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Human T-cell leukemia virus type I (HTLV-I) is the etiological agent of adult T-cell 

leukemia (ATL). Its encoded oncoprotein Tax plays the key roles in HTLV-I-mediated cell 

transformation and pathogenesis. Although the mechanisms by which the HTLV-I Tax 

deregulates cellular signaling for oncogenesis have been extensively studied, how Tax itself is 

regulated remains largely unknown.  

Here we showed that PDZ-LIM domain-containing protein 2 (PDLIM2, SLIM or 

Mystique) negatively regulated Tax by promoting poly-ubiquitination and proteasomal 

degradation of Tax, so that to suppress Tax-mediated signaling activation, cell transformation 

and oncogenesis both in vitro and in animal. To further define the molecular determinant 

responsible for PDLIM2 mediated Tax suppression, we characterized that a putative α-helix 

motif of PDLIM2 at amino acids 236-254 was crucial for the interaction between PDLIM2 and 

Tax. PDLIM2 with selective disruption of this short helix lost the tumor suppression function 

and failed in altering Tax subcellular distribution as well as promoting Tax proteasomal 

degradation. Additionally, the expression of PDLIM2 was down-regulated in HTLV-I-

transformed T cells and primary ATL samples, and the re-introduction of PDLIM2 reversed the 
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tumorigenicity of the malignant cells. The evidence indicated that the counterbalance between 

HTLV-I Tax and PDLIM2 might determine the outcome of HTLV-I infection. Meanwhile, in 

those HTLV-I-transformed T cells, we found that DNA methyltransferases (DNMT) 1 and 3b 

but not 3a were over-expressed, suggesting the involvement of DNA methylation in PDLIM2 

repression.  

Consistently, the DNMT inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) restored PDLIM2 

expression and induced death of these malignant cells. Our studies provided important insights 

into the function of PDLIM2 in HTLV-I leukemogenicity, long latency and cancer heath 

disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, our 

studies also suggest potential therapeutic approaches for ATL, a disease with poor treatments.  
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1.0  GENERAL INTRODUCTION 

 

 

Adult T cell leukemia (ATL) was initially described in the mid 1970s (Takatsuki, 2005; 

Yoshida, 2005, 2010). In 1980 and 1981, investigators from Japan and USA independently 

isolated human T cell leukemia virus type I (HTLV-I), the first human retrovirus to be described 

(Gallo, 2005; Grassmann et al., 2005; Kashanchi and Brady, 2005; Yoshida, 2005). It was found 

to be the causative agent of ATL, a clonal aggressive and fatal malignancy of CD4+ T cells 

(Yoshida et al., 1984). Additionally, HTLV-I infection results in a distinct neurological disorder 

termed HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) (Gessain et al., 

1985; Osame et al., 1986). Overcoming the immune responses as well as deploying intracellular 

signaling, is critical for HTLV-I-mediated cell transformation and ATL development.  

Unlike many other transforming retroviruses, HTLV-I does not have viral homologues of 

cellular proto-oncogenes. Instead, the nonstructural oncoprotein Tax, encoded by the HTLV-I pX 

region (Figure 1), contributes to the primary transforming and long-term persistent infection 

(Seiki et al., 1983; Seiki et al., 1982). Tax protein is unique for HTLV-I and exerts its oncogenic 

role largely through deregulation of cellular transcription factors that are critical for cell growth 

and division, such as NF-κB (Sun and Yamaoka, 2005).  
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Figure 1. Scheme of the HTLV-I genome and HTLV-I transcription map. 

The alternatively spliced mRNAs, and proteins encoded by each mRNA are shown. ORFs are indicated by the boxes. 

 

The mechanisms by which HTLV-I infects host T cells and induces cell transformation 

have been extensively studied in the past thirty years (Hall and Fujii, 2005; Satou and Matsuoka, 

2010; Yoshida, 2010). HTLV-I-induced ATL is an NF-κB related disease. Evidence showed that: 

1) ATL cells exhibit constitutive activation of NF-κB and resistance to apoptosis (Horie, 2007; 

Mori et al., 1999). 2) Transduction of super-suppressor form of Inhibitor of NF-κB (IκB) results 

in the promoted cell apoptosis and reversed malignant phenotype of ATL cells (Hironaka et al., 

2004). 3) Tax is required for HTLV-I-mediated cell transformation, and Tax-mediated NF-κB 

activation is essential for the tumorigenesis in some skin diseases (Kwon et al., 2005). 4) 

Additionally, chemical inhibition of NF-κB induces apoptosis of HTLV-I-infected cells, 

supporting the pivotal role of NF-κB signaling in maintaining HTLV-I infection and ATL 

development (Horie, 2007; Uozumi, 2010). In the following sections, I will highlight 
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observations on the infectivity of HTLV-I as well as the implications of oncoprotein Tax in 

HTLV-I-mediated pathogenesis. Also, based on the involvement of NF-κB, I will summarize 

functions of the NF-κB signaling in tumorigenesis and discuss the regulation mechanisms of NF-

κB, especially via PDZ-LIM domain-containing protein 2 (PDLIM2, SLIM or Mystique), a 

newly defined negative regulator of NF-κB. 
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1.1 HTLV-I INFECTIVITY AND IMPLICATIONS OF HTLV-I TAX  

IN HTLV-I-MEDIATED PATHOGENESIS 

1.1.1 Clinical features of ATL and infectivity of HTLV-I 

1.1.1.1 HTLV-I prevalence and the clinical features of ATL  

 

Figure 2. The prevalence of HTLV-I infection. 

Countries in dark brown have HTLV-I prevalence between 1 and 5% in some populations. Countries with reports of 

low prevalence (less than 1% in some groups), due mainly to immigration from endemic areas, are shown in tan 

color. Remaining countries with very low HTLV-I prevalence or unreported data are presented in white (Proietti et 

al., 2005).  

 

HTLV-I was the first human retrovirus to be discovered. Today, 15-20 million people are 

infected worldwide. Its prevalence is endemic in certain areas (Figure 2), especially in 
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southwestern Japan, parts of Africa and South America, where 2~10% of regional population is 

infected (Proietti et al., 2005). In Australia, the prevalence of HTLV-I is estimated to be up to 

14% in the central region, compared to 4.7% in the Northern Territory cattle country - and 0.5% 

in Darwin (Northern Territory Government, 2005). Because HTLV-I infection is chronic if left 

untreated, the number of infected people keeps increasing as HTLV-I infection becomes a 

worldwide health threat. 

Evidence suggests that HTLV-I is the causative agent. Indeed: 1) ATL develops only in 

HTLV-I-infected individuals, and all ATL cells contain integrated HTLV-I provirus (Yoshida, 

1984). 2) HTLV-I randomly integrates into the host genome of ATL patients. 3) During the 

latency period of ATL development, the HTLV-I-infected cells transitions from polyclonal to 

monoclonal expansion, supporting the etiological role of HTLV-I. Consistently, the integration 

loci of the HTLV-I provirus are specific and clonal for each patient (Yoshida et al., 1984). 4) 

The HTLV-I-specific pX region (Figure 1), which encodes Tax (the key factor in the 

tumoriginecity of HTLV-I), does not share homologous sequences with host cellular DNA 

(Yoshida, 2010).  

The cumulative risks of developing ATL among virus carriers are estimated to be 2-5 % 

following a 40-60-year post-infection latency period, whereas the majority of HTLV-I carriers 

remain asymptomatic (Yoshida, 2010). Significantly, HTLV-I infection is associated with the 

formation of several autoimmune diseases, increases the risk of primary malignant neoplasms, 

and promotes the development of diseases including acquired immune deficiency syndrome 

(AIDS), when it co-infects individuals with human immunodeficiency virus (HIV) (Goorney and 

Young, 2000; Gotuzzo et al., 1992; Nadler et al., 1996). Thus, although not all HTLV-I 
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infections are life-threatening, the incident effects should be emphasized when considering the 

prevention and diagnosis of many other diseases.  

ATL is composed of four subtypes: chronic, smoldering, acute and lymphomatous. The 

latter two present fatal and aggressive clinical phenotypes, while the former two appear to be 

indolent and cause little or no morbidity. Reports suggest median survival periods of 6.2 month 

for the acute type, and 10.2 months for the lymphoma type following diagnosis (Shimoyama, 

1991). “Flower cells”- or the multi-nucleated leukemic cells associated with aneuploidy and 

chromosomal instability, are the main clinical markers of ATL (Uchiyama et al., 1977). ATL 

development is associated with the infiltration of flower cells into various tissues including skin. 

Further analysis has revealed aberrantly elevated levels of interleukin 2-receptor (IL-2R, CD25) 

and p52, the mature form of NFκB2 in those ATL cells, indicating the involvement of impaired 

cellular signaling during ATL progression (Hattori et al., 1981). 

1.1.1.2 Unique infectivity and transmission of HTLV-I  

HTLV-I primarily infects- but is not limited to- immune cells, including T cells, B cells, 

endothelial cells, glial cells, mammary epithelial cells and monocytes of both human and non-

human origin, but it preferentially targets the memory subpopulation of CD4+ T lymphocytes in 

vivo (Akagi et al., 1992; Ho et al., 1984; Hoffman et al., 1992; Hoxie et al., 1984; Koyanagi et 

al., 1993; LeVasseur et al., 1998; Richardson et al., 1990). This infection pattern is consistent 

with the ubiquitous expression of HTLV-I receptors, the glucose transporter 1 protein (GLUT1) 

and heparin proteoglycan, in those cell types (Manel et al., 2005; Manel et al., 2003). There are 

three principle methods of HTLV-I transmission: mother to infant (transmission of infected T 
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cells and macrophages via breast milk feeding), sexual contact and parenteral transmission. In all 

cases, HTLV-I is transmitted through cell-cell contacts via virological synapses. In other words, 

infected cells must be passed from infected individuals, in contrast to cell-free viruses, which are 

largely non-infectious (Igakura et al., 2003; Matsuoka and Jeang, 2007). More specifically, the 

HTLV-I Tax protein contributes to cell–cell contact by promoting the formation of virological 

synapses thereby favoring the infection process (Barnard et al., 2005; Igakura et al., 2003; 

Matsuoka and Jeang, 2007; Nejmeddine et al., 2005). 

 

Figure 3. ATL progression from HTLV-I infection. 

It is important to note that- the population of HTLV-I-infected cells depends on a 

persistent clonal proliferation in vivo (Figure 3), indicating a causative role of HTLV-I in ATL 
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progression (Etoh et al., 1997; Etoh et al., 1999; Yoshida, 2010). Following infection, the 

HTLV-I provirus load increases through the proliferation of infected cells rather than by the lysis 

of host cells and results in the release of mature viruses. The cytotoxic T lymphocyte (CTL) 

response also contributes to the clonal expansion because CTLs recognize and kill most of the 

HTLV-I-infected cells, leaving only a small portion of infected cells, that escape and/or 

overcome CTL responses and can later expand (Bangham and Osame, 2005; Yoshida, 2010). 

Importantly, although the de novo infection of HTLV-I is observed and is crucial in initiating 

HTLV-I-mediated leukemogenesis, some evidence has challenged the role of de novo spreading 

in the HTLV-I provirus load after the initial infection. Studies on inhibitors of reverse 

transcriptase (RTIs) indicate that after RTI treatments, the provirus load merely changes in both 

immediate HTLV-I-infected cells and the cells from HAM/TSP patients, in correlation with the 

clonal expansion of infected cells in HTLV-I-mediated pathogenesis (Miyazato et al., 2006; 

Taylor et al., 2006).  

1.1.1.3 Unique viral replication of HTLV-I  

There are roughly three periods of HTLV-I replication, depending on the splicing states 

of HTLV-I mRNA. The proteins Tax and Rex, which are both encoded by the pX region (Figure 

1), predominantly cooperate to contribute to HTLV-I viral replication (Fujisawa et al., 1985; 

Hidaka et al., 1988; Inoue et al., 1987; Seiki et al., 1985; Sodroski et al., 1984).  During the first 

stage, HTLV-I pre-mRNA is automatically fully spliced, resulting in the expression of both Tax 

and Rex. Tax is a transactivator protein that promotes HTLV-I viral transcription, resulting in an 

elevated production of HTLV-I pre-mRNAs through binding of the Tax responsive element 

(TRE) within the HTLV-I 5’ long terminal repeat (LTR). Rex functions to inhibit the splicing of 
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pre-mRNAs and maintain the unspliced and singly spliced forms, which encode the HTLV-I 

particle proteins including Gag, Pol and Env (Figure 4). In other words, the expression of Rex 

promotes the production of mature mRNA encoding HTLV-I particle proteins, while 

simultaneously inhibiting the generation of Tax and Rex mRNAs. 

 

 Figure 4. Regulation of HTLV-I replication by Tax and Rex. 

In the second phase, the unspliced and singly spliced HTLV-I mRNAs are maintained in 

abundance by the accumulation of Rex, resulting in efficient translations and the assembly of 

particle proteins to promote viral replication. Meanwhile, due to the suppressed production of 

Tax mRNA, insufficient Tax protein is translated. Gradually, the repressed Tax expression leads 

to the shutdown of HTLV-I viral transcription and the inhibition of particle protein expression, 
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and resulting in the suppression of viral replication. Therefore, HTLV-I viral transcription and 

replication are transient processes.  

In accordance with the clonal expansion of HTLV-I-infected cells in ATL, a correlation 

between the silencing of Tax and the shutdown of HTLV-I replication is frequently observed, 

thus defining the third period. The HTLV-I 5’ LTR is frequently deleted or hyper-methylated 

during ATL progression, highlighting the importance of suppressed viral transcription in the late 

stage of HTLV-I infection (Satou et al., 2006). This state is accepted to contribute to the latency 

between HTLV-I infection and ATL development because it helps HTLV-I-infected cells to 

escape CTL responses predominantly targeting Tax. Following a long latency period and clonal 

expansion of the HTLV-I-infected cells, ATL manifests itself through the accumulation of 

infected cells, breaking the threshold of immune responses (Figure 3).  

In summary, HTLV-I is a retrovirus responsible for ATL generation that has unique 

clinical characteristics and infection and replication processes. Importantly, the viral-encoded 

oncoprotein Tax contributes to both the viral infection and replication by favoring the formation 

of virological synapses and promoting HTLV-I transcription, respectively. 

1.1.2 Host responses to HTLV-I infection 

The host exhibits two main responses to HTLV-I infection: the cellular immune response 

to HTLV-I-infected cells, and the intracellular signaling responses, such as the NF-κB pathway 

(Bangham and Osame, 2005; Hall and Fujii, 2005; Matsuoka and Jeang, 2007; Yoshida, 2010).  

The immune response to HTLV-I, especially the CTL response, is involved in 

determining the proviral load of HTLV-I and the risk of disease progression, predominantly 
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through the targeting of HTLV-I Tax (Goon and Bangham, 2004; Jacobson et al., 1990; Parker et 

al., 1992; Satou and Matsuoka, 2010). Importantly, the contributions of the immune response to 

ATL development are strongly supported by a recent ATL model using HTLV-I-infected 

hematopoietic stem cells (HSCs) in SCID mice (Banerjee et al., 2010b). These mice exhibit 

phenotypes similar to ATL, with the characteristic genetic, immunologic, histologic, pathologic 

and clinical features of ATL. Furthermore, under these immune-deficient conditions, the mice 

exclusively generate lymphomas with a low number of injected cells (as few as 100 cells), at 

high rates (43%) and with short latency (~17 weeks), demonstrating the crucial role of immune 

repression in ATL development.  

Post HTLV-I infection, HTLV-I specific CTLs are highly activated in vivo and the host 

presents strong anti-HTLV-I responses (Vine et al., 2004). However, the CTL response is 

genetically determined and depends on individual differences (Jeffery et al., 1999; Nagai et al., 

1998; Vine et al., 2002). These differences in response partially explain the different clinical 

manifestations in HTLV-I-infected individuals with similar provirus loads. Natural killer (NK) 

cells and CD4+ helper T cells are also involved in the response to HTLV-I infection (Goon and 

Bangham, 2004). It has been reported that HAM/TSP patients exhibit both lower frequencies and 

lower activities of NK cells than asymptomatic HTLV-I carriers (Fujihara et al., 1991; Yu et al., 

1991). Additionally, the portion of interferon (IFN) γ producing CD4+ T cells is 10-25 times 

higher in HAM/TSP patients than in the carriers, suggesting a contribution from CD4+ cells 

through the secretion of anti-viral cytokines (Goon et al., 2003; Goon et al., 2004). Like 

infections from other viruses, HTLV-I infection is associated with HTLV-I antibody production 

and elevated activated T cells levels, which result in inflammatory tissue damage. Such stresses 
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provide a wide negative selection for the HTLV-I-infected cells that are insensitive to those anti-

HTLV-I responses, facilitating ATL progression though the clonal expansion of the escaped cells.  

On the other hand, at the intracellular level, HTLV-I infection impairs signaling cascades 

including NF-κB, AP-1, JAK/STAT and TGF-β (Hall and Fujii, 2005; Matsuoka and Jeang, 

2007; Sun and Yamaoka, 2005; Yoshida, 2010). Such deregulation provides survival signals and 

inactivates multiple tumor suppressor genes, allowing cells to escape from apoptosis and 

promote cellular proliferation and transformation. Importantly, the Tax protein plays a central 

role in all those processes, as summarized below.  

1.1.3 Role of the Tax oncoprotein in HTLV-I pathogenesis 

 

Figure 5. Schematic display of Tax functions. 
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Tax is an HTLV-I-specific oncoprotein and essential for HTLV-I-induced cell 

immortalization and transformation (Grassmann et al., 1992; Grassmann et al., 1989; Pozzatti et 

al., 1990; Tanaka et al., 1990). The functions of Tax include the promotion of viral transcription, 

activation of cell survival signaling, inactivation of intrinsic tumor suppressor, and contribution 

to DNA damage and chromosome instabilities (Kasai and Jeang, 2004; Matsuoka and Jeang, 

2007; Yoshida, 2010). Tax has also been shown to benefit HTLV-I transmission by promoting 

viral synapse formation (Igakura et al., 2003; Barnard et al., 2005; Nejmeddine et al., 2005).  

1.1.3.1 Tax is required for HTLV-I-mediated cell transformation and tumorigenesis. 

Tax not only transforms rodent fibroblasts but also immortalizes human primary T cells 

(Grassmann et al., 1992; Grassmann et al., 1989; Pozzatti et al., 1990; Tanaka et al., 1990). 

Compared to cells transformed by other cellular oncogenes, Tax-transformed cells have an 

apparently higher resistance to the induction of apoptosis, mainly through NF-κB activation and 

Bax repression (Brauweiler et al., 1997; Copeland et al., 1994; Fujita and Shiku, 1995; Sun and 

Yamaoka, 2005; Tsukahara et al., 1999). In addition, Tax-transformed lymphoid cells and 

fibroblasts induce tumors when introduced into nude mice (Oka et al., 1992; Pozzatti et al., 

1990). More importantly, the HTLV-I genome without Tax loses its original transformative 

ability, whereas Tax-transgenic mice develop spontaneous tumors, depending on the type of 

promoters used to drive Tax expression (Grossman et al., 1995; Nerenberg et al., 1987; 

Nerenberg, 1990; Peebles et al., 1995; Yamaoka et al., 1992). Indeed, Tax-immortalized 

lymphocytes in vitro and Tax-mediated T cell lymphomas in animals closely resemble the 

phenotypes of HTLV-I-transformed T cells and HTLV-I-induced ATL, respectively (Akagi et al., 

1995; Hasegawa et al., 2006; Kwon et al., 2005). Recent studies have demonstrated that HTLV-I 
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can also infect HSCs, supporting the existence of cancer stem cells (CSCs) and suggesting new 

mechanisms of ATL development involving CSCs (Banerjee et al., 2010a; Banerjee et al., 2008; 

Banerjee et al., 2010b). Importantly, SCID mice inoculated with either HTLV-I or Tax infected 

HSCs develop CD4+ T cell lymphomas that recapitulate ATL in humans, further supporting the 

role of Tax in HTLV-I-mediated cell transformation and tumorigenesis (Banerjee et al., 2010b). 

1.1.3.2 Tax promotes HTLV-I viral transcription .  

The functions of HTLV-I Tax include the promotion of viral transcription and the 

deregulation of multiple cellular signaling pathways (Figure 5). Cooperating with the cAMP-

responsive element binding protein (CREB), Tax activates the expression of viral genes via an 

interaction with TRE, a conserved 21-bp repeat within the 5’ LTR of HTLV-I (Adya et al., 1994; 

Bantignies et al., 1996; Fujisawa et al., 1989; Jeang et al., 1988; Kashanchi and Brady, 2005). 

The transcription activity of CREB is activated via a direct interaction between Tax and the bZIP 

(basic region leucine zipper) DNA-binding domains within CREB, resulting in elevated DNA 

binding activities (Kashanchi and Brady, 2005; Wagner and Green, 1993). Then the Tax-CREB 

complex facilitates the recruitment of coactivators like CBP and p300, resulting in the 

acetylation of histones and chromatin remodeling and permitting the activation of viral LTR, 

thereby promoting HTLV-I viral transcription (Bex and Gaynor, 1998; Georges et al., 2002; 

Giebler et al., 1997; Harrod et al., 2000; Matsuoka and Jeang, 2007; Yoshida, 2010). 

1.1.3.3 Tax deregulates multiple intracellular signal transductions.   

Tax exerts its oncogenic properties largely through the deregulation of cellular 

transcription factors that are critical for cell growth and division, including NF-κB and AKT 
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(Hall and Fujii, 2005; Matsuoka and Jeang, 2007; Sun and Yamaoka, 2005). Those signals are 

required to quell the propensity of infected cells to enter apoptosis. The NF-κB signaling 

pathway is the prime target of Tax and is required for T cell immortalization by HTLV-I (Robek 

and Ratner, 1999). Studies have demonstrated that NF-κB inhibition suppresses the growth of 

Tax-transformed rodent fibroblasts, and that Tax-mediated NF-κB activation is responsible for 

the development of some skin diseases (Kwon et al., 2005; Sun and Yamaoka, 2005; Yamaoka et 

al., 1996). 

In ATL cells, Tax induces the activation of NF-κB through a persistent degradation of 

IκB and the processing of p100, the canonical and non-canonical NF-κB activation pathways, 

respectively (Sun and Xiao, 2003; Xiao et al., 2006). Tax interferes with the activation of NF-κB 

at multiple levels. In the cytoplasm, Tax binds to and recruits the IκB kinase (IKK) complex, an 

essential complex in NF-κB signaling, via its regulatory subunit IKKγ into specific 

compartments for IKK activation, resulting in the degradation of IκB and the subsequent nuclear 

translocation of NF-κB factors, including p65 (RelA) (Harhaj et al., 2007; Xiao et al., 2000; 

Xiao et al., 2006). In the nucleus, Tax recruits p65 and other cellular transcriptional components 

into inter-chromatin sparkles to form transcriptional hot-spots termed as “Tax nuclear bodies” for 

full NF-κB transcriptional activation (Bex et al., 1997; Semmes and Jeang, 1996).  

Constitutive canonical NF-κB activation has been reported in various cancers. However, 

the aberrant expression of p52 in T cells is considered to be the key marker of HTLV-induced T 

cell transformation in ATL development, correlating with the observation that p52 production is 

tightly regulated in normal T cells, even when the cells are activated by T cell mitogens (Lanoix 
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et al., 1994; Xiao et al., 2001a; Xiao et al., 2006). The detailed mechanism by which Tax 

regulates NF-κB by Tax will be elucidated in the second part of this introduction. 

Interestingly, the critical cytoplasmic and nuclear steps of NF-κB activation require two 

distinct post-translational modifications of Tax, namely ubiquitination and SUMOylation 

(Lamsoul et al., 2005; Nasr et al., 2006). In the cytosol, ubiquitination is crucial for Tax binding 

to IKK; while in the nucleus, SUMOylation of the same lysine residues in the Tax C-terminus is 

required for the formation of p65/p300-enriched Tax nuclear bodies and NF-κB transcriptional 

activation (Nasr et al., 2006).  

In addition to its role in NF-κB signaling, Tax interacts and activates 

phosphatidylinositol-3-kinase (PI3K) to stimulate the AKT signaling pathway. The AKT 

pathway contributes to both cell survival and proliferation and is associated with the apoptotic 

escape of HTLV-I-infected cells (Hall and Fujii, 2005; Jeong et al., 2005; Peloponese and Jeang, 

2006). In addition, the JNK pathway with the phosphorylation of c-Jun is regulated by HTLV-I 

Tax via interactions with small GTPases, including RhoA, Rac1 and Cdc42, which affect IL-2-

independent growth and mediate the transition from the IL-2-dependent to IL-2-independent 

stage of HTLV-I-infected cells (Hall and Fujii, 2005; Jin et al., 1997; Wu et al., 2004; Xu et al., 

1996).  

1.1.3.4 Tax contributes to the aneuploidy of ATL cells.   

The appearance of flower cells which result from multipolar mitosis is a clinical marker 

of ATL and is associated with cell aneuploidy. Aneuploidy is widely prevalent in tumor cells and 

is responsible for DNA damage and chromosomal instability (Nigg, 2002; Pihan et al., 2001; 
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Rasnick, 2002). Interestingly, abnormal centrosomes co-localize with Tax in ATL cells, 

suggesting that Tax contributes to aneuploidy (Ching et al., 2006; Nitta et al., 2006; Pumfery et 

al., 2006). Evidence shows that Tax expression leads to centrosome over-duplication by 

regulating the centrosomal protein TAX1BP2 and/or Ran binding protein 1 (RanBP1) (Ching et 

al., 2006; Peloponese et al., 2005). Tax1BP2 is a centrosomal protein that normally blocks 

centrosome replication. The occupation of TAX1BP2 by Tax or the depletion of TAX1BP2 leads 

to hyper-amplification of centrosomes and causes aneuploidy (Ching et al., 2006). Distinct from 

TAXBP2, Tax targets RanBP1 and facilitates multipolar cell segregation by impairing spindle 

poles (Peloponese et al., 2005).  Tax also binds to and inactivates MAD1, resulting in the loss of 

function of the mitotic spindle assembly checkpoint (SAC) (Jin et al., 1998). Furthermore, 

abnormal chromosomal segregation due to the aberrant degradation of cyclin A, cyclin B1 and 

securin triggered by Tax is detected (Liu et al., 2005). Taken together, these data lead to the 

belief that Tax favors premature mitosis and contributes to the aneuploidy of ATL cells 

(Kamihira et al., 1994; Matsuoka and Jeang, 2007).  

1.1.3.5 Tax inactivates tumor suppressors and provokes aberrant cell cycles and DNA 

repair. 

Tax inactivates multiple tumor suppressor genes including Drosophila discs large tumor 

suppressor protein (DLG1), adenomatous polyposis complex (APC), Rb and p53 (Matsuoka and 

Jeang, 2007). Importantly, it was discovered that HTLV-I Tax has a wide interaction with PDZ 

domain-containing proteins via its C-terminal PDZ-binding motifs (PBMs). Generally, PDZ-

domain-containing proteins associate with the cytoskeleton and serve to organize cell signaling 

assemblies to regulate cell growth, polarity and adhesion (Lee and Zheng; Sheng and Sala, 2001). 
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The protein hDLG1 protein is the human homologue to Drosophila DLG and is involved in the 

Wnt signaling pathway (Matsumine et al., 1996; Woods and Bryant, 1991). DLG1 also plays a 

prominent role in regulating the cell-cycle phase transition by interacting with the C-terminus of 

the APC tumor suppressor. It has been reported that Tax physically binds to DLG1, subsequently 

inactivating DLG1 by leading to its hyper-phosphorylation and aberrant subcellular distribution; 

thus, Tax promotes cell proliferation by overcoming the G0/G1 transition (Aoyagi et al., 2010; 

Suzuki et al., 1999a). Notably, PDLIM2, which negatively regulates Tax, also belongs to the 

family of PDZ-domain-containing proteins.  

