
i 

 

CHARACTERIZATION OF PROTEINASE ACTIVATION PEPTIDES AND THEIR 

POTENTIAL AS DIAGNOSTIC MARKERS OF DISEASE 

 

 

 

 

 

 

 

 

By 

 

Laura Marie Voeghtly 

 

BS, The Pennsylvania State University, 2000 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

 

School of Medicine in partial fulfillment  

 

of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

University of Pittsburgh 

 

2009 

 

 

 



ii 

 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF MEDICINE 

 

 

 

 

 

 

 

 

This dissertation was presented 

 

by 

 

 

Laura Marie Voeghtly 

 

 

 

 

It was defended on 

 

September 9, 2009 

 

and approved by 

 

Dr. Charleen T. Chu, M.D., Ph.D. 

Department of Pathology 

 

Dr. Billy Day, Ph.D. 

Department of Pharmaceutical Science 

 

Dr. Naftali Kaminski, M.D. 

Department of Medicine 

 

Dr. Alan Wells, M.D., DMS. 

Department of Pathology 

 

Dissertation Advisor: Dr. Tim D. Oury M.D., Ph.D. 

Department of Pathology 

 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © by Laura M. Voeghtly 

2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

CHARACTERIZATION OF PROTEINASE ACTIVATION PEPTIDES AND THEIR 

POTENTIAL AS DIAGNOSTIC MARKERS OF DISEASE  

 

Laura Marie Voeghtly, PhD 

 
University of Pittsburgh, 2009 

 

ABSTRACT 

 

Prostate cancer is the second leading cause of cancer death in men. While prostate 

specific antigen (PSA) is currently the best biomarker available, its use has many limitations. 

This study investigates the biosynthesis, secretion and activation of PSA. PSA is secreted as a 

pro-enzyme containing a seven amino acid activation peptide (APLILSR). Because APLILSR is 

removed extracellularly in vivo, the hypothesis was tested that it may be detected in the 

blood or urine. Our data indicates that APLILSR is filtered from the bloodstream by the kidney, 

and is detectable in the urine of patients with prostate cancer, but not controls.  

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease of unknown 

etiology.  Matrix metalloproteinases (MMPs) are a family of proteinases that regulate 

extracellular matrix turnover and are believed to contribute to IPF. For this reason, the 

hypothesis that levels of MMP activation peptides will increase in patients with IPF was 

tested. To test these hypotheses, urine from mice were collected and an ELISA was used to 

quantify MMP activation peptides. These experiments show that the activation peptides of 

MMP-2, MMP-7, MMP-8 and MMP-9 are increased in mice with pulmonary fibrosis compared 

to control mice. The data also showed that that the activation peptides of MMP-2, MMP-7, and 

MMP-9 are increased in the urine of human patients with IPF compared to healthy controls. 
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These data suggest that urine detection of MMP activation peptides is feasible and correlates 

with disease.  

Because urinary detection of the activation peptides of proteinases are indicative of 

proteinase activation in vivo, the new hypothesis that the accurate measurement of proteinase 

activation peptides will be relevant clinically arises, and that such measurements may aid in the 

diagnosis of disease and serve as a marker for following disease progression. 
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1. INTRODUCTION 

 

1.1 PROTEASES 

Proteases are enzymes that catalyze the hydrolytic breakdown of proteins into smaller 

peptide fractions and amino acids. This process is known as proteolysis. Proteases are essential 

for the synthesis of many proteins. They control the composition, size, shape and fate of proteins 

in an extremely selective manner by cleaving peptides at very specific sequences of amino acids 

under a preferred set of environmental conditions. This highly specific and limited substrate 

cleavage is termed proteolytic processing. Proteinases are a subclass of proteases that cleave 

proteins whereas peptidases are able to cleave smaller peptides. 

 

1.1.1. Proteinase Biology 

There are over 500 known proteinases which account for 2% of the human genome(1). A 

majority of human proteinases are secreted as inactive zymogens that require a biochemical 

change for activation. Activation of secreted proteinases usually occurs extracellularly where 

part of the precursor enzyme is cleaved in order to activate it. The amino-acid chain that is 

released upon activation is called the activation peptide.  

 

On the basis of the mechanism of catalysis, proteinases are classified into six distinct 

classes: aspartic, metallo, glutamic, cysteine, serine and threonine proteinases. Proteinases in the 

first three classes use an activated water molecule as a nucleophile to attack the peptide bond of 

the substrate. In the remaining classes the nucleophile is a catalytic amino-acid residue (Cys, Ser 

or Thr, respectively) that is located in the active site (2).  
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1.1.2. Proteinase Activation 

Most proteinases are synthesized as larger zymogens. Upon activation, the zymogen is 

cleaved and an inhibitory peptide is removed. In some cases, activation involves dissociation of 

an inhibitory protein. Activation may occur after a proteinase is delivered to a particular 

compartment within a cell or in the extracellular space. Proteinases can be activated by other 

proteinases sometimes of the same type. This is an important method of regulating proteinase 

activity. 

 

1.1.2.1.Serine Proteinase Catalysis 

Serine proteinases exist as two families, the 'trypsin-like' and the 'subtilisin-like’ that 

have independently evolved a similar catalytic device (3). The catalytic mechanism of serine 

proteinases is based on the function of the catalytic triad. The catalytic triad is located in the 

active site of the enzyme, where catalysis occurs, and is preserved in all serine proteinase 

enzymes (4). The triad consists of three essential amino acids: a histidine (His 57), a serine (Ser 

195) and an aspartic acid (Asp 102) (FIGURE 1). These amino acids are critical for the 

functional activation of these proteinases.  
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During serine proteinase catalysis several intermediates are generated. The catalysis of 

the peptide cleavage is a non-linear reaction where the polypeptide being cleaved binds as a 

substrate, the N-terminus activation peptide is released, water binds, and then the C-terminus 

active protein is released (FIGURE 2). The active site of serine proteinases is shaped as a cleft 

where the polypeptide substrate binds (5).  
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1.1.2.2.Metalloproteinase Catalysis 

Metalloproteinases, or zinc proteinases, are proteolytic enzymes whose catalytic 

mechanism involves a metal. Most metalloproteinases are zinc-dependent. However, some use 

cobalt. The metal ion is directed to the protein via three histadine imidazole ligands. A labile 

water molecule takes up a fourth position. During catalysis, the Zn2+ promotes a nucleophilic 

attack on the carbonyl carbon by the oxygen atom of a water molecule at the active site. An 

active site base facilitates this reaction by extracting a proton from the attacking water molecule 

(FIGURE 3). Significantly, oxidants are able to activate MMPs. They are also able to inactivate 

them by oxidizing the active cysteine residue. Metalloproteinases include the digestive enzymes 

carboxypeptidases, matrix metalloproteinases (MMPs), and a proteinase that is associated with 

the membrane of lysosomes (LMMP). 
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1.1.3. Proteinase Inhibition 

Most proteinase inhibitors are proteins with domains that enter or block a proteinase 

active site to prevent substrate access. Tissue inhibitor of metalloproteinases (TIMPs) are 

inhibitors of metalloproteinases that are secreted by cells. A domain of the inhibitor protein 

interacts with the catalytic Zn2+.  Serpins are widely distributed proteins that utilize a unique 

suicide mechanism to inhibit serine or cysteine proteinases. To inhibit proteolysis, a large 



7 

 

conformational change in the serpin accompanies cleavage of its substrate loop. This leads to 

disruption of the proteinase active site, preventing completion of the reaction. The serpin remains 

covalently linked to the proteinase as an acyl-enzyme intermediate (FIGURE 2.2). Serpins are 

widely distributed within and outside of cells, and can have different roles, including regulation 

of thrombosis, fibrinolysis, and inhibition of apoptosis (6-8).  

Alpha-2-macroglobulin (α2M) is able to bind to and inactivate a variety of proteinases 

including serine-, cysteine-, aspartic-, and metalloproteinases. α2M has a 35 amino-acid bait 

region that enables its binding to proteinases. When the bait region is cleaved, α2M undergoes a 

conformational change trapping the proteinase inside. The entrapped proteinase remains active 

but steric hindrance prevents it from cleaving large proteins. It is possible, however, for very 

small substrates to gain access and be cleaved by an α2M-bound proteinase (9). Following the 

conformational change, the proteinase- α2M complex is recognized by macrophage receptors and 

rapidly cleared from the system (10). 

1.1.4. Proteinases in Disease 

While proteinases are known to play pivotal regulatory roles in human processes such as 

conception, digestion, maturation and even death they are also thought to contribute to the 

formation and regulation of a number of human diseases. In over 50 human proteinases, it has 

been found that a single amino acid mutation is sufficient to cause a genetic disease.  A mutation 

in the trypsin-like proteinase matriptase has been shown to be sufficient to cause iron-refractory 

iron deficiency anemia in humans (11). Interestingly, matriptase is also the first membrane 

bound proteinase known to act as an oncogene (12). The metalloproteinase ADAMTS-13 (also 

known as von Willebrand factor-cleaving proteinase) is responsible for cleaving the large blood 
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clotting protein von Willebrand factor. Alterations in this proteinase can lead to thrombotic 

thrombocytopenic purpura (TTP), another form of familial anemia (13, 14). Mutations in other 

members of the ADAMTS family can lead to a variety of other disorders including arthritis and 

other joint diseases (15, 16).  

 

Additionally, other genetic or environmental conditions that alter the levels of proteinases 

such as mutations in their inhibitors have also been shown to contribute to disease initiation or 

progression. Diseases caused by serpin disregulation are so well documented they are termed 

“serpinopathies.” Mutations of a serpin can cause misfolded or aggregated proteins leading to 

many different diseases. Familial emphysema is caused by a deficiency in α1-antitrypsin (17). 

This type of disease is caused by uncontrolled proteinase activity and tissue destruction brought 

about by the lack of active serpin function. Thrombosis can also occur with a deficiency of the 

serpin anti-thrombin (18). Moreover, liver cirrhosis and other diseases marked by cell death and 

tissue damage can occur when protein aggregates form due to the absence of efficient protein 

clearance clogging up the endoplasmic reticulum of cell (17, 19).  

 

Proteinases are critical in cancer development. Proteolysis is a central cofactor for 

neoplastic progression resulting from a cascading effect of proteinase activation (8). These 

include proteinases such as cysteine and serine proteinases, which converge leading to 

amplification of metalloproteinase proteolytic activities. Total tumor proteolysis then contributes 

to tumor progression by mediating tissue remodeling, inflammation, angiogenesis, and 

acquisition of invasive capabilities, cell survival, and proliferation (8). Proteinases have also 

been shown to be potential diagnostic and/or prognostic indicators of disease. The kellikrin 
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family of proteinases, of which prostate specific antigen (PSA) is a member, has long been used 

as a diagnostic marker for prostate cancer.   

 

Proteinases have been implicated in numerous other diseases including bacterial and viral 

infections, stroke, coronary artery disease, cardiovascular and neurodegenerative disorders 

including Alzheimer's disease, and many inflammatory and respiratory conditions. Additionally, 

studies show that MMP activation contributes to the pathogenesis of pulmonary diseases such as 

idiopathic pulmonary fibrosis and asbestosis (20-23)(see below). 

