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Osteoarthritis affects more than 27 million Americans and cost nearly $5700 per person 

annually. [1, 2] It commonly affects the knee joint and has been linked to work involving 

prolonged knee bending. [3, 4] In restricted vertical working heights such as low-seam coal 

mines and aircraft baggage compartments, workers are forced to assume stooped, kneeling, or 

squatting postures to perform work.  In order to protect the knees in these postures, we must have 

an understanding of what the internal knee structures experience under these conditions.  A finite 

element model is being developed to quantify the stresses and strains in the tissues in static 

kneeling postures.  The accuracy of any finite element model is heavily dependent on the input 

parameters (i.e. forces and moments).  Therefore, the objective of this work was to develop a 3-D 

computational model which may be used to determine the net forces and moments applied to the 

knee joint during static kneeling.  The developed model uses inverse dynamics to determine the 

net forces, net moments, and joint angles for subjects while kneeling near full flexion, kneeling 

on one knee, kneeling near 90° flexion, and squatting.  Motion data, ground reaction forces, and 

pressures between the thigh and calf and heel and gluteal muscles were inputs into this model.  

Additionally the thigh-calf contact force, which was shown to be significant [5], and the heel-

gluteus contact force, which had not been previously investigated, were inputs in this model.  

Data from two subjects were analyzed with and without the subject wearing kneepads.  Kneeling 

near full flexion and squatting created sagittal joint moments 3 to 5 times larger than standing in 
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one subject.  Moments of this magnitude may be significant to cause cartilage damage.  It was 

also found that the moments caused by the thigh-calf and heel-gluteus contacts act to extend the 

knee, thereby reducing knee moments in fully flexed postures. 
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1.0  INTRODUCTION 

Osteoarthritis affects more than 27 million Americans and cost nearly $5700 per person 

annually. [1, 2] Certain occupational activities as well as heredity, age, trauma, or repetitive 

stress have been associated with osteoarthritis in the knee.  Studies have suggested that the risk 

of developing knee osteoarthritis is increased by work involving prolonged knee bending. [3, 4]  

A large project is underway at the NIOSH Pittsburgh Research Laboratory to gain a 

better understanding of the biomechanics of the knee joint while kneeling, squatting, and 

crawling in order to develop guidelines for the manufacture of kneepads, which may be used to 

alleviate stress while kneeling.  Subjects will assume kneeling postures typically seen in the 

mining industry.  Kinematics and kinetics data (motion capture, force plate, electromyography, 

and pressure sensor) will be collected.  The ultimate goal of the project is to develop a finite 

element model of the knee in kneeling postures, which will provide a further understanding of 

the biomechanics of knee structures while kneeling and crawling.  

The goal of this Master’s thesis project was to develop a computational model which will 

be used to determine the dynamic net forces and moments imposed on the knee joint during 

static kneeling postures with and without knee pads.  Motion data, force plate data, and pressure 

sensor data were inputs into this model.  The results of this thesis work will be incorporated in 

the finite element model.   



 2 

1.1 BACKGROUND 

Musculoskeletal disorders vary by occupation.  Different jobs expose workers to differing 

ergonomic risk factors.  People who work in restricted spaces, such as underground coal mines 

or aircraft baggage compartments, are forced to assume awkward postures (such as kneeling, 

stooping, and crawling) due to the restricted vertical height of their working environment.  Other 

occupations such as plumbers, carpet layers, roofers, housemaids, and agricultural workers may 

not have this restriction in vertical height, but may also assume awkward postures to perform 

work.  This background section focuses on musculoskeletal injuries due to the awkward postures 

of kneeling and squatting.  First, the musculoskeletal structures that are affected by kneeling and 

squatting are discussed, after which a review of occupational factors related to knee injuries is 

presented.  

1.2 KNEE STRUCTURES AND INJURIES 

The knee is a complex weight bearing joint that connects the femur, patella, and tibia forming the 

patellofemoral and tibiofemoral joints.  It is also comprised of various ligaments, tendons, and 

cartilage that function to add stability, motion, and weight bearing (Figure 1). (For more 

information on the knee structures and their function see [6])  Any structure of the knee is 

susceptible to injury; however, many occupational related disorders affect the bursae, meniscus, 

and cartilage.  This is particularly true for knee-straining postures such as kneeling and squatting. 

[7 - 10]  
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Figure 1: Front view of knee anatomy [11] 

 

The bursa is a fluid filled sac that acts as a cushion between a tendon and a bone or a 

tendon and a muscle.  Within the knee there are numerous bursae, both deep and subcutaneous.  

There are three large subcutaneous bursae that may become injured from repetitive motions or 

trauma.  The suprapatellar bursa is between the femur and the tendon of the quadriceps femoris 

muscle.  This bursa facilitates full flexion and extension of the knee and may become injured 

during acute trauma.  The prepatellar bursa is between the patellar tendon and the skin.  It acts as 

a cushion, reducing the friction between the patella and the skin while kneeling.  The 

subcutaneous infrapatellar bursa is located between the skin and the tibial tuberosity.  It allows 

the skin to move easily over the tibial tuberosity and withstands pressure when kneeling with the 

trunk upright.  Any of these bursae may become irritated and inflamed, resulting in bursitis.  

Bursitis generally results in a swollen bursa and restricted joint motion.  In some cases the bursa 

may become infected, resulting in a serious condition, septic bursitis.  

The meniscus is a cartilaginous structure that provides a number of basic functions: load 

bearing, stability, lubrication, and shock absorption.  The meniscus transmits between 50-70 % 
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of the compressive loads in the knee. [12]  During the stance phase of gait the mean contact 

stress on the meniscus is 20 klbs per cm2. [13]  The meniscus provides stability by interacting 

with the Anterior Cruciate Ligament (ACL), assisting with rotational stability.  The meniscus 

also prevents friction between the femur and tibia and allows diffusion of joint fluid into the 

articular cartilage.  The meniscus increases the load carrying area of the joint by 200 %, thereby 

lowering the stress applied to the articular cartilage and acting as a shock absorber.  [12]   

The meniscus can be damaged by both traumatic and degenerative mechanisms. The 

most common mechanism of traumatic meniscal tear occurs predominantly in athletes when a 

twisting moment is applied to the weight bearing knee in a semi-flexed position.  This form of 

meniscal tear is commonly concurrent with an ACL injury. [14]  Meniscus tears without ACL 

injury are commonly the result of degeneration of the meniscus. [15]   

The articular cartilage is another structure that is commonly injured.  Osteoarthritis is a 

chronic condition characterized by the breakdown of the joint’s articular cartilage.  This 

breakdown in cartilage affects the lubrication process within the knee, and results in direct 

contact between the bones causing stiffness, pain, and loss of motion.  It also reduces the shock 

absorbing capacity of the knee, leading to microfractures of the subchondral bone. [16] 

Osteoarthritis is the most common joint disorder associated with major disability, affecting more 

than 27 million Americans. [1, 17, 18] The risk of developing this disease increases with age and 

it is estimated that by 2030, 20% of Americans (about 72 million people), will be at a high risk 

for this disease. [18] 
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1.3 OCCUPATIONAL KNEE INJURIES 

Working in certain awkward postures has been to shown to affect musculoskeletal disorders of 

the lower extremities. [19] Of all lower extremity injuries, knee injuries most commonly result 

from worker position or motion. [20] Kneeling and crawling can cause knee injuries ranging 

from minor skin irritations to bursitis or a torn meniscus. [21] 

1.3.1 Bursitis 

Frequent kneeling produces large stresses on the patella which may thicken the walls of the 

bursa. [9] This thickening can lead to irritation and inflammation.  Prepatellar bursitis is the most 

common form of bursitis and known as “housemaid’s knee” or “miner’s knee”.  While this form 

of bursitis does not typically lead to other knee injuries, it does account for days lost from work 

and may lead to infection if left untreated.  Bursitis usually does not lead to other knee problems 

when properly treated.   

1.3.2 Meniscal Injuries 

Frequent kneeling also has been linked to an increased laxity in the ACL and development of 

meniscal injuries.  Sharrard and Liddell (1962) investigated hospital records of 957 

meniscectomies, performed between January 1958 and June 1960, from five hospitals in one of 

the largest British coalfields.  After reviewing records for men between 15 and 64, the authors 

determined that miners are more likely than others to suffer cartilage damage of any type.  Upon 

interviewing 200 of the men, the authors determined that cartilage tears were more common in 
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miners who knelt, but the tears normally occurred when walking.  To gain a better understanding 

of why the tears occurred in non-kneeling posture, the authors examined 80 patients with 

meniscal damage.  From these examinations, they determined that ACL laxity resulted from 

kneeling at work.  The authors proposed that this laxity decreases the stability of the knee in non-

restricted postures such as standing and walking, leading to meniscal tears.   

Along with kneeling, aging plays a role in the development of meniscal injuries. [22], 

[23]  Drosos and Pozo (2004) conducted a study on 392 patients between the ages of 18 and 60 

with meniscal injuries from the general population.  32.4% of patients had sports-related 

meniscal injuries, 38.8% had non-sports-related injuries and 28.8% had no identifiable injury or 

no identifiable cause of injury. The most frequently reported mechanism of injury for the non-

sporting group was rising from a squatted position.  The average age of the patients with non-

sporting related meniscal tears was 41.  The authors felt that this age may reflect the 

degenerative changes in the meniscus, thereby requiring less force to create an injury.  Smillie 

(1978) proposed that meniscus degeneration starts in the third decade of life.  This degeneration 

reduces the elasticity of the meniscus, thereby increasing the susceptibility to injury.  Drosos and 

Pozo deduced that degeneration may be the result of the repetitive micro-trauma and mechanical 

stresses of everyday life.  These factors, in conjunction with the age-related disappearance of 

elastic fibers, may precede the development of many meniscal tears.  

Previous research shows that there is a significant risk for meniscus damage associated 

with an increase in age and frequent and prolonged kneeling. [7, 10, 22, 23] Some meniscus tears 

can be repaired, while others will have to be removed in a meniscectomy.  Although this 

procedure is necessary to ensure proper joint motion, it leaves the articular cartilage of the femur 

and tibia without a proper intermediate tissue.  The weight bearing area of an intact meniscus 



 7 

varies from 11 cm2 at 90° flexion to 20 cm2 at full extension.  After meniscectomy the area 

ranges from 6 cm2 to 12 cm2, respectively. [13]   This decreased area increases the peak local 

contact stresses transmitted to the articular cartilage by 65-235 %, causing degeneration. [24] 

Thus, meniscal injuries have been linked to the long-term development of knee osteoarthritis. [25 

- 28] 

1.3.3 Osteoarthritis 

Osteoarthritis has been associated with a number of personal and activity-related risk factors.  

Personal risk factors include heredity, age, diabetes, smoking, and obesity. [3] Activity-related 

risk factors are trauma, sports activities, and occupation.  [8, 17, 29, 30, 31] Within the 

occupational factors, a knee bending variable has been examined, including levels of knee 

bending, such as stooping, kneeling, crouching, or crawling.  Of the 5,193 people surveyed, 315 

were found to have radiographic osteoarthritis of the knee.  Multiple linear regressions found 

knee bending demand of the job was associated with osteoarthritis of the knee (OR=0.32) 

amongst both men and women in the 55-64 years age group.  The increased risk for osteoarthritis 

in those with physically demanding occupations was seen mostly in people 55 years and over 

(OR=2.45 in men, OR=3.49 in women).  The authors concluded that the strong association with 

occupations in which knee bending is prominent suggests work activity may play a major 

causative role in osteoarthritis of the knee. [3] 
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 Subsequent studies have suggested that the risk of developing knee osteoarthritis is 

increased by work involving prolonged knee bending and squatting. [3, 4, 17, 32]  This is evident 

in the high prevalence of knee osteoarthritis among Asian populations who spend a lot of time 

performing floor activities. [17] The postures examined were squatting, side-knee bending, 

kneeling, and lotus position.  Of these postures, squatting, lotus position, and side-knee bending 

were found to increase the risk of developing knee osteoarthritis.  
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2.0  MOTIVATION 

Much attention has been given to the biomechanics of the knee joint during gait but the 

same attention has not been given to the knee joint while in kneeling, stooped, or squatted 

postures.  Although there has been research on restricted postures, much of this research is aimed 

at the low back forces and causes of low back pain.  There are few studies available on squatting 

and high flexion activities; however, no studies of kneeling on one knee or near 90° flexion were 

found.  

2.1 PREVIOUS MODELLING OF KNEE FORCES AND MOMENTS 

Dahlkvist et al. (1982) developed subject-specific 2-D models of the lower leg of six male 

subjects to determine the forces at the knee during squatting and rising from a deep squat.  

Anthropometric data and x-rays were used to create the model. External force reactions and 

points of application, lower leg configurations, and electromyographic data were measured.  For 

three subjects, forces were calculated throughout going into a deep squat and then rising to a 

standing position.  For the other three subjects rising from a deep squat were compared for a 

slow rise trial and a fast rise trial.  Joint forces varied across subjects and during activities.  

Patellofemoral joint forces were shown to be the largest, with average maximums between 4.7 

times bodyweight for slow ascent and 7.6 times bodyweight for fast descent.  
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Perry et al. (1975) performed a cadaver study to show significantly increased forces on 

the joint surfaces with flexion of greater than 30°.  Forces in the quadriceps, patella, and tibia 

during simulated weight-bearing flexed knee stance were determined in a cadaver model.  The 

specimen was instrumented to measure the quadriceps force, patellofemoral compression, and 

tibiofemoral loading.  Flanged transducers were inserted into the tibia to measure the 

tibiofemoral joint stress.  Quadriceps muscle action was simulated by a cable linked between the 

vastus intermedialus-rectus femoris to the intertrochanteric region of the femur.  A ring 

tensiometer, aligned parallel to the femur, measured the forces in the cable as loads were applied 

to the femoral head.  Compressive forces of the patella were also measured. The knee was set to 

six positions for measurement: 0°, 5°, 15°, 30°, 45°, and 60°.  The quadriceps force necessary to 

stabilize the knee was found to be directly proportional to the femoral load and angle of flexion.  

At the 30° position, the required force was 210% body weight and at 60° the required force was 

410% body weight.  The tibiofemoral forces also increased in direct proportion to the load on the 

head of the femur when in full extension.  When flexed, the tibiofemoral forces were a 

summation of the load on the femoral head and the quadriceps force.  The patellar forces were 

found to be a function of quadriceps tension and dependent on the angle of flexion and the 

applied femoral load.  [34] 
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Nagura et al. (2002) determined the forces during squatting activities using an inverse 

dynamics approach and found similar high contact forces.  Subjects were separated into two 

groups, the ambulation group and the deep flexion group.  Net moments and posterior forces 

were shown to be significantly higher in deep flexion than in walking or stair climbing.  The net 

posterior force increased by 50% over walking and stair climbing.  Net moments and inferior 

forces were significantly smaller in deep flexion than in walking or stair climbing. The authors 

concluded that the increase in extensor force during deep flexion increases the stress in the 

patellar tendon and joint contact forces. [35] 

Sharrard (1965) examined the forces and pressures at the knee joint of a miner simulating 

a shoveling task while kneeling.  He placed scales under the knees and toes of the miner. When 

the 189 lbs subject rested sitting on his heels, the weight on the left knee, right knee, and toes 

were 46 lbs, 56 lbs, and 84 lbs respectively.  During the shoveling task, the weight on the knees 

and toes rose and declined rapidly.  Results showed that the pressures can rise as much as 200 

pounds per square inch while shoveling.  At that time, the average miner shoveled once every 2.5 

seconds.  The pressures at the tibial tubercle, the interval between the tibial tubercle and the 

patella, the distal pole of the patella, and the body of the patella were also measured.  These 

pressures were shown to vary throughout the shoveling task as well.  Considerable variation was 

shown in the pressures and weight-bearing surfaces of the knee while kneeling and performing 

work. [9] 

Previous biomechanical models of the knee used to evaluate deep flexion and squatting 

postures did not account for the contact between the thigh and the calf. [33, 34]  Nagura et al. 

stated that neglecting this contact was a limitation of their study which may cause an 

overestimation of net forces and moment.  Caruntu et al. (2003) created a model of the knee for 
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deep flexion which included the contact between the thigh and the calf.  They reported a 700 N 

overestimation in quadriceps force when this contact was neglected.  They also reported a 50% 

increase in medial collateral ligament forces when this contact was considered. [36] Zelle et al. 

(2007) measured the pressure distribution of thigh-calf contact for subjects squatting and 

kneeling with mean knee angles of 151.8 and 156.4 respectively.  Results showed the resultant 

contact force to be >30% body weight and located within 17 cm of the epicondylar axis. [5] 

Thigh-calf contact has been shown to be significant, and neglecting these parameters may result 

in overestimation of joint forces and moments.  For these reasons the contact force between the 

thigh and the calf was not neglected from this computational knee model.  

