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Motivation: Areal bone mineral density (BMD) is one of the major risk factors for osteoporosis, a public 

health concern in the US and other countries. The goal of our study was to identify genes that influenced 

areal BMD in a population of older, originally healthy, African American and Caucasian American 

individuals. 

Methods: We used three genetic association methods (single SNP-single trait, single SNP-multiple trait, 

multiple SNP-single trait) to test for association between measures of BMD at three time points (2 years 

apart) and genotype data on 1439 single nucleotide polymorphisms (SNPs) in 138 candidate genes.  We 

first developed a model to determine the genetic (SNP) coverage of our candidate genes, and then we 

assessed possible population within our populations, two factors that influence the power of association 

studies. We also investigated the effect of covariates on BMD traits using both cross-sectional as well as 

longitudinal methods, and used the BMD residuals from these analyses in our association studies.  

Results: The SNP coverage of our candidate genes was reasonable, 52.99% compared to the theroetical 

HAPMAP coverage of 55.8%. We also classified our Caucasian American and African Americans based 

on genetic ancestry and controlled for subtle substructure.  We detected several associations between 

candidate genes and BMD traits in all the four groups, but the most significant and consistent result was 

obtained in Caucasian American males. Five SNPs in the GNRHR locus were significantly associated 
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with hip BMD trait using both the single SNP association approaches, as well as the pathway based 

analysis.  These results need to be followed up in additional populations.  

Public Health Significance: As the world population ages, the cost, rate of mortality and morbidity of 

osteoporosis is also increasing. Identification of genes that influence risk of developing osteoporosis may 

help identify people at risk, as well as facilitate development of  drugs and other measures to mitigate the 

effects of this disease. 
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1.0  INTRODUCTION 

1.1  PUBLIC HEALTH SIGNIFICANCE OF OSTEOPOROSIS 

 

Osteoporosis, a growing public health concern, is a skeletal condition that is characterized by decline in 

bone mass and microarchitectural deterioration of bone tissue. This decline may result in increased bone 

fragility and susceptibility to fractures (Consensus Development Conference: Diagnosis, prophylaxis and 

treatment of osteoporosis, 1993). Bone mineral density (BMD), which is a quantifier of bone mass, is an 

accurate indicator of bone strength. Based on the definition by World Health Organization [WHO], 

individuals with bone mineral density [BMD] values that lie between 1 and 2.5 Standard Deviation [SD] 

below the young adult mean value are classified as having osteopenia. Whereas if the BMD value is 2.5 

SD below the young adult mean value, then the individuals are classified as having osteoporosis (1994). It 

is estimated that 10 million Americans will develop osteoporosis each year and another 34 million are at 

risk (Report of the Surgeon General, US department of Health and Human services, 2004). Osteoporosis 

can also be defined as the fracture incidence, especially hip fracture, the most common form of fractures. 

In most populations the incidence of hip fracture increases with age. In people over 50 years of age, the 

female to male ratio of hip fracture is 2:1 (Melton, 1988), and one in two women and one in five men will 

experience an osteoporotic fracture during the remaining years of their lives.  

Osteoporotic fracture has a significant effect on one's health and can lead to mortality (Dennison 

et al. 2005). Hip fracture mortality is higher in men than in women, and increases with age (Cooper et al. 

1993). In a population from Minnesota, the survival rate 5 years after hip or vertebral fracture was 80% of 
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the rate of similarly aged men and women having not experienced a fracture (Cooper et al. 1993). In the 

USA, 8% of men and 3% of women >50 years of age die during hospitalization for hip fractures, and 7% 

of survivors from any kind of fracture have some permanent disability (Chrischilles et al. 1991). 

The financial costs regarding osteoporosis are also huge. The annual cost of hip fractures in the 

USA alone may reach $240 billion in about 40 years (Raisz 1997). The incidence of osteoporosis is 

expected to increase with time, due to the aging population, thus the costs regarding this major public 

health problem are also expected to increase.  

1.2  ASSESSING BONE MASS 

 

There are two quantitative radiologic methods commonly used in assessing bone mass: dual-energy X-ray 

absorptiometry (DXA) and quantitative computed tomography (QCT).  

 DXA is a two-dimensional projection of 3D bone structure, and therefore is a function of the 

size, volume and mineral content of a bone (Carter et al. 1992). It gives good precision in measuring 

components of body composition, like fat and bone mineral density (Lohman et al. 1996; Hagino 2004), 

which makes DXA suitable for longitudinal studies. This non-invasive technique can be applied to both 

patients as well as healthy individuals and the radiation dose is very small. DXA can also be done very 

quickly, many epidemiological studies have obtained DXA measures of BMD over the years, including 

National Health and Nutrition Examination Survey (NHANES) (Looker et al. 1998); The Study of 

Osteoporotic Fractures (SOF) (Hosmer et al. 2002); The Osteoporotic Fractures in Men (MrOS) (Orwoll 

et al. 2005) and family studies (The Framingham Osteoporosis Study (Hannan et al. 2000); Indiana 

Sisters Study (Hui et al. 2006); The San Antonio Family Osteoporosis Study (SAFOS) (Mitchell et al. 

2003). 
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  QCT measurements are obtained using a standard CT scanner at any skeletal site. QCT assesses 

both the volume and the density of bone and is widely accepted and used for measuring vertebral 

cancellous bone (Guglielmi et al. 2002). QCT can determine true volumetric density and three-

dimensional imaging of bone, thus providing insight into the true architecture of bone, which is an 

advantage over two-dimensional DXA. However the radiation level in QCT is 40-90 Sv compared to 5.4 

Sv (Kalender 1992) for DXA in whole skeleton scan. Although QCT measures are likely to be better 

measures of bone architecture, DXA measures were analyzed in the current study because DXA measures 

were available on more individuals and at multiple time points. 

1.3 RISK FACTORS FOR OSTEOPOROSIS 

 

Low BMD is a key component of osteoporosis. The relationship between the ability to withstand trauma 

and BMD is well established for an individual who had previous fracture and/or fall. In other words much 

lower force is needed to get a fracture for an individual with low BMD whereas for individuals with 

higher BMD the level of force is relatively higher. 75-90% of the variation in bone strength is related to 

BMD (Jordan et al. 2002).  

Advanced age is one of the most important risk factors for osteoporosis. Bone traits change 

over time because bone, as a dynamic trait, is constantly being remodeled, and the opposing processes 

of bone formation and bone resorption change over time (Blair et al. 1993). For example, in childhood, 

bone formation activity is higher than bone resorption activity, so bone mass is gained (Zhang et al. 

2007). At advanced ages, it is reversed so bone mass is lost. Moreover, the alteration of bone 

formation differs in different bone compartments, such as cortical and trabecular bone (Judex et al. 

2004; Riggs et al. 2004). 
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Sex and ethnicity are two additional important risk factors for osteoporosis. Women generally 

tend to lose bone mass more rapidly after menopause and Caucasian Americans are at increased risk 

(Wilkins et al. 2005). On average for women, older African-Americans have higher levels of BMD 

than whites (Evans et al. 2005), and lose BMD less rapidly with increasing age (Cauley et al. 2005). 

This leads to higher risk of fracture among Caucasian American women. Furthermore, average areal 

BMD in tibia differs among men and women as well as between age groups above and below 60 years 

(Khodadadyan-Klostermann et al. 2004). In the Healthy Aging and Body Composition [HABC] study 

population, both U.S. Caucasian American and African American men have higher volumetric BMD 

than their women counterparts (Taaffe et al. 2003).  

Other environmental factors that increase bone loss, especially among elderly individuals (> 

50 years), include smoking, low intake of calcium, low BMI, lack of physical activity, alcohol 

consumption, and presence of insulin dependent diabetes (Jordan et al. 2002). The effects of covariates 

may also differ by age and sex. For example, in 45-92 year old individuals, serum leptin levels are 

associated with BMD in women but not in men (Weiss et al. 2006). Likewise, postmenopausal women 

have a positive association of cyclooxygenase-2 use and BMD but the association is reversed in older 

men (Richards et al. 2006).  

Family history of osteoporosis is also a risk factor (Wilkins et al. 2005). More than 30 years 

ago it was recognized that measures of bone mass (e.g. bone density) were more similar between 

monozygotic twins than between dizygotic twins (Dequeker et al. 1987; Pocock et al. 1987). This 

result indicates the heritability of bone mass traits. Few studies have been done to analyze the 

heritability of osteoporotic fractures. The risk of wrist fracture has been shown to be significantly 

heritable in 2500 Midwestern U.S. women (Deng et al. 2000) and in >6500 twins (Andrew et al. 

2005). Likewise, osteoporotic fracture has been shown to be highly heritable [h2= 0.48 for hip fracture] 

in a Swedish twin cohort born before 1944 (Michaelsson et al. 2005). BMD is also a highly heritable 

trait. At multiple skeletal sites in the peripheral and axial skeleton, 66-75% of variation in BMD is 

explained by genetic factors (Dequeker et al. 1987; Pocock et al. 1987). In a study on Amish 

 4 



population, 37-54% of total variation in post-menopausal women at hip and spine BMD sites is 

explained by genetic factors (Brown et al. 2005). The loss in BMD level is also found to be heritable 

(80%) at spine among adults aged 23-75 years (Kelly et al. 1993). 

Taken together, these studies clearly show that osteoporosis is a genetic disorder and that 

additional work is needed to elucidate the specific genetic variants causing this disease. 

1.4  GENETICS OF BONE MINERAL DENSITY AND/OR OSTEOPOROSIS 

SUSCEPTIBILITY 

 

 Because of the importance of family history and ethnicity, many studies, including genome-wide linkage 

scans, have been performed to identify genes that influence BMD and/or risk of developing osteoporosis. 

Several studies have reported a QTL on chromosome 11q for femoral neck or spine BMD in Caucasian 

Americans (Johnson et al. 1997; Koller et al. 1998; Shen et al. 2004). Additionally, QTL signals have 

been found on chromosome 13 in Caucasian Americans as well as Mexican Americans for spine, femoral 

neck and trochanter BMD (Kammerer et al. 2003). Also, QTLs for wrist and femoral neck BMD have 

been found on the X chromosome (Shen et al. 2004). Several other QTLs across the genome have also 

been reported (Econs et al. 2004; Huang et al. 2004; Devoto et al. 2005; Rubin et al. 2007; Wang et al. 

2007; Willaert et al. 2008; Zhang et al. 2008). The apparent inconsistencies of the linkage studies may be 

due to the complexity of the genetic nature of BMD traits and also differences between the studies, such 

as study population, ascertainment criteria, sample size, and family size. Overall, these results support the 

notion that osteoporosis is a complex multifactorial disease controlled by several genetic and 

environmental factors.  

Association studies to determine the genetic effects of candidate genes on bone phenotypes have 

focused mainly on genes that are involved in bone regulation. Growth factors/receptors, cytokines, sex 
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hormones/receptors, metabolic pathways, calciotropic hormone/receptors, adhesion molecules and 

ligands, collagenic and non-collagenic proteins have been at the center of such association studies 

(Gennari et al. 2002).  

Specific genes that have been considered in previous association studies are: estrogen receptor 

(Gennari et al. 1998; Duncan et al. 1999; Ioannidis et al. 2002), vitamin D receptor (Gennari et al. 1998; 

Duncan et al. 1999; Gennari et al. 1999; Zmuda et al. 1999; Brown et al. 2001; Masi et al. 2002), PTH 

receptor type 1 (Duncan et al. 1999), collagen type 1 (Hustmyer et al. 1999; Duncan et al. 1999; Gennari 

et al. 1999; Zmuda et al. 1999; Brown et al. 2001), interleukin 6 (Ota et al. 1999; Zmuda et al. 1999; 

Takacs et al. 2000; Ota et al. 2001), tumor necrosis factor- alpha (Ota et al. 2000; Ota et al. 2002), low 

density lipoprotein receptor-related protein 5 (Koay et al. 2004) insulin like growth factor (Takacs et al. 

1999), and alpha 2HS glycoprotein (Zmuda et al. 1998). The findings of these association studies are 

inconsistent as some of the studies found association and some did not, possibly due to population 

differences, population substructure/admixture, poorly selected controls that may have led to false 

positives, or selection bias (Gennari et al. 2002). A recent genome wide association study identified two 

SNPs in LRP5 and TNFRSF11B at femoral neck and lumbar spine among Caucasian American females 

(Richards et al. 2008). Another genome wide association study found association between SNPs at ESR1, 

RANKL and OPG gene among 5861 Icelandic subjects at lumbar spine and hip (Styrkarsdottir et al. 

2008). 

1.5  STATISTICAL CONCERNS WITH ASSOCIATION STUDIES 

 There are several concerns regarding genetic association studies and a lot of research is being done in 

these areas. Some of the concerns are:  
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1.5.1 Population substructure 

 Some results of association studies may be incorrect because of population substructure; for example, 

there is a possibility that we may detect a false positive or miss a true association due to population 

substructure. Several methods are available to control for population substructure including eigen value 

estimation and the Transmission Disequilibrium Test (TDT). TDT uses family-based pseudo-controls, so 

that the issue of population substructure never arises (Spielman et al. 1993). However not all traits are 

amenable to using family-based approaches and this methodology would preclude use of data on large 

population-based studies. Therefore, researchers have recently developed methods such as eigen analysis, 

which uses data on all genotypes, and enables the estimation of possible population substructure of a 

particular study population. It also allows for a comparison of possible substructure between different 

groups, e.g. cases versus controls. The estimated substructure may then be incorporated into the 

association analysis (Patterson et al. 2006; Yu et al. 2008). 

1.5.2 Coverage of candidate genes  

If much of the genetic variation within a gene is not assessed, that is the gene is poorly covered, or the 

SNPs being tested are not in LD with the ‘causal’ SNP, it will be difficult to detect a true genetic 

association. Therefore, the genes of interest should be well covered with genotyped SNPs. HapMap 

(www.hapmap.org) and SeattleSNPs (http://pga.gs.washington.edu/) are common sources that can be 

used to obtain sufficient coverage of the genes of interest.   

1.5.3 Multiple testing  

Another main concern in association analysis is multiple testing. Testing each SNP individually with each 

phenotype results in lots of tests and many false positives. The Bonferroni method (Simes 1986) of 
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adjusting for multiple testing is one of the popular methods, but it is overly conservative. So we can 

adjust for false positives but we might miss some true positives also (Yongchao et al. 2003), The same is 

true for Sidak (Sidak 1967), an additional multiple testing correction method. Another method to counter 

the multiple testing problem is to perform dimension reduction techniques, such as principal components. 

By testing the principal components of a group of related phenotypes, we can reduce the total number of 

tests, and thereby lessen the effect of multiple testing (Nyholt 2004). Moreover, other methods of 

analyzing the significance of the findings of an association study, such as permutation tests (Ritchie et al. 

2001) and false discovery rates (FDR) (Benjamini et al. 1995) are available. However, the gold standard 

for determining whether associations are likely to be real is to perform a replication analysis. However, 

there may be questions regarding what constitutes a true ‘replication’. 

1.5.4 Power of a study  

Power of an association study depends on several aspects. The sample size of the study, allele frequency 

of the markers tested, LD between the markers genotyped and the actual susceptibiltiy locus (Fisher et al. 

2008).  

1.5.5 Longitudinal analyses  

The main concern in longitudinal analysis is that the correlation structure of the data must be taken into 

account before doing the analysis. Exploratory analysis like lowess curve and smoothing spline fitting are 

used to gain an idea about the correlation structure of the data. The generalized estimating equations 

(GEE) method takes into account the correlation and the missingness of the data over different time 

points. 
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1.5.6 Gene x Gene interaction  

Gene x gene interaction is an important part in genetic analysis of a complex trait. Simple regression 

based methods (both linear and logistic) can be used for analysis, but testing the interaction effect of 

several SNPs from multiple genes that are affecting common biological pathways is problematic because 

of the number of tests being performed. However, there are other problems in detecting the gene x gene 

and gene x environment interactions. Because variation associated with the interaction is also subsumed 

into the variation explained by the main effects in the model, traditional linear modeling strategies have 

very low power to detect interactions (Cheverud et al. 1995). When testing for two or more factor 

interactions, small or empty cells (for specific combinations) may result, and these cells can also affect 

the estimation and robustness of the model (Searle 1987). Because of a large increase in the number of 

analyses to be done and simultaneous increase in type I error, analyzing all important interaction factors is 

not feasible (e.g. for 10 SNPs, there are 45 possible two-factor interactions and for 15 SNPs there are 105 

possible two-factor interactions). 

We assessed possible gene x gene interactions from slightly different angle. We first constructed 

some common pathways using Ingenuity pathway analysis, using all our candidate genes. The pathways 

are developed using some common biological functions. Instead of just looking at single SNP/gene, we 

looked at the effect of those pathways as a whole (Wang et al. 2007). We wanted to see if the genes 

within a specific pathway are overrepresented among the significant set of genes. We used a variation of 

the gene-set enrichment analysis algorithm (GSEA) (Subramanian et al. 2005) for these analyses. 

1.6 HEALTHY AGING AND BODY COMPOSITION STUDY 

The Health, Aging and Body Composition Study (HABC) is a large (N=3075) prospective cohort study of 

changes in body composition in well-functioning older Caucasian American and African-American men 
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and women. The data were collected on different body composition phenotypes in bone, muscle and fat. 

We analyzed data on DXA measures of bone phenotypes in this dissertation. HealthABC is a longitudinal 

cohort study; measurements were obtained once per year over 6 years starting in 1996-97. The primary 

goal of Health ABC study was to identify factors associated with incident disability and decline in 

mobility in healthier older persons, with an emphasis on the role of changes in body composition. The 

HABC cohort is aged between 68-79 years at baseline. 

The data was collected from two sites Memphis, Tennessee and Pittsburgh, Pennsylvania. Data 

on several anthropometric, demographic, medications and lifestyle covariates were also collected and are 

described in more detail below. 

Anthropometry: Height and weight were estimated using a stadiometer (Harpenend, Wales, UK) 

and balance beam scale, respectively, without wearing any shoes. Body mass index (kg/m2) was also 

calculated as one of the measures of body composition. Waist circumference was also measured in cm. 

The difference between sitting height and 30 cm seat was denoted as trunk length and the difference 

between height and trunk length was defined as leg length. 

Physical Activity: was assessed by self-report of leisure activities and exercise. Exercise level 

(kcal/kg/week) was estimated based on a questionnaire administered by the interviewer. 

Prevalent Diseases and Medications: Data on different medications and prevalent disease status 

were obtained from self-reports by the participants. Data on medications like vitamin D supplement, oral 

estrogen, calcium supplement, any osteoporosis drug, were obtained. Data on several prevalent diseases 

like cancer, osteoporoses by T-score, high blood pressure and cardiovascular disease were obtained by 

self-report. Prevalent diabetes status was also obtained. 

Life Style Activities: Measures on several lifestyle activities like drinking and smoking history 

were obtained. Drinking and smoking history were classified as never, current and former. For smoking 

history pack years were also estimated.  

For all the participants self reported race was recorded. 
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Genetic Data: Genotypes were assayed on 1536 SNPS among 138 candidate genes (including 

gene clusters, in which more than two genes are present).  

Phenotype Data: BMD data from the DXA scans were obtained on 15 skeletal sites at all six 

time points.  However, in this project we analyzed data collected at baseline (time point 1), time point 3 

and time point 5.  Data was available for bone mineral density, content and area separately.  

1.7 SPECIFIC AIMS 

Osteoporosis is one of the major health problems in America and osteoporotic fractures are a major cause 

of morbidity and mortality among older individuals. However, among older individuals (> 65 years), very 

little is known regarding the effect of different covariates on BMD traits over different time points or the 

effect of polymorphisms at several candidate genes on bone traits. Even less is known about possible 

gene-gene interactions on baseline and longitudinal measures of bone traits among originally healthy 

individuals who are > 68 years old. The overall goal of the current proposal was to investigate whether 

specific candidate genes are associated with DXA BMD measures at baseline and at two other timepoints 

in the elderly. Bone phenotype data were available on 2979 unrelated men and women (68-80 years of 

age) of both Caucasian and African American ancestry at baseline and at four additional timepoints. 

Genotypes were available on a total of 1439 SNPs across 138 candidate genes that fall into three general 

categories: (1) genes involved in steroid hormone production, metabolism and action, (2) growth factor 

related genes, and (3) cytokine related genes.  

To determine whether variation in specific candidate genes was associated with BMD in older 

Caucasian American men and women, as well as older African American men and women, we 

performed the following specific aims. 
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AIM 1: Assess SNP coverage of candidate genes and ancestry of individuals. 

The accuracy and applicability of the results of the association studies depend critically on 

genotype quality, SNP coverage of candidate genes, and possible population substructure.  

1A. SNP coverage (Chapter 2) 

To assess whether a candidate gene is, or is not, associated with a particular bone trait, a large 

proportion of the total genetic variation in the candidate gene needs to be measured; however, it is not 

feasible to genotype all variants within a gene. The genetic coverage of each of the candidate genes 

was determined by developing a classification and regression tree model (CART) using data from 

HapMap and SeattleSNPs. Subsequently, this model was used to determine genetic coverage of the 

candidate genes in the current study.  

1B. Ancestry estimation (Chapter 3) 

Ancestry information for each individual was estimated using eigen analysis of genotype data. 

Based on these analyses, individuals were assigned to the Caucasian American or African American 

ancestry groups. Subsequently, a set of eigen vectors was identified within each ancestry group to 

control for possible substructures.  

AIM 2: Determine the effect of a variety of covariates on areal BMD traits in a 

population of originally healthy African Americans and Caucasian Americans > 68 yrs old using 

univariate and multivariate (longitudinal) analyses. (Chapter 4).  

Data were available on areal (DXA) bone mineral density (BMD) for several skeletal sites 

including hip, spine, and whole body. The relationship between these bone traits and a variety of 

covariates including demographic (e.g., age, sex), anthropometric (e.g., height, weight), lifestyle (e.g., 

smoking, drinking, physical activity), and medical (e.g. diabetes, etc) traits was assessed.  

AIM 3: Test for associations between candidate gene polymorphisms and BMD variation 

using three different association methods and try to replicate any significant results using the 

MrOS cohort. The three association methods were: 

3A: Single SNP-Single trait association using simple regression analysis (Chapter 5). 
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3B: Single SNP-Multiple trait association using principal components of heritability 

(PCH) analysis (Chapter 5). 

3C: Multiple SNP-Single Trait association using pathway-based enrichment scores 

(Chapter 6). 
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2.0  PREDICTING GENE COVERAGE: HOW MANY SNPS ARE ENOUGH? 

2.1 ABSTRACT 

Numerous studies are going on to discover causal genes for different complex human diseases. The goal 

of these studies is to demonstrate linkage and/or association between human polymorphisms and 

phenotypes. We evaluate the utility of the HAPMAP database in genetic studies by contrasting it with a 

database containing fully sequenced regions of the genome. By selecting an independent set of SNPs, that 

is, tag SNPs, we estimate how well tag SNP genotypes predict other SNP genotypes in a region of 

interest. HAPMAP contains several SNPs in high linkage disequilibrium (LD). So tag SNP selection 

drops almost half of the SNPs. We based our study on European-ancestry population only, and the 

average prediction of unmeasured SNPs is quite high (55.8%). Even if there are only a few SNPs 

available from HAPMAP for the region, the prediction is quite good (55.15%). We also investigate how 

well covered the genes are for our own association study and found we would need an average of 3 

additional SNPs per gene to get coverage as good as HAPMAP. 

2.2 INTRODUCTION 

Most common human diseases result from the interplay of genetic and environmental causes, therefore 

considerable research is being done to identify the genetic components of these diseases (Weedon et al. 

2007; Styrkarsdottir et al. 2008). Given the completion of the first stages of the human genome sequence 
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(Collins et al. 2003) and the identification of single nucleotide polymorphisms (SNP) across the human 

genome (2003), along with the development of high-throughput, low cost genotyping, the identification 

of possible genetic causes of disease has become easier. Theoretically, researchers could genotype 10 

million (or more) SNPs across the human genome and try to find the causal variants that affect complex 

diseases, however, it currently is very expensive to genotype so many SNPs. Information on all reported 

SNPs is maintained in dbSNP, the world’s largest database for nucleotide polymorphisms. It is a part of 

the National Center for Biotechnology Information (NCBI) [http://www.ncbi.nlm.nih.gov]. In contrast, 

HAPMAP comprises a subset of all possible kinds of genetic variants. The phase I data of HAPMAP only 

had SNPs with MAF > 5%, but in phase 2 HAPMAP data was aimed at increasing the density of SNPs 

and tried to genotype rare SNPs also (Consortium 2007). The individuals genotyped for the HAPMAP 

database include 30 trios (mother, father, and offspring) each from Nigeria (YRI) and Utah (CEU), the 

latter population had ancestry from northern and western Europe. There are 45 unrelated individuals each 

from Han Chinese (CHB) and Japanese populations (JPN). The Copy Number Variation (CNV) 

information is also added in the latest build. The utility of HAPMAP is that it will help researchers 

identify a subset of 20,000 to 1 million tag SNPs as informative as the 10 million known SNPs. This 

procedure will reduce the cost of a study substantially (www.hapmap.org). 

Several studies have evaluated how well genetic polymorphisms in HAPMAP, especially tagging 

SNPs, represent the total genetic variation in the human genome. Tag SNPs are SNPs that are in high 

linkage disequilibrium (LD) with a set of SNPs, and can successfully predict the genotype of that set of 

SNPs, once we have the genotype information of the tag SNPs. In particular, previous studies were done 

to estimate how well the HAPMAP tag SNPs predict the unmeasured SNPs within HAPMAP. One of 

these studies is the National Institute of Environmental Health Sciences Environmental Genome Project 

(NIEHS) (Tantoso et al. 2006). The genes for NIEHS study were involved in DNA repair, cell cycle 

regulation, apoptosis (Livingston et al. 2004). The tag SNPs from HAPMAP are transferable to NIEHS 

SNPs but the coverage for untyped SNPs is around 50% for Asian and European ancestry and is poor for 

African ancestry (30%). In certain regions of the genome there may be loss of information because of LD 
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differences between the two populations. So we will lose some information when HAPMAP tag SNPs are 

transferred to a different population (Mueller et al. 2005). When tested in an Estonian sample, the 

performance of tag SNPs from CEU sample of HAPMAP is very good for SNPs from two 500kb Encode 

regions in chromosome 2 (ENr112, ENr131). The tag SNPs captured 90-95% of the variation in the 

Estonian sample (Montpetit et al. 2006). 

In addition to using tag SNPs for genome-wide analyses to detect chromosomal regions that may 

harbor a causal genetic variant, researchers perform follow-up studies to determine the relationship 

between genetic variation within specific candidate genes or, genomic regions and the trait or disease of 

interest. The effectiveness of any candidate gene study depends, in part, on how well tag SNPs identified 

from HAPMAP represent (or cover) the total genetic variation in these genes. In other words, are tag 

SNPs from HAPMAP highly correlated with all SNP variation within a gene? Furthermore, is all genetic 

variation within any specific gene well represented by a set of HAPMAP SNPs? In the current study we 

evaluated how well the HAPMAP SNP data represent all known SNP variation that is, how well do 

HAPMAP SNPs cover a gene? We assessed coverage in genes from individuals with European ancestry. 

We also built a model to help us answer the question how well any specific set of genotyped SNPs 

represents all SNP variation within a set of genes. To answer the first question, we selected tag SNPs for a 

set of genes from the HAPMAP database and determined how well these tag SNPs predicted genetic 

variation in all known SNPs within the genes. Information on all known genetic variation was obtained 

from the SeattleSNPs database. SeattleSNP is a resequencing project in which complete sequencing data 

are generated on a sample 24 African American and 23 European American individuals for a specific set 

of genes. The SeattleSNP database contains data on base-pair sequences (for > 250 genes, most of which 

are candidate genes for cardiovascular disease). However, not all intronic regions were sequenced in all 

genes. Finally, we assessed how well a set of tag SNPs from one of our own association studies represents 

all known genetic variation within the set of candidate genes we assayed. 
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2.3 MATERIAL AND METHODS 

We performed our analyses using SNP genotype data on individuals with European ancestry from two 

sources: the HAPMAP repository (for our study we used NCBI build 35) and the SeattleSNPs database 

(Sept, 2006).  Data in HAPMAP contains genotypes of 30 parent-child trios of European descent, that is 

60 unrelated individuals. Data on 23 individuals of European descent were were available in the 

SeattleSNPs database. All our analyses were genotype not haplotype based. 

Our first question was to determine how well SNPs in the HAPMAP represented all SNP 

variation within a gene. A flowchart describing our overall approach for this question is given in Figure 

2.1.  Because HAPMAP does not contain information on all SNPs, we used the SeattleSNP database as 

our starting dataset because all detected SNP variants are reported. However, because the numbers of 

individuals genotyped by HAPMAP or sequenced by SeattleSNP are not large, it is possible that SNPs 

may be present in one database but not the other. [Aside: the probability of detecting SNPs with different 

minor allele frequencies of 0.05 and 0.01 in the SeattleSNP databases is 0.9 and 0.37 respectively, the 

same for HAPMAP database is 0.99 and 0.7 respectively]. However, SeattleSNP will, in general, contain 

more SNPs.  