In addition to its effects on DLG1, Tax contributes to cell-cycle transitions and overrides 

the G1/S transition by modulating the Rb protein. It induces the hyper-phosphorylation of Rb via 

interacting with Cdk4/Cdk6 or directly promoting the degradation of Rb protein (Fraedrich et al., 

2005; Haller et al., 2002; Kehn et al., 2005; Suzuki et al., 1996). Tax also inactivates p53 via 

disrupting the interaction between p53 and p300/CBP by forming the Tax-p300-CBP complex, 

or inducing MDM2 expression to degrade p53 (Jeong et al., 2004; Suzuki et al., 1999b). 

Moreover, Tax represses DNA repair by down-regulating DNA polymerase β and inhibiting 

DNA topoisomerase I (Figure 5), so as to promote the mutation frequency (Jeang et al., 1990; 

Suzuki et al., 2000). In other words, Tax plays roles in modulating cell-cycle transitions, DNA 

repair, DNA damage responses and chromosomal instability. All of these functions are 

associated with HTLV-I-mediated pathogenesis.  
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1.1.3.6 Silencing of Tax facilitates the escape of HTLV-I-infected cells from the immune 

response, contributing to HTLV-I latency and persistent infection. 

As described above, Tax is required to initiate HTLV-I-mediated leukemogenesis (Figure 

3). However, Tax expression is largely suppressed or silenced during the late stage of ATL 

progression, indicating that Tax is no longer needed to maintain the transformed phenotype of 

ATL cells (Matsuoka and Jeang, 2007; Tamiya et al., 1996; Yoshida, 2010). Because Tax is the 

target of CTLs, it is accepted that the suppression of Tax helps HTLV-I-infected cells to escape 

the immune response and contributes to HTLV-I latency (Bangham and Osame, 2005). Many 

mechanisms have been reported to be involved in Tax repression, including Tax negative 

regulators, genetic alteration, hyper-DNA methylation and deletion of the 5’ LTR of the HTLV-I 

provirus (Aoyagi et al., 2010; Furukawa et al., 2001; Koiwa et al., 2002; Matsuoka and Jeang, 

2007; Takeda et al., 2004; Taniguchi et al., 2005). 

To summarize, Tax is the primary oncogenic mediator for HTLV-I-induced cell 

immortalization and tumor formation. This viral protein provokes HTLV-I transcription as well 

as the stimulation of cell growth, which is associated with the deregulation of a number of 

cellular factors including NF-κB. Additionally, Tax contributes to tumorigenesis by inactivating 

tumor suppressor genes and/or inducing impaired cell checkpoint, DNA damage and 

chromosome instabilities. 

1.1.4 Accessory genes from the HTLV-I pX region other than Tax  

In addition to the importance of Tax, the accessory genes within the HTLV-I pX region 

that are generated from the alternatively spliced HTLV-I mRNA also contribute to HTLV-I viral 
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persistence. These genes include Rex, p12, p30 and HBZ (Matsuoka and Jeang, 2007; Nicot et 

al., 2005). 

As described before, Rex is required for the expression of viral structural gene products, 

including Gag, Pol and Env, which are crucial to HTLV-I replication and virus assembly (Figure 

4). The cis-acting Rex responsive element (RRE) within the 3’ LTR is the target of Rex. The 

occupation of Rex on RRE leads to the nuclear exportation of unspliced or singly spliced viral 

mRNA to the cytoplasm, which encodes the viral structural genes (Figure 4). Meanwhile, this 

occupation limits the production of spliced mRNA, which encodes Tax. In this way, Rex 

suppresses Tax production and contributes to a transient process of viral transcription and 

replication because Tax promotes HTLV-I transcription (Inoue et al., 1987; Yoshida, 2010).  

p12 is associated with host cell proliferation by affecting the threshold of NF-AT-

mediated T cell activation and IL-2 production (Nicot et al., 2001). In addition, p12 modulates 

cytoplasmic calcium and calcium-mediated cellular gene expression, including interleukin 6 

signal transducer (IL6ST), members of the tumor necrosis factor (TNF) superfamily, adenosine 

receptor, TNF receptor-associated factor (TRAF), which play vital roles in intracellular signaling 

cascades (Ding et al., 2001). It should be noted that p12 also inhibits the expression of major 

histocompatibility complex (MHC) class I by binding to heavy chains of free MHC class I 

proteins, resulting in the proteasomal degradation of newly synthesized MHC-I-hc (Johnson et 

al., 2001). In this way, p12 protects infected cells from CTL recognition and maintains a 

persistent HTLV-I infection. 
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Figure 6. Functions of HBZ in HTLV-I-infected cells. 

p30 plays a role as the negative regulator of HTLV-I and is related to the low-levels of 

viral antigens of HTLV-I-infected cells in vivo (Nicot et al., 2004). By association with the 

doubly spliced Tax and Rex mRNA, p30 traps both Tax and Rex mRNAs (but not the structural 

genes’ mRNAs) in the nucleus, resulting in the suppression of Tax and Rex expression at a post-

transcriptional level. Moreover, p30 interacts with coactivators, including CBP and p300, 

disrupts the formation of Tax-p300-TRE complex and inhibits Tax-dependent LTR 

transactivation (Matsuoka and Jeang, 2007; Zhang et al., 2000). Through those mechanisms, 

HTLV-I-infected cells present low levels of antigens on surfaces and escape the immune 

response.  

HBZ, which is encoded by the minus strand of the provirus, serves as an important 

negative regulator of Tax (Figure 6). HBZ suppresses Tax mediated HTLV-I viral transcription 

by competing with interaction between Tax and CREB (Gaudray et al., 2002; Matsuoka and 

Green, 2009). HBZ is constitutively expressed in the late stage of ATL, while Tax is largely 
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repressed at the same time, supporting the role of HBZ as a negative regulator of Tax. Moreover, 

recent studies showed that HBZ suppresses NF-κB activation via activation of a terminator of 

NF-κB named PDLIM2 (Figure 6, (Zhao et al., 2009)), supporting the findings in this thesis that 

PDLIM2 negatively regulates Tax. Interestingly, HBZ mRNA, but not the protein, is sufficient to 

promote T cell proliferation, suggesting an oncogenic function and a crucial role in ATL 

development (Matsuoka and Green, 2009; Satou et al., 2006).  

In summary, Rex, HBZ and p30 serve as negative regulators of HTLV-I Tax and 

contribute to HTLV-I-mediated pathogenesis. 

1.1.5 Negative regulators of HTLV-I Tax  

Although the mechanisms by which HTLV-I Tax deregulates cellular signaling for 

oncogenesis have been extensively studied, how Tax itself is regulated by other cellular factors 

remains largely unknown. Knowledge about the negative regulators of HTLV-I Tax is still 

limited to the regulators from HTLV-I itself, including Rex, HBZ and p30, as described above 

(Basbous et al., 2003; Inoue et al., 1987; Nicot et al., 2004; Nicot et al., 2005).  

Importantly, rather than inhibiting HTLV-I infection, all of these known negative 

regulators of Tax help the HTLV-I-infected cells to escape from the host’s immune response 

(Figure 3), thereby contributing to persistent viral infection and HTLV-I-mediated pathogenesis. 

Considering the crucial role of Tax in the initiation of HTLV-I-induced leukemogenesis, it is 

necessary to discover the intrinsic negative regulators of Tax in the host cells, because they may 

be the primary defenders in determining the initial infection of HTLV-I and inhibiting HTLV-I 

pathogenesis. In this study, we defined PDLIM2 as the first intrinsic suppressor of Tax from the 
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host cells. PDLIM2 targets Tax for proteasomal degradation and suppresses Tax-mediated NF-

κB activation, HTLV-I-LTR viral transcription and Tax mediated tumorigenesis. Unlike other 

PDZ-domain-containing proteins, PDLIM2 binds to Tax via its internal disordered sequences 

other than the PDZ domain, while multiple distinct sequences within Tax are responsible for the 

interaction with PDLIM2. Chapter 2 of this dissertation will focus on elucidating the mechanism 

of Tax regulation by PDLIM2, and Chapter 3 will explore the molecular determinants of 

PDLIM2 in Tax regulation. 

1.1.6 Therapeutic approaches and the prevention of HTLV-I infection 

Thirty years after the initial clinical determination of ATL as an HTLV-I-related disease, 

therapeutic approaches are still lacking. This is mainly because HTLV-I-transformed cells are 

highly resistant to the induction of apoptosis (Grassmann et al., 2005; Matsuoka and Jeang, 2007; 

Taylor and Matsuoka, 2005; Uozumi, 2010). There is still no beneficial treatment for ATL other 

than allogeneic hematopoietic stem cell transplantation.  

1.1.6.1 Chemotherapy  

Chemotherapy, including cyclophosphamide, adriamycin, vincristine and prednisolone 

(CHOP), is the primary standard treatment for ATL. The intensive chemotherapy protocol LSG-

15, using VCAP (vincristine, cyclophosphamide, doxorubicin and prednisone), AMP 

(doxorubicin, ranimustine and prednisone) and VECP (vindesine, etoposide, carboplatin and 

prednisone) with G-CSF (granulocyte colony-stimulating factor) support, is reported to have 

improved efficacy (Taylor and Matsuoka, 2005; Uozumi, 2010; Yamada et al., 2001). Other 

approaches, such as targeting the cell differentiation markers like CD25 via the injection of 
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monoclonal CD25 antibody, a combination treatment with interferon and zidovudine, and the 

usage of topoisomerase inhibitors, including CPT11 and MST16 also yield partial or complete 

remission in some specific individual cases (Hermine et al., 1995; Makino et al., 1994; Ohno et 

al., 1993; Uozumi, 2010). Unfortunately, the general benefits are poor. 

1.1.6.2 Stem cell transplantation   

Allogeneic hematopoietic stem cell transplantation remains the only beneficial treatment 

for ATL. Through this method, the HTLV-I proviral load can be reduced to an undetectable level 

in many cases (Obama et al., 1999; Tajima et al., 2000; Uozumi, 2010). However, this approach 

is restricted to aggressive ATL treatment because of the high incidence of fatal toxic effects and 

transplantation-related disease (Kami et al., 2003; Utsunomiya et al., 2001; Yonekura et al., 

2008). The real curative effect is still under investigation. Therefore, finding new targets and 

discovering novel drugs for HTLV-I-related disease are still necessary. Targeting NF-κB for 

drug discovery is the new hope for ATL treatment. 

1.1.6.3 New targets for ATL treatment   

As described before, ATL is an NF-κB related disease. Considering the essential role of 

Tax in HTLV-I-mediated pathogenesis, current drug discovery efforts and testing against ATL 

mainly focus on targeting anti-Tax immunization and Tax-related signaling pathways like NF-κB 

and AKT. A numbers of tested drugs for ATL treatment work either directly or indirectly 

through the regulation of NF-κB (Uozumi, 2010). The proteasome inhibitor PS-341, which 

inhibits NF-κB by efficiently blocking IκB degradation, inhibits the growth of ATL cells in vitro 

and ATL cell induced xenografts in vivo (Satou et al., 2004). Previous data from our group 
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showed that treatment with geldanamycin (GA), an Hsp90 inhibitor, can inhibit the NF-κB 

signaling pathway and lead to the apoptosis of HTLV-I-transformed T cells (Yan et al., 2007). 

Additional, evidence has shown that Tax-expressing cells undergo apoptosis after treatment with 

PI3K inhibitors to prevent Akt phosphorylation (Ikezoe et al., 2007). All of these inhibitors give 

insight into therapeutic approaches and new hopes for this incurable disease. 

The development of cancer involves the epigenetic repression of tumor suppressor genes. 

In Chapter 4 of this thesis, we report that the treatment of DNMT inhibitors induces the death of 

HTLV-I-transformed T cells and ATL cells in association with the reactivation of PDLIM2, an 

NF-κB suppressor. Although the DNMT inhibitor 5-aza-dC may not only affect PDLIM2 

reactivation, the clinical trial of this phase-III drug shows potential therapeutic capacity for ATL 

treatment. 

1.1.6.4 Prevention of HTLV-I infection  

Although ATL treatment remains poor, there have been impressive achievements in ATL 

prevention. Because the mechanisms of HTLV-I transmission are well-studied, the spread of 

HTLV-I has been reduced by 80% by avoiding breastfeeding in HTLV-I-carrying mothers in 

Japan (Taylor and Matsuoka, 2005). However, due to the cost of formula and the potential risk of 

infant mortality from diarrheal diseases related to bottle feeding, this efficient method may not 

translate to execution in many countries with a high prevalence of HTLV-I (Hanchard, 1999). 

Nowadays, vaccinations with HTLV-I Tax-targeted vaccines in carriers with high proviral loads 

and low HTLV CTL responses are highly recommended, and improvements have been achieved 
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(Bangham and Osame, 2005). The extensive research on HTLV-I has provided significant 

contributions to the current longer latency and lower risk of HTLV-I infection. 
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1.2 THE NF-ΚB SIGNALING PATHWAY AND ITS FUNCTIONS IN 

TUMORIGENESIS 

Mammals have an organized system to defend against various infectious agents that is 

mediated by the early reaction of innate immunity and the later responses of adaptive immunity. 

The innate immune system recognizes pathogen-derived substances and its activation results in 

the expression of numerous antimicrobial molecules. In contrast, the adaptive immune system 

leads to DNA rearrangement in somatic cell and generates antigen-specific receptors, or 

antibodies. Both steps are initiated by the recognition of pathogens, which then induce the 

activation of intracellular signaling cascades (Janeway, 2005). Among the activated nuclear 

transcription factors, NF-κB plays a central role as it regulates and influences various biological 

processes, including inflammation, the immune response, cell survival and tumorigenesis (Ghosh 

et al., 1998; Hayden and Ghosh, 2008; Silverman and Maniatis, 2001). 

NF-κB was firstly identified as a regulator of the immunoglobulin κ light chain gene in B 

cells 25 years ago (Sen and Baltimore, 1986). Later studies confirmed the conservation and 

ubiquities of NF-κB signaling from flies to humans (Silverman and Maniatis, 2001). Nowadays, 

it has been demonstrated that NF-κB is not only a central mediator of immune responses, but 

also a regulator in various pathogeneses, particularly oncogenesis (Sun and Xiao, 2003; Xiao et 

al., 2006). As described in the former section, HTLV-I-induced ATL is an NF-κB-related disease, 

and most currently tested drugs for ATL target NF-κB signaling, either directly or indirectly. 

Importantly, HTLV-I Tax exerts its oncogenic role largely through the deregulation of cellular 
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transcription factors that are critical for cell growth and division, mainly through NF-κB 

(Matsuoka and Jeang, 2007; Yoshida, 2010). 

1.2.1 NF-κB members 

 
Figure 7. The NF-κB, IκB and IKK protein families. 

Members of the NF-κB, IκB, and IKK proteins are shown. The number of amino acids in each human protein is 

presented on the right. RHD, Rel homology domain; TAD, transactivation domain; LZ, leucine zipper domain; GRR, 

glycine-rich region; CC, coiled-coil domain; NBD NEMO-binding domain; DD, death domain; NLS, nuclear 

localization sequences; NES, nuclear export sequences. 
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There are five NF-κB family members in mammals: p65 (RelA), RelB, c-Rel, NFκB1 

(p105/p50) and NFκB2 (p100/p52), encoded by RELA, RELB, REL, NFKB1 and NFKB2, 

respectively (Hayden and Ghosh, 2008; Xiao et al., 2006). All those members share an N-

terminal Rel homology domain, which is responsible for binding to κB sites, dimerization and 

NF-κB nuclear translocation (Figure 7). Based on the different structures and functions of their 

C-terminals as well as the different synthesis modes, the five NF-κB members can be classified 

into two groups. RelA, RelB and c-Rel proteins comprise the group containing the C-terminal 

transcription activation domain (TAD), which is necessary for the positive regulation of NF-κB 

target gene expression (Figure 7). Notably, NFκB1/p50 and NFκB2/p52 are synthesized as large 

precursor forms, p105 and p100, respectively (Figure 7). Their C-termini can be selectively 

degraded via the ubiquitin-proteasome system. The remaining N-terminal regions, which are p50 

and p52, could dimerize with other NF-κB family members due to the existence of an RHD 

domain.  

NF-κB members form numerous homo- and hetero-dimers that are associated with 

specific biological responses in regard of their ability to regulate the transcription of different 

target genes. Lacking the TAD domain, NFκB1/p50 and NFκB2/p52 repress transcription unless 

forming heterodimers with other NF-κB members that have TADs. This repression feature has 

been used to discover the transcriptional competitors of NF-κB dimers by measuring κB-driven 

luciferase reporter gene activities. In this system, p50 or p52 homodimers constitutively bind to 

κB sites with suppressed luciferase activities, while the presence of transcriptional competitors 

results in transcriptional activation. Additionally, p50 or p52 homodimers can become 

transcriptional activators when associated with the BCL3 co-activator family. 
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NF-κB dimers are usually trapped in the cytosol through interaction with members of IκB 

proteins, including IκBα, IκBβ, IκBγ and IκBε. The IκBs are defined by the presence of five to 

seven ankyrin repeat domains (ARD), which interact with the RHDs, mask the nuclear 

localization sequences (NLS), and prevent the nuclear translocation of NF-κB dimers (Figure 7). 

Thus, the basic scheme of NF-κB signaling requires the degradation of IκB proteins. Importantly, 

the precursors of NFκB1/p50 and NFκB2/p52, p105 and p100, also contain this ARD at their C-

termini so that both of them can function as IκB like inhibitors (Figure 7). Considering that p105 

processing is a constitutive event whereas p100 processing is tightly controlled and highly 

inducible, the processing of p100 also leads to NF-κB activation because it will liberate p100 

containing dimers and drive a transcriptional response (Xiao et al., 2006). Because of the distinct 

effects and target genes of IκB degradation and p100 processing in the regulation of NF-κB 

activation, they are characterized as canonical (classic) or non-canonical (non-classic) NF-κB 

pathways (Figure 8). 

1.2.2 Canonical NF-κB pathway 

In the canonical NF-κB signaling pathway, the essential step is the phosphorylation and 

subsequent degradation of IκB (Figure 8). Upon stimulation by proinflammatory cytokines, 

mitogens, antigens and DNA damage, the activated IKK complex acts predominantly via IKKβ 

to catalyze the phosphorylation of IκB at specific serine residues (S32 & S36) (Hacker and Karin, 

2006). The phosphorylated IκB is then sequestered by the β-TrCP-SCF complex, resulting in its 

poly-ubiquitination and degradation by the 26S proteasome, allowing the translocation of bound 

NF-κB dimers into the nucleus and inducing the expression of target genes.  
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Figure 8. Canonical and non-canonical NF-κB signaling pathways. 

The p65-containing NF-κB dimers, especially the p65/p50 heterodimer, are the prototypic 

transactivator in canonical NF-κB pathway. In addition to IKK-mediated IκB degradation, 

modifications including phosphorylation and acetylation of p65 are indispensable in canonical 

NF-κB activation. p65 can be phosphorylated directly or indirectly by many kinases such as IKK, 

NIK, CK2, PKA, PKCζ, PI3K, GSK3β, RSK1, TBK1, AKT and p38 (Viatour et al., 2005). 

Phosphorylated p65 is necessary to the transcriptional competence of p65-containing NF-κB 

dimers, as it induces conformational changes that facilitate DNA binding and recruit 

transcriptional coactivators including CBP-p300. CBP-p300 contributes by inducing the 
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acetylation of p65. Interestingly, especially at Lysine 310, the phosphorylation and acetylation of 

p65 actually share the same residue (Greene and Chen, 2004). It has been reported that the 

phosphorylation prominently recruits CBP-p300 and allows the subsequent acetylation, resulting 

in p65-mediated activation of NF-κB. In addition, phosphorylation stabilizes p65 and inhibits the 

binding to IκBα via Pin1-dependent prolyl isomerization (Ryo et al., 2003). The large number of 

kinases involves in p65 phosphorylation, also correlates the fact that the activation of distinct 

kinases is specific to distinct cell types or stimuli that activate NF-κB. 

1.2.3 Non-canonical NF-κB pathway 

The large precursors, p105 and p100, function as IκB-like inhibitors, while the processed 

forms, p50 and p52, are partners of other NF-κB family members as well as Bcl3 co-activator 

family members. The processing of p50 and p52 produces specific functional NF-κB complexes. 

Notably, the processing of p105 to p50 is constitutive, while p52 production is tightly regulated 

(Xiao et al., 2001a; Xiao et al., 2001b; Xiao et al., 2006). In most cell types, p50 dimerizes with 

p65 and forms the prototypical NF-κB dimer. By contrast, the NF-κB activation by p52-

containing dimers results from the inducible p100 processing, known as the non-canonical NF-

κB pathway (Figure 8). 

Distinct from the broad biological significance of the canonical pathway in inflammation, 

the non-canonical pathway is mainly involved in B cell maturation and lymphoid tissue 

development (Caamano et al., 1998; Franzoso et al., 1998). NFKB2-knockout mice present 

defects in B-cell function and impaired formation of peripheral lymphoid organs. Evidence from 

mice studies indicates the essential roles of NIK and IKKα in non-canonical NF-κB signaling 
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(Senftleben et al., 2001; Xiao et al., 2001a, 2001b). After the stimulation, NIK is stimulated by 

its upstream receptors like LTβR and subsequently activates IKKα. Then, the activated IKKα is 

recruited into the p100 complex through p100’s C-terminal serine 866 (Xiao et al., 2004). This 

serine induces proteolytic processing of p100 triggered by site-specific phosphorylation, poly-

ubiquitination mediated by β-TrCP and selective degradation by the 26S proteasome (Fong and 

Sun, 2002; Xiao et al., 2001a; Xiao et al., 2006). As opposed to the complete degradation of IκB 

protein in the canonical NF-κB activation as described above, this poly-ubiquitination event on 

p100 only results in the selective degradation of its inhibitory C-terminus. Once the ARD 

inhibitory region is degraded, the N-terminus of p100 (p52) is released and the p52-containing 

NF-κB dimer becomes functional. As RelB is predominantly associated with p100, the activation 

of the non-canonical pathway leads to the nuclear translocation of the RelB-p52 heterodimer 

(Solan et al., 2002). 

The non-canonical NF-κB pathway is strictly dependent on the activity of NF-κB-

inducing kinase (NIK) and IKKα, but it is independent of IKKβ and IKKγ, which are two central 

regulators of the canonical NF-κB pathway, and are tightly controlled under normal conditions 

(Senftleben et al., 2001; Xiao et al., 2001b). Consistently, under physiological conditions, the 

non-canonical pathway can only be induced by certain stimuli including B-cell activating factor 

(BAFF), CD40 ligand, Lymphotoxin beta (LTβ), TNF-like weak inducer of apoptosis (TWEAK) 

and the receptor activator of nuclear factor kappa B ligand (RANKL) (Claudio et al., 2002; 

Coope et al., 2002; Kayagaki et al., 2002; Novack et al., 2003; Saitoh et al., 2003).  

Importantly, the non-canonical NF-κB pathway can be hijacked by multiple viral 

oncoproteins, such as Tax, which is encoded by HTLV-I (Xiao et al., 2001a). It is the first 
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known pathogenic inducer to constantly activate the p100 processing. Rather than requiring 

activated NIK, Tax induces p100 processing via interacting with IKKγ and targeting IKKα to 

p100 to trigger p100 phosphorylation, poly-ubiquitination and the production of p52. Importantly, 

the overproduction of p52 is considered as a hallmark of HTLV-I infection and transformation 

(Sun and Yamaoka, 2005; Xiao et al., 2006). Results have shown that HTLV-I-infected cells 

exhibit constitutive p100 processing as well as the activation of NF-κB, while such processing is 

tightly controlled even in mitogen-activated T cells (Xiao et al., 2001a).  

1.2.4 IKK complex 

The IKK complex plays a crucial role in both canonical and non-canonical NF-κB 

pathways. It typically consists of the IKKα and IKKβ catalytic subunits and the IKKγ (NF-κB 

essential modulator, NEMO) regulatory subunit. IKK is a multi-protein complex with a high 

molecular weight upon gel filtration (Agou et al., 2004). Studies have indicated that CDC37, 

ELK and Hsp90 are also components of IKK (Chen et al., 2002; Ducut Sigala et al., 2004; 

Hayden and Ghosh, 2008). Although it is accepted that the core IKK complex most likely 

consists of only IKKα/IKKβ/IKKγ, those findings favor a model in which the IKK complex is 

dynamically formed with different components in response to different stimuli or depending on 

different cell types. 

IKKγ is essential to NF-κB activation through the assembly of the IKK complex. IKKγ-

deficient cells present a dramatic loss of NF-κB activation and mice without IKKγ have an 

embryonic lethal phenotype with aberrant hepatocyte apoptosis (Schmidt-Supprian et al., 2000). 

IKKγ recruits the NEMO binding domains within the C-terminals of IKKα and IKKβ through 
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the amino acids 47-80, a coiled-coil motif (Drew et al., 2007; Marienfeld et al., 2006). 

Importantly, the assembly function of IKKγ is indispensable in the activation of IKK because the 

C-terminal mutants responsible for IKKγ in assembling the IKK complex fail to trigger IKK 

activation (Makris et al., 2002). Given that IKKγ contains multiple distinct domains, IKKγ 

actually serves as a mediator linking the NF-κB-inducing signals to the activation of IKK, 

including the recruitment of upstream activators or viral proteins like Tax, resulting in the 

activation of NF-κB (Xiao et al., 2000).  

IKKα and IKKβ are structurally and biochemically similar to each other, sharing 52% 

overall sequence identity and 65% similarity in the catalytic domain; however, they have distinct 

biological functions (Hayden and Ghosh, 2008). IKKβ is predominantly responsible for most 

stimuli-induced IκB phosphorylation and degradation, as further supported by the observations 

of similar phenotypes between IKKβ- and p65- knockout mice (Beg et al., 1995; Gerondakis et 

al., 2006; Tanaka et al., 1999).  

In contrast, although IKKα activation can be induced by remarkably few stimuli 

including the receptor activator of NF-κB (RANK) ligand and the viral protein called Fas-

associated death domain-like IL-1b converting enzyme inhibitory protein (vFLIP), it has 

relatively broad additional functions aside from those of IKKβ. Although it is reported that IKKα 

contributes to canonical NF-κB activation by inducing the phosphorylation of p65 and histone 

H3 (Yamamoto et al., 2003), IKKα is largely expendable in canonical NF-κB activation because 

IKKα-null embryos appear to be phenotypically normal in IκBα degradation, NF-κB nuclear 

translocation and NF-κB DNA binding activity (Hu et al., 1999; Takeda et al., 1999). Further 

studies have indicated that the crucial role of IKKα in the non-canonical NF-κB signaling 
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pathway is the triggering of p100 phosphorylation (Xiao et al., 2001a). In addition, IKKα is 

involved in the formation of the epidermis and induces keratinocyte differentiation via an NF-

κB-independent mechanism (Hu et al., 2001). Recently, it was reported that IKKα is involved in 

the development of prostate cancer, especially in the metastatic phase (Luo et al., 2007). In that 

case, IKKα was activated and accumulated in the nuclei, resulting in a reduction of the 

metastasis inhibitor. Although such suppressed metastasis by IKKα seems to be NF-κB-

independent, the detailed mechanisms are still under investigation (Luo et al., 2007). 

