− r11−D

Path18 = S −m1 − r2− r5− r8− r10−D
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Path19 = S −m1 − r2− r5− r7− r10−D

Path20 = S −m1 − r2− r4− r7− r10−D

The probabilities for all cases are shown as follows:

P{choose only (m1)} =
4

20

P{choose only (m2)} =
3

20

P{choose only (m3)} =
3

20

P{choose only (m1&m2)} =
3

20

P{choose only (m1&m3)} =
0

20

P{choose only (m2&m3)} =
3

20

P{choose only (m1&m2&m3)} =
3

20

P{not choose M} =
1

20

From this scenario, when paths with only m1 and m2, only m1 and m3, or only m1, m2

and m3 are considered, the malicious node m1 will be detected first and we can add all the

probabilities to determine P{choosem1}. This analysis can repeatedly be used with other

probability calculations. Therefore, the initial probability is:

P{choosem1} =
10

20

P{choosem2} =
6

20

P{choosem3} =
3

20

P{not chooseM} =
1

20

Figure 4.9 shows the probability tree for this scenario, including all the probability values.

Therefore, the Pavg for this example is:
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Figure 4.9: Probability tree for 16 node network scenario
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PDRavg = P{choosem1} × PDR(choose m1)

+ P{choosem2} × PDR(choosem2)

+ P{choosem3} × PDR(choosem3)

+ P{not choose M} × PDR(not choose M)

=
10

20
×

[
6

10
×

(3

4
× T − Tdet3

T
+

1

4
× T − Tdet2

T

)

+
3

10
×

(3

4
× T − Tdet3

T
+

1

4
× T − Tdet2

T

)

+
1

10
×

(T − Tdet1

T

)]

+
6

20
×

[
4

8
×

(3

4
× T − Tdet3

T
+

1

4
× T − Tdet2

T

)

+
3

8
×

(4

5
× T − Tdet3

T
+

1

5
× T − Tdet2

T

)

+
1

8
×

(T − Tdet1

T

)]

3

20
×

[
7

11
×

(3

4
× T − Tdet3

T
+

1

4
× T − Tdet2

T

)

+
3

11

(4

5
× T − Tdet3

T
+

1

5
× T − Tdet2

T

)

+
1

11
×

(T − Tdet1

T

)]
+

1

20

= 1−
(

89Tdet1 − 180Tdet2 − 567Tdet3

880T

)
(4.11)

4.4.4 Example 4: 8+1-node Network - Watchdog and Cop

In order to study the throughput performance with the Cop mechanism, we analyze

a scenario as shown in Figure 4.10. In this case, traffic is generated from a source to a

destination. The mobile Cop travels at 10 m/s speed along a straight line between the source

and destination nodes. Note that the total number of nodes for the watchdog mechanism is

8 nodes and that for the cop mechanism is 9 nodes (the cop node is extra). In this scenario,

the transmission range for each node is 250 m. and a malicious node is next to the source.

The cop node can detect a malicious node when a source chooses the path that includes
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the malicious node. Therefore, the cop node can perform the detection within 100 m from

the source, as shown in Figure 4.11. Therefore, the detection duration is 10 seconds. If a

threshold is set that is higher than the number of packets sent during the detection duration,

the cop has to wait and come back to continue the detection on the next round. The inter-

detection duration is 60 seconds. This could cause a delay in detection time. However, if the

threshold is set too short, false positives can occur and this causes the PDR to be reduced.

Source DestinationMobile Cop

150m 200m 200m 150m

700m

1
50

m
1

50
m

3
00

m

Malicious

Source DestinationMobile Cop

Malicious

(a) 8+1 node network set-up (b) 8+1 node network topology

Figure 4.10: 8+1 node network scenario with 1 Mobile Cop

Source DestinationMobile Cop

150m 200m 200m 150m

Malicious

300m

250m

Figure 4.11: Mobile Cop mechanism analysis - 8+1 node network

With the watchdog mechanism, the analysis is similar to the 4-node network in Example

1, explained earlier because there are only 2 paths from the source to destination and 1

malicious node. Therefore, the PDRavg is as follows:

PDRavg = P{choosem} × PDR(choosem)
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+ P{not choose m} × PDR(not choose m)

= 1−
(

Tdet

2T

)

The Cop mechanism also used the same equation but the detection time is different as

explained previously. With the Cop mechanism, the average detection time between the first

and second rounds of detection is used in the equation above to get the average PDR in the

network.

When the cop speed is changed, the detection time can be either faster or slower depend-

ing on the detection duration, which also depends on threshold, time-out setting and the

sending rate. The equations 4.6 and 4.7 show the relationship between these parameters.

4.5 SIMULATION

To further investigate the validity of our analysis, the example networks are simulated

(with identical network topologies as the networks used for analysis). The tool for the

simulation is Network Simulator 2 or ns-2 version 2.30.

To simulate the watchdog mechanism, some assumptions are made as follows:

• Packets are dropped only by malicious nodes. Therefore, no congestion is considered

here.

• There is no error in the wireless channel.

4.5.1 Parameter setting

Simulation parameters are shown in Table 4.1. A source starts sending packets at time

0 for all simulations in order to replicate the analysis scenarios.

4.5.2 Node Implementation

In the simulation, there are 4 types of nodes, a regular node, a malicious node, a regular

node with watchdog mechanism and a cop node. A regular node is a node that performs
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Table 4.1: Parameter Setting for static networks

Parameters Setting
Number of nodes 4 9 16 8+1
Simulation area 300 x 300 m2 600 x 600 m2 900 x 900 m2 300 x 700 m2

Node buffer size 50 packets
Propagation model Two-ray ground model
Transmission range 250 meters
MAC Protocol 802.11 CSMA/CA
Link Bandwidth 2 Mbps
Routing Protocols DSR
Traffic type CBR
Packet size 64 Bytes
Packet rate 0.5, 1, 5, 10 pkts/second
Number of connections 1
Watchdog - Maximum Threshold 10 pkts
Watchdog - Time-out 0, 20 seconds 0 second
Mobile Cop - Maximum Threshold - 10 pkts
Mobile Cop - Time-out - 0 second

regular functions of ad hoc node, which participates in routing messages exchange and for-

wards data messages. A malicious node participates in routing message exchange but drops

all data packets that pass through it and also drops all alarm messages that a detecting node

wants to send back to a source (see Chapter 3).

A regular node with built-in watchdog mechanism performs the same functions as a

regular node and additional watchdog mechanism. By implementing watchdog mechanism,

each node monitors its neighbor to see whether it forwards packets to the next node or not.

If it doesn’t overhear a forwarded packet, it will keep counting the number of non-forwarded

packets and if it reaches the maximum threshold, it will delay for a certain time-out to

avoid a false accusation. After the time-out is expired and the suspicious node still does not

forward data packets, it will send an alarm to the source. If the source detects a malicious

node, it does not send an alarm but it will find another route to send packets without the

detected malicious node in the path.

The last node is a cop node, which performs the detection function while other regular
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nodes do not. Its mechanism is similar to the regular node with built-in watchdog mechanism

but it will not forward any packets for other nodes (optional). The main purpose for this node

is to detect a malicious node. Therefore, this node uses a promiscuous mode to listen to the

wireless channel in order to overhear the transmission of its neighbors. If its neighbor does

not forward data packets and the number of non-forwarding packets is over the threshold

setting, it will broadcast an alarm message. Each node will forward the message back to the

source. The source will change to another route after receiving it. The cop also listens to

routing packets to identify its neighbors at the beginning of a simulation such that the cop

does not falsely detect a regular node that is at a far distance as a malicious node when the

cop is not within the node transmission range yet.

4.6 COMPARISON BETWEEN ANALYSIS AND SIMULATION

In this work, we compare results from analysis and simulation. There are 3 cases, sim-

ulation only, simulation with analysis, and analysis only. For “simulation only” case, the

PDR is from our simulation model with a 100 second simulation time and 50 repetitions for

each point with a 90% confidence interval. For “simulation with analysis” case, the average

detection time from simulation is used to calculate the average throughput in the analy-

sis instead of the estimate of detection time using load and time as previously described.

For the last case, “analysis only”, we will not use any information from simulation and it

gives an upper-bound on the average throughput. This is because of the following reason.