There were 251 genes (and a total of 19448 SNPs) in the SeattleSNPs database. We used the 

dbSNP assigned rs-numbers to scan the HAPMAP database for these 251 genes. Of the total 251 genes in 

SeattleSNP database, 186 genes had at least one SNP in common in both two databases. So we developed 

two databases, one with the common SNPs between the SeattleSNP and HAPMAP database (we call it 

adjusted HAPMAP database); the other with the SNPs which were present in SeattleSNP but not in 

HAPMAP (we call it adjusted SeattleSNP data base). Because some introns of some genes in SeattleSNPs 

were not sequenced, there could be a SNP in HapMap with MAF > 5% that was not in SeattleSNPs. 

These SNPs were also removed from our database because we wanted to see how a subset from 

HAPMAP database predicts a superset from the SeattleSNP database. So the predictor set of SNPs (from 

HAPMAP) should not have SNPs that are not present in the superset of SNPs (from SeattleSNP). We 
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deleted any SNP that has a MAF < 5% from the HAPMAP genotype file, but all the SNPs were kept in 

the adjusted SeattleSNP database, because we wanted to see how well the adjusted HAPMAP SNPs can 

predict rare SNPs (MAF < 5%) also.   

Now that we had a “representative” set of SNPs in both databases, we used Hclust (Rinaldo et al. 

2005) to choose tag SNPs from the SNPs in the adjusted HAPMAP database. The  Pearson’s correlation 

coefficient is used because the theoretical properties are well studied and it also measures how well a 

SNP can be used as a proxy for any other SNP (2005). That means for each gene we took the set of SNPs 

that are common in adjusted SeattleSNP and adjusted HAPMAP and ran Hclust on them using the 

genotype data from HAPMAP. The set of tag SNPs forms the predictor set for our CART model. Hclust 

is a hierarchical clustering algorithm that identifies tag SNP based upon genotype data. The algorithm 

computes a similarity matrix from the square of Pearson's correlation ( ) between allele counts at pairs 

of loci; uses hierarchical clustering to group correlated SNPs; then chooses a SNP to represent each 

cluster. Each unmeasured SNP then has  ≥ η for at least one tag SNP. η for selecting tag SNPs was 

taken as 0.5, that means any set of SNPs that have correlation greater than sqrt( 0.5) will fall in the same 

cluster, and one of them will be selected as tag SNP. Eight of the genes had only one single SNP in 

common between the two databases and so these eight genes were removed because they would be 

uninformative. Also, after running Hclust we dropped 5 more genes because the SNPs from those genes 

were yielding singular matrices, so Hclust was not able to compute tag SNPs. So the final analysis was 

based on 173 genes. The next sets of analyses were all based on genotype data from our adjusted 

SeattleSNP set of genes. For each gene in the adjusted SeattleSNP data set we developed two files, one 

with tag SNP genotypes, selected using Hclust as described above, and one with genotypes of those SNPs 

that are present in adjusted SeattleSNP but not in adjusted HAPMAP. Next, we performed regression 

analyses, in which, for a specific gene every SNP that was not in adjusted HAPMAP, was used as the 

dependent variable, and all of the tag SNP from the same gene were used as independent variables. For 

each of the SNPs that were not present in adjusted HAPMAP, we estimated the 

rp
2
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2

2
pr

 explained by tag SNPs. 
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The mean of all of the  obtained from analyses of each of the SNPs that were not present in adjusted 

HAPMAP was assumed to be the representative  for that gene.  

R2

R2

 To obtain an easily interpretable relationship between the mean  explained by tag SNPs and 

various characteristics of genes (such as SNP density, gene size, etc.), we employed Classification and 

Regression Tree (CART) (Brieman et al. 1984) as implemented in the “rpart” function available in the 

statistical package R (R Development Core Team 2008). We used the anova option in rpart, which fits a 

regression tree in which the criteria for pruning is the mean square error. So at each specific node in the 

tree, there will be a binary split in the data based on minimizing the mean square error. Before performing 

the CART modeling, we assessed several variance-stabilizing transformations of mean , the dependent 

variable, and determined no transformations were necessary (Figure 2.2). The independent variables in 

CART model were (1) the number of tag SNPs (ntag) which is the number of tag SNPs we got from the 

adjusted HAPMAP database, (2) the density of tag SNPs per 10 kbp (dtag), which is derived from the 

number of tags (ntag) and the gene length in kbp and (3) the density of all SNPs per 10kbp, dsnp, which is 

derived from the number of SNPs that are present in SeattleSNP (nsnp) divided by the length of the gene 

in 10 kbp. The coverage of a gene by tag SNPs depends on the density of SNPs in that gene, density of 

tag SNPS in that gene and also the total number of tag SNPs in that gene. If a gene has a very poor 

density of tag SNPs then the coverage won’t be good.  

R2

R2

Our second question was how well does a specific set of tag SNP represents the SNP variation 

within a specific set of genes. Using the CART model and a list of SNPs, we can estimate whether a 

specific candidate gene (or group of candidate genes) is well covered or poorly covered, even if all 

available tag SNPs in HAPMAP have been chosen. However, in order to apply the CART model, one 

needs information on the density of all SNPs within a gene, which is not yet available for all genes. 

Therefore, we used regression models to develop an estimate of SNP density (dsnp) using data from on a 

set of candidate genes for the MrOs project. In other words, we tried to predict dsnp based on dtag, ntag, 

number of SNPs in Hapmap (nhap) and interaction between the three variables. A flow-chart describing 
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this approach is presented in Figure 2.3. From our MrOS candidate gene study, we had genotype data on 

28 genes that were also present in the Seattle SNP database. We divided this set of 28 genes into 4 groups 

according to the size of the genes, as we wanted to maximize the number of genes in testing group 

without sacrificing the size of the training group. We used a sampling scheme without replacement 

(SRSWOR), which means we took 4 genes as testing set without any overlap in any of the training sets. 

We took each group as a testing group and the rest as training groups and then fitted stepwise regression 

models for each set. So we had 4 genes as testing set and 24 genes for training set for each model. As 

describe el we estimated for a specific set of 4 genes was, 

 

dsnp = 

d above, the mod

  

 0 +  1*dtag+  2*ntag+  3*nhap+  4*dtag:ntag+  5*dtag:nhap+  6*ntag:nhap,  

model to these data to obtain an 

estimate of mean SNP coverage for our specific set of candidate genes. 

2.4 RESULTS 

e to 

 

where dtag:nhap means the interaction between dtag and nhap. So we used a 7 fold cross validation 

technique for building our model. A 5 fold to 10 fold cross validation is generally sufficient for model 

building (Hastie et al. 2001).  This above model was fitted using each training set, and the average 

squared error was calculated for each test set. The model that had the minimum squared error was chosen 

as the best model. We then fitted the chosen model on all the 28 genes and obtained the final coefficients 

for the independent variables for predicting dsnp. Using this final model, we estimated dsnp for 257 

candidate genes in our MrOS study. Finally, we applied our CART 

One of the aims of the HAPMAP project is to generate a sufficient number of SNPs within each gen

facilitate local and genome wide association studies. This goal is achieved if HAPMAP includes a 

sufficient panel of SNPs to successfully predict the genotypes of many of the unmeasured SNPs in the 
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genome. To assess how successfully the HAPMAP meets this goal, we developed a metric that req

knowledge of the full set of SNPs in a variety of regions in the genome. The SeattleSNP database 

(Carlson et al. 2003), comprising sequence data from numerous genes, currently provides this knowledge 

for 315 gen

uires 

es. When we started our analysis (Sept, 2006), data on 251 genes was contained in SeattleSNP 

l. 2005). The number of tag 

SNPs pe

that region. As expected many of the SNPs are nearly 

redunda

 ge

database.  

 From the SeattleSNPs database, 173 genes had data that could be compared with HapMap data 

(see Methods). The number of SNPs per gene in HAPMAP varied from 2-94, with an average of 17 SNPs 

per gene and in SeattleSNP the number varied from 18-312 (Table 2.2). We screened the SNP genotype 

data in HAPMAP database for these 173 genes to select a subset that conveys non-redundant information, 

i.e., tag SNPs, by using a tag SNP selection procedure Hclust (Rinaldo et a

r gene varied from 1 to 33, with an average of 6 tag SNPs per gene.  

 As expected the number of SNPs per gene in HAPMAP is relatively small compared to the 

SeattleSNP database and a substantial fraction of HAPMAP SNPs are not selected as tag SNPs. This 

fraction depends on the minimum level of correlation η pre-specified in the tag SNP selection procedure. 

For correlation level of, η = 0.5, 65.4% of the SNPs are dropped because they are highly correlated with 

tag SNPs. As expected this fraction increases with the number of SNPs originally included in HAPMAP 

(Figure 2.4). Thus, for an association analysis targeting a specified region, it will usually be unnecessary 

to genotype HAPMAP’s full set of SNPs in 

nt with the other SNPs in the database. 

The ability to predict unmeasured SNP notypes using the full set of tag SNP genotypes can be 

assessed by the coefficient of determination ( 2R ) of the linear model predicting the allele count of an 

unmeasured SNP based on the tag SNP allele counts. This 2R  is a fun ion of the number of tag SNPs in 

each gene (Figure 2.5). Genes with 1-2 tag SNP have a lower mean 2

ct

R  when compared with genes that 

have 3 or more tag SNPs. Nevertheless, the coverage is quite good on average for many enes, especially  g

those with greater than 5 tag SNPs. For ge y o  is 55.15%. For nes with onl ne or two tag SNPs, the mean R2
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genes with >4 tag SNPs the mean was 56.35% and for genes with 3-4 tag SNPs the mean  was 

55.2%. 

R2 R2

 Although informative, the results presented above do not inform the investigator when he has 

sufficient SNPs to adequately cover the total SNP-variation within a gene versus when he would need to 

supplement HapMap SNPs with additional SNPs. [These additional SNPs could be obtained from other 

databases or from re-sequencing areas of the candidate genes of interest.] Therefore, we built a 

classification and regression tree-based model to predict average 2R  based upon three covariates: the 

number of tag SNPs (nTag), the number of SNPs per 10 kbp (dSNP), and the number of tag SNPs per 10 

kbp (dTag). The model delineates covariates that yield partitions with a similar response (Figure 2.6). For 

example, if a gene has density of tag SNPs between 5.86 and 6.71 with the total number of SNPs less than 

117.6, then 2R  is likely to be excellent (about 0.73). But if there are less than 4 tag SNPs in a relatively 

large gene (the density of tag SNP (dtag < 1.53), then 2R  is likely to be about 0.46. As expected, for 

genes with low linkage disequilibrium between SNPs, and high total SNP density, prediction was low (for 

genes with dtag ≥ 4.3 and dsnp ≥ 117.6 the prediction is 49%). After dividing the total prediction space 

into 11 cells, the model predicts 55.8% of the variability in the average 2R  (Figure 2.6). 

 Finally, we wished to apply the CART model to a set of data from our own candidate gene study 

(MrOS). However, because all of our candidate genes are not present in the SeattleSNP database, or any 

other database, we did not have an estimate of the total SNP density (dSNP) for these genes and thus we 

could not use the CART model developed above. As described in the methods, we used a 7-fold cross-

validation regression model approach to predict dSNP using data on 28 genes that were in common 

between our data and SeattleSNPs. For all seven models, four genes were used as the training set, and the 

remaining 24 genes were used to test the regression model.  Results from all 7 training models from the 

cross-validation approach and the corresponding mean square errors from the corresponding testing set 

are given in Table 2.2.  The training model with the lowest mean square error is highlighted in red, after 

 22 



obtaining the regression model with the smallest square error, we then used the data on all the 28 genes to 

estimate the regression coefficients of the final model. The final prediction model is given as: 

 

dSNP = 65.23-0.34*nhap-13.73*ntag+9.98*dtag+0.24*nhap:ntag+0.29*nhap:dtag, 

 

where nhap:ntag is the interaction between nhap and ntag, nhap:dtag is the interaction between nhap and 

dtag. Table 2.3 contains the regression coefficients (and standard errors) for the final model. 

We applied this final prediction model to estimate dsnp for all 257 of our candidate genes. We 

then used our CART model to obtain an estimate of the average 2R  for the genes in our study. Our 

estimate of 2R  for the MrOS study is 52.99%, which is less than the 55.8% obtained by Hapmap overall. 

The range of average 
2R  varies from 43% to 73%. Based on our CART model results for MrOS we 

calculated how many SNPs are genotyped for each gene in MrOS and how many SNPs are selected as tag 

SNPs for each gene from HAPMAP data. For an example for gene A, suppose we have mA SNPs in 

MrOS and for the same gene A we have hA tag SNPs from HAPMAP. Then the number we need is hA-mA 

for gene A to get the comparable coverage as in HAPMAP. This quantity is calculated for all the genes in 

MrOS dataset and the overall mean is obtained.  We estimated that we would need to assay an additional 

2.84 SNPs per candidate gene on average to get equivalent coverage as is currently available in 

HAPMAP.  

2.5 DISCUSSION 

HapMap contains numerous SNPs in high LD with other SNPs. For a region of interest, about half the 

SNPs in HAPMAP are dropped after tag SNP selection (Table 2.2). How well do tag SNPs cover the 

region of interest? For studies involving individuals of European ancestry, average prediction of 
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unmeasured SNPs is quite good when the density of tag SNPs in the region is high (Figures 2.5 and 2.6), 

and surprisingly good even when few SNPs are available from HAPMAP for the region. Although several 

groups have reported on how well HAPMAP SNPs cover unmeasured genotypes (Tantoso et al. 2006), 

there are differences with our approach. First, we chose tag SNPs with a r2  = 0.5 versus r2  = 0.8. This 

choice reduced the number of tag SNPs in our analyses, and thus we were trying to predict untyped SNPs 

using a minimal r2  among our tag SNPs. In addition, we also used tag SNPs to try to predict the rare 

untyped SNPs, that is, MAF < 5%, whereas other investigators have tried to predict all SNPs with MAF > 

5%. These two reasons likely influence our obtaining an overall average  = 55.8%. Given that we 

chose lower 

R2

r2 value and tried to predict the rare SNPs, we conclude that the coverage is pretty good. 

One of the most important utilizations of our model is in predicting the performance of tag SNPs 

chosen for our candidate gene study. We can apply the CART model to our list of genes to see how good 

the coverage is for our genes. Based on specific characteristics of our genes (gene length, number of tag 

SNPs from HAPMAP, number of tag SNPs present in our study and the total number of SNPs for that 

particular gene) we can predict how well covered our genes are, as compared to SNPs within the current 

HAPMAP database. If investigator wants, he/she can apply the CART model to the set of genes, and then 

determine whether additional SNPs are required to obtain satisfactory coverage. As stated in the results 

section our MrOS study needs another ~3 SNPs on average per gene to get similar coverage as is 

currently available in HAPMAP.  

 We need to examine the coverage of HAPMAP for other populations as well. From previous 

results, however, it is reasonable to expect that HAPMAPs utility would be roughly the same for 

populations of Asian or European descent because the magnitude of LD tends to be similar in these 

populations/samples (Gabriel et al. 2002). Populations of African descent, on the other hand, tend to have 

substantially smaller LD than other populations, so coverage in HAPMAP will be more challenging 

(Gabriel et al. 2002). We tried to build a CART model for the African sample from HAPMAP. But the 

SeattleSNP database has data on the African-American population. The LD structures of these two 
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populations are not same (Sawyer et al. 2005). So tag SNPs are unlikely to be readily transferable 

between these two populations. But developing a CART model for the African population could be very 

useful, because in Africans there is not as much long range LD. In other words the LD blocks in Africans 

are small, and thus the performance of tag SNPs may not be very good in this population. 
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2.6 TABLES AND FIGURES 

Table 2.1:The number SNPs/gene 173 genes in common in the HAPMAP and SeattleSNP databases 

SNPs/GENE HAPMAP SNPs Seattle SNP TAG SNPs
Average 17 112 6
Max 94 312 33
Min 2 18 1
Total 2886 19448 999  

 

 

 

Table 2.2:Description of the seven training models used in the cross-validation approach to predict dSNP and 

the mean square error obtained from the seven testing sets 

Genes in Testing Set Variables in the Model Mean Square Error
MMP9,VEGF,TRPV5,PPARA nhap,ntag,dtag,nhap:ntag,nhap:dtag 185.33
IGF2,IL1RN,IL1R2,CHUK nhap,ntag,dtag,nhap:ntag 831.18
IL6,TRAF6,IL1R1,TRAF2 nhap,ntag,dtag,dtag:ntag 3309.23
NFKBIB,TNFRSF1A,DCN,TNFRSF1B nhap,ntag,dtag,nhap:ntag,nhap:dtag 86.31
CSF2,IL1A,RIPK1,IGF1 nhap,ntag,dtag,nhap:dtag 658.99
ALOX15,CSF3R,IFNAR2,IKBKB nhap,ntag,dtag,nhap:ntag,nhap:dtag 1769.48
IL1B,TNFAIP3,IFNAR1,PPARG nhap,ntag,dtag,nhap:ntag 1210.20  

 

Table 2.3: Description of the Final Model used to Estimate  dSNP in the MrOS Data Set 

Variables in the Model Regression Coefficient Std. Error
Intercept 65.23 10.41
nhap -0.34 0.50
ntag -13.73 3.00
dtag 9.98 2.01
nhap:ntag 0.24 0.10
nhap:dtag 0.29 0.20   
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Figure 2.1: Flow Chart of the approach used to develop the CART model 
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Figure 2.2: Distribution of Transformations of average R2 
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Figure 2.3: Flow Chart of the cross validation approach to obtain estimates of density of total number of 

SNPs/ 10kbp (dsnp) 

 

 

 

 

 29 



 

 

TAG SNPs

4 03 02 01 00

3 0 0

2 0 0

1 0 0

0

 

T
ot

al
 S

N
P

s 

Figure 2.4: A plot of tag SNPs per gene selected from the HapMap database for η = 0.5 by the number of total 

SNPs present in HAPMAP database 
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Figure 2.5: Histogram of Average R2 for predicting unmeasured SNPs within genes by the number of tag SNP 

per gene: 1-2 tag SNPs, 3-4 tag SNPs, and ≥ 5 tag SNPs 
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Figure 2.6: CART model for predicting coverage of HAPMAP tag SNPs 
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3.0  ASSESSING ANCESTRY AND POPULATION SUBSTRUCTURE AMONG THE 

HEALTH ABC COHORT 

3.1 INTRODUCTION 

One of the major concerns with association studies is that false positive results may occur due to the 

presence of unrecognized population substructure (Devlin et al. 1999). Population stratification may occur 

in admixed populations like Mexican Americans (Salari et al. 2005) as well as in Europeans (Campbell et 

al. 2005) due to variation in genetic ancestry among individuals both within and between racial/ethnic 

groups. For example, there is a cline in lactose dehydrogenase across European population (Burger et al. 

2007). In 1999, Devlin and colleagues developed the genomic control method to address the issue of 

population stratification (Devlin et al. 1999). This method adjusts for population substructure at 

population level by estimating an inflation parameter based on results from  a set of null markers. Another 

method to estimate population substructure uses data on ancestry informative markers (AIM) (Smith et al. 

2001). AIMs are a set of markers that have large differences in allele frequencies between different 

populations. Using genotype data from the AIMS, individuals can be grouped into clusters or 

subpopulations. One common method used to assess population substructure is the program 

STRUCTURE (Pritchard et al. 2000) which uses genotype data to assign individuals to discrete 

population clusters. However, assignment of individuals to different clusters is sensitive to the number of 

clusters as well as the metric used in defining the clusters (Price et al. 2006). We chose to address the 

problem of possible substructure using a principal components method (Patterson et al. 2006), which uses 
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the correlation structure between individuals at several uncorrelated loci to assess the structure present 

between or within populations.  

 We investigated population substructure for two reasons. First, because we know that BMD 

differs among individuals with different ancestry (see Introduction, section 1.3), we decided to classify 

each individual in the HealthABC cohort into the most probable ancestry group (European American or 

African-American) based on their genetic information, rather than self-reported ethnicity. Next we wanted 

to control for possible substructure within each genetic ancestry group, so we re-analyzed the genotypic 

data within each group to assess how many eigenvectors should be included as covariates in our 

subsequent candidate gene analyses.  

3.2 DATA 

3.2.1 Identification of Candidate Genes and SNPs 

 To identify a set of candidate genes to be genotyped, public databases, especially PubMed, were searched 

to identify physiologically relevant candidate genes for musculoskeletal traits. After identifying a set of 

candidate genes, SNPs were identified using HAPMAP phase I data.  All SNPs that were within 30kb 

upstream or 10kb downstream of the candidate gene, and had a minor allele frequency of  ≥5% were 

identified (www.hapmap.org) (2003). From this list, tag SNPs were chosen using at a pairwise correlation 

level of r2= 0.8 (Roeder et al, 2005). Candidate genes that were clustered near each other were considered 

to be a single unit, and tag SNPs were chosen for the entire cluster. For an example IGFBP2 and IGFBP3 

both are located on Chromosome 2 within 7.6 kb of each other, so they were treated as single entity, 

called the IGFBP cluster. In addition to tag SNPs, potentially functional non-synonymous SNPs were also 

included, based on information in the databases PupaSNP (pupasite.bioinfo.cipf.es) (Zhaoet al, 2004) and 
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Promolign (polly.wustl.edu/promolign/main.html) (Conde et al 2004).  All selected SNPs were then 

genotyped using the Illumina Golden Gate custom assay.   

3.2.2 Data cleaning  

After receiving the genotype data from the laboratory, the following quality control procedures were 

implemented to ensure the accuracy of our genotype data. We started with 3001 individuals and 1536 

SNPs in 138 genes from the Illumina Golden Gate assay (Table 3.1). Of these 1536 SNPs 71 had no data, 

so we did our data cleaning on 1465 SNPs. We also had information on 126 SNPs, that were genotyped in 

Dr. Ferrell’s lab, for 2815 individuals. We separately cleaned the two data sets because the sample sizes 

differed. For the Illumina data set, individuals missing > 7% of the genotype data were omitted from 

subsequent analysis due to poor DNA samples (22 individuals were removed). Next, all SNPs with a call 

rate of < 90% were omitted (19 SNPs were dropped) due to poor genotyping fidelity. Monomorphic (i.e. 

non-informative) SNPs were omitted. Next, Hardy-Weinberg equilibrium (HWE) was assessed for each 

SNP using the exact test separately for each self-reported race, and SNPs that are not in HWE (i.e. p-

value < 0.001) were flagged, but not removed at this stage.  Each of the association analysis programs that 

we used (see Chapter 5 and 6) also perform internal checks for the HWE within each sex by ancestry 

group. For all of these programs, SNPs with a p-value < 0.001 for HWE were discarded from subsequent 

analysis. Of the 1465 SNPs assayed using the Illumina Golden Gate method, 7 SNPs from 3 genes were 

located on the X chromosome.  We detected male heterozygotes for these SNPs, implying genotyping 

errors, so they were deleted from any subsequent analysis. As I do not have case control data so I did not 

apply quality control procedures that are specific to Case Control studies.  

 For the genotype data from Dr. Ferrell’s lab, all the individuals and SNPs passed the quality 

control filters described above. We combined the two data sets (2979 individuals, 1439 SNPs from 

Illumina, and 2815 individuals and 126 SNPs from the Dr. Ferrell’s lab). For these SNPs we plotted the 

frequency distribution of minor allele frequency in the two populations (Figure 3.1). As expected, the 
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MAF distribution differs between the two self-reported ancestry groups, and African Americans have 

more SNPs with MAF < 0.1. 

After performing the quality control procedures above, we deleted all SNPs that had minor allele 

frequency < 5% within each self-reported ancestry group (78 SNPs were deleted). Therefore, after data-

cleaning, we had genotypic data on 2979 individuals (1653 self-reported European Americans, 1180 self-

reported African- Americans, and 146 unknown). Genotypes were available on total 1487 total SNPs in 

151 total genes. 

Originally, the SNPs that were genotyped in Dr. Ferrell’s lab were not assigned a RefSNP 

number (rs number) because most of these SNPs were chosen from the literature. However, each SNP that 

is submitted in dbSNP is assigned a reference SNP id by dbSNP (Smigielski et al. 2000) and we wished 

to obtain rs numbers for all of our SNPs for consistency and accuracy. So we had to determine the rs 

number for each SNP using the information on the forward and reverse primers for all the SNPs. We used 

UCSC genome browser (http://genome.ucsc.edu/cgi-bin/hgBlat) and submitted the forward and reverse 

primers to obtain the DNA sequence, and the SNP, between those primers. For some of the primer pairs, 

we obtained multiple SNPs and rs numbers and we consulted with Dr. Ferrell to obtain the correct rs 

number. 

3.3 METHODS 

3.3.1 Eigen analysis methods 

In general, eigen analysis is a method used to reduce the information contained in a regular 

matrix into a diagonal matrix. We used principal component analysis (PCA), a form of eigen 

analysis, to reduce the individual covariance matrix (in which each element contains the 
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estimated covariances between two individuals) and obtain a set of principal components (eigen 

vectors) that can adequately explain the genetic variation present in the set of SNPs.  One of the 

requirements of eigen analysis of genotypes is that the genotypes must be uncorrelated, 

otherwise, individuals will form clusters because they had common genotypes (see exploratory 

analysis in Results section below).  Therefore, we first selected a set of uncorrelated SNPs from 

the total number of available SNPs. We used HCLUST (Rinaldo et al. 2005) which allows us to 

select tagging SNPs with a specific correlation relationship, and we selected r2 ≤ 0.04.  

 To assess ancestry using genotypic data on a set of SNPs for each individual in our HABC cohort, 

we first calculated the covariance structure among the individuals. We recoded the genotype data for each 

SNP as 0,1,2 according to the number of minor alleles present in the genotype of a specific individual. 

First we calculated the mean and standard deviation for each SNP. The mean was calculated as sum of 

SNP counts/number of counts. For example the number of counts is m (if there is no missing data for a 

particular SNP), and if m0, m1, m2 are the number of 0,1 and 2’s respectively in the data for that SNP, 

then the mean is calculated as: mean = ((m1*1+m2*2)/m). The standard deviation is estimated as 

sqrt(2*p*(1-p)) where p is the allele frequency of the minor allele for each SNP, and p is calculated as 

mean/2. 

  Then we determined the standardized allele counts by taking [(actual count)-mean]/sd for each 

SNP. Finally we replaced missing SNP counts with 0 (the expected value, because for a standardized 

variable the expected value is always zero). We obtained the covariance matrix by calculating the sum of 

cross- products for the standardized SNP count divided by the number of SNP.  

To calculate (i,j)th element of the covariance matrix, that is the covariance between individuali and 

individualj , we can simply calculate the sum of the element-wise product of the ith and jth row of the  

adjusted SNP count matrix 

Ci, j  xi * x j
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where xi is the ith row and xj is the jth row of the standardized SNP count matrix. 
 
 After obtaining the covariance matrix, we estimated the eigenvalues and eigenvectors (principal 

components, PC) of the covariance matrix. The eigenvalues were modified using formulas given in 

Patterson et al (2006) because the modified eigen values follow a Tracy Wisdom Distribution. For the 

first 3 PCs, we also calculated a vector as  

eigenvectori * sqrt(eigenvaluei )  where i= 1,2,3. 

These modified vectors rescale the variability by multiplying each vector by the square root of the 

corresponding eigen value, so the vectors will be comparable.  

Finally, to discriminate between different ancestry groups or to assess whether there is evidence 

of subpopulations within an ancestry groups, we made pairwise plots of the first three PCs, both overall 

and within groups. These plots were used to discriminate between European Americans and African 

Americans, and also to assess whether there was obvious substructure within the Caucasian American and 

African-American groups and how many PCs should be included as covariates in the candidate gene 

analyses. 

3.4 RESULTS 

3.4.1 Exploring ancestry estimation using the eigen analysis method 

To obtain an understanding of what eigen analysis does, and the effect of violating some assumptions, I 

performed a series of exploratory analyses. First, to determine the effects of using correlated SNPs on 

ancestry determination, I performed eigen analyses on 119 correlated SNPs and plotted the results (Figure 

3.2). As can be seen, we obtain evidence for two ancestry groups (based on PC2), but also artifactual 
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evidence for three sub-groups within each ancestry groups (based on PC3). Our collaborators related that 

such substructure is also seen in other studies when one uses correlated SNPs, and this substructure 

represents genotypes.  

3.4.2 Assigning Individuals to Ancestry Groups  

To classify individuals by African American versus European American ancestry, we obtained a set of 

429 uncorrelated (r2≤ 0.04) SNPs using data on all individuals and performed eigen analyses. Figure 3.3 

presents the plots of (modified) PC1 by PC2 for all individuals. These two eigenvectors contain most of 

the information regarding ancestry groups. In Figure 3, blue dots represent self-reported African-

Americans, green dots represent self-reported Caucasian Americans, and red dots represent unknown 

ethnicity.  

 
We next calculated the centroids (medians) of the first two eigen vectors separately for the two 

clusters and calculated the distance of those centroids (medians) from each of the points. Below is the 

formula for calculating the distances. 