The leucine zipper domains within the N-termini of IKKα and IKKβ are required for their 

dimerization and kinase activity (Hayden and Ghosh, 2008; Mercurio et al., 1997; Woronicz et 

al., 1997; Xiao et al., 2006; Zandi et al., 1997). An in vitro kinase assay showed that the 

heterodimer form has a higher catalytic activity than either homodimer. IKKα and IKKβ 

consistently prefer the formation of heterodimers in vivo (Huynh et al., 2000). However, under 

some circumstances, a homodimer of IKKβ is also observed in vivo (McKenzie et al., 2000). Of 

note, although there is little evidence for the existence of either homodimer, it is believed that the 

IKKα homodimer is formed in vivo because IKKβ and IKKγ are independent of non-canonical 

NF-κB activation (Hayden and Ghosh, 2008; Senftleben et al., 2001). Importantly, the HTLV-I 

viral oncoprotein Tax only recruits IKKα, but not IKKβ, into p100 for p100 phosphorylation and 

subsequent processing to p52 (Xiao et al., 2001a). 

1.2.5 NF-κB members in cancer 

Cancer is a hyper-proliferative disorder that involves uncontrolled cell growth, migration, 

angiogenesis, invasion and metastasis (Grivennikov et al., 2010). NF-κB participates in all those 
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processes and contributes to tumorigenesis by inducing many target genes related to anti-

apoptosis, including Bcl-2, A20, cellular inhibitors of apoptosis (cIAPs) and cellular FLICE 

inhibitory protein (cFLIP). In addition, it also antagonizes p53 to prevent the death of cells that 

have generic alterations, facilitating neoplasm formation (Webster and Perkins, 1999). NF-κB 

mainly stimulates cell proliferation by: 1) directly up-regulating cell-cycle-related genes like 

cyclin D1 (CCD1), inducing hyper-phosphorylation of retinoblastoma (Rb) and promoting the 

cell-cycle transition from G1 to S phase; 2) indirectly inducing the expression of cytokines and 

cellular growth factors including IL-2, resulting in persistent activation of NF-κB and other 

proliferation-related signaling pathways (Baldwin, 2001). 

Numerous studies have indicated that aberrant NF-κB activation is associated with 

advanced stages of oncogenesis, providing evidence for some contribution from NF-κB in tumor 

progression. Consistent with this evidence, many metastasis- and angiogenesis-related genes are 

also targets of NF-κB, such as chemokine IL-8, vascular endothelial growth factor (VEGF), 

cyclooxygenase-2 (COX2), intercellular adhesion molecule 1 (ICAM1), vascular cell adhesion 

molecule 1 (VCAM1/CD106), inducible NO-synthase (iNOS) and cell-surface protease matrix 

metalloproteinase 9 (MMP9) (Pahl, 1999; Sun and Xiao, 2003). Tumor cells with constitutive 

NF-κB activation exhibit significantly up-regulated expression of these genes. The NF-κB 

members are the direct effectors in NF-κB regulation. It is necessary to understand the genetic 

alterations to NF-κB members and their outcomes.  

A study on the v-Rel oncoprotein of the avian Rev-T retrovirus, which is a Rel homology 

member and induces fatal lymphomas and leukemias, provides the evidence linking NF-κB to 

oncogenesis (Gilmore, 1999). Consistently, v-Rel exhibits increased nuclear translocation and 
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constitutive activity in transcription, thereby leading to its transformational activity. Similar to 

the case for v-Rel, the over-expression of c-Rel can transform primary chicken lymphoid cells 

and primary avian fibroblasts, though at a lower frequency than v-Rel (Rayet and Gelinas, 1999).  

Turning specifically to human cancer, genetic alterations leading to high expression 

and/or constitutive activity of NF-κB members have been linked to certain cancers. As an 

example, amplification of the REL gene is found in 23% of diffuse lymphomas with a large cell 

component (DLLC) and 50% of non-small cell lung carcinomas (NSCLC), as well as in primary 

mediastinal B-cell lymphomas and in certain follicular large lymphomas (Rayet and Gelinas, 

1999). c-Rel expression increases four- to thirty-five-fold due to amplification of the REL gene 

(≥4 copies). Although it is unclear whether there is a certain association between increased c-Rel 

expression and tumorigenesis in these cases, it may contribute to progression of these diseases 

when considering the transformative ability of c-Rel as described above. Additionally, the 

rearrangement of the REL gene to create hybrid proteins, which is not as common as REL gene 

amplification in tumors, was observed in some follicular lymphomas and DLLCs (Rayet and 

Gelinas, 1999). 

In contrast to the amplification of the c-rel gene, the genetic alteration of NFΚB2 by 

chromosome recombination or deletion results in the production of truncated p100 without full 

C-terminal inhibitory region (Rayet and Gelinas, 1999). The loss of the C-terminus of p100 

determines the function of these truncated mutants. The outcomes of these truncations include a 

loss of function as an NF-κB inhibitor by deletion of the ARDs, a gain of function as a 

transactivator to translocate into the nucleus even with partial ARDs remaining and a gain of 

function to induce constitutive p52 production by losing the processing-inhibitory domain (PID) 
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so as to induce persistent non-canonical NF-κB activation (Qing et al., 2005a). Consistently, 

these truncated p100 mutants present oncogenic ability in vitro, suggesting that the tumors 

associated with NFΚB2 gene arrangements indeed result from those mutations (Ciana et al., 

1997). In addition, the rearrangements of NFΚB2 have been associated with a variety of 

lymphomas including cutaneous B and T cell lymphomas, chronic lymphocytic leukemias (CLL) 

and multiple myeloma (Rayet and Gelinas, 1999; Sun and Xiao, 2003; Xiao et al., 2006).  

Additionally, unpublished data from our lab support the hypothesis that both the p100 

precursor and the processed subunit p52 are required for tumor growth. The results show that 

REF cells stably expressing LB40 (the p100 mutant with a constitutive processing ability) 

generate xenografts in SCID mice (100%), while the mice injected with cells expressing the 

LB40 mutant (little processing) and p52 developed fewer (33%) or no tumors, respectively. In 

other words, the tumor growth is roughly correlated with the processing ability. Although 

confirmation of this will require more evidence, this study provides insights into the pertinent 

roles of both p100 and p52 in tumorigenesis.  

In contrast to REL and NFΚB2 genes, genetic alterations to RELA and NFΚB1 are rare in 

human cancer, and no alteration of the RELB locus has been reported (Rayet and Gelinas, 1999). 

Chromosomal aberrations involving RELA are only found in B cell non-Hodgkin’s lymphomas 

and multiple myelomas, and gene rearrangement of NFΚB1 only occurs in certain acute 

lymphoblastic leukemias (Houldsworth et al., 1996; Lai et al., 1995). However, elevated 

expression levels of p65 and p50 have been found in many different types of tumors, including 

thyroid carcinoma and 80% of non-small cell lung carcinomas (NSCLC) (Bours et al., 1994; 

Visconti et al., 1997), indicating the involvement of NF-κB regulators in cancer. Moreover, this 
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evidence not only indicates the predominant functions of p65 and p50 in NF-κB activation, but 

also suggests that constitutive activations by p65- and/or p50-containing complexes are required 

for the aberrant survival and growth of tumor cells.  

1.2.6 Balance between positive and negative regulators in NF-κB signaling 

The basic scheme of NF-κB signaling depends on the counterbalance between its 

activators and inhibitors. Generally, NF-κB activators are oncogenic, while NF-κB inhibitors 

exhibit tumor-suppressing functions (Figure 9). Nowadays, most efforts on the regulation of NF-

κB focus on mechanisms that involve the IκB protein and signaling intermediates (Hayden and 

Ghosh, 2004, 2008). Considering that tumor progression is always associated with constitutive 

NF-κB activation, targeting NF-κB for tumor suppression actually shuts off NF-κB by repressing 

NF-κB activators and/or stimulating NF-κB inhibitors.  

 

Figure 9. The basic scheme of NF-κB in tumorigenesis. 
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IκB family members, particularly IκBα, are the principle inhibitors of NF-κB signaling 

and act by sustaining NF-κB dimers in the cytosol. It is well accepted that IκB re-synthesis is the 

primary mechanism for shutting off NF-κB. Additional mechanisms exist: IKKα is involved in 

turning off inflammatory responses by accelerating the turnover of RelA and c-Rel in 

microphages (Lawrence et al., 2005). Additionally, negative feedback mechanisms driven by the 

deubiquitinases A20 and CYLD have been demonstrated to suppress NF-κB by modulating the 

modifications to upstream signaling components like TRAF (Chen et al., 2006; Hacker and 

Karin, 2006).  

Another mechanism is negative regulation of the NF-κB dimer itself. It is reported that 

the copper metabolism MURRI-domain-containing 1 (COMMD1) protein is responsive for 

cleaning out the promoter-bound p65 complex with the involvement of suppressor of cytokine 

signaling 1 (SOCS1), which is sufficient to suppress NF-κB transcriptional activity in LPS 

mediated signaling (Kinjyo et al., 2002; Maine et al., 2007; Nakagawa et al., 2002; Saccani et al., 

2004). Of note, PDLIM2 is reported to function as a novel ubiquitin E3 ligase of p65, which 

directly triggers the poly-ubiquitination and proteasomal degradation of nuclear p65, 

subsequently shutting off NF-κB (Tanaka et al., 2007). The studies in this thesis will characterize 

the function of PDLIM2 as a negative regulator of the HTLV-I oncoprotein Tax, which serves as 

an NF-κB activator. 
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1.2.7 NF-κB regulators in cancer 

NF-κB signaling depends on both NF-κB members and NF-κB regulators, including 

inhibitors, activators and co-activators. Other than genetic alterations on NF-κB members, cancer 

development is associated with the function of NF-κB regulators.  

Defective IκBα activity has been detected in human tumors like hematopoietic tumors 

(Rayet and Gelinas, 1999; Sun and Xiao, 2003), and a subset of Hodgkin’s lymphomas involves 

mutations or deletions of the IκBα gene, generating non-functional or unstable IκBα mutants 

(Cabannes et al., 1999; Emmerich et al., 1999; Jungnickel et al., 2000).  

In addition, many of kinases contribute to the oncogenesis associated with elevated NF-

κB activity. As a matter of fact, most known oncoprotein kinases have been linked to NF-κB 

activity (Sun and Xiao, 2003). As an example, Tpl2 (MAP3K8) has been identified as a target 

for provirus integration in Moloney murine leukemia virus (MMLV)-induced T cell lymphomas, 

and the truncated Tpl2 mutant leads to T cell transformation and the development of lymphomas 

in transgenic mice (Ceci et al., 1997; Makris et al., 1993). Studies indicate that Tpl2 is associated 

with p105 precursor in vivo and stimulates the IKK complex for NF-κB activation upon 

stimulation (Lin et al., 1999; Waterfield et al., 2003). Moreover, in EBV-associated 

malignancies, the over-expression of Tpl2 contributes to LMP1-induced NF-κB activation and 

the expression of the angiogenic mediator COX-2 (Eliopoulos et al., 2002). 

Interestingly, in addition to the above regulators, the co-activator Bcl3 performs unique 

functions (Figure 7). Bcl3 was initially characterized as an inhibitor of NF-κB according to its C-

terminal ARD (Hayden and Ghosh, 2008; Wulczyn et al., 1992). However, unlike other IκB 
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members, Bcl-3 functions as a transactivator to remove inactive p50 homodimers from DNA or 

as a coactivator by interacting with p52 homodimers (Bours et al., 1993; Fujita et al., 1993; 

Nolan et al., 1993). Additionally, Bcl3-deficient mice exhibit a partial loss of germinal centers 

and are insensitive to certain stimuli (Schwarz et al., 1997). The over-expression of Bcl3 in B 

cells leads to a lympho-proliferative disorder through the accumulation of mature B cells in 

Bcl3-transgeneic mice (Ong et al., 1998).  

To summarize, NF-κB is evolutionarily conserved in the immune system and has been 

linked to inflammation, cell survival and tumorigenesis. Both the NF-κB members and the NF-

κB regulators play crucial roles in NF-κB regulation, and the maintenance of normal NF-κB 

signaling is critical in cancer prevention. 

1.2.8 NF-κB in virus-mediated cancer 

NF-κB signaling is also involved in tumors caused by viruses including HTLV-I, 

Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8), Epstein-Barr 

virus (EBV) and hepatitis B virus (HBV) (Sun and Xiao, 2003). As described before, HTLV-I 

causes ATL, and its coded oncoprotein Tax is crucial to HTLV-I-mediated NF-κB activation and 

tumorigenesis. Tax activates both canonical and non-canonical NF-κB signaling pathways in 

similar but not identical manners through interacting with IKKγ, the regulatory subunit of the 

IKK complex, resulting in the IKK activation (Matsuoka and Jeang, 2007; Sun and Yamaoka, 

2005; Yoshida, 2010). 

KSHV/HHV-8 is associated with different clinical variants of Kaposi’s sarcoma, primary 

effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD) (Ganem, 2010; Moore 
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and Chang, 2003). In KSHV-infected PEL cells, both NF-κB pathways are constitutively 

activated by the viral protein vFLIP. Similarly to the HTLV-I oncoprotein Tax, vFLIP induces 

NF-κB activation through an interaction with IKKγ, although the role of β-TrCP in vFLIP 

mediated p100 processing remains to be elucidated (Ganem, 2010; Liu et al., 2002; Matta and 

Chaudhary, 2004). Moreover, vFLIP-mediated IκB degradation requires IKKα but not IKKβ. 

Also, the suppression of p100 processing by knocking down vFLIP causes a significant reduction 

in the growth and proliferation of the malignant cells (Matta and Chaudhary, 2004). 

EBV is a member of the herpesvirus family that is associated with human cancers 

including Burkitt’s lymphoma, Hodgkin’s disease, nasopharyngeal carcinoma and gastric 

carcinoma (Cesarman and Mesri, 2007; Sun and Xiao, 2003). It efficiently immortalizes human 

B cells through a method largely mediated by the encoded latent membrane protein 1 (LMP1). 

LMP1 functions to mimic the constitutively activated members of the TNFR (the tumor necrosis 

factor receptor) superfamily, the stimuli for both canonical and non-canonical NF-κB pathways, 

resulting in the constitutive activation of NF-κB (Lam and Sugden, 2003). 

HBV infection is responsible for acute and chronic hepatitis  (Sun and Xiao, 2003). 

Unlike HTLV-I, in which Tax plays a major role in regulating cellular signaling, several HBV-

encoded proteins are involved in NF-κB activation. These activators include the X transactivator 

protein (HBx), C-terminal-truncated middle-size surface proteins (MHBst) and the large HBV 

surface protein (LHBs). HBx activates NF-κB through indirectly activating IKK by targeting Ras 

and PKC signaling, or competing to interact with IκB so as to release the IκB-bound NF-κB 

dimers. However, MHBst and LHBs cooperate to form PreS2, the HBV activator proteins, 
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subsequently inducing the activation of transcription factors, including AP-1 and NF-κB (Hildt et 

al., 1996; Hiscott et al., 2001; Kekule et al., 1993; Meyer et al., 1992; Sun and Xiao, 2003). 

Human papillomavirus (HPV) infection is also linked to NF-κB activation (Nair and 

Pillai, 2005). HPV causes various cancers including cervical cancer, lung cancer, penile cancer 

and anal cancer. Importantly, only a few of the numerous subtypes of HPV contribute to the risk 

of cancer development. It has been reported that NF-κB activation contributes to HPV-associated 

tumorigenesis and that the inhibition of NF-κB is an efficient method of cervical cancer 

treatment. Unlike HTLV-I Tax, the HPV oncoprotein E5 indirectly activates NF-κB by targeting 

EGFR. The role of NF-κB in HPV infection is at the center of a controversy because other HPV 

oncoproteins, E6 and E7, actually serve to inhibit NF-κB by inactivating p300 (Woodworth, 

2002). 
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1.3 PDLIM2 AND ITS CELLULAR FUNCTIONS 

 

Figure 10. Schematic display of functional regions in PDLIM2. 

PDLIM2 belongs to the actinin-associated LIM protein (ALP) subfamily. It was initially 

discovered in the cDNA library of rat eyes (Torrado et al., 2004). Through a yeast two-hybrid 

screen, PDLIM2 was also identified as a STAT binding protein (Tanaka et al., 2005). It has a 

PDZ domain in the N-terminus and a LIM domain in the C-terminus, which are responsible for 

most of the cellular functions of PDLIM2 including cytoskeletal interaction, IGF-related 

signaling transduction, cell adhesion and migration (Healy and O'Connor, 2009; Loughran et al., 

2005; Torrado et al., 2004). Recently, PDLIM2 was characterized as playing a role in the 
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suppression of NF-κB signaling pathways and the STAT pathway by promoting the proteasomal 

degradation of p65 (RelA) and STAT1/STAT4 (Mankan et al., 2009; Tanaka et al., 2007; 

Tanaka et al., 2005; Ungureanu and Silvennoinen, 2005). Additional evidence has shown that 

PDLIM2 contributes to oncogenesis by inhibiting the anchorage-independent growth of 

malignant cells, suggesting a potential function as a tumor suppressor (Loughran et al., 2005; Qu 

et al., 2010a; Qu et al., 2010b; Yan et al., 2009). Studies on HTLV-I HBZ have reported that 

HBZ suppresses p65-mediated NF-κB activation by activation of PDLIM2, linking PDLIM2 to 

HTLV-I (Zhao et al., 2009). The cellular functions of PDLIM2, a novel defined protein with 

limited known features, are recapitulated and predicted in the following sections. 

1.3.1 PDLIM2 and ALP protein subfamily 

So far, nine proteins have been characterized as containing both the PDZ domain and one 

or more LIM domains (Te Velthuis et al., 2007). Seven of them have their PDZ domains in the 

N-termini. Depending on the number of C-terminal LIM domains, they are classified into two 

groups, called the ALP and Enigma protein subfamily. The ALP protein subfamily, which 

includes Elfin (PDLIM1, CLP36, or CLIM), PDLIM2, ALP (PDLIM3) and RIL (PDLIM4), 

contains a single LIM domain, while Enigma protein subfamily members like ENH (PDLIM5), 

ZASP (PDLIM6, Oracle or Cypher) and Enigma (PDLIM7 or LMP-1) have three C-terminal 

LIM domains (Te Velthuis and Bagowski, 2007; Te Velthuis et al., 2007; Zheng et al., 2010). 

Evidence has shown that all six proteins other than Enigma can interact with α-actinin via their 

N-terminal PDZ domains (Elkins et al., 2010). Generally, proteins containing both PDZ and LIM 

domains can interact with cytoskeletal proteins and play roles in development, cytoskeletal 

organization and oncogenesis (Te Velthuis and Bagowski, 2007). As reported, Enigma, ALP and 
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ZASP contribute to bone morphogenesis and the development of muscle and the heart, while 

PDLIM2 and RIL are associated with the regulation of cellular signaling transduction, cell 

adhesion, cell migration and carcinogenesis (Boumber et al., 2007; Kang et al., 2000; Kiess et al., 

1995; Pashmforoush et al., 2001; Tanaka et al., 2007; Tanaka et al., 2005; van der Meer et al., 

2006; Zhou et al., 2001). As opposed to all other members, PDLIM2 specifically plays roles in 

the proinflammatory response and the immune system. 

The PDZ domain is a homology domain identified in DLG1, PSD95 (the postsynaptic 

density protein) and the epithelial tight junction protein ZO-1 (Fanning and Anderson, 1999; Te 

Velthuis et al., 2007). It is a small protein domain with 80-90 amino acids and is responsible for 

protein-protein and protein-phospholipid interactions (Jelen et al., 2003; Te Velthuis and 

Bagowski, 2007). A typical PDZ domain consists of six anti-parallel β strands and two helixes 

and recognizes up to seven amino acids of the target protein (Elkins et al., 2010; Tonikian et al., 

2008). Moreover, recent studies on PDLIM2 and p65 suggest that the PDZ domain has additional 

functions in intra-nuclear trafficking (Tanaka et al., 2007). Importantly, a lot of virus-encoded 

oncoproteins, including HTLV-I Tax and HPV-16 E6, contain the PDZ-domain binding motif 

(PBM). This motif is considered to contribute to the virus-mediated cell transformation and 

oncogenesis. Results have shown that the existence of mutations on PBM can affect viral 

infectivity and might be used to distinguish high-risk or low-risk oncoviruses (Aoyagi et al., 

2010; Feuer and Green, 2005). 

The LIM domain is a cysteine-histidine-rich, double-tandemly repeated zinc-finger 

domain (Te Velthuis et al., 2007). Similarly to the PDZ domain, the LIM domain provides a 

protein-protein interface and is associated with the biological functions of organ development 
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and oncogenesis. Aberrant expressions of LMO1 and LMO2 proteins, which contain only the 

LIM domain, are associated with human disease including T cell leukemia (Bach, 2000). 

Moreover, studies on PDLIM2 have shown that the LIM domain also serves as the ubiquitin E3 

ligase to trigger the poly-ubiquitination and proteasomal degradation of nuclear p65 (Tanaka et 

al., 2007). 

1.3.2 Ubiquitin E3 ligase function of PDLIM2 

It has been shown that PDLIM2 can be auto-ubiquitinated in vitro and that the C-terminal 

LIM domain of PDLIM2 is structurally similar to the RING finger domain (Capili et al., 2001), 

which normally binds ubiquitination enzymes and substrates and functions as a ligase (Lorick et 

al., 1999). In coincidence with these features, PDLIM2 plays roles in STAT and NF-κB 

signaling by targeting STAT1/STAT4 and p65 for poly-ubiquitination and proteasomal 

degradation, which is unique among all other PDZ-LIM-containing proteins. Poly-ubiquitination 

with subsequent proteasomal degradation is the main mechanism for a host cell to clean out 

useless proteins and shut down signal transduction. Three enzymes, ubiquitin-activating enzyme 

(E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), are required for protein 

ubiquitination. Of note, ubiquitin E3 ligases contribute to the specificity of the reaction as they 

selectively recruit the specific protein’s substrate in the final step to transfer the poly-ubiquitin 

chain from the E2 enzyme to the target. After that, the poly-ubiquitinated target protein can be 

recognized and degraded by the proteasome (Pickart and Eddins, 2004; Xiao, 2007). An in vitro 

ubiquitination assay using a reconstitution system with recombined E1, E2 and PDLIM2 further 

confirms the ubiquitin E3 ligase function of PDLIM2 (Tanaka et al., 2005). Correlated with the 

functional regulation of STAT1/STAT4 and p65, PDLIM2 substrates show elevated basal 
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expression and related signaling activation in PDLIM2-null cells and mice (Tanaka et al., 2007; 

Tanaka et al., 2005).   

1.3.3 Other biological functions of PDLIM2 

Severe defects are caused by deficiencies of other ALP and Enigma subfamily members 

like ALP, ZASP and RIL. ALP-null mice exhibit embryonic chamber dysmorphogenesis as well 

as cardiomyopathy in adult mice (Pashmforoush et al., 2001); the ablation of ZASP in mice 

exhibits a phenotype of embryonic or perinatal lethality and is associated with disorganized and 

fragmented Z-lines in skeletal and cardiac muscle (Zhou et al., 2001); a single genomic variation 

in the RIL gene promoter is associated with a low bone mineral density (BMD) in Japanese 

women (Omasu et al., 2003). Distinct from the findings above, PDLIM2-deficient mice can be 

born healthy with normal numbers of lymphocytes, macrophages and dendritic cells (Tanaka et 

al., 2005). Importantly, the ablation of PDLIM2 in cells leads to increased cytokine production 

and a susceptibility to LPS (Tanaka et al., 2007). PDLIM2 is currently considered to play pivotal 

roles in the regulation of inflammation, the immune response and tumorigenesis when 

considering its contributions to the NF-κB and STAT pathways. 

Although PDLIM2 is a newly defined protein with limited data, it has been shown that 

PDLIM2 interacts with both α-actinin and Filamin A, is regulated by IGF and is associated with 

cell adhesion and migration (Loughran et al., 2005; Torrado et al., 2004). The activation of the 

IGF-I receptor tyrosine kinase, which responds to IGF, promotes cell survival, migration and 

mitogenesis. The association between PDLIM2 and IGF-I is characterized by the utilization of 

IGF-IR-deficient cells. Studies show that IGF-I induces PDLIM2 expression, and breast cancer 
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MCF-7 cells with high PDLIM2 expression present elevated cell adhesion to ECM proteins but 

reduced colony formation ability in vitro. Moreover, based on evidence from studies on point 

mutations within the PDZ and LIM domains, both domains have been shown to be required to 

reverse the suppression of colony formation by PDLIM2, although a mutation in the PDZ 

domain itself is sufficient to eliminate promoted adhesion (Loughran et al., 2005). Furthermore, 

knocking down PDLIM2 mRNA by siRNA shows an abrogation of both cell adhesion and 

migration in MCF10A and MCF-7 cells (Loughran et al., 2005). All of this evidence indicates a 

crucial role for PDLIM2 in cell migration capacity as well as in tumor prevention (Loughran et 

al., 2005; Te Velthuis and Bagowski, 2007).  

It should be noted that most current studies on PDLIM2 are restricted to over-expression 

conditions, while PDLIM2 is predominantly expressed in the nucleus under physiological 

conditions (Tanaka et al., 2005). A recent study suggested that the expression level and 

subcellular distribution of PDLIM2 are associated with the differentiation from monocytes to 

macrophages (Healy and O'Connor, 2009). Furthermore, the cytoplasmic sequestration of 

PDLIM2 has been shown to be a positive event in the regulation of NF-κB, which leads to 

decreased cell adhesion and promotes NF-κB activity (Healy and O'Connor, 2009). However, the 

model cannot exclude the possibility that the outcome actually indirectly results from the 

regulation of STAT and NF-κB by PDLIM2. Interestingly, as described above, the re-

introduction of PDLIM2 inhibits the colony formation of breast cancer cells. Additionally, 

considering that PDLIM2 negatively regulates NF-κB and that NF-κB plays a pivotal role in 

tumorigenesis, it will be fascinating to investigate whether PDLIM2 has a potential tumor 

suppression function. 
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1.3.4 Potential tumor suppression function of PDLIM2 

PDLIM2 is ubiquitously expressed in most tissues, with the highest expression in the 

lung, modest expression in motile epithelial cells, the thymus, the kidney and the spleen and low 

expression in the brain, the heart and the muscle (Loughran et al., 2005; Tanaka et al., 2005; 

Torrado et al., 2004). However, the expression of PDLIM2 is suppressed in multiple carcinomas 

generated from T cells, the breast, the lung and the colon (Loughran et al., 2005; Qu et al., 2010a; 

Qu et al., 2010b; Yan et al., 2009). Also, the re-introduction of PDLIM2 largely suppresses the 

colony formation of those cells in vitro and tumor growth in SCID mice, suggesting PDLIM2 

repression as a general event in cancer progression and as a novel potential biomarker of cancer. 

Meanwhile, in accordance with its function as a terminator of NF-κB, it is plausible that 

PDLIM2 serves as a tumor suppressor by inhibiting NF-κB (Healy and O'Connor, 2009; Tanaka 

et al., 2007).  