In summary previous research on knee biomechanics in restricted postures have failed to 

examine kneeling near 90° flexion and kneeling on one knee, which may be commonly utilized 

when performing work.  Research on higher flexion postures such as kneeling near full flexion 

and squatting did not include thigh-calf or heel-gluteus contact and may result in the 

overestimation of joint forces and moments.  In this research a computational model was develop 

to determine the net dynamic forces and moment imposed on the knee during static kneeling 

postures.  This model may be applied to other postures in the future and accounts for the contact 

between the thigh and the calf as well as between the heel and the gluteal muscles which may 

occur when kneeling in high flexion.  
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2.2 SPECIFIC AIMS AND SIGNIFICANCE 

2.2.1 Specific Aim #1  

Develop algorithms and a 3-D computational model to calculate the net dynamic forces and 

moments at the knee joint from motion capture and force plate data 

 

To date, there has not been an analysis of the forces and moments at the knee during 

kneeling.  Previous research has determined the net forces and moments at the knee joint for 

squatting and end range flexion. [33 -36]  The role of this study was to develop a computational 

model that may be used to determine the net forces and moments of the knee during not only 

squatting and deep flexion, but also for kneeling near 90° flexion and kneeling on one knee.  The 

use of one computational model to analyze different postures will allow for better comparisons 

and interpretation of these forces and moments. Also, unlike traditional models based on inverse 

dynamics, this model accounts for the contact force between the thigh and calf, which has been 

determined to be >30% body weight. [5]  At this level of force, this contact may be sufficient to 

have a considerable effect on the forces, moments, and stresses in knee structures.  This model 

also accounts for the contact between the heel and the gluteal muscles which occurs in some 

people when kneeling and sitting on their heels.   
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2.2.2 Specific Aim #2 

Apply the developed model to data collected from a minimum of one subject. 

 

The effect of protective equipment (i.e. knee pads) on knee forces and moments has not 

been investigated.  In this study the subject was evaluated with and without knee pads.  The 

forces were not expected to change significantly due to the knee pads however, the knee pads 

were expected to change the location of the center of pressure for the force at the knee-ground 

interface, thereby affecting the moments at the knee.  Force plate, motion capture, and pressure 

data were analyzed via the developed model for two subjects.  This model will be used in the 

future on a larger dataset currently being collected.  The resulting forces and moments will add 

to the knowledge on kneeling biomechanics.  In addition, these forces and moments will be 

utilized in the finite element model of the knee currently being developed.   

2.2.3 Specific Aim #3 

A sensitivity analysis for the input variables (anthropometric variables, joint center location 

estimation, ground reaction forces, thigh-calf contact force, and heel-gluteal contact force) will 

be implemented. 

 Numerous factors contribute to the forces and moments at the knee joint while kneeling.  

A sensitivity analysis was performed to determine which variables contribute the most to the 

forces and the moments at the knee.  This analysis was also useful in determining which 

parameters introduce the largest sources of error in the model.   
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2.2.4 Future Significance 

The forces and moments determined using this computational model will be inputs to a finite 

element model (FEM) of the knee being developed.  This FEM will be used to evaluate the 

stresses and strains in tissues while kneeling, crawling, and stooping.  Results of the FEM will 

provide a better understanding of the internal biomechanics of the knee structures while in 

restricted postures.  These results will be used to provide interventions, such as a novel knee pad 

design, in hopes of reducing the prevalence and severity of occupational knee injuries in low-

seam coal miners.   
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3.0  RESEARCH DESIGN AND METHODS 

Motion analysis and force data were collected to track body positions and ground 

reaction forces for simulated postures.  This data was used to determine the segment positions, 

segments lengths, and ground reaction forces.   Pressure data were also collected to determine 

the magnitude of the force transmitted from the thigh to the calf and from the heel to the gluteal 

muscles when kneeling.  These parameters were inputs into the computation model, allowing the 

estimation of knee forces, moments, and joint angles.   

3.1 EQUIPMENT 

3.1.1 Laboratory Equipment 

Motion data is captured using eleven Infrared cameras (Eagle, Motion Analysis Corporation, 

Santa Rose, California, USA) which track the motion of ½” reflective markers.   The cameras are 

arranged around the room such that all markers are visible during testing.  Motion data was 

collected at 60 Hz. 
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 Two force platforms (Model OR6-5, Advanced Mechanical Technology, Inc., Newton, 

Massachusetts, USA) were used to measure the reaction forces at the ground-knee, ground-foot, 

or ground-kneepad interface.  The force platforms were aligned in parallel and were level with 

the floor.  Force data was collected at 1020 Hz.  

A clinical seating pressure assessment system (ClinSeat®, Tekscan Inc., South Boston, 

Massachusetts, USA) was used to measure the contact between the thigh and calf and the heel 

and gluteal muscles. This 19.2 in x 16.8 in pressure sensor uses resistive technology to measure 

the pressure between surfaces.  The spatial resolution is 1 sensel/cm2 with a pressure range of 0-

30 PSI.  The supplied software (Advanced ClinSeat, Tekscan Inc., South Boston, Massachusetts, 

USA) generated pressure maps, total pressure, total force, and center of pressure.  Total force 

and center of pressure locations from the supplied software were used in the computational 

model. 

3.1.2 Computational Model 

The computational model was developed in MATLAB® (The Mathworks Inc., Natick, MA) on a 

personal computer.  It is based on an inverse dynamics method [37] which uses measured ground 

reaction forces and anthropometric measurements to determine the net external forces and 

moments at the right knee joint.   In this linear model the upper leg (femur) and the lower leg 

(tibia, fibula, and foot) are modeled as rigid bodies attached via a pin joint with three rotational 

degrees of freedom.  The global reference frame was oriented such that when the subject was 

standing in standard anatomical position, the x-axis was in the medial/lateral direction, the y-axis 

was in the anterior/posterior direction, and the z-axis was in the superior/inferior direction.  The 

origin of this system was on the laboratory floor at the upper left corner of the first force plate.   
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3.1.2.1 Model Assumptions 

The developed computational model is based on several assumptions. 

• The knee is assumed to be a frictionless pin-joint.  This allows all forces to pass 

directly through the joint center. 

• Segments are assumed to be rigid with mass concentrated at the center of mass 

locations.  This allows one center of mass to represent the weight of the segment.  

• Linear relationship between external forces and moments applied to the knee.  

This allows a planar model to be used to determine the external forces and 

moments applied to the knee. 

• The relative movement of pelvic bones is negligible.  This allows approximation 

of the hip joint center from palpable pelvic landmarks.  

• Thickness of subcutaneous tissue between bone and skin is minimal.  This allows 

the assumptions that markers placed on palpable landmarks are directly on that 

landmark. 

• The measured thigh-calf and heel-gluteus contact forces are concentrated at the 

measured center of pressure location.  This allows the contact forces to be 

represented as a single resultant force, opposed to a pressure distribution.  

• Affect of patellar tendon and tibial tubercle on forces externally applied to the 

tibia is negligible.  This assumption allows ground contact forces measured at the 

ground-knee or ground-kneepad interface to be assumed to act at some distance 

away from the knee joint center and not be affected by the patellar tendon or tibial 

tubercle.   
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3.2 SUBJECT TESTING 

3.2.1 Thigh-Calf and Heel-Gluteus Contact Measurements 

Thigh-calf and heel-gluteus contact forces (Ft/c and Fh/g) were measured prior to motion and force 

data collection. The subject was instructed to kneel near 90° flexion and the pressure sensor was 

placed on their lower leg.  The subject was then instructed to kneel into full flexion while 

pressure data was collected for a period of 5 seconds.  The distance from the top of the sensor to 

the lateral epicondyle was measured and recorded while data was collected.  This was repeated 

with the subject squatting. 

3.2.2 Subject Instrumentation 

Each subject was fitted with 41 reflective markers using a modified version of the Cleveland 

Clinic Foundation’s marker set, Figure 2.  The marker included one segment marker and a three 

marker cluster of the thighs and shanks.  This marker set was chosen to be compatible with 

SIMM for use in a future study. The subject was instructed to perform a standing T-pose with 

their right foot making contact with force plate 2 and their left foot off of the force plates.  Data 

was collected for 5 seconds.  This data was used to create the anatomical coordinate system for 

the thigh and shank.   
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Figure 2: Anatomical marker set 
 

 

 
 

Figure 3: Measured marker set 
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 Following recording of the standing T-pose, eight markers were removed due to their 

high risk for falling off or becoming covered (i.e. they are virtual markers which were 

reconstructed during data processing).  This yielded the measured marker set shown in Figure 3.   

The subject was instructed to perform another standing T-pose as well as a range of motion.  

During the range of motion, the subject went through a series of motions with a laboratory 

assistant.  They began in a standing T-pose then performed lateral bending, twisting at waist, 

raising knees up to chest, squatting, and knee flexion/extension, crossing arms, rotating head 

then dropped down into a kneeling posture.  In this kneeling posture the subject performed lateral 

bending, twisting at waist, kneeling down into full flexion, kneeling on left knee, kneeling on 

right knee, ankle rotations, kneeling on all fours, and ended in a standing T-pose.  The range of 

motion data was then post-processed and used to extend the motion capture template.    

3.2.3 Experimental Data Collection 

Once the template was extended, experimental data collection began.  A mesh roof in the 

laboratory was lowered to 48”, simulating a restricted working height.  The subject was 

instructed to perform a static trial of each posture for 10 seconds.  The postures studied were 

kneeling near 90° flexion, kneeling on the right knee, kneeling near full flexion, and squatting.  

Subjects were not given specific instructions on these postures.  A poster in the laboratory 

showed schematics of the postures studied, Figure 4.  Subjects were instructed to simulate the 

postures shown in the schematics.  They were not given specific instructions on kneeling 

postures as to not affect their normal kneeling postures.  They were, however given instructions 

on where to place their knees and feet when kneeling.  When testing the kneeling near 90° 

flexion, kneeling on right knee, and kneeling near full flexion, subjects were instructed to kneel 
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with their right knee on force plate 2 and their right foot on force plate 1.  Their left side was to 

remain off of the force plates.  When testing the squatting posture, subjects were instructed to 

kneel with their right foot on force plate 2 and their left foot off of the force plates.  At the start 

of testing, each subject was provided a new pair of orange articulating knee pads commonly 

worn by underground coal miners, Figure 5.  The subject performed each posture with and 

without knee pads for a total of eight trials.  Motion data was low-pass filtered using a 4th order 

Butterworth filter at 15 Hz to smooth instrumental errors.  

 

 

Figure 4: Postures assumed by subjects during testing  

 

 

 

Figure 5: Articulating kneepads commonly worn by low-seam coal miners  
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3.3 DATA ANALYSIS  

Data was analyzed for a 5 five second period of the trial after the subject appeared to have 

reached a balanced posture and showed minimal instability.  This portion of the static trial was 

used to determine the forces, moments, and joint angles.   

3.3.1 Construction of Coordinate Systems 

For each segment, an anatomical and measured coordinate system was created from the motion 

capture data.  The anatomical system was created from the anatomical standing T-pose and 

allowed the location of anatomical landmarks to be linked to the global reference frame.  It was 

also used to determine the location of the ankle joint center (AJC), knee joint center (KJC), and 

hip joint center (HJC) as well as the location of the lower leg center of mass.  A measured 

coordinate system was created from the anatomical standing T-pose as well as from each static 

trial and was used to link the testing markers to the locations of the markers that were removed.    

The anatomical coordinate system of the thigh (ATCS) was created using the left and 

right anterior superior iliac spine (L.ASIS & R.ASIS), knee, and thigh markers.  
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The KJC was assumed to be midway between the medial and lateral epicondyles of the 

femur, measured by the medial and lateral knee markers.  The location of the HJC was 

approximated using regression equations proposed by Bell et al. (1990) and adapted to fit the 

global reference frame of the laboratory. [38] (Figure 6) 

 

 

Figure 6: Pelvis coordinate system highlighting the location of the right hip joint center 
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The transformation matrix from the global reference frame to the anatomical thigh 

coordinate system (TTGA) was created from the unit direction vectors of the ATCS.  

 


















































































=

431

0001

rrrHJCT TGA

 

 

The anatomical coordinate system of the shank (ASCS) was determined using the knee, 

ankle, and shank markers.  The AJC was assumed to be midway between the medial and lateral 

malleoli, measured by the medial and lateral ankle markers.  The transformation matrix from the 

GCS to the ASCS (TSGA) was created from the unit direction vectors of the ASCS.  
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The ATCS and ASCS were oriented such that when standing the systems aligned with the 

GCS and the positive x-axis is in the lateral direction of the right leg, the positive z-axis is in the 

proximal direction, and the positive y-axis is in the anterior direction. (Figure 7)   
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Figure 7: Orientation of the ATCS and ASCS 

 

A measured coordinate system (MCS) was created for the thigh and the shank using the 

marker clusters on the segments.  The measured coordinate system of the thigh (MTCS) was 

created from the thigh, thigh front, and thigh rear markers.  The transformation matrix from the 

GCS to the MTCS (TTGM) was also created with the right thigh front marker as its origin.  
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The measured coordinate system of the shank (MSCS) was created from the shank, shank 

front, and shank rear markers.  The transformation matrix from the MSCS to the GCS (TSGM) was 

created with the right shank front marker as its origin.  
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To determine measured marker locations in the ATCS and ASCS, TTMA  and  TSMA were 

created respectively.  
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3.3.2 Joint Angle Estimation 

Joint angles were determined for each trial using Euler Angle Decomposition.  The largest joint 

rotations occurred about the medial/lateral x-axis (α – extension/flexion) followed by the 

posterior/anterior y-axis (β - varus/valgus), and the distal/proximal z-axis (γ - internal/external 

rotation), yielding an Euler order of Xy’z’’.   The transformation matrix from the anatomical 

thigh to the anatomical shank coordinates TST was created to determine the rotation matrix, RST.  

This matrix was used to determine the Euler angles.  Therefore, motion of the thigh was in 

respect to the shank. 
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3.3.3 Joint Forces and Moments 

Ground reaction forces, segment weight, Ft/c, and Fh/g were inputs into the computational model. 

External force diagrams for kneeling near full flexion with respect to the GCS and the ASCS are 

shown in Figure 8 and Figure 9.  The center of mass location and weight of the shank+foot were 

determined using equations from Clauser et al., 1969 which were adjusted to use the knee joint 

center and ankle joint center in this model. [40]  The reaction forces and moments were assumed 

to act in the positive directions.  

Squatting and kneeling creates a contact force between the thigh and the calf.  Kneeling 

near full flexion also creates this contact, and in some subjects there is additional contact 

between the heel and the gluteal muscles.  Ft/c and Fh/g were modeled as resultant forces whose 

line of action was in the anterior direction of the shank.  The locations of these forces were 

determined from the center of pressure locations on the pressure sensor.  Forces at the foot (F1), 

forces at the knee (F2) and the weight of the lower leg were measured with respect to the GCS.  

(Figure 8) Thigh-calf and heel-gluteus contact forces were measured with respect to the ASCS.  
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Figure 9 shows the orientation of the forces and moments as presented in this research, with 

respect to the ASCS.  External force diagrams for all postures are shown in Figure 10.  

 

Figure 8: Diagram of external shank forces and reaction forces and moments for kneeling near full 

flexion with respect to the GCS 

 

 

 

Figure 9: Diagram of external shank forces and reaction forces and moments for kneeling near full 

flexion with respect to the ASCS
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Figure 10: External force diagrams with respect to the anatomical shank coordinate system 
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Joint equilibrium was assumed, therefore the sum of all forces and moments at the knee 

were calculated and summed to equal zero.  The sum of the external forces in the x, y, and z 

directions were all summed to zero to determine the reaction force, R, necessary to stabilize the 

knee due to the application of the net external forces (Fknee).  
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The sum of the external moments at the knee joint in the x, y, and, z directions were also 

summed to equal zero.  The net external knee moment applied to the knee joint (Mknee) was also 

determined.  
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4.0  RESULTS 

 Data from two subjects were analyzed using the developed computation model.  Subject 

1 was a 1.8 m, 675 N, 19 year old male.  Subject 2 was a 1.56 m, 720 N, 59 year old female.    

Neither subject had a history of knee injuries or pathologies.   All forces and moments presented 

are in reference to the anatomical shank coordinate system.  

4.1   THIGH-CALF AND HEEL-GLUTEUS CONTACT FORCES 

4.1.1 Near Full Flexion 

The mean Ft/c in the kneeling near full flexion posture for subjects 1 and 2 were 127.5 N and 164 

N, respectively.  The centers of pressure were 0.14 m, and 0.17 m along the long axis of the tibia 

from the medial epicondyle of the femur.  Pressure distributions, showing the centers of pressure 

for this posture are shown in Figure 11.  Subject 2’s posture did not cause any contact between 

the heel and gluteal muscles.  Subject 1 had a mean Fh/g of 56.1 N with a center of pressure 0.43 

m along the long axis of the tibia from the medial epicondyles of the femur.  This pressure 

distribution is shown in Figure 12.  
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Figure 11: Thigh-calf contact pressure distributions for kneeling near full flexion 

 a) Subject 1 b) Subject 2  

 

 

Figure 12: Heel-gluteus pressure distribution for kneeling near full flexion, Subject 1 

a)     b) 

  

Proximal Shank 

Heel  
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4.1.2 Squat 

The mean Ft/c in the squatting posture for subjects 1 and 2 were 173 N and 195 N, respectively.  

The centers of pressure were located 0.15 m, and 0.14 m along the long axis of the tibia from the 

medial epicondyle of the femur.  Pressure distributions, showing the centers of pressure for this 

posture are shown in Figure 13.  

 

      

Figure 13: Thigh-calf contact pressure distributions for squat 

 a) Subject 1 b) Subject 2 

 

a)                            b)    Proximal Shank 
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4.2 KNEE ANGLES 

Mean varus/valgus, internal/external rotation, and included knee angles for Subjects 1 and 2 are 

shown in Table 1 and Table 2, respectively.  Standard deviations across 5 second portions of the 

trials are shown in parentheses.  The angles varied over time with standard deviations ranging 

from .22-1.44° for the included angles, .36-8.69° for varus/valgus, and .25-1.98° for int/ext 

rotation.   Both subjects had very small standard deviations in the included joint angles over 

time.  Varus/valgus deviations were the largest for both subjects.  Subject 1 ranged from 15° 

varus to 15° valgus when wearing kneepads and kneeling near 90° flexion.  This 30° range in 

angles caused a standard deviation of 8.55°.  Subject 2 ranged from 3° varus to 3° valgus when 

wearing kneepads and kneeling on one knee, creating a standard deviation of 2.1°.  A typical 

time series plot of the joint angles is shown in Figure 14.  