 

dij  eigenvalue1*(eigenvector1ij  centroid1)2  eigenvalue2 * (eigenvector2ij  centroid2)2 ,  

 

where dij = the distance of ith individual and the jth population. i=1,2,….2979; j=1,2. So for each 

individual two distances are calculated: one from the Caucasian American cluster, the other from the 

African-American cluster. All of the unknown individuals were assigned to either the African American 

or European American ancestry group by comparing the two distances and assigning them to the group 

with the minimum distance. Based on these results, and in consultation with Drs. Roeder and Devlin, we 

decided to classify the HABC individuals into two ancestry groups using transformed eigen vector 1 = 

0.04 as a cutoff value. Any individual with a higher value was assigned to the Caucasian American group 
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and any individual with a lower value was assigned in African-American group. Eight individuals 

previously classified as African-Americans were classified as Caucasian Americans and five of the 

Caucasian Americans were classified as African-Americans. All the 146 unknowns were classified into 

one of the two groups (86 Caucasian American and 60 African-Americans). So all of the HABC 

individuals were assigned to one of the two ancestry groups: 1742 Caucasian Americans, 1237 African-

Americans, for a total of 2979 individuals (see Table 3.2). 

3.4.3 Assessing Eigenvectors within Groups 

After classifying all HABC individuals into two ancestry groups, we then assessed whether there was any 

substructure within each group. We performed a similar procedure to that described above. First, we used 

HCLUST to select uncorrelated (r2=0.04) SNPs for each of the two groups separately: for the Caucasian 

American group 399 tag SNPs were selected and for African-Americans 499 tag SNPs were selected. We 

re-selected a set of uncorrelated SNPs within each ancestry group, rather than using the original set of 

uncorrelated SNPs, because (1) the number of people changed in the two groups, and (2) the LD pattern 

will change in the new groups. This new set of tag SNPs might be able to detect more subtle structures 

within the two populations. The plots of the first three PCs (pairwise) are given for the African-American 

ancestry group (Figure 3.4) and the Caucasian American ancestry group (Figure 3.5). 

 After visual inspection of the PC plots, we did not observe any obvious substructure present 

within the Caucasian American ancestry group. However in the African-American group, we see some 

substructure along PC2 axis. We wondered whether this substructure might be related to recruitment site 

(Pittsburgh versus Memphis), however, individuals from both sites were approximately equally 

represented in both clusters, and there was no difference in mean PC scores between individuals from 

Memphis and Pittsburgh (results not shown).  We did the same analyses by sex, and also found no 

differences.  Thus, this substructure is not due to recruitment site or sex.  To mitigate possible effects of 

subtle substructure, we decided to incorporate the first three eigenvectors as covariates in our subsequent 
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candidate genes analyses for both the ancestry groups. Based on our analyses of environmental covariates 

influencing the bone traits (see Chapter 4), we will also remove variation for other significant 

environmental covariates. Thus, all of our candidate gene association analyses were done using residual 

trait phenotypes.  

3.5 DISCUSSION 

Population substructure is one of the major concerns in the performance of genetic association studies in 

populations of unrelated individuals. Investigators have proposed a variety of methods to mitigate the 

effects of population substructure, including genomic control, AIMs, and eigen analysis. Given our recent 

advances in high-throughput genotyping capabilities, most investigators propose to control for or assess 

population substructure using eigen analysis methods on data on large sets of SNPs. Because we had 

genotypic data on multiple SNPs in 138 candidate genes, rather than data on 100,000 or more AIM SNPs 

as has been used in several studies (Hinds et al. 2005; Shriver et al. 2005), we also wanted to determine 

whether we had sufficient number of uncorrelated SNPs to detect population substructure. The number of 

uncorrelated SNPs necessary to detect population substructure is not well-known with some investigators 

recommending a few hundred and others recommending more (Collins-Schramm et al. 2004; Hinds et al. 

2005).  

We first assessed how well our set of ~429 uncorrelated SNPs were able to classify individuals of 

African American versus European American ancestry. As can be seen in Figure 4, most individuals were 

easily classified into the two ancestry groups. Thus, as might be expected, data on 429 uncorrelated SNPs 

is sufficient to distinguish between major continental ancestral groups, such as Europeans versus 

Africans. Then we assessed substructure within Europeans (399 tag SNPs) and African-Americans (499 

tag SNPs), and observed no apparent population substructure present within these populations. Although 
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we see some possible substructure in African American ancestry group, a larger number of uncorrelated 

SNPs may be necessary to detect more subtle structure. 

Although ancestry estimation using AIMs can be much more powerful, it depends on the 

availability of allele and genotype frequency data on a specific set of markers for presumed ancestry 

populations (Barnholtz-Sloan et al. 2008). We did not have the opportunity to work with the population-

specific AIMs, so we used the principal component method to analyze the possible substructure present in 

our population. This method corrects for population structure using continuous axes of variation, which 

gives useful information regarding within-continent variation (Price et al. 2006). By using this method we 

tried to have continuous axes of variation rather than assigning each individual into clusters, as is done by 

the program STRUCTURE (Patterson et al. 2006).  
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3.6 TABLES AND FIGURES 

Table 3.1: Details of genes studied in HABC cohort 

gene Full Name chr # of SNPs
ACVR2B activin A receptor, type IIB 3 4

ADIPOR1 adiponectinreceptor1 (MUSCLE) 1 7
AR Androgen receptor X 4

ARF3 ADP-ribosylation factor 3 12 1
BDNF Brain derived neurotrophic factor 11 10

BMPR2 bone morphogenetic protein receptor, type II 2 8
CCDC65 coiled-coil domain containing 65 12 1

CNTF Ciliary neurotrophic factor 11 3
CNTFR CNTF receptor 9 12
COMT Catechol-O-methyl transferase 22 16
CRH CORTICOTROPIN-RELEASING HORMONE 8 4

CRHBP CORTICOTROPIN RELEASING HORMONE-BINDING PROTEIN 5 9
CRHR1 CORTICOTROPIN-RELEASING HORMONE RECEPTOR 1 17 8
CRHR2 CORTICOTROPIN-RELEASING HORMONE RECEPTOR 2 7 14
CSF1R COLONY-STIMULATING FACTOR 1 RECEPTOR 5 17
CSF2 COLONY-STIMULATING FACTOR 2 5 12

CSF2RB colony stimulating factor 2 22 12
CSF3R colony stimulating factor 3 receptor 1 15

CSK c-src tyrosine kinase 15 1
CYP11A1 Cholesterol side-chain cleavage enzyme 15 7
CYP11B1 cytochrome P450, family 11, subfamily B, polypeptide 8 12
CYP17A1 CYTOCHROME P450, FAMILY 17, SUBFAMILY A, POLYPEPTIDE 1 10 10
CYP19A1 CYTOCHROME P450, FAMILY 19, SUBFAMILY A, POLYPEPTIDE 1 15 19
CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1 15 3
CYP1A2 cytochrome P450, family 1, subfamily A, polypeptide 2 15 2
CYP1B1 cytochrome P450, family 2, subfamily B, polypeptide 1 2 12

CYP21A2 Steroid 21-hydroxalase 6 2
CYP24A1 cytochrome P450, family 24, subfamily A, polypeptide 1 20 15
CYP27B1 cytochrome P450, family 27, subfamily B, polypeptide 1 12 5
CYP3A4 cytochrome P450, family 27, subfamily B, polypeptide 1 7 4

ESR1 Estrogen receptor α 6 34
ESR2 Estrogen receptor β 14 11

FBXO32 F-box protein 32 8 18
FRZB frizzled-related protein 2 12
FST FOLLISTATIN 5 9
GC group-specific component (vitamin D binding protein) 4 10

G-CSF colony stimulating factor 3 (granulocyte) 17 8
GDF8 Myostatin ;growth differentiation factor 8 2 5
GH1 Growth Hormone 17 5
GHR Growth Hormone Receptor 5 17

GHRH Growth Hormone Releasing Hormone 20 4
GHRHR GHRH receptor 7 10
GHRL ghrelin precursor 3 2

GNRH1 GONADOTROPIN-RELEASING HORMONE 1 8 5
GNRH2 GONADOTROPIN-RELEASING HORMONE 2 20 14
GNRHR GONADOTROPIN-RELEASING HORMONE RECEPTOR 4 9  
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Table 3.1 continued 

gene Full Name chr # of SNPs
HOXA1 HOMEOBOX A1 7 3

HOXA10 HOMEOBOX A10 7 1
HOXA11 HOMEOBOX A11 7 4
HOXA13 HOMEOBOX A13 7 7
HOXA2 HOMEOBOX A2 7 3
HOXA3 HOMEOBOX A3 7 1
HOXA4 HOMEOBOX A4 7 1
HOXA5 HOMEOBOX A5 7 1
HOXA6 HOMEOBOX A6 7 2
HOXA7 HOMEOBOX A7 7 1
HOXA9 HOMEOBOX A9 7 3

HSD11B1 11-@BETA-HYDROXYSTEROID DEHYDROGENASE, TYPE I 1 11
HSD17B1 17-@BETA-HYDROXYSTEROID DEHYDROGENASE  I 17 5
HSD17B2 17-@BETA-HYDROXYSTEROID DEHYDROGENASE  2 16 11
HSD17B3 17-@BETA-HYDROXYSTEROID DEHYDROGENASE  3 9 15
HSD17B4 17-@BETA-HYDROXYSTEROID DEHYDROGENASE  4 5 13
HSD3B1 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 3
HSD3B2 hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 5

IGF1 Insulin-like growth factor-1 12 14
IGF1R IGF receptor 1 15 39
IGF2 Insulin-like growth factor-2 11 5

IGF2R IGF receptor 2 6 37
IGFALS insulin-like growth factor binding protein, acid labile subunit 16 3
IGFBP1  insulin-like growth factor binding protein      1 7 5
IGFBP2 IGF binding protein 2 2 10
IGFBP3  insulin-like growth factor binding protein      3 7 4
IGFBP4  insulin-like growth factor binding protein      4 17 8
IGFBP5  insulin-like growth factor binding protein      5 2 10
IGFBP6  insulin-like growth factor binding protein      6 12 5

IL1A interleukin 1, alpha 2 9
IL1B interleukin 1, beta 2 10

IL1R1 IL1 receptor type I 2 19
IL1R2 IL1 receptor type II 2 12
IL1RN IL1 receptor agonist 2 12

IL6 Interleukin 6 7 11
IL6R IL6 receptor gp80 and gp130 1 10
IL6ST interleukin 6 signal transducer 5 6
IRAK1 interleukin-1 receptor-associated kinase 1 X 1
IRAK3 interleukin-1 receptor-associated kinase 3 12 11
LHB luteinizing hormone beta polypeptide 19 5

LHCGR luteinizing hormone/choriogonadotropin receptor 2 29
LIF leukemia inhibitory factor (cholinergic differentiation factor 22 14

LIFR leukemia inhibitory factor receptor 5 15
LRP5 low density lipoprotein receptor-related protein 5 11 11
LRP6 low density lipoprotein receptor-related protein 6 12 18
LTBP1  latent transforming growth factor beta binding protein 1 2 46
LTBP2  latent transforming growth factor beta binding protein 2 14 21  
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Table 3.1 continued  

gene Full Name chr # of SNPs
LTBP3  latent transforming growth factor beta binding protein 3 11 5
MC2R melanocortin 2 receptor (adrenocorticotropic hormone) 18 4
MEF2A MADS box transcription enhancer factor 2, polypeptide A 15 9
MEF2B MADS box transcription enhancer factor 2, polypeptide B 19 7
MEF2C MADS box transcription enhancer factor 2, polypeptide C 5 12
MEF2D MADS box transcription enhancer factor 2, polypeptide D 1 14
MYF5 myogenic factor 5 12 5
MYF6 myogenic factor 6 (herculin) 12 6

MYOD1 myogenic differentiation 1 11 5
MYOG myogenic factor 4 1 2
NCOA1 nuclear receptor coactivator 1  2 11
NCOA2 nuclear receptor coactivator 2 8 20
NCOA3 nuclear receptor coactivator 3 20 16
NFKB1 Nuclear factor-k-B 4 14
NR3C1 Glucocorticoid receptor (GR) 5 10
NTF3 neurotrophin 3 12 11

NTRK1 neurotrophic tyrosine kinase, receptor type1 1 12
NTRK2 neurotrophic tyrosine kinase, receptor type2 9 16
NTRK3 neurotrophic tyrosine kinase, receptor type3 15 44
POMC proopiomelanocortin 2 6

PRKAG1 protein kinase, AMP-activated, gamma 1 non-catalytic subunit 12 1
SHBG sex hormone-binding globulin 17 7

SMAD1 SMAD, mothers against DPP homolog 1 (Drosophila) 4 10
SMAD2 SMAD, mothers against DPP homolog 2 (Drosophila) 18 9
SMAD3 SMAD, mothers against DPP homolog 3 (Drosophila) 15 25
SMAD4 SMAD, mothers against DPP homolog 4 (Drosophila) 18 3
STAR steroidogenic acute regulator 8 3
STS Steroid sulfatase X 2

TGFB1 Transforming growth factor-β 19 6
TGFB2 Transforming growth factor-β 1 18
TGFB3 Transforming growth factor-β 14 9

TGFBR1 TGF-receptors 9 7
TGFBR2 TGF-receptors 3 23
TGFBR3 TGF-receptors 1 40
THRA thyroid hormone receptor, alpha 17 7
TIEG Kruppel-like factor 10 8 10
TNFA Tumor necrosis factor-α 6 7

TNFRSF11A TNFSF11 receptor 18 13
TNFRSF11B Osteoprotegerin 8 12
TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 12 9
TNFRSF1B tumor necrosis factor receptor superfamily, member 1B 1 22
TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 3 12
TNFSF11 Osteoprotegerin ligand 13 7

VDR Vitamin D receptor 12 20
WNT10B wingless-type MMTV integration site family, member 10B 12 6
WNT1B wingless-type MMTV integration site family, member 1B 12 1
WNT3A wingless-type MMTV integration site family, member 3A 1 6
WNT5A wingless-type MMTV integration site family, member 5A 3 10  
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Table 3.2: Table of self reported and genetically assigned ancestry groups 

Ancestry Group

African- American Caucasian American Unknown

Self reported 1180 1653 146

Genetic (based on 1237 1742 0
429 tag SNPs)  

  
  
 
 
 
 
 

 
Figure 3.1: Histogram for minor allele frequencies in the two self-reported race groups 
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Figure 3.2: Plot of second and third eigen vectors when SNPs are correlated 

 
 

 

Self-Reported Ancestry 

Caucasian Americans 

African Americans 

Unknown

Figure 3.3: Estimated genetic ancestry (represented by the first two eigen analysis components) 

versus self-reported ancestry 
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Figure 3.4: Pairwise plots of first three principal components for individuals in the African American 

ancestry group 

  

 

Figure 3.5: Pairwise plots of first three principal components for individuals in the Caucasian 

American ancestry group 
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4.0  ANALYZING THE EFFECTS OF COVARIATES ON BMD ACROSS 

DIFFERENT ETHNIC AS WELL AS GENDER GROUPS 

4.1 INTRODUCTION 

As described in the Introduction to this dissertation, osteoporosis is a major public health concern and is 

characterized by decline in bone mass, which can result in fragility of bone. More than 10 million 

Americans may develop osteoporosis each year. Low level of BMD is a key factor in development of 

osteoporosis, so studying the genetic as well as environmental factors affecting BMD is very important. 

Several investigators have reported that the risk of osteoporosis varies by ethnicity and sex. Mean 

BMD at total hip is higher among African-Americans than Caucasian Americans (Araujo et al. 2007). 

Women tend to loose BMD at a more rapid rate and Caucasian Americans also loose BMD more rapidly 

than African Americans (Cauley et al. 2005; Evans et al. 2005; Wilkins et al. 2005). There are several 

lifestyle and anthropometric factors that influence BMD level and osteoporosis. A previous longitudinal 

study on 116229 nurses showed significant increase in risk of hip fracture (Cornuz et al. 1999). Current 

smoking also increases bone resorption among males (Szulc et al. 2002). Vitamin D and calcium intake 

significantly increases the level of BMD at whole body and vertebral sites (Grados et al. 2003). The risk 

of hip fracture is reduced with intake of calcium (Feskanich et al. 2003). Low weight is a significant risk 

factor for low levels of BMD and fracture at spine and hip sites. Short height is associated with low level 

of BMD at femoral neck and lumbar spine (Ho et al. 2005). Furthermore, the effects of covariates may 

also differ by age and sex. For example, in 45-92 year old individuals, serum leptin levels are associated 

with BMD in women but not in men (Weiss et al. 2006). Likewise, postmenopausal women have a 
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positive association of cyclooxygenase-2 use and BMD but the association is reversed in older men 

(Richards et al. 2006). As described in the introduction to this dissertation there are two components of 

bone: trabecular and cortical. Genetic and environmental components affect the two types of bone 

differently (Duan et al. 1999). The proportion of bone components varies across different skeletal sites 

(Silverberg et al. 1995), so studying the different bone sites is important. 

The goal of the current study is to analyze the effect of different risk factors on bone traits at three 

different time points separately for originally healthy U.S. African Americans and Caucasian Americans 

age greater than 68 years of age. We also investigated the effects of the covariates on the BMD traits over 

time. We know that the epidemiology of BMD differs between different ethnic groups, but how different 

covariates is affecting the BMD of different sex and ethnic groups is not very well characterized. We 

would like to answer questions such as how different covariates influence bone traits in different sex and 

ethnic groups (Araujo et al. 2007). We will also try to analyze how the effect of the covariates is changing 

over time. A comparative study of different ethnic and sex groups is important to further investigate the 

genetic causes behind high or low BMD values.  

4.2 DATA AND METHODS 

The Health Aging and Body Composition Study (Health ABC) is an observational cohort study. The data 

has been collected over six different time points (1 year apart) on African American and Caucasian 

American men and women in the U.S. At baseline, data are available on 2830 individuals (1653 

Caucasian Americans [504 men and 673 women] and 1177 African-Americans [872 men and 781 

women]) between the ages of 68 to 80 years old. The data were collected at two sites, Pittsburgh and 

Memphis.  

Data on different anthropometric measurements, lifestyle, medical characteristics and different 

fat, muscle and bone related traits were collected. Exercise level (kcal/kg/week) was estimated based on a 
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questionnaire administered by the interviewer. Height and weight were estimated using a stadiometer 

(Harpenend, Wales, UK) and balance beam scale, respectively, without wearing any shoes. The difference 

between sitting height and a 30 cm seat was denoted as trunk length and the difference between total 

height and trunk length was denoted by leg length. Smoking and drinking history were assessed by self 

report. Race and ethnicity were also assessed by self-report, but we calculated genetic ancestry from 

genotype data and used genetic ancestry to classify individuals in our study into two ancestry groups (see 

chapter 3). Physical activity level was estimated based on questionnaire administered by an interviewer 

(Visser et al. 2005). Medications were assessed by transcription of all prescription. All participants 

provided written informed consent for examination. Institutional Review Boards at the University of 

Pittsburgh and University of Tennessee Health Science Center approved all protocols. 

Prior to doing analysis we plotted several transformations of BMD traits, but for each trait, the 

original measurement appeared to be approximately normally distributed. We started with 3075 

individuals with phenotypic data, but after removing outliers (any individual with a value ±4 sd from the 

mean), merging with the genotype file and reclassifying individuals according to genetic ancestry (as 

described in chapter 3) we were left with 2830 individuals. All subsequent analyses were performed on 

this set of 2830 individuals. We analyzed the effects of covariates on different bone traits by using linear 

regression methods after dividing the subjects into four groups according to their genetic ancestry (as 

defined in chapter 3) and sex because of known differences or possible differences in the effects of 

covariates on different ethnic groups or between men and women (see Introduction above). 

 We fit the multiple regression model as follows: 

yi  Xij

j1

p

  j   i , 

where y is the trait of interest (eg. Hip BMD), X is the matrix of constants and covariates,  is the 

parameter to be estimated.  There are a total of p parameters, one intercept and the remaining p-1 

parameters correspond to covariates,  i  is the observational error. We did not use stepwise regression 

because order of parameters and the method used can affect the selected model [Derksen et al. 1992]. 
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First we included a larger list of covariates in the model, and then left out those covariates in the final 

model building which had p-value > 0.1.  

We also wanted to see how proportion of the total phenotypic variation of the BMD traits is 

explained by different categories of covariates. We grouped our covariates into five categories (ancestry, 

anthropometrics, demographics, lifestyle and medical history). To calculate the effect of a particular 

category we fitted the above regression model taking all the covariates together and then dropped 

covariates of different groups one by one. We dropped the ancestry group at first and then subtracted the 

R2 from the resulting submodel from that of the full model. Then we dropped the demographics 

covariates and calculated the resulting R2 and subtracted it from that of the model we got by deleting the 

ancestry covariates, and so on.  

In addition to data obtained at baseline, follow up data on areal BMD were available at two years 

and four years after the baseline data were collected. Therefore, we had the opportunity to determine 

whether effect of different covariates changes over time, as well as whether they had effects in a cross-

sectional analysis. These longitudinal analyses were also performed within the four sex and ethnic groups 

separately. Because we did not have measures of all the covariates at different time points, we assumed 

that there was no interaction between the covariates and time in our models. We analyzed the effect of the 

covariates by using observations over three time points. Generalized Estimating Equation (GEE) methods 

were used to analyze the longitudinal effects of the covariates. We included time as one of the covariates 

in addition to any significant covariates.  

Because the observations over three time points are correlated, we needed to specify a correlation 

structure. GEE is very robust against wrongly specifying the correlations structure because estimates of 

the regression parameters remain consistent. Thus there is little gain in efficiency by specifying the 

correct correlation (Zeger et al. 1986). We specified the correlation structure as unstructured because then 

all possible correlations between all the different responses for a specific subject are considered. These 

unstructured correlations are then used in estimating the model parameters (Fitzmaurice et al. 1993). 
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Because our response variables (the areal BMD traits) were normally distributed, we specified the link 

function as identity. 

The model is given as 

 

i  = E(yi),  i   1 ....... n  

h(i  ) = Xi  

where  Y  Yi is the set of measurements for the ith individual. T is the number 

of repeated observation for each individual, h(.) is the link function, in our case it is identity. The 

correlation matrix between Yij’s is given by Ri , we specified it as unstructured. 

i  [yi1.........yiT ],

4.3 RESULTS 

Anthropometric, demographic, lifestyle, and medical history characteristics obtained at baseline for the 

Caucasian American and African American men and women are given in Table 4.1. The number of 

individuals from the two ancestry groups recruited from Pittsburgh and Memphis were almost equal in 

number, that is, 846 versus 807 Caucasian Americans (1653 total) and 557 versus 620 (1177 total) 

African Americans, respectively. The average ages for all the groups were similar. Men from both the 

ancestry groups are taller than their women counterparts. Caucasian American women have the lowest 

weight of the four groups. Among Caucasian Americans fewer women (77.2%) than men (80.1%) 

consume alcohol and the difference is larger in African-Americans: men (83.9%) and women (64.8%). As 

expected, the prevalence of smoking history is higher among men (69.8 and 71.2%) compared to women 

(44.1 and 41.7%) in both ancestry groups. Caucasian American men and women have a higher level of 

exercise than their African-American counterparts. African-Americans have a higher prevalence of 

diabetes and high blood pressure than Caucasian American, but Caucasian Americans have a higher 
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prevalence of cancer. Overall, men have a higher rate of CHD than women in their respective ancestry 

groups. These results are similar to results from the Framingham osteoporosis study data (Tucker et al. 

2006). The medical condition covariates were all self reported.  

The raw means and standard deviation of BMD measured at 15 skeletal sites measured at baseline 

is presented in Table 4.2. We analyzed the effects of covariates on areal BMD at multiple skeletal sites 

that most investigators do not report because the power of one of our SNP association methods (the 

principal component of heritability) should be increased using multiple measures, as long as the measures 

are not highly correlated (Klei et al. 2008). However, for ease of understanding and comparison with 

results from other studies, for the remainder of this Chapter, only results of analyses performed on areal 

BMD of the whole body, lumbar spine, total hip, femoral neck, mean arm and mean leg will be presented. 

Results of analyses of other skeletal sites are presented in tables in the Appendix.  

As can be seen from Table 4.2, mean BMD at all skeletal sites are higher in males than females 

and also higher in African-Americans compared to Caucasian Americans. These results are similar to 

those obtained from NHANES (Looker et al. 1998). I also examined relationship of mean BMD at 

different time points. As can be seen from Figure 4.1, for most of the skeletal traits across all sex by 

ancestry groups, mean BMD value gradually decreases with time, except for lumbar spine BMD. 

We then used linear regression analyses of the three different time points BMD data to estimate 

the effects of different covariates. As described in Chapter 3, we included the first three principal 

components from our ancestry analysis as covariates to see if there is an effect of population substructure 

on the BMD traits. However, we included them in the final model, even if they were not significant, to 

control for effects of population substructure.  

4.3.1 Results from analyses of covariates at baseline 

The results of regression analyses of effects of covariates on BMD at six skeletal sites measured at 

baseline (or time point 1) are presented in Table 4.3. In general, results for the other two time points (time 
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points 3 and 5) were similar to those obtained at baseline, and these results are presented in the Appendix. 

In addition, results for the other skeletal sites at all three time points are also presented in the Appendix. 

As stated above, these analyses were performed within each sex by ancestry group separately.   

 

a) Caucasian American Males: 
      

As can be seen in Table 4.3A population substructure does not have any significant effect on any of the 

BMD traits at p ≤ 0.05, although all PCs are significant at p ≤ 0.10. Age has significant effect (p < 0.01) 

on mean arm BMD. Site does have a significant effect on all the traits (p<0.05 for all), except femoral 

neck BMD and arm BMD (p ≥ 0.05). As has been observed in many studies (Looker et al. 1998), BMD at 

all skeletal sites increased with increasing weight. In contrast, as waist circumference increases, BMD 

significantly deceases at all the sites except lumbar spine. Height has significant positive effect on whole 

body, mean arm and mean leg BMD. Among the lifestyle factors, only smoking had significant negative 

effect (p < 0.01) at all sites except lumbar spine. Among the prevalent diseases, osteoporosis status has 

significant negative effects at all skeletal sites (p < 0.001). Calcium supplement have a significant positive 

effect on mean leg BMD (p < 0.05). 

 

b) Caucasian American Females: 
 

Among Caucasian American women (Table 4.3B), population substructure also does not have any 

significant effect on any of the BMD traits (p > 0.05), but is significant at a more liberal p < 0.10. Age 

and site both have significant effects on lumbar spine BMD, site also has significant effect on mean leg 

BMD (p value < 0.01). Among the anthropometric factors, weight significantly affects all the BMD traits, 

as is observed in all the other groups. Height has significant positive effect at all the BMD sites except for 

femoral neck and hip BMD. Among the lifestyle factors, none have any significant effect on any of the 

traits, except for prevalence of smoking history on hip BMD (p < 0.05). Among the prevalent diseases, 

osteoporosis status has significant negative effects at all skeletal sites (p < 0.001). Likewise, prevalent 
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osteoarthritis at knee and oral estrogen use both have significant positive effect on BMD at all skeletal 

sites. 

 

c) African-American Males:  
 

Among African American men (Table 4.3C), neither population substructure nor age, have any significant 

effects (p ≥ 0.05) on any of the areal BMD traits. Site does have a significant effect on all the BMD traits 

except femoral neck BMD (p ≥ 0.05). The regression coefficient for all the traits is positive, so it means 

that on average individuals from Pittsburgh have higher BMD values than their Memphis counterparts. 

Increasing weight is significantly associated with increasing BMD at all sites. In contrast, as waist 

circumference increases, BMD significantly deceases at the whole body (p < 0.001), lumbar spine (p < 

0.001), mean arm (p < 0.01) and mean leg (p< 0.01), skeletal sites. Height has significant negative effect 

(p < 0.01) on hip BMD, but at all other skeletal sites height was not significant. Among the lifestyle 

factors, only exercise had significant effect, increased exercise activity was correlated with increased 

BMD (p < 0.05 at whole body and lumber spine). Among the prevalent diseases, osteoporosis status is 

associated with a significant decrease in BMD at all skeletal sites (p < 0.001).  

 

d) African-American Females: 
 

Unlike the other three groups, the first principal component of population substructure is significantly 

correlated (p ≤ 0.05) with all of the BMD traits, except mean leg. Similar to African- American males age 

does not have any significant effect (p ≥ 0.05) on any of the traits, but site does have a significant positive 

effect on all BMD traits except femoral neck and mean arm BMD. When considering the anthropometric 

factors, weight significantly affects all the BMD traits. Waist circumference does not have any significant 

effect on any of the skeletal sites, but increasing height is correlated with increasing mean arm (p < 0.001) 

and lumbar spine (p < 0.05) BMD. Among the lifestyle factors, exercise has significant effect on mean 

arm BMD (p < 0.01) and mean leg BMD (p < 0.05); increased exercise activity was correlated with 
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increased BMD. As expected, osteoporosis status is associated with decreased BMD at all skeletal sites (p 

< 0.001). Prevalent osteoarthritis at the hip is significantly associated with increased BMD at all sites. In 

contrast, prevalent diabetes is associated with decreased BMD at the hip only. 

4.3.2 Proportion of total phenotypic variation attributable to different covariate 

categories  

The proportion of total variation in areal BMD explained by different sets of covariates is given in Table 

4A, B, C and D. In general, measured covariates accounted for less of the total BMD variation in 

Caucasian American men (10-26%) than any of the other three groups (23-53%).  Measured covariates 

accounted for the most variation among Caucasian American women (27-44%).  This difference in total 

percent variation is due the proportion of variance in areal BMD accounted for by medical conditions 

which ranges from 22-47% in Caucasian American women to 13-22% in African American women to 12-

19% in African American men to 4-8% in Caucasian American men.  In fact, medical conditions 

accounted for the largest proportion of variance among all five categories of covariates among Caucasian 

American women. 