The threshold-based detection is used and the load is known. The detection time is esti-

mated from the threshold setting. When a malicious node is detected, a new path has to be

discovered. But the switching time to another route is not considered in this case.

4.6.1 Example 1: 4-node network - Watchdog

Our simulation models are simulated with two different parameter settings for watchdog

mechanism. The first setting is with a 10 packet threshold and 0 second time out. The
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second setting is the same as the first setting but the time out is changed to 20 seconds.

Table 4.2 and Table 4.3 show the detection time in seconds for simulation and analysis for

both settings.

Table 4.2: Detection time: 4 node network (Threshold = 10 pkts,Time out = 0 sec.)

Load (PPS) 0.5 1.0 5.0 10.0
Simulation (sec.) 24.78 12.10 2.38 1.25
Analysis (sec.) 20.0 10.0 2.0 1.0

Table 4.3: Detection time: 4 node network (Threshold = 10 pkts,Time out = 20 sec.)

Load (PPS) 0.5 1.0 5.0 10.0
Simulation (sec.) 43.86 31.56 22.26 21.15
Analysis (sec.) 40.0 30.0 22.0 21.0

In order to compare our analysis with simulation, PDR is used as a metric to plot against

the loads in the network. Figure 4.12 and Figure 4.13 show the PDR from both analysis and

simulation with 2 different settings. From the figures, it is clear that the analysis can give a

close estimation to simulations.

4.6.2 Example 2: 9-node network - Watchdog

Table 4.4 and Table 4.5 show the detection time in seconds from simulation and analysis

for both settings. As expected, the detection time from simulation is higher than the time

from analysis because a new route has to be discovered before sending packets after detection.

This delay is not considered in the analysis.

Figure 4.14 and Figure 4.15 show the result from both analysis and simulation with

the two different parameter settings. The analysis results show similar trends as simulation

results but the PDR from analysis is higher than the PDR from simulation. This is because

the detection time from analysis is the best case scenario, which gives fastest detection time

without considering new route recovery delays after a malicious node is detected. From
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Figure 4.12: PDR: 4 node network (Threshold = 10 pkts,Time out = 0 sec.)
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Figure 4.13: PDR: 4 node network (Threshold = 10 pkts,Time out = 20 sec.)
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simulation results, false positives are possible at 10 packet per second load if the time out

is set to zero. In contrast, the false positive does not happen with the time out is set to 20

seconds.

Table 4.4: Detection time: 9 node network (Threshold = 10 pkts,Time out = 0 sec.)

Load (PPS) 0.5 1.0 5.0 10.0
Tdet1 Tdet2 Tdet1 Tdet2 Tdet1 Tdet2 Tdet1 Tdet2

Simulation (sec.) 23.81 47.77 11.95 24.18 2.44 6.67 1.20 2.58
Analysis (sec.) 20.0 40.0 10.0 20.0 2.0 4.0 1.0 2.0

Table 4.5: Detection time: 9 node network (Threshold = 10 pkts,Time out = 20 sec.)

Load (PPS) 0.5 1.0 5.0 10.0
Tdet1 Tdet2 Tdet1 Tdet2 Tdet1 Tdet2 Tdet1 Tdet2

Simulation 43.20 86.76 31.84 65.26 22.31 47.54 21.16 45.30
Analysis 40.0 80.0 30.0 60.0 22.0 44.0 21.0 42.0

4.6.3 Example 3: 16-node network - Watchdog

For this example, the results are shown in Figure 4.16 and 4.17. The results from the

analysis do not look similar to the results from the simulation when the time-out is 0. This

is because the network is bigger and there are more paths to be chosen from a source to a

destination. In addition, in the simulation, when a malicious node is detected, the source

may not find another route, which does not contain a malicious node in the path. When

a source does not find a route to the destination, all subsequent packets are dropped. In

addition, false alarms can cause the PDR to drop at higher loads since the threshold is set

to be quite low. Therefore, the PDR results from simulation are smaller than the results

from analysis. When the time-out is 20 seconds, the results from analysis and simulation

are similar because the false alarms are fewer when the time-out is increased but also the

detection time is increased.
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Figure 4.14: PDR: 9 node network(Threshold = 10 pkts,Time out = 0 sec.)
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Figure 4.15: PDR: 9 node network (Threshold = 10 pkts,Time out = 20 sec.)
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Figure 4.16: PDR: 16 node network (Threshold = 10 pkts,Time out = 0 sec.)
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Figure 4.17: PDR: 16 node network (Threshold = 10 pkts,Time out = 20 sec.)
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4.6.4 Example 4: 8+1-node network - Watchdog and Cop

The PDR from this study is shown in Figure 4.18. In this scenario, Mobile Cop can only

detect a malicious activity when it is in the transmission range of the source. Therefore,

it has a 100 meter detection duration to detect a malicious node. If it cannot detect a

malicious node in the first round, it will come back and continue detecting the node when

it is in the source’s transmission range. This causes a significant delay for Mobile Cop to

detect a malicious node but it can perhaps save energy for the other nodes. It is a trade-off

between energy and throughput performance.
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Figure 4.18: PDR: 8+1 node network (Threshold = 10 pkts,Time out = 0 sec.)

The number of monitored packets is shown in Figure 4.19 to investigate the energy

savings in terms of detection function. The number of monitored packets is a performance

metric when each detecting node has to listen to its neighbors to detect a malicious node.

The result shows that watchdog consumes more energy for detection function than Mobile

Cop does.
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Figure 4.19: Monitored packets: 8+1 node network (Threshold = 10 pkts,Time out = 0 sec.)

4.7 ANALYSIS OF ASYMMETRY

In previous sections, all the communications are assumed to be bi-directional. An inter-

esting issue emerges from the research literature that show the presence of asymmetric link

communications in wireless ad hoc networks. Asymmetric links are defined as the wireless

links that do not have the same transmission range between nodes but the transmission rate

is the same. Asymmetry can exist because of radio propagation and receiver design, different

transmit powers, etc. The simulations cannot be used without a lot of modifications.

Instead, we extend the simple analysis for studying this problem. From the previous

analysis, a packet dropping attack works best when a malicious node is an intermediate node

in the path between a source and a destination. A malicious node has higher chances to be

chosen as an intermediate node when it has higher transmission range than other nodes and

vice versa. Therefore in this analysis, a malicious node is set to have a higher transmission

range than regular nodes. In order to analyze this problem, the following assumptions are

introduced:
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• One source and one destination are considered in a grid network.

• A malicious node performs a 100% data packet dropping attack.

• The chosen route is the shortest path (i.e., in terms of hop count) from a source to a

destination.

• A malicious node has higher transmission power than a regular node.

• Routing protocol supports asymmetric link communication.

By default, the transmission range for regular nodes is 250 meters but, in this study,

a transmission range for a malicious node is 500 meters. The reception sensitivity is the

same for all nodes. The setting helps a malicious node shortcut some intermediate nodes in

order to reach a destination faster than other routes. Therefore, a source always chooses a

malicious node. In the case of the watchdog mechanism, Equation 4.2 does still hold but the

probability of chosen path is changed as described in the examples in this section.

4.7.1 Example 5: 9-node network

DestinationSource

m2S

r2

r1

D

r5

r4

r3

m1

Bi-directional link

Uni-directional link

Figure 4.20: 9 node network topology with asymmetric link

This example has similar network set-up as Example 2. Figure 4.20 shows the topology

with asymmetry due to the malicious node having a larger range. In this figure, only the

range of m1 is presented but m2 also has the same range as m1. In this case, both malicious

74



nodes, m1 and m2, are able to by-pass one node to make a route shorter. If the hop count is

used as a routing metric, both malicious nodes are always chosen first as intermediate nodes.