 

1.2. PROSTATE CANCER 

Prostate cancer (CaP) is the most common cancer in men and has the second highest  

cancer-related death rate in the United States, surpassed only by lung cancer (24). CaP is 

classified as an adenocarcinoma and most often develops in the peripheral zone of the prostate. A 

specific cause of CaP has not been found but the most significant risk factor associated with the 

disease is age (25). Other risk factors are genetics, race, diet, lifestyle and medications. Some 

genetic factors found to be related to the onset of CaP include alterations in the AR (26), 

BRCA1, and BRCA2 genes (27). Currently, the most useful screening tool for CaP is serum PSA 

measurement (28, 29). Despite the extensive use of this method, 30% of men with CaP have 

locally advanced or metastatic disease at the time of diagnosis. These men are substantially less 

likely to be cured than men diagnosed with localized disease. The use of serum PSA testing has 

many limitations. There is a very high false positive rate associated with this test. Approximately 

70% of men with “abnormal” PSA levels (above 4 ng/ml) do not have CaP. In addition, PSA 

testing has a significant false negative rate. More than 20% of men with normal PSA values 



10 

 

(between 2.5 and 4 ng/ml) have CaP (30-32). The complex biology of PSA makes assessments 

of stage and prognosis difficult for individual CaP patients. Inaccuracies in predicting pathologic 

stage and the biology of prostate cancer often result in over treatment of some men and under 

treatment of others. A better understanding of PSA biosynthesis, regulation, and clearance will 

enhance efforts to develop a more sensitive and specific test for prostate cancer. 

 

1.3. PROSTATE SPECIFIC ANTIGEN (PSA) 

PSA is a 33 kDa serine proteinase which is similar in structure to the trypsin-like tissue 

killikreins but has substrate specificity similar to that of chymotrypsin (33). PSA is produced by 

the epithelial cells of the prostate (34) and is one of the most abundant proteins in the seminal 

fluid. The active enzyme is likely involved in dissolution of the gel forming proteins 

semenogelin I and II in the semen.  

 

The cDNA sequence encoding PSA predicts an N-terminal 7 amino acid activation peptide 

(APLILSR) (35), although it has not been detected in purified PSA (36-39). Analogous to other 

serine proteinases, the activation involves a conformational change initiated by proteolysis of the 

Arg7Ile8 peptide bond (FIGURE 4). Activation of serine proteinases is usually tightly regulated. 

Most serine proteinases are secreted as inactive precursors and activated extracellularly. 

However, some serine proteinases are processed intracellularly and secreted in their active form 

(40). It has recently been determined that PSA is in fact activated extracellularly (41, 42). This 

finding allows for the possible detection of the PSA activation peptide in biological samples.  
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PSA is detected in the plasma in three distinct forms (i) free-PSA; (ii) PSA-α1-

antichymotrypsin complexes (PSA-α1ACT) and (iii) PSA-α2-macroglobulin complexes (PSA-

α2M) (43-45). Of these three major serum forms, only free-PSA and PSA-α1ACT are 

immunodetectable by current commercial assays. Native PSA-α2M complexes are not 

recognized by PSA antiserum by ELISA because of the unique nature of the complex (46, 47). 

However, PSA-α2M can be detected following denaturation of the complex. The plasma half-life 

of α1ACT- and α2M- proteinase complexes are short because they are rapidly removed by 

hepatocyte receptors (48-51). The plasma clearance of these complexes is independent of the 

proteinases involved. The α2M complexes are cleared from the circulation by the low density 

lipoprotein receptor (52, 53). Serpin complexes are recognized by two serpin receptors: SR2, 

which recognizes and eliminates proteinases-α2-antiplasmin complexes, and SR1 which 

recognizes complexes between proteinases and α1-proteinase inhibitor, anti-thrombin III, heparin 

cofactor II, or α1-ACT (50, 51). These receptors usually maintain undetectable levels of 

proteinase-inhibitor complexes in the blood. The level of PSA-α1-ACT during malignant disease 

may rise to several hundred ng/ml. It is therefore likely that pathological PSA levels result from 

saturation of the clearance mechanisms. It follows that the PSA concentration depends both on 

how much PSA gains access to the blood stream and how efficiently it is removed. However, to 

date, the impact of clearance mechanisms has not been well studied. This clearance rate is likely 

to depend upon the overall health of the patient, including physical condition, body weight, and 

alcohol and tobacco consumption. These factors may account for some of the serum PSA 

variability between individuals. 
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Current use of PSA testing is directed toward detecting the three major PSA forms in the 

blood (free-PSA, PSA-α1-ACT, and PSA-α2M) as well as complexes of PSA with other serine 

proteinase inhibitors including Inter-α-inhibitor and α1-proteinase inhibitor (51). The use of PSA 

as a screening or diagnostic test for the presence of CaP, however, has several limitations. PSA is 

known to interact with other proteins in the blood. These interactions affect the half-life and 

interfere or prevent detection (54, 55). In 2003, Mistry et al. performed a meta-analysis to 

determine the sensitivity and specificity of PSA and digital rectal examination as screening tests 

for CaP (56). When pooling the results of 13 articles, they found the sensitivity of PSA to be 

72.1% and the specificity to be 93.2%. These are the highest rates determined thus far for PSA 

however these results did include physical examination. When determining serum PSA alone as 

a test, they found the positive predictive value to be only 25.1%.  

 

1.4. IDIOPATHIC PULMONARY FIBROSIS (IPF) 

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease of unknown 

etiology.  IPF is a progressive life threatening disease that is characterized as excessive 

deposition of fibrotic tissue in the interstitium with some, typically chronic, associated 

inflammation (57). The incidence of IPF is at least 29/100,000 in the general population and the 

median survival rate for individuals diagnosed with IPF is around 3 years (58). There is currently 

no cure or significant treatment for this disease (59) and no effective method to monitor 

progression in IPF patients. Currently, due to the lack of available biomarkers, the diagnosis of 

IPF is made by lung biopsy or via radiographic evidence of disease. Historically, IPF has been 

seen as a gradually progressive disease. Some patients with IPF, however, experience a rapid 
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deterioration of lung function and accelerated death. These episodes have been termed acute 

exacerbations of IPF.   

 

IPF is characterized by diffuse interstitial fibrosis with variable levels of inflammation, 

honeycomb changes, fibroblastic foci and a pattern of usual interstitial pneumonia with clinical 

features including diffuse interstitial infiltrates on chest radiographs, honeycombing seen on 

high-resolution CT (HRCT) scans and a restrictive impairment with reduced gas exchange on 

pulmonary function test results (60). Thickening of the alveolar septa disrupts efficient gas 

exchange in the lung and is thought to be initiated by endogenous or environmental stimuli.  Risk 

factors for the disease are age, gender, smoking  (61), genetic factors, and infection (62). The 

two main symptoms of IPF are shortness of breath and cough. Additional symptoms may include 

weight loss, chest pain or tightening, and/or fatigue. IPF typically occurs after the age of 50 and 

slightly more often in men than in women. 

 

Treatment options for IPF are minimal. The most commonly used therapy is corticosteroids. 

Corticosteroids have many side effects, however, and have not proven to be very beneficial. 

Lung transplantation has the most data suggesting a survival benefit (57, 63-65). 

Pharmacological agents that are designed to treat lung scarring may be promising in the 

treatment of IPF but these are still in the experimental phase (66). Likewise, treatments intended 

to suppress inflammation have had only limited success in reducing the fibrotic progress of IPF 

(67-71). Because of the limited treatment options available, there are more than 25 national 

clinical trials underway to either determine genetic variations of the disease in hopes of finding 
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therapeutic targets, or to test the efficacy of new therapies for the disease or a process of the 

disease (66). There are currently no FDA approved drugs for the treatment of IPF. 

 

1.4.1. Animal Models of Pulmonary Fibrosis 

Human IPF maintains a few pertinent features of disease, including temporal 

heterogeneity of the fibrotic lesions, progressive nature of the disease, and the development of 

myofibroblastic foci (57, 60, 72). Experimentally, there are a number of in vivo models used to 

study pulmonary fibrosis. Two models that have been used extensively are the bleomycin and 

asbestos models. Unfortunately, there is no single animal model that recapitulates all of the 

hallmark features of the human disease.  

 

1.4.1.1. Bleomycin Model 

The use of bleomycin as an inducer of murine pulmonary fibrosis is the most well 

characterized of the animal models (73).  A single intratracheal dose, typically 1.25–4 U/kg, is 

sufficient to cause pulmonary fibrosis in 14 days (20).  While bleomycin induced pulmonary 

fibrosis has clinical similarities to human IPF it creates a temporally homogeneous fibrotic lung 

which is discordant with human manifestations (74). Additionally, it has been shown that injury 

can begin to resolve after 28 days which varies from the progressive nature of human disease 

(73, 75, 76). 
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1.4.1.2. Asbestos Model 

Intratracheal instillation or inhalation of asbestos is also an established model of pulmonary 

fibrosis in mice. Crocidolite, amosite, and chrysotile asbestos have all been shown to initiate 

fibrosis (77-79). The type of asbestos used may, however, be a factor in the development of 

fibrosis as it has been shown that the longer the fiber, the more prominent the fibrosis (77, 78). 

Animals subjected to asbestos show clinical characteristics of pulmonary fibrosis in just 7 days. 

An advantage of the asbestos model over the bleomycin model is that asbestos induces temporal 

heterogeneity of fibrosis as seen in human IPF and the fibrosis does not resolve with time (80). 

 

1.5. MATRIX METALLOPROTEINASES IN IPF 

Matrix metalloproteinases (MMPs) are a family of at least 25 proteinases that regulate 

extracellular matrix turnover. Several studies have shown that MMP activation contributes to the 

pathogenesis of pulmonary fibrosis in animal models (22, 81, 82). Also, there are many studies 

that have found increased MMP expression and activation in human IPF lungs, blood and 

bronchoalveolar lavage fluids (21, 82-85).  

 

Most MMPs including MMP-2, MMP-7, MMP-8, and MMP-9 are secreted as pro-enzymes 

with a signal sequence and pro peptide of about 80 amino acids that gets cleaved extracellularly 

upon activation (Table 1).  All members of the MMP family share a common catalytic core with 

a Zn2+ in its active site. The pro peptide domain contains a sequence (PRCGxPD) termed the 

cysteine switch which contains a conserved cysteine that is involved in chelating the active Zn2+ 

site. Full MMP activation is brought about by disruption of the cysteine-zinc interaction and 

removal of the pro peptide (86). Proteolysis of the prodomain can be brought about by furin (87), 
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plasmin (88), and other metalloproteinases (89, 90). Modification of the cysteine switch by other 

means such as reactive oxygen and nitrogen species can also activate MMPs (91-93). 

 

Activated MMPs react rapidly with proteinase inhibitors including tissue inhibitor of 

metalloproteinases (TIMPS) and α2-macroglobulin in the blood. These protein complexes are 

removed from the circulatory system by receptor-mediated endocytosis (94). While MMPs are 

easily detected in the blood, this rapid clearance likely interferes with the measurement of the 

active proteins in the urine or bloodstream resulting in the inability to accurately detect the total 

amount of MMP activation occurring simply by measuring the steady state amount in biological 

fluids. 

 

Table 1. Partial list of matrix metalloproteinases involved in pulmonary fibrosis and their 

pro peptide weights 

 

Enzyme Family Name Molecular Weight (Pro peptide) 

MMP-2 Gelatinase 8934.42 
MMP-7 Matrilysin 8822.25 
MMP-8 Collagenase 9210.61 
MMP-9 Gelatinase 8339.62 
 

 

1.6. CONCLUSIONS 

Prostate cancer and idiopathic pulmonary fibrosis are just two of the many diseases that 

have been shown to be associated with the activation of proteinases. This wide field of research 

is currently limited by the inability to noninvasively and quantitatively detect the steady state 

amounts of associated proteinases in the body. It is likely that methods to measure proteinase 
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concentrations are confounded by the rapid clearance of proteinase-inhibitor complexes in the 

serum. For this reason, this study explores an alternative method for the detection of proteinase 

activity in vivo. Results presented in this dissertation show that the activation peptides of 

proteinases, once cleaved, are cleared through simple renal filtration and detectable in the urine 

in a disease specific manor. This method of detection may prove to be not only clinically 

relevant for the diagnosis of disease but may also significantly contribute to the scientific 

research of proteinase activation. 