The category that accounted for the next largest proportion of variation across all groups (except 

Caucasian American women) was the set of anthropometric covariates (height, weight, and waist 

circumference). This category accounted for the smallest proportion of variance in Caucasian American 

women (3-6%), and moderate among the other three groups: 5-16% in Caucasian American men, 7-13% 

in African American men, and 7-17% among African American women. Anthropometric covariates 

accounted for the largest proportion of variance in areal BMD among Caucasian American men. 

The remaining categories of covariates each accounted for < 2% of the total variation in areal 

BMD at all sites in all ancestry by sex groups.  
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4.3.3 Results from longitudinal analysis of BMD 

Because we have data on individuals at three time points at two-year intervals, we had the opportunity to 

investigate whether time has any effect on mean BMD and also to test for effects of covariates across 

time. Results from the longitudinal analyses of the six BMD sites for each sex by ancestry group are 

presented in Table 4.5a, b, c, and d. 

As expected, time is a significant covariate for all the groups across all the skeletal sites, except 

femoral neck, hip and mean arm sites for Caucasian American females and at hip BMD for African-

American females. Also, the effects of demographic, anthropometric, lifestyle, and medical history 

covariates were similar to those reported in the analysis of baseline data (Table 4.3); except that the effect 

of weight is no longer significant for many of the traits. So overall we conclude that although time plays a 

very important role in variation in areal BMD in all groups, the effect of other covariates remains similar. 

4.4 DISCUSSION 

Data on BMD at different skeletal sites on the Health ABC cohort provides an opportunity to analyze 

both cross-sectional and longitudinal effects of covariates in healthy aged populations of African-

Americans and Caucasian Americans. Because the same covariates and BMD traits were measured on all 

individuals, we can assess the similarities and differences these covariates may have in males and females 

and in two different ancestry groups. We can also assess whether the effects of these covariates differ at 

different skeletal sites and whether the effects of the covariates measured at baseline has varying effect on 

traits across time, although we could not test for interactions between the covariates and time because we 

did not have independent measures of the covariates at all time points. 

In general, as has been reported by several groups (Melton et al. 2000; Duan et al. 2001; Tuck et 

al. 2005), including previous analyses of the baseline HABC data, the mean level of BMD is lower in 
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women than in men at all skeletal sites and at all three time points. Furthermore, as expected from reports 

of other investigators (Melton et al. 2001; Pothiwala et al. 2006), Caucasian Americans have lower BMD 

levels than African-Americans, and these differences between sexes and between ancestry groups 

remained even after incorporating effects of other significant covariates such as weight, height, 

recruitment site, lifestyle, and medical history.  

We also found that smoking, drinking and low level of physical activity are associated with 

decreased BMD at most of the skeletal sites in both ancestry groups as well as both the sexes. The results 

tally with previous results regarding the effect of covariates on BMD traits found in other studies of the 

HABC population (Strotmeyer et al. 2004) as well as studies of older individuals in other cohorts (Brown 

et al. 2004; Ng et al. 2006). We did not detect a significant effect of age on any of the cohorts, most likely 

because the  population is older (average age = 73 years), so BMD does not change significantly over 

different ages. 

Consistent with other reports, our results also indicate that bone metabolism differs between 

different ancestry groups, as well as between men and women. How bone metabolism differs among the 

groups and whether different genes act differently in the groups is investigated in Chapters 5 and 6 in 

which we report the results of candidate gene association analysis performed on each of the four ancestry 

by sex groups separately.  

One of the primary objectives of these covariate analyses was to identify factors that may 

differentially influence BMD in a healthy, aged population of men and women comprising two ancestry 

groups, Caucasian Americana and African American. These significant covariates were then used to 

generate residuals that were analyzed for associations with specific genotypes at candidate loci for 

musculoskeletal traits (Chapters 5 and 6). In other words, we wanted to remove the effects of known 

covariates to increase the power to detect genetic signals due to variation at the candidate loci. We realize 

that the choice of which covariates to include in the model to generate residuals could also influence the 

probability of detecting an effect due to genetic variation at the candidate genes. We also included 
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osteoporosis by T-score as one of the covariates, because we wanted to see the effect of genetic variants 

after removing the effect of this classification variable. 
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4.5 TABLES AND FIGURES 

Table 4.1: Characteristics of the Covariates in HABC men and women by ethnic group measured at   baseline 

GROUP                   African American                      Caucasian American
SEX Male (n=504) Female (n=673) Male (n=872) Female (n=781)
Covariates

Demographics
Age,yrs 73.5±2.8 73.4±3 73.9±2.9 73.6±2.8
Site(% Memphis) 49.4 45.8 50.3 52.1

Anthropometrics
Height,mm 1730.7±70.6 1596.5±64.4 1735.1±63.9 1594.4±59.1
Weight,kg 81.8±14.8 75.8±15.9 81.3±12.4 66.3±12.2
Waist Circumference,cm 99.6±12.7 101.2±14.9 101.7±11.7 95.9±12.5

Life style
Drinking History(%) 80.1 77.2 83.9 64.8
Smoking History(%) 69.8 44.1 71.2 41.7
Exercise,kcal/kg/wk 79.7±75.7 80.2±74.1 82.9±64.6 86.2±62.9

Medical Conditions
Prevalent CHD(%) 22.9 19.5 28.3 11.9
Prevalent CVD(%) 7.9 8.8 7.6 7.2
Prevalent Diabetes (%) 21.8 21 13.3 7.7
Prevalent Osteoarthritis, knee(%) 4.4 12.5 5.9 13
Prevalent Osteoarthritis, hip(%) 2.2 4.3 3 7.6
Prevalent HBP(%) 55.7 66.2 42 44.2
Prevalent Cancer(%) 14.3 8.8 27.1 21.6
Prevalent Clinical Osteoporosis(%) 2 8.7 2.2 25.9
Osteopporosis by T-score(%) 4.4 6.4 1.3 15.9
Any Osteoporosis Drugs(%) 1 1.8 0.8 12.2
Calcium Supplement(%) 3.2 12.9 9.6 41.9
Vitamin D Supplement(%) 1.6 5.1 4.7 19.5
Oral Estrogen(%) 0.2 12 0 31  
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Table 4.2: Table of mean and standard deviation of raw BMD traits at baseline for the four sex by ancestry 

groups in HABC data 

Group            African American            Caucasian American
Sex Males Females Males Females
BMD at baseline

n=504 n=673 n=872 n=781

Whole Body 1.21±0.13 1.04±0.11 1.15±0.11 0.98±0.10
Head 2.34±0.40 2.31±0.45 2.14±0.34 2.13±0.39

Left Arm 0.88±0.08 0.68±0.07 0.82±0.07 0.63±0.06
Mean Arm 0.88±0.08 0.69±0.07 0.83±0.07 0.64±0.06

Left Leg 1.28±0.13 1.04±0.13 1.25±0.13 0.98±0.11
Mean Leg 1.27±0.13 1.04±0.13 1.25±0.13 0.98±0.11

Left Rib 0.73±0.09 0.62±0.07 0.68±0.08 0.57±0.08
Mean Rib 0.74±0.09 0.62±0.07 0.68±0.07 0.57±0.07

Lumbar Spine 1.15±0.23 1.00±0.19 1.08±0.21 0.91±0.17
Thoracic Spine 1.01±0.17 0.85±0.14 0.94±0.14 0.78±0.12

Pelvic 1.30±0.22 1.15±0.17 1.20±0.17 1.07±0.15
Femoral Neck 0.85±0.14 0.75±0.13 0.76±0.13 0.65±0.11
Intertrochanteric 1.19±0.18 1.01±0.18 1.10±0.17 0.91±0.16
Ward's Triangle 0.62±0.17 0.55±0.16 0.53±0.14 0.47±0.13
Hip 1.02±0.16 0.86±0.15 0.94±0.14 0.77±0.13
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Table 4.3: Association of Covariates of BMD traits at baseline for four ancestry by sex groups 

**** = p-value < 0.001; ***= 0.001 < p-value < 0.01; **= 0.01< p-value <0.05. 

4.3A Caucasian American Male 
GROUP                                                           Caucasian Male
                             BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure

PC1 4.24E-03 -4.77E-02 -1.39E-01 2.60E-01 2.93E-04 -1.21E-01
PC2 1.51E-01 1.32E-01 1.38E-02 -9.97E-02 1.15E-01 1.17E-01
PC3 -1.51E-01 1.52E-02 -1.54E-02 5.66E-02 -3.64E-02 2.04E-02

Demographics
Age -1.34E-03 -1.60E-03 -2.52E-03 2.55E-03 -2.22E-03 *** -3.49E-03 **
Site -1.86E-03 3.59E-02 **** 2.28E-02 *** 3.94E-02 ** 2.44E-03 5.41E-02 ****

Anthropometrics
Height 1.09E-05 -9.27E-05 1.87E-04 *** 2.58E-04 1.67E-04 **** 2.11E-04 ***
Weight 4.38E-03 **** 5.95E-03 **** 2.86E-03 **** 4.31E-03 **** 1.76E-03 **** 3.62E-03 ****

Waist Circumference -1.08E-03 ** -1.71E-03 *** -1.87E-03 **** -1.46E-03 -1.10E-03 **** -1.98E-03 ****

Life style
Education 3.83E-03 9.23E-04 3.97E-03 4.41E-03 -8.26E-03 ** 8.60E-04
Smoking History -3.87E-04 *** -4.84E-04 *** -3.70E-04 *** -3.87E-04 -2.30E-04 *** -4.95E-04 ****
Exercise 5.88E-05 3.65E-05 -3.42E-05 -3.09E-05 1.61E-05 -5.17E-05

Medical Conditions
Prevalent CHD 1.61E-02 ** 9.71E-03 1.51E-02 ** 1.16E-02 5.40E-03 1.87E-02 **
Prevalent Diabetes 1.66E-02 2.10E-02 5.19E-03 3.56E-02 2.59E-03 2.02E-02
Prevalent Osteoarthritis, knee 1.69E-02 1.16E-02 6.70E-03 1.15E-02 5.73E-03 5.91E-03

Prevalent Osteoarthritis, hip -1.81E-02 -1.56E-02 -4.05E-03 1.88E-02 -3.88E-04 -1.02E-02
Prevalent HBP -1.16E-03 3.49E-03 2.91E-03 2.60E-02 ** 2.13E-03 -3.94E-03
Osteopporosis by T-score -1.45E-01 **** -2.34E-01 **** -1.61E-01 **** -1.66E-01 ** -1.18E-01 **** -1.90E-01 ****
Calcium Supplement 1.26E-02 1.95E-02 3.58E-02 ** 4.13E-02 1.32E-02 3.93E-02 **  

4.3B Caucasian American Female 
GROUP                                                           Caucasian Female
                              BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure

PC1 1.67E-03 1.07E-01 -8.49E-02 3.58E-01 -1.59E-02 -9.05E-02
PC2 6.02E-02 -2.71E-02 -6.81E-02 -1.37E-02 -1.17E-01 -8.08E-02
PC3 -2.05E-02 -8.81E-02 -1.09E-01 -6.43E-02 -7.35E-02 -9.94E-02

Demographics
Age -2.75E-04 -4.67E-04 -4.57E-04 6.00E-03 *** 6.16E-05 -1.16E-03
Site -1.36E-02 1.00E-02 4.90E-03 2.89E-02 ** -4.22E-03 2.46E-02 ***

Anthropometrics
Height 5.36E-05 1.44E-05 2.14E-04 **** 2.40E-04 ** 1.66E-04 **** 1.91E-04 ***
Weight 3.01E-03 **** 3.67E-03 **** 1.51E-03 *** 2.82E-03 *** 9.44E-04 *** 2.21E-03 ****

Life style
Drinking History 6.81E-05 7.14E-05 1.45E-05 -4.58E-05 5.26E-05 3.47E-05
Smoking History 7.44E-03 1.04E-02 ** 3.17E-03 -2.80E-03 4.68E-03 7.60E-03
Exercise 2.17E-03 -4.94E-05 3.65E-03 1.53E-02 3.47E-03 4.13E-03

Medical Conditions
Prevalent Diabetes 1.70E-02 3.38E-02 ** 2.76E-02 ** 4.27E-02 1.23E-02 2.31E-02
Prevalent Osteoarthritis, knee 1.59E-02 *** 1.35E-02 ** 1.00E-02 3.41E-02 *** 1.27E-02 **** 1.48E-02 **
Prevalent Osteoarthritis, hip -1.49E-02 ** -9.62E-03 -7.35E-03 1.12E-02 -9.83E-03 ** -1.33E-02 **
Prevalent Cancer 1.86E-02 ** 1.51E-02 1.80E-02 ** 1.16E-02 1.10E-03 1.27E-02
Prevalent Clinical Osteoporosis -1.15E-02 -9.52E-03 -8.46E-03 -6.09E-03 -2.22E-03 -7.49E-03

Osteopporosis by T-score -1.30E-01 **** -1.80E-01 **** -1.03E-01 **** -1.43E-01 **** -5.78E-02 **** -1.12E-01 ****
Calcium Supplement -1.53E-02 -1.49E-02 -1.17E-03 -1.06E-02 -1.06E-02 ** -4.36E-03
Vitamin D Supplement 2.09E-02 ** 1.35E-02 1.35E-03 1.63E-02 3.00E-03 6.86E-04
Oral Estrogen 2.64E-02 **** 3.40E-02 **** 6.52E-02 **** 7.42E-02 **** 3.51E-02 **** 5.12E-02 ****  
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4.3C African-American Male 
GROUP                                                           African-American Male
                                BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure
PC1 1.58E-01 1.67E-01 -5.63E-02 -3.50E-03 4.99E-02 -7.25E-02

PC2 4.04E-01 2.20E-01 2.97E-01 5.89E-01 1.20E-01 3.06E-01
PC3 -2.88E-01 -1.54E-01 1.28E-01 3.75E-01 -2.90E-03 7.06E-02

Demographics
Age 1.00E-04 1.70E-03 2.90E-03 7.20E-03 -8.00E-04 3.10E-03
Site 6.60E-03 3.59E-02 *** 3.71E-02 **** 5.24E-02 ** 1.97E-02 *** 5.99E-02 ****

Anthropometrics
Height -2.00E-04 -3.00E-04 *** 0.00E+00 -1.00E-04 0.00E+00 0.00E+00
Weight 4.50E-03 **** 5.80E-03 **** 4.20E-03 **** 7.80E-03 **** 2.90E-03 **** 4.10E-03 ****
Waist Circumference -1.40E-03 -1.50E-03 -3.30E-03 **** -5.70E-03 **** -1.70E-03 *** -2.60E-03 ***

Life style

Drinking History -2.30E-03 -3.80E-03 2.10E-03 8.40E-03 2.40E-03 -2.00E-04
Smoking History -2.50E-03 -3.10E-03 -1.05E-02 -2.00E-02 -2.70E-03 -8.60E-03
Exercise 3.00E-04 1.00E-04 6.00E-04 ** 1.30E-03 ** 3.00E-04 5.00E-04

Medical Conditions
Prevalent CHD 1.08E-03 1.51E-02 1.75E-03 -1.93E-02 3.46E-03 1.25E-02
Prevalent CVD -2.42E-04 -2.81E-03 1.87E-02 2.30E-03 1.40E-02 3.39E-02
Prevalent Diabetes 2.21E-02 2.44E-02 1.05E-02 4.07E-02 -4.14E-03 1.23E-02
Prevalent Osteoarthritis, knee 6.50E-03 2.88E-03 5.06E-03 3.29E-02 4.25E-03 -1.25E-03
Prevalent Osteoarthritis, hip -3.66E-02 ** -3.62E-02 -2.31E-02 -2.90E-02 -1.72E-02 -2.19E-02
Prevalent HBP 1.08E-03 -5.89E-03 -7.27E-03 -5.63E-03 -4.94E-03 -5.24E-03
Prevalent Cancer -1.82E-02 -2.64E-02 -2.86E-02 -4.93E-02 -2.62E-02 *** -3.32E-02 **
Prevalent Clinical Osteoporosis 6.75E-02 ** 3.88E-02 4.50E-02 1.17E-01 ** 9.58E-03 4.37E-02
Osteopporosis by T-score -1.93E-01 **** -2.51E-01 **** -1.49E-01 **** -2.45E-01 **** -8.63E-02 **** -1.53E-01 ****

Any Osteoporosis Drugs -1.86E-01 ** -1.53E-01 -1.31E-01 -3.05E-01 ** -4.84E-02 -1.01E-01
Calcium Supplement -1.74E-02 2.61E-03 -2.24E-02 -5.72E-02 -1.65E-02 -1.97E-02
Vitamin D Supplement -2.07E-02 -3.11E-02 5.72E-03 -1.61E-02 -1.85E-03 -9.94E-03
Oral Estrogen -1.70E-01 -1.39E-01 -2.83E-01 ** -2.63E-01 -1.59E-01 ** -2.27E-01  
 
4.3D African-American Female 
GROUP                                                           African-American Female
                               BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure

PC1 6.26E-01 **** 6.08E-01 **** 3.88E-01 ** 5.67E-01 ** 2.46E-01 *** 2.98E-01
PC2 2.59E-02 4.07E-02 1.33E-01 1.48E-02 1.77E-01 ** 1.57E-01
PC3 3.00E-02 -1.15E-01 -9.56E-02 -2.39E-01 -1.41E-02 -1.14E-01

Demographics
Age -1.30E-03 -2.80E-03 -7.00E-04 3.90E-03 -1.90E-03 ** -2.60E-03
Site -1.16E-02 2.48E-02 ** 2.20E-02 ** 6.01E-02 **** 9.90E-03 4.21E-02 ****

Anthropometrics
Height -1.00E-04 -1.00E-04 1.00E-04 3.00E-04 ** 2.00E-04 **** 1.00E-04
Weight 3.30E-03 **** 4.20E-03 **** 2.40E-03 **** 4.00E-03 **** 1.80E-03 **** 2.70E-03 ****

Waist Circumference 3.00E-04 -1.00E-04 -7.00E-04 -3.00E-04 -6.00E-04 -2.00E-04

Life style
Drinking History 1.43E-02 ** 1.34E-02 1.12E-02 1.59E-02 6.80E-03 1.43E-02 **
Smoking History 2.60E-03 -2.00E-04 -4.60E-03 -4.20E-03 -3.30E-03 -2.20E-03
Exercise 4.18E-05 1.21E-04 9.73E-05 3.91E-05 1.1E-04 *** 1.46E-04 **

Medical Conditions
Prevalent CVD -1.67E-02 -3.63E-02 ** -1.50E-02 -3.99E-02 -6.20E-03 -2.10E-02
Prevalent Diabetes 2.51E-02 ** 4.14E-02 *** 3.62E-02 *** 4.76E-02 ** 2.11E-02 *** 4.36E-02 ****
Prevalent Osteoarthritis, hip 2.55E-02 ** 3.25E-02 *** 1.35E-02 3.82E-02 ** 1.90E-02 *** 2.85E-02 **

Prevalent HBP 2.60E-03 9.00E-04 1.70E-03 5.50E-03 4.40E-03 -1.50E-03
Osteopporosis by T-score -1.36E-01 **** -1.92E-01 **** -1.22E-01 **** -1.71E-01 **** -6.01E-02 **** -1.50E-01 ****
Calcium Supplement -7.90E-03 -1.40E-03 1.78E-02 8.60E-03 5.90E-03 1.22E-02
Vitamin D Supplement 2.98E-02 3.83E-02 5.03E-02 ** 6.13E-02 1.11E-02 4.43E-02  
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 Table 4.4: Variation explained (%) by different covariate groups for BMD traits in four ancestry by sex 

groups 

4.4A Caucasian American Male 
 

BMD Trait Femoral neck Whole Body Lumbar Spine Hip Mean Arm Mean Leg
Covariate Group

allcovariates 18.9 16.7 10.3 26 18.2 22.9
ancestry 0.2 0.1 0.1 0.1 0.2 0.1
demographics 0.1 1.4 1.1 1.9 1 5.3
anthropometrics 13.3 8.7 5.2 15.9 10.5 9.7
lifestyle 0.4 0.6 0.3 0.3 0.5 0.5
medical 5 5.9 3.6 7.7 6 7.2  

4.4B Caucasian American Female 
 

BMD Trait Femoral neck Whole Body Lumbar Spine Hip Mean Arm Mean Leg
Covariate Group

allcovariates 43.9 36.1 26.5 53.1 33.7 40
ancestry 0.1 0.2 0.2 0.1 0.3 0.1
demographics 0.3 0.1 1.4 0.1 0.2 1
anthropometrics 6.4 3.5 2.9 6.4 4.8 5.3
lifestyle 0.7 0.4 0.4 0.3 0.3 0.5
medical 37.2 32.4 22 46.6 28.5 33.6  

4.4C African-American Male 
 

BMD Trait Femoral neck Whole Body Lumbar Spine Hip Mean Arm Mean Leg
Covariate Group

allcovariates 30.7 25.9 22.5 39.3 23.7 29.2
ancestry 1 0.5 0.6 0.3 0.2 0.4
demographics 0.1 3 2.1 1.5 1.5 6.1
anthropometrics 10.7 7.2 6.7 13.1 9.4 6.5
lifestyle 0.4 1.6 0.5 0.7 1 2.5
medical 18.5 13.6 12.6 23.6 11.6 13.6  

4.4D African-American Female 
 

BMD Trait Femoral neck Whole Body Lumbar Spine Hip Mean Arm Mean Leg
Covariate Group

allcovariates 35.7 27.4 25.7 43.7 34.6 36.7
ancestry 1.4 0.9 0.5 1.1 1.3 0.5
demographics 0.3 0.9 2.5 0.6 0.8 2.5
anthropometrics 15.8 6.9 9.4 16.7 14.5 11
lifestyle 1.2 0.6 0.4 0.7 2 1
medical 17 18.2 12.9 24.6 16 21.8  
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Table 4.5: Longitudinal Analysis of Covariates with BMD traits 

**** = p-value < 0.001; ***= 0.001 < p-value < 0.01; **= 0.01< p-value <0.05. 

4.5A Caucasian American Male 
GROUP                                   Caucasian Male
                                  BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure
PC1 3.90E-02 2.33E-03 -4.48E-02 2.37E-01 9.77E-02 -3.46E-02
PC2 1.74E-01 1.46E-01 4.36E-02 -1.20E-01 1.33E-01 1.64E-01
PC3 -1.25E-01 3.83E-02 -9.80E-03 1.70E-01 1.22E-02 4.17E-02

Demographics
Site 1.14E-02 3.93E-02 **** 1.15E-02 2.87E-02 -6.04E-03 4.87E-02 ****
Age -2.84E-03 ** -3.22E-03 ** -3.25E-03 ** 1.91E-03 -2.70E-03 *** -5.03E-03 ****

Anthropometrics
Height 1.51E-04 ** 6.72E-05 3.27E-04 **** 4.77E-04 **** 1.78E-04 **** 4.01E-04 ****
Weight 2.49E-03 **** 3.47E-03 **** 4.15E-04 1.06E-02 -5.90E-03 5.17E-03
Waist Circumference 2.43E-04 1.93E-04 -1.61E-04 1.46E-03 ** -8.04E-04 ** 1.23E-04

Time -7.79E-03 **** -4.71E-03 **** -1.59E-02 **** 2.66E-02 **** -7.97E-03 **** -2.90E-02 ****

Life style
Education 5.03E-03 2.67E-03 7.26E-03 1.37E-05 1.17E-05 2.56E-06
Exercise 7.75E-05 6.15E-05 2.26E-05 -4.06E-04 ** -1.88E-04 ** -4.71E-04 ****
Smoking History -3.47E-04 *** -4.65E-04 **** -3.63E-04 **** 9.34E-04 1.14E-03 **** 5.28E-04

Medical Conditions
Prevalent CHD 1.77E-02 ** 1.13E-02 1.16E-02 7.55E-03 2.61E-03 1.29E-02
Prevalent Diabetes 1.69E-02 2.20E-02 6.32E-03 4.89E-02 ** -3.75E-04 1.78E-02
Prevalent Osteoarthritis, knee 1.80E-02 1.26E-02 9.81E-03 1.61E-02 5.92E-03 8.67E-03
Prevalent Osteoarthritis, hip -1.28E-02 -1.11E-02 5.51E-03 1.28E-02 8.96E-03 8.17E-05
Prevalent HBP -1.26E-03 2.68E-03 2.43E-03 2.49E-02 ** 2.37E-03 -3.14E-03
Osteopporosis by T-score -1.57E-01 **** -2.45E-01 **** -1.59E-01 **** -1.96E-01 **** -7.20E-02 -2.16E-01 ****
Calcium Supplement -2.52E-03 -9.51E-04 1.14E-03 -2.97E-03 2.79E-03 -2.64E-03 *

 

 4.5B Caucasian American Female 
GROUP                                 Caucasian Female
                                 BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure
PC1 1.01E-02 1.03E-01 -9.27E-02 2.30E-01 -1.79E-02 -1.21E-02
PC2 6.37E-03 -5.50E-02 -6.32E-02 4.36E-02 -1.33E-01 -1.87E-02
PC3 -6.37E-02 -7.83E-02 -5.55E-02 -1.80E-02 7.84E-02 -9.00E-02

Demographics
Site -8.93E-03 9.29E-03 -8.19E-03 2.07E-02 -9.52E-03 ** 9.68E-03
Age -4.82E-04 -1.31E-03 -2.75E-05 5.15E-03 ** 4.74E-04 -1.62E-03

Anthropometrics
Height 7.87E-05 4.32E-05 2.93E-04 **** 3.33E-04 **** 1.50E-04 **** 2.61E-04 ****
Weight 2.55E-03 **** 2.98E-03 **** 4.02E-04 1.24E-03 ** 9.15E-04 *** 1.27E-03 ****
Waist Circumference -3.40E-04 -1.59E-04 -2.42E-04 4.31E-04 -2.96E-04 -9.01E-05

Time -7.12E-04 1.01E-03 -7.51E-03 **** 2.68E-02 **** -2.53E-03 -1.56E-02 ****

Life style
Drinking History -2.88E-05 4.10E-04 ** 2.64E-04 2.02E-04 8.55E-05 4.96E-04 ***
Smoking History 7.96E-04 -3.06E-03 -4.81E-04 8.16E-03 8.28E-04 -5.20E-04
Exercise 6.55E-03 ** 1.04E-02 *** 5.50E-03 -1.50E-03 4.91E-03 9.51E-03 ***

Medical Conditions
Prevalent Diabetes 1.27E-02 3.15E-02 ** 2.51E-02 ** 4.23E-02 1.12E-02 2.28E-02 **
Prevalent Osteoarthritis, knee 1.50E-02 ** 1.47E-02 ** 1.20E-02 4.50E-02 **** 8.73E-03 1.66E-02 **
Prevalent Osteoarthritis, hip -8.42E-03 -4.17E-03 -4.26E-03 2.86E-03 -6.22E-03 -8.12E-03
Prevalent Cancer 2.01E-02 ** 1.67E-02 1.47E-02 1.79E-02 -2.47E-03 1.11E-02
Prevalent Clinical Osteoporosis -1.07E-02 *** -8.61E-03 ** -7.06E-03 -5.53E-03 -1.79E-03 -5.76E-03
Osteopporosis by T-score -1.32E-01 **** -1.82E-01 **** -1.11E-01 **** -1.51E-01 **** -5.02E-02 **** -1.19E-01 ****
Calcium Supplement -1.04E-03 1.70E-03 -2.47E-03 -4.00E-03 -6.55E-03 -1.20E-03
Vitamin D Supplement 3.04E-03 5.25E-04 -3.14E-03 5.95E-03 -2.45E-03 -2.06E-03
Oral Estrogen 1.46E-02 **** 1.38E-02 **** 3.29E-02 **** 3.42E-02 **** 3.24E-02 **** 2.95E-02 ****  
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4.5C African-American Male 
 

GROUP                            African-American Male
                                  BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure
PC1 2.24E-01 8.33E-02 -3.02E-02 4.24E-02 1.45E-01 -2.80E-02
PC2 5.45E-01 *** 3.38E-01 4.06E-01 ** 7.53E-01 ** 1.97E-01 3.62E-01 **
PC3 -3.56E-01 -2.28E-01 8.86E-02 5.13E-01 -6.61E-02 5.02E-02

Demographics
Site 1.44E-02 4.18E-02 **** 3.38E-02 *** 4.02E-02 1.98E-02 ** 5.73E-02 ****
Age 4.89E-04 1.22E-03 1.58E-03 6.52E-03 -9.03E-04 2.29E-03

Anthropometrics
Height -3.82E-05 -1.12E-04 1.29E-04 6.76E-05 9.55E-05 1.31E-04
Weight 2.72E-03 **** 2.84E-03 **** 1.59E-03 *** 3.99E-03 **** 1.61E-03 ** 1.78E-03 ****
Waist Circumference 4.29E-04 1.37E-03 -7.56E-04 -1.68E-03 -7.01E-04 -5.76E-04

Time -8.65E-03 **** -8.89E-03 **** -1.59E-02 **** 2.98E-02 **** -6.89E-03 *** -2.78E-02 ****

Life style
Drinking History 7.36E-05 7.32E-05 6.12E-04 *** 9.18E-04 ** 2.21E-04 5.59E-04 **
Smoking History -7.06E-03 -9.91E-03 -9.23E-03 -1.26E-02 4.07E-06 -8.97E-03
Exercise 1.12E-03 5.70E-03 1.46E-03 2.27E-02 ** 2.52E-03 2.49E-03

