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A panel of metabolic enzyme genetic polymorphisms, which are involved in cigarette 

carcinogen metabolism, also a DNA repair gene involved in the nucleotide excision repair 

pathway were evaluated for associations with lung cancer risk in 203 lung cancer cases and 205 

controls and in a case-only analysis of 177 lung cancer patients. Significant relationships 

between predicted high CYP1A2 activity, CYP1B1 (*1/*3 or *3/*3), GSTM3*A/*A, and XPD 

(Lys/Gln or Gln/Gln) genotypes and lung cancer risk were observed (adjusted ORs, 2.05; 

95%CI, 1.13-3.73, 2.6; 95%CI, 1.19-5.69, 1.84; 95%CI, 1.03-3.31, 2.56; 95%CI, 1.45-4.51, 

respectively). The predicted mEPHX intermediate or high activity genotype also increased risk 

approximately 3-fold among females. The combined effects of carrying multiple genetic 

polymorphisms (gene-gene interaction) or of gene-environment interactions, for example, 

between the CYP1B1 (*1/*3 or *3/*3) genotype and packyear also resulted in significant levels 

of increased risk and early age onset of lung cancer.   

CYP mRNA expression levels were measured in 20 pairs of lung tumor and histologically 

normal tissues to evaluate the potential for local metabolic activation and as a smoking exposure 

biomarker. The detection of CYP1B1 and CYP2E1 mRNA expression in lung tissue suggests 

that local bioactivation of procarcinogens may occur. A relationship between lung CYP2E1 

mRNA expression levels and cigarette smoke and/or other environmental carcinogens exposure 

was observed. The significant increase in the levels of CYP2E1 mRNA expression in lung 
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tumors compared to their corresponding histological normal adjacent tissues among current and 

former smokers and nonsmokers who were exposed to petroleum and/or other environmental 

exposures further suggest a mechanistic link between environmental carcinogens exposures and 

lung cancer development. The results indicate that individual susceptibility to lung cancer 

determined by endogenous host factors such as genetic polymorphisms in metabolic and DNA 

repair genes, family history of lung and other cancers, early age onset, and interindividual 

differences in capacity of local procarcinogens bioactivation could interact with each other 

and/or interact with individual exposures or other exogenous factors such as cigarette smoke, 

environmental carcinogens and occupational exposures in modifying lung cancer risk. 
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INTRODUCTION 

1.1. Lung cancer 

Lung cancer has become a leading cause of cancer deaths for both men and women. In the 

US, the incidence of lung cancer is increasing and is second only to prostate cancer in men and 

breast and colorectal cancer in women (1). Lung cancer has become a major public heath 

problem. Due to relatively poor prognoses associated with current treatment regimens, 

prevention is clearly optimal for reduction of lung cancer mortality. Significant effort continues 

towards the development of effective methods for cancer risk assessment, early detection and 

new treatment strategies. A thorough understanding of the mechanisms of lung carcinogenesis is 

also necessary to achieve these goals. Lung cancer risk has a multifactorial basis, including both 

genetic and environmental components. Tobacco cigarette smoking continues to be the major 

cause of lung cancer. The risk of lung cancer from passive exposure and other carcinogenic 

exposures such as asbestos, radon, arsenic, chromium, nickel and carcinogens in diet have been 

noted (2-10). There is also evidence of genetic predisposition for lung cancer, including data 

showing increased lung cancer incidence in relatives of lung cancer patients (11-15).  

Genetic host factors can interact with environmental carcinogens to place individuals at 

increased risk of lung cancer. The gene-gene and gene-environment interactions paradigms have 

been used to improve models of cancer risk assessment. Further characterization of gene-gene 

and gene-environment interactions would be very useful in public health intervention strategies 

for lung cancer. For example, an understanding of these interactions will aid in the identification 
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of individuals who would most benefit from modification of hazardous lifestyles, targeted 

chemoprevention protocols and reduction of involuntary exposure to carcinogens by regulation. 

Although many epidemiological studies have identified causes of lung cancer that have provided 

data for preventive strategies in general populations, individual determinants of susceptibility, 

for example susceptibility to cigarette smoking and family history of lung cancer, have not been 

adequately described. Ninety percent of lung cases in the US are attributed to cigarette smoking 

but only 10% of all smokers develop lung cancer. This observation implies that host factors and 

other environmental agents also influence individual susceptibility to tobacco smoke. The 

variability in host susceptibility to lung cancer can in part be explained by differences in 

metabolism, DNA repair, genetic instability and altered oncogene or tumor suppressor gene 

expression. Conventional epidemiological methods may not be sufficiently sensitive for the 

detection of genetic predisposition. Therefore, molecular epidemiological approaches are being 

explored by a number of investigators. The molecular epidemiology approach seeks to identify 

human cancer risk based on individual exposures and susceptibilities to cancer. The overall goal 

is to develop, apply and validate biomarkers of human risk in order to enhance cancer risk 

assessment. The combination of information from carcinogenicity tests in laboratory animals 

with classical and molecular epidemiology can help to identify human cancer risk, elucidate 

mechanisms of carcinogenesis and lead to cancer prevention strategies.  

1.1.1. Epidemiology of lung cancer 

Lung cancer epidemiological studies have facilitated the discovery of causes of this disease. 

Unfortunately, epidemiological results may not be sufficient for the elucidation of the 

mechanism(s) by which lung cancer is produced. Nevertheless, epidemiology has the advantage 

that it focuses on the disease and the deaths that actually occur from that disease.  
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Epidemiological data has provided sufficient evidence that lung cancer is the most common fatal 

cancer throughout the world. Case-control and cohort studies in the 1950s and 1960s 

demonstrated that cigarette smoking was the single greatest risk factor for lung cancer (16-19). 

There is extensive literature regarding specific agents that are associated causally with the 

epidemic rise of lung cancer (20-32). Since 1980, considerable progress has been made in 

understanding the multifactor etiology of lung cancer (33-39).  It has been shown that the 

dynamics of the mortality rate change over time. Lung cancer mortality rates have differed 

markedly between the sexes. The age-adjusted lung cancer mortality rate in the US increased 

from 4 to 74 cases per 10,000 in men and from 4 to 27 per 10,000 in women between 1930 and 

1987 (40). During the early 1990s, lung cancer incidence and mortality rates in men have begun 

to level off. The increase in lung cancer in men has ceased at younger ages and is slowing at 

older ages, in agreement with the differences between rates of decline of smoking prevalence 

between sexes in which 37% vs. 18% of men to women have stopped smoking since the mid 

1960s. For women, lung cancer incidence has increased dramatically since the beginning of the 

1990s. Also among women, lung cancer death rates have climbed faster than for any other cancer 

(41,42). Furthermore, women are starting to smoke at a younger age (43). Information on 

demographic factors, for example, socioeconomic status, and education could help in 

understanding the differences in rate of incidence and mortality of lung cancer between men and 

women.  

A strong inverse association of lung cancer incidence with income and education is apparent 

among male. Among females, however, positive associations between income, education and 

lung cancer rates have been observed (44). In the US, the occurrence of lung cancer also varies 

among racial and ethnic groups. Mortality rates have been higher in African American men than 
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in Caucasian men, whereas the rates have been comparable among African American and 

Caucasian women. Lung cancer mortality has been lower in Hispanic men than in Caucasian 

men (41). Before 1970, regional differences in mortality rates for lung cancer were observed 

only among men. In the late 1980s, the geographic patterns also clearly emerged among women 

(45). The rates of adenocarcinoma and oat cell carcinoma increased in Caucasian men from 1969 

through 1988, while the rate of squamous cell carcinoma decreased. In contrast, these rates have 

increased for all major types in Caucasian women (40). Adenocarcinoma is the predominant 

histological cell type among women whereas squamous cell carcinoma predominates among 

men. The proportion of adenocarcinoma is greater in non-smokers than in smokers, and in 

particular in women (40).  

1.1.2. Risk factors for lung cancer 

I. Smoking 

In the past, tobacco was consumed largely in the form of snuff, chewing tobacco, pipes, and 

cigars. More recently, tobacco has been consumed primarily as cigarettes. The explosive growth 

of cigarette smoking is because of the development of cigarette manufacturing equipment, the 

invention of safety matches, and the introduction of mass marketing techniques. In addition, 

changes in the characteristics of the tobacco in cigarettes, which deliver a more pleasant 

sensation to smokers, has led to the dramatic rise in cigarette consumption (46). However, the 

use of cigarettes is significantly more hazardous than pipes or cigars. Pipe or cigar smokers are 

less likely to inhale when they smoke than cigarette smokers because the smoke produced by 

pipes and cigars is harsher and more alkaline than that produced by cigarettes (47). Also, the 

lower pH of cigarette smoke decreases the absorption of nicotine, the addictive agent in tobacco 

 4 



  

smoke, across the oral mucosa. The inhalation of smoke into the lung is required to facilitate the 

absorption (48). As more cigarette smoke is inhaled, more toxic and carcinogenic compounds in 

the cigarette smoke are deposited in the airway and alveoli, and absorbed into the lung and the 

body. 

Cigarette smoke contains several constituents in both the particulate and gas phases of 

mainsteam smoke. Tar is the total particulate substance of the smoke after nicotine and water 

have been removed. Compounds remaining in the gas phase of smoke such as carbon dioxide, 

carbon monoxide, nitrogen oxides, acetone, acrolein, acetonitrile, pyridine, N-

nitrosodimethylamine and N-nitrosoethylmethylamine. Table 1 shows some of carcinogenic 

agents in cigarette smoke that are contained in the particulate phase (46). 

 Table 1. Carcinogenic agents in cigarette smoke 

Compounds Amount per cigarette 

Polycyclic aromatic hydrocarbon (PAH) 

     Benzo[a]pyrene (B[a]P) 

 

20-40 ng 

Aza-arenes 

      Quinoline 

 

1- 2 µg 

N-nitrosamines 

      4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone (NNK)   

      N′-nitrosonornicotine (NNN)  

 

0.08-0.77 µg 

0.12-3.7 µg 

Aromatic amines 

     4-aminobiphenyl (4-ABP) 

 

2-5 ng 

Aldehydes 

     Acetaldehyde 

 

18-1,400 mg 

Source: reference (46) 

 5 



  

I.I. Lung cancer and tobacco smoking 

Studies in the 1950s suggested an association between smoking and lung cancer, which have 

been further supported by evidence from animal carcinogenicity studies of tobacco smoke. The 

accumulating evidence during the 1960s to the 1980s firmly established this causal relationship 

and also showed that differences in various aspects of smoking behavior affect lung cancer risk 

(49). The relative risk increases with duration of smoking and earlier age of starting to smoke. 

Dose-response relationships between the amount smoked and the relative risk of lung cancer 

have been consistently found in epidemiological studies. A dose-response relationship is 

evidence of a causal association of smoking with lung cancer (40). In the 1950s, manufacturers 

introduced the lower-tar filter cigarettes into the market. The tar yield has dropped from 

approximately 35 mg in 1950s to approximate 13 mg currently (41). Studies during the 1960s 

and 1970s addressed the consequences of switching from nonfiltered, high-tar cigarettes to the 

lower-tar filtered cigarettes. These studies reported that filter smokers compared with nonfilter 

smokers showed a lower risk of lung cancer (50-53). There was 20-30% reduction in the odds 

ratio for lung cancer associated with smoking reduced tar yield cigarettes (54). However, 

reduction of risk from smoking filter or lower-tar cigarettes may be insignificant if smokers 

compensate for the lower tar intake per cigarette by increasing the number of cigarettes smoked 

per day or by changing the manner of smoking, e.g., puff frequency or duration (49).  

Inhalation is the major route by which lung tissue is exposed to carcinogens found in tobacco 

smoke. Depth of inhalation is considered to be a factor influencing the level of risk in individual 

smokers.  There are studies that have shown an association between smokers who reported 

inhaling deeply or frequently and higher risk of lung cancer (49). The more recent studies carried 

out with larger sample sizes documented a thorough investigation of risk of different histologic 
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types of lung cancer that may be influenced by different parameters of tobacco smoke exposure. 

These studies showed higher relative risks for squamous and small or oat cell cancers than for 

adenocarcinomas, especially for different parameters of tobacco smoke exposure including 

numbers of cigarettes smoked, years of smoking, and amount and duration of tobacco smoke 

among men and women (54-56). A decline in relative risk with cessation of smoking or with 

smoking filter compared with nonfilter cigarettes was more apparent for squamous and small or 

oat cell cancers than for adenocarcinoma of the lung. However, when frequency and depth of 

inhalation were considered, the relative risk for adenocarcinoma of the lung equaled or exceeded 

the relative risk for squamous cell cancers (56). Although it is certain that cigarette smoking 

increases the risk of the major histologic types of lung cancer, interpretation of these findings in 

a biologically based framework is presently difficult (49).  

The different levels of cigarette smoking can help to explain the differences in rates of lung 

cancer among several ethnic groups. In the US, the age-adjusted lung cancer incidence rates are 

highest in African Americans, intermediate in Caucasians, and lowest in Hispanics (49). The 

incidence rates of lung cancer in African-Americans are 47% higher than in Caucasians and may 

be explained by differences in smoking habits. African American male smokers smoke cigarettes 

with greater tar and nicotine yields than Caucasians. Also, the former prefer to smoke menthol 

cigarettes, which may promote deeper inhalation of cigarette smoke (57). The rates of lung 

cancer in Hispanics are 58% lower than in Caucasians. Hispanic men tend to be lighter smokers 

as they smoke about half the number of cigarettes per day compared to Caucasian men. Also, 

they start to smoke at a later age (49). The high rates of lung cancer among Chinese women have 

received significant attention recently, as the prevalence of smoking among Chinese women is 

low. Results from several studies showed that Chinese female smokers have a two- to four-fold 
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increased risk of lung cancer compared to never smokers. They smoke fewer cigarettes and start 

smoking at a later age. Chinese females have lower attributable risk associated with smoking 

compared with Caucasian females due to lower percent of Chinese females who have ever 

smoked. In addition to smoking, risk factors such as personal and family history of lung diseases 

and exposure to various sources of indoor air pollution, including exposure to oil volatiles from 

cooking and coal-burning devices, may in part, explain the high rates of lung cancer among 

Chinese women (49). 

Studies evaluating smoking cessation and lung cancer incidence show a 20-90% reduction in 

risk among former smokers compared with current smokers. The relative risk of lung cancer 

among ex-smokers decreases sharply with increasing years of abstinence and reaches a plateau 

when adjusted for duration of smoking. In addition, the magnitude of risk reduction among ex-

smokers is considerably less among heavy smokers or ex-smokers who had smoked for longer 

periods than for light smokers or those who had smoked for shorter periods (58).  The proportion 

of lung cancer in developed countries attributable to cigarette smoking was estimated as 83% to 

94% in men and 57% to 80% in women. The proportion of lung cancers that are due to smoking 

would be decreased if smoking were totally eliminated. The encouragement of smoking 

cessation among current smokers and prevention of smoking initiation among school-age 

children seems to be the best prospect for reducing lung cancer incidence. Although the 

proportion of current smokers in the US declined from 50.2% to 31.7% in men and from 31.9% 

to 26.8% in women between 1965 and 1987, the reduction in smoking prevalence has been 

greatest among more educated men and as a result, smoking is increasingly becoming a habit 

associated with lower socioeconomic status (40). The plateau of age-specific rates for lung 

cancer among men is consistent with the reported success of smoking cessation programs among 
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men. With the continued rise of incidence rates of lung cancer among women, extensive health 

promotion research has focused on designing effective strategies to delay the smoking start age 

among young women, as well as facilitate their smoking cessation (40,45). 

II. Environmental tobacco smoke 

Environmental tobacco smoke is produced from the burning of the cigarette between puffs 

called sidestream smoke and from mainstream smoke exhaled by the smoker. There are 

significant differences in the composition of mainstream and side stream smoke. Most chemical 

components are emitted from cigarettes in about 2-5 times greater amounts in sidestream smoke 

than in the mainstream smoke, however, some nitrosamines are emitted at levels 50 times higher. 

Environmental tobacco smoke is mainly an indoor pollution problem, and exposure levels 

depend on the intensity of smoking, room size, and air exchange. More than 30 epidemiological 

studies have been published on environmental tobacco smoke and lung cancer. Some of these 

studies investigated the increased risk of lung cancer in nonsmoking females in relation to 

smoking habits of husbands. The results were inconclusive, with studies reported either positive 

or negative associations. However, after combining the results of these studies (total n = 

272,387), a pooled relative risk analysis of lung cancer in nonsmoking women living with a 

smoker was 1.23 (95% confidence interval 1.11-1.36) (2). Many of the studies also investigated 

the effect of environmental tobacco smoke exposure during childhood and adulthood in relation 

to an increasing risk of lung cancer. Although some reports have suggested an increase in lung 

cancer risk among men with occupational exposure to environmental tobacco smoke and among 

children if the mother smoked, no consistent association was evident from other studies (2). 

Epidemiological studies of passive smoking are confronted by a number of challenges. For 

example, the rarity of lung cancer in lifetime nonsmokers, the greater dilution of environmental 
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tobacco smoke compared to smoke inhaled by the active smokers, the difficulty of obtaining 

accurate exposure information by self-reports, the lack of a biological marker for long-term 

exposure assessment, misclassification of smokers as nonsmokers, and the possibility of 

confounding by other risk factors, including diet or exposure to cooking fumes (for example 

women in China) (40). However, taking into consideration the presence of carcinogens in 

environmental tobacco smoke, exposure estimates in passive smokers, exposure-response 

relationships in smokers, and epidemiological evidence of lung cancer in passive smokers, 

environmental tobacco smoke is of significant carcinogenic importance.  

III. Occupational exposure 

i) Asbestos 

Numerous studies have demonstrated increased lung cancer risk among asbestos workers. 

The overall lung cancer risk was elevated 23% for workers who have been exposed to asbestos 

and the risk in a dose dependent fashion (3). Occupational asbestos exposure interacts with 

smoking to synergistically enhance lung cancer risk (59). Individuals who are exposed to both 

cigarette smoke and asbestos are at a 50-90 fold higher risk than unexposed individuals. The 

precise mechanism of the multiplicative interaction between cigarette smoke and asbestos 

remains unclear. Two mechanisms that have received considerable attention involve an asbestos-

mediated enhanced delivery of mutagenic PAH compounds in tobacco smoke to the respiratory 

epithelium (60,61) and asbestos-induced chromosomal mutation and aneuploidy (62-64). In the 

first hypothesized model, the carcinogenic (genotoxic) potential of B[a]P may be enhanced 

several-fold by the promoter (epigenetic) effect of asbestos particles. This promoting effect could 

be related to the fact that when B[a]P is adsorbed onto the particles, there is a resulting enhanced 

transport and uptake of the carcinogen into epithelial cell membranes. Therefore, it is more likely 
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that individuals who are exposed to both cigarette smoke and asbestos have higher levels of 

B[a]P in the lung epithelium, resulting in a higher proportion of DNA damage compared to those 

in asbestos unexposed smokers. For the second hypothesized model, it is still controversial 

whether an increased susceptibility of asbestos-exposed individuals to B[a]P induced lung cancer 

results from an enhanced sensitivity to the induction of genetic damage by B[a]P or the direct 

physical interaction of the asbestos fibers with the chromosome or structural proteins of the 

spindle apparatus that causes missegregation of chromosomes during mitosis resulting in 

aneuploidy. One or both of these models may explain the mechanisms that underlie the 

enhancement of lung cancer risk resulting from an interaction of asbestos and smoking.    

ii) Arsenic 

There is substantial epidemiological evidence that inhalation of inorganic arsenic is a cause 

of lung cancer in the workplace. The mechanisms by which inorganic arsenic species induce 

lung cancer are unknown. Arsenic has generally failed to either initiate or promote cancer in 

experimental animals. A few studies have reported that arsenic can cause cell transformation, 

chromosomal aberrations, and sister chromatid exchanges, and can inhibit DNA repair in animal 

systems (4,5,65). Arsenic has recently been shown to induce oncogene amplification in cell 

culture, suggesting a role in the progression of initiated cells in the lung (5). Limited data are 

available on the interaction between occupational arsenic exposure and tobacco smoking. 

However, most of the epidemiological studies that provided data on the interaction between 

occupational exposure and tobacco smoking point toward a less than multiplicative interaction 

(66). 
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iii) Radon 

Radon (radon-222) is chemically inert radioactive gas at typical environmental temperatures. 

Radon forms from the decay of the radium-226 that is in most soils and rocks. During the natural 

decay, some atoms leave the soil or rock and enter the surrounding air or water resulting in 

release radon to indoor and outdoor air and also to the air of underground passages and mines 

(67). Radon is classified as a group I carcinogen based on evidence that shows radon is 

carcinogenic in humans and a clear dose-response relationship from animal studies. Radon 

decays with a half-life of 3.82 days into radon decay products, polonium-218 and polonium-214. 

These two decay products emit alpha particles that are high energy and high mass particles 

consisting of two protons and two neutrons and highly effective in damaging tissues. Therefore, 

when people inhale radon, emissions of alpha particles take place within the lung, and genetic 

material in cells lining the airways may be damaged, possibly resulting in lung cancer. Lung 

cancer risk has been associated with exposure to radon decay products in different populations of 

underground miners in the US, Canada, Sweden, Czechoslovakia, etc. The interaction between 

tobacco smoking and radon exposure has been investigated in a number of epidemiological 

studies. These study results indicate that radon and smoking act synergistically in the etiology of 

lung cancer (67). 

Based on studies of underground miners, it is firmly established that exposure to relatively 

high levels of radon and its decay products causes an increased risk of lung cancer in humans 

(40). The possible effects of radon in homes has led to public health concerns when radon and its 

progeny were detected in the air of buildings and there was an understanding of the mechanism 

by which radon reaches indoor air. The concentration of radium in soil and rock varies over 

several orders and accounts for most of the variation in radon concentration between dwellings. 

 12 



  

The entry of radon into a building is determined by the structural characteristics of, and the flow 

of radon-containing air into, the building. Routes of radon entry include cracks and holes in 

basements, and cracks in concrete floors (67). Conditions of radon exposure in homes differ from 

that in mines. It is possible that long-term exposure to the relatively low radon levels in indoor 

air may cause a greater risk than expected based on linear extrapolation from the levels typical of 

mines (6). Inconsistent results among epidemiological studies of residential radon exposure in 

relation to lung cancer may be due to inadequate sample size, misclassification of exposure, and 

confounding by cigarette smoking. It is to be hoped that the large number of epidemiological 

studies on the effects of environmental exposure to radon that are currently in progress will 

provide useful evidence for defining the level of radon exposure at which an increase in risk is 

observed, and the interaction between radon exposure and cigarette smoking (67). 

iv) Silica 

During the past decade, there has been interest in a possible link between silica exposure and 

the risk of lung cancer. Epidemiological study findings of pulmonary cancer risks among silica-

exposed workers show relative risk levels, which are consistently elevated across studies within 

the range of 1.3-1.7. After adjusting for age and smoking, the risk of lung cancer remains 

elevated. Evidence for a dose-response relationship has been found. A temporal sequence 

between exposure and response is observed and animal studies are confirmatory (7). The results 

of epidemiological studies that assessed the interaction between exposure to silica and tobacco 

smoking are however inconsistent. Although most of these studies point toward a less than 

multiplicative interaction, no conclusion can be drawn at present on the model of interaction 

between tobacco smoking and silica exposure (66). One complicating factor is the fact that in 

some of these studies, silicosis is used as a surrogate marker for exposure to silica. Furthermore, 
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none of these investigations included nonsilicotic subjects into the interpretation, which may 

provide clear evidence for the carcinogenicity of silica or for the role that tobacco smoke may 

play in it. 

v) Chromium and Nickel 

Exposure to chromium and chromium compounds is also associated with an increased risk of 

developing lung cancer. Little information is available on smoking habits for chromium-exposed 

workers and a possible interaction between smoking and chromium exposure has not been 

examined to date. Epidemiological investigations of the association of nickel exposure with lung 

cancer have been conducted. A risk of lung cancer has been found among mining, smelting, and 

refining operations workers (8). Again, there is little data regarding the effect of smoking and 

nickel exposure on lung cancer risk.  

