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Neuroglobin Genetic Polymorphisms and Their Relationship to Functional 
Outcomes Following Traumatic Brain Injury  

 

Pei-Ying Chuang, RN, PhD 

University of Pittsburgh, 2008
 

BACKGROUND:  Neuroglobin (Ngb) is a protein that increases oxygen availability in ischemic 

neuronal tissues, but whether Ngb gene variants contribute to patient outcomes is unknown.  

PURPOSE: To identify functional or non-functional variants in the Ngb gene in severe 

traumatic brain injury (TBI) patients and determine whether variants impact patients’ injury 

severity and functional outcomes. Specific Aims: To identify Ngb variants (present/absent) in 

DNA extracted from the cerebral spinal fluid and blood of patients with severe TBI, and then: 1) 

determine the variant frequencies, 2) determine demographic and clinical patient characteristics 

based on Ngb variants, 3) determine the relationship between the variants and TBI severity as 

measured by admission Glasgow Coma Scale (GCS), and 4) determine differences in functional 

outcomes (Glasgow Outcome Scale [GOS]) at 3,6,12, and 24 months post TBI based on Ngb 

variants. 

METHODS: Prospective, descriptive, comparative design using DNA collected (NIH NR04801 

and NS30318) from 196 Caucasian subjects (non-Caucasians excluded to eliminate confounding 

from ancestry). We generated Ngb genotype data for 2 tagging single nucleotide polymorphism 

(SNP) variants (captures all of Ngb’s genetic variation) using TaqMan PCR technology. Data 

analysis: independent t-tests; Fisher Exact, Pearson’s Chi-square, Exact tests; logistic and linear 

regression.   

 iv 



RESULTS:  For Ngb SNP1, 36.3% were CC/CT (non-wild typed or present variant [SNP1 

Vpresent]), and 62.2% were TT (wild typed or absent variant [SNP1 Vabsent]). For Ngb SNP2, 

only 6.6% were TT/GT (SNP2 Vpresent), whereas 91.3% were GG (SNP2 Vabsent). There was 

no significant relationship between variants of SNP1 or SNP2 and either demographic or clinical 

characteristics. There was a trend toward significance between SNP1 Vabsent and better GCS (p 

= 0.061), but not between SNP2 variants and GCS (p = 0.109). Subjects with good outcome by 

GOS were more likely to be SNP1 Vabsent at 3, 6, 12, and 24 months (p = 0.023; p = 0.01; p = 

0.002; p = 0.035 respectively). No significant relationship was found between SNP2 and GOS at 

any time point. Using logistic and linear regression controlling for age, gender, and GCS, SNP1 

Vpresent was significantly associated with poorer GOS at 12 months (p = 0.028) only; SNP2 

showed no significance in regression analysis.  

CONCLUSION:  SNP1 Vabsent TBI patients were more likely to have good outcomes, whereas 

genetic variants of SNP2 did not impact outcomes; possibly because Ngb SNP1 Vabsent affects 

the quantity or quality of Ngb in severe TBI, producing better outcomes. 
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1.0  INTRODUCTION, PURPOSE, AND CONCEPTUAL FRAMWORK 

1.1 INTRODUCTION 

About 1.5 million people sustain traumatic brain injury (TBI) in the U.S. each year, at the rate of 

approximately one person every 20 seconds. Of the patients who sustain TBI annually, 50,000 

die, 235,000 are hospitalized, and 1.1 million are treated and released in emergency departments 

(EDs) (Langlois, J. A., Rutland-Brown, W., Thomas, K. E., 2006). Locally, there are 245,621 

people living with TBI injuries in Pennsylvania; yearly, about 2,223 die, 10,463 are hospitalized, 

49,505 are seen in the Emergency Room, and about 8,612 sustain long term or life-long 

disabilities due to brain injury (2007). These data show the importance of TBI as a major cause 

of morbidity and mortality both nationally and locally. Certain sociodemographic characteristics 

have been identified as risk factors for TBI. The leading causes of TBI are falls (28%), motor 

vehicle crashes (20%), striking/being struck by something (19%), assaults (11%), others (7%), 

suicide (1%), other transport (2%), bicycle or non motor vehicle (3%), and unknown (9%), 

respectively (Langlois, J. A., Rutland-Brown, W., & Thomas, K. E., 2004). TBI occurs more 

commonly in males (twice frequently than in females) (Coronado, V. G., Thomas, K. E., & 

Kegler, S. R., Morb Mortal Wkly Rep, 2007).  Furthermore, adults aged 75 years or older have 

the highest rates of TBI-related hospitalization and death (Langlois, Rutland-Brown & Thomas, 

2004).  Regarding ethnicity, African Americans have the highest rates of death and 
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hospitalization from TBI (Langlois, Rutland-Brown, & Thomas, 2006). Therefore, while gender 

affects TBI prevalence, age and race affects the probability of mortality after TBI. 

Traumatic brain injury can have a significant financial and physical consequence on its 

victims. Direct medical costs and indirect costs such as lost productivity due to TBI totaled an 

estimated $60 billion in the United States in 2000 (Finkelstein, Corso, Miller, et al., 2006). TBI 

hospitalization rates have increased from 79 per 100,000 in 2002 to 87.9 per 100,000 in 2003 

(Coronado, V. G., Thomas, K. E., & Kegler, S. R., Mobility and Mortality Weekly Report, 

2007). These costs are likely due to the wide range of functional impairments due to TBI that 

affect thinking, sensation, language, and/or emotions. Forty percent of patients hospitalized with 

a TBI report problems with memory, decision making, stress management, emotional stability, 

and job skills. At least 5.3 million Americans, 2% of the US population, currently live with 

disabilities resulting from TBI. Furthermore, moderate and severe head injuries are associated 

with a 2.3 and 4.5 times increased risk of Alzheimer’s disease, respectively (Langlois, Rutland-

Brown, & Wald, 2006).  

The National Institute of Neurological Disorder and Stroke (2007) has identified the 

symptoms of moderate or severe TBI, which include headaches that get worse or do not go away, 

repeated vomiting, nausea, convulsions or seizures, inability to awaken from sleep, dilation of 

one or both pupils of the eyes, slurred speech, weakness or numbness in the extremities, loss of 

coordination, and increased confusion, restlessness, or agitation. Morbidity and mortality 

following TBI result from both primary and secondary injury. Primary brain injury results from 

direct trauma at the time of injury. Secondary injury, which can occur hours to days after a TBI, 

results from a wide range of later-occurring bimolecular and pathophysiological derangements 

within any or all of the three intracranial compartments: 1) brain; 2) cerebrospinal fluid (CSF); 
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and 3) blood flow (Tolias, Sgoursos, Dulebohn, Sheridan, Engelhard, & Dogali, 2005). These 

physiologic derangements can then cause delayed cerebral ischemia, cellular necrosis, apoptosis, 

and death (Tisdall, & Smith, 2007). Health care providers cannot prevent primary injury, but by 

preventing secondary injury, TBI patients are offered their best opportunity for recovery. 

However, even with such care, functional recovery is frequently less than optimal. 

More recently, interventions are being explored which enhance the patients’ own 

neuroprotective mechanisms to prevent or limit secondary injury. Ngb is emerging as one such 

potential neuronal protector. Ngb is a neuronal protective protein expressed in response to 

cerebral hypoxia or ischemia in order to assist in oxygen transport/utilization or exchange with 

biotoxic agents, particularly in situations where brain oxygenation is impaired. The first research 

project examining Ngb, a monomer with a high oxygen affinity (half saturation pressure, or P50, 

of approximately 2 torr), was reported by Burmester Weich, Reimhards, and Hanker in 2000. 

Burmester and his colleagues reported that Ngb exists in the central and peripheral neural 

systems, as well as the endocrine systems and retina, the areas with the highest oxygen energy 

needs in humans. Since 2000, some animal, but few human studies have been conducted to 

explore the role that Ngb may play as a protective or compensatory mechanism during cerebral 

ischemia. Sun and Jin (2003) suggested that in vivo, Ngb protects the brain from experimentally 

induced strokes by reporting a positive correlation between the less infarct volume with more 

Ngb mRNA expression or increased Ngb protein level in mice and rat models.  

Whether or not Ngb is present, or has a beneficial function in humans during brain 

ischemia has not yet been determined. However, a gene for Ngb has been identified in humans. 

An initial first step in examining the role that Ngb may play in protecting the human brain 

against ischemia would be to investigate and identify genetic variants or polymorphism functions 
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of the Ngb gene in patients who have suffered from a TBI. This would determine whether or not 

genetic variations in this gene contribute to clinical outcomes. If such genetic variants were to be 

noted, then further work to identify the protein itself would be warranted. 

1.2 PURPOSE OF THIS STUDY 

The purpose of this study is to investigate and identify functional and non-functional variants in 

the Ngb gene in severe TBI patients and to determine whether these variants play a role in either 

the patients’ severity of injury or clinical outcomes.  

1.3 SPECIFIC AIMS 

The specific aims of this study are to:   

Specific Aim 1. Determine the frequency of Ngb variants in DNA extracted from the 

CSF and blood of patients with severe TBI.  

Specific Aim 2. Determine demographic and clinical characteristics of patients based on 

the presence or absence of Ngb variants in the TBI population. 

Specific Aim 3. Determine the relationship between Ngb variants (present/absent) and 

the severity of TBI as measured by the admission Glasgow Coma Scale (GCS).  

Specific Aim 4. Determine potential differences in the functional outcomes (Glasgow 

Outcome Scale (GOS) of patients with and without the Ngb variants (good outcome = GOS 4-5; 

poor outcome = GOS 1-3) at 3, 6, 12 and 24 months post injury. 
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1.4 DEFINITION OF TERMS CONCEPTURAL FRAMEWORK 

Neuroglobin single nucleotide polymorphism (SNP): is a DNA sequence variation of Ngb 

involving a single nucleotide. Almost all common SNPs have only two alleles. 

Traumatic Brain Injury (TBI): Sudden insult to the brain by an external physical force which 

alters the state of the skull, brain tissue, and brain blood flow resulting in a change in the level of 

consciousness and the impairment of cognitive, psychosocial, and emotional functions. 

Glasgow Coma Scale (GCS): A neurological scale that assesses the conscious state of a person 

following head injury with eye (E4), verbal (V5), and motor (M6) responses. The GCS ranges 

from a total possible GCS score of 15 to a minimum score of 3. The three accepted 

classifications are: severe TBI (GCS < 8), moderate TBI (GCS 9-12), and minor TBI (GCS > 13) 

(Teasdale G, Jennett B, 1974). One of the entry criteria for this study was a severe TBI with a 

score of ≤ 8. 

Severity of TBI: Further degrees of TBI severity for study subjects was indicated by a score 

along the continuum of severe TBI 3-8 on the Glasgow Coma Scale as a categorical variable, or 

as a dichotomous variable (GCS better = score 6-8; GCS poor = score 3-5) 

Glasgow Outcome Scale (GOS): Measurement of a patient’s functional outcome. The GOS was 

developed by Drs. Jannett and Bond in 1975 with five categories: 1 = dead, 2 = vegetative, 3 = 

severely disabled, 4 = moderately disabled and 5 = good recovery. Scores were also designated 

as good (GOS 4-5) and poor outcome (GOS 1-3).  
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1.5 CONCEPTURAL FRAMEWORK 

 

The degree of primary injury from TBI is dependent upon the mechanism of injury and 

demographic patient characteristics. Once sustained, the level of TBI is characterized as mild, 

moderate or severe based upon the GCS, with a GCS score of 3-8 denoting severe injury. 

Thereafter, secondary injury due to cerebral hypoxia or ischemia ensues due to impaired brain 

oxygen delivery, which results in the disruption of brain cellular metabolism, thereby leading to 

brain cellular impairment or death. In the clinical setting, Ngb is hypothesized to assist with the 

transport of oxygen to brain cells, or with protection from cellular toxins. Improvement of brain 

oxygen delivery and protection against injury should result in better cellular function and, in 

turn, better functional outcomes. As shown in Figure 1, this study investigated if variants in the 

Ngb gene (present/absent) plays a role in the TBI patients’ severity of injury as measured by 

GCS, as well as functional outcomes (good functional outcome = GOS 4-5; poor functional 

outcome = GOS 1-3) in the 3, 6, 12, and 24 months following TBI. Based upon a review of the 

literature, we anticipate that patients with genetic variants in Ngb SNP1 and SNP2 will have 

different outcomes at 3, 6, 12, and 24 months following TBI. 

 Injury Mechanisms 

 

Figure 1. Conceptual Model 
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2.0  BACKGROUN AND SIGNIFICANCE 

Chapter two describes the state of knowledge regarding the TBI and neuroglobin literature to 

date supporting the theoretical framework of this study. Part one, which interprets severe TBI, 

focuses on: 1) pathologic changes in the brain, CSF, and CBF promoting secondary injury; 2) 

mechanisms in cerebral hypoxia and ischemia; and 3) the comparison of mechanisms of TBI and 

stroke. Part two focuses on 1) the structure of Ngb and globins; 2) Ngb’s mechanisms during 

hypoxia and ischemia; 3) genetic findings for Ngb; and 4) published studies dealing with the 

relationships between secondary injury (hypoxia/ischemia) and Ngb in TBI. 

2.1 BRAIN HEALTH MONITORING IN TRAUMATIC BRAIN INJURY 

 

Garry (2003) stated that “the adult human brain contains more than 100 billion neurons with over 

1015 synapses, and requires more than 10-15% of the cardiac output to maintain function and 

consciousness” (Mammen, 2003; Slavik, & Rhoney, 2000, p.342). Normally, brain tissue, which 

makes up only 2% of body weight, consumes about 20% of the available oxygen during rest 

(Burmester, Weich, et al., 2000; Moens, L. & Dewilde, S., 2000, Zhang, C., Wang, C., et al., 

2002). The three main components of the brain are brain tissue (80-90%), cerebrospinal fluid 

(CSF; 3-10%), and cerebral blood flow (CBF; 10%) (Slavik, R. S., & Rhoney, D. H., 2000). The 
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basic brain structures includes cerebrum, brain stem (midbrain, pons, and medulla), and 

cerebellum. The brain is bathed in cerebrospinal fluid (CSF), which circulates between layers of 

the meningitis and through the brain ventricles. Cerebral blood circulation occurs primarily 

through the Circle of Willis, (including anterior cerebral arteries, internal carotid artery, posterior 

cerebral arteries, posterior communicating arteries (left and right) and anterior communicating 

artery.  

2.1.1 Monitoring mechanisms 

According to the National Institute of Health (NIH) and its sponsored Traumatic Coma Data 

Bank (TCDB), TBI is considered severe when the GCS drops below 9 within 48 hours of injury 

and when CT scans reveal abnormalities (Dawodu, S.T., 2007). The alterations in the three 

compartments (brain,  CSF, and CBF) appear as major pathologies in those patients with severe 

TBI.  

Patients must be monitored for the development of brain herniation, which is the 

displacement of brain tissue, cerebrospinal fluid, and blood vessels outside the compartments 

they normally occupy (Crippen, D. W., & Shepard, S., 2008). A herniation can occur at the base 

of the skull through the foramen occipital, or through openings created by a craniotomy 

procedure. Herniation is considered a medical emergency requiring immediate treatment to 

prevent death.   

TBI leads to increased mortality when the intracranial pressure (normal ICP = 0-15 

mmHg) increases. When the ICP increases, signs and symptoms of neurological impairment are 

present, and immediate interventions are necessary, including CSF drainage and neurological 

surgery. In order to assess the progression of brain damage, a CT examination is frequently 
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necessary. Marshall, Marchall, & Klauber (1991) developed four categories of brain injury 

severity based upon CT examination results: 1) Diffuse Injury 1 = lack of evidence for any 

significant brain injury; 2) Diffuse Injury 2 = either identifies a midline shift of less than 5 mm or 

widely present CSF cisterns at the base of the brain; 3) Diffuse Injury 3 = a midline shift of less 

than 5mm with partial compression or absence of the basal cisterns and no high or mixed-density 

lesion volumes greater than 25 ml;  and 4) Diffuse Injury 4 = a midline shift greater than 5mm, a 

compression and absence of the basal cistern, and no lesions of high or mixed density greater 

than 25 ml. CSF is manufactured by the brain at a rate of approximately 500 ml per day and 

circulates within the internal brain compartments and around the spinal cord. Analysis of the 

CSF provides important information about the metabolic functions of the brain, and aids in the 

diagnosis of brain hypoxia or ischemia. The CSF pressure, ranging from 6 -10 mmH20 (4.4-7.3 

mmHg), contains only 0.3% (25 mg/dl) plasma protein (Felgenhauer, K., 1974, & Saunders 

N.R., Habgood, & Dziegielewska, K.M., 1999). 

Fifteen percent of cardiac output is distributed to the brain; with normal cerebral blood 

flow (CBF) defined as approximately 750 ml/min. The CBF, equivalent to 40-50 ml/100g/min, 

can be calculated by dividing cerebral perfusion pressure (CPP) by cerebrovascular resistance 

(CVR). CPP is determined by the mean arterial pressure (MAP) and intracranial pressure (ICP). 

Therefore, CPP is equivalent to MAP (normally 50-150 mmHg) minus ICP (normally less than 

15 mmHg) (Slavik & Rhoney, 2000). A normal CVR (derived by subtracting the diastolic 

pressure from the systolic pressure and then dividing by the MAP) is regulated by metabolic 

control, pressure auto regulation, chemical control (partial pressure of oxygen (PaO2) and partial 

pressure of carbon dioxide (PaCO2), and by neural control. When the CBF falls to 18-20 

ml/100g/min, cerebral ischemia becomes irreversible. Brain tissue death occurs when CBF falls 
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under 8-10ml/100g/min. When the systemic MAP falls below 50 mmHg, cerebral ischemia due 

to low CPP may ensue. In contrast, if the MAP becomes higher than 150mmHg, the brain can 

experience capillary injury or cerebral edema.  

CPP=MAP-ICP                  CBF= CPP/CVR               CVR = SBP-DBP/MAP 

The metabolic rate of the brain is often expressed in terms of its rate of oxygen 

consumption (CMRO2), which is normally 3.5 ml/100g brain/min. The extraction of oxygen 

from cerebral blood (CEO2 = SaO2-SjvO2; normally 24-42%) is defined as the change between 

arterial oxygen saturation (SaO2; normally = 100%) and jugular venous oxygen saturation 

(SjvO2; normally = 55-71%). The cerebral extraction ratio of oxygen (CERO2 = CMRO2/CDO2; 

normally = 35 + 10%) is calculated by dividing oxygen consumption (or CMRO2) by the 

cerebral oxygen delivery (CDO2) to equal (SaO2-SjvO2)/SaO2. Thus, both brain oxygen 

consumption as well as brain oxygen delivery influences the CERO2 (Slavik & Rhoney, 2000).  

In addition, arterial blood gases (ABGs) are used to assess both cerebral and systemic 

partial pressure of gases and other substances that are being delivered to the brain. Components 

measured are the range of the partial pressure of arterial oxygen (PaO2 = 80-100 mmHg) and 

carbon dioxide (PaCO2= 35-45 mmHg), bicarbonate concentration (HCO3
- = 22-26 mmol/l), the 

blood bicarbonate concentration at a CO2 of 5.33 kPa, with full oxygen saturation at 37°C 

(standard bicarbonate concentration; SBCe= 21 to 27 mmol/l), the base excess (BE = -2 to +2 

mmol/l); phosphate concentration (HPO4 = 0.8 to 1.5 mM) (Walter, 2001), and blood pH (7.35-

7.45). The ABG is an additional tool which helps clinicians to observe the adequacy of CBF 

variation in the acute, sub acute, and reperfusion phases.  

 In summary, the brain is an organ whose health is dependent upon complex interactions 

between the brain tissue, CSF, and CBF. Furthermore, during cerebral hypoxia or ischemia when 
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a deficiency of oxygen, glucose, and blood flow occurs, the brain can move very rapidly from 

aerobic to anaerobic metabolism (Slavik & Rhoney, 2000). 

2.2 HYPOXIA/ISCHEMIA PATHOLOGY IN TBI  

Cerebral hypoxia is the deprivation of normal oxygen supply to brain tissue, while cerebral 

ischemia occurs when brain tissue does not receive enough blood flow in order to maintain 

normal neurological cellular function. Both cerebral hypoxia and ischemia bring about poor 

outcomes in patients with severe TBI. The lack of brain oxygen forces anaerobic glycolysis, 

which begins a cascade of events. The cerebral cortex (cerebral gray matter) and the 

hippocampus (forebrain and temporal areas) are the most vulnerable regions in the brain in terms 

of ischemia injury (Shang, Zhou, Wang, Gao, Fan, & Wang, et al., 2006) and are the primary 

areas of interest in studies of brain hypoxia and ischemia involving animal models. Numerous 

cellular and molecular mechanisms are induced in response to a hypoxic or ischemic insult.  

2.2.1 Causes of cerebral hypoxia/ischemia in TBI 

Within the ischemic cerebrovascular bed, there are two major zones of injury: the core ischemic 

zone and the "ischemic penumbra" (the term generally used to define ischemic, but still viable, 

cerebral tissue) (Lipton, 1999). Measuring CBF is a simple and physiologically meaningful way 

to differentiate between the regions of the cerebral core and penumbra in the brain. In the core 

zone, an area of severe ischemia, blood flow is below 12ml/100g/min, and the loss of inadequate 

supply of oxygen and glucose results in a rapid depletion of energy stores. Severe ischemia can 
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result in necrosis of neurons as well as supporting cellular elements (i.e. glial cells) within the 

severely ischemic area. Brain cells within the penumbra, a rim of mild to moderately ischemic 

tissue lying between tissue that is normally perfused and the area, in which the infarction is 

evolving, may remain viable for several hours. That is because the penumbral zone is supplied 

with blood by collateral arteries anastomosing with branches of the occluded vascular tree. 

However, cells in this region will die if reperfusion is not established during the early hours since 

collateral circulation is inadequate to keep up with the neuronal demand for oxygen and glucose 

indefinitely. The penumbral area is associated with cerebral hypoperfusion in the range of with 

15-18 ml/100g/min. Hypoperfusion can result in the malfunction of the Na+/K+ ion pump, which 

exchanges ions between the inside and outside of cells at a CBF of 10-15 ml/100g/min, with 

cellular calcium influx initiated at a CBF of 6-15ml/10g/min (Leker & Shohami, 2002). While 

the cerebral core is comprised of cells that have progressed to necrosis and are in an irreversible 

state, the penumbra is in a reversible state. Both of these states develop within one to 24 hours.  

CBF can also be used monitor the progression of cerebral edemas (cytotoxic or cellular 

edema and vasogenic edema) (Leker, & Shohami, 2002; Hassmann, 2006). Cytotoxic edema 

evolves over minutes to hours and may be reversible, while the vasogenic phase occurs over 

hours to days. Cytotoxic edema is characterized by the swelling of cellular elements of the brain. 

In the presence of acute cerebral ischemia, neurons, glia (indicated by astrocytes), and 

endothelial cells swell within minutes of hypoxia due to failure of ATP-dependent ion (sodium 

and calcium) transport. With the rapid accumulation of sodium within cells, water follows so as 

to maintain osmotic equilibrium. The resulting increased intracellular calcium activates 

phospholipases and the release of arachidonic acid, leading to the release of oxygen-derived free 

radicals and infarction (Fishman, 1992). Vasogenic edema is caused by an increase in 
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extracellular fluid volume due to the increased permeability of brain capillary endothelial cells to 

serum proteins, especially albumin. Acute hypoxia initially causes cytotoxic edema, followed 

within the next hours to days by the development of vasogenic edema as the infarction develops 

(Fishman, 1992). The delayed onset of vasogenic edema suggests that time is needed for the 

defects in endothelial cell function and permeability to develop. After four to six hours of 

hypoxia or ischemia, tissue necrosis results causing proteins to break down and pass through the 

blood-brain barrier (BBB).  

Both diffusion-weighted magnetic resonance imaging (MRI) (DWMRI) and perfusion- 

weighted MRI (PWMRI) can also be utilized to distinguish primary injury in the acute phase 

(Leker, & Shohami, 2002). The DWMRI sensitively detects irreversible tissue damage (for 

instance, core and penumbra) and the PWMRI reflects the perfusion impairment in the region of 

the hypoxia or ischemia. The lower the CPP, the higher the ICP becomes due to swelling and 

edema of ischemic tissue.  

A sensitive indicator of CBF is brain cell metabolic function. Glucose metabolism is 

inhibited when CBF falls below 50% of normal (about 55 ml/100g/min) and is later completely 

suppressed when CBF falls below 35 ml/100g/min during anaerobic glycolysis. As CBF falls 

below 25 ml/100g/min, tissue acidosis begins. Simultaneously, lipids rapidly break down to fatty 

acids, which can be toxic to cells. Acidosis is the accumulation of pyruvate and lactate, which 

leads to depolarization via inactivation of the Na+-K+ pump (Hossmann, 2006). Moreover, 

carbon dioxide and glutamate levels are increased and the pH decreases. There is some 

indication that systemic hyperglycemia, defined as a serum glucose level of greater than 11.1 

mmol/L, is associated with a significantly worse outcome in severe TBI patients (Slavik & 
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Rhoney, 2000). Whether hyperglycemia produces direct damage or is a marker of injury severity 

is not currently well described.  

In cerebral hypoxia or ischemia, both the N-methyl-D-aspartic acid (NMDA) glutamate 

receptor and the α-amino-3-hydroxy-5-methylisoxazole-4- propionic acid (AMPA, non-NMDA) 

release glutamate into the extraplasmic space of the central nervous system (CNS). This action 

promotes cellular depolarization which results in an influx of sodium (Na+), chloride (Cl-), and 

calcium (Ca++) in exchange for potassium (K+) and hydrogen carbonate (HCO3
-) (Johnston, 

Trescher, Akira, & Wako, 2001; Slavik, & Rhoney, 2000; Leker, Shohami, 2002; Hassmann, 

2006; Drake& Iadecola, 2006). Soon, depolarization activates nitric oxide syntheses (NOS) and 

reactive oxygen species (ROS).  

The three kinds of isoformed NOS are neuronal (nNOS), inducible (iNOS), and 

endothelin (eNOS). NOS produce nitric oxide (NO) arginine in the central nervous system 

(CNS) (Leker, & Shohami, 2002). Both NMDA and AMPA enhance ROS and NOS by 

increasing cellular calcium influx (Johnston, Trescher, Ishida, & Nakajima, 2001). The ROS 

produces both hydrogen peroxide (H2O2) through the superoxide dismutase (SOD) and the 

superoxide (O2
-) from cytosol during cellular depolarization by increasing calcium influx into the 

cells. The SOD catalyzes O2
- into oxygen (O2) and H2O2. Other NOSs (iNOS, eNOS, and nNOS) 

produce intracellular NO, including in the mitochondria. NO immediately combines with O2
- to 

become peroxynitrite (ONOO-).  ONOO- has a high affinity for CO2. The two combine to 

become nitrosoperoxocarboxylate (ONOOCO2
-), the worst toxic gas. Toxic gas, such as H2O2, 

O2
-, NO, ONOO-, or CO2, causes DNA fragmentation and death, which in turn causes apoptosis 

or necrosis. Normally, NOS do not cause any damage in aerobic cells but will harm anaerobic 

cells. 
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When the mitochondrial matrix swells as a result of increased NOS and ROS, it releases 

the pro-apoptosis proteases cytochrome c, caspase 3/7, and calpain. Also, a higher level of 

calcium induces damage through the mitochondrial permeability transition (MPT) and also 

damages DNA fragments. Later on, cell death occurs, induced by either apoptosis or necrosis. 

Caspases 3 and 7 cause the maturation of cytokines and are found active in the first 5 hours (~11 

fold) and 24 hours (16 fold) after hypoxia development in neuronal cells (Rayner, Duong, Myers, 

& Witting, 2006). The mitochondrial membrane is one of the largest components of the 

incomplete O2 respiration reduction. Additionally, lissome and astroglia are also involved in 

anaerobic injury (Rayner, Duong, Myers, & Witting, 2006). 

2.2.2 Neuroprotector functions 

"Good" biochemical and molecular mechanisms in hypoxia and ischemia include the poly (ADP-

ribose) polymerase (PARP), a nuclear enzyme that is strongly activated by repair DNA. 

Secondly, cystatins, cysteine proteinase inhibitors (such as cathepsin B, H, or L), are intracellular 

lysosome and microglia within the brain that provide protection from hypoxia and ischemia 

(Wakasugi, Nakano, et al., 2004). For example, cyctatin b protects against neuronal death under 

oxidative stress or other chronic neurodegenerative diseases (Alzheimer’s disease; AD). Surface 

Plasmon Resonance (SPR) is a powerful tool for real time measurements of direct protein-

protein interactions in the study of mice. Furthermore, flotillin-1 is a lipid raft microdomain, 

expressed in neurons and astroglia associated with the plasma membrane and distinct 

intracellular components of Na+-K+ATPase and protein β2 subunits (Wakasugi, K., Nakano, T. et 

al., 2003, Hankeln, T., Wystub, S. et al., 2004, Wakasugi, K., T. Nakano, et al., 2004). Spectrin 

and ankyrin are major cytoskeletal proteins that provide a link between cell membrane and 
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membrane-associated proteins. Ankyrin plays a linking the Na+-K+ATPase and Na+ channels to 

the cytoskeleton. 

Furthermore, erythropoietin (EPO), a kidney-derived glycoprotein hormone that is a 

mitogen for erythrocyte (red blood cell) precursors in the bone marrow, also responds to 

oxidative stress in neurons and astrocytes under hypoxia/ischemia (Leker, & Shohami, 2002). 