Although the mechanism by which the PDLIM2 gene is largely repressed in those cancer 

cells remains under investigation, one clue is that the genomic locus of PDLIM2, 8p21, 

frequently undergoes allelic loss in ovarian and prostate cancers (Brown et al., 1999; Swalwell et 

al., 2002). Another possibility involves the epigenetic suppression of PDLIM2, which requires 

the hyper-methylation of the PDLIM2 promoter (Qu et al., 2010a; Qu et al., 2010b). It has been 

reported that the tumor suppressor RIL (PDLIM4), another ALP subfamily member, is repressed 

by hyper-methylation of DNA at its promoter region in ~70% (55/79) of cancer cell lines of 

tested prostate tumors (Vanaja et al., 2006). Because it is in the same protein subfamily, it is 

plausible that PDLIM2 may also be a potential novel tumor suppressor that is repressed by a 

similar epigenetic mechanism in cancers. 
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1.4 CONCLUDING REMARKS 

HTLV-I infection caused adult T cell leukemia is an NF-κB related disease. Although the 

detail mechanisms of ATL progression are under investigation, it is accepted that HTLV-I 

oncoprotein Tax plays a crucial role in HTLV-I viral infection, replication, cell transformation 

and the early stage of ATL progression. The oncogenic functions of Tax have been extensively 

studied, including degenerating intracellular signal transduction, immortalizing primary T 

lymphocytes, inducing aneuploidy of ATL cells, inhibiting tumor suppressor genes and 

overcoming cell-cycle. NF-κB is the chief target of Tax and well-known for its function in the 

inflammatory response, cell survival, cell growth and oncogenesis. Inhibition of NF-κB has been 

used for drug discoveries against lots of diseases including ATL.  

PDLIM2 responses to IGF-I, serves as a novel E3 ligase of STATs and p65, and 

contributes to cell adhesion and cell migration. It serves as the terminator of both STAT and NF-

κB pathways, and plays a crucial role in immune response. Recent studies on HTLV-I HBZ have 

linked the PDLIM2 to HTLV-I. In this thesis, we will reconcile the association between HTLV-I 

Tax and PDLIM2 based on their distinct functions on NF-κB signaling.  

We found that HTLV-I Tax is directly and negatively regulated by PDLIM2. PDLIM2 

not only suppressed Tax-mediated NF-κB signal transduction and Tax-mediated tumorigenesis, 

but may play a role in determination of the outcome of HTLV-I infection (Chapter 2). Later, the 

molecular determinants within both PDLIM2 and Tax were investigated by taking advantages of 

the deletion or substitution mutants of PDLIM2 and Tax. A putative α-helix region within 

PDLIM2 was defined to be responsible for the interaction between PDLIM2 and Tax, while the 

C-terminal LIM domain of PDLIM2 was required for the E3 ligase function of PDLIM2 
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(Chapter 3). Furthermore, we reported that the HTLV-I-mediated repression of PDLIM2 was 

associated with HTLV-I-mediated tumorigenesis and involved DNA methylation (Chapter 4). 

Our results characterized PDLIM2 as the first intrinsic negative regulator of HTLV-I Tax to 

defend HTLV-I infection and the counterbalance between PDLIM2 and Tax may determine the 

outcome of HTLV-I infection, providing insights into HTLV-I leukemogenicity and the long-

latency of ATL.  
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2.0  PDLIM2 TARGETS TAX FOR PROTEASOMAL DEGRADATION AND  

SUPPRESSES HTLV-I/TAX-MEDIATED TUMORIGENESIS 

 

 

 

Portions of research described in this section were published in Blood (Blood. 2009, 

113(18): 4370-80) with authors Pengrong Yan, Jing Fu, Zhaoxia Qu, Shirong Li, Takashi Tanaka, 

Michael J Grusby and Gutian Xiao. 
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2.1 SUMMARY 

 

The mechanisms by which the human T cell leukemia virus type I (HTLV-I) Tax 

oncoprotein deregulates cellular signaling for oncogenesis have been extensively studied, but 

how Tax itself is regulated remains largely unknown. Here we reported that Tax was negatively 

regulated by PDLIM2, which promoted Tax poly-ubiquitination and proteasomal degradation. In 

agreement with that, PDLIM2 suppressed Tax-mediated signaling activation, cell transformation 

and oncogenesis both in vitro and in animal. Additionally, re-introduction of PDLIM2 reversed 

the tumorigenicity of the HTLV-I-transformed T cells. Our studies characterize PDLIM2 as the 

first intrinsic negative regulator of HTLV-I Tax, which may contribute to the outcome of HTLV-

I infection. These studies also suggest a potential therapeutic strategy for cancers and other 

diseases associated with HTLV-I infection and/or PDLIM2 deregulation. 
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2.2 INTRODUCTION 

As described in the General Introduction, HTLV-I is a retrovirus which causes ATL 

(Yoshida, 2010). Its encoded Tax protein is oncogenic and crucial for HTLV-I viral replication, 

transmission and HTLV-I-mediated pathogenesis (Yoshida, 2010). HTLV-I without Tax loses its 

original transformative ability, indicating that Tax is indispensable (Yamaoka et al., 1992). Tax 

not only transforms and immortalizes cells in vitro, it also induces tumor formation in transgenic 

mice as well (Grassmann et al., 1992; Pozzatti et al., 1990; Tanaka et al., 1990; Grossman et al., 

1995). Tax exerts its oncogenic functions by modulating lots of cellular transcription factors 

including NF-κB and CREB (Grassman et al., 2005; Sun and Yamaoka, 2005; Yoshida, 2010). 

Importantly, NF-κB is considered to be an essential mediator of the Tax regulated cellular 

program, and is constitutively activated in HTLV-I-transformed T cells and primary ATL cells. 

The NF-κB activation by Tax serves as a pertinent step in HTLV-I-mediated T cell 

transformation (Sun and Yamaoka, 2005). 

Tax contributes to the aberrant NF-κB activation at multiple levels (Matsuoka and Jeang, 

2007; Sun and Yamaoka, 2005). In the cytosol, it interacts with IKKγ for IKK activation, leading 

to the degradation of IκB and processing of p100 to p52, which in turn results in the nuclear 

translocation of NF-κB dimers (Xiao et al., 2006). In the nucleus, full NF-κB activation requires 

further interactions between Tax and other transcriptional components including p65 and 

CBP/p300 (Xiao et al., 2006). Although the mechanisms by which Tax contributes to HTLV-I 
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transcription and deregulates cellular signaling pathways have been extensively studied, the 

intrinsic negative regulator of Tax itself is under scrutiny.  

The following results characterize PDLIM2, a novel ubiquitin E3 ligase of STATs and 

p65, as a repressor of HTLV-I Tax (Tanaka et al., 2007; Tanaka et al., 2005). We show that 

PDLIM2 inhibits the expression level of Tax by promoting the poly-ubiquitination and 

proteasomal degradation of Tax, so to suppress Tax-mediated NF-κB activation, LTR 

transcription and oncogenesis. Moreover, exogenous expression of PDLIM2 in HTLV-I-

transformed T cells inhibits the malignancy of the cells. Our studies define PDLIM2 as a novel 

intrinsic negative regulator of HTLV-I Tax, which may contribute to the outcome of HTLV-I 

infection.  

2.3 MATERIALS AND METHODS 

Expression vectors and reagents 

Expression vectors encoding Tax, PDLIM2 and its LIM domain deletion mutant have 

been described before (Qu et al., 2004; Tanaka et al., 2007). Ubiquitin construct was gifts of Dr. 

James Z. Chen. The Tax and PDLIM2 cDNAs were also sub-cloned into retroviral vectors 

pCLXSN and/or pTRIP by routine cloning strategies as described (Qing et al., 2005a). The HA 

monoclonal antibody (12CA5) and HRP-conjugated HA monoclonal antibody (3F10) were from 

Roche Molecular Biochemicals. The ubiquitin, Sp1, lamin B, Hsp90, and β-actin antibodies as 

well as the pre-immune IgG were from Santa Cruz Biotechnology. The proteasome inhibitor 

MG132 and protein synthesis inhibitor cycloheximide (CHX) were from Biomol. The 
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endocytosis inhibitor monodansyl cadaverine (MDC), caspase inhibitor N-Benzyloxycarbonyl-

Val-Ala-Asp(O-Me) fluoromethyl ketone (z-VAD-FMK) and autophagy inhibitor 5-

Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) were from Sigma. The Tax and 

MYC antibodies were described previously (Qu et al., 2004).   

Cell culture and transfection 

HEK293 cells, Rat-1 fibroblasts and mouse embryonic fibroblasts (MEFs) were cultured 

in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) supplemented with 10% fetal 

bovine serum (Hyclone) and 2 mM L-glutamine (Invitrogen). Human T lymphocyte Jurkat, and 

HTLV-I-transformed T cell lines C8166 and MT-4 were maintained in suspension in RPMI 1640 

medium (Invitrogen) supplemented with 10% fetal bovine serum and 2 mM L-glutamine (Yan et 

al., 2007). 293 and Jurkat cells were transfected with DEAE-Dextran (Sigma), MEF cells with 

Lipofectamine 2000 (Invitrogen), and HTLV-I-transformed T cells with Transfast reagent 

(Promega) (Qing and Xiao, 2005; Xiao and Sun, 2000).  

Retroviral transduction and generation of stable transfectant 

Rat-1 cells and HTLV-I-transformed T cells were infected with virus expressing Tax or 

PDLIM2, respectively. The Rat-1 cells stably expressing Tax were also re-infected with virus 

expressing PDLIM2 for simultaneously expressing both Tax and PDLIM2. The viruses 

expressing GFP were used as a control. The stable transfectants were obtained by selection with 

G418 and/or blasticidin selections as described previously (Qing et al., 2007).  

Immunoblotting (IB) and immunoprecipitation (IP) assays 
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Whole-cell extracts were prepared by lysing cells in RIPA buffer (50 mM Tris-HCl 

pH7.4, 150 mM NaCl, 1 mM EDTA, 0.25% (wt/vol) Na-deoxycholate, 1% (vol/vol) NP-40, 1 

mM DTT). All the lysis buffers were supplemented with 1 mM PMSF and a protease inhibitor 

cocktail (Roche Molecular Biochemicals). The cells extracts were used for IP and/or IB assays as 

described before (Qing et al., 2007). 

In vivo ubiquitin conjugation assay 

Protein extracts were prepared from 293 cells transfected with Tax together with HA-

tagged ubiquitin in the presence or absence of PDLIM2, immediately followed by IP using anti-

Tax. The ubiquitin-conjugated Tax pulled down by IP was detected by IB using anti-HA-HRP 

(Xiao et al., 2001b).  

Protein stability assay 

Cells were treated with 10 µM CHX, followed by chasing of the indicated time period in 

the presence or absence of MG132, and IB to detect the indicated proteins (Qing et al., 2005b). 

Cell cycle analysis 

C8166 and MT4 cells were washed twice with 1X PBS, fixed by treatment with ice-cold 

70% ethanol for 30 min on ice and stored at 4° C prior to analysis. For staining, cells were 

incubated in PBS containing 1 mg/ml RNaseA, 40 μg/ml propidium iodide (Sigma-Aldrich) for 

30 min in the dark at 37° C and then analyzed by flow cytometry. For each sample, more than 3 

x 104 cells were counted, and the cells with a lower DNA content than those of the G0/G1 phase 
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were referred to dead cells. DNA histograms were analyzed using ModFit (Verity Software 

House, Topsham, ME) software.  

RT-PCR analysis  

Total RNA was prepared with TRIZOL reagent and cDNA was generated with 

SuperScript II reverse transcriptase (Invitrogen), followed by PCR assays as described before 

(Qing et al., 2005b, 2007). Primer pairs for RT-PCR were as follows: human PDLIM2, forward 

5’- TCTCACCACCACCCTCTAGC, human PDLIM2, reverse 5’- 

CTTCAGGTTCAGCCCACAGT; mouse PDLIM2, forward 5’-

GACAGCCAGTCTTCCCAGAG, mouse PDLIM2, reverse 5’-

TCTCACAGGTGTGGAGCTTG; Tax, forward, 5’-CACCTGTCCAGAGCATCAGA; Tax 

reverse, 5’-CGCTTGTAGGGAACATTGGT; GAPDH, forward 5’-

CACAGTCCATGCCATCACTG, GAPDH, reverse 5’-CTTACTCCTTGGAGGCCATG; 

Luciferase gene reporter assays  

Jurkat, 293 and MEF cells were transfected with luciferase reporter and Tax in the 

presence of increasing amounts of PDLIM2. For MT-4 cells, the luciferase reporter together with 

increasing amounts of PDLIM2 was transfected. At 40 hrs post-transfection, luciferase activity 

was measured as we described before (Xiao et al., 2000). 

Colony formation assays 

Soft agar assays were performed as previously described (Qing et al., 2007). Briefly, 6-

well plates were coated with an initial underlay of 1% SeaPlaque low melting agarose in culture 
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medium. Cell suspension in culture medium containing 0.6% SeaPlaque low melting agarose 

was then added to the coated plates. Colony growth was scored after 21 days of cell incubation at 

the normal condition. All the colony formation assays presented in this study were repeated in at 

least three independent experiments.   

In vivo tumorigenicity assays 

Five-week old female SCID mice (C.B-17TM/IcrCrl-scidBR) (from Charles River Lab.) 

were challenged subcutaneously in hind-back with Rat-1 stable cell lines, or subcutaneously in 

the post-auricular region with C8166 or MT-4 stably expressing PDLIM2 or an empty vector. 

The recipient mice were monitored, sacrificed and dissected for tumor evaluation at the indicated 

post-injection days. 

Statistical significance 

Paired student’s t-test for independent samples was used to assess statistical significance. 

2.4 RESULTS 

2.4.1 PDLIM2 suppresses Tax-mediated NF-κB activation and HTLV-I viral 

transcription. 

2.4.1.1 PDLIM2 suppresses Tax-mediated NF-κB activation.  

Tax-induced NF-κB activation is crucial for HTLV-I-mediated pathogenesis, particularly 

the cell transformation and tumorigenesis, and PDLIM2 could function as a terminator of NF-κB 
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by triggering the degradation of p65 (Sun and Yamaoka, 2005; Tanaka et al., 2007). Therefore, 

we examined the effect of PDLIM2 on Tax-induced NF-κB in luciferase gene reporter assay to 

test whether PDLIM2 could also inhibit Tax-mediated NF-κB activation. As expected, the 

expression of Tax efficiently activated NF-κB transcription activity in both 293 and Jurkat cells 

(Figure 11A, 11B). PDLIM2 co-expression induced a dose-dependent suppression on the Tax-

mediated activation of NF-κB in 293 and Jurkat T cells. Importantly, similar results were 

obtained in MT-4 cells, an HTLV-I-transformed T cell line which constitutively expresses 

endogenous Tax protein (Figure 11C).  

 

Figure 11. PDLIM2 inhibits Tax-dependent NF-κB activation. 

(A, B, C) The indicated cells were transfected with Tax and κB driven luciferase reporter in the presence of 

increasing amounts of PDLIM2, followed by the measurement of luciferase activity. To eliminate the effect of CMV 

promoter on NF-κB activations, the Tax and PDLIM2 used here are both under RSV promoter.  

2.4.1.2 PDLIM2 suppresses Tax-mediated HTLV-I-LTR viral transcription.  

Whereas Tax-mediated NF-κB activation is largely responsible for HTLV-I-mediated 

oncogenesis, the transactivation of HTLV-I transcription by Tax is important for HTLV-I viral 

gene expression and viral replication (Matsuoka and Jeang, 2007). We utilized a luciferase gene 

reporter driven by the HTLV-I LTR. Similar to the former result, PDLIM2 suppressed Tax-
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mediated HTLV-I viral transcription in a dose-dependent manner (Figure 12). Taken them 

together, the results suggest that PDLIM2 negatively regulates Tax-induced NF-κB and HTLV-I-

LTR activation. Importantly, because the transcriptional activation by Tax is independent of NF-

κB, there might be a direct connection between PDLIM2 and Tax. 

 

Figure 12. PDLIM2 inhibits Tax-dependent HTLV-I-LTR viral transcription. 

(A, B, C) The indicated cells were transfected with Tax and HTLV-I-LTR driven luciferase reporter in the presence 

of increasing amounts of PDLIM2, followed by the measurement of luciferase activity.  

2.4.2 PDLIM2 inhibits HTLV-I Tax-mediated tumorigenesis. 

2.4.2.1 Co-expression of PDLIM2 inhibits Tax-mediated anchorage-independent colony 

formation and tumor growth in SCID mice.  

As described before, the tumorigenicity of HTLV-I is largely mediated by HTLV-I-

encoded Tax protein at multiple levels. Considering that Tax mainly functions through NF-κB 

and HTLV-I-induced ATL is an NF-κB-related disease, it is necessary to examine whether 

PDLIM2-induced NF-κB suppression also affects Tax-mediated oncogenesis. Rat-1 cell is a 

good model cell to address the issue because Rat-1 cell has been demonstrated to acquire the 
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ability to form foci in soft agar when infected with Tax (Tanaka et al., 1990). In agreement with 

the negative role of PDLIM2 in Tax-mediated NF-κB activation and HTLV-I-LTR viral 

transcription, co-expression of PDLIM2 sufficiently inhibited the anchorage-independent growth 

of Tax-expressing Rat-1 cells, indicating that PDLIM2 suppresses the transformative ability of 

Tax in vitro (Figure 13A).  

 

Figure 13. PDLIM2 suppresses Tax-mediated cell transformation and tumor growth in SCID mice. 

(A) Rat-1 cells stably expressing GFP, Tax and Tax/PDLIM2 were plated in soft agar for colony formation assay. 

Pictures shown were taken at day 14 after plating. (B) Expression levels of Tax, exogenous PDLIM2 in Rat-1 stable 

cells used in panel A were examined by IB using Tax and myc antibodies, respectively. Hsp90 was used as the 

internal loading control. (C) Rat-I cells indicated in panel A were subcutaneously inoculated into the right and left 

hind-back of the same SCID mouse, respectively. After inoculation for 14, 21, and 28 days, mice were sacrificed 

and pictures were taken, respectively.  
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To further confirm the result in animals, the Rat-1 cells were subcutaneously injected into 

the SCID mice. As expected, only the mice injected with the cells expressing tax (Figure 13B), 

but not the control vector (not shown), developed xenografts. As such, Tax driven tumorigenesis 

was almost completely blocked by PDLIM2 co-expression. These studies demonstrated that 

PDLIM2 co-expression is sufficient to prevent tumorigenicity of Tax both in vitro and in SCID 

mice. 

2.4.2.2 PDLIM2 inhibits tumor formation of HTLV-I-transformed T cells in SCID mice. 

Table 1. PDLIM2 prevents tumor formation of HTLV-I-transformed T cells in SCID mice. 

Cell line Clone No. No. of mice with tumor 
/No. of mice injected 

Average size  
of tumors (mm)3 

C8166 

Vector 2/3 73 

PDLIM2 #8 0/4 0 

PDLIM2#18 0/4 0 

MT-4 
Vector 3/4 93 

PDLIM2 #20 0/4 0 

 

We also introduced exogenous PDLIM2 into HTLV-I-transformed T cells including 

C8166 and MT4 through lentiviral infection. Both of the cell lines formed tumors after being 

subcutaneously injected into the SCID mice (although not all). Tumor generation was however 

blocked when cells were inoculated onto PDLIM2 expressing cells, indicating that PDLIM2 

suppresses HTLV-I-mediated tumorigenicity (Table 1). Importantly, such inhibition did not seem 

to result from changes in cell proliferation and apoptosis since cell-cycle arrest assays gave 

comparable results between cells with and without PDLIM2 expression (Figure 14). 
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Figure 14. Exogenous introduction of PDLIM2 does not induce cell-cycle arrest in HTLV-I-transformed T 

cells. 

The indicated HTLV-I-transformed T cell lines stably expressing PDLIM2 or the empty vector were cultured at the 

normal condition, stained with propidium iodide (PI) and subjected to FACS analysis.  

2.4.3 PDLIM2 promotes the poly-ubiquitination and proteasomal degradation of Tax. 

2.4.3.1 PDLIM2 regulates Tax expression in a dose-dependent manner.  

Since PDLIM2 inhibits Tax-mediated HTLV-I-LTR transcription, an NF-κB independent 

event, our data suggests that PDLIM2 and Tax may share more than a signaling pathway and 

actually physically interact with one another. To define this association, we utilized different 

dosages of PDLIM2 and co-expressed it with Tax. As shown in Figure 15A, co-expression of 

PDLIM2 diminished the total Tax protein levels in a dose-dependent manner. This effect seemed 

to be directly caused by PDLIM2, since the exogenously expressed GFP and endogenous Hsp90 

remained unaffected (Figure 15A). Furthermore, an examination of Tax mRNA levels suggested 

that PDLIM2 reduces Tax protein expression by serving at the post-transcriptional level because 
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there were little changes in Tax mRNA levels following the expression of PDLIM2 in 293 and 

MEF cells (Figure 15B). 

 

Figure 15. PDLIM2 represses Tax protein in a dose-dependent manner. 

(A) 293 cells were transfected with Tax and GFP in the presence of increasing amounts of PDLIM2, following by 

IB to detect expression levels of Tax, myc-PDLIM2, GFP and Hsp90. Hsp90 was used as the internal loading 

control and GFP would indicate the transfection efficiency. (B) 293 cells were transfected with empty vector, Tax, 

Tax/PDLIM2 and PDLIM2 alone, following by RNA extraction and reverse transcription. Semi-quantification PCR 

for Tax, PDLIM2 and GAPDH were performed with four different amplification cycles.  

2.4.3.2 Inducible expression of PDLIM2 results in reduced protein levels of Tax.  

Transient transfection frequently increases experimental variability and gives artificial 

results. To overcome this issue and validate the former data, we generated PDLIM2-inducible 

cells in Tax expressing 293 cells, in which the expression of exogenous PDLIM2 was induced by 

doxycycline (Dox) treatment. As shown in figure 16A, following Dox treatment, PDLIM2 

protein levels gradually accumulated, whereas Tax protein was almost completely degraded to 
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undetectable levels after 24hrs. We therefore proceeded to narrow the inducible time points. The 

most efficient suppressive period appeared between 6-12 hrs from Dox treatment (Figure 16B). 

In summary, PDLIM2 triggers Tax degradation and PDLIM2 protein levels are critical in 

determination of Tax protein levels. 

 

Figure 16. Inducible PDLIM2 suppresses Tax expression. 

(A, B) PDLIM2-inducible 293 cells were mock-treated or treated with Dox for the indicated times followed by 

direct IB analysis using antibodies against Tax, myc and Hsp90. The Hsp90 and β-actin expression were used as the 

internal loading control. TR, Tetracycline Repressor; TO, Tetracycline Operator.  

2.4.3.3 PDLIM2 directly interacts with Tax.  

Based on those findings, we thought to determine whether PDLIM2 could interact with 

Tax. It is important to note that the C-terminal PDZ domain binding motif (PBM) within HTLV-

I Tax is responsible for the interactions between Tax and various other PDZ-domain-containing 

proteins. Thus, it is possible that PDLIM2 interacts with Tax via its N-terminal PDZ domain. We 

performed co-immunoprecipitation (Co-IP) assays to address the question. When PDLIM2 and 

Tax expressed together in 293 cells, they indeed formed a stable complex (Figure 17A, 17B). 
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Figure 17. PDLIM2 directly interacts with Tax. 

(A) 293 cells were transfected with Tax in the presence or absence of myc-PDLIM2, following by IP using myc 

antibody and IgG, and IB using Tax antibody. The expression of input Tax and myc-PDLIM2 were analyzed by 

direct IB. Hsp90 was used as the loading control. (B) Similar assay as panel A. (C) 2ug GST-Tax and 2ug His-myc-

PDLIM2 proteins purified from E. coli were mixed together and incubated at 40C for 2 hrs, following by IP using 

myc antibody and IgG, and IB using Tax antibody. 

To clarify whether the association was direct or indirect, we further examined the 

PDLIM2-Tax interaction through an in vitro Co-IP assay using recombinant PDLIM2 and Tax 

proteins purified from bacteria. As shown in Figure 17C, purified His-myc-PDLIM2 could not 

be pulled down by pre-immune IgG. However, recombinant Tax was easily detected using an 

anti-Tax antibody when incubated with His-myc-PDLIM2 and immunoprecipitated with an anti-

Myc antibody. These results indicated that PDLIM2 directly interacts with Tax. 
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2.4.3.4 PDLIM2 triggers the proteasomal degradation of Tax.  

 

Figure 18. PDLIM2 promotes the proteasomal degradation of Tax. 

(A) 293 cells transfected with Tax in the presence or absence of PDLIM2 were subjected to CHX-chase assay at the 

indicated time. In lane 4 and 8, the cells were chased in the presence of 10uM MG132, the proteasome inhibitor. (B) 

MT-4 cells stably expressing PDLIM2 or an empty vector were CHX chased as described before. (C) 293 cells 

transfected with Tax in the presence of PDLIM2 were subjected to CHX-assay at the indicated time. In lane 4-7, the 

cells were chased in the presence of MDC, AICAR, zVAD-FMK and MG132, respectively.  

Given the low level of Tax protein when co-expressing PDLIM2, we though to determine 

whether PDLIM2 promoted the degradation of Tax. To confirm this hypothesis, the turnover of 

Tax protein was measured by performing CHX-chase assay in cells over-expressing PDLIM2. 

The results showed that PDLIM2 promoted Tax turnover in 293 cells as well as the HTLV-I-
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transformed T cells (Figure 18A, 18B). Additionally, such elevated turnover could be suppressed 

by the treatment of MG132, the inhibitor of proteasome. It suggested that PDLIM2 might 

promote the proteasomal degradation of Tax. 

We also ruled out the involvement of other mechanisms of protein degradation including 

endocytosis, autophagy and caspase-mediated protein degradation by using the specific chemical 

inhibitors. Following blocking cell endocytosis via treatment of monodansyl cadaverine (MDC), 

inhibiting autophagy by using 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) 

and turning off caspase-mediated protein cleavage by using carbobenzoxy-valyl-alanyl-aspartyl-

[O-methyl]-fluoromethylketone (z-VAD-FMK), we measured Tax turnover rates. As shown in 

Figure 18C, none of these inhibitors, save MG132, could rescue Tax protein level after 4hrs 

CHX-chase. Therefore, our data indicates that PDLIM2 triggers the proteasomal degradation of 

Tax. 

2.4.3.5 PDLIM2 promotes poly-ubiquitination of Tax.  

Because protein ubiquitination is the major mechanism leading to protein proteasomal 

degradation, the above findings led us to investigate the mechanistic role of PDLIM2. Indeed, 

reports confirmed that PDLIM2 is a novel ubiquitin E3 ligase, whose enzymatic activity depends 

on its C-terminal LIM domain, a motif homologous to the RING finger domain (Tanaka et al., 

2007; Tanaka et al., 2005).  

To test whether PDLIM2 could promote the poly-ubiquitination of Tax or even directly 

function as an ubiquitin E3 ligase, we performed in vivo ubiquitination assays using 293 cells 

transfected with Tax and PDLIM2 plus wildtype (WT) exogenous ubiquitin. In agreement with 
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the reported data, Tax itself could be poly-ubiquitinated (Figure 19, lane 2; Nasr et al, 2006). 

When PDLIM2 was co-expressed, a significantly greater intensity of poly-ubiquitination signal 

was detected (Figure 19, lane 4 vs lane 2). Furthermore, using a similar assay, inhibition of 

proteasome by MG132 stabilized the poly-ubiquitinated Tax, indicating that proteasomal 

degradation of Tax involves PDLIM2 promoted Tax poly-ubiquitination (Figure 19, lane 6 vs 

lane 2, lane 8 vs lane 4).  