 

Table 1: Average knee angle (degrees), Subject 1 

Subject 1 

 
With Kneepads Without Kneepads 

Included + Valgus 
 - Varus 

+ Int rot  
- Ext rot Included + Valgus 

 - Varus 
+ Int rot  
- Ext rot 

Near 90° 
Flexion 

83.1 
(1.35) 

0.35 
(8.55) 

-4.7 
(0.73) 

82.7 
(.25) 

-7.3 
(3.0) 

-7.3 
(0.28) 

One Knee 80.2 
(0.39) 

-1.0 
(3.41) 

-14.0 
(0.42) 

75.9 
(0.30) 

8.7 
(3.45) 

-10 
(0.44) 

Near Full 
Flexion 

23.0 
(0.21) 

1.2 
(0.29) 

6.5 
(0.47) 

23.0 
(0.16) 

2.1 
(0.60 

5.6 
(0.32) 

Squat 24.0 
(0.78) 

0.9 
(2.47) 

5.6 
(1.55) 

22.2 
0.43) 

1.3 
(1.87) 

5.7 
(1.07) 

Standing  173.6 
(.57) 

-2.6 
(.22) 

-.78 
(.07) 
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Table 2: Average knee angles (degrees), Subject 2 

Subject 2 

 
With Kneepads Without Kneepads 

Included + Valgus 
 - Varus 

+ Int rot  
- Ext rot Included + Valgus 

 - Varus 
+ Int rot  
- Ext rot 

Near 90° 
Flexion 

84.9 
(.40) 

-.81 
(.51) 

5.28 
(.31) 

38.9 
(.5) 

-9.1 
(1) 

5.9 
(.27) 

One Knee 40.6 
(.48) 

.40 
(2.1) 

4.7 
(1.4) 

35.8 
(.32) 

-4 
(1.7) 

.28 
(.69) 

Near Full 
Flexion 

33.7 
(.25) 

-.58 
(.69) 

13.9 
(.25) 

31.9 
(.1) 

1.9 
(1.6) 

1.9 
(.31) 

Squat 36.3 
(.46) 

-.09 
(.26) 

12.7 
(.55) 

37.9 
(.47) 

-.63 
(1.35) 

7.5 
(.77) 

Standing  179.1 
(.34) 

-2.35 
(.14) 

-.05 
(.02) 

 

 

 

Figure 14: Joint angles for Subject 1 kneeling near full flexion without kneepads 
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4.3 KNEE FORCES 

All forces are with respect to the anatomical shank coordinate system and normalized to body 

weight, by dividing the force in N, by the body weight in N, and multiplying by 100% yielding 

values in percentage of body weight (%BW).  Average net forces for Subjects 1 and 2 are shown 

in Table 3 and Table 4, respectively. The largest lateral forces were found in Subject 1 when 

kneeling on one knee and the largest medial forces were shown in Subject 2 when squatting 

without kneepads.  The largest posterior forces were shown when kneeling on one knee in both 

subjects.  The largest proximal forces occurred in Subject 1 when squatting and in Subject 2 

when kneeling on one knee.  Time series of the net forces for Subject 1 kneeling near full flexion 

without kneepads are shown in Figure 15.   

 

 

Table 3: Average net external forces normalized by body weight, Subject 1 

Subject 1 

 
With Kneepads, % BW Without Kneepads, % BW 

+ Lateral  
- Medial 

+ Anterior 
- Posterior 

+ Proximal 
- Distal 

+ Lateral  
- Medial 

+ Anterior 
- Posterior 

+ Proximal 
- Distal 

Near 90° 
Flexion 

6.00 
(.74) 

-43.08 
(.78) 

-6.50 
(.74) 

8.61 
(.34) 

-41.29 
(.41) 

-6.21 
(.20) 

One Knee 16.70 
(.87) 

-74.62 
(1.07) 

-13.58 
(.57) 

7.33 
(.41) 

-67.80 
(1.61) 

-13.63 
(.33) 

Near Full 
Flexion 

5.95 
(.30) 

-16.57 
(.78) 

-8.23 
(.26) 

5.61 
(.56) 

-17.67 
(.69) 

-7.65 
(.68) 

Squat 5.70 
(.38) 

-13.23 
(1.27) 

27.53 
(1.10) 

2.94 
(.78) 

-14.86 
(1.54) 

27.86 
(.78) 

Standing  .57 
(.14) 

-11.58 
(.62) 

39.89 
(1.51) 
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Table 4: Average net external forces normalized by body weight, Subject 2 

Subject 2 

 
With Kneepads Without Kneepads 

+ Lateral  
- Medial 

+ Anterior 
- Posterior 

+ Proximal 
- Distal 

+ Lateral  
- Medial 

+ Anterior 
- Posterior 

+ Proximal 
- Distal 

Near 90° 
Flexion 

-1.81 
(.39) 

-45.80 
(.29) 

-8.30 
(.28) 

-8.18 
(.21) 

-43.79 
(.31) 

-23.06 
(.18) 

One Knee -3.07 
(.92) 

-53.40 
(.51) 

-12.75 
(.51) 

-8.31 
(.72) 

-55.88 
(.60) 

-28.99 
(.37) 

Near Full 
Flexion 

-4.49 
(.16) 

-19.93 
(.28) 

-16.12 
(.19) 

-6.24 
(.29) 

-22.22 
(.19) 

-18.85 
(.26) 

Squat -6.74 
(.61) 

-16.56 
(.79) 

15.14 
(.73) 

-10.52 
(.46) 

-11.42 
(.80) 

16.86 
(.41) 

Standing  .66 
(.08) 

-5.12 
(.29) 

42.20 
(.69) 

 

 

 

Figure 15: Net external forces normalized by body weight for Subject 1 kneeling near full flexion without 

kneepads 
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4.4 KNEE MOMENTS 

All moments are in respect to the anatomical shank coordinate system and normalized to a 

percentage of the body weight*height to reduce the differences in moments due to gender.  [41] 

The body weight in Newtons was multiplied by the height in meters, yielding a value in Nm.  All 

moments were divided by this body weight*ht value, yielding moments with units in %BW*Ht.  

Average net moments for each posture with and without kneepads are shown in Table 5 and 

Table 6.  All sagittal moments imposed on the knee due to static kneeling were flexion moments.  

Adduction moments occurred in Subject 1 for all postures.  Adduction moments were created in 

Subject 2 when kneeling near 90° flexion and kneeling on one knee with kneepads.  Abduction 

moments were shown in all postures without kneepads and when kneeling near full flexion and 

squatting with kneepads.  Subject 1 showed external rotation moments when kneeling near full 

flexion without kneepads and when squatting.  Kneeling near 90° flexion, kneeling on one knee, 

and kneeling near full flexion resulted in internal rotation moments.  Subject 2 showed internal 

rotation moments for all postures.  Time series showing the sagittal moment contributions for 

Subject 1 kneeling near full flexion without kneepads are shown in Figure 16.  
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Table 5: Average net external knee moments normalized by Body weight*Height, Subject 1 

Subject 1 

 

With Kneepads Without Kneepads 

Flexion Adduction 
+ Internal 
- External 
Rotation 

Flexion Adduction 
+ Internal 
- External 
Rotation 

Near 90° 
Flexion 

-.14 
(.11) 

-.07 
(.09) 

.81 
(.03) 

-.46 
(.09) 

-.21 
(.05) 

.26 
(.01) 

One Knee -.60 
(.23) 

-.71 
(.38) 

.92 
(.04) 

-1.00 
(.19) 

-.86 
(.05) 

.32 
(.04) 

Near Full 
Flexion 

-4.42 
(.15) 

-1.16 
(.04) 

.39 
(.03) 

-4.27 
(.23) 

-.91 
(.06) 

-.05 
(.03) 

Squat -5.52 
(.31) 

-1.30 
(.08) 

-.25 
(.03) 

-5.85 
(.28) 

-.79 
(.16) 

-.32 
(.04) 

Standing  -1.76 
(.08) 

.12 
(.03) 

-.07 
(.01) 

 

 

Table 6: Average net external knee moments normalized by Body weight*Height, Subject 2 

Subject 2 

 
With Kneepads Without Kneepads 

Flexion 
Moment 

+ Abduction 
- Adduction 

Internal  
Rotation Flexion Abduction Internal  

Rotation 
Near 90° 
Flexion 

-.63 
(.10) 

-.24 
(.01) 

.53 
(.02) 

-3.71 
(.06) 

.33 
(.03) 

.54 
(.01) 

One Knee -6.45 
(.11) 

-.69 
(.21) 

.34 
(.04) 

-6.05 
(.07) 

.06 
(.1) 

.08 
(.04) 

Near Full 
Flexion 

-3.08 
(.05) 

.42 
(.02) 

.25 
(.03) 

-2.93 
(-3.01) 

.57 
(.58) 

.32 
(.33) 

Squat -5.51 
(.19) 

1.21 
(.12) 

.17 
(.03) 

-4.49 
(.12) 

1.90 
(.08) 

.19 
(.03) 

Standing  -.17 
(.06) 

-.28 
(.02) 

-.04 
(.01) 
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Figure 16: Moment contributions normalized by Bodyweight*Height for Subject 1 kneeling near full flexion 

without kneepads 
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4.5 SUMMARY SUBJECT 1 

Kneeling near 90° flexion showed the smallest flexion moments, followed by kneeling on one 

knee, kneeling near full flexion, and squatting.  When kneeling near 90° flexion about 47 %BW 

was placed on the right knee and another 0.27 %BW was placed on the toes.  The moments 

generated by these forces were almost balanced by the weight of the lower leg, creating a net 

flexion moment of 0.3% BW*Ht.  This posture had the smallest abduction moments: 3 Nm 

without kneepads and 1 Nm with kneepads. External rotation moments were higher with 

kneepads (10 Nm) than without (3.15 Nm).  The higher rotation moment with kneepads was 

almost entirely due to the moment created by the force at the knee (9.87 Nm).  This increase in 

moment was due to the kneepad changing the COP of the force at the knee.  The force in the z-

direction moved from 1.4 cm to 3.5 cm medial to the KJC, increasing the abduction moment by 

nearly 7 Nm.  

When kneeling on one knee a predominant amount of weight, 75 %BW, was placed on 

the knee and a small amount of weight, .54 %BW, was placed on the toes.  These forces created 

a flexion moment which was reduced by the extension moment generated by the weight of the 

lower leg, creating a mean net flexion moment of 0.8 % BW*Ht.   Adduction moments in this 

posture were lower with kneepads (9 Nm) than without (10 Nm).  Internal rotation moments 

were larger with kneepads (11 Nm) than without (3 Nm).  This increase in internal rotation 

moment was also due to the kneepad changing the location of the COP of the force at the knee 

from 1.4 cm to 2.9 cm medial to the KJC.   

When kneeling near full flexion the weight at the knee was 28 %BW.  The weight at the 

toes was higher than any other kneeling posture, 21 %BW, due to the subject sitting on their 

heels, applying a force of 8 %BW.  The contact between the thigh and the calf was 18 %BW.  
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The thigh-calf and heel-gluteus contact forces along with the weight of the lower leg created 

extension moments which acted to stabilize the knee joint in this high flexion posture.  The 

flexion moment generated by the weight at the toes and the knees were still sufficient to create a 

net flexion moment at the knee of 4 %BW*Ht.  Adduction moments were larger with kneepads 

(14 Nm) than without (11 Nm).  When wearing kneepads a 5 Nm internal rotation moment was 

created and without kneepads a 1 Nm external rotation moment was created.  This difference in 

transverse moments may also be attributed to the COP of the force at the knee moving from 1.3 

cm to 4.2 cm medial to the KJC. 

Squatting applied a force of 44 %BW to the foot, and created a thigh-calf contact force of 

25 %BW.  The thigh-calf contact force along with the weight of the lower leg created an 

extension moment in opposition to the flexion moment created by the ground reaction force at 

the foot, with a net flexion moment of 6 %BW*Ht.  Adduction moments were higher with 

kneepads (16 Nm) than without (10 Nm).  The source of this difference was the x-component of 

the force at the foot which increased from 20 N without kneepads to 40 N with kneepads.  This 

difference is most likely due to the subjects kneeling posture which may or may not have been 

directly related to the kneepad. External rotation moments were similar for squatting with (5.5 

Nm) and without (5.9 Nm) kneepads. 

4.6 SUMMARY SUBJECT 2 

Subject 2 showed high variability in knee forces, moments, and angles between kneepad states. 

When not wearing kneepads the smallest flexion moment was 34 Nm when kneeling near full 

flexion, followed by 42 Nm when kneeling near 90° flexion, 51 Nm when squatting and the 
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highest flexion moment was 68 Nm when kneeling on one knee.  The largest abduction moments 

were created when squatting, followed by keeling near full flexion, kneeling near 90° flexion, 

and kneeling on one knee. Internal rotation moments were largest when kneeling near 90° 

flexion, followed by kneeling near full flexing, squatting, and kneeling on one knee.  When 

wearing kneepads kneeling near 90° flexion had the smallest flexion moment of 7 Nm, followed 

by 35 Nm when kneeling near full flexion, 62 Nm when squatting, and 73 Nm when kneeling on 

one knee.  Squatting and kneeling near full flexion created adduction moments and kneeling one 

knee and kneeling near 90° flexion created adduction moments.  Internal rotation moments were 

largest when kneeling near 90° flexion, followed by kneeling on one knee, kneeling near full 

flexion, and squatting.  

Squatting and kneeling on one knee had the largest flexion moments for both knee pad 

states.  These postures were found to have similar flexion angles: 37° for squatting and 38° for 

kneeling on one knee.  Kneeling on the right knee showed the largest flexion moments because 

most of their body weight was distributed to their right side. The left leg may have acted to 

provide balance and stability.  Some 60 %BW was distributed to the right side with 40 %BW at 

the right knee and another 20 %BW at the right toes.  This created thigh-calf contact which was 

not accounted for in the analysis of their data and may have caused an overestimation of the 

flexion moments.  To determine the effect of thigh-calf contact on this moment, the thigh-calf 

contact moment created in the squatting posture was applied to this posture.  When including this 

contact the flexion moment decreased from 73 Nm to 46 Nm. This new moment is less than 

squatting (62 Nm), but still higher than that during full flexion (35 Nm).  
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4.7 STATISTICS 

In this study two subjects were asked to simulate 4 postures with and without kneepads while 

measurements were recorded.  To determine the effect of the kneepads on the forces and 

moments at the knee, multivariate ANOVA was performed for each subject.  The mean values of 

the forces, moments, and angles were compared between kneepad states. A p-value of 0.05 was 

used to demonstrate statistical significance.  Table 7 and Table 8 show the resulting p-values 

from ANOVA where significant values are in bold font.  

 No significant differences were found between kneepad states for Subject 1.  This was 

expected as Subject 1’s posture did not change much (0-4.3° change in joint angles) between 

kneepad states.   Subject 1 showed a significant difference in sagittal moment (p <.001), frontal 

moment (p = .037), posterior/anterior force (p <.001), distal/proximal force (p <.001), included 

knee angle (p <.001), and internal/external rotation angle (p = .001) between postures.  This was 

also expected due to the differences in joint angles.  Kneeling near 90° flexion created flexion 

angles of 83°, compared to the 23° of kneeling near full flexion.  Internal/external rotation angles 

also varied between postures and these varied joint angles may have largely contributed to the 

differences in joint forces and moments between postures.  

Subject 2 showed a significant difference in medial/lateral force magnitude between 

kneepad states (p = .021).  This difference is not thought to be a result of the kneepad itself, but 

of Subject 2 not repeating the postures correctly.  When originally instructed to kneel near 90° 

flexion, their included angle was 85°.  When later instructed to kneel their included angle 

decreased to 39°.  This 46° increase in knee flexion, along with the 8° changes in valgus angles 

may have largely contributed to the significant difference in medial/lateral forces. Subject 1 

showed significant differences in frontal moment (p = .040), posterior/anterior force (p = .000), 
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and distal/proximal force (p = .027) between postures. These differences were also expected as 

kneeling near 90° flexion and kneeling on one knee created increased posterior forces, and 

squatting created proximal forces and abduction moments compared to the distal forces and 

adduction moments created in some other postures.  

 

Table 7: Resulting p-values for ANOVA, Subject 1 

Subject 1 

 Kneepad Posture 

M
om

en
ts

 Sagittal .908 <.001 
Frontal .727 .037 

Transverse .221 .148 

Fo
rc

es
 Medial/Lateral .443 .288 

Posterior/Anterior .934 <.001 

Distal/Proximal .982 <.001 

A
ng

le
s Included .948 <.001 

Varus/Valgus .801 .485 

Int/Ext Rotation .984 .001 
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Table 8: Resulting p-values for ANOVA, Subject 2  

Subject 2 

 Kneepad Posture 

M
om

en
ts

 Sagittal .795 .074 

Frontal .387 .040 

Transverse .776 .065 

Fo
rc

es
 Medial/Lateral .021 .692 

Posterior/Anterior .967 <.001 

Distal/Proximal .546 .027 

A
ng

le
s Included .339 .392 

Varus/Valgus .276 .564 

Int/Ext Rotation .125 .521 
 

 Data from Subject 1 and Subject 2 were combined to see if there was a significant 

difference in forces, moments, and joint angles due to the interaction of kneepad and posture.  

