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According to the ISO 18000-6C passive RFID standard, the tags rely on limited energy 

harvested from the reader carrier wave rather than an internal power supply to perform logic 

functions and backscatter signals. The reader receives the tag’s backscattered response, and then 

decodes the tag signal in order to access the tag information. However, in a tag intensive 

environment, when multiple tags receive the reader Query command and respond simultaneously, 

the reader may receive multiple responses giving what is termed a collision signal. Because the 

collision signal violates the encoding as specified in the standard, the reader is not able to decode 

it using its built-in circuitry that is designed for non-colliding tag responses. Therefore, the 

reader fails to complete the inventory for tags in the field in this case, which degrades the overall 

performance of the passive RFID system requiring retries. 

This research focuses on resolving the two-tag collision signal with extensions to more 

tags. A preliminary tag data acquisition system has been developed along with an ISO 18000-6C 

conformance test platform, which consists of an FPGA-based software defined reader. The 

collision signal is obtained from the data acquisition system and processed by the FPGA in real 

time. Two types of collision resolving algorithms based on phase and amplitude characteristics 

of the collision signal are developed and simulated using LabVIEW on a host PC and then 
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realized with a National Instruments FPGA development board NI5640R. These two algorithms 

deal with the two-tag collision situation with and without a distinct phase shift individually, and 

they can be unified.  As an extension to multiple tag collision resolution, an advanced statistical 

signal processing method using Independent Component Analysis (ICA) is researched for the 

three-tag collision situation. The ICA simulation is performed using LabVIEW on the host PC, 

and then implemented on the target FPGA development board. Performance analysis and 

comparison are presented to prove the efficiency and timing conformance of the proposed 

methods to the standard. Finally, the collision signals acquired from moving tags are resolved 

using the amplitude mapping method to prove the method compatibility on dynamic tags. 
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1.0  INTRODUCTION 

Because passive RFID systems make use of the electromagnetic spectrum, they are relatively 

easy to jam using energy at the right frequency when they are in a dense tag environment. 

Although this would only be an inconvenience for consumers in non timing-critical situations 

(e.g. in stores with longer waits at the checkout), it could be disastrous in other environments, 

such as hospital emergency centers and in the military in a field of operation. 

The collisions in passive RFID communications lie in two major categories: the reader 

collision and the tag collision (as shown in Figure 1). Reader collision occurs in a reader 

intensive environment when the signals from two or more readers overlap in time and frequency. 

In such a situation, the tag is unable to respond to simultaneous queries; Tag collision occurs in a 

tag intensive environment when multiple tags are present in the transmitting field of the reader. 

In such a situation, tags may respond to the reader query command simultaneously causing the 

reader to fail to decode the received signal, which is the result of collision. 

The scope of this dissertation is to resolve the tag collisions in order to improve the 

reading efficiency of ISO 18000-6C RFID systems [1]. To address the tag collision problem, 

multiple anti-collision protocols enabling the passive RFID tags to take turns in transmitting to a 

reader have been developed. Generally, there are two types of anti-collision protocols in 

common use based on time division multiple access (TDMA): One is the dynamic framed slotted 

Aloha, the other is a Binary Tree scheme [2]. The ISO 18000-6C RFID systems make use of the 
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dynamic framed slotted Aloha. However, the dynamic framed slotted Aloha is a probabilistic 

method that can decrease the probability of collision occurrences significantly, but collisions 

cannot be completely avoided. Therefore, in the worst case when two or more tags in an 

inventory round select the same time slot to respond (e.g. when the reader enforces all tags to 

respond), the reader may receive an unrecognizable (un-decodable) mixture of signals. 

Accordingly, the reader read rates will be degraded due to this collision situation in the 

communication process. Therefore, it is intuitive to increase the system read rate more from 

purely collision avoidance by recovering the original tag signals from the collision at the reader 

side. The philosophy of this method is to resolve the collision after it occurs rather than to avoid 

its occurrence. It is also possible to combine the use of an anti-collision mechanism and the 

resolution of the collision signal in order to increase the efficiency of the reader-tag 

communication. 

 

Figure 1. Passive RFID Collision Situations 
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In addition, the ISO 18000-6C passive RFID tags rely on limited energy harvested from 

the interrogator carrier wave rather than an internal power supply to perform logic functions and 

backscatter signals. Although this feature makes passive RFID tags easy and inexpensive to 

deploy and maintain compared to active tags, the passive tags are subject to more critical 

communication timing constraints; a reader which fully conforms to the standard must realize the 

tag inventory round including a real time three-step handshake in order to make the tag transit 

into the data access states, which allows for tag memory access. The effective turn-around time 

between each of the three steps lies in the range of from 31.25µs in the worst case when the tag 

back link frequency (BLF) reaches 640kHz to 0.5ms in the best case when BLF is as low as 

40kHz, which implies that the interrogator or the test platform conforming to the ISO 18000-6C 

standard shall complete the signal decode and command assembly work in real time during each 

step of the handshake. If the reader fails to achieve this requirement, the tags will lose power and 

transit back to the initial state waiting for a new effective inventory round. 

The timing limitation implies that the reader must resolve the tag collision in real time. If 

at least one of the tag responses can be resolved from the collision and decoded in the specified 

real time, one inventory round including the three step handshake can be performed. Furthermore, 

if more than one tag response can be resolved from the collision, inventory rounds potentially 

can be performed in parallel which leads to a dramatic increase in system read rates. 
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1.1 BACKGROUND OF THE PROBLEM 

1.1.1 The Link Timing of ISO 18000-6C Standard 

The ISO 18000-6C standard specifies two categories of tag states: the inventory states and the 

memory access states as shown in Figure 2. In order to access the memory content in the tag, a 

reader shall complete an inventory round to make the tag pass all the inventory states until 

entering the memory access states. The challenge lies in the fact that each step of the inventory 

round must be completed in a soft real time T (i.e. the Turn-around time between the reader 

command and the following tag response), which requires the reader to complete the decoding 

for the tag response and then sends out the next command within this turnaround time. If any 

transition step in the inventory round fails to complete in T, the tag will transit back to the Ready 

state (the initial state after power up). Table 1 lists the required turn-around time for typical tag 

BLF. 

 

Figure 2. Tag States Transition 
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Table 1. Tag Turn-around Time at Typical BLF 

BLF Minimum Maximum 

64kHz 46.90µs 312.50µs 

128kHz 23.45µs 156.25µs 

256kHz 11.73µs 78.125µs 

320kHz 9.38µs 62.50µs 

640kHz 4.69µs 31.25µs 
 

Corresponding to each state in the inventory round, there exists a three-step handshake as 

shown in Figure 3. At the first step (Step.1) of the handshake, the reader assembles and sends out 

a Query command; the tag chooses a random time slot to backscatter its 16-bit random number 

(RN16) after receiving a Query command, and then transits from the Arbitrate state to the Reply 

state. In the following step (Step.2), the reader decodes the tag backscattered random number and 

attaches it to the command header of an acknowledge command, ACK, and then sends out the 

ACK command within the turn-around time T. The tag receives this ACK command and 

responds with its ID (the tag PC and EPC number) protected by a 16-bit CRC code. The tag then 

transits into the Acknowledged state. At the last step (Step.3), the interrogator receives the tag 

response and sends out a Req_RN command with the previous tag backscattered 16-bit random 

number and 16-bit CRC over the command within the same turn-around time, T, in Step 2 to 

notify the tag entering into the memory access state (Open or Secure state). The tag receives this 

Req_RN command and backscatters a Handle (a special code).  
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Figure 3. The Three Step Handshake 

1.1.2 The Anti-Collision Mechanism in ISO 18000-6C standard  

To start an inventory round for the tags in the field, the reader needs to send a Query 

command as the first step in the inventory round. The formation of the Query command and the 

tag corresponding response are shown in Figure 4. The anti-collision dynamic framed slotted 

Aloha algorithm is realized by specifying a value ranging from 0-15 to the 4-bit Q field in the 

Query command. Upon receiving the Query command, the matching tags pick a random number 

in the range of [0, 2Q-1] to load into its slot counter. If a tag, in response to the Query command, 

loads its slot counter with zero, it responds with a 16-bit random number (RN16). The tag 

collision occurs when multiple tags in the reader field load their slot counter with zero and, thus, 

respond to the Query command simultaneously. A form of collision control can be realized by 
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specifying a large value for Q, in the extreme case when Q equals 16 the probability for an N tag 

collision is (1/65536)N-1.  

 

Figure 4. Query Command and Tag Response Formation 

1.1.3 ISO 18000-6C Tag Baseband Encoding 

According to the ISO 18000-6C standard [1], Tags shall encode the backscattered data as either 

FM0 baseband or Miller modulation of a subcarrier at the data rate (BLF). The reader commands 

the encoding choice, and both FM0 and Miller are bi-phase space encoding. 

Figure 5 shows the basis functions of FM0. FM0 inverts the baseband phase at each 

symbol boundary; a data-0 has an additional mid-symbol phase inversion. 
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Figure 5.  FM0 Baseband Basis Function 

Figure 6 shows the basis function of Miller encoding. Baseband Miller inverts its phase 

between two data 0’s in sequence. Baseband Miller also places a phase inversion in the middle of 

a data 1 symbol. When employing Miller encoding, the tag modulates a square wave shaped 

subcarrier by the Miller baseband. The Miller sequence contains exactly two, four or eight 

subcarrier cycles per bit [1]. 

 

Figure 6. Miller Baseband Basis Function 
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Generally, the symbol of both FM0 and Miller can be categorized into formations as 

shown in Figure 7. Formation 0 features a edge transition in the middle of  the symbol, while 

there is no edge transition in Formation 1 symbol. 

 

Figure 7. Generalized Tag Baseband Formation 

 

 

 

1.2 STATEMENT OF THE PROBLEM 

1.2.1 Overview 

The focus of this research is to resolve the two tag collision situation with extension to three or 

more collision tags. The collision can be simulated by letting the reader set the Q in the Query 

command to a value of zero. The two tags will then both load 0 into their slot counter and 

respond with their 16-bit random numbers simultaneously. The two tag responses are supposed 
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to be linearly superimposed as will be discussed. The reader receives baseband collision signals 

after RF and IF down conversions and are thus the superposition of the two symbol formations of 

either FM0 or Miller encoding as discussed in last section.  Due to the attenuation of different 

propagation paths and the fact that the Phase Locked Loop (PLL) in the reader receiver circuitry 

can only lock to one of the tag backscatter carrier waves, or the reader transmitting carrier wave 

depending on the relative strength of them. The downconverted two tag responses are normally 

different in magnitude. In addition, due to the capacitor variation in the tag chips (silicon), a 

phase shift (delay) may exist between the two responses even when the two tags are from the 

same manufacturer. (Detailed analysis of the two tag collision waveform characteristics will be 

introduced in Section 3.0 ) Therefore, the resulting collision baseband signal violates the 

standard specified FM0 or Miller encoding, which causes the functional failure in the reader 

decode circuitry. 

Without any collision resolution, the reader can only decode tags responding in different 

time slots, while two tags can share a common time slot provided their separate response can be 

recovered and extracted from the collision signal. For two tags in the field on a reader where Q = 

4, the probability of two tag responses colliding is (1/16) × (1/16). The probability of three tags 

colliding is (1/16) × (1/16) × (1/16), which reduces the collision probability significantly. 

Therefore, successful resolution of the two tag collision can significantly improve system data 

access efficiency. For example, the reader can selectively access one tag in a two tag collision 

situation as shown in Figure 8. As another example, with the reader collision resolution 

mechanism, the reader can simultaneously complete two independent inventory rounds for two 

tags as illustrated in Figure 9.  
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Figure 8. Selective Tag Access with Collision Resolution 

 

Figure 9. Simultaneous Tag Access with Collision Resolution 

As discussed in the previous section, the standard mandates a real-time turnaround time 

specification. The collision resolution needs to be completed before the time out occurs. 