  

2. RATIONAL AND HYPOTHESIS 

There are a multitude of diseases that are influenced by the activation of proteinases, some 

of which do not have adequate biomarkers available for diagnostic or prognostic use. For those 

that do, such as PSA for the detection of prostate cancer, serum protein levels as a measurement 

of disease is likely limited by complex clearance mechanisms as discussed above. For this reason 

investigating the utility of measuring just the activation peptide of proteins in the urine may 

prove to be a valuable addition to the currently limited options available to clinicians faced with 

diagnosing or treating these diseases.  

 

The activation peptide concentration should be representative of total proteinase activation, 

therefore, we hypothesize that detection of the activation peptides of proteinases will give a more 

accurate representation of protein activation due to their simple renal clearance as opposed to the 

complex clearance mechanisms of the full length active protein.  
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Although PSA activation is a well-studied indicator of prostate cancer, the hypothesis tested 

here is that pathological PSA levels are a result of saturated clearance mechanisms and that PSA 

concentration depends both on how much PSA gains access to the blood stream and how 

efficiently it is removed.  Therefore, detection of the activation peptide of PSA should prove to 

be a more sensitive marker of disease than serum detection of the active PSA protein. In a similar 

situation, it is known that MMP activation contributes to idiopathic pulmonary fibrosis initiation 

and progression. For this reason, we hypothesize that the accurate detection of activation of these 

proteinases will also be relevant clinically and may allow for earlier detection and/or following 

progression of disease.  

 

3. MATERIALS AND METHODS 

 

3.1. REAGENTS 

ECL Western blotting detection reagents were from Amersham (Arlington Heights, IL). 

RPMI Medium 1640, RPMI 1640 select amine kit, Dulbecco’s phosphate buffered saline, Earls’ 

balanced salt solution, penicillin-streptomycin from Gibco (Grand Island, NY). Epidermal 

growth factor, L-glutamine was from Sigma (St. Louis, MO). PSA antiserum was produced by 

DAKO Corporation (Carpinteria, CA). Human metastatic prostate adenocarcinoma (LNCaP) 

cells were obtained from American Type Culture Collection (Rockville, MD). Radiochemicals 

were from DuPont/NEN (Boston, MA). α1-ACT was purified as previously described (95). Urine 

samples for the detection of PSA activation peptide were collected from Duke University 

Urology Clinic. Human prostatic tissues were obtained from Duke University Medical Center for 

purification of PSA. Pathologists confirmed histology of each tissue independently.  
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All MMP antibodies were commercially available. A rabbit polyclonal to the MMP-8 

propeptide domain was from Abcam (Cambridge, MA). A mouse monoclonal antibody to the N-

terminus of MMP-2 (APSPIIKFPGD-VAPKTDK) was obtained from Thermo Scientific 

(Fremont, CA). A rabbit monoclonal antibody to the propeptide domain of MMP-9 was from 

Novus Biologicals (Littleton, CO). A mouse monoclonal antibody to the propeptide domain of 

MMP-7 (EYSLFPNSPKWTSKV) was purchased from R&D Sysytems (Minneapolis, MN). 

Propeptides corresponding to the N-terminus of each MMP were synthetically made by 

Genscript (MMP-2, 7, 9)(Piscataway, NJ) or Abcam (MMP-8)(Cambridge, MA). All antibodies 

cross react with human and mouse. For ELISA assays, Costar 96-well RIA/EIA plates (Costar, 

Cambridge, MA) were used. 

 

3.2. ANIMAL STUDIES 

 

3.2.1. Plasma Clearance Experiments  

125I-APLILSR (0.25 g), 125I-α1ACT (2.0 g), or a 1:1 molar basis of PSA-125I-α1ACT (2 

g and 0.97 g respectively) was injected intravenously into the lateral tail vein of 50-60 day old 

CD-1 mice. Identical volumes of blood were collected by heparanized capillary tubes from the 

retro-orbital venous plexus. Radioactivity was measured in a -radiation counter and expressed 

as percentage radioactivity present compared to the first sample, drawn approximately 5 seconds 

after injection.  
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3.2.2. Pulmonary Fibrosis Inducing Treatment 

Asbestos and bleomycin treatments were approved individually by the University of 

Pittsburgh Institutional Animal Care and Use Committee. Male C57BL/6 mice 8-10 wks. old 

(Taconic, Germantown, NY) were anesthetized with brief exposure to isoflurane (Abbot 

Laboratories, Chicago, IL) and then treated with a single 0.1-mg dose of crocidolite asbestos, 

0.05 units of bleomycin, or 0.9% saline by intratracheal instillation as previously described (96). 

Mice were euthanized with an injection of 5 mg of pentobarbital (Sigma) at day 35. Lungs were 

inflation fixed with 10% buffered formalin, incubated overnight in 70% ethanol, and embedded 

in paraffin by the University of Pittsburgh’s Research Histology Services.  

 

3.2.3. Urine Collection 

Mice were individually placed on a 12 inch x 12 inch square of PARAFILM®(Pechiney 

Plastic Packaging, Menasha, WI) an allowed to urinate. Immediately after urination, the mouse 

was removed and the voided urine was aspirated using a Nichipet EX (Nichiryo, Maryland 

Heights, MO) and transferred into a sterile micro-centrifuge tube and stored on ice until all 

urines were collected. Urine volumes ranged from 10 µl-300 µl per mouse. Samples were taken 

in the morning on day 0 prior to treatment and at approximately the same time on days 1-7, 13, 

14, 17, 20, 23, 26, 29, 32, and 35 following treatments. Samples were frozen at –20°C for 

storage. Prior to analysis, the samples were thawed, and creatinine concentrations were 

determined using a commercial kit (R&D Systems Minneapolis, MN) according to 

manufacturer’s instructions. Urine was tested for presence of blood and leukocytes using 

Multistix 9 Urinalysis Strips (Bayer) and samples containing blood or leukocytes were excluded. 

Urine samples were centrifuged using Microcon Centrifugal Filter Devices Ultracel YM-10 
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(Millipore Corporation, Billerica, MA). Retentate was discarded and the flow through (<10 KDa) 

was used for analysis. 

 

3.3. HUMAN STUDIES 

 

3.3.1. Sample Collection 

Urine samples for the detection of PSA activation peptide were collected from Duke 

University Urology Clinic. Human prostatic tissues were obtained from Duke University 

Medical Center for purification of PSA. Pathologists confirmed histology of each tissue 

independently.  

 

Sixty nine urine samples were analyzed in the IPF study, including samples from patients 

diagnosed with IPF (n = 39) and controls (n = 30). IPF groups and controls were comparable 

with respect to age both in terms of the mean (64, 59) and the range (40-81, 50-82). IPF urine 

was collected according to the institutional bioethical guidelines pertaining to clinical material 

from the University of Pittsburgh Simmons Center for Interstitial Lung Disease under an 

approved IRB (IRB0610029, University of Pittsburgh). Control urine was purchased from 

Bioreclamation Inc. (Hicksville, NY). Samples were collected in sterile containers and 

immediately frozen at –80°C. The samples were thawed, and creatinine concentrations were 

determined according to manufacturer’s instructions (R&D Systems Minneapolis, MN). Urine 

containing blood or leukocytes as determined by Multistix 9 Urinalysis Strips (Bayer) was 

excluded. Protein concentration of urine was determined by the Bradford method using bovine 

serum albumin as the standard. Urine samples were centrifuged using Microcon Centrifugal 
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Filter Devices Ultracel YM-10 (Millipore Corporation, Billerica, MA). Retentate was discarded 

and flow through (<10 KDa) was used for analysis. 

 

3.3.2. Pulmonary Function Tests and IPF Diagnosis 

Assessments of pulmonary function were performed according to the American Thoracic 

Society (ATS) guidelines, using standard equipment. The FVC and DLCO were expressed as the 

percent predicted values. Radiographic IPF diagnosis was made by a chest radiologist and 

pulmonologist using conventional HRCT scans of the chest without intravenous contrast. 

Discrepant readings were subjected to a second review by both experts to determine consensus 

classification. Histopathologic diagnosis was determined by evaluation of lung biopsy that was 

paraffin embedded, cut, and stained with hematoxylin and eosin according to the standard 

protocols used in the University of Pittsburgh Department of Surgical Pathology. Each diagnosis 

was designated by a lung pathologist. 

 

3.4. BIOCHEMICAL AND CELLULAR STUDIES 

 

3.4.1. Purification of PSA 

Steps were performed at 4°C. Prostate tissue (100 g) was homogenized (Vitris, Tempest) 

in 300 ml of 0.05 M Tris-HCl (pH 7.4) containing 0.1 M NaCl and 0.01 M EDTA. The 

homogenate was filtered through cheesecloth and cleared by centrifugation. The supernatant was 

digested with 0.1 mg/ml RNAse, 0.2 mg/ml DNAse and 0.005 M MgCl for 4h. Following 4h 

incubation the supernatant was dialyzed overnight against 0.01 M HEPES, pH 8. The sample 

was clarified by centrifugation and applied to a Q-Sepharose FF (Pharmacia, Piscataway, NJ) 
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column (2.5 x 20 cm) equilibrated in 0.01 M HEPES, pH 8. The charged column was washed in 

equilibration buffer and then developed with a linear gradient (total volume of 2 l) from 0 M 

NaCl to 0.4M NaCl. Fractions of 4 ml were collected and tested for PSA by western blotting. 

The active fractions were pooled and concentrated by ultrafiltration (Amicon, Bedford, MA) and 

applied to a S-200 HR gelfiltration (Pharmacia, Piscataway, NJ) column (2.5 x 150 cm) 

equilibrated in 50 mM HEPES, 150 mM NaCl. Fractions of 4 ml were collected and assayed for 

PSA by western blotting. The PSA containing fractions were pooled and dialyzed into 10 mM 

HEPES, pH 8 and separated on a MONO-Q 5/5 HR (Pharmacia, Piscataway, NJ) connected to a 

Pharmacia FPLC system. The column was equilibrated in 10 mM HEPES and developed using a 

linear gradient from 0 M NaCl to 400 mM NaCl.  

 

3.4.2. Preparation of Pro-PSA Antiserum  

A peptide, APLILSRC, corresponding to the N-terminal activation peptide of PSA was 

synthesized (Bio Synthesis, Lewisville, TX), purified by RP-HPLC (RP-300, 4,6 mm column), 

and analyzed by mass spectrometry. The peptide was coupled to ovalbumin at a molar ratio of 

10:1 using m-maleimidobenzoyl-N-hydoxysuccinimide ester (Pierce, Rockford, IL). Coupling 

was confirmed by SDS-PAGE. The purified peptide-ovalbumin complex was used for injection 

into rabbits (1 mg/injection). Antibodies from the final bleed were purified on a Protein G 

column. 

 

3.4.3. Polyacrylamide Gel Electrophoresis 

The supernatants from immunoprecipitates were recovered by centrifugation and 

separated by SDS-PAGE through 5-15% gradient gels (97). The gels were stained, destained, 
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dried, and subjected to imaging on a PhosphorImager (Molecular Dynamics 410A). 