No significant differences were found, Table 9.  

 

Table 9: Resulting p-values for ANOVA of Kneepad*Posture Interaction, Subjects 1&2 

 Kneepad*Posture 
Interaction 

M
om

en
ts

 Sagittal .903 

Frontal .993 

Transverse .758 

Fo
rc

es
 Medial/Lateral .970 

Posterior/Anterior .964 

Distal/Proximal .805 

A
ng

le
s Included .802 

Varus/Valgus .153 

Int/Ext Rotation .929 
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ANOVA was also performed to determine if significant differences existed between 

Subject 1 and Subject 2. Significant differences in all moments, posterior forces, and included 

angles were shown to exist, Table 10. 

 

Table 10: Resulting p-values for ANOVA, Subject comparison  

 p-value 
M

om
en

ts
 Sagittal <.001 

Frontal <.001 

Transverse <.001 

Fo
rc

es
 Medial/Lateral .65 

Posterior/Anterior <.001 

Distal/Proximal .16 

A
ng

le
s Included <.001 

Varus/Valgus .06 

Int/Ext Rotation .52 
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5.0  SENSITIVITY ANALYSIS 

To determine the major sources of error in the moment calculations, sensitivity analyses 

were performed.  An analysis of the model parameters was performed for each posture to 

determine the effect of varying the moment arms and forces on the sagittal moments.  Another 

analysis was performed, varying the location of the knee joint center and measuring its effect on 

the knee moments.  All mean values used in this analysis were from Subject 1 without kneepads.  

5.1 VARYING MODEL PARAMETERS 

The mean values of the z-components of the moment arms and the y-components of the forces 

were varied to determine their effect on the sagittal knee moments.  Although static postures 

were studied there was some expected motion of the markers due to motion artifact and the 

subject maintaining balance.  The motion of the markers was shown to be less than 1.5 cm over 

the course of a squatting trial.  To include this source of error the moment arms were varied by ± 

1-3 cm in 1 cm increments.  One force plate in the laboratory had a threshold of approximately 3 

N.  To account for this error, the forces were varied by ± 2-6 N in 2 N increments.  External 

force diagrams for all postures are shown in Figure 16.  Plots of the varied parameters and 

resulting moments for kneeling near 90° flexion, kneeling on one knee, kneeling near full 

flexion, and squatting are shown in Figure 17, Figure 18, Figures 19 and 20, and Figure 21, 
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respectively.  In all figures the blue diamond represents the mean value of the model parameter 

and its corresponding sagittal moment.  The pink squares represent the sagittal moments 

resulting from varying the parameter.  The green line connecting the green triangles represents 

the standard deviation of the model parameter.  This illustrates the amount of variability of the 

sagittal moment that is expected due to the model parameter.  Table 10 shows the sensitivity of 

the sagittal moments to the model parameters.  Varied moment arms resulted in sensitivities with 

units of Nm/cm.  Varied moment arm results in change in moment per centimeter and varied 

forces results in change in moment per Newton.  Also shown are the percentages of change in 

sagittal moment per centimeter or per Newton.  Parameters creating the largest changes in 

moments are shown in bold.  Parameters with the least change in moment are shown in italics.  
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Figure 17: Varied forces and moment arms and corresponding sagittal knee moments for kneeling near 90° 

flexion. The forces and moment arms were varied for the ground reaction force at the toes (F1), the ground 

reaction force at the right knee (F2), and the weight of the foot+shank (low leg).  Note that all moment arm 

values are shown in cm, all forces are shown in N, and all moments are not normalized and are shown in Nm.  

Varying the z-component of the F1 moment arm by 3 cm changed the sagittal knee moment by .2 Nm.  When 

F1 was varied by 6 N, the moment changed by 3.5 Nm.   Varying the z-component of the F2 moment arm by 3 

cm was sufficient to more than triple the magnitude of the sagittal moment and change its interpretation.  

Varying the y-component of the F2 force by 6 N, changed the sagittal moment by .1 Nm. Varying the z-

component of the COM of the lower leg by 3 cm changed the moment by 1.1 Nm.  Varying the y-component 

of the low leg weight changed the moment by 1.2 Nm. 
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Figure 18: Varied forces and moment arms and corresponding sagittal knee moments for kneeling on the 

right knee. The forces and moment arms were varied for the ground reaction force at the toes (F1), the 

ground reaction force at the right knee (F2), and the weight of the foot+shank (low leg).  Varying the z-

component of the F1 moment arm by 3 cm, changed the sagittal moment by .5 Nm. Varying the y-component 

of F1 by 6 N, changed the sagittal moment by 3.3 Nm.  Decreasing the z-component of the F2 moment arm by 

3 cm more than doubled the sagittal moment.  When this moment arm was increased by 3 cm, an extension 

moment was created.  Varying the y-component of F2 by 6 N changed the moment by .1 Nm.  Varying the z-

component of the low leg COM by 3 cm and the y-component of the low leg weight by 6 N changed the 

moment by 1.2 Nm. 
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Figure 19: Varied forces and moment arms and corresponding sagittal knee moments for kneeling near full 

flexion. The forces and moment arms were varied for the ground reaction force at the toes (F1), the ground 

reaction force at the right knee (F2), and the weight of the foot+shank (low leg), the thigh-calf contact force, 

and the heel-gluteus contact force.  Varying the z-component of the F1 moment arm by 3 cm changed the 

moment by 4.4 Nm.  Varying the y-component of F1 by 6 N changed the moment by 3.7 Nm.  Varying the z-

component of the F2 moment arm by 3 cm changed the moment by 5.7 Nm.  Varying the y-component of F2 

by 6 N changed the moment by .3 N.  Varying the z-component of the low leg COM by 3 cm changed the 

moment by 1.2 Nm.  Varying the y-component of the low leg weight by 6 N changed the moment by 1.2 Nm. 
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Figure 20: Varied forces and moment arms and corresponding sagittal knee moments for kneeling near full 

flexion, continued. The forces and moment arms were varied for the ground reaction force at the toes (F1), 

the ground reaction force at the right knee (F2), and the weight of the foot+shank (low leg), the thigh-calf 

contact force, and the heel-gluteus contact force. Varying the z-component of the thigh-calf moment arm by 3 

cm changed the moment by 3.7 Nm.  Varying the thigh-calf contact force by 6 N changed the moment by .8 

Nm.  Varying the heel-gluteus moment arm by 3 cm changed the moment by 1.5 Nm.  Varying the heel-

gluteus contact force by 6 N changed the moment by 2.5 Nm. 
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Figure 21: Varied forces and moment arms and corresponding sagittal knee moments for squatting. The 

forces and moment arms were varied for the ground reaction force at the foot (F1), the weight of the 

foot+shank (low leg), and the thigh-calf contact force. Varying the z-component of the F2 moment arm by 3 

cm, changed the moment by 9 Nm.  Varying the y-component of F2 by 6 N, changed the moment by 2.7 Nm.  

Varying the z-component of the low leg COM by 3 cm, changed the moment by .9 Nm.  Varying the y-

component of the low leg weight by 6 N, changed the moment by 1.2 Nm.  Varying the z-component of the 

thigh-calf moment arm by 3 cm, changed the moment by 5.1 Nm. Varying the y-component of the thigh-calf 

contact force by 6 N, changed the moment by .9 Nm. 
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Table 11: Sensitivity of sagittal moments to changes in model parameters for all postures 

 Varied Parameter Model Sensitivity 

Near 90° 
Flexion 

F1 moment arm .06 Nm/cm 
1.13 %/cm 

F1 .55 Nm/N 
10.5 %/N 

F2 moment arm 3.1 Nm/cm 
55 %/cm 

F2 .03 Nm/N 
.44 %/N 

low leg moment arm -.35 Nm/cm 
-6.2 %/cm 

low leg weight -.2 Nm/N 
-3.6 %/N 

One Knee 

F1 moment arm .16 Nm/cm 
1.2 %/cm 

F1 .55 Nm/N 
4.8 %/N 

F2 moment arm 4.8 Nm/cm 
37 %/cm 

F2 .02 Nm/N 
.13 %/N 

low leg moment arm -.39 Nm/cm 
-3 %/cm 

low leg weight -.2 Nm/N 
-1.6 %/N 

Squat 

F2 moment arm 3 Nm/cm 
4.2 %/cm 

F2 .4 Nm/N 
.55 %/N 

low leg moment arm -.31 Nm/cm 
-.44 %/cm 

low leg weight -.2 Nm/N 
-.27 %/N 

Thigh-calf moment arm -1.7 Nm/cm 
-2.4 %/cm 

Thigh-calf Force -.15 Nm/N 
-.2 %/N 
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Table 11 (continued). 

Near Full 
Flexion 

F1 moment arm 1.5 Nm/cm 
2.8 %/cm 

F1 .61 Nm/N 
1.7 %/N 

F2 moment arm 1.9 Nm/cm 
3.7 %/cm 

F2 .05 Nm/N 
.1 %/N 

low leg moment arm -.39 Nm/cm 
-.75 %/cm 

low leg weight -.2 Nm/N 
-.38 %/N 

Thigh-calf  moment arm -1.2 Nm/cm 
-2.4 %/cm 

Thigh-calf force -.14 Nm/N 
-.27 %/N 

Heel-gluteus moment arm -.44 Nm/cm 
-.84 %/cm 

Heel-gluteus force -.48 Nm/N 
-.9 %/N 

 
 
 

 In the kneeling near 90° flexion model, the location of the force at the knee (F2) 

increasing the sagittal knee moment by 3.1 Nm per every centimeter this force was moved 

distally.  The sagittal moment was the least sensitive to the force at the knee; increasing by.03 

Nm for every 1 N increase in force.   Similarly to the kneeling near 90 flexion model, the 

kneeling on one knee model was the most sensitive to the location of the force at the knee; 

increasing by 4.8 Nm with every 1 cm this force was moved distally.  The sagittal moment was 

the least sensitive to the force at the knee, increasing by .02 Nm with a 1 N increase in force.  In 

the squatting model, the sagittal moment was the most sensitive to the location of the force at the 

foot, increasing by 3 Nm for every 1 cm this force was moved distally.  The sagittal moment was 

the least sensitive to the thigh-calf contact force; decreasing by .15 Nm with every 1 N this force 
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was increased.  In the kneeling near full flexion model, the sagittal moment was the most 

sensitive to the location of the force at the knee increasing by 1.9 Nm for every 1 cm this force 

was moved distally.  The sagittal moment was least sensitive to the force at the knee; increasing 

by .05 Nm for every 1 N increase in force.  Moving the location of the thigh-calf contact force 1 

cm distally decreased sagittal moments by more than 1 Nm in the kneeling near full flexion and 

squatting models.  

5.2 VARYING KNEE JOINT CENTER LOCATION 

 

 Knee joint center (KJC) locations are dependent on the placement of surface markers by 

laboratory researchers.  Although one researcher was responsible for palpating the medial and 

lateral epicondyles of the femur, some variation in the placement of these markers was expected.  

This variation in marker placement will affect the location of the KJC, thereby affecting all 

moment calculations.  A sensitivity analysis was performed on the KJC location to determine the 

effect of its variation on the knee moments.  The KJC was varied by ±3 cm along the anatomical 

shank axes.  Changes in the KJC locations resulted in linear changes in the joint moments.  Plots 

showing varied KJC locations and resulting moments for kneeling near 90° flexion, kneeling on 

one knee, kneeling near full flexion and squatting are shown in Figure 22, Figure 23, Figure 24, 

and Figure 25, respectively.  Percent change in moments resulting from variation in KJC 

locations for these postures are shown in Table 8, Table 9, Table 10, and Table 11, respectively. 

Although no moments changed by an order of magnitude, some variations were sufficient to 

change the interpretation of the moments.    
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Figure 22: Varied KJC locations and resulting knee moments for kneeling near 90° flexion.  Varying the x, y, 

and z-components of the KJC location had no effect on the sagittal, frontal, and transverse moments, 

respectively.  Varying the y-component by 3 cm changed the sagittal moment by 1.3 Nm.  Varying the z-

component by 3 cm more than doubled the sagittal moment.  Varying the x-component by 3 cm changed the 

frontal moment by 1.3 Nm.  Varying the z-component by 3 cm changed the adduction moment by 1.7 Nm.  

Varying the x-component by 3 cm and varying the y-component by 3cm more than doubled the transverse 

moment and changed the interpretation of this moment. 
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Sagittal moments were most sensitive to the z-location of the KJC when kneeling near 

90° flexion.  This moment increased from a 5.7 Nm to a 14 Nm flexion moment when the KJC 

was moved 3 cm anterior.  When the KJC was moved 3 cm posterior the moment decreased to a 

2.6 Nm extension.  Adduction moments were most sensitive to the z-location of the KJC,   

increasing from 2.5 Nm to 4.3 Nm when the KJC was moved 3 cm posterior, and decreasing to 

.8 Nm when the KJC was moved 3 cm anterior.  Transverse moments were most sensitive to the 

x-position of the KJC increasing from 3.3 Nm to 11.6 Nm when the KJC was moved 3 cm 

lateral.  This moment became an external rotation moment of 5.1 Nm when the KJC was moved 

3 cm medial. 

 

Table 12: Percent change in moments due to varying KJC for kneeling near 90 degrees flexion 

Varied by, m Change in Moment, % 

Sagittal  Frontal  Transverse 
[.01, 0, 0] 0.00 -16.46 %/cm 84.87 %/cm 
[.02, 0, 0] 0.00 -32.91 169.73 
[.03, 0, 0] 0.00 -49.37 254.60 
[-.01, 0, 0] 0.00 16.46 -84.87 
[-.02, 0, 0] 0.00 32.91 -169.74 
[-.03, 0, 0] 0.00 49.37 -254.60 
[0, .01, 0] 7.29 0.00 17.70 
[0, .02, 0] 14.59 0.00 35.39 
[0, .03, 0] 21.88 0.00 53.09 
[0, -.01, 0] -7.29 0.00 -17.70 
[0, -.02, 0] -14.59 0.00 -35.39 
[0, -.03, 0] -21.88 0.00 -53.09 
[0, 0, .01] -48.52 -22.83 0.00 
[0, 0, .02] -97.04 -45.66 0.00 
[0, 0, .03] -145.56 -68.48 0.00 
[0, 0, -.01] 48.52 22.83 0.00 
[0, 0, -.02] 97.04 45.65 0.00 
[0, 0, -.03] 145.57 68.48 0.00 
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Figure 23: Varied KJC locations and resulting knee moments for kneeling on right knee.  Varying the x, y, 

and z-components of the KJC location had no effect on the sagittal, frontal, and transverse moments, 

respectively.  Varying the y-component by 3 cm changed the flexion moment by 2.7 Nm.  Varying the z-

component by 3 cm changed the sagittal moment by 13.6 Nm and changed it interpretation.  Varying the x-

component by 3 cm changed the adduction moment by 2.7 Nm.  Varying the z-component changed the frontal 

moment by 1.5 Nm.  Varying the x-component by 3 cm changed the transverse moment by 9.1 Nm.  Varying 

the y-component by 3 cm changed the transverse moment by 1.5 Nm. 
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 Flexion moments were most sensitive to the z-location of the KJC when kneeling on one 

knee.  This moment increased from 12.8 Nm to 26 Nm when the KJC was moved 3 cm anterior.  

When the KJC was moved 3 cm posterior the moment became a .78 Nm extension moment.  

Adduction moments were most sensitive to the x-location of the KJC.  Increasing from 10.6 Nm 

to 13.3 Nm when the KJC was moved 3 cm anterior, and decreasing to 7.8 Nm when the KJC 

was moved 3 cm posterior.  Transverse moments were most sensitive to the x-position of the 

KJC. The internal rotation moment changed from 3.5 Nm to 17.1 Nm when the KJC was moved 

3 cm medial.  This moment became an external rotation moment of 10.1 Nm when the KJC was 

moved 3 cm lateral. 

 

Table 13: Percent change in moments due to varying KJC for kneeling on one knee 

Varied by, m Change in Moment, % 

Sagittal Frontal Transverse 
[.01, 0, 0] 0.00 -8.64 129.27 
[.02, 0, 0] 0.00 -17.28 258.54 
[.03, 0, 0] 0.00 -25.91 387.81 
[-.01, 0, 0] 0.00 8.64 -129.27 
[-.02, 0, 0] 0.00 17.28 -258.54 
[-.03, 0, 0] 0.00 25.91 -387.81 
[0, .01, 0] 7.13 0.00 14.28 
[0, .02, 0] 14.27 0.00 28.56 
[0, .03, 0] 21.40 0.00 42.84 
[0, -.01, 0] -7.13 0.00 -14.28 
[0, -.02, 0] -14.27 0.00 -28.56 
[0, -.03, 0] -21.40 0.00 -42.84 
[0, 0, .01] -35.36 -4.73 0.00 
[0, 0, .02] -70.71 -9.46 0.00 
[0, 0, .03] -106.07 -14.19 0.00 
[0, 0, -.01] 35.36 4.73 0.00 
[0, 0, -.02] 70.71 9.46 0.00 
[0, 0, -.03] 106.07 14.19 0.00 
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Figure 24: Varied KJC locations and resulting knee moments for kneeling near full flexion.  Varying the x, y, 

and z-components of the KJC location had no effect on the sagittal, frontal, and transverse moments, 

respectively.  Varying the y-component by 3 cm changed the flexion moment by 1.6 Nm.  Varying the z-

component by 3 cm changed the flexion moment by 3.6 Nm. Varying the x-component by 3 cm changed the 

adduction moment by 1.6 Nm.  Varying the z-component by 3 cm changed the adduction moment by 1.1 Nm.  