Medical Conditions
Prevalent Diabetes 2.58E-02 2.56E-02 1.32E-02 5.16E-02 ** 3.09E-03 8.24E-03
Prevalent Osteoarthritis, knee 8.73E-03 5.26E-03 5.84E-03 4.24E-02 7.83E-05 3.06E-03
Prevalent Osteoarthritis, hip -4.24E-02 ** -3.52E-02 -2.50E-02 -3.18E-02 -1.96E-02 ** -1.85E-02
Prevalent Cancer -2.29E-02 -3.02E-02 -3.84E-02 ** -6.26E-02 ** -2.28E-02 -4.32E-02 ***
Prevalent Clinical Osteoporosis 1.06E-02 -1.32E-03 4.81E-04 1.62E-02 -6.54E-03 6.23E-03
Osteopporosis by T-score -2.03E-01 **** -2.67E-01 **** -1.64E-01 **** -2.45E-01 **** -9.93E-02 **** -1.73E-01 ****
Calcium Supplement -1.35E-02 -9.54E-03 -1.40E-02 -2.50E-02 -2.78E-02 *** -6.88E-03
Vitamin D Supplement -2.12E-02 ** -7.96E-03 -6.41E-04 4.27E-03 4.03E-03 3.98E-04
Oral Estrogen -5.42E-02 **** 3.08E-04 -3.76E-02 **** 1.32E-02 -3.71E-02 **** -4.27E-02 ****  
 
4.5D African-American Female 
 
GROUP                          African-American Female
                                  BMD  Traits Femoral Neck Hip Whole Body Lumbar Spine Mean Arm Mean leg
Covariates

Population Substructure
PC1 6.34E-01 **** 5.87E-01 **** 3.66E-01 ** 5.82E-01 ** 2.45E-01 *** 2.78E-01
PC2 2.20E-02 1.60E-02 7.69E-02 7.05E-02 1.37E-01 9.87E-02
PC3 -3.00E-02 -1.22E-01 -8.81E-03 -1.86E-01 -2.82E-03 -8.10E-02

Demographics
Site -4.72E-03 3.57E-02 **** 3.27E-02 **** 6.64E-02 **** 9.98E-03 3.74E-02 ****
Age -8.56E-04 -3.19E-03 ** -1.05E-03 2.99E-03 -1.61E-03 -2.56E-03

Anthropometrics
Height -8.86E-06 -1.12E-04 1.82E-04 *** 2.90E-04 *** 2.17E-04 **** 1.57E-04 **
Weight 2.22E-03 **** 2.81E-03 **** -1.37E-04 2.00E-03 *** 8.21E-04 *** 1.35E-03 ****
Waist Circumference 1.35E-03 **** 1.45E-03 **** 1.59E-03 *** 1.88E-03 *** 4.37E-04 1.12E-03 ***

Time -4.90E-03 **** -2.56E-04 -1.63E-02 **** 2.31E-02 **** -7.90E-03 **** -2.52E-02 ****

Life style
Drinking History 3.29E-04 3.48E-04 3.36E-04 5.94E-04 -1.22E-04 -5.78E-05
Smoking History -1.54E-03 -2.97E-03 -5.37E-03 -2.91E-03 -1.13E-03 -1.91E-03
Exercise 1.53E-02 ** 1.31E-02 ** 1.15E-02 ** 1.61E-02 5.68E-03 1.47E-02 ***

Medical Conditions
Prevalent Diabetes 1.83E-02 2.80E-02 ** 2.24E-02 ** 3.24E-02 1.67E-02 ** 3.35E-02 ***
Prevalent Osteoarthritis, knee -1.11E-02 -9.14E-03 4.49E-03 1.90E-03 1.91E-03 1.05E-03
Prevalent Osteoarthritis, hip 2.15E-02 2.68E-02 1.21E-02 3.63E-02 ** 1.31E-02 ** 2.05E-02
Prevalent Cancer -1.15E-02 -1.21E-02 -2.13E-02 -2.15E-02 -1.18E-02 -2.29E-02
Prevalent Clinical Osteoporosis -1.03E-02 -6.01E-03 -3.68E-03 -2.24E-02 -5.57E-03 -1.59E-03
Osteopporosis by T-score -1.42E-01 **** -1.97E-01 **** -1.41E-01 **** -1.80E-01 **** -7.12E-02 **** -1.64E-01 ****
Calcium Supplement 7.49E-03 ** 1.24E-04 1.09E-03 9.13E-03 -1.40E-04 2.55E-03
Vitamin D Supplement -7.00E-03 4.38E-05 6.73E-04 4.92E-03 -7.75E-04 -1.12E-04
Oral Estrogen 4.45E-03 1.21E-02 *** 8.15E-03 1.61E-02 1.91E-02 **** 1.74E-02 ****
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    Figure 4.1: Mean BMD across six BMD sites for three time points in all four sex by ancestry group 
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5.0  ANALYSES OF POSSIBLE ASSOCIATIONS BETWEEN CANDIDATE GENES 

POLYMORPHISMS AND BONE MINERAL DENSITY TRAITS: SINGLE SNP-SINGLE 

TRAIT VERSUS SINGLE SNP -MULTIPLE TRAIT COMPARISONS. 

5.1 INTRODUCTION 

As described in the Introduction to this dissertation (Chapter 1), the goal of the ancillary study for the 

Health Aging and Body Composition Study (R. Ferrell, P.I.) is to identify genes that influence bone, 

muscle and fat traits among healthy aged individual (above 68 years at baseline) from African American 

and Caucasian American groups. As part of my dissertation research, I am investigating whether single 

nucleotide polymorphisms in specific candidate genes influence bone mineral density (BMD) traits 

measured at different skeletal sites at three different time-points. BMD is one of the major risk factors for 

osteoporosis (Jordan et al. 2002). In particular, I wanted to determine whether polymorphisms at these 

candidate genes influence the genetic architecture of BMD at different skeletal sites in men and women, 

as well as in different ancestry groups.  

The genetic architecture of BMD traits is likely to differ significantly between men and women 

and between different ancestral groups. As is well-known, women generally tend to lose bone mass more 

rapidly after menopause than do men. Furthermore, average areal BMD in tibia differs among men and 

women as well as between age groups above and below 60 years (Khodadadyan-Klostermann et al. 

2004). In the HABC study population, both Caucasian American and African American men have higher 

volumetric BMD than their women counterparts (Taaffe et al. 2003) . In addition to BMD differences 

between sexes, there are differences in BMD between different ancestry groups. For example, on average, 

 69 



older African-American women have higher levels of areal BMD at all bone sites than do Caucasian 

American women (Evans et al. 2005), and lose BMD less rapidly with increasing age (Cauley et al. 

2005). This phenomenon leads to higher risk of fracture among Caucasian American women. These 

observations support the hypothesis that the genetic architecture of BMD differs by sex and ancestry, so 

we performed our genetic analyses on the four sex by ancestry groups separately.   

Although association tests are a powerful way to detect relatively small effects of SNPs on traits 

(Risch et al. 1996), one of the concerns about association studies is multiple testing (Yongchao et al. 

2003). Association analyses done with a single SNP and single phenotype at a time requires a lot of 

testing. For example, in our study with 15 traits and ~1400 SNPs, we are performing 21000 tests, thus, by 

chance, at p = 0.05, we would expect 1050 false positive results. Several approaches have been suggested 

to mitigate the concerns about multiple-testing, like Bonferroni (Simes 1986), Sidak (Sidak 1967) , and 

false discovery rate (Benjamini et al. 1995). The most conservative of these approaches is the Bonferroni 

method and if we adjusted for multiple testing in our study, we would need a p-value = 2.5E-6. Although 

the Bonferroni adjustment will reduce the detection of false positives, we may also miss many true 

positives (Yongchao et al. 2003). Another approach is the false discovery rate (FDR). In this approach the 

number of false discoveries are controlled, that is the expected proportions of type I errors among the 

rejections is controlled. It has more power than the Bonferroni method (Yang et al. 2005).  The 

Bonferroni and FDR approaches assume that the tests are independent, however, in our candidate gene 

study, neither the SNPs nor the BMD traits are independent. Permutation tests, if performed under the 

null hypothesis in such a way that the correlation structure is preserved can serve as a robust method for 

identifying the probability of getting a significant p-value. However, this method can be time-consuming. 

Conneely and Boehnke (Conneely et al. 2007) have proposed a method that is faster than permutation 

tests and that uses numerical integration to compare the test statistic with their empirical distribution. Still 

another method by which to reduce the number of tests is to use principal components or factor analysis 

methods (Nyholt 2004). Although these latter methods offer a way to do dimension reduction testing, they 

are not based on genetics. Recently, Klei and colleagues (2008) developed a new methodology called 
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principal components of heritability (PCH). In this methodology, the principal components are devised to 

maximize the heritability of a set of traits with respect to individual SNP (Klei et al. 2008). In other 

words, the PCH analyses are a single SNP-multiple trait analysis.  In this chapter, we compared 

association test results obtained using the single SNP-single trait analyses with the single SNP-multiple 

trait (PCH) analyses. 

However, the strongest evidence that a trait is influenced by a particular polymorphism (or one in 

strong LD with it), is to replicate the original genotype-phenotype association in an independent 

population (Chanock et al. 2007). This report gives several guidelines to assess and report possible 

genotype-phenotype associations. These guidelines include: (1) sample size is sufficient in the replicate 

population to detect the proposed effect, (2) the same phenotype in a similar, independent population 

should be analyzed, (3) similar magnitude of the effect should be demonstrated, in the same direction and 

with the same SNP as in the initial study (4) same genetic model should be tested as in the initial study, 

(5) a strong rationale should be provided in selecting the SNPs for replication.  

In our HABC study, we can assess possible replication at several levels. First, if we observe 

similar results across our four sex by ancestry groups, this result would support a particular genotype-

phenotype association. However, because the genetic architecture of each sex by ancestry group may 

differ, the absence of a consistent result across any two (or more) of the four groups does not indicate a 

particular association is false.  Second, we have three longitudinal measures of BMD obtained two years 

apart (time points 1, 3, and 5). Thus, a consistent result across all three time points, or 2 of three 

consecutive time points, would also support the hypothesis that a particular genotype-phenotype result is 

true. We recognize that a true test of replication would be to look for the same genotype-phenotype 

association result in a similar, but independent, population. Thus, we also followed up our potentially 

significant association results using BMD data from an additional population of Caucasian American 

men, the MrOS study (J. Zmuda, PI of the ancillary study on the genetics of BMD in MrOS). Details of 

this population are given in the Methods section below. 
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In this chapter, I present the results of analyses to determine whether genetic variation in 138 

candidate genes (1439 total SNPs that passed quality control procedures, see Chapter 3) was associated 

with BMD in each of four sex by ancestry groups (Caucasian American men, Caucasian American 

women, African American men and African American women). I also compared the results from two 

different methods: single SNP/single trait analyses versus single SNP-multiple trait (PCH). In addition, I 

performed additional analyses on BMD data collected at three different time points to assess whether 

associations observed at baseline were replicated two and four years later. Finally, I performed replication 

studies of potentially significant genotype-phenotype relationships in another population of older 

Caucasian American men. 

The inclusion of genetically correlated traits should increase the power of the PCH method to 

detect a genotype-phenotype association, especially if part of the overall genetic correlation among traits 

is due to the specific SNP being analyzed (Klei et al. 2008). Therefore, in addition to the 6 BMD traits 

assessed in the previous chapter, information on an additional 9 skeletal sites is included in the single 

SNP-multiple trait analysis. However, the Bonferroni significance of the individual single SNP/single 

trait associations is assessed in two ways – for all 15 correlated BMD traits, as well as for the subset of 6 

commonly analyzed BMD traits. 

5.2 DATA AND ANALYTICAL METHODS 

5.2.1 Health ABC populations 

Details of the genotype and phenotype data available on the four sex by ancestry groups were described in 

detail in Chapters 3 and 4.  Briefly, we initially had genotype data on 1742 Caucasian Americans and 

1237 African Americans. We did all our genetic association analysis based on the Illumina SNPs only 

(chapter 5 and chapter 6). The genetic data comprised a total of 1536 SNPs from 131 candidate genes and 
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gene clusters (the gene clusters comprised multiple genes). We carried out data cleaning across SNPs and 

individuals. SNPs with call rate of less than 90% were discarded, as were all individuals with a call rate of 

less than 93%. Each SNP that passed quality control and that was originally denoted as belonging to a 

specific gene cluster was reassigned to the gene that was closest to that SNP (in terms of base-pair 

distance). After data cleaning we had complete genotype and phenotype data on 1653 Caucasian 

Americans (872 men and 781 women) and 1177 African Americans (673 women and 504 men). We had 

data for 1439 SNPs in 138 genes in these individuals. Both of our analysis programs uses a cut off of p< 

0.001 for Hardy Weinberg Equilibrium within the four sex by ancestry groups. SNPs that have a p-value 

lower than 0.001 are discarded from the analyses. 

As described in the previous chapter (Chapter 4), I identified a set of anthropometric, 

demographic, lifestyle, and medical history covariates that influenced each of 15 bone mineral density 

traits at each of three time-points in each of the four ancestry by sex population groups separately.  The 

BMD residuals obtained from each of these 180 (2 sexes by 2 ancestry groups by 15 skeletal sites by 3 

time points) models were used in the single-SNP/single trait and PCH analyses described below. 

5.2.2 MrOS population 

The Osteoporotic Fractures in Men (MrOS) study is an NIH funded study of risk factors for osteoporosis 

in men (Orwoll et al. 2005). To participate in the study, men needed to be ≥ 65 years old, able to walk 

without assistance of another person, could not have had a bilateral hip replacement preventing an 

assessment of hip BMD, and could not have had a medical condition that, in the judgment of the 

investigator, would make it unlikely that they would have survived the duration of the study. Similar to 

the HABC study, at the baseline examination, information was collected on BMD (measured by DXA), 

medical history, lifestyle and demographic characteristics.  As part of an ancillary study entitled “Bone 

Strength Phenotypes in Men: Genes and Environment”, J. Zmuda, PI, genotype data were available on 

871 men for the same 1439 SNPs in 138 genes that were assayed in HABC. These data were used to 
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replicate potential genotype-phenotype associations in Caucasian American-American men group from 

HABC. The BMD traits from MrOS were also adjusted for significant covariates from the same set of 

covariates as in HABC cohort. 

5.2.3 Single SNP-Single Trait Analyses 

For each of the traits a linear regression model was fitted for each SNP, and then we tested the null 

hypothesis that the slope of the model was equal to zero using an F-test. For a given trait and a given SNP 

the model is 

 

y    X   ,  

 

where y is the quantitative trait (e.g. hip BMD) and X is the genotype of the SNP (coded as 0,1,2, and 

representing the number of minor alleles in the genotype), and  is the residual error. So we fitted an 

additive genetic model with 1 df to test the null hypothesis that the SNP is not associated with the trait. If 

we have n observation points then the F-statistic is given by mean square of the model divided by the 

mean square error (i.e., MSM/MSE). 

 

MSM = 


(yi  
�  y)2 / (1)  SSM / DFM , DFM = degrees of freedom due to the model, 

MSE = (yi  y)2 / (n  2)  SSE / DFE . DFE = degrees of freedom due to the error. 
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5.2.4 Single SNP-Multiple Traits Analyses: Principal Component of Heritability, PCH 

We next analyzed the data using the principal components of heritability (PCH) method. Composite 

measures of the correlated traits were obtained using principal components analyses. However, instead of 

using the phenotypic correlation among the traits, the principal component was derived by maximizing 

the heritability of each trait due to the single SNP of interest. This heritability due to a single SNP is a 

fraction of the total heritability of that trait. 

The regression model for testing association of a quantitative trait locus (QTL) or SNP on a set of 

phenotypes is given by, 

 

w y    x   ,  

 

where y is a set of phenotypes, w is the corresponding loading, x is the SNP,  is the error term. The PCH 

analysis chooses w such that the SNP-specific heritability of the resulting combination of traits is 

maximized for the SNP. Here the SNP-specific heritability is a fraction of the total heritability of the trait 

and is due to the single QTL (or SNP) only. For single SNP-single trait analysis w = (0,0,…,1,0,…0). [In 

other words, for a single-SNP, single trait, w for the specific trait = 1, whereas for all others it is 0.] For 

testing the association between the composite trait and the specific SNP, (H0:   0 vs H1:   0) the test 

statistic is a t-distribution, T=  /se(  ). 

The main drawback of this procedure is that the loadings for each SNP have to be estimated and 

the best way to obtain the estimates is from the data being analyzed for associations. To avoid the 

inflation of type I error due to estimation and association testing on same data, the PCH procedure follows 

the algorithm in the flowchart given below. First, the sample is split into two parts (N0,N1), as is done in a 

cross –validation procedure (Hastie et al. 2001). Next, using the first partition of the split sample, N0 

(which is the testing set), the loadings (ws) are estimated by a bagging (Bishop 2006) technique. Bagging 
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is a technique which minimizes bias of nonlinear estimates using bootstrap samples (Klei et al. 2008). 

After the ws are estimated, they are used on data in the testing set N1 to calculate T. For each SNP this 

step is repeated for S times and the average of the T statistics are taken to get T . From the distribution of 

T  the se( T ) and d (unspecified degrees of freedom for the t-distribution of T using method of moments 

estimator), is calculated. A variable Z is defined as 

zobs= T /se( T ), and the p-value [p(PCH)] corresponding to a SNP is calculated as 2P(Z>zobs), Z~t 

with d degrees of freedom. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowchart for PCH procedure 

 

We performed PCH analysis on our traits at each of the three time points separately. Thus, unlike 

many replication studies in which only the most significant results are analyzed in the replication sets, we 

analyzed each “replication” set as if it were the original set. This approach is more conservative than that 
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performed in most association studies. Next, to identify potentially interesting SNPs, we compared the 

results across each of the time points and within and between each ancestry by sex groups. Because we 

were able to compare results across multiple population groups and multiple time points, I chose to use a 

liberal false discovery rate [FDR] = 50%.  

5.2.5 Regression analyses 

After identifying each potentially interesting SNP, we then plotted the residual values for each BMD trait 

by SNP genotype and used regression analyses to assess the effect of the SNP genotypes on each trait. We 

considered a p-value = 0.05 to be significant. To determine whether the effect (magnitude and direction) 

of a particular genotype was similar on a specific trait across time points, I tested for equality of slopes. 

For each potentially interesting SNP the model was 

y     tpiX   ,  

where y is a BMD residual trait. For each significant SNP and BMD trait that was significant at baseline, 

we fitted this model for all the three time points separately. We next tested the equality of each pair of the 

regression slopes (for the three time points) using p-value ≤0.05. 

H0:  tpi   tpj,  i,j = 1,3,5;i  j  , H1: The slopes are not equal. 

Under H0 



 tpi
�   tpj

�

(var( tpi
� ) / ni )  (var( tpj

� ) / nj )
, follows standard normal. So we tested equality of slopes by 

comparing it with standard normal probability distribution. Here ni and nj are the sample sizes of ith and jth 

time point. 
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5.2.6 Haplotype Analyses 

We detected an association between multiple SNPs within the GNRHR locus and thus we did further 

investigations to determine whether (1) each of these SNPs contributed independently to the effect, or (2) 

the effect of one SNP predominated or (3) the SNPs were marking a specific haplotype. We first 

calculated the LD structure within the GNRHR locus using all of the genotyped SNPs. Based on the LD 

structure, we then did haplotype association analysis on SNPs from our most potentially interesting gene, 

GNRHR, using haplo.stats package in R. The haplotype analysis program first estimates the haplotypes 

among unrelated people using Expectation Maximization (EM) algorithm and then applies a score test to 

test for association between the haplotypes and the quantitative trait. 

5.3 RESULTS 

5.3.1 Single SNP-Single Trait analyses 

As can be seen in Figure 5.1 there are many SNP-trait combinations which have - log10(pvalue) > 2 (or 

p<0.01). However, we have done multiple tests, ~1350 tests per trait for each of the 6 BMD traits (within 

each sex by ancestry group). Using the conservative Bonferroni adjustment, the -log10(pvalue) for a 

significant result considering just the 6 traits will be ≥ 5.21 (and if we include all 15 BMD traits, the 

significant p-value should be ≥ 5.61). But these levels are very conservative (as described in methods 

section), especially because the BMD traits are not independent and neither are all of the SNPs, Thus, we 

are not doing 8100 independent tests across 6 traits (or 20250 tests across 15 traits) on which the 

Bonferroni critical values are based. We calculated FDR p-values for our tests using Benjamini and 

Hochberg (Benjamini et al. 1995) approach and used a significance level of 25%, and looked for 

consistency across time points, BMD skeletal sites, and within candidate genes. Results of single-SNP-
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single trait associations for each sex by ancestry group for the 6 skeletal sites at baseline, time point 3, 

and time point 5 are presented in Figures 5.1, 5.2, and 5.3 respectively. A summary of the most 

significant results is given in Table 5.1.  

In Caucasian American males, a SNP (#rs3828562) within the GNRHR locus on chromosome 4 

is associated with hip BMD at baseline (Figure 5.1A) at –log10 pvalue = 4.12. This same SNP is 

associated with hip BMD at time points 3 and 5 also (Figure 5.2A and Figure 5.3A), although the 

significance level is not as high (–log10 p = 3.45 and 3.03 respectively), and the result for time point 5 

does not meet the FDR cut off value. Two SNPs (#rs344357 and #rs1178435) in IGFALS on 

chromosome 16 are associated with whole body BMD at baseline (–log10 p = 4.2 and 4.42 respectively). 

For Caucasian American females, one SNP (#rs3102724) in the TNFRSF11B locus on 

chromosome 8 is highly significantly associated with lumbar spine BMD at Bonferroni level at time point 

3 (Figure 5.2B) (–log10 p = 5.4) .The same SNP is also associated with lumbar spine at baseline (figure 

1B), although the p-value is larger (–log10 p = 4). At time point 5 two SNPs (# rs31476 & #rs25887) from 

CSF2 gene on chromosome 5 are associated with lumbar spine (–log10 p = 4.28 & 4.02 respectively). 

For African-American males two SNPs (#rs2110726 and #rs3917225) in the IL1R1 locus on 

chromosome 2 are highly significantly associated with arm BMD at time point 5 (–log10 p = 5.82 and 

5.31, Figure 5.3C). However, these two SNPs are not significant at any other time points. One SNP 

(#rs1570070) from the IGF2R locus on chromosome 6 is significantly associated with hip (–log10 p = 

4.34) at baseline (Figure 5.1C), as well as with hip BMD at time points 3 and (–log10 p = 2.79) and time 

point 5 (–log10 p = 3.12), although the results for time points 3 and 5 do not meet the FDR cut off.  

Finally, for African-American females, one SNP in the FBXO32 locus on chromosome 8 

(#rs2294090 is significantly associated with two traits, arm and whole body BMD, (–log10 p = 5.05 & 

5.17, respectively) at time point 3 (Figure 5.2D), but not at any other time points. A SNP (#rs2765880) 

from TGFBR3 gene on chromosome 1 is associated with lumbar spine at baseline (–log10 p = 4). Another 

SNP (#rs31473) from CSF2 gene on chromosome 5 is associated with femoral neck BMD (–log10 p = 
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4.03), but these associations are not found at any of the other time points. At time point 5 a SNP 

(#rs4648022) from NFKB1 gene on chromosome 4 is associated with arm BMD (–log10 p = 4.67). 

Although none of the genotype by skeletal site associations were consistent across the four sex by 

ancestry groups, several of these candidate gene associations are potentially interesting. The association 

between multiple GNRHR SNPs and hip BMD at two time points in Caucasian American males is 

especially interesting (Figures 5.1A and 5.2A). Therefore, we further investigated the magnitude and 

direction of this association, described below after the Single SNP-Multiple Trait Analysis section. 

5.3.2 Single SNP-Multiple Trait analyses 

As can be seen in Figure 5.2 (A, B, C, D), many SNPs are significantly associated with the composite 

BMD trait using PCH analysis and assuming an FDR = 50%. Most interestingly the SNPs from GNRHR 

locus, which were also significant at time points 1 and 3 for the single SNP-single trait analysis in 

Caucasian American males, were also significant for the composite traits (Figure 5.2A). For African-

American males, SNP #rs1570070 from IGF2R was significant at time points 1 and 5 (Figure 5.2D). It 

was also significant at these two time points, as well as time point 3, for hip BMD for the single SNP-

single trait analysis. 

In Table 5.2, we list the most significant SNPs (and their genes) that were observed in the results 

of PCH analyses above. These SNPs were associated with the composite DXA BMD trait at FDR ≥ 50%. 

Across all sex by ancestry groups, there were 21 significant SNPs at time point 1, 20 significant SNPs at 

time point 3, and 10 significant SNPs at time point 5. Within a time point, we observed no replication of 

significant SNPs or genes across the sex by ancestry groups. As stated in the introduction, such a result is 

not unexpected because of known differences in BMD between ancestry groups and between sexes. 

Likewise, except for Caucasian American males at time points 1 and 3, we did not observe multiple SNPs 

within the same gene having a significant effect on the composite BMD trait. Within the Caucasian 

American males at time point 1, 5 (out of 9 total) SNPs within GNRHR, 2 (out of 18 total) SNPs within 
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TGFB2 and 2 (out of 3 total) SNPs within IGFALS were significantly associated with the composite 

BMD trait. Most interestingly, these same 5 GNRHR SNPs were also significantly associated with the 

BMD composite trait at time point 3, but not time point 5. This replication across time points indicates 

that polymorphisms within GNRHR may affect BMD in older Caucasian American males.  Another 

potentially interesting SNP in Caucasian American males is a SNP in NCOA1 that was significant at time 

point 1 (p = 0.002) and time point 5 (p = 0.07), but not at time point 3.   

Finally, we also observed replication across time for two SNPs in African American males, a 

SNP in IGFR2R was significant at time points 1 and 3, and a SNP in NTRK3 was significant at time point 

3 (p = 0.01) and 5 (p = 0.01), but not 1.  

Although all of the SNPs that are significantly associated with the composite BMD traits in the 

sex by ancestry groups are potentially interesting, we followed up on our most significant signals in the 

GNRHR locus.  

5.3.3 Relationship Between Individual GNRHR SNPs on BMD traits in Caucasian 

American Males 

We first plotted the residual BMD values at each skeletal site by genotype for each of the five significant 

GNRHR SNPs at each of the three time points (Figure 5.5 below).  

As can be seen, for #rs972072 (with alleles A/C), the presence of the allele A (minor allele) is 

associated with decreased BMD at all the sites and this decrease was significant (additive model, nominal 

p ≤ 0.05) for hip neck (p-value = 0.003), hip (p-value = 0.007), and whole body BMD (p-value = 0.0452) 

at baseline (time point 1). At time points 3 and 5 (Figures 5.4 and 5.5, respectively), we observed a 

similar relationship between this SNP genotype and BMD, although the individual regression analyses 

were not significant at time point 5. Because the non-significant regression analysis results at time point 5 

may be due to a smaller sample size, we also tested for the equality of the three slopes from the three time 

points. This analysis of equality of slopes was done only for those traits (hip and hip neck) that were 

 81 



significant at baseline. Table 5.3 gives the result of equality of slope test for all the SNPs in the GNRHR 

locus. As can be seen, there were no significant differences between slopes at the three time points and 

the overall estimate of regression was significant. Based on these results, we conclude that the level of 

BMD decreases as the number of minor allele increases for #rs972072 (Figure 5.3) for BMD of the hip 

and hip neck, and whole body, but not for BMD traits of the appendicular skeleton.  

For the GNRHR SNP #rs974483 (A/G alleles), the presence of the allele G (the minor allele) is 

associated with an increase the mean level of BMD at all the sites, and is significant for hip (p= 0.0005) 

and hip neck (p = 0.018). A similar relationship was observed at the year 3 and year 5 time points 

(Figures 5.4 and 5.5), and overall slopes were significant and equivalent across all three time points 

(Table 5.3) We checked the equality of regression slope for all the three time points and found that the 

three slopes were not significantly different from each other. But from inspection of the mean BMD by 

genotype plots (Figures 5.3, 5.4 and 5.5), the effect of this SNP genotype on BMD does not appear to be 

additive. So we tested whether the rare allele for #rs974483 had a dominant effect on hip and hip neck 

BMD. The dominant model was significant for both BMD traits across all the time points; p-value for hip 

was 2x10-5, 5x10-5 and 0.002 for time point1, time point3, and time point5 respectively. The p-values for 

hip neck were 0.006, 0.0006 and 0.018 for the three time points, respectively. So we conclude from these 

results that the level of BMD increases in the presence of minor, dominant allele for #rs974483. 

For the GNRHR SNP #rs6552115 (A/C alleles), the presence of the allele A (the minor allele) is 

associated with an increase in the mean level of BMD at all the sites, and is significant for hip (p=0.002) 

and hip neck (p = 0.002). A similar relationship between hip and hip neck BMD and the SNP genotypes 

was observed at both year 3 and year 5 time points (Figures 5.4 and 5.5), and this relationship was 

significant and equivalent across all three time points (Table 5.3). So we can say from our results that the 

mean BMD of the hip and hip neck increases with the number of minor alleles for #rs6552115. 