IV. Air pollution 

It has long been suspected that pollution of outdoor air by industry, vehicles, power plants, 

and residential fire might contribute to excess lung cancer incidence. Outdoor air pollution is a 

complex mixture that is variable over time and region. Moreover, biologically significant 

interactions among the mixtures’ components may occur. Studies of air pollution and lung cancer 

is further complicated by the overwhelming effect of cigarette smoking, occupational, and 

lifestyle factors (68). However, urban residence is still associated with increased lung cancer risk 

after adjustment for smoking and occupation (28). These may explain the 1.5-2.0 fold greater 

lung cancer incidence in cities compared to rural areas. Outdoor air pollution has worsened and 

lung cancer rates increased, it is plausible to postulate a causal link. Thus, while the overall 

contribution of air pollution is difficult to determine, exposure to polluted air is likely to 

contribute to a modest percentage of lung cancer incidence. 
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V. Endocrine factors 

The higher proportion of nonsmokers and of lung adenocarcinoma among females compared 

to male lung cancer cases suggests a possible role of endocrine factors such as menstrual history, 

reproductive history, and use of exogenous hormones (40). One study suggested that the 

increased risk of adenocarcinoma of the lung after adjustment for smoking in Chinese women 

was associated with short menstrual cycles (69).  There are other studies which have reported 

observations that support the role of the endocrine system in lung cancer among women. For 

example, the detection of steroid receptors in some lung cancers, a higher-than-expected rate of 

adenocarcinoma in lung among more than 10 year survivors of endometrial cancer, and an 

apparent increase in the risk of lung cancer in women receiving exogenous estrogens, including 

hormone replacement therapy (70-72). However, more investigation is needed before any 

conclusions regarding the relationship of endocrine factors to lung cancer risk among women can 

be made. 

VI. Diet 

The dietary factors most intensively studied with respect to lung cancer are retinoids in the 

form of vitamin A or its precursor carotenoids. Experimental studies including animal models 

have provided evidence in support of a protective effect of retinoids against lung cancer. For 

example, retinoid protect the integrity of the epithelium in the presence of chemical carcinogens 

(73).  Many epidemiological studies have investigated the relationship between diet and lung 

cancer in humans. Consistent evidence of a substantial protective effect has been observed. 

Carotenoids are antioxidants under certain conditions. Their ability to neutralize free radicals is 

an accepted mechanism underlying the apparent protective effect on lung cancer. Some studies 

have found a protective effect of vegetable consumption, suggesting that other antioxidants such 
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as vitamin C and vitamin E may also be protective against lung cancer. (9,74). Based on the 

consistency of the epidemiological observations that smokers with lower intakes of carotene 

appear to be at higher risk after adjusting for cigarette smoking, chemoprevention trials have 

investigated the effect of retinoids on inhibition and reversion of lung cancer carcinogenesis with 

premalignant end-points such as bronchial metaplasia and dysplasia and sputum atypia. Even 

though retinoids have showed suppressing effect on lung carcinogenesis in animal models, they 

have failed to inhibit carcinogenesis in humans. Moreover, beta-carotene has been shown to be 

associated with greater lung cancer incidence and mortality (75). A study of a combination of 

beta-carotene and retinyl palmitate in 18,000 high-risk smokers in US found a 28% increase in 

the incidence of lung cancer. A similar finding was found in a study in Finland for the group 

taking beta-carotene (76). Therefore, these agents should not be regarded as harmless, but as 

having potential toxicities. Fat intake may also play a key role in lung carcinogenesis. In animal 

models, it has been shown that high intake of dietary fat can promote chemically induced 

pulmonary tumors (77,78). Several case-control studies provided some support for the 

association between diets high in fat and increased lung cancer risk. These studies showed 

greater risk among people with higher levels of fat or cholesterol intake in their diets (9,10,79). 

There are only a few reports studying the interaction of diets high in fat, which are also low in 

fruits and vegetables.  

1.2. Genetic Susceptibility 

It is therefore well established that smoking and other environmental exposures are major 

risk factors for lung cancer. However, not all smokers and individuals who are exposed to 

environmental carcinogens develop lung cancer. As a result, it has been hypothesized that other 

factors influence interindividual differences in susceptibility to smoking and environmental 
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exposures and may play a major role in lung carcinogenesis. It is now becoming increasingly 

evident that lung cancer has a genetic basis in addition to the well-known contribution of 

environmental factors. This evidence includes results of recent genetic epidemiological studies, 

metabolic phenotyping, cytogenetic studies, and oncogene and growth factor expression 

analyses. A brief review of the evidence on familial aggregation that may modify lung cancer 

risk follows. The contribution of genetic predisposition to lung cancer that results from 

individual differences in metabolism and DNA repair is then extensively described. 

1.2.1. Familial aggregation 

Several epidemiological studies have investigated the contribution of familial aggregation to 

lung cancer by examining lung cancer aggregation in family members of lung cancer patients in 

order to identify gene(s) responsible for lung cancer. Some evidence of familial susceptibility to 

lung cancer development has been observed. For example, there is a 2- to 4-fold greater risk of 

lung cancer among smoking and nonsmoking proband relatives after controlling for cigarette 

smoking (12,15). Furthermore, some studies found the greatest risk of lung cancer among 

subjects with first-degree relatives with lung cancer and a modest increase in lung cancer risk 

with other tobacco-related cancers reported in first-degree relatives (36,80-82). Sellers et al. (83) 

reported that the pattern of lung cancer in families ascertained through a proband with lung 

cancer is consistent with Mendelian segregation of an autosomal allele and predicted that a rare 

codominant gene is responsible for the age at onset distribution. According to this model, at the 

mean level of tobacco consumption, individuals who inherited two copies of the high risk allele 

have a mean age at onset of lung cancer of 38 years, roughly 24 years earlier than individuals 

who inherit only one high risk allele, which show a mean onset of 62 years. For individuals who 

are presumed to carry no high-risk alleles, the mean age at onset is 87 years (83). However, both 
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the differential exposure to tobacco across generation, and sex differences in tobacco exposure 

could have a profound effect on the modeling of lung cancer susceptibility.  

Since most individuals in familial aggregation studies of lung cancer had some history of 

cigarette smoking, conclusions regarding the genetic contribution to the etiology of lung cancer 

cannot be made. Detailed information on cigarette exposure will be required to separate the 

contribution of genetics and the environment. Investigation into the genetics of lung cancer has 

been evaluated in individuals with lung cancer and little exposure to cigarettes. There are several 

genetic epidemiological studies that show familial aggregation of lung cancer among 

nonsmoking lung cancer cases with an earlier age at onset (84,85). These studies investigated the 

role of genetic factors and the effects of cigarette smoking, and passive smoking in lung cancer 

risk among relatives of nonsmoking probands. The first study observed that first-degree relatives 

(ages 40-59 years) of nonsmoking lung cancer cases have an over 6-fold increased risk of lung 

cancer compared to relatives of controls (84). No increased risk was seen in relatives of probands 

age 60 years or more. Similar results were found by another study in which no evidence of a 

major genetic effect was detected among older probands’ families (≥60 years). However, in 

families of older probands, eliminating exposure to cigarette smoking not only can reduce lung 

cancer risk by over 85% among smokers, but also reduced the risk by over 60% among passive-

smokers. In younger probands’ families, a Mendelian codominant model with significant 

modifying effects of smoking best explained a genetic effect (85). These results suggest the 

presence of a high-risk gene, which contributes to early-onset lung cancer in a population where 

the probands are nonsmokers. Also, the results demonstrate that the attributable risk from the 

putative high-risk allele declines with age while the attributable risk from tobacco smoking 

increases with age.  
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Nevertheless, results of epidemiologic studies on familial aggregation require careful 

interpretation. Although the confounding effect of cohort differences in exposure may be 

controlled by stratification of the age of probands, a relatively small proportion of families have 

been studied among the young proband group. With family members sharing lifestyle and other 

environmental factors, it is difficult to provide conclusive evidence that accumulation of a 

disease has a genetic origin. Another limitation in familial aggregation studies is an inaccurate 

estimation of cigarette exposure, such as family history recall bias, potentially results in 

differential misclassification. Taken together, the findings from familial aggregation of lung 

cancer studies suggest that a genetic component might act as both independent risk factor and an 

effect modifier of exogenous risk factors, with smoking being the most important in lung cancer 

etiology.  

1.2.2. Drug metabolizing enzyme polymorphisms 

A potentially important host factor influencing individual susceptibility to tobacco smoke is 

interindividual differences in the metabolism of carcinogens in tobacco smoke, and of agents 

from environmental and occupational exposure. Most environmental carcinogens, including 

those in tobacco smoke, do not exert their biological effects per se, but require metabolic 

activation before they interact with cellular macromolecules. Many compounds are converted to 

reactive electrophilic metabolites by the oxidative (phase I) enzymes for example, cytochrome 

P450s (CYPs). These intermediates may then be conjugated with endogenous compounds and 

detoxified by phase II enzymes to become water soluble and thus readily excreted. Depending on 

the structure of the parent compound, adequate solubility in water may be obtained following 

after phase I reactions. Conversely, some compounds may be metabolized by phase II reactions 

without phase I metabolism. Differences in the metabolic activation and detoxification pathways 
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of environmental agents including tobacco smoke are likely to be a major source of 

interindividual variation in levels and types of DNA mutation and susceptibility to cancer.  

Cytochrome P450s (CYPs) are unique hemoproteins that bind carbon monoxide to give a 

characteristic absorption spectrum at 450 nm. Hepatic CYPs are the major enzyme system 

involved in the phase I metabolism and toxicity of many drugs and xenobiotics (86). To date, 

many human CYPs have been characterized, and there are differences in their patterns of 

substrate specificity, regulation and expression. There are large interethnic variations in the CYP 

genes that have been investigated (87-91). Interindividual variation in drug or xenobiotic 

metabolism can occur as a result of specific CYP genetic polymorphisms in which individuals 

are either poor metabolizers (PMs) or extensive metabolizers (EMs). For example, human CYP 

genetic polymorphisms occur in a number of the CYP genes including CYP1A1 (92-94), 

CYP1A2 (95,96), CYP1B1 (97-99), CYP2D6 (100-102) and CYP2E1 (103,104). CYP genetic 

polymorphisms can result in variability of enzyme expression and activity levels.  

Phase II enzymes such as glutathione S-transferase (GST) and N-acetyltransferase (NAT) are 

generally involved in phase II detoxification pathways. To date, human GST isozymes have been 

identified which are referred to as Alpha, Mu, Pi, Theta, and Zeta (105). GST isozymes have 

been shown to be polymorphic, resulting in reduced enzyme activity (106-111). Not only have 

large interindividual variations in enzyme activities been demonstrated for several GSTs, but 

also ethnic differences in the frequency distribution of some GST allelic variants have been 

shown (112,113). The human N-acetyltransferase enzymes are involved in transformation of 

drugs and chemicals, including the activation of arylamines in tobacco smoke. Genetic 

polymorphisms that result in a slow acetylator phenotype affects about 50% of Caucasians (114). 

The previous understanding has been that the ultimate origin of acetylation polymorphism is 
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ascribable to the NAT2* gene locus. However, recent evidence shows that NAT1* may in fact 

also participate in the acetylation polymorphism (115). A wide range of values for NAT activity 

in different population groups has been reported. The NAT1 fast acetylator alleles are found in 

frequencies ranging from 15% to 50%, whereas the NAT2 slow acetylator alleles range from 5% 

to 90% among different ethnic groups (116).   

Recently, polymorphisms in genes encoding for some other enzymes involved in the 

metabolism of tobacco smoke and environmental carcinogens, such as microsomal epoxide 

hydrolase and myeloperoxidase, have also been investigated as host factors that can modulate 

interindividual susceptibility. Microsomal epoxide hydrolase (mEPHX) encoded by the EPHX1 

gene, is a critical biotransformation enzyme that catalyzes the hydrolysis of a large number of 

epoxide intermediates, which arise frequently from the oxidation of xenobitics and 

environmental compounds by CYPs. Single nucleotide polymorphisms (SNPs) in the EPHX1 

gene may result in either increased or decreased enzyme activity. Myeloperoxidase (MPO) is a 

heme-containing enzyme, which is present in azurophilic granules of human polymorphonuclear 

granulocytes (PMNs) (117). Animal models have demonstrated that inhalation of cigarette 

smoke results in an accumulation of neutrophils in the lung. In humans, cigarette smoke may 

attract neutrophils to the lung by stimulating alveolar macrophages to release a potent 

chemotactic factor for neutrophils (118). Myeloperoxidase activates carcinogens including B[a]P 

as well as aromatic amines in tobacco smoke. A single base substitution (G to A) within the Alu 

element preceding the MPO gene results a lack of a strong general transcription factor SP1 

binding site. The allele which has an A residue instead of G confers severalfold less 

transcriptional activity in transient transfection assays (119). 
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1.2.3. DNA repair gene polymorphisms 

DNA repair systems are essential for the maintenance of genomic integrity. Both endogenous 

and exogenous exposures to carcinogens or genotoxic agents cause cell-cycle delays that allow 

cells to repair DNA damage. Another important source of interindividual variability in relation to 

the development of cancer is variability in DNA repair capacity. Several inherited genetic 

instability syndromes including Ataxia-telangiectasia (A-T), Fanconi anemia and Bloom’s 

syndrome are characterized by both chromosomal instability and high risk of cancer (120). 

Xeroderma pigmentosum (XP) is caused by a deficiency in nucleotide excision repair (NER) and 

characterized by extreme susceptibility to ultraviolet (UV) light associated with skin cancer is 

another example of an association between deficiency in DNA damage repair and increased 

cancer risk (120). In addition to these rare syndromes, individuals differ widely in their capacity 

to repair DNA damage from both exogenous agents such as tobacco smoke and endogenous 

reactions such as oxidations. Some of these interindividual differences are likely to have a 

genetic origin. Recently, forty different amino acid substitution variants have been identified in 

nucleotide excision repair genes (XPD, and XPF), a gene involved in double-strand break 

repair/recombination genes (XRCC3), and a gene functioning in base excision repair and the 

repair of radiation-induced damage (XRCC1) with variant allele frequencies ranging from 0.04-

0.50 (121). Five additional single-nucleotide polymorphisms in the coding regions of the XPF 

gene have been reported (122). Khan et al. (123) reported a new intronic, biallelic poly (AT) 

insertion/deletion polymorphism (XPC-PAT) of the DNA repair gene XPC that is in linkage 

disequilibrium with a single-nucleotide polymorphism in XPC exon 15. The biological effects of 

these polymorphisms have not been elucidated, but some of these variants may be associated 

with a reduced repair capacity and increased cancer susceptibility. Therefore, polymorphisms in 
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DNA repair genes may be associated with differences in the repair efficiency of DNA damage 

and may also influence susceptibility to environmental and occupational carcinogens and 

predisposition to cancer. 

1.3. Genetic susceptibility biomarkers 

 Genetic polymorphisms in the enzymes responsible for activation (phase I) and 

detoxification (phase II) of tobacco carcinogens which may modulate the dose of these 

carcinogens that lung tissue is exposed and in the DNA repair genes affecting the repair 

efficiency of DNA damage from tobacco carcinogens in those lung tissues, respectively, are 

therefore likely to be an important source of interindividual differences in lung cancer 

susceptibility. In order to assess the impact of genetically polymorphic biotransformation and 

DNA repair on interindividual differences in lung cancer susceptibility, genetic susceptibility 

biomarkers of polymorphisms in metabolic and DNA repair genes involved in tobacco 

carcinogens metabolism that reflect the mechanism of action of those carcinogens have been 

developed and validated. It is assumed that these validated genetic susceptibility biomarkers will 

be strong predictors of an individual’s risk of lung cancer. Several studies that have been 

demonstrated the usefulness of genetic susceptibility biomarkers for polymorphisms associated 

with metabolism and repair genes in increasing the strength of an association between exposure 

and lung cancer. The study results have provided considerable support for a causative association 

between exposure and onset of cancer that most notably by increasing the magnitude of observed 

relative risks and by providing mechanistic explanation for the development of lung cancer. 
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1.3.1. CYP1A1 

The CYP1A1 gene product, aromatic hydrocarbon hydroxylase (AHH), is primarily a 

extrahepatic enzyme that catalyzes the first step in the metabolism of PAHs, such as B[a]P in 

cigarette smoke, to the ultimate DNA-binding, carcinogenic agent. The CYP1A1 gene is induced 

by exposure to exogenous agents such as B[a]P, other PAHs and dioxin (124). There are 10 

allelic variants within the CYP1A1 gene, which have been reported and are listed in Table 2.  

Table 2. CYP1A1 allele nomenclature 

Enzyme activity  

Allele 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

 

References 

CYP1A1*1A None None Normal Normal (125-127) 

CYP1A1*1B C3219T None   (128) 

CYP1A1*1C G3229A None   (128) 

CYP1A1*2A T3801C None   (129) 

CYP1A1*2B A2455G, T3801C I462V   (93) 

CYP1A1*2C A2455G I462V  Normal (93,130,131) 

CYP1A1*3 T3205C None   (94) 

CYP1A1*4 C2453A T461N   (132) 

CYP1A1*5 C2461A R464S   (133) 

CYP1A1*6 G1636T M331I   (133) 

Modified from http://www.imm.ki.se/CYPalleles/  

The relationship between CYP1A1 genotypes and phenotypic expression has not been 

extensively studied. AHH inducibility is correlated with the CYP1A1*2A but not the 

CYP1A1*2B allele (134,135). The CYP1A1*2A variant has been associated with increased lung 

cancer susceptibility in Japanese populations (92) but this finding was not confirmed in 

Caucasians (136,137), possibly due to a lower allele frequency of 12% in Caucasians compared 

 24 



  

to 33.2% in Japanese (138). The functional significance of African-American specific 

polymorphism (CYP1A1*3) is unclear. Also, the relevance of this variant allele to lung cancer 

susceptibility is controversial (139,140). Cascorbi et al. (132) reported the allele frequency of 

2.87% for CYP1A1*4 among both lung cancer patients and controls. There are several studies 

which have evaluated the association between the currently known CYP1A1 polymorphisms and 

lung cancer risk and have suggested that CYP1A1 polymorphisms may explain the 

interindividual variation in lung cancer susceptibility (141-144). 

1.3.2. CYP1A2 

CYP1A2 is involved in the metabolic activation of endogenous estrogens and several 

carcinogens such as aromatic and heterocyclic amines, and nitroaromatic compounds. In humans, 

CYP1A2 protein has only been detected in the liver. Genetic polymorphisms in the CYP1A2 

gene account in part for the wide interindividual differences in CYP1A2 activity that observed in 

humans. The functional significance of two allelic variants of CYP1A2 is known. CYP1A2*1C, 

identified by a point mutation from guanine to adenine at position -2964 in the 5′-flanking region 

of the CYP1A2 gene (95), results in a significant decrease of CYP1A2 transcription and activity. 

The CYP1A2*1F variant allele (C-734A) results in increased inducibility. Other allelic variants 

of CYP1A2 are shown in Table 3.  
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Table 3. CYP1A2 allele nomenclature 

Enzyme activity  

Allele 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

 

References 

CYP1A2*1A None None Normal Normal (145,146) 

CYP1A2*1B T1545C None   (95,147) 

CYP1A2*1C G-3858A None Decreased  (148) 

CYP1A2*1D -2464delT None   (149) 

CYP1A2*1E T-740G None   (149) 

CYP1A2*1F C-164A None Higher 

inducibility 

 (149,150) 

CYP1A2*1G T-740G, T1545C None   (151) 

CYP1A2*1H A951C, T1545C None   (151) 

CYP1A2*2 C63G F21L   (152) 

CYP1A2*3 G1042A, T1545C D348N   (151) 

CYP1A2*4 A1156T I386F   (151) 

CYP1A2*5 G1217A C406Y   (151) 

CYP1A2*6 C1291T C431Y   (151) 

Modified from http://www.imm.ki.se/CYPalleles/ 

CYP1A2 enzyme activity is also induced by environmental and dietary compounds such as 

those from tobacco smoke and charbroiled or high-temperature cooked meat. Several 

epidemiological studies have been conducted to investigate the association of CYP1A2 activity, 

alone or in combination with other CYPs, and cancer risk. Most studies have focused on the 

relationship between CYP1A2 phenotype, environmental exposure and risk of colorectal or 

urinary bladder cancer. It has been shown that elevated CYP1A2 activity is a risk factor for lung 

cancer, especially among individuals who are smokers and regularly consume charbroiled or 

high-temperature cooked meat. These individuals are exposed to high amounts of PAHs, 
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aromatic and heterocyclic amines, and nitroaromatic compounds that can induce the CYP1A2 

activity in liver and are metabolized by CYP1A2. This results high levels of reactive 

intermediates that can enter the circulation, and be absorbed across the lung epithelium where 

DNA adduct formation may occur as been observed in in vivo animal feeding studies (153,154) 

as well as identification of arylamine-DNA adducts in human peripheral lung tissue (155). 

Another study investigated the association between CYP1A2 activity and lung cancer risk among 

non-smoking Chinese women. It was found that individuals with higher CYP1A2 activity might 

have a higher risk of lung adenocarcinoma. Furthermore, a significant increased risk of lung 

adenocarcinoma (OR 6.9, 95% CI, 1.3-37.6) was observed in subjects with slow NAT2/high 

CYP1A2 activity. Although this finding is limited by the small numbers of subjects in the study, 

further data on the contribution of dietary heterocyclic amines, endogenous estrogens and 

CYP1A2/NAT2 activities to risk of lung cancer especially adenocarcinoma among non-smoking 

women may explain a mechanism involved in lung cancer etiology. 

1.3.3. CYP1B1 

CYP1B1 has recently been identified and cloned. CYP1B1 is constitutively expressed in 

extrahepatic tissues including lung and mammary tissues, and catalyzes the activation of both 

PAHs and aryl amines (156). CYP1B1 is very active in catalyzing the activation of lung 

carcinogens such as (+)- and (-)-B[a]P-7,8-diol, 7,12-dimethylbenz[a]anthracene (DMBA)-3,4-

diol, and dibenzo[a,l]pyrene (DB[a,l]P-11,12-diol. There are nineteen allelic variants of human 

CYP1B1, including those leading to amino acid substitutions (97,98) as shown in Table 4.  

 27 



  

Table 4. CYP1B1 allele nomenclature 

Enzyme activity  

Allele 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

 

References 

CYP1B1*1 None None Normal Normal (157) 

CYP1B1*2 C142G, G355T R48G, A119S   (98,158) 

CYP1B1*3 C4326G L432V   (97,98) 

CYP1B1*4 A4390G N453S   (97,98) 

CYP1B1*11 G171C W57C   (98) 

CYP1B1*12 G182A G61E   (98) 

CYP1B1*13 501insT frameshift   (98) 

CYP1B1*14 G841T E281X   (98) 

CYP1B1*15 863insC frameshift   (159) 

CYP1B1*16 Deletion splicing error   (159) 

CYP1B1*17 4096del13 frameshift   (159) 

CYP1B1*18 G4125T G365W   (98) 

CYP1B1*19 C4168T P379L   (98) 

CYP1B1*20 G4191A E387K   (98) 

CYP1B1*21 G4201A R390H   (98) 

CYP1B1*22 4232dup10 frameshift   (98) 

CYP1B1*23 C4342T P437L   (98) 

CYP1B1*24 G4377del frameshift   (98) 

CYP1B1*25 C4437T R469W   (98) 

CYP1B1*26 4435dup27 frameshift   (98) 

Modified from http://www.imm.ki.se/CYPalleles/ 
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An association between CYP1B1 polymorphisms and increased risk of lung cancer, in 

particular squamous cell carcinoma, has been observed only with the CYP1B1*2 variant (99). 

However, it has also been reported that the CYP1B1*2, CYP1B1*3 variants are associated with 

increased activation of some of the dihydrodiol metabolites of PAHs (1.2 to 1.5-fold) (160). 