Varying the x-component by 3 cm changed the transverse moment by 3.6 Nm and changed its interpretation.  

Varying the y-component by 3 cm changed the transverse moment by 1.4 Nm and changed its interpretation. 
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Flexion moments were most sensitive to the z-location of the KJC when kneeling near 

full flexion.  This moment increased from 51.75 Nm to 55 Nm when the KJC was moved 3 cm 

anterior and decreased to 48.2 Nm when the KJC was moved 3 cm posterior. Adduction 

moments were most sensitive to the x-location of the KJC, increasing from 11.1 Nm to 12.6 Nm 

when the KJC was moved 3 cm lateral, and decreasing to 9.5Nm when the KJC was moved 3 cm 

medial.  Transverse moments were most sensitive to the x-position of the KJC. The external 

rotation moment increased from .65 Nm to 4.2 Nm when the KJC was moved 3 cm medial.  This 

moment became an internal rotation moment of 2.93 Nm when the KJC was moved 3 cm lateral. 

 

Table 14: Percent change in moments due to varying KJC for kneeling near full flexion 

Varied by, m Change in Moment, % 

Sagittal  Frontal  Transverse 
[.01, 0, 0] 0.00 -4.66 184.53 
[.02, 0, 0] 0.00 -9.35 369.06 
[.03, 0, 0] 0.00 -14.02 553.59 
[-.01, 0, 0] 0.00 4.67 -184.55 
[-.02, 0, 0] 0.00 9.35 -369.07 
[-.03, 0, 0] 0.00 14.02 -553.60 
[0, .01, 0] 0.99 0.00 58.59 
[0, .02, 0] 1.99 0.00 117.17 
[0, .03, 0] 2.99 0.00 175.76 
[0, -.01, 0] -1.00 0.00 -58.60 
[0, -.02, 0] -2.00 0.00 -117.19 
[0, -.03, 0] -3.00 0.00 -175.77 
[0, 0, .01] -2.31 -3.43 0.00 
[0, 0, .02] -4.61 -6.85 0.00 
[0, 0, .03] -6.92 -10.28 0.00 
[0, 0, -.01] 2.30 3.43 0.00 
[0, 0, -.02] 4.61 6.85 0.00 
[0, 0, -.03] 6.91 10.28 0.00 
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Figure 25: Varied KJC locations and resulting knee moments for squatting.   Varying the x, y, and z-

components of the KJC location had no effect on the sagittal, frontal, and transverse moments, respectively.  

Varying the y-component by 3 cm changed the flexion moment 5.6 Nm.  Varying the z-component by 3 cm 

changed the flexion  moment by 3 Nm. Varying the x-component by 3 cm changed the adduction moment by 

5.6 Nm.  Varying the z-component by 3 cm changed the adduction moment by 0.6 Nm. Varying the x-

component by 3 cm changed the transverse moment by 3 Nm.  Varying the y-component by 3 cm changed the 

external rotational moment by .6 Nm. 
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 Flexion moments were most sensitive to the y-location of the KJC when squatting. This 

moment increased from 71.2 Nm to 76.9 Nm when the KJC was moved 3 cm superior.  When 

the KJC was moved 3 cm inferior the moment decreased to 65.6 Nm.  Adduction moments were 

most sensitive to the x-location of the KJC.  Increasing from 9.59 Nm to 15.2 Nm when the KJC 

was moved 3 cm medial, and decreasing to 3.9 Nm when the KJC was moved 3 cm lateral.  

Transverse moments were most sensitive to the x-position of the KJC. The external rotation 

moment increased from 3.8 Nm to 6.8 Nm when the KJC was moved 3 cm medial and decreased 

to .8 Nm when the KJC was moved 3 cm lateral. 

 

Table 15: Percent change in moments due to varying KJC for squatting 

Varied by, m Change in Moment, % 

Sagittal  Frontal  Transverse 
[.01, 0, 0] 0.00 19.61 26.12 
[.02, 0, 0] 0.00 39.22 52.23 
[.03, 0, 0] 0.00 58.82 78.35 
[-.01, 0, 0] 0.00 -19.61 -26.12 
[-.02, 0, 0] 0.00 -39.21 -52.23 
[-.03, 0, 0] 0.00 -58.82 -78.35 
[0, .01, 0] -2.64 0.00 5.16 
[0, .02, 0] -5.28 0.00 10.32 
[0, .03, 0] -7.92 0.00 15.48 
[0, -.01, 0] 2.64 0.00 -5.16 
[0, -.02, 0] 5.28 0.00 -10.32 
[0, -.03, 0] 7.92 0.00 -15.48 
[0, 0, .01] -1.41 -2.06 0.00 
[0, 0, .02] -2.82 -4.13 0.00 
[0, 0, .03] -4.22 -6.20 0.00 
[0, 0, -.01] 1.41 2.07 0.00 
[0, 0, -.02] 2.82 4.13 0.00 
[0, 0, -.03] 4.22 6.20 0.00 
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Summaries of model sensitivities to KJC locations for all postures are shown in Table 16.  

Values are shown due to varying KJC locations by 1 cm in the lateral, anterior, and proximal 

directions.  Sensitivity values are shown in Nm changes per cm and percentage of moment 

change per cm.  Greatest changes in moments are shown in bold.  The largest sensitivities where 

shown in the transverse moments due to moving the KJC 1 cm laterally in all postures.  

 

Table 16: Sensitivity of moments to KJC location for all postures 

Posture Varied direction 
Sensitivity (Nm/cm & %/cm) of Moments 

Sagittal Frontal Transverse 

Kneeling Near 
90° Flexion 

lateral no change .42 Nm/cm 
-16.5 %/cm 

2.8 Nm/cm 
84.9 %/cm 

anterior .42 Nm/cm 
7.3 %/cm no change .58 Nm/cm 

17.7 %/cm 

proximal -2.8 Nm/cm 
-48.5 %/cm 

-.58 Nm/cm 
-22.8 %/cm no change 

Kneeling on One 
Knee 

lateral no change -.9 Nm/cm 
-8.6 %/cm 

4.5 Nm/cm 
129.3 %/cm 

anterior .92 Nm/cm 
7.1 %/cm no change .5 Nm/cm 

14.3 %/cm 

proximal -4.5 Nm/cm 
-35.4 %/cm 

-.5 Nm/cm 
-4.7 %/cm no change 

Squatting 

lateral no change 1.89 Nm/cm 
19.6 %/cm 

1 Nm/cm 
26.1 %/cm 

anterior -1.9 Nm/cm 
-2.6 %/cm no change .20 Nm/cm 

5.2 %/cm 

proximal -1 Nm/cm 
-1.4 %/cm 

-.2 Nm/cm 
-2.1 %/cm no change 

Kneeling Near 
Full Flexion 

lateral no change -.52 Nm/cm 
-4.7 %/cm 

1.2 Nm/cm 
184.5 %/cm 

anterior 1 Nm/cm 
1 %/cm no change .38 Nm/cm 

58.6 %/cm 

proximal -1.2 Nm/cm 
-2.3 %/cm 

-.38 Nm/cm 
-3.4 %/cm no change 
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6.0  MODEL VALIDATION 

The developed computational model is based on techniques which have been previously 

used to determine the 3D joint moments in gait analysis.  However, due to the complexity of 

using segment coordinate systems, the model was validated by several means.  To ensure 

accuracy of the anatomical coordinate system calculations, the origin of the anatomical 

coordinate system was verified to equal to the KJC.  The KJC location in the GCS was 

multiplied by [TGAshank]-1.  The result was point [0 0 0], thereby validating the KJC as the origin 

of the ASCS.  

Due to the lack of research on kneeling knee forces and moments, no direct comparisons 

could be made to force and moment values reported in literature. Instead the force and moment 

calculations were validated by determining the forces and moments during quiet standing and 

comparing these values to published research.  Quiet standing produced a mean flexion moment 

of .27 Nm/kg, a mean adduction moment of .15 Nm/kg, and a mean internal rotational moment 

of .04 Nm/kg applied to the knee joint.  These values were also comparable to published 

research, thereby validating the model.  [42, 43] 

Joint angles were compared to values reported in published research.  Hemmerich 

reported flexion, external rotation, and adduction angles between of 153-157°, 9-11°, and 6-8°, 

respectively for squatting and 144-155°, 11-12°, and 7-10°, respectively for kneeling near full 

flexion. [44] Although flexion angles agree with those in their research, the adduction and 
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external rotation angles are somewhat larger than those in this study.  This is mostly due to the 

differences in kneeling postures. In this study, Subject 1 performed kneeling near full flexion 

with their buttocks resting on their heels.  Subject 2 did not rest their buttocks on their heels, but 

did kneel with their buttocks over their heels.  In Hemmerich’s study, subjects performed 

kneeling in full flexion without placing any weight on their heels and in a more upright posture.  

This may have resulted in increased abduction moments.  Also the orientation of the feet may 

have created external rotation in their subjects, and internal rotation in Subjects 1 and 2 of this 

study.  Knee rotations also agree with the 11.1 ± 6.7° of internal rotation found in passive knee 

flexion to 150°. [45] The knee joint angles when standing were also compared to published 

research.  The right knee had an included angle of 174-179° with 2.4-2.6° valgus and .1-.8° of 

internal rotation, which is comparable to published research. [46]  
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7.0  DISCUSSION 

This discussion section includes the sensitivity of the computational model to the model 

parameters and knee joint center location which are important factors when applying this model 

to future research.  The effect of kneepads on the force and moments, subject variability, the 

implications of findings, and the advancements are explained.  Also the limitations of this study 

which may restrict the extent to which these findings may be generalized are discussed.  

7.1 KNEEPADS 

Kneepads were not expected to significantly affect the knee joint angles and no statistically 

significant differences in joint angles were found within subjects.  Kneepads were also not 

expected to significantly affect the forces at the knee. However, they were expected to affect the 

moments at the knee joint.  The knee pad was expected to change the location of the center of 

pressure at the knee, which would change the moment arm of that force, thereby affecting the 

moment. Although no statistically significant differences were found between kneepad states, 

there were differences in the transverse moments which may have been caused by the kneepads.  

In Subject 1 when kneeling near 90° flexion without kneepads, the moment arm of the ground-

reaction force at the knee was [-.014, .031, -.025], contributing 2.14 Nm to the internal rotational 

moment of the knee.  When wearing kneepads this moment arm changed to [-.036, .04, -.021], 
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contributing 9.86 Nm.  This implies that the COP of the ground-reaction force at the knee was 

shifted 2.2 mm medially when wearing kneepads. Forces were also different between kneepad 

states [66.87, -308.91, -40.73] N and [51.25, -327.52, -47.90] N without and with kneepads, 

respectively. However, the differences in lateral forces and distal distances accounted for merely 

.07 Nm of the 7.72 Nm increase in internal rotational moment.  The other 7.65 Nm were due to 

the proximal force and its medial distance from the KJC.  Similar changes in moments were seen 

in the kneeling on one knee and kneeling near full flexion postures for this subject.  The design 

of the kneepad (articulating with a hard, contoured outer shell) is thought to have contributed to 

this increase in transverse moment.  This magnitude of torque may introduce significant changes 

in the stresses and strains experienced by the internal stabilizing structures of the knee.  

 

7.2 MODEL SENSITIVITY 

7.2.1 Model Parameters 

The developed computational model showed variations in sagittal moments as a result of 

changes in moment arms and forces. No variation in moment arm or force changed the moment 

by an order of magnitude, however some variations were sufficient to change the interpretation 

of the moment from flexion to extension. When analyzing the kneeling on one knee and kneeling 

near 90° flexion postures, the model was most sensitive to the location of the ground reaction 

force at the knee, doubling or tripling the moment when varying the location by 3 cm.  In 

kneeling near full flexion and squatting, the model was most sensitive to the moment arm of the 
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thigh-calf contact force, in some cases doubling the knee moment due to varying the COP by 3 

cm.  Sagittal moments changed from flexion to extension when the z-component of the COP at 

the knee was increased by 3 cm for kneeling near 90° flexion and kneeling on one knee.  All 

efforts should be made to ensure proper positioning of all moment arms, especially the moment 

arms of the thigh-calf contact force and the COP of the force at the knee to reduce errors 

associated with these model parameters.    

7.2.2 Knee Joint Center Location  

Variations in knee joint center location had large effects on the moment calculations and varied 

between postures.  Internal rotational moments were increased when the KJC was moved 

laterally or posteriorly.  Flexion moments were decreased when the KJC was moved posteriorly 

and increased when the KJC was moved proximally.  Adduction moments were increased when 

the KJC was moved laterally or proximally.  Due to the high sensitivity of moments to KJC 

location care must be taken to ensure proper placement of surface markers on the medial and 

lateral epicondyles.  In this study the location of the medial and lateral epicondyle was marked 

while the subject sat with their knee at 90°.  One subject was responsible for palpating and 

marking these anatomic landmarks.  It is possible that changes in marker placement may create 

error in moment calculations and joint angles. However the error in marker placement is 

expected to be less than the 3 cm variations studied. 
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7.3 SUBJECT VARIABILITY 

While the model was only tested on two subjects, there did appear to be differences between 

them. Subject 1 and Subject 2 showed significantly different joint angles, forces, and moments 

during kneeling.  This variability may be due to their difference in stature as well as kneeling 

postures. Inclusion of more subjects will be needed to determine any anthropometric effects on 

the results with and without kneepads.  

 A comparison of the two subjects yields some insights into potential inter-subject 

variability. When kneeling near 90° flexion both subjects had similar forces and moments with 

kneepads.  Without kneepads, Subject 2 was in a more flexed posture creating increased flexion 

moments. When kneeling on one knee Subject 1 was in a more upright posture, kneeling close to 

90° with the right leg and the supporting left leg.  Subject 2 was in a much more crouched 

posture with joint angles closer to that in full flexion and squatting.  This caused increased 

ground reaction forces at the foot and decreased ground reaction forces at the knee leading to 

increased flexion moments in Subject 2. When kneeling near full flexion, Subject 1 sat on their 

heels with their feet rotated laterally.  Subject 2 did not sit on their heel and kept their feet in a 

vertical position with minimal rotation. This accounted for the decreased varus angles and frontal 

and transverse moments of Subject 2. When squatting, Subject 1 had a wider stance which may 

have accounted for the adduction moments created compared to the abduction moments in 

Subject 2.  



 76 

7.4 LIMITATIONS 

The limitations of the developed model are associated with the complexity of kneeling near the 

end range of flexion, as well as with the use of inverse dynamics.  The assumptions necessary to 

use the computational model may not be valid in all circumstances.  The state of the joint 

cartilage may null the assumption of a frictionless joint, as degenerative cartilage increases the 

friction at the articulating surfaces.  Also, the distribution of mass in any body segment is not 

uniform nor is it concentrated at one location.  The external applied forces are not applied 

directly to the tibia, thereby causing forces which may not be linearly related to the resulting 

moments due to tissue deformation. The patellar tendon and tibial tubercle may change the 

center of pressure location and magnitudes of forces applied to the tibia during kneeling thereby 

affecting the force and moment calculations.  

The use of reflective markers to track the motion of palpable landmarks may have 

introduced some sources of error.  Motion of the skin to which reflective markers are attached, 

also known as soft tissue artifact, strongly affects the estimation of joint angles characterized by 

small range of motion. [47] Markers were placed on the medial and lateral epicondyles of the 

femur while the subject was in a standing T-pose for 5 seconds. These markers were then 

removed and re-created in data analysis.  Motion of these markers was minimal with standard 

deviations between .9 and 1.8 mm for Subject 1.  Therefore the relative motion of these markers 

with respect to the anatomical landmarks is not expected to introduce error in the knee joint 

center estimation.  

 A Tekscan ClinSeat® system was used to measure the thigh-calf and heel-gluteus contact 

forces.  The use of this type of system, a system which uses resistive technology, has been found 

to introduce creep in the measurement of static forces varying the force measurements by -10 % 
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to +20 %. [48] Also calibration of this system may reduce the accuracy and repeatability of its 

measurements. [49] The recommended calibration is performed by applying a constant pressure 

to the sensor by sitting on the sensor, thereby calibrating the sensor to bodyweight.  It is possible 

that the values reported from this system are inaccurate due to the method of calibration.  Every 

attempt was made to ensure repeatability of the calibrated values.  One researcher calibrated the 

system by sitting on the sensor atop a table with their left leg on the portion of the sensor that is 

placed under the subject’s lower leg. 

Along with the issues associated with measuring the contact forces, there are limitations 

associated with the representation of these forces in the model.  The thigh-calf and heel-gluteus 

contact forces were represented as single resultant forces, however these contact forces are more 

complex.  Thigh-calf contact creates a pressure distribution which has higher contact pressures 

closer to the popliteal region.  Heel-gluteus contact creates a pressure distribution with pressures 

highest in the middle of the contact area.  Both contact pressures create tissue deformation which 

may act to distribute the axial load in multiple directions.  However, the system used to measure 

these contact force was only capable of measuring axial pressure.  Therefore shear forces 

resulting from this contact were neglected from the model.  Also due to the design of the 

pressure sensor, the full contact surface could not be measured.  The active sensing units on the 

ClinSeat® system are located approximately 1.5 cm away from the top of the sensor.  This 

distance was accounted for when determining the center of pressures of these contact forces.  