Therefore, two strategies can be considered for the timing of the collision resolution as shown in 

Figure 10. The first strategy starts the resolution after the complete acquisition of collision, while 

the second one performs an on-line resolution one symbol after the other. The time available for 

collision resolution in the first strategy is less than the standard specified turnaround time 

because after the resolution, the reader needs time to decode the recovered tag response after it is 

finished. In comparison, the time available for the resolution equals the turnaround time plus the 

tag signal duration, and the reader can simultaneously decode the recovered symbols one by one.  
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Figure 10. Collision Resolution Timing Strategy 

1.2.2 Dissertation Work 

This is a research to solve the tag collision resolution problem for ISO 18000-6C passive RFID 

communication systems.  

Two straightforward online resolution methods are adapted to the two tag collision 

problem. The first method is the direct edge locating of the collision signal. The second one is 

the amplitude mapping to resolve a two-tag collision. The direct edge locating method will focus 

on resolving the two-tag collision with significant phase shift (larger than 15% of the symbol 

duration), while the amplitude mapping method will focus on resolving the collision with very 
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short or without phase shift. The two resolution methods can be unified by pre-processing the tag 

collision with a median filter in real time. As a part of the research, simulations are performed on 

a host PC as preliminary work to verify the functionality of the algorithms. The proposed 

algorithms are then optimized and implemented in one Xilinx Virtex-II Pro XC2VP30 FPGA on 

the NI5640R software defined transceiver board to verify their ability to resolve a two-tag 

collision within the real time limitation as specified in ISO 18000-6C standard. 

To extend the resolution to multiple tag (greater than two) collisions, a statistic signal 

processing method using Independent Component Analysis (ICA) is used.  The ICA method 

resolves two or more tag collisions without the limitation of the direct edge locating and 

amplitude mapping at the expense of increased hardware for additional receiving channels and 

higher computation load. To decrease the computation load of ICA in order to achieve the 

required processing speed, the ICA algorithm is optimized by working on the down sampled 

collision signal without losing recovery accuracy.  

Finally, the collision signal acquired from moving tags with speeds up to 40 miles/hour 

will be resolved by the amplitude mapping method using the FPGA to prove the compatibility of 

the research’s application on dynamic tags. All of the above methods work on commercial off 

the shelf passive RFID tags. 

In Summary, the dissertation work includes: 

 Developing a conformance test platform and a data acquisition platform  ISO 18000-6C 

Passive RFID systems 

 Study and Analysis of 2-tag and 3-tag collision signal acquired from both the stationary tags 

and moving tags 
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 Host PC Simulation and FPGA implementation of a 2-tag collision resolution algorithm 

based on both the amplitude and phase shift characteristics of signals 

 Host PC simulation and FPGA implementation of ICA for multiple tag collision resolution 
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2.0  DATA ACQUISITION PLATFORM 

Supported by the RFID Center of Excellence at the University of Pittsburgh, an ISO 18000-6C 

RFID tag conformance test platform has been developed as a preliminary to the research for this 

dissertation. This platform works by sending the user specified reader command to the tags under 

test as the test stimulus, analyzing the acquired tag backscatter, and then checking the tag 

response baseband waveform against the standard. This platform can thus serve as a data 

acquisition platform to obtain the tag response signal and the collision signal, which are the 

source signals in interest in this research. 

When selecting the hardware device for this platform, general purpose microprocessors 

and available commercial readers are both considered as candidates for ISO 18000-6C 

realization. General purpose microprocessors could be utilized to perform the communication, 

but they usually take multiple cycles to finish one instruction, and the total number of machine 

language instructions varies with the efficiency of user programming algorithms and the 

compilers. Therefore, they are difficult to time accurately and sometimes inefficient in 

communication timing control and, thus, not the best device to be selected. Available 

commercial readers are alternative platforms, however their architectures are fixed after 

manufacture and most of those devices require users to familiarize themselves with the vendor 

specified command format in order to manipulate the reader which burdens the user and 

degrades the RFID data access efficiency. In addition, there is no evidence that the commercial 
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readers can provide convenient forward compatibility while the passive tags advance in 

technology. Upgrading those readers to support the new features of tags is usually the major 

R&D cost if a hardware modification is required. Unlike microprocessors, FPGAs are easier to 

make timing accurate in their Hardware Description Language (HDL) programming nature. 

Compared to the fixed structure of commercial interrogators, a reconfigurable platform can be 

easily customized to perform in-depth functions. Therefore, in light of the defects of the possible 

solutions, it is intuitive to utilize the re-programmability of an FPGA baseband processor to build 

a flexible interrogator for ISO 18000-6C passive RFID tags.  

To these ends, an FPGA based software defined radio architecture is employed to 

implement the ISO 18000-6C standard for the data conformance test platform. It features: 1) a 

real-time FPGA baseband, 2) a software controllable IF and RF front-end, and 3) a host PC 

based GUI control panel. The development tool set includes National Instrument (NI) LabVIEW 

8.5 (for software programming and test front panel control), and LabVIEW FPGA module 8.5 

(for FPGA baseband hardware programming). LabVIEW is distinctly suited for FPGA 

programming because it clearly represents parallelism and data flow. With the LabVIEW FPGA 

Module, custom measurement and control hardware requiring high-speed hardware reliability 

and tight determinism can be simulated and synthesized without low-level hardware description 

languages or board-level design. The LabVIEW compiler automatically translates the LabVIEW 

graphic code into low-level HDL code. 
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2.1 PLATFORM ARCHITECTURE 

The reconfigurable software defined radio test platform consists of two major parts:  

1. The hardware, which includes the signal baseband, the intermediate frequency and the RF 

front end. 

2. The software running on a PC controls the hardware and analyzes the backscattered signal.  

2.1.1 Platform Hardware 

The architecture of the platform hardware connection is shown in Figure 11.  The 2-way signal 

flow includes the transmitter side and the receiver side. On the transmitter side, the software on 

the host PC selects and sends out the user specified command to the FPGA-based baseband.  The 

baseband assembles the received binary command using PIE encoding according to the standard 

and then passes the data into the intermediate frequency band (IF). The IF stage consists of a 

DA9857 14-bit quadrature digital upconverter and a DA6654 14-bit downconverter. With the 

built-in Numerical Controlled Oscillator (NCO), the IF upconverter modulates the baseband data 

in DSB-ASK at the IF center frequency of 25MHz. The signal baseband (Xilinx Virtex-II Pro 

XC2VP30 FPGA) and the IF stage are together in the NI PCI-5640R Software-Defined Radio 

transceiver board.  The 25MHz IF ASK signal is sent into the RF front end tuned to 915MHz for 

RF stage modulation. The RF front end consists of an NI 5610 RF upconverter and the NI5600 

RF downconverter, which are connected by the NI PXI bus. On the receiver side, the tag 

backscattered signal passes through the 2-stage ASK demodulation in the RF and IF bands, and 

then enters into the baseband. An Agilent E4443A real time spectrum analyzer is employed as an 

auxiliary monitor of the RF communication process in the air interface. The FPGA decodes the 
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signal using FM0 or Miller encoding and sends the received signal as well as the decoded binary 

data back to the host PC for software offline analysis.  

 

Figure 11. Platform Hardware Architecture 

 

2.1.2 Platform Software 

The platform software running on the host PC handles four major functions: 

1. The test control panel: Using this panel, the user can select the command to send and set the 

command parameters. A set of the physical layer (PHY) features such as modulation depth, the 

length of Tari value, RTcal, and TRcal can be controlled by inputting values in corresponding 

text fields on the front panel. In addition, the IF and RF stage hardware are both configured by 
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specifying the expected center frequency, the output power level, and the sampling 

length/accuracy.  

2. The signal analysis: The host PC software receives the demodulated baseband I/Q signals, and 

displays the RF envelope, the I vs. Q waveform, the constellation diagram, and also calculates 

the spectrum.  

3. The offline conformance check: The received RF envelope and calculated spectrum can be 

stored by the user optionally for offline conformance checking in a separate offline analysis 

module. The pulse width of the data stream and the integration of power in the specified 

bandwidth are checked against the standard. 

4. The interface for remote control: By using the LabVIEW supported remote panel interface, the 

host PC can be accessed by remote machines through Ethernet/Internet connection in a Client-

Server relationship. This allows a remote terminal to send a command to the local host PC, 

which connects to the baseband and RF front end to perform the data acquisition and 

conformance test. 

Figure 12 illustrates the software workflow of the host PC software. 
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Figure 12. Platform Software Architecture

2.2 STANDARD REALIZATION AND DATA ACQUISITION 

2.2.1 Standard Realization 

The FPGA baseband realizes the logic function of an ISO 18000-6C conforming reader. The 

FPGA baseband consists of four parts to realize the ISO 18000-6C standard: the ASK modulator, 

the real-time DSP unit, the signal decode module for both the FM0 and the Miller encoding 

signal, and the processing unit for the previously mentioned three step real time handshake. 

            On the transmitter side, the FPGA assembles the reader commands. It receives the binary 

command from the host PC control panel, and then modulates the data stream using ASK after 

performing the encoding. The modulation of the ASK signal is shown in Figure 13. The encoded 

data are sent into two separate quadrature channels − I and Q in the IF stage. The ASK 
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modulation is realized by setting the magnitude multiplier in each channel as 1 when the 

incoming data bit is “1” in binary, and setting the multiplier to zero when the data bit is “0”.  The 

DSB-ASK and SSB-ASK modulation manner can be selected by controlling the strobe of the Q 

channel. 

 

Figure 13. ASK Modulation Block 

            However, the square wave shaped command bit stream generated by the FPGA contains a 

theoretically unlimited bandwidth. If it is passed into the IF upconverter without bandwidth 

limiting, the so called Gibbs phenomenon[7] occurs, resulting in significant over/under shoot at 

the data edges which degrades the output signal. The over/under shoots of the output command 

usually exceed the maximum tolerance specified in the ISO 18000-6C standard and make the 

outputting command signal invalid for the tag in test. Therefore, real-time DSP work is necessary 

for guarantying the quality of generated interrogator signals. To eliminate the Gibbs 

phenomenon, a low pass filter is placed between the FPGA baseband and the IF stage in order to 

limit the bandwidth of the outputting baseband signals below the cut off frequency of the 

interpolation filter in IF upconverter. With the LabVIEW built-in Digital Filter Design (DFD) 
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toolkit, the tap coefficients for an 8-order Bessel FIR low pass filter are generated and the 

magnitude/phase responses are displayed in Figure 14.  

 

Figure 14. FIR Filter Magnitude and Phase Response 

            As shown, the bandwidth of the baseband signal is limited to 30% of the sampling 

frequency, which is 10% below the cut-off frequency of the interpretation filter in the IF stage. 

The coefficients are selected to be symmetric to the center tap in order to ensure a linear phase 

response. Figure 15 shows the realization of the filter in the LabVIEW FPGA Module and its 

corresponding effect. Comparing the baseband outputs, it can be seen that the under/over shoots 

in command signals are significantly quenched after the smoothing. 

 

Figure 15. Signal Smoothing with 8-order FIR Filter 
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            On the receiver side, the FPGA baseband receives the IF demodulated tag backscattered 

signals, and recovers the binary information in this FM0 or Miller encoded bit stream using a 

decode module. In the decode process, the clock recovery method is critical to accuracy. In light 

of the fact that the FM0 and Miller encoding are both self-clocking bi-phase code, the decoding 

can be based on edge detection and pulse width measuring. Figure 16 shows the architecture of 

the decode module. In the decode module, the edge detector scans the data series, and sends out a 

notification signal as well as the distance between current and previous edges (i.e. the pulse 

widths) to the decode processor. The decode processor includes a 2-state Finite State Machine 

(FSM), which arbitrates the corresponding logic value for the data bit based on the inputs from 

the edge detector and the previous data bit.  

            The infrastructure of the handshake processing unit is shown in Figure 17. In Step 1 of 

the three step handshake, the decode module notifies the decode module every time it detects an 

edge in the tag response. The decode module decodes the incoming tag response and sends out a 

handshake signal to the processing unit once the decode finishes for the tag backscattered 

random number. In Step 2, the decoded 16-bit binary random number is stored in the block 

memory in the FPGA and passed into an FIFO for command assembly. The ACK command 

header is sent into the same FIFO, and by doing this, the random number gets attached to the 

header. The FIFO is connected to an optional delay module which allows for a turn-around time 

adjustment. In Step 3, the assembly of the Req_RN command follows the same procedure as in 

Step 2 except that the FIFO is also connected to a CRC16 generator for the CRC attachment. 