At the beginning, the total number of possible paths is 3 as follows:

S − r2−m1 −D

S − r2−m2 −D

S − r1−m2 −D

Therefore, the probability values in this scenario are:

P{choosem1} =
1

3

P{choosem2} =
2

3

P{not choose m1&m2} = 0

P{choosem1|E1} = 1

P{not choose m1|E1} = 0

P{choosem2|E1} = 1

P{not choose m2|E1} = 0

In order to simplify the Equation, Tdet1 and Tdet2 are the detection times when the first

and second malicious nodes are detected respectively. The final equation for this analysis is:

PDRavg =
1

3
×

(
1× T − Tdet2

T
+ 0× T − Tdet1

T

)

+
2

3
×

(
1× T − Tdet2

T
+ 0× T − Tdet1

T

)
+ 0

= 1−
(

Tdet2

T

)
(4.12)

From the simplified equation above, it is important to note that both malicious nodes

have to be detected and excluded in order to ensure that the PDRavg is above zero.
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4.7.2 Example 6: 16-node network

This example demonstrates a 16 node network with asymmetry. Unlike Example 3,

malicious nodes can shorten the route to a destination such that they have more chances to

be chosen as intermediate nodes. Figure 4.21 shows the topology with m3 creating asymmetry

as a demonstration. It is important to note that all malicious nodes have higher ranges than

regular nodes.

Source

r5m1

m2

r2

r10

r8

r7

r4

m3r1

r3 r9

r11

D

r6

S

Destination

Bi-directional link

Uni-directional link

Figure 4.21: 16 node network topology with asymmetric link

There is only 1 possible path from a source to a destination with the shortest path at

the beginning and 3 paths are to be chosen when m1 is detected as follows:

S −m1 −m3 −D

S − r1−m2 − r10−D

S − r1−m2 − r11−D

S − r1− r3−m3 −D
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The probabilities for this example are:

P{choosem1} = 1

P{choosem2} = 0

P{choosem3} = 0

P{not choose M} = 0

P{choosem2|E1} =
2

3

P{choosem3|E1} =
1

3

P{not chooseM |E1} = 0

Therefore, the simplified PDRavg is shown below:

PDRavg = P{choosem1} × PDR(choosem1)

+ P{choosem2} × PDR(choosem2)

+ P{choosem3} × PDR(choosem3)

+ P{not choose M} × PDR(not choose M)

= 1×
[
2

3
×

(
1× T − Tdet3

T
+ 0× T − Tdet2

T

)

+
1

3
×

(
1× T − Tdet3

T
+ 0× T − Tdet2

T

)

+0×
(T − Tdet1

T

)]

+0 + 0 + 0

= 1−
(

Tdet3

T

)
(4.13)

From these two examples, all malicious nodes are to be chosen first as intermediate

nodes. Then a regular path is chosen after all malicious nodes are detected. It means that

the detection time for each node has to be quick such that the PDRavg can be increased.
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4.7.3 Note on transmission range vs. detection mechanisms

When nodes in the network do not have similar transmission power, both watchdog and

cop mechanisms could give a false alarm under conditions where the detector is not in the

transmission range of both the sender and a forwarder.

For example in Figure 4.22(a), all nodes are regular nodes with watchdog mechanism

built-in. When a sender (r1) has higher transmission power than a forwarder (r3), r1 doesn’t

receive any forwarding packets from r3 and non-forwarding packets in r1 will keep increasing

and reach a threshold, thereby causing a false alarm. In contrast, when a source (S) sends

packets to r1, S receives all packets that r1 forwards to its next hop node. This is a normal

operation of watchdog. For cop mechanism in Figure 4.22(b), a cop node C1 overhears a

transmission from S and r1 but not from r3. The cop will send a false alarm to the source

S. A cop node C2 also cannot overhear a transmission from r3 and a false alarm message is

sent. In contrast, a cop node C3 can overhear transmission from both r1 and r3, this is a

normal detection scheme.

In the case of the watchdog mechanism, when a sender has a high transmission power

and a forwarder has a low transmission power, false alarms could happen. However, when

a sender has a low transmission power and a forwarder has a high transmission power,

watchdog mechanism works properly. The rule of thumb for the cop mechanism is that a

cop node has to be in both sender’s and forwarder’s transmission ranges in order to correctly

detect a malicious node without a false alarm.

When malicious nodes do not have the same transmission range (high and low transmis-

sion ranges), the analysis can be combined with symmetric and asymmetric communications

to calculate the PDRavg of the network.

4.8 SUMMARY

In this chapter, an analysis of watchdog and cop mechanisms with a malicious node in

a network is presented using a probability weighted average from a probability tree. The
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High Tx node Low Tx node Cop node

(a)

(b)

Figure 4.22: Example scenario - False alarm in asymmetric communication

impact of a malicious node and the detection mechanisms are analyzed in terms of the

average PDR. From our analysis, the throughput is increased when the detection time is

decreased and the detection time depends on the threshold and load in the network. In a

static network, the analysis will be more complex if more malicious nodes are in the network

and node density is higher. In addition, if the nodes are mobile, the probability of choosing

a malicious node is changing over time and the analysis will be a lot more complicated.

Therefore, the study of the detection mechanisms for mobile ad-hoc networks will use the

simulation tool instead of analysis to study the performance in the next chapter.

For asymmetric communications, when a malicious node has a higher transmission range

than other nodes, it will be chosen first as an intermediate node since the path is a shortest

path. When a watchdog detection mechanism is implemented, all malicious nodes have to

be detected and the PDR can be improved.

The analysis presented here can be extended to other scenarios and possibly attacks

where it is possible to predict how routes are chosen from a source to its destination (i.e.,
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with what probabilities). As demonstrated here, such an analysis, while more optimistic

than simulations, can provide quick ideas of how the performance degrades and how quickly

and to what extent it may be possible to restore the PDR in the network.
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5.0 PERFORMANCE EVALUATIONS ON DETECTION MECHANISMS

In this chapter, the impact of the packet dropping attack is studied in three types of

wireless networks, i.e., a static ad hoc network, a mobile ad hoc network (MANET) and a

wireless mesh network (WMN). In addition, the performance enhancements (mitigation) with

the Cop mechanism, is compared with the corresponding improvement with the watchdog

mechanism. In this chapter, as throughout this dissertation, a malicious node will drop all

data packets if it is chosen as an intermediate node along a route and its impact is shown in

this chapter.

The simulation tool for this study is ns-2 simulator [75], which has been widely used in

research community for studying the performance in both wired and wireless networks.

5.1 PERFORMANCE METRICS

Three performance metrics are presented here as follows:

Packet Delivery Ratio (PDR) is like the goodput performance of the network. PDR

is the ratio of the total number of received packets to the total number of sent packets as

described in Chapter 4.

PDR =
Total number of received packets at destination

Total number of sent packets by source

Routing Overhead is the total number of routing messages that are sent within the

network. For the detection mechanisms, alarm messages are counted as a routing overhead

along with other routing messages.
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Detection Efficiency Ratio (DER) is the ratio of the total number of received pack-

ets from all destinations to the total number of monitored packets. The total number of

monitored packets is the number of packets that nodes have to monitor (listen to neighbors)

for detecting malicious activity. A monitoring node is a source or a regular nodes in a path

between a source and a destination. Since in a detection function, each node needs to pro-

cess each monitored packet by receiving them, this function consumes energy in the received

mode for each packet. The higher the DER, the better is the detection performance. This

is due to the fact that the system uses fewer numbers of monitored packets (or the energy)

for the detection function in order to detect a malicious node.

DER =
Total number of received packets at destination

Total number of monitored packets at monitoring node

The detection time is defined as the time taken to detect a malicious node since the start

of the simulation. Generally, if a malicious node is detected within a small detection time,

the PDR will be high since the route can be changed sooner such that packets will not be

routed through a malicious node and, thus, more packets will reach the destination.

5.2 SIMULATION PARAMETER SETTINGS

ns-2 simulator is used as a tool to study performances of a packet dropping attack and its

mitigation. Simulation parameters are presented in Table 5.1. Parameters could be changed

within studies and they will be specified appropriately.