Although the effect of CYP1B1 single nucleotide polymorphisms on catalytic activity has not 

been completely evaluated, interindividual differences in the metabolism of procarcinogens 

found in tobacco smoke as a result of genetic polymorphisms of CYP1B1 gene may contribute to 

increased susceptibility to lung cancer. 

1.3.4. CYP2D6 

CYP2D6 plays a role in the metabolism of the tobacco specific nitrosamine, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Genetic polymorphisms in the CYP2D6 

gene result in four major phenotypes, ultra-rapid metabolizers (UM), extensive metabolizers 

(EM), intermediate metabolizers (IM), and poor metabolizers (PM). In Caucasians, 3-10% of 

individuals are poor metabolizers as a result of either absent or inactive CYP2D6 gene (161). 

There are fifty-three variant alleles of CYP2D6 gene have been characterized (90). The most 

common enzyme-inactivating allelic variants of CYP2D6 are CYP2D6*3A, which has a single 

nucleotide deletion in exon 5 resulting in frameshift and CYP2D6*4A, which contains several 

silent single nucleotide substitutions and a point mutation in the consensus sequence for the 

splice site at the intron 3/exon 4 splice junction. The CYP2D6 gene deletion is termed as 

CYP2D6*5. Five allelic variants (the wild-type CYP2D6*1A, *2, *2B, *4 and *5) account for 

about 87% of all alleles. The remaining alleles occur with a frequency of 0.1%-2.7%. 

 The possible association between the CYP2D6 polymorphisms and lung cancer risk has been 

investigated in several studies. It was first reported that extensive metabolizers are at markedly 
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increased risk of lung cancer (35). However this association between CYP2D6 and lung cancer 

susceptibility was not confirmed in several other studies (162-164). More recently, a weak 

association between the CYP2D6 genetic polymorphism and lung cancer risk was reported 

following a meta-analysis of the data from all published studies (165) and confirmed by a recent 

population-based case control study that co-analyzed a number of variables such as smoking 

history and occupational exposure to environmental pollutants (166). Although the molecular 

basis of impaired activity of CYP2D6 is now well understood, varying CYP2D6 allele 

frequencies in different populations, methods used to assign CYP2D6 phenotype or genotype, 

selection of the control population, smoking history etc., makes the significance of the data 

obtained from several studies difficult to determine.   

1.3.5. CYP2E1 

Cytochrome P450 2E1 activates several known carcinogens including N-nitrosamines, 

benzene, styrene, and vinyl chloride. CYP2E1 expression is dramatically enhanced by ethanol, 

benzene and tobacco smoke exposures. The CYP2E1 gene is also reported to have genetic 

variation with significant differences of allele frequencies among different racial groups.  
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Table 5. CYP2E1 allele nomenclature 

Enzyme activity  

Allele 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

 

References 

CYP2E1*1A None None Normal Normal (167) 

CYP2E1*1B C9893G None   (168,169) 

CYP2E1*1C 6 repeats in the 5’ 

flanking region 

None   (170) 

CYP2E1*1D 8 repeats in the 5’ 

flanking region 

None Increase in 

activity after 

alcohol 

exposure and 

in obese 

subjects 

 (170,171) 

CYP2E1*2 G1132A R76H  Reduced (172) 

CYP2E1*3 G10023A V389I  Normal (172) 

CYP2E1*4 G4768A V179I  Normal (173) 

CYP2E1*5A G-1293C, C-1053T, 

T7632A 

None   (103,174,175) 

CYP2E1*5B G-1293C, C-1053T None   (103,174) 

CYP2E1*6 T7632A None   (175) 

CYP2E1*7A T-333A None   (173) 

CYP2E1*7B G-71T, T-333A None   (173) 

CYP2E1*7C T-333A, A-352G None   (173) 

Modified from http://www.imm.ki.se/CYPalleles/ 
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The CYP2E1*6 allele is present at an allele frequency of 8-11% in Caucasians and African-

Americans but at a frequency of 24-29% in Oriental populations. The allelic frequencies of 

CYP2E1*5B variant allele were 2-5% in Caucasians and African-Americans but 19-28% in 

Oriental populations. Since CYP2E1 is important in the metabolic activation of various N-

nitrosamines, including the potent tobacco-specific procarcinogen 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone (NNK), differences in CYP2E1 activity as a result of polymorphisms in the 

CYP2E1 gene may be responsible for variations in host susceptibility to lung cancer. The 

CYP2E1*6 variant was reported to be associated with lung cancer among Japanese (104) but not 

among Caucasians and African-Americans (176). There have been also contradictory and 

inconclusive reports associating the RsaI polymorphism with susceptibility to lung cancer and 

smoking exposure (175,177,178). A major reason for this discrepancy might be ethnic 

differences in allele frequencies. According to a meta-analysis of the seven published case-

control studies on the CYP2E1 5′-flanking region polymorphism and lung cancer, a possible 

higher risk for the homozygous wild type genotype was indicated. However, stratification by 

ethnicity did not reveal significant differences in lung cancer risk associated with the 5′-flanking 

region polymorphism among Caucasians, African-Americans, and Asians (179). There are few 

data on the relationship between CYP2E1 genotypes and phenotypes in humans. Furthermore, 

the inducibility of CYP2E1 by cigarette smoking for individuals with different genotypes 

remains unknown. The association between the CYP2E1 polymorphisms, their phenotypes and 

lung cancer risk needs to be further explored. 

1.3.6. GSTs 

The glutathione S-transferases (GSTs) include a supergene family of phase II detoxifying 

enzymes that catalyze reactions between glutathione (GSH) and electrophilic compounds, 
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including carcinogens present in the diet and tobacco smoke such as PAHs. There is evidence for 

polymorphisms in the GST genes among the Mu, Theta, and Pi gene families. Three alleles for 

GSTM1 polymorphisms have been reported. The GSTM1*0 allele (GSTM1 null genotype) is a 

result of a homozygous gene deletion of the GSTM1 gene locus resulting in no GSTM1 activity 

(107). The other two variant alleles (GSTM1*A and GSTM1*B) differ by only a single amino 

acid for a cytosine to guanine at position 534, which results in the substitution of amino acid 

lysine to asparagines. These two alleles encode GSTM1 enzyme that shows similar catalytic 

activity and are classified together as the positive conjugator phenotype. The GSTM1*0 allele 

has a high prevalence and approximately 40-60% of Caucasians have the null genotype (180). 

Recently, two alleles have been identified for the GSTM3 gene (GSTM3*A and GSTM3*B). The 

GSTM3*B allele differs from the GSTM3*A allele by containing a 3 base-pairs deletion in intron 

6 of the GSTM3 gene which forms a recognition motif for the YY1 transcription factor and has 

been postulated to increase GSTM3 transcription. GSTM3*B is in a linkage disequilibrium with 

GSTM1*A. Thus, individuals with GSTM1*A/GSTM3*B may express more GSTM3 than those 

with GSTM1*0/GSTM3*A or GSTM1*B/GSTM3*A because GSTM3*A is not inducible by the 

YY1 transcription factor (105). GSTM3 genotype frequencies were reported by Inskip et al. 

(181) at a frequency of 84.2% for GSTM3*A and of 15.8% for GSTM3*B. 

GSTM1 is involved in the detoxification of carcinogens found in tobacco smoke such as the 

diol epoxide of B[a]P. The possible association between GSTM1 null genotype and lung cancer 

risk has been investigated in several studies. The earliest studies reported that individuals lacking 

enzyme activity were at increased risk of lung cancer. Since then many studies that have 

classified subjects according to the presence or homozygous deletion of the GSTM1 gene have 

yielded conflicting data and the influence of the GSTM1 on lung cancer risk remains unclear. A 
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meta-analysis of 51 published or unpublished studies involving about 20,000 individuals 

indicated that GSTM1 null conferred a weak but significant increased risk of lung cancer (OR 

1.20, 95% CI, 1.10-1.29) (182). GSTM3 is one of the most abundant expressed GSTs in human 

lung and also plays an important role in the detoxification of PAHs including B[a]P (183). There 

are a few studies that assess the GSTM3 polymorphisms in association with lung cancer 

susceptibility. These studies found no significant contribution of GSTM3 genotypes to the risk of 

lung cancer (184,185).   

A gene deletion polymorphism is also common for the GSTT1 (108). About 20-40% of 

Caucasians are homozygotes for the null allele, GSTT1*0 (112). GSTT1 mainly plays a role in 

the detoxification of reactive hydrocarbons such as ethylene oxide, alkyl halides and 

diepoxybutane (108). Furthermore, GSTT1 has activity towards epoxides, for example, reactive 

epoxide metabolites of butadiene, suggesting that individuals with the null genotype at GSTT1 

may be at high risk of smoking-related cancers such as lung cancer (180). However, the role of 

GSTT1*0 as a susceptibility factor for lung cancer has not been well established. Two 

association studies evaluating the GSTT1 null genotype and lung cancer risk found no 

association of the GSTT1 deletion polymorphism and lung cancer (186,187).                     

GSTP1 metabolizes many carcinogenic compounds including B[a]P diolepoxide (BPDE). 

Four GSTP1 alleles have been identified as shown in Table 6.  
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Table 6. GSTP1 allele nomenclature 

Enzyme activity  

Allele 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

 

References 

GSTP1*A None None Normal Normal (110) 

GSTP1*B A313G I105V Reduced Reduced (110,113,188) 

GSTP1*C A313G, C341T A114V   (110) 

GSTP1*D C341T A114V   (113) 

 

The GSTP1*B variant allele has been shown to reduces enzyme activity as measured in vitro 

by 1-chloro-2,4-dinitrobenzene (CDNB) conjugation (113,188). However, enzymes with Val105 

have a 7-fold higher efficiency for PAH diol epoxides than the enzymes with Ile105 (105). It was 

also suggested by Hu et al. (189) that subjects homozygous for GSTP1*B alleles would less 

susceptible to the carcinogenic effects of B[a]P than heterozygotes or wild-type homozygotes, 

due to more efficient detoxification capacity for the ultimate carcinogen of benzo[a]pyrene, (+)-

anti-BPDE. Little is known about the role of GSTP1 polymorphisms in individual response to 

environmental carcinogen exposures. Since GSTP1 is the most abundant GST isoform in human 

lungs (183), it is a particularly interesting candidate modifier of individual lung cancer 

susceptibility. However, the association between GSTP1 variant alleles and lung cancer risk is 

still unknown (184,190,191). 

1.3.7. NAT 

N-Acetyltransferases metabolize a number of aromatic and heterocyclic carcinogens such as 

arylamines, heterocyclic amines, and 4-aminobiphenyl. In humans, two genes, NAT1 and NAT2, 

are responsible for N-acetyltransferase activity. Aromatic and heterocyclic amine carcinogens are 

inactivated (N-acetylation) or activated (O-acetylation) by NAT1 and/or NAT2. NAT2 activity is 
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highest in the liver and gastrointestinal tract, whereas NAT1 activity is expressed in extrahepatic 

tissues. However, the relative contribution of hepatic versus extrahepatic activation and/or 

inactivation of aromatic and heterocyclic amine carcinogens is not fully understood (192). Both 

NAT1 and NAT2 are polymorphic resulting in a fast and slow acetylator phenotype. To date, 

there are 27 and 24 allelic variants of human NAT2 and NAT1 as shown in Table 7 and 8, 

respectively.  NAT2 alleles containing the G191A, T341C, A434C, G590A, and/or G857A 

substitutions are associated with the slow acetylator phenotype (192). Five of the NAT2 variant 

alleles (NAT2*5A, NAT2*5B, NAT2*5C, NAT2*6A, and NAT2*7B) have been shown to account 

for more than 95% of the slow NAT2 acetylator genotypes in Caucasians. For the NAT1* gene 

locus; NAT1*14, NAT1*15, NAT1*17, NAT1*19, and NAT1*22 have been clearly shown to 

reduce NAT1 activity (193). The NAT1*10 allele has been reported to be associated with both 

higher NAT1 activity in bladder and colon tissues and higher DNA adduct levels in the colon 

tissues (193).  
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Table 7. NAT2 allele nomenclature 

Allele Nucleotide changes Amino acid 

substitution 

Enzyme activity References 

NAT2*4 None None Normal (194,195) 

NAT2*5A T341C, C481T I114T Reduced (196) 

NAT2*5B T341C, C481T, A803G I114T, K268R Reduced (195,196) 

NAT2*5C T341C, A803G I114T, K268R Reduced (196) 

NAT2*5D T341C I114T  (197) 

NAT2*5E T341C, G590A I114T, R197Q  (197) 

NAT2*5F T341C, C481T, C759T, A803G I114T, K268R  (198) 

NAT2*6A C282T, G590A R197Q  (196) 

NAT2*6B G590A R197Q Reduced (196,199) 

NAT2*6C C282T, G590A, A803G R197Q, K268R  (199) 

NAT2*6D T111C, C282T, G590A R197Q  (200) 

NAT2*7A G857A G286Q  (196) 

NAT2*7B C282T, G857A G286Q Reduced (194) 

NAT2*12A A803G K268R  (196) 

NAT2*12B C282T, A803G K268R  (196) 

NAT2*12C C481T, A803G K268R  (199) 

NAT2*13 C282T   (196,197) 

NAT2*14A G191A R64Q Reduced (201,202) 

NAT2*14B G191A, C282T R64Q  (202) 

NAT2*14C G191A, T341C, C481T, A803G R64Q, I114T, K268R  (197,203) 

NAT2*14D G191A, C282T, G590A R64Q, R197Q  (197,203) 

NAT2*14E G191A, A803G R64Q, K268R  (197) 

NAT2*14F G191A, T341C, A803G R64Q, I114T, K268R  (203) 
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Table 7. (cont’d)  

Allele Nucleotide changes Amino acid 

substitution 

Enzyme activity References 

NAT2*14G G191A, C282T, A803G R64Q, K268R  (200) 

NAT2*17 A434C Q145P  (204) 

NAT2*18 A845C K282T  (204) 

NAT2*19 C190T R64W  (205) 

Modified from http://www.louisville.edu/medschool/pharmacology/NAT.html 
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Table 8. NAT1 allele nomenclature 

Allele Nucleotide changes Amino acid 

substitution 

Enzyme 

activity 

References 

NAT1*3 C1095A None  (206) 

NAT1*4 None None Normal (115) 

NAT1*5 G350C, G351C, G497C, 

G498C, G499C, A884G, 

976del1, 1105del1 

R117T, R166T, 

E167Q 

 (207) 

NAT1*10 T1088A, C1095A None  (115) 

NAT1*11 C-344T, A-40T, G445A, 

G459A, T640G, 1065-

1090del9, C1095A 

V149I, S214A  (208) 

NAT1*14A G560A, T1088A, C1095A R187Q Reduced (209) 

NAT1*14B G560A R187Q Reduced (210) 

NAT1*15 C559T R187Stop Reduced (209,210) 

NAT1*16 1091insAAA, C1095A None  (211) 

NAT1*17 C190T R64W Reduced (212,213) 

NAT1*18A 1064-1087del3, T1088A, 

C1095A 

None  (214) 

NAT1*18B 1064-1091del3 None  (215) 

NAT1*19 C97T R33Stop Reduced (213) 

NAT1*20 T402C None  (213) 

NAT1*21 A613G M205V  (213) 

NAT1*22 A752T D251V Reduced (213) 

NAT1*23 T777C None  (213) 

NAT1*24 G781A E261K  (213) 

NAT1*25 A787G I263V  (213) 

NAT1*26A 1066-1091insTAA, C1095A None  (216) 
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Table 8. (cont’d) 

Allele Nucleotide changes Amino acid 

substitution 

Enzyme 

activity 

References 

NAT1*26B 1066-1091insTAA None  (217) 

NAT1*27 T21G, T777C None  (218) 

NAT1*28 1085-1090delTAATAA None  (219) 

NAT1*29 T1088A, C1095A, 1025del None  (220) 

Modified from http://www.louisville.edu/medschool/pharmacology/NAT.html 

Tobacco smoke contains the aromatic amines 4-aminobiphenyl, 2-napthylamine, and o-

toluidine which are activated and inactivated by NAT1 and/or NAT2. There are studies that have 

been published with regard to NAT2 polymorphisms and lung cancer risk, however results are 

inconclusive, with either negative or an increased risk for lung cancer in smokers with 

homozygous rapid acetylator (NAT2*4/*4) genotype (197,221-224). The role of NAT1 genotype 

in lung cancer risk has also been investigated with conflicting results (192,224). The role of NAT 

as a susceptibility biomarker to lung cancer requires further investigation. 

1.3.8. Microsomal epoxide hydrolase 

Microsomal epoxide hydrolase (mEPHX) is involved in phase I metabolism and is capable of 

catalyzing the hydrolysis of highly reactive epoxide intermediates to less reactive and more 

water soluble trans-dihydrodiol derivatives (225). However, some trans-dihydrodiols generated 

from PAHs are substrates for further metabolism to more reactive carcinogenic polycyclic 

hydrocarbon diol epoxides such as B[a]P diolepoxide (BPDE). Thus, mEPHX plays a dual role 

in the detoxification and activation of procarcinogens, depending on the substrate. Two allelic 

variants of mEPHX have been reported as shown in Table 9. These polymorphisms are located 

within the coding region of the mEPHX gene at exons 3 and 4. 
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Table 9. mEPHX allelic variants 

Enzyme activity  

Allele 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

 

References 

mEPHX None  Normal Normal (226) 

mEPHX3 T17673C Y113H  Decreased (226) 

mEPHX4 A24448G H139R  Increased (226) 

  

In vitro cDNA expression studies indicate that the mEPHX3 allele is involved with 

decreasing mEPHX activity by 40% whereas the mEPHX4 allele results in a 25% increase in 

mEPHX activity (226). As a result of these polymorphisms, there are four metabolic phenotypes, 

which are fast, normal, slow and very slow hydrolase activities in the general population. 

The relationship between mEPHX polymorphisms and lung cancer risk has been investigated 

in several studies. Several studies found an association between high activity mEPHX genotypes 

and increased risk of lung cancer (227,228). However, one study reported a slight increase in the 

frequency of the very slow phenotype in lung cancer patients (229). Zhou et al.  (225) observed 

the effect of very low activity of mEPHX genotype on increasing risk of lung cancer among 

nonsmokers and light smokers. However, among heavy smokers, the very low activity of 

mEPHX genotype was associated with decreased risk of lung cancer. Moreover, an interaction 

between mEPHX genotype and cumulative smoking exposure in lung cancer risk among 

squamous cell carcinoma subgroup was found in this study. Polymorphisms identified in the 

mEPHX gene may therefore also have an important role in determining the susceptibility of an 

individual to lung cancer.  
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1.3.9. Myeloperoxidase 

Myeloperoxidase (MPO) is an enzyme located in granules of polymorphonuclear neutrophils 

and monocytes. Exposure to environmental insults, including tobacco smoke, stimulates the 

recruitment of neutrophils into human lung tissue with the local release of MPO. MPO activates 

various carcinogens associated with tobacco smoke including B[a]P and aromatic amines. 

Moreover, MPO is involved in the transformation of B[a]P-7,8-diol to an ultimate carcinogenic 

metabolite (230). As a result of a single base substitution (G to A) within the Alu element 463 

base pair preceding the MPO gene, the A allele confers less transcriptional activity compared to 

the allele that contains a G residue. The effect of this polymorphism on susceptibility to lung 

cancer has been studied. London et al. (231) first reported a significant association between the 

myeloperoxidase MPO polymorphism (A/A genotype) and decreased risk of lung cancer. A 

second study also demonstrated the protective effects of the MPO variant allele and reduced lung 

cancer risk (232). 

1.3.10. XPD 

The XPD gene product is a member of the DNA repair subfamily and functions as single-

strand DNA-ATP-dependent 5′-3′ DNA helicase within the basal transcription factor IIH 

(TFIIH) complex which participates in DNA unwinding during nucleotide excision repair (NER) 

(121). The NER pathway repairs DNA damage from both UV radiation and bulky DNA adducts. 

NER is a complex DNA repair process that consists of approximately 30 proteins involved in 

sequential damage recognition, DNA unwinding, incision of the damaged DNA strand on both 

sides of the lesion, excision of the oligonucleotide containing the damage and gap-filling DNA 

synthesis followed by strand ligation. The DNA bulky adducts generated during tobacco smoke 
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carcinogen metabolism including B[a]P or other PAHs and arylamines are removed effectively 

by the NER pathway. Recently, seventeen variant alleles of XPD gene were reported (121).  

Table 10. XPD variant alleles  

Enzyme activity  

Gene 

 

Nucleotide changes 

Amino acid 

substitution In vivo In vitro 

Allele frequency 

XPD None  Normal Normal  

XPD A18814G    0.21 

XPD C18980T    0.04 

XPD C22541A    0.25 

XPD A22559C    0.04 

XPD C22812T    0.33 

XPD C23047G I199M   0.04 

XPD C23051T H201Y   0.04 

XPD G23591A D312N   0.42 

XPD C32983T    0.04 

XPD G34382C    0.29 

XPD C34706T    0.25 

XPD C34750T    0.04 

XPD C34770T    0.04 

XPD C35326T    0.25 

XPD 35788insG    0.04 

XPD G35790C    0.29 

XPD A35932C K751Q   0.29 

Modified from reference (121) 
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The impact of these XPD polymorphisms on DNA repair is not known. A study of the effect 

XPD polymorphisms and proficiency for repair of X-ray-induced chromatid breaks and gaps by 

Lunn et al. (233) found that individuals carrying the XPD-751Lys/Lys genotype had 

significantly more ionizing radiation-induced chromatid aberrations than individuals 

homozygous for the XPD-751Gln allele. Therefore, the Lys751 allele may alter the XPD protein 

product resulting in suboptimal repair of X-ray induced DNA damage. It has been hypothesized 

that polymorphisms in DNA repair XPD gene may be associated with differences in the repair 

efficiency of DNA damage and genetic variants in XPD may also be markers for lung cancer 

susceptibility. One recent study investigated the hypothesis that the polymorphisms in DNA 

repair genes may influence an individual’s risk of lung cancer and found that the XPD codon 312 

Asp/Asp genotype have almost twice the risk of lung cancer when compared to the Asp/Asn + 

Asn/Asn combined genotype (234). This finding is consistent with that observed by Lunn et al. 