The EPO receptor is normally present on neurons and brain capillary endothelial cells. Also, 

estrogen and progesterone reduce excitotoxicity and change glutamate receptor activity by 

decreasing immune mediated inflammation and axonal remyelinization by enhancing 

synaptogenesis and dendrite arborization (Leker & Shohami, 2002).  

Endogenous cellular anti-oxidant defense mechanisms (detoxifying enzymes) include 1) 

SOD; 2) catalase; 3) low-molecular weight anti-oxidant glutathione; 4) α-tocopherol (the most 

potent biological form of Vitamin E); and 5) ascorbic acid (Vitamin C) (Rayner, Duong, Myers, 

& Witting, 2006).  

Additional biochemical materials which are protective during hypoxia include hypoxia-

inducible factor 1 (HIF-1), NO, cobalt chloride (CoCl2), deferixiamine (Dfx) and sodium 

nitroprusside (SNP). Because they have a regulatory role in localized tissue, they serve as a 

critical pathway for tumor vascularization, myocardial ischemia, and stroke (Zhu, Y., Sun, Y., 

Jin, K., & Greenberg, D. A., 2002). Cathepsin, a protenase found in lysosomes, participates in 

neuronal degeneration resulting from ischemic insult. Oxidative stress rapidly initiates the 

translocation of cathepsins B and L from the lysosome to the cytosol. Ngb has been found to 

facilitate this transport (Wakasugi, K., T. Nakano, et al., 2004). Therefore, to diminish the 

cathepsin, cystatin C and flotillin directly interact within the lysosomes.  TNF-α is found both in 

the circulation and the brain. NFkB activates the synthesis of many proteins, such as iNOS and 
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COX-2. Protein synthesis is extremely sensitive to cell energy charge and ion contents, including 

free radicals in endothelial cells. Protein kinases (PK) and phosphatases alter cell membrane, 

mitochondrial function, the cytoskeleton, and protein synthesis. The accumulation of neutrophils 

(endogenous neuroprotectants) in vessels requires interactions with several adhesion molecules, 

such as intracellular adhesion molecule (ICAM-1) as well as E and P-selectins on the endothelial 

cells, fibronectin and lamininin within the extracellular matrix, and integrins and L-selectin on 

the white blood cells (Lipton, 1999). Leukocytes are also activated, and can cause a reaction 

(free radicals produced by nicotinamide adenine dinucleotide phosphate-oxidize; NADPH) 

which has direct toxic effects on the vasculature or the neurons (Lipton, 1999). A positive 

correlation exists among leukocyte activity, the size of the infarct, and the severity of 

neurological outcome. Copper and zinc are essential secondary messengers which excitatory 

synapses release during neuronal activation (Choi & Koh, 1998) that cause histopathological 

damage. 

Conversely, the "bad" biochemical and molecular mechanisms in hypoxia or ischemia 

include the Heat Shock Proteins (HSPs), which are thought to bind to denaturized proteins. In 

addition, inflammatory cytokines (such as TNF-α and IL-1β) appear as early as one hour after 

cerebral ischemia or brain trauma and act as chemo attractants to leukocytes (Ashwal, Tone, 

Tian, Cole, & Pearce, 1998; Barone & Feuerstein, 1999; Fan, Young, Barone, Feuerstein, Smith, 

& McIntosh, 1996). The NF-kappa B response to the oxidative stress in penumbra is similar to 

that of the protectors, while the prostaglandin synthesizing enzyme cyclo-oxygenase-2 (COX-2) 

occurs in neutrophils, vascular cells, and neurons (Drake & Iadecola, 2006). Furthermore, 

ICAM, ELAM, as well as tissue metal proteases, penetrate the leukocytes through the blood 

brain barrier (BBB) (Hassmann, 2006). Growth factors (GFs- nerve growth factor, brain derived 
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neurotrophic factor (BDNF), glial derived growth factors (GDNF), basic and acidic fibroblastic 

growth factors (FGF), and the transforming growth factor super family (TGF) (Leker & 

Shohami, 2002) all increase the magnitude of the protective effect of magnesium and 

hypothermia treatment. Another "bad" biochemical is calpain, which activates autophagocytosis. 

Autophagocytotic cell death produces lysosomes with mono- or multilayered lipid membrane 

vesicles that enclose regions of cytoplasm and organelles. The characteristic morphology of 

autophagocytotic cell death includes condensed cytoplasm, large vacuoles, lysosomes, and a 

nucleus with irregularly shaped chromatin. Cell death is defined as eosinophilic, shrunken 

neurons or neurons showing autophagocytotic morphology (Lipton, 1999).  

2.2.3 Cellular death: apoptosis vs. necrosis 

Cell death occurs at the point at which cells are unable to recover their normal morphology and 

function (Lipton, 1999). Apoptosis, a normal developmental process, differs from necrosis 

(Figure 2). Apoptosis is described as the orchestrated collapse of a cell, staged membrane 

bleeding, cell shrinkage, nuclear fragmentation, chromatin condensation, and the budding off of 

intact cell fragments (apoptotic bodies). Necrosis is a degenerative phenomenon produced by 

major environmental changes such as severe ischemia, extremes of temperature, and mechanical 

trauma. The characteristics of necrosis are swelling of organelles, cytoplasm, membrane 

disruption, and disintegration of the cell body (Rollins, Perkins, Mandybir, & Zhang, 2002).  
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Figure 2.  Illustration of the Hypoxic and Ischemic Pathway 

 

In summary, cerebral hypoxia/ischemia results from impairment of CBF and the resulting 

diminished delivery of oxygen and glucose to brain cells. These events produce primary injury, 

but are also responsible for secondary brain injury after TBI. By understanding these events, we 

can identify how to limit secondary injury by searching for an endogenous neuroprotector that 

help improve the clinical outcomes of patients following TBI.  
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2.3 NEUROGLOBIN (NGB) 

2.3.1 Ngb and globins 

The globins have five family members: hemoglobin (Hb), Myoglobin (Mb), cytoglobin (cyto), 

hemoglobin X, and Ngb; all are found in bacteria, protists, plants, fungi, and both vertebral and 

non-vertebral animals (Burmester, Weich, et al., 2000; Sun, Jin, et al., 2001; Pesce, Dewilde, et 

al., 2003; Nienhaus, Kriegl, et al., 2004). Globins maintain binding, storing, transporting, 

scavenging, detoxification, and gas-sending functions (Dewilde & Moens, 2000; Sun, Jin, et al., 

2003). Hb and Mb are normally found within the mM range, but the Ngb and Cyto are only 

found within the μM range (Fago, Hundahl, et al., 2004). Additionally, there is also globin X, the 

newest globin member, but little is known about it beyond the fact that it exists in lower 

vertebrates and invertebrate species.  

Normally, globins have the same redox statement of octahedral coordination geometry 

with six potential binding sites. Heme pyrrole nitrogens occupy four equal binding sites and 

leave one histidine chain, which allows proximal (His96-F8: the eight amino acid along the F 

helix with the globin structure; fifth coordination) and distal (His64E7; sixth coordination) 

coordination with the central iron atom (ferrous, Fe2+; ferric, Fe3+) (Trent III, Watts, & Hargrove, 

2001). In general, globins are observed in a pentacoordinated (deoxygenated) state except when 

some pathological situation, such as acute or chronic hypoxia or ischemia, induces a change to 

the hexacoordinated (oxygenated) state (Pesce, Bolognesi, et al., 2002). Therefore, when the 

distal coordinate is empty without any endogenous or exogenous (external) ligands, it is in the 

pentacoordinate state. In contrast, the six-sided hexacoordinate state has already bonded with 

endogenous or exogenous ligands. The oxygen binding and dissociation rate balance the 
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proximal (His96-F8) and distal (His64-E7) with the heme (iron). The ligand binding competition 

is equal, although His96-F8 and His64-E7 have their own specific ligand binding affinity and 

choice. Thus, this basic globin structure performs differently in each globin during various 

needs; it also depends on the temperature and pH due to the Bohn effect.  

 

2.3.1.1 Similarity of neuroglobin to other globins   Ngb has been studied in 11 mammals, 1 

bird, and 4 teleost fish species (Burmester, Haberkamp, et al., 2007). The expressed sequence 

tags (ESTs) have shown that human Ngb and vertebral myoglobins share less than 21% of their 

amino acid sequences; human Ngb and vertebral hemoglobin share less than 25% of their amino 

acid sequences, which are greater than 1,100 protein when a comparison is made between man 

and mouse (Burmester, Weich, et al., 2000; Couture, Burmester, et al., 2001; Dewilde, Kiger, et 

al., 2001; Kriegl, Bhattacharyya, et al., 2002; Pesce, Dewilde, et al., 2003). Ngb has a high 

oxygen affinity with a half-saturation pressure (P50) of ~1.9-2.3 torr (1 torr at 37º C) when 

compared to mammalian hemoglobin (~26 torr), while myoglobin’s P50 is even lower (~1 torr) 

(Burmester, T., B. Weich, 2000; Dewilde, S., L. Kiger, et al., 2001). Both Ngb and Cyto have 

several similar globin structures in intron/exon (3/4), disulfide bond (S-S), helices (α helices with 

A to H), the amount of globin (μM), cysteins, and structure. 
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Table 1.  The Biochemical and Physiological Characteristics of All Globin’s Members 

Globins Hemoglobin 
(Hb) 

Myoglobin Cytoglobin 
(Cyto) 

Neuroglobin  
(Ngb) 

GlobinX  
(Mb) (Gb X) 

Histoglobin (His) 
Structure Tetrameric Monomeria Monomeria Dimeria Unknown 
Region (Helices) A-H  A-H A-H A-H A-H 
Chromosome Chrom11p15.5 Chrom22q13.1 Chrom 17q25.3 Chrom14q24.3 Unknown 

Chrom16p13.3 
Introns 2 3 2 3 2 
Exons 3 4 2 4 3 
Form 2α, 2β α Unknown α 1α, 1β 
Size α: 141aa  151 aa  200-205 aa 190 aa 140 aa 
 β: 146 aa 17KDa 23 KDa 21KDa  
 65 KDa     
Amount mM mM μM μM μM 
Cysteins CD7, D5 CD7, D5 CD7,D5, G18-19 Unknown CD7, D5, G18-19 
Oxygen affinity 26 Torr 1 Torr (highest) 1.5-2 Torr Unknown  

hexa: Fe3+/ hexa: Fe3+/H2O Characteristics penta: normal 
hexa: acute 
hypoxia/ischemia 

Unknown penta: normal 
 H2O (high 

spin) 
(high spin)  hexa: chronic 

hypoxia/ischemia  None  
Disulfide bond 
(S-S) 

None  Yes Unknown Yes 
 Skeletal & heart 

muscles 
   

Location RBC CNS, PNS, 
retina & 
endocrine 

Low vertebrates 
invertebrates 

All tissues 
   Fibroblast of the 

ciliary & choroide    Fish & 
amphibians     Collagen 

synthesis   Transport O2   
Functions O2 binding,  Scavenge NO O2 scavenger Binding O2 & 

gaseous ligands 
O2 delivery 

  O2 transport Aerobic 
metabolism in the 
mitochondria 

O2 sensor 
   Anti-hypoxia  

 /ischemia 
protector Act as peroxidase  
Enzymes 

 

2.3.2 Neuroglobin locations 

Burmster, Weich, et al (2000) used an RNA Master Blot in the first study to quantify the Ngb 

expression through human and mice tissue. Ngb exists in neurons in both the central cerebral and 

peripheral neuronal systems, including the endocrine system and retina where nerve cells have 

high energy. In human brain tissue, the highest level of Ngb expression is found in the 

subthalamic nucleus. Expressed as a percentage of the level of expression in the subthalamic 
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nucleus, Ngb expression is 73% in the frontal lobe and the thalamus, 70% in the occipital pole, 

61% in the medulla oblongata, 50% in the temporal lobe, 44% in the cerebral cortex, 43% in the 

substantial nigra, 21% in the putamen, 13% in the amygdale, 11% in the caudate nucleus, 11% in 

the hippocampus (CA1, 2, 3, and 4, especially in the pyramidal layer), 10% in the cerebellum, 

23% in the whole brain (Wakasugi, Nakano, et al., 2003; & Saaler-Reinhardt, et al., 2002), and 

34% in the fetal brain. Unlike this pioneering study, Zhang’s later study (2002), which used 

Northern Blot analysis, showed that out of 12 human tissues only the brain showed Ngb 

expression. Cerebral cortex, hippocampus, thalamus, subthalamus, olfactory bulb, and brain 

cerebellum are the most important to cerebral function; they are also especially sensitive to 

cerebral hypoxia and ischemia and not surprisingly, show high Ngb mRNA expression in both 

mice and humans (Burmester, Weich, Reinhardt, & Kankeln, 2000, Zhang, Wang, Deng, Li, 

Wang, Fan, Xu, Meng, Qian, & He, 2002). Unfortunately, many Ngb studies use Ngb mRNA 

and protein from a variety of these locations, which may impair the ability to compare results.  

Ngb expression has also been found in other human tissues such as the pituitary gland, 

appendix, adrenal gland, lungs, and colon. However, Ngb expression in the spinal cord, pancreas, 

small intestine, stomach, testes, lymph nodes, ovaries, and thymus is less than 10% than what has 

been found in the subthalamic nucleus. Ngb has not been found in the heart, aorta, skeletal 

muscle, bladder, uterus, prostate, thyroid glands, salivary gland, mammary gland, liver, spleen, 

peripheral leukocyte, lymph nodes, bone marrow, trachea or placenta, glial cells, heart, kidney, 

liver, spleen, thymus or fetal lung (Burmster, T., B. Weich, et al, 2000). Burmster first localized 

Ngb to the brain, but later researchers have found that Ngb has a high local concentration in 

neurons shortly after hypoxia and ischemia (Couture, Burmester, Hankeln, & Rousseau, 2001). 
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Generally, Ngb is found in the micromolar range and consists of less than 0.01% of the total 

protein content. 

Schmidt et al. (2003) reported that the Ngb protein appears in all neurons of the animal 

retina (the plexiform layers and the ellipsoid region of the photoreceptor inner segment which 

consumes the most oxygen, and expresses Ng mRNA in the perikarya and the ganglion layers 

except pigment epithelium (Burmester, & Hankeln, 2004; Schmidt, Laufs, 2005; Bentmann, 

Schmidt, et al., 2005; Hankeln, Ebner, et al., 2005; Rajendram , Rao, 2007) but not in the retinal 

pigment epithelium. The concentration of Ngb in the total retina ranges from 100 to 200 μM, 

100-200 fold greater than the total brain Ngb concentration, which is 1 μM (Dewilde, Kiger, 

Burmester, Hankeln, Baudin-Creuza, Aerts, et al., 2001; Schmidt, Giessl, et al., 2003). The retina 

has the highest oxygen demand of any tissue in humans. High metabolic energy regions require 

more energy and ATP from glycolysis and oxidative phosphorylation in terms of the functions of 

mitochondria and Ngb supplies in the retina. However, the concentration of Ngb in the eye may 

vary depending upon the proximity of the tissue layers to the mitochondria and major blood 

supply vessels.  

2.3.3 The basic structure of neuroglobin (Ngb) 

The human monomeric neuroglobin (Ngb) gene, which is located on chromosome 14q24.3, 

consists of 151 amino acids and has a small molecular mass of 17,000 Daton (17 kDa) 

(Burmester & Weich, et al., 2000; Dewilde & Moens, 2000; Sun & Jin, et al., 2001; Dewilde & 

Kiger, et al., 2001; Kriegl, Bhattacharyya, et al., 2002; Pesce, Nardini, et al., 2002; Wystub, 

Ebner, et al., 2004). Ngb has seven/eight α helices (A, B, C, D, E, F, G, and H), beginning with 

the N terminal and ending with the C terminal of the α-helics. The three intron/four exon 
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structure, located on the B12-2, E11-0, and G7-0 regions, are without genetic markers 

(Burmester & Weich, et al., 2000; Pesce, and Bolognesi, et al., 2002; Zhang, & Wang, et al., 

2002; Pesce, & Dewilde, et al., 2003). The intron positions are coded as follows: B12-2 has 

position 2 of the 12th amino acid of the globin α-helix with 1445 base pairs (bp); E11-0 has 

position 631 bp; and G7-0 has position on 1,797 bp. The full-length cDNA of human Ngb 

according to the Gen Bank accession is 1,909 bp in size and contains an open reading frame from 

nucleotide 376 to nucleotide 831 (Zhang & Wang, et al., 2002). The 5’-non-coding region is 375 

bp in length and the 3’-noncoding region is 1,078 bp in size. The Ngb has a genomic DNA 

sequence of 8,041 bp in size and three intons/four exons with a typical junctions GT-AG 

consensus motif of the splice donor and acceptor site. The Ngb contains 4753 protein atoms, 160 

ordered solvent atoms, and seven sulfate anions (Pesce, Dewilde, et al., 2003). Figure 3 describes 

the structure of the Ngb in helices, intron/exon, and some special forms.  

9

N           N
His (96) F8-- Fe2+Ngb /Fe3+--His (64) E7       (Hexa)

N           N CO, O2, or NO
[Proximal residue]               [Distal residue]

Extron 1 Extron 2 Extron 3 Extron 4

Intron 1 Intron 3Intron 2

 

Figure 3. Summary of the Neuroglobin (Ngb) Structure 
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2.3.4 Special structures of neuroglobin (Ngb) 

Ngb has five unique structures that maintain special functions in hypoxia or ischemia. The redox 

state for both Fe2+ and Fe3+ forms have pentacoordinated status and a hexacoordinated status. 

Secondly, the imidaoles stabilize the binding between heme (iron) with His64-E7 and His96-F8. 

Thirdly, the His64-E7 of the hexacoordinate state has biphases: high associated rate (Kon) with 

O2 and carbon monoxide (CO) and low dissociation rate (Koff) with Fe2+. Fourth, three cysteins 

(CD7, D5, and G18-19) and one disulfide bond (which exists in the extracellular space) are 

located at the CD and D of α-helix; these affect the O2 binding action through oxidation and the 

reduction term on ferrous (Fe2+). Finally, the CD-1 has a phenylalaine residue, which increases 

the protein-protein (π-π) interaction and influences the interaction in HisE7 and HisF8 with heme 

(iron) (Burmester, T., B. Weich, et al, 2000). 

The iron atom in the heme prosthetic group of Ngb exists in either the Fe2+ or the Fe3+ 

redox with pentacoordinated (oxy) and hexacoordinated (deoxy) states (Reuss, S., S. Saaler-

Reinhardt, et al., 2002, Pesce, A., S. Dewilde, et al., 2004). The Ngb presents the 

pentacoordinate under normal conditions, but becomes unstable and rapidly converts into ferric 

Ngb through autoxidation. The Ngb presents the hexacoordinate (low spin) under physiological 

states (anerobics or hypoxia/ischemia). The proximal (His96-F8) and distal (His64-E7) sites bind 

with heme (both Fe2+ and Fe3+) on the range of helix E and F loop.  

The proximal histidine (His96-F8) does not display any exogenous ligand but does show 

such endogenous ligands as water molecules (Kriegl, & Bhattacharyya, et al., 2002, Trent, 3rd 

and Hargrove, 2002, Hankeln, Ebner, et al., 2005). In the absence of the exogenous ligand, the 

Fe2+/Fe3+ forms of hexacoordinated Ngb appear with the distal endogenous protein histidines 

(His64-E7). On the other hand, the distal histidine (His64-E7) dissociates coordinates to the 
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Fe3+-Ngb center before an exogenous (external) ligand can bind to the heme; this mechanism 

controls the Ngb oxygenation. The largest cavity (120 Å) between His64-E7 and His96-F8 

regions (CD-D) supplies the O2 exchange (Pesce, A., S. Dewilde, et al., 2003). Thus, the large 

protein matrix cavity acts as a storage area for the ligand during the protein functional cycle in 

the hexacoordinated state. Figure 4 summarizes the Ngb structure in both the pentacoordinated 

and hexacoordinated states. 

 
Pentacoordinated Ngb (oxygen, normoxic or aerobic, unstable)  
                                                          N                 N 
                        His (96) F8–[imidozole]-- Fe2+ (ferrous) –[imidozole]--E7His (64)             
                                                          N                N  
                                                          [CD-D region] 
                                                           N                 N 
                       His (96) F8–[imidozole]—Fe3+ (ferric) –[imidozole]--E7His (64)         
                                                          N                N  
 
   
 Hexacoordinated Ngb (deoxyen, anerobics; stable)     
                                                           N                 N 
                       His (96) F8–[imidozole]-- Fe2+ (ferrous) –[imidozole]--E7His (64)---CO, NO, O2 
                                                          N                N  
                                                                  Fe2+ (ferrous) 1) Biphases: opened & closed 
                                                                                         2) Fe2+--CO/O2-E7: on rate (Kon; high) 
                                                                                                                          off rate (Koff; low)   
                                                                                       2) S-S: oxidation & reduction 
                                                           N                 N 
                       His (96) F8–[imidazole]—Fe3+ (ferric) [imidazole] ---GDP(Gα)         
                                                          N                N                          ---Na-K ATPase 
                                                                                                         ---H2O (high spin) 
                                                                                                       ---Histidine, OH- ,CN-,imidazole 
 
   ps: His96-F8 = proximal histidine (5th coordinated); 
         His64-E7 = distal histidine (6th coordinated) 
 
Figure 4. Summaries of the Structure of Ngb in Both the Pentacoordinated and Hexacoordinated  

 

The second unique structure of Ngb, the imidazole side chain of a histidine residue, is 

located at the fifth ligand, which is bound to the heme proximal His96-F8 histidine, and to the 
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sixth ligand at the distal His64-E7 histidine with an orthogonal azimuthal orientation in the Ngb 

(Couture, Burmester, Hankeln & Rousseau, 2001). The purpose of the imidazole is to stabilize 

the binding reaction between heme with HisE7 and HisF8. Distal His64-E7, which is directly, 

coordinated to the heme in both the Fe2+ and Fe3+ forms, causing a bend of the E-helix (Dewilde, 

Kiger, et al., 2001).  

Third, O2 and CO can display the distal histidine of ferrous Ngb to produce ferrous 

oxygen-bound Ngb (Ngb Fe2+-O2) or ferrous carbon monoxide–bound Ngb (Ngb Fe2+-CO) 

(Wakasugi, Nakano, et al., 2004). When Ngb-Fe2+ binds with CO, the nearest residue has either a 

positive or a negative charge, which stabilizes the binding with CO. Nevertheless, when NgbFe2+ 

binds with CO, it has two states: closed when CO interacts with the residues; opened when there 

is no interaction. The binding capablities of O2 and CO are similarly stronger as compared to the 

binding capability of NO2. Within a few minutes, the average O2 affinity of recombinant human 

Ngb becomes 1 torr at 37° C (Dewilde, Kiger, et al. 2001; Fago,. Hundahl, et al., 2004; Pesce, 

Bolognesi, et al., 2002; Geuens, Brouns, et al., 2003, Trent, Watts, et al., 2001; Dewilde, Kiger, 

Burmester, Hankeln, Baudin-Creuza, Aerts, et al., 2001). Remarkably, both O2 and CO have a 

strong and rapid affinity, and do not easily disconnect from Ngb-Fe2+ in the hexacoordinated 

state. Kinetic studies on Ngb at room temperature (25-37° C) have found extremely fast CO and 

O2 Kon to the pentacoordinate deoxy form (Kriegl, Bhattacharyya, et al., 2002). Histidine 

binding in the hexacoordinated takes about one millionth of a second. Koff times vary, 

depending upon the histidine affinity (as long as one second); oxygen binds rapidly but 

dissociates slowly (as much as one second) (Kiger, Uzan, et al., 2004). Furthermore, X-ray data 

of human Ngb (Trandafir, Van Doorslaer, et al., 2004) show that the affinity for exogenous 

ligands at positions B10, E7, and E11 is controlled by residues (O2, NO, or CO). As a result, O2 
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must compete with the proximal histidine to bind to the iron. Oxygen binding of Ngb may be 

linked to the redox state of the cell because O2 is less sensitive than CO to electrostatic 

interactions and binds tighter with iron than CO. The following formula explains the relationship 

between CO and positive and negative residues in position HisE7.    

      NgbFe2+-C=O-X+   or   NgbFe2+-C =O+ X- 

In addition, the expected rate of dissociation of Fe3+ from the His64-E7 of Ngb is lower 

in alkaline than in neutral conditions (Herold, Fago, et al., 2004; Vallone, Nienhaus, et al., 2004). 

Hexacoordinated Ngb-Fe3+ is associated with GDI (46 cystein and 53 cystein) and Na-K ATPase 

during hypoxia or ischemia. Ngb-Fe3+ has a seven-fold more stable bond with cyanide (CN-) in 

the presence of this disulfide bond (S-S) in alkaline conditions. Moreover, it has high spin 

binding with water molecules and low spin binding with carbohydrate (OH-), histidine, 

imidazole, and cyanide (CN-) in the absence of cystein S-S bonds. No polar or low polarity 

residues or ordered water molecules are present inside the heme distal pocket (Pesce, Dewilde, et 

al., 2003).  

Ngb has three cysteine residues (position in CysCD5 (46), CysD7 (55), and CysG18-19 

(121) which form intracellular disulphide bonds (S-S) between the CD and D loops (Pesce, 

Dewilde, et al., 2003; Hamdane, Kiger, et al., 2003; Vinck, Van Doorslaer, et al., 2004; Hankeln, 

Ebner, et al., 2005; Hankeln, Ebner, et al., 2005). The cystein residues in globins form disulfide 

or catalytic bonds by being part of direct ligand binding. The disulphide bonds contribute to 

oxygen affinity under certain pH (4-11) and temperature (25°-37°C) conditions. A stable 

structure of the disulfide bond between Cys46 and Cys55 of Ngb is located at the CD and D 

helix in hypoxia (Wakasugi, Nakano, et al., 2004). Thus, either the Fe2+ with sulfur-bridges 

human Ngb or Fe3+ with O2 affinity reduces the histidine binding affinity, but does not directly 
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influence protein stability. Almost 90% of the O2 affinity occurs with the disulfide bond reduced 

under anaerobic conditions (Hamdane, Kiger, et al., 2003; Trandafir, Van Doorslaer, et al., 

2004). These anaerobic conditions reduce the disulfide bridges in human Ngb and allow the Ngb 

to bind with oxygen.  

Finally, the CD-1 phenylalaine enhances the protein-protein (π-π) interaction between 

heme with His96-F8 in both pentacoordinated and hexacoordinated forms. The cystein exists in 

the CD-D region, which is especially important in hypoxia. The π-π reaction in the human Ngb 

is not only on a certain area but is also involved with oxygen binding.  

2.3.5 Comparing Ngb in humans and rats or mice 

Several basic identified structures have been found in Ngb in humans and mice. The following 

table explains the difference in molecular mass, helix chains, intron and exon structure, cavities, 

cystein and histidine, molecular, cDNA, nucleotic acide sequence, and amino acid sequence. 

Table 2 compares Ngb in Humans and Rats or Mice. 
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Table 2. Comparison of Ngb in Humans and Rats, or Mice 

Characteristic Human  Rats/ Mice 
 

Mass of molecule 17 kDa (16.931 w S-S; 16,930 w/o S- 18 kDa 
S) 

Chromosome 14q24.3 14q24.3 
Helices chain 1α 1α 
Intron B12-2. G7, E11 B12-2, G7, E11 
Disulfide bond (S-S) Yes Yes 
Structure His(64)E7-Fe-His(96)F8 His(64)E7-Fe-His(96)F8 
Cavity 1 matrix cavity (120 Å ) 2 small cavity (16Å, 11 Å) 

1 large (287 Å ) 
Cystein CD7, D5, G18-19 CD7, D5 
Molecular CD-D flexibility conformation EF 

4753 protein atoms 3-148 amino acid 
160 ordered solvent atoms 116 water molecular 
7 sulphate anions  

cDNA 1909 base pairs (bps)  
Nucleotic acid 
sequence  

 Rat: 86% similar to mouse 
        88% similar to human 

Amino acid sequence 151 aa 159 aa 
Rat: 96% similar to mouse 
        94% similar to human 

 

2.3.6 Roles and functions of neuroglobin 

Researchers have shown that the Ngb has the following functions: 1) a scavenger NO; 2) an 

enzyme with nicotinamide adenine dinucleotide hydrogenase NADH oxidases for glycolysis 

from ATP; 3) an O2 carrier or sensor that diffuses to mitochondria under aerobic or anaerobic 

metabolism and transports O2 concentrated response; 4) a detoxifier; and 5) a neuroprotector 

from ischemic insult and apoptosis through cellular death receptors or pathways (Moens, 

Dewilde, 2000; Dewilde, Kiger, et al., 2001; Goovaers, et al, 2002; Reuss, Saaler-Reinhardt, et 

al., 2002; & Van Doorslaer, S., S. Dewilde, et al., 2003; Wakasugi, K., T. Nakano, et al., 2003; 

Burmester, & Hankeln., 2004; Fordel, Geuens, et al., 2004, Trandafir, Van Doorslaer, et al., 
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2004; Hankeln, Ebner, et al., 2005; Schmidt, Laufs, et al., 2005; Fordel, Thijs, et al., 2006). 

Animal models have provided a better understanding of Ngb expression and its functions by 

demonstrating Ngb expression and function in neuronal hypoxia in vitro and focal cerebral 

ischemia in vivo (Sun, Xiao, Zhu, Greenberg, 2001). 