 

Figure 19. PDLIM2 promotes poly-ubiquitination of Tax. 

293 cells transfected with HA-Ubiquitin (WT) and Tax in the presence or absence of PDLIM2 were subjected to IP 

by using mIgG and Tax antibodies, following by IB detection with HA-HRP antibody.  In lane 3, 4, 7 and 8, the 

cells were treated with 10uM MG132 for 3hrs before performing IP. The pulling down efficiency and input 

expression of Tax were evaluated as indicated. Hsp90 was used as the loading control for the inputs. 
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2.5 DISCUSSION 

Extensive studies have been performed on how Tax usurps cellular regulatory 

mechanisms to facilitate HTLV-I viral replication and to initiate malignant transformation 

leading to the development of ATL. However, how the Tax protein is regulated by cellular 

mechanisms has been rarely studied. Due to lack of this knowledge, the prognosis for this acute 

and fatal disease is still under investigation. Here we show that Tax is negatively regulated by 

PDLIM2. 

PDLIM2 is a newly identified ubiquitin E3 ligase that could specifically poly-

ubiquitinate the nuclear p65 and STAT proteins for proteasomal degradation (Tanaka et al., 2007; 

Tanaka et al., 2005). Similarly, our data indicates that PDLIM2 physically and directly interacts 

with HTLV-I Tax, triggers its proteasomal degradation by promoting its poly-ubiquitination. 

Considering the importance of Tax in HTLV-I viral transcription and tumorigenesis, PDLIM2-

promoted proteasomal degradation of Tax leads to a turning down or shutoff of Tax-mediated 

signaling. Additionally, we found that PDLIM2 co-expression is sufficient to prevent in vitro cell 

transformation and in vivo oncogenesis induced by Tax, and the PDLIM2 re-introduction in 

HTLV-I-transformed T cells was able to reverse their tumor formation ability in animal. This 

evidence indicates that PDLIM2 might be the first cellular protein that binds to Tax but functions 

negatively. 

Obviously, Tax degradation plays a predominant and direct role in PDLIM2 mediated 

suppression of Tax oncogenicity. However, given that PDLIM2 itself serves as a terminator of 

NF-κB signaling and also function in the downstream of Tax, our studies could not exclude the 

possibility that such suppressed tumorigenicity might result from the inhibition of NF-κB 
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through p65 degradation by PDLIM2 (Tanaka et al., 2007). The relationship between Tax, 

PDLIM2 and NF-κB, especially the p65 mediated NF-κB activation, will be further elucidated in 

Chapter 5. 

Our later studies found that PDLIM2 was largely repressed in HTLV-I-transformed T 

cells (Figure 30, Figure 31). Whereas HTLV-I repressed PDLIM2 via a yet-to-be elucidated 

mechanism, PDLIM2 targets HTLV-I Tax protein for degradation. Since the exogenous 

expression of PDLIM2 in HTLV-I-transformed T cells inhibits or reverses the malignancy, the 

counterbalance between Tax and host PDLIM2 may determine the outcome of HTLV-I-induced 

tumorigenesis and contributes to the long latency of HTLV-I-caused ATL. Our studies therefore 

suggest a novel therapeutic strategy for cancer and other diseases associated with HTLV-I 

infection and/or PDLIM2 deregulation. More discussions will be presented in Overall Discussion. 
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3.0  BOTH THE LIM DOMAIN AND THE MOTIF 236-254 ARE  

THE MOLECULAR DETERMINANTS OF PDLIM2 IN  

SUPPRESSING HTLV-I TAX-MEDIATED TUMORIGENESIS 

 

 

 

Portions of the research in this chapter are currently in press at Oncogene with authors 

Jing Fu, Pengrong Yan, Shirong Li, Zhaoxia Qu and Gutian Xiao.  
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3.1 SUMMARY 

 

Human T cell leukemia virus type I (HTLV-I) encodes a Tax oncoprotein that plays a 

crucial role in both viral replication and cell transformation. Our studies found that PDLIM2 

negatively regulates Tax by promoting the proteasomal degradation of Tax, thereby suppresses 

the transformative ability of HTLV-I. The counterbalance between HTLV-I/Tax may determine 

the outcome of HTLV-I infection. Here we further showed that the interaction between PDLIM2 

and Tax was mediated by a putative α-helix motif within PDLIM2 at amino acids 236-254. 

PDLIM2 with selective disruption of this short helix failed to promote Tax degradation and lost 

the ability in tumor suppression. Although the C-terminal LIM domain of PDLIM2 was not 

required for Tax binding, it is required to trigger the poly-ubiquitination of Tax and determine 

Tax subcellular distributions. In contrast, the N-terminal PDZ domain of PDLIM2 was largely 

dispensable. These studies dissect functional sequences within PDLIM2 and their distinct roles 

in HTLV-I Tax regulation.  
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3.2 INTRODUCTION 

 

HTLV-I is an oncogenic retrovirus etiologically associated with adult T cell leukemia 

(ATL) (Grassman et al., 2005; Sun and Yamaoka, 2005). The virus encodes a 40-kDa regulatory 

protein named Tax. Tax protein is not only required for virus replication but is also able to 

immortalize many different cells including human primary T cells (Grassmann et al., 1992; 

Pozzatti et al., 1990; Tanaka et al., 1990). In addition, Tax-transformed cells induce tumors 

when introduced into nude or SCID mice (Oka et al., 1992; Pozzatti et al., 1990). More 

importantly, the HTLV-I genome without Tax loses its original transformative ability (Yamaoka 

et al., 1992), whereas Tax-transgenic mice develop various tumors, depending on the type of 

promoter used to drive Tax expression (Grossman et al., 1995; Nerenberg et al., 1987; Peebles et 

al., 1995). Indeed, Tax-immortalized lymphocytes in vitro and Tax-mediated T cell lymphomas 

in animal closely resemble the phenotypes of HTLV-I-transformed T cells and HTLV-I-induced 

ATL, respectively (Akagi et al., 1995; Hasegawa et al., 2006; Kwon et al., 2005).  

Tax oncoprotein exerts its oncogenic role largely through deregulation of cellular 

transcription factors that are critical for cell growth and division, such as NF-κB (Grassman et al., 

2005; Sun and Yamaoka, 2005). In the cytosol, Tax recruits the IκB (inhibitor of NF-κB) kinase 

(IKK) complex into specific perinuclear structures for IKK activation, resulting in the 

degradation of IκB and the subsequent nuclear translocation of NF-κB factors, including p65, the 

prototypic member of NF-κB (Xiao et al., 2006). In the nucleus, Tax recruits p65 and other 
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cellular transcriptional components into inter-chromatin granules to form discrete transcriptional 

hot-spots named ‘Tax nuclear bodies’ or ‘Tax nuclear foci’ (Bex et al., 1997; Semmes and Jeang, 

1996).  

Although the mechanisms by which Tax hijacks cellular signaling for its oncogenic 

action have been extensively investigated, the molecular studies on how HTLV-I Tax is 

regulated by cellular factors are still lacking. We characterize PDLIM2, a newly identified PDZ-

LIM domain-containing protein with ubiquitination promoting activity, as an intrinsic negative 

regulator of Tax (Yan et al., 2009).  

As the name suggests, the PDLIM2 protein consist of both PDZ and LIM domains. The 

LIM domain is responsible for the E3 ligase functions of PDLIM2 whereas the PDZ domain 

involves in protein intra-nuclear trafficking (Tanaka et al., 2007). Citing p65 as an example, the 

deletion of the p65 LIM domain induced a dramatic decrease in p65 poly-ubiquitination (Tanaka 

et al., 2007). However, a lack of PDZ domain results in the insufficient degradation of p65 with 

neither decreased nuclear-soluble p65 nor increased nuclear-insoluble p65 (Tanaka et al., 2007), 

suggesting that intra-nuclear trafficking of p65 is necessary for its degradation. Additionally, 

mutant PDLIM2 proteins harboring a deletion of its LIM or PDZ domains still retain the ability 

to interact with p65. Although the author of this study explained that more than one region 

within PDLIM2 is required for the PDLIM2-p65 interaction, we cannot exclude the possibility 

that the region between LIM and PDZ is essential for the PDLIM2-p65 interaction. 

We have found that PDLIM2 functions as an intrinsic negative regulator of HTLV-I Tax. 

It directly bound to Tax, formed a stable complex, promoted Tax poly-ubiquitination and 

subsequent proteasomal degradation (Yan et al., 2009). Accordingly, co-expression of PDLIM2 
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suppressed Tax mediated downstream signaling and tumorigenicity (Yan et al., 2009). Even 

more importantly, re-introduction of PDLIM2 into HTLV-I-transformed T cells blocks their 

tumorigenicity in mice (Yan et al., 2009). These findings make PDLIM2 the first intrinsic 

cellular factor that regulates the oncoprotein Tax directly and negatively (Yan et al., 2009). It is 

therefore interesting and important to address the molecular determinants within both PDLIM2 

and Tax, which might be responsible for their biological functions. 

3.3 MATERIALS AND METHODS 

Expression vectors and reagents 

Expression vectors encoding Tax, PDLIM2, PDLIM2 ΔPDZ and PDLIM2 ΔLIM 

mutants have been described before (Qu et al., 2004; Tanaka et al., 2007). Other PDLIM2 

mutants mentioned in this section were generated via mutagenesis PCR using primers in 

Appendix B. Ubiquitin construct was gifts of Dr. Z. Chen. GFP-Tax and its mutants were gifts of 

Dr. O. J. Semmes. cDNAs of Tax, PDLIM2 and PDLIM2 mutants were also sub-cloned into 

retroviral vectors pCLXSN and/or pTRIP by routine cloning strategies as described (Qing et al., 

2005a). The HA monoclonal antibody (12CA5) and HRP-conjugated HA monoclonal antibody 

(3F10) were from Roche Molecular Biochemicals. The ubiquitin, Sp1, lamin B, Hsp90, and β-

actin antibodies as well as the pre-immune IgG were from Santa Cruz Biotechnology. The 

proteasome inhibitor MG132 and protein synthesis inhibitor cycloheximide (CHX) were from 

Biomol. Thiazolyl Blue Tetrazolium Bromide (MTT) was purchased from Sigma. The Tax and 

MYC antibodies were described previously (Qu et al., 2004).  
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Cell culture and transfection 

HEK293 cells and Rat-1 were cultured in Dulbecco’s Modified Eagle Medium (DMEM, 

Invitrogen) supplemented with 10% fetal bovine serum (Hyclone) and 2 mM L-glutamine 

(Invitrogen), and HTLV-I-transformed T cell lines C8166 were maintained in suspension in 

RPMI 1640 medium (Invitrogen) supplemented with 10% fetal bovine serum and 2 mM L-

glutamine (Yan et al., 2007). 293 were transfected with DEAE-Dextran (Sigma) (Qing and Xiao, 

2005; Xiao and Sun, 2000).  

Retroviral transduction and generation of stable transfectant 

Rat-1 cells were infected with virus expressing Tax or PDLIM2, respectively. The Rat-1 

cells stably expressing Tax were also re-infected with virus expressing PDLIM2 or PDLIM2 

mutants for simultaneously expressing both Tax and PDLIM2. The viruses expressing GFP were 

used as a control. The stable transfectants were obtained by selection with G418 and/or 

blasticidin selections as described previously (Qing et al., 2007).  

Subcellular fractionation, immunoblotting (IB) and immunoprecipitation (IP) 

assays 

Cytoplasmic, soluble and insoluble nuclear extracts were prepared using the hypotonic 

buffer (20 mM HEPES, pH 8.0, 10 mM KCl, 1 mM MgCl2, 0.1% (vol/vol) Triton X-100 and 

20% (vol/vol) glycerol), hypertonic buffer (20 mM HEPES, pH 8.0, 1 mM EDTA, 20% (vol/vol) 

glycerol, 0.1% (vol/vol) Triton X-100 and 400 mM NaCl), and insoluble buffer (20 mM Tris, pH 

8.0, 150 mM NaCl, 1% (wt/vol) SDS, 1% (vol/vol) NP-40 and 10 mM iodoacetamide), 

respectively (Tanaka et al., 2007). The purity of the obtained fractions was confirmed by 
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checking Hsp90 (cytoplasm), Sp1 (soluble nuclear fraction), or lamin B (insoluble nuclear 

fraction). Total nuclear extracts were prepared by simply lysing pellets in insoluble buffer after 

the cytoplasm was extracted. Whole-cell extracts were prepared by lysing cells in RIPA buffer 

(50 mM Tris-HCl pH7.4, 150 mM NaCl, 1 mM EDTA, 0.25% (wt/vol) Na-deoxycholate, 1% 

(vol/vol) NP-40, 1 mM DTT). All the lysis buffers were supplemented with 1 mM PMSF and a 

protease inhibitor cocktail (Roche Molecular Biochemicals). The cells extracts were used for IP 

and/or IB assays as described before (Xiao et al., 2001a). 

In vivo ubiquitin conjugation assay 

Protein extracts were prepared from 293 cells transfected with Tax together with HA-

tagged ubiquitin in the presence or absence of PDLIM2, immediately followed by IP using anti-

Tax. The ubiquitin-conjugated Tax pulled down by IP was detected by IB using anti-HA-HRP 

(Xiao et al., 2001b).  

Protein stability assay 

Cells were treated with 10 µM CHX, followed by chasing of the indicated time period in 

the presence or absence of MG132, and IB to detect the indicated proteins  (Qing et al., 2005b). 

MTT cell proliferation assay  

Cells were cultured under normal growth medium and subjected to MTT treatment (Final 

concentration 0.5mg/mL) for 4hrs. The cells were dissolved completely using the converted dye 

(0.04M HCl in absolute isopropanol). After a brief centrifuge, absorbance of the converted dye 

was measured at a wavelength of 560nm with background subtraction at 670nm using Beckman 

DU-600 Spectrophotometer. 
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Colony formation assays 

Soft agar assays were performed as previously described  (Qing et al., 2007). Briefly, 6-

well plates were coated with an initial underlay of 1% SeaPlaque low melting agarose in culture 

medium. Cell suspension in culture medium containing 0.6% SeaPlaque low melting agarose 

was then added to the coated plates. Colony growth was scored after 21 days of cell incubation at 

the normal condition. All the colony formation assays presented in this study were repeated in at 

least three independent experiments, and each independent experiment included three different 

cell doses: 5 × 103, 1 × 104, and 5 × 104.  

In vivo tumorigenicity assays 

Five-week old female SCID mice (C.B-17TM/IcrCrl-scidBR) (from Charles River Lab.) 

were challenged subcutaneously in hind-back with Rat-1 stable cell lines. The recipient mice 

were monitored, sacrificed and dissected for tumor evaluation at the indicated post-injection days. 

Statistical significance 

Paired t-test for independent samples was used to assess statistical significance. 

3.4 RESULTS 

3.4.1 Both the C-terminal LIM domain and the internal motif 236-254 are required for 

PDLIM2-induced Tax degradation. 

3.4.1.1 The internal 19 amino-acid motif 236-254 is required for the interaction between 

PDLIM2 and Tax. 

Tax contains a PDZ-domain-binding motif (PBM) at its C-terminus, which is responsible 

for its interaction with various other PDZ-domain-containing proteins, including DLG1 (Lee et 



 

 84 

al., 1997; Rousset et al., 1998). We initially tested the role of the Tax PBM and PDZ domain of 

PDLIM2 through PDLIM2-Tax interaction assays.  

 

Figure 20. Interaction between PDLIM2 and Tax is independent of the Tax PBM domain and the PDZ 

domain of PDLIM2. 

(A) 293 cells were transfected with myc-PDLIM2 alone or together with Tax WT or Tax EV352/353AS, the PBM 

disruption mutant. Lysates from the indicated cells were subjected to IP assays using Tax antibody and IB by myc 

antibody. The inputs of myc-PDLIM2, Tax and Tax EV352/353AS were analyzed by direct IB. (B) Schematic 

representation of PDLIM2 and its mutants used in this study. Amino acid 236-254, a putative short α-helix that acts 

as the Tax binding motif of PDLIM2, is also shown. (C) Lysates from 293 cells expressing Tax alone or in the 

presence of the indicated PDLIM2 internal deletion mutants were analyzed by IP using myc antibody and by IB 

using Tax antibody.  

Surprisingly, disruption of the PBM motif within Tax (Tax EV352/353AS) failed to 

block the Tax-PDLIM2 interaction (Figure 20A). Consistently, deletion of the PDZ domain of 
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PDLIM2 (ΔPDZ) did not affect the interaction with Tax either, indicating that the PDLIM2-Tax 

interaction is independent of the Tax PBM and the PDZ domain of PDLIM2 (Figure 20C). 

Similarly, deletion of the C-terminal LIM domain (ΔLIM) had no effect on Tax binding (Figure 

20C). Moreover, the simultaneous deletion of both PDZ and LIM domains (ΔPDZ/LIM) showed 

the binding capacity (Figure 20C). In contrast, sequences between the PDZ and LIM domains 

(Δ79-278), which is commonly considered as a disordered region, present to be indispensable 

and responsible for the interaction between PDLIM2 and Tax (Figure 20C). Therefore, the 

sequences covering the middle region between the PDZ and LIM domains may contain a Tax-

binding motif.  

 

Figure 21. Sequences at 243-253 are required for PDLIM2-Tax interaction. 

(A) Lysates from 293 cells expressing Tax alone or in presence of the indicated PDLIM2 internal deletion mutants 

were analyzed by IP using myc antibody and by IB using Tax antibody. (2) Similar IP assay were performed by 

transfecting 293 cells with HA-p65 alone or together with myc-PDLIM2 WT or myc-PDLIM2 D243-253 to address 

the interaction between PDLIM2-p65. 
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To characterize the Tax-binding motif within PDLIM2, we generated various small 

internal deletion mutants of PDLIM2 (Figure 20B). Interestingly, internal deletion of amino 

acids 243-253 (Δ243-253) caused complete loss of the PDLIM2-Tax interacting ability (Figure 

21A). The loss of Tax binding capacity seemed not due to structural disruption since the mutants 

with deletions of the sequences ahead of or behind the motif (Δ195-207 and Δ258-278) did not 

affect the PDLIM2-Tax interaction (Figure 21A). Importantly, deletion of the amino acids 243-

253 did not affect PDLIM2 binding to p65, another primary target of PDLIM2 (Figure 21B), 

indicating that the amino acids 243-253 are required specifically for the Tax binding.  

 

Figure 22. The putative α-helix 236-254 is required for PDLIM2-Tax interaction. 

Lysates from 293 cells expressing Tax alone or in presence of the indicated PDLIM2 deletion or substitution 

mutants were analyzed by IP using myc antibody and by IB using Tax antibody.  

Further analysis of the primary structure of PDLIM2 showed that the amino acids 243-

253 might locate within a putative α-helix motif of PDLIM2 covering amino acids 236-254 

(Figure 20B, www.predictprotein.org). In accordance, it is reported that the short helix is the 

preferential structure for Tax binding (Xiao et al., 2000). To test whether this short α-helix was 

responsible for the PDLIM2-Tax interaction, we disrupted the helix by smaller internal deletions 
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or point substitutions with prolines. As shown in Figure 22, disruption of the short helix, by its 

middle part small deletion (Δ241-245 or Δ246-250) or leucine to proline substitutions 

(LL241/242PP), abolished the PDLIM2-Tax interaction, although mutations at the ends of the 

short helix (Δ236-240 or Δ251-255, or EE249/250PP) led to a partial loss of binding capacity. 

Taken together, the results suggested that the putative α-helix motif of PDLIM2 is the Tax-

binding motif required for the PDLIM2-Tax interaction.  

3.4.1.2 Different sequences within Tax are involved in binding to PDLIM2. 

 

Figure 23. Different sequences within Tax are involved in interaction with PDLIM2. 

(A) Schematic representation of Tax-GFP and its mutants. The fused GFP epitope tag was not shown. (B) Lysates 

from 293 cells transfected the indicated constructs were subjected to IP assays using GFP antibody and IB using 

myc antibody. Membrane was stripped and re-blotted for detection of pulled down GFP-Tax. The input of myc-

PDLIM2 was detected by direct IB using myc antibody.  

In order to identify the PDLIM2-binding motif within Tax, we took advantage of the 

deletion mutants of Tax that systematically cover the whole sequences of Tax (Figure 23A 

(Fryrear et al., 2009). Interestingly, all Tax mutants, like the WT protein, still retained the 
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capacity to bind PDLIM2 (Figure 23B), indicating that more than one motif within Tax can 

complementarily interact with PDLIM2. This data is consistent with the fact that Tax is an 

intrinsically disordered protein (IDP), which contains typical disordered regions (Boxus et al., 

2008). 

3.4.1.3 Both the C-terminal LIM domain and the Tax-binding motif (TBM) are required 

for Tax poly-ubiquitination and degradation by PDLIM2. 

 
Figure 24. Both the LIM domain and the Tax-binding motif (TBM) within PDLIM2 are required for 

promoting Tax poly-ubiquitination. 

293 cells were transfected with the indicated constructs and subjected to the treatments with MG132 for 16hrs, 

followed by nuclear extractions as described. IP assays were performed using Tax antibody for pulling down and IB 

using HA-HRP antibody. Same membrane was stripped and re-blotted for detection of pulled down Tax. The inputs 

of myc-PDLIM2 were analyzed by IB.  
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As described in the former chapter, PDLIM2 induced Tax repression involves promoted 

Tax poly-ubiquitination and the subsequent proteasomal degradation. Thus, we characterized the 

distinct functions of indicated PDLIM2 mutants in regulation of Tax poly-ubiquitination and 

degradation. Consistent with previous studies, WT PDLIM2 promoted Tax poly-ubiquitination 

(Figure 24). In agreement with the ubiquitin E3 ligase function of the LIM domain within 

PDLIM2, the ΔLIM or ΔPDZ/LIM mutant of PDLIM2 failed to promote Tax poly-ubiquitination 

(Tanaka et al., 2007; Tanaka et al., 2005). Similarly, all PDLIM2 mutants with deletion or 

mutation of Tax binding motif (TBM) such as the Δ79-278, Δ243-253, LL241/242PP and 

EE249/250PP mutants lost their ability to promote Tax poly-ubiquitination (Figure 24). In 

contrast, the ΔPDZ and Δ195-207 mutants, that maintained the full LIM domain and TBM, kept 

the ability to promote Tax poly-ubiquitination. These results suggested that elevated Tax poly-

ubiquitination requires both LIM domain and TBM within PDLIM2. 

 

Figure 25. Both LIM domain and TBM within PDLIM2 are required for promoting Tax turnover. 

293 cells transfected with the indicated constructs were mock-treated or treated with CHX in the presence or 

absence of MG132 for 3hrs. The nuclear insoluble fractions were utilized for IB using Tax and myc antibody. Lamin 

B was detected as the protein loading control. 
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In agreement with the above findings, we further confirmed that the PDLIM2 mutants 

lacking of a functional LIM or TBM domains (ΔLIM, Δ243-253, LL241/242PP, EE249/250PP) 

failed to promote Tax turnover in CHX-chase assay (Figure 25). Thus, both LIM domain and 

TBM of PDLIM2 are crucial for the proteasomal degradation of Tax, although they played 

distinct roles in the events.  

Since PDLIM2 ΔLIM mutant binds to Tax but does not induce Tax degradation, we 

thought interesting to examine whether this mutant can function as a dominant-negative form of 

PDLIM2. To this effect, we generated C8166 cells stably expressing an empty vector, PDLIM2 

WT or PDLIM2 ΔLIM, as this HTLV-I-transformed T cell line expresses a modest level of 

endogenous PDLIM2 (Figure 30). Consistently, Tax protein underwent a modest proteasomal 

degradation, which was significantly accelerated by stable expression of exogenous PDLIM2 

(Figure 26). As expected, the Tax degradation was largely blocked by expression of PDLIM2 

ΔLIM mutant. These results indicate that PDLIM2 ΔLIM can function as a dominant-negative 

form of PDLIM2, further supporting the distinct roles of the LIM domain and TBM in PDLIM2-

mediated Tax degradation.  

 
Figure 26. PDLIM2 mutant with deletion of the LIM domain serves as a dominant-negative form of PDLIM2. 
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HTLV-I-transformed T cell line C8166 stably expressing PDLIM2 WT, PDLIM2 ΔLIM or an empty vector were 

subjected to CHX-Chase assays as described before. 

3.4.1.4 Both the LIM domain and the TBM are responsible for Tax subcellular 

redistribution. 

 

Figure 27. Both the LIM domain and the TBM within PDLIM2 are required for Tax subcellular 

redistribution.  

(A) Effect of different sequences within PDLIM2 on Tax subcellular expression. 293 cells were transfected with Tax 

alone or together with the indicated PDLIM2 constructs, followed by cell fractions and IB to detect expression 

levels of the indicated proteins. (B) Quantitation of Tax protein in different subcellular fractions. The Tax bands in 

A were quantitated by densitometry and the ratios of Tax in the cytoplasmic, soluble nuclear and insoluble nuclear 
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fractions to total Tax were presented in percentile. (C) Quantitation of PDLIM2 protein in different subcellular 

fractions. The PDLIM2 bands in A were quantitated by densitometry and the ratios of PDLIM2 in the cytoplasmic, 

soluble nuclear and insoluble nuclear fractions to total PDLIM2 were presented in percentile. 

To tracking the location of Tax in the cells, we did fraction assays to measure Tax protein 

levels in the cytoplasmic, soluble nuclear, and insoluble nuclear fractions using 293 cells which 

expressed undetectable endogenous PDLIM2 protein (Figure 30). As shown in Figure 28, Tax 

was expressed in all three fractions in the absence of PDLIM2, while expression of PDLIM2 

resulted in a significant increasing of Tax ratio into the nuclear insoluble fraction, together with a 

decrease of Tax total protein.  

Similar to the PDLIM2 WT, PDLM2 mutants deleting the PDZ domain (ΔPDZ), amino 

acids 195-207 (Δ195-207) and 258-278 (Δ258-278) were able to affect the Tax subcellular 

distribution (Figure 27). However, PDLIM2 mutants with deletion of the LIM domain (ΔLIM 

and ΔPDZ/LM) and mutants without the full Tax-binding motif (Δ79-278, Δ243-253, 

LL241/242PP and EE249/250PP) lost this ability (Figure 27). In summary, the results indicated 

that both LIM domain and the TBM, but not the PDZ domain within PDLIM2 were responsible 

for determining Tax subcellular distribution, which is in agreement with the biological function 

of PDLIM2 to trigger proteasomal degradation of Tax.  
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3.4.2 Both the LIM domain and the PDLIM2-Tax interaction are involved in PDLIM2 

mediated suppression of Tax tumorigenicity 

3.4.2.1 Deletion of the LIM domain and disruption of TBM failed to block Tax mediated 

anchorage-independent colony formation. 