5.3 AD-HOC NETWORK

In this study, static ad hoc networks are simulated to evaluate effects of the packet

dropping attack on the network’s PDR and also how well the detection mechanisms improve

the throughput performance when the attack is deployed. To study the effects, the worst

case and random case scenarios in a grid-like network are implemented. Simulation areas are
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Table 5.1: Parameter Setting - Watchdog and Cop mechanisms

Parameters Static Ad-Hoc network MANET WMN
Number of nodes 16 / 49
Simulation area 500 × 500 m2 / 1000 × 1000 m2

Node buffer size 50 packets
Propagation model Two-ray ground model
Transmission range 250 meters
MAC Protocol 802.11 CSMA/CA
Link Bandwidth 2 Mbps
Routing Protocols Dynamic Source Routing (DSR)
Traffic type CBR
Packet size 64 bytes 60 bytes
Packet rate 1 packet/second
Number of connections 5
Mobility Model - Random waypoint -
Pause time - 0 / 60 seconds -
Node speed (average) - 1 / 10 m/s -
Number of gateways - 1 / 2
Watchdog - Max. threshold 10 packets
Watchdog - Time-out 0 second
Watchdog - Det. Interval 50 % in 100 seconds / 100 %
Cop - Max. threshold 10 packets
Cop - Hold-down timer 0 second
Cop - Speed 10 m/s
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500 × 500 m2 and 1000 × 1000 m2. Number of nodes are 16 and 49 nodes (plus detection

nodes in the case of the Cop mechanism). Results are discussed for each network scenario.

5.3.1 16-node network in 500m × 500m area

16-node grid-like networks are shown in Figure 5.1 for the worst case and random case

scenarios. 5 connections are considered. The network connectivity is shown in Figure 5.2.

In scenario 1, all malicious nodes are in between sources and destinations. Scenario 2 is a

random case where sources and destinations are randomly chosen in the network. The color

of malicious nodes in the figures varies from gray color to black color. A lighter-gray node

represents a malicious node that is active earlier than a darker-gray node. For example, with

12.5% of the nodes being malicious nodes, only the two lightest gray nodes are active in the

network. Other gray nodes are not active during the simulation and they perform as regular

nodes.

In the case of Cop mechanism, 1 Mobile Cop and 4 Static Cop schemes are studied. In

a mobile cop scheme, a Cop node moves back and forth in a straight line within the middle

of the network as shown in Figure 5.3 at 10 m/s speed. The 4 static cop scheme uses 4

static cop nodes to detect malicious nodes in the network as shown in Figure 5.4. Cops have

an option to help with forwarding packets or not. When a Cop does not help forwarding

packets, the label in the results is ”no help” at the end and its function is only the malicious

node detection. When it helps in forwarding packets, there is no label in the results and it

acts as a malicious node detector and a regular node.

Results

There are two scenarios for this study. Figure 5.5 shows the PDR results from the

simulations. The first one is a worst case scenario and the impact from malicious nodes

are significant as expected. The PDR is decreased when the number of malicious nodes are

increased. When 50% of nodes are malicious nodes, the PDR is dropped to zero. Each

scheme and its variation perform with similar trends. The highest PDR is with the 4 static

cop scheme since it adds 4 more nodes to the network. An interesting observation is that

when 4 cop nodes don’t help in forwarding data packets, it gives higher PDR than 4 cop
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Figure 5.1: 16 node network - 500m × 500m

nodes, which help forwarding packets. This is because of the different alarm schemes. When

a cop node helps with forwarding packets, it will send an alarm as a unicast packet to a

source but this alarm message could be dropped by any malicious node. However, when a

cop node does not help with forwarding packets, it will broadcast an alarm message to its

neighbors, which will find a route and forward packets to the source. This is because the

cop node does not learn any route to any destination and the broadcast scheme is used. In

this way, the alarm message has a higher chance to reach the source so that a new route will

be established. The PDR is the highest with this scheme.

PDRs in watchdog schemes are better than those in one mobile cop scheme. The PDRs

with 100% detection and 50% detection watchdog schemes are similar but 100% detection

watchdog gives a little better PDR than 50% detection watchdog. It is important to note

that 50% detection watchdog starts working when the first overheard packet is received.

Nodes in the same path is almost synchronized. There is an exception if nodes forward

packets for multiple connections. The watchdog parameter setting plays an important role

in the performance. The threshold should be set such that the detection period is within

one detection period in 50% detection for detecting a malicious node faster and improving

the PDR. That’s why 50% detection scheme performs similar to 100% detection scheme. In

the case of the one mobile cop scheme, a mobile cop can still improve the PDR, with both
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Figure 5.2: 16 node network - Network connectivity - 500m × 500m

“help” and “no help” schemes, but not much since it takes more time to detect malicious

nodes in the network.

Another scenario is the random case (scenario 2), where sources, and destinations are

randomly chosen. However, malicious nodes are chosen sequentially from a list of nodes that

are not sources or destinations. The trend of the results is similar to the previous scenario.

In the case of the mobile cop scheme, and a small fraction of malicious nodes, the PDR is

less than the PDR for only DSR because the cop concluded too early that a regular node is

a malicious node. A detection time-out is needed for the cop to correctly detect a malicious

node in this network. PDRs from watchdog and 4 static cop node schemes are close to each

other because there is an alternative route to the destination after detection, and also help

from static cop nodes is not important in this scenario.

Figure 5.6 shows the routing overhead from each detection scheme for both scenarios. In

the worst case scenario, 100% detection and 50 % detection, watchdog mechanisms result

in the highest routing overhead in the network. With 50% of nodes being malicious, each

source periodically keeps trying to find an alternative route but it is not possible to find

the route and that adds more overhead to the network. Cop mechanisms add more routing

overhead to the network as well. For the random case, the routing overhead for all schemes

are not significantly different since an alternative route to a destination can be found easily.

The last metric is DER, shown in Figure 5.7. The worst performance for both cases is

using 4 static cops since they monitor all packets in the network and it causes the highest
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Figure 5.3: 16 node network with 1 MC - 500m × 500m

number of monitored packets. For this scheme, the PDR performance is high but DER

performance is low and it is not suitable for an energy efficient scheme if the energy con-

sumption of cops is a significant factor. However, our assumption is that cop nodes have

better capability than other nodes. With this assumption, the overall network lifetime itself

can be improved with this scheme since all other nodes do not spend energy for the detection

mechanism. In contrast, if the assumption is not true, the 4 static cop scheme gives the worst

performance in terms of the DER metric.

The best DER performance is with the 50% watchdog mechanism since a node does not

monitor its neighbors all the time but it still can detect a malicious node. Therefore, the

number of monitored packets is cut in half from the 100% watchdog scheme. A mobile cop

scheme gives a little higher DER performance than a full watchdog scheme because it uses

less numbers of processed packets than a full watchdog scheme.

5.3.2 Effect of size of area

In this study, the worst case scenario is considered as the base network and the network

topology is similar to the previous study but in a larger simulated area as shown in Figure

5.8. The main difference between this study and the previous study is the network connec-

tivity. This network represents a sparse network, instead of a dense network. The network
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Figure 5.4: 16 node network with 4 SCs - 500m × 500m

connectivity is shown in Figure 5.9.

Since the network is big and a mobile cop cannot travel in a straight line to monitor all

nodes in the network, it travels in a square shape within the network as shown in Figure

5.10. In the 4 static cop scheme, the cop nodes are added to the network as shown in Figure

5.11 to cover all the nodes but they cannot communicate directly with each other.

Results

When a network is larger, the number of possible paths between nodes are reduced.

For a large network, paths that lead to destinations are decreased but, in the worst case

scenario, the probability to choose a malicious node is also reduced. Watchdog mechanisms

in the large network give better PDR performance than those in a small network as shown

in Figure 5.12(a). Since a mobile cop’s moving path is different in order to cover all of the

nodes, the PDR performance for a mobile cop in a small network is improved more than

that in a large network as shown in Figure 5.12(b). This is because the cop needs more time

to cover its neighbors in a large network and, therefore, the detection time is longer. In the

case where 4 static cops are used, the PDR in a small network is a lot higher than that in

a large network because they can help in forwarding packets to destinations but this is not

possible in a large network. However, it helps improving the PDR performance compared to

regular DSR protocol.

Watchdog mechanism in a small network produces more routing overhead than that in
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Figure 5.5: PDR: 16 node static network - 500m × 500m

a large network when the number of malicious nodes is increased because nodes respond to

routing packets in a small network more than those in a large network and the number of

routing messages is higher in a small network as shown in Figure 5.13. It is important to

note that malicious nodes drop all alarm messages, which may not be delivered to a source

in a large network. For cop mechanisms, the routing overhead for mobile cop is similar for

both small and large networks. An interesting observation is that 4 static cop mechanism

in a large network generates higher routing overhead than all others because the cop nodes

keep sending alarm messages back to sources if they have not changed the route containing

a malicious node and the sources will all do route discovery repeatedly. This causes a high

overhead in 4 static cop scheme.