Handshake signals are also sent after the command assembly finishes in each step to notify the 

ASK modulator to modulate the assembled command for transmission. Figure 18 shows the 

acquired sampling of the three step handshake.  
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            The synthesis result of the platform provided by Xilinx XST shows that the design 

utilizes 86% of the total slices, 73% of the Block RAMs and 403 user I/Os among the total 556 

I/O blocks of the Virtex-II Pro XC2VP30 FPGA. Consequently, the design takes reasonable 

advantage of the device resources. 

 

Figure 16. Decode Module Architecture 

 

Figure 17. Handshake Processing Unit 
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Figure 18. Acquired Inventory Round 

2.2.2 Data Acquisition with the Platform  

As introduced in Section 2.1.1, the test stimulus reader command as well as hardware details can 

be configured by the LabVIEW Graphic User Interface (GUI) test control panel, and the 

acquired tag response can be displayed by the signal analysis module. 

In the test control panel, the user gets full control of the communication PHY and Media 

Access Control (MAC) configuration. The output power level and the center frequency of the RF 

front-end can be changed and reset by inputting the expected value in the corresponding number 

fields. In addition, the center frequency of the IF stage and the ASK modulation depth can also 

be configured. The command parameters specified by the standard such as Tari value, TRcal, 

and RTcal can be input by the user. In addition, the accuracy and length of the FPGA acquisition 
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can be customized. The acquisition sampling rate varies from 2MHz to 25MHz (by default), 

which allows for a measurement resolution up to 0.04µs (25MHz sampling rate) in distance 

between adjacent sampling points. The user can easily select the command type to send, and the 

corresponding pre-stored default command parameters are loaded into an editable combo box 

automatically. The command parameter in the command combo box can be changed if necessary 

to send out a customized command. Figure 19 shows the test control panel. As shown, the RF 

front-end and the IF stage are tuned at 915MHz and 25MHz, separately; The Tari value is set as 

25µs, the modulation depth is 90% and the sampling frequency is 25MHz; A Query command 

has been selected from the command menu, and its Q field is changed from “0000” to “0001”. 

After clicking the “Send” button, the corresponding RF envelope of the reader command and tag 

response are captured by the platform hardware and displayed in the virtual oscilloscope. As 

shown, all the other ISO 18000-6C commands can be selected by the user from the combo box. 

The waveform analysis module accepts the captured RF envelope and calculates the 

spectrum. The I vs. Q waveform as well as the constellation diagram are also generated from the 

acquired sampling data. The decoded message of the tag response is simultaneously displayed. 

Figure 20 shows an excerpt of the front panel of the waveform analysis module. Accompanying 

the RF envelope of the three step handshake are the decoded binary message for the RN16 after 

Query command, the PC+EPC+CRC after the ACK command and the Handle+CRC16 after the 

Req_RN command. 
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Figure 19. Test Control Panel 
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Figure 20. Waveform Analysis Module 
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3.0   TAG COLLISION SIGNAL CHARACTERISTICS ANALYSIS 

3.1 TAG COLLISION SIGNAL CHARACTERISTICS 

Because this research focuses on the resolution of two-tag collisions, the collision signal is 

generated from two tags from the same manufacturer in the transmitting field of the data 

acquisition platform as introduced in Section 2.0 . By configuring the command parameter, the 

platform sends out a Query command with its Q equaling zero, and thus forces the two tags in 

the field to transmit their 16-bit random numbers simultaneously. By doing so, the two-tag 

collision situation is simulated. The RF carrier wave frequency for the air interface is set at 

915MHz, and the IF frequency is set at 15MHz. At the receiver side, the collision signal is 

acquired by the platform, and then downconverted to the baseband signal, which is sent into the 

FPGA. 

            During the collision signal acquisition, in the vertical direction, the two tags, T1 and T2, 

are placed two inches from the center of the reader antenna as shown in Figure 21, while they are 

symmetric to the center and spaced by five inches from their individual antenna centers in 

horizontal direction. As shown in Figure 22, collision signal of tags from two different 

manufacturers are generated and captured. From the LabVIEW signal analysis module on the 

host PC, an acquired collision signal is visualized as shown in Figure 23. 
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Figure 21. Tag Positioning (Vertical Direction) 

 

Figure 22. Tag Positioning (Horizontal Direction) 
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Figure 23. Acquired Collision Signal 

Based on observation, the features of the collision signal can be summarized as follows: 

1. The collision signal is the result of the linear superposition of tag responses, and the 

superposition follows a linear additive model as depicted in Figure 24. 
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                                         Figure 24. Linear Additive Model of Tag Responses 

2. The received two tag responses are possibly different in magnitude. If the received two 

tag responses have the same magnitude, only three possible voltage levels can be 

generated when they are linearly superposed. Whereas, if they are different in magnitude, 

according to permutation, four possible voltage level can be obtained from their linear 

superposition. The assumption is summarized in Table 2, in the left sub table, the 

response of Tag 1 and Tag 2 are with the same magnitude of [A-, A+], while in the right 

sub table, Tag 1 is with a magnitude of [A-, A+], and Tag 2 is with a magnitude [B-, B+] 

(A≠B). This assumption is proven by locating the four different voltage levels in the 

observed collision signal. The different received tag responses are caused by two major 

facts. The first one is that the two tag responses propagate to the receiver through 

different paths, they thus suffer from different path attenuation. The second fact is that 

the RF transmitting channel and the receiving channel of the data acquisition platform are 

combined by a circulator connected to one patch antenna as shown in Figure 25. Because 

the transmitting power of the reader carrier wave is significantly larger than the power of 

the received tag response, the PLL in the RF receiving circuitry locks onto the phase of 

the transmitting carrier wave. In addition, due to the capacitor variation in each tag, the 
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tags carrier waves may be different in phase. Therefore, the received two tag responses 

suffer from different attenuation factors caused by carrier wave asynchronization with the 

receiver’s local oscillator (LO). 

       Table 2. Possible Voltage Levels in Collision 

      Tag1 
Tag2 A+ A- 

 

      Tag1 
Tag2 A+ A- 

A+ (A+)+(A+) 0 
 

B+ (A+)+(B+) (A-)+(B+) 

A- 0 (A-)+(A-) 
 

B- (A+)+(B-) (A-)+(B-) 

 

 

Figure 25. RF Front End Connection with Circulator 
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3. The two tag responses are added together with a phase shift (delay). The reason for this 

phase shift is due to two reasons. Due to the physical variations of the capacitors for 

forming the backscatter signal in each tag, the two tags respond to the reader with 

different speeds after receiving the Query command. In addition, the signal from each tag 

propagates through different paths, which are different in distance. The phase shift caused 

by the propagation path difference equals the quotient of path length difference divided 

by the speed of light. Because the range of passive RFID communication cannot exceed 

10m normally, it is thus minimal and can be neglected in analysis. In summary, the 

observed phase shift in the collision signal is assumed to be due to the difference in the 

tag circuitry response speed. 

4. The phase shift is not fixed during the backscatter, and it accumulates with time. 

Referring to the Standard, the reason of the accumulated phase shift is due to the tag 

response frequency deviation (BLF deviation) tolerance. As an example, this 

phenomenon can be observed in the zoomed tag response in Figure 26. The phase shift at 

the ending bit of the responses (in this case it is 2.486µs corresponding to the last white 

circle in Figure 26) is much larger than the initial phase shift (125ns, which implies at the 

beginning two tags almost respond to the reader simultaneously). 
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Figure 26. Accumulated Phase Shift 

5. The average phase shift is inversely proportional to the tag BLF, and cannot exceed 25% 

of the symbol duration. This conclusion is obtained by commanding the tags to respond 

at typical BLF and measuring the length of phase shift as shown in Table 3 and Table 4. 

The unit of the phase shift in the tables is micro seconds. The data acquisition precision is 

0.04µs (25MHz). Table 3 lists the measurement results of the phase shift among seven 

different tags from manufacturer 1. Table 4 lists the measurement results of the phase 

shift among seven different tags from manufacturer 2.  For each measurement, the tags 

are placed together with two in a group. Figure 27 shows and compares the average phase 

shift of tags from each manufacturer at typical BLFs. As shown, the tags from 

Manufacturer 2 (red line) has a much larger phase shift than the tags from Manufacturer 1 

(blue line), and thus the edge locating method is more suitable to resolve the collision of 

the former. Reciprocally, the amplitude method is more suitable for the latter as will be 

discussed in Section 4.0 and Section 5.0 . Figure 28 and Figure 29 show the percentage of 

average phase shift in the symbol duration for tags from each manufacturer separately. As 
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shown, the largest average phase shift takes 21.30% (<25%) of the symbol duration, 

when the BLF is 682 kHz and manufacturer number 2’s tag is selected.  

In summary of the features of the collision signal, four voltage levels and a phase shift 

(observed as short edge transition) exist in the received collision baseband, which is not fixed.  

 

Table 3. Tag Response Statistics (Manufacturer 1) 

 

Table 4. Tag Response Statistics (Manufacturer 2) 

 

 

Figure 27. Tag Phase shift vs. BLF (Manufacturer 1 and Manufacturer 2) 
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          Figure 28. Tag Phase shift Percentage in Symbol duration vs. BLF (Manufacturer 1) 

 

          Figure 29. Tag Phase shift Percentage in Symbol duration vs. BLF (Manufacturer 2) 
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3.2 DATA PREPROCESSING 

Before the actual collision resolution, a certain amount of data preprocessing is usually necessary 

to suppress the noise in the acquired collision signal, which is due to the imperfect RF receiving 

channel characteristics. Unlike the reader, which transmits commands with fixed baseband 

frequency, the tags BLF can vary in a wide range (normally from 64 kHz to 640 kHz). Therefore, 

improving the quality of the received baseband signal requires adapting tap coefficients for 

different typical BLFs if using traditional digital filters in baseband such as FIR and IIR filters. 

As an alternative to avoid the complicacy of designing FIR/IIR filters, a fixed point median filter 

using bubble sorting is realized in the FPGA baseband to preprocess the incoming collision 

signals. As shown in Figure 30, the SNR of the received tag response is significantly improved 

using a 10 order median filter.   

 

                  Figure 30. the effect of a 10-order median filter  
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A trade off can also be made between the complexity of the median filter and its effect as 

shown in Figure 31.  Normally, a median filter with 4 orders, which guarantees a 3dB SNR 

improvement over original signal, is enough for the application. 

 

Figure 31. Median Filter order vs. Processed Signal SNR 
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4.0  RESOLUTION METHOD I：DIRECT EDGE LOCATING 

Because a collision results in the linear superposition of each tag’s response, the formation of 

each tag’s response is invariant. In addition, because each tag’s response potentially arrives at the 

receiver side at different instants because they normally propagates through different paths (i.e. 

the phase shift observed in the collision), the edge transition in each tag’s response is kept and 

not overlapped with each other (spaced by the phase shift). Figure 32 illustrates the superposition 

of two formation-0 symbols, and the two edge transitions are maintained in the collision. As 

discussed in Section 3.1, the phase shift value is not fixed and can be accumulated over the 

collision duration due to the tag BLF deviation.  Figure 33 illustrates the superposition of two 

formation-1 symbols. There is no edge transition in the collision because of the absence of edge 

transition in each individual tag response. Figure 34 illustrates the superposition of one 

formation-0 symbol and one formation-1 symbol, only one edge transition can be observed in the 

collision. Therefore, although superimposed, the two tag responses can still be treated as being 

independent. It is possible to recover the information of each tag by locating the edge transition 

in each symbol duration from the start of each tag’s response. This is based on the exact locating 

of each tag’s start in the collision, which will be discussed in next section. 
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Figure 32. Superposition of Two Formation-0 Symbols 

 

Figure 33. Superposition of Two Formation-1 Symbols 
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Figure 34. Superposition of  Formation-0 Symbol and Formation-1 Symbol 

4.1 TAG RESPONSE FRAME ARCHITECTURE 

According to the ISO 18000-6C standard, when the tag responds to the reader, it shall precede its 

data with a preamble. Figure 35 shows the tag response frame architecture after a Query 

command. 