Similar results were obtained for GNRHR SNPS #rs3796720 and #rs3828562. For each of these 

SNPs, the presence of the minor allele was associated in an additive increase in the the mean BMD at all 
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skeletal sites, significant for hip and hip neck, and the slopes were significantly equivalent across all time 

points for each trait.  

Thus, the results of these analyses indicates that five SNPs within the GNRHR locus are 

associated with increased BMD in older Caucasian American males at all skeletal sites, and are similar 

across all three time points. However, in general, these five SNPs have the strongest effect on hip and hip 

neck. For four of these five SNPs, the minor allele is associated with increased BMD, whereas for the 

remaining SNP, the minor allele is associated with decreased BMD. However, these analyses do not 

indicate whether a single common haplotype is responsible for the observed effect, or whether each SNP 

accounts for a small, independent effect on BMD. 

5.3.4 Haplotype Analyses of GNRHR SNPs 

Because of the consistency associations for all five significant GNRHR SNPs for different skeletal sites 

across three time points, we next assessed whether these relationships were attributable to a common 

haplotype or individual effects. As can be seen in Figure 5.6, 8 of the 9 SNPs in GNRHR were in 

moderate to strong LD (D’ ≥ 0.80) , and 1 SNP was not in strong LD with any of the other SNPs. The 5 

SNPs that were each significantly associated with hip and hip neck BMD are contained within the large 

block of 8 SNPs. 

So we tested for association between hip and hip neck BMD and GNRHR haplotypes analysis 

based on 8 SNPs and the 5 significant SNPs separately. The analysis with haplotypes generated from all 

the 8 SNPs does not give any extra input in our understanding of possible association. So we are 

presenting the analysis from haplotype analysis using the five SNPs only.  

Using data on the 5 SNPs that, when analyzed separately, were each significantly associated with 

hip BMD at baseline, we performed haplotype association analyses with hip BMD. The overall results 

(Table 5.4) indicated that the 5-SNP haplotypes were significantly associated with hip BMD (p = 0.035).  

As described above,in the single SNP analyses, the minor allele at SNP #rs972072 was associated with a 
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decreased BMD whereas for the other 4 SNPs, the major allele was associated with decreased BMD. 

Likewise, in Table 5.4, the haplotype containing the minor allele for rs#972072 and the major alleles for 

the other SNPs (we call this haplotype L) was also associated with low hip BMD (the Haplotype Score =  

-3.23, p = 0.001) In contrast, the haplotype with major allele at #rs972072 and minor allele at all other 

loci was positively associated with hip BMD (we call this haplotype H), (haplotype score = 3.62, p = 

0.0003). We also plotted the mean BMD across different dipoltype groups (Figure 5.7A). From the plots 

we can give the same explanation as above.  

Although femoral neck BMD is not significantly associated with overall haplotypes, the 

association with the H (score = 2.74, p-value = 0.006) and L (score = -2.88, p-value = 0.004) haplotypes 

were significant and in the same direction as hip BMD. This is also evident from Figure 5.7B.  

 

5.3.5 Analysis of Replicate Sample (MrOS) for Effects of GNRHR and IFGALS loci  

 

As described above, we also had genotype and BMD data on another independent population of 871 

Caucasian American males. Because of the apparent strength of our relationship between BMD and SNPs 

in GNRHR and IGFALS loci, we tried to replicate our results using the MrOS genotype and BMD data. 

We had data on the same 9 SNPs from GNRHR, in both studies, so we tested for associations between the 

GNRHR SNPs and hip and hip neck BMD. We also had genotypes on the same 4 SNPs from IGFALS in 

both studies, so we tested for association between the IGFALS SNPs and arm, leg and whole body BMD. 

As can be seen in Table 5.5 one of the SNPs from the GNRHR locus (#rs974483) was significantly 

associated (p = 0.007412) with hip BMD. However, the direction of the association was opposite that 

observed in HABC Caucasian American men, that is, the minor allele genotype was associated with a 

decrease in mean hip BMD (slope = - 0.019±0.007). In HABC Caucasian American men, the minor allele 

was associated with an increase in hip BMD. We also carried out the haplotype tests of five GNRHR 

SNPs on hip BMD. We found that the L and H haplotype as given in the previous section were associated 

with the hip trait but the association of the respective haplotypes were in opposite direction when 
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compared with Caucasian males in HABC data. None of the SNPs from IGFALS was significantly 

associated with BMD in MrOS. Plot of residual Hip BMD by genotypes in MrOS is given in Figure 5.8. 

5.4 DISCUSSION 

In this Chapter we performed both single SNP-single trait and single SNP-multiple trait analyses. To date, 

most of the GWAS studies and candidate gene studies have used the single SNP-single trait analyses, and 

all have required stringent criteria for significance or have replicated results in multiple populations or 

both. In our single SNP-single trait analyses of BMD data within the four HABC cohorts, we detected 

significant associations between BMD and TNFRSF11B in Caucasian American females and IL1R1 in 

African American males after performing conservative Bonferroni adjustments for multiple testing. The 

association between lumbar spine BMD and the TNFRSF11B SNP is potentially intriguing because it was 

observed at time points 1 and 3. However, the association between hip BMD and three SNPS at the 

GNRHR loci, although not statistically significant at the Bonferroni critical value, is also interesting 

because it also was observed at two time points at FDR <0.25.  

Results of the single SNP-multiple trait analyses revealed several potentially interesting results. 

Although none of the significant SNPs were similar across the four sex by ancestry groups, three different 

SNPs within IGF2R were associated with composite BMD in Caucasian American males, and African 

American males and females. In fact the same IGF2R SNP was associated with composite BMD at two 

time points in African American males. Furthermore, multiple SNPs in three genes (IGFALS, GNRHR, 

and TGFB2) were associated with composite BMD in Caucasian American males at baseline. Finally, in 

addition to the IGR2R SNP, polymorphisms in two other genes GNRHR (in Caucasian American males) 

and NTRK3 (in African American males) were also associated with composite BMD at two time points.  

When we compared the results from the single SNP-single trait analyses to those of the single 

SNP-multiple trait analyses, we observed some consistent patterns. Multiple SNPs from the GNRHR 
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locus were significantly associated with hip or composite BMD within Caucasian American males at time 

points 1 and 3. Similarly, both methods revealed that two SNPs at IGFALS were associated with whole 

body, leg, or composite BMD in Caucasian American males. Finally, a SNP at the IGF2R locus was 

associated with composite or hip BMD at time points 1 and 3 in African American males. These results 

are encouraging and may indicate that these associations are real.  

Overall, the results of the single SNP-single trait and single-SNP-multiple trait analyses were 

somewhat surprising because, across all three time points, we detected more SNPs potentially influencing 

BMD in males, especially Caucasian American males (n= 22 SNPs total for the single SNP-single trait 

and multiple trait analyses, Table 5.1 & Table 5.2), than we did in women. In fact, the fewest significant 

results were obtained in Caucasian American women (n= 7 SNPs, Table 5.1& Table 5.2). Because the 

sample sizes are similar among the four sex by ancestry groups, this four-fold difference in total number 

of potentially significant SNPs is unlikely to be due to sample size. Some of this difference is attributable 

to the observation that 5 SNPs within a single locus influence BMD in Caucasian American males, and 

this result is consistent across two time points. However, there still are relatively fewer results in women 

versus men. Another reason for this difference may relate to the covariates included in the current 

analyses. We included all potentially significant covariates in our model of BMD at each skeletal site and 

used the residuals from this model in our candidate gene association analyses. Thus, we will not detect 

any SNPs that have pleiotropic effects on both covariates and the BMD traits. Analyses of the BMD traits 

using other sets of residuals should also be done. 

Because the GNRHR result appeared to be the strongest, we performed follow-up analyses of the 

SNPs at this locus and their relationship with BMD and different skeletal sites. These analyses revealed 

that four of the five GNRHR SNPs had a strong additive genetic effect on multiple skeletal sites and the 

remaining SNP had a strong dominant effect, and these relationships were strongest at the hip BMD sites. 

Furthermore, the additive or dominant genetic effect of each of the five SNP genotypes was similar across 

all 3 time points, that is, there were no significant differences among the slopes across the three time 

points.  Additional investigation of GNRHR haplotypes revealed there is significant association between 
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the haplotypes and hip BMD traits and that all of the SNPs may be marking a single, influential 

haplotype. The results of these analyses, that is, significant effects of multiple SNPs across multiple 

skeletal sites and across all three time points, strongly supports the hypothesis that variation in the 

GNRHR locus (or a locus in strong LD) is associated with variation in BMD in Caucasian American men. 

Our finding that the gonadotropin releasing hormone receptor locus (GNRHR) may influence 

BMD is somewhat unexpected, as there does not appear to be a direct effect of GNRHR on BMD. Several 

investigators have reported that sex steroids influence bone density and bone metabolism in men. Van den 

Beld and colleagues (van den Beld et al. 2000) reported that increased testosterone level was associated 

with increased hip BMD in men aged 73-94 years. This result is consistent with the report that a 

continuous gradual reduction in the production of sex steroid has a strong negative effect in bone turnover 

of elderly men (Riggs et al. 2002). Likewise, Khosla et al., (Khosla 2004) report that estrogen and 

testosterone have roles in maintaining the skeletal structure among males over the age of 60 years. 

However, we did not see any relationship between polymorphisms in the sex steroids loci and BMD in 

our study, at least after adjusting for all significant covariates.   

The sex steroids are under control of the gonadotropins, such as luteinizing hormone (LH), and 

follicle stimulating hormone (FSH), which are secreted by the pituitary gland. Karim and colleagues 

(Karim et al. 2008) reported gonadotrophins and gonadal peptides play a role in bone mass maintenance 

among Caucasian American males of mean age 57.7 years. The gonadotropin releasing hormones 

(GNRH1 and GNRH2), as well as the GNRHR regulate the production of gonadotropins, and they 

theoretically can influence bone mass. We did not see any relationship between SNPs in GNRH1 or 

GNRH2 on BMD, but we did obtain reasonably strong evidence for an association between BMD in 

Caucasian American males and genetic variation at the GNRHR locus. Although we did not observe any 

potentially significant relationships between BMD and other loci in this pathway, our results do not 

preclude that such relationships exist. 

Based on strength and biological plausibility of our result, we tried to replicate our results in 

another Caucasian American male population, MrOS. Unfortunately, although one of the GNRHR SNPs 
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was significantly associated with BMD, the direction of the association was not the same. This non-

replication of a possibly significant result may be due to several causes. First, there are differences in 

between the populations. The mean age for MrOS is 65 years, whereas for HABC Caucasian American 

men, the mean age is 73 years at baseline. Bone density is known to change rapidly among older 

individuals and this may have influenced our results. Another reason might be population substructure. 

Although population substructure was minimal among the HABC Caucasian American cohort, we still 

incorporated a component for substructure in our models. However, we did not have such information 

available on MrOS and this might have influenced our results. Finally, the result in HABC could be 

spurious. Further replication studies needed to be done before we can conclusively tell about the role of 

gonadotropins in bone metabolism. 
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5.5 TABLES AND FIGURES 

Table 5.1: Results from single SNP single trait analysis in time points 1, 3 and 5 

 SNPs coded red in time points 3 and 5 were also significanttime point 1 

Time point 1

Group SNP GENE  BMD TRAIT pvalue (-1)(LOG10P) FDR p-value

Arican American Female rs2765880 TGFBR3 Lumbar Spine 1.00E-04 4.00 0.14
rs31473 CSF2 Femoral Neck 9.25E-05 4.03 0.13

African American Male rs1570070 IGF2R Hip 4.60E-05 4.34 0.06
rs1570070 IGF2R Arm 1.22E-04 3.91 0.12
rs1570070 IGF2R Whole Body 1.76E-04 3.75 0.24

Caucasian Female rs3102724 TNFRSF11B Lumbar Spine 1.00E-04 4.00 0.18

Caucasian Male rs3828562 GNRHR Hip 7.55E-05 4.12 0.10
rs1178435 IGFALS Whole Body 3.76E-05 4.42 0.04
rs344357 IGFALS Whole Body 6.29E-05 4.20 0.04

Time point 3

Group SNP GENE TRAIT pvalue (-1)(LOG10P) FDR p-value

African American Female rs2294090 FBXO32 Arm 8.96E-06 5.05 0.01
rs2294090 FBXO32 Whole Body 6.71E-06 5.17 0.01

African American Male rs1570070 IGF2R Hip 1.61E-03 2.79 0.80
rs939348 THRA Leg 5.54E-05 4.26 0.08
rs939348 THRA Whole Body 2.22E-04 3.65 0.30

Caucasian Female rs3102724 TNFRSF11B Lumbar Spine 3.96E-06 5.40 0.01

Caucasian Male rs3828562 GNRHR Hip 3.53E-04 3.45 0.24

Time point 5

Group SNP GENE TRAIT pvalue (-1)(LOG10P) FDR p-value

African American Female rs4648022 NFKB1 Arm 2.16E-05 4.67 0.03

African American Male rs1570070 IGF2R Hip 7.50E-04 3.12 0.73
rs2110726 IL1R1 Arm 1.53E-06 5.82 0.00
rs3917225 IL1R1 Arm 4.89E-06 5.31 0.00
rs948588 SMAD4 Arm 2.16E-05 4.67 0.01

Caucasian Female rs31476 CSF2 Lumbar Spine 5.20E-05 4.28 0.07
rs25887 CSF2 Lumbar Spine 9.58E-05 4.02 0.07

Caucasian Male rs12522630 MEF2C Arm 7.79E-05 4.11 0.11
rs2304060 CSF1R Lumbar Spine 3.61E-05 4.44 0.05
rs3828562 GNRHR Hip 9.26E-04 3.03 0.67

 

 89 



Table 5.2: Results from PCH analysis in time points 1, 3 and 5 

SNPs coded red in time points 3 and 5 were also significanttime point 1; Snps coded green in time point 5 

were also significant at time point 3 

Time point 1

Group SNP GENE FULL NAME p(PCH) p(PHN)

African American Female rs31473 CSF2 colony stimulating factor 2 1.42E-03 7.62E-04
rs2513924 TIEG Kruppel-like factor 10 2.02E-02 8.34E-04
rs4149577 TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 6.61E-01 5.35E-04
rs2765880 TGFBR3 transforming growth factor, beta receptor III 2.21E-03 5.41E-04

African American Male rs1570070 IGF2R insulin-like growth factor 2 receptor 4.49E-02 2.58E-04

Caucasian Female rs7761846 ESR1 estrogen receptor 1 5.32E-01 1.10E-03
rs233998 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 2.69E-04 1.14E-03

rs2939421 TNFRSF11A tumor necrosis factor receptor superfamily, member 11A 7.82E-02 9.96E-04
rs943551 NTRK1 neurotrophic tyrosine kinase, receptor, type 1 1.38E-01 6.19E-04

Caucasian Male rs235219 TNFRSF1B tumor necrosis factor receptor superfamily, member 1B 1.14E-01 2.38E-03
rs3828562 GNRHR gonadotropin-releasing hormone receptor 2.63E-04 2.96E-04
rs1178435 IGFALS insulin-like growth factor binding protein, acid labile subunit 9.49E-03 1.18E-03
rs952817 TGFB2 transforming growth factor, beta 2 5.98E-02 1.56E-03

rs7688268 SMAD1 SMAD family member 1 7.72E-04 3.47E-02
rs3796720 GNRHR gonadotropin-releasing hormone receptor 1.23E-03 1.65E-03
rs1531362 NCOA2 nuclear receptor coactivator 2 2.00E-03 5.26E-02
rs972072 GNRHR gonadotropin-releasing hormone receptor 2.36E-04 1.18E-03
rs974483 GNRHR gonadotropin-releasing hormone receptor 1.78E-04 1.76E-03
rs344357 IGFALS insulin-like growth factor binding protein, acid labile subunit 2.23E-02 1.49E-03

rs10495098 TGFB2 transforming growth factor, beta 2 7.52E-02 1.64E-03
rs6552115 GNRHR gonadotropin-releasing hormone receptor 2.20E-03 5.80E-03

Time point 3

Group SNP GENE FULL NAME p(PCH) p(PHN)

African American Female rs2294090 FBXO32 F-box protein 32 7.05E-04 2.12E-04
rs2198843 CYP1Acluster chr15, 72788283 4.54E-05 2.33E-02
rs8191844 IGF2R insulin-like growth factor 2 receptor 6.05E-04 3.73E-02
rs4851527 IL1R2 interleukin 1 receptor, type II 1.61E-03 4.15E-03

rs13894 SHBG sex hormone-binding globulin 8.49E-04 8.14E-02

African American Male rs879131 NTRK3 neurotrophic tyrosine kinase, receptor, type 3 1.06E-01 2.82E-04
rs2230400 IL1R2 interleukin 1 receptor, type II 4.33E-04 4.96E-01
rs3181139 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 6.31E-04 8.07E-02
rs2701653 IRAK3 interleukin-1 receptor-associated kinase 3 3.61E-04 5.49E-02

Caucasian Female rs3102724 TNFRSF11B tumor necrosis factor receptor superfamily, member 11B 1.84E-02 3.38E-05

Caucasian Male rs3828562 GNRHR gonadotropin-releasing hormone receptor 1.11E-03 1.77E-03
rs1867348 IGF2R insulin-like growth factor 2 receptor 2.09E-04 3.21E-04

rs6179 GHR growth hormone receptor 8.23E-02 1.80E-03
rs3796720 GNRHR gonadotropin-releasing hormone receptor 3.15E-04 5.50E-04
rs972072 GNRHR gonadotropin-releasing hormone receptor 9.40E-05 2.67E-04

rs2830 HSD17B1 hydroxysteroid (17-beta) dehydrogenase 1 2.41E-03 1.70E-02
rs974483 GNRHR gonadotropin-releasing hormone receptor 1.55E-03 4.49E-03

rs4149577 TNFRSF1A tumor necrosis factor receptor superfamily, member 1A 1.44E-03 1.82E-02
rs4242119 GHR growth hormone receptor 1.91E-02 8.50E-04
rs6552115 GNRHR gonadotropin-releasing hormone receptor 1.03E-03 3.40E-03
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Table 5.2 continued 

Time point 5

Group SNP GENE FULL NAME p(PCH) p(PHN)

African American Female

African American Male rs1470003 SMAD3 SMAD family member 3 4.50E-03 9.71E-04
rs879131 NTRK3 neurotrophic tyrosine kinase, receptor, type 3 1.14E-01 2.03E-03

rs1570070 IGF2R insulin-like growth factor 2 receptor 3.38E-02 7.76E-04
rs3812429 NCOA2 nuclear receptor coactivator 2 7.01E-02 1.78E-03
rs3917225 IL1R1 interleukin 1 receptor, type I 2.20E-01 7.33E-05
rs4477532 LRP6 low density lipoprotein receptor-related protein 6 5.87E-03 3.90E-04
rs2110726 IL1R1 interleukin 1 receptor, type I 8.99E-04 2.03E-05
rs2052355 NTF3 neurotrophin 3 1.55E-01 6.20E-04

Caucasian Female

Caucasian Male rs12522630 MEF2C myocyte enhancer factor 2C 2.20E-01 7.61E-06
rs1531362 NCOA2 nuclear receptor coactivator 2 5.14E-05 4.15E-03

 

Table 5.3: P-values of equality of slope test between three time points. Hip and Hip Neck BMD traits for 

SNPs from GNRHR gene. 

trait snp p13 p15 p35
rs3796720 0.66 1.00 0.69
rs3828562 1.00 0.93 0.93

Hip BMD rs6552115 0.74 0.74 0.54
rs972072 0.64 1.00 0.66
rs974483 0.91 0.66 0.61

rs3796720 0.56 1.00 0.56
rs3828562 1.00 1.00 1.00

Hip Neck BMD rs6552115 0.91 0.56 0.48
rs972072 0.56 0.91 0.48
rs974483 0.72 0.83 0.59  

 

p13 = p-value when slopes from timepoint 1 and timepoint 3 is compared. 

p15 = p-value when slopes from timepoint 1 and timepoint 5 is compared. 

p35 = p-value when slopes from timepoint 3 and timepoint 5 is compared 
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Table 5.4: Results from haplotype analysis of 5 significant SNPs from GNRHR gene on hip and femoral neck 

BMD in Caucasian male 

5.4A Hip BMD 

locus rs3828562 rs3796720 rs972072 rs974483 rs6552115 Hap-Freq Hap-Score p-val
1 1 2 1 1 0.426 -3.233 0
1 2 2 1 1 0.004 -0.940 0
1 2 1 2 1 0.036 -0.890 0
1 2 2 1 2 0.003 -0.562 0
1 2 1 1 2 0.145 -0.427 0

haplotypes 1 1 1 1 1 0.009 -0.308 0
1 1 2 1 2 0.047 -0.209 0
1 1 1 2 2 0.027 -0.068 0
1 1 1 2 1 0.003 0.469 0
1 1 2 2 1 0.003 0.744 0
1 2 1 2 2 0.063 0.926 0
2 2 1 2 1 0.031 1.402 0
1 1 1 1 2 0.008 1.548 0
2 2 1 2 2 0.189 3.624 0

Over all haplotype analysis 24.91451 df=14 0.035

.001

.347

.373

.574

.669

.758

.834

.946

.639

.457

.354

.161

.122

.000

 

5.4B Femoral Neck BMD 

locus rs3828562 rs3796720 rs972072 rs974483 rs6552115 Hap-Freq Hap-Score p-val
1 1 2 1 1 0.425 -2.880 0
1 2 2 1 1 0.005 -0.735 0
1 1 2 2 1 0.004 -0.551 0
1 1 1 1 1 0.008 -0.549 0
1 2 1 2 1 0.036 -0.462 0

haplotypes 1 1 1 2 2 0.027 -0.202 0
1 1 1 2 1 0.003 -0.193 0
1 2 2 1 2 0.004 -0.186 0
1 1 2 1 2 0.046 0.145 0
1 2 1 1 2 0.146 0.663 0
1 2 1 2 2 0.064 0.759 0
2 2 1 2 1 0.030 0.792 0
1 1 1 1 2 0.008 0
2 2 1 2 2 0.188 2.743 0

Over all haplotype analysis 14.20031 df=14 0.435

1 at each locus denotes major allele and 2 denotes minor allele

.004

.462

.581

.583

.644

.840

.847

.852

.885

.507

.448

.429

.814

.006
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Table 5.5: Results from MrOS analysis on baseline significant SNPs from Caucasian males in HABC cohort 

BMD trait        SNP   Gene  Chr Intercept   p-value
hip rs1843593 GNRHR 4 -0.009 0.29

rs1038426 GNRHR 4 -0.008 0.20
rs3828562 GNRHR 4 -0.009 0.21
rs3796720 GNRHR 4 -0.011 0.07
rs974483 GNRHR 4 -0.017 0.01
rs972072 GNRHR 4 0.012 0.06

rs6828922 GNRHR 4 0.010 0.40
rs6552115 GNRHR 4 -0.011 0.08
rs2711158 GNRHR 4 0.018 0.03

Femoral neck rs1843593 GNRHR 4 -0.007 0.38
rs1038426 GNRHR 4 -0.005 0.38
rs3828562 GNRHR 4 -0.004 0.50
rs3796720 GNRHR 4 -0.006 0.29
rs974483 GNRHR 4 -0.011 0.07
rs972072 GNRHR 4 0.007 0.24

rs6828922 GNRHR 4 0.008 0.47
rs6552115 GNRHR 4 -0.006 0.30
rs2711158 GNRHR 4 0.008 0.29

Mean Arm rs1178435 IGFALS 16 0.004 0.46
rs344357 IGFALS 16 -0.001 0.81

rs4316755 IGFALS 16 -0.004 0.40
rs2268671 IGFALS 16 0.008 0.11

Mean Leg rs1178435 IGFALS 16 0.000 0.98
rs344357 IGFALS 16 -0.007 0.58

rs4316755 IGFALS 16 0.001 0.95
rs2268671 IGFALS 16 0.007 0.57

Whole Body rs1178435 IGFALS 16 0.007 0.36
rs344357 IGFALS 16 0.000 0.97

rs4316755 IGFALS 16 -0.008 0.27
rs2268671 IGFALS 16 0.005 0.50  
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Table 5.6: Allele frequency of GNRHR SNPs in the two populations Caucasian American Males in HABC 

and MrOS 

SNP Minor Allele     Minor Allele Frequency
HABC (CAM) MrOS

rs3828562 A 0.22 0.24
rs3796720 A 0.48 0.47
rs974483 G 0.35 0.36
rs972072 A 0.49 0.49
rs6552115 A 0.49 0.49
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 5.1A: Caucasian Males 
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5.1B: Caucasian Females 
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5.1C: African-American Males  

 97 



  

5.1D: African-American Females 

Figure 5.1: Plot of –log10(P) value for each trait (single SNP single trait analysis time point 1) 
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5.2A: Caucasian Males 
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5.2B: Caucasian Females 
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5.2C: African-American Males 
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5.2D: African-American Females 

Figure 5.2: Plot of –log10(P) value for each trait (single SNP single trait analysis time point 3) 

 102 



 

 

5.3A: Caucasian Males 
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5.3B: Caucasian Females 
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5.3C: African-American Males 
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5.3D African American Females 

Figure 5.3: Plot of –log10(P) value for each trait (single SNP single trait analysis time point 5) 
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5.4A: Caucasian Males 
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5.4B: Caucasian Females 

 

 108 



 

 

 

5.4C: African-American Males 
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5.4D: African-American Females 

Figure 5.4: Plot of –log10(PCH) value for each group (single SNP multiple trait analysis) 

 110 



 111 



 

 

 

  

 

 

 

 

 112 



 

 

 113 



 

 

 

 

 

 

 

 

 

 114 



 

Figure 5.5: Plot of residual mean of Hip and Femoral Neck BMD for genotypes of each significant SNP in the 

GNRHR gene for Caucasian Males 

NBMD1: Femoral Neck BMD and time point 1; NBMD3: Femoral Neck BMD and time point 3;  

NBMD5: Femoral Neck BMD and time point 5 

HipBMD1: Hip BMD and time point 1; HipBMD3: Hip BMD and time point 3; HipBMD5: Hip  

BMD and time point 5. The notations are same for all the five SNPs. 
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Figure 5.6: LD structure of SNPs from GNRHR gene 
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Figure 5.7: Plot of mean BMD at hip and femoral neck skeletal sites across different groups of diplotypes 

(using the five significant SNPs in GNRHR) for Caucasian American males 

H denotes: haplotype that is associated with high level of BMD; L denotes: haplotype that is 

associated with low level of BMD; X denotes: all haplotypes other than H and L. 
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Figure 5.8: Plot of residual mean of Hip BMD for genotypes of each significant SNP in the GNRHR gene for 

MrOS population 
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6.0  ASSOCIATION ANALYSIS OF BMD TRAITS WITH GENES IN COMMON 

PATHWAYS 

6.1 INTRODUCTION 

Over a decade ago, Risch and Merikangas (Risch et al. 1996) proposed that genome wide association 

studies (GWA) would have greater power than linkage studies to detect polymorphisms that influence 

modest disease risk. With the development of high throughput methods for genotyping thousands of 

markers on thousands of individuals, the identification of millions of SNPs (Smigielski et al. 2000) , as 

well as the International HapMap project to determine linkage disequilibrium (The International HapMap 

Consortium, 2007), the GWA approach became feasible. As a result, many GWA studies have been 

performed resulting in the identification of potentially novel candidate genes for disease (Easton et al. 

2007; Saxena et al. 2007). However, not all GWA studies have been successful, for example, no 

candidate genes were identified in a study of hypertension (2007) and some GWA have identified 

candidate genes with very small effects on a trait, such as those for height (Zeggini et al. 2007). The 

mixed success of these studies probably reflects how well each trait being analyzed fits the underlying 

assumptions regarding the genetic and environmental architecture, as well as other methodological issues 

pertaining to GWA studies and candidate gene studies in general. Some of these issues were previously 

discussed in the Introduction (Chapter 1). 

Most investigators assume that complex traits are often influenced by many genetic and 

environmental factors (Zaykin et al. 2005; Freimer et al. 2007), however the current GWA studies report 

only the most significant results from a single SNP-single trait analytical approach and ignore the possible 
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effects of the interplay among several genetic factors (Zaykin et al. 2005). One of the reasons most 

investigators ignore possible gene by gene or gene by environment interactions is that the number of tests 

would increase exponentially, with a consequent loss of power to detect such effects. An alternate 

approach to identify genes that influence development of common diseases is to investigate the combined 

effect of a set of genes, or common pathways, on a specific disease or quantitative trait. Although most of 

the genes, or SNPs in these genes, might have very small effect on our trait of interest, the combined 

effect might be significant. One method by which to investigate the combined effect of a set of genes on a 

trait is pathway-based analysis (Wang et al. 2007). This pathway-based approach is motivated by the 

gene-set enrichment analyses (GSEA) approach that is used in the analysis of microarray expression data 

analysis (Subramanian et al. 2005). Wang and colleagues (Wang et al. 2007) modified this GSEA 

approach for use in GWA studies. We hypothesized that the pathway-based association method might 

provide additional insights to results from candidate gene association studies. In particular, it might 

indicate gene pathways (or networks) that would be useful to explore possible genotype by genotype 

interactions. Therefore, we applied this methodology to our data on BMD in the HABC cohorts. Further 

details regarding the specifics of the pathway-based approach are presented in the Methods section below.  