Immunoprecipitates for radiosequence analysis were transferred to Immobilon membranes. 

Following electrophoresis, the Immobilon membranes were dried and exposed directly to X-ray 

film overnight at -70 °C. 

 

3.4.4. Metabolic Labeling and Pulse-Chase Analysis 

Human metastatic prostate adenocarcinoma (LNCaP) cells were maintained in RPMI 

Medium 1640 (ATCC, Rockville, MD) supplemented with 10 % fetal bovine serum, epidermal 

growth factor (5 mg / 500 ml), L-glutamine (150 mg / 500 ml) and 1 % penicillin-streptomycin in 

5 % CO2. For standard biosynthetic radiolabeling, cells were grown in 50 mm tissue culture 

plates until 80% confluent. The cells were washed twice with Earls’ balanced salt solution, and 

incubated for 30 min in RPMI without fetal bovine serum or the amino acids that would be used 

for metabolic labeling. Cells were incubated for 5 min with either [35S]Met or [35S]Cys. For 

radiosequence analysis [35S]Cys was added to the proteins. At the end of the labeling period, 

cells were rinsed twice with serum free RPMI and chased with "cold" complete medium 

according to the study. 

 

3.4.5. Lysis and Immunoprecipitation 

Conditioned medium was collected and frozen. Cell lysates were prepared by three rapid 

freeze-thaw cycles in high salt buffer containing 0.5% Triton X-100 and a proteinase inhibitor 

cocktail (40, 98). Prior to immunoprecipitation, the samples of lysates and conditioned medium 

were cleared by the addition of a pre-immune serum followed by the addition of protein-G 

Sepharose 4 FF (Pharmacia, Piscataway, NJ). The supernatants were incubated overnight with 



25 

 

the relevant specific antiserum. The next day protein-G Sepharose 4 FF was added and 

immunoprecipitates were collected by gentle centrifugation. The immunoprecipitates were then 

washed several times and bound proteins were released from the protein G Sepharose 4 FF by 

boiling in SDS sample buffer or by 100 mM glycine-HCl (pH 2.7) before SDS-PAGE. 

 

3.4.6. Radiosequence Analysis  

These analyses were performed as previously described (40, 98). Briefly, following 

immunoprecipitation and SDS-PAGE the [35S] labeled proteins were electrotransferred to 

Immobilon membranes (99). The proteins were identified by autoradiography and bands of 

interest were excised and analyzed by automated Edman degradation in an Applied Biosystems 

477A sequencer (Foster City, CA). The anilinothiazolinone (ATZ) amino acids released after 

each cycle were collected and counted for [35S]. In the experiments destined for radiosequence 

analysis the metabolic labeling were performed using [35S]Cys which is positioned as residue 14 

in the PSA zymogen. Subsequent radiosequence analysis of the bands and release of radioactive 

ATZ-amino acid in the anticipated cycle of Edman degradation provided identification of the 

protein band. 

 

3.4.7. Radiolabelling  

Approximately 100 µg of α1ACT and of the N-terminal activation peptide (synthesized 

by NENTM Life Science Products, Boston, MA) were labeled with 125I. α1ACT was labeled using 

Iodo-beads (Pierce, Rockford, IL) and the peptide (APLILSR) was labeled using the Bolton-

Hunter method according to manufacturers recommendations. (Pierce, Rockford, IL). 
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3.4.8. Dot blotting 

Membranes were developed using the ECL Western blotting kit from Amersham  

(Piscataway, NJ). Briefly, following transfer to PVDF membranes the membranes were blocked 

for 1 h in 20 mM Tris-Cl, 137 mM NaCl, pH 7.6 containing 0.1 % Tween (TBS-T buffer) and 

5% of the supplied blocking reagents. The membrane was washed in TBS-T buffer before the 

primary antibody was added (1/2000 dilution). Following 1 h of incubation, the membrane was 

washed in TBS-T buffer and horseradish peroxidase labeled second antibody was added 

(1/20,000 dilution). The membranes were incubated for 1 h and washed with TBS-T buffer and 

developed using the supplied reagent.  

 

3.4.9. Enzyme-linked Immunosorbent Assays (ELISAs)  

Costar 96-well RIA/EIA plates (Costar, Cambridge, MA) were incubated overnight at 4 °C 

with sample to be tested, in a total volume of 50 μl. Wells containing known concentrations of 

activation peptide were simultaneously analyzed. Coated plates were washed and blocked with 

PBS 1% BSA, 5% sucrose, 0.05% NaN3 (blocking buffer) for 2 h at 37 °C. Plates were washed 

with blocking buffer then incubated with 100 μl of MMP antisera specific to the activation 

peptide of interest diluted in blocking buffer for 1h at 37 °C. The plates were washed and 

incubated for 1 h using 100 μl (1/2000 dilution) of horseradish peroxidase coupled antibody 

(either anti-mouse IgG or anti-rabbit IgG). After washing with blocking buffer and PBS, the 

substrate o-phenylenediamine dihydrochloride (Sigma) was added. Horseradish peroxidase 

activity was read at 450 nm using a THERMOmax microplate reader (Molecular Devices, Menlo 

Park, CA).  
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3.5. STATISTICAL ANALYSIS 

Data are presented as mean ± standard deviation. The Wilcoxon rank-sum test was used to 

identify which of the four markers univariately distinguish IPF samples from controls. Data were 

analyzed using the R language for statistical computing (http://www.r-project.org/) (100). 

Classification and regression trees (CART) methodology was used to identify potential 

combinations of markers that could be used to distinguish IPF from controls. CART was 

performed using the rpart package for recursive partitioning. Classification performance was 

assessed using the ROCR package (http://rocr.bioinf.mpi-sb.mpg.de/). 

 

4. PSA AND ITS ACTIVATION PEPTIDE HAVE DIFFERENT CLEARANCE 

CHARACTERISTICS 

 

4.1. PROSTATE SPECIFIC ANTIGEN IS ACTIVATED EXTRACELLULARLY 

The cDNA sequence encoding PSA predicts an N-terminal 7 amino acid activation peptide 

(35) (FIGURE 4), although this putative activation peptide has not been detected in purified PSA 

(36-39). PSA is secreted as an inactive pro-enzyme and contains the Ala-Pro-Leu-Ile-Leu-Ser-

Arg- N-terminal activation peptide.  To confirm that this is in fact the case and that the activation 

peptide is removed extracellularly after secretion, both intracellular and secreted PSA were 

characterized. 
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This analysis was performed using a polyclonal PSA antibody (FIGURE 5A) and antisera 

specific to the activation peptide (FIGURE 5B). PSA was able to be immunoprecipitated from 

both the cell lysates and medium, demonstrating that PSA was produced and that it was not 

degraded following secretion (FIGURE 5A). A pulse chase experiment was used to investigate 

the kinetics of the activation, using antibodies directed specifically against the activation peptide 

(FIGURE 5B). The analysis of the gels suggested that the pro-PSA was detected intracellularly 

and, significantly, also in the cell culture medium. The results indicate that PSA does not 

undergo any N-terminal processing events in this culture system. This was confirmed by 

radiosequence analysis of both intracellular and secreted PSA (FIGURE 6). The activation of 

pro-PSA as an extracellular event allows for the detection of the dissociated activation peptide in 

the extracellular space. 
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4.2. ELIMINATION OF PSA-αlACT COMPLEXES 

When comparing the clearance rate of 125I-α1ACT to the clearance rate of PSA-125I-α1ACT 

complexes in mice (FIGURE 7), it was seen that the half-life of α1ACT alone is much longer 

than that of the protein-inhibitor complex. The half life of α1ACT alone is several days whereas 

α1ACT in complex with PSA has a half-life of around 20 minutes. It is logical to deduce that 

when PSA secretion increases above a certain point its clearance mechanism becomes saturated. 

Only following this saturation is when PSA-αlACT complexes start to accumulate. This is 
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evident by our experiment where PSA-125I-α1ACT complex was injected with a 500-, 1000- and 

2000-percent excess of unlabeled “cold” PSA-αlACT complexes (FIGURE 7).  
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4.3. PLASMA ELIMINATION OF THE ACTIVATION PEPTIDE OF PSA 

In order to determine if the clearance of the activation peptide was also affected by the level 

of peptide in the blood, plasma elimination of the activation peptide (APLILSR) was studied by 

injecting 125I labeled activation peptide (APLILSR) into the lateral tail vein of a mouse (FIGURE 

8). Plasma elimination of 125I-labeled activation peptide was followed for 1 hour, revealing that 

the half-life of the peptide in the plasma was less than 2 minutes. The 125I-labeled activation 

peptide was also injected with a 1000- and 2000-percent excess of unlabelled (“cold”) activation 

peptide. The clearance rate was not significantly affected by the level of activation peptide in the 

blood stream, suggesting a non-receptor mediated clearance mechanism. Following plasma 

elimination experiments, the organs of the test mice were examined for radioactivity using a γ-

counter. The predominance of radioactivity in bladder and kidney indicates that the peptide is 

removed from the blood stream by renal filtration (FIGURE 9). 
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4.4. CONCLUSIONS 

The above study indicates that PSA is activated extracellularly and shows that the activation 

peptide of PSA is available for detection in extracellular fluids. When PSA is in complex with its 

main inhibitor (PSA-α1ACT) it is rapidly removed from the circulatory system.  Additionally, it 

is clear that serum PSA concentration is dependent on how much PSA gains access to the 

bloodstream and how efficiently it is removed by receptor-mediated mechanisms. Demonstrating 
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that the PSA- 1ACT complex in a mouse model is rapidly cleared from the plasma suggests that 

the complex is only detectable in the serum after the clearance mechanisms become saturated. In 

contrast to PSA itself, the mechanism responsible for the removal of the activation peptide is 

mainly a passive filtration event in contrast to the active receptor mediated endocytosis required 

for the removal of the PSA-αlACT complex. Moreover, in mice, the plasma clearance of the 

activation peptide is not influenced by saturation kinetics like serum PSA complex levels.  

 

5. THE ACTIVATION PEPTIDE OF PSA IS DETECTABLE IN BIOLOGICAL 

SAMPLES 

 

5.1. THE ACTIVATION PEPTIDE OF PSA IS IN THE URINE OF PROSTATE CANCER 

PATIENTS BUT NOT CONTROLS 

Because the activation peptide of PSA is removed extracellularly and is cleared through 

renal filtration, it follows that it should be detectable in the urine. It is known that PSA is up 

regulated in prostate cancer but, as we have shown, may only be elevated in the serum after its 

clearance mechanisms are saturated. Because the activation peptide of PSA is not affected by 

such clearance issues its presence in the urine should correlate with the presence of prostate 

cancer. In order to test whether PSA activation peptide is measurable in the urine of patients with 

prostate cancer, the activation peptide was synthesized and a polyclonal peptide antiserum was 

prepared in rabbits. The specificity of the antisera was first verified by dot blot against the 

synthetic activation peptide, which was tested in concentrations ranging from 0.01 - 5.0 ng of 

peptide (FIGURE 10A; increasing concentration of activation peptide from dot 1 to dot 9). The 

antisera produced a dose-dependent reaction. Urine samples from seven control subjects with no 
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evidence of prostate disease and eight patients with prostate cancer were tested for the presence 

of the activation peptide as discussed above. The activation peptide was detected in the urine 

(FIGURE 10B) of the cancer patients, but not in the urine (FIGURE 10C) of controls.  
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5.2. CONCLUSIONS 

The activation peptide is easy to detect within the urine and represents a noninvasive 

sampling procedure, amenable to large-scale clinical use. Most significantly, the detection of the 

activation peptide in urine of subjects correlates with the presence of prostate cancer. 