 

Figure 35. Tag Response Frame Architecture 
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Figure 36 shows the preamble of the tag response when FM0 encoding is employed. In 

Figure 37 the preamble of the tag response when Miller encoding is employed. The parameter 

TRext decides whether a 12-zero pilot tone is used in the preamble. While two tags respond to 

the reader’s Query command with their individual RN16, the two RN16 numbers shall be 

preceded by the same preamble. This information can be utilized to locate the starting edge of 

each tag’s RN16. Because once the formation of the preamble is fixed, the ending of the 

preamble (i.e. the start of the RN16) can be located by counting to the edge number in the 

preamble from the start of the preamble. For example, in the FM0 encoding preamble as shown 

in Figure 36, suppose no pilot tone is used (TRext=0), there are eight edges in the preamble. The 

ending of the preamble can thus be located by counting eight edges from the start edge of the 

preamble. In the collision signal, because the two tag responses are linearly superimposed with a 

phase shift, the ending of each preamble can be located by counting to the edge number in the 

preamble from the start of each preamble in the collision. Suppose the preamble contains N 

edges, the ending of the individual tag response are at the position of the (2N-1)th and the 2Nth 

edge in the collision signal. Figure 38 shows an example of a collision signal consisting of two 

tag preambles in FM0 without a pilot tone. Because each tag’s preamble has eight edges, the 

ending of the tag 1 and tag 2 responses are at the 15th edge and 16th edge in the collision signal. 

The ending location for Miller encoding is similar. 
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Figure 36. Tag Response Preamble in FM0 

 

Figure 37. Tag Response Preamble in Miller Subcarrier 



45 

 

 

Figure 38. Ending Location of Preambles in Collision 

 

4.2 ALGORITHM DESCRIPTION 

After locating the end of the preamble (i.e. the starting of the RN16 in the tag responses), each 

bit in the RN16 of individual tag corresponding to one symbol duration can be recovered. The 

direct edge locating algorithm for two-tag RN16 collision resolution is listed in Table 5. This 

algorithm checks the collision signal one sample point at a time, and thus it is an online 

algorithm. 
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Table 5. Direct Edge Locating Algorithm 

 

 

 

 

4.3 ALGORITHM SIMULATION 

The direct edge locating algorithm is simulated using LabVIEW on the Host PC. It is 

implemented by using a finite state machine (FSM) as shown in Figure 39. The edge detector 

detects each edge transition in the collision signal, and sends out handshake signals to the 

i. Locating the preamble ending edge of tag 1 and tag 2 separately in 

the collision signal, denoted as St1 and St2. 

ii.  Start from St1, check the existence of edge transition at time instant 

St1+k×Ts (k= 1, 3, 5, … , 31), which corresponds to the middle of 

each symbol in tag 1’s RN16 ( where Ts is the symbol duration). If an 

edge transition is found at the specified position, the corresponding 

data bit in the RN16 is in formation 0. Otherwise, it is in formation 1. 

iii. Start from St2, check the existence of edge transition at time instant 

St1+k×Ts (k= 1, 3, 5, … , 31), which corresponds to the middle of 

each symbol in tag 2’s RN16 ( where Ts is the symbol duration). If an 

edge transition is found at the specified position, the corresponding 

data bit in the RN16 is in formation 0. Otherwise, it is in formation 1. 
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counter and the FSM once an edge is found. The counter records the number of the edges 

detected. A timer counts the elapsed time since the start of the RN16, and notifies the FSM once 

it reaches the middle of a symbol as specified in Table 5. Because of the tag response BLF 

deviation, the exact location of the symbol middle edge transition deviates around the theoretic 

symbol center at St+k×Ts(k= 1, 3, 5, … , 31). Therefore, if using the fixed starting point St and 

increasing it by the fixed symbol duration to locate the edge transitions, the probability of error 

increases accordingly as the time reaches later symbols in the collision. To increase the robust 

property of the algorithm, a calibrator is employed to align the timer and FSM to the exact 

starting point of the incoming symbol after successfully resolving the previous collision symbol.   

Figure 40 shows the state transition of the FSM control logic.  

 

Figure 39. Implementation of the Algorithm using FSM 
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Figure 40. State Transition of the FSM 

The edge detector is implemented in two ways. The first method is based on calculating 

the running mean of the input signal. Figure 41 shows the work flow of the edge detection using 

the running mean of the signal samples. The edge detector keeps recording the running mean of 

the magnitude of the latest 5 signal sample points, and updates the average of the positive peak 

and the negative peak online. If the previous signal point is below the average while the current 
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signal point is above the average, a rising edge is detected; the falling edges are found in a 

similar manner.  

 

Figure 41. The Running Mean Calculation 

The second method is to calculate the differentiation of the input signal. Because the edge 

is a singular point in the signal, the corresponding differentiation appears as a spike. The 

differentiation is calculated using Eq.4.1. In simulation, the edge transition time of the tag 

response normally takes no more than two sampling periods (0.08µs), the dt is set as 1. Therefore, 

the differentiation actually equals the difference of the two adjacent sampling points in the signal.  

Figure 42 shows the preamble part of an FM0 collision and its corresponding differentiation. 

However, in reality it is possible that the edge transitions in the tag response can take more than 

one sampling periods. In this case, Eq.4.1 outputs a pulse rather than an impulse if dt is still set to 

1. To guarantee the algorithm’s compatibility with the less steep edge transition scenario without 

dynamically changing the unpredictable dt, the algorithm detects only the rising edge of the 

differentiation output as shown in the LabVIEW code segment in Figure 43. 
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Figure 42. The Differentiation of Collision signal 

Differentiation =
𝑦 𝑡 − 𝑦(𝑡 − 𝑑𝑡)

𝑑𝑡
       (Eq. 4.1) 
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Figure 43. Collision Signal Edge Detection (LabVIEW Code Segment) 

Because the variation of symbol duration exists in the practical tag response, the middle 

symbol edge transition can appear in a range around the supposed St+k×Ts  (k= 1, 3, 5, … , 31) 

positions rather than exactly at the middle of each symbol. Therefore, the FSM searches a range 

around the middle of each symbol for the edge transition rather than at the exact middle position. 

The search range is of a length of 5% of the symbol duration centered at the middle of each 

symbol. Figure 44 shows the searching range. 

 

Figure 44. The Differentiation of Collision signal 
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In the simulation, the symbol duration is set as 400 sample points, and the search range is 

thus 40 data points centered at the middle of each symbol. Two RN16 (8180h and 18FFh) 

encoded with FM0 are inputted to simulate the two tag responses separately. A Gaussian white 

noise with 5% of the signal strength is added to each tag response to simulate the channel noise. 

Figure 45 shows the two tag responses with noise. Figure 46 shows the collision signal and its 

corresponding differentiation showing the edges. The LEDs in Figure 46 show the recovered 

data from the collision, the LED turned on corresponds to the formation-1 symbol while the LED 

turned off corresponds to the formation-0 symbol. As a comparison, the recovered data are 

exactly the inputted RN16s. 
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Figure 45. Two Tag Responses 
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Figure 46. Collision Signal and its Differentiation 
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There are two limitations of the algorithm: 

1. As the BLF of tag increases, the phase delay decreases as shown in Section 3, which 

requires more accuracy of the hardware timer to locate the searching range for each 

symbol. It is also possible that the searching range of the current symbol for each tag may 

overlap (as shown in Figure 47), which requires the shrinking of the searching range. 

This limitation can be removed by using the amplitude mapping which is designed for 

tags with minimal phase shift as will be discussed in Section 5.0 . 

 

Figure 47. Searching Range Overlap 

2. The phase shift cannot exceed 50% of the symbol duration, otherwise the symbol 

beginning of the leading tag will interfere with the middle of the lagging tag. This is 

illustrated in Figure 48. In Figure 48, the phase shift is exactly 50%, and the formation 1 

symbol in Tag 1 is arbitrated as formation 0 due to the edge transition appeared in the 
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search range in the collision, which is actually is beginning edge of Tag 2’s RN16. This 

limitation can be overcome by adjusting software parameters for the case in which the 

phase shift becomes larger than 50% of the symbol duration provided that it is not exactly 

50%. However, based on the measurement of the practical phase shift at typical tag BLFs 

as shown in Figure 28 and Figure 29 of Section 3.0 , the phase shift cannot exceed 25% 

of the symbol duration. 

 

Figure 48. Miss Arbitration 

4.4 ALGORITHM IMPLEMENTATION 

When simulated in LabVIEW on the host PC, the direct edge locating algorithm is developed as 

an online function for convenient FPGA transplant: The program reads in the collision signal and 
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performs point-by-point processing on it. LabVIEW provides its FPGA compilation environment 

in its LabVIEW FPGA module, which allows for direct translation of LabVIEW code into low-

level HDL code. The floating-point numbers used in the host PC LabVIEW need to be 

transferred to fixed point numbers in LabVIEW FPGA module. 

           Because most of the computation involved in the algorithm is Boolean for the arbitration 

logic and countering for timers, the NI5640R FPGA baseband used in the data acquisition 

platform featuring a Xilinx Virtex-II Pro XC2VP30 FPGA is capable. The implementation 

verification flow is shown in Figure 49. Two individual tag responses of typical BLF are 

acquired by the data acquisition platform and mixed to generate the collision signal as the test 

bench on Host PC. The typical BLFs are 64 kHz, 128 kHz, 256 kHz, 341 kHz and 682 kHz. The 

test bench signal is then streamed into the FPGA, and stored in the FPGA block memory for play 

back. The resolution result generated by the FPGA is streamed back to the host PC for 

visualization and comparison with the original tag responses. The FPGA also generates a time 

stamp once it finishes the resolution, which shows the processing time.  

 

Figure 49. Verification Flow of Algorithm Implementation  

            Figure 50,Figure 51,Figure 52,Figure 53,Figure 54 show the resolution results on actual 

tag collision signal at each typical tag BLF. 
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Figure 50. Resolution Result When BLF=64 kHz  

 

Figure 51. Resolution Result When BLF=128 kHz 
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Figure 52. Resolution Result When BLF=256 kHz  

 

Figure 53. Resolution Result When BLF=341 kHz  
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Figure 54. Resolution Result When BLF=682 kHz 

The FPGA resource utilization reported by Xilinx XST FPGA compiler is listed in Table 

6. As shown, the design only utilizes 20% of the total FPGA logic slices. 

Table 6. FPGA Resources Utilization 

 

Compilation Summary 
------------------- 
Device Utilization Summary: 
   Number of BUFGMUXs                        7 out of 16     43% 
   Number of External IOBs                 403 out of 556    72% 
   Number of LOCed IOBs                 403 out of 403   100% 
   Number of MULT18X18s                      2 out of 136     1% 
   Number of RAMB16s                        45 out of 136    33% 
   Number of SLICEs                       2849 out of 13696  20% 
 
Clock Rates: (Requested rates are adjusted for jitter and accuracy)  
  Base clock: Configuration_Clk 
      Requested Rate:      20.000000MHz  
      Theoretical Maximum: 69.754464MHz 
  Base clock: RTSI_Ref_Clk 
      Not used 
  Base clock: ADC_0_Port_A_Clk 
      Requested Rate:      25.001250MHz  
      Theoretical Maximum: 34.907669MHz 
  Base clock: DAC_0_IQ_Clk 
      Not used 
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            Because the algorithm is in online real time, the resolution completes half a symbol 

duration before the end of the collision. The processing time corresponding to each BLF is 

compared to the standard specified turn-around time as shown in Figure 55. The required time in 

the figure is calculated as the sum of the collision signal length and the standard specified turn-

around time.  