As described in the Chapter 5, we are using several approaches to determine whether variation in 

specific candidate genes is associated with variation in BMD at different skeletal sites. First, we 

performed a single SNP-single trait analysis (within each sex by ancestry group). Next, we performed 

single SNP-multiple trait analyses by analyzing all the SNPs with a linear combination of traits, the PCH 

method (Klei et al. 2008). The results of these analyses were described in Chapter 5.  

In this chapter, we describe the results of our analyses using the pathway-based approach. 

Because the pathway-based analyses were originally developed for use with GWA data, that is, for use on 

≥ 100,000 SNPs among ≥ 20,000 loci, we were concerned that the approach might not be suitable for our 

much smaller sample of ~1500 SNPs among 138 loci. Specifically, we questioned whether (1) we had a 

sufficient number of loci and/or pathways among our 138 loci to obtain meaningful results. In other 

words, how does the total number of loci influence the significance of the results? (2) We also wondered 
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how the definition of a specific pathway influences the results. There are several programs, such as 

Ingenuity (Ingenuity Systems, www.ingenuity.com) and STRING (Snel et al. 2000), that can be used to 

identify possibly interacting genes or proteins, and each program will give slightly different results.  

We performed a series of analyses using data on the HABC cohorts and the MrOS cohort to 

address the following specific questions:  

1. Which pathways (if any) were associated with BMD at six different skeletal sites across three different 

time points in each of the four age by ancestry cohorts in HABC?  

2. Which pathways are associated with BMD at the same sites in MrOS? 

3. Does the number of total genes influence the significance of the pathway-based analyses?   

6.2 DATA 

As described in previous Chapters, we analyzed genotype and phenotype data from four sex by ancestry 

cohorts in HABC and an independent group of Caucasian American males from MrOS. Briefly, for the 

HABC cohort, we had BMD data at 6 skeletal sites on 1653 Caucasian Americans (872 males and 781 

females) and 1177 African-Americans (504 males and 673 females). We also had data on 138 candidate 

genes with a total of 1439 SNPs. These BMD data were residuals (after regressing out the significant 

covariates, see Chapter 4) and were available at three time points each of which were two years apart: 

baseline (time point 1), time point 3, and time point 5. 

We also had data on the same BMD traits for an independent sample of Caucasian American males from 

MrOS. Genotype data were available on 401 candidate genes (total 4108 SNPs). All of the 1439 SNPs 

genotyped as part of the HABC study were also present in MrOS study, plus an additional 2662 SNPs in 

262 genes. 
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6.3 METHOD 

As stated above, the main goal of this study was to assess whether a group of candidate genes that 

comprise a common pathway are more likely to be associated with BMD than are a random set of genes 

from our gene list. In other words, are genes within a specific pathway ‘enriched’ for associations with 

specific BMD measures. To perform these analyses, we used a pathway based association analysis 

method (Wang et al. 2007), that is a freely provided Pearl-language based program 

[http://openbioinformatics.org/gengen/].  

 The pathway-based (or gene enrichment) analysis comprises two parts: (1) a single SNP-single trait 

analysis and (2) calculation of a normalized gene-enrichment statistic using a specific pathway annotation 

file. The single SNP-single trait analysis of both the original data and the permutations by phenotype (or 

case/control status) can be performed within the software package. We chose to permute our data 1000 

times and estimate association using regression statistics. Alternately, other statistics (such as chi-square) 

obtained by any other analytical method can be used, as long as statistics are available for both the 

observed and permuted data. Thus this method is very flexible and can be used on many types of data and 

many types of analyses. The result file from the original and permutation analyses is one of the input files 

necessary for step 2, the pathway-based analyses. The pathway-based step requires results from the 

association analyses, a SNP-to-gene mapping file, and a pathway annotation file, and calculation of a 

normalized gene-enrichment statistic, all of which are described below. 

6.3.1 Construction of the Pathway Annotation File 

As described in the Introduction above, we wanted to determine whether BMD in the HABC cohort was 

associated with different candidate pathways. We also observed whether the size of the pathways (that is, 

the number of genes contained in them), influenced the results of the pathway-based analyses. We used 

Ingenuity (Ingenuity Systems, www.ingenuity.com) to construct the pathways.  
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 To obtain the pathway annotation file for the HABC cohort, we first submitted all the candidate 

genes for which we had genotypes to the Ingenuity program. Ingenuity is a human curated pathway 

knowledge base. PhD level scientists extract the information from the text of papers published in several 

peer- reviewed journals (www.ingenuity.com). Because new information is constantly being added to the 

databases from which the Ingenuity program constructs pathways, we have also included the date when 

we derived the pathways (June 1, 2008). We used the default option of including all possible direct as 

well as indirect relationship between any two genes when developing the pathways. The first 11 pathways 

listed in Table 6.1 were constructed from the list of 138 genes for which genotypes were available on the 

HABC cohort. The total number of genes for each of the pathway, constructed by Ingenuity, contain more 

genes than are available in the HABC data set. Therefore, we list the total number of genes contained in 

the HABC data set, as these are the genes used in the gene-enrichment analyses. Prior to performing the 

pathway based analyses, we modified the default options defining the minimum number of genes within a 

pathway from n = 20 to n = 2 genes per pathway. Therefore, pathways 9 and 11, each of which contained 

only one gene from our list, were excluded from any further analysis. 

 We analyzed the HABC and MrOS data using the first 9 pathways and data on only 1439 SNPs (or 

138 genes). We also analyzed the MrOS data using the 9 listed pathways and data on 4108 SNPs (and 283 

genes) because we also wanted determine whether additional genes in the ranking list (see method 

description below) influenced our results. 

6.3.2 Construction of SNP to Gene Correspondence File 

We constructed a SNP-Gene map file, which contained the SNP name, the corresponding gene name and 

the distance from the gene. SNPs that do not fall within a specific gene are assigned to the gene that is 

nearest to that SNP. For example, rs2198843 is contained within a cluster of CYP loci and could 

theoretically influence expression of several CYP loci, however, the distance of the SNP from CYP1A1 

gene is 1066 bp and from CYP1A2 gene is 39954 bp. Therefore, I assigned this SNP to the CYP1A1 
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gene. In general, the default option of the program will drop any SNP that is not within 500 kb of any 

gene, but all of our SNPs were within 500 kb of a gene. 

 We wish to note that because the user is ultimately responsible for providing the pathway 

annotation files and the SNP to gene mapping file, the user can define sets of genes of any sort (perhaps 

based on function) as well as the ‘genes’ or gene regions. Thus, this program is very flexible. 

6.3.3 Gene-Enrichment or Pathway-based Association Analysis Statistic 

After the user constructs files containing the single SNP association and permutation statistics, the 

pathway annotation file, and the SNP to gene mapping file, the pathway-based gene enrichment statistic is 

calculated as follows. Essentially, what this enrichment score measures is whether the genes in a specific 

pathway are nearer the top of the list of all genes that have been ordered by the association statistic of 

interest. For each gene the most significant statistic value (which may be a p-value, chi-squared, etc) 

obtained for any SNP within the gene is assigned to that gene, and is denoted rj where 1 ≤ j ≤ N, the total 

number of genes. Next the enrichment score (ES) for a specific gene set S (pathway) is calculated using a 

weighted Kolmogorov-Smirnov-like running sum statistic: 

 

ES(S) 
max

1  j  N

| r( j*) |p

NRGj*S , j* j

 
1

N  NHGj*S , j* j













, 

 

where N is the total number of genes; r(1),…,r(N) is the sorted statistic value from largest to smallest for the 

N genes, r(j*) is j* th ranked statistic value. NR  | r( j*) |p

Gj*S

 . NH is the number of genes corresponding to the 

gene set or pathway S; p is the parameter that gives higher weight to genes with extreme statistic values. 

Wang et al (Wang et al. 2007) recommend using p = 1 as a default value. As can be seen, the ES statistic 

depends on the number of genes, so we wanted to know if the results from our candidate gene study (with 
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only 138 candidate genes) would be meaningful. Thus we did compare results from the pathway-based 

analyses using information on the total set of 402 genes in MrOS and the subset of 138 genes 

(representing the HABC total set of genes). 

 By chance, genes that have more genotyped SNPs will have a higher probability of high statistic 

values than genes with fewer genotyped SNPs, and genes with more genotyped SNPs are usually larger 

than genes with fewer genotyped SNPs. Thus, pathways comprising more ‘large genes’ would have a 

higher ES than pathways with fewer ‘large’ genes. To control for the effect of “gene size” in a pathway, a 

series of permutations are performed to break the relationships between the phenotype and genotypes and 

the test statistic (in our case, an F-test for regression) is recalculated for all of the SNPs (which equals 

1439 in the HABC cohort). Then an enrichment score for a specific gene set S is calculated for each of 

the permutations () and denoted by ES(S,). In our analyses, we used 1000 permutations. Next, a 

normalized enrichment score (NES) is calculated as follows: 

  

 
ES(S)  mean[ES(S, )]

SD[ES(S, )]
 

 

Thus, because the enrichment statistic is normalized for each gene set, the NES obtained for the different 

gene sets can be directly compared for a specific trait within a specific cohort. The possible significance 

of the pathway-based associations was assessed in several ways. First, a nominal p-value of a specific 

pathway is calculated as follows: The formula to calculate the nominal p-value is given by 

 

nominal pvalue 
number  of  permutations with ES(S, )  ES(S)

number  of  permutations
 

 

where ES(S) is the observed enrichment score for a specific gene set S. Because the nominal p-values are 

calculated from the ES statistics, they are not adjusted for size of different gene sets or for tests of 
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multiple pathways.  Two other statistics, the FDR (False Discovery Rate) and FWER (Family Wise Error 

Rate) are calculated using the NES, and thus control for gene size and multiple testing. 

 To obtain FDR, the normalized enrichment score is calculated for each of the permutations and 

used to obtain an empirical distribution of NES scores, defined NES(S, ) , for each of the pathways (in 

HABC there are 9 pathways). Then this set of normalized enrichment scores (from all permutations across 

all pathways) is compared with the NES of the observed data for a specific pathway, designated as NES*, 

to obtain the numerator of the FDR (see equation below). The denominator of the FDR is calculated by 

comparing NES* for a specific pathway, to the set of NES of the observed data for all of the pathways 

(again, for the HABC cohort there are 9 pathways). This empirical distribution is then used to calculate 

the FDR (False Discovery Rate) and FWER (Family Wise Error Rate) rates. If for a specific gene set, 

NES* is the normalized enrichment score of the observed data, then  

 

, 

 

FDR 
% of  all  (S , ) with  NES (S , )  NES *

% of  observed S with  NES (S )  NES *

Thus, the p-values and FDR statistics will reflect the empirical distribution of NES scores within each 

data set. Or to put it another way, a similar p-value obtained for the same (or different) pathways in the 

analyses of two different traits, might have different FDR values. As we discussed in our single SNP-

single trait and single SNP-multiple trait analyses in Chapter 5, we used a liberal level of significance for 

FDR, and looked for consistency of results across different time points and different cohorts. Family wise 

error rate (FWER) is the probability that the results do not include a single false positive and this is a 

much more stringent condition than FDR. 
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6.4 RESULTS 

6.4.1 Characteristics of the pathways 

Using the Ingenuity program, we obtained 11 pathways derived from our group of 138 genes (Table 6.1) 

and the number of total genes in these pathways ranged from 2 to 28, with a median of 21 genes. 

However, not all of the genes in each of the Ingenuity pathways were present in our set among our genes. 

For example, pathway 9 and 11 as derived by Ingenuity comprised a total of 2 and 4 genes, respectively, 

however, only one gene in each of these pathways was present in our set of HABC candidate genes. In 

contrast, some genes within our set of candidate genes were present in more than 1 pathway. Of the total 

138 genes, 7 were not represented in any pathways, 130 were present in one pathway and 2 were present 

in 2 pathways. Pathways 8 and 10 were the smallest pathways and contained 2 or 3 candidate genes. 

Seven of the eight remaining pathways contained 11-18 genes, and the largest pathway, pathway 1 

contained 28 candidate genes. The relative coverage of each Ingenuity pathway, that is the proportion of 

HABC candidate genes to total genes in each pathway, ranged from 11% for pathway 8 to 100% for 

pathway 1 (Table 6.1).  

6.4.2 Pathway-based Associations for Six BMD Traits among the HABC Cohort 

We tested for associations between genes in 9 pathways (among 138 genes; see Table 6.1) for the HABC 

cohorts using data on baseline BMD trait residuals. All association analyses in both Chapters 5 and 6 are 

performed using the residuals of the BMD traits after adjusting for all significant covariates (as described 

in chapter 4). Pathway association results with a nominal p-value ≤ 0.05 for total hip, femoral neck, mean 

arm and mean leg, whole body and lumbar spine BMD measured at baseline (time point 1) are shown in 

Table 6.2 for all sex by ancestry groups. Pathway association results for time points 3 and 5 are presented 

in Tables 6.3 and 6.4, respectively. 
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 For Caucasian American males, pathway 10 (comprising two loci) and pathway 2 (comprising 18 

loci) are associated with BMD at the hip, femoral neck and lumbar spine bone sites (nominal p-value ≤ 

0.05 for all). Specifically, for hip BMD, pathway 10 is nominally significant at all the three time points 

(p-value = 0.004, 0.005, 0.005, respectively). For femoral neck BMD, pathway 10 is significant at the 

baseline and time point 3 (p-value = 0.026 and 0.007), whereas lumbar spine BMD is significantly 

associated with pathway 2 at baseline and time point 3 (p-value = 0.022 and 0.018). However, the FDR 

for pathway 10 is high and ranges between 0.32 and 0.60. Both pathway 10 and pathway 2 (Figure 6.1) 

include the GNRHR locus and SNPs from this locus were significantly associated with hip BMD at all 

three time points in Caucasian American men using both single SNP-single trait and single SNP-multiple 

trait analyses. Pathway 2 also involves genes of TGFB family, SMAD family and it is involved in 

functions like gene expression, cellular function and maintenance and cellular development.  

 For Caucasian American females, pathway 3 is significantly associated with femoral neck BMD at 

baseline and time point 3 (p-value = 0 and 0.022, respectively). But no other results were consistent 

across traits and time points. Genes in pathway 3 are involved in skeletal and muscular disorders, cell-to-

cell signaling and interaction, connective tissue development and function and contains the following 

genes: IGFBP family, IL1, IL6, IRAK family, TNFRSF1B and TNFRSF11B.  

 For African-American males, pathway 1 is significant associated with lumbar spine BMD at 

baseline as well as time point 5 (p-value = 0.048 and 0.02). No other pathway shows a consistent 

relationship with BMD at the same skeletal site across different time points. Pathway 1 comprises 28 loci, 

including CRH, CYP11A, HSDB17B, MEF2, and NTRK and contains loci involved in endocrine system 

development and function, lipid metabolism, molecular transport.  

 Finally, for African-American females, pathway 10 is significantly association with hip BMD at 

baseline (p = 0.001) and with femoral neck BMD at both baseline and time point 5 (p-value = 0.04 and 

0.008). Pathway 7 is significantly associated with whole body BMD at time points 3 and 5 (p-value = 

0.012 and 0.018), and also with for BMD at two peripheral sites, mean arm BMD at time point 3 (p = 

0.017) and mean leg BMD at time point 5 (p = 0.044).  
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Cellular development, hematological system development and function, immune and lymphatic 

system development and function are the functions in which pathway 7 is involved. CSF, CSFR, 

GHRHR, FBXO32 are some of the genes contained in this pathway. 

6.4.3 Exploration of Pathway-based Association Statistics 

Because the FDR methodology is relatively new, we wanted to better understand how the statistics NES 

and FDR statistics were calculated and what their distributions looked like. As an example, we explored 

in more detail the results for hip BMD in Caucasian American males at time points 1 and 3 (Table 6.7). In 

this example, pathway 10 is nominally significant at both the time points (p = 0.001 and p = 0.005, 

respectively), but the corresponding FDR value is 0.349 and 0.316 respectively, which is somewhat 

counterintuitive. However, as described in the Methods, the nominal p-values and the FDR statistics are 

dependent upon the data (observed and permuted) from which they derived. Because these FDR statistics 

were obtained at different time points (and thus different data), the difference is not unexpected.  

6.4.4 Pathway Association Analyses in MrOS – a Replicate Cohort 

We also tested whether the 9 pathways derived from the HABC candidate genes were associated with 

BMD traits measured in the MrOS Caucasian American cohort. We performed these analyses in two 

different ways. First, we performed the association analyses using only genotype data on the 1439 SNPs 

(for 138 genes) and the nine pathways that were also available for the HABC cohort. Second, we 

performed the analyses using genotype data on 4108 SNPs (for 401 genes) and the nine annotated 

pathways. The first analysis is a ‘true’ replication in that identical SNPs and BMD traits are assessed. The 

second analysis may (or may not, see discussion below) increase our power to detect a significant 

association because we’ve increased the total number of genes that are used in the ranking statistics.  

 As can be seen in Table 6.5, pathway analyses of the set of 138 genes revealed pathway 10 was 
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associated with leg BMD (p-value 0.004), whereas pathway 1 was associated with whole body and arm 

BMD (p-value ≤ 0.05 for both). But none of the pathway-based associations with baseline BMD in 

Caucasian American males in HABC were replicated in the MrOS cohort. When we analyzed BMD data 

using the set of 393 genes but the 9 pathways, the results were similar. The same pathways were 

nominally associated with the same traits. Pathway 10 was associated with leg BMD (p-value 0.023), and 

pathway 1 was associated with whole body and arm BMD (p-value = 0.031 and 0.017 respectively).  

 Although the MrOS results did not replicate the HABC results for the multiple gene-single trait 

analyses, this outcome is consistent with our lack of replication in previous analyses comparing HABC 

Caucasian American men and MrOS. Although we had very strong and consistent single SNP-single trait 

and single SNP-multiple trait associations, as well as similar magnitude and direction of effect between 

GNRHR SNPs and hip BMD across all three time points, this result was not replicated in MrOS.  

6.5 DISCUSSION 

Overall, we consider the results of our pathway-based analyses of associations between candidate gene 

pathways and measures of areal BMD at different skeletal sites to be exploratory. Although we obtained 

some potentially intriguing results, we also recognized some limitations and developed additional 

questions about the usefulness of this approach for a candidate gene study. 

 As our results from Chapter 5 indicate, the HABC data set has a sufficient number of individuals 

within each sex by ancestry cohort, as well as reasonable density of SNPs for each candidate gene, to 

detect potentially meaningful associations using a candidate association approach. In fact, one of the most 

interesting results was the relationship between SNPs in the GNRHR locus and BMD at the hip and 

femoral neck in Caucasian American men. This association was observed using both the single SNP-

single trait and the single SNP-multiple trait approaches. Thus we were encouraged when we also 

observed nominally significant results with hip BMD among Caucasian American men for two pathways 
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(pathway 2 and pathway 10) containing the GNRHR locus. We were especially encouraged because 

pathway 10 comprises two genes, one of which is GNRHR, and thus we would expect this pathway to 

show an association. However, the false discovery rate was high, probably in part because this pathway 

was so small in size and there are few pathways overall.  

 In contrast to pathway 10, pathway 2 contains 18 loci (one of which is GNRHR) and it also was 

associated with BMD in Caucasian American men, although this association was with lumbar spine BMD 

and not hip or femoral neck BMD. Because the FDR was low and the association was seen at both time 

points 1 and 3, this pathway should be followed up by investigating both single SNP-lumbar spine BMD 

association among the genes within the pathway, as well as investigating possible interactions among 

these genes.  

 The pathway-based approach (a multiple SNP-single trait association analysis) is the third of the 

association approaches that we used, and it also indicates that variation in the GNRHR locus influences 

areal BMD among Caucasian American males. Thus, the GNRHR locus might really be an important 

gene in bone metabolism of Caucasian American male and additional follow up study is recommended. 

 With the possible exception of the GNRHR result, however, we recognize several limitations to the 

candidate-gene pathway-based approach. The first and foremost limitation is that we are using candidate 

genes, and thus, unlike a whole-genome study, all of the genes are potentially related to the trait. 

Likewise, all of the pathways are likely related to the trait of interest. Thus, our power is probably 

reduced because we are looking for a true pathway association among a group of pathways (and genes) of 

which many are all likely to be associated versus looking for a true association among a large group of 

pathways (and genes) of which very few are likely to be associated. For example, we were looking for the 

best pathway out of nine pathways, or alternatively the best set of 18 genes out of 138 possible candidate 

genes rather than the best pathway out of 1000 pathways or the best set of 20 genes out of 20,000 genes. 

This relative lack of power might be one of the reasons we did not obtain consistent results for similar 

traits across the different time points. On the other hand, the candidate-gene pathway-based approach 

could be very informative if the results indicate one pathway is more associated with the trait. These 
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genes in this ‘best among candidates’ pathway could be given higher priority for additional followup 

studies. 

 We also had several questions about the pathway-based approach, some of which arose from our 

understanding of the NES statistic and some of which arose from our results. Although we did not 

perform any formal tests of hypotheses resulting from our questions and concerns, we did perform some 

comparisons to obtain anecdotal results that might indicate future research directions. First, we were 

concerned that the set of 138 genes was too small to detect consistent results. Thus, we wondered whether 

the total number of genes would influence the significance of the pathway-based analyses? We had only 

138 candidate genes in the HABC cohort. Because we had data on more genes in the MrOS cohort, we 

performed analyses using the same set of 9 pathways on data from 1439 SNPs, as well as all 4108 SNPs. 

The results were similar for both the analyses, although the FDR was lower when more genes were 

included in the analyses. So we hypothesize that the number of genes does not significantly influence the 

pathway association, at least not the nominal significance, and if an association is present then it will be 

detected even with a relatively small set of genes. 

 Second, we wondered whether pathway size would influence the probability of detecting 

significant results. This question arose, in part, because of the results with pathway 10, but also because 

we wondered whether smaller pathways that contained more directly interacting genes would be more 

informative than larger pathways with fewer directly interacting genes. Thus, we constructed additional 

pathways using MrOS set of genes for which we obtained larger pathways than for the HABC set of 

genes. We also used the String program and database (Snel et al. 2000) to construct additional pathways. 

The String program creates pathways for protein interactions, and thus they are much smaller than the 

Ingenuity pathways that include interactions among DNA, RNA and proteins. We performed pathway-

based analyses using all of these pathways on the MrOS data and obtained similar results to our analyses 

of just the nine HABC pathways. We do not present these results, because upon reflection we decided that 

such comparisons of pathways required more careful thought and more detailed investigations. For 

example, the degree of overlap among the different pathways is important, because if a causal gene is 
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shared by multiple pathways, the power will decrease (Wang et al. 2007). In addition, whether the 

pathways involve direct interactions versus indirect interactions, protein interactions, DNA interactions, 

etc, could also influence the outcome. Finally, not all of the genes that are in a specific constructed 

pathway are present in the data to be analyzed. Thus, the relative ‘coverage’ of the genes in a pathway 

might influence the result. Furthermore, if is not clear how to measure coverage. Should it be the 

proportion of available genes out of the total number of genes in the pathway? Or the number of directly 

interacting genes? Or the number of genes whose protein (or RNA products) are known to be critical 

points in a specific metabolic pathway? 

 In conclusion, the pathway-based approach using candidate genes is an intriguing addition to our 

suite of association analysis methods, and it may be very fruitful and indicate possible sets of genes that 

should be further investigated, such as the pathway containing GNRHR. However, there are many caveats 

for this approach, and the number of candidate genes and candidate gene pathways is likely to be 

important. 
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6.6 TABLES AND FIGURES 

Table 6.1: Characteristics of Ingenuity-Derived Pathways Using HABC Gene List 

Pathway 1 2 3 4 5 6 7 8 9 10 11 
Pathway 

Name 
CRH-
CYP-

HSDB-
NTRK 

GNRHR-
HOXA-
IGF2-
TGFB-
SMAD 

IGF2-IRAK-
IGFBP-IL1-
TNFRS11B 

CNTF-
ADIPOR-
LRP-IL-

WNT 

BDNF-
COMT-
CYP1-
TNFSF 

BMPR-
NCOA-VDR-

ESR 

CSF-
FBXO-
SHBG 

HOXA3-
HOXA13 HOXA4 GNRHR GC 

Total 
genes 28 21 23 22 19 18 15 27 2 10 4 

# 
Candidate 

genes 
28 18 17 17 17 16 12 2 1 2 1 

 CRH ACVR2B IGF2 ADIPOR1 BDNF BMPR2 ARF3 HOXA13 HOXA4 CRH GC 
 CRHBP CSF1R IGFALS CNTF COMT CRHR1 CSF2 HOXA3  GNRHR  
 CRHR2 GNRHR IGFBP1 CNTFR CYP1A1 CYP24A1 CSF2RB     
 CYP11A1 HOXA2 IGFBP2 CSK CYP1A2 CYP27B1 CSF3R     
 CYP11B1 IGF2R IGFBP3 FRZB CYP1B1 ESR2 CYP17A1     
 CYP21A2 LIF IGFBP4 IGF1R CYP3A4 FST CYP19A1     
 GHRH LTBP1 IGFBP5 IL6 ESR1 GHR FBXO32     
 GHRL LTBP3 IGFBP6 IL6ST GH1 GNRH2 GHRHR     
 GNRH1 SMAD1 IL1R1 LRP5 HOXA11 HOXA10 HOXA7     
 HSD11B1 SMAD2 IL1R2 LRP6 HOXA9 LHB IGF1     
 HSD17B1 SMAD3 IL1RN MYF5 IL1A NCOA1 SHBG     
 HSD17B2 SMAD4 IL6R MYF6 NFKB1 NCOA2 TNFRSF1A     
 HSD17B3 TGFB1 IRAK3 MYOD1 NR3C1 NCOA3      
 HSD17B4 TGFB2 LIFR MYOG NTRK1 THRA      
 HSD3B1 TGFB3 LTBP2 WNT10B PRKAG1 TNFRSF11A      
 HSD3B2 TGFBR1 TNFRSF11B WNT3A TNFSF10 VDR      
 IL1B TGFBR2 TNFRSF1B WNT5A TNFSF11       
 LHCGR TGFBR3          
 MC2R           
 MEF2A           
 MEF2B           
 MEF2C           
 MEF2D           
 NTF3           
 NTRK2           
 NTRK3           
 POMC           
 STAR           
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Table 6.2: Pathway Association with HABC BMD measures at baseline 

Caucasian Male

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Hip 10 2 0.951 1.482 0.001 0.349 0.324
Femoral Neck 10 2 0.887 1.216 0.025 0.369 0.585
Lumbar Spine 2 18 0.625 1.818 0.032 0.136 0.134

Caucasian Female

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Femoral Neck 3 17 0.706 2.72 0 0.003 0.003
Mean Leg 1 28 0.525 2.014 0.02 0.082 0.08

African-American Male

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Whole Body 2 18 0.622 1.913 0.025 0.091 0.089
Hip 1 28 0.495 1.568 0.049 0.25 0.242
Lumbar Spine 1 28 0.514 1.662 0.05 0.215 0.209

4 17 0.583 1.596 0.015 0.132 0.251

African-American Female

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Hip 10 2 0.951 1.482 0.001 0.349 0.324
Mean Leg 2 18 0.62 1.81 0.038 0.134 0.132
Femoral Neck 10 2 0.853 1.343 0.03 0.549 0.46

7 12 0.601 1.268 0.041 0.331 0.531  
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Table 6.3: Pathway Association with HABC BMD measures at time point 3 

Caucasian Male

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Hip 10 2 0.951 1.311 0.005 0.316 0.521
Femoral Neck 10 2 0.938 1.325 0.007 0.604 0.506
Lumbar Spine 2 18 0.638 2.021 0.018 0.065 0.065

10 2 0.894 1.343 0.023 0.266 0.446

Caucasian Female

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Femoral Neck 7 12 0.654 1.692 0.022 0.213 0.207

3 17 0.572 1.528 0.046 0.163 0.307
Lumbar Spine 7 12 0.636 1.449 0.024 0.348 0.318
Mean Leg 6 16 0.629 2.122 0.008 0.041 0.041

African-American Male

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Whole Body 8 2 0.893 1.551 0.022 0.291 0.274
Mean Arm 8 2 0.84 1.377 0.049 0.571 0.473

African-American Female

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Whole Body 7 12 0.664 1.809 0.012 0.109 0.109
Mean Arm 7 12 0.642 1.542 0.017 0.298 0.275  
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Table 6.4: Pathway Association with HABC BMD measures at time point 5 

Caucasian Male

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Hip 10 2 0.951 1.297 0.005 0.581 0.501
Whole Body 2 18 0.62 1.741 0.03 0.169 0.165

Caucasian Female

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Hip 8 2 0.836 1.375 0.044 0.47 0.413

10 2 0.836 1.276 0.047 0.322 0.534
Mean Leg 7 12 0.658 1.586 0.014 0.237 0.223

African-American Male

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Lumbar Spine 1 28 0.529 1.982 0.02 0.083 0.082
Mean Leg 8 2 0.858 1.449 0.037 0.404 0.364
Hip 3 17 0.564 1.618 0.024 0.223 0.212

4 17 0.54 1.273 0.043 0.332 0.528

African-American Female

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Whole Body 7 12 0.645 1.63 0.018 0.213 0.206
Femoral Neck 10 2 0.913 1.447 0.008 0.378 0.342
Mean Leg 7 12 0.596 1.26 0.044 0.632 0.502  

 

Table 6.5: Pathway Association with MrOS BMD measures (using only 138 MrOS genes) 

MrOS

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Leg 10 2 0.926 1.315 0.004 0.567 0.48
Whole Body 1 28 0.507 1.703 0.043 0.228 0.213
Arm 1 28 0.509 1.595 0.038 0.221 0.211  

 

Table 6.6: Pathway Association with MrOS BMD measures (using all 393 MrOS genes) 

MrOS

BMD Trait Pathway Size ES NES Nominal pvalue FDR FWER
Leg 10 4 0.78 1.326 0.023 0.496 0.41
Whole Body 1 28 0.497 1.83 0.031 0.146 0.138
Arm 1 28 0.508 1.832 0.017 0.097 0.094  
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Table 6.7: Table with association results for all the pathways for Hip BMD in HABC data for Caucasian 

Males at time point 1 and time point 3 
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Figure 6.1: Pathway 2 (involving 18 genes from HABC list) 
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7.0  CONCLUSION 

7.1 MOTIVATION 

As the number and proportion of older individuals in the U.S. and other countries increases over the next 

few decades, the prevalence of many diseases associated with older age, including osteoporosis, are also 

projected to increase (Report of the Surgeon General, US Department of Health and Human Services, 

2004). Therefore, considerable research is being done to identify the possible genes and environmental 

factors that influence development of osteoporosis. The long-term goal of these studies is to use our 

knowledge of the genes and environmental factors that influence development of osteoporosis to develop 

therapies that can mitigate or delay onset of bone loss.  