(233) in which individuals with the XPD-312Asp/Asp genotype showed more chromatid 

aberrations than the XPD-312Asn carriers, although this was not statistically significant. For 

XPD-751 polymorphisms, the result did not show any significant association with lung cancer 

risk. However, it was found that the XPD-751 polymorphism appeared to be in linkage 

disequilibrium with the XPD-312 polymorphism which individuals who carrying the XPD-312 

Asn allele had the XPD-751Gln allele, while most XPD-312Asp allele carriers had the XPD-

751Lys allele. This observation agrees with the higher chromatid aberrations observed among 

individuals who had XPD-312Asp/Asp or XPD-751Lys/Lys genotypes in the report of Lunn et 

al. (233). Although the functional significance of the XPD polymorphisms has not been fully 

elucidated, based on these preliminary results, additional molecular epidemiological studies of 

lung cancer risk in relation to the XPD polymorphisms should be pursued. 
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1.4. Gene-gene and gene-environment interactions 

All of the enzymes described in the previous section have been hypothesized to be genetic 

susceptibility biomarkers for lung cancer. However, the underlying complexity of carcinogen 

metabolism, including overlapping substrate specificities for the CYP enzymes, and the 

involvement of multiple genes activation, detoxification and DNA repair suggests that gene-gene 

interactions are likely to further influence cancer risk. For example, the tobacco smoke 

carcinogen, B[a]P, can be activated by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C9, 

CYP2C18, and CYP3A4. These B[a]P reactive metabolites can be further detoxified by both 

GSTM1 and GSTT1 as indicated in Table 11. Moreover, the bulky adducts generated by B[a]P-

7,8-diol 9,10-epoxide are repaired by the NER pathway consisting of multiple genes.  As shown 

in Fig 1, B[a]P is activated mainly by CYP1A1 to B[a]P-7,8-epoxide which then can be 

detoxified by glutathione conjugation and excreted. B[a]P-7,8-epoxide may also be detoxified by 

microsomal epoxide hydrolase to B[a]P-7,8-dihydrodiol which then can be activated by 

CYP3A4 to a highly reactive metabolite, B[a]P-7,8-diol 9,10-epoxide, which can be detoxified 

by glutathione conjugations and excreted or can interact with DNA to give rise to DNA adducts 

which may or may not be repaired. Thus, variation in activity in any combination of these 

enzymes may influence cumulative risk, for example, individuals with high activity variants of 

CYP1A1, microsomal epoxide hydrolase, and CYP3A4 together with less activity of GSTM1, 

GSTT1 and nucleotide excision repair enzymes would hypothesized to be at higher risk than any 

one of the risk genotypes alone. Therefore, the effects on one gene may compensate for changes 

in others or enhance the effect of another.   
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Table 11. Metabolizing enzymes responsible for metabolism of carcinogens in tobacco and 

cigarette smoke 

Compounds Metabolizing enzymes 

PAHs  

e.g. B[a]P 

 

CYP1A1, 1A2, 1B1, 2C8, 2C9, 2C18, 3A4, 

GSTM1, GSTT1 

Aza-arenes  

e.g. Quinoline 

 

CYP1A1, 1A2, 2E1, 3A, NAT2, GST, 

mEPHX 

N-nitrosamine 

e.g. NNN, NNK, 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanol (NNAL) 

e.g. 4-ABP 

 

CYP1A2, 2A6, 2B1, 2D6, 2E1, 3A4 

 

CYP1A1, 1A2, NAT 

N-heterocyclic amines 

eg. 2-amino-1-methyl-6-phenylimidazo [4,5-b] 

pyridine (PhIP) 

 

GSTA1, GSTP1, NAT 

Aldehydes 

e.g. Acetaldehyde 

 

CYP1A2, 2E1, 4A2, ALDH2, GST 

Miscellaneous compounds 

e.g. 1,3-butadiene 

 

CYP2A6, 2E1, GSTT1 

Modified from reference (235) 
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1.4.1. Gene-gene interaction  

The study of interactions between at risk genotypes and lung cancer risk can include 

interactions between phase I, II and DNA repair enzymes. The interactions between phase I and 

phase II enzyme genetic polymorphisms have been investigated to some extent. For example, 

Japanese case control studies showed that the combination of CYP1A1*2B and GSTM1 null 

genotypes conferred a remarkably high risk of lung cancer (OR 5.8, P<0.001) (236) and a 41-

fold increased risk of lung cancer particularly in low-dose cigarette smokers (237). Moreover, a 

dose-dependent increase in risk of lung cancer up to twenty-twofold was observed among heavy 

Japanese smokers with a combined CYP1A1*2A/2A and GSTM1 null genotype (238). This 

finding is difficult to reproduce in Caucasians due to the significantly lower frequency of 

CYP1A1 homozygous variant allele (CYP1A1*2A/2A frequency 12%) compared to Japanese 

populations (CYP1A1*2A/2A frequency 33%). However, Alexandrie et al. (239) reported that 

lung cancer cases who diagnosed before 66 years of age and carrying both CYP1A1*2A/2A and 

GSTM1 null alleles has higher risk of squamous cell carcinoma. Thus, the combination between 

CYP1A1 homozygous variant allele and GSTM1 null genotype is likely to influence the risk of 

lung cancer in Caucasians in particular histological and age of diagnosis subgroups.  

The interactions between phase II enzymes have been studied mainly within the GST family 

because some isoforms demonstrate overlap in substrate specificities, for example, GSTP1 

detoxifies epoxides of PAHs similarly to GSTM1 and GSTM3. Moreover, Anttila et al. (240) 

observed that lung expression of GSTM3 was significantly higher in subjects with a GSTM1-

positive allele than in subjects with a homozygous GSTM1 null genotype. The mechanism for 

this observation is unknown but may reflect the linkage of GSTM3*B with GSTM1*A as 

suggested by Inskip et al. (181) and consequent association of GSTM3 allele with the other 
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GSTM1 alleles, especially GSTM1*0. It is conceivable that combinations of at risk GST 

genotypes could result in higher risk of lung cancer.  

Jourenkova et al. (241) investigated the effect of concurrent GSTM1 and GSTT1 null 

genotypes on lung cancer risk and found a significantly increasing risk of lung cancer among 

individuals who smoked more than 30 pack-years with both GSTM1 and GSTT1 null genotypes 

(OR 3.5, 95% CI, 1.2-10.7). The potential interaction of GSTM1 and GSTP1 genotypes in 

relation to lung cancer risk was examined by Ryberg et al. (190) and Kihara et al. (242). In the 

first study, the highest DNA adduct levels were observed in patients with a combination of 

GSTM1 null and GSTP1*A/*B or GSTP1*B/*B genotype compared to all other genotype 

combinations (P=0.011). The risk of the GSTM1 null genotype for lung cancer is enhanced in the 

presence of the GSTP1*A/*B or GSTP1*B/*B genotype among Japanese male smokers was 

reported in a second study with a smoking adjusted OR 2.58, 95% CI, 1.26-5.30 compared to 

that in the GSTP1*A or wild-type allele group (smoking adjusted OR 1.17, 95% CI, 0.77-1.79). 

Jourenkova-Mironova et al. (185) studied the potential role of the combination of at risk GST 

gene polymorphisms in susceptibility to lung cancer. The significant interactions between pack-

years of smoking (≥ 35 pack-years) and the combined GSTM3*A/*A and GSTP1*A/*B or 

GSTP1*B/*B genotypes, and GSTM3*A/*A, GSTP1*A/*B or GSTP1*B/*B, and GSTM1 null 

genotypes on increased risk of lung cancer among smokers (sex and age adjusted OR 2.1, 95% 

CI, 1.0-4.2 and OR 2.7, 95% CI 1.2-6.0, respectively) were observed.  

There are relatively few data on interactions between phase I enzymes and lung cancer risk. 

Furthermore, no significant effects involving in the interactions between phase I enzymes, and 

phase I or II enzymes and DNA repair. Even though CYP1A1, 1A2, 2D6 and 2E1 show overlap 
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in substrate specificities of compounds found in tobacco smoke, low frequencies of the rare 

alleles for these loci may contribute to the difficulty in evaluating possible interactions.  

Therefore, these significant interactions arising from the combinations of at risk genotypes 

among phase I and II enzymes and within phase II enzymes on the risk of lung cancer support 

the rationale for studying interactions between different metabolic enzyme polymorphisms that 

can affect the relative balance between activation and detoxification of tobacco related 

carcinogens in each individual, and increasing susceptibility to lung cancer. 

1.4.2. Gene-environment interaction 

Many genes and environmental exposures contribute to the carcinogenic process. The effects 

can be additive or multiplicative, and are modifiable by interindividual variation in genetic 

function and environmental exposures. In this dissertation research project, a hypothesis test is 

that cancer risk may be influenced not only by variability in phase I and II metabolic and 

DNA repair enzymes, but environmental influences such as active or passive smoking, air 

pollution, workplace pollution, and pesticides may further modify cancer risk. As shown in 

Fig. 2, the environmental factors contribute into the complex interactions between host 

susceptibility factors and environmental factors, gene-environment interaction, in the multistage 

process of carcinogenesis, which results in interindividual variation in cancer risk. Thus, lung 

cancer risk from exposure to tobacco smoke varies widely from person to person; depending in 

part on the status of metabolic and DNA repair genes that determine how cells activate, detoxify 

tobacco related carcinogens, and repair DNA damages. Activated carcinogen metabolites may 

bind to DNA and form DNA adducts, many of which can induce genetic mutations.  Therefore, 

if individuals who are exposed to tobacco carcinogens have an increased capacity to activate 
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carcinogens, reduced capacity to detoxify reactive metabolites and repair the damage, they might 

form more carcinogen-DNA adducts and subsequently have an increased risk of lung cancer.  

Several gene-environment interactions for lung cancer risk have been demonstrated 

(139,144,161,178,184,185,190,237,238,241,243-249)(Table 12). These study results indicate 

that genetic polymorphisms in carcinogen metabolizing genes have been shown to modify the 

effects of carcinogen exposure on lung cancer risk and DNA adducts.  
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Figure 2. Gene-environment interaction 
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Table 12. Effects of gene-environment interaction between drug metabolizing enzymes and 

smoking, occupational, and environmental exposures to lung cancer  

Drug metabolizing enzyme 

allele 

Degree of cigarette 

smoking exposure 

Relative Risk References 

CYP1A1*2A/*2A  Cumulative cigarette 

dose <3 × 105 

Increase (squamous cell 

carcinoma) 

OR 7.31, 95% CI, 2.13-25.12 

(243) 

CYP1A1*2A/*2A Cumulative cigarette 

dose of 29.1 ± 15.5 

×104 

Increase (adenocarcinoma) 

OR 3.25, 95% CI, 1.40-7.56 

(244) 

CYP1A1*1A/*2A & 

CYP1A1*2A/*2A 

≤ 30 pack-years Increase 

OR 2.03, 95% CI, 1.03-4.01 

(144) 

CYP1A1*1A/*3 & 

CYP1A1*3/*3 

Mean pack-years = 5 Increase (adenocarcinoma) 

OR 2.6, 95% CI, 1.1-6.3 

(139) 

2D6*1A/*2 (EM) < 30 pack-years Increase (small cell carcinoma) 

OR 3.6, 95% CI, 1.1-11.9 

(161) 

CYP2D6*3A/*3A or 

CYP2D6*4B/*4B or 

CYP2E1*1A/*6 

None Increase (7-methyl-

deoxyguanosine adduct) 

(245) 

CYP2E1*1A/*6 Low Increase (P<0.005) (178) 

GSTM1*0 < 40 pack-years Increase  

OR 1.77, 95% CI, 1.1-2.82 

(246) 

GSTM1*0 Levels of smoky coal 

exposure ≥ 130 tons 

Increase 

OR 5.2, 95% CI, 2.1-12.6 

(247) 

GSTM1*0 Mean cigarette 

exposure = 25 

cigarettes per day 

Increase (DNA adducts in 

mononuclear blood cells, P=0.05) 

 

(248) 

GSTM1*0 Low of occupational 

PAH exposure <1.5 

µg B[a]P/m3 or High 

cigarette smoke 

exposure 

Increase (B[a]P diolepoxide-

DNA adducts in mononuclear 

blood cells, P<0.0001) 

(249) 
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Table 12. (cont’d) 
Drug metabolizing enzyme 

allele 

Degree of cigarette 

smoking exposure 

Relative Risk References 

CYP1A1*1A/*2A & 

GSTM1*0 

Low of occupational 

PAH exposure <1.5 

µg B[a]P/m3 or High 

cigarette smoke 

exposure  

Increase (B[a]P diolepoxide-

DNA adducts in mononuclear 

blood cells, P<0.015) 

(249) 

CYP1A1*1A/*2A & 

GSTM1*0 

Σof cigarettes smoked 

per day×years of 

smoking ≥ 800  

Increase (squamous and small 

cell carcinoma) 

OR 16.4, 95% CI, 4.78-60.2 

(238) 

CYP1A1*2A/*2A & 

GSTM1*0 

Cumulative cigarette 

dose < 32.1 × 104 

Increase 

OR 16, 95% CI, 3.76-68.62 

(237) 

GSTM1*0 & GSTT1*0 > 30 pack-years Increase 

OR 3.5, 95% CI, 1.2-10.7 

(241) 

GSTM1*0 & GSTT1*0 ≤ 40 pack-years Increase 

OR 2.9, 95% CI, 1.1-7.7 

(184) 

GSTP1*A/*B or 

GSTP1*B/*B, and 

GSTM1*0 

≥ 35 pack-years Increase  

OR 2.4, 95% CI, 1.1-5.1 

(185) 

GSTP1*A/*B or 

GSTP1*B/*B, and 

GSTM1*0 

Mean = 35 pack-years Increase (Lung tissue DNA 

adducts, P=0.011)  

 

(190) 

NAT1 slow Mean = 25 cigarettes 

per day 

Increase (DNA adducts in 

mononuclear blood cells, P=0.05) 

 

(248) 
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Interestingly, these gene-environment interaction studies showed the genetic effects on the 

susceptibility to lung cancer at low levels of cigarette exposure in subjects with CYP1A1*2A, 

CYP1A1*3, CYP2D6*2, CYP2D6*3A, CYP2D6*4B, CYP2E1*6, GSTM1*0, or combined 

CYP1A1*2A & GSTM1*0 alleles. These results indicate genetic host susceptibility might be 

important in individuals who smoke less and are among the population that show a high percent 

of the rare allelic frequencies such as CYP1A1*2A and GSTM1 null genotypes. For example, 

Nakachi et al. (237) reported the risk of lung cancer was 16 times among light smokers who had 

CYP1A1*2A/*2A & GSTM1*0 genotypes compared to smokers without these genetic 

polymorphisms. However, the risk was increased only 1.25 times among heavier smokers 

compared to light smokers who had the same ‘at risk’ genotypes. This low risk difference for 

cigarette dose levels among individuals with ‘at risk’ genotypes may be reflected by an 

overwhelming environmental factor (heavy smoking) on the genetic effects. Therefore, it is 

important to include genotyping of susceptible genes, which are involved in carcinogen 

metabolism, and the exposure levels for identification of very susceptible individuals to 

environmental carcinogens. Moreover, it is likely that people who smoked less or are 

nonsmokers might be exposed to other environmental carcinogens that further interacted with 

genetic factors, resulting in increasing risk in those individuals.  Kato et al. (245) observed 

higher levels of 7-methyldeoxyguanosine adduct in lung tissues of nonsmokers who had 

CYP2D6*3A/*3A or CYP2D6*4B*4B or CYP2E1*1A/*6 genotypes. It was suggested that the 

effect of the genotypes on higher adduct levels was mostly in nonsmokers who exposed to either 

passive tobacco smoke or to N-nitrosamine exposures other than tobacco smoke.  

A dose-response relationship between the amount of cigarette smoking exposure and lung 

cancer risk have been observed. There are significant associations between high or moderate 
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levels of cigarette exposure and increased risk of lung cancer in individuals who had combined 

CYP1A1*2A & GSTM1*0, GSTM1*0 & GSTT1*0, or GSTM1*0 & GSTP1*A/or*B genotypes 

(184,185,237,241). Moreover, high DNA adduct levels were detected in subjects who were 

exposed to occupational or environmental carcinogens and had GSTM1 null, NAT1 slow 

genotypes, CYPA1*1A/*2A & GSTM1*0, and GSTM1 null & GSTP1*B.  The results of these 

studies revealed that genetic polymorphisms of carcinogen metabolizing enzymes affect DNA 

adducts in human leukocytes, and lung tissues and risk of lung cancer from occupational and/or 

environmental carcinogen exposures (190,248,249).  

Thus, recent knowledge of the genetic basis for individual metabolic variation and increased 

individual susceptibility to environmentally induced cancer, especially with reference to 

smoking-induced lung cancer has led to important paradigm, “gene-environment interaction”. 

Lung cancer susceptibility due to cigarette smoking and/or other chemical carcinogen exposure 

is likely to be modulated by an individual's phenotype for a number of enzymes, including both 

activating and detoxifying enzymes involved in the metabolism of a single carcinogen or 

mixtures of carcinogens. Given the number and variability in expression of carcinogen 

metabolizing and DNA repair enzymes and the complexity of chemical exposures, the 

assessment of a panel of polymorphic enzyme combined with other biomarkers, such as 

biomarkers of exposure may be helpful in demonstrating gene-environment interaction in lung 

cancer susceptibility. The screening of a panel of candidate genes to assess lung cancer 

susceptibility was utilized in this research project. 

1.5. Pharmacogenetics 

In order to accomplish the ultimate goal of human cancer risk assessment, the study of 

metabolic polymorphisms in cancer epidemiology requires the analytical tools to determine 
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genetic predispositions that result in increased sensitivity or resistance to exogenous exposures. 

Pharmacogenetics is the study of variability in individual responses to drugs and chemicals as a 

consequence of differences in individual genetic background. Through pharmacogenetic 

analyses, questions relating to interindividual differences in drug response, drug-drug 

interactions and cancer etiology and biology, such as the interaction between environmental and 

genetic factors in the development of common tumors, can be answered. Pharmacogenetics 

mainly uses two technologically different approaches, which are not mutually exclusive but 

rather are complementary. One approach involves phenotyping or assaying for individual 

metabolic capacity for certain drugs and the other, genotyping, involves direct screening of 

gene(s) encoding for enzymes involved in metabolism.  

The assessment of in vivo enzyme activity level(s) can be determined following the 

administration of a therapeutic dose of a probe substrate, which is metabolized by a specific 

enzyme. A number of probe drugs have been employed for the determination of phenotype by 

measuring the relative amount of parent compound and metabolite excreted in the urine, or the 

metabolic ratio. Although phenotyping analysis is a well-established experimental approach that 

can give an accurate overall assessment of an individual’s drug-metabolizing capacity, the 

limitation includes the lack of many validated probes, complicated procedures, invasiveness, 

high costs, and the results are confounded by a number of host and environmental factors. The 

drug metabolism phenotype confounders include age, hormonal status, disease, drug-drug 

interactions and dietary habits. Basically, the use of probe drug should give straightforward 

information about the genotype if the probe drug is exclusively metabolized by one enzyme that 

encoded by one allele, and the polymorphism is a differentiation between an active and an 

inactive allele. However, for example, an individual may inherit one copy of CYP2D6*2A allele 
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(normal allele) with two copies of the gene arranged in tandem and another copy of CYP2D6*4B 

allele which is a gene-inactivating allele resulting in an intermediate metabolizer phenotype. In 

this case, phenotype and genotype do not directly corresponding each other, and the prediction of 

CYP2D6 activity becomes dependent on the phenotyping assay.  

Genotyping analysis is a method that predicts metabolic capacity on the basis of the exact 

allelic inheritance of each individual, and can be performed using a variety of complementary 

polymerase chain reaction (PCR)-based techniques. The most common of these methods is 

RFLP-PCR (RFLP, restriction fragment length polymorphism). It is an approach to detect 

genetic mutations including base pair changes, small deletions and insertions, which are located 

within a restriction enzyme recognition sequence. These genetic changes either create or destroy 

the recognition site of an endonuclease that resulting in different DNA size fragments after 

cleavage by the corresponding endonuclease between individuals who have genetic changes and 

who have not. Then, the different fragment size pattern can be detected by gel electrophoresis 

with ethidium bromide staining. Figure 3 is an ethidium bromide gel picture showing three 

possible genotypes for the polymorphism at position –463 of the MPO gene after the 350 bp size 

of PCR products were digested with an Aci I enzyme. A single base substitution (G to A) results 

an absence in one of the two Aci I recognition sites in a 350 bp size PCR product of the MPO 

gene. Individuals who have homozygous A/A allele show two bands, at 289, and 61 bp (lanes 12 

and 13) whereas those homozygous G/G individuals show three bands, at 169, 120, and 61 bp 

(lanes 3, 5, 6, 7, 8, 9, 11, 14, and 16). Heterozygotes show all four bands (lanes 1, 2, 4, 10, and 

15). 
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Lanes 3, 5, 6, 7, 8, 9, 11, 14, and 16 are G/G genotype  

Lanes 12, and 13 are A/A genotype  

Lanes 1, 2, 4, 10, and 15 are G/A genotype 

Figure 3. Three possible genotypes from single nucleotide polymorphism (G or A) at 463 

position of MPO gene detected by RFLP-PCR method 
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The genotyping approach is less laborious, less expensive, not invasive, not confounded by 

environmental factors, and gives an unequivocal genetically based prediction of individual drug 

metabolism compared to phenotyping analysis, although the functional status can not be 

determined in relevance of the polymorphism and cancer susceptibility. There is also wide 

variation of enzyme activity within a genotype, and of distribution of the genotype in different 

populations. However, genotyping assays provide an assessment of risk that reflects exogenous 

chemical carcinogen metabolism from the recent exposure as well as one's lifetime ability to 

activate and detoxify carcinogens. Therefore, genotyping is a method that is reliable, 

inexpensive, simple, safe, and rapid, and can be applied by large-scale screening to determine 

individual relative risk of developing cancer is being focused.   

1.6. mRNA expression 

In addition to inherited factors for the detection of sensitive populations, the potential for 

local metabolic activation of tobacco related procarcinogens in lung tissues is also another useful 

marker in determining the relative risk for developing lung cancer. CYP1A1 and CYP2E1 have 

been known to be expressed in extrahepatic tissues such as lung and lymphocytes (250-253). 

Recently, a new member of the human CYP1 family, CYP1B1, was discovered (157,254). It is 

expressed in normal lung, kidney, uterus, prostrate and mammary. CYP1B1 is involved in the 

activation of B[a]P-7,8-diol and 2-aminoanthracene. (156).  The levels of CYP1A1, CYP1B1 

and CYP2E1 expression in lung tissues are known to be induced by carcinogens found in 

cigarette smoke (255-257). Lung tissues that are exposed to cigarette smoke are more likely to be 

exposed to more potent carcinogenic metabolites by CYPs induction. The expression of CYPs in 

lung tissue is therefore likely to have important metabolic and lung cancer susceptibility 

consequences.    
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In addition to the hypothesis that lung tissue expression of metabolic enzymes are important 

factors in modulating lung cancer risk, CYP mRNA expression levels (CYP1A1, CYP1B1 and 

CYP2E1) in lung tumors and normal tissues are likely to represent a smoking exposure 

biomarker. The differences in the levels of each CYP mRNA expression between lung tumor and 

histologically normal adjacent tissues would suggest a mechanistic link between cigarette 

smoking exposure and lung carcinogenesis. Moreover, the potential for CYP smoking induction 

can be determined if there is differences in the expression of CYPs between lung smoking and 

nonsmoking tumors. Thus, the investigation of CYP mRNA expression in lung tumor and 

histologically normal tissue will be helpful in determining the potential for local metabolic 

activation of procarcinogen agents in the lung. 

1.7. Cigarette exposure biomarkers 

While it is accepted widely that inhalation of chemical procarcinogens in cigarette smoke 

increase risk for lung cancer, this hypothesis is based on the assumption that procarcinogens are 

activated in lung tissues through some mechanism. This is because lung tissues are the main 

targets of cigarette related carcinogens exposure. Moreover, activated procarcinogens are highly 

reactive with proteins as well as nucleic acids, so as a consequence the carcinogenic effects are 

generally thought to be mainly involved in the cells in which the chemical are activated. There is 

considerable interindividual variation in lung cancer risk that has been attributed to an interaction 

between exogenous and endogenous factors. Both active and passive cigarette exposure, and 

environmental pollution exposures are considered to be a potentially important exogenous 

determination of risk. Polymorphisms in metabolic enzyme genes responsible for activation and 

inactivation of procarcinogens are important endogenous determinants. Therefore, measuring 
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interindividual variation in levels of gene expression in lung tissues is likely to be an approach to 

determine both exogenous and endogenous factors of lung cancer risk.  

In order to evaluate a gene that represents a cigarette smoke and environmental pollution 

exposure biomarker, it must be expressed in the tissue of interest. Also, it must be inducible to a 

degree that is detectable by available methodology and over range that allows determination of 

exposure and response relationships. In contrast, a biomarker of susceptibility needs not to be 

inducible as long as it is expressed at different constitutive levels in different individuals. For 

example, CYP1A1, CYP1B1, and CYP2E1 are expressed in extrahepatic tissues including 

bronchial epithelial cells and also are inducible by PAHs. Furthermore, interindividual variation 

in quantitative levels of expression of AHH activity was detected and was associated with 

interindividual variation in the amount of B[a]P DNA adducts observed in bronchial epithelial 

cells (257). Thus, CYP1A1, CYP1B1, and CYP2E1 may potentially serve as biomarkers both for 

exposure to procarcinogens and for susceptibility of lung cancer (local bioactivation biomarker). 