 

6. URINE MMP ACTIVATION PEPTIDE CONCENTRATIONS CAN BE 

MEASURED BY AN ENZYME LINKED IMMUNOASSAY 

Like PSA, MMPs are proteinases that are implicated in disease. Specifically, MMP-2, 

MMP-7, MMP-8, and MMP-9 have been shown to be associated with IPF. For this reason, we 

hypothesized that increased urinary levels of the activation peptides of MMPs may be associated 

with IPF in a manner similar to the PSA activation peptide in prostate cancer. MMP-2, 7, 8, and 

9 map to different chromosome regions of the human genome but are individually conserved 

across species with 79% (MMP-2), 75% (MMP-7), 80% (MMP-8) and 96% (MMP-9) homology 

to the respective mouse MMPs. The protein structure of human MMPs includes a pro domain 

that consists of 80 to 90 amino acids (TABLE 1). Also like PSA, the pro domain or activation 

peptide is cleaved from the latent protein upon activation and therefore should be detectable in 

the biological fluids. To quantitate the release of MMP activation peptides into the urine, we used 

antibodies against the pro domain of each MMP. 
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6.1. ELISA IS A SENSITIVE WAY TO MEASURE MMP ACTIVATION PEPTIDE 

CONCENTRATIONS 

Standard curves, using serial dilutions of synthetic peptide corresponding to the pro peptide 

domain of MMP-2, MMP-7, MMP-8, and MMP-9 in phosphate buffered saline (PBS) starting 

with 10 ng/ml for MMP-2, 7, and 8 activation peptides, and 1ng/ml for MMP-9 activation 

peptide, determined the sensitivity of the assays to be <1 ng/ml. This means that we are able to 

effectively detect a concentration less than 1 ng of activation peptide per mL of urine. Sensitivity 

of these assays was defined as the lowest MMP activation peptide concentration that could be 

differentiated from zero (assay blank/PBS) by Student's t-test. A representative figure for the 

standard curve of MMP-2 is shown (FIGURE 11). 
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6.2. ELISA IS A VALID METHOD FOR THE DETECTION OF MMP ACTIVATION 

PEPTIDE CONCENTRATIONS 

The reproducibility of the assay was shown by assessing the precision profile of each MMP 

activation peptide. Urine samples that were known to have a concentration above the midpoint of 

the detection range for each MMP activation peptide were used.  The inter- and intra-assay 

coefficient of variances ranged from 5.7% to 7.9% (n = 10) and from 6.3% to 9.9% (n = 2 in 10 

different plates), respectively (FIGURE 12A, B). 
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To determine the dilution linearity, a known positive urine sample containing between 2 

and 3.5 ng/ml corresponding to medium concentrations of MMP activation peptide was used at 

dilutions of 1:5, 1:10, and 1:20. The sample gave results close to linearity (r = 0.95–0.99) 

(FIGURE 12C) strengthening the validity of each assay. 
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6.3. CONCLUSIONS 

Before any results can be obtained using a new assay, it must first be proven to be a valid 

way to measure the data. In this case, an ELISA is used to measure the activation peptides of 

MMPs in hopes of correlating their concentrations to disease state. The validity is determined by 

assuring that you can measure low enough levels of your peptide to correspond to biological 

levels in the urine. This is what determines the sensitivity. Additionally you must be sure that 

each result is reproducible by repeating a measure multiple times and on multiple days. Lastly, 

the ability to dilute a known positive sample serially and see linear results when assayed adds to 

the validity of the test. Based on all of these experiments, one can be sure that one is, in fact, 

accurately measuring the MMP activation peptide concentrations in the urine of patients. 

 

7. INCREASED URINE MMP ACTIVATION PEPTIDE CONCENTRATIONS ARE 

ASSOCIATED WITH FIBROTIC DISEASE 

 

It has been well established that MMP activity is associated with fibrotic diseases, 

specifically IPF. There are many ways that MMPs have been implicated in the disease process. 

For example, the gelatinases (MMP-2 and MMP-9) have known involvement in basement 

membrane degradation and turnover. The breakdown of the basement membrane is believed to 

be an early event in pulmonary fibrosis (101) as it may allow for the migration of inflammatory 

cells and the mobilization of fibroblasts into the lung (102).  To confirm that MMPs are relevant 

in IPF and to determine if the activation peptide levels of MMPs in the urine also correlate with 

disease state, we measured MMP activation peptide levels in the urine of mice using two models 

of pulmonary fibrosis. 
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7.1. ACTIVATION PEPTIDES FROM MMP-2, MMP-7, MMP-8, AND MMP-9 ARE 

INCREASED IN THE URINE OF MICE FOLLOWING PULMONARY INJURY 

 

To determine if the activation peptides of MMP-2, MMP-7, MMP-8 and MMP-9 are 

detectable in the urine of mice following pulmonary injury the same ELISA was used for the 

human samples. For this study, urines were collected from C57BL/6 mice prior to and following 

asbestos and bleomycin induced pulmonary injury. The mice were treated intratracheally with 

either 0.1-mg of asbestos, 0.05 units of bleomycin, or 0.9% saline only. Urines were collected at 

day 0 prior to treatment and then everyday post treatment. The results show that all of the 

markers assessed are significantly increased in the urine of mice with pulmonary injury 

compared to the urine of mice treated only with saline. At day 14, when these mice are 

exhibiting detectable fibrosis (FIGURE 13A), it is clear that the activation peptide levels are 

significantly increased in the urines of the injured mice compared to controls (FIGURE 13B). 
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7.2. MMP ACTIVATION PEPTIDE CONCENTRATIONS ARE DIFFERENT BETWEEN IPF 

PATIENTS AND CONTROLS 

 

7.2.1. Patient Characteristics 

Demographic data, urine MMP activation peptide concentrations, urine creatinine levels 

and pulmonary function test results are summarized in Table 2. IPF patients were diagnosed via 

lung biopsy or radiographic evidence and normal controls (NC) were healthy age range matched 

with a similar gender distribution. Pulmonary function tests reveal that there is no significant 

correlation between urine MMP activation peptide concentrations and forced vital capacity 

(FVC%) or carbon monoxide diffusing capacity (DLCO%).  
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Table 2. Patient Characteristics and MMP Activation Peptide Levels 

 

Variable IPF NC 

Age 65.7 ± 11.4  59.5 ± 8.8 
Sex, male/female 29/13 24/6 
Creatinine 183.3 ± 74.2 132 ± 75.5 
PFT Fvc% 66.74 ± 13.94 - 
PFT DlCo% 50.49 ± 17.23 - 
[MMP-2 activation peptide]* 2.6 ± 2.0 0.76 ± 0.61 
[MMP-7 activation peptide]* 3.6 ± 2.6 0.97 ± 1.0 
[MMP-8 activation peptide]* 0.88 ± 1.0 0.6 ±0 .74  
[MMP-9 activation peptide]* 3.3 ± 2.4 0.87 ± 1.1 
 

 

 

7.2.2. MMP-2, MMP-7, and MMP-9  Activation Peptide Relative Concentrations Are Higher in 

IPF Patients Compared to Controls 

To determine whether urine MMP-2, MMP-7, MMP-8, and MMP-9 activation peptide 

concentrations were higher in IPF patients compared to controls, their levels were measured in 

42 samples from patients with IPF and 30 healthy age range matched controls via ELISA. The 

resulting concentrations are relative to each patient’s urine creatinine level. Univariately, the 

relative urine concentrations of the activation peptides of MMP-2 (p < .001), MMP-7 (p < .001), 

and MMP-9 (p < .001) are significantly higher in IPF patients compared to controls (FIGURE 
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14). MMP-8 activation peptide levels were slightly increased in IPF urines but this increase was 

not significant. 

 

 

 

 

 

 

Recursive partitioning (CART) was used to determine whether these four markers in the 

urine comprise a combinatorial classifier to correctly classify IPF patients from controls. The 

results suggest that these markers in the urine can be used to distinguish IPF from control with 

high sensitivity (97.6% CI (0.874, 0.999)) and specificity (96.7% CI (0.828, 0.999)). Low 

relative concentrations of MMP-7 activation peptide alone (≤1.255 ) correctly exclude 41 of 42 

IPF patients but incorrectly classify one normal sample as IPF and one IPF sample as control, 
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whereas the combination of high relative urine concentrations of MMP-7 (≥1.255), MMP-2 

(≥0.985), and MMP-9 (≥1.135) exclude all controls but one. Therefore, if MMP-7 is low, then a 

randomly selected case is almost guaranteed not to be an IPF patient (FIGURE 15). Further, if 

MMPs -7, -9, and -2 are all simultaneously high, a randomly selected case is almost guaranteed 

to be an IPF patient. Relative urine concentrations of MMP-8 activation peptide are not 

independently important. Receiver operating characteristic curves (ROCs) agree that a 

combination of the four markers, most significantly the combination of the activation peptides of 

MMP-2, MMP-7, and MMP-9 correctly classify IPF patients from controls (FIGURE 16). 
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7.3. CONCLUSIONS 

IPF is a fatal lung disease without viable treatment options. For this reason, researchers 

have been trying to identify biomarkers of disease that will shed light on its pathogenesis, aid in 

the development of therapies, or offer better diagnostic or prognostic tools. MMP disregulation 

has been shown to be associated with IPF and may provide an avenue to explore the processes of 
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disease. It was shown that the activation peptides of MMPs are detectable in the urine and 

correlates with the presence of disease. Because the PSA model determined that serum 

proteinase detection is confounded by complex clearance mechanisms, it is likely that the 

detection of MMP activation peptides will give a more clinically relevant measure of MMP 

activation in vivo that is not confounded by these clearance mechanisms. 

 

8. DISCUSSION AND FUTURE DIRECTIONS 

 

Proteinases are involved in a diverse range of key biological processes, including blood 

coagulation, hormone processing, fertilization, cell growth, and apoptosis among others. In 

addition, the levels of proteinases and/or their inhibitors in the body critically regulate initiation 

or progression of several disease states including cancer. Proteolysis facilitates malignant 

invasion into the vasculature by tumor cells by breaking down of extracellular matrix barriers in 

the interstitial stroma and basement membrane. The degradation of the basement membrane is a 

complex process that requires the production, release, and activation of a number of extracellular 

matrix degrading enzymes. An inappropriate overexpression of these enzymes almost invariably 

occurs in all malignant tumor cells (103). Also, highly invasive tumor cells have an elevated 

capacity to degrade the surrounding extracellular matrix (ECM), which they do so by the 

synthesis of a variety of proteinases that digests the ECM proteins (103). Because of their key 

role, proteinases have been shown to be potential diagnostic and/or prognostic indicators of 

specific diseases. Prostate-specific antigen (PSA) and matrix metalloproteinases (MMPs) are 

proteinases that have found wide application as biomarkers of diagnosis and prognosis of 

prostate cancer and idiopathic pulmonary fibrosis (IPF), respectively. 
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Unfortunately, the biochemical nature of proteinases complicates the ability to detect them in the 

blood (104) (FIGURE 17).  The data presented here show that, due to their simple renal 

clearance, activation peptides of proteinases can be found in the urine and may be used for 

biomarkers of disease.  
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8.1. PSA ACTIVATION PEPTIDE BIOSYNTHESIS AND CHARACTERIZATION  

    

       Prostate cancer is the most frequently diagnosed malignancy in men in North America and 

Northwestern Europe and the second leading cause of cancer death in males (105). The 

identification of patients who are at high risk as well as the prediction of tumor progress is 

critical for treatment and disease management. This is currently being done using PSA in serum 

as a surrogate marker in the early diagnosis and management of prostate cancer. However, its 

limited specificity necessitates additional biomarkers to be identified to supplement or 

potentially replace serum PSA testing for accurate diagnosis of prostate cancer. Laxman et al. 

have put forth the idea of “multiplexing” or combining several biomarker tests for more accurate 

detection of prostate cancer (106).  