However the lack of pressure measurements in these areas decreased the measured total force.  

This decrease in force may have been significant to increase the calculated flexion moments, 

thereby creating an over-estimation in sagittal moments.  Future studies on thigh-calf contact 

should use measurement tools capable of quantifying the entire contact area and measuring 
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forces in multiple axes.  Also, when modeling this contact tissue deformation should be 

accounted for to reduce error in frontal and transverse moments.   

Knee joint center location estimates have been shown to affect the interpretation of joint 

moments in gait studies with small moment magnitudes. [50] Although the sagittal joint 

moments in this model are of a higher magnitude, there are limitations associated with the KJC 

location used in this model.  Femoral “roll-back” causes the KJC to move during knee flexion.  

In the lateral compartment the femur moves 20 mm posterior from 0 to 120° of flexion and an 

additional 10 mm when kneeling into a deep squat.  In the medial compartment there is little to 

no movement until 120° of flexion when there is a posterior displacement of 9 mm. [51] This 

movement accounts for the increase in varus/valgus and internal/external rotations at higher knee 

flexion. In this study, imaging techniques were not employed which would have been necessary 

to determine the location of the knee joint center for all joint postures studied.  Future studies on 

knee biomechanics in which imaging techniques can be engaged should account for this change 

in joint center location.  

Thigh-calf and heel-gluteus contact force measurements were made for kneeling near full 

flexion and squatting, prior to collection of motion capture and force data. Although this was 

necessary to determine the moments for these postures, it neglects the possibility that similar 

contact may be present in the other postures.  Since subjects were not given specific instructions 

on kneeling postures, it is possible that they may assume the kneeling near 90° flexion and 

kneeling on one knee posture with higher flexion angles than anticipated.  When kneeling on one 

knee and kneeling near 90° flexion without kneepads, Subject 2 had included angles similar to 

those during their squatting postures.  These angles introduced thigh-calf contact which was not 

measured nor accounted for in the computational model.  Neglecting this contact resulted in 
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over-estimations of the flexion moments for these postures. In future studies it may be necessary 

to instruct subjects to assume very specific postures such that all contact forces may be 

accounted for and comparisons may be made between kneepads states.    

Due to the small sample size, N=2, concrete conclusions cannot be drawn on the forces 

and moments created in restricted postures.  The small sample size creates a very small power 

and statistics may not have been appropriate to show significant differences between postures or 

subjects.  Although data from two subjects were presented, the goal of this master’s thesis 

project was the development of the model to determine the external forces and moments, and not 

to characterize the forces and moments seen in kneeling and squatting.  In the future this model 

will be applied to data from a much larger dataset and resulting forces and moments will be 

published.    

7.5 IMPLICATIONS OF FINDINGS 

Kneeling and squatting create tibial loading conditions which differ substantially from standing.  

Increased flexion moments open the anterior aspects of the joint, increasing the loads to the 

posterior tibia. Adduction moments open the medial joint space, stressing the medial soft tissues 

and applying increased loads to the lateral compartment of the tibia.  Abduction moments open 

the lateral joint space, increasing stresses in lateral tissues and loads transmitted to the medial 

compartment. Internal and external rotational moments will increase the loading to the medial 

and lateral compartments of the knee, respectively. These complex loading conditions were 

created in the kneeling postures in this study. The implications of these increased joint torques on 

the muscles, ligaments, meniscus, and articular cartilage are presented. 
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7.5.1 Muscles Activity 

 To resist the externally applied forces and moments and reduce tibial translations, active 

and passive internal knee stabilizers are used.  Active knee stabilizers include the muscles and 

tendons and passive stabilizers include the ligaments and soft tissues.  In this study muscle 

activity was not used as a model input and it is expected that the results would change 

significantly if muscle activity were included in the force and moment calculations.  When 

considering the forces applied to the knee, it is assumed that the quadriceps muscle group is 

responsible for resisting the externally applied flexion moments.  However, although not 

included in the results, EMG data of the quadriceps and hamstrings muscles were collected.  

Results showed minimal activity, < 5% MVC, in these static postures.  This implies that the knee 

stability is mostly achieved by the passive stabilizers. Thus, the implications of this study are that 

the high moments and forces calculated in the model may be transferring to the passive 

stabilizers of the knee.  The transference of the results of this model to the FEM model being 

developed as part of the larger effort within the project will give an understanding of the 

magnitude of these passive tissue loads. 

7.5.2 Ligament Recruitment 

The passive stability due to the ligaments and soft tissues will depend on knee orientation 

and loading.  Studies of passive knee motion reveal interesting findings of the recruitment 

patterns of the passive knee stabilizers when kneeling near 90° flexion. Internal rotation recruits 

the anterior bundles of the anterior cruciate ligament (ACL) along with the anterior and posterior 

bundles of the posterior cruciate ligament (PCL) with primary stability from the posterior 
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bundles of the PCL.  The application of a posterior force recruits, the anterior bundles of the PCL 

and MCL. [52] Although adduction moments are generally stabilized primarily by the ACL and 

the MCL, when kneeling near 90° flexion the MCL is the primary stabilizer with secondary 

restraint from the PCL. [53, 54]  Kneeling near 90° flexion and kneeling on one knee created 

posterior forces along with adduction and internal rotational moments in both subjects. To 

restrict tibial translations and rotations when in these postures, the PCL is expected to be the 

primary stabilizer with assistance from the ACL and MCL.  A maximum 500 N posterior force, 

10 Nm adduction moment, and 11 Nm external rotational moment were applied to the tibia when 

kneeling in these postures. Fukuda and colleagues found an in-situ ACL force of 19.5 N when 

subjected to a 10 Nm adduction moment at 90° flexion. [55] Carlin and colleagues found an in-

situ PCL force of 95 N when subjected to a 100 N posterior force at 90° flexion. [56] If findings 

from these in-situ studies are correlated to the forces and moments from this study, it is not 

expected that kneeling postures requiring approximately 90° of knee flexion (kneeling near 90° 

flexion and kneeling on one knee) will cause detriment to the ligaments.   

The stability of the knee in the fully flexed postures of kneeling near full flexion and 

squatting is more complicated.  In vivo studies of weight bearing knees in high flexion show that 

up to 120° the PCL plays a major role in providing knee stability from posterior translation.  [52, 

57] However, in high flexion (above 120°) the PCL does not contribute substantially to knee 

stability. It is believed that the posterior soft tissues of the knee (posterior horns of the meniscus, 

posterior capsule, hamstrings muscles, fat, and skin) not the PCL provide stability in high 

flexion.  [58]   



 82 

7.5.3 Meniscal Loading 

During walking 70% of the total knee load is distributed to the medial compartment of 

the knee joint. [59] This increases the load on the medial meniscsus. When an abduction moment 

is added to the tibia, the load increases.  In the kneeling near 90° flexion and kneeling on one 

knee postures, the contact area between the tibia and the meniscus is thought to be sufficient to 

withstand the forces created under these conditions without damage.  However, with increasing 

joint flexion, as in the kneeling near full flexion and squatting postures, there is posterior 

translation of the tibia.  This translation is also accompanied by the posterior translation of the 

meniscus with the lateral horn translating more than the medial horn. This posterior translation 

functions to increase the contact area between the tibia and the meniscus and may play a crucial 

role in distributing compressive loads in full flexion. [60] Compared to extension, in high 

flexion, the contact between the tibia and the femur occur at the posterior aspects of the knee, 

decreasing the contact area resulting in increased stresses in the posterior meniscus.  

Along with knee flexion playing a major role in the loads and contact areas of the 

meniscus, adduction and abduction moments contribute to the loading of the meniscus. 

Adduction and abduction moments increase loading to the lateral and medial compartments of 

the knee. [61] In Subject 1, adduction moments were created when kneeling near full flexion and 

squatting.  The adduction moments in postures with high knee flexion may cause detrimental 

effects on the lateral meniscus. The adduction moments which were as much as 16 Nm in 

conjunction with the posterior forces of up to 120 N, increase the shear loads transmitted to the 

meniscus. In Subject 2, abduction moments increased the loading to the medial meniscus.  The 

moments which were up to 21 Nm in combination with 160 N posterior forces, increased the 

shear load to the meniscus.  These loads are then transferred to the articular cartilage with 
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maximal shear stress occurring at the cartilage-bone interface away from the center of contact. 

[62] This creates areas of high stress on the articular cartilage and when sustained for prolonged 

periods could lead to the deterioration of the meniscus and articular cartilage damage.     

7.5.4 Osteoarthritis Progression 

 Articular cartilage damage may occur as a result of biological and mechanical factors.  

Two forms of articular cartilage damage occur from loading.  Type 1 articular cartilage damage 

is characterized by damage without disruption of the underlying bone or calcified cartilage layer.  

Type 2 damage is characterized by bone fracture with or without damage to the overlying 

cartilage. [63] Excessive shear stress, tensile stress, and principal strain have been suggested as 

mechanisms of articular cartilage damage. [63 - 65] Thambyah and colleagues found articular 

cartilage stresses of 14 MPa during gait and these stresses increased by more than 80% when in 

deep flexion.  This increased stress reached the damage limit of the cartilage and was thought to 

increase the risk of articular cartilage damage. [66] Thus, the implications are that the high 

moments and forces associated with kneeling near full flexion and squatting may cause excessive 

stress on the articular cartilage of the tibiofemoral joint thereby increasing the risk for knee 

osteoarthritis.  

7.5.5 Postures Associated with Osteoarthritis 

Epidemiologic studies have determined postures associated with increased prevalence of 

knee osteoarthritis including squatting, kneeling, stair climbing, side-knee bending, and sitting 

crossed-legged. [17, 32] Stair climbing produces forces and moments greater than that during 
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walking. [67, 68] Stair descent creates flexion, varus/valgus, and external rotational moments 

greater than level walking or stair ascent, making it a more stressful activity. [68] In this study all 

postures created frontal moments and posterior forces greater than standing.  Although kneeling 

with joint flexion close to 90° is not expected to cause damage to the articular cartilage, it is 

expected that postures with higher joint flexion will. The combination of increased frontal 

moments, increased posterior force, and high knee flexion, create high loads on the medial and 

lateral posterior compartments of the knee and may create the biomechanical stresses necessary 

to initiate the developments and progression of medial and lateral compartment knee 

osteoarthritis.   

7.6 ADVANCEMENTS 

The developed computational model accounts for the contact between the heel and the gluteal 

muscles which until now, had been neglected from other models.  Thigh-calf contact has been 

shown to significantly affect the forces in the quadriceps and it is expected that the heel-gluteus 

contact will have similar effects on muscle force estimations.  In this study the heel-gluteus 

contact force was 54 N which was almost half of the 124 N thigh-calf contact force.  If a force of 

124 N is significant to effect muscle force estimations than an additional force of 54 N should 

also be significant to affect these forces.  

Results of the sensitivity analysis revealed that the location of the thigh-calf contact has a 

large effect on the knee moments when kneeling near full flexion and squatting.  Although when 

using this model this may be a limitation, when considering the design of interventions this may 

be an important factor.  Early interventions to reduce the stresses and strains at the knee joint 
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have focused on the outside of the knee, i.e. knee pads.  However, slightly changing postures or 

the distribution of body weight may be useful.  Newer devices should consider maximizing the 

thigh-calf and heel-gluteus contact forces in hopes of distributing more body weight along the 

lower leg, thereby creating an extensor moment to stabilize the knee joint in full flexion.   It was 

also found that the kneepad acted to change the COP of the force at the knee by as much as 2.9 

cm in the medial/lateral direction which created an 8 Nm increase in transverse moments.  This 

increase in rotational moment may be detrimental to the internal knee structures.  It therefore 

becomes important to consider the effect of new devices on the transverse and frontal moments 

of the knee which are often neglected due to their smaller magnitudes when compared to sagittal 

moments.  
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8.0  FUTURE WORK 

In the near future the forces and moments determined using this model will be used as 

inputs into a finite element model of the knee.  In addition to motion capture, force data, and 

thigh-calf and heel-gluteus contact measurements, electromyography and knee surface pressure 

data were collected as part of this project.  Electromyography was used to determine which 

muscles were active during different stages of kneeling, crawling, and stooping.  Subjects were 

also instrumented with a custom designed pressure sensor on their right knee under their 

kneepad. This pressure sensor was used to measure the pressure distributions at the patella, 

patellar tendon, and tibial tubercle with and without kneepads.  Also a second commonly used 

kneepad with a different design (non-articulating, soft outer shell) was used.  Gaining a better 

understanding of the pressures, forces, and moments at the knee joint and in the internal 

stabilizing structures, will allow development of better solutions to the complex knee problems 

facing many low-seam coal miners.  The end-product of this project will be the design of a new 

intervention which will be effective in reducing the stress and strains in the internal knee 

structures caused by frequent and prolonged kneeling, stooping, and crawling.  
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9.0  CONCLUSION 

In this work a 3-D computational model based on inverse dynamics and segment 

coordinate systems was developed in MATLAB to determine the joint angles and net force and 

moments applied to the knee in static kneeling postures.  This model was custom fitted to each 

subject and based off their individual anthropometry, ground reaction forces, thigh-calf contact 

force, and heel-gluteus contact force measurements.  Sensitivity analysis revealed that varying 

the location of the knee joint center affected the sagittal, frontal, and transverse moments in all 

postures. In some cases the interpretation of the joint moment changed due to varying the KJC 

by 3 cm.  This model was developed for use on a much larger dataset currently being collected.  

However, data from two subjects were presented in this paper.  These subjects revealed that 

kneeling creates high external knee joint moments which may be as much as 10 to 40 times that 

during quiet standing.  There were also large variations in the moments between postures and 

kneepads states. Postures requiring larger flexion angles generally created larger flexion 

moments at the knee. The more upright postures of kneeling near 90° flexion and kneeling on 

one knee created increased posterior forces, up to 500N.  Also ankle positioning appeared to play 

a large role in the increased frontal moments associated with kneeling. One subject internally 

rotated their ankles when kneeling which caused large knee adduction moments, up to 16 Nm.  

This increased adduction moment in combination with increased posterior forces, increases the 

forces applied to the medial compartment of the knee and may be significant to create cartilage 
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damage. The other subject had large abduction moments, 21 Nm, when squatting which 

increased loading to the lateral aspects of the meniscus. It was also found that the kneepad used 

in this study changed the center of pressure of the force at the knee, in some cases increasing the 

transverse moment by as much as 8 Nm.  A larger dataset will be necessary to determine the 

effect of these kneeling postures on the internal structures of the knee.  However, this study 

suggests that kneeling increases the flexion moments applied to the knee as well as the adduction 

moments and posterior forces and may be significant to initiate meniscal and articular cartilage 

damage.  
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APPENDIX 

MATLAB SOFTWARE 

The MATLAB® software developed to determine the net forces, net moments, and joint angles at 

the knee consists of eight MATLAB® files. Three files are used to calculate the forces, moments, 

and angles. The other files are necessary for importing data and exporting results.  The three 

files: transform_m2a_shank_thigh.m, knee_angle.m, and forces_moments.m, perform all 

necessary calculations and are included in this appendix.  