 

Figure 55. Processing Time vs. Standard Required Time 
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5.0  RESOLUTION METHOD II：AMPLITUDE MAPPING 

As discussed in Section 3.0 , when the tag BLF increases, the phase shift between the two tag 

responses decreases. When the phase shift decreases to within the search range length, the direct 

edge locating method for collision resolution as described in Section 4.0 does not apply because 

of the interference of the adjacent edge transition in each tag symbol. In the extreme case, when 

the phase shift shrinks to zero, an ambiguity as shown in Figure 56 makes the direct edge 

locating method fail entirely when at least one tag has a formation 0 symbol appear. In Figure 56, 

two tag symbols are linearly superimposed without phase shift. When one tag is responding a 

symbol in formation 0, while another is responding a symbol in formation 1, or when both of the 

tags are responding with formation 0 symbols, the observed edge transition in the middle of the 

symbol leads to the ambiguity when symbol arbitration. Because there is no phase shift and the 

edge transitions in each tag response are completely overlapped, although an edge transition can 

be detected in the middle of the symbol, whether Tag 1 or Tag 2 is in transmitting formation 0 

cannot be decided.  However, in the case when both of the tags are transmitting formation 1 

symbol, the original information can still be resolved from the collision because there is no edge 

transition in the middle of the symbol. Observed from Figure 56, although all the ambiguity 

cases feature an edge transition in the middle of the symbol, they are different in the amplitude 

level positions. Therefore, it is intuitive to resolve the collision based on the relative position of 

the voltage levels. 
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Figure 56. Edge Ambiguity 

Because there are two possible formation 0 symbols and two possible formation 1 

symbols, each symbol in the tag responses can have four possible shapes as shown in Figure 7 in 

Section 1.1. Therefore, when the two tag responses are superimposed, there can be 16 possible 

shapes of the collision symbol as shown in Figure 57. It is supposed that the amplitude of Tag 

1’s response is twice as the amplitude of Tag 2’s response for illustration purpose. In Figure 57, 

the amplitude of Tag 1’s response is supposed to be twice the amplitude of Tag 2’s response for 

illustration purposes. The upper two portions (area 1 and area 2) correspond to the cases when 

both of the tag responses are same information, while the bottom two portions (area 3 and area 4) 

correspond to the cases when both of the tag responses are different in formation.  
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Figure 57.  Collision Patterns 

 The characteristics of the collision pattern can be summarized as following: 

1. For the collision in area 1 (T1=T2=0):  The collision signal is symmetric to the average 

line, and the first half symbol level and the second half symbol level distribute at 

different sides of the average line. 

2. For the collision in area 2 (T1=T2=1): There is no edge transition in the middle of the 

symbol, and the first half symbol level and the second half symbol level distribute at the 

same side of the average line. 
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3. For the collision in area 3 (T1=0, T2=1): The collision signal is not symmetric to the 

average line, and the first half symbol level and the second half symbol level distribute at 

different sides of the average line. 

4. For the collision in area 4 (T1=1, T2=0): There is an edge transition in the middle of the 

symbol, and the first half symbol level and the second half symbol level distribute at the 

same side of the average line. 

As discussed early, there are four possible voltage levels in the collision signal. Because the tag 

responses are preceded by a common preamble, the maximum and the minimum voltage levels 

appears in the preamble part of the collision. The average line is calculated over the maximum 

and minimum voltage level. Except for the maximum and minimum voltage levels, the other two 

possible intermediate voltage levels, which are symmetrically distributed at the opposite side of 

the average line, appear when the voltage levels in individual tag response with opposite 

polarization are superimposed as indicated by the circled cases in Figure 57. Figure 58 shows an 

example collision signal consisting of two tag responses in FM0 without a phase shift. The RN16 

in Tag 1 is 672Bh, and the RN16 in Tag 2 is A7CDh. To arbitrate the symmetry of the collision 

symbol to the average line, the average of the current symbol is compared to the average line of 

the collision. Two samples are taken at the first half and the second half of each collision symbol, 

and the symbol average is calculated as the difference of the two sample values divided by two. 

If the average of the current symbol voltage levels equals the collision average line, the symbol 

is symmetric to the average line. 
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Figure 58.  Example Superposition of Tag Responses without Phase shift 

5.1 ALGORITHM DESCRIPTION 

Based on the characteristics of the collision symbol, the individual tag symbol can resolved by 

scanning through the collision and mapping the collision signal to the cases as listed in Figure 57. 

The algorithm is therefore named Amplitude Mapping and listed in        Table 7. The mapping 

process is described in the pseudo code in Table 8. 

       Table 7. Amplitude Mapping Algorithm  

 

 

1.  Scan the duration of the preamble, find the maximum/minimum value and the 

average line of the collision. 

2. Beginning from the end of the preamble, check each symbol duration of the 

collided data. Calculate the average of each collide symbol.  

3. Map the collision symbol to the cases as shown in Figure 43 to decide the 

individual tag data. 
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Table 8. Pseudo code for Mapping Process 

5.2 ALGORITHM SIMULATION 

The amplitude mapping algorithm is simulated using LabVIEW on the Host PC. It is 

implemented by using a FSM as shown in Figure 59. In each collision symbol, two sample points 

at 25% and 75% of the symbol duration are taken for the first half level and the second half 

voltage level separately as shown in Figure 60. The timer counts the elapsed time since the start 

of the RN16, and notifies the FSM once it reaches the sampling points in each symbol. The 

comparator compares the voltage level of the sampling points in each symbol with the collision 

average line. A threshold is introduced in the comparator to get rid of the interference of the 

collision_avg= (collision_Max+collision_Min)/2; 
symbol_avg= (fst_value+scnd_value)/2; 
 
if (!edge_transition) //case 2 
    T1=1; 
    T2=1; 
  else  //case 1,3,4 
     if (symbol_avg==collision_avg) //case 1 
        T1=0; 
        T2=0; 
      else //case 3,4 
         if ((fst_value>collision_avg) XOR (fst_value>collision_avg)) //case 3 
             T1=0; 
             T2=1; 
            else 
              T1=1; 
              T2=0; 
            end 
        end 
  end 
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noise. The Arbitrator maps the collision to the four cases according to the result of the 

comparator. Figure 61 shows the state transition of the FSM control logic.  

 

Figure 59.  Implementation of the Algorithm using FSM 

 

 

Figure 60.  Symbol Sampling Point 
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Figure 61.  State Transition of FSM 

In the simulation, the symbol duration is set as 400 data points, and the range for the 

comparator to neglect the interference of noise is set as 10% of the maximum amplitude of the 

collision signal. Two RN16 (672Bh and A7CDh) encoded with FM0 are input to simulate the 

two tag responses separately. A Gaussian white noise with 5% of the signal strength is added to 
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each tag response to simulate the channel noise. Figure 62 shows the two tag responses with 

noise. Figure 63 shows the collision signal and recovered data. The LEDs in Figure 63 show the 

recovered data from the collision, and the LED turned on corresponds to a formation 1 symbol 

while the LED turned off corresponds to the formation 0 symbol. As a basis for comparison, the 

recovered data are exactly the inputted RN16s. 

 

Figure 62. Two Tag Responses 
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Figure 63. Collision and Resolved data (Simulation) 

5.3 ALGORITHM IMPLEMENTATION 

The amplitude mapping algorithm is implemented using the same FPGA device as the direct 

edge locating method discussed in Section 4. The implementation and verification scheme is 

similar to the architecture as illustrated in Figure 49. Figure 64,Figure 65,Figure 66, Figure 

67,and Figure 68 show the resolution results on the actual tag collision signal at typical BLFs. 
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Figure 64. Collision and Resolved data (BLF=64 kHz) 

 

Figure 65. Collision and Resolved data (BLF=128 kHz) 
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Figure 66. Collision and Resolved data (BLF=256 kHz) 

 

Figure 67. Collision and Resolved data (BLF=341 kHz) 
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Figure 68. Collision and Resolved data (BLF=682 kHz) 

The FPGA resources utilization reported by Xilinx XST FPGA compiler is listed in Table 

9. As shown, the design only utilizes 24% of the total FPGA logic slices. 

Table 9. FPGA Resources Utilization 

 

Compilation Summary 
------------------- 
Device Utilization Summary: 
   Number of BUFGMUXs                        7 out of 16     43% 
   Number of External IOBs                 403 out of 556    72% 
   Number of LOCed IOBs                 403 out of 403   100% 
   Number of MULT18X18s                      2 out of 136     1% 
   Number of RAMB16s                        45 out of 136    33% 
   Number of SLICEs                       3329 out of 13696  24% 
 
Clock Rates: (Requested rates are adjusted for jitter and accuracy)  
  Base clock: Configuration_Clk 
      Requested Rate:      20.000000MHz  
      Theoretical Maximum: 68.780521MHz 
  Base clock: RTSI_Ref_Clk 
      Not used 
  Base clock: ADC_0_Port_A_Clk 
      Requested Rate:      25.001250MHz  
      Theoretical Maximum: 26.281209MHz 
  Base clock: DAC_0_IQ_Clk 
      Not used 
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            Because the algorithm is in online real time, the resolution completes half a symbol 

duration before the end of the collision. The processing time corresponding to each BLF is 

compared to the standard specified turn-around time as shown in Figure 69. The required time in 

the figure is calculated as the sum of the collision signal length and the standard specified turn-

around time.  

 

Figure 69. Processing Time vs. Standard Required Time 
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5.4 SOLUTION UNIFICATION 

The solution to resolving the collision with phase shift and without phase shift can be unified by 

passing the collision signal with phase shift into a median filter. The median filter takes in N data 

points each time, sorts the data value and outputs the median of the N data points. (N is the 

length of the median filter). The median filter thus filters out the impulse in the collision signal 

caused by the phase shift, and therefore transfers the collision with phase shift to the collision 

without phase shift, which can be resolved using amplitude mapping. The length of the median 

filter shall be equal to or greater than the phase shift in order to filter out the phase shift caused 

impulse. In Figure 70, a collision with phase shift of 5% of symbol duration is filtered by a 

median filter with a length of 10% symbol duration. The impulses caused by the phase shift are 

circled, and in the filtered waveform they are removed.  
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Figure 70. The Effect of Median Filter  

 

            One side benefit of the median filter is that it filters the noise in the collision signal and 

improves the SNR. As an illustration, the results of the two algorithms working on the same 
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collision with phase shift are compared. In the simulation, the symbol duration is set to 400 data 

points in length, and the phase shift is 20 data points (5% of Ts). The collision includes two 

RN16 (672Bh and A7CDh). Figure 71 shows the result. The resolution results of the two 

algorithms are the same.  

 

Figure 71. Algorithm Comparison 

            There is one limitation of the unification: the phase shift cannot exceed 25% of the 

symbol duration. This is because when the phase shift exceeds 25% of the symbol duration, the 

impulse caused by the phase shift is greater in length than the voltage level used for amplitude 

mapping. Because the length of the median filter shall always be greater than the phase shift, the 

median filter filters out both the phase shift and part of the useful voltage level which happens to 

be in the shape of an impulse. Figure 72 shows this limitation, as shown,  the filtered collision 

with a phase shift less than 25% of symbol duration(left) differentiate with the filtered collision 

with a phase shift of 25% of symbol duration(right). Fortunately, due to the feature of the 

collision signal as discussed in Section 3.0 , the phase shift cannot exceed 25% of the symbol 

duration at typical tag BLFs. 
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Figure 72. Effect of the Limitation of Phase Shift 
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6.0  TAG DYNAMICS 

In Section 4.0 and Section 5.0 , the collision signal is acquired from stationary tags placed in the 

reader transmitting field. In the real-world, however, the tags are normally moving in certain 

application scenarios such as supply chain dynamic tracking. To study the effects of moving 

speed on tag signal acquisition and the algorithm’s ability to resolve the collision from two 

dynamic tags, an experiment platform has been built to capture the collision signal from two 

moving tags as shown in Figure 73.  Figure 74 shows the platform picture.  