Ngb, which is induced under hypoxic/ischemic and oxidative stress conditions, protects 

neurons (Pesce, Dewilde, et al., 2003). However, under hypoxic or ischemic conditions, Ngb 

transports oxygen across the BBB and increases the availability of oxygen to mitochondria of 

highly metabolic neuronal tissues (Burmester, T., B. Weich, et al, 2000). These previous studies 

show that Ngb, in order to reach the BBB and endothelial cells, is located close to the 

mitochondria in neurons, as well as close to the cellular surface. Thus, Ngb is sensitive to the 

biochemical changes in cells at the first acute moment of crisis.  

 

2.3.6.1 Neuroglobin (Ngb) as a NO scavenger Ngb acts as scavenger of both reactive oxygen 

and nitric oxide species. Both nNOS and eNOS are calcium dependent and located on 

chromosome 12 and chromosome 7 (Lipton, 1999). The reasons that Ngb may be better than 

nNOS during hypoxia and ischemia are that Ngb 1) does not rely on calcium influx into the cells, 

2) does not cause vasodilatation; and 3) does not produce any toxicity in cells (Leker, & 

Shohami, 2002). As a consequence, Ngb is better pathway than nNOS to protect against hypoxia 

and ischemia.  

Ngb serves to save cells from DNA breakdown, endoplasmic reticulum (ER) disturbance, 

loose glucose, lipid, protein synthesis, and biochemical damage (Fordel, Thijs, et al., 2007, 

Burmester, & Hankeln, 2004, Van Doorslaer, Dewilde, et al., 2003). Researchers have found that 

only Ngb- Fe3+ is associated with all toxic products from ROS and NOS by binding with NO and 
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releasing more oxygen to supply the needs of the anaerobic metabolic state in order to decrease 

the levels of cytochrome c, calpain, and caspase in mitochondria. Ngb-ferryl (Ngb-Fe4+) has no 

association with ROS and NOS (Fordel, Thijs, et al., 2007). Therefore, Ngb-Fe4+ cytotoxicity 

does not interact with peroxides (Fago, Hundahl, et al., 2004). The Ngb in its NgbFe2+-NO (nitric 

oxide bound) form is an efficient scavenger of ONOO-, which is generated at a high rate 

following brain ischemia. Thus, Ngb binds with all ROS and NOS in order to release O2 into the 

mitochondria in the cells; this reverses the pathway to apoptosis and necrosis (Figure 5). Rodrigo 

et al reported that Purkinje cells and dendrites expressed nNOS and iNOS with the Ngb after 

finding ischemia-reperfusion (2001). 

Ca++ (up; depolarization): 
ROS ----- (superoxide dismutase) -->H2O2 (hydrogen peroxide) 

            ----- (cytosol) -------------------  O2- (superoxide)  
 NOS (iNOS, eNOS, & nNOS) 

            NO + O2-(superoxide)  ONOO- (peroxinitrite)  
                                                          ONOO-+ CO2 --> ONOOCO2- (nitrosoperoxocarboxylate) 

NO (mitochondria)  cytochrome C  calpain caspoase 3/7  DNA fragment  cell 
death  
 

Figure 5. Ngb vs. ROS and NOS 

 

2.3.6.2 Neuroglobin (Ngb) as an enzyme  This section describes each special enzymatic 

pathway of Ngb in hypoxia at the ischemia level. Ngb is an enzyme which reacts with soluble 

granulate cyclase-protein kinase G (sGC-PKG), protein kinase C (PKC), cyclic guanosine 3’, 5’-

monophosphate (cGMP), guanine nucleotide dissociation inhibitor (GDI), regulators of G 

signaling (RGS), and G protein-coupled receptor kinases (GRK), cytochrome c, flotillin, 

cathepsin, cysteine, and hippocampus neurons 33 (HN33). This section presents the special 

pathways and enzymes with Ngb in hypoxic and ischemic conditions. 
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Soluble guanylate cyclase-protein kinase G (sGC-PKG), in Purkinje cells of the 

cerebellum and olfactory bulb, as well as protein kinase C (PKC) pathways are involved in 

hemin-induced gene expression and erythroid differentiation (Figure 6)  (Zhu, Sun, Jin, & 

Greenberg, 2002). Both sGC-PKG and PKC are heme gene expressions that induce and react 

with Ngb to protect cells during hypoxia and ischemia. As a part of the heme gene, cGMP is a 

fundamental intermediary in the photo transduction response and synthesis. cGMP is catalyzed 

by the enzyme guanylate cyclase, which is activated by NO. High levels of guanylate cyclase 

have been detected in Purkinje cells of the cerebellum and in the olfactory bulb, where the Ngb is 

expressed during hypoxia and ischemia (Fago, Hundahl, et al., 2004).  

 

Hypoxia/Ischemia  sGC-PKG, PKC, and cGMP (heme genes)  Ngb (up) 
 

Figure 6. Protein G vs. Ngb 
 
             

Under hypoxia/ischemia, Ngb brings more O2 to stop DNA fragmentation in 

mitochondria due to cytochrome c, caspase, and calpain toxicity (Figure 7.)  While cathepsin is 

toxic in the intracellular space, cystain c and flotillin works with Ngb in order to decrease cell 

death.  

Aerobics: Cytochrome c (down)  caspase (up)  calpain (up)  DNA fragment  cell death 

                   Cytochrome c (up) ---------------------------------------- Ngb (mitochondria) 

Hypoxia or ischemia: Cathepsin (up) from lysosome -----Cyctatin C and Flotillin + Ngb (up)  

Figure 7. Under Aerobic and Hypoxic Conditions and Neurochemical Mechanisms 

 

The four peptides of the human Ngb (Ngb 31-47, Ngb 48-66, Ngb 48-67, Ngb 103-119) 

are located at the binding site for Gα (Zhu, Sun, Jin, & Greenberg, 2002). The human Ngb Fe3+, 
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a result of rapid autoxidation, binds exclusively to the GDP-bound form of the Gα and frees the 

DTP with Gβγ under a stress-responsive sensor for signal transduction in the brain (Nienhaus, 

Kriegl, et al., 2004; Vallone, Nienhaus, et al., 2004; Sun, Jin, et al., 2003; Rajendram, 2007; 

Wakasugi, K., Nakanoet al., 2003). As a result, Ngb delivers O2 and NO as a guanine nucleotide 

dissociation inhibitor (GDI) which functions as the Gβγ and leads to protection against neuronal 

death (Anselmi, Brunori, et al., 2007; Khan, Sun, et al., 2007; Kitatsuji, Kurogochi, et al., 2007; 

Kitatsuji, Kurogochi, et al., 2007; Burmester, & Hankeln, 2004; Hankeln, Ebner, et al., 2005; 

Schwindinger, & Robishaw, 2001). Consequently, human Ngb has a 25 - 35% amino acid 

sequence homology with regulators of the G protein signaling (RGS) on extron and assists 

protein-protein interaction between the Ngb Fe3+ and GDI (GDP-Gα). This suggests that 

oxidized Ngb (Fe3+Ngb) inhibits GDP released from the Gα protein. Acidity, which decreases 

the rate of exogenous ligand binding to the pentacoordinate species, favors hexacoordination. 

Nevertheless, the coupled conformational change involves the EF loops of the Ngb. 

The on/off G protein ratio is either a ligand or signal-activated G protein-coupled 

receptor (GPCRs) that induce a GDP release from a Gα subunit and bind to the GTP (on) or GTP 

dissociated GPCR and Gβγ by biding with Gα (off) (Figure 8). The activity of the on/off G 

protein is based on a) guanine nucleotide exchange factors (GEFs), which stimulate GDP 

dissociation and subsequent GTP binding; b) guanine nucleotide dissociation inhibitors (GDIs), 

which inhibit GDP dissociation; and c) GTPase-activating proteins (GAPs), which enhance GTP 

hydrolysis (Wakasugi, K., T. Nakano, et al., 2003). Gβγ stimulates proliferation via a mitogen-

activated protein kinase (MAPK) pathway and promotes cell survival by activation of 

phosphotidylinositol 3-kinase (Wakasugi, K., T. Nakano, et al., 2003).  
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Aerobics: GDP (Gα) (Gβγ) ----------GPCR-------  GTP (Gα) & GTP (Gβγ) 
Anaerobics: GDP (Gα) (Gβγ) ------------------- ---  GDP (Gα) & G (βγ) +NgbFe3+  

 
Figure 8. GDP in Aerobics and Anaerobics 

 

2.3.6.3 Neuroglobin (Ngb) as an O2 sensor The brain only contains 2% of the body’s total 

weight; however, during rest it consumes about 20% of the available oxygen (Burmester, Weich, 

Reinhardt, & Hankeln, 2000; Zhang, Wang, et al., 2002; Wakasugi, Nakano, et al., 2003). Hence, 

Ngb plays a major role by transporting oxygen across the BBB, increasing the metabolic oxygen 

in neuronal tissues. Both the pH (acid or alkaline Bohr Effect) and temperature-dependent O2 

affinity influence O2 and CO binding on the Ngb (Fago, A., C. Hundahl, et al., 2004). This 

principle is based on the theory that when O2 decreases, CO2 increases; inhibiting decreases in 

pH.  

Based on the high Kon and low dissociation rates Koff, the intrinsic affinities for O2 and 

CO for the pentacoordinated form are quite high (Dewilde, S., L. Kiger, et al., 2001). At room 

temperature, the Ngb has Kon and Koff rates for O2 and CO below a pH value of 5-10 (Couture & 

Burmester, 2001; Pesce, Nardini, et al., 2002). Whenever the distal site is free (pentacoordinated 

form), a high rate of binding occurs; whenever the external ligand encounters the 

hexacoordinated form, the histidine dissociates, and the overall ligand is slowly replaced. When 

the Ngb is under acidosis, the rate of exogenous ligand decreases binding to the pentacoordinate 

species (normoxia), favoring hexacoordination; therefore, the coupled conformational change 

involves the EF loop (Vallone, Nienhaus, et al., 2004).  

In addition, a low O2 level causes an increase in NADH and facilitates the glycolytic 

production of ATP under semi-anaerobic conditions (Figure 9). It also reduces the cysteines, 
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breaks the disulfide bridge, and changes the release of O2 from the Ngb (Burmester, and 

Hankeln, 2004; Hankeln, Ebner, et al., 2005; Pesce, Bolognesi, et al., 2002). NO blocks all 

mitochondrial iron-sulfur enzymes, including NADH, which plays a major role for the Ngb by 

keeping the heme iron atom in an Fe2+ form during normal status (Wink, & Mitchell,  1998, 

Geuens, Brouns, et al., 2003, Trandafir, Hoogewijs, et al., 2007, Kitatsuji, Kurogochi, et al., 

2007). Conversely, when the O2 concentration increases, the free cysteines oxidize into an 

intramolecular disulfide bond with the O2 (Hamdane, Kiger, et al., 2003). On the other hand, 

when hypoxia/ischemia manifests in the neurons, NADH+ reduces the process in the citric cycle 

as well as the disulfide bond of the Ngb. The disulfide bond changes the histine binding affinity 

with reduction (oxygen released) and oxidation (without oxygen released) mechanisms. 

Hypoxia/Ischemia NO (up) --------  NADH <-------------Ngb (up) [O2-HisE7-Fe2+-HisF8]  

                   Ca++ (up)            
 

Figure 9. Hypoxia/Ischemia Ngb vs. NADH  

 

2.3.6.4 Neuroglobin as a detoxifier Toxifers, at some stage in hypoxia or ischemia, include the 

following: 1) the substances from ROS and NOS (H2O2, NO, ONOO-, CO2, ONOOCO2
-); 2) 

cathepsin, cobalt chloride (CoCl2), and deferixiamine (Dfx) or sodium nitroprusside (NaNP); and 

3) these hypoxia or ischemia inducible receptors or pathways: HIF, MAPK, NMDA, AMPA 

(Figure 10.). Therefore, NgbFe2+ tries to carry O2 against the surrounding environment without 

hurting the function of the cells and each organism.  
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Aerobics: NOS <---cytochrome c --- caspase ----- calpain <-----DNA fragment 

    (iNOS, nNOS, eNOS) 
                   Cathepsin, cystatin C, flotillin in lysosome (normally) 

                              NMDA, MAPK, HIF, NADH (stable)  
Anerobics: NOS ---NO  cytochrome c --  caspse ----  calpain -- -- NgbFe2+-O2 
                               (mitochondria)  

                   NO+ O2-  ONOO- or O2+CO2- ONOOCO2- - NgbFe2+-O2 
                  (cellular) 
                  NO  blood vessel  vasodilation and blood flow decreased  
     Glucose (down)  glycolysis  NMDA  
                                                        MAPK  GTP ----NgbFe3+-GDI 
     O2 (dropped) ------------------ MAPK HIF  Gβγ ----NgbFe3+-GDI 
                                                      NADH (mitochondria) ----NgbFe2+-O2 

 

Figure10.  Comparing Aerobics and Anerobics in NOS, O2, & Glucose Reaction 

 

2.3.6.5 Neuroglobin as a neuroprotector from hypoxia or ischemia insult There is only 

limited knowledge concerning the role of Ngb in brain hypoxia and ischemia (Figure 11) 

Throughout hypoxia or ischemia, mitogen-activated protein kinase (MAPK) stimulates the GTP 

and likewise indicates the HIF to the Gβγ (Hankeln, Ebner, et al., 2005, Sang, et al. 2003). HIF-1 

binds to the hypoxia response element (HRE) in the human EPO gene (5’-TACGTGCT-3’), 

which is identified by encoding (5’-RCGTG-3’). This gene sequence is shared by vascular 

endothelial growth factor (VEGF), heme oxygenase (HO), iNOS, glucose transporter-1 (GLUT-

1), glycolytic enzymes aldolase A, enolase 1, lactate dehydrogenase A, phosphofructokinase L, 

and phosphoglycerate kinase I  (Fordel, Geuens, et al., 2004, & Rajendram R, Rao NA 2007). 

HIF-1 is a phosphorylation-dependent and redox-sensitive protein that binds DNA in the major 

channel. While the HIF-1α is induced by hypoxic/ischemic stress to produce more Ngb, it also 

inhibits the MAPK/extracellular signal-regulated kinase (MEK) which activates HIF-1 (Pesce, 

Bolognesi, et al., 2002; Burmester & Hankeln, 2004; Wystub, Ebner, et al., 2004). To sum up, 

when hypoxic/ischemic injury to neurons or neuroprotective proteins occurs, Ngb reacts with the 
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EPO, VEGF, and heme oxygenase increases in anaerobic metabolism, tissue, vascularity, and 

oxygen delivery to maintain neural cell survival (Sun, Jin, et al., 2001).  

Hypoxia-------  HRE – HIF 1α -- MAPK, MEK--------------- Ngb (decreases)  
                           (Gene: related to: ---------------------------------  Ngb (increases) 
                        VEGF, HO, iNOS, Glut-1, aldolase A,  
                       lactate dehydrogease A, phosphofructokinase L, phosphoglycerate kinase 

 

Figure 11. Neuroprotectors under Hypoxia 

The sodium-potassium pump (Na+/K+ ATPase), located in the plasma membrane, 

maintains its resting potential while reacting with NaNP during hypoxia or ischemia. 

Accordingly, when the Ngb plays as the GDI in anaerobic, the Na+/K+ ATPase follows a similar 

pathway to the Ngb in the intracellular space.  

2.4 POSITIVE AND NEGATIVE NEUROGLOBIN FINDINGS IN ANIMAL AND 

HUMAN MODEL  

Under hypoxia/ischemia, the lack of oxygen stimulates the Ngb genes; Ngb mRNA was detected 

in the cytoplasm of neurons in many brain regions following hypoxia or ischemia in mice 

(Reuss, Saaler-Reinhardt, et al., 2002). Hypoxia/ischemia is known to reduce the pH and 

temperature of neuronal cells (Brunori, & Vallone, 2007; Fordel, Thijs, et al., 2007). This section 

focuses on those studies, using both animal models and humans, with both positive and negative 

outcomes.  

Sun, Xiao, Zhu, and Greenberg (2001) experimented with focal cerebral ischemia by 

occlusing the middle cerebral artery (MCAo) for 90 minutes, followed by reperfusion for 4-24 

hours. This led to greater Ngb immunoactivity in the cytoplasm of neurons around the ischemic 
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penumbra and less in those found in the ischemic core. In the same year, Venis also reported that 

an overexpression of the Ngb caused less hypoxic injury in mouse cells.  

Zhu, Sun, Jin, and Greenberg, (2002) discovered that hippocampus neurons 33 (HN33) 

induced Ngb expression. They used Western Blot to show an increase of four times over normal 

in the expression of Ngb protein within two hours. After 3 days, Ngb expression returned to 

normal.  

Sun, Y., Jin, K., Alyson, P., Xiao, O.M., Lin, X., Greenberg, D.A (2003) induced MCAo 

in Sprague-Dawley rats for 90 minutes and reperfusion for 24 hours. They discovered that a 

greater quantity of Ngb was associated with a 56-60% decrease in infarct volume (p < 0.02, N = 

5 per group). Moreover, they found no difference among the venous blood concentration of Na+, 

K+, Ca2+, and HCO3-or hemoglobin arterial blood pH, PO2, or PCO2, or mean arterial blood 

pressure.  

The following human Ngb studies are based on the work of Rajendram and Rao (2007). 

After studying three glaucoma patients (ages 3, 67, and 69 years), they discovered that the outer 

plexiform, inner segment of the photoreceptor layer, and inner/outer nuclear layers, but not the 

inner plexiform and ganglion cell layer, had the same positive Ngb expression and mRNA Ngb 

as found within the normal human retina associated with mitochondria. When intraocular 

pressure increased to pathological glaucoma levels, blood flow did not rise, but the oxygen needs 

did. However, Ngb expression in humans has not yet been demonstrated under natural 

conditions. While Ngb may serve to limit brain damage within a stroke population (Venis, 2001), 

no study has yet proven a correlation between Ngb function and ischemia in humans.  

Using an animal model, Zivic (1998) found that the average time to Ngb expression 

began in an average of 19.1 minutes within the cortex in response to half-maximal ischemia 
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damage, compared to 12.7 minutes in the hippocampus. He subsequently found a four times 

greater concentration of Ngb in the cortex than in the hippocampus. The study shows that the 

hippocampus might have less Ngb expression than the cortex. In other experiments, Greenberg 

and his colleagues cultured mouse neuronal cells with and without O2 for 24 hours and found the 

experimental group had a higher level of Ngb protein and mRNA than the controls (Venis, 

2001). Neuroprotection from in vivo ischemia, decreased by administration of an Ngb antisense 

oligodeoxynucleotide, is enhanced by Ngb overexpression (Sun, Jin, et al., 2001; Zhu, Sun, et 

al., 2002; Garry, & Mammen, 2003; Garry, Mammen, Pradeep 2003). Ngb expression increased 

under hypoxic conditions in vitro as well as during focal cerebral ischemia in vivo (Sun et al., 

2001). These study results explain the effects of Ngb concentration on infarct size (50% 

decreased) and functional deficits after a 90-minute occlusion of the middle cerebral artery in a 

rat model during the reperfusion period. An Ngb antisense oligodeoxynucleotide (ODN) 

increases infarct size two-fold; it also worsens the neurological outcome after an induced in vivo 

focal ischemia in the rat following treatment with an adenoma-associated virus (AAV) targeted 

to the Ngb (Sun, Jin, et al., 2003). Sun, Jin, et al. (2001) and Brunori, Giuffre, et al. (2005) tested 

Ngb detoxification of NO by catalyzing the reduction of 2NO to N2O in vitro with a negative 

outcome.  

Shan et al. (2004), who used the gerbil model of global forebrain ischemia, found that 

increased levels of Ngb and its mRNA were expressed within 10-20 minutes. In 2000, Greenberg 

and his colleagues researched mouse neuronal cells both with and without O2 for up to 24 hours. 

In another study in 2001, Ngb mRNA and protein upregulated 2.5 fold after 16 hours of anoxia 

in the animal model. Cells deprived of oxygen produced higher levels of Ngb protein and mRNA 

than the controls. In-vivo simulation of ischemia by cerebral vascular occlusion for over 90 

 41 



minutes also resulted in a higher expression of Ngb in rat cortex cells (Venis, 2001). Ngb not 

only protects the brain but also uses the high level of the eNOS within endothelial cells to reduce 

infract volume in cardiac tissue (Khan, Wang, et al., 2006). Sun Jin, et al. (2001) deprived cells 

of O2 for up to 24 hours; this caused a greater than two-fold increase in Ngb and its mRNA 

which related to the hypoxia inducible pathway and the addition of CoCl or deferoxamine. The 

same results were found by Zhu and Sun., et al (2002) study.  

Casado, Pannell, Whalen, Clauw, and Baraniuk, J.N. (2005) took CSF from six humans 

with chronic pain. They studied six different neuroglobin peptides by investigating the mass 

over-charge (m/z), charge state, elution time, position, sequence, and molecular weight for each 

peptide by using a CapLC nanoESI Q-TOF tandem mass spectrometry. CSF still provides 60% 

of total brain neuroglobin mRNA expression. This study found no association between the 

presence of neuroglobin and such clinical factors as age, duration of pain, and tenderness to 

pressure.  

In the study of Shang, Zhou, Wang, Gao, Fan, Wang, et al. (2006), Ngb expression was 

found in serum in following sham occlusion 2, 8, 48, and 72 hours (1.42-9.2ng/ml (M + 

SD=4.61+ 2.53 ng/ml in sham; 5.82+3.5; 7.69 +2.97 ng/ml, 2 fold, and 3 fold) after 20 minute 

bilateral common carotid artery occlusion in Mongolian gerbils. The authors explained that 

ischemia insult impairs the BBB and induces neuronal membrane dysfunction. The Ngb protein 

then appeared in the blood serum and cerebral spinal fluid which Casado reported in his 2005 

article. Mammen and Shelton, et al. (2002) demonstrated increased Ngb expression by using 

10% O2 and 90% N2 for one hour in adult murine mice. The positive effects of Ngb contributed 

to the survival of the tissue in the penumbral area around the occluded vessel. This zone has a 

very low concentration of O2 but a higher level of NO (Brunori & Vallone 2006).  
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In contrast, some studies of animal models, including that of Hundahl and Kelsen, et al. 

(2006), found negative results regarding Ngb and its mRNA in response to ischemia. These 

studies reported that less Ngb mRNA was expressed in the ischemic hemispheres of transient 

MCAo animals after 24 hours (p < 0.002). A lower number of Ngb (p < 0.004) and NeuN-

positive (p < 0.001) striatal neurons were found in transient MCAo rats, but the Ngb was found 

in the limbic system using immunohistochemistry. Less than 1/2,500 of neurons in the striatum 

expressed Ngb and there was a strong negative correlation (γ =0.85; p < 0.02) between Ngb 

immunopositive neurons and infract volume. Mammen and Shelton, et al. (2002) reported that 

their study showed no Ngb mRNA in the brains of mice after prolonged hypoxia (up to 14 days 

with 10% O2). Mammen and Shelton, et al. (2002) did not succeed in detecting Ngb expression 

in two week chronic 20% O2 / 90% N2 using situ hybridization with a radioactive probe. Sun, et 

al. (2001) demonstrated an acute hypoxia model in cortical neurons with 95% N2+5% CO2 < 24 

hrs, which only revealed HIF.       

Several studies have described Ngb mRNA or protein in humans and animals. High levels 

of mNRA and protein expression, particularly in the basal ganglia, cerebral cortex, hippocampus, 

and cerebellum, relate to age, neurological disorders (e.g. hypoxia in stroke) and 

neurodegenerative diseases (oxidative stress, Alzheimer’s disease, Huntington’s disease, and 

spinocerebellar ataxias) (Sun, Jin, et al., 2005). In rats, Ngb expression decreased with age after 

6-8 weeks; further changes occurred in 3 (> 80% in parietal neocortex), 12, and 24 (< 10% in 

temporal neocortex and hippocampus) month old Sprague Dawley rats. In another study, 

Schmidt-Kastner et al. (2006) found that Ngb mRNA was bound in the control group for the first 

10-20 minutes, indicating that it existed for the first 30 minutes (ρ < 0.05). 
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The results of these studies are summarized in the tables below, with studies summarizing 

positive findings in Table 3, and studies with negative findings in Table 4.  



Table 3. Summary of POSITIVE Ngb Expression Studies 

Published year, 
place, & authors 

Published purpose, subjects, experimental method, time, & 
tissue 

Results 

Burmester, T et. al S: Mouse and human Ngb cDNA   Ngb RNA(+): frontal lobe, subthalamic    
2000, USA     genomic region of the mouse and human gene                        nucleus, thalamus in mouse  
 E: Expressed sequence tags (ESTs), northern hybridization for                         brain 
     RNA, RT-PCR Ngb human tissue (+): expression level 
Zhang, C et.al Ngb in human tissue (+): brain S: Human total brain mRNA (1μg) and sequence of human Ngb 
2001, China Ngb in rats (+): m RNA in cortex,  Male adult Wistar rats (200-250g) Ngb gene expression 
          hippocampus, forebrain, thalamic  E: Northern blot 
          nucleus, hypothalamic area,   
          cerebellum, and brain stem  
Schmidt, M et. Al Ngb (+): retina with mRNA expression S: Mice  
2001, Germany  E: Western blot, immunostaining, in situ hybridization 
Sun, Y., et al. Ngb in cytoplasm S: Mouse, in cerebral neurons (HN33) 
2001, USA Ngb in penumbra and not in ischemia 

corenormoxic adult mouse: Ngb (+) in 
focal regions of the brain, including the 
lateral segmental nuclei, the peptic 
nucleus, amygdale, locus coeruleus, and 
nucleus of the solitary tract. 

E: 90’ MCAo followed 4-24 hours reperfusion 
     Western Blot/Cytochemistry/Immunocytochemistry 
     Oligodeoxynucleotide (ODN) treatment 
Mammen, P. P., 
2002, USA 

S: Adult murine brain 
E: Chronic 10% O2 + 90% N2 * 1 hr. 10% O2 for 2 wks 

     situ hybridization (ISH), RT-PCR/ Microscopy &    
 Human Ngb: 1909 bp in size and the 

genomic sequence is 8041 bp in size 
(GenBank Accession No. AF422797).  

    photomicrography 
  
Zhang, C., S: Human, rat, and mouse Ngb 
2002, USA Adult rat brain: cerebral cortex, 

hippocampus, thalamus, hypothalamus, 
olfactory bulb, and cerebellum.  

E: Bioinformatic analysis/the rapid amplification of cDNA ends  
     (RACE) / degeneracy PCR/in situ hybridization, &  
     immunohistochemical 

normal adult rat brain: cerebral cortex, 
hippocampus, thalamus, hypothalamus, 
pons, and cerebellum 

Note: S=subject; E=experimental methods 
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Table 3. Summary of POSITIVE Ngb Expression Studies (Continued) 

Published year, 
place, & authors 

Published purpose, subjects, experimental method, time, & 
tissue 

Results 

Zhu, Y.,  S: HN33 Ngb & Ngb mRNA increased at 8-24 hrs 
2002, USA E: RT-PCR and Northern Blot/Western Blot the mitogen-activated protein kinase 

(MAPK)/extracellular signal-regulated 
kinase kinase inhibitor  

  
  
  protein kinase G and soluble guanylate 

cyclase G (sGC-PKG)    
Sun, Y. et al.  S: Adult rats 60% cerebral infract volume increased 
2003, USA E: 90’ MCAo (50% decreased in size of cerebral infarct) followed    
     72 hrs.  
Geuens, E.,  S: Mouse Ngb & Cyto Ngb (+): intensities and in the islet of 

Langerhans in the pancreas.  2003, USA E: In situ hybridization/immunocytochemistry/ELISA 
     Western Blot  
Schmidt, M. S: Mouse retina Ngb (+): in all neurons of the retina but not 

in the retinal pigment epithelium.  2003, USA E: Gel electrophoresis & Western Blot 
  Ngb mRNA (+):the plexiform layers and in 

the ellipsoid region of photoreceptor inner 
segment, perikarya of the nuclear and 
ganglion layers of the neuronal retina, 

  
  
  
Sun, Y., S: Sprague-Dawley rats (290-320 g); n= 5 each group 49-52% cerebral infract volume increased 

(p<0.02)  2003, USA E: Focal cerebral ischemia (90 min MCAo followed 24 hrs)  
     Ngb antisense oligodeoxynucleotide (ODNs), Western Blot,  No differences in venous blood, Na+, K+, 

Ca2+, HCO3-, and Hb in arterial pH, PO2, 
PCO2 or MBP 

     immunohistochemistry 
  
Wystub, S., et al. 
2003, Ireland 

S: In neurons of the mouse brain. Ngb-mRNA (+): in neuronal cells of the 
central and peripheral nervous systems as 
well as in endocrine cells.  

E: In situ hybridization/ ELISA/preabsorption tests  
      immunohistochemistry. 