When the DER metric is considered as shown in Figure 5.14, the watchdog mechanism

in a small network gives a better DER performance than those in a large network because

the number of processed packets in a small network is less than that in a large network. In

contrast, DER for cop mechanisms in a large network is higher than those in a small network

since cops processed fewer numbers of packets. The cops overhear less number of packets

from its neighbors when the area is large.

In a large network, PDR performance depends on node density. When node density is
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Figure 5.6: Routing overhead: 16 node static network - 500m × 500m

high, a source has more chances to choose a path not containing a malicious node or a new

path without a malicious node after the first malicious node is detected. The PDR can be

thus increased.

When comparing detection mechanisms, watchdog mechanism gives high PDR than mo-

bile cop mechanism because watchdog can detect malicious nodes faster than mobile cop.

When a static cop is implemented, it has some limitations if it is not in the range of both

the sender and the forwarder since it cannot detect a malicious node in that case. Therefore,

watchdog performs better than cop when the network is large.

5.3.3 Effect of number of nodes

In this study, the number of nodes is increased from 16 nodes to 49 nodes in 1000 ×
1000 meters2. A network setup for 49 node network is shown in Figure 5.15 as a worst

case scenario and the network connectivity is shown in Figure 5.16. The number of nodes

is increased but the percentage of malicious node and number of connections is roughly the

same. It is important to note that both networks are not directly comparable in terms of

the overall area for all nodes located and the malicious node locations. However, this study

shows the effect of detection mechanisms in a certain circumstance.
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Figure 5.7: DER: 16 node static network - 500m × 500m

Results

The PDRs for watchdog mechanisms improve in both 16 node and 49 node networks but

the PDR in the 16 node network is higher than the PDR in the 49 node network, as shown

in Figure 5.17. Due to the number of malicious nodes, the probability to find a good route to

a destination is high in the 16 node network. However, cop mechanisms do not improve the

PDR performance. The problem with the cop mechanism performance is that the cop nodes

do not provide enough coverage for monitoring all nodes in the network. If the number of

cop nodes is increased to cover all the nodes, the PDR performance will be improved.

The routing overhead performance is shown in Figure 5.18. Watchdog mechanisms for

both 16 and 49 node networks give similar numbers for the routing overhead. For cop

mechanisms, 4 static cop mechanism in the 16 node network results in a higher overhead than

others because the source keeps trying to find a new route to a destination after detection. In

addition, static cops keep sending alarm messages but it is less likely to reach the destination

than in the 49 node network because alarm messages are dropped by malicious nodes.

The DER is shown in Figure 5.19. As expected, watchdog 50% gives better DER than

watchdog 100%. The DER for 50% watchdog for 16 node network is higher than 100%

watchdog because it has fewer nodes to monitor the malicious activity. For cop mechanisms,
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Figure 5.9: 16 node network - Network connectivity - 1000m × 1000m
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Figure 5.10: 16 node network with 1MC - scenario 1 (worst case) - 1000m × 1000m

�����
�����

�����	��
� 
� �
�� ��� ��
� �� �� ��� �� ������� ���� ��!"!��# ����$%�%!" "�& ����

Figure 5.11: 16 node network with 4SCs - scenario 1 (worst case) - 1000m × 1000m
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Figure 5.12: PDR: 16 node static network - Effect of area size

the mobile cop mechanism for 16 node network is the best because it monitors fewer nodes

in the network.

5.3.4 Effect of Mobility

In this study, nodes are moving inside a 500 × 500 m2 network with a random way-point

mobility model. The model has two parameters, a pause time and an average speed. The

pause time is the time that a node stops moving for changing to another direction. The

average speed is a speed of a node on average when it moves within a network. Our study

chooses 0 and 60 seconds for pause time and 1 and 10 m/s speeds for average speed. 0 second

pause time means that a node continues moving inside the network without stopping before

changing its direction. A node stops moving for 60 seconds before changing its direction in

60 second pause time. An average of 1 m/s is a walking speed and an average of 10 m/s

is a city speed at 22.39 MPH. In the simulation, two mobility patterns and two connection

patterns are simulated for each study.

This study is implemented in 500 × 500 m2 area and all nodes are moving within the

area with the pause time of 0 and 60 seconds and a speed of 1 and 10 m/s. A speed of 1

m/s is represented as “lo” and a speed of 10 m/s is represented as “hi” in figures below. At
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Figure 5.13: Routing overhead: 16 node static network - Effect of area size

0 second pause time and high mobility speed (p0,hi), the network is highly mobile and the

network topology is changed frequently. On the other hand, at 60 second pause time and

low mobility speed (p60,lo), the network does not change its topology frequently. The other

two settings, (p0,lo) and (p60,hi), are in between. For the cop mechanism, the cop node is

fixed at the center of the area and monitors its neighbors that pass through the monitoring

area.

Results

In (p0,hi), the PDR for watchdog 50% is worst because nodes cannot keep up with the

mobility and then the detection function is deactivated as shown in Figure 5.20. When a

node reactivates, the network topology is changed. This causes a false alarm and the PDR is

lowest. The static cop mechanism performs as good as regular DSR in term of PDR. Since

the network is highly mobile, the detection mechanisms do not perform well.

In (p60,lo), the network is less mobile, all detection mechanisms perform well as shown

in Figure 5.21. The static cop and watchdog mechanisms have similar PDR performance.

For the other two cases, the 100% watchdog gives highest PDR and static cop and 50%

watchdog gives similar PDR performance.

When the routing overhead is considered as shown in Figure 5.22 and 5.23, a static cop
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Figure 5.14: DER: 16 node static network - Effect of area size

produces a high number of routing overhead packets in all cases since it monitors all nodes

activity and it keeps sending an alarm message if a source uses a route containing a malicious

node in a path.

As far as the DER performance goes, Figure 5.24 and 5.25 show that a static cop con-

sumes more energy than watchdog and watchdog 50% because the cop node monitors packets

at the center of the area and all nodes are moving toward the center of the area.
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Figure 5.15: 49 node network - scenario 1 (worst case) - 1000m × 1000m

� � �� �� �� �� ��� ��	 ���� �� �	�� ���� ���� �� ���� ���� ���	 �� ���� ���� ���� �� ���� ���� �	�� �� ���� ���� ��

Figure 5.16: 49 node network connectivity - 1000m × 1000m
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Figure 5.17: PDR: a static network - Effect of number of nodes
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Figure 5.18: Routing overhead: a static network - Effect of number of nodes
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Figure 5.19: DER: a static network - Effect of number of nodes
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Figure 5.20: PDR: 16 node network - Pause time = 0 sec. - 500m × 500m
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Figure 5.21: PDR: 16 node network - Pause time = 60 sec. - 500m × 500m

5.3.5 Effect of threshold and time-out setting

In this study, the analysis in Chapter 4 on the detection parameters is simulated to prove

its concept for a static ad hoc network. A 500 × 500 m2 static network is in the worst case

scenario topology with 2 different threshold and time-out settings. The former setting is a

15 packet threshold and 15 second time-out, represented as “1515”. The latter setting is a
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Figure 5.22: Routing overhead: 16 node network - Pause time = 0 sec. - 500m × 500m
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Figure 5.23: Routing overhead: 16 node network - Pause time = 60 sec. - 500m × 500m
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Figure 5.24: DER: 16 node network - Pause time = 0 sec. - 500m × 500m
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Figure 5.25: DER: 16 node network - Pause time = 60 sec. - 500m × 500m
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30 packet threshold and 0 second time-out, represented as “3000”. Since the packet sending

rate is 1 packet per second and it takes 15 seconds to send 15 packets, both schemes should

have similar detection times. When the first setting is considered, the total detection time

is 30 seconds (from the analysis) to detect a malicious node, which is similar to the second

setting. Note that this study only focuses on PDR performance to show the effect.