1.7.1. CYP1A1 

The CYP1A1 gene product, AHH, catalyzes the first step in the metabolism of PAHs found 

in cigarette smoke to potent carcinogenic metabolites. Several investigators demonstrated that 

cigarette smoke induces AHH activity and proposed a relationship between AHH activity and 

lung cancer. McLemore et al. (256) found 89% (17 of 19) of normal lung tissues from active 

cigarette smokers and 0% (0 of 5) from nonsmokers expressed CYP1A1 mRNA. Moreover, a 

time-dependent decrease in expression of the CYP1A1 gene occurs following cessation of 

cigarette smoking. The effect of CYP1A1 expression induced by cigarette smoke in lung tissues 

can last up to 60 days after cessation of smoking (255). Elevated levels of AHH activity in lung 

tissue from recent smokers corresponded with the extent of conversion of B[a]P-7,8-diol to 
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tetraols and BPDE-DNA adduct levels, and were also greater than those in lung tissues from 

nonsmokers or exsmokers (258,259). These results show that cigarette smoking induces 

CYP1A1 expression, and also suggest that there is a cigarette smoke-inducible pathway leading 

to BPDE-DNA adducts in smokers' lungs. The AHH activity mediated mainly by CYP1A1 in 

human lung was mainly involved in the metabolism of B[a]P to 3-hydroxyB[a]P (260,261). This 

suggests a role of CYP1A1 in local bioactivation of PAHs found in cigarette smoke in human 

lung tissue.   

CYP1A1 mRNA expression induced by cigarette smoke is due to the presence of PAHs in 

cigarette smoking. Induction of CYP1A1 enzyme occurs at the level of transcription and via a 

specific receptor protein, the aryl hydrocarbon receptor (AhR) (262). The Ah receptor (AhR) is a 

ubiquitous protein that reacts as a potent transcription factor following activation by binding of 

ligands such as polycyclic hydrocarbon compounds. The latent AhR is a cytosolic protein held in 

a complex with the molecular chaperone heat-shock protein 90 (Hsp90). The binding of ligand to 

the AhR induces a conformational change in the receptor and subsequent nuclear translocation. 

Once AhR has been transported to the nucleus, a dimerization process with a nuclear protein, 

Arnt, occurs and Hsp90 is released from the AhR. The AhR/Arnt is able to bind specific DNA 

target sequences or xenobiotic-response elements (XRE), which function as enhancer regions. 

CYP1A1 has six XRE sequences in the promotor region approximately 1 kilobase upstream. The 

binding of the AhR/Arnt complex to XRE sequences in the CYP1A1 gene initiates transcription 

of the gene. 

1.7.2. CYP1B1 

CYP1B1 is able to catalyze the metabolism of both PAHs and aryl amines to active 

metabolites (156). CYP1B1 is expressed in normal human lung tissue and is induced by cigarette 
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smoke. Willey et al. (257) reported that CYP1B1 was expressed at higher levels in bronchial 

epithelial cells (BEC) of smokers compared with nonsmokers. However, large interindividual 

variation in the levels of cigarette smoke induced CYP1B1 expression was observed which might 

result from hereditary variation in constitutive level of expression and/or inducibility, differing 

exposures to occupational or environmental pollutants or tobacco smoke, how soon the induction 

starts after smoking and how long the effect lasts in BEC. Not only was CYP1B1 gene 

expression detected in human lung and induced by cigarette smoking, but also the expression of 

CYP1B1 mRNA was significantly higher in lung tumors than nontumors (263,264). These 

findings together with the involvement of CYP1B1 in activation of B[a]P and aryl amines found 

in cigarette smoke suggests that CYP1B1 expression in lung tissue contributes to the lung 

carcinogenesis process. 

CYP1B1 gene expression induced by cigarette smoke in lung tissue is associated with the 

presence of PAHs. Regulation of CYP1B1 gene expression is thought to proceed through a 

similar mechanism as CYP1A1. Analysis of the 5′ flanking region of the CYP1B1 gene has 

revealed a number of similarities to the upstream region of the CYP1A1 gene. The human 

CYP1B1 gene has nine core XRE motifs within a 2.5 kilobase region 5′ of the transcription start 

site and at least three of these XRE seem to be functional in mediating AhR ligand-induced 

transcriptional of the CYP1B1 gene (157). 

1.7.3. CYP2E1 

The CYP2E1 gene product is involved in the metabolism of low-molecular-weight 

compounds found in cigarette smoke, such as 1,3-butadiene, and N-nitrosamines such as N-

nitrosodimethylamine, N-nitrosodiethylamine and NNK. CYP2E1 is expressed in human 

extrahepatic tissue such as lung (265). CYP2E1 expression is induced by cigarette smoke. The 
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inductive effect may be due to the presence of PAHs, pyridine, acetone, and benzene in cigarette 

smoke. The mechanism of CYP2E1 induction is thought to be through protein and/or mRNA 

stabilization (266). 

As a result of the presence of CYP2E1 in the human lung and the main involvement of 

CYP2E1 in α-hydroxylation of cigarette-specific N-nitrosamines, it is likely that CYP2E1 also 

contributes to the activation of pulmonary procarcinogens. Several studies have detected major 

DNA adducts derived from the NNK metabolic activation pathway which are 7-methylguanine, 

O6-methylguanine, and pyridyloxobutyl adducts in human lung (245,267-269). The levels of 

bronchial 7-methylguanine-DNA adducts were statistically higher in smokers than those in 

nonsmokers (268,269). This was confirmed in the report of Foiles et al. (267) showing that 

higher tobacco-specific nitrosamine DNA adducts were observed in lung smokers than those in 

nonsmokers. The detection of methyl and pyridyloxobutyl adducts in DNA from smokers' lungs 

is consistent with the ability of human lung tissue to metabolically activate NNK, and the 

contribution of CYP2E1 in local bioactivation of cigarette derived procarcinogens in lung tissue.  

1.8. mRNA quantitation 

 Variability in the expression of enzymes metabolizing carcinogens and procarcinogens 

derived from cigarette smoke may therefore contribute to individual susceptibility to lung 

carcinogenesis. This variation could be a result of enzyme induction, interindividual hereditary 

constitutive variation in expression, and environmental exposure. The induction of these 

enzymes may be a measure of environmental exposure to chemical carcinogens. For example, 

induced CYP1A1, CYP1B1, and CYP2E1 mRNA expression in lung tissue may represent 

exposure biomarkers of cigarette smoke, and environmental chemical carcinogens exposures. 

Furthermore, quantitation of gene expression including CYP1A1, CYP1B1, and CYP2E1 in 
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specific lung cells may be important in understanding the molecular mechanism of lung 

carcinogenesis.  

An accurate human risk assessment requires sensitive methods to evaluate dose-response 

relationships especially following low levels occupational and environmental exposures. The 

quantitation of mRNA expression can be determined by several techniques including Northern 

blotting analysis, RNase protection assay, and quantitative reverse transcription (RT)-PCR. 

Northern blotting analysis, and quantitative RT-PCR followed by Southern blotting technique 

have been used to quantitate lung mRNA expression of CYP1A1, CYP1B1, and CYP2E1 in 

several studies (256,257,263). However, these techniques have some limitations. For example, 

Northern blotting has low sensitivity and requires large amounts of starting material to detect low 

level of mRNA. For example, one study used 32P-labeled RNA target gene hybridized with target 

mRNA of samples after Northern blotting, the target mRNA expressed as a percent of the control 

mRNA. This determination is considered as semi-quantitative because it depends on estimation 

of the intensity of images of the bands by densitometry. Post-PCR product detection steps such 

as gel electrophoresis and Southern blotting are time consuming, tedious, and generally involve 

radioactive material, for example, 32P, which raise safety and time concerns associated with 32P-

labelling RNA or PCR products.  

1.8.1. FAF-ELOSA 

In 1990, the new enzyme-linked immunosorbent assay (ELISA) format based technique 

called fluorescein-antifluorescein-based enzyme-linked oligonucleotide sorbent assay (FAF-

ELOSA), was developed (270). It is an immunological based technique for the quantitative 

analysis of polymerase chain reaction (PCR) products. FAF-ELOSA is a variation of the 

sandwich-type ELISA. The PCR products are labeled with both biotin and fluorescein (Fig. 4). 
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The biotin label is used in place of primary antibody. The secondary antibody (FAF antibody) 

detects fluorescein-labeled PCR products. The fluorescein label is used for its antigenic rather 

than its fluorescent properties. Then, biotinylated DNA are immobilized on streptavidin-coated 

microtiter plates and can be quantitated by an ELISA specific for the antigenic group. The FAF 

antibody is linked to horseradish peroxidase, which allows quantification of PCR product by 

enzymatic production of a colored compound from trimethylbenzidine blue (TMB). The 

substrate development can be read at an absorbance of 450-630 nm. A standard curve is 

generated for each PCR reaction by using a serial dilution of a synthetized single-strand DNA 

oligonucleotide identical in sequence to the target DNA. Then, the concentration of the target 

DNA can be determined by comparing the absorbance obtained from sample with that obtained 

from a standard. The sensitivity of the immunological detection system that employs horseradish 

peroxidase linked to anti-fluorescein antibodies is high: 1 microliter of the PCR mixture obtained 

after approximately 25 cycles of amplification of 1 ng/microliter genomic template DNA is 

sufficient for the detection of human single-copy genes (270). The procedure does not require 

electrophoretic separation and/or hybridization with radioactive probes. This technique has 

overcome many of difficulties of those by classic quantitative PCR techniques such as the 

determination of relative differences in target mRNA amounts, safety, and time concerns.  
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Figure 4. Schematic of the fluorescein-antifluorescein-based enzyme-linked oligonucleotide 

sorbent assay (FAF-ELOSA) 
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Carcillo et al. (271) was the first study that applied the FAF-ELOSA technique to quantitate 

CYP mRNA expression in human tissue. Also, the relative sensitivity of FAF-ELOSA versus 

that of the 32P-labeled PCR/Southern blotting technique in quantitation of PCR products used to 

measure specific mRNA was compared in this study. Compared to the 32P-labeled PCR/Southern 

blotting technique, FAF-ELOSA is a sensitive assay for quantitative of mRNA through PCR 

amplification of a known mRNA sequence. It can be performed in a relatively short time, is 

nonradiometric, and can be quantified to a known standard. Moreover, the strategy of labeling 

biotin and fluorescein to PCR products was modified in this study. A biotin-labeled PCR product 

was done by designing a biotin-labeled oligonucleotide termed capture probe and hybridized to 

the PCR product (Fig. 5). A fluorescein-labeled oligonucleotide designed to hybridize to the 

PCR product by incorporating as a primer in the complementary strand. The capture probe was 

designed within 20 basepairs (bp) of the 3′ fluorescein primer incorporated into the PCR product. 

This strategy provides two advantages. First, cost and time is minimized as no primer is required. 

Second, another level of specificity is obtained as any nonspecific PCR product that may have 

homology with two 20 bp that are about 200 bp apart is less likely to have homology with a third 

20 bp that is only 20 bp from the 3′ fluorescein-labeled primer. Subsequently, the FAF-ELOSA 

is another technique that can be applied to the quantitation analysis of specific mRNAs of 

interest in massive samples for cancer risk assessment.  
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Figure 5. FAF-ELOSA using fluorescein primers and biotin labeled internal capture 

probes incorporated into both target and standard PCR products (271) 
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1.8.2. TaqMan® assay    

Recently, the real-time quantitative RT-PCR technique (TaqMan® assay) has been 

developed as an approach to quantitate mRNA expression. Quantitation and sequence detection 

by TaqMan® technology and the ABI Prism 7700 Sequence Detection system (Perkin-Elmer 

Applied Biosystems, Foster City, CA) has provided significant advances in terms of 

performance, rapid, sensitivity, accuracy, and high-through capability over other quantitative 

PCR methods (272-274). Real-time detection eliminates using post-PCR processing such as gel 

electrophoresis, since the detection occurs during each PCR cycle. Reactions are characterized 

by the point during cycling when amplification of the PCR product is first detected, rather than 

by the amount of PCR product accumulated after a fixed number of cycles. The 5′ nuclease assay 

provides a real-time method for detecting specific amplification products based on the use of a 

fluorogenic probe designed to hybridize within the target sequence and to generate a signal that 

accumulates during PCR cycling in a manner proportional to the concentration of amplification 

products (275). The probe is a nonextendable oligonucleotide with both a reporter fluorescent 

dye and a quencher dye attached. The reporter fluorescent dye FAM (6-carboxy-fluorescein) is 

covalently linked to the 5′ end. The quencher fluorescent dye TAMRA (6-carboxy-tetramethyl-

rhodamide) is linked to the 3′ end. Because of the proximity of the quencher, the fluorescence 

emitted by the reporter dye is greatly reduced by Forster resonance energy transfer (FRET) 

through space (276). During PCR cycling, the probe specifically anneals downstream from one 

of the PCR primers of the corresponding template as shown in Fig. 6. Then, it is cleaved by the 

5′ to 3′ exonuclease activity of Taq DNA polymerase as this primer is extended. This cleavage of 

the probe separates the reporter dye from quencher dye resulting in an increase of fluorescence 

emission of the FAM reporter without affecting the emission of quencher dye. Cleavage removes 
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the probe from the target strand, allowing primer extension to continue to the end of the template 

strand. This cleavage event occurs in each PCR cycle without interference in the enzymatic 

reaction since the exonuclease of Taq polymerase acts only if the fluorogenic probe is annealed 

to the target and the enzyme cannot hydrolyze the probe when it is free in solution. Thus, the 

increase of fluorescence intensity is proportional to the amount of produced PCR product.    

Once separated from 
the quencher, the 
reporter dye emits 
its characteristic 
fluorescence 

During each extension 
cycle, the Taq polymerase 
cleaves reporter dye 
from the probe 

When both dyes are 
attached to the probe, 
reporter dye emission 
is quenched 

Two fluorescent dyes, a 
reporter (R) and a quencher 
(Q), are attached to the 5’ 
and 3’ ends of a TaqMan® 
probe 

 

Figure 6. TaqMan® assay, polymerization associated 5’ to 3’ nuclease activity of Taq DNA 

polymerase acting on a fluorogenic probe during one extension phase of PCR (277) 

 72 



  

The fluorescence emitted from reporter dye is detected by the Sequence Detection System 

(Perkin-Elmer Applied Biosystems, Foster City, CA). This system includes a built-in 96-well 

thermal cycler, a laser directed by fiber optic cables to each of the 96 sample wells, a charged-

coupled device (CCD) detector, and real-time sequence detection software. A laser is used to 

evoke photons from the fluorescein reporter molecules. The fluorescence emission travels back 

through the cables to a CCD camera detector. For each sample, the CCD camera collects the 

emission data between 520 and 660 nm once every few seconds. The software analyzes the data 

by first calculating the contribution of each component dye to the experimental spectrum. Each 

reporter signal is then divided by the fluorescence of an internal reference dye (ROX) in order to 

normalize for non-PCR related fluorescence fluctuations occurring well-to-well or over time. 

The emission intensity of the quencher dye that remains relatively constant during amplification 

is used as an internal control to normalize fluorescence emission and calculate the value term 

∆Rn. ∆Rn is calculated from the equation ∆Rn = (Rn+) – (Rn-). (Rn+) is the emission intensity of 

the reporter divided by the emission intensity of the quencher during a specific amplification 

cycle. (Rn-) is the emission intensity of the reporter divided by the emission intensity of the 

quencher prior to amplification. Therefore, ∆Rn represents the amount of annealed probe cleaved 

by the 5′ to 3′ exonuclease activity of Taq DNA polymerase during amplification (273). An 

average ∆Rn for each cycle is calculated and is plotted versus cycle number that generates an 

amplification plot (Fig. 7).  
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Source: http://www.appliedbiosystems.com/ 

Figure 7. A single amplification plot of real-time quantitative PCR by TaqMan® assay 

 

In the initial cycles of PCR, there is little change in fluorescence signal. This defines the 

baseline for the amplification plot. An increase in fluorescence above the baseline indicates the 

detection of accumulated PCR product. A fixed fluorescence threshold can be set above the 

baseline. The default threshold value is the average standard deviation of Rn within the defined 

baseline region, multiplied by an adjustable factor. The sequence detection software calculates 

the threshold value as ten standard deviations from the baseline. The parameter CT (threshold 

cycle) is defined as the fractional cycle number at which the fluorescence passes the fixed 

threshold. The higher the starting copy number of the target, the sooner a significant increase in 

fluorescence, and a lower CT value is observed (Fig. 8). A standard curve is plotted between a 

log of initial of target copy number for a set of standards versus CT. Quantitation of the amount 

of target in unknown samples is accomplished by measuring CT and using the standard curve to 

determine starting copy number. 
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Source: http://docs.appliedbiosystems.com/pebiodocs/04310255.pdf 

Figure 8. Amplification plot showing terms used in TaqMan assay and the plot shift to 

higher CT value that reveal the lesser in starting copy number of the target 

 

The many advantages of the TaqMan technology over other quantitative PCR methods has 

resulted in the acceptance of this approach for widespread measuring gene expression (274,278-

281).   
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OBJECTIVES 

This investigation involved a molecular epidemiological study and the analysis of metabolic 

enzyme genotype and CYP mRNA expression levels in order to investigate the relative 

contribution of genetic risk factors and environmental interactions to susceptibility of lung 

cancer. The following hypotheses were evaluated:  

1.  Genetic polymorphisms in drug metabolizing enzymes, specifically CYP1A1, CYP1A2, 

CYP1B1, CYP2D6, CYP2E1, MPO, mEPHX, GSTM1, GSTM3, GSTP1, GSTT1, and NAT2*, 

which are involved in the metabolism of tobacco smoke component and in a DNA repair gene 

(XPD), are associated with risk of lung cancer.  

2.  An increasing risk of lung cancer is associated with gene-gene and gene-environment 

interactions, for example, a combination of drug metabolizing enzyme polymorphisms, history of 

environmental exposure, family history of lung or other cancers. 

3.  Lung tumor and normal tissues for mRNA expression of the CYPs that are involved in 

tobacco smoke carcinogen metabolism (CYP1A1, CYP1B1 and CYP2E1) represent smoking 

exposure biomarkers.  

The specific aims of this study were to: 

1) conduct a molecular epidemiological study to determine if genetic polymorphisms in the 

drug metabolizing enzymes CYP1A1, CYP1A2, CYP1B1, CYP2D6, CYP2E1, MPO, mEPHX, 

GSTM1, GSTM3, GSTT1 and NAT2*, and in the DNA repair gene (XPD) represent lung cancer 

susceptibility biomarkers using polymerase chain reaction (PCR) based techniques. Blood 

samples from lung cancer cases and healthy controls were genotyped. 
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2) evaluate the hypothesis that individuals with drug metabolizing enzyme polymorphisms 

combined with an environmental exposure(s) of family history of lung or other cancers and 

younger age-at-diagnosis are at greater risk for lung cancer development. 

3) determine if CYP mRNA expression levels (CYP1A1, CYP1B1 and CYP2E1) in lung 

tumors and normal tissues are a smoking exposure biomarker.  

4) compare the relative sensitivity of the RT-PCR FAF-ELOSA assay with the sensitivity of the 

TaqMan® assay for quantitation of CYP1A1, CYP1B1, CYP2E1 mRNA in lung tumors and 

normal tissues.  
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MATERIAL AND METHODS 

3.1. Study Design 

3.1.1. Type of study 

This study was a population based case/control study. All subjects included in the study were 

recruited from either the Pittsburgh, Pennsylvania area or Olmsted County, Minnesota. Those 

subjects who were diagnosed with primary lung cancer were categorized as cases and those who 

were without any malignant disease were defined as controls.    

3.1.2. Cases and controls selection 

i). Case ascertainment in Pittsburgh area 

Cases were ascertained from a retrospective case identification. The core tissue bank facility 

for the Early Detection Research Network: Patients at risk for head, neck and lung cancers was 

utilized for the identification of all patients diagnosed with primary lung cancer. Subjects were 

diagnosed during May 1992 through June 1994 at the University of Pittsburgh Cancer Institute. 

Potential study participants were provided with an IRB approved consent form (IRB#960116) to 

read, and the study protocol was explained to them. Any questions they had were answered, after 

which they were required to sign the consent form in the presence of a witness. A copy of the 

signed consent form was maintained in the subject hospital charts and a copy retained by the 

investigator. Subjects were interviewed about their health history and habits, and their family’s 
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history of cancer. In addition, blood samples were collected, frozen and stored in the University 

of Pittsburgh Cancer Institute Tissue Bank for further experimental analyses. 

ii). Case ascertainment in Olmsted County 

In collaboration with Dr. Ping Yang at the Mayo Research Foundation, two methods of case 

identification were used for prospective case identification for patients diagnosed during June 1, 

1997 through December 31, 1998, and retrospective case identification for patients diagnosed 

during January 1, 1995 through May 31, 1997. Criteria for study eligibility were cases diagnosed 

with primary lung cancer and with a positive family history of lung cancer (at least one first-

degree or two second-degree relatives), a positive family history of other cancers (at least two 

first-degree or three second-degree relatives), diagnosed under the age of 50, or were lifetime 

non-smokers (less than 100 cigarettes/lifetime). Cases who had primary lung cancer but did not 

meet other criteria as described above were still recruited and categorized as controls for a case-

only analysis. 

Prospective case identification (Fig. 9) 

To identify and track all patients with a new diagnosis of primary lung cancer, the study 

coordinator obtained a daily list of all lung cancer patients through the Department of Pathology 

and/or CoPath, a software package designed to generate reports of all pathologic diagnoses of 

specimens examined at the Mayo Clinic. Upon identification of a patient diagnosed with lung 

cancer, the study coordinator accessed the General Patient Access System (GPAS) to locate the 

patient’s medical record. A board-certified genetic counselor reviewed the patient’s medical 

record to determine if the patient met study eligibility criteria. When the information was 

deemed incomplete to determine study eligibility, the physician was notified and an alert flag 

was inserted into the medical record. This flag was an alert for the clinicians who were treating 
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or evaluating the patient to review the patient’s history to determine if the patients met the study 

criteria, and then to notify the study coordinator. 

If the patient met study criteria, or was systematically selected as a control (10% of the 

patients not meeting study inclusion criteria), the study coordinator then arranged a convenient 

time for the genetic counselor to review the Patient and Family History (PFH) form with the 

patient. The genetic counselor then assisted the patient in its completion and necessary 

expansion. As genetic counselors are trained to record medical, social, and family histories, 

complete and accurate information on the PFH form would be of benefit to the clinicians treating 

the patient. Additionally, in assessing the patient’s family history of cancer, the genetic counselor 

expanded upon the family history by including information on second-degree relatives, types of 

cancer, ages of diagnosis, and relevant exposure (active and passive tobacco smoke) and 

occupation histories. If the patient was no longer being seen at Mayo for treatment, or the study 

coordinator was unable to arrange a convenient time to meet with the patient, the genetic 

counselor would call the patient to review and complete the PFH and expand the family history. 

During the visit, the genetic counselor also explained the research study, provided the patient 

with a brochure describing the study, and provided the patient with an IRB approved consent 

form (IRB#76-97 at Mayo Clinic, and IRB#960123 at Pittsburgh). 
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New Case Diagnosis
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Counselor

General Patient Access System
• Locate patient medical record
• Patient appointments
• Surgical Listing
 

Medical Record

• Review PFH form, determine eligibility
• Add Alert card, if needed
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Meet with patients
• PFH, Expand family history
• Informed consent
• Collect blood sample
 

10% Systemactically
selected as controls

If patient not available for in-person interview:
• Mail study invitation letter
• Call patient for interview
• Send patient blood kit

Pathology

Daily reports

CoPath

 

Figure 9. Prospective case identification at the Mayo Clinic 
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Retrospective case identification (Fig. 10) 

Case sources utilized for identifying all patients diagnosed with lung cancer include Medical 

Diagnostic Index, Surgical Index, and Tumor Registry. Considering the very high case-fatality 

rate and unstable nature of the clinical patient population, the patients who were either Olmsted 

County residents at diagnosis or had a positive family history of lung cancer were ascertained.  