Ngb protein: cerebral cortical regions, 
Note: S=subject; E=experimental methods 
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Table 3. Summary of POSITIVE Ngb Expression Studies (Continued) 

Published year, 
place, & authors 

Published purpose, subjects, experimental method, time, & 
tissue 

Results 

Fuchs, C., 2004, 
USA 

S: D.rerio Ngb c DNA & gene subcortical structures such as thalamus and 
hypothalamus, nuclei of cranial nerves in 
the brainstem and cerebellum 

E: Flash photolysis kinetics , Western blotting, immune staining,  
     and mRNA in situ hybridization. 
     Cell fractionation, Western Blot Ngb (+): in the fish central nervous system 

and the retina but also in  the gills, the 
chloride cells 

Hundahl, C. et. al S: Female mice 
2005, Belgium E: Hypoxia (mixed O2[7.6%]+N2) * 2hrs 
     RT-PCR Ngb (+): cerebral cortical, thalamus and  
Casado, B. et. al S: CSF of chronic pain humans                 hypothalamus nucleus, plexus  
2005, USA E: Mass spectrometry               choroideus, olfactory bulb,  
Sun, Y. et. al S: Rodent brain               brainstem 
2005, USA E: Western Blot, RT-PCR Ngb(+) 6 peptides: in CSF 
Shang, A., et al. 
2006, Netherland 

S: Male Sprague-Dawley (172-225 gm) brain cortex  
E: Either sustained hypoxia (SH; 10% O2) or intermittent  Ngb (+): cortex, striatal and hippocampus  

      hypoxia (IH; 10% and 21% O2 alternating every 90 s) for 1,                 neurons, cerebellar Purkinje cells 
      3, 7 and 14 days, Ngb (-): atrocities 
      Immunoreactivity/Quantitative real-time RT-PCR SH: Ngb mRNA and protein (+)  
Shang, A. et. al S: Gerbil  IH: slight in Ngb expression at day 1(+) 
2006, USA & 
China 

E:Global cerebral ischemia (20’)-reperfusion with 2-72 hours   
    Immunocytochemical   

Hunhahl, C. et. al S: Rats Ngb (+): 8 & 48 hours peak point 
2006, Denmark  E: MCAo (90’) and 1 wk                 Cortex, hippocampus 
   
  Ngb mRNA (+): after 24hrs & 1wk  
Rajendram, R. et. 
al. 2007, USA 

S: 3 human Glaucoma patients                            (P<0.00) on MCAo group 
E: Western blot Ngb expression: cortex, hypothamus,  

                           amygdale, & striatum 
Ngb (+): photoreceptor inner segments,  
               plexiform layers, and ganglion  
               cell layer in eyes. 

Note: S=subject; E=experimental methods 
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Table 4. Summary of NEGATIVE Ngb Expression Studies 

Published year, 
place, & authors 
 

Published purpose, subjects,  experimental method, time, and 
tissue 
 

Results 
 
 

Li, R.C., et. al 
2006, USA 

S: Male Sprangue-Dawley rats (172-225g) 
E: Hypoxia (SH:10% O2) or intermittent hypoxia (IH:10% and  
    21% O2 alternating every 90’ for 1, 3, 7, & 14 days 
    Western blot, RT-PCR 

SH: Ngb mRNA and protein (-)  
 IH: slight in Ngb expression at day 1(-) 
 

Schmidt-Kastner, 
R. et. al  
2006, USA, 
Germany, & 
Netherlands 

S: Rat brain 
E: Hypoxia (0-1% O2 for 24 hrs) 
     RT-PCR 

Ngb m RNA: (-) 

Note: S=subject; E=experimental methods 

 

 

 



2.5 NEUROGLOBIN IN THE ISCHEMIC STROKE MODEL  

No research currently exists on Ngb in the clinical TBI literature. However, there is some 

research on Ngb in ischemic stroke. The earliest of this research was published by Greenberg and 

colleagues in 2001. They developed an experiment wherein they cultured mouse neuronal cells 

both with and without oxygen for 24 hours in vitro, and found that the cells that were deprived of 

oxygen produced higher levels of Ngb protein and mRNA than the oxygenated cells (Sun et al, 

2001). To determine if this finding could be replicated in vivo, they occluded the middle cerebral 

arteries of rats for 90 minutes, and found that the hypoxic state resulted in higher expression of 

Ngb protein and mRNA in the rat cortical cells (Sun, Jin, Peel, Mao, Xie & Greenberg, 2001). 

They concluded that Ngb acts as an endogenous neuroprotector for cerebral ischemia. Venis et al 

(2001) reported that when mouse cells were engineered to either over or under express Ngb, 

increasing Ngb expression lessened hypoxic injury in the form of less cell membrane disruption, 

whereas reducing expression worsened the injury. This work implies that Ngb may serve to 

lessen brain injury due to ischemic stroke. Then in 2003, Sun, Jin, Peel, Mao, Xie, & Greenberg 

again used an experimental in vivo model. They found that cerebral infarct size was increased in 

rats given Ngb antisense oligodeoxtnucleotide via an intra-cerebrovascular route. They also 

found that the infarct size was reduced by 56-60% (p < 0.02) after intracerebral administration of 

an adeno-associated virus vector that expressed Ngb after 24 hours. These experiments seem to 

indicate that Ngb expression is enhanced in acute cerebral hypoxic states, although in these 

studies Ngb expression was artificially over expressed. However, Mammen, Shelton, Goetsch, 

Williams, Richardson, Garry and Garry (2002) observed no global changes in Ngb expression in 
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the brains of mice exposed to chronic hypoxic conditions, implying that Ngb is an acute phase 

substance and might have implications in the acute treatment of ischemic stroke but perhaps not 

in chronic states.  

Hundahl, C. et al. (2006) examined post-ischemic Ngb expression in vivo in 10 

spontaneously hypertensive rats who were subjected to MCA occlusion for 90 minutes, (N = 6) 

or sham (N = 4) and then euthanized 24 hours later. They examined post-ischemic Ngb 

expression and the neuronal marker NeuN using free-floating immunochemistry. They found that 

significantly less Ngb mRNA was expressed in the ischemic hemispheres of the MCA occluded 

animals after 24 hours (p < 0.002). At the protein level, they found significantly lower numbers 

of Ngb and NeuN-positive striatal neurons in the MCA occluded rats (p < 0.004). They also 

found that Ngb expression was mainly confined to the hypothalamus and amygdale. In the 

ischemic area they did not observe selective sparing of Ngb expressing neurons. Although this 

study produced negative findings, they hypothesized that the 24-hour time point may have been 

too late. Nevertheless, they concluded that there is a lack of increased Ngb expression within and 

adjacent to the infracted region of spontaneously hypertensive rats after MCA occlusion, 

although the finding might not be replicated in other rat strains.   

Nevertheless, Greenberg’s group, the most widely published on this topic, prepared a 

review article (Greenberg, Jin and Khan, 2008) and concluded that Ngb expression is likely 

induced by neuronal hypoxia and cerebral ischemia, and that Ngb protects neurons subjected to 

profound hypoxia or focal cerebral ischemia. They recommend further study to determine the 

mechanisms whereby Ngb is induced by hypoxia, as well as the mechanisms whereby it provides 

protection. They hypothesize that Ngb induction might be preceded by HIF-dependent and/or 

independent pathways, and that the mechanisms of protection might include oxygen transport, 
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RS/NOS scavenger capability, G-nucleotide disassociation inhibition, and also functionality as 

an O2 sensor that might trigger downstream adaptations under hypoxic conditions.  

2.6 THE GENETICS OF NEUROGLOBIN (NGB)  

Ngb is located in chromosome 14. The length of chromosome 14 is 106,368,585 bps, there are 

662 known protein-coding genes, 37 novel protein coding genes, 60 pseudogene genes, 62 

mRNA genes, 11 rRNA genes, 42 snRNA genes, 61 snoRNA genes, 41 misc RNA, and 392,690 

SNPS (http://www.ensembl.org/Homo_sapiens/mapview?chr=14). There are 103 core 

nucleotides for Ngb (http://www.ncbi.nlm.nih.gov). 

Neuroglobin (Ngb) has 5.822 kbp (1,000 base pairs) from chromosome 14, positioned on 

76,801,586 to 76,807,407 and four reference genomic sequence SNPs with Ngb’s location: 

rs3783989, rs3783988, rs10133981, and rs7149300 (http://www.hapmap.org). According to the 

international HapMap project, rs3793988 (SNP1; organism: human; alleles= A/G; genomic 

location is on chromosome 14, 76804333 to 76804333, negative strand relative to the human 

reference sequence) was highly correlative with rs1013398, which was chosen in this study. The 

HapMap used Utah residents with roots in northern and western Europe (CEU), a population 

similar to that of the study population (90% Caucasians) and Yoruba in Ibadan, Nigeria (YRI): 

A/A; 0.729, count = 43; A/G, 0.237, count =14; and G/G, 0.034, count = 2) (10% Blacks). This 

HapMap also identified the reference homozygote genotype frequency as A/A (0.567; count = 

34), heterozygote genotype as A/G (0.417; count = 25), and other homozygote genotypes as G/G 

(0.017; count = 1). Allele frequencies for SNP1 (rs3783988) in CEU are A (0.775, count = 93), 

G (0.225; count = 27) and in URI area (0.847, count = 100) and G (0.153, count = 18). The 
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summary of the population diversity shows that the average heterogenic/standard error is 0.419 + 

0.184, individual count = 307, founders count = 247, individual overlap = 58, and genotype 

conflict = 0. The validation summary is unknown in the marker display’s Mendelian segregation, 

while the PCR results were confirmed in multiple reactions except for the homozygotes detected 

in individual genotype data. In the SNP1 (rs3783988) diagram below, blue represents the allele 

present in the human genome assembly as the reference allele, and red represents the alternative 

allele.  

The same results occur for the rs10133981 (SNP2; organism: human; alleles = G/T; 

genomic location is on chromosome 14, 76805546-76805546, + strand relative to the human 

reference sequence) with alleles G/T in bdSNP report in the international Hapmap project, CEU 

had total count 60% with 1) reference-homozygote genotype GG with frequency 0.9 (count = 

54), 2) G/T genotype frequencies heterozygote 0.1 (count = 6), and 3) other homozygote T/T 

frequency 0 (count = 0). Some allele frequencies appear with reference-allele G (0.95, count 

=114); allele T has 0.05 (count=6) with a total count = 120 in CEU. In the YRI reference-

homozygote genotype, G/G is 0.3 (count =18), heterozygote G/T is 0.55 (count=33), and other 

homozygote genotype T/T is 0.15 (count =9) with a total count that equals 60. Reference allele G 

is 0.575 (count=69) and other allele T is 0.425 (count= 51) with a total count that equals 120. 

The summary of population diversity is that the average of heterogenic/standard error is 0.239 + 

0.25, individual count = 270, founders count = 210, individual overlap = 0, and genotype conflict 

= 0. Validation summary for rs10133981 is still unknown in the marker display’s Mendelian 

segregation, the PCR results confirmed in multiple reactions, and in the homozygotes detected in 

individual genotype data. 
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NEUROGLOBIN (Ngb) GENE

Present (non-Wild) =CC + CT 
Absent  (Wild) =TT

Present-(non-wild) =TT+ GT 
Absent (wild) =GG

SNP 1 SNP 2

Exon 1 Exon 2 Exon 3 Exon 4

Intron1 Intron2 Intron3

 

Figure 12. Two Single Nucleotide Polymorphisms of Ngb 

2.7 SUMMARY OF LITERAUTRE 

Ngb is a novel protein which has been found to be expressed during ischemic conditions in 

animals, and is thought to have important roles in improving oxygen delivery and utilization. 

There is little evidence to date examining the expression of Ngb protein or mRNA in humans, 

warranting further study into whether or not these same protective mechanisms could be 

identified and utilized to improve outcomes for TBI patients.  
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2.8 SIGNIFICANCE TO NURSING 

Ngb is a novel protein thought to assist in brain oxygen transport and utilization, or as a 

scavenger of harmful substances, and is expressed during acute hypoxia or ischemia. If present, 

this protein is hypothesized to not only maintain function in neurons through improved O2 

delivery, but also decrease the damage due to secondary brain injury. Although nurses in the 

acute care setting cannot impact primary injury sustained at the time of TBI before the patient 

presents, they can perform functions that either directly limit secondary injury, or promote the 

patient’s own innate physiologic mechanisms for protection. If Ngb can be proven to be present 

in humans and assist in brain oxygen transport or utilization, or as a scavenger of harmful 

substances of oxidative stress, then nurses may be able to use this information to determine 

which patients are more likely to have better outcomes. They might also be able to target which 

patients are more at risk for secondary injury development requiring a higher level of 

monitoring. Furthermore, it is possible that they could develop or assist in the development of 

interventions to enhance Ngb expression.  

2.9 INNOVATION 

Identification of genetic biomarkers is vital to our understanding of important mechanisms for 

protein and peptide information through the entire genome sequence. Ngb is a novel protein 

about which little is known, and even less is known about its development, presence and actions 

in humans who have experienced TBI. There is variability in the success of TBI recovery that 

cannot be explained by the extent of primary injury alone. It is possible that Ngb may contribute 
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to this variation. If Ngb protects the cerebral neurons in hypoxic/ischemic states, it will be an 

important factor in understanding the variance in TBI recovery, and in possibly developing new 

therapies to treat patients with, or at risk for, neurological damage due to secondary injury.  
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3.0  PRELIMINARY STUDIES 

This chapter discusses the methodologies and results for three preliminary studies. Parent Studies 

NIH NR04801 and NS30318 previously collected and stored all samples utilized in the 

preliminary studies and intended for use in this dissertation study. The two parent studies include 

the effect of ApoE on outcomes in traumatic brain injured adults, and the effect of inherited 

factors (genes) on the brain’s response during the first five days after TBI. These parent studies 

also provided the samples utilized in the 3 preliminary studies described below.  

3.1 PRELIMINARY STUDY # 1 

Chuang, P.Y., Alexander, S., & Kim, Y. The relationship between cerebral spinal fluid 

lactate/pyruvate and cerebral blood flow following traumatic brain injury. ENRS 18th Annual 

Scientific Sessions “New Momentum for Nursing Research: Multidisciplinary Alliances” 

April 20-22, 2006. 

The first preliminary study focused on the relationship between cerebral spinal fluid lactate and 

pyruvate on cerebral blood flow during the first five days of TBI patient admission. Purpose: 

The objective of this study was to examine the relationship between CBF and CSF 

lactate/pyruvate (L/P) ratios. Methods: The sample consisted of sixty-four patients (19 females, 

45 males) with severe TBI who were admitted to the Level 1 Trauma Center at the University of 
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Pittsburgh Medical Center (UPMC) from 1995-2000. The Institute Review Board (IRB) of the 

Traumatic Brain Research Center (TBRC) approved all subjects. Inclusion criteria were: 1) age 

16 to 75 years; 2) GCS < 8; 3) positive CT findings for TBI; 4) CSF lactate and pyruvate data 

available; and 5) Xenon cerebral blood flow data available. Exclusion criteria were: 1) cardiac 

arrest; 2) respiratory arrest; and 3) meeting brain death criteria. The Brain Trauma Foundation’s 

Guidelines for the Management of Severe Head Injury determined the course of treatment 

including placement of an EVD catheter, central line, and arterial line. As per this protocol for 

standard of care, the ICP was maintained ≤ 20 mmHg, and the CPP maintained ≤ 60 mmHg. CSF 

was collected from the EVD every four hours during the first 24 hours and every six hours 

during the next four days for lactate and pyruvate measurements. Xenon Computed Tomography 

(Xenon CT) utilizes CT technology to identify uptake of Xenon gas into cerebral tissue. The 

Xenon CT CBF data is reported as average CBF for the entire brain (global) measured on day 1, 

day 3, or day 5 after TBI. The CSF lactate and pyruvate levels taken closest in time to the Xenon 

CT scan were used for this analysis. The mean and range were computed for CSF lactate, 

pyruvate, lactate/pyruvate ratio, and Xenon CBF for the entire sample. Mean Xenon CBF was 

obtained by averaging the mean left and right hemispheric CBF across 4 levels. Low CBF was 

defined as mean CBF ≤ 40 ml/g/min, and normal CBF as > 40 ml/g/min. Descriptive and 

correlational analyses were used to examine the relationship between CSF L/P ratio and CBF. 

Results: The sample had a mean age of 30.5 years (SD = 14) and was primarily male (73%) and 

Caucasian (87.5%). Mean GCS was 5.7 (SD = 1.4, Mode = 7). CSF L/P ratio was drawn an 

average of 1.5 (SD = 7.0) hours before XeCT. Thirty one subjects (48.4%) exhibited low CBF. 

No significant relationship was shown between CSF L/P ratio and low CBF (p = 0.13). Low 

CBF was significantly associated with race (p = 0.02) with more black subjects (87.5%) 
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developing low CBF than Caucasian (42.8%). Conclusions: There was no relationship between 

the CSF L/P ratio and a low CBF following TBI. The significant correlation between race and 

low CBF was of interest and warrants additional research with a larger sample. There might be a 

reason for the lack of a relationship between the L/P ratio and the low CBF. The testing time of 

each subject for the lactate, pyruvate, and L/P ratio differed and Xenon CT, it was hard to match 

all variables (lactate, pyruvate, and L/P ratio and Xenon CT) together. There might be another as 

yet unidentified issue that caused the results to not be significant. 

Skills learned in this Preliminary Study #1 which will contribute to the proposed 

study: a) increase understanding of how biochemical pathways may contribute to secondary 

injury in TBI patients, b) increase understanding of HPLC methodology to detect biomarkers, c) 

began acquisition of skills to access and utilize the databases from the parent study, d) performed 

statistical analyses using parent study data. 

3.2 PRELIMINARY STUDY # 2 

Chuang, P. Y1.; Alexander, S1.; Poloyac, S2.; Hravnak, M1. The Role of Neuroglobin 

in Response to Cerebral Hypoxia/Ischemia after Traumatic Brain Injury. AANN, 2008. 

Purpose: To determine if neuroglobin (Ngb), a novel oxygen transporter protein, is detected in 

fresh (immediately drawn) or bagged (aggregate 12 hr) CSF samples collected 1-5days after 

severe TBI using Western Blot methodology. Background/Significance: Cerebral ischemia 

causes secondary brain injury following TBI. In animal models, Ngb is hypothesized to increase 

the availability and delivery of oxygen to neuronal tissues during cerebral hypoxia, and has been 

detected by Western Blot testing. Only one study has identified Ngb in human CSF, using mass 
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spectrometry in females with chronic pain. No study has yet detected the presence of Ngb in 

human CSF during cerebral ischemia by any method. Methods: CSF was collected from 17 

subjects with severe TBI (days 1-5) who were enrolled in two larger studies (NIH NR008424 

and NS30318) from 2003-2006 who met the following criteria: age 16-75 yrs; Glasgow Coma 

Scale (GCS) < 8, positive computerized tomography scan, external cerebral ventricular drainage 

device present, and no cardiac or respiratory arrest before admission. The Lowry Assay and 

Western Blot were used for protein analysis with protein extracts (5-25 μg per lane) in 12-15% 

SDS polyacrylamide gel. We used mouse monoclonal antibody as the primary anti-human Ngb 

antibody and goat anti-mouse IgG1 as the secondary antibody to adhere human Ngb, if present, 

to the chemiluminescence membrane for visualization. Results: Thirty CSF samples were 

available (14 fresh; 16 bagged) for analysis taken an average of 51.6 hours after TBI. Patients 

were primarily young (mean age 33.7, range 18-57 yrs.), female (53%), and Caucasian (90%), 

with a mean GCS of 5.43 (SD ± 1.59). When chemiluminescence, the most sensitive analytic 

segment of the Western Blot test, was performed to evaluate for the presenceand quantification 

of protein staining, no human Ngb was detected in any fresh or bagged CSF samples. 

Conclusion: Western Blot, a readily available testing method, was not able to detect Ngb in the 

CSF of patients with severe TBI, whether the sample was freshly drawn from the 

ventriculostomy or in an aggregate sample allow sitting at room temperature for 12 hours. While 

Ngb expression is associated with cerebral ischemia in animal models, further research is needed 

to determine if Ngb is present in humans with severe TBI using detection methods other than 

Western Blot. Such information will help to develop mechanisms to limit secondary injury. 
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Skills learned in this Preliminary Study #2 which will contribute to the proposed study: a) 

independence in performing Western Blot protein analysis method, b) laboratory skills in 

handling and storing human CSF specimens, c) development of technical skills in the laboratory 

such as pipetting and centrifuging, d) performing laboratory skills repeatedly to obtain a results 

that are not confounded by inconsistency in technique, e) self protection using blood and body 

fluid precautions.  

3.3 PRELIMINARY STUDY # 3 

The third descriptive study was designed to examine Ngb expression in the brains of two non-

ischemic and one ischemic adult Sprague-Dawley male rat. Purpose: The purpose of this study 

was to determine if Ngb could be isolated from ischemic brain tissue in an animal model of 

stroke. Methods: The subjects (300-350 g) were divided into the following groups: non-

ischemic (sham control; N = 1) or global cerebral ischemia (N = 2) in which the MCA was 

occluded (MCAo) for 90 min, followed by 30 hr of reperfusion. Western blots were used to 

analyze Ngb protein presence in the brain. The Institutional Animal Care and Use Committee 

reviewed and approved all procedures involving the animals. Anesthesia was induced by the 

inhalation of 5% isoflurane delivered in a mixture of nitrous oxide and oxygen (70%/30%) at 1.0 

L/min for 5 min. The MCAo produced an ipsilateral infarct that affected specific brain regions. 

Completeness of the lesion was subsequently verified behaviorally by a surgeon who examined 

the postoperative movements of each rat’s extremities. Changes in blood flow are not likely to 

explain the protective effect of Ngb expression following local cerebral ischemia. Animals that 

were randomly assigned to receive sham surgery received the same operative procedures except 
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that the middle cerebral artery was not occluded. After MCAo, the animals were returned to their 

units in the laboratory of Bioscience III for 90 min until the filament was removal from the artery 

(onset of reperfusion). After 30 hr, all of the rats were sacrificed. Brain tissues were analyzed by 

Western blotting for Ngb presence. Brain tissue samples were removed from the rats and the 

fresh tissues were analyzed immediately. Other frozen brain tissues were stored until the Western 

blots were performed. All frozen brain tissues were unfrozen and homogenized in lysis buffer 

that contained a protease inhibitor cocktail (1:1) (Sigma cat # MFCD00677817), incubated on ice 

for 5 min, and swirled over forty times at 4° C. The brain lysates were transferred to an 

eppendorf tube and centrifuged at 12,000 rpm for 30 min. A Lowry protein assay was performed 

in order to calculate the protein concentration of the brain tissues. Subsequently, Western blot 

analyses were performed to assess for Ngb presence. Results: Western blotting did not reveal 

Ngb presence in the non-ischemic or ischemic brains of Sprague-Dawley male rats.  

Skills learned in this Preliminary Study #3 which will contribute to the proposed 

study: a) development of technical skills in the laboratory such as pipetting and centrifuging, b) 

performing laboratory skills repeatedly to obtain results that were not confounded by 

inconsistencies in the techniques, and c) acquisition of skills for performing tissue lysis.  

3.4 SUMMARY OF PRELIMINARY STUDIES 

Disappointingly, Ngb was not detected using Western blot techniques in the CSF of humans with 

ischemic brain injuries or in the ischemic brains of rats (see Figure 13). This finding does not 

necessarily mean that Ngb is not expressed, but rather that Western blotting may not be the best 

detection method. Possibly, detection would be improved by using mass spectrometry, a 
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quantitative sample analysis technology used to measure the mass-to-charge ratio of ions 

transported by magnetic or electric fields. However, mass spectrometry analyses are extremely 

expensive to perform. Before mass spectrometry analyses are used to assess Ngb in humans, a 

reasonable first step is to determine if humans differ in their genetic predisposition to developing 

the protein. If a genetic predisposition can be identified, which is more cost effective to assess, 

such information would provide justification for the expenses associated with using mass 

spectrometry to identify Ngb. 
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Preliminary 1:                              TBI (N = 64); Day 1-5 

                                                     CSF (lactate/pyruvate) 

                                                            HPLC  

                                                     CBF (Xenon CT scan) 

                                     Non-low CBF      Low-CBF           
                                                   (> 40 mmHg)       (< 40 mmHg) 

 

Preliminary 2:                              TBI (N = 17); Day 1-5 

                                                     CSF (14 fresh & 20 bagged) 

                                                          Western Blot 

                                                     Ngb (-) 

Preliminary 3:           TBI (N = 17)                       Adult Sprague-Dawley male rats (N = 3)         

                                 CSF (14 fresh & 20 bagged)          Non-Ischemia (N = 1)    Ischemia (N = 2) 

                                                    Western Blot                 Brain tissue                  Brain tissue 
                                                                                         (1/4 of brain)               (1/4 of brain) 
                                                                                                Fresh                            
                                                                                                                              Frozen   Fresh 
 
                                              Ngb (-)                                                Western Blot 

                                                                                            Ngb (-)                       Ngb (-)   Ngb (-) 

 
Figure 13. Summary of Preliminary Studies 
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4.0  METHODS 

This chapter details the methods used to conduct the proposed research study, including design, 

setting, samples, the methods used to determine the Ngb genetic variants, justification for the 

sample size, instruments (GCS, GOS, and Xenon CT), procedures, and data analyses. 

4.1 RESEARCH DESIGN 

This study has a prospective, descriptive, comparative design that utilizes DNA samples 

extracted from the blood and CSF of the 216 patients obtained for the two parents in which the 

recovery of the patients was followed for the first five days following severe TBI. The genetic 

testing was conducted by the doctoral candidate. The data collected at 3, 6, 12, and 24 months by 

a neuropsychology technician regarding mortality and the scores on the GOS, the Disability 

Rating Scale (DRS), and the Neurobehavioral Rating Scale (NRS) were available from the parent 

study for a subset of this population. The demographic outcome variables of the present 

experiment were limited by the information collected in the two parent studies.  
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4.2 RESEARCH SETTING 

The parent studies were conducted at the UPMC, which has four neurotrauma intensive care 

units. These units provided care for the 216 patients with TBI in this study. Stored CSF and 

blood samples were accessed from the Brain Trauma Research Center (BTRC) at the UPMC. All 

patients with TBI were admitted and enrolled in the parent BTRC study after being diagnosed 

with severe TBI between 2000 and 2006. The laboratory analyses for the current study were 

performed in the molecular genetics laboratory of Dr. Yvette Conley, School of Nursing, 

University of Pittsburgh.  

4.3 RESEARCH SAMPLE 

All patients admitted with a severe TBI between January 2000 and December 2006 were 

screened and enrolled in the BTRC parent studies. Inclusion criteria for the BTRC studies were 

as follows:  1) GCS ≤ 8 without paralytics or sedatives, 2) head CT scan positive for closed head 

injury, 3) aged 16-75 years, and 4) EVD available. Exclusion criteria for the BTRC were: 1) 

mental retardation or cognitive deficit before injury, 2) cardiovascular arrest, 3) respiratory 

arrest, and 4) met brain death criteria. 

Children under 16 years of age were not included in this study because there is evidence 

to suggest that children recover from TBI differently than adults. Patients with baseline mental 

retardation or other cognitive deficits before the injury were excluded to avoid confounding the 

analysis of the outcome measures. We anticipated that this sample would be 90% Caucasian and 
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75% male, consistent with the TBI population presenting to the UPMC Presbyterian hospital. No 

inclusion or exclusion criteria were based on race or gender. 

4.4  SAMPLE JUSTIFICATION 

Generally, larger sample sizes decrease the variability within the sample means in quantitative 

research studies. Conducting such a study depends on a variety of factors, such as the null 

hypothesis (one or two-tailed), power (1-β), significance (α), and sample size (N). However, the 

two parent studies from which the sample for this study was drawn were limited to 216 patients 

available from the years 2000 to 2006. Analysis of the parent sample was based on the 

frequencies of the SNPs, which varied with race. The final data analyses were performed on 208 

patients who all met the inclusion criteria; detailed information is included in Chapter 5. The 

racial identities of the patients included 196 (77.9%) Caucasians, 10 (4.8%) Blacks, and 2 (1.0%) 

American Indian, or Alaskan Native. Therefore, based upon the HapMap’s analysis report 

(http://www.HapMap.org, 2008), the chosen SNP sequences for Ngb were rs3783988 (SNP1), 

which represents 57% A/A nucleotide pairs, 41% A/G nucleotide pairs, and 2% G/G nucleotide 

pairs at the polymorphic site in U.S. residents with northern and western European ancestry 

according to the Centre d'Etude du Polymorphisms Human (CEPH or CEU), and rs10133981 

(SNP2), which represents 90% G/G pairs, 10%G/T pairs, and 0% T/T pairs at the polymorphic 

site according to the CEU. Thus, the frequencies of the SNPs determined the available sample. 

PASS and NCSS statistical software packages were used to examine sample power.  

The sample size of 208 participants was powerful enough (100%) to detect a difference 

of -1.0 between a hypothesis stating no between-group mean differences and a hypothesis stating 
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between-group mean differences of 1.0, with an estimated standard deviation of 0.0 and a 

significance level (alpha) of 0.05 using a two-sided one-sample t-test. In a one-factor ANOVA 

power analysis, estimated sample sizes were provided by the software of 108, 86, and 21 for the 

three groups means that were to be compared. The total sample of 215 patients achieved 100% 

power using an F test with a 0.05 significance level. The size of the variation in the means is 

represented by the standard deviation and was 0.66. Individual data points were considered 

outliers if they were larger than one standard deviation from the group mean (Desu & 

Raghavarao, 1990; Fleiss, 1965; Kirk, 1982).  

4.5 RESEARCH SETTING HUMAN RIGHTS PROTECTION 

The Institutional Review Board of the University of Pittsburgh (see Appendix) approved the 

parent studies, and approval for the current study was covered under the original consent. 