A.1 TRANSFORM_M2A_SHANK_THIGH.M  

Transform_m2a_shank_thigh.m is used to calculate the transformation matrix from the global 

coordinate system to the anatomical coordinate system, the transformation matrix from the 

global coordinate system to the measured coordinate system, and the transformation matrix from 

the measured coordinate system to the anatomical coordinate system.  
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function [filename]=transform_m2a(results_directory) 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%% transform_m2a.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% 
%%%% This function is designed to produce the transformation matrix from  
%%%% testing coordinates to anatomical coordinates. This function uses  
%%%% only the anatomical (calibration) data 
%%%%    1. Assign data to specific markers 
%%%%   Part 1 - Shank 
%%%%    2. Determine the anatomical coordinate system for shank and  
%%%%       calculate the transformation matrix from global to anatomical  
%%%%       coordinates 
%%%%    3. Determine the measured/testing coordinate system and calculate 
%%%%       the transformation matrix from global to measured  
%%%%       coordinates 
%%%%    4. Determine the transformation matrix from measured to anatomical 
%%%%       and get the mean value of this matrix 
%%%%   Part 2 - Thigh 
%%%%    2-4 for thigh 
%%%%    5. Save transformation matrix TMAshank to mat file 
%%%% 
%%%%        Jonisha Pollard, JPollard@cdc.gov, 8/19/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%% Load Anatomical Data 
    cd(results_directory); 
    load anatomical.mat  
     
%% Determine length of data 
   [n o]=size(anatomical_data); 
    
%% 1. Assign data to specific markers 
    right_knee=anatomical_data(:,45:47); 
    right_knee_medial=anatomical_data(:,78:80);   
    right_ankle=anatomical_data(:,51:53); 
    right_ankle_medial=anatomical_data(:,81:83); 
    right_shank=anatomical_data(:,48:50); 
    right_shank_front=anatomical_data(:,111:113); 
    right_shank_rear=anatomical_data(:,114:116); 
    right_thigh=anatomical_data(:,42:44); 
    right_thigh_front=anatomical_data(:,93:95); 
    right_thigh_rear=anatomical_data(:,96:98); 
     
    left_knee=anatomical_data(:,63:65); 
    left_knee_medial=anatomical_data(:,84:86);   
    left_ankle=anatomical_data(:,69:71); 
    left_ankle_medial=anatomical_data(:,87:89); 
    left_shank=anatomical_data(:,66:68); 
    left_shank_front=anatomical_data(:,120:122); 
    left_shank_rear=anatomical_data(:,123:125); 
    left_thigh=anatomical_data(:,60:62); 
    left_thigh_front=anatomical_data(:,102:104); 
    left_thigh_rear=anatomical_data(:,105:107); 
  
    rasis=anatomical_data(:,33:35); 
    lasis=anatomical_data(:,36:38); 
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    %% Determine location of joint centers in global coordinates 
    AJC=(right_ankle + right_ankle_medial)/2;  % Global Right AJC  
    KJC=(right_knee + right_knee_medial)/2;    % Global Right KJC  
    
    AJC_L=(left_ankle + left_ankle_medial)/2;  % Global Left AJC  
    KJC_L=(left_knee + left_knee_medial)/2;    % Global Left KJC  
    
   
    % Global HJC Calculation. Bells method 
    % Leardini et al. 1999, Bell et al. 1990 
    HJC_origin=(lasis+rasis)/2;   
    PW=abs(lasis(:,1)-rasis(:,1)); % inter Asis distance 
    HJC(:,1)=HJC_origin(:,1)+.36*PW; 
    HJC(:,2)=HJC_origin(:,2)-.19*PW; 
    HJC(:,3)=HJC_origin(:,3)-.3*PW; 
     
    HJC_L(:,1)=HJC_origin(:,1)-.36*PW; 
    HJC_L(:,2)=HJC_origin(:,2)-.19*PW; 
    HJC_L(:,3)=HJC_origin(:,3)-.3*PW; 
  
        
         
%%%%%%%%%%%%%%%%%%%%%% Part 1 - Shank %%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 2. Determine anatomical coordinate system for shank and calculate  
%%    transformation matrix from global to anatomical coordinates 
        
        % All coordinate systems were chosen such that hey align with the 
        % Global coordinate system at Standard anatomical position 
         
        % Global & Anatomical Coordinate Systems 
        % x is medial/lateral 
        % y is anterior/posterior 
        % z is superior/inferior       
       
    % Right  
        for i=1:n 
            r1=KJC-AJC;                             % local z-axis  
            r2=right_knee - right_knee_medial;      % in x-direction 
            r3=cross(r1,r2);                        % local y-axis 
            r4=cross(r3,r1);                        % local x-axis 
            x(i,:)=r4(i,:)/norm(r4(i,:)); 
            y(i,:)=r3(i,:)/norm(r3(i,:));           % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
     
       TGAshank=zeros(4,4,n); 
        for i=1:n 
            TGAshank(1,:,i)=[1 0 0 0]; 
            TGAshank(2:4,1,i)=KJC(i,:);      %right KJC is origin 
            TGAshank(2:4,2,i)=x(i,:); 
            TGAshank(2:4,3,i)=y(i,:); 
            TGAshank(2:4,4,i)=z(i,:); 
        end 
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       clear r1 r2 r3 r4 x y z         % clear variables  
        
       % calculate AJC and KJC in anatomical shank coordinates     
       for i=1:n 
           G_ajc(i,2:4)=AJC(i,:); 
           G_ajc(:,1)=1; 
           G_kjc(i,2:4)=KJC(i,:); 
           G_kjc(:,1)=1; 
           asAJC_all(i,:)=inv(TGAshank(:,:,i))*G_ajc(i,:)';   %Shank AJC 
           asKJC_all(i,:)=inv(TGAshank(:,:,i))*G_kjc(i,:)';   %Shank KJC 
       end 
  
       asAJC=mean(asAJC_all(:,2:4)); 
       asKJC=mean(asKJC_all(:,2:4));    % verified to equal [0 0 0] 
        
             
    % Left  
        for i=1:n 
            r1=KJC_L-AJC_L;                         % local z-axis  
            r2=left_knee_medial - left_knee;        % in x-direction 
            r3=cross(r1,r2);                        % local y-axis 
            r4=cross(r3,r1);                        % local x-axis 
            x(i,:)=r4(i,:)/norm(r4(i,:)); 
            y(i,:)=r3(i,:)/norm(r3(i,:));           % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
      TGAshank_L=zeros(4,4,n); 
        for i=1:n 
            TGAshank_L(1,:,i)=[1 0 0 0]; 
            TGAshank_L(2:4,1,i)=KJC_L(i,:);      % left KJC is origin 
            TGAshank_L(2:4,2,i)=x(i,:); 
            TGAshank_L(2:4,3,i)=y(i,:); 
            TGAshank_L(2:4,4,i)=z(i,:); 
        end 
         
       clear r1 r2 r3 r4 x y z         % clear variables  
              
       % calculate AJC and KJC in anatomical shank coordinates     
       for i=1:n 
       G_ajc_L(i,2:4)=AJC_L(i,:); 
       G_ajc_L(:,1)=1; 
       G_kjc_L(i,2:4)=KJC_L(i,:); 
       G_kjc_L(:,1)=1; 
       asAJC_all_L(i,:)=inv(TGAshank_L(:,:,i))*G_ajc_L(i,:)'; %Shank AJC 
       asKJC_all_L(i,:)=inv(TGAshank_L(:,:,i))*G_kjc_L(i,:)'; %Shank KJC 
       end 
  
       asAJC_L=mean(asAJC_all_L(:,2:4)); 
       asKJC_L=mean(asKJC_all_L(:,2:4));   
       
%% 3. Determine the measured coordinate system for shank and calculate the 
%%    transformation matrix from global to measured 
        %% Global & Anatomical Coordinate Systems 
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        %% x is medial/lateral 
        %% y is anterior/posterior 
        %% z is superior/inferior    
         
   % Right shank 
        for i=1:n 
            r1=right_shank-right_shank_front;            % local z-axis 
            r2=right_shank_front - right_shank_rear;     % in y direction 
            r3=cross(r2,r1);                             % local x-axis 
            r4=cross(r1,r3);                             % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));                % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
        
        TGMshank=zeros(4,4,n); 
         
        for i=1:n 
            TGMshank(1,:,i)=[1 0 0 0]; 
            TGMshank(2:4,1,i)=right_shank_front(i,:);       % origin  
            TGMshank(2:4,2,i)=x(i,:); 
            TGMshank(2:4,3,i)=y(i,:); 
            TGMshank(2:4,4,i)=z(i,:); 
        end 
        clear r1 r2 r3 r4 x y z         % clear variables  
         
   % Left shank 
        for i=1:n 
            r1=left_shank-left_shank_front;            % local z-axis 
            r2=left_shank_front - left_shank_rear;     % in y direction 
            r3=cross(r2,r1);                           % local x-axis 
            r4=cross(r1,r3);                           % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));              % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
        TGMshank_L=zeros(4,4,n); 
         
        for i=1:n 
            TGMshank_L(1,:,i)=[1 0 0 0]; 
            TGMshank_L(2:4,1,i)=left_shank_front(i,:);       % origin  
            TGMshank_L(2:4,2,i)=x(i,:); 
            TGMshank_L(2:4,3,i)=y(i,:); 
            TGMshank_L(2:4,4,i)=z(i,:); 
        end 
         
       clear r1 r2 r3 r4 x y z         % clear variables  
        
%% 4. Calculate transformation matrix from measured to anatomical coords      
     % Right 
        TMAs_alldata=zeros(4,4,n);    % TMAshank for all data points 
        for i=1:n 
            TMAs_alldata(:,:,i)=inv(TGMshank(:,:,i))*TGAshank(:,:,i); 
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        end 
                 
        % calculate the mean of TMAshank_alldata  
        TMAshank=zeros(4,4); 
        for i=2:4 
            for j=1:4 
                TMAshank(i,j)=mean(TMAs_alldata(i,j,:)); 
                TMAshank(1,1)=1; 
                TMAshank(1,2:4)=0; 
            end 
        end 
         
     % Left 
        TMAs_alldata_L=zeros(4,4,n);    % TMAshank_L for all data points 
        for i=1:n 
            TMAs_alldata_L(:,:,i)=inv(TGMshank_L(:,:,i))*TGAshank_L(:,:,i); 
        end 
                 
        % calculate the mean of TMAshank_L_alldata  
        TMAshank_L=zeros(4,4); 
        for i=2:4 
            for j=1:4 
                TMAshank_L(i,j)=mean(TMAs_alldata_L(i,j,:)); 
                TMAshank_L(1,1)=1; 
                TMAshank_L(1,2:4)=0; 
            end 
        end 
         
   
%%%%%%%%%%%%%%%%%%%%%% Part 2 - Thigh %%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 2. Determine anatomical coordinate system for thigh and calculate 
%%    transformation matrix from global to anatomical coords 
        %% Global & Anatomical Coordinate Systems 
        %% x is medial/lateral 
        %% y is anterior/posterior 
        %% z is superior/inferior          
  
    % Right Thigh 
        for i=1:n 
            r1=HJC-KJC;                             % local z-axis 
            r2=right_knee - right_knee_medial;      % in x-direction  
            r3=cross(r1,r2);                        % local y-axis 
            r4=cross(r3,r1);                        % local x-axis 
            x(i,:)=r4(i,:)/norm(r4(i,:)); 
            y(i,:)=r3(i,:)/norm(r3(i,:));           % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
       TGAthigh=zeros(4,4,n); 
        for i=1:n 
            TGAthigh(1,:,i)=[1 0 0 0]; 
            TGAthigh(2:4,1,i)=HJC(i,:);      %right HJC is origin 
            TGAthigh(2:4,2,i)=x(i,:); 
            TGAthigh(2:4,3,i)=y(i,:); 
            TGAthigh(2:4,4,i)=z(i,:); 
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        end 
         
       clear r1 r2 r3 r4 x y z         % clear variables  
        
       % calculate HJC and KJC in anatomical thigh coordinates     
       for i=1:n 
           G_hjc(i,2:4)=HJC(i,:); 
           G_hjc(:,1)=1; 
           G_kjc(i,2:4)=KJC(i,:); 
           G_kjc(:,1)=1; 
           atHJC_all(i,:)=inv(TGAthigh(:,:,i))*G_hjc(i,:)';   %Thigh HJC  
           atKJC_all(i,:)=inv(TGAthigh(:,:,i))*G_kjc(i,:)';   %Thigh KJC 
       end 
  
       atHJC=mean(atHJC_all(:,2:4)); % verified to equal [0 0 0] 
       atKJC=mean(atKJC_all(:,2:4)); 
    
        
    % Left Thigh 
        for i=1:n 
            r1=HJC_L-KJC_L;                         % local z-axis 
            r2=left_knee_medial - left_knee;        % in x-direction  
            r3=cross(r1,r2);                        % local y-axis 
            r4=cross(r3,r1);                        % local x-axis 
            x(i,:)=r4(i,:)/norm(r4(i,:)); 
            y(i,:)=r3(i,:)/norm(r3(i,:));           % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
       TGAthigh_L=zeros(4,4,n); 
        for i=1:n 
            TGAthigh_L(1,:,i)=[1 0 0 0]; 
            TGAthigh_L(2:4,1,i)=HJC_L(i,:);      %left HJC is origin 
            TGAthigh_L(2:4,2,i)=x(i,:); 
            TGAthigh_L(2:4,3,i)=y(i,:); 
            TGAthigh_L(2:4,4,i)=z(i,:); 
        end 
         
       clear r1 r2 r3 r4 x y z         % clear variables  
        
       % calculate HJC and KJC in anatomical thigh coordinates     
       for i=1:n 
       G_hjc_L(i,2:4)=HJC_L(i,:); 
       G_hjc_L(:,1)=1; 
       G_kjc_L(i,2:4)=KJC_L(i,:); 
       G_kjc_L(:,1)=1; 
       atHJC_all_L(i,:)=inv(TGAthigh_L(:,:,i))*G_hjc_L(i,:)'; %Thigh HJC  
       atKJC_all_L(i,:)=inv(TGAthigh_L(:,:,i))*G_kjc_L(i,:)'; %Thigh KJC 
       end 
  
       atHJC_L=mean(atHJC_all_L(:,2:4)); % verified to equal [0 0 0] 
       atKJC_L=mean(atKJC_all_L(:,2:4)); 
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%% 3. Determine the measured coordinate system for thigh and calculate 
%%    transformation from global to measured 
        %% Global & Anatomical Coordinate Systems 
        %% x is medial/lateral 
        %% y is anterior/posterior 
        %% z is superior/inferior    
         
   % Right  
        for i=1:n 
            r1=right_thigh-right_thigh_front;            % local z-axis 
            r2=right_thigh_front-right_thigh_rear;       % in y direction 
            r3=cross(r2,r1);                             % local x-axis 
            r4=cross(r1,r3);                             % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));                % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
         
        TGMthigh=zeros(4,4,n); 
         
        for i=1:n 
            TGMthigh(1,:,i)=[1 0 0 0]; 
            TGMthigh(2:4,1,i)=right_thigh_front(i,:); %origin 
            TGMthigh(2:4,2,i)=x(i,:); 
            TGMthigh(2:4,3,i)=y(i,:); 
            TGMthigh(2:4,4,i)=z(i,:); 
        end 
  
        clear r1 r2 r3 r4 x y z         % clear variables  
         
 % Left  
         for i=1:n 
            r1=left_thigh-left_thigh_front;            % local z-axis 
            r2=left_thigh_front-left_thigh_rear;       % in y direction 
            r3=cross(r2,r1);                           % local x-axis 
            r4=cross(r1,r3);                           % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));              % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
         
        TGMthigh_L=zeros(4,4,n); 
         
        for i=1:n 
            TGMthigh_L(1,:,i)=[1 0 0 0]; 
            TGMthigh_L(2:4,1,i)=left_thigh_front(i,:); %origin 
            TGMthigh_L(2:4,2,i)=x(i,:); 
            TGMthigh_L(2:4,3,i)=y(i,:); 
            TGMthigh_L(2:4,4,i)=z(i,:); 
        end 
  
        clear r1 r2 r3 r4 x y z         % clear variables  
         
%% 4. Calculate transformation matrix from measured to anatomical coords      
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    % Right  
        TMAt_alldata=zeros(4,4,n);   % TMAthigh for all data point 
        for i=1:n 
            TMAt_alldata(:,:,i)=inv(TGMthigh(:,:,i))*TGAthigh(:,:,i); 
        end 
                 
        % calculate the mean of TMAthigh_alldata  
        TMAthigh=zeros(4,4); 
        for i=2:4 
            for j=1:4 
                TMAthigh(i,j)=mean(TMAt_alldata(i,j,:)); 
                TMAthigh(1,1)=1; 
                TMAthigh(1,2:4)=0; 
            end 
        end                  
            
     % Left  
        TMAt_alldata_L=zeros(4,4,n);   % TMAthigh for all data point 
        for i=1:n 
            TMAt_alldata_L(:,:,i)=inv(TGMthigh_L(:,:,i))*TGAthigh_L(:,:,i); 
        end 
                 
        % calculate the mean of TMAthigh_alldata  
        TMAthigh_L=zeros(4,4); 
        for i=2:4 
            for j=1:4 
                TMAthigh_L(i,j)=mean(TMAt_alldata_L(i,j,:)); 
                TMAthigh_L(1,1)=1; 
                TMAthigh_L(1,2:4)=0; 
            end 
        end                  
         
%%  5. Save transformation matrixes KJC, AJC and HJC mat file           
    save anatomical.mat TMAshank TMAthigh asAJC TMAshank_L TMAthigh_L ... 
         asAJC_L -append   
     
     
end % end of function transform_m2a.m  
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A.2 KNEE ANGLE.M 

Knee_angle.m is used to calculate the orientation of the knee joint.  Using Euler angle 

decomposition, with a Euler order of X’y’z”, the included joint angle, the angle of varus/valgus, 

and the angle of internal/external rotation are calculated.   