            In the diagram, Tag 1 which is attached to a wooden bullet or shuttle (as shown in Figure 

75) propelled by a CO2 cartridge moves along the track, while Tag 2 is fixed at the illustrated 

position. When Tag 1 moves to the position where Tag 2 is located, the wooden bullet shields the 

light emitting from the photo sensor which causes the sensor sending out a positive pulse trigger 

signal to both the reader and the oscilloscope. After receiving the trigger signal, the reader sends 

out a Query command with Q=0 to the two tags, and begins to acquire the collision signal. The 

trigger signal is also captured by the oscilloscope, and the speed of the moving tag can be 

calculated by dividing the length of wooden bullet (10 cm) with the trigger pulse width. 
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Figure 73. Moving Tag Data Acquisition Platform 

 

Figure 74. Moving Tag Data Acquisition Platform (Picture) 
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Figure 75. Wooden Bullet 

             

            When propelling the wooden bullet, the CO2 cartridge is penetrated by a nail which is 

struck by a catapult as shown in Figure 76. The speed of the bullet can be controlled by adjusting 

the penetration extent of the nail into the cartridge, which is achieved by moving the position of 

the nail back and forth along the catapult trigger track as illustrated double edge arrow in Figure 

76. The larger the hole size at the bottom of the cartridge after penetration, the greater amount of 

CO2 emitted in the unit time, which leads to higher moving speed accordingly. 
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Figure 76. Wooden Bullet Triggering System 

           The type of the photo sensor is Omron E3F2-RC4CF, which outputs a 12V voltage when 

there is no object blocking its light. When the bullet moves to the position as shown in Figure 77, 

where the light beam emitted from the sensor is blocked, the sensor’s output is 0 volt. However, 

the NI5640R FPGA board in the reader requires a TTL compatible trigger voltage level. 

Therefore, an interface circuit is required to transfer the 12V to 0V falling edge triggering signal 

to a 0V to 5V rising edge signal when connecting the sensor with the reader. A Maxim Max232 

IC [7] is used in this case as shown in Figure 78. The input port 13 (RS232 Input) and the output 

port 12 (TTL/CMOS Output) with a built-in inverter is used to connect the sensor signal and the 

reader trigger input as circled in Figure 78.  
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Figure 77. Wooden Bullet Blocking the Sensor Light 

 

Figure 78. Max232 Port Connections 
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6.1 MOVING TAG COLLISION SIGNAL ANALYSIS 

The tag collision signals are acquired from two distinct moving speed levels at 12 miles/hour 

(pulse width= 20ms) and 25miles/hour (pulse width= 9ms) separately as the trigger signal length 

displayed on the oscilloscope in Figure 79 and Figure 80. 

 

Figure 79. Trigger Pulse Width Corresponding to 12 miles/hour 

 

Figure 80. Pulse Width corresponding to 25 miles/hour 
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            Figure 81~85 show the acquired 2-tag collision signals when the moving speed is 12 

miles/hour at typical BLFs, and Figure 86~90 show the acquired 2-tag collision signals when the 

moving speed is 25 miles/hour at typical BLFs. 

 

Figure 81. 2-tag Collision Signal (Speed=12miles/hour, BLF=64 kHz) 

 

Figure 82. 2-tag Collision Signal (Speed=12miles/hour, BLF=128 kHz) 
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Figure 83. 2-tag Collision Signal (Speed=12miles/hour, BLF=256 kHz) 

 

Figure 84. 2-tag Collision Signal (Speed=12miles/hour, BLF=341 kHz) 
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Figure 85. 2-tag Collision Signal (Speed=12miles/hour, BLF=682 kHz) 

 

Figure 86. 2-tag Collision Signal (Speed=25miles/hour, BLF=64 kHz) 
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Figure 87. 2-tag Collision Signal (Speed=25miles/hour, BLF=128 kHz) 

 

Figure 88. 2-tag Collision Signal (Speed=25miles/hour, BLF=256 kHz) 
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Figure 89. 2-tag Collision Signal (Speed=25miles/hour, BLF=341 kHz) 

 

Figure 90. 2-tag Collision Signal (Speed=25miles/hour, BLF=682 kHz) 

 

            Figure 91 shows the comparison of average SNR of the acquired collision signal at 

different speed. As shown, the SNR is relatively stable which implies the collision signal quality 
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is irrelevant of the tag moving speed. Because the collision signals from moving tags do not 

differentiate from stationary tags, they are successfully resolved by amplitude mapping method 

after the median filter preprocessing. Therefore, there is no bound of the resolution method’s 

application to the moving tag cases provided the reader firmware can acquire the collision signal 

fast enough. 

 

Figure 91. Average Signal-to-Noise Ratio Comparison 
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7.0  ICA ALGORITHM ANALYSIS AND SIMULATION 

As discussed in Section 4 and Section 5, direct edge locating can resolve two-tag collision with 

phase shift, while amplitude mapping can deal with the collision without phase shift and the two 

methods can be unified by incorporating a median filter. However, using the direct edge locating 

method, as the phase shift decrease in length, the searching range of each symbol may alias and 

cause error; while unifying the edge mapping method with the direct edge locating method, the 

phase shift cannot be greater than 25% of the symbol duration, otherwise the useful edge 

information will be removed by the median filter. In addition, both methods require that the two 

tag responses are different in amplitude, which increases the probability of arbitration error when 

they are similar in amplitude. Finally, both methods work only for two-tag collision resolution. 

When the number of tag collisions increases, more edge transitions may occur in one symbol 

duration, the probability of aliasing in the searching range increases. The difficulty of direct edge 

locating will thus increase. Similarly, N2 possible voltage levels can appear in one symbol 

duration for an N tag collision, which increases the logic for arbitration if using amplitude 

mapping. Therefore, it is intuitive to ask: is it possible to resolve multiple tag collision without 

the limitation of the two previously proposed solutions? 
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7.1 INTRODUCTION TO ICA 

The multiple tag collision problem is similar to the "cocktail party problem", where a number of 

people are talking simultaneously in a room (like at a cocktail party), and one person is trying to 

follow one of the discussions. To resolve the collision, a Blind Source Separation (BSS) is 

required. BSS problems in digital signal processing are those in which several signals have been 

mixed together, and the objective is to find out what the original signals were. Independent 

Component Analysis (ICA) is one of the popular methods for BSS. ICA is a statistical and 

computational technique for revealing hidden factors that underlie sets of random variables, 

measurements, or signals. ICA defines a generative model for the observed multivariate data, 

which is typically given as a large database of samples. In the model, the data variables are 

assumed to be linear or nonlinear mixtures of some unknown latent variables, and the mixing 

system is also unknown. The latent variables are assumed non-Gaussian and mutually 

independent, and they are called the independent components of the observed data. These 

independent components, also called sources or factors, can be found by the ICA method. Highly 

successful new algorithms in ICA were introduced by several research groups, together with 

impressive demonstrations on problems like the cocktail-party effect, where the individual 

speech waveforms are found from their mixtures. ICA became one of the exciting new topics, 

both in the field of neural networks, especially unsupervised learning, and more generally in 

advanced statistics and signal processing. Reported real-world applications of ICA include 

biomedical signal processing, audio signal separation, telecommunications, fault diagnosis, 

feature extraction, financial time series analysis, and data mining began to appear [9]. Because 

each tag’s response with effective reader command is independent, and the statistical 
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characteristics of the response signal is fixed and can be pre-known by checking large samples of 

responses, ICA can be a candidate for resolving multiple tag collisions. 

ICA is a method for finding underlying factors or components from multivariate 

statistical data, and it looks for components that are both statistically independent, and with non-

Gaussian distribution. Because the responses from conflicting tags are all 16-bit random numbers 

and all the responses are driven by an independent clock signal on each tag, the reader actually 

receives conflicting tag responses which are statistically independent of each other. Because the 

baseband binary tag responses consist of only two separate logic values 0 and 1(or +1 and -1), 

they are intrinsically super-Gaussian distributed characterized by two distinct peaks located near 

the two logic values in the probability density function (pdf) curve. Therefore, the conflicting 

signals satisfy both of the prerequisites of ICA. As in Eq.7.1, the mixture can be represented as a 

vector X, where each vector variable corresponds to a received mixture; the source can be 

represented as a vector S, and where each vector variable corresponds to a source signal. The 

mixing matrix is represented as A. Assume the number of the conflicting tags (the size of the S 

vector in Eq.7.1) is M, and the number of receiving channels (the size of the X vector in Eq.7.1) 

is N, ICA requires that N shall be at least equal to M, i.e., there shall be no less 

captured/observed mixtures than the mixing sources. Therefore, in order to resolve M tag 

collisions, at least M receiving channels are required. If the number of the receiving channels is 

more than the number of conflicting tags, a preprocessing Principle Component Analysis (PCA) 

will be performed to extract N most significant components from the mixtures in order to make 

the mixing matrix A in Eq.7.1 square (because only a square matrix has an inverse). The ICA 

algorithm is then performed to find the inverse of A in an iterative manner until the algorithm 

converges. 
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7.2 ALGORITHM DESCRIPTION 

Various practical methods for employing the ICA model can be employed for the current 

application. Reference [9] lists several candidate methods including (1) the approach based on 

finding the maxima of non-Gaussianity, (2) the  classic maximum likelihood estimation method, 

and (3) the method of minimizing the mutual information. According to [9], among the available 

methods, one approach based on minimizing Entropy of the collision signal in category (1) 

features medium computation load with reasonable separation quality.  It is thus selected to be 

used in the ICA model for multiple tag collision resolution, which requires real time signal 

processing.  

In information theory, Entropy H of a signal y (as described in Eq. 7.2) is a measure of 

non-Gaussianity. (Where, Py(y) is the pdf function of signal y.) 

H y =  − 𝑃y (y) log𝑃y (y) dy   (Eq. 7.2)       

According to information theory, a Gaussian signal has the largest Entropy among all random 

signals of equal variance. In probability theory, the central limit theorem (CLT) states conditions 
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under which the sum of a sufficiently large number of independent random variables, each with 

finite mean and variance, will be approximately normally distributed [11]. According to the ICA 

model in Eq.7.1, the mixture signal X (multiple tag collision signal) is the linear superposition of 

the source signal (the response of each tag), this implies that the distribution of the mixture 

signal approaches the normal distribution (more Gaussian) more than the source signals. 

Therefore, the ICA algorithm resolves the collision signal by minimizing its Entropy 

(Gaussianity), because once the source signals are recovered, they are compared to the collision 

signal for minimum entropy. To obtain a measure of non-Gaussianity, which is zero for a 

Gaussian variable and always nonnegative, one often uses a normalized version of differential 

entropy, called negentropy J as defined in Eq.7.3. (Where ygauss is a Gaussian random vector.) 

Negentropy is always nonnegative, and it is zero if and only if signal y has a Gaussian 

distribution.  

J y = H ygauss  − H y   (Eq. 7.3) 

            Although Entropy and Negentropy can be used to measure the Gaussianity, the integral in 

the calculation hinders the computation efficiency. As an effective approximation, the 

Negentropy of signal can be calculated without involving the integral as shown in Eq.7.4. 

(Where G is a nonquadratic function) 

J y ∝ [E G y  − E G v  ]2  (Eq. 7.4) 

A. Hyvärinen and E. Oja proposed a computation efficient algorithm FastICA [10] based on a 

fixed-point iteration scheme for finding a maximum of the non-Gaussianity as measured in 

(Eq.7.4).  The algorithm performs a Gaussian-Newton optimization when maximizing the 

Negentropy.  Following Eq.7.1, the source can be recovered from the collision signal X by left-
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multiplying the collision with a separating matrix W (as shown in Eq.7.5), which is the inverse 

of the mixing matrix X. Table 10 lists the FastICA algorithm using Negentropy maximization. 

 

Table 10. FastICA algorithm 

          

7.3 ALGORITHM OPTIMIZATION 

7.3.1 Host PC Floating Point Algorithm with Batch Training 

The FastICA algorithm is simulated using LabVIEW on the Host PC. The G function in Eq. 7.4 

is selected according to Eq. 7.6. Therefore, its derivation, g(u), is a cubic function. 

G u =
1

4
u4        Eq. 7.6 

       S =  WX;           (Eq. 7.5)  

X =  𝑥1, 𝑥2, … , 𝑥𝑛 
′ ;     S =  𝑠1, 𝑠2, … 𝑠𝑛 

′ ; 

W =  w1
′ , w2

′ , … wn
′  ; 

        wn’ is the nth row in the separating matrix. 