Informed consent was obtained from all participants in the parent studies. Confidentiality of the 

patients was maintained in the parent studies by assigning a unique identification code to each 

patient. All data and samples were labeled with the unique identification code. A file linking the 

unique identification code and the patient identifiers was maintained in a separate, locked filing 

cabinet within the BTRC. All samples and data used for the purpose of the proposed study were 

retrieved in a de-identified state. The confidentiality of the patients was maintained by keeping 

identifying data on a password-protected computer that was accessible only to the Principle 

Investigator of the parent study. No identifiable information was available in the databases from 

which data were extracted for the purposes of this current analysis.  
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4.6 RESEARCH PROCEDURES-PARENT STUDIES 

4.6.1 Patient care in the parent study 

Patients in the parent studies underwent an admission protocol according to a standardized 

physician order set (Appendix A). The order set included protocols for admission, assessments of 

intracranial hypertension, and maintenance of ICP, sedation, and fluid resuscitation for patients 

with severe TBI after admission to the UPMC. The Admission Protocol included directives for 

vital signs, patient care (routine neurologic management of patient positioning and EVD), 

intravascular fluid, medications, laboratory tests, research procedures after consent, and 

radiology.  

The Intracranial Hypertension Protocol was a second set of standardized orders that were 

in place to maintain the ICP < 20 mmHg. The protocol provided directives for 1) ICP > 20 

mmHg, 2) ICP consistently > 25 mmHg after step 1, and 3) ICP consistently > 25mmHg after 

step 2.  

The ICP Maintenance Protocol was a third set of standardized orders that described the 

goals, triggers, interventions, and physician notifications. The main goals of this protocol were to 

provide a standardized approach to ICP management in patients with severe TBI and to provide 

the nurses with guidance in the next level of control over elevated ICP.  

The Sedation Protocol was a fourth set of standardized orders that included assessments 

and interventions for sedation protocol, analgesia (Fentanyl), and neuromuscular blockade 

(Vecuronium).  
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The fifth set of standardized orders was the Fluid Resuscitation Protocol which described 

physician notifications, fluid challenge, and vasopressor administration. Table 5 outlines the 

order of steps to be implemented if hypotension or low cerebral perfusion pressures occurred.  

 
Table 5. Hypotension Protocol in Parent Studies (MAP < 65 mmHg) 

 
check CVP Challenge 

Volume 
Fluid Frequency  Maximum 

Volume 
< 5  1000 ml Colloid Bolus 1000 ml 

Sodium Chloride q 30 min 2000 ml 
5-10  500 ml Colloid q 15 min 1000 ml 

Sodium Chloride q 15 min 1000 ml 
11-12  250 ml Colloid q 10 min 500 ml 

Sodium Chloride q 10 min 500 ml 
Low Cerebral Perfusion Pressure (CPP < 60 mmHg) 

CVP Challenge 
Volume 

Fluid Frequency  Maximum  
Volume 

< 5  1000 ml Sodium Chloride q 60 min 2000 ml 
5-10  500 ml Sodium Chloride q 60 min 1000 ml 
11-12  No fluid challenge, norepinephrine (Levophed) if MAP < 100 mmHg 

Key: MAP = mean arterial pressure, CVP = central venous pressure 
 

4.6.2 CSF and blood sample collection and storage-parent studies 

The bagged CSF samples from the parent study were collected by passive drainage from the 

EVD into a CSF collection bag at room temperature, located at the patient's bedside. The drained 

CSF was collected every 12 hr by changing the CSF collection bag. CSF (3-5 ml) was collected 

using sterile techniques as per hospital policy. Samples were aliquoted into cryogenic tubes and 

initially stored in a refrigerator located directly outside the ICU. On the fifth day post TBI, when 

sample collection was completed, all CSF specimens were moved to a -80º C freezer located in 

the School of Nursing for long term storage.  
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At the 12-hour collection time point, a blood sample was also obtained. Specifically, 3 ml of 

blood was obtained from the patient’s indwelling arterial line or central venous catheter and 

placed into a laboratory tube. The sample was placed in the refrigerator located directly outside 

of the ICU and subsequently transferred to Dr. Conley’s laboratory at the School of Nursing and 

processed within 48 hr.  

4.6.3 CT scan-parent studies 

All patients underwent a CT scan, which creates cross-sectional images of the structures in the 

body. It is a non-invasive procedure; x-rays are taken from many different angles and processed 

through a computer to produce a three-dimensional image called a tomogram. CT is used to 

detect abnormalities such as blood clots, cysts, fractures, infections, and tumors in internal 

structures (e.g., bones, muscles, organs, soft tissue). The procedure also may be used to guide the 

placement of instruments within the body (e.g., to perform a biopsy). Contrast agent (e.g., 

iodine-based dye, barium solution) may be administered orally or injected into a vein prior to the 

CT scan to allow the organs and structures to be seen more easily. Patients usually are instructed 

not to eat or drink for a few hours prior to administration of the contrast agent because the dye 

may cause stomach upset. There are no side effects of the procedure except for possible reactions 

to the dye (rash, itching or feelings of warmth in the body). Patients consented at the time of the 

parent studies. 

 70 



4.6.4 CT scan-parent studies clinical assessment and outcome instruments (GCS, 

GOS, DRS, and NRS)-parent studies 

The purpose of this section is to describe the clinical assessment tools used in the parent study, 

namely the GCS, which was used to determine TBI severity, and the GOS, which was the 

primary outcome measure. Two additional measures of outcome, the DRS and the NRS, are also 

described.  

 

4.6.4.1 Glasgow Coma Scale (GCS) The GCS is the most common neurological scale used in 

intensive care units to obtain a reliable assessment of the conscious state of a person with a head 

injury. The scale was published in 1974 by Graham Teasdale and Bryan J. Jennett, professors of 

neurosurgery at the University of Glasgow. The test (see Table 6) measures eye opening, verbal 

response, and motor response. The final score is obtained by adding the subscores from the three 

domains, with a possible total score of 15. The lowest score on the GCS is 3 and indicates deep 

coma or death. Severe injury is indicated by GCS < 8, moderate injury is defined as GCS = 9-12, 

and a minor injury is defined as GCS > 13. In some special cases, patients cannot respond to the 

GCS parameters; therefore, clinicians can record markers for conditions of paralysis , incubated 

or tracheotomized, untestable, sedation, and eyes swollen or closed (Fisher & Mathieson, 2001).  
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Table 6. Glasgow Coma Scale (GCS) 
 

Eye Opening (E) Verbal Response (V) Motor Response (M) 

4=Spontaneous 
3=To voice 
2=To pain 
1=None 

5=Normal conversation 
4=Disoriented conversation 
3=Words, but not coherent 
2=No words, only sounds 
1=None  

6=Normal 
5=Localizes to pain 
4=Withdraws to pain 
3=Decorticate posture 
2=Decelerate 
1=None  

 Total = E+V+M 
Score is 13-15: mild injury.  
Score is 9-12: moderate injury and disability which included loss of consciousness for greater 
than 30 minutes and physical or cognitive impairments which may or may resolve with 
rehabilitation.  
Score is 3-8: severe injury or coma in an unconscious state. No meaningful response, no 
voluntary activities. 
Score is 3: Vegetative State, sleep-wake cycles, arousal, but no interaction with environment, no 
localized response to pain. 
Persistent Vegetative State: Vegetative state lasts longer than one month. 
Brain Death: No brain function; specific criteria are needed to make this diagnosis. 

 
 
Gill et al. (2004) noted that the reliability of assessments among evaluators was 32% for 

total GCS (π-b = 0.739, Spearman p = 0.864, Spearman p2 = 75%), 74% for components of eye 

movement (π-b = 0.715, Spearman p = 0.757, Spearman p2 = 57%), 55% for verbal responses (π-

b = 0.587, Spearman p = 0.665, Spearman p2 = 44%), and 72% for motor responses (π-b = 0.742, 

Spearman p = 0.808, Spearman p2  = 65%). In contrast, the disagreement rate for GCS was from 

0-0.5 and the low range was 0.0-0.5 and the higher range is 0.3-0.5 (Teasdale et al., 1978; 

Rowley & Fielding, 1991; Juarez & Lyon, 1995). Teasdale et al. (1978) assessed the 

disagreement rate of seven neurosurgeons and found low disagreement for 121 ICU patients with 

GCS scores of 0.005-0.163 for eye opening, 0.000-0.035 for verbal responses, and 0.004-0.064 

for motor responses. Rowley and Fielding (1991) noted that the disagreement rate was 0.005-

0.163 for assessments of eye opening, 0.000-0.035 for assessments of verbal responses, and 

0.004-0.064 for assessments of motor function. Juarez and Lyon (1995) videotaped 7 ICU 
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patients and found that the disagreement rate for the eyes was 0.00-0.29, verbal was 0.00-0.06, 

and motor was 0.00-0.22. These research findings revealed that the GCS is a good neurological 

assessment tool for use with head injury patients. 

Although the GCS has been used for over two decades, Waterhouse (2005) recommended 

that pupil size and vital signs are also important for neurological assessments. Pupil size serves 

as a window to the brain through the pupillary reactions to light, their shape, size, and symmetry; 

pupillary changes can indicate subsequent elevations in ICP. Pupillary changes can also directly 

or indirectly indicate the brain damaged region in early and late stages of recovery. Vital signs 

can be used to monitor cerebral hypertension and classify irregularities in breathing pattern.  

Some investigators examined the possibility that the motor score was the most sensitive 

and specific portion of the GCS for predicting outcome. Ross and associates (1998) predicted 

head injury outcome in patients by comparing the motor score component of the GCS to the total 

GCS score. The results indicated that the sensitivity of the motor score was 91% and the 

specificity was 85%; the sensitivity of the total GCS score was 92% and the specificity was 85%, 

as assessed with Receiver Operating Characteristic (ROC) curves (McNett, 2007). Healey and 

associates (2003) also demonstrated the sensitivity of the motor scores (ROC = 0.87) and the 

total GCS scores (ROC = 0.89) of 200,000 general trauma patients. Meredith and associates 

(1995) showed that the motor component of the GCS had 59% sensitivity and 97% specificity 

rates for predicting outcome.  

 

4.6.4.2 Glasgow Outcome Scale (GOS) The GOS has five categories (dead, vegetative, severely 

disabled, moderately disabled, and good recovery) and emphasizes physical problems rather than 

cognitive or emotional problems after head injury (Anderson et al., 1993).  
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Table 7. Glasgow Outcome Scale (GOS) 

 
State Definition Score 
Dead  1 
Vegetative No evidence of meaningful responsiveness 2 
Severe 
Disability 

Conscious but needs the assistance of another person for 
some activities of daily living 

3 

Moderate 
Disability 

Independent but disabled 4 

Good 
Recovery 

Capacity to resume normal occupational and social 
activities 

5 

 
 
Jennett and Bond (1975), who designed the GOS, believe that mental status change is more 

important than physical limitation in determining disability after head injury. However, good 

recovery may be defined as physical independence in the absence of neurological deficits (Hutter 

& Gilsbach, 1993). The GOS takes 5-15 minutes to rate. Interrater reliability among the 

structured interviews for the five points on the GOS resulted in a weighted kappa value of 0.89, 

which suggests that patient assessments with the GOS are practical and reliable when a standard 

format and written protocol are used (Wilson, Pettigrew, and Teasdale, 1998). King, Carlier, and 

Marion (2005) used the GOS to predict the severity of TBI in patients (GCS < 8) at 3 and 12 

months following injury. Their results showed that the adjusted logistic model was characterized 

by a steep gradient for long-term recovery potential that depended upon the GOS score at 3 

months, ranging from an 89.4% chance of poor outcome for patients with a GOS of 2 to a 0.11% 

chance of poor outcome for those patients with a GOS = 5. The 3-month GOS score is a 

powerful, independent predictor of long-term outcome for patients with severe TBI.  

In this study, the GOS was dichotomized into Good Outcome (GOS 4-5) and Poor Outcome 

(GOS 1-3). This dichotomization scheme was supported by a study from Broessner et al. (2007) 

who subdivided the GOS in terms of favorable outcome (GOS 4-5) and unfavorable outcome 
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(GOS 1-3) and analyzed survival, mortality, and long-term functional disability, and determined 

the long-term outcome for 662 neurologically critical patients in the 2.5 years following the 

injury. Sakr et al. (2004) also subdivided the GOS into good outcomes (GOS 4-5) and poor 

outcomes (GOS 1-3) and related electrocardiogram changes to the neurological outcomes of 

patients with an aneurysmal subarachnoid hemorrhage. 

 

4.6.4.3 Disability Rating Scale (DRS) The DRS (Appendix B) was developed and tested with 

older juveniles and adults with moderate and severe TBI in a post-trauma setting (Wright, 2000). 

All three World Health Organization categories were applied: impairment, disability, and 

handicap (WHO, 2001). The following four domains resulted: a) awareness and responsiveness 

(eye opening), communication ability, and motor response; b) cognitive ability for self-care 

activities (feeding, toileting, and grooming; c) dependence on others (level of functioning); and 

d) psychosocial adaptability (employability) (Wright, 2000). Part A of the DRS is similar to the 

GCS scale, part B of the DRS reflects the level of disability, part C of the DRS measures the 

level of function, and part D of the DRS measures employability. The maximum score a patient 

can obtain on the DRS is 29 (extreme vegetative state); a patient without disability would score 

zero (Wright, 2000). The levels of disability as assessed with the total DRS score (Wright, 2000) 

are as follows: 0 indicates no disability, 1 indicates mild disability, 2-3 indicates partial 

disability, 4-6 is for moderate disability, 7-11 is for moderately severe disability, 12-16 is for 

severe disability, 17-21 is for extremely severe disability, 22-24 indicates a vegetative state, and 

25-29 indicates an extreme vegetative state. Patient assessment with the DRS takes only 30 s to 

15 min by trained staff. The reliability and validity of the DRS has been proven by Rappaport et 

al. (1989), who studied the amount of time that elapsed between injury and recovery by using the 
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DRS with 63 patients with TBI. The results showed that a significantly greater improvement was 

seen in the early admission group. In comparing the relative sensitivity of the DRS with the 

GOS, 71% of individuals with TBI showed improvement on the DRS but only 33% showed 

improvement on the GOS (Hall et al., 1985). The limitation of the DRS is its relative 

insensitivity at the low end of the scale (mild TBI) and its inability to reflect more subtle 

disability. 

 

4.6.4.4 Neurobehavioral Rating Scale (NRS) The NRS (Appendix C) employs the 29 items of 

the Likert scale and measures cognition and behavioral parameters of brain disease by a rapid 

bedside assessment of closed head injury and stroke patients and is highly predictive of long-

term outcomes (Hilton, Sisson, and Freeman, 1990). The 5 factors (executive/cognition, 

positive/negative symptoms, mood/affect, and oral/motor) of the revised NRS (NRS-R) revealed 

acceptable internal consistency (R2 = 0.62 to 0.88) and a low to moderate interfactor correlation 

(R2 = 0.19 to 0.61) and discriminated well between the GOS-defined groups for 210 randomly-

chosen closed head injury patients from 11 large regional North American trauma centers for 

which the primary outcome measurements (GOS) and secondary outcome measurements (DRS 

and NRS-R) were available (McCauley et al., 2001). 
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4.7 SUMMARY OF DATA COLLECTION TIMETABLE-PARENT STUDIES 

Table 8 describes the timetable for collection of the clinical data for the parent study and the 

numbers of patients included in the secondary analysis. 

 
Table 8. Data Collection Schema for Outcome Evaluation (N = 208) 

 
Tools 3 months 6 months 12 months 24 months 
GOS 167 (80.3%) 161 (77.4%) 141 (67.8%) 104 (50.0%) 

NRS 164 (78.9%) 160 (76.9%) 138 (66.4%) 105 (50.5%) 

DRS 62 (29.8%) 76 (36.5%) 71 (34.1%) 38 (18.3%) 

Key: GOS = Glasgow Outcome Scale, NRS = Neurobehavioral Rating Scale, DRS = Disability 
Rating Scale. 

4.8 RESEARCH METHODS FOR THE CURRENT STUDY 

The three main development phases for the TaqMan SNP genotyping assay included: 1) In order 

to get DNA amplification, the DNA was extracted by the standard operating procedure (SOP) for 

blood and by the QiAamp DNA midi/maxi procedure for CSF; 2) Allelic discrimination plating 

was performed and read; and 3) An allelic discrimination assay was analyzed. The DNA 

extraction technique does not differentiate between those patients who had a blood sample 

available and those patients who had a CSF sample available. The Applied Biosystems (AB) 

Company chose the TaqMan SNP because it provides a high probability of detecting 

polymorphisms present within any human genome; the technique also uses probe and primer 

chemistry and designs, which includes screening, association, candidate region, candidate gene, 

or fine-mapping studies. Moreover, the essential SNP probes have 13 bases, which improves 

mismatched discrimination and are useful for difficult or variable sequences. The Minor Groove 
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Binder Technology on the 3’ end delivers superior allelic discrimination. Detection is achieved 

through proven 5’ nuclease chemistry by means of exonuclease cleavage of a 5’ allele-specific 

permanent dye label signal. A nonfluorescent quencher eliminates background fluorescence and 

increases sensitivity for the signal (AB, 2007).  

4.8.1 DNA extraction 

The DNA extraction procedure for blood used the SOP and the QiAamp DNA midi/maxi 

protocol for CSF. The purpose of the SOP and the QiAamp DNA midi/maxi was to get large-

scale genomic DNA amplification. 

 

4.8.1.1 DNA extraction from blood The SOP for DNA extraction consisted of two steps: blood 

processing and DNA extraction. Each SOP procedure allowed 16 samples to be processed at one 

time. The blood processing had five steps. First, the sample specimens were checked for the TBI 

study name, type of specimen, date, and time. Second, the blood samples were removed from the 

-20°C freezer, placed in spin tubes, and centrifuged at 2500 rpm for 20 min at room temperature 

(22-25° C). While the tubes were spinning, the lysis solution, which consisted of 40 ml of 

ammonium chloride and 5 ml of ammonium bicarbonate, was prepared and maintained at 4º C. 

Third, 3 ml lysis solution was added to a labeled 50-ml conical tube and supplemented with 200 

ul of 10% SDS and 500 ul of freshly-made proteinase K solution (10% SDS, 0.5 M EDTA, 18 

mg proteinase K, 8.1 ml sterile H2O). Fourth, the tubes were sealed with parafilm, placed in a 37 

°C oven, and rotated over night. The tubes were subsequently removed from the oven and 1 ml 

of 6 M (saturated) NaCl was added to each tube, which was then shaken for about 15 s until 

foamy, and then centrifuged for 15 min at 2500 rpm. After centrifugation, the lysis solution in 
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the sample (supernatant) was decanted, without losing the plasma and pellet, which are then 

carefully transferred to a labeled 15-ml conical tube with two times the volume of 70% alcohol 

until the DNA appeared white and stringy and microfuged for 10 min. The tubes were then 

placed in a 37° C oven until the ethanol had evaporated. Subsequently, the DNA was 

resuspended in 1 Ml TE buffer. The extracted DNA was ready for amplification. (See SOP for 

DNA Extraction in Appendix D).  

 

4.8.1.2 DNA extraction from CSF The QiAamp DNA midi kit provides the fastest and easiest 

way to purify total DNA from CSF. The total genomic or mitochondrial DNA can be purified 

from 0.3-2 ml or 3-10 ml, respectively. With a suitable centrifuge rotor, eight samples can be 

prepared simultaneously in approximately 1.5 hr, with approximately 30 mins of hands-on time 

(QIAGEN, 2008, http://www.qiagen.com). The purified DNA is virtually free of protein, 

nucleases, and other contaminants or inhibitors of downstream applications. The QiAamp DNA 

extraction process was similar to the SOP for blood. First, 200 ul of protease, 2 ml CSF, and 2.4 

ml Buffer AL were mixed together in a 15-ml conical tube at 70° C for 10 min. Then, 2 ml of 96-

100% ethanol was added, and the samples were vortexed. Half of each solution was transferred 

into a 15-ml conical tube and centrifuged at 3000 rpm for 3 min. Buffer AW1 (5 ml) was added 

to a QiaAmp midi column and centrifuged at 5000 rpm for 1 min. Buffer AW2 (2 ml) was added 

to the column and centrifuged at 5000 rpm for 15 min; the column was then inserted into a clean 

15-ml conical tube. Buffer AE (300 µl) was added to the column, incubated at room temperature 

for 5 min, and then centrifuged at 5000 rpm for 5 min more. Another 300 ul of Buffer AE was 

added to the column, incubated, and centrifuged for 5 min. The DNA (1.5 μl) was now ready for 

DNA amplification. The protocol for the QiAamp DNA midi kit is included as Appendix B).   
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4.8.2 TaqMan PCR genotyping assay 

The TaqMan PCR assay (called the 5’ nuclease allelic discrimination assay) is used to genotype 

SNPs using a simple technique (Livak et al., 1995). TaqMan PCR involves exponential 

amplification of almost any region of a selected DNA molecule and is similar to DNA 

replication in nature (http://www.ncbi.nlm.nih.gov/). In this method, the region flanking the 

polymorphism (average of about 100-150 bp) is amplified in the presence of two probes, each 

specific for one allele. Probes are labeled with fluor, called the reporter, at the 5’ end, which 

fluoresces when free in solution, and labeled with a quencher at the 3’ end that absorbs the 

fluorescence from the reporter. During PCR, the Taq DNA polymerase encounters a probe 

specifically base-paired with its target and unwinds it. The polymerase cleaves the partially 

unwound probe and liberates the reporter fluor from the quencher, increasing net fluorescence. 

Fluorescence is a measure of the amount of binding of each probe to a specific allele. The 

presence of two probes, each labeled with a different fluor, allows one to detect both alleles in a 

single tube (Hui, DelMonte, and Ranade, 2008) (see Figure 14).  
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METHODS ADD NUMBERS FOR STEPSMETHODS ADD NUMBERS FOR STEPS
TaqMan SNP Genotyping PCR Assay ProtocolTaqMan SNP Genotyping PCR Assay Protocol

1.

2.

3.

 
Figure 14. Methods Add Numbers for Steps; TaqMan SNP Genotyping PCR Assay Protocol 

 

4.8.2.1 DNA extraction from blood and CSF is ready for TaqMan PCR amplication The 

purpose of the TaqMan PCR assay was to amplify specific target DNA sequences from the DNA 
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samples. The sequencing performance of the TaqMan PCR assay is of high quality with a failure 

rate of less than 1%, which equates to an incorrect assignment of less than one in every 2000 

genotypes assayed (Ranade et al., 2001). The sequence detection system used for this procedure 

was an ABI Prism 7000. The TaqMan PCR assay included 1) DNA nucleotides, which served as 

the building blocks for the new DNA; 2) template DNA, which was the DNA sequence to be 

amplified; 3) primers, which were single-stranded DNA of about 20-50 nucleotides that were 

complimentary to a short region on either side of the template DNA; and 4) Taq polymerase, 

which is a heat stable enzyme that catalyzes new DNA synthesis (http://www.ncbi.nlm.nih.gov/). 

The steps of the TaqMan PCR process included the following: 1) elevate temperature to denature 

DNA strands (Table 9), 2) lower temperature to anneal primers (in molar excess compared to the 

concentration of DNA) (Table 10), 3) allow time for extension reactions to occur at optimum 

temperature (using Taq or other thermally-stable DNA polymerase) (Table 11), and 4) repeat the 

process 25-40 times in order to amplify more DNA for analysis (http://www.ncbi.nlm.nih.gov/). 

An ideal primer has a stable 5’ end and an unstable 3’ end. The unstable 3’ end limits 

bonding to false priming sites. The lower that this value is, the more likely the primer is to show 

secondary bands. The stable 5’ end is called the GC clamp, which increases bonding to the target 

site. The lower that this value is, the more efficient the primer. The rating of a primer provides a 

quick way of measuring the predicted efficiency of a primer and of choosing between closely-

matched primers. The higher the rating of a primer, the higher its amplification efficiency. The 

rating of a primer can be calculated as follows: Rating = 100 (DG (Dimer) * 1.8 + DG (Hairpin) 

* 1.4. 
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Table 9. TaqMan PCR Protocol Step I 
 
Step Action 
1 Preparing the reaction mix a. Calculating the number of reactions to be   

   performed for each assay. 

 

b. Using the table below, calculate the volume of  
    master mix components. 

Reaction component Volume/Well 
(5 ul volume reaction) 

TaqMan universal PCR master mix  
No Amp Erase UNG(2X) 

12.5/2 

20 X Assays on demanal SNP 
genotyping Assay mix 

1.25/2 

Genomic DNA diluted in ddH2O 11.25/2 
Total 25 

PCR mix: 6.25 ul * 96 (wells) = 600ul 

Assay: 0.625 ul * 96 (wells) = 60 ul 

Sterile water: 5.5ul * 96 (wells) = 528 ul 

(sterile  PCR  Assay) 

(600 ul + 60 ul + 528 ul) / 12 = 99 ul (for 99 ul / 8) = 12.5ul (for each 
plate) 
c. Pipette the reagents into a sterile tube. 

2 Preparing the reaction plate a. Pipette 25 ul of reaction mix into each well for a 96-well plate. 
 b. Seal the plate.  

3 Perform PCR a. Program the thermal cycler with the PCR conditions. 
 b. Set the reaction volume to 25 ul for the 96-well plate. 

c. Load the reaction plate into the thermal cycler. 
d. Begin thermal cycling (40 times) then 10º C to cool down at the end.  
e. for blood DNA extraction: 
     50º C (2’)->95º C (10’)->[95º C(15”)->60º C(1’)]40 cycle->10º C 
    for CSF DNA extraction 
    50º C (2’)->95º C (10’)->[95º C(15”)->58 ºC(1’30”)]40 cycle->10º C 

Thermal 

Cycler 

Times and Temperatures  

AB 

PRISM 

7000 

Stage 1 Stage 2 Stage 3 

Repeat 40 CYCLE 

2 min 

*50° C 

10 min 

*95° C 

 15 s 1 min 

Sequence 
Detector 

* 95° C  *60° C 

1 min 30 s 
(58° C)
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Moreover, the critical concerns about the outcome of the TaqMan assays are related to DNA 

quality, probe design, anticipated results, and the time and cost considerations (Hui, DelMonte, 

and Ranade, 2008). Because the SNPs are the most abundant and accessible class of 

polymorphisms present in the human genome, and because of the current popularity of using 

SNPs for genotyping, TaqMan has become the standard technique for DNA analysis. 

 

4.8.2.2 Allelic discrimination plate read HapMap is the most popular human genome website 

that provides a haplotype map of the human genome and describes common patterns of human 

DNA sequence genetic variants from several populations: Yoruba in Ibadan, Nigerians, Japanese 

in Tokyo, Han Chinese in Beijing, China, and CEU Utah residents with ancestry from northern 

and western Europe (http://www.HapMap.org, 2007). Human DNA sequences have 99.9% 

similarity between two-unrelated people; the 0.1% genetic variants cause different responses to 

diseases or environmental risks. Each person has 24 pairs of chromosomes; the pair of alleles at a 

particular gene locus on these chromosome pairs called the genotype, may give rise to 10 million 

SNPs in a population. The set of alleles associated with SNPs in a particular region of a 

chromosome is called a haplotype. SNPs change the amino acid sequence within alleles, which 

changes the gene product and provides functional variations. 

The SNPs for neuroglobin have been genotyped, which has revealed the cytogenetic map 

of chromosome 14, the two most useful SNPs tracks, allele positions, the frequency of each SNP 

characterized, and several reference sequence (rs) mRNA tracks (rs3783989, rs3783988, 

rs10133981, and rs7149300) that show the positions and structures of human protein-coding 

genes. In my 208 patients, there were 196 Caucasians (94.2%), 10 Blacks, and 2 American 

Indians or Alaskan Natives (1.0%). Therefore, rs3783988, which represented 57% A/A 

 84 

http://www.hapmap.org/


nucleotide pairs, 41% A/G pairs, and 2% G/G pairs in the polymorphic site in the CEU, and 

rs10133981, which represented 90% G/G pairs, 10%G/T pairs, and 0% T/T pair were chosen to 

analyze genetic variants in the sample population.  

 
Table 10. TaqMan PCR Protocol Step II 

 
Step Action 
1 Set up new plate read file a. Launch the SDS software on the AB 7000 Prism computer. 

b. In the New Document window, create a new plate read file with the  
    following attributes: 

- Under the Assay menu, select Allelic Discrimination. (rs3783988 & 
rs10133981) 

- Under the Container menu, select the 96-well plate 
- Under the Template menu, select Blank template. 

c. Click OK. A new plate document opens with the appropriate attributes.  
a. Open Detector Manager from the Tools menu. 2 Create new markers 
b. Click File/New to open the Add Detector dialog box and fill in the  
     following information: 

- Type the name of allele 1, select VIC for reporter, and Non-fluorescent 
for quencher. 

- Type the name of allele 2, select FAM for reporter, and Non-fluorescent 
for quencher. 

c. Click Done. Then, the Add Detector dialog box closes. 
d. In the Tools menu, select Maker Manager and click Create Marker. The Add 
Marker dialog box opens. 
e. Click the Enter name of new marker to the field, type the new name, and 
click OK. 

3 Apply detectors to the new 
marker 

A marker must be configured with two detectors before it can be  
applied to a plate document. 
a. In the Markers text field, select the new marker. 
b. In the Available Detectors text field, click the detector (allele 1) marker 
c. Click Add Detector, repeat a through c for the second detector (allele 2) and 
click Done.  