Results

Figure 5.26 shows the PDRs for both settings. It is expected to have a similar PDR

performance for both watchdog and cop mechanisms. The results confirm that there is no

statistical difference between these 2 settings for a static ad hoc network.
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Figure 5.26: PDR: 16 node static network - Effect of threshold and time-out setting

5.4 WIRELESS MESH NETWORK

Another wireless network under study here is a Wireless Mesh Network (WMN), which

provides a low-cost Internet service in the area where wired-infrastructure is not available

or limited. In this work, a Wireless Mesh Network is simulated with one and two gateway

routers to connect to the Internet. All nodes are fixed in a grid-like topology and all con-

nections from the Internet pass through a designated gateway. The performance metric for

this study is different from the previous studies because each connection throughput is used
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instead of the overall network PDR. The performance for each connection in WMN networks

is evaluated (in terms of throughput) with the watchdog and cop mechanisms. This also

studies the effect of packet dropping attacks on each connection. A motivation for a node

to be selfish is that it tries to save its bandwidth, not its energy, since all routers are static

and have potential access to power sources.

5.4.1 16-node network in 500m × 500m area

Two network scenarios are simulated with worst case and a random case scenarios as

shown in Figure 5.27 and 5.28 respectively. The number of gateway routers is studied by

having the same number of connections but different numbers of gateways. One and two

gateway routers are considered here. 5 connections are simulated.
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(a) 1 gateway (b) 2 gateways

Figure 5.27: 16 node WMN network - scenario 1 (worst case) - 500m × 500m

Results

Figure 5.29 and 5.30 show the throughput from the worst case and random case scenarios

where 4 malicious nodes (25% of nodes) are active. From the results, the throughput is

improved when one more gateway router (Node 15) is added because there are more numbers

of possible paths from a source to a destination which do not include a malicious node in

the path. The results also show that the watchdog mechanisms outperform the mobile cop

mechanism because the watchdog mechanisms detect a malicious node faster than the cop

mechanism. The throughputs from both watchdog mechanisms are not different. However,
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(a) 1 gateway (b) 2 gateways

Figure 5.28: 16 node WMN network - scenario 2 (random case) - 500m × 500m

the mobile cop mechanism improves the throughput when malicious nodes are in the network,

comparing to DSR itself.

5.4.2 Effect of the size of area

In this study, the parameter settings are similar to the previous study except the simu-

lated area and node locations. The simulated area is changed from 500m × 500m area to

1000m × 1000m area. Figure 5.31 shows the 16 node network in the worst case scenario

with 1 gateway. In the case of the a mobile cop mechanism, the cop’s mobility path is a

square shape, similar to the path in the 16 node network in a 1000m × 1000m area and a

static ad hoc network (shown in Figure 5.10).

Results

Figure 5.32 and 5.33 show the throughput from the worst case scenario with 1 and

2 gateway routers. In a larger network, the throughputs with detection mechanisms are

higher than the throughputs in a smaller network and the results show similar trends to

the results in a static ad hoc network. They confirm that watchdog and cop mechanisms

improve the throughput of the WMN network and watchdog mechanisms outperform cop

mechanism. However, cop mechanism improves the throughput compare to the situation

when no detection mechanism is built in the network. The location of a malicious node
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Figure 5.29: Throughput: 16 node network - (worst case) - 500m × 500m

has an effect on the attack. If it is near a source or destination, the throughput drops

significantly. The number of gateway routers helps reducing the packet dropping attack

effectiveness by distributing connections to more gateways to avoid malicious nodes.

5.5 STUDY OF BENIGN DROPPED PACKETS

In this study, the problem is to cope with a wireless channel error or light congestion in

a network, along with the packet dropping attack. How to distinguish this attack from other

errors is a big question. A threshold based detection is not suitable for this type of problem

because it only counts the number of non-forwarding packets regardless of current network

conditions. In general, packets are dropped because of a malicious node, a wireless channel

error or a network congestion. A ratio-based detection may provide a better detection against

this problem as discussed below. The detection scheme is to monitor a flow-in and a flow-out

of its neighbor nodes, adapted from a flow conservation in graph theory [70]. Flow-in and

flow-out means the number of received packets and sent packets of a monitored node. In an

106



4 6 3 11 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CBR Throughput at All Sink Nodes (4 malicious nodes) with 1 Gateway − Th = 10

Sink Node ID

T
hr

ou
gh

pu
t (

kb
ps

)

 

 
Normal
4 Mal
WD
WD 50%
MC

4 6 3 11 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CBR Throughput at All Sink Nodes (4 malicious nodes) with 2 Gateway − Th = 10

Sink Node ID

T
hr

ou
gh

pu
t (

kb
ps

)

 

 
Normal
4 Mal
WD
WD 50%
MC

(a) 1 gateway (b) 2 gateways

Figure 5.30: Throughput: 16 node network - (random case) - 500m × 500m

ideal condition, flow-in is equal to flow-out in an error-free and congestion-free network with

no malicious nodes.

In an ideal condition,

∑
(flow − in) =

∑
(flow − out)

In practice, wireless channels are not reliable and cause errors at a receiver. In addition,

ad hoc networks could have a congestion if the load is higher than a transmission link

capacity. Therefore, flow-in is usually higher than flow-out.

In a practical condition,

∑
(flow − in) >

∑
(flow − out)

When a malicious node does not drop all data packets but it helps forwarding some

packets, a tolerance percentage (alpha, α) has to be set to tolerate dropped packets caused

by channel errors or congestion, but not a malicious node. For this ratio detection scheme

to perform properly, a malicious node must drop packets with a higher dropping percentage

(delta, δ) than the tolerance percentage. In the ratio-based detection scheme, each node
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Figure 5.31: 16 node WMN with 1 gateway - scenario 1 (worst case) - 1000m × 1000m

monitors its next hop neighbor in forwarding data packets locally and it does not get infor-

mation from other nodes. In order to detect a malicious node, the following condition here

has to be met:

if
[flow − out

flow − in
< (1− α)

]
→ A malicious node is detected

Given that, δ > α for a detection correctness.

For this detection scheme, the flow-in and flow-out information are observed and the

time to collect this information is crucial. At each time period, a detecting node collects

information and determines the ratio. If the ratio is less than (1 − α), it is assumed that

a malicious node is detected. If not, it will wait for another time to check the node again.

This detection condition is done periodically. Therefore, two parameters for this ratio-

based detection are the tolerance percentage (α) and the periodic check time. The tolerance

percentage is a crucial parameter since the dropping percentage is not available in practice.

Therefore, this mechanism does not work when delta is less than alpha. In addition, if a
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Figure 5.32: Throughput: 16 node network - (worst case) with 1 Gateway

network is heavily congested or the wireless channel is jammed with a jamming attack, this

scheme will not able to perform well for detecting a malicious node.

5.5.1 Simulation results

The simulation studies are similar to the ones previously described for both static and

mobile ad hoc networks. The first result is from a static ad hoc network in a worst case

scenario to compare PDR performance with different dropping percentages. For a mobile

ad hoc network, the results give some interesting findings with the ratio based detection

mechanism.

5.5.1.1 Static ad hoc network The worst case static ad hoc network scenario is sim-

ulated with 16 nodes in a 500m × 500m area. The detection parameters are 20% tolerance

percentage and the periodic check-time is 30 seconds. The dropping percentages are 30% and

70%. Figure 5.34 shows the effect of this new detection scheme. The watchdog and 4 static

cop mechanisms improve the PDR performance but mobile cop mechanism does not. This

is because the mobile cop does not have complete information in order to detect a malicious
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Figure 5.33: Throughput: 16 node network - (worst case) with 2 Gateways

node correctly.

5.5.1.2 Mobile ad hoc network The simulation settings are similar to the previous

study on the mobile ad hoc network. A 16 node network is simulated in 500m × 500m

simulation area but the detection approach is changed from a threshold based to a ratio

based detection mechanism. The detection parameters are 20% tolerant percentage and 30

second periodic check time. The dropping percentage is set to 70%. The results are shown

in Figure 5.35 and 5.36. With 70% dropping percentage, the PDRs with a regular DSR and

50% of the nodes being malicious nodes are more than 80% for all cases. When considering

the watchdog mechanism, the PDRs are worse than a regular DSR and a static cop because

the topology is frequently changed and when a periodic check time is due, a next hop node is

moving away such that the collected information is incomplete and the ratio is less than the

tolerance percentage. Therefore, a false alarm is sent from a detecting node. It is important

to note that the ratio based approach can generate a false alarm easily if nodes are mobile

and local observation information is not enough to decide whether a node is a malicious node

or not. A static cop mechanism slightly helps in improving the PDRs for some cases since
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Figure 5.34: PDR: 16 node static network - Study of benign dropped packet

it is fixed and overhears most of the communications within the network.