Upon receipt of the patient’s medical record, the study coordinator determined study 

eligibility status as described above. Patients who met study eligibility criteria were invited to 

participate in the study as follows: 

a) If the patient was actively being seen at the Mayo Clinic, the genetic counselor arranged to 

meet with the patient at a scheduled appointment. During the visit, the genetic counselor 

reviewed and expanded the family history, described the study, and obtained consent 

(IRB#76-97) to participate. 

b) If the patient was not actively being seen at the Mayo Clinic, the patient was sent an 

invitation letter and was called by the genetic counselor two weeks later. If the patient gave 

the written or verbal consent (IRB#76-97) to participate in the study, the family history was 

reviewed and the PFH form was completed and expanded the same way as for the newly 

diagnosed cases. Meanwhile, the patient was mailed a blood kit, instructions, and a written 

consent form. In the event that the patient was deceased, paraffin-embedded tissue blocks or 

other forms of preserved tissues were obtained from the Mayo Tumor Registry. 

The study coordinator maintained a database that included clinic number, patient name, 

physician, date of lung cancer diagnosis, histological diagnosis, vital status, date of death, study 

eligibility status, date patient was visited or called by the genetic counselor, patient consent, 
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tumor/tissue sample request date, blood collection date, date blood kit sent, date blood kit 

returned, and laboratory number of all biosamples.  

 

Medical Index
Tumor Registry
Surgical Index

Review Medical
Records

Eligibility:
1. Olmsted Co. resident
2. FH+ of lung cancer

Meet Study Criteria:
≥ 1 first degree relative with lung cancer

- Send invitation letter
- Phone probands (or proxies)
- Review and expand family
history
- Send blood kit

 

Phone to follow-up if kit not
returned within two weeks

Kit returned to lab
- login specimens
- update tracking database
- prep and store specimens

 

Figure 10. Retrospective case identification at the Mayo Clinic 
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iii). Control subject ascertainment at the Center for Clinical Pharmacology, University of 

Pittsburgh (Fig. 11) 

Normal healthy controls were ascertained by prospective control identification. Healthy 

subjects were at least eighteen years, included both genders, smokers and non-smokers, and both 

Caucasians and African Americans. Subjects were recruited from the Center for Clinical 

Pharmacology’s pool of healthy volunteers. Each subject passed a screening evaluation based on 

medical history, physical examination and the following biochemical and urinalysis tests: BUN, 

creatinine, electrolytes, liver function tests, total protein, albumin, complete blood count, urine 

pH, hemoglobin, protein, glucose, ketones, specific gravity and microscopic examination of 

sediment. Female subjects of childbearing potential were tested to exclude pregnancy. Subjects 

enrolled in this study were provided with an IRB approved consent form (IRB#990562) to read, 

and the study protocol was explained to them. Any questions they have were answered after 

which they were required to sign the consent form in the presence of a witness. A copy was 

maintained in the subject hospital charts and a copy retained by the investigator. After the initial 

evaluation, subject blood samples were collected for further experimental analyses. 
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Figure 11. Prospective control identification at the Center for Clinical Pharmacology, 

University of Pittsburgh 
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iv). Control subject ascertainment at the University of Pittsburgh Medical Center 

Controls were ascertained from a retrospective identification. The National Tissue and Serum 

Bank: Patients at Risk for Colorectal Carcinoma was utilized for the identification of patients 

who were screened for the development of colon cancer but resulted in normal colons and 

polyps. Subjects were diagnosed during May 1992 through June 1994 at the University of 

Pittsburgh Medical Center. All study participants were provided with an IRB approved consent 

form (IRB#0105103) to read and the study protocol was explained to them. Any questions they 

had were answered, after which they signed the consent form in the presence of a witness. A 

copy of the signed consent form was maintained in the subject hospital charts and a copy 

retained by the investigator. Subjects completed the questionnaires about their health, family’s 

history of cancer, and risk factors for cancer. In addition, blood samples were collected, frozen 

and stored in the University of Pittsburgh Cancer Institute Tissue Bank for further experimental 

analyses. 
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3.2. Genotyping 

3.2.1. DNA isolation 

Genomic DNA was isolated from whole blood, buffy-coat, or peripheral blood lymphocyte 

samples from cases and controls according to standard protocols as described below. 

i). Genomic DNA isolation from whole blood with the PureGene Kit (Gentra Systems) 

Whole blood (150 µl) was mixed thoroughly with 450 µl of RBC lysis solution and 

incubated at room temperature for ten minutes. This solution was centrifuged at 15,000 x g for 

30 seconds, then the supernatant was removed and discarded. The pellet was resuspended by 

vortexing the tube vigorously and mixed with 150 µl of cell lysis solution. The solution was 

incubated at 37oC for 15 minutes with 0.75 µl of RNase A. This was followed by the addition of 

50 µl of protein precipitation solution, the tube was inverted gently 10 times, and centrifuged at 

15,000 x g for 5 minutes. The supernatant was transferred into a new tube, mixed with 150 µl of 

isopropanol, inverted about 50 times, and centrifuged at 15,000 x g for 5 minutes. The 

supernatant was discarded. The pellet was washed with 150 µl of 70% aqueous ethanol, and 

centrifuged at 15,000 x g for 2 minutes. The supernatant was removed and the pellet was dried in 

a vacuum centrifuge for 5 minutes. dH2O (50 µl) was added to the pellet. DNA was rehydrated 

at 65oC for 1 hour and at room temperature overnight. 

ii). DNA isolation from the buffy coat fraction prepared from 3 ml whole blood with 

PureGene Kit (Gentra Systems) 

The buffy coat fraction (150 µl) sample was mixed with 450 µl of RBC lysis solution and 

incubated for 10 minutes at room temperature. The tube was inverted once during the incubation. 

After centrifugation at 2,000 x g for 10 minutes, supernatant was removed, leaving behind the 
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white cell pellet in about 100-200 µl of the residual liquid. The tube was vortexed vigorously to 

resuspend the cells in the residual liquid. Cell lysis solution (300 µl) was added and mixed with 

buffy coat solution by pipetting up and down to lyse the cells. The cell lysate was mixed with 15 

µl of RNase A solution by inverting the tube 25 times and incubated at 37 oC for 15-60 minutes. 

The sample was cooled to room temperature and mixed with 100 µl of protein precipitation 

solution. The mixture was vortexed vigorously at high speed for 20 seconds and centrifuged at 

2,000 x g for 10 minutes. The supernatant was removed into a clean 1.5 ml centrifuge tube 

containing 300 µl of isopropanol and mixed by inverting tube gently 50 times. The DNA was 

centrifuged at 2,000 x g for 3 minutes and the supernatant was discarded. The DNA pellet was 

washed with 300 µl of 70% aqueous ethanol and centrifuged at 2,000 x g for 1 minute. The 

ethanol layer was poured off. The DNA was air dried for 10-15 minutes and then rehydrated with 

250 µl of DNA hydration solution at 65oC for 1 hour and overnight at room temperature. 

iii). Isolation of DNA from 1-2 Million Cultured Cells (PureGene Kit Method – Gentra 

Systems)  

One to two million cells were centrifuged at 14,000 x g for 5 seconds to pellet the cells. The 

supernatant was discarded, leaving behind 10-20 µl of residual liquild. The tube was vortexed 

vigorously to resuspend the cells. Cell lysis solution (300 µl) was added to the tube and the 

mixture was pipeted up and down to lyse the cells. The mixture was mixed with 1.5 µl of RNase 

A Solution and the tube was inverted 25 times and incubated at 37oC for 5 minutes. The sample 

was placed on ice for 5 min, mixed with 100 µl of protein precipitation solution by vortexing 

tube vigorously at high speed for 20 seconds, then centrifuged at 14,000 x g for 1 minute. The 

supernatant was poured into a clean 1.5 ml centrifuge tube containing 300 µl of isopropanol. The 

tube was inverted gently 50 times and centrifuged at 14,000 x g for 1 minute. Aqueous ethanol 

 88 



  

(70%, 300 µl) was added after the supernatant was discarded. The sample was centrifuged at 

14,000 x g for 1 minute and the ethanol layer was poured off. The DNA was rehydrated with 50 

µl of DNA hydration solution and mixed by vortexing at medium speed for 5 seconds. Then, 

DNA was incubated at 65oC for 5 minutes and vortexed at medium speed for 5 seconds.  

3.2.2. Genotyping assays 

A panel of metabolic enzyme and DNA repair genetic polymorphisms was screened by using 

methods as indicated in Table 13 with some modifications to the published procedure. Each 

variant allele listed in Table 2-7, 9, 10 was selected for analysis based on the allele frequency, 

predicted enzyme phenotype and previously reported associations with lung cancer risk. Each 

PCR reaction was optimized by varying the volume used of 10X PCR buffer II (100mM Tris-

HCl, pH 8.3, 500mM KCl), MgCl2, dimethylsulfoxide (DMSO), dNTP mix, and gelatin. Also, 

the final volume of PCR reaction and the type of DNA polymerase used were important for 

obtaining the optimal condition for each PCR reaction. The assay validation was accomplished 

by sequencing each PCR product and comparison with published sequences. Negative control 

and positive controls with known genotypes including homozygous wild type, heterozygous, and 

homozygous variant allele were included in each PCR reaction.  
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Table 13. PCR assays used in amplification DNA fragments for detection genetic 

polymorphisms in variant alleles  

Allele Reference Modification 

CYP1A1*2A and 

CYP1A1*3 

(282)  The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.35 µl of AmpliTaq DNA 

polymerase at 94oC 1 minute, 55oC 1 minute, and 72oC 1 minute 

for 40 cycles 

CYP1A1*2C and 

CYP1A1*4 

(132) The PCR reaction was performed in a 100µl final volume using 10 

µl of 10 X PCR Buffer II, 6 µl of MgCl2, 2 µl of 10 mM mix 

dNTP, 1 µl of each forward and reverse primer (400 ng/µl), and 

0.25 ul AmpliTaq Gold DNA polymerase at 94°C 30 second, 62°C 

30 second, and 72°C 30 second for 40 cycles 

CYP1A2*1C (148) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10 X PCR Buffer II, 3 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl AmpliTaq Gold DNA 

polymerase at 94°C 1 minute, 56°C 1 minute, and 72°C 1 minute 

for 40 cycles 

CYP1A2*1F (150) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10 X PCR Buffer II, 2 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl AmpliTaq Gold DNA 

polymerase at 94°C 1 minute, 64°C 1 minute, and 72°C 1 minute 

for 40 cycles 

CYP1B1*3 (159) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2.5 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 52°C 30 second, and 72°C 30 

second for 40 cycles 
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Table 13. (cont’d) 
Allele Reference Modification 

CYP2D6*4 (164) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 60°C 30 second, and 72°C 30 

second for 40 cycles 

CYP2E1*5B (177) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), and 0.25 µl of AmpliTaq Gold DNA polymerase at 94°C 

30 second, 60°C 30 second, and 72°C 30 second for 40 cycles 

GSTM1 (283) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 3 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each GSTM1 and beta-globin primer, 

0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 55°C 30 second, and 72°C 30 

second for 40 cycles 

GSTM3*B (181) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2.5 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), and 0.25 µl of AmpliTaq Gold DNA polymerase at 94°C 

30 second, 58°C 30 second, and 72°C 30 second for 40 cycles 

GSTP1*B (284) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2.5 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 55°C 30 second, and 72°C 30 

second for 40 cycles 
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Table 13. (cont’d) 
Allele Reference Modification 

GSTP1*C (284) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2.5 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 55°C 30 second, and 72°C 30 

second for 40 cycles 

GSTT1 (108) The PCR reaction was performed in a final volume 50 µl using 8.5 

µl of Buffer B, and 1 µl of 10 mM mix dNTP, 1 µl of each GSTT1 

and beta-globin primer, and 0.35 µl of AmpliTaq DNA 

polymerase at 94oC 1 minute, 55oC 1 minute, and 72oC 1 minute 

for 40 cycles 

NAT2* (202) The PCR reaction was performed in a final volume 100 µl using 

20 µl of Buffer F, 1 µl of 10 mM mix dNTP, and 1 µl of forward 

and reverse primer (400 ug/ul, and 0.35 µl AmpliTaq DNA 

polymerase at 94oC 1 minute, 57oC 1 minute, and 72oC 3 minutes 

for 40 cycles. Additional PCR products digested with AvaII for 

NAT2*6A allele 

mEPHX3 (285) The PCR reaction was performed in a final volume 50 µl using 2 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of Ampli Taq Gold DNA 

polymerase at 94°C 10 second, 56°C 30 second, and 72°C 45 

second for 40 cycles 

mEPHX4 (226) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 61°C 45 second, and 72°C 1 

minute for 40 cycles 
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Table 13. (cont’d) 
Allele Reference Modification 

MPO (231) The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 3 µl of MgCl2, 1 µl of 

10 mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 30 second, 61°C 30 second, and 72°C 30 

second for 40 cycles 

XPD exon 23  The PCR reaction was performed in a final volume 50 µl using 5 

µl of DMSO, 5 µl of 10X PCR Buffer II, 2 µl of MgCl2, 1 µl of 10 

mM mix dNTP, 1 µl of each forward and reverse primer (400 

ng/µl), 0.25 µl of gelatin, and 0.25 µl of AmpliTaq Gold DNA 

polymerase at 94°C 1 minute, 54°C 1 minute, and 72°C 1 minute 

for 40 cycles 

 

All PCR reactions were performed using DMSO from Sigma, 10X PCR Buffer II from Applied Biosystems, MgCl2 
from Applied Biosystems, 10 mM mix dNTP from Pharmacia, forward and reverse primers from Midland, gelatin 
from Sigma, AmpliTaq or AmpliTaq Gold DNA polymerase from Applied Biosystems, Buffer F and B from 
Invitrogen. 
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Table 14. Expected RFLP-PCR gel fragment sizes of each variant allele  

Allele Restriction 

endonuclease 

Predicted pattern of gel bands 

CYP1A1*2A MspI  CYP1A1*1/*1 wide type  - 1032 bp  

CYP1A1*1/*2A heterozygote - 1032, 826, 206 bp  

CYP1A1*2A/*3 heterozygote  -556, 260, 206 bp  

CYP1A1*2A/*2A homozygous variant - 826, 206 bp  

CYP1A1*3 MspI  CYP1A1*1/*1 wide type  - 1032 bp  

CYP1A1*1/*3 heterozygote  - 1032, 772, 260 bp  

CYP1A1*2A/*3 heterozygote  -556, 260, 206 bp  

CYP1A1*3/*3 homozygous variant - 772, 260 bp  

CYP1A1*2C BsrDI  CYP1A1*1/*1 wild type - 149, 55 bp  

CYP1A1*1/*2C heterozygote - 204, 149, 55 bp  

CYP1A1*2C/*2C homozygous variant - 204 bp  

CYP1A1*4 BsaI  CYP1A1*1/*1 wild type - 139, 65 bp  

CYP1A1*1/*4 heterozygote - 204, 139, 65 bp  

CYP1A1*4/*4 homozygous variant - 204 bp  

CYP1A2*1C DdeI  CYP1A2*1/*1 wild type - 596 bp  

CYP1A2*1/*1C heterozygote - 596, 464, 132 bp  

CYP1A2*1C/*1C homozygous variant - 464, 132 bp  

CYP1A2*1F Bsp120I  CYP1A2*1/*1 wild type - 709, 211 bp  

CYP1A2*1/*1F heterozygote - 920, 709, 211 bp  

CYP1A2*1F/*1F homozygous variant - 920 bp  

CYP1B1*3 Eco571  CYP1B1*1/*1 wild type - 182, 89 bp  

CYP1B1*1/*3 heterozygote - 271, 182, 89 bp  

CYP1B1*3/*3 homozygous variant - 271 bp  

CYP2D6*4 PalI  CYP2D6*1A/*1A wild type - 83, 44, 36 bp  

CYP2D6*1A/*4 heterozygote - 83, 44, 40, 39, 36 bp  

CYP2D6*4/*4 homozygous variant - 44, 40, 39, 36 bp  

CYP2E1*5B PstI  CYP2E1*1A/*1A wild type - 412 bp  

CYP2E1*1A/*5B heterozygote - 412, 290, 122 bp  

CYP2E1*5B/*5B homozygous variant - 290, 122 bp  
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Table 14. (cont’d) 
Allele Restriction 

endonuclease 

Predicted pattern of gel bands 

GSTM1 - GSTM1 wild type - equal intensity between 268 and 215 bp  

GSTM1 heterozygote - half intensity of 215 bp compared to 268 

bp  

GSTM1 null - 268 bp  

GSTM3*B MnlI  GSTM3*A/*A wild type - 125, 86, 51, 11 bp  

GSTM3*A/*B heterozygote - 134, 125, 86, 51, 11 bp  

GSTM3*B/*B homozygous variant - 134, 125, 11 bp  

GSTP1*B BsmAI  GSTP1*A/*A wild type - 176 bp  

GSTP1*A/*B heterozygote - 176, 93, 83 bp  

GSTP1*B/*B homozygous variant - 93, 83 bp  

GSTP1*C Cac81  GSTP1*A/*A wild type - 110, 34, 26 bp  

GSTP1*A/*C heterozygote - 136, 110, 34, 26 bp  

GSTP1*C/*C homozygous variant - 136, 34 bp  

GSTT1 - GSTT1 wild type - equal intensity between 480 and 268 bp  

GSTT1 heterozygote - half intensity of 480 bp compared to 268 bp  

GSTT1 null - 268 bp  

NAT2*5A or 

NAT2*5B 

KpnI  NAT2*4/*4 wild type - 660, 433 bp  

NAT2*4/*5A or NAT2*4/*5B heterozygote - 1093, 660, 433 bp  

NAT2*5A/*5A or NAT2*5B/*5B homozygous variant - 1093 bp  

NAT2*6A TaqI & AvaII  NAT2*4/*4 wild type - 380, 317, 170, 122, 104 bp  

NAT2*4/*6A heterozygote - 380, 317, 274, 170, 122, 104 bp  

NAT2*6A/*6A homozygous variant - 380, 317, 274, 122 bp  

NAT2*7B BamHI  NAT2*4/*4 wild type - 811, 282 bp  

NAT2*4/*7B heterozygote - 1093, 811, 282 bp  

NAT2*7B/*7B homozygous variant - 1093 bp  

NAT2*14A AluI & MspI  NAT2*4/*4 wild type - 759, 189, 91, 53 bp  

NAT2*4/*14A heterozygote - 759, 280, 189, 91, 53 bp  

NAT2*14A/*14A homozygous variant - 759, 280, 53 bp  

mEPHX3 AspI  mEPHX3 (Tyr/Tyr) wild type - 231 bp 

mEPHX3 (Tyr/His) heterozygote - 231, 209, 22 bp  

mEPHX3 (His/His) homozygous variant - 209, 22 bp  
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Table 14. (cont’d) 
Allele Restriction 

endonuclease 

Predicted pattern of gel bands 

mEPHX4 RsaI  mEPHX4 (His/His) wild type - 295, 62 bp  

mEPHX4 (His/Arg) heterozygote - 295, 174, 121, 62 bp 

mEPHX4 (Arg/Arg) homozygous variant - 174, 121, 62 bp  

MPO AciI  MPO (G/G) wild type - 169, 120, 61 bp  

MPO (G/A) heterozygote - 289, 169, 120, 61 bp  

MPO (A/A) homozygous variant - 289, 61 bp  

XPD23 PstI  XPD23 (Lys/Lys) wild type - 575, 128 bp  

XPD23 (Lys/Gln) heterozygote - 575, 128, 65, 63 bp  

XPD23 (Gln/Gln) homozygous variant - 575, 65, 63 bp  

 
The restriction endonuclease MspI, BsrDI, BsaI, DdeI, PstI, MnlI, BsmAI, Cac81, KpnI, TaqI & AvaII, BamHI, AluI, 
RsaI, and AciI were purchased from New England Biolabs, Inc.; Bsp120I, and Eco571 were purchased from MBI 
Fermentas, Inc.; PalI and AspI were purchased from Stratagene and Roche, respectively.  
 

3.3. Quantitation of mRNA expression levels 

Lung tumor and normal adjacent tissues were obtained from cases recruited at Mayo Clinic, 

Minnesota. Normal liver tissue was obtained from donor liver transplant tissue at the University 

of Pittsburgh Medical Center. The lung and liver tissue samples were kept at -80 oC until RNA 

was isolated. Total RNA isolation from snap frozen tissues was performed using the method 

described below.    

3.3.1. Isolation of total RNA from tissue (Purescript Kit Method)(Gentra Systems) 

Frozen tissue 250 mg was mixed with 300 µl cell lysis solution in a microgrinder on ice, and 

then transferred to a clean centrifuge tube. This mixture was then combined with 100 µl of 

protein-DNA precipitation solution by inverting the tube gently 10 times, and placed on ice for 

10 minutes. After the mixture was centrifuged at 15,000 x g for 5 minutes, the supernatant was 

pipetted into a clean tube containing 300 µl of isopropanol and mixed by inverting tube about 50 
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times. The sample was centrifuged at 15,000 x g for 5 minutes and supernatant was poured off. 

The pellet was washed with 300 µl of 70% aqueous ethanol and centrifuged at 15,000 x g for 2 

minutes. The supernatant was discarded and the pellet was dried in vacuum centrifuge for 5 

minutes. Diethyl pyrocarbonate treated deionized H2O (25 µl)(DEPC dH2O) was added to the 

RNA and 5 µl was taken to 995 µl of DEPC dH2O. Optical density at 260 nm and 280 nm was 

read on UV-2101PC, UV-VIS scanning spectrophotometer (Shimadzu) to determine the total 

RNA concentrations. 

Detection of Contamination of total RNA with genomic DNA     

The CYP2D6 genotyping PCR reaction was performed using 1 µg of RNA in order to detect 

genomic DNA contamination in the total RNA preparation. The PCR reaction was performed 

using the method described in Table 13. The PCR product was eletrophoresed through a 8 % 

acrylamide gel. Then, the gel was stained with ethidium bromide (Sigma) for 20 minutes, 

exposed to UV light, and visualized with the FOTODYNE® gel photograph system. Expected 

results were no bands for RNA samples, no band with blank, and a band in the lane of the DNA 

positive control. If a band existed in the RNA sample lane, the RNA was contaminated with 

genomic DNA and was treated as follows.  

DNase treatment for contaminated RNA       

RNA was incubated with 25 µl of DNase buffer (80mM Tris-HCl buffer, 16mM MgCl2, pH 

7.6) and 1 µl of DNase/10 µg nucleic acids (Stratagene) at 37oC for 1 hour. The solution was 

brought up to 250 µl total volume with DEPC dH2O (Sigma). Tri-reagent (Molecular Research 

Center) (750 µl) was added and the RNA isolation protocol was then repeated. Absence of 

genomic DNA was confirmed as described above.  
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3.4. Methods for RNA quantitation 

One of two methods was used for the quantitation of mRNA expression. 

3.4.1. FAF-ELOSA 

3.4.1.1. Reverse Transcription (RT) of Total RNA to cDNA 

Total RNA was reverse transcribed and the cDNA product amplified. Briefly, 10 µg of total 

RNA was mixed with 0.5 µl of RNasin RNase inhibitor (40U/µl) (Promega) and 1 µl of random 

hexamers (2.5 µM) in a total volume of 9.5 µl. The mixture was heated to 94oC for 2 minutes 

and cooled on ice for 5 minutes. To this mixture, 0.5 µl of RNasin RNase inhibitor 

(40U/µl)(Promega), 4 µl of 5X Moloney murine leukemia virus (MMLV) buffer (20mM Tris-

HCl (pH 7.5), 100 mM NaCl, 0.1mM EDTA, 1mM dithiothreitol, 0.01% (v/v) nonidet P40, 50% 

(v/v) glycerol) (Gibco BRL), 2 µl of 0.1 M dithiothreitol (Gibco BRL), and 2 µl of dNTP mix 

(10 mM)(Pharmacia) was added and incubated at 41oC for 15 minutes, and 2 µl of Moloney-

murine leukemia virus reverse transcriptase (Gibco BRL) was added and incubated for an 

additional 60 minutes at 41oC. The mixture was heated to 99oC for 5 minutes to inactivate the RT 

reaction and cooled to 4oC. 