4 Select the sample wells and read 
the plate 

Select wells: 
a. Select the wells in the grid pane that contains the samples. 
b. Add the marker to those selected wells by checking the Use box adjacent to 
the desired marker in the Set Up window, and repeat for other wells. 
Read Plate: 
a. Save the document, and select the Instrument tab. 
b. Place the thermal cycled plate in the instrument, and select Plate Read on 
the instrument page. When the plate read has finished, save the file. 
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4.8.2.3 Allelic discrimination analysis The sequence detection systems from Applied 

Biosystems were used to measure the increase in the reporter fluorescence following PCR. 

Reporter signals were normalized to the emission of a passive reference (Applied Biosystems 

TaqMan Allelic Discrimination Protocol, 2007): 

 
Rn (allele 1) = Emission Intensity of Allele 1 Reporter 
                          Emission Intensity of Passive Reference 
 

Emission Intensity of Allele 2 ReporterRn (allele 2) =  
                          Emission Intensity of Passive Reference 

 
 

Table 11. TaqMan PCR Protocol Step III 
 
Step Action 
1 Open the plate document a. If the plate document file is not open, select  

    Open in the File menu.  
b. In the Look in text field, navigate to and select  
    the plate document file. 
c. Click Open. The software displays the plate  
    document file. 
d. In the Analysis menu, select Analyze. 
a. Click the Results tab. The software displays the  2 Call the allele types 
    allelic discrimination plot. 
b. Use the lasso tool to select one cluster of data  
    points. 
c. In the Call drop-down list, select the appropriate  
    call and repeat for remaining clusters. 
d. Select File/Export and export the results table. 
X - wild type, homogeneous. Normal SNPs variation. 
Y- mutated, homogeneous. Abnormal SNPs variation. 
XY - heterogeneous. Carriers.  

 

4.8.3 Data analysis plan 

All data are presented as means, medians, modes, minimum and maximum values, and the 

skewness, kurtosis, and standard deviations were reported for all variables as appropriate. We 

anticipated that patients with SNP1 and SNP2 genetic variants for Ngb would have different 
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GCS scores on hospital admission after severe TBI compared to patients without these variants 

(wildtype), and that patients with the SNP1 and SNP2 genetic variants for Ngb would have 

different functional outcomes at 3, 6, 12, and 24 months following injury. The following data 

analyses were completed for each specific aim of this study: 

Specific Aim #1: Determine the frequency of Ngb variants in the DNA extracted 

from the CSF and blood of patients with severe TBI. The Ngb gene variants were described 

as follows: For SNP1 (rs3783988), the frequencies of the C/C, C/T, and T/T nucleotide pairs 

were determined, and then we collapsed the frequencies for C/C and C/T together to designate 

the "presence of variant" (Vpresent) group; T/T was designated as the “absence of variant” 

(Vabsent) group. For SNP2 (rs10133981), the frequencies of T/T, G/T, and G/G were 

determined, and then we collapsed T/T with G/T together to designate the Vpresent group; G/G 

was designated as the Vabsent group. The frequencies of the Ngb variants were determined by 

descriptive frequency statistics. 

Specific Aim #2: Determine the demographic and clinical characteristics of the 

patients based on the presence or absence of Ngb variants in the TBI population. 

Demographic characteristics consisted of age, race, gender, and past medical history, and the 

clinical characteristics included the cause of the injury. Independent T-tests, Pearson’s Chi-

square tests, Fisher’s Exact tests, and Exact tests were used to analyze the continuous and 

categorical variables in order to compare the demographic and clinical characteristics of patients 

in the TBI population with and without the Ngb variants. 
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Specific Aim #3: Determine the relationship between the Ngb variants (present or 

absent) and the severity of the TBI as measured by the GCS administered on admission. 

The relationship between Ngb variants and GCS score were analyzed by Chi-square tests. 

ANOVAs were used to further evaluate differences in the GCS scores between different groups 

of Ngb variants. We also dichotomized the GCS into two subgroups (GCS 3-5, GCS 6-8) and 

analyzed the data for between-group differences in GCS score for the patients with and without 

Ngb variants using Pearson’s Chi-Square test and Fisher’s Exact test.  

Specific Aim #4: Determine potential differences in the functional outcomes (GOS 

scores) at 3, 6, 12, and 24 months post injury for patients with and without Ngb variants 

(good outcome = GOS 4-5; poor outcome = GOS 1-3). We performed Chi-square analyses to 

determine if patients with or without the Ngb variants had differences in outcome (good or poor) 

at the stated time points. We also examined the outcomes assessed with the DRS and NRS when 

available. Lastly, we performed logistic and linear regression analyses in order to test the 

relationships between the SNP1 and SNP2 variants for Ngb and the three outcome measures. 

4.9 LIMINATIONS TO THE RESEARCH PLAN 

There is currently no research showing the existence of SNP sequence variants for Ngb in 

humans, making it difficult to interpret the results of the present study in terms of the findings of 

others. Additionally, the study population was limited to Caucasians and African Americans. 

HapMap studied normal individuals comprised of four racial groups, so comparisons of the 

HapMap data with the study population of brain-injured patients comprised of only 2 races is 

somewhat inexact. A sample that includes patients of other races would have enhanced 
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generalizability of the findings. Additionally, Xenon CT is a unique technique for measuring 

CBF, but this method was used for patients with TBI of the parent studies only during the years 

2002-2005. Thus, only 21 patients had Xenon CT results available. The availability of more 

patients with Xenon CT results and, therefore, more CBF data would have provided more 

detailed information on the severity of hypoxia or ischemia in the samples.  
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5.0  RESULTS 

This chapter summarizes the results of the analyses. First, the analyses of the total sample 

population are described; follow by the analyses for each of the specific aims. A total of 216 

patients were available within the genetics study database (parent study), as described 

previously. Three of these patients were found to have a GCS > 8, meaning that they were 

enrolled in the study, but after enrollment they were found to not fulfill study entry criteria and 

were eliminated from the analyses. Also, 5 patients who were enrolled in the parent study did not 

have any demographic or TBI data available and were consequently eliminated from the 

analyses. Therefore, 208 patients from the parent study were found to be suitable for inclusion in 

the study.  

5.1 TOTAL SAMPLE DESCRIPTION 

5.1.1 Genotype variants in the sample of 208 patients 

As previously described, the SNP1 (rs3783988) and SNP2 (rs10139881) variants of Ngb were 

selected for testing, and the frequencies for the genotype and genotype groupings in the sample 

of 208 patients is listed in Table 12. The genotyped frequencies for SNP1 included homozygous 

C/C (N = 9, 4.3%) and T/T (N = 128; 61.5%) nucleotide pairs, and heterozygous C/T (N = 68, 
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32.7%) pairs, with 3 patients (1.4%) for which the genotype was undetermined. The genotype 

frequencies for SNP2 include homozygous G/G (N = 187, 89.9%) and T/T (N = 2, 1.0%) 

nucleotide pairs and heterozygous G/T (N = 14, 6.7%) pairs, with 5 patients (2.4%) for which 

genotype was undetermined. SNP1 and SNP2 were further dichotomized into "Variant present” 

(Vpresent) and "Variant absent” (Vabsent) based upon the homozygote, heterozygote, or other-

variant homozygote designations from the HapMap project (http://www.HapMap.org, 2008), 

which divides each genotype into wild typed or non-wild typed genetic variants.  

 
Table 12. Total Sample Description (N = 208) 

 
SNP1 (rs3783988) SNP2 (rs10133981) 

    N Percent 
(%) 

 N Percent 
(%) 

 

C/C G/G 9 4.3% 187 89.9% 
T/T T/T 128 61.5% 2 1.0% 
C/T G/T 68 32.7% 14 6.7% 

      
Present (C/C + C/T) 77 37% Present (T/T + G/T) 16 7.7% 

Absent (T/T) 128 61.5% Absent (G/G) 187 89.9% 
Missing Missing 3 1.4% 5 2.4% 

Key: SNP = single nucleotide polymorphism 
 
 

Therefore, V present on SNP1 consisted of both C/C and C/T as non-wild typed variants, 

of which there were 77 patients (37%) with this designation. The SNP1 V absent group consisted 

of the T/T wild typed variant, which represented 128 patients (61.5%). Therefore, under this 

dichotomization, about 1/3 of the sample was SNP1 Vpresent and about 2/3 was SNP1 Vabsent. 

For SNP2, Vpresent was designated as T/T and G/T, which characterized only 16 patients 

(7.6%), whereas Vabsent was designated as G/G and characterized 187 patients (89.9%). Thus, 

the majority of the sample was SNP2 Vabsent. The genotype frequencies of 8 individuals could 

not be determined with the TaqMan PCR assay. Therefore, 3 patients had SNP1 data missing but 
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SNP2 data present, and 5 patients had SNP2 data missing but SNP2 data present. In summary, in 

this sample of 208 patients, more patients were likely to be Vabsent for both SNP1 and SNP2, 

although this finding was more pronounced for SNP2. 

5.1.2 Demographic and clinical characteristics of the total sample of 208 patients 

The demographic and clinical characteristics of the sample are indicated in Table 13. Overall, the 

patients in the sample were young, with a mean age of only 34.03 + 14.45 years (mean + SD; 

range 16–73 years). The sample curve describing age was normal in terms of its spread, with a 

skewness +standard error of skewness equal to 0.828 + 0.168, which is within normal limits. The 

sample curve peak was also normal, with kurtosis + standard error of kurtosis equal to -0.092 + 

0.334. For gender, slightly over three-fourths of the sample was male (N = 162; 77.9%) whereas 

a little less than a quarter (N = 44, 21.2%) was female. For race, the sample consisted primarily 

of Caucasians (N = 196, 94.7%; 154 males and 40 females), with a much smaller representation 

of African Americans (N = 10, 4.8%; 6 males and 4 females), American Indians, or Alaskan 

Natives (N = 2, 1.0%; 2 males).  

The frequency analysis for past medical history was subdivided into seven major 

categories: no medical problems (N = 110, 52.9%), drug abuse (N = 6, 2.9%), hypertension (N = 

4, 1.9%), pulmonary disease (N = 3, 1.4%), cardiac disease (N = 3, 1.4%), neurologic system 

disease (N = 1, 0.5%), and other medical problems (N = 32, 15.4%) such as diabetes mellitus. 

Therefore, the prevalence of past medical problems was very small in each category. This 

finding is consistent with the young age of the sample population.  

The most common causes of injury in this population included: 1) motor vehicle accident 

(MVA) (N = 94, 45.2%), motorcycle accident (N = 35, 16.8%), fall (N = 33, 15.9%), all terrain 
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vehicle (ATV) crash (N = 11, 5.3%), pedestrian (N = 10, 4.8%), assault (N = 6, 2.9%), and other 

(N = 17, 8.2%). This information was missing for only 1 patient (0.5%). Therefore, the most 

prevalent cause of TBI in this population was MVA, followed by motorcycle accidents, and 

ATV crashes, with few pedestrian accidents or assaults. Most of the injuries in this sample were 

due to crashes of transport vehicles.  

The distribution of the scores on the GCS on admission for the sample population was as 

follows: 11.1% GCS 3 (N = 23), 17.3% GCS 4 (N = 36), 13.9% GCS 5 (N = 29), 19.2% GCS 6 

(N = 40), 31.7% GCS 7 (N = 66), and 6.7% GCS 8 (N = 14), with no missing data. Therefore, 88 

patients (42.4%) had GCS scores ranging from 3-5, whereas 120 patients (56.6%) had GCS 

scores of 6-8. Therefore, this sample was fairly equally distributed between the two subgroups of 

GCS scores: poorer (scores 3-5) versus better (scores 6-8). The GCS distribution was found to be 

normal. The mode of GCS scores of the 208 patients with TBI was a score of 7. In summary, the 

sample was comprised of mostly young males, with few past medical problems, that were injured 

while riding in transportation vehicles.  
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Table 13. Total Sample Description-Demographic and Clinical Characteristics (N = 208) 
 

Variable Value 
Age (Mean years + SD) 34.03 + 14.45 
Gender (N = 208; 100%)  

Male 162 (77.9%) 
Female 44 (21.2%) 
Missing 2 (1.0%) 

Race (N = 208; 100%)  
American Indian/Alaskan Native 2 (1.0%) 
African American 10 (4.8 %) 

           196 (94.2%) Caucasian  
Medical History (N = 208; 100%)  

None 110 (52.9%) 
Drug Abuse 6 (2.9%) 
Hypertension 4 (1.9%) 
Pulmonary Disease 3 (1.4%) 
Cardiac Disease 3 (1.4%) 
Neuro. Disease 1 (0.5%) 
Other 32 (15.4%) 
Missing 49 (23.6%) 

Mechanism of Injury (N = 208; 100%)  
Motor Vehicle Accident (MVA) 94 (45.2%) 
Motorcycle 35 (16.8%) 
Fall 33 (15.9%) 
All Terrain Vehicle (ATV) 11 (5.3%) 
Pedestrians 10 (4.8%) 
Assault 6 (2.9%) 
Other  17 (8.2%) 
Missing 1 (0.5%) 

Admission Glasgow Coma Scale (GCS) (N = 208; 100%)  
3 23 (11.1%) 
4 36 (17.3%) 
5 29 (13.9%) 
6 40 (19.2%) 
7 66 (31.7%) 
8 14 (6.7%) 
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5.1.3 Outcomes for the total sample of 208 patients 

The primary outcome of interest in this study was the results of the assessments with the GOS 

(Table 14). The data for outcomes assessed with the DRS and the NRS were also available, but 

for fewer patients.  

The GOS 3-month scores were available for 167 patients (80.3%). The distribution of 

GOS scores for the patients was as follows: 22.1% GOS 1 (N = 46), 7.2% GOS 2 (N = 16), 

31.7% GOS 3 (N = 66), 15.4% GOS 4 (N = 32), and 3.8% GOS 5 (N = 8). When the 3-month 

GOS scores were dichotomized into good (GOS 4-5) and poor (GOS 1-3), the majority of the 

patients scored poorly (N = 127, 61.1%), with a minority of the patients scoring good (N = 40, 

19.2%). The data for 19.7% of the sample (N = 41) was missing.  

The GOS 6-month scores were available for 161 patients (77.4%). The distribution of the 

GOS scores for the patients was as follows: 22.1% GOS 1 (N = 46), 5.3% GOS 2 (N = 11), 

21.3% GOS 3 (N = 44), 17.3% GOS 4 (N = 36), and 11.5% GOS 5 (N = 24). When the 6-month 

GOS scores were dichotomized, 60 patients (28.8%) were rated as good, whereas 101 patients 

(48.6%) were rated as poor, with data missing data for 47 patients (22.6%). Therefore, although 

the majority of patients still rated as poor as at 6 months, the prevalence of poor functional status 

declined over time (the percentage of patients categorized as GOS poor was 61.1% at 3 months, 

but only 49% at 6 months). These data show that some patients had achieved good outcome 

between 3 and 6 months after injury. 
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Table 14. Total Sample Description-Glasgow Outcome Scale from 3 to 24 Months (N = 208) 
 
GOS Month and score Frequency 

(percent) 
GOS Month and score Frequency 

(percent) 
GOS 3rd Month  GOS 3rd Month    
(Completed N = 167; 80.3%) Poor (1-3)  127 (61.1%) 

1 Good (4-5) 46 (22.1%) 40 (19.2%) 
2 Missing 15 (7.2%) 41 (19.7%) 
3 66 (31.7%) 
4 32 (15.4%) 
5 8 (3.8%) 
Missing 41 (19.7%) 

GOS 6th Month  GOS 6th Month    
(Completed N = 161; 77.4 %) Poor (1-3)  101 (48.6%) 

1 Good (4-5) 46 (22.1%) 60 (28.8%) 
2 Missing 11 (5.3%) 47 (22.6%) 
3 44 (21.2%) 
4 36 (17.3%) 
5 24 (11.5%) 
Missing 47 (22.6%) 

GOS 12th Month  GOS 12th Month    
(Completed N = 141; 67.8%) Poor (1-3)  83 (39.9%) 

58 (27.9%) 1 Good (4-5) 40 (19.2%) 
2 Missing 9 (4.3%) 67 (32.2%) 
3 34 (16.3%)  
4 30 (14.4%) 
5 28 (13.5%) 
Missing 58 (27.9%) 

GOS 24th Month  GOS 24th Month    
(Completed N = 104; 50.0 %) Poor (1-3)  59 (28.4%) 

1 Good (4-5) 37 (17.8%) 45 (21.6%) 
2 Missing 4 (1.9%) 104 (50.0%) 
3 18 (8.7%)  
4 16 (7.7%) 
5 29 (13.9%) 
Missing 104 (50%) 

 

The GOS 12-month scores were available for 141 patients (67.8%). The distribution of 

12-month GOS scores for the patients was as follows: 19.2% GOS 1 (N = 40), 4.3% GOS 2(N = 

9), 16.3% GOS 3(N = 34), 14.4% GOS 4 (N = 31), and 13.5% GOS 5 (N = 28), with 27.9% 

categorized as good (N = 58) and 29.9% categorized as poor (N = 83). At the 24-month GOS 

follow-up (total N = 104; 50.0%), the scores were distributed as follows: 17.8% GOS 1 (N = 37), 

1.9% GOS 2 (N = 4), 8.7% GOS 3 (N = 18), 7.7% GOS 4 (N = 16), and 13.9% GOS 5 (N = 29), 
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with data missing for 104 patients (50.0%). When the scores were dichotomized, 83 patients 

(39.9%) were classified as poor by the 12-month GOS score, whereas 59 patients (28.4%) were 

classified as poor by the 24-month GOS score. The percentage of missing data was increased for 

the 24-month sampling time point. Only half of the patients were still active participants in the 

study by the time the 24-month GOS score was reported, which may suggest that patients with 

better recovery withdrew from the study. Nevertheless, based upon our data, functional status 

showed the biggest improvement between 3 and 6 months, with little additional improvement 

thereafter.   

Next, we evaluated the DRS scores. We first examined the DRS distribution for 

normality using the Shapiro-Wilk test (a significant value indicated normality), which 

demonstrated normality at all time points (p < 0.001 was obtained at 3, 6, 12, and 24 months). 

The data for the between-group differences in outcome status on the DRS is listed in Table 15. 

Scores on the DRS could potentially range from 0-29 (score 30 = death). When the DRS data 

were analyzed as an 11-category variable, several of the categories had less than 5 patients and 

many had no patients. Therefore, these data were treated as a continuous variable, utilizing mean 

scores as the metric. Analysis of the skewness and kurtosis characteristics of the data revealed 

values acceptable for normality (see Table 15). The mean + standard deviation for the DRS 

scores over time were as follows: 15.42 + 11.61 at 3 months (N = 164, 78.85%), 13.72 + 12.25 at 

6 months (N = 160, 76.92%), 13.25 + 12.61 at 12 months (N = 138, 66.35%), and 14.10 + 13.40 

at 24 months (N = 105, 50.48%). All DRS scores had standardized values less than 3 (Z < 3) at 

all time points, meaning that their distribution was normal. As with the GOS scoring, the number 

of patients with available DRS scores decreased over time. When the mean DRS scores for 

available patients were closely examined, outcome status did not appear to change very much 
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over time. The reasons for missing data were that patients were cognitively or physically unable 

to respond, patients or their families refused to respond, patients gave less than their best effort, 

patients were in jail, patients resided too far away, or patients were lost to follow-up.   

 
Table 15. Total Sample Description-Disability Rating Scale from 3 to 24 Months (N = 208) 

 
DRS Month & Score N Range Mean + SD Skewness/Kurtosis
DRS 3rd Month     
         Valid 164 (78.85%) 0-30 15.42 +
         Missing 44 (21.15%) 

 11.61 0.138/-1.685 

DRS 6th Month     
         Valid 160 (76.92%) 0-30 13.72 +
         Missing 48 (23.08%) 

 12.25 0.319/-1.649 

DRS 12th Month     
      Valid 138 (66.35%) 0-30 13.25 +
      Missing 70 (33.65%) 

 12.61 0.364/-1.673 

DRS 24th Month     
         Valid 105(50.48%) 0-30 14.10 +
         Missing 103 (49.52%) 

 13.40 0.215/-1.853 

 

The functional outcome measurement used was the NRS (Table 16). The histogram and 

QQ plot of the NRS scores at months 12 and 24 are represented by long tails on the higher 

scores, which indicates that few patients had worse recovery in terms of their functional outcome 

(the higher score the on the NRS, the worse the outcome status). The patients that worsened over 

time (12-month NRS: N = 6, score >70; 24-month NRS: N = 3, score > 50) were not excluded 

from the study because these outcomes had potential implications for interpretation and 

evaluation.  

Additionally, each NRS score at months 3-24 had one patient with a standardized value 

above 3 (Z > 3): Z = 3.48294 for month 3, Z = 3.62166 for month 6, Z = 3.4026 for month 12, 

and Z = 3.054 for month 24); however, the patient at each time point was not excluded from the 

study because the Z value was not far beyond 3 standard deviations. This decision was justified 
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when the Shapiro-Wilk tests revealed that the NRS scores were normality distributed (a 

significant p value indicates normality), p = 0.001 at 3 months, p = 0.002 at 6 months, p < 0.001 

at 12 months, and p = 0.002 at 24 months. We next evaluated the NRS scores over time and 

found that the means + standard deviations over time were as follows: 40.63 + 9.87 at 3 months 

(N = 62, 29.81%, range = 29-75), 41.13 + 9.13 at 6 months (N = 76, 36.54%, range = 29-74), 

41.65 + 12.84 at 12 months (N = 71, 34.13%, range = 29-85), and 41.24 + 9.23 at 24 months (N 

= 38, 18.27%, range = 31-69). Therefore, similar to findings with the DRS, mean NRS scores did 

not change much over time. 

 
Table 16.Total Sample Description-Neurobehavioral Rating Scale from 3 to 24 Months (N = 

208) 
 
NRS Month & Score N Range Mean + SD Skewness/Kurtosis
NRS 3rd Month     

Valid 62 (29.81%) 29-75 40.64 +
Missing 146 (70.19%) 

 9.87 1.488/2.053 

NRS 6th Month     
Valid 76 (36.54%) 29-74 41.13 +
Missing 132 (63.46%) 

 9.13 1.151/1.186 

NRS 12th Month     
Valid 71 (34.13%) 29-85 41.65 +
Missing 137 (65.87%) 

 12.84 1.590/2.100 

NRS 24th Month     
Valid 38 (18.27 %) 31-69 41.24 +
Missing 170 (81.73%) 

 9.23 1.262/1.366 

 

Next, we reviewed the total sample to determine if a correlation existed between the GCS 

scores and the outcome measures (GOS, DRS, and NRS) in order to examine the connection 

between TBI severity and outcomes which might also impact the results (Table 17). We first 

attempted to use the Exact test to evaluate the correlation between the GCS scores 3-8 and the 

GOS scores 1-5. However, the amount of data was too large and exceeded both the time and 

memory available for SPSS to complete this run. However, we were able to run the Exact test 
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when GCS scores 3-8 were defined as a categorical variable and GOS scores were dichotomized 

as poorer and good. This analysis demonstrated a positive significant correlation on months 3 (p 

= 0.004), 6 (p < 0.001), 12 (p < 0.001), and 24 (p = 0.004, respectively).  

 
Table 17. Examination of the Relationship between Initial Glasgow Coma Scale and Outcomes 

(GOS, DRS, NRS) for the Total Sample from 3 to 24 Months (N = 208) 
 

3rd Month 6th Month 12th Month  24th Month Statistical 
Analysis 

 

GCS (3-8) vs. GOS (1-5) Exact test † † † † 
GCS (3-8) vs. GOS (Di) Exact test 0.004* 0.001** 0.001** 0.004* 
GCS (Di) vs. GOS (Di) Pearson’s Chi-

square test 
0.001** 0.001** 0.001** 0.001** 

GCS (3-8) vs. DRS & NRS  ANOVA 0.001** 0.001** 0.001** 0.001** 
                      0.691 0.475 0.422 0.059 

GCS (Di) vs. DRS & NRS Independent t-
test 

0.001** 0.001** 0.001** 0.001** 
                        0.884 0.569 0.160 0.149 

Key: † = could not be computed because there was insufficient memory, ** = significant p value 
< 0.001, * = significant p value < 0.005, Di = dichotomous. 
 
 

We next ran the Pearson's Chi-square test with the dichotomized GCS scores (poorer and 

better) and the dichotomized GOS scores (poorer and good) and also saw a strongly positive 

relationship between these two variables at months 3 (p < 0.001), 6 (p < 0.001), 12 (p < 0.001), 

and 24 (p < 0.001). We then also used one-factor ANOVAs to evaluate the relationship between 

the GCS (3-8) scores and the DRS and NRS scores. The findings revealed significant 

relationships between the GCS (3-8) and the DRS scores at every time point (p < 0.001), whereas 

there was no significant relationship between the GCS (3-8) scores and the NRS scores at 3 

months (p = 0.691), 6 months (p = 0.475), 12 months (p = 0.422), and 24 months (p = 0.059). 

These relationships were maintained when the dichotomized GCS scores were compared with 

the DRS and NRS scores, respectively, for month 3 (p < 0.001 and p = 0.884), month 6 (p < 
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0.001 and p = 0.569), month 12 (p < 0.001 and p = 0.160), and month 24 (p < 0.001, p = 0.149), 

using independent T-tests.  

In summary, these findings indicate to us that there was an association between the 

severity of the TBI, as determined by the GCS scores on admission, and the functional outcomes 

assessed by the GOS at all time points. An association between TBI severity, as measured by the 

GCS and functional outcome was upheld for the DRS when this measure was examined as either 

a categorical or dichotomous variable, but there was no relationship between the GCS scores and 

the NRS-measured outcomes. 

5.1.4 SNP variants and demographics in total sample of 208 patients 

Using a total of 208 patients, we next examined whether or not differences existed in the patient 

demographics and clinical characteristics (Table 18) for patients in which the Ngb variants were 

present or absent.  

For SNP1 and SNP2, there were no significant relationships between Vpresent/Vabsent 

and age (Independent t-test; SNP1 p = 0.517, SNP2 p = 0.482) or gender (Pearson’s Chi-square 

for SNP1, p = 0.809; Fisher’s Exact test for SNP2, p = 0.532). There was not a significant 

relationship for race (categorical variable; Exact test) for SNP1 (p = 0.767), but there was a 

significant relationship with race for SNP2 (categorical variable, p = 0.048). Because some 

experimental groups had less than 5 patients, we repeated the analysis using race as a 

dichotomized variable (non-Caucasian vs. Caucasian). Using Pearson’s Chi-square for SNP1, the 

relationship was still not statistically significant (p = 0.359), whereas a significant relationship 

between SNP2 and race was maintained with the Fisher’s Exact test (p = 0.045). Both medical 

history and cause of injury did not significantly differ for SNP1 (p = 0.133 and p = 0.655, 
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respectively) or SNP2 (p = 0.822 and p = 0.992, respectively), as assessed by the Exact tests.  

There was no significant relationship between the admission GCS score and the SNPs when GCS 

was utilized as a categorical variable with SNP1 (p = 0.094), a dichotomized variable with SNP1 

(p = 0.177), a categorical variable with SNP2 (p = 0.322), or a dichotomized variable with SNP2 

(p = 0.543).  
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Table 18. Total Sample Between-Group Difference of Demographics and Patient Characteristics 
for the Presence and Absence of Variants on SNP1 and SNP2 (N = 208) 

 
SNP1 (rs3783988) SNP2 (rs10133981)  

Present Absent p Present Absent p  
Age (mean + SD)T 0.517T34.84 + 

15.35 
33.49 + 13.89 31.31 + 

12.71 
33.94 +14.43 0.482T

GenderC   (N = 203) 14 (87.5%)  (N = 201) 
0.809C 0.532F Male  61 (79.2%) 98 (77.8%) 2 (12.5%) 145 (78.4%) 

Female 16 (20.8%) 28 (22.2%) 40 (21.6%) 
RaceE   (N = 205)   (N = 203) 

0.767E 0.048E American Indian 
Alaskan Native 

1 (1.3%) 1 (0.8%) 1 (6.3%) 1 (0.5%) 
    

African American 5 (6.5%) 5 (3.9%) 2 (12.5%) 7 (3.7%) 
Caucasian 71 (92.2%) 122 (95.3%) 13 (81.3%) 179 (95.7%) 

RaceC   (N = 205)   (N = 203) 
0.359C 0.045F Non-Caucasian 6 (7.8%) 6 (4.7%) 3 (18.8%) 8 (4.3%) 

Caucasian 71 (92.2%) 122 (95.3%) 13 (81.3%) 179 (95.7%) 
Medical HistoryE  73 (74.5%) (N = 157)   N = 157) 

0.133E 0.822E None 37 (62.7%) 3 (3.1%) 9 (69.2%) 100 (69.4%) 
Drug Abuse 3 (5.1%) 1 (1.0%) 0 (0.0% 

0 (0.0%) 
6 (4.2%) 

Hypertension 3 (5.1%) 0 (0.0%) 4 (2.8%) 
Pulmonary Disease 3 (5.1%)  

1 (1.7%) 
1 (1.0%) 0 (0.0%) 3 (2.1%) 

Cardiac Disease 1 (1.0%) 0 (0.0%) 3 (2.1%) 
Neuro. Disease 0 (0.0%) 19 19.4%) 0 (0.0%) 1 (0.7%) 
Other 12 (20.3%) 4 (30.8%) 27 (18.8%) 

Cause of InjuryE    (N = 204)   (N = 204) 
0.655E 0.992E Motor Vehicle 

Accident (MVA) 
33 (43.4%) 60 (46.9%) 8 (50.0%) 85 (45.7%) 

    
Motorcycle 14 (18.4%) 20 (15.6%) 2 (12.5%) 32 (17.2%) 
Fall 13 (17.1%) 20 (15.6%) 2 (12.5%) 28 (15.1%) 
All Terrain Vehicle 
(ATV) 

3 (3.9%) 8 (6.3%) 1 (6.3%) 10 (5.4%) 
    

Pedestrians 2 (2.6%) 8 (6.3%) 1 (6.3%) 9 (4.8%) 
Assault 2 (2.6%) 4 (3.1%) 1 (6.3%) 5 (2.7%) 
Other  9 (11.8%) 7 (5.5%) 1 (6.3%) 16 (8.6%) 

Admission Glasgow Coma 
Scale (GCS)E  

  (N = 205)   (N = 205) 
0.094E 0.322E     

 3 5 (6.5%) 18 (14.1%)  1 (6.3%) 22 (11.8%) 
 4 20 (26.0%) 16 (12.5%)  5 (31.3%) 30 (16.0%) 
 5 13 (16.9%) 16 (12.5%)  2 (12.5%) 26 (13.9%) 
 6 12 (15.6%) 27 (21.1%)  1 (6.3%) 37 (19.8%) 
 7 23 (29.9%) 41 (32.0%)  7 (43.8%) 58 (31.0%) 

  8 4 (5.2%) 10 (7.8%) 0 (0.0%) 14 (7.5%) 
0.177C 0.543C Admission Glasgow Coma 

Scale (GCS)E  
    
    

Poor (3-5)C 38 (49.4%) 50 (39.7%) 8 (50.0%) 78 (42.2%) 
Better (6-8) 39 (50.6%) 76 (60.3%) 8 (50.0%) 107 (57.8%) 

Key: C = Pearson’s Chi-square test; E = Exact test; F = Fisher’s Exact test, T = Independent t-
test. 
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Because the Pearson Chi-square test that was used to examine the relationship between 

the dichotomized race variable and the SNP allele frequencies was significant, we decided to 

exclude non-Caucasian patients (N = 12) from the subsequent analyses to eliminate the potential 

confound by race on SNP allele frequencies. Furthermore, the seven categorical domains of the 

medical history decreased the sensitivity of the Pearson Chi-square tests for both SNP1 and 

SNP2 due to very low numbers of patients in some of the experimental groups. Therefore, 

medical history was dichotomized into two categorical domains –significant medical history or 

non-significant medical history.  