 

Activated PSA rapidly complexes with proteinase inhibitors e.g., αlACT in the blood and 

is cleared from the circulatory system by receptor-mediated endocytosis. Purified proteins, in 

vitro, do not form complexes as readily (107). The free, noncomplexed form of PSA constitutes 

only a minor fraction of the serum PSA, as serum ACT occurs in excess. The clearance rate of 

the PSA- αlACT complex is significantly faster than for native α1ACT. Experiments show that 

the half-life of α1ACT alone was up to several days whereas for the PSA- αlACT complex it was 

as low as 20 min (FIGURE 7).  
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Our experiments suggest that, in general, PSA-α1ACT complexes are cleared very rapidly 

from the blood. However, we found that the rapid clearance is dependent on the levels of PSA-

α1ACT complex. The capacity of the clearance mechanism is unknown, but it is evident that it 

eventually becomes overwhelmed. Indeed PSA complexes only begin to accumulate after very 

high levels are introduced. These results imply that rapid removal of PSA from the circulation in 

the early stages of prostate cancer, when there is a low tumor cell burden and lower levels of 

PSA production, may form a heretofore-unrecognized problem with conventional PSA testing. It 

is possible that, in cases of prostate cancer associated with normal serum PSA concentrations, the 

plasma elimination mechanism has not yet been saturated, so that PSA is quickly removed from 

the bloodstream. 

 

Hypothesizing that one of the reasons for the errant serum PSA values could be the rapid 

clearance mechanisms, this study looked at the measurement of the 7-amino acid activation 

peptide of PSA (APLILSR) in the urine as a potential additional biomarker for CaP. Recent 

progress in the technological tools for peptide detection, quantification, and identification has 

enabled easy and accurate evaluation of urine biomarker proteins as compared to the insufficient 

resolution of many earlier techniques such as two-dimensional electrophoresis (108). The dot 

blotting technique that was used in this study revealed the presence of PSA activation peptide in 

the urine of prostate cancer patients but not in the control samples. This demonstrated the 

practicability of using urinary PSA- activation peptide as a screening tool for prostate cancer 

particularly for early stage diseases, and to serve as a potential sensitive measure for monitoring 

recurrence of disease.  
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At first glance the rapid clearance of PSA- 1ACT complex observed in the present study, 

could be contrary to previous studies performed in male patients undergoing radical 

prostatectomy, where a relatively slow clearance of the PSA- 1ACT complex was observed 

(109, 110). However, in these studies it is likely that they were monitoring clearance of PSA in 

patients who had saturated their clearance mechanisms. This is consistent with the relative high 

concentrations of initial serum levels of complexed PSA in the patients. Furthermore, our 

hypothesis is consistent with the fact that on a longer time scale, the decrease in complexed PSA 

concentration is much more pronounced in the patients (109, 110) i.e. once the system was no 

longer saturated clearance accelerated. The clearance rate is also likely to depend upon the 

overall health of the patient, including physical condition, body weight, and alcohol and tobacco 

consumption. These factors may account for some of the variability of serum PSA levels 

between individuals. This rapid clearance of PSA complexes limits the utility of serum PSA as 

an early diagnostic tool. Although serum PSA testing plays a useful role in monitoring treatment 

response and relapses in a given individual, the complex clearance mechanisms of serum PSA 

may also interfere with the detection of early recurrence monitoring as well. On the other hand, 

these factors are not expected to significantly affect the half-life of the activation peptide. The 

mechanism responsible for the removal of the activation peptide is mainly a passive filtration 

event in contrast to the active receptor mediated endocytosis required for the removal of the 

PSA-αlACT complex. Moreover, the data presented here show in mice that plasma clearance of 

the activation peptide is not influenced by saturation kinetics like serum PSA complex levels.  
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Our results suggest that the presence of the PSA activation peptide in urine may be a 

reliable indicator of secreted and activated PSA with fewer confounding factors than serum PSA 

analysis. This activation peptide is cleaved from PSA during activation of pro-PSA in the 

extracellular space.  The rapid and simple kinetics of clearance suggest that it does not interact 

with other proteins, but is cleared from the blood by simple renal filtration. Therefore screening 

for the presence of the activation peptide in urine may give a more accurate representation of 

PSA production. Additionally, it represents a noninvasive sampling procedure, amenable to 

large-scale use.  

 

It is important to note that the ratio of free PSA to total PSA in the serum has been shown 

to be helpful in discriminating CaP from benign prostatic hypertrophy (BPH) (111, 112) where 

an increase in free PSA is suggestive of benign disease. Because a majority of free PSA is either 

enzymatically inactive proPSA ((-7)proPSA) or a significantly nicked variant of proPSA ((-4,-

5)proPSA) (113), detection of the full 7 amino acid activation peptide in the urine would 

correspond to amounts of PSA that have been activated. This would include active PSA that has 

subsequently bound to α1ACT and has been cleared or is still present in the blood as well as PSA 

that is undetectably bound to α2M. This is of great interest as there is currently no simple assay 

that can detect PSA bound to both α1ACT and α2M. 

 

Because proPSA has been shown to have different forms, one must consider that an 

antibody against APLILSR may also detect slightly truncated forms of the activation peptide in 

the urine. Because it would be difficult to discern between 5 and 7 amino acid peptides in an 

immunoassay, it is possible that the APLIL peptide that is cleaved from the (-2)proPSA form 
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will also be detected in the urine with an antibody against APLILSR. While this would 

seemingly implicate a lower specificity for detection, it has been shown that the presence of (-

2)proPSA in the serum is a sensitive indicator of cancer (114). This detection might therefore 

increase the sensitivity of the assay to detect prostate cancer. 

 

 It is therefore proposed that an assay to detect APLILSR will constitute a clinically 

sensitive method of screening for cancers associated with increased levels of secreted PSA. As 

proteinase activation is a common occurrence in many other diseases, this activation peptide 

detection technique may also prove useful for the diagnosis or monitoring of other proteinase 

specific conditions. 

 

In summary, while serum PSA screening is useful, particularly in following treatment 

response in individuals with known prostate cancer, it is clear that a better understanding of 

mechanisms involved in PSA biology and regulation will lead to improved prostate cancer 

screening. Our biosynthesis and clearance studies indicate that prior to detectable elevations of 

serum PSA in patients, there is likely significant pathology developing in the prostate, and 

elevated serum PSA levels develop only after saturation of hepatic clearance mechanisms.  A 

saturation-independent method of detecting increased PSA secretion would enhance early 

detection of prostate cancer and would improve treatment outcomes. We propose that urine 

detection of the PSA activation peptide may represent a sensitive and reliable early detection 

method that would also be useful in following treatment response in patients with known prostate 

cancer. 
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8.2. FUTURE DIRECTIONS: ALTERNATE PSA ACTIVATION PEPTIDE DETECTION 

METHOD 

 

While the ability to detect the activation peptide of PSA in the urine and have it predict 

disease state is certainly useful, for true clinical utility the urinary PSA activation peptide 

concentrations will need to be individually determined. In order to do this a sensitive quantitative 

assay will need to be developed. The data presented here show that an ELISA is an appropriate 

method to quantitatively detect the PSA activation peptide (FIGURE 18), but a more robust 

antibody is needed in order to determine meaningful results. Ideally, two monoclonal antibodies 

against the activation peptide will need to be produced in order to develop a sandwich ELISA. 

Following the development of such an assay, measuring the concentrations of the PSA activation 

peptide may have use in predicting disease severity and disease recurrence in addition to its 

diagnostic value. 
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 Another important point to explore is the stability of the PSA activation peptide in the 

urine. Because we are able to detect the activation peptide in the urine via dot blotting, it is 

evident that there is some peptide stability. However, based on our results, we cannot be sure that 

there is not some subset of the peptide being degraded in the urine. As mentioned above, if the 

peptide is reduced to its five amino acid form its detection will still hold clinical value by 

suggesting the amount of (-2)proPSA in the serum. More significant truncation of the peptide 

will likely, however, confound results. For this reason, it will be necessary to perform 

experiments to determine the stability of the peptide. These experiments can be done in the same 

fashion done to determine the stability of the trypsinogen activation peptide in the urine (115). 
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The trypsinogen activation peptide has been used as a urinary marker for severe acute 

pancreatitis and has been shown to correlate with the severity of the attack (116-118). But it has 

been shown that the activation peptide is relatively unstable and hence, does not make a good 

marker (115).  

 

8.3. PATHOPHYSIOLOGY OF IPF  

Pulmonary fibrosis, consequent to lung injury, is initiated by migration, adhesion, and 

proliferation of fibroblasts in the alveolar interstitium. Idiopathic pulmonary fibrosis (IPF) is a 

specific form of chronic fibrosing interstitial pneumonia. It is a chronic and usually fatal disorder 

characterized by impaired oxygen transfer, alveolar collapse, and interstitial fibrosis (American 

Thoracic Society/European Respiratory Society Consensus Classification, 2002). The clinical 

features of IPF are quite variable (119) and as the name suggests, the etiology of the disease is 

unknown. Although the precipitating causes of IPF are indefinite, one prevailing hypothesis is 

that the initial injury is linked to abnormal repair of damaged alveolar epithelium and irreversible 

pulmonary structural remodeling. Thus, the course of IPF is mainly associated with the 

production, deposition, and proteolysis of the extracellular matrix (ECM). Matrix 

metalloproteinases (MMPs) and their inhibitors (tissue inhibitors of MMPs [TIMPs]), 

transforming growth factor (TGF)-β1, and cytokines are postulated to play key roles in the 

pathophysiology of IPF. MMPs and TIMPs have been shown to participate in the parenchymal 

destruction and repair processes resulting in ECM remodeling (120). MMPs are a family of 

around 25 structurally related, ECM-degrading, zinc-dependent metalloenzymes with different, 

yet overlapping, substrate specificities. In addition to IPF, many of these proteinases have been 
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implicated in other pathological conditions, including cancer (121, 122), and several different 

vascular diseases (123). 

 

8.4. IPF AND MATRIX METALLOPROTEINASES         

   

MMPs are involved in the initiation of proteinase cascades that impact several substrates 

thereby playing a central role in several interrelated processes observed in fibrosis such as ECM 

remodeling, basement-membrane breakdown, epithelial-cell apoptosis, cell migration, and 

angiogenesis (124-126). Proteinase activity, in general, is regulated in vivo by an alteration of the 

rate of enzyme synthesis and degradation, activation of (pre-) proforms, and binding with 

endogenous inhibitors. The progressive fibrosis seen in IPF has been shown to occur due to an 

imbalance between the synthesis and degradation of extracellular matrix caused by an erratic 

regulation of MMPs and their inhibitors, TIMPs (127). Several MMPs are strongly up-regulated 

in IPF, e.g., MMP-3, -7, -8 and -9 (126, 128), which has increased attention as to what these 

MMPs may be doing to promote or inhibit fibrosis. It was originally thought that MMPs would 

be protective against IPF as they could potentially degrade the fibrotic tissue (129, 130). More 

recent studies have shown, however, that MMPs actually directly contribute to development of 

fibrosis. This process, while seemingly counterintuitive, is now the prevailing thought (131-133). 