3.4.1.2. PCR reaction for amplification of cDNA  

The PCR reaction for amplification of human β-actin cDNA was performed by the method as 

described by Carcillo et al. (271). In a final volume of 100 µl, 10 µl of DMSO (Sigma), 10 µl of 

10X PCR Buffer II (Perkin Elmer), 4 µl of MgCl2 (Perkin Elmer), 2 µl of 10 mM mix dNTP 

(Pharmacia), 1 µl of fluorescein-labeled 3′ primer and unlabeled 5′ primer (400 µg/µl) 

(Midland), and 0.5 µl gelatin (Sigma) were added to 2 µl of cDNA (0.5 µg/µl). Hot Start PCR 

was run at 94oC 5 minutes, 86oC 1.5 minutes, and 94oC 1.5 minutes and 0.5 µl AmpliTaq DNA 
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polymerase (Perkin Elmer) was added during the 86oC step. Then, the reaction was continued at 

94oC for 1 minute, 51oC for 1 minute, and 72oC for 3 minutes for 40 cycles followed by a 10 

minutes at 72oC extension and a 4oC soak. The CYP1A1, CYP1B1, and CYP2E1 cDNA were 

amplified under similar conditions, except the annealing step was performed at 59oC for 

CYP1A1 and CYP2E1. The PCR product was electrophoresed through a 8 % acrylamide gel. 

Then, the gel was stained with ethidium bromide (Sigma) for 20 minutes, exposed to UV light, 

and visualized with the FOTODYNE® system. The expected band sizes of CYP1A1, CYP1B1, 

CYP2E1, and β-actin PCR products were 202, 165, 122, and 139 bp, rescpectively. 

3.4.1.3. Quantitative analysis of the fluorescein-labeled PCR product using FAF-ELOSA 

Four PCR reactions from a single cDNA preparation were performed. Aliquots (10 µl) were 

taken at 20, 22, 24, 26, and 28 cycles to ensure quantitation during the exponential phase of the 

PCR. Quantification of PCR products was carried out using the procedure of Carcillo et al. 

(271). Briefly, 5 µl of the aliquots were diluted with deionized water to a total volume of 20 µl 

and heat denatured at 100oC for 5 minutes and then cooled to 4oC. The standard solutions (20 µl) 

or denatured sample (20 µl) was pipetted into the streptavidin-coated microtiter plate wells 

(DuPont). Hybridization buffer (100 µl of 10% formamide, 6x SSC, 1.2% Triton X-100, 0.12% 

BSA) containing 10 nM bitotin-labeled captured probe and 5 nM fluorescein-labeled reporter 

probe for the standard only was added to each well and incubated at 37oC for 1 hour. The plate 

was washed 6 times with 1x DuPont plate wash buffer (phosphate buffered saline, 10x with 0.5% 

Tween 20/phosphat-gepufferte)(DuPont). Anti-fluorescein horseradish peroxidase (HRP) 

conjugate (100 µl, 1:200)(DuPont) in antifluorescein diluent buffer (PBS, 2% Tween, 5% FCS, 

0.2% casein) was added to the wells and incubated at room temperature in dark for 30 minutes. 

The wells were washed six more times. Tetramethylbenzidene blue (TMB) substrate (100 µl) 
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(ScyTek) was added and incubated in the dark for 1 hour at room temperature. The reaction was 

stopped with TMB stop solution (ScyTek). Product color development was read on a 

MicroQuant plate reader (Bio Tek) as the difference in absorbances at 450 nm and 630 nm. A 

standard curve was generated for each PCR reaction by using a serial dilution of a synthesized 

single-stranded DNA oligonucleotide identical in sequence to the target DNA. The concentration 

of the synthetic DNA was determined spectrophotometrically. The concentration of target DNA 

in sample was determined by comparing the different values in absorbances at 450 nm and 630 

nm read on a MicroQuant plate reader (Bio Tek) obtained from a sample with that obtained from 

a standard.    

3.4.2. TaqMan® assay 

3.4.2.1. Reverse Transcription of Total RNA to cDNA 

The RT was carried out in a 100 µl volume consisting of 10 µl of 10X PCR buffer II (Perkin 

Elmer), 30 µl of MgCl2 (25mM)(Perkin Elmer), 4 µl of dNTP mix (25mM)(Pharmacia), 5 µl of 

random hexamers (100µM), 1 µl of RNase Inhibitor (40U/µl)(Promega), 1.25 µl of M-MLV 

reverse transcriptase (200U/µl)(Gibco BRL), and 45 to 180ng total RNA. Reactions were 

incubated at 25oC for 10 minutes, 48oC for 30 minutes, and 95oC for 5 minutes. “No RT” 

controls were carried out in all cases using the same RT reaction mix but substituting DEPC 

dH2O for MMLV reverse transcriptase.  

3.4.2.2. Real time quantitative analysis of target PCR product  

The following gene expression patterns were studied: β-actin, β-glucuronidase (β-GUS), 

CYP1A1, CYP1B1, and CYP2E1. The PCR primers and fluorogenic probes were designed using 

Primer Express software (PE Biosystems). TaqMan primers were designed to span introns in the 
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genomic DNA in order to avoid signal from contaminating genomic DNA. The β-GUS, 

CYP1A1, CYP1B1, and CYP2E1 PCR reactions were performed in duplicate in a final 25 µl 

reaction volume using 2.5 µl of 10x TaqMan buffer A (Perkin Elmer), 5.5 µl of MgCl2 

(25mM)(Perkin Elmer), 3 µl of dNTP mix (25mM)(Pharmacia), 0.25 µl of AmpliTaq Gold DNA 

polymerase (Perkin Elmer), 0.25 µl of primers and probe (10µM)(Midland), and 5 µl of cDNA. 

Two-step PCR cycling was carried out at 95oC for 12 minutes, and followed by 95oC for 20 

seconds and 60oC for 1 minute for 40 cycles.  

The β-actin PCR reaction was performed in duplicate in a final 50 µl reaction volume 

consisting 1x TaqMan PCR buffer A (Perkin Elmer), 3.5 mM MgCl2 (25mM)(Perkin Elmer), 

200 µM each dNTP (Perkin Elmer), 300 nM β-actin primers (Perkin Elmer), 200 nM β-actin 

probe (Perkin Elmer), 0.025 U/µl AmpliTaq Gold DNA polymerase (Perkin Elmer), 0.01 U/µl 

AmpErase UNG (Perkin Elmer), and 5 µl of cDNA. Two-step PCR cycling was carried out at 

95oC for 10 minutes, and followed by 95oC for 15 seconds and 60oC for 1 minute for 40 cycles. 

At the end of the PCR, baseline and threshold values were set in the ABI 7700 Prism software 

and the amplification plot and calculated CT values were determined. 

3.4.2.3. Relative expression calculation 

Relative mRNA expression was calculated using the comparative method (PE Biosystems). 

All data were controlled for quantity of RNA input by performing measurements on an 

endogenous reference gene β-GUS. In addition, results on RNA from lung tissues were 

normalized to results obtained on RNA from liver tissues. Briefly, the analysis was performed by 

calculating the difference in CT values (∆CT) for each RNA sample by;  

∆CT = ∆CT (target gene) − ∆CT (β-GUS) 

Then ∆∆CT was generated by:  
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∆∆CT = ∆CT (lung RNA) − ∆CT (liver RNA) 

Since all RNAs were reverse transcribed at three different RNA concentrations, three values of 

∆∆CT were calculated for each gene on each RNA sample: ∆∆CT (180ng),  ∆∆CT (90ng) and 

∆∆CT (45ng). The mean of these ∆∆CT measurements was used to calculate the amount of target, 

normalized to an endogenous reference and relative to liver tissue sample.  

Relative expression =  2 −∆∆CT   

3.5. Statistical analysis of results 

The genotyping results and complete information on age, gender, smoking status, packyear, 

and occupational exposures obtained from both case and control populations were recorded in a 

Microsoft Excel file and then imported and analyzed with the SAS statistical computer program 

(Version 6: SAS Institute Inc., Cary, NC). The statistical analysis was restricted to Caucasians in 

order to minimize the confounding effect of allele frequency variation by ethnicity. The log 

likelihood ratio test was used to test the linearity of continuous variables such as age and 

packyear. If the test result showed non-linearity of any continuous variables, the transformed 

covariates were created and further tested for linearity. The log likelihood tests showed a linear 

association between lung cancer risk and age but not for the packyear variable. Then, the 

transformed packyear value of packyear+packyear-square was used instead of packyear as 

suggested by an examination of the linear relationship between the transformed packyear and the 

log odds of lung cancer risk. Unconditional multivariate logistic regression analysis was 

performed to compare the relative contribution of risk by different factors, for example, single 

gene loci polymorphisms and combined at risk genotypes, and control for confounding factors 

and variable interactions. The model used a stepwise variable selection to obtain ORs and 95% 

confidence intervals allowing for inclusion of both continuous and categorical independent 
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variables and interaction terms among confounding factors such as age, race and smoking status 

and between confounding factors and at risk genotype(s). Odds ratios and their 95% confidence 

interval for risk of lung cancer in the entire lung cancer cases, in different histological subtypes 

(adenocarcinoma and squamous cell carcinoma), males, females, and cases with no history of 

occupational subgroups by single or combined at risk genotypes, were calculated from these 

models. The interaction terms between at risk genotype(s) and smoking status and/or 

transformed packyear and/or occupational exposure were fit into logistic regression models to 

examine the relationship between log odds of lung cancer and the gene-environment interactions.   

A case-only analysis was used to determine gene-gene and gene-environment interactions for 

a combination of drug metabolizing enzyme and DNA repair gene polymorphisms, history of 

environmental exposure, family history of lung or other cancers and age-at-diagnosis on 

increasing risk of lung cancer. The contribution of both metabolic enzyme and DNA repair gene 

polymorphisms on greater risk of lung cancer development among at risk lung cancer cases was 

assessed by comparing the differences in numbers of at risk lung cancer cases (cases who had 

family history of lung and other cancers and early age onset) who had one at risk genotype or 

combined genotypes compared to sporadic cases (cases who did not have family history of lung 

and other cancers and late age at diagnosis) using the χ2-test (Minitab Release 11.1, Minitab 

Inc.). The relative risk was also estimated using SAS software by using logistic regression 

models to obtain odd ratios and their 95% confidence intervals.  

Analysis tools of the student t-test for two sample assuming unequal variances and paired 

two sample for means were used to determine the differences in mean levels of CYPs mRNA 

expression between lung tumors and histologically normal adjacent tissues.  
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RESULTS 

4.1. Case control study 

4.1.1. Characteristics of study population 

There were 203 lung cancer cases and 205 controls in the present study. All controls and 61 

lung cancer cases were recruited from the Pittsburgh, Pennsylvania area. One hundred forty two 

lung cancer cases were from Olmsted County, Minnesota. The distribution of age, ethnicity, 

smoking status, packyear and history of occupational exposures was not statistically different 

between Pittsburgh and Minnesota lung cancer case groups. Therefore, lung cancer cases from 

both areas were pooled to give the study population of lung cancer cases in the case control and 

case only analyses. The demographic characteristics of the study populations are given in Table 

15. The percentage of males and ever smokers were higher among cases compared to controls. 

Ninety-six percent of cases and seventy-seven percent of controls were Caucasians. The 

remainder were African-American or of other ethnicity. The frequency distribution of 

occupational exposure among cases and controls was similar. Although the mean age and 

packyear of cases and controls were different, both age and packyear variables were adjusted in 

the logistic regression models when the relative risk values were calculated for predicting the 

association of risk factors and disease outcome. Cases were categorized into five subgroups 

based on histopathological cell types, gender and history of occupational exposure. 

Characteristics of cases in each subgroup are shown in Table 16.  
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Table 15. Distribution of characteristics of the controls and lung cancer cases 

Number of individuals (%)   Variable 

Controls (N=205) Cases (N=203) 

  Gender 

       Male 

       Female 

 

108 (52.7) 

97   (47.3) 

 

130 (64.4)  

72   (35.6) 

  Ethnicity 

       Caucasians 

       African Americans 

       Others 

 

157 (77) 

42   (20.5) 

5     (2.5) 

 

196 (96.5) 

4     (2) 

3     (1.5) 

  Smoking Statusa 

       Ever smokers 

       Nonsmokers 

 

107 (52.5) 

97   (47.5) 

 

176 (91.7) 

16   (8.3) 

  Age (mean ± SD) 50 ± 16 64 ± 12.1 

  Packyear 

       0  < PY ≤ 30 

       30 < PY ≤ 60 

       60 < PY  

       mean ± SD 

 

63   (60.6) 

28   (26.9) 

13   (12.5) 

31 ± 30 

 

47   (31.1) 

59   (39.1) 

45   (29.8) 

51.8 ± 34 

  Occupational Exposures 

       Asbestos exposure 

       Othersb 

       None 

 

9     (4.6) 

45   (22.8) 

143 (72.6) 

 

17   (8.5) 

45   (22.5) 

138 (69) 

  Histological cell typesc 

       Adenocarcinoma 

       Squamous cell carcinoma 

       Othersd 

  

110 (58.5) 

62   (33.0) 

16   (8.50) 

            a Ever smokers (ex-/current smokers who smoke ≥ 100 cigarettes lifetime); nonsmokers (< 100 cigarettes lifetime) 
       b Includes silicon, petroleum, radon, nickel chromium and others 
       c Includes small call carcinoma, large cell carcinoma, and other 
       d Missing data on 15 cases 
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Table 16. Characteristic of lung cancer cases among subgroups 

Number of individuals (%)    

 

 

Variable 

Adenocarcinoma 

 

(N = 108a) 

Squamous cell 

carcinoma 

(N = 54b) 

Male 

 

(N = 130c) 

Female 

 

(N = 72d) 

Non occupational 

exposure 

(N = 141e) 

  Gender 

       Male 

       Female 

 

64   (59.2) 

44   (40.8) 

 

39 (72)  

15 (28) 

 

130 (100) 

0   

 

0 

72   (100) 

 

74   (52.9) 

66   (47.1) 

  Ethnicity 

       Caucasians 

       African Americans 

       Others 

 

108 (100) 

0 

0 

 

54 (100) 

0  

0 

 

126 (97.7) 

3     (2.30) 

0      

 

70   (98.6) 

1     (1.40) 

0 

 

135 (97.8) 

3     (2.20) 

0 

  Smoking Status 

       Ever smokers 

       Nonsmokers 

 

90   (86.5) 

14   (13.5) 

 

54 (100) 

0    

 

117 (94.4) 

7     (5.60) 

 

59   (86.8) 

9     (13.2) 

 

118 (90.8) 

12   (9.20) 

  Age (mean ± SD) 65 ± 12 65 ± 11 63 ± 13 66 ± 11 65 ± 12 

  Packyear 

       0  < PY ≤ 30 

       30 < PY ≤ 60 

       60 < PY  

       mean ± SD 

 

34   (38.6) 

29   (33.0) 

25   (28.4) 

51 ± 29 

 

14   (28.0) 

20   (40.0) 

15   (32.0) 

53 ± 30 

 

35    (33.0) 

40    (37.7) 

31    (29.3) 

51 ± 30 

 

25    (43.1) 

19    (32.8) 

14    (24.1) 

53 ± 41  

 

44    (38.6) 

41    (36.0) 

29    (25.4) 

53 ± 37 

  Occupational Exposures 

       Asbestos 

       Othersf 

       None 

 

9     (8.30) 

25   (23.6) 

72   (31.9) 

 

4     (7.40) 

10   (18.5) 

40   (74.1) 

 

17    (13.2) 

39    (30.2) 

73    (56.6) 

 

0 

6     (8.60) 

64    (91.4) 

 

0 

0 

0 
a Data shown only Caucasian cases; missing data 4, 20, and 2 cases on smoking, packyear, and occupational exposures, respectively 
b Data shown only Caucasian cases; missing data 5 cases on packyear 
c Missing data 1, 6, 24, and 1 cases on ethnicity, smoking, packyear, and occupational exposures, respectively 
d Missing data 1, 4, 14, and 2 cases on ethnicity, smoking, packyear, and occupational exposures, respectively 
e Missing data 1, 3, 11, and 27 cases on gender, ethnicity, smoking, and packyear, respectively  
f Includes silicon, petroleum, radon, nickel chromium and others 
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4.1.2. Single gene loci polymorphisms and lung cancer risk 

Analyses of each ‘at risk’ genotype association with lung cancer risk were evaluated by a 

priori hypotheses based on the relevant function of each single gene to cigarette carcinogen 

metabolism and the impact of the single nucleotide polymorphism on predicted enzyme 

phenotype. Logistic regression models were fit by using a step-wise procedure to examine the 

relationship between the log odds of lung cancer and each ‘at risk’ genotype after adjusting for 

known risk factors such as age, race, smoking status, and interaction term between these factors 

where appropriate. Then, the odds ratio and their 95%CIs for the risk of lung cancer were 

calculated from these models.  

The frequencies of 18 genetic polymorphisms screened were similar between cases and 

controls as shown in Table 17. However, significantly higher genotype frequencies of predicted 

high CYP1A2 activity, GSTM3*A/*A, and XPD exon 23 (Lys/Gln and Gln/Gln) genotypes 

among cases were observed with crude ORs of 3.5 (95% CI, 2.22-5.52), 1.93 (95% CI, 1.27-

2.93), and 1.80 (95% CI, 1.19-2.72), respectively. After adjustment for age, race, smoking status 

and/or packyear and/or occupational exposures in logistic regression models, the adjusted ORs 

were 2.05 (95% CI, 1.13-3.73), 1.84 (95% CI, 1.03-3.31), and 2.56 (95% CI, 1.45-4.51) (Table 

18-20), respectively.  
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Table 17. Genotype frequencies among controls and lung cancer cases 

Genotype Controls 

N (%) 

Cases 

N (%) 

CYP1A1 
    *1A/*1A 
    *1A/*2A 
    *1A/*2C     
    *1A/*4 
    *2A/*2A 
    *2A/*2C 
    *2A/*4 

 
106 (58.6) 
43   (23.8) 
6     (3.3) 
6     (3.3) 
3     (1.7) 
12   (6.6) 
5     (2.7) 

 
144 (75.4) 
17   (8.9) 
4     (2.1) 
11   (5.8) 
5     (2.6) 
8     (4.2) 
2     (1) 

CYP1A2 
    *1A/*1A 
    *1A/*1F 
    *1C/*1C 
    *1C/*1F 
    *1F/*1F 

 
15   (7.8) 
75   (38.9) 
1     (0.5) 
22   (11.4) 
80   (41.4) 

 
18   (9.4) 
66   (34.6) 
0     (0) 
4     (2.1) 
103 (53.9) 

Predicted 1A2 activity 
    Low 
    High 

 
141 (78.3) 
39   (21.7) 

 
97   (50.8) 
94   (49.2) 

CYP1B1 
    *1/*1 
    *1/*3 
    *3/*3 

 
56   (27.8) 
90   (44.8) 
55   (27.4) 

 
60   (31.3) 
84   (43.7) 
48   (25) 

CYP2D6 
    *1A/*1A 
    *1A/*4B 
    *4B/*4B 

 
56   (61.5) 
33   (36.3) 
2     (2.2) 

 
78   (39.2) 
115 (57.8) 
6     (3) 

CYP2E1 
    *1A/*1A 
    *1A/*5B 
    *5B/*5B 

 
179 (90) 
20   (10) 
0     (0) 

 
184 (92.9) 
14   (7.1) 
0     (0) 

GSTM1 
    Positive 
    Null 

 
88   (42) 
119 (58) 

 
86   (42.4) 
117 (57.6) 

GSTM3 
    *A/*A 
    *A/*B 
    *B/*B 

 
106 (54.1) 
68   (34.7) 
22   (11.2) 

 
132 (69.5)  
51   (26.8) 
7     (3.7) 

GSTT1 
    Positive 
   Null 

 
133 (65.8) 
69   (34.2) 

 
157 (78.1) 
44   (21.9) 

GSTP1 
    *A/*A  
    *A/*B 
    *A/*C 
    *B/*B  
    *B/*C 
    *C/*C 

 
94   (48.5) 
66   (34.0) 
0     (0) 
12   (6.2) 
22   (11.3) 
0     (0) 

 
90   (46.6) 
70   (36.4) 
1     (0.5) 
7     (3.6) 
24   (12.4) 
1     (0.5) 
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Table 17. (cont’d) 

Genotype Controls 

N (%) 

Cases 

N (%) 

NAT2* 
    Fast acetylator 
    Slow acetylator 

 
39   (43.3) 
51   (56.7) 

 
91   (45.3) 
110 (54.7) 

mEPHX   
    Tyr113/Tyr113 
    Tyr113/His113 
    His113/His113 

 
89   (52) 
54   (31.6) 
28   (16.4) 

 
91   (48.9) 
61   (32.8) 
34   (18.3) 

mEPHX  
    His139/His139 
    His139/Arg139 
   Arg139/Arg139 

 
105 (60.7) 
55   (31.8) 
13   (7.5) 

 
118 (63.4) 
56   (30.1) 
12   (6.5) 

Predicted mEPHX activity  
    Very low 
    Low 
    Intermediate 
    High 

 
19   (11.3) 
46   (27.4) 
60   (35.7) 
43   (25.6) 

 
21   (11.3) 
58   (31.2) 
66   (35.5) 
41   (22) 

MPO  
    G463/G463 
    G463/A463 
    A463/A463 

 
100 (50.3) 
82   (41.2) 
17   (8.5) 

 
113 (58.9) 
67   (34.8) 
12   (6.3) 

XPD   
    Lys571/Lys571 
    Lys571/Gln571 
    Gln571/Gln571 

 
97   (54.8) 
59   (33.3) 
21   (11.9) 

 
77   (40.3) 
87   (45.6) 
27   (14.1) 

 



  

When lung cancer cases were stratified into subgroups according to gender, histological cell 

types, and history of occupational exposures, a significant association between predicted 

mEPHX high and intermediate activity or GSTP1 (*A/*B and *B/*B) genotypes and lung cancer 

risk were observed among females and males, with adjusted ORs 2.77 (95% CI, 1.02-7.51), and 

2.09 (95% CI, 1.03-4.25) (Table 21, 22), respectively. Not only was there a relationship between 

lung cancer risk in all cases by GSTM3*A/*A genotype, but also among females with adjusted 

OR 3.03 (95% CI, 1.09-8.38) (Table 19). Furthermore, relative risk of lung cancer in all cases 

and in each subgroup for individuals who had reduced DNA repair capacity predicted by XPD 

exon 23 (Lys/Gln and Gln/Gln) genotypes was 2- to 3-fold higher than individuals who had XPD 

exon 23 (Lys/Lys) genotype (Table 20).      
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Table 18. Number of cases/controls and odds ratios of lung cancer in relation to CYP1A2 

genotype 

Genotype Cases/controls 
 Predicted 

CYP1A2 high 
activity 

Predicted 
CYP1A2 low 

activity 

 ORa,b (95% CI) 

CYP1A2*1C and CYP1A2*1F 
      All cases 
      Males 
      Females 
      Adenocarcinoma 
      Squamous cell carcinoma 
      Non occupational exposures 

 
        59/33 
        45/21 
        23/14 
        33/35 
        25/35 
        46/28 

 
        75/100      
        45/19 
        29/47 
        47/104 
        23/28 
        56/77 

 
   2.05c  (1.13-3.73) 
   1.17   (0.54-2.51) 
   2.19   (0.82-5.89) 

   1.79   (0.92-3.48) 
   0.92   (0.39-2.12) 
   0.90   (0.43-1.88) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear 
square); CI, confidence interval 
b Odds ratio calculated comparing prevalences of  predicted high CYP1A2 versus low and normal CYP1A2 activity 
c Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), 
and occupational exposures 

 