Thus, we limited the final sample to 196 Caucasian patients. Based on the elimination of 

non-Caucasians from further analyses and collapse of the variable categories as indicated, Table 

19 now shows a condensed version of the medical history and cause of injury for the Caucasian 

patients. Specifically, the average age was 34.11 + 14.57 years (mean + SD), there were 154 

males (78.6%) and 40 females (20.4%), 106 patients had no history of health problems, and 45 

patients (23.0%) had a previous medical history. The majority of those patients experienced 

injury from a motor vehicle accident (N = 89, 45.4%), whereas the minority were injured from 

an assault (N = 4, 2.0%). Upon admission, 83 patients (42.3%) had a GCS score of 3-5 (poorer), 

whereas 112 patients (57.1%) had a GCS score of 6-8 (better).  
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Table 19. Total Sample Description-Demographic and Clinical Characteristics (N = 196) 
 

Variable Value 
Age (Mean years + SD) 34.11 + 14.57 
Gender (N = 196; 100%)  

Male 154 (78.6%) 
Female 40 (20.4%) 
Missing 2 (1.0%) 

Medical History (N = 196; 100%)  
None 106 (54.1%) 
Drug Abuse 6 (3.1%) 
Hypertension 4 (2.0%) 
Pulmonary Disease 2 (1.0%) 
Cardiac Disease 3 (1.5%) 
Neuro. Disease 1 (0.5%) 
Other 29 (14.8%) 
Missing 45 (23.0%) 

Mechanism of Injury (N = 196; 100%)  
Motor Vehicle Accident (MVA) 89 (45.4%) 
Motorcycle 34 (17.3%) 
Fall 31 (15.8%) 
All Terrain Vehicle (ATV) 11 (5.6%) 
Pedestrians 10 (5.1%) 
Assault 4 (2.0%) 
Other  15 (7.7%) 
Missing 1 (0.5%) 

Admission Glasgow Coma Scale (GCS) (N = 196; 100%)  
3 23 (11.7%) 
4 33 (16.8%) 
5 27 (13.8%) 
6 36 (18.4%) 
7 64 (32.7%) 
8 13 (6.6%) 

Admission Glasgow Coma Scale (GCS) (N = 196; 100%)  
Poor (GCS 3-5) 83 (42.3%) 
Better (GCS 6-8) 112 (57.1%) 
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5.2 SPECIFIC AIM 1: FREQUENCY OF NGB VARIANTS IN THE DNA 

EXTRACTED FROM THE CSF AND BLOOD OF PATIENTS WITH SEVERE TBI 

Table 20 shows the data necessary to address Specific Aim #1 and indicates the frequency of the 

Ngb variants in this TBI sample population. The 196 Caucasians were characterized by the 

following nucleotide pairings: 4.1% C/C (N = 8), 62.2% T/T (N = 122), and 32.1% C/T (N = 63) 

for SNP1 (rs3783988), which was dichotomized to 36.2% SNP1 Vpresent (N = 71) and 62.2% 

SNP1 Vabsent (wild typed) (N = 122). For the SNP2 variant (rs10133981), the Caucasian 

patients were characterized as follows: 91.3 % G/G (N = 179), 0.5% T/T (N = 1), and 6.1% G/T 

(N = 12), which dichotomized to 6.6% SNP2 Vpresent (N = 13) and 91.3% SNP2 Vabsent (N = 

179). Thus, the sample was predominantly absent for both variants of SNPs, but the effect was 

more pronounced for SNP2. 

 
Table 20. Frequency and Percentage of Variants of SNP1 and SNP2 in 196 Caucasians 

 
SNP1 (rs3783988) SNP2 (rs10133981) 

N Percent (%)  N Percent (%)  
C/C G/G 8 4.1% 179 91.3% 
T/T T/T 122 62.2% 1 0.5% 
C/T G/T 63 32.1% 12 6.1% 

     
Present (C/C + C/T) 71 36.2% Present (T/T + G/T) 13 6.6% 

Absent (T/T) Absent (G/G) 122 62.2% 179 91.3% 
Missing Missing 3 1.5% 4 2.0% 
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5.3 FIRST SECTION SPECIFIC AIM 2: RELATIONSHIP BETWEEN 

DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF PATIENTS BASED ON 

THE PRESENCE/ABSENCE OF NGB VARIANTS IN THE TBI POPULATION 

Table 21 shows the results of our analyses examining the relationship between the demographic 

and clinical characteristics of the patients with TBI in the sample and the presence or absence of 

the variants of the SNPs. The data demonstrate that there was no significant relationship between 

the demographic and clinical characteristics of age, gender, medical history, or cause of injury 

and the presence or absence of variants on either SNP for the 196 Caucasian patients. We did not 

observe any trends in these data that would be of clinical interest.  

 
Table 21. Demographics and Clinical Characteristics of 196 Caucasian Patients Based on the 

Presence or Absence of Ngb Variants on SNP1 and SNP2 
 

SNP1 (rs3783988) SNP2 (rs10133981)  
 Present Absent p Present Absent p 

Age (mean + SD)T 0.355T34.35 + 15.49 33.34 + 14.01 32.23 + 13.42 33.83 +14.50 0.700T

GenderC   (N = 191)   (N = 190) 
0.749C 1.000F Male  57 (80.3%) 94 (78.3%) 11 (84.6%) 140 (79.1%) 

Female 14 (19.7%) 26 (21.7%) 2 (15.4%) 37 (19.5%) 
Medical HistoryE   (N = 149)   (N = 149) 

0.173E 0.856E None 34 (61.8%) 72 (76.6%) 7 (70.0%) 98 (70.5%) 
Drug Abuse 3 (5.5%) 3 (3.2%) 0 (0.0%)  

0 (0.0%) 
6 (4.3%) 

Hypertension 3 (5.5%) 1 (1.1%) 4 (2.9%) 
Pulmonary Disease 2 (3.6%)  

1 (1.8%) 
0 (0.0%) 0 (0.0%) 2 (1.4%) 

Cardiac Disease 1 (1.1%) 0 (0.0%) 3 (2.2%) 
Neuro. Disease 0 (0.0%) 1 (1.1%) 0 (0.0%) 1 (0.7%) 
Other 12 (21.8%) 16 (17.0%) 3 (30.0%) 25 (18.0%) 

Cause of InjuryE    (N = 192)   (N = 192) 
0.813E 0.958E Motor Vehicle 

Accident(MVA) 
31 (44.3%) 57 (46.7%) 7 (53.8%) 82 (46.1%) 

    
Motorcycle 13 (18.6%) 20 (16.4%) 2 (15.4%) 31 (17.4%) 
Fall 13 (18.6%) 18 (14.8%) 2 (15.4%) 26 (14.6%) 
All Terrain Vehicle 
(ATV) 

3 (4.3%) 8 (6.6%) 1 (7.7%) 10 (5.2%) 
    

Pedestrians 2 (2.9%) 8 (6.6%) 1 (7.7%) 9 (5.1%) 
Assault 1 (1.4%) 3 (2.5%) 0 (0.0%) 4 (2.2%) 
Other  7 (10.0%) 7 (5.7%) 0 (0.0%) 15 (8.4%) 

Key: Ngb = neuroglobin, C = Chi-square test, E = Exact test, F = Fisher’s Exact Test, T = 
Independent t-test. 
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5.4 SPECIFIC AIM 3: THE RELATIONSHI0P BETWEEN NGB VARAINTS 

(PRESENT/ABSENT) AND THE SEVERITY OF TBI AS MEASURED BY THE 

ADMISSION GCS 

 Table 22 shows that the data analyses for Specific Aim #3 in which the relationships between 

the presence or absence of the Ngb variants and the severity of TBI were examined, using the 

admission GCS as the metric. Our data indicate that the SNP1 variant was present in patients 

with GCS scores of 3 (N = 5, 7.0%), 4 (N = 19, 26.8%), 5 (N = 12, 16.9%), 6 (N = 10, 14.1%), 7 

(N = 21, 29.6%), and 8 (N = 4, 5.6%).  

 
Table 22. Glasgow Coma Scale Scores for 196 Caucasian Patients Based on the Presence or 

Absence of Neuroglobin Variants on SNP1 and SNP2 
 

 SNP1 (rs3783988) SNP2 (rs10133981) 
Present Absent p Present  Absent p 

0.061E 0.497E Admission Glasgow 
Coma Scale (GCS)E  

    
     
 3 5 (7.0%) 18 (14.8%) 1 (7.7%) 22 (12.3%) 
 4 19 (26.8%) 14 (11.5%) 3 (23.1%) 29 (16.2%) 
 5 12 (16.9%) 15 (12.3%) 1 (7.7%) 25 (14.0%) 
 6 10 (14.1%) 25 (20.5%) 1 (7.7%) 33 (18.4%) 

7 21 (29.6%) 41 (33.6%) 7 (53.8%) 57 (31.8%) 
8 4 (5.6%) 9 (7.4%) 0 (0.0%) 13 (7.3%) 

Poor (3-5)C 0.109C 0.765C 36 (50.7%) 47 (38.8%) 5 (38.5%) 76 (42.7%) 
Better (6-8) 35 (49.3%) 74 (61.2%) 8 (61.5%) 102 (57.3%) 

Key: C = Chi-square test, E = Exact-test. 
 
 
It appeared that more patients who were Vabsent for SNP1 had higher GCS scores than 

those who were Vpresent for SNP1. This finding approached but did not achieve statistical 

significance when GCS was examined as a categorical variable (p = 0.061). When we 

dichotomized the GCS scores into Poor or Better, there was a similar trend, but the result was not 

statistically significant (p = 0.109). The GSC scores of the SNP2 Vpresent patients were 
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distributed as follows: 7.7% GCS 3 (N = 1), 23.1% GCS 4 (N = 3), 7.7% GCS 5 (N = 1), 7.7% 

GCS 6 (N = 1), and 53.8% GCS 7 (N = 7). The GCS scores for the variants of SNP2 were not 

significantly different using the Exact test analysis (p = 0.497). The study further shows that the 

GCS 3-5 (poorer) condition in the SNP2 Vpresent variant was N = 5 (38.4%), and the GCS 6-8 

(better) condition was N = 8 (61.5%), with no significant differences found for the SNP2 

Vabsent group (p = 0.765). Briefly, only SNP1 variants showed an association with the severity 

of TBI on admission, with more patients with better GCS scores being SNP1 Vabsent. 

5.5 SPECIFIC AIM 4: DIFFERENCES IN FUNCTIONAL OUTCOMES OF 

PATIENTS WITH AND WITHOUT NGB VARAINTS (PRESENT/ABSENT) OVER 

TIME 

Specific Aim #4 was designed to determine if there were differences in the functional outcomes 

of patients, based on the presence or absence of the Ngb variants. 

The results of the analyses of the GOS scores are listed in Table 23. The Pearson Chi-

square test was used to assess differences in the GOS scores based on the presence or absence of 

Ngb variants in SNP1 and SNP2. For SNP1, when the GOS was maintained as a categorical 

variable, we found statistically significant differences for the 3-month GOS (N = 156, p = 0.015), 

the 6-month GOS (N = 151, p = 0.109), and the 12-month GOS (N = 133, p = 0.019) scores, but 

not for the24-month GOS score (N = 100, p = 0.242). However, when the GOS categories were 

dichotomized (good vs. poor), statistical significance was achieved at every time point. Although 

the findings were significant for both sets of variants, more patients characterized as SNP1 

Vabsent were GOS good at 3 months (N = 30, 30.3%), 6 months (N = 44, 45.4%), 12 months (N 
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= 42, 51.9%), and 24 months (N = 34, 51.5%) post TBI than for the patients classified as SNP1 

Vpresent (N = 8, 14.0%, p = 0.023; N = 13, 24.1%, p = 0.010; N = 13, 25.0%, p = 0.002; N = 10, 

29.4%, p = 0.035, respectively). This finding of patients with SNP1 Vabsent being more likely to 

have a GOS good outcome (dichotomized) than the SNP1 Vpresent patients also held true at all 

subsequent time measurement points as well. Thus, patients identified as SNP1 Vabsent 

appeared to have good outcomes over time. For SNP2, no statistically significant differences 

were achieved for any of the analyses, regardless of whether or not the GOS scores were 

categorized or dichotomized. 
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Table 23. Functional Outcome of Glasgow Outcome Scale from 3 to 24 Months for 196 
Caucasian Patients Based on the Presence or Absence of Neuroglobin Variants on SNP1 and 

SNP2 
 

SNP1 (rs3783988) SNP2 (rs10133981)  
Present Absent p Present Absent p 

3rd Month (N = 167; 
80.3%) 

(N = 154; 
78.6%) 

    
1 19 (19.2%) 38 (26.4%) 23 (40.4%) 2 (20.0%) 

3 (30.0%) 
3 (30.0%) 

0.015E 0.159E 2 9 (9.1%) 11 (7.6%) 5 (8.8%) 
3 41 (41.4%) 60 (41.7%) 21 (36.8%) 
4 22 (22.2%) 29 (20.1%) 8 (14.0%) 1 (10.0%) 
5 8 (8.1%) 6 (4.2%) 0 (0.0%) 1 (10.0%) 

0.023C 1.000FPoor (GOS 1-3) 49 (86.0%) 69 (69.7%) 8 (80.0%) 109 (75.7%) 
Good (GOS 4-5) 8 (14.0%) 30 (30.3%) 2 (20.0%) 35 (24.3%) 
6th Month  (N = 161; 

77.4%) 
(N = 148;     

1 75.5%) 21 (21.6%) 36 (26.5%) 20 (37.0%) 3 (25.0%) 
0.109E 0.421E 2 6 (6.2%) 8 (5.9%) 4 (7.4%) 2 (16.7%) 

3 26 (26.8%) 39 (28.7%) 17 (31.5%) 4 (33.3%) 
4 26 (26.8%) 31 (22.8%) 8 (14.8%) 3 (25.0%) 
5 18 (18.6%) 22 (16.2%) 5 (9.3%) 0 (0.0%) 

0.010C 0.536FPoor (GOS 1-3) 41 (75.9%) 53 (54.6%) 9 (75.0%) 83 (61.0%) 
Good (GOS 4-5) 13 (24.1%) 44 (45.4%) 3 (25.0%) 53 (39.0%) 
12th Month  (N = 141; 

67.8%) 
(N = 131;     

1 66.8%) 19 (23.5%) 34 (28.1%) 17 (32.7%) 1 (10.0%) 
0.019E 0.330E 2 5 (6.2%) 8 (6.6%) 4 (7.7%) 1 (10.0%) 

5 (50.0%) 3 15 (18.5%) 28 (23.1%) 18 (34.6%) 
4 19 (23.5%) 25 (20.7%) 9 (17.3%) 2 (20.0%) 
5 23 (28.4%) 26 (21.5%) 4 (7.7%) 1 (10.0%) 

0.002C 0.523FPoor (GOS 1-3) 39 (75.0%) 39 (48.1%) 7 (70.0%) 70 (57.9%) 
Good (GOS 4-5) 13 (25.0%) 42 (51.9%) 3 (30.0%) 51 (42.1%) 
24th Month  (N = 104; 

50.0%) 
(N = 98;     

1 50.0%) 18 (27.3%) 32 (35.2%) 16 (47.1%) 1(14.3%) 
0.242E 0.343E 2 3 (4.5%) 3 (3.3%) 1 (2.9%) 1 (14.3%) 

3 11 (16.7%) 16 (17.6%) 7 (20.6%) 2 (28.6%) 
4 12 (18.2%) 14 (15.4%)  

26 (28.6%) 
4 (11.8%) 2 (28.6%) 

5 22 (33.3%) 6 (17.6%) 1 (14.3%) 
0.035C 1.000FPoor (GOS 1-3) 24 (70.6%) 32 (48.5%) 4 (57.1%) 51 (56.0%) 

Good (GOS 4-5) 10 (29.4%) 34 (51.5%) 3 (42.9%) 40 (44.0%) 
Key: F = Fisher’s Exact test, C = Chi-square test, E = Exact test, * = statistically significant. 
 
 

Next, we examined the relationship between the presence or absence of the Ngb variants 

of the SNPs with the outcome measures assessed with the DRS treated as a continuous variable 

(Table 24). When we utilized the Independent t-test for between-group differences for SNP1 

(Vpresent or Vabsent), we found significant effects on DRS score at 3 months (p < 0.001), 6 
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months (p = 0.005), 12 months (p = 0.014), and 24 months (p = 0.017), but we did not find 

statistical significance for between-group differences when comparing the SNP2 variants and 

DRS scores at any time point (p = 0.310, p = 0.311, p = 0.809, and p = 0.975, respectively). 

 
Table 24. Functional Outcome on the Disability Rating Scale from 3 to 24 Months for 196 

Caucasian Patients Based on the Presence or Absence of Neuroglobin Variants on SNP1 and 
SNP2 

 
SNP1 (rs3783988) SNP2 (rs10133981)  

Present Absent p Present Absent p 
DRS 3rd Month    (N = 153)  (N = 151) 

0.001**T 0.310T  19.70 18.80 + 10.88 12.82 + 11.30 + 10.27 14.96 + 11.61 
DRS 6th Month   (N = 150)   (N = 147) 

0.005*T 0.311T  17.19 16.75 + 11.87 11.44 + 11.88 + 11.52 13.04 + 12.15 
DRS 12th Month    (N = 131)  (N = 129) 

0.014*T 0.809T  16.31 + 11.95 10.81 + 12.48 12.00 + 11.27 13.00 + 12.61 
DRS 24thMonth   (N = 101)   (N = 99) 

0.017*T 0.975T  18.06 + 13.23 11.47 + 12.89 13.57 + 12.33 13.74 + 13.41 
Key: T = Independent t-test, ** = significant p< 0.001, * = significant p < 0.05.  

 
 
Next, we examined the relationship between the presence and absence of the Ngb 

variants of the SNPs for the outcome measures assessed with the NRS scores treated as a 

continuous variable, using the Independent t-test at months 3, 6, 12, and 24 (Table 25). Mean 

scores for the SNP1 Vpresent and the SNP1 Vabsent groups were nearly identical, with no 

statistically significant differences achieved at any time point. Similarly, the mean scores for the 

SNP2 Vpresent and the SNP2 Vabsent groups were not different from each other at any time 

point.  
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Table 25. Functional Outcome on the Neurobehavioral Rating Scale from 3 to 24 Months for 
196 Caucasian Patients Based on the Presence or Absence of Neuroglobin Variants on SNP1 and 

SNP2 
 

SNP1 (rs3783988) SNP2 (rs10133981)  
Present Absent p Present Absent p 

NRS 3rd Month    (N = 58)  (N = 58) 
0.463T 0.210T  41.80 31.50 + 11.12 39.58 + 9.61 + 0.71 40.55 + 10.01 

NRS 6th Month    (N = 74)  (N = 72) 
0.968T 0.881T  40.90 + 8.58 41.00 +9.42 41.75 + 13.35 41.03 + 9.08 

NRS 12th Month   (N = 70)   (N = 69) 
0.116T 0.323T  45.33 + 15.01 40.02 +11.74 35.50 + 6.46 42.15 + 13.19 

NRS 24thMonth   (N = 38)   (N = 37) 
0.348T 0.715T  40.36 36.67 + 9.11 41.59 + 9.42 + 3.215 41.94 + 9.45 

Key: T = Independent t-test. 
 
 
Finally, we utilized a logistic regression (Table 26) to measure the regressor’s 

independent contribution to variations in the dependent variable (GOS), a dichotomous variable. 

Age (continuous), gender (dichotomous), GCS (dichotomous), and SNP were assigned as the co-

variants. In order to standardize the analysis, males, poorer GCS, and the genotype Vpresent 

were designated as the standardized statements, which were then compared to females, better 

GCS, and the genotype Vabsent. The model Chi-square value showed a good fit for these data 

for the four co-variances, consistent with the Hosmer and Lemeshow test. Table 26 shows the 

constant coefficients, p values, odd ratios, and 95% confidence intervals. For the GOS scores at 3 

months for SNP1, age showed a significant negative association with GOS, which meant that 

younger patients had better functional outcomes. For gender, there were no significant findings 

at 3 months post injury. With GCS as a dichotomous variable, the data showed that poorer GCS 

was positively associated with poorer GOS (p = 0.028). These same findings occurred for the 6-

month, 12-month, and 24-month time points. SNP1 Vabsent was a significant predictor of 

functional outcome at the 12-month time point after controlling for age, gender, and GCS score.   
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Table 26. Summary Logistic Regression between Predictors (Age, Gender, GCS [Dichotomous], 
and SNP1) with GOS for Months 3 to 24 

 
  Age Gender GCS (Di) SNP1 

GOS 3rd Month β -0.075 -0.151 1.009 0.695 
Significant 0.001* 0.767 0.028* 0.144 
Odds Ratio 0.928 0.859 2.743 2.005 

GOS 6th Month β -0.081 -0.720 1.908 0.663 
Significant 0.001* 0.148 0.001* 0.133 
Odds Ratio 0.923 0.487 6.740 1.940 

GOS 12th Month β -0.057 -0.271 1.957 0.973 
Significant 0.001* 0.573 0.001* 0.028* 
Odds Ratio 0.944 0.763 7.076 2.645 

GOS 24th Month β -0.064 -0.812 1.770 0.765 
Significant 0.001* 0.141 0.001* 0.141 
Odds Ratio 0.938 0.444 5.872 2.148 

Key: β = unstandardized coefficients, Di = dichotomous, * = significant p < 0.001, GOS = 
Glasgow Outcome Scale, GCS = Glasgow Coma Scale. 
 
 

Next we repeated the regression analyses with SNP2 (Table 27) and similar results were 

found: younger age and high GCS remained significant predictors of good outcome, but there 

were no significant effects of SNP2 at any time point. The overall regression line was as follows: 

(Y) = β + β1 * (age) + β2 * (gender) + β3 * (GCS) + β4 * (SNP1 or SNP2). As a result, the best 

fit for this model was to include all variables. In summary, SNP2 was not a significant predictor 

for functional outcome as measured by the GOS after controlling for age, gender, and GCS 

score. 
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Table 27. Summary Logistic Regression between Predictors (Age, Gender, GCS [Dichotomous], 
and SNP2) for GOS for Months 3 to 24 

 
  Age Gender GCS (Di) SNP2 

GOS 3rd Month β -0.80 -0.110 1.289 0.483 
Significant 0.001* 0.831 0.006 0.589 
Odds Ratio 0.923 0.896 3.629 1.621 

GOS 6th Month β -0.083 -0.713 2.187 1.060 
Significant 0.001* 0.160 0.001* 0.189 
Odds Ratio 0.920 0.490 8.925 2.886 

GOS 12th Month β -0.064 -0.151 2.277 1.061 
Significant 0.001* 0.756 0.001* 0.185 
Odds Ratio 0.938 0.859 9.747 2.890 

GOS 24th Month β -0.068 -0.773 2.047 0.113 
Significant 0.001* 0.168 0.001* 0.898 
Odds Ratio 0.935 0.462 7.743 1.120 

Key: β = unstandardized coefficients, Di = dichotomous,* = significant p < 0.001, GOS = 
Glasgow Outcome Scale, GCS = Glasgow Coma Scale. 

 
 
Next, we applied the linear regression model to the DRS and NRS data for months 3, 6, 

12, and 24, with age, gender, GCS (dichotomous), and SNP as co-variants. The standardized 

residual graphs of the histogram and normal P-P plot of the regression showed that the DRS and 

NRS scores were normally distributed. In Pearson’s correlation matrix for all predictors, DRS 

scores at months 3, 6, 12, and 24 were 36%, 37%, 35%, and 36%, respectively. Table 28 shows 

the correlations between age, gender, GCS, and SNP1 for the DRS scores on months 3, 6, 12, 

and 24. For the age variable, older patients had higher DRS scores, which meant lower functional 

outcomes (p < 0.001) at every time point. Gender was a significant predictor of outcome at 3 and 

6 months, but not at 12 or 24 months post injury. GCS score significantly predicted outcome in 

this model for months 12 and 24 (both p < 0.001). SNP1 was associated with outcome on the 

DRS for months 3 and 6 (both p < 0.001), but not for months 12 and 24. When beta (β) was 

negative, SNP1 Vpresent predicted a worse outcome on the DRS.  
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Table 28. Summary Linear Regression between Predictors (Age, Gender, GCS [Dichotomous], 
and SNP1) with DRS for Months 3 to 24 

 
  Age Gender GCS (Di) SNP1 

DRS 3rd Month β 0.283 1.803 -9.694 -4.464 
Significant 0.001* 0.001* 0.324 0.001* 

95% CI 0.181-0.384 -1.796-5.402 -12.807-(-6.581) -7.630-(-1.298) 
R2 0.365    

DRS 6th Month β 0.305 1.954 -10.616 -3.071 
Significant 0.001* 0.001* 0.322 0.001* 

95% CI 0.198-0.413 -1.935-5.843 -13.963-(-7.268) -6.467-0.324 
R2 0.358    

DRS 12th Month β 0.318 1.565 -10.610 -2.803 
Significant 0.001* 0.461 0.001* 0.141 

95% CI 0.197-0.440 -2.624-5.754 -14.336-(-6.883) -6.543-0.938 
R2 0.345    

DRS 24th Month β 0.327 1.441 -11.095 -3.813 
Significant 0.001* 0.568 0.001* 0.106 

95% CI 0.187-0.467 -3.555-6.436 -15.616-(-6.573) -8.451-0.824 
R2 0.355    

Key: β = unstandardized coefficients, * = significant p < 0.001, R2 = square of R, CI = 
confidence interval, DRS = Disability Rating Scale, GCS = Glasgow Coma Scale. 
 
 

Similar to SNP1, the linear regression findings for SNP2 and DRS scores at months 3, 6, 

12, and 24 showed that all Pearson’s correlations were between 36%-38% (Table 29). Both age 

and GCS score were positively correlated with DRS at months 3 to 24 (p < 0.001), with younger 

patients and those patients with better GCS scores having better DRS scores in the model. 

Gender was not significantly correlated with DRS score. SNP2 was a significant predictor of 

DRS score at month 3 (p = 0.037) but not at the other time points. In conclusion, using the 

unstandardized coefficients of age, gender, GCS, and SNP2, the overall regression line was (Y) = 

β + β1 * (age) + β2 * (gender) + β3 * (GCS) + β4 * (SNP1or SNP2). As a result, the best fit for 

this model was to include all variables.  
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Table 29. Summary Linear Regression between Predictors (Age, Gender, GCS [Dichotomous], 
and SNP2) with GOS for Months 3 to 24 

 
  Age Gender GCS (Di) SNP2 

DRS 3rd Month β 0.292 1.920 -11.260 -6.529 
Significant 0.001* 0.302 0.001* 0.037* 

95% CI 0.189-0.394 -1.745-5.586 -14.383-(-8.137) -12.647-(-0.412) 
R2 0.355    

DRS 6th Month β 0.309 1.929 -11.727 -5.291 
Significant 0.001* 0.334 0.001* 0.076 

95% CI 0.200-0.417 -2.004-5.862 -15.050-(-8.403) -11.146-0.564 
R2 0.357    

DRS 12th Month β 0.339 1.086 -11.640 -1.831 
Significant 0.001* 0.621 0.001* 0.589 

95% CI 0.218-0.459 -3.135-5.307 -15.360-(-7.921) -8.529-4.867 
R2 0.347    

DRS 24th Month β 0.346 1.056 -12.521 -1.662 
Significant 0.001* 0.680 0.001* 0.701 

95% CI 0.205-0.487 -4.018-6.130 -17.068-(-7.975) -10.228-6.903 
R2 0.354    

Key: β = unstandardized coefficients, * = significant p < 0.001, R2 = square of R, CI = 
confidence interval, DRS = Disability Rating Scale, GCS = Glasgow Coma Scale. 