To further investigate the significance of these domains in PDLIM-mediated suppression 

of Tax tumorigenicity, we generated Rat-1 fibroblasts stably expressing Tax alone or together 

with different PDLIM2 mutants. Although the expression of Tax alone or together with PDLIM2 

WT or PDLIM2 mutants had no or minor effect on the growth of Rat-1 cells in normal culture 

condition (Figure 28A), Tax induced anchorage-independent colony formation of Rat-1 cells in 

soft agar (Figure 28B). The WT PDLIM2 was able to prevent the colony growth, while either 

deletion of the LIM domain (ΔLIM) or disruption of TBM (Δ243-253, LL241/242PP and 

EE249/250PP) resulted in loss of this suppression ability (Figure 28B). In contrast, deletions of 

the PDZ domain (ΔPDZ) or the amino acids 258-278 (Δ258-278) had no statistically significant 

effects on the suppression of Tax-mediated Rat-1 cell transformation (Figure 28B). Importantly, 

the results are correlated with the functions of domains in promoting Tax turnover and Tax 

proteasomal degradation. 
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Figure 28. Deletion of the LIM domain or disruption of TBM of PDLIM2 fails to suppress Tax-mediated 

colony formation. 

(A) Rat-1 stable cell lines cultured under normal growth medium were subjected to MTT assay to determine the live 

cells. Proliferation curve was generated based a collection of constitutive 7 days culturing and measuring. (B)The 

indicated Rat-1 stable cells were plated in soft agar for colony formation. Colony numbers were counted at day 21 

after plating. The data presents the percentile of colony formation compared to the cells expressing Tax alone (set as 

100). Error bars indicate standard deviations (n = 3). 
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3.4.2.2 Deletion of the LIM domain or the disruption of TBM fails to suppress Tax-

mediated tumor growth in SCID mice. 

 

Figure 29. Deletion of the LIM domain or disruption of TBM of PDLIM2 fails to suppress Tax mediated 

tumor growth in SCID mice. 

(A) The indicated Rat-1 stable cells were subcutaneously inoculated into the SCID mice. The mice were sacrificed 

at day 14 after inoculation and tumor weights were measured. The data presented are the mean ± standard deviation 

(n≥ 3). (B) Expression levels of Tax and Myc-PDLIM2 constructs in the stable cells were examined by direct IB 

using the whole cell lysates. The expression of endogenous Hsp90 was used as a loading control.   
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To further confirm these results in vivo, we subcutaneously injected those Rat-1 cells into 

SCID mice. In agreement with Figure 13, expression of WT PDLIM2 repressed Tax-mediated 

xenograft growth (Figure 29). Defects of PDLIM2 either in the LIM domain or the TBM, but not 

the PDZ domain or amino acids 258-278, lost such suppressive capacity (Figure 29), indicating 

that both of them were required to suppress Tax-mediated tumorigenesis in the SCID mice. 

3.5 DISCUSSION 

Our studies demonstrated that PDLIM2 promotes Tax poly-ubiquitination and 

proteasomal degradation and serves as an intrinsic negative regulator of HTLV-I Tax to affect 

the Tax-mediated signal transduction and tumorigenesis. Here we further dissected different 

functional sequences within PDLIM2.  

A putative α-helix motif spanning amino acids 236-254 of PDLIM2 was defined as the 

molecular determinant for PDLIM2-Tax interaction. Selective disruption of this short helix 

crippled PDLIM2 functions in determining Tax subcellular distribution and subsequent 

ubiquitination and proteasomal degradation, resulting in the defect of PDLIM2 in tumor 

suppression. However, both the C-terminal LIM domain and the N-terminal PDZ domain, which 

are predicted to be the major functional domains of PDLIM2, were dispensable for Tax binding 

(Te Velthuis and Bagowski, 2007; Te Velthuis et al., 2007). In further support of the ubiquitin 

E3 ligase function of LIM domain, loss of the LIM domain leads to the failure of PDLIM2-

mediated Tax repression.  
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These studies provide detailed insights into the molecular actions of PDLIM2 on Tax 

regulation. Furthermore, they also have the general significance in cancer biology and treatment, 

given our recent findings linking PDLIM2 epigenetic repression to pathogenesis of different 

cancers such as breast cancer and colon cancer (Qu et al., 2009a; Qu et al, 2009b). More detailed 

discussion will be presented in the Overall Discussion. 
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4.0  HTLV-I-MEDIATED REPRESSION OF PDLIM2 INVOLVES  

DNA METHYLATION, BUT INDEPENDENT OF TAX 

 

 

 

Work described in this chapter was published in Neoplasia with authors Pengrong Yan, 

Zhaoxia Qu, Chie Ishikawa, Naoki Mori and Gutian Xiao. (Neoplasia. 2009, 11(10):1036-41.) 
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4.1 SUMMARY 

 

Human T cell leukemia virus type I (HTLV-I) is the etiological agent of adult T cell 

leukemia (ATL). We found that HTLV-I–mediated tumorigenesis involves the repression of 

PDLIM2. PDLIM2 expression levels remains low in primary ATL cells freshly isolated from 

patients as well as established ATL cell lines. Moreover, such HTLV-I–mediated PDLIM2 

repression may be a pathophysiological event associated with the long latency of ATL 

progression. Our results also suggest that the PDLIM2 repression involved DNA methylation. 

Whereas DNA methyltransferase (DNMT) 1 and 3b, but not 3a, were up-regulated in HTLV-I–

transformed T cells, the DNMT inhibitor 5-aza-dC restored PDLIM2 expression and induced 

death of these malignant cells. We found that the PDLIM2 repression was independent of the 

HTLV-I Tax because neither short-term induction nor long-term stable expression of Tax affects 

PDLIM2 expression. These studies not only provide important insights into the involvement of 

DNA methylation in Tax regulation and HTLV-I leukemogenicity by PDLIM2, but also suggest 

that DNMT inhibitor, 5-aza-dC, shows potential therapeutic capacity for ATL treatment. 
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4.2 INTRODUCTION 

Human T cell leukemia virus type I (HTLV-I) infection causes an aggressive and fatal 

CD4+ T cell malignancy termed adult T cell leukemia (ATL) in approximately 2-5% virus 

carriers after an extensive latency period. Although the detailed mechanisms of ATL 

development remain under investigation, it seems clear that the early stage of HTLV-I-mediated 

leukemogenesis is largely mediated by its encoded regulatory protein Tax. Tax is able to 

transform many different types of cells in vitro and induce tumors in mice. Conversely, the 

HTLV-I genome without Tax loses its original oncogenic ability.  

The Tax oncoprotein exerts its transforming action largely through deregulation of 

cellular transcription factors that are critical for cell growth and division, such as nuclear factor 

κB (NF-κB) (Grassmann et al., 2005; Sun and Yamaoka, 2005). The mechanisms by which Tax 

deregulates the NF-κB signaling for tumorigenesis have been extensively studied. In the 

cytoplasm, Tax recruits the inhibitor of NF-κB (IκB) kinase (IKK) complex into specific 

compartments for IKK activation (Harhaj et al., 2007; Kfoury et al., 2008), resulting in the 

degradation of IκB and the subsequent nuclear translocation of NF-κB factors, including p65 

(Xiao et al., 2006). In the nucleus, Tax recruits p65 and other cellular transcriptional components 

into inter-chromatin granules to form discrete transcriptional hot spots termed as Tax nuclear 

bodies for full NF-κB transcriptional activation (Bex et al., 1997; Semmes and Jeang, 1996).  
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Unlike the mechanisms by which Tax hijacks cellular signaling to initiate malignant 

transformation leading to the development of ATL, the molecular studies on how HTLV-I/Tax is 

regulated by cellular factors are still lacking. We have identified PDLIM2 as an intrinsic 

negative regulator of Tax (Yan et al., 2009). PDLIM2 not only promotes Tax poly-ubiquitination 

but also binds to and shuttles Tax from its functional sites including the perinuclear structures 

and Tax nuclear foci for proteasomal degradation. Accordingly, PDLIM2 prevents downstream 

signaling and subsequent tumorigenicity of HTLV-I/Tax. Interestingly, PDLIM2 is conversely 

repressed in various HTLV-I-transformed cells at the transcriptional level. These studies 

suggested that PDLIM2 repression is one important mechanism of HTLV-I-mediated 

tumorigenesis. However, whether the PDLIM2 repression occurs under pathophysiological 

conditions and how HTLV-I represses PDLIM2 expression still remain unknown.  

We further reported that PDLIM2 expression levels remains low in primary ATL cells 

freshly isolated from patients as well as established ATL cell lines. However, the PDLIM2 

repression was independent of the viral oncoprotein Tax because neither short-term induction nor 

long-term stable expression of Tax down-regulated PDLIM2 expression. Instead, the HTLV-I-

mediated PDLIM2 repression involved DNA methylation. Whereas DNMT 1 and 3b, but not 3a, 

were up-regulated in HTLV-I–transformed T cells, the DNMT inhibitor, 5-aza-dC, reactivated 

PDLIM2 expression. In agreement with that, we found that 5-aza-dC was able to induce death of 

HTLV-I-transformed T cells in a dose-dependent manner. These studies not only provide 

important insights into PDLIM2 regulation and HTLV-I leukemogenicity, but also suggest 

potential therapeutic strategies for ATL by using 5-aza-dC. 
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4.3 MATERIALS AND METHODS 

Reagents 

Tet-free fetal bovine serum (FBS), doxycycline, and 5-aza-2’-deoxycytidine (5-aza-dC) 

were from Hyclone Laboratories (Logan, UT) and Sigma (St. Louis, MO), respectively. PDLIM2 

antibodies were gift of Dr. R. O'Connor (Loughran et al., 2005; Tanaka et al., 2005). 

Cell culture and transfection 

Human T lymphocyte Jurkat, and HTLV-I-transformed T cell lines C8166, HuT102, MT-

4, SLB-1 and TL-Om1 were maintained in suspension in RPMI 1640 medium supplemented 

with 10% fetal bovine serum and 2 mM L-glutamine (Yan et al., 2007). Jurkat Tet-on cells with 

inducible Tax were cultured with 10% Tet-free FBS and 2mM L-glutamine in DMEM and RPMI 

1640 medium.  

Induction of Tax or PDLIM2 in Jurkat-TetOn-inducible cell line 

For Tax induction, Jurkat-TetOn-inducible cells were treated with 0.1ug/mL doxycycline 

for the indicated time as described before (Kwon et al., 2005). The cells were then lysed in RIPA 

buffer (50mM Tris-HCl pH7.4, 150mM NaCl, 1mM EDTA, 0.25% (wt/vol) Na-deocycholate, 

1% (vol/vol) NP-40, 1mM dithiothreitol (DTT), 1mM phenylmethylsulfony fluoride (PMSF)) for 

the whole cell lysate extraction or in TRIzol reagent (Invitrogen) for RNA extraction (For 

reverse transcription-polymerase chain reaction (RT-PCR)).  
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Clinical samples 

With informed consent according to the Helsinki Declaration, peripheral blood 

mononuclear cells (PBMCs) were obtained from five patients with acute-type ATL (nos. 1-5) 

and two healthy volunteers (nos. 1 and 2). The diagnosis of ATL was established 

hematologically, and monoclonal HTLV-I provirus integration into the genome was confirmed 

by Southern blot hybridization in all cases. Subtypes of ATL were defined as described before. 

(Shimoyama, 1991; Tomita et al., 2007; Uozumi, 2010) Mononuclear cells were isolated from 

heparinized venous blood samples by Ficoll-Paque gradient centrifugation (GE Healthcare 

Biosciences, Uppsala, Sweden). Each patient sample contained more than 90% leukemic cells at 

the time of analysis. All samples were collected at the time of admission to hospital before the 

patients started chemotherapy. The normal PBMC control nos. 3 and 4 were purchased from the 

Biologic Specialty Corporation (Colmar, PA). 

Immunoblotting (IB) 

Cells were lysed in radioimmunoprecipitation assay buffer (RIPA buffer) [50 mM Tris-

HCl pH7.4, 150 mM NaCl, 1 mM EDTA, 0.25% Na-deoxycholate, 1% NP-40, 1 mM 

dithiothreitol (DTT), 1 mM phenylmethylsulfony fluoride (PMSF)] supplemented with a 

protease inhibitor cocktail, followed by IB assays according to the standard protocol.  

Quantitative PCR analysis  

Total RNA was prepared with TRIZOL reagent and cDNA was generated with 

SuperScript II reverse transcriptase (Invitrogen), followed by normal RT-PCR or real-time PCR 

assays as described before (Qing et al., 2005b, 2007).   Primer pairs for real-time PCR were as 
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follows: human PDLIM2, forward 5’-GCCCATCATGGTGACTAAGG, human PDLIM2, 

reverse 5’-ATGGCCACGATTATGTCTCC; human beta-actin, forward 5’-

ATCAAGATCATTGCTCCTCCT, human beta-actin, reverse 5’-

GAGAGCGAGGCCAGGATGGA; GAPDH, forward 5’-GCAAATTCCATGGCACCGT, 

GAPDH, reverse 5’-TCGCCCCACTTGATTTTGG; human DNMT1, forward 5’-

GGTTCTTCCTCCTGGAGAATGTC, human DNMT1, reverse 5’-GGGCCACGCCGTACTG; 

human DNMT3a, forward 5’-GCCTCAATGTTACCCTGGAA, human DNMT3a, reverse 5’-

CAGCAGATGGTGCAGTAGGA; human DNMT3b, forward 5’-

CCCATTCGAGTCCTGTCATT, human DNMT3b, reverse 5’-

GGTTCCAACAGCAATGGACT. 

4.4 RESULTS 

4.4.1 PDLIM2 is repressed in HTLV-I-transformed T cells and primary ATL samples  

4.4.1.1 Both the mRNA and protein levels of PDLIM2 are suppressed in HTLV-I-

transformed T cells. 

To investigate the mechanism by which Tax escapes from PLDLIM2-mediated 

suppression for cell transformation and the ultimate oncogenesis in about 5% of HTLV-I carriers 

with a 40-60-year latency, we examined the expression levels of PDLIM2 in HTLV-I-

transformed T cells. In agreement with previous studies describing a high expression of PDLIM2 

in various haematopoietic cells, we found relatively abundant PDLIM2 proteins in Jurkat T cells, 



 

 105 

an HTLV-I-negative T cell line (Figure 30). Remarkably, PDLIM2 proteins levels were 

significantly decreased in all of the HTLV-I-transformed T cell lines we examined as well as in 

293 and Hela cells, although to the different extents (Figure 30). 

 

Figure 30. PDLIM2 is repressed in HTLV-I-transformed T cells as well as 293 and Hela cells. 

Protein expression of PDLIM2 was measured in the indicated cells by IB using hPDLIM2 antibody. Over-expressed 

myc-PDLIM2 in 293 cells was used as the positive control. 

To examine the mechanism by which PDLIM2 is down-regulated, we performed a CHX-

chase assay to check whether it occurs at the protein level. Although PDLIM2 significantly 

reduces Tax stability, the protein stability of PDLIM2 itself was not affected by Tax or HTLV-I 

(Figure 18A, Figure 25, Figure 26), excluding that possibility. We then examined the mRNA 

levels of PDLIM2 in HTLV-I-transformed T cells using real-time PCR. We found that all 

HTLV-I-transformed T cell lines to maintain low levels of PDLIM2 mRNA compared to Jurkat 

cells, albeit to different extents, consistent with their protein levels of PDLIM2 (Table 2). The 

positive correlation between PDLIM2 mRNA and protein levels suggested that PDLIM2 

repression occurred at the transcriptional level. Given the role of PDLIM2 expression in 

prevention of Tax-mediated oncogenesis, these results also suggested that down-regulation of 
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PDLIM2 transcription is one important mechanism for HTLV-I-mediated tumorigenesis and 

contribute to HTLV-I infection.  

Table 2. Relative mRNA levels of PDLIM2 in HTLV-I-transformed T cells. 

Cell line  Jurkat C8166 MT-4 Hut-102 SLB-1 293 Hela 

Percentile 100 54.5 ± 13.6      1.2 ± 0.1      3.3 ± 0.4      55.5 ± 14.6      0.7 ± 0.3      0.3 ± 0.1 

4.4.1.2 HTLV-I represses PDLIM2 mRNA level in primary ATL samples. 

 

Figure 31. HTLV-I represses PDLIM2 expression in primary ATL samples. 

The relative mRNA levels of PDLIM2 in PBMCs directly from ATL patients and HTLV-I carriers and the 

established ATL cell line TL-Om1 were analyzed by real-time PCR and normalized according to GAPDH mRNA 

level and represented as percentile in cells from healthy control no. 1 (set as 100).  

To further validate the results under physiological conditions, we examined the mRNA 

levels of PDLIM2 in primary ATL cells as well as viral infected cells from HTLV-I carriers. 

Indeed, the expression levels of PDLIM2 were much lower in primary ATL cells directly from 

patients or established ATL cell line TL-Om1 compared to the healthy control cells (Figure 31). 

Importantly, two HTLV-I carriers showed relatively high levels of PDLIM2 comparable to the 
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healthy controls (Figure 31). These results suggested that PDLIM2 repression might be an 

HTLV-I pathophysiological event associated with HTLV-I-mediated cell transformation and 

oncogenesis. Moreover, such repression may be associated with the progression of ATL and 

provide an explanation for the long latency of ATL, that ATL generation needs to overcome the 

high level of PDLIM2. 

4.4.2 DNA methylation contributes to HTLV-I-mediated repression of PDLIM2. 

4.4.2.1 DNMT1 and DNMT3b, but not DNMT3a, are highly expressed in HTLV-I-

transformed T cells. 

As described above, HTLV-I-mediated repression of PDLIM2 might be at the 

transcriptional level. DNA methylation is a well-known mechanism responsible for the 

repression of a large group of tumor suppressor genes acting independently of genetic alterations. 

The methylation of mammalian genomic DNA is mediated by three DNA methyltransferases 

including DNMT1, DNMT3a, and DNMT3b. To identify the DNMTs involved in HTLV-I–

mediated PDLIM2 repression, we examined their mRNA levels in various HTLV-I-transformed 

T cell and ATL cell lines including C8166, MT-4, SLB-1, Hut102, and TL-Om1. As shown in 

Figure 32, DNMT1 and DNMT3b were highly expressed in all these HTLV-I-transformed T cell 

or ATL cell lines compared to normal PBMC cells, although to different extents. Conversely, 

DNMT3a was only slightly up-regulated in certain cell lines (SLB-1 and Hut102) but decreased 

in others (Figure 32). Thus, it seemed that DNMT1 and DNMT3b but not DNMT3a may be 

involved in HTLV-I-mediated repression of PDLIM2. Indeed, DNMT1 and DNMT3b usually 
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cooperate together by forming heterodimers in vivo, and inactivate tumor suppressor genes in 

cancer cells but not in non-malignant cells (Luczak and Jagodzinski, 2006). 

 

Figure 32. DNMT1 and DNMT3b are highly expressed in HTLV-I-transformed T cells. 

RNA expression levels of DNMT1, DNMT3a, and DNMT3b were analyzed in the indicated cell lines by real-time 

PCR. RNA levels of individual DNMTs in HTLV-I–transformed T cells or ATL cells were normalized according to 

β-actin mRNA level and represented as fold induction in mRNA abundance relative to that in normal PBMCs (set as 

1). Data presented are the mean ± SD (n =3).  

Furthermore, the results also implied that the up-regulation of DNMT1 and DNMT3b in 

HTLV-I-transformed T cells is independent of Tax expression. Because whereas C8166, MT-4, 

SLB-1, and Hut102 cells still express Tax, the ATL cell line TL-Om1 already loses Tax 

expression. This is further discussed below.  
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4.4.2.2 Inhibition of DNMTs results in re-expression of PDLIM2 in HTLV-I-transformed T 

cells. 

According to our results, the repressed PDLIM2 might be result from the over activation 

of DNMTs and hyper-methylation of PDLIM2 genomic DNA. Notably, Nucleoside analog 5-

aza-dC, which is an anti-tumor drug under clinical trial phase III, irreversibly inhibits all three 

DNMTs. It inhibits DNMTs by forming stable complexes between incorporated 5-aza-dC and 

the DNMTs, subsequently mimicking the intermediate state. Interestingly, treatment of this 

DNMT inhibitor 5-aza-dC significantly increased RNA expression of PDLIM2 in T cell lines 

either in vitro transformed by HTLV-I or established from ATL patients (Figure 33). As the 

control, the treatment of 5-aza-dC led to a light decrease of PDLIM2 in Jurkat cells. These 

results indicated the demethylation by inhibition of DNMTs is associated with PDLIM2 

reactivation. In other words, HTLV-I–mediated repression of PDLIM2 involves DNA 

methylation. 

 

Figure 33: Inhibition of DNMTs reactivates expression of PDLIM2 mRNA. 
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The indicated cells were treated with 5-aza-dC for 48 hours following by real-time PCR to detect PDLIM2. 

PDLIM2 mRNA were normalized according to β-actin mRNA level and represented as fold induction in mRNA 

abundance relative to that in the mock-treated sample of each request. Data presented are the mean ± SD (n = 3).  

 

4.4.2.3 Inhibition of DNMTs induces the death of HTLV-I-transformed T cells in a dose-

dependent manner. 

Importantly, the treatment of 5-aza-dC resulted in the death of HTLV-I–transformed T 

cells in a dose-dependent manner (Figure 34). Although 5-aza-dC is unable to further increase 

PDLIM2 expression in Jurkat cells, it could also induce death of the leukemic cells in a dose-

dependent manner, while normal PBMCs were largely resistant to 5-aza-dC–induced cell death. 

These results suggest that 5-aza-dC induced cancer cell death may involve different target genes. 

Nevertheless, it is consistent with the fact that 5-aza-dC is toxic to cancer cells but not normal 

cells. Currently, there is no beneficial treatment for ATL patient save bone marrow transplant 

given the multidrug resistance of ATL cells observed during chemotherapy. Our results may 

therefore provide a novel therapeutic target for ATL, although 5-aza-dC targets other than 

PDLIM2 need to be identified. 
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Figure 34. Inhibition of DNMTs induces the death of HTLV-I-transformed T cells. 

The indicated cells were treated with increasing dosages of 5-aza-dC for 72 hours followed by Trypan blue counting 

of dead and viable cells. The presented percentiles of viable cells were normalized to the percent viability of mock-

treated cells (set as 100%). Data presented are the mean ± SD (n = 3) 
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4.4.3 Repression of PDLIM2 by HTLV-I is independent of oncoprotein Tax. 

4.4.3.1 Tax expression does not affect PDLIM2 mRNA level. 

 

Figure 35. Tax expression does not affect PDLIM2 mRNA level. 

(A) Tax-inducible Jurkat cells were mock-treated or treated with Dox for the indicated times followed by real-time 

PCR. The induction of Tax protein was analyzed by direct IB analysis. (B) MEF cells stably expressing Tax or an 

empty vector were used for RT-PCR to check expressions of the indicated genes.  

The mechanism of PDLIM2 regulation, including that by which PDLIM2 expression is 

repressed by HTLV-I, remains largely unknown. We initially proposed that HTLV-I Tax 

oncoprotein is involved, giving its role in gene regulation and cellular transformation. Consistent 

with our previous studies showing that Jurkat cells, an HTLV-I–negative leukemic T cell line 

expressed abundant PDLIM2, we found a high expression of PDLIM2 in Tax-inducible Jurkat 

cells in the absence of Tax (Figure 35A). However, Tax induction had no obvious effect on 

PDLIM2 expression, indicating that PDLIM2 is relatively stable during the short-term Tax 

expression (Figure 35A). It should be noted that Jurkat cells died 72 to 96 hours following Tax 
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induction because of Tax-induced TRAIL and the subsequent TRAIL-mediated apoptosis. These 

Tax-inducible Jurkat cells cannot be used for long term expression of Tax. 

To rule out that the failure of the PDLIM2 repression was not due to insufficient function 

of transient induced Tax, we compared the PDLIM2 expression levels in MEF cells stably 

expressing Tax or an empty vector. Noteworthy, Tax-expressing MEF cells acquired the ability 

to form foci in soft agar as well as tumors in mice. However, as shown in Figure 36B, long-term 

expression of Tax in these transformed cells still failed to inhibit PDLIM2 expression. In 

agreement with this, PDLIM2 expression is also repressed ATL cell line TL-Om1 (Figure 31), 

which already lost Tax expression. Altogether, our experiments suggest that HTLV-I repressed 

PDLIM2 expression is independent of Tax. 

4.4.3.2 Inducible expression of Tax in Jurkat cells does not affect DNMTs’ mRNA level. 

 

Figure 36. Inducible expression of Tax in Jurkat cells does not affect DNMTs' mRNA. 

Tax-inducible Jurkat cells were mock-treated or treated with Dox for 36 hours followed by real-time PCR to check 

the relative RNA expression levels of DNMT1, DNMT3a, and DNMT3b. RNA levels of individual DNMTs in Dox-

treated cells were normalized according to β-actin mRNA level and represented as percentile of that in the mock-

treated (NT) cells (set as 100). Data presented are the mean ± SD (n = 3).  
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Considering the link between DNMTs and PDLIM2, we set t0 examine whether Tax 

induction could affect the expression of different DNMTs in Jurkat cells. As shown in Figure 36, 

Tax induction had no obvious effect on the expression of all three DNMTs. Taken them together, 

the results suggest that Tax was not involved in the up-regulation of DNMT1 and DNMT3b in 

HTLV-I–transformed T cells and ATL cells, further supporting the notion that PDLIM2 

repression by HTLV-I is independent of HTLV-I Tax.  

4.5 DISCUSSION 

Our mechanistic studies suggest that HTLV-I-mediated PDLIM2 repression involves 

DNA methylation, which might be mediated by DNMT1 and DNMT3b. We have shown that the 

DNMT inhibitor 5-aza-dC could significantly reactivate transcription of PDLIM2 in both HTLV-

I-transformed T cells and ATL cells. In addition, DNMT1 and DNMT3b, but not DNMT3a, were 

significantly and consistently up-regulated in these malignant T cells. In accordance with the 

reactivation of PDLIM2, 5-aza-dC could efficiently induce death of HTLV-I-transformed T cells 

and ATL cells. This is particularly interesting because HTLV-I-transformed cells are highly 

resistant to the induction of apoptosis and there is still no beneficial treatment other than 

allogeneic hematopoietic stem cell transplantation for this acute and fatal disease. Thus, this 

finding may provide novel therapeutic approaches for ATL therapy. Clearly, the effect of 5-aza-

dC could not attribute only to the reactivation of PDLIM2. Other undefined targets of this 

antitumor drug also may play more important roles in the death of HTLV-I-transformed T cells. 

Although Tax plays a critical role in the initial stage of HTLV-I-mediated 

leukemogenesis, our studies suggested that HTLV-I represses PDLIM2 expression independent 
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of Tax. First, PDLIM2 was repressed in Tax-negative ATL cells in addition to Tax-positive 

HTLV-I–transformed T cells. Second, Tax was dispensable for the specific up-regulation of 

DNMT1 and DNMT3b in HTLV-I-transformed T cells, although DNA methylation played an 

important role in the PDLIM2 repression in these malignant cells. Most importantly, neither 

short term induction nor long-term stable expression of Tax could repress PDLIM2 transcription. 

In summary, our studies indicate that HTLV-I-mediated repression of PDLIM2 occurred 

under pathophysiological conditions, contributing to the long latency of HTLV-I infection, and 

that the PDLIM2 repression involves DNA methylation possibly through specific up-regulation 

of DNMT1 and DNMT3b. Our studies also excluded the role of Tax in the PDLIM2 repression. 

Given the death of HTLV-I-transformed cells triggered by the antitumor drug 5-aza-dC, these 

studies not only help understand regulation of PDLIM2, leukemogenicity, long latency and 

cancer health disparities of HTLV-I, but also suggest a direct therapeutic strategy for ATL. 
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5.0  IMPLICATION FOR P65-INDEPENDENT NF-ΚB ACTIVATION IN  

REGULATION OF TAX BY PDLIM2 

 

 

 

Research in this Chapter is still under process and preparing for submission with authors 

Pengrong Yan and Gutian Xiao. 