 

A majority of the MMPs with the exception of the membrane-bound MMPs and 

stromelysin 3, which are secreted in active form, are secreted as latent zymogens and attain 

catalytic properties within the ECM. Non-proteolytic compounds such as organomercurial 

chemicals, several proinflammatory agents such as oxidants, detergents and protein denaturants 
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(SDS), or other already active MMPs or other proteinases may break open the cysteine to zinc 

bond to trigger proMMP activation. Experimental models of lung injury have suggested an 

important role for MMPs with increased gelatinolytic and collagenolytic activities being 

observed in the lung (134). Endogenous tissue inhibitors of MMPs (TIMPs) specifically form 

complexes with and inhibit active forms of MMPs. Such complexes are rapidly cleared 

preventing accurate biological detection of MMP activation. In contrast, the mechanism of 

clearance of the activation peptides released from the MMPs is unknown. A major drawback for 

clinical research on IPF is the late presentation of clinical symptoms by which stage the disease 

is essentially untreatable and has a poor prognosis (135). The generally rapid progression of the 

disease associated with high mortality raises the importance of initiating optimal therapy early. 

Furthermore, diagnosis of IPF is rendered difficult because of many other lung diseases with 

similar symptoms, including several other interstitial lung diseases. Hence, it is imperative to 

understand better the underlying cellular, molecular, and genetic mechanisms so as to be able to 

effectively monitor the progress of the disease and, more importantly, to develop methods for 

earlier detection, which may allow for the development of more effective therapies.  

 

8.5. PROTEINASE MEDIATORS 

 

The actual mechanism of IPF development is not yet understood. The earlier held view 

that IPF is another inflammation-driven form of lung fibrosis does not seem wholly valid 

especially because steroids and immunosuppressants are of little help in controlling IPF. The 

accepted hypothesis now relates chronic epithelial damage to the process of lung fibrosis. The 

lack of knowledge regarding the etiology of this fibrotic disease has been the major stumbling 



62 

 

block for the development of appropriate antifibrotic therapies. Simply stated, fibrotic disease is 

thought to be normal wound healing gone awry. Normal wound healing is tightly controlled by a 

complex set of interactions involving a network of profibrotic and antifibrotic cytokines and 

secreted proteins. According to a comprehensive review of the pro- and antifibrotic protein 

mediators of wound healing and fibrosis, the major profibrotic proteins consist of transforming 

growth factor-ß (TGF-ß) and connective tissue growth factor (CTGF) while the major antifibrotic 

proteins include tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) (136). TGF-ß, a potent 

fibrogenic cytokine which provokes fibroblasts to produce as well as contract ECM, is a key 

mediator of the fibrotic response. The protein CTGF secreted by human endothelial cells which 

is induced by TGF-ß is considered a downstream mediator of the effects of TGF-ß on fibroblasts 

(136).  

 

The protein α-smooth muscle actin (α-SMA) is produced by wound fibroblasts (or 

myoblasts) which helps wound closure by inducing the contraction of extracellular matrix. α-

SMA as well as collagen type I syntheses are triggered by TGF-ß1 under the influence of the 

matrix protein fibronectin (137). In addition to the above mentioned profibrotic mediators, 

several antifibrotic mediators are also involved in the process of wound healing. For example, as 

a part of the wound healing response, the proinflammatory cytokine TNF-α is increased by 

macrophages (138). Furthermore, immediately after injury, the proinflammatory cytokine IFN-γ 

released by T cells suppresses collagen synthesis (139). Thus, the involvement of TGF-ß 

signaling is central to wound healing and fibrotic responses. On the other hand, the MMPs, in 

addition to enhancing ECM turnover and promoting tissue remodeling, are also involved in the 

release and or activation of cytokines and profibrotic growth factors including TGF-ß1 (136).  
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All the proteins involved work as a highly complex network and new drug intervention 

strategies to combat chronic fibrosis will likely have to consider the cytokine components of this 

network. Providing evidence that overexpression of the active, but not latent, TGF-ß in rat lung 

results in prolonged and severe interstitial and pleural fibrosis, (140) have shown that targeting 

active TGF-ß and steps involved in TGF-ß activation may be valuable therapeutic strategies.  

Because MMP activity can regulate this growth factor, it follows that monitoring the activation 

of MMPs via activation peptide detection in the urine may prove to be another useful method to 

monitor disease processes.            

 

8.6. BIOMARKERS FOR IPF        

 

There are currently no biomarkers available clinically for the monitoring of IPF disease 

progression. The typical means to monitor disease are based on outward symptoms including 

increasing dyspnea and declining pulmonary function tests. These symptoms could however be 

the result of a different respiratory illness or infection.  Identifying clinically useful biomarkers 

in bronchoalveolar lavage or blood has been challenging because of the complexity of IPF (135). 

The plasma concentrations of two metalloproteinases, MMP1 (collagenase) and MMP-7 

(matrilysin), were found to be elevated in patients with IPF. These levels were higher than in 

controls or patients with other chronic fibrotic lung diseases, including chronic obstructive 

pulmonary disease, sarcoidosis, and HP (85). Plasma MMP-7 levels were increased in patients 

with IPF with asymptomatic disease as well, but the concentrations were lower than in 

symptomatic disease. Also, the levels correlated with reduced gas diffusion and lung volumes 

suggesting that MMP-7 in plasma may be used as an early marker of disease and disease 
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progression (85). Due to the potential problems associated with measuring proteinases in the 

blood, as previously described, it would certainly be beneficial to have an additional way to 

monitor MMP-7 levels. Assaying urinary concentrations of the activation peptide of MMP-7 

would be an appropriate adjunct to this method. 

 

A specific biomarker for IPF would be extremely useful for both early detection 

screening and in determining if patients were actually suffering from accelerated progression of 

their disease. It has been shown that patients with different progression patterns of their disease 

(slow progressors vs. rapid progressors) have different gene expression patterns suggesting that 

the variability of IPF progression must be considered when treating these patients (141). In 

addition it has been shown that rapid disease progression is a likely cause of death in IPF patients 

(142). Therefore, the ability to monitor patients biochemically for actual disease progression 

would have extreme advantages.  It is plausible that this assay could be used to monitor patients 

longitudinally for acute exacerbations to determine if a particular level of MMP activation 

peptide present in the urine suggests an impending acute exacerbation. Similar work in the BAL 

fluid has already shown that active MMP-9 may be a predictor of fast progression (141). 

 

           Several MMPs are known to be upregulated in acute lung injury models but the exact role 

of these MMPs in the development of the lung injury is unclear (143). The present study showed 

for the first time the presence of increased amounts of activation peptides of MMP-2, MMP-7, 

and MMP-9 in the urine of mice with pulmonary fibrosis compared to WT mice and also in the 

urine of human patients with IPF compared to healthy controls. Although MMPs are believed to 

contribute to IPF, monitoring their activation is complicated by proteinase inhibition and 
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clearance. Thus, measuring levels of the activation peptides of MMPs represents a better overall 

measure of MMP activation. We have previously shown in the PSA study that small activation 

peptides are filtered into the urine. Because MMP activation peptides are also relatively small, 

we chose to measure urinary levels of the activation peptides for MMPs. It is likely however, that 

these activation peptides will also be present in the bronchoalveolar lavage fluid (BALF).  

 

Gelatinases are believed to participate in remodeling and/or degradation of the ECM 

(144). The gelatinolytic activity of MMP-2 has been presumed to be related to the invasive as 

well as the metastatic properties of the cancers while MMP-9, another gelatinase, has been 

implicated in the pathogenesis of the lung injury (143). An upregulation of collagenase 1 and 2 

and gelatinases A and B, has been suggested to contribute to the pathogenesis of COPD through 

the remodeling of airways and alveolar structures. Henry et al. have reported MMP-8 to be the 

major contributor to the bronchoalveolar lavage fluid collagenase activity in the airways of 

patients with idiopathic pulmonary fibrosis and initiator of collagen destruction and remodeling 

leading to the development of pulmonary fibrosis (23). The present study did not, however, find 

any significant increase in MMP-8 activation peptide in urine. Of the members of the MMP 

family, active MMP-2 and MMP-9 can provoke the disruption of basement membranes thereby 

facilitating fibroblast invasion into the alveolar spaces. The present study has shown significant 

increases in the activation peptides of both MMP-2 and MMP-9 in urine supporting the 

convention that these MMPs are being activated to a greater level in patients with IPF. 

 

       An overexpression of MMP-9 by alveolar macrophages has been reported to play an active 

role in lung remodeling in IPF (145). The plasma concentrations of MMP-7 has been suggested 
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as a plausible biomarker for monitoring disease progression and facilitating early diagnosis 

(135). MMP1 and MMP-7 have been suggested to be the main components of the peripheral 

blood protein signature in IPF, whose overexpression can distinguish IPF from other chronic 

lung diseases (85). To the contrary, it has been demonstrated that the increased expression of 

MMP-7 is not a unique phenomenon of IPF, but a common feature of interstitial fibrotic 

disorders (146). Because MMPs in the blood should be cleared rapidly, analogous to our PSA 

studies, detection of elevated levels of these MMPs in the blood may only occur after saturation 

of clearance mechanisms. It is possible that these confounding factors are what are responsible 

for such conflicting results whereas activation peptide detection may be a reliable additional way 

to measure MMP-7 activity. Our study showed the presence of significantly elevated levels of 

activated peptide of MMP-7 in urine of IPF patients.  

 

Because there is currently no appreciable therapy for IPF, additional markers of disease 

could aid in the development of new therapeutic targets. Proteinase inhibitors are commonly 

used in the treatment and prevention of viral infections and also have the potential to treat 

cancers (147, 148). It is clear the MMPs play a role not only in the progression of IPF but also in 

the initiation of disease. MMP inhibition has already shown to be protective against asbestos- 

and bleomycin-induced fibrosis (22, 149). For this reason, it is possible that the inhibition of 

certain MMPs may be a viable option in the treatment of IPF.  

 

           Biomarkers and surrogate markers can provide important complementary information in 

combination with traditional clinical and laboratory data. Relatively noninvasive and easy-to-

perform tests make the best biomarkers. Such tests usually involve blood or urine specimens, can 
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be measured serially, and have a fast turnaround. Modern high-throughput proteomic 

technologies allow the complete profiling of low molecular weight peptides in biological fluids. 

These techniques work better with urine, however, because it is a less complex fluid compared to 

serum which has a wide component of proteins, the predominant ones being albumin and Ig that 

usually overwhelm the less abundant signals (150). Combined with the proper statistical analyses 

these techniques may potentially be used to identify biomarkers indicative of disease states. 

 

8.7. FUTURE DIRECTIONS: IPF  

 

8.7.1. IPF Biomarkers 

The fact that there are no available biomarkers for this disease makes it very difficult to 

monitor patients’ response to therapy. Radiography and symptom resolution are currently what is 

used to monitor patients through their course of treatment, however these methods are unable to 

show biochemical response and therefore cannot determine if the disease itself is being treated or 

just the symptoms. Biomarkers to predict therapeutic responses in patients with IPF would have 

a tremendous impact on future clinical trials by making them more cost effective (reduce need 

for expensive radiographic studies, pulmonary function studies, and other physiologic studies 

that are not that sensitive to detect changes) and also aid in determining if a trial should be 

continued if no effect is seen. 