 

function knee_angle(posture, results_directory) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%% knee_angle.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% This function is designed to determine the knee angle by calculating  
%%%% the angle between the thigh coordinate system and the shank coordinate 
%%%% system. 
%%%% 1. Load testing marker data and assign data to specific markers 
%%%% 2. Determine measured coordinate system for shank and thigh 
%%%% 3. Calculate anatomical coordinate system from measured system and  
%%%%    determine transformation from thigh to shank Tts 
%%%% 4. Decompose transformation matrix for Euler angles 
%%%% 5. Save joint angles to *posture*.mat 
%%%% 
%%%%        Jonisha Pollard, JPollard@cdc.gov, 7/23/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
cd(results_directory) 
load(posture)          %load mat file with data for specific postures 
load anatomical        %load mat file with anatomical markers and TMAshank 
  
%%  1. Load testing marker data and assign data to specific markers 
    [n a]=size(testing_data); 
    right_shank=testing_data(:,39:41); 
    right_shank_rear=testing_data(:,48:50); 
    right_shank_front=testing_data(:,45:47); 
    right_thigh=testing_data(:,27:29); 
    right_thigh_front=testing_data(:,33:35); 
    right_thigh_rear=testing_data(:,36:38); 
  
    left_shank=testing_data(:,81:83); 
    left_shank_rear=testing_data(:,90:92); 
    left_shank_front=testing_data(:,87:89); 
    left_thigh=testing_data(:,69:71); 
    left_thigh_front=testing_data(:,75:77); 
    left_thigh_rear=testing_data(:,78:80); 
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%% 2. Determine measured coordinate system for shank and thigh 
        %% Global Coordinate System 
        %% x is medial/lateral 
        %% y is anterior/posterior 
        %% z is superior/inferior   
         
    % Right shank 
        for i=1:n 
            r1=right_shank-right_shank_front;            % local z-axis 
            r2=right_shank_front - right_shank_rear;     % in y direction 
            r3=cross(r2,r1);                             % local x-axis 
            r4=cross(r1,r3);                             % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));                % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
        TGMshank=zeros(4,4,n); 
        for i=1:n 
            TGMshank(1,:,i)=[1 0 0 0]; 
            TGMshank(2:4,1,i)=right_shank_front(i,:); % origin 
            TGMshank(2:4,2,i)=x(i,:); 
            TGMshank(2:4,3,i)=y(i,:); 
            TGMshank(2:4,4,i)=z(i,:); 
        end 
  
    clear r1 r2 r3 r4 x y z 
  
   % Right thigh 
       for i=1:n 
            r1=right_thigh-right_thigh_front;            % local z-axis 
            r2=right_thigh_front-right_thigh_rear;       % in y direction 
            r3=cross(r2,r1);                             % local x-axis 
            r4=cross(r1,r3);                             % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));                % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
        TGMthigh=zeros(4,4,n); 
        for i=1:n 
            TGMthigh(1,:,i)=[1 0 0 0]; 
            TGMthigh(2:4,1,i)=right_thigh_front(i,:);      % origin 
            TGMthigh(2:4,2,i)=x(i,:); 
            TGMthigh(2:4,3,i)=y(i,:); 
            TGMthigh(2:4,4,i)=z(i,:); 
        end 
  
        clear r1 r2 r3 r4 x y z 
         
    % Left shank 
        for i=1:n 
            r1=left_shank-left_shank_front;            % local z-axis 
            r2=left_shank_front - left_shank_rear;     % in y direction 
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            r3=cross(r2,r1);                             % local x-axis 
            r4=cross(r1,r3);                             % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));                % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
        TGMshank_L=zeros(4,4,n); 
        for i=1:n 
            TGMshank_L(1,:,i)=[1 0 0 0]; 
            TGMshank_L(2:4,1,i)=left_shank_front(i,:); % origin 
            TGMshank_L(2:4,2,i)=x(i,:); 
            TGMshank_L(2:4,3,i)=y(i,:); 
            TGMshank_L(2:4,4,i)=z(i,:); 
        end 
  
        clear r1 r2 r3 r4 x y z 
  
    
% Left thigh 
       for i=1:n 
            r1=left_thigh-left_thigh_front;            % local z-axis 
            r2=left_thigh_front-left_thigh_rear;       % in y direction 
            r3=cross(r2,r1);                           % local x-axis 
            r4=cross(r1,r3);                           % local y-axis 
            x(i,:)=r3(i,:)/norm(r3(i,:)); 
            y(i,:)=r4(i,:)/norm(r4(i,:));              % rotation matrix 
            z(i,:)=r1(i,:)/norm(r1(i,:)); 
        end 
  
        TGMthigh_L=zeros(4,4,n); 
        for i=1:n 
            TGMthigh_L(1,:,i)=[1 0 0 0]; 
            TGMthigh_L(2:4,1,i)=left_thigh_front(i,:);      % origin 
            TGMthigh_L(2:4,2,i)=x(i,:); 
            TGMthigh_L(2:4,3,i)=y(i,:); 
            TGMthigh_L(2:4,4,i)=z(i,:); 
        end 
  
        clear r1 r2 r3 r4 x y z 
         
             
%%  3. Calculate anatomical coordinate system from measured system and 
%%  determine transformation from thigh to shank Tts 
  
        for i=1:n 
         % Right 
            TGAshank(:,:,i)=TGMshank(:,:,i)*TMAshank;      
            TGAthigh(:,:,i)=TGMthigh(:,:,i)*TMAthigh;       
            Tts(:,:,i)=inv(TGAthigh(:,:,i))*TGAshank(:,:,i);                   
            Rts(:,:,i)=Tts(2:4,2:4,i);     % rotation matrix 
             
         % Left 
            TGAshank_L(:,:,i)=TGMshank_L(:,:,i)*TMAshank_L;      
            TGAthigh_L(:,:,i)=TGMthigh_L(:,:,i)*TMAthigh_L;       
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            Tts_L(:,:,i)=inv(TGAthigh_L(:,:,i))*TGAshank_L(:,:,i);                   
            Rts_L(:,:,i)=Tts_L(2:4,2:4,i);     % rotation matrix 
        end 
  
%%  4. Decompose transformation matrix for Euler angle  
        
% Global Coordinate System 
        % 1st axis - flexion/ext - X 
        % 2nd axis - varus/valgus - Y  
        % 3rd axis - inversion/eversion - Z 
        % Euler order Xy'z'' 
         
         
        for i=1:n 
            z_angle(i,:)=((180/pi) * atan2(-Rts(1,2,i),Rts(1,1,i))); 
            x_angle(i,:)=180 + ((180/pi) * atan2(-Rts(2,3,i),Rts(3,3,i))); 
            y_angle(i,:)=((180/pi) * atan2(cos(z_angle(i,:))*Rts(1,3,i),... 
                         Rts(1,1,i))); 
  
            z_angle_L(i,:)=((180/pi) * atan2(-Rts_L(1,2,i),Rts_L(1,1,i))); 
            x_angle_L(i,:)=180 + ((180/pi) * atan2(-Rts_L(2,3,i), ... 
                           Rts_L(3,3,i))); 
            y_angle_L(i,:)=((180/pi) * atan2(cos(z_angle_L(i,:)) ... 
                           *Rts_L(1,3,i),Rts_L(1,1,i))); 
        end 
         
%%  5. Save angles 
  
   save(posture,'x_angle','y_angle','z_angle','Tts','TGAthigh',... 
       'TGAshank','x_angle_L','y_angle_L','z_angle_L','Tts_L', ... 
       'TGAthigh_L','TGAshank_L','-append') 
  
  end         % end of function knee_angle.m 
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A.3 FORCES_MOMENTS.M 

Forces_moments.m is used to calculate the net external forces, moments, and moment 

contributions at the knee joint in the global coordinate system. The forces and moments are then 

transformed into the anatomical coordinate system.  

function forces_moments(weight, height, posture, results_directory) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%% forces_moments.m %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% This function is designed to calculate the net forces and moments at  
%%%% the knee joint for squatting and full flexion   
%%%% 1. Load testing marker data and assign data to specific markers 
%%%% 2. Load force plate data 
%%%% 3. Determine measured coordinate system for shank 
%%%% 4. Get anatomical shank coordinates from testing coordinates 
%%%% 5. Determine COP and weight of segments and joint rotation centers 
%%%% 6. Calculate the joint reactive forces at the right knee in Global 
%%%%    coordinates 
%%%% 7. Calculate the moment at the right knee in Global coordinates 
%%%% 8. Calculate forces and moments in Anatomical coordinates 
%%%% 9. Normalize forces and moments 
%%%% 10. Saves forces and moments to *posture*.mat 
%%%% 
%%%%        Jonisha Pollard, JPollard@cdc.gov, 7/23/08 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
cd(results_directory) 
load(posture)     %load mat file with data for specific postures 
load anatomical   %load mat file with anatomical markers and TMAshank 
  
%%  1. Load testing marker data and assign data to specific markers 
    [n a]=size(testing_data); 
    right_shank=testing_data(:,39:41); 
    right_shank_rear=testing_data(:,48:50); 
    right_shank_front=testing_data(:,45:47); 
  
  
%%  2. Load force plate data   
    F1=forces_data(:,2:4);         
    COP1=forces_data(:,5:7);       
    F2=forces_data(:,9:11);        
    COP2=forces_data(:,12:14);    
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%%  3. Determine measured coordinate system for shank 
     
    %% Global Coordinate System 
    %% x is medial/lateral 
    %% y is anterior/posterior 
    %% z is superior/inferior    
  
    for i=1:n 
        r1=right_shank-right_shank_front;            % local z-axis 
        r2=right_shank_front - right_shank_rear;     % in y direction 
        r3=cross(r2,r1);                             % local x-axis 
        r4=cross(r1,r3);                             % local y-axis 
        x(i,:)=r3(i,:)/norm(r3(i,:)); 
        y(i,:)=r4(i,:)/norm(r4(i,:));                % rotation matrix 
        z(i,:)=r1(i,:)/norm(r1(i,:)); 
    end 
  
     
    TGMshank=zeros(4,4,n); 
    for i=1:n 
        TGMshank(1,:,i)=[1 0 0 0]; 
        TGMshank(2:4,1,i)=right_shank_front(i,:);      % origin 
        TGMshank(2:4,2,i)=x(i,:); 
        TGMshank(2:4,3,i)=y(i,:); 
        TGMshank(2:4,4,i)=z(i,:); 
    end 
  
     
%%  4. Get anatomical shank coordinates from measured coordinates 
  
    for i=1:n 
        TGAshank(:,:,i)=TGMshank(:,:,i)*TMAshank;   % transformation matrix 
        RGAshank(:,:,i)=TGAshank(2:4,2:4,i);        % rotation matrix 
    end 
     
%%  5. Determine COM, COP, joint rotation centers, and contact forces in 
%%        global coordinates 
       
    for i=1:n 
    % calculate location of AJC and KJC in global coordinates   
       g_AJC(i,:)=TGAshank(:,:,i)*[1 asAJC]'; 
       g_KJC(i,:)=TGAshank(:,:,i)*[1 0 0 0]';% KJC is origin of ACS [0 0 0] 
        
    % calculate thigh-calf and heel-gluteus COP in global coordinates      
    %  these contact forces are located along the z axis of the shank coord 
       COP_tc(i,:)=TGAshank(:,:,i)*[1 0 0 -tc_dist]';  
       COP_hg(i,:)=TGAshank(:,:,i)*[1 0 0 -hg_dist]'; 
        
    % Thigh-calf and Heel-gluteus contact forces in global coordinate system 
        gtc_cont(i,:)=RGAshank(:,:,i)*[0 tc_cont 0]'; 
        ghg_cont(i,:)=RGAshank(:,:,i)*[0 hg_cont 0]';    
    end 
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    gAJC=g_AJC(:,2:4); %eliminate '1' in 1st col 
    gKJC=g_KJC(:,2:4); 
    COPtc=COP_tc(:,2:4); 
    COPhg=COP_hg(:,2:4); 
  
    % Lower leg COM and weight are modified from Clauser et al 1969 and  
    % Hinrichs 1990 
    % 47.5% of distance from proximal to distal 
    COM_lowleg=gAJC+.525*(gKJC - gAJC);  
    W_lowleg=zeros(n,3);  
    W_lowleg(:,3)=-.058*weight;      
     
  
         
%% 6. Calculate the joint reactive forces at the right knee in Global 
%% Coordinates 
     
    % Sum of all forces at knee should equal zero 
    % Sum forces = Force_r_knee + F1 + F2 + W_lowleg + tc + hg = 0 
    %             Knee reaction force = -(F1 + F2 + W_lowleg + tc + hg) 
    % Force imposed on knee =F1 + F2 + W_lowleg + tc + hg 
     
    % Force imposed on Knee (reaction force will be -) 
    Fknee= F1 + F2 + W_lowleg + gtc_cont + ghg_cont;    
    
       
%% 7. Calculate moment at the right knee joint in Global Coordinates 
    % Sum of all moments at knee should equal zero 
    % Moments will be calculated using the vector cross product 
     
    % Sum of Moments at knee= Knee_reaction_Moment+ MF1 + MF2 + Mlowleg + Mtc  
    %                          + Mhg= 0 
    %       Knee_reaction_Moment = -(MF1 + MF2 + Mlowleg + Mtc + Mhg) 
    %      Moment imposed on knee= MF1 + MF2 + Mlowleg + Mtc + Mhg 
  
    % moment arm vectors in m 
        r_lowleg=(COM_lowleg-gKJC)/1000; 
        r_FP1=(COP1-gKJC)/1000; 
        r_FP2=(COP2-gKJC)/1000; 
        r_tc=(COPtc-gKJC)/1000; 
        r_hg=(COPhg-gKJC)/1000; 
                
    % calculate moments in N-m       
       for i=1:n 
           M_lowleg(i,:)=cross(r_lowleg(i,:),W_lowleg(i,:)); 
           MF1(i,:)=cross(r_FP1(i,:),F1(i,:)); 
           MF2(i,:)=cross(r_FP2(i,:),F2(i,:)); 
           Mhg(i,:)=cross(r_hg(i,:),ghg_cont(i,:)); 
           Mtc(i,:)=cross(r_tc(i,:),gtc_cont(i,:)); 
       end 
                
       % Moment imposed on knee. Muscle moment will be (-)        
        Mknee= M_lowleg + MF1 + MF2 + Mtc + Mhg;  
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%%  8. Calculate forces, moments, and moment arms in Anatomical shank 
coordinates     
    % Forces 
    % FA = [RGA]^-1 * FG 
       for i=1:n          
            aF1(i,:)=inv(RGAshank(:,:,i))*F1(i,:)'; 
            aF2(i,:)=inv(RGAshank(:,:,i))*F2(i,:)'; 
            aW_lowleg(i,:)=inv(RGAshank(:,:,i))*W_lowleg(i,:)'; 
             
         % COP locations 
            aCOPlowleg(i,:)=(inv(TGAshank(:,:,i))*[1 COM_lowleg(i,:)]'); 
            aCOP1(i,:)=(inv(TGAshank(:,:,i))*[1 COP1(i,:)]'); 
            aCOP2(i,:)=(inv(TGAshank(:,:,i))*[1 COP2(i,:)]');                      
       end 
         
       atc_cont=zeros(n,3); 
       atc_cont(:,2)=tc_cont; 
       ahg_cont=zeros(n,3); 
       ahg_cont(:,2)=hg_cont; 
       
       % Total Force imposed on Knee 
       aFknee= aF1+ aF2 + aW_lowleg + atc_cont + ahg_cont; 
        
       % Moment arms 
       ar_lowleg=aCOPlowleg(:,2:4)/1000; 
       ar_FP1=aCOP1(:,2:4)/1000; 
       ar_FP2=aCOP2(:,2:4)/1000; 
       ar_tc=[0 0 -tc_dist]/1000; 
       ar_hg=[0 0 -hg_dist]/1000; 
        
          
       % Moments 
      for i=1:n 
           aM_lowleg(i,:)=cross(ar_lowleg(i,:),aW_lowleg(i,:)); 
           aMF1(i,:)=cross(ar_FP1(i,:),aF1(i,:)); 
           aMF2(i,:)=cross(ar_FP2(i,:),aF2(i,:)); 
           aMhg(i,:)=cross(ar_hg,[0 hg_cont 0]); 
           aMtc(i,:)=cross(ar_tc,[ 0 tc_cont 0]); 
      end 
  
            
            
            % Moment imposed on knee        
             aMknee=aM_lowleg + aMF1 + aMF2 + aMtc + aMhg;  
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%% 9. Normalize forces and moments 
       % forces will be normalized to body weight 
       % moments will be normalized to bodyweight*height 
       
      % Global forces  
       nF1=(100/weight)*F1; 
       nF2=(100/weight)*F2; 
       nW_lowleg=(100/weight)*W_lowleg; 
       ngtc_cont=(100/weight)*gtc_cont; 
       nghg_cont=(100/weight)*ghg_cont; 
       nFknee=(100/weight)*Fknee; 
        
      % Anatomical Forces 
       naF1=(100/weight)*aF1; 
       naF2=(100/weight)*aF2; 
       naW_lowleg=(100/weight)*aW_lowleg; 
       natc_cont=(100/weight)*atc_cont; 
       nahg_cont=(100/weight)*ahg_cont; 
       naFknee=(100/weight)*aFknee; 
        
       nMF1=(100/(weight*height))*MF1; 
       nMF2=(100/(weight*height))*MF2; 
       nM_lowleg=(100/(weight*height))*M_lowleg; 
       nMtc=(100/(weight*height))*Mtc; 
       nMhg=(100/(weight*height))*Mhg; 
       nMknee=(100/(weight*height))*Mknee; 
        
       naMF1=(100/(weight*height))*aMF1; 
       naMF2=(100/(weight*height))*aMF2; 
       naMtc=(100/(weight*height))*aMtc; 
       naMhg=(100/(weight*height))*aMhg; 
       naMknee=(100/(weight*height))*aMknee; 
       naM_lowleg=(100/(weight*height))*aM_lowleg; 
        
%%  10. Save forces and moments to *posture*.mat 
    cd(results_directory)    
    save(posture,'F1','F2', 'W_lowleg', 'gtc_cont', 'ghg_cont', 'Fknee',... 
       'nF1', 'nF2','nW_lowleg', 'ngtc_cont', 'nghg_cont','nFknee', ... 
       'aF1','aF2', 'aW_lowleg', 'atc_cont', 'ahg_cont', 'aFknee',... 
       'naF1', 'naF2','naW_lowleg', 'natc_cont', 'nahg_cont', 'naFknee',...        
       'r_FP1', 'r_FP2','r_lowleg',  'r_tc', 'r_hg', ... 
       'ar_FP1', 'ar_FP2', 'ar_lowleg', 'ar_tc', 'ar_hg', ...       
       'MF1', 'MF2', 'M_lowleg', 'Mtc', 'Mhg', 'Mknee', ... 
       'nMF1', 'nMF2', 'nM_lowleg', 'nMtc', 'nMhg', 'nMknee', ... 
       'aMF1', 'aMF2', 'aM_lowleg', 'aMtc', 'aMhg', 'aMknee', ... 
       'naMF1', 'naMF2', 'naM_lowleg', 'naMtc', 'naMhg', 'naMknee', ... 
       '-append')  
       
     
     
  end         % end of function forces_moments.m    
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