5.6 STUDY OF DIFFERENT TRANSMISSION RANGES

The transmission range of an ad hoc node can be changed by adjusting the transmission

power. A higher power is needed in order to increase a transmission range. The question

is whether the transmission range has an effect on the attack itself and the detection mech-

anisms or not. From the previous studies, the transmission range is set to 250 meters by

default for all nodes in the network. In this study, the transmission range is increased to 500

meters in order to study its effects to both packet dropping attack and detection mechanism

performances. The simulation set-up is similar to the previous descriptions except for the

transmission range in a worst case static network scenario in a 500m × 500m area.

5.6.1 Simulation results

Figure 5.37 shows the throughput from two different transmission ranges, 250 m. and

500 m in a small area. In a 500 m. transmission range scenario, all nodes are able to
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Figure 5.35: PDR: 16 node network - 0 sec. pause time. - α = 0.2, δ = 0.7 - 500m × 500m

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
CBR Throughput − p60, lo

Percent of Malicious nodes

P
ac

ke
t D

el
iv

er
y 

R
at

io

 

 

DSR
Watchdog
Watchdog 50%
1 Static Cop

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
CBR Throughput − p60, hi

Percent of Malicious nodes

P
ac

ke
t D

el
iv

er
y 

R
at

io

 

 

DSR
Watchdog
Watchdog 50%
1 Static Cop

(a) Low speed (b) High speed

Figure 5.36: PDR: 16 node network - 60 sec. pause time - α = 0.2, δ = 0.7 - 500m × 500m
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send and receive packets within one hop away while the nodes with 250 m. transmission

range cannot. As expected, the higher transmission range provides better performance since

nodes do not rely on their neighbors to forward packets. Therefore, the effect from the

packet dropping attack is lessened. Both watchdog and cop mechanisms improve the PDR

significantly because a detecting node is always in a transmission range of a sender and a

forwarder. In addition, a detecting node can send an alarm message within one hop away

and more alternate paths are available to reach a destination.
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Figure 5.37: PDR: 16 node static network - Study of transmission range

Remarks: The transmission range is an important issue for detection performance. We

assume that all nodes have the same transmission range. When the transmission range is

small, a mobile cop needs to move for a longer time to detection a malicious node and the

number of static cops has to be increased to cover all nodes in the area. This is not an issue

for watchdog since all watchdog nodes have to be in the transmission range of each other in

order to successfully communicate with each other and the detection can be thus performed.

5.7 SUMMARY

In this chapter, the performance study of both watchdog and cop mechanisms are pre-

sented. In most of the cases, watchdog mechanism outperforms cop mechanism in term of
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PDR performance because each node detects its own neighbors directly with shorter detec-

tion time. The 50% watchdog mechanism gives equal or a little less PDR performance than

100% watchdog mechanism and it saves more energy by reducing the monitoring for the

detection function. A mobile cop mechanism needs to monitor its neighbors when it is in

the transmission range of a sender and a receiver. The time to detect a malicious node with

the mobile cop mechanism is as equal as or more than the time for watchdog mechanism. A

static cop can perform as well as watchdog in a small network but not in a large network.

In MANETs with high mobility speed, the detection mechanisms do not perform well to

detect malicious nodes. However, the mechanisms give good performance when there is low

mobility since the topology is gradually changing. In summary, both detection mechanisms

help detecting a malicious node for packet dropping attack and improving the throughput

performance.

The wireless effects are studied with the packet dropping attack and its mitigation is

considered. The detection mechanisms for benign dropped packets have to be changed from

a threshold-based to a ratio-based approach such that it can correctly detect a malicious node.

However for this detection, composite information has to be collected in order to make a

correct decision to detect a malicious node. The energy efficient schemes, namely mobile cop

and 50% watchdog mechanisms, cannot be used with ratio-based detection. Finally, a study

of the effect of transmission range shows that when the transmission range is increased, the

packet dropping attack effectiveness is significantly reduced and detection mechanisms also

improve in performance.
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6.0 A DESIGN GUIDELINE FOR PACKET DROPPING ATTACK

DETECTION

In the previous chapters, analysis and simulations demonstrated the performance of

different detection mechanisms. Each detection mechanism was compared with others to

determine where advantages and disadvantages for different network scenarios occur. With

this information, this chapter will discuss design guidelines for detecting packet dropping

attacks for a network designer. Both a recommended detection mechanism and detection

parameters are the results that can be used when the network is deployed.

6.1 AVAILABLE DETECTION MECHANISMS AND THEIR VARIATIONS

The main goal for this study is to detect packet dropping attacks, which is easy to deploy

under any network conditions. Four detection mechanisms are considered here.

• Watchdog mechanism – all nodes perform monitoring and detection 100% of the time to

detect malicious nodes.

• Watchdog with X % detection – nodes perform monitoring and detection x% of the time

• Mobile cop mechanism – a few moving nodes are in the network for detecting malicious

nodes

• Static cop mechanism – a few static nodes are in the network to cover the area for

detecting a malicious node

For each mechanism, two approaches are possible to be implemented as follows:
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• Threshold-based detection - a detecting node only counts the number of non-forwarded

packets

• Ratio-based detection - a detecting node counts both forwarded and non-forwarded pack-

ets

6.2 SUMMARY OF SIMULATION RESULTS

From our simulation study, we can summarize the results as follows:

• Watchdog performs best in most scenarios.

• Watchdog 50% is as good as watchdog but it uses less energy for detection, especially in

static ad hoc networks.

• Cop performs well in a small network. The number of mobile cop is smaller than the

number of static cops but it has poor detection time and it doesn’t work well in MANETs.

6.3 DESIGNER REQUIREMENTS

A designer should have some requirements for the network to operate in terms of the ex-

pected performance. The parameter setting will be tailored to meet the design requirements.

Here is the information that needs to be considered.

• Load in the network - sending rate from a source to a destination

• Detection time - time between a detector node starting to detect a malicious node and

sending the alarm message

• % drop tolerance for noisy wireless channel or congested network (optional)

The requirements may not be fulfilled if a designer wants the fastest detection time and

low false alarm rates. This is a trade-off to be considered.
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6.4 RECOMMENDED DETECTION MECHANISM AND PARAMETER

SETTING

The outputs from the system conditions and designer requirements are as follows:

• Recommended detection mechanism

• Parameter settings

6.4.1 Recommended detection mechanism

We propose the use of incremental deployment of detection schemes. The detection

mechanism has to be changed depending on the malicious node density.

Table 6.1: Recommended detection approaches

Malicious node density Recommend detection mechanism(s)
Low Mobile Cop

Medium Static cop or 50% watchdog
High 100% Watchdog

When a network is set up without any expectation of any attack, a mobile cop can be

used to guard against unexpected attacks on the network. However, the number of malicious

nodes may be increasing such that a mobile cop cannot effectively detect malicious nodes.

Therefore, static cops or watchdog 50% can be deployed into the network. Static cops

should be placed to cover all nodes in the network and that increases the number of cop

nodes significantly for a large area network. However, watchdog 50% can be implemented

or activated even if the network is very large such that static cops are not suitable. When

the number of malicious nodes is high, both mechanisms may not work well and watchdog

should be implemented or activated in all nodes.

With the incremental detection scheme, energy for each node can be saved when the

number of malicious nodes is small to medium. Energy cannot be saved when the number of

malicious nodes is high because all nodes must actively detect malicious nodes in the network.

This is an intuitive result - extra security forces are needed only when the situation demands

it, and then the cost will inevitably be high.
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6.4.2 Parameter settings

From the designer requirements, the detection time for threshold-based watchdog and

static cop mechanisms is calculated from the equation below:

Tdet =
TH

R
+ TO (6.1)

This equation is an estimated detection time for a static ad hoc network. For MANETs,

this value is the minimum detection time.

The detection time for mobile cops or x% watchdog detection mechanisms is calculated

as follows:

Tdet =





TH
R

+ TO if TDD ≥ TH
R

+ TO

TH
R

+ TO + nTIDD if TDD < TH
R

+ TO
(6.2)

This equation is for a static ad hoc network with a mobile cop and the location of a

malicious node is known. Otherwise, it is difficult to estimate the detection time since it

depends on detection duration and inter-detection duration.