The biomarkers studied here were selected because they have previously been shown to 

be related to the development of pulmonary injury (21, 23, 82, 85, 125, 128, 143, 144). As such, 

it would not be surprising to find these markers present in other pulmonary diseases such as HP, 

NSIP, COPD, and sarcoidosis. In order to determine clinical diagnostic utility of this assay, we 
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will have to expand our population to include patients with other pulmonary diseases. While it is 

possible that the levels of MMP activation peptides will be up regulated regardless of type of 

lung injury, we expect that urine MMP-7 activation peptide concentrations will be elevated in 

IPF patients compared to patients with COPD and sarcoidosis as it has been shown that elevated 

MMP-7 in the peripheral blood is sufficient to distinguish IPF from the later two diseases (85). It 

would be interesting to compare urinary MMP-7 activation peptide levels to MMP-7 levels in the 

plasma longitudinally to determine if one increases before the other. Inferring from our previous 

studies with PSA, it is likely that the MMP-7 levels that have been measured in the plasma do 

not represent all of the MMP-7 production as MMP-7 is inhibited and cleared from the system 

once activated. One would expect then that urinary levels of MMP-7 activation peptide would 

increase prior to plasma MMP-7 levels. It would certainly be of value to assay for other 

proteinases that may be involved in disease initiation and progression. At least two other MMPs 

are known to be up regulated in pulmonary fibrosis, MMP-1 and -13 (23). Additionally, the 

serine proteinase neutrophil elastase (NE) has been shown to contribute to pulmonary fibrosis 

processes (151, 152). These proteinases are all activated extracellularly therefore their activation 

peptides should also be detectable in the urine. 

 

Future studies should also attempt to correlate gelatinolytic and collagenolytic activities 

in lung tissue with urinary activation peptides. This could be done by combining techniques such 

as gelatin zymography to analyze proenzymes and activated enzymes and urine activation 

peptide estimation. Zymography results could also be compared to urinary MMP activation 

peptide concentrations and MMP protein concentrations in the plasma to further evaluate the 

biosynthesis of each MMP. It would also be important to devise suitable studies with, for 
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instance, specific MMP-deficient mice to examine the source of active metalloproteinases 

including MMP-2, -7 and -9 so as to understand their role in the pathophysiology of IPF.     

 

       Urinary proteomics is a powerful non-invasive tool for diagnosis and monitoring of several 

human diseases. Signatures of urinary MMP activation peptides could hold an abundance of 

information that would be helpful in the development of new biomarkers useful in clinical 

investigations of IPF and other interstitial lung diseases. Urinary activation peptide signatures 

would possibly be helpful in identifying the point in time when predisposition to IPF is 

developing into disease. There is also a possibility that such biomarkers would be able to help 

identify potential trigger events in IPF.  

 

8.7.2. IPF Therapeutics 

The transforming growth factor (TGF)-β and bone morphogenetic proteins (BMPs), 

members of a superfamily of cytokines and present in different isoforms, are essential 

components of the tissue regeneration machinery with specific functions such as wound healing, 

extracellular matrix remodeling, and the control of epithelial– mesenchymal interactions during 

embryogenesis. In particular, isoform BMP-4 plays an essential role in lung development. In the 

adult lung, TGF-β is involved in the regulation of extracellular matrix synthesis and degradation 

while BMPs also have a role to play. A sustained activation of TGF-βs together with an 

abnormal expression of BMPs are associated with chronic diseases such as fibrosis and cancer. 

Changes in the TGF-β/BMP balance have been shown to lead to the development of fibrosis. 

Suitable modification of the concentration of either of these two parameters holds promise as a 

viable therapeutic option. It is known that in IPF, BMP-2 is down-regulated whereas BMP-4 is 
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enhanced, and so is the concentration of gremlin, a BMP antagonist (153). Gremlin can bind 

BMP-2, -4, and -7 and inhibit their activity. BMP-7 signaling is down-regulated in response to 

up-regulation of gremlin; but, upon restitution of activity, was found to inhibit the progression of 

fibrosis in mice. This restoration of BMP-7 signaling in fibrotic lung could, therefore, be deemed 

a potential means of treatment of IPF patients (154). Myllärniemi et al. observed that BMP-7 

treatment significantly reduces fibrosis in vivo in asbestos-exposed mice (155) while, according 

to Murray et al., BMP-7 inhibits renal fibrosis but not bleomycin-induced fibrosis in the lung 

(156).  

 

           Another novel mode of therapy for pulmonary fibrosis that is undergoing extensive 

research currently is the use of proteinase inhibitors. Neutrophil elastase (NE) is one such 

important proteinase which is under investigation. A specific NE inhibitor has been reported to 

effectively prevent development of pulmonary fibrosis in bleomycin- treated mice (157). The 

most prevalent proteinase inhibitor in serum is α-1 antitrypsin. This natural proteinase inhibitor 

regulates the activity of neutrophil elastase that hydrolyzes elastin in the lungs. Individuals with 

congenital α-1 antitrypsin deficiency have a proteinase-antiproteinase imbalance in their lungs, 

which leads to early onset progressive lung disease. They develop emphysema as a result of 

increased elastase activity in the lungs. CT lung density images have demonstrated significant 

benefit from α-1 antitrypsin augmentation (or replacement) treatment (158). However, the 

augmentation therapy with the natural proteinase inhibitor does not cure α-1 antitrypsin related 

emphysema, but it slows the progression of this disease. 
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           Another important hypothesis implicates an oxidant–antioxidant imbalance to contribute 

to the disease process in idiopathic pulmonary fibrosis (159-161). TGF-ß decreases the 

intracellular glutathione (GSH) content in murine embryo fibroblasts leading to an increase in 

collagen I mRNA content and collagen protein production. Inhibiting GSH depletion with N-

acetylcysteine (NAC), or by addition of GSH or GSH ester could abrogate TGF-β-stimulated 

collagen production. GSH plays a major role in antioxidant defense. Therefore, the above 

observations suggest that reactive oxygen species (ROS) are involved in TGF-ß - stimulated 

collagen production and that GSH depletion mediates TGF- -stimulated collagen production 

probably by facilitating ROS signaling (162). Also, inhalation treatment with GSH or NAC, a 

precursor of GSH, has been found to successfully attenuate experimental lung fibrosis and 

significantly improve pulmonary function in patients with lung fibrosis. Furthermore, a 

multicenter European study has also suggested, based on the effect of the antioxidant 
N-

acetylcysteine on the progression of IPF, that the cellular redox state may significantly affect the 

progression of the disease (161). The study further indicated that cellular redox balance could 

have critical effects on gene expression and thereby on the synthesis of various compounds 

related to pulmonary fibrosis. Continued investigation into therapeutic approaches to inhibit 

ROS-mediated reactions in the initiation and progression of lung fibrosis, and, in particular, 

evaluation of several new synthetic antioxidants (e.g., SOD mimetics) as potential drugs for 

treatment of IPF has been recommended (161).   

 

           To further evaluate the therapeutic benefits of BMP, proteinase inhibitors or antioxidants 

for IPF, it would be necessary to identify proper biomarkers for monitoring the 

progression/regression of the disease. At present, no suitable marker has been identified. MMP 
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activation peptides in urine described in the present study hold remarkable promise in that 

direction, being easy to sample and analyze. Significantly, the ability to detect the activation 

peptides of MMPs in the urine enables researchers to follow treatment overtime to determine 

therapeutic response over the course of a study.  

 

Additionally, to enhance the efficacy of MMP activation peptides as biomarkers, 

comparative studies need to be carried out on MMP activation peptides levels in idiopathic 

pulmonary fibrosis patients suffering from acute exacerbations of their disease and those with 

stable IPF. Depending on whether significantly elevated levels of MMP activation peptides are 

found in patients with acute exacerbations of IPF, further studies requiring serial monitoring of 

the biomarker MMP activation peptides need to be conducted in IPF patients to determine if the 

biomarkers start increasing prior to acute exacerbations. A positive outcome of such studies 

would suggest that monitoring MMP activation peptides would be a useful biomarker in 

predicting acute exacerbations in IPF patients and potentially help to develop therapies to 

prevent the onset of acute exacerbations all together. 

 

8.8. CLINICAL IMPLICATIONS 

 

The pathology of lung fibrosis crucially involves the remodeling of interstitial collagen. 

Therefore, determining which of the MMP collagenases contribute to collagenolysis in fibrosis, 

singly or collectively, is important to further investigate their potential roles. Evaluation of the 

activation peptide moieties in urine give an accurate idea of the MMPs being activated during the 

process. Activation peptides of other collagenases such as MMP1 or MMP13 were not evaluated 

in this study but they could be potential biomarkers (23). An abnormal bronchiolar proliferation 
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is indicated by the upregulation of the activation peptide of MMP-9 in urine since an excessive 

activation of the gelatinase, MMP-9 could result in the remodeling of airways and alveolar 

structures (163). The presence in urine of the activation peptide of MMP-2, another gelatinase 

enzyme which is known to be responsible for the degradation of extracellular matrix (ECM) 

including basement membrane (126), could be an indication of the possible involvement of 

MMP-2 in parenchymal remodeling.  

 

           Investigations of IPF conducted using the bronchoalveolar lavage fluids are technically 

somewhat straightforward but the compulsory invasiveness of the technique is a definite 

drawback. Activation peptides of MMPs in the urine as biomarkers would score better in this 

regard.    

 

 Because there are numerous diseases associated with disregulation of proteinases, the 

ability to accurately quantify proteinase activation could serve to be extremely beneficial across 

the boards. The MMP family alone has been implicated in disease progression in many other 

diseases including, cancers and cardiac diseases. The spread of breast cancer, and the initiation 

of acute leukemias, for example, have been attributed in part to MMPs (121, 122). While an 

assay to measure the activation peptides of MMPs may hold great benefit for these diseases as 

well, it also potentially makes a diagnostic assay for one particular disease less specific. Studies 

would have to be performed to evaluate the urinary activation peptide signatures of the diseases 

known to be influenced by MMP activation. Ideally, each disease would have an individual 

urinary activation peptide signature that could discern between diseases. For this to occur, it is 

probable that the panels of markers would have to be larger. Individuals, with arthritis, 
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infections, neurodegenerative diseases, and diabetes all have proteinases known to be differently 

modulated compared to non diseased controls (164-168). Activation peptide concentrations in 

the urine could potentially be measured for all of these diseases giving new options for diagnosis, 

prognosis, or therapeutic targets. 

  

 Clinical trials aim to find new therapies to lessen symptoms, stop disease progression, or 

even cure disease.  Currently, for diseases without adequate treatment options and without viable 

biomarkers such as IPF, trials are only able to determine therapeutic utility by monitoring 

symptoms. In the case of IPF, the most specific symptom that is measured in trials is mortality. 

Interferon gamma has been used in many trials as a treatment for IPF. While there has been a 

trend seen towards increased survival (169) the mortality rate has not been significantly reduced 

with this treatment and is not recommended for therapy (170). Knowing whether a drug was 

working prior to the patient’s death would of course be a valuable resource. Not just for the 

patient’s health but also for the cost of conducting a failing clinical trial. We have shown that 

PSA is not detectable in the serum until its clearance mechanisms are saturated which greatly 

affects the accuracy of standard serum testing. While this is likely the case for other serum 

proteinases, this is not an issue for urinary detection of activation peptides for these proteins. For 

this reason, we feel that introducing activation peptide detection as an adjunct to other methods 

for monitoring therapeutic response could provide a valuable tool for clinical trials and beyond. 
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