 

Next, we utilized the predication models for the outcome measured by the NRS (Table 

30). For SNP1, the Pearson’s correlations were only 10%-22% for each of the time points 

examined. Age was the only variable that was a significant predictor of outcome on the NRS at 6 

months (p < 0.001), 12 months (p = 0.006), and 24 months (p = 0.035). Because the NRS was 

completed for very few patients at months 3 to 24, the sample may have been too small to obtain 

robust findings for this variable. SNP1 had a negative beta (β), which indicated a trend towards 

better outcomes with SNP1 Vabsent, but this trend did not achieve statistical significance. The 

findings for SNP2 were similar to SNP1 in that age was the only variable that was a significant 

predictor of outcome. However, these findings are called into question because of the very small 

sample of patients with NRS data (Table 31). 
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Table 30. Summary Linear Regression between Predictors (Age, Gender, GCS [Dichotomous], 
and SNP1) with NRS for Months 3 to 24 

 
 Age Gender GCS (Di) SNP1  

NRS 3rd Month β 0.219 -1.716 0.142 -1.143 
Significant 0.064 0.612 0.964 0.711 

95% CI -0.013-0.450 -8.460-5.027 -6.151-6.434 -7.301-5.015 
R2 0.075    

NRS 6th Month β 0.324 -4.621 0.397 0.456 
Significant 0.001* 0.065 0.869 0.837 

95% CI 0.158-0.489 -9.542-0.299 -4.397-45.190 -3.946-4.857 
R2 0.203    

NRS 12th Month β 0.372 -2.043 1.939 -3.736 
Significant 0.006* 0.564 0.589 0.259 

95% CI 0.112-0.631 -9.084-4.998 -5.200-9.078 -10.288-2.817
R2 0.161    

NRS 24th Month β 0.252 -0.757 3.520 1.245 
Significant 0.035* 0.845 0.300 0.719 

95% CI 0.019-0.485 -8.578-7.063 -3.281-10.322 -5.724-8.214 
R2 0.181    

Key: β = unstandardized coefficients, * =significant p < 0.001, R2 = square of R, CI = confidence 
interval, NRS = Neurobehavioral Rating Scale, GCS = Glasgow Coma Scale.  
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Table 31. Summary Linear Regression between Predictors (Age, Gender, GCS [Dichotomous], 
and SNP2) with NRS for Months 3 to 24 

 
  Age Gender GCS (Di) SNP2 

NRS 3rd Month β 0.224 -2.063 0.033 7.439 
Significant 0.056 0.537 0.992 0.313 

95% CI -0.006-0.454 -8.726-4.601 -6.426-6.491 -7.113-21.812
R2 0.097    

NRS 6th Month β 0.353 -5.160 0.012 -.2.314 
Significant 0.001* 0.039* 0.996 0.593 

95% CI 0.185-0.522 -10.063-(-0.257) -4.877-4.900 -10.918-6.290
R2 0.229    

NRS 12th Month β 0.432 -2.279 0.105 -5.283 
Significant 0.001* 0.522 0.977 0.404 

95% CI 0.173-0.692 -9.342-4.784 -7.220-7.431 -7.282-17.847
R2 0.168    

NRS 24th Month β 0.300 -1.807 1.533 5.088 
Significant 0.014* 0.608 0.660 0.334 

95% CI 0.066-0.534 -8.917-5.303 -5.490-8.557 -5.478-15.654
R2 0.227    

Key: β = unstandardized coefficients, * = significant p < 0.001, R2 = square of R, CI = 
confidence interval. 
 
 

Thus, the regression models demonstrated that when controlling for age, gender, and 

GCS, SNP1 Vabsent was not a good predictor of good functional outcome on the GOS except 

for month 12. However, SNP1 Vabsent was a predictor of better outcome on the DRS after 

controlling for the covariates at 3 and 6 months, but the effects were not statistically significant. 

The findings for SNP2 with this regression model were inconsistent, which is not surprising 

given that the number of patients with SNP2 Vabsent was very small (Table 32).   

Finally, since the patient’s medical history may be a factor in functional outcome 

following TBI; we developed the same series of models as described above but with medical 

history added as an additional controlling variable. However, medical history was not a 

significant predictor of outcome in any model or at any time point (data not shown).  
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6.0  DISCUSSION 

6.1 SPECIFIC AIM  1: FREQUNCY OF NGB VARAINS IN THE DNA EXTRACTED 

FROM THE SCF AND BLOOD OF PATIENTS WITH SEVERE TBI 

The only information regarding the frequency of Ngb variants was found from the HapMap 

database, which showed Ngb is located on chromosome 14. The number of locus link genes per 

500-kb window across the chromosome is about 15, and the number of genotyped SNPs per 500-

kb window across the chromosome is about 100. SNP1 (rs3783988) with the A/G nucleotides on 

the alleles has a negative strand relative to the human reference sequence 

(http://www.HapMap.org, 2008). For SNP1, the HapMap data are closest to the Ngb variants on 

chromosome 14, positions 76804333-76804333 of the cytogenetic chromosome bands in the 

HapMap gene bank. The HapMap description of the Caucasian population was similar to their 

Utah residents with ancestry from northern and western Europe (CEPH or CEU), which 

demonstrates genotype frequency of reference-homozygote (A/A [56.7%]), heterozygote (A/G 

[41.7%]), and other variant homozygote frequency (G/G [1.7%]) from the healthy population 

(Table 32). 

In our study, the genotype frequencies of SNP1 were 4.0% C/C (as G/G; N = 8), 62.1% 

T/T (as A/A; N = 123), and 32.3% C/T (as A/G; N = 64). SNP1 Vpresent (C/C and C/T 

combined) can be classified as the non-wild typed variants. In contrast, SNP1 Vabsent (T/T) was 
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considered wild typed. Thus, when comparing our data to the HapMap data, HapMap for SNP1 

in Caucasians was 43.3% SNP1Vpresent and 56.7% SNP1 Vabsent. This finding is comparable 

to our finding of 34.6% SNP1 Vpresent and 62.1% SNP1 Vabsent. Therefore, the HapMap 

genotyped frequencies for Caucasians are comparable to the sample frequencies of our 

Caucasian patients with a TBI, with the majority being SNP1 Vabsent (57% in HapMap vs. 63% 

in our sample) and the minority being SNP1 Vpresent (43% in HapMap vs. 37% in our sample). 

This information suggests that, firstly, our laboratory methods were probably accurate because 

we had similar findings for the primary variant. However, because HapMap is based on generally 

healthy individuals, our finding of a higher percentage of SNP1 Vabsent suggests that this 

variant may become more frequent under conditions of TBI. One possible explanation is that the 

SNP1 variant may code a functional region and also a linkage disequilibrium mark in SNP1.  

Conversely, SNP2 is on chromosome 14 with positions 76805546-76805546 in the 

cytogenetic chromosome bands and has a positive strand relative to the human reference 

sequence. In the HapMap sample of Caucasians, the three genotyped frequencies were 90% G/G, 

10% G/T, and 0.0% T/T, which is comparable to our TBI sample with 91.4% G/G (N = 181), 

0.5% T/T (N = 1), and 6.1% G/T (N = 12). When dichotomized, SNP2 was Vabsent for 90% of 

Caucasians in HapMap and 93% in our sample; SNP2 was Vpresent for 10% of Caucasians in 

HapMap and 7% in our sample. This information suggests that our SNP analysis methods were 

accurate and thus comparable to the HapMap findings. The other important finding is that there 

were no meaningful differences between The HapMap frequency data and ours (only a 3% 

difference). This suggests that SNP2 may not vary in its frequency regardless of whether people 

are healthy or have a TBI. Another explanation could be that, since SNP2 is further from the Ngb 

reference region on the chromosome, SNP2 may be less likely to change under different health 
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conditions.  Perhaps SNP2 is located in introns area, which cannot maintain any genotyped 

information or function. 

We discovered a significant relationship between race and SNP2 when we included the 

12 African American patients in our sample, which ultimately prompted our decision to exclude 

non-Caucasians from our analyses. When examining the HapMap data, the SNP1 prevalence for 

Yorubi Nigerians and Caucasians was more similar (57% Yorubi Nigerians SNP1 Vabsent vs. 

62% Caucasians Vabsent) than the racial prevalence rates for SNP2 (30% Yorubi Nigerians 

SNP2 Vabsent vs. 93% Caucasian Vabsent). The differences in the prevalence distributions for 

SNP2 probably contributed to our significant findings for race and SNP2, which supported our 

decision to eliminate non-Caucasians from our outcome analysis because variance due to 

ancestry would have confounded our findings.  

 
Table 32. Comparison of the Percentage of Variants on SNP1 and SNP2 in HapMap Data and 

Current Study Data 
 

SNP1 (rs3783988)  SNP2 (rs10133981)  
 

HapMap 
Caucasian 

Current 
Study 

Sample 
Caucasians 

HapMap 
Caucasian 

Current 
Study 

Sample 
Caucasians 

  

Present 
(C/C + C/T) 

 

43% 37% Present 0.1% 7% 
(T/T + G/T) 

Absent (T/T) 
 

57% 63% Absent (G/G) 90% 93% 
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6.2 SPECIFIC AIM 2: RELATIONSHIP BETWEEN DEMOGRAPHIC AND 

LICNIAL CHARACTERISITCS OF PATIENTS BASED ON THE PRESENCE/ 

ABSENCE OF NGB VARIANTS IN THE TBI POPULATION 

We examined the relationship between age, gender, and medical history as our demographic 

characteristics (after eliminating race as described above) and cause of injury as our clinical 

characteristics for comparisons with the SNP1 and SNP2 variants. We found no significant 

relationships on the demographic variables and the SNP variants. SNP1 Vabsent patients were 

slightly younger (33 years) than the SNP1 Vpresent patients (35 years), but there were no 

between-group differences for the other demographic characteristics. Neither did we find any 

significant relationships between the demographics and SNP2. A possible explanation is that 

chromosome 14, where these SNPs are located, is not influenced by gender. Medical history also 

did not significantly vary with the SNP variants; however, the frequency of any significant past 

medical history was very low in this fairly young sample population. Analysis of the clinical 

characteristic of the mechanism of injury also did not reveal any significant relationship with 

SNP variants; however, because approximately 70% of the patients were injured by MVA, there 

may not be enough patients represented in the other injury groups to detect any significant 

effects of this variable. Also, the mechanism of injury and genotype may be unrelated. 
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6.3 SPECIFIC AIM 3: THE RELATIONSHIP BETWEEN NGB VARAINTS 

(PRESENT/ABSENT) AND THE SEVERITY OF TBI AS MEASURED BY THE 

ADMISSION GCS 

GCS showed a strong association with SNP1, with GCS as a categorical variable (p = 0.061), 

and a non-significant trend when treated as a dichotomous variable (p = 0.109). Figure 15 shows 

that patients with SNP1 Vpresent were more likely to have an initial GCS score of 3-5 (poorer), 

whereas patients with SNP1 Vabsent were more likely to have an initial GCS score of 6-8 

(better). However, the effect was different for SNP2 (Figure 16). 

 
 

Figure 15. Relationship Between SNP1 Ngb Variants and Admission GCS Scores 
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Figure 16. Relationship between SNP2 Ngb Variants and Admission GCS Scores 
 

One possible explanation is that the characteristic of being SNP1 Vabsent somehow 

impacts the severity of the injury measured on admission (which can be hours after the insult). 

Possibly, having a genetic predisposition to SNP1 Vabsent may help the patient’s brain to be 

better able to withstand a traumatic hypoxic or ischemic insult. The effect of the SNP1 Vabsent 

variant on Ngb (e.g., Ngb quantity, composition or behavior) in human patients with TBI is not 

yet known. The only literature available for comparison is a study in which Ngb was related to 

the severity of injury in an animal model of stroke.  

Several studies with animal models of stroke have been conducted. According to 

Greenberg, Jin, and Khan (2008), Ngb is thought to have two possible modes of action in the 

cerebral hypoxia or ischemia animal model of stroke: 1) expression, or 2) protective adaptation 

during the acute period (Greenberg, Jin, and Khan, 2008). Greenberg’s first study (2001) utilized 

10 Sprague-Dawley male rats (290-320g; 5 experimental, 5 sham). He and his colleagues 
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developed an oligodeoxynucleotide (ODN), the design of which was based on the mouse Ngb 

sequence, and injected anti-ODN into the cerebral neurons of mice in order to overexpress Ngb 3 

hours before a hypoxic state was induced. They also cloned mouse Ngb cDNA from 

hippocampal neurons of these same animals. Then, they created an experimental hypoxic model 

by subjecting the mice to MCAo for 90 min followed by reperfusion for 4-24 hr. Thus, focal 

ischemia was induced over an entire hemisphere. The animals were sacrificed and examined 

after 24 hr and assessed for both mRNA and the Ngb protein itself in the cytoplasm of neurons. 

Comparisons were made between the ischemic and non-ischemic hemispheres within each 

mouse using Western blots and immunocytochemistry. They found that Ngb mRNA was 

positively expressed after 24 hr in the brain tissue of animals that had been ODN-treated before 

the ischemic insult (p < 0.02) and that Ngb protein was increased in neurons of the cerebral 

cortex and hippocampus of the experimental animals, which makes sense because these areas are 

the most sensitive to ischemia. They also found that infarct size was decreased by 49-52% in the 

experimental animals.   

In another study by this same group (Sun et al. 2003), Ngb expression was either reduced 

in Sprague-Dawley rats by administering Ngb anti-sense ODN or increased by intracerebral 

administration of an Ngb-expressing adeno-associated virus (AVV) vector. They then induced 

focal cerebral ischemia by MCAo for 90 min followed by reperfusion. The effects of the 

treatments were subsequently assessed by histological examination. They found that infarct size 

was increased by 56-60% in the group that received the antisense Ngb knockdown (the ODN 

group [p < 0.02]).  

Similarly, and more recently, Wang et al. (2008) compared infarct volume for Ngb 

overexpressing transgenic mice (Ngb-Tg) to wildtype controls. They found that, compared with 
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the wild typed controls, the Ngb-Tg mice had significantly reduced brain infarction volumes at 

24 hr after transient focal cerebral ischemia (p < 0.05), with the infarct reductions primarily 

occurring in the cortex. They found that the infarct volume was significantly decreased in the 

Ngb-Tg mice at 14 days post injury (p < 0.05).  

In contrast, there have been some experiments which have not revealed such positive 

relationships between the degree of injury and Ngb levels. Hundahl et al. (2006) had somewhat 

different findings. In their experiment, spontaneously hypertensive male rats (SHRs) were 

randomly selected for 90 min of MCAo (N = 6) or sham surgery (N = 4; control) and euthanized 

after 24 hr. The animals were not pretreated in any way so as not to affect Ngb production. They 

examined Ngb mRNA in both groups of rats by Quality Reverse Transcription Polymerase 

Transcription and found significantly less Ngb mRNA in the ischemic hemispheres after 24 hr 

compared to controls (p < 0.02). They repeated the experiment using Wistar and Sprague-

Dawley rats but failed to find Ngb expression. However, in two more animal groups which 

experienced the same procedures (MCAo [N = 7] or sham surgery [N = 6]) but with a survival 

period of 1 week, they discovered a negative correlation (r = -0.85) between infarct volume and 

Ngb expression, thus they found less Ngb in the ischemic hemispheres. The conclusion of their 

studies was that there was no difference in Ngb expression levels between ischemic and non-

ischemic hemispheres. Shang et al. (2004) induced global ischemia in the gerbil forebrain, 

specifically in the cerebral cortex and hippocampus. The MCA was occluded for 90 min and 

CBF had decreased. The gerbils were then sacrified, and subsequent analyses revealed that Ngb 

protein and mRNA increased initially but then normalized within 10-20 min of the onset of 

reperfusion. 
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Schmidt, Haberkamp, Schmitz, Hankeln, and Burmester (2006) found that focal ischemia 

did not alter the expression of Ngb in spontaneously hypertensive rats. Another report by Shang 

et al. (2006) revealed that global ischemia did not alter the expression of Ngb in rat brains. Other 

studies (Fordel et al., 2004; Hundahl et al. 2005; Mammen et al., 2002) also showed that acute 

and chronic ischemia did not change the expression of Ngb mRNA or protein, but that Purkinje 

cells were the most sensitive to ischemia. No significant Ngb expression was found after chronic 

anoxia or hypoxia (10%O2/90%N2 for 2 weeks) (Brunori & Vallone, 2006). 

In summary, our finding that a genetic variant of Ngb was related to better GCS scores 

seems to imply that individuals who may be capable of expressing Ngb of either increased 

quantity or better quality are better able to withstand the deleterious effects of a head injury. 

These findings are closest to the findings of Greenberg et al. who engineered animals to either 

increase or decrease the expression of Ngb. The lack of positive findings in the other studies 

where ischemia was induced irrespective of a predisposition to express Ngb is more difficult to 

explain. In these other studies, random animals were utilized that may or may not have had a 

genetic predisposition favoring their ability to increase Ngb production. Also, there were 

differences in the brain regions affected by the ischemic insult and the length of time the animals 

underwent ischemia. There may have been differences in how Ngb was expressed in response to 

severe ischemia versus milder ischemia or in the brain volume that underwent the ischemic 

insult. In summary, Ngb expression seems to depend on the species, region of ischemia, duration 

of the insult, and the biophysiological mechanism involved.  
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6.4  SPECIFIC AIM 4: DIFFERENCE IN FUNCTIONAL OUTCOMES OF 

PATIENTS WITH AND WITHOUT NGB VARAINTS (PRSENT/ABSENT) OVER TIME 

We found with univariate analysis that there was a significant association between SNP1 variants 

and the GOS scores at months 3, 6, 12, and 24, but not for SNP2. Specifically, patients with 

SNP1 Vabsent had better outcomes on the GOS at all time points, as demonstrated in Figure 17. 

It seems that the difference was most dramatic at the 3-month time point, with a 17% difference 

in the percentage of patients classified as Vpresent or Vabsent. This percentage difference was 

maintained at approximately 20% over the next three time points. Thus, there does not seem to 

be additional improvement over time associated with the Ngb genotypes.  
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Figure 17. Relationship between SNP1 Variants and Good Outcome by GOS over Time 
 
 

We found a similar relationship over time between SNP1 variants and outcomes assessed 

by the DRS (noting that lower DRS score is associated with better outcome [Figure 18]). 
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Figure 18. Relationship between SNP1 Variants and Good Outcome by DRS over Time 
 

We found no relationship between SNP1 variants and outcome over time as assessed with 

the NRS (Figure 19); however, the number of patients with this outcome measurement available 

was small, which calls the strength of this result into question. 

With logistic regression analyses, we found that being SNP1 Vabsent predicted a better 

outcome in some of our models, although its predictive strength was mitigated to some degree 

when we controlled for the severity of injury. This finding could be explained in several ways. 

One possible explanation is that the functional outcome was more likely to be a result of the 

severity of the initial injury than due to the availability of Ngb to protect against the insult. On 

the other hand, it is possible that Ngb and severity of injury are so closely correlated that it is 

difficult to separate the effects of these variables from one another. A third explanation is that 

Ngb may have been able to exert a protective effect while the patients were still in the field that 

could not be detected by the assessments conducted once the patients were admitted to the 

hospital.  
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Figure 19. Relationship between SNP1 Variants and Good Outcomes by NRS over Time 
 
 

We found no literature that described the impact of Ngb variants on functional outcomes 

in patients with TBI. We did find two studies conducted using animal models which examined 

the role of Ngb in functional outcomes after experimental stroke. Sun, Jim, Peel, Mao, Xie, and 

Greenberg (2003) manipulated Sprague-Dawley to either have reduced Ngb expression by 

administering Ngb anti-sense ODN or increased Ngb expression by intracerebral administration 

of an Ngb-expressing AVV vector. They subsequently measured functional outcome according 

to a neurologic grading scale that assessed motor, sensory, and reflex function, with higher 

scores indicating more severe impairment. They found that the groups of rats administered the 

Ngb antisense had worse neurological deficits than the rats administered the AVV (p < 0.05).  

Wang et al (2008) compared Ngb overexpressing transgenic mice (Ngb-Tg) to wild typed 

controls after transient focal ischemia. They measured sensorimotor function in the mice in four 

ways at 1, 3, 7, and 14 days after the onset of ischemia: neurological score, rotorod test, hanging 

wire, and foot fault tests. They found significant deficits for all tests with the poorest scores 

between 1 and 7 days after the insult, but behavioral outcome was close to pre-injury baseline 
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values on all tests at 14 days. They did not find significant differences in sensorimotor function 

between their Ngb-Tg mice and the wild typed mice despite the fact that, as previously 

described, the Ngb-Tg mice had smaller infarct volumes. Based on these findings, they 

hypothesized that a) 60 min of MCAo might not be long enough to cause severe sensorimotor 

deficits, or b) the number of subjects might have been too small to detect between-group 

differences on this outcome variable.  

Thus, our finding of improved outcomes after TBI based on the genetic Ngb variant in 

patients has some support in animal models of brain injury, but to our knowledge our findings 

are the first to describe a relationship between functional outcomes and Ngb in humans.  

6.5 STATEMENT OF IMPORTANT FINDINGS AND SIGNIFICANCE TO 

NURSING 

In summary, we observed that genetic variants of the Ngb genes were related to functional 

outcome; specifically, the presence of the Ngb variant in SNP1 was related to worse functional 

outcome. Although this finding was somewhat attenuated when the severity of injury, as 

measured by the GCS, and older age were taken into account, the finding suggests that the Ngb 

gene affects recovery as well as the severity of the injury on admission. This information is 

important to clinical nurses for several reasons: First, these results provide nurses with more 

insight into the physiological mechanisms that help to protect the brain from injury. Second, 

clinical nurses may be better able to understand and describe why patients with the same severity 

of injury can have a better or worse outcome by understanding the role of Ngb in these processes 

and that individuals may have different responses to an environmental stimulus because of a 

 132 



genetic predisposition. Furthermore, such information is important to researchers because this is 

the first time that genetic variants in Ngb have been implicated in the severity of injury and 

functional outcome in humans. Therefore, these data will be extremely valuable for providing the 

framework and justification for further research aimed at describing the role that Ngb plays in 

protecting individuals from secondary brain injury and developing mechanisms to utilize Ngb 

treatment strategies.  

6.6 LIMITATIONS OF THE STUDY 

There are several limitations to our study. Because we found no information in the literature 

related to Ngb variants and TBI in humans, we were unable to compare our findings to others for 

validation. The number of non-Caucasians in our sample was very small (N = 12), and it would 

be interesting to have a large enough sample of non-Caucasian patients to see how the results of 

other races (analyzed separately) would compare to our sample of Caucasian patients. Therefore, 

our results are generalizable only to Caucasians. In addition, we were unable to measure the 

protein itself due to financial constraints. Perhaps direct protein measurement would have given 

different results. Our most important limitation was that we were required to use the GCS as our 

metric for the severity of TBI. GCS scores, however, are not a direct measure of cerebral blood 

flow and, therefore, cerebral hypoxia or ischemia. Having a more direct and reliable measure of 

cerebral ischemia would increase the validity and reliability of our findings and would enable us 

to more accurately examine the relationship between Ngb and severity of injury. Because the 

animal model studies indicated that Ngb may be expressed differently in focal ischemia versus 

global ischemia, access to information regarding the location of ischemia and its severity in our 
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sample of patients would have enabled us to better understand and explain the findings. Also, in 

this study, we measured only Ngb genetic variants and did not directly measure or detect gene 

expression (on/off) on mRNA or protein functions. 

6.7 FUTURE DIRECTIONS FOR RESEARCH 

There are several potential research plans which could evolve from this pilot study. First, I wish 

to examine the same SNPs in a larger sample of patients with TBI with a hypoxic-ischemic insult 

for which the results of Xenon blood flow studies, which directly measures cerebral ischemia, 

are available. Second, I would like to examine the same genetic variants in different patient 

populations with cerebral ischemia, such as stroke, subarachnoid hemorrhage, or brain tumor. 

Furthermore, it would be helpful to have more information about copy number variants in the 

exact gene region which corresponds to Ngb on chromosome14 in order to investigate more fully 

its role in possibly protecting the brain against hypoxic and ischemic conditions. Also, we 

examined the impact of the SNPs individually, but studying haplotypes may be more helpful. 

Additionally, these findings can serve to justify the pursuit of funding that would support 

subsequent research studies that utilize technologies that are more sensitive for measuring the 

Ngb protein itself, such as mass spectrometry, which would more directly examine the 

relationship between the presence of Ngb proteins and outcomes. Lastly, it would be interesting 

to examine Ngb gene expression (m RNA) in patients with different severities of TBI (for 

instance, mild, moderate, and severe TBI) or investigate the potential for functional SNPs in the 

region tagged by SNP1. 
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APPENDIX A 

CLINICAL CARE PROTOCOL 
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APPENDIX B 

DISABILITY RATING SCALE (DRS) 
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APPENDIX C 

NEUROHEBAVIROAL RATING SCALE (NRS) 
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APPENDIX D 

DNA EXTRACTION PROTOCOL 

D.1 CSF EXTRACTION WITH QIAMP MIDI DNA KITS 

1. Pipette 200 ul of protease into 15 ml conical tube. 

2. Add 2ml  of CSF and mix briefly. Make sure to mix CSF well before adding to conical tube 

(15ml). 

3. Add 2.4 ml Buffer AL and mix thoroughly by vortexing at least 3x 5sec each time. 

4. Incubate at 70°C for 10 minutes. 

5. Add 2ml 96-100% Ethanol (EtOH) and mix by vortexing. 

6. Transfer half solution to Midi column resting in 15 ml conical tube. DO NOT SPILL AND DO 

NOT GET ON TRIM. Close cap and centrifuge at 3000 rpm for 3 minutes. 

7. Remove column from tube and discard filtrate. Place column back into tube and add rest of 

solution to column. Spin again at 3000 rpm for 3 minutes. 

8. Remove column and discard filtrate. Place column back into tube. 

9. Add 2 ml Buffer AW1 to column. Close cap and centrifuge at 5000 rpm for 15 minutes. 

10. Place column in clean 15 ml conical and discard old conical with wash buffers. 

11. Place column in clean 15 ml conical and discard old conical with wash buffers. 

12. Add 300 ul of Buffer AE to column. Close cap and incubate at room temp for 5 minutes. The 

centrifuge at 5000 rpm for 5 minutes. 

13. Reload the 300 ul you just spun down into column. Incubate 5 minutes and spin for 5 minutes. 

14. Load 300 ul of fresh AE Buffer into column. Incubate 5 minutes and spin 5 minutes. 
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15. Only after checking labels, combine DNA extractions into 1.5 ml samples tube and label 

appropriately. 

 

Notes: CSF is live so work under hood until EtOH is added. EtOH will kill pathogens then 

work can be done on bench. Remember to label 15 ml conical and columns. This will avoid 

cross contamination. Preheat incubator before starting extraction. It takes a while to get up to 

70°C also make sure to remove anything in the incubator prior to turning the temp up!! 

Use filter tips and appropriate pipettors. 

Cleanup: Waste down the sink. Tubes in biohazard. Clean area up appropriately. 
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D.2 SOP FOR DNA EXTRACTION 

Note: Run 16 samples at one time. 
Disposal: All used tubes and anything contaminated with specimen must be placed in 
biohazardous waste to be autoclaved. EtOH is to be disposed of in approved container or an 
empty ethanol bottle. Non-contaminated pipettes can be disposed of in broken glass containers. 
 

1. Take 50 ml conical tubes with pellets out of -20°C freezer to thaw 

2. Place 3 ml lysis solution for DNA extraction in each tube. Vortex and using transfer pipette, 

transfer contents to labeled 15 ml conical tube. 

3. Add 200uL of 10% SDS (already made) 

Add 500uL of proteinase K solution (must be made fresh each time) 

Proteinase K solution:  10% SDS              900 uL 
                            0.5 M EDTA          36 uL    
                           Proteinase K           18 mg 

                         Sterile H2O            8.1 mL 
                             Total                       9.0 m L (enough for 18 samples) 

4. Parafilm tubes shut to seal. Place in 37°C rotating oven overnight to digest. 

5. Remove tubes from the oven. Add 1 ml 6M (saturated) NaCl/tube. Shake about 15 seconds until 

foamy. 

6. Centrifuge 15 minutes at 2500 rpm. 

7. Transfer supernatant to labeled 15 ml conical tubes. CHECK LABELS!! 

8. Add 2x the volume of absolute EtOH and invert until the DNA precipitates out of the solution. It 

will look white and stringy. 

9. Remove DNA using sterile loops and place in labeled flip tops. 

10. Add 70% EtOH to cover the DNA and microfuge for 10 minutes at the 14 settings. 

11. Dump or pipette off the EtOH. Then place in 37°C oven until EtOH evaporates off. 

12. Add 1 ml of 1x TE buffer to each tube. Place in incubator to dissolve DNA into buffer. 

 

 

 

Approved by: _____________________________   Date: _______________________ 
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