The detection time (Tdet)(in seconds) and the data rate (R) (in packets per second) are

specified from the requirements. Therefore, the threshold and time-out settings are easily

calculated. It is important to note that the detection time in this chapter is different from

detection time in Chapter 4 because in the analysis, we knew exactly when to start the

detection and when to stop the detection such that the throughput can be calculated. In

practice, we don’t know this information and the only thing we know is the general parameter

settings from the requirements. Therefore, the detection time here is the time to detect a

malicious node after a suspicious activity is noted.

In the case of the ratio based mechanism, parameters of note are the drop tolerance

percentage and the detection time interval. The specified detection time can be used as a

guideline for the detection time interval.

However, the requirements are used as a guideline to set appropriate values. If the

required detection time is too short, false alarms can easily be triggered and this causes

throughput reduction. If it is too high, a malicious node is detected slowly and the PDR is
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also dropped. Thus these are only guidelines towards a better design of a packet dropping

attack mitigation system. More specific parameter settings depend on the designer who

should evaluate the appropriate values.

6.5 MISCELLANEOUS REMARKS

6.5.1 Node collaboration

In this dissertation, we have not assumed any information exchange between cops or

nodes that are not part of the route being considered by Watchdog. Cops independently

acquire knowledge of suspicious nodes. However, when cops collaborate with each other,

the detection information can be shared to improve detection times. This causes increased

overhead for cop mechanism, especially if cops are sparsely deployed and have to commu-

nicate using other nodes in the network. It is possible to use regular nodes to relay the

communication between cops but if regular nodes cannot be trusted, the information can be

modified or dropped. Another method is to use a high transmission range or use directional

antenna for cops to communicate with each other but it consumes more energy. This method

is possible since cops could have more energy than regular nodes as per our assumption of

heterogeneity.

In contrast, watchdog can have distributed collaboration but if watchdog nodes are not

trustable, false information can cause the false accusation of a good node and PDR can drop.

Trust is an important issue for watchdog mechanism with collaboration.

When we analyzed the network, we did not consider the collaboration between cops or

watchdog nodes. However, if the collaboration is considered in static ad hoc networks, it

does not increase the throughput for watchdog because the topology of the networks is not

changed. In the case of static cops in a large static network, collaboration between them

can increase the throughput since all static cops cannot be in the ranges of all senders and

forwarders. After collaboration, cops have more information to detect malicious nodes in

the network (e.g., static cop 1 hears a sender, but static cop 2 does not hear the forwarder
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– here static cop 1 can only hear the sender and static cop 2 can only hear the forwarder).

When we consider collaboration in MANETs, throughput of the networks can be de-

creased because the topology is changing most of the time such that a false alarm can easily

occur if nodes do not collaborate. In a high speed mobile network, collaboration might not be

helpful since the network topology is changing rapidly such that the information exchanges

between watchdog nodes are not updated rapidly enough to detect a malicious node. For

low speed mobile networks, collaboration can be useful for watchdog nodes in detecting a

malicious node.

With the cop mechanism, collaboration between cops is crucial for correct detection in

MANETs because cops may not be able to cover all the nodes and the topology is changing.

Therefore, if the correct detection information is shared and updated, watchdog and cop

mechanisms can improve the throughput of the network.

6.5.2 Network lifetime

When we consider Watchdog and Cop mechanisms in term of energy, the watchdog

function has to be implemented in all nodes and each node needs to monitor its neighbors

if it is chosen as an intermediate node. Energy will be consumed in the receiving mode for

detection function. In addition, the nodes need to read and write their memory in buffers

for detection functions and these consume energy for each detecting node.

If we consider the network lifetime as the time at which the first node dies [76], watchdog

nodes obviously have shorter life time than regular nodes in cop mechanism since watchdog

nodes need to overhear neighbors’ communications and buffer packets for detection function

such that they consume more energy than regular nodes in cop mechanism. However, we

have not explicitly used models for determining lifetime here.

6.5.3 Node modification

When a detection algorithm is changed, a detecting node has to be modified to update the

algorithm. In the watchdog mechanism, the update has to be done one by one for each node

and if more nodes are in the network, the modification time will be longer. However, when
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the algorithm is changed for the cop mechanism, only cop nodes have to be modified. The

modification time for cop mechanism is considerably less than that for watchdog mechanism.

Here, we are referring to mechanisms that may adaptively morph from simple thresholds or

ratios to more advanced pattern recognition schemes based on response to intelligent or

sophisticated attacks.

6.6 LIMITATIONS OF THIS WORK

Here is a list of limitations of this work.

1. Watchdog mechanism suffers from several drawbacks, i.e., ambiguous collision, receiver

collisions, limited transmission power, false misbehavior, collusion, and partial dropping.

From these drawbacks, watchdog can allow the false alarm to occur, which will cause

network degradation. We don’t take these drawbacks into account for this study.

2. Cop mechanism is similar to watchdog mechanism and therefore it has the same draw-

backs as watchdog mechanism.

3. We are interested in the performance of the detection mechanisms, but not the causes of

misbehavior.

4. We do not consider the dynamic behavior of a malicious node, which tries to fake as a

good node and later on attacks the network and vice versa.

5. We do not fully study the detection duration and inter-detection duration for cop mech-

anism since it depends on each network scenario.
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7.0 CONCLUSIONS AND FUTURE WORKS

7.1 CONCLUSIONS

This dissertation studied detection performance of mechanisms that aim to mitigate the

impact of packet dropping attacks. The contribution of this work is listed as follows.

• A new detection mechanism is proposed and studied for addressing the detection of

packet dropping attacks by using a few special nodes (cops) to opportunistically detect a

malicious node in a network. Even though, this paradigm is not as good as the original

watchdog mechanism in terms of detection time, it can help improve the performance of

the network with fewer nodes performing monitoring and detection functions. The cop

nodes can be either static or mobile depending on the network designer.

• An analysis for a static ad hoc network that uses a probability tree to find the weighted

average PDR of the network with different detection mechanisms and numbers of ma-

licious nodes in the network is presented. The analysis shows the real challenge of this

study in that the throughput performance depends on the number of paths in the network

and the locations of malicious nodes. The detection time for threshold-based detection

depends on the data rate, the threshold setting and an optional time-out setting. With

cop nodes, the detection time also depends on the detection range (that a cop is in the

range of a sender and a suspicious node).

• Simulation results show the effects of network sizes, numbers of nodes and mobility speeds

to help understand the impact of the packet dropping attack and its mitigation.

• Wireless effects impact the performance of not only the packet dropping attack but also

the detection mechanisms. When the overall transmission range is increased, the effect
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of the attack is reduced and the detection mechanisms can detect a malicious node easier

since it can overhear most of the communications in the network.

• This study shows that a ratio-based detection mechanism can help improving the PDR

performance when all information from its neighbors is collected completely. Otherwise,

false alarms can easily occur. A ratio-based detection does not work well especially

in mobile ad hoc networks when the detection information is collected locally and is

incomplete. More nodes need to collect the information and send this to a collector to

make a better decision on whether a suspicious node is actually malicious.

7.2 FUTURE WORK

In this dissertation, a simple cop mechanism was studied but it can be improved in

several ways. Here are the lists of possibilities to enhance this work further.

• Study the mobile cop path to better detect a malicious node as in opportunistic net-

working by implementing and locating a cop node in an area that is likely to have a high

malicious node density.

• Study an on-call cop scheme where a cop node is at a station and gets a message from a

regular node to investigate suspicious activity. After the detection, a cop node returns

to the station. This works well in a static ad hoc network because the network topology

is not changed much and the cop can move between the source and the destination pairs.

• Apply the throughput analysis for other types of attack, such as a wormhole attack and

include other detection mechanisms. Extend the analysis for incentive based schemes as

well, to see what kind of incentives make the best sense.

• Study the cop paradigm with other types of attacks, such as wormhole attacks, by imple-

menting new algorithms for detecting such attacks in cop nodes. Note that characteris-

tics of attacks have to be known in order to correctly implement the detection algorithm.

However, this paradigm cannot be applied directly to all types of attacks since it only

works on an attack that does not require collaboration for detection. In this work cop
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nodes act independently. It may be possible to include cooperation between multiple

cops as well.
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