*Data showed in this section is preliminary and needs further validations.  
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5.1 SUMMARY 

 

HTLV-I Tax exerts its oncogenic role through deregulation of cellular transcription 

factors that are critical for cell growth and division, mainly through NF-κB signaling pathway. 

PDLIM2 is an intrinsic negative regulator of HTLV-I Tax and terminator of p65-mediated NF-

κB activation. We found that Tax-binding-defective mutant of PDLIM2, which fails to degrade 

HTLV-I Tax and inhibits Tax-mediated tumor growth, retains the ability to interact with p65, 

alter p65 subcellular distributions and suppress p65-mediated NF-κB activation. Additionally, 

the PDLIM2 defective mutant is unable to inhibit p52-mediated NF-κB activation. The result 

therefore indicates the implication for p65-independent mechanisms in PDLIM2 suppressed NF-

κB activation as well as Tax-mediated tumorigenesis. 
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5.2 INTRODUCTION 

As described before, p65, PDLIM2 and Tax are all involved in NF-κB signaling pathway, 

and either two of them interact with each other and function distinctly. We found them to have 

more complicated relationships: 1) PDLIM2 is the E3 ligase of nuclear p65, triggering its 

proteasomal degradation and shutting off p65-mediated NF-κB activation. The LIM domain is 

required for this process, while the PDZ domain within PDLIM2 might have the intra-nuclear 

trafficking function for p65 (Tanaka et al., 2007). 2) PDLIM2 promotes the poly-ubiquitination 

and the subsequent proteasomal degradation of Tax. Additionally, PDLIM2 interacts with Tax 

via its internal putative α-helix, named Tax-binding motif (TBM). Both the LIM domain and the 

TBM are required for suppressing Tax mediated cell transformation and tumorigenesis, but the 

PDZ domain is dispensable for all the events (Table 3, Figure 28, Figure 29). 3) Interaction 

between p65 and Tax mainly appears in the nucleus and is associated with Tax nuclear bodies, 

which contribute to the full Tax-mediated NF-κB activation. Moreover, evidence showed that 

Tax could induce the phosphorylation of p65, which leads to the expression of MDM2 and 

inactivation of p53 (Jeong et al., 2004; Suzuki et al., 1999b). 

Tax intervenes at multiple levels to activate NF-κB. Tax-activated NF-κB has been 

demonstrated to be crucial for Tax-mediated cell transformation and tumorigenesis (Kwon et al., 

2005; Sun and Yamaoka, 2005). p65 is one of the major targets of Tax, and phosphorylation of 

p65 is required for the Tax-induced NF-κB activation (O'Mahony et al., 2004). Other than 

p65/p50, the prototypic transactivator in the canonical NF-κB pathway, Tax also activates non-
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canonical pathway by IKK activation and subsequently p100 processing to p52. Moreover, the 

aberrant over-production of p52 is considered a hallmark of HTLV-I infection and 

transformation in ATL (Xiao et al., 2001a). Despite lacking solid evidence, a p65-independent 

mechanism might contribute to Tax-mediated NF-κB activation under some conditions. The 

hypothesis is supported by the observations that NF-κB DNA-binding complexes in Tax-

expressing T cells compose of abundant c-Rel, p50 and p52, but little p65 (Xiao et al., 2001a). 

Importantly, p65 is still indispensable for Tax-mediated cell transformation because Tax failed to 

transform the p65-deficient MEF in vitro (unpublished data). In sum, both p65-dependent and 

independent NF-κB seem critical for Tax-mediated NF-κB as well as Tax-mediated 

tumorigenesis. 

Former sections of this thesis focused on elucidating the mechanisms by which PDLIM2 

regulates of Tax. However, the role of p65 cannot be ignored based on the pivotal roles of both 

Tax and p65 in NF-κB signaling. As shown in Chapter 3, Tax-binding-defective mutant of 

PDLIM2 failed to suppress Tax-mediated cell transformation and tumorigenesis. Consistently, 

the PDLIM2 defective mutant was unable to promote poly-ubiquitination and proteasomal 

degradation of Tax. Considering the important role of NF-κB signaling in Tax-mediated 

tumorigenesis, we took advantage of the Tax-binding-defective mutants of PDLIM2 to dissect 

the role of p65-dependent NF-κB signaling in Tax-mediated oncogenesis.  

5.3 MATERIALS AND METHODS 

Expression vectors and reagents 
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Expression vectors encoding Tax, PDLIM2 and PDLIM2 mutants have been described in 

Chapter 3.The HRP-conjugated HA monoclonal antibody (3F10) was from Roche Molecular 

Biochemicals. The Sp1, lamin B, Hsp90, and β-actin antibodies as well as the pre-immune IgG 

were from Santa Cruz Biotechnology. The flag antibody (M2) was purchased from Sigma. The 

Tax and MYC antibodies were described previously (Qu et al., 2004).  

Cell culture and transfection 

HEK293 cells and MEF cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM, Invitrogen) supplemented with 10% fetal bovine serum (Hyclone) and 2 mM L-

glutamine (Invitrogen). 293 were transfected with DEAE-Dextran (Sigma) (Qing and Xiao, 2005; 

Xiao and Sun, 2000), and MEF cell with Lipofectamine 2000 (Invitrogen).  

Luciferase gene reporter assays  

Jurkat, 293 and MEF cells were transfected with luciferase reporter and Tax in the 

presence of increasing amounts of PDLIM2. At 40 hrs post-transfection, luciferase activity was 

measured as we described before (Xiao et al., 2000). 

Subcellular fractionation, immunoblotting (IB) and immunoprecipitation (IP) 

assays 

Cytoplasmic, soluble and insoluble nuclear extracts were prepared using the hypotonic 

buffer (20 mM HEPES, pH 8.0, 10 mM KCl, 1 mM MgCl2, 0.1% (vol/vol) Triton X-100 and 

20% (vol/vol) glycerol), hypertonic buffer (20 mM HEPES, pH 8.0, 1 mM EDTA, 20% (vol/vol) 

glycerol, 0.1% (vol/vol) Triton X-100 and 400 mM NaCl), and insoluble buffer (20 mM Tris, pH 
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8.0, 150 mM NaCl, 1% (wt/vol) SDS, 1% (vol/vol) NP-40 and 10 mM iodoacetamide), 

respectively (Tanaka et al., 2007). The purity of the obtained fractions was confirmed by 

checking Hsp90 (cytoplasm), Sp1 (soluble nuclear fraction), or lamin B (insoluble nuclear 

fraction). Total nuclear extracts were prepared by simply lysing pellets in insoluble buffer after 

the cytoplasm was extracted. Whole-cell extracts were prepared by lysing cells in RIPA buffer 

(50 mM Tris-HCl pH7.4, 150 mM NaCl, 1 mM EDTA, 0.25% (wt/vol) Na-deoxycholate, 1% 

(vol/vol) NP-40, 1 mM DTT). All the lysis buffers were supplemented with 1 mM PMSF and a 

protease inhibitor cocktail (Roche Molecular Biochemicals). The cells extracts were used for IP 

and/or IB assays as described before  (Xiao et al., 2001a). 

5.4 RESULTS 

5.4.1 Tax-binding-defective mutant of PDLIM2 retains the capacity to suppress p65-

mediated NF-κB activation. 

PDLIM2 functions to target p65 for proteasomal degradation and shut off the p65-

mediated NF-κB activation. Previous data showed a tight correlation between Tax-binding 

capacities of PDLIM2 and the suppression of Tax-mediated tumorigenesis by PDLIM2. In order 

to understand the functions on NF-κB of the PDLIM2 defective mutants in interacting with Tax, 

we examined the effects of the mutants on NF-κB activation via luciferase gene reporter assays.  

In the absence of Tax, the co-expression of the PDLIM2 mutant (Δ243-253) with WT 

p65 resulted in a dose-dependent suppression of p65-mediated NF-κB activation, suggesting that 

the PDLIM2 mutant retains the function as a terminator of NF-κB activation (Figure 37A). 
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Surprisingly, similar dose-dependent suppression of Tax-mediated NF-κB activation by the 

PDLIM2 mutant was observed in the presence of Tax (Figure 37B). The result indicates that the 

outcome of PDLIM2 on Tax-mediated NF-κB activation is dependent on the suppression of p65 

by PDLIM2, which will be further confirmed in the following. Importantly, Tax also contributes 

to HTLV-I viral infection by Tax-mediated HTLV-I-LTR activation, which is NF-κB 

independent. Our results showed that unlike the WT PDLIM2, the Tax-binding-defective mutant 

was incapable to suppress Tax-mediated LTR activation (Figure 37C).  

 

Figure 37. Tax-binding-defective mutant of PDLIM2 retains the capacity to suppress p65-mediated NF-κB 

activation. 

 (A) 293 cells were transfected with p65 and κB driven luciferase reporter in the presence of increasing amounts of 

WT and mutant of PDLIM2, followed by the measurement of luciferase activity. (B) 293 cells were transfected with 

p65, Tax and κB driven luciferase reporter in the presence of increasing amounts of WT and mutant of PDLIM2, 

followed by the measurement of luciferase activity. (C) 293 cells were transfected with Tax and HTLV-LTR driven 

luciferase reporter in the presence of increasing amounts of WT and mutant of PDLIM2, followed by the 

measurement of luciferase activity. 

Since the suppression of p65-mediated NF-κB activation by PDLIM2 is associated with 

the binding ability to p65 and altering p65 subcellular distribution, we performed co-IP and cell 

fraction assays to confirm the functions of the Tax-binding-defective mutant of PDLIM2. 
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5.4.2 Tax-binding-defective mutant of PDLIM2 still interacts with p65. 

 

Figure 38. PDLIM2 interacts with nuclear p65. 

293 cells were transfected with HA-p65 in the presence or absence of WT Myc-PDLIM2, following by IP using myc 

antibody and IgG, and IB using Tax antibody. The expression of input Tax and myc-PDLIM2 were analyzed by 

direct IB. Hsp90 was used as the loading control. 

 Since PDLIM2 functions to trigger nuclear p65 for degradation, we utilized the nuclear 

fractions to address the interaction between PDLIM2 and p65. In agreement with previous 

studies, p65 physically interacted with WT PDLIM2 in the co-IP assay (Figure 38). After using 

the Tax-binding-defective mutants of PDLIM2, the interactions between p65 and PDLIM2 

mutants were still kept at comparable levels in the absence of Tax (Figure 39, lane 2 vs lanes 3-

6), suggesting that the binding of PDLIM2-Tax and PDLIM2-p65 are specific to each other 

(Figure 21A, Figure 22, Figure 39). In other words, different sequences within PDLIM2 are 

responsible for these two interactions. 

Interestingly, in the presence of Tax, despite the ability of all Tax-binding-defective 

mutants to interact with p65, the WT PDLIM2 protein showed a slightly decreased binding 

capacity compared to the binding-defective mutant (Figure 39, lane 8 vs lanes 9-12). A similar 
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result was observed and confirmed when using a PDLIM2 protein bearing a different epitope tag 

(Figure 40). This evidence suggested the possibility that Tax presence may compete with p65 in 

occupying PDLIM2. Considering that under our experimental condition, the over-expressed p65 

was more abundant than Tax in the nucleus, the results suggested that PDLIM2 might prefer to 

interact with Tax. 

 

Figure 39. Tax-binding-defective mutant of PDLIM2 interacts with p65 in the absence and presence of Tax. 

293 cells were transfected with HA-p65 in the presence of the indicated PDLIM2 mutants, following by IP using 

myc antibody, and IB using HA-HRP antibody. The expression of input HA-p65, myc-PDLIM2 and Tax were 

analyzed by direct IB. Hsp90 was used as the loading control for inputs. 

To further confirm whether Tax competes with p65 in occupying PDLIM2, and whether 

there was a large p65-PDLIM2-Tax scaffold protein complex in the cells, we precleared the cell 

lysates by using anti-Tax-agarose beads, and performed the second co-IP assay to measure the 
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binding capacity between PDLIM2 and p65. Consistently, presence of Tax leads to a reduced 

binding capacity to p65 of PDLIM2 (Figure 41, lanes 7&8 vs lanes 3&4). Of note, upon 

depletion of Tax containing protein complexes, the PDLIM2-p65 interaction rarely changed 

compared to the untreated samples (Figure 41, lane 9 vs lane 7). This suggested that Tax and p65 

preferentially formed separate complexes with PDLIM2, rather than one large p65-PDLIM2-Tax 

complex. However, the data cannot exclude the possibility that p65-PDLIM2-Tax might be a 

dynamic intermediate product.  

 

Figure 40. Tax-binding-defective mutant of PDLIM2 still binds to p65 in the presence of Tax. 

293 cells were transfected with HA-p65 in the presence of WT and the PDLIM2 mutant Δ243-253, following by IP 

using myc antibody, and IB using HA-HRP antibody. The expression of input HA-p65, myc-PDLIM2 and Tax were 

analyzed by direct IB. Hsp90 was used as the loading control. 
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Figure 41. Depletion of Tax-containing complex does not affect PDLIM2-p65 interaction. 

293 cells were transfected with HA-p65 and Tax in the presence of WT and the PDLIM2 mutant Δ243-253, 

following by IP using myc antibody, and IB using HA-HRP antibody. For the lanes 9 & 10, 1st IP was performed by 

using agarose bead with Tax antibody. After incubation for 3hrs at 4oC, the supernatant was collected by brief 

centrifuge and subjected to 2nd IP using flag antibody. The expression of input HA-p65, myc-PDLIM2 and Tax were 

analyzed by direct IB. Hsp90 was blotted as a  loading control. 

5.4.3 Tax-binding-defective mutant of PDLIM2 retains the abilities to alter p65 

subcellular distribution. 

PDLIM2 alters the subcellular distribution of p65. The over-expression of WT PDLIM2 

results in a significant decrease of p65 in the cytoplasm and nucleoplasm, and elevated p65 

levels in the insoluble nuclear fraction, which is in accordance with PDLIM2-mediated 
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proteasomal degradation of p65 in the nuclear PML bodies. We thus performed the subcellular 

fraction assays using 293 cells to address the issue of whether those PDLIM2 mutants with Tax-

binding defect could alter the subcellular distribution of p65.  

 

Figure 42. Tax-binding-defective mutant of PDLIM2 retains the ability to alter p65 subcellular distribution. 

293 cells were transfected with p65 alone or together with the indicated PDLIM2 mutants in the absence (Lane 1-6) 

and presence of Tax (Lane 7-12), followed by cell fractions and IB to detect expression levels of the indicated 

proteins. The subcellular distribution of Tax is consistent with Figure 28 and not shown here.  

Consistent with the over-expressed p65, PDLIM2 expression led to a dramatic reduction 

of p65 in the cytoplasmic and nucleoplasmic fractions, as well as an increased p65 level in the 

insoluble nuclear fraction. Meanwhile, the disruption of Tax-binding did not present crucial 

differences between the WT and mutants of PDLIM2 in altering p65 distribution (Figure 42, 

lanes 1-6). Despite being affected at the different extents, similar results were obtained in the 
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presence of Tax, indicating that all those PDLIM2 mutants retained the ability to alter p65 

subcellular distributions just as the WT protein (Figure 42, lane 7-12). This is in agreement with 

the fact that they kept the ability to interact with p65 and suppress p65 mediated NF-κB signaling. 

Of note, previous studies showed that such function of PDLIM2 depended on both the N-

terminal PDZ domain and the C-terminal LIM domain: PDZ domain was responsible for the 

intra-nuclear trafficking of p65, while LIM domain functions as ubiquitin E3 ligase of p65 

(Tanaka et al., 2007). The above results supported the fact because all the tested Tax-binding-

defective mutants of PDLIM2 still maintained the full sequences of both PDZ and LIM domains.  

5.4.4 Suppression of Tax-mediated NF-κB by PDLIM2 involves p65-independent but p52-

dependent mechanisms. 

 

Figure 43. Tax regulation by PDLIM2 involves p65-independent mechanism. 

(A, B) The p65 KO MEF cells were transfected with Tax (or subject to PMA/ION treatment) and κB driven 

luciferase reporter in the presence of increasing amounts of PDLIM2, followed by the measurement of luciferase 

activity.  
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Based on the former results, the WT and Tax-binding-defective PDLIM2 mutants 

function similarly on p65-mediated signaling. However, they showed different effects on 

suppressing Tax-mediated cell transformation and tumorigenesis. Taking advantage of p65-

deficient MEF cells, we dissected the p65-dependent NF-κB signaling in Tax-mediated NF-κB 

activation. As shown in Figure 45B, the phorbol-12-myristate-13-acetate/Ionomycin 

(PMA/ION)-induced NF-κB activation in the p65-deficient MEF cells was insensitive to the 

over-expression of either WT or mutant of PDLIM2, confirming the crucial role of p65 in 

PDLIM2 suppressed NF-κB. However, the WT PDLIM2, but not the mutant, could suppress 

Tax-induced NF-κB activation (Figure 43B).  

 

Figure 44. Reconstitution of p65 in p65 KO MEF restores the suppression function of PDLIM2 on NF-κB. 

(A, B) The p65 KO MEF cells with reconstituted WT p65 were transfected with Tax (or subject to PMA/ION 

treatment) and κB driven luciferase reporter in the presence of increasing amounts of PDLIM2, followed by the 

measurement of luciferase activity. 

In addition, we reconstituted the p65 expression in those p65-deficient MEF cells and 

performed similar assays. Interestingly, suppression of NF-κB by both WT and mutant PDLIM2 
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was observed (Figure 44). The results did not only indicate that both WT and the Tax-binding-

defective mutant of PDLIM2 mainly suppressed NF-κB by targeting p65, but also suggested that 

other NF-κB members were involved in the suppression of Tax-mediated NF-κB activation. In 

other words, suppression of Tax-mediated NF-κB by PDLIM2 involved p65-independent 

mechanisms.  

Because the difference between the WT and mutant of PDLIM2 resided on the binding 

capacity to Tax and triggering Tax degradation, we assumed that PDLIM2 functioned to 

modulate the Tax protein level in order to indirectly suppress Tax-mediated NF-κB in the 

absence of p65.  

Based on the importance of p52 in Tax-mediated NF-κB, we tested its involvement in 

such p65-independent mechanisms. In accordance with previous studies on p52, over-expressed 

p52 appeared to be a weak inducer of NF-κB transcriptional activation in a unique manner 

(Figure 45A). By using a p52 dosage with maximal NF-κB activation in p65-deficient MEF cells, 

we showed that the p52-mediated NF-κB activations was relatively resistant to both WT and 

mutant PDLIM2 in the absence of Tax (Figure 45B), while only the PDLIM2 WT exhibits its 

suppressive effects in the presence of Tax (Figure 45C). These results suggest that other than p65, 

p52 is another NF-κB member involved in PDLIM2-mediated suppression of Tax-induced NF-

κB, although whether p52 is a client of PDLIM2 remains to be determined. Additionally, in 

agreement with the lack of interaction between PDLIM2 and p50 (Tanaka et al., 2007), neither 

WT PDLIM2 nor Tax-binding-defective mutant suppressed p50-mediated NF-κB activation in 

p65-deficient cells, ruling out the involvement of p50 (Figure 45D). 
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Figure 45. PDLIM2 regulates p52-mediated NF-κB transcriptional activation. 

(A) P65 KO MEF cells were transfected with κB driven luciferase reporter in the presence of increasing amounts of 

p52, followed by the measurement of luciferase activity. (B, C, D) P65 KO MEF cells were transfected with p52 

(Tax & p52 or Tax & p50) and κB driven luciferase reporter in the presence of increasing amounts of PDLIM2, 

followed by the measurement of luciferase activity. 

5.5 DISCUSSION 

In this Chapter, our preliminary results dissected p65-dependent NF-κB activation in 

regulation of Tax-mediated NF-κB and oncogenesis by PDLIM2. Taken advantage of the Tax-

binding-defective mutant of PDLIM2, which is unable to interact with Tax and trigger its 
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proteasomal degradation as well as Tax-mediated cell transformation and tumor growth (Chapter 

3), we found that those defective PDLIM2 keeps binding to p65, altering p65 subcellular 

distributions and suppressing p65-dependent NF-κB activation. Additionally, unlike the WT 

PDLIM2, the Tax-binding-defective mutant fails to suppress p52-mediated p65-independent NF-

κB activation, suggesting the involvement of p65-independent mechanisms in Tax regulation. 

Importantly, the ability of PDLIM2 to bind to Tax is in accordance with suppressive Tax-

mediated cell transformation and tumor growth (Figure 28, 29). Our results therefore implicate 

the pertinent role of p65-independent NF-κB in Tax-mediated oncogenesis.  

Notably, p65-mediated NF-κB is still required for Tax-mediated cell transformation since 

Tax fails to transform the p65-deficient cells in vitro (unpublished data). Both p65-dependent 

and p65-independent (especially p52-dependent) NF-κB seem critical for Tax-mediated 

tumorigenesis. Detailed discussion and proposed signaling model will be presented in Overall 

Discussion (Figure 47). In brief, PDLIM2 suppresses Tax mediated NF-κB signaling and 

oncogenesis at multiple levels. The suppressive function of PDLIM2 involves p65-dependent 

and p65-independent mechanisms in NF-κB regulation. For the p65-dependent NF-κB activation, 

PDLIM2 directly targets the proteasomal degradation of p65; while for the Tax-mediated p65-

independent NF-κB activation, PDLIM2 directly targets and degrades Tax, resulting in the 

suppressed Tax protein levels. Similarly to NF-κB regulation, both p65-dependent and p65-

independent mechanism are required for Tax-mediated oncogenesis. However, the suppressive 

outcome of Tax-mediated tumor growth by PDLIM2 may be determined by the regulation of Tax 

protein as well as p65-independent signaling, rather by a p65-dependent mechanism. Our studies 

dissected p65-dependent NF-κB signaling in HTLV-I Tax-mediated signaling as well as Tax-

mediated oncogenesis. 
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6.0  OVERALL DISCUSSION 

 

 

Figure 46. PDLIM2 in HTLV-I infection and ATL development. 

During the past thirty years, extensive studies have been performed to address the 

regulatory mechanisms, by which Tax deregulates cellular signaling to facilitate HTLV-I viral 

replication and initiate malignant transformation leading to the development of ATL. However, 

how Tax protein itself is regulated is largely unknown. Although it is accepted that the transient 
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HTLV-I transcription and expression of the oncoprotein Tax contributes to ATL progression by 

escaping host immune responses, the benefit of Tax repression for the host is still under 

investigation. In this thesis we characterized PDLIM2 as a novel intrinsic negative regulator of 

HTLV-I Tax. PDLIM2 not only determines Tax expression levels, but is also able to prevent 

HTLV-I/Tax-mediated cell transformation and oncogenesis.  

As a matter of fact, PDLIM2 is highly expressed in CD4+ T cells, which are the 

preferential targets for HTLV-I infection. Overcoming the strong repression function from the 

abundant endogenous PDLIM2 expression within CD4+ cells seems to be necessary for ATL 

progression (Figure 46), since PDLIM2 expression is suppressed to low levels in HTLV-I-

transformed T cells and primary ATL samples. Our studies provide an alternative explanation for 

the long latency and healthy disparity of HTLV-I infection other than accumulation of abundant 

HTLV-I-infected cells to override the immune response (Figure 46). Furthermore, our studies 

suggest a potential therapeutic application to prolong or inhibit ATL development by reactivating 

or re-introducing the PDLIM2. 

6.1 NEGATIVE REGULATION OF TAX BY PDLIM2 IN HTLV-I INFECTION  

AND ATL DEVELOPMENT 

HTLV-I encoded oncoprotein Tax, which does not share homology with cellular proto-

oncogenes, is crucial for HTLV-I-mediated pathogenesis. Nowadays, the negative regulators of 

Tax are limited to HTLV-I encoded Rex, p30 and HBZ. Rex suppresses Tax at transcriptional 

level by inhibiting the generation of mature Tax mRNA (Figure 4); p30 functions to prevent the 

Tax mRNA nuclear exportation so that inhibiting the Tax translation; HBZ suppress the Tax-
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mediated viral transcription by disrupting the formation of Tax-CREB complex at post-

translational level (Matsuoka and Jeang, 2007; Nicot et al., 2005). Although serving at distinct 

regulation levels, they cooperate together and generally facilitate the HTLV-I-induced 

pathogenesis (Figure 46).  

PDLIM2 is a newly identified ubiquitin E3 ligase that could specifically poly-

ubiquitinate the nuclear p65 and STAT proteins for proteasomal degradation (Tanaka et al., 2007; 

Tanaka et al., 2005). Our results demonstrate that PDLIM2 directly interacts with Tax and 

triggers its proteasomal degradation by promoting the poly-ubiquitination of Tax. In this way, 

PDLIM2 shuts off Tax-mediated signaling and oncogenesis by suppressing Tax protein levels.  

Studies on HTLV-I replication and transmission showed that the HTLV-I viral 

replication is a transient process and the viral transmission is highly dependent on the clonal 

expansion of HTLV-I-infected cells (Yoshida, 2010). The transient viral replication involves 

quick turning on and shutting off of Tax expression. Considering that HTLV-I preferentially 

infected CD4+ T lymphocytes, which have high levels of endogenous PDLIM2, PDLIM2 

induced Tax suppression may contribute to this transient process, therefore supporting the notion 

that PDLIM2 inhibits Tax-mediated HTLV-I-LTR transcription (Figure 46).  

ATL development is always associated with a long latency period typically spanning 40-

60 years. The current model stipulates that ATL is generated as HTLV-I-infected cells 

accumulated from clonal expansion and overcome the threshold of the host immune response. 

Our studies propose an alternative mechanism involving PDLIM2. We showed that both mRNA 

and protein levels of PDLIM2 are down-regulated in HTLV-I-transformed T cells as well as the 

primary ATL cells (Table 2, Figure 30, Figure 31). Interestingly, the purified HTLV-I-infected 
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cells from HTLV-I carriers and PBMCs from the healthy individuals showed comparable high 

PDLIM2 expression levels (Figure 31). This indicated that PDLIM2 suppression was associated 

with HTLV-I-mediated pathogenesis. In other words, only when the HTLV-I-infected cells 

overrode the suppression function of PDLIM2 such as repressing PDLIM2 expression to a 

certain level, could those cells exhibit sustained proliferations and result in ATL. Meanwhile, 

these findings might also distinguish different viral loads between the patients and the carriers: In 

ATL patients, both Tax and PDLIM2 are repressed, therefore, ATL cells escape from CTL 

recognition and result in an increased viral load via cell proliferation; however, in carriers, 

although infected cells initially increase the viral load through clonal expansion, PDLIM2 

induced Tax degradation results in a persistent Tax antigen production, therefore allowing CTLs 

to destroy most of the infected cells in the host, save low Tax expressing cells. This, however, 

requires further verification by measuring the turnover rate of Tax in infected cells from 

asymptomatic HTLV-I carriers. If the above-mentioned hypothesis is correct, PDLIM2 serves as 

the first primary intrinsic defender for HTLV-I infection, supported by the findings that the re-

introduction and reactivation of PDLIM2 lead to inhibited oncogenicity and cell death of HTLV-

I-transformed T cells, respectively (Table 1, Figure 33, Figure 34). The evidence suggests that 

PDLIM2 plays a role in innate immune system to prevent the viral infection and cancer 

development, especially in the case of HTLV-I (Figure 46).  