The overall goal of my dissertation research was to use genetic association methods to identify 

variation in candidate genes that influenced areal BMD, a major risk factor for osteoporosis, in a healthy 

older population of U.S. Caucasian Americans and African Americans who are participants in the Health, 

Aging and Body Composition (HealthABC) Study. Areal BMD data measured at multiple skeletal sites 

were available at 3 time points (each two years apart) on 1653 Caucasian Americans and 1177 African 

Americans men and women >68 years of age at baseline. In addition, data were available on a variety of 

demographic, anthropometric, lifestyle, and medical history covariates, as well as genotypic data on 1439 

SNPs in 138 candidate genes. 

  Although genetic association methods can be very powerful (Risch et al. 1996; Easton et al. 

2007), the strength of these studies is dependent upon the number of SNPs being assessed and the 
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presence of population structure. Furthermore, a variety of association methods have been and continue to 

be developed and each method has different strengths and limitations. 

 Given the above information, we were interested in investigating the following questions: 

 1. How well do our SNPs cover our candidate genes? 

 2. Is there evidence of subpopulation structure? 

 3. What are the environmental factors affecting BMD levels at baseline and as well as two other 

time points?  

 4. Are any of the candidate gene SNPs associated with areal BMD at baseline and are these 

results replicated at other time points or in other populations? 

 5. Are the association results similar across the three different association methods: single SNP-

single trait, single trait, single SNP-multiple traits, or multiple SNP-single trait? 

There are numerous strengths to my research approach overall including (1) phenotype data 

available on a variety of covariates to facilitate identification of genetic signals, (2) data available on 

multiple BMD traits at three time points to assess internal replication, (3) genotypic data available on 

multiple SNPs in multiple candidate genes to increase coverage, (4) data available on four groups of 

reasonable sample size (n > 500 for African-American males and n > 650 for all other groups) to assess 

replication across groups, and (5) the use of three association methods that have complementary strengths 

and limitations.  

 There are also limitations to this study and the overall limitation is the underlying assumption that 

variation in areal BMD is due to common polymorphisms, rather than mulyiple rare variants. However, 

the proportion of variation in areal BMD due to common variation versus rare variation, is not known, so 

results of this study are useful. There are also strengths and limitations of our results for each of the 

questions above, and these are discussed in our summary of results below.  

 141 



7.2  SUMMARY OF RESULTS 

7.2.1 SNP coverage  

To determine the coverage of our candidate genes, we first built a methodology to assess the coverage of 

HAPMAP phase two data in Caucasian Americans. We found that tag SNPs chosen from HAPMAP can 

predict all other unmeasured SNPs, including rare SNPs, at an average of 55.7% which is quite 

reasonable. We applied this method to our HABC data and determined that although the coverage is good 

in our genes (52%), we would need an additional 3 SNPs per gene to obtain coverage as good as that 

available in HAPMAP II. Thus, our model can be used to determine how well a specific set of SNPs 

covers a specific set of candidate genes. The limitation of our model is that it is less applicable to other 

groups whose LD structure differs from that of Caucasian Americans.  

7.2.2 Assessing population ancestry 

Population substructure is a concern for association studies, so we assessed ancestry using eigen analysis 

on uncorrelated SNPs (r≤0.04) from our set of candidate genes. Using this method, we were able to 

classify all individuals into two ancestry categories, including individuals who did not self-report 

ancestry. We also redid the eigen analysis on each ancestry group to determine additional substructure, 

and found no strong evidence for additional substructure in Caucasian Americans and possible 

substructure in African Americans. Therefore, our data on SNPs in 151 candidate genes (including both 

Illumina and Dr. Ferrell’s lab) that were spread across the genome were sufficient to cluster individuals 

into two ancestry groups, however, they may not have been sufficient to detect more subtle structure. We 

included the first 3 principal components of ancestry from each ancestry group into our association 

analyses (described below) to control for more subtle subpopulation structure.  
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7.2.3 Estimating effects of covariates 

Phenotypic variation due to effects of covariates can mask effects of candidate genes, especially if the 

candidate gene effects are relatively small. Because our sample sizes were large within each sex by 

ancestry group, we analyzed the effects of multiple demographic, anthropometric, lifestyle, and medical 

covariates within each group for BMD measured at multiple skeletal sites. We also analyzed the traits at 

three different time points both cross-sectionally as well as longitudinally. Although some covariates 

influenced areal BMD in a similar manner across the different sex by ancestry groups, there were 

differences. Some of these differences were revealed by the total proportion of variance attributable to the 

different covariate categories. For example, all covariates accounted for a much smaller proportion of 

total variation in Caucasian American males than any other group. Across all groups, the medical and 

anthropometric categories accounted for the largest proportion of total variation in areal BMD. Results 

from longitudinal analysis indicated that that time had a significant effect on all areal BMD traits, but the 

covariate effects were similar to those estimated from cross-sectional analysis. Residual BMD values 

were estimated for all BMD traits for all individuals after incorporation of all significant covariates. These 

residuals were used in the subsequent candidate gene association analyses. A limitation of these analyses 

is that all significant covariates were included. Thus, if a candidate gene has pleiotropic effects on a 

significant covariate, as well as areal BMD, we would also be removing effects of the candidate gene. So 

analysis using different sets of covariates should also be done. 

7.2.4 Association analysis results 

A major strength of my research was the use of three different association analysis methods: single SNP-

single trait, single SNP-multiple trait, and multiple SNP-single trait. Another major strength of my 

research was availability of areal BMD data at three time points, which allowed assessment of internal 

replication. Each method has strengths and limitations, for example, all methods assumes that a common 
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SNP influences the trait, and that the genotyped SNPs correlate strongly with the causal SNP. The single 

SNP-single trait method is easily interpretable and quick, but multiple testing concerns decrease power. 

The single SNP-multiple trait method is more powerful than the single SNP-single trait method if the 

SNP influences multiple traits.  Finally, the multiple SNP-single trait method is useful if multiple genes 

have small effects, but is less powerful if a few genes in different pathways influence a trait. Finally, all 

methods require follow-up procedures such as regression analyses to determine magnitude and direction 

of the effect, consistency across time points, BMD traits, and sex by ancestry groups. Results from all 

methods also require replication in another population or another means of determining biological 

significance, such as in vitro studies. 

 The association methods yielded similar results for several SNPs and the most consistent results 

were for Caucasian American men.  Both the single SNP-single trait, and the single SNP-multiple trait 

analyses indicated that variation within the GNRHR gene influenced areal BMD in Caucasian American 

men, and this association was apparent at baseline and time point 3. One of SNPs was statistically 

significant by the single SNP-single trait analysis of hip BMD, and five were significant by the single 

SNP-multiple trait analysis. Furthermore, two pathways showing nominal significance contained the 

GNRHR gene. Followup analyses revealed that these 5 SNPs had consistent effects at all time points and 

haplotype analysis indicate that these 5 SNP are in high LD, and comprise two significant haplotypes. 

However when we tried to replicate our results in another Caucasian American male population, we were 

unsuccessful. Thus, we conclude that GNRHR might have a role in bone metabolism of older Caucasian 

American males, but more research is needed.  

 We also obtained potentially interesting results in the other sex by ancestry groups, such as a 

significant association between areal BMD and a single SNP in each of the TNFRSF11B and CSF2 

genes. Although some of the associations are highly significant at one time point using a specific 

association method, they were not highly significant for all the methods and/or time points. None of the 

candidate gene associations were consistent across the different sex by ancestry groups; however, this is 
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not unexpected given the previous reports of differences in BMD between the sexes and between different 

ancestral groups.   

 The multiple SNP-single trait analyses yielded some potentially interesting results, which could 

be followed up by doing single additional single SNP analysis, as well as some gene by gene interaction 

analyses, especially for the GNRHR pathway. A strength of this approach is that it could indicate a subset 

of genes acting within the same pathway, that could be followed up by performing gene by gene 

interaction analyses using only this subset of genes. However, as we state in chapter 6, there are several 

limitations of this method, especially when used with data on candidate genes.  

7.3  SIGNIFICANCE OF THE STUDY 

Osteoporosis is one of the major public health concerns, in the United States as well as other countries. So 

knowledge of the possible genetic as well as environmental effects affecting the BMD status and 

simultaneously the chance of developing osteoporosis is essential. Use of multiple analytical methods on 

data from multiple traits measured at >1 time point, as well as data on multiple SNPS within traits, can 

greatly facilitate interpretation of results and possibly identification of genes or biological pathways that 

influence BMD, a risk factor for osteoporosis. Knowledge of such pathways may lead to additional 

methods of treatment or cure. 

7.4 FUTURE WORK 

 One of the main areas for future research involves the analyses of BMD data using a different set 

of covariates.  We performed our association studies using residuals from a set of all significant 

covariates.  Because genes influencing BMD are likely to influence other measures of body composition, 
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removing the effects of such covariates, like weight or  presence of osteoporosis by T-score, would reduce 

our ability to detect such candidate gene effects.  In other words, we may be removing, prior to the 

association analyses, the genetic variation that we are interested in.    Thus, additional studies should be 

performed using different sets of candidate genes, and compare and contrast the results across time points, 

as well as across the sex by ancestry groups.  

 Our most exciting result was the association between SNPs at the GNRHR locus and hip BMD in 

Caucasian American males.  However, although we observed a significant association between these 

SNPs (and haplotypes) in the MrOS population, the direction of the effect was the reverse. This result 

may imply that the result in HABC  is false positive or that the measured SNPs may not be causal, but are 

in LD with the causal SNP or SNPs.  Furthermore, there is the possibility that the potentially causal SNP 

(allele) might be present on  opposite haplotypes for MrOS and HABC Caucasian American males. We 

need to further investigate this by investigating additional SNPs in GNRHR, both rare and common, and 

typing them in our study and other studies.  

 We developed a CART model of SNP coverage for Caucasian Americans.  However, additional 

models should be developed for populations of African and Chinese or Japanese descent because  LD 

structure differs between different ancestry groups.  Such a model could be developed by using a database 

(such as ENCODE) that has complete SNP data on individuals with an African (or Chinese) ancestry. 

 Finally, additional research should be done on the pathway based analysis approach, especially as 

regards to use on data from candidate genes.  Further investigation of the effects of pathway size 

(numbers of genes), as well as definition of pathways (for example, direct or indirect interactions), should 

be done.  

 Other areas of research include investigation of gene by gene interactions (as obtained from the 

pathway-based approach) and use of the pathway-based approach on principal components of phenotypes 

(perhaps a combination of the pathway-based and PCH approaches). 
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APPENDIX 

LIST OF ALL SNPS, COVARIATES AND SIGNIFICANT SNPS BY GROUPS 

  

Table A 1: Association of Covariates with the other nine BMD traits at baseline for four ancestry by sex 

groups. 
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Table A 1 continued 
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Table A 1 continued 
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Table A 1 continued 
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Table A 2: Table with top 50 SNPs (according to p-value) for single trait single SNP analysis for the four 

ancestry by sex groups 

A.2A African American Male 
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  A.2A continued 
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A.2B. African American female 
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        A.2B continued 
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A.2C. Caucasian American male 
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  A.2C continued 
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A.2D Caucasian American Female 
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  A.2D continued 
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Table A 3:  SNPs used in the study 
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Table A.3 continued 
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Table A.3 continued 
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Table A.3 continued 
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Table A.3 continued 

SNP GENE SNP GENE SNP GENE
rs9456484 IGF2R rs1878318 IL1A rs315951 IL1RN
rs9457785 IGF2R rs1878320 IL1A rs315952 IL1RN
rs9457827 IGF2R rs3783521 IL1A rs419598 IL1RN
rs344357 IGFALS rs3783531 IL1A rs1446510 IL1RN
rs1178435 IGFALS rs4848302 IL1A rs1542176 IL1RN
rs4316755 IGFALS rs4848303 IL1A rs1623119 IL1RN
rs4619 IGFBP1 rs4849122 IL1A rs1688075 IL1RN
rs1065780 IGFBP1 rs1143623 IL1B rs2234676 IL1RN
rs1995050 IGFBP1 rs1143627 IL1B rs2234678 IL1RN
rs4988515 IGFBP1 rs1143643 IL1B rs4251961 IL1RN
rs10249499 IGFBP1 rs2048874 IL1B rs1546762 IL6
rs1525608 IGFBP2 rs4447608 IL1B rs1800796 IL6
rs1542818 IGFBP2 rs4849123 IL1B rs2056576 IL6
rs1553009 IGFBP2 rs4849125 IL1B rs2069824 IL6
rs2056642 IGFBP2 rs4849127 IL1B rs2069827 IL6
rs2270360 IGFBP2 rs6735739 IL1B rs2069832 IL6
rs2270628 IGFBP2 rs12469600 IL1B rs2069849 IL6
rs2372848 IGFBP2 rs949963 IL1R1 rs2069860 IL6
rs3770473 IGFBP2 rs997049 IL1R1 rs4722167 IL6
rs10932667 IGFBP2 rs1030021 IL1R1 rs7776857 IL6
rs10932669 IGFBP2 rs2110726 IL1R1 rs11766273 IL6
rs6670 IGFBP3 rs2192752 IL1R1 rs1386821 IL6R
rs924140 IGFBP3 rs2228139 IL1R1 rs1889313 IL6R
rs3793345 IGFBP3 rs2287047 IL1R1 rs2229238 IL6R
rs9282734 IGFBP3 rs3171845 IL1R1 rs4129267 IL6R
rs535058 IGFBP4 rs3771199 IL1R1 rs4553185 IL6R
rs584828 IGFBP4 rs3917225 IL1R1 rs8192284 IL6R
rs1530363 IGFBP4 rs3917254 IL1R1 rs10908835 IL6R
rs1668339 IGFBP4 rs3917296 IL1R1 rs11265608 IL6R
rs2015561 IGFBP4 rs3917320 IL1R1 rs11265618 IL6R
rs4890114 IGFBP4 rs3917325 IL1R1 rs11265622 IL6R
rs7214466 IGFBP4 rs3917332 IL1R1 rs715180 IL6ST
rs11650680 IGFBP4 rs4851543 IL1R1 rs1373998 IL6ST
rs3276 IGFBP5 rs6712813 IL1R1 rs1900173 IL6ST
rs888184 IGFBP5 rs11883987 IL1R1 rs3729961 IL6ST
rs888186 IGFBP5 rs13387400 IL1R1 rs10940495 IL6ST
rs1978346 IGFBP5 rs733498 IL1R2 rs11741953 IL6ST
rs2067041 IGFBP5 rs740044 IL1R2 rs289067 IRAK3
rs2072544 IGFBP5 rs2190358 IL1R2 rs1152888 IRAK3
rs2372866 IGFBP5 rs2230400 IL1R2 rs1152912 IRAK3
rs3755137 IGFBP5 rs3218927 IL1R2 rs1152918 IRAK3
rs7426116 IGFBP5 rs3218979 IL1R2 rs1183892 IRAK3
rs11575194 IGFBP5 rs4851516 IL1R2 rs1732886 IRAK3
rs2277329 IGFBP6 rs4851519 IL1R2 rs1882200 IRAK3
rs2280699 IGFBP6 rs4851522 IL1R2 rs2043668 IRAK3
rs2364154 IGFBP6 rs4851527 IL1R2 rs2118137 IRAK3
rs6580928 IGFBP6 rs4851534 IL1R2 rs2701653 IRAK3
rs7974876 IGFBP6 rs7589525 IL1R2 rs7972963 IRAK3
rs17561 IL1A rs315920 IL1RN rs1062708 LHB
rs1800794 IL1A rs315943 IL1RN rs3795044 LHB
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Table A.3 continued 

 

SNP GENE SNP GENE SNP GENE
rs4802533 LHB rs2731968 LIFR rs589403 LTBP1
rs6509412 LHB rs2914344 LIFR rs609277 LTBP1
rs10423094 LHB rs2921153 LIFR rs711235 LTBP1
rs1464728 LHCGR rs3097237 LIFR rs817531 LTBP1
rs1949778 LHCGR rs3099115 LIFR rs897509 LTBP1
rs2293275 LHCGR rs3099124 LIFR rs1020636 LTBP1
rs2301267 LHCGR rs4869585 LIFR rs1377945 LTBP1
rs3884615 LHCGR rs6872098 LIFR rs1454312 LTBP1
rs4075494 LHCGR rs6893525 LIFR rs1463312 LTBP1
rs4131885 LHCGR rs10473100 LIFR rs1545550 LTBP1
rs4131886 LHCGR rs11737983 LIFR rs1812485 LTBP1
rs4256003 LHCGR rs312018 LRP5 rs1869452 LTBP1
rs4319975 LHCGR rs312788 LRP5 rs1902049 LTBP1
rs4352270 LHCGR rs314756 LRP5 rs1993306 LTBP1
rs4374421 LHCGR rs587397 LRP5 rs2015189 LTBP1
rs4453732 LHCGR rs608343 LRP5 rs2123770 LTBP1
rs4519576 LHCGR rs634918 LRP5 rs2167973 LTBP1
rs4597581 LHCGR rs638051 LRP5 rs2290427 LTBP1
rs4953616 LHCGR rs676318 LRP5 rs2305502 LTBP1
rs4953617 LHCGR rs923346 LRP5 rs3731575 LTBP1
rs6545066 LHCGR rs3781600 LRP5 rs3769550 LTBP1
rs6714440 LHCGR rs4988300 LRP5 rs4569454 LTBP1
rs6741840 LHCGR rs1012672 LRP6 rs4952277 LTBP1
rs6755901 LHCGR rs1181332 LRP6 rs6705057 LTBP1
rs7579411 LHCGR rs1420731 LRP6 rs6719824 LTBP1
rs10495958 LHCGR rs1894984 LRP6 rs6737948 LTBP1
rs10495959 LHCGR rs2058821 LRP6 rs6742198 LTBP1
rs10495960 LHCGR rs2302685 LRP6 rs6751758 LTBP1
rs11125179 LHCGR rs2417086 LRP6 rs7566302 LTBP1
rs11691408 LHCGR rs3741792 LRP6 rs7568681 LTBP1
rs12615738 LHCGR rs4477532 LRP6 rs7578053 LTBP1
rs12713012 LHCGR rs4763794 LRP6 rs7583121 LTBP1
rs715605 LIF rs4763797 LRP6 rs10432656 LTBP1
rs737921 LIF rs7973583 LRP6 rs11886226 LTBP1
rs877549 LIF rs10492120 LRP6 rs11895736 LTBP1
rs929271 LIF rs10743980 LRP6 rs11899433 LTBP1
rs929273 LIF rs10772530 LRP6 rs7569 LTBP2
rs2070889 LIF rs11054721 LRP6 rs699374 LTBP2
rs2078856 LIF rs12313200 LRP6 rs754634 LTBP2
rs2267153 LIF rs12425946 LRP6 rs862046 LTBP2
rs3753082 LIF rs150703 LTBP1 rs888414 LTBP2
rs3761427 LIF rs150720 LTBP1 rs888415 LTBP2
rs6006427 LIF rs218178 LTBP1 rs2028377 LTBP2
rs6518682 LIF rs218204 LTBP1 rs2043948 LTBP2
rs9608854 LIF rs218218 LTBP1 rs2286411 LTBP2
rs9608859 LIF rs218223 LTBP1 rs2302114 LTBP2
rs1444888 LIFR rs218226 LTBP1 rs2304707 LTBP2
rs1562137 LIFR rs219107 LTBP1 rs3742793 LTBP2
rs2289779 LIFR rs219143 LTBP1 rs3825709 LTBP2
rs2561805 LIFR rs219210 LTBP1 rs4899526 LTBP2
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Table A.3 continued 

SNP GENE SNP GENE SNP GENE
rs4903249 LTBP2 rs1171565 MEF2D rs6472528 NCOA2
rs7148018 LTBP2 rs1750305 MEF2D rs6985009 NCOA2
rs7148764 LTBP2 rs1750307 MEF2D rs7018096 NCOA2
rs7150576 LTBP2 rs1925950 MEF2D rs10504470 NCOA2
rs8014087 LTBP2 rs2274316 MEF2D rs10504477 NCOA2
rs10047892 LTBP2 rs2274317 MEF2D rs11786991 NCOA2
rs12435481 LTBP2 rs6685228 MEF2D rs13260857 NCOA2
rs947791

rs948333

rs325381
rs325383
rs325403
rs325411

rs10896
rs741706

rs167345
rs186233
rs216057
rs304162
rs410216
rs412458
rs618298
rs622803
rs770189

rs750439
rs942964

 

LTBP3 rs12569286 MEF2D rs1206875 NCOA3
rs1151503 LTBP3 rs1163263 MYF5 rs1569438 NCOA3
rs3741380 LTBP3 rs1305277 MYF5 rs2026401 NCOA3
rs4244811 LTBP3 rs1305281 MYF5 rs2076549 NCOA3
rs4601790 LTBP3 rs3759084 MYF5 rs2143491 NCOA3

MC2R rs10862186 MYF5 rs2230782 NCOA3
rs1941088 MC2R rs3121 MYF6 rs2235734 NCOA3
rs3760534 MC2R rs1163254 MYF6 rs2281279 NCOA3
rs7243853 MC2R rs1163281 MYF6 rs2294891 NCOA3

MEF2A rs1163284 MYF6 rs2425955 NCOA3
MEF2A rs1163285 MYF6 rs6018572 NCOA3
MEF2A rs10506833 MYF6 rs6018600 NCOA3
MEF2A rs2249104 MYOD1 rs6018611 NCOA3

rs1808723 MEF2A rs2734554 MYOD1 rs6066394 NCOA3
rs2164058 MEF2A rs3858512 MYOD1 rs6094716 NCOA3
rs2570816 MEF2A rs4756914 MYOD1 rs6094723 NCOA3
rs8036677 MEF2A rs4757569 MYOD1 rs230498 NFKB1
rs11247113 MEF2A rs3087949 MYOG rs230539 NFKB1

MEF2B rs6702345 MYOG rs747559 NFKB1
MEF2B rs1804645 NCOA1 rs997476 NFKB1

rs1050483 MEF2B rs2119117 NCOA1 rs1609798 NFKB1
rs2040562 MEF2B rs3731628 NCOA1 rs1882949 NFKB1
rs2228603 MEF2B rs6739622 NCOA1 rs3774934 NFKB1
rs7360000 MEF2B rs6749833 NCOA1 rs3774938 NFKB1
rs10424365 MEF2B rs7567564 NCOA1 rs3774968 NFKB1

MEF2C rs7582565 NCOA1 rs4648022 NFKB1
MEF2C rs12105106 NCOA1 rs4648037 NFKB1
MEF2C rs12474894 NCOA1 rs4648068 NFKB1
MEF2C rs13004818 NCOA1 rs4648072 NFKB1
MEF2C rs13034651 NCOA1 rs10489113 NFKB1
MEF2C rs1046013 NCOA2 rs6190 NR3C1
MEF2C rs1380897 NCOA2 rs6196 NR3C1
MEF2C rs1531362 NCOA2 rs258747 NR3C1
MEF2C rs2926700 NCOA2 rs1866388 NR3C1

rs3850651 MEF2C rs2926707 NCOA2 rs4607376 NR3C1
rs4446500 MEF2C rs2957094 NCOA2 rs4912911 NR3C1
rs12522630 MEF2C rs2977983 NCOA2 rs7701443 NR3C1

MEF2D rs3812429 NCOA2 rs9324916 NR3C1
MEF2D rs4512409 NCOA2 rs10482672 NR3C1

rs1050316 MEF2D rs4545135 NCOA2 rs11740792 NR3C1
rs1171549 MEF2D rs4623463 NCOA2 rs6332 NTF3
rs1171554 MEF2D rs4738070 NCOA2 rs2052355 NTF3
rs1171559 MEF2D rs6472527 NCOA2 rs4074967 NTF3
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Table A.3 continued 

SNP GENE SNP GENE SNP GENE
rs7974186 NTF3 rs1461214 NTRK3 rs7688268 SMAD1
rs10744685 NTF3 rs1530310 NTRK3 rs11100883 SMAD1
rs10849275 NTF3 rs1834573 NTRK3 rs11939979 SMAD1
rs11063703 NTF3 rs2117655 NTRK3 rs13109195 SMAD1
rs11612899 NTF3 rs2162266 NTRK3 rs948604 SMAD2
rs12370969 NTF3 rs3784416 NTRK3 rs1539871 SMAD2
rs12424162 NTF3 rs3784434 NTRK3 rs1792655 SMAD2
rs12424856 NTF3 rs3825884 NTRK3 rs1792684 SMAD2
rs6334 NTRK1 rs3825885 NTRK3 rs1942159 SMAD2
rs6336 NTRK1 rs3903308 NTRK3 rs2000709 SMAD2
rs928392 NTRK1 rs4887337 NTRK3 rs3923814 SMAD2
rs943551 NTRK1 rs4887346 NTRK3 rs4940110 SMAD2
rs1800879 NTRK1 rs4887348 NTRK3 rs4940140 SMAD2
rs1888861 NTRK1 rs4887351 NTRK3 rs15974 SMAD3
rs1998977 NTRK1 rs4887364 NTRK3 rs266332 SMAD3
rs2644596 NTRK1 rs4887391 NTRK3 rs266347 SMAD3
rs4661229 NTRK1 rs6496454 NTRK3 rs422342 SMAD3
rs10908521 NTRK1 rs6496469 NTRK3 rs718663 SMAD3
rs11264554 NTRK1 rs7164531 NTRK3 rs745103 SMAD3
rs12145540 NTRK1 rs7170215 NTRK3 rs920293 SMAD3
rs1221 NTRK2 rs7176429 NTRK3 rs991157 SMAD3
rs681329 NTRK2 rs7176520 NTRK3 rs1465842 SMAD3
rs1002261 NTRK2 rs8025158 NTRK3 rs1470003 SMAD3
rs1187321 NTRK2 rs8038245 NTRK3 rs1470004 SMAD3
rs1211443 NTRK2 rs8042990 NTRK3 rs1498506 SMAD3
rs1662701 NTRK2 rs10520671 NTRK3 rs2033785 SMAD3
rs3739804 NTRK2 rs10520676 NTRK3 rs2053294 SMAD3
rs3758317 NTRK2 rs12102144 NTRK3 rs2118610 SMAD3
rs3780634 NTRK2 rs12594095 NTRK3 rs2118612 SMAD3
rs4242632 NTRK2 rs12595249 NTRK3 rs2118613 SMAD3
rs10116287 NTRK2 rs934778 POMC rs2289263 SMAD3
rs10512156 NTRK2 rs1866146 POMC rs2414937 SMAD3
rs10746750 NTRK2 rs2118404 POMC rs3809572 SMAD3
rs10780695 NTRK2 rs2164808 POMC rs6494629 SMAD3
rs10868232 NTRK2 rs4665777 POMC rs6494636 SMAD3
rs11140714 NTRK2 rs6545976 POMC rs7166081 SMAD3
rs744993 NTRK3 rs2293445 PRKAG1 rs7167838 SMAD3
rs744994 NTRK3 rs6259 SHBG rs7183244 SMAD3
rs878646 NTRK3 rs6260 SHBG rs948588 SMAD4
rs879131 NTRK3 rs13894 SHBG rs10502913 SMAD4
rs894290 NTRK3 rs858521 SHBG rs12455792 SMAD4
rs898706 NTRK3 rs1641536 SHBG rs2270376 STAR
rs920067 NTRK3 rs1641544 SHBG rs2843745 STAR
rs922232 NTRK3 rs2955617 SHBG rs6474491 STAR
rs1017412 NTRK3 rs1016792 SMAD1 rs1046909 TGFB1
rs1105693 NTRK3 rs1866179 SMAD1 rs1529717 TGFB1
rs1365288 NTRK3 rs1874572 SMAD1 rs1982072 TGFB1
rs1369423 NTRK3 rs2036138 SMAD1 rs3826714 TGFB1
rs1369430 NTRK3 rs2289737 SMAD1 rs4605279 TGFB1
rs1381112 NTRK3 rs6537355 SMAD1 rs8110090 TGFB1
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