 

 
1. Preprocessing the collision signal X by removing the mean 

2. Whiten the data to Z, ( Z=(z1,z2,…,zn)’ )  

3. Initialize the w’ vectors (each row) in the separating matrix W 

4. Update w = E{Zg(w’Z)}- E{g’(w’Z)}w ,where g is the first derivative of the G function in Eq.7.4.  

5. Normalize w= w/||w|| 

6. If not converged, go back to step 4. 
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To verify the functionality, the FastICA algorithm as shown in Table 9 is realized in 

LabVIEW using double precision floating point on the Host PC. The algorithm reads all the data 

points of the collision signal and performs the computation based on the expected value of the 

data. This is similar to batch training rather than point-by point online training.  

Figure 92 shows the two tag collision resolution simulation result using the FastICA. 

Two RN16 numbers D2CCh (S1) and 3D74h (S2) are generated in FM0 encoding and mixed 

using a  mixing matrix as shown in Figure 92 to simulate the two collisions (X1 and X2) captured 

by the two independent receiving channels.  

The separated source signals from the collision are displayed in the middle and at the 

bottom. As shown, the recovered signals are clear enough compared to the original mixture for 

decoding, and they correspond to D2CCh (for the recovered S1) and 3D74h (for the recovered 

S2) exactly. The separating matrix W is also shown and the result can be verified by multiplying 

the recovered S vector with the inverse of W, i.e., the mixing matrix A, and then comparing the 

products with the mixtures X (the upper-most in Figure 93). The algorithm converges in just two 

iterations due to the relatively uncomplicated formation of RFID signal which is similar to a 

simple bipolar square wave.  

Compare the mixing matrix and the separating matrix, the first row in the mixing matrix 

is vector [1, 0.5], which corresponds to the direction of the second column in the separating 

matrix ([0.732978, -0.491724]); the second row in the mixing matrix is vector [2, 6], which 

corresponds to the direction of the first column in the separating matrix ([-1.46256, 4.69849]). 

This correspondence relationship between the mixing matrix and the separating matrix reveals 

that the separation is successful.   
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Figure 92. Simulated Tag Signal Mixing 

 

Figure 93. Resolution Result 
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7.3.2 Design of FPGA based Fixed-Point Algorithm  

The computation load of the FastICA linearly increases with the number of collided tag 

responses. In one extreme case, when the tag BLF is 64 kHz, the length of the collision signal 

can reach more than 8000 double precision floating-point data elements if the acquisition 

sampling frequency is 25MHz. To process this large amount of data points using the FastICA 

including the data whitening and the matrix weight updating in the FPGA device in the standard 

specified real time is unrealistic. 

 There is a choice between on-line and batch algorithms. An on-line version of the 

algorithm can be obtained by substituting the expectation value in the algorithm with the instant 

data value. However, the on-line algorithm trades the accuracy for processing speed, and the 

algorithm may not converge as well as the batch training algorithm. This problem can be 

alleviated by combinations of the two as shown in Figure 94. Rather than performing the 

FastICA after completely receiving the collision signal, the “divide and conquer” architecture in 

Figure 94 divides the collision signal into the preamble and each data bit in RN16 and then 

performs ICA on each section. The data portions of the collision are successively stored into a 

register file, and the separating matrix W is successively updated:  W1 is updated based on W0, 

W2 is updated based on W1, …etc, until the change between successive W becomes minimal. 

Once the W converges at a certain stage, the ICA does not need to be performed thereafter, and 

the collisions before the converge stage are resolved by multiplying the converged W with the 

pre-stored data. Therefore, the computation load can be further decreased, and the resolution can 

be finished at the very end of the collision provided W converges before the end of the collision.  
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Figure 94. Combination of Batch Training and Online Training  

In addition, the following measures also decrease the resolution computation load 

significantly: 

1.  In fact, the only useful feature of the collision for ICA to train its parameter is the way in 

which the two tag signals S1 and S2 are mixed, i.e., the components in the mixing matrix. 

Although the collision signal includes both the preamble part and the RN16 part, not all of them 

are needed to extract the mixing information for resolution, i.e., there are redundant information 

in the data). Therefore, one or two bit length data in the collision signal may be sufficient to 

represent the mixing characteristics of the entire collision signal, and the ICA can be trained only 

using one portion of the collision signal as shown in Figure 95.  
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Figure 95. Perform ICA on Portions of the Entire signal 

2. Once the separating matrix (the inverse of the mixing matrix) is obtained by the ICA, not all of 

the data points in collision signal X1 and X2 need to be multiplied with it to retrieve the original 

source data T1 and T2. Because in each data bit of the RN16 there are at most two possible 

voltage levels (when there is an edge transition in the middle), only two data points from the first 

half, and the second half of each bit duration need to be multiplied with the inverse of the mixing 

matrix. Therefore, only 32 fixed point dot product calculations need to be performed by the 

FPGA to recover data for one tag. 

3. The FPGA acquisition sampling frequency is 25MHz, but the maximum tag BLF is 682 KHz. 

Therefore, multi-rate DSP techniques can be employed to reduce the computation load of ICA. 

The two collision signals X1 and X2 from two receiving antennas are down-sampled by a factor 

of M (M=8, 16 or 32) before being sent into ICA module as shown in Figure 96. In case of 

M=16, the sampling rate after down sampling is 25MHz/16=1.5625MHz, it still satisfies with 

Nyquist sampling theorem for the fastest BLF. 
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Figure 96. Collision Signal down Sampling 

             Synthesizing the above optimization options, the FPGA implementation for 2-tag 

collision resolution performs the algorithm on a collision signal subset of 512 data points and the 

down sampling factor M is selected as a value of 32 (acquisition resolution is 25 MHz); The 

FPGA implementation for 3-tag collision resolution performs the algorithm on a collision signal 

subset of 256 data points and the down sampling factor M is selected as a value of 8 (acquisition 

resolution is 12.5 MHz). The Fixed-Point math Library provided by LabVIEW FPGA module is 

used to realize the number format conversion and fixed point calculations. Therefore, only 

512/32=16 fixed point data are used to train the weight in the ICA separating matrix in 2-tag 

collision situation, and 256/8=32 fixed point data are used in 3-tag collision situation. A major 

reason that 16 and 32 are selected is to avoid fixed-point divisions during the expectation 

calculation because a number divided by 16 and 32 can be replaced by right shifting.  
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7.4 ALGORITHM IMPLEMENTATION 

7.4.1 2-Tag Collision Resolution 

To resolve 2-tag collision, two independent receiving channels are required to acquire the 

collision signal. Figure 97 shows the experiment setup. Two RF front-ends including both the NI 

5610 upconverter and NI 5600 downconverter are connected to one NI 5640R FPGA based 

transceiver through separate Analog I/O ports. During the data acquisition, the reader antennas 

are placed at a 45 degree angle to each other, and the two tags are held together as shown in 

Figure 98. 

Due to the resource capability of the FPGA hardware (Xilinx Virtex-II Pro XC2VP30) in 

the NI 5640R, the FastICA algorithm is scaled to recover the first tag data, i.e., only trained for 

the first column of the separating matrix. The second tag data can be recovered by running the 

FPGA program twice (in sequential order). This is reasonable because the data of both tags can 

be recovered from the collision simultaneously if the corresponding processing units/circuits can 

be placed in parallel in future FPGA hardware with sufficient logic slices, e.g., NI 5641 with the 

Xilinx Virtex 5 Chip. In addition, when future design requires resolving collision signal from 

more than three tags, a higher volume FPGA device can handle the additional receiving channels 

in parallel. 
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Figure 97. 2-Tag Collision Signal Acquisition Setup for ICA 

 

Figure 98. Tag and Antenna Positioning 

            Figure 99~103 show the resolution result on real tag collision signal at typical BLFs. 
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Figure 99. 2-tag Collision Resolution Result using FastICA in FPGA (BLF=64 kHz) 

 

Figure 100. 2-tag Collision Resolution Result using FastICA in FPGA (BLF=128 kHz) 
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Figure 101. 2-tag Collision Resolution Result using FastICA in FPGA (BLF=256 kHz) 

 

Figure 102. 2-tag Collision Resolution Result using FastICA in FPGA (BLF=341 kHz) 



108 

 

 

Figure 103. 2-tag Collision Resolution Result using FastICA in FPGA (BLF=682 kHz) 

             In the FPGA, two timers are activated to record the calculation processing speed as 

shown in Figure 104 (one for the starting instant, another for the ending instant). The ICA 

processing time is calculated by deducting the value of the starting timer from the ending timer. 

 

Figure 104. Processing Time Recording (LabVIEW FPGA code Segment) 
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              The algorithm converges in 2 iterations for all BLF situations, which corresponds to 22μs 

real time reported from the FPGA timer. After the ICA algorithm converges to the separating 

matrix, 32 fixed point 2-point dot product calculations (2 for each data bit in the 16-bit RN16, 

with one for the first half bit and the other for the second half) need to be completed to decode 

the recovered data (“0” features the difference of the two halves, while “1” includes the same 

halves.). The 32 multiplications are realized by 32 parallel on-chip multiplication and 

accumulation units, and consume 1μs as reported by the FPGA timer. The FPGA on chip 

resource utilization summary for 2-tag ICA resolution showing that the design takes 53% of the 

total logic slices is listed in Table 11. The processing speed for collisions at typical BLFs is 

compared with the standard specification as shown in Figure 105. Because the 22µs training time 

is online real time along with the collision signal, the actual data recovery only requires the 1μs 

dot production calculation after receiving the second half point in the last bit of the collision 

signal. As shown, the FPGA resolves the collision successfully within the real time specification. 

Table 11. FPGA Resources Utilization 

 

Compilation Summary 
------------------- 
Device Utilization Summary: 
   Number of BUFGMUXs                        7 out of 16     43% 
   Number of External IOBs                 403 out of 556    72% 
   Number of LOCed IOBs                 403 out of 403   100% 
   Number of MULT18X18s                48 out of 136    35% 
   Number of RAMB16s                       24 out of 136    17% 
   Number of SLICEs                       7262 out of 13696  53% 
 
Clock Rates: (Requested rates are adjusted for jitter and accuracy)  
  Base clock: Configuration_Clk 
      Requested Rate:      20.000000MHz  
      Theoretical Maximum: 53.433075MHz 
  Base clock: RTSI_Ref_Clk 
      Not used 
  Base clock: ADC_0_Port_A_Clk 
      Requested Rate:      25.001250MHz  
      Theoretical Maximum: 43.884671MHz 
  Base clock: DAC_0_IQ_Clk 
      Not used 
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Figure 105. 2-tag Collision Resolution Processing Time vs. Standard Specification 

 

7.4.2 3-Tag Collision Resolution 

As an extension to multiple tag (more than 2) collision resolution, the 3-tag collision signal 

resolution in FPGA is implemented as well. The three collision signals from each of the 

receiving channels are artificially synthesized by mixing a real 2-tag collision and a real 

individual tag response. Figure 106~110 show the resolution result on real tag collision signal at 

typical BLFs. 
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Figure 106. 3-tag Collision Resolution Result using FastICA in FPGA (BLF=64 kHz) 

 

Figure 107. 3-tag Collision Resolution Result using FastICA in FPGA (BLF=128 kHz) 
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Figure 108. 3-tag Collision Resolution Result using FastICA in FPGA (BLF=256 kHz) 

 

Figure 109. 3-tag Collision Resolution Result using FastICA in FPGA (BLF=341 kHz) 
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Figure 110. 3-tag Collision Resolution Result using FastICA in FPGA (BLF=682 kHz) 

The FPGA on chip resources utilization summary is listed in Table 12 for 3-tag ICA resolution. 

The total FPGA slice usage significantly increases from 53% for 2-tag design to 89% in the 3-tag 

design. 