Based on the key role of Tax in HTLV-I-mediated leukemogenesis, we proposed that the 

expression of PDLIM2 and Tax are tightly counterbalanced in infected cells and that such 

counterbalance may determine the fate of HTLV-I infection. To this regard, we thought 

interesting to determine whether Tax could act as a transcriptional repressor of PDLIM2. 

Unexpectedly, the suppression of PDLIM2 was largely Tax-independent, based on the facts that 
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both short-term and long-term induction of Tax caused minor changes in PDLIM2 expression 

(Figure 35). Consistent with that, the cells from asymptomatic HTLV-I carriers expressed both 

PDLIM2 and Tax, while the ATL cells without Tax expression still presented suppressed 

expression of PDLIM2 (Figure 31). Although repression of PDLIM2 was largely Tax-

independent, the initial infection and replication may be determined by the outcome of PDLIM2-

mediated Tax repression so to affect the subsequent cell transformation (Figure 46). 

Additionally, Tax expression is also modulated by the immune response, genetic 

alteration, DNA hyper-methylation, and 5’LTR deletion, in a negative selected manner. The CTL 

response is the primary immune response to HTLV-I infection by targeting HTLV-I Tax. 

Correlated with that, the transient expression of Tax helps HTLV-I infection from escaping the 

immune response. At the meanwhile, the HTLV-I-infected cells with suppressed Tax are 

negatively selected and survive. PDLIM2 and CTLs may cooperate together to defend the 

HTLV-I infection. PDLIM2 may serve as a primary defender to suppress viral replication and 

HTLV-I-mediated cell transformation by inhibition of Tax; while for the cells overcome the 

suppressive function of PDLIM2, CTLs recognize and eliminate the infected cells. In other 

words, suppression of both PDLIM2 and Tax expression might be required for ATL 

development, consistent with the observations that both PDLIM2 and Tax are suppressed in ATL 

samples (Figure 46). 

Recent studies on HTLV-I HBZ gene suggest that HBZ inhibits p65-mediated NF-κB 

signaling through the activation of PDLIM2 expression; an observation which is in line with the 

PDLIM2 contribution to HTLV-I-mediated pathogenesis (Zhao et al., 2009). However, there are 

important flaws within that study that need to be pointed out here. First, all their evidence is 
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based on the over-expression of proteins. Second, even if HBZ can suppress p65-mediated NF-

κB activation, an important paradox remains as nearly all primary ATL cells have HBZ 

expression and exhibit constitutive activation of NF-κB. Third, our results do not support the 

notion that HBZ-mediated NF-κB suppression involves activation of PDLIM2. Indeed, PDLIM2 

is shown to be largely repressed in HTLV-I-transformed T cells and ATL cells; however, those 

cells still present HBZ expression. Fourth, PDLIM2 expression does not exhibit differences 

between HTLV-I carriers and the healthy controls, while cells from HTLV-I carriers present 

HBZ expression. Therefore, the associations between HTLV-I HBZ, PDLIM2 and NF-κB need 

to be further investigated. However, this study does offer an explanation for the repression of 

Tax in ATL cells, by which HBZ activates the expression of PDLIM2 and PDLIM2 

subsequently functions to degrade Tax. 
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6.2 MOLECULAR DETERMINANTS WITHIN PDLIM2 TO REGULATE  

HTLV-I TAX AND PDLIM2 ITSELF 

Table 3. Summary of PDLIM2 mutants’ functions on Tax regulation. 

PDLIM2 
Mutants 

Tax 

Interaction Accelerated 
Turnover 

Promoted  
Poly-

ubiquitination 

Subcellular 
Distribution 

Suppressed 
Tumorigenesis 

WT + + + + + 

Δ PDZ + + + + + 

Δ LIM + - - - - 

Δ PDZ/LIM + - - - ND 

Δ 79-278 - - - - ND 

Δ 195-207 + + + + ND 

Δ 243-253 - - - - - 

Δ 258-278 + + ND + + 

Δ 236-240 + (weak)  ND ND ND ND 

Δ 241-245 - ND ND ND ND 

Δ 246-250 - ND ND ND ND 

Δ 251-255 - ND ND ND ND 

LL241/242PP - - - - - 

EE249/250PP -  - - - - 
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We defined a putative α-helix, located within the internal disordered amino acids 236-254 

of PDLIM2, as the Tax-binding motif. PDLIM2-mediated suppression of Tax largely depends on 

both the Tax-binding motif and its C-terminal LIM domain (Table 3). As indicated in the 

Chapter 3, multiple sequences within Tax might be involved in PDLIM2 interaction (Figure 23). 

In contrast, both the LIM domain and the TBM are required to trigger the poly-ubiquitination, 

proteasomal degradation and subcellular redistribution of Tax by PDLIM2 (Table 3). We showed 

that selective disruption of the TBM leads to PDLIM2 defects in tumor suppression (Table 3). As 

a matter of fact, the LIM domain was essential for PDLIM2-mediated Tax repression, while the 

N-terminal PDZ domain of PDLIM2 was dispensable. These studies dissect functional sequences 

within PDLIM2 and their roles in regulating HTLV-I oncoprotein Tax.  

In the following section I will discuss more on PDLIM2, beyond its effects on Tax. 

PDLIM2 is ubiquitously expressed in cytoplasm, nucleoplasm and insoluble nuclear fractions 

and has the ability to interact with cytoskeletal proteins like α-actinin and Filamin A (Torrado et 

al., 2004). It remains to be shown how PDLIM2 comes to be distributed within distinct 

subcellular compartments and the relationship between its different subcellular location and 

biological functions. Our studies suggest that the distinct domains or motifs contribute to the 

cellular localization of PDLIM2. The deletion mutant of PDZ domain showed an increase in the 

cytoplasm and a decrease in the nucleoplasm but with no obvious effect in the insoluble nuclear 

expression, compared to the WT PDLIM2 (Figure 27). Interestingly, although the LIM domain 

of PDLIM2 is not required for binding to the cytoskeleton, it is involved in targeting PDLIM2 to 

the insoluble nuclear insoluble fraction. The deletion of the LIM domain leads to dramatic 

decreased expression of PDLIM2 in the insoluble nuclear fraction and elevated expressions in 

the cytoplasm and nucleoplasm (Figure 27). Those findings partially explain why the LIM 
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domain is required for PDLIM2 to alter Tax subcellular distribution as well as trigger Tax 

proteasomal degradation, while it is dispensable for PDLIM2-Tax interaction. Such evidence 

also challenge the previous reports suggesting that PDLIM2 triggers p65 degradation in the PML 

bodies, since their conclusion was based on the inability of the PDLIM2 mutant ΔLIM to co-

localize with p65 in PML bodies, which fractionate in the insoluble faction (Tanaka et al., 2007). 

Consistent with these results, deletions of both PDZ and LIM domains lead to exclusive 

expression of PDLIM2 in the cytoplasm, whereas deletion of the entire region between the PDZ 

and LIM domains results in a dramatic increase in the insoluble nuclear fraction, with a 

significant decrease in nucleoplasmic PDLIM2 protein (Figure 27). On the other hand, disruption 

of the TBM or small internal deletions of the middle region of PDLIM2 had no effect on its 

subcellular distribution (Figure 27). The evidence suggests that distinct domains within PDLIM2 

functioned differently in determining PDLIM2 subcellular expression and regulation of Tax.  

Importantly, it should be realized that all the former and above findings are based on the 

exogenous over-expressed PDLIM2. Under physiological conditions, the endogenous PDLIM2 

is dominantly found in the nucleus other than in the cytosol (Healy and O’Connor, 2009), in 

agreement with the fact that PDLIM2 promoted the degradations of nuclear p65 and Tax (Tanaka 

et al., 2005). Moreover, the sequestration of PDLIM2 to the cytosol results in increased nuclear 

NF-κB activity, further support the notion that PDLIM2 suppressed p65-mediated NF-κB in the 

nucleus (Healy and O'Connor, 2009). Nevertheless, regardless of whether the subcellular 

localization of PDLIM2 is determined by sequences within PDLIM2 itself or by PDLIM2 

partners with transporting abilities, the determinants for PDLIM2 subcellular distributions should 

be further characterized in the future studies.  
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6.3 DETERMINANT FACTORS IN TAX-MEDIATED TUMORIGENESIS 

We sought to reconcile how Tax binding deficient mutant forms of PDLIM2 failed to 

suppress Tax-mediated anchorage-independent colony formation in vitro and tumor growth in 

SCID mice, if PDLIM2 mutant in Tax-binding retained the ability to suppress p65-mediated NF-

κB activation. Is p65-mediated NF-κB activation a key player in Tax-mediated oncogenesis?  

Studies on Tax highlighted the importance of NF-κB in Tax-mediated tumorigenesis: Tax 

induced NF-κB is essential for some skin diseases, and the transduction of super-suppressor form 

of IκB reverses the malignancy of ATL cells in vitro. Considering that suppression of Tax-

mediated NF-κB by PDLIM2 involves both p65-dependent and independent mechanism, it is not 

surprising that both mechanisms contribute to Tax-mediated tumorigenesis. This is supported by 

the interrelation between the tumor suppression function of PDLIM2 and its ability to interact 

with Tax (Table 3). 

Additionally, our studies had shown that PDLIM2 directly functions to regulate the Tax 

protein level. This also explains the distinct effect of PDLIM2 mutants in suppression of Tax-

mediated tumorigenesis. The function-deficient PDLIM2 mutants (ΔLIM, Δ243-253, 

LL241/242PP, EE249/250PP) failed to trigger Tax proteasomal degradation, while WT and the 

function-competitive PDLIM2 mutants (ΔPDZ, Δ258-278) regulated Tax by suppressing Tax 

levels, resulting in an insufficient Tax signaling response and inhibited oncogenesis. This is 

supported by the results from detection of the Tax protein levels in both transformed cells and 

induced xenografts. The high expression of PDLIM2 reduces Tax expression and leads to a 

nearly total blockage of Tax-mediated tumor growth. 
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To investigate the role of Tax downstream signaling, we generated the Rat-1 cells with a 

relatively high expression of Tax in the presence of PDLIM2 WT by intending to use the 

PDLIM2 under a weaker promoter. Although Tax protein was still relatively low in the presence 

of WT PDLIM2, the difference was not that significant (Figure 29B). Furthermore, our results 

from colony formation assays confirmed the suppressive function of PDLIM2 (Table 3). This 

evidence demonstrated PDLIM2 reduced Tax protein levels as well as Tax downstream signaling 

circuits play crucial roles in determine Tax-mediated cellular transformation. In other words, 

both the Tax protein level and the Tax downstream signaling by PDLIM2 are involved in Tax-

mediated oncogenesis. Of note, PDLIM2-mediated subcellular distribution of Tax may also be 

part of Tax signaling and contributes to the events.  

 

Figure 47. Model of PDLIM2's function in Tax-mediated NF-κB activation. 
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Those findings therefore suggest that: 1) PDLIM2-mediated inhibition of NF-κB 

activation involves both p65-dependent and p65-independent mechanisms. And both of them 

contribute to the suppression of the Tax-mediated NF-κB as well as the oncogenesis by PDLIM2. 

2) PDLIM2 degrades Tax, results in the low level of Tax, which is correlated with the suppressed 

Tax-mediated tumorigenesis by PDLIM2. 3) PDLIM2 affects the subcellular distribution of Tax, 

which may result in the trapping and inactivation of Tax at certain cellular locations.  

Based on that, we proposed a model involves the p65-independent NF-κB activation in 

Tax-mediated NF-κB signaling by PDLIM2. The WT PDLIM2 suppresses p65-dependent NF-

κB activation by targeting both p65 and HTLV-I Tax for proteasomal degradation. Although 

there is no evidence that whether WT PDLIM2 can directly affect Tax-mediated p65-

independent NF-κB activation, the WT PDLIM2 inhibits p52-dependent p65-independent NF-κB 

activation by suppressing Tax. To the contrary, the Tax-binding-defective mutant of PDLIM2 

still retains the ability to degrade p65 and alter p65 subcellular distributions, so that to terminate 

Tax-mediated p65-dependent NF-κB activation. However, since it fails to trigger poly-

ubiquitination and proteasomal degradation of Tax, the Tax-binding defective mutant is unable 

to attenuate Tax-mediated p65-independent NF-κB signaling as well as Tax-mediated LTR 

activation. Our studies dissected p65-dependent NF-κB in Tax-mediated NF-κB activation as 

well as Tax-mediated oncogenesis. 

6.4 RE-INTRODUCTION AND REACTIVATION OF PDLIM2 IN CANCER 

PDLIM2 plays roles in termination of STAT and NF-κB signaling pathways. The 

findings here demonstrated that PDLIM2 also targets HTLV-I Tax for the proteasomal 
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degradation, so as to inhibit Tax-mediated tumorigenesis. Importantly, both mRNA and protein 

levels of PDLIM2 were down-regulated in HTLV-I-transformed T cells and the primary ATL 

samples. Although the repressive mechanism remains unclear, it seems that the down-regulation 

of PDLIM2 is one fundamental mechanism in HTLV-I Tax-mediated cell transformation and 

ATL development, especially since the re-introduction of PDLIM2 in HTLV-I-transformed T 

cells is able to reverse tumor growth in animal models.  

As discussed in Chapter 4, our studies further indicated that HTLV-I-mediated PDLIM2 

repression involved DNA hyper-methylation and a potential link with DNMT1 and DNMT3b. 

DNMT1 and DNMT3b, but not DNMT3a, were highly expressed in these malignant T cells. 

Furthermore, PDLIM2 mRNA expression levels increased in the HTLV-I-transformed T cells 

following cellular exposure to the DNMTs inhibitor. Meanwhile, the elevated expression levels 

of DNMTs were correlated with the increased PDLIM2 mRNA levels, generally but imperfectly. 

One plausible explanation is that the epigenetic regulation is a complex process cooperated with 

other factors. The repression of a particular gene not only requires the availability of individual 

DNMTs but also depends on many other cellular factors including histone deacetylase 1 

(HDAC1) and histone methyltransferase SUV39H1 (Luczak and Jagodzinski, 2006). Importantly, 

such reactivation of PDLIM2 by 5-aza-dC was associated with the cell death of HTLV-I-

transformed T cells, suggesting a novel approach for ATL therapy. 

Independently of HTLV-I related diseases, multiple other NF-κB related cancer such as 

breast, colon and lung cancer cells exhibit low PDLIM2 expression levels (Qu et al., 2010a; Qu 

et al., 2010b). The re-introductions of PDLIM2 presented potential tumor suppression functions 

in many tested cancer cells, suggesting PDLIM2 down-regulation as a general mechanism in 
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cancer progression and as a new cancer biomarker (Loughran et al., 2005; Qu et al., 2010a; Qu 

et al., 2010b; Yan et al., 2009). Unfortunately, the mechanism by which PDLIM2 gene is 

suppressed in cancer cells is unclear. It is reported that 8p21, which is the genomic locus of 

PDLIM2 gene, frequently undergoes allelic loss in ovarian and prostate cancers. Another 

possibility is the epigenetic suppression of PDLIM2, as RIL protein, a family member of 

PDLIM2 that shows tumor suppression function, is repressed by DNA methylation in many 

cancers (Boumber et al., 2007; Brown et al., 1999; Swalwell et al., 2002). Our studies on colon 

cancer and breast cancer provide evidence that the PDLIM2 promoter was hyper-methylated in 

those malignant cells and such hyper-methylation at PDLIM2 promoter directly contributed to 

the activation of the PDLIM2 gene (Qu et al., 2010a; Qu et al., 2010b). Importantly, more 

evidence from our current studies on PDLIM2-deficient mice indicated that those mice generated 

spontaneous tumors, giving hints that PDLIM2 might also serve as an inhibitor of oncogene 

(Unpublished data). 

6.5 CLOSING REMARDS AND FUTURE DIRECTIONS 

In this dissertation, we investigated the regulatory mechanism of HTLV-I Tax by 

PDLIM2. PDLIM2 serves as the first intrinsic negative regulator of Tax, which is crucial for 

HTLV-I viral infection, cell transformation and tumorigenesis. Such Tax suppression by 

PDLIM2 mainly results from PDLIM2 promoted poly-ubiquitination and proteasomal 

degradation of Tax. Furthermore, results showed that both the LIM domain and the TBM within 

PDLIM2 were responsible in modulating Tax. Importantly, we showed that HTLV-I and 

PDLIM2 were counterbalanced. Whereas HTLV-I suppressed PDLIM2 expression at the 
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transcription level by Tax-independent mechanisms, PDLIM2 promoted Tax turnover at protein 

levels. Based on those findings, we proposed that the counterbalance between Tax and PDLIM2 

would determine the outcome of HTLV-I infection, and contribute to the long latency of ATL 

progression. Our studies therefore suggested a novel therapeutic strategy for cancer and other 

diseases associated with HTLV-I infection and/or PDLIM2 deregulation, and provide valuable 

insights into the leukemogenesis, long latency and cancer health disparities of HTLV-I. 

Additionally, evidence showed that re-introduction and reactivation of PDLIM2 in HTLV-I-

transformed T cells and other cancer cells reverse the malignancy and induce cell death, 

supporting the potential general tumor suppressive function of PDLIM2. 

Regarding the p65 regulation by PDLIM2, further preliminary data showed that 

PDLIM2-p65 and PDLIM2-Tax served in separated complexes, and PDLIM2 preferentially 

target Tax other than p65 in the presence of Tax. Although the binding capacity of PDLIM2 

towards Tax did not influence PDLIM2-mediated p65-dependent NF-κB activation, the 

PDLIM2-Tax interaction was associated with the repressive function of PDLIM2 and the 

outcome of Tax-mediated tumorigenesis. Additionally, we found that p65-independent NF-κB 

activation by Tax, at lease p52-mediated NF-κB activation, was involved in PDLIM2-suppressed 

Tax-induced NF-κB activation and Tax-mediated oncogenesis. To summarize, PDLIM2 

suppresses Tax-mediated signaling at different levels: for p65-dependent signaling, PDLIM2 

directly function at p65 level; for p65-independent mechanisms, PDLIM2 exerts the role in 

modulating the Tax protein level. Considering that Tax failed to transform p65-deficient MEF in 

vitro, our data indicates that both p65-dependent and p65-independent mechanisms were 

required for Tax-mediated tumorigenesis.  
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Unfortunately, the data presented by current studies failed to provide a clear picture 

regarding PDLIM2, Tax, p65 as well as a conclusive mechanism by which Tax exerts its 

oncogenic effects. Various questions remain unanswered.  

One of the most intriguing questions pertains the infectious feather of HTLV-I in 

hematopoietic stem cells (HSCs). Recent studies found that HTLV-I could infect human HSCs in 

vitro. After introducing those infected cells into NOD/SCID mice, the mice generated CD4+ T 

cell lymphomas with the similar phenotype as ATL, indicating a new mechanism for ATL 

development (Banerjee et al., 2010a; Banerjee et al., 2008; Banerjee et al., 2010b). Importantly, 

transduction of oncoprotein Tax into HSCs by lenti-viral infection, and subsequently inoculation 

in NOD/SCID mice showed similar tissue distribution patterns as those HTLV-I-induced 

lymphomas. Interestingly, compared to almost all other cells involved in immune response 

including CD4+, CD8+, CD14+, CD19+, CD33+ and CD56+ cells, the HSCs with CD34+ 

expressing exhibits largely repressed PDLIM2 expression (unpublished data). In other words, 

HSCs might be the Achilles Heel in defending HTLV-I infection and bypass the high expression 

of endogenous PDLIM2 in CD4+ T cells. Following proliferation and differentiation, a large 

population of HTLV-I-infected cells develops and provokes the onset of ATL. This new cancer 

stem cell model explains well the monoclonal expansion of ATL but further requires supporting 

evidence.  

Further issues remain under investigation. These include: 1) Whether PDLIM2 is the E3 

ligase for Tax in vivo? Direct evidence would only come from in vitro reconstituted 

ubiquitination assays using recombinant proteins of ubiquitin, E1 and E2 enzymes. Considering 

the distinct biological functions of K48-linked and K63-linked poly-ubiquitination as well as 
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their roles in NF-κB regulation, this assay would also distinguish those different modifications 

on Tax. 2) Are other NF-κB family members and NF-κB complexes involved in the indicated 

p65-independent NF-κB activation in the presence of Tax? To address this issue, deficient cells 

of each NF-κB members need to be used. However, as described above, the differences of WT 

PDLIM2 and Tax binding defective mutant would appear only under p65-knockout condition 

since p65 is the major target of PDLIM2. Thus, the siRNA or shRNA to knocking down 

expression of p65 or either of the NF-κB members would be utilized. 3) Which key factor(s) 

determine Tax-mediated cell transformation and tumor growth? This is a difficult question given 

the complex biological functions of Tax. However, I believe that the difference in protein 

profiles in PDLIM2 expressing and non-expressing cells would provide useful information. 4) 

Other than the functions on Tax and NF-κB, PDLIM2 is also associated with cell migration and 

cell adhesion. What is the effect of those additional functions of PDLIM2 on tumor repression? 

Cell migration and cell adhesion are always associated with the active state of cell and metastasis. 

Invasion assays using transwells and detection of invasion related gene would give hints 

regarding this issue. 5) Is demethylation a key factor to reactivate PDLIM2? What are the side 

effects of PDLIM2 re-introduction and reactivation? Are those effects the real responsible factors 

for the tumor suppression function of PDLIM2? Clues would be easily got via gene or protein 

arrays. Taken advantage of the PDLIM2 dominant negative form, PDLIM2 ΔLIM, would 

distinguish the potential role of discovered factors. 6) Is PDLIM2 genuinely involved in ATL 

progression and how PDLIM2 regulates p65 in HTLV-I present condition? As described before, 

PDLIM2 is largely repressed in HTLV-I-transformed T cells and ATL cells, while the normal 

PBMCs and HTLV-I carriers still exhibit high levels of endogenous PDLIM2. It is plausible to 

assume that suppression of PDLIM2 occurs during the ATL development. One useful model is 
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that the radio-inactive MT-2 could transform normal PBMCs in vitro and mimic the ATL 

development without CTL stress. Thus, detection of PDLIM2 at different time points during the 

transforming progress would provide valuable clues.  

PDLIM2 played pivotal roles in cellular signaling, immune, inflammatory response, and 

oncogenesis. I believed that it would be a new target for cancer treatment and a hot-spot in 

cancer research. Studies on PDLIM2 will provide insights into leukemogenesis, long latency and 

cancer health disparities of HTLV-I as well as the general tumor suppressive role of PDLIM2. 
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APPENDIX B.  

PRIMERS FOR GENERATING PDLIM2 MUTANTS 

 

mPDLIM2 Δ79-278 

Forward: 5’-CTCACCCCTAAGACTGAAGCTTCACACCTGTG 

Reverse: 5’-CACAGGTGTGAAGCTTCAGTCTTAGGGGTGAG 

mPDLIM2 Δ111-145 

Forward: 5’-GCTCCCTGAGGACAGCGCTGTCTAAAGAG 

Reverse: 5’-CTCTTTAGACAGCGCTGTCCTCAGGGAGC 

mPDLIM2 Δ195-207 

Forward: 5’-GCGACTCCGCGGTGAGGTTCAGCAGTTTGGATC 

Reverse: 5’-GATCCAAACTGCTGAACCTCACCGCGGAGTCGC 

mPDLIM2 Δ242-253 

Forward: 5’-GCTCTTTTCGACTGTTAACACCTGCCTTTGTG 

Reverse: 5’-CACAAAGGCAGGTGTTAACAGTCGAAAAGAGC 

mPDLIM2 Δ258-278 

Forward: 5’-GGCACACCTGCCTTTAAGCTTCACACCTGTG 

Reverse: 5’-CACAGGTGTGAAGCTTAAAGGCAGGTGTGCC 
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mPDLIM2 Δ216-228 

Forward: GCAGTTTGGATCTCGAGGAAGGACGGGCCGCCCCAA 

Reverse: TTGGGGCGGCCCGTCCTTCCTCGAGATCCAAACTGC 

mPDLIM2 Δ238-250 

Forward: CCGCCCCAAGGCAGTCCTCGAGAGGTGGCACACCTG 

Reverse: CAGGTGTGCCACCTCTCGAGGACTGCCTTGGGGCGG 

mPDLIM2 L78R 

Forward: GCGCCTCACCCCTACGTCGACAGCTGGACCGGTC 

Reverse: GACCGGTCCAGCTGTCGACGTAGGGGTGAGGCGC 

mPDLIM2 L80K 

Forward: CCCTAAGACTGCAGAAGGACCGGTCCCAAA 

Reverse: TTTGGGACCGGTCCTTCTGCAGTCTTAGGG 

mPDLIM2 LL78/80RK 

Forward: CTCACCCCTAAGACGACAGAAGGACCGGTCCCAAA 

Reverse: TTTGGGACCGGTCCTTCTGTCGTCTTAGGGGTGAG 

mPDLIM2 CC310/313SS 

Forward: CTGGCTGCTACACTAGCGCTGACAGTGGGCTGAACCTG 

Reverse: CAGGTTCAGCCCACTGTCAGCGCTAGTGTAGCAGCCAG 
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mPDLIM2 △231-235 

Forward: AGAACCGCCAGGGAAGATCTAGCTCTTTTCGACT 

Reverse: AGTCGAAAAGAGCTAGATCTTCCCTGGCGGTTCT 

mPDLIM2 △236-240 

Forward: CCGCCCCAAGGCAGCTGTTACAGGAAGCCTT 

Reverse: AAGGCTTCCTGTAACAGCTGCCTTGGGGCGG 

mPDLIM2 △241-245 

Forward: TCCAGCTCTTTTCGTCTAGAGGCTGAGGAGAG 

Reverse: CTCTCCTCAGCCTCTAGACGAAAAGAGCTGGA 

mPDLIM2 △246-250 

Forward: TCTTACAGGAAGCCCGGGGTGGCACACCTGC 

Reverse: GCAGGTGTGCCACCCCGGGCTTCCTGTAAGA 

mPDLIM2 △251-255 

Forward: TTGGAGGCTGAGGAAGCTTTTGTGCCCAGCTC 

Reverse: GAGCTGGGCACAAAAGCTTCCTCAGCCTCCAA 

mPDLIM2 △256-260 

Forward: AGAGGTGGCACACCTTCGCTGAGCTCCCAG 

Reverse: CTGGGAGCTCAGCGAAGGTGTGCCACCTCT 
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mPDLIM2 △261-265 

Forward: GCCTTTGTGCCCAGCGCTTCCTTGCCCACC 

Reverse: GGTGGGCAAGGAAGCGCTGGGCACAAAGGC 

mPDLIM2 △265-271 

Forward: GCTCGCTGAGCTCCCGGGCCTTGGCCACT 

Reverse: AGTGGCCAAGGCCCGGGAGCTCAGCGAGC 

mPDLIM2 △272-278 

Forward: CCTTGCCCACCTCCAAGCTTCACACCTGTGAGAA 

Reverse: TTCTCACAGGTGTGAAGCTTGGAGGTGGGCAAGG 

mPDLIM2 LL241/242PP 

Forward: TCCAGCTCTTTTCGGCCGCCGCAGGAAGCCTTGGA 

Reverse: TCCAAGGCTTCCTGCGGCGGCCGAAAAGAGCTGGA 

mPDLIM2 EE249/250PP 

Forward: AAGCCTTGGAGGCTCCGCCGCGGGGTGGCACACCTGC 

Reverse: GCAGGTGTGCCACCCCGCGGCGGAGCCTCCAAGGCTT 

 

*Some mutants were not mentioned in the dissertation, but the constructs were generated 

and tested in the studies. 
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