Table 12. FPGA Resources Utilization 

 

Compilation Summary 
------------------- 
Device Utilization Summary: 
   Number of BUFGMUXs                        7 out of 16     43% 
   Number of External IOBs                 403 out of 556    72% 
   Number of LOCed IOBs                    403 out of 403   100% 
   Number of MULT18X18s                   56 out of 136    41% 
   Number of RAMB16s                          32 out of 136    23% 
   Number of SLICEs                      12211 out of 13696  89% 
 
Clock Rates: (Requested rates are adjusted for jitter and accuracy)  
  Base clock: Configuration_Clk 
      Requested Rate:      20.000000MHz  
      Theoretical Maximum: 44.698731MHz 
  Base clock: RTSI_Ref_Clk 
      Not used 
  Base clock: ADC_0_Port_A_Clk 
      Requested Rate:      25.001250MHz  
      Theoretical Maximum: 37.707391MHz 
  Base clock: DAC_0_IQ_Clk 
      Not used 
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The algorithm converges in 7 iterations corresponding to 126μs real time. The data bit recovery 

takes 32 fixed point 3-point dot product calculations consuming 1.28μs. The Processing speed 

for collisions at typical BLFs is compared with the standard specification as shown in Figure 111. 

 

Figure 111. 3-tag Collision Resolution Processing Time vs. Standard Specification 
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8.0  DATA WHITENING 

 

As a preprocessing step in the FastICA algorithm as described in Table 10 (Section 7.0 ), the 

whitening of the data samples can significantly simplify the ICA computation and thus accelerate 

the convergence [9].This is because after whitening, the original mixing matrix is transformed to 

a new mixing matrix, which is orthogonal. Therefore, this restricts the ICA algorithm’s search 

for the separating matrix to only orthogonal matrix. The whitening process is as follows: 

1. Calculate the covariance matrix of the training sample. 

2. Calculate the eigenvalues and eigenvectors of the covariance matrix. 

3. Form the whitening matrix as V=D
-1/2

E
T, where D is a diagonal matrix with all the eigenvalues 

of the covariance matrix on the diagonal, and E is the matrix consisting of all the eigenvectors 

corresponding to the eigenvalues in D. 

4. Multiply the training data with the whitening matrix. 

          The proof of the whitening process is in Appendix A. Obviously, the whitening requires 

the Eigen decomposition of the covariance matrix of the training sample (Step 1 and Step 2). 

According to the experimental results, the 2-tag collision resolution effect is satisfactory even 

without data whitening because of the simplicity of the RFID signal formation. However, that is 

not true for 3-tag collision situation. The FastICA algorithm cannot converge after large number 

of iterations without whitening preprocessing on the training sample. 
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           In the current design, this problem is circumvented by using a universal whitening matrix 

instead of calculating the instant whitening matrix at every reading. The eigenvalues and 

eigenvectors of the covariance matrix of the collision signal represent the characteristics of the 

mixing matrix, thus if the mixing matrix is approximately fixed each time and the tags are from 

the same manufacturer, the covariance matrix of the acquired collision signals from receiving 

channels are statistically stable. Therefore, the experiment can be carried out by fixing the 

position of the reader and the three tags each time, and measuring a group of covariance matrices 

of the data in order to calculate the expectation. This expectation matrix is then decomposed for 

the eigenvalues and eigenvectors, and used thereafter to calculate the whitening matrix as a 

universal whitening matrix. The resulting universal whitening matrix can be used to whiten the 

following collision signals from target tags at the fixed positions. This process is equivalent to a 

calibration before ICA processing. This strategy applies to the application scenario in which the 

relative position of the tags and the reader are fixed, and the tags are all from the same 

manufacturer as shown in Figure 112. As shown, the reading process consists of two steps:  

1. Select a batch of 3-tag groups to calibrate for the universal whitening matrix 

2. Whiten successive actual tags placed at the fixed slots using the universal whitening matrix 
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Figure 112. Calibration for Universal Whitening Matrix 

           To illustrate the effectiveness of this approach, 8 groups of three tags are placed within 

the range of the reader, and each time the mixing matrix is fixed as shown in Figure 113 

corresponding to the fixed position of the placement of the tags relative to the reader. For each 

group, the whitening matrix is calculated by the PC, and the expectation of the 8 obtained 

whitening matrices is used for the universal whitening matrix as shown in Figure 114. 

 
Figure 113. Artificial Mixing Matrix 

 
Figure 114. Estimation of the Universal Whitening Matrix 
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            The ICA resolution results for each individual group of the 3-tag collision based on the 

whitened data generated by the universal whitening matrix is as following: 

Group 1: It can be seen, the ICA resolution result, as shown in Figure 115, for this group is not 

satisfactory after 7 iterations. This is because the non-diagonal components in the whitened 

signal covariance matrix, as shown in Figure 116, are still significant, which means the 

correlation between the three collision signals is not effectively removed. 

 

Figure 115. Resolution Result Based on Universal Whitening Matrix (Group 1) 

 

Figure 116. Covariance Matrix of the Whitened Collision Signal (Group 1) 

Group 2: The ICA resolution result, as shown in Figure 117, for this group is satisfactory after 7 

iterations. This is because the non-diagonal components in the whitened signal covariance matrix, 
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as shown in Figure 118, are an order of magnitude less than the diagonal components, which 

means the decorrelation of the universal matrix on this group of data is effective. 

 

Figure 117. Resolution Result Based on Universal Whitening Matrix (Group 2) 

 

Figure 118. Covariance Matrix of the Whitened Collision Signal (Group 2) 

Similarly, the resolution results (Figure 119,Figure 121,Figure 123,Figure 125,Figure 127,Figure 

129) for Groups 3~8 and the corresponding whitened covariance matrix of the training samples 

(Figure 120,Figure 122,Figure 124,Figure 126,Figure 128) are shown as follows: 
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Figure 119. Resolution Result Based on Universal Whitening Matrix (Group 3) 

 

Figure 120. Covariance Matrix of the Whitened Collision Signal (Group 3) 
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Figure 121. Resolution Result Based on Universal Whitening Matrix (Group 4) 

 

Figure 122. Covariance Matrix of the Whitened Collision Signal (Group 4) 
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Figure 123. Resolution Result Based on Universal Whitening Matrix (Group 5) 

 

Figure 124. Covariance Matrix of the Whitened Collision Signal (Group 5) 
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Figure 125. Resolution Result Based on Universal Whitening Matrix (Group 6) 

 

Figure 126. Covariance Matrix of the Whitened Collision Signal (Group 6) 
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Figure 127. Resolution Result Based on Universal Whitening Matrix (Group 7) 

 

Figure 128. Covariance Matrix of the Whitened Collision Signal (Group 7) 
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Figure 129. Resolution Result Based on Universal Whitening Matrix (Group 8) 

 

Figure 130. Covariance Matrix of the Whitened Collision Signal (Group 8) 

 

            As mentioned above, the universal whitening matrix approach only applies to the 

scenario when the tag positions are fixed relatively to the reader. To resolve 3-tag collisions in 

cases when this fixed position prerequisite is not available, the instant whitening matrix of the 

three acquired collision signals needs to be calculated at each reading in real time. This requires 

realizing high efficiency matrix decomposition algorithm/scheme such as Singular Value 

Decomposition (SVD) and L-U factorization for the signal covariance matrix in hardware. The 
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algorithm proposed in [12] and [13] can be implemented and integrated in a more advanced 

FPGA device as future works. 
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9.0  CONCLUSION 

In this research, multiple collision resolution methods for ISO 18000-6C passive RFID system 

are developed. The characteristics of the collision signal acquired from both stationary and 

moving tags are analyzed, and collision situations including both 2 tags and 3 tags are studied. 

Two straightforward methods: the direct edge locating and the amplitude mapping are simulated 

and implemented using National Instruments software and hardware with NI LabVIEW and 

LabVIEW FPGA module. The implementation takes proper utilization of the FPGA device and 

successfully resolves a 2-tag collision with and without significant phase shift between tag 

responses within the standard specified real time. However, these two methods do not apply to 

multiple tag (more than 3) collision situations due to their intrinsic limitations such as amplitude 

ambiguity. To extend the result, a more advanced digital signal processing approach, ICA, based 

on the statistical characteristics of passive RFID signal is employed. As one branch of ICA, a 

speed optimized algorithm FastICA focused on extracting the tag information through 

minimizing signal entropy is adopted. A trade-off between the resolution accuracy and 

computation load is made to guarantee the FPGA realization efficiency and processing speed 

within specification. In addition, an experiment on data whitening is carried out to show its affect 

as a useful preprocessing step in ICA for algorithm convergence speed up. Future work can be 

completed to resolve each colliding tag signal in parallel and integrate instant data whitening in 

the design using a more advanced FPGA device. 
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In summary, the contributions of this research include: 

 Developed a software defined radio ISO 18000-6C compatible reader using NI 

software and hardware for conformance test and data acquisition  

 Simulated, implemented and verified two straightforward methods for 2-tag 

collision resolution based on the phase shift and amplitude characteristics of the 

collision signal 

 Simulated, implemented and verified an ICA based method for 3-tag collision 

resolution based on the statistical characteristics of the collision signal 

 Developed an experiment platform to efficiently capture data from moving tags 

 Studied the characteristics of the collision signal acquired from moving tags with 

comparison to the stationary tag collision signal 
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10.0  FUTURE WORKS 

While this research has covered the collision situation with 2 tags and 3 tags, future works can be 

carried out in the following areas including: 

For 2-tag collision resolution with the edge locating and the amplitude mapping: 

1. Although these two methods work for their individual application scenario(tag 

response with and without significant phase shift), the reader does not have this information 

beforehand. So problem occurs when a reader with edge locating method deployed happens to 

encounter a collision signal without significant phase shift. To handle this problem, the edge 

locating method and the amplitude mapping method can be deployed in parallel in one hardware 

device in parallel. 

For ICA part: 

1. Using a more advanced FPGA device with higher volume of logic slices (e.g. Xilinx 

Virtex 5 series) to perform ICA in parallel on each colliding tag response to separate the source 

simultaneously. 

2. Deploying effective matrix decomposition algorithms in hardware to calculate the 

instant whitening matrix for the collision signal, and then incorporation the calculation unit in the 

current design with an FPGA of  a higher volume. 

 



130 

 

APPENDIX A 

PROOF OF DATA WHITENING PROCESS 

Each component in vector X represents one collision signal acquired from the corresponding 

receiving channels, and X is defined as a column vector and of zero mean due to the FPGA 

preprocessing. The covariance matrix of X is defined as in Eq.A.1: 

𝐶 = 𝐸 𝑋𝑋𝑇      𝐸𝑞. 𝐴. 1 

Whiteness of a zero-mean random vector (e.g. Y), means that its components are 

uncorrelated and their variances equal unity. The covariance matrix of Y equals the identity 

matrix as shown in Eq.A.2.  

𝐸 𝑌𝑌𝑇 = 𝐼     𝐸𝑞. 𝐴. 2 

Accordingly, whitening means performing a linear transform to the collision signal X by 

multiplying it with the whitening matrix V to make the transformed signal Z white as shown in 

Eq.A.3. 

𝑍 = 𝑉𝑋   𝐸𝑞. 𝐴. 3 

The covariance matrix of X can be eigenvalues decomposed (EVD) as shown in Eq.A.4. 

Where E is the orthogonal matrix of eigenvectors of X’s covariance matrix as shown in Eq.A.1 

and D is the diagonal matrix of its eigenvalues, D =diag(d1,d2,…dn). 
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𝐶 = 𝐸 𝑋𝑋𝑇 = 𝐸𝐷𝐸𝑇     𝐸𝑞. 𝐴. 4 

In this design, the whitening matrix V is selected as shown in Eq.A.5. Where D
-1/2

= 

diag(d1
-1/2

,d2
-1/2

,…dn
-1/2

). 

𝑉 = 𝐷−1/2𝐸𝑇     𝐸𝑞. 𝐴. 5 

Therefore, the whiteness of the preprocessed signal is guaranteed as shown in Eq.A.6. 

𝐸 𝑉𝑋 𝑉𝑋 𝑇 = 𝑉𝐸 𝑋𝑋𝑇 𝑋𝑇 = 𝐷−1/2𝐸𝑇𝐸𝐷𝐸𝑇𝐸𝐷−1/2 = 𝐼   𝐸𝑞. 𝐴. 6 
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