Table 19. Number of cases/controls and odds ratio of lung cancer in relation to GSTM3 

genotype 

Genotype Cases/controls 
 GSTM3*A/*A 

genotype 
GSTM3 (*A/*B 

and *B/*B) 
genotype 

 ORa,b (95% CI) 

GSTM3 
      All cases 
      Males 
      Females 
      Adenocarcinoma 
      Squamous cell carcinoma 

 
        96/86 
        61/33 
        40/37 
        53/91 
        37/50 
        73/63 

 
        38/57      
        29/17 
        12/26 
        27/58 
        11/28 
        29/41 

 
   1.84c  (1.03-3.31) 
   1.35   (0.68-2.65) 
   3.03   (1.09-8.38) 

   1.17   (0.62-2.20) 
   2.15   (0.84-5.48) 
   1.53   (0.81-2.87) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear 
square); CI, confidence interval 
b Odds ratio calculated comparing prevalences of GSTM3*A/*A versus GSTM3 (*A/*B and *B/*B) genotypes   
c Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), 
and occupational exposures 

      Non occupational exposures 
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Table 20. Number of cases/controls and odds ratio of lung cancer in relation to XPD exon 

23 genotype  

Genotype Cases/controls 
 XPD (Lys/Gln and 

Gln/Gln) genotype 
XPD (Lys/Lys) 

genotype 

 ORa,b (95% CI) 

XPD exon 23 
      All cases 
      Males 
      Females 
      Adenocarcinoma 
      Squamous cell carcinoma 
      Non occupational exposures 

 
        89/62 
        63/20 
        33/28 
        54/65 
        30/30 
        64/47 

 
        45/69      
        42/26 
        19/32 
        27/71 
        18/43 
        37/52 

 
   2.56c  (1.45-4.51) 
   2.20d  (1.11-4.39) 
   2.72   (1.10-6.74) 

   2.75   (1.43-5.28) 
   2.66d  (1.15-6.12) 
   2.33   (1.25-4.32) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear 
square); CI, confidence interval 
b Odds ratio calculated comparing prevalences of XPD exon 23 (Lys/Gln and G/n/Gln) versus XPD exon 23 (Lys/Lys) 
genotypes 
c Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmoker), packyear (packyear+packyear square), 
and occupational exposures 
d Adjusted odds ratios (OR) for age, race, and smoking status (ever smokers, nonsmokers) 

 

Table 21. Number of cases/controls and odds ratio of lung cancer in relation to combined 

mEPHX exon 3 and 4 genotypes  

Genotype Cases/controls 
 Predicted 

mEPHX high and 
intermediate 

activity 

Predicted 
mEPHX low and 
very low activity 

 ORa,b (95% CI) 

mEPHX exon 3 and 4 
      All cases 
      Males 
      Females 
      Adenocarcinoma 
      Squamous cell carcinoma 
      Non occupational exposures 

 
        70/69 
        44/30 
        28/27 
        40/72 
        27/40 
        51/52 

 
        59/56      
        43/15 
        22/31 
        37/59 
        25/31 
        47/46 

 
   1.02   (0.60-1.73) 
   0.65   (0.33-1.27) 
   2.77   (1.02-7.51) 

   1.14   (0.61-2.14) 
   0.87   (0.37-2.04) 
   1.01   (0.55-1.86) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear 
square); CI, confidence interval 
b Odds ratio calculated comparing prevalences of  predicted high and intermediate versus low or very low mEPHX activity 

  

 

 112 



  

Table 22. Number of cases/controls and odds ratio of lung cancer in relation to GSTP1 

genotype 

Genotype Cases/controls 
 GSTP1 (*A/*B 

and *B/*B) 
genotype 

GSTP1 *A/*A 
genotype 

 ORa,b (95% CI) 

GSTP1 
      All cases 
      Males 
      Females 
      Adenocarcinoma 
      Squamous cell carcinoma 
      Non occupational exposures 

 
        90/99 
        58/47 
        32/52 
        44/72 
        27/36 
        55/75 

 
        90/94      
        58/56 
        32/38 
        53/76 
        25/41 
        66/67 

 
   1.51   (0.88-2.61) 
   2.09   (1.03-4.25) 
   0.88   (0.35-2.18) 

   1.24   (0.67-2.32) 
   1.66   (0.73-3.79) 
   1.23   (0.65-2.33) 

a Adjusted odds ratios (OR) for age, race, and smoking status (ever smokers, nonsmokers); CI, confidence interval 
b Odds ratio calculated comparing prevalences of GSTP1(*A/*B and *B/*B) versus GSTP1*A/*A  genotypes   
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4.1.3. Gene-gene interactions and lung cancer risk 

For the gene-gene interaction analyses, the possible interactions among ‘at risk’ genotypes 

based on biological mechanisms of cigarette smoke carcinogen metabolism were identified prior 

to inclusion in the logistic regression models. The associations between gene-gene interactions 

and lung cancer risk were found among all cases who both had and did not have a history of 

occupational exposures for combinations of the XPD exon 23 (Lys/Gln and Gln/Gln) genotype 

and others at risk genotypes such as CYP1B1 (*1/*3 and *3/*3) genotype, predicted mEPHX 

high and intermediate activity, GSTM3*A/*A genotype, and GSTP1 (*A/*B and *B/*B) genotype 

after adjusting for age, race, smoking status, and packyear (Table 23, 24). A significant gene-

gene-gene interaction was also found to be associated with a 2-fold increased risk of lung only 

among cases who had XPD exon 23 (Lys/Gln and Gln/Gln), GSTM1 null and GSTM3*A/*A 

genotypes, and history of occupational exposures compared to reference individuals (Table 23).  

The interactions between XPD exon 23 (Lys/Gln and Gln/Gln) genotype and GSTM3*A/*A 

genotype, or GSTP1 (*A/*B and *B/*B) genotype also showed approximately a 3-fold significant 

increasing risk of lung cancer among males who had a combination of these two at risk 

genotypes compared to reference individuals who carried wild type alleles for the XPD exon 23 

and GSTP1 genes but the variant allele of GSTM3 gene after adjusting for age, race, and smoking 

status (Table 25). Among females, not only gene-gene interactions between between XPD exon 

23 (Lys/Gln and Gln/Gln) genotype, and other at risk genotypes (Table 26) were found to be 

associated with increased risk of lung cancer but also interactions between predicted mEPHX 

high and intermediate activity, and other at risk genotypes such as CYP1B1 (*1/*3 and *1/*3), 

MPO (G/G), and GSTM3*A/*A (Table 27). The lung cancer risk increased from 2.5- to 4- fold in 

combinations of the XPD exon 23 (Lys/Gln and Gln/Gln) and MPO (G/G), or GSTM3*A/*A 
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genotypes, and of predicted mEPHX high and intermediate activity and GSTM3*A/*A genotype, 

but the rate of increase was greater to be 5- to 6-fold in lung cancer risk if female cases had 

combinations of XPD exon 23 (Lys/Gln and Gln/Gln) and CYP1B1 (*1/*3 and *3/*3) genotypes, 

or predicted mEPHX high and intermediate activity, and of predicted mEPHX high and 

intermediate activity and MPO (G/G) genotype. In addition, a gene-gene-gene interaction was 

found to significantly increase risk of lung cancer among females who had predicted mEPHX 

high and intermediate activity and GSTM1 null and GSTM3*A/*A genotypes after adjusting for 

age, race, smoking status, and packyear (Table 27). 

The interactions between two combined at risk genotypes were in the same direction when 

the different histological cell types (adenocarcinoma and squamous cell carcinoma) were 

compared separately to controls (Table 28, 29). However, the interactions between two at risk 

genotypes of phase II enzymes (GSTM3*A/*A and GSTP1*A/*B and *B/*B), and between XPD 

exon 23 (Lys/Gln and Gln/Gln) and MPO (G/G) genotypes were statistically significant (P=0.03 

and 0.04, respectively) in squamous cell carcinoma subgroup (Table 29) but not in the 

adenocarcinoma subgroup. In contrast, among adenocarcinoma cases only, combinations of XPD 

exon 23 (Lys/Gln and Gln/Gln) genotype and predicted mEPHX high and intermediate activity, 

or predicted mEPHX intermediate activity showed the relative risk of lung cancer 2.3- and 6.3-

fold, respectively.   

4.1.4. Gene-environment interactions and lung cancer risk 

For the gene-environment interaction analyses, all of the possible interactions among the 

genotype, smoking status, transformed packyear (packyear+packyear square), and occupational 

exposure variables were included in the logistic regression models. The only first order 

interaction between genotype and the transformed packyear that was found to be significant in 
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the models was an interaction term between CYP1B1 (*1/*3 and *3/*3) genotype and the 

transformed packyear variable. The final model in all cases that predicted relative risk of lung 

cancer by CYP1B1 (*1/*3 and *3/*3) genotype included the CYP1B1 (*1/*3 and *3/*3) 

genotype variable and the interaction term between CYP1B1 (*1/*3 and *3/*3) and the 

transformed packyear (P=0.008) and was adjusted for age, race, smoking status, and 

occupational exposures (Table 30). In addition, the interaction term between CYP1B1 (*1/*3 and 

*3/*3) and the transformed packyear was significant (P<0.05) in final models for predicting risk 

of lung cancer by combined XPD exon 23 (Lys/Gln and Gln/Gln) and CYP1B1 (*1/*3 and 

*3/*3) genotypes in all cases, females, and adenocarcinoma subgroups, and by combined 

predicted mEPHX high and intermediate activity and CYP1B1 (*1/*3 and *3/*3) genotype 

among females after adjusting for age, race, smoking status, and/or occupational exposures 

(Table 23, 26, 28, and 27; respectively).  

The second order interactions between genotype and the transformed packyear of predicted 

mEPHX high and intermediate activity and CYP1B1 (*1/*3 and *3/*3) and the transformed 

packyear variables, and of the XPD exon 23 (Lys/Gln and Gln/Gln) genotype and predicted 

mEPHX intermediate activity and the transformed packyear variables were found to be 

significant at P-value less than 0.05 in final models of relative risk of lung cancer prediction by a 

combination of predicted mEPHX high and intermediate activity and CYP1B1 (*1/*3 and *3/*3) 

genotype among females and by combined the XPD exon 23 (Lys/Gln and Gln/Gln) genotype 

and predicted mEPHX intermediate activity in adenocarcinoma subgroup after adjusting age, 

race, smoking status, and the transformed packyear (Table 27 and 28; respectively).    
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Table 23. Odds ratios for the association of combined XPD exon 23, CYP1B1, mEPHX, 

GSTM1, GSTM3, and GSTP1 genotypes with lung cancer in all cases 

Genotype Cases/controls ORa (95% CI) 

XPD exon 23 and CYP1B1 
   XPD (Lys/Gln and Gln/Gln) and CYP1B1 (*1/*3 and 
*3/*3) 
 
XPD exon23 and mEPHX 
   XPD (Lys/Gln and Gln/Gln) and mEPHX high and  
   intermediate activity 
 
XPD exon 23 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM3 (*A/*A) 
 
XPD exon 23 and GSTM1 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM1 null and 
GSTM3 (*A/*A)  
 
XPD exon 23 and GSTP1 
   XPD (Lys/Gln and Gln/Gln) and GSTP1 (*A/*B and 
*B/*B) 

 
      63/39 
 
 
       
      50/30 
 
 
 

      62/33 
 
 
      40/25 
 
 
 
      46/28 

 
    3.09b,c (1.70-5.63) 
 
 
     
    2.11d  (1.13-3.94) 
 
 
 

    3.18e  (1.73-5.85) 
 
 
    2.02f  (1.05-3.89) 
 
 
 
    2.46g  (1.29-4.71) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), 
and occupational exposures; CI, confidence interval 
b Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square),  
occupational exposures, and interaction term between CYP1B1 (*1/*3 and *3/*3) genotype and packyear (packyear+packyear 
square); CI, confidence interval 
c Cases/controls (73/129) with XPD (Lys/Lys) and CYP1B1*1/*1 genotype serve as the reference category 
d Cases/controls (82/121) with XPD (Lys/Lys) genotype and predicted mEPHX low or very low activity serve as the reference 
category 
e Cases/controls (73/130) with XPD (Lys/Lys) and GSTM3 (*A/*B and *B/*B) genotype serve as the reference category 
f Cases/controls (95/138) with XPD (Lys/Lys) and GSTM1 null and GSTM3 (*A/*B and *B/*B) genotype serve as the 
reference category 
g Cases/controls (91/135) with XPD (Lys/Lys) and GSTP1 (*A/*A) genotype serve as the reference category 
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Table 24. Odds ratios for the association of combined XPD exon 23, CYP1B1, MPO, 

GSTM3, and GSTP1 genotypes with lung cancer among individuals without occupational 

exposures  

Genotype Cases/controls ORa (95% CI) 

XPD exon23 and mEPHX 
   XPD (Lys/Gln and Gln/Gln) and mEPHX high and 
   intermediate activity 
 
XPD exon23 and MPO 
   XPD (Lys/Gln and Gln/Gln) and MPO (G/G)  
 
XPD exon23 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM3 (*A/*A)  
 
XPD exon23 and GSTP1 
   XPD (Lys/Gln and Gln/Gln) and GSTP1 (*A/*B and 
*B/*B) 

 
      33/22 
 
 
 
      39/29 
 
 
      45/25 
 
 
      30/22 

 
    2.40b  (1.18-4.85) 
 
 
 
    1.97c  (1.03-3.80) 
 
 
    2.26d  (1.17-4.38) 
 
 
    2.07e  (1.02-4.19) 

a Adjusted odds ratios (OR) for age, race, and smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear 
square); CI, confidence interval 
b Cases/controls (68/98) with XPD (Lys/Lys) genotype and predicted mEPHX low and very low activity serve as the reference 
category 
c Cases/controls (63/99) with XPD (Lys/Lys) genotype and MPO (G/A and A/A) serve as the reference category 
d Cases/controls (58/100) with XPD (Lys/Lys) and GSTM3 (*A/*B and *B/*B) genotype serve as the reference category 
e Cases/controls (73/104) with XPD (Lys/Lys) and GSTP1 (*A/*A) genotype serve as the reference category 

 

Table 25. Odds ratios for the association of combined XPD exon 23, GSTM3, and GSTP1 

genotypes with lung cancer among males 

Genotype Cases/controls ORa (95% CI) 

XPD exon23 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM3 (*A/*A)  
 
XPD exon23 and GSTP1 
   XPD (Lys/Gln and Gln/Gln) and GSTP1 (*A/*B and 
*A/*B) 

 
      39/11 
 
 
      32/8 

 
    2.79b  (1.27-6.13) 
 
 
    3.17c  (1.35-7.43) 

a Adjusted odds ratios (OR) for age, race, and smoking status (ever smokers, nonsmokers); CI, confidence interval 
b Cases/controls (74/78) with XPD (Lys/Lys) and GSTM3 (*A/*B and *B/*B) genotype serve as the reference category 
c Cases/controls (83/82) with XPD (Lys/Lys) and GSTP1 (*A/*A) genotype serve as the reference category 
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Table 26. Odds ratios for the association of combined XPD exon 23, mEPHX, MPO, and 

GSTM3 genotypes with lung cancer among females  

Genotype Cases/controls ORa (95% CI) 

XPD exon23 and CYP1B1 
   XPD (Lys/Gln and Gln/Gln) and CYP1B1 (*1/*3 and 
*3/*3) 
 
XPD exon23 and mEPHX 
   XPD (Lys/Gln and Gln/Gln) and mEPHX high and 
   intermediate activity   
 
XPD exon23 and MPO 
   XPD (Lys/Gln and Gln/Gln) and MPO (G/G) 
 
XPD exon23 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM3 (*A/*A) 

 
      27/17 
 
 
       
      17/9 
 
 
 
      25/20 
 
 

      25/16 

 
    5.69b,c (2.01-16.07) 
 
 
     
    5.81d  (1.78-18.93) 
 
 
 
    2.66e  (1.05-6.74) 
 
 

    3.14f  (1.22-8.13) 
a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear square); 
CI, confidence interval 
b Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), and 
interaction term between CYP1B1 (*1/*3 and *3/*3) genotype and packyear (packyear+packyear square); CI, confidence interval 
c Cases/controls (26/64) with XPD (Lys/Lys) and CYP1B1*1/*1 genotype serve as the reference category 
d Cases/controls (34/66) with XPD (Lys/Lys) genotype and predicted mEPHX low or very low activity serve as the reference 
category 
e Cases/controls (28/59) with XPD (Lys/Lys) and MPO (G/A and A/A) genotype serve as the reference category 
f Cases/controls (27/63) with XPD (Lys/Lys) and GSTM3 (*A/*B and *B/*B) genotype serve as the reference category 
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Table 27. Odds ratios for the association of combined mEPHX, CYP1B1, MPO, GSTM1, 

and GSTM3 genotypes with lung cancer among females  

Genotype Cases/controls ORa (95% CI) 

mEPHX and CYP1B1 
   mEPHX high and intermediate activity and CYP1B1 
   (*1/*3 or *3/*3) 
 
mEPHX and MPO 
   mEPHX high and intermediate activity and MPO (G/G)  
 
mEPHX and GSTM3 
   mEPHX high and intermediate activity and GSTM3  
   (*A/*A) 
 
mEPHX and GSTM1and GSTM3 
   mEPHX high and intermediate activity and GSTM1 null 
   and GSTM3 (*A/*A)   

 
      21/15 
 
 
 
      24/13 
 
 
      24/15 
 
 
 
      20/11 

 
    9.10b,c (2.43-34.13) 
 
 
 
    5.47d  (1.90-15.81) 
 
 
    3.74e  (1.41-9.86) 
 
 
 
    3.04f  (1.12-8.23) 
      

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear square); 
CI, confidence interval 
b Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), and 
interaction term between combined genotypes and packyear (packyear+packyear square); CI, confidence interval 
c Cases/controls (28/61) with predicted mEPHX low and very low activity and CYP1B1*1/*1 genotype serve as the reference 
category 
d Cases/controls (27/63) with predicted mEPHX low and very low activity and MPO (G/A and A/A) genotype serve as the reference 
category 
e Cases/controls (26/61) with predicted mEPHX low and very low activity and GSTM3 (*A/*B and *B/*B) genotype serve as the 
reference category 
f Cases/controls (30/65) with predicted mEPHX low and very low activity, GSTM1 positive, and GSTM3 (*A/*B and *B/*B) 
genotype serve as the reference category 
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Table 28. Odds ratios for the association of combined XPD exon 23, CYP1B1, mEPHX, 

GSTM3, and GSTP1 genotypes with lung cancer among adenocarcinoma subgroup  

Genotype Cases/controls ORa (95% CI) 

XPD exon23 and CYP1B1 
   XPD (Lys/Gln and Gln/Gln) and CYP1B1 (*1/*3 and 
*3/*3) 
 
XPD exon23 and mEPHX 
   XPD (Lys/Gln and Gln/Gln) and mEPHX intermediate 
   activity  
 
XPD exon23 and mEPHX 
   XPD (Lys/Gln and Gln/Gln) and mEPHX high and 
   intermediate activity  
 
XPD exon23 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM3 (*A/*A) 
 
XPD exon23 and GSTP1 
   XPD (Lys/Gln and Gln/Gln) and GSTP1 (*A/*B and 
*B/*B) 

 
      37/42 
 
 
       
      16/17 
 
 
 
      29/31 
 
 
 
      37/35 
 
 

      24/28 

 
    2.84b,c (1.44-5.61) 
 
 
     
    6.35d,e (1.99-20.24) 
 
 
 
    2.31f,g (1.12-4.76) 
 
 
 
    2.89h  (1.45-5.77) 
 
 

    2.43i,j (1.13-5.19) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear square); 
CI, confidence interval 
b Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), and 
interaction term between CYP1B1 (*1/*3 and *3/*3) genotype and packyear (packyear+packyear square); CI, confidence interval 
c Cases/controls (43/93) with XPD (Lys/Lys) and CYP1B1*1/*1 genotype serve as the reference category 
d Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), and 
interaction term between combined genotypes and packyear (packyear+packyear square); CI, confidence interval 
e Cases/controls (41/73) with XPD (Lys/Lys) genotype and predicted mEPHX low or very low activity serve as the reference 
category 
f Adjusted odds ratio (OR) for age, race and smoking status (ever smokers, nonsmokers) 
g Cases/controls (64/94) with XPD (Lys/Lys) genotype and predicted mEPHX low or very low activity serve as the reference 
category 
h Cases/controls (41/93) with XPD (Lys/Lys) and GSTM3 (*A/*B and *B/*B) genotype serve as the reference category 
i Adjusted odds ratio (OR) for age, race, smoking status (ever smokers, nonsmokers), and occupational exposures 
j Cases/controls (54/92) with XPD (Lys/Lys) and GSTP1 (*A/*A) genotype serve as the reference category 
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Table 29. Odds ratios for the association of combined XPD exon 23, CYP1B1, MPO, 

GSTM3, and GSTP1 genotypes with lung cancer among squamous cell carcinoma subgroup  

Genotype Cases/controls ORa (95% CI) 

XPD exon23 and CYP1B1 
   XPD (Lys/Gln and Gln/Gln) and CYP1B1 (*1/*3 and 
*3/*3) 
 
XPD exon23 and MPO 
   XPD (Lys/Gln and Gln/Gln) and MPO (G/G)  
 
XPD exon23 and GSTM3 
   XPD (Lys/Gln and Gln/Gln) and GSTM3 (*A/*A)  
 
XPD exon23 and GSTP1 
   XPD (Lys/Gln and Gln/Gln) and GSTP1 (*A/*B 
and*B/*B)  
 
GSTM3 and GSTP1 
   GSTM3 (*A/*A) and GSTP1 (*A/*B and *B/*B) 

 
      26/18 
 
 
      21/17 
 
 
      24/18 
 
 
       
      17/14 
 
 
       

      24/23 

 
    2.95b  (1.26-6.93) 
 
 
    2.51c  (1.01-6.15) 
 
 
    3.23d  (1.32-7.88) 
 
 
     
    3.15e  (1.13-8.77) 
 
 
     

    2.75f  (1.14-6.64) 
a Adjusted odds ratios (OR) for age, race, and smoking status (ever smokers, nonsmokers); CI, confidence interval 
b Cases/controls (26/56) with XPD (Lys/Lys) and CYP1B1*1/*1 genotype serve as the reference category 
c Cases/controls (31/57) with XPD (Lys/Lys) genotype and MPO (G/A and A/A) serve as the reference category 
d Cases/controls (28/56) with XPD (Lys/Lys) and GSTM3 (*A/*B and *B/*B) genotype serve as the reference category 
e Cases/controls (35/58) with XPD (Lys/Lys) and GSTP1 (*A/*A) genotype serve as the reference category 
f  Cases/controls (28/54) with GSTM3 (*A/*B and *B/*B) and GSTP1 (*A/*A) genotype serve as the reference category 

 

Table 30. Number of cases/controls and odds ratios of lung cancer in relation to CYP1B1 

genotype 

Genotype Cases/controls 
 CYP1B1 (*1/*3 

and *3/*3) 
genotype 

CYP1B1*1/*1 
genotype 

ORa,b (95% CI) 

CYP1B1 
      All cases 
      Males 
      Females 
      Adenocarcinoma 
      Squamous cell carcinoma 
      Non occupational exposures 

 
        94/95 
        65/76 
        38/40 
        58/100 
        35/51 
        72/110 

 
        41/51      
        33/30 
        15/24 
        23/52 
        13/28 
        34/35 

 
   2.60c  (1.19-5.69) 
   0.94   (0.47-1.89) 
   3.69d  (0.94-14.54) 

   2.34d  (0.99-5.53) 
   1.55   (0.61-3.96) 
   0.70   (0.36-1.35) 

a Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), and packyear (packyear+packyear 
square); CI, confidence interval 
b Odds ratio calculated comparing prevalences of CYP1B1 (*1/*3 and *3/*3) versus CYP1B1*1/*1 genotypes 
c Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), 
occupational exposures, and interaction term between CYP1B1 (*1/*3 and *3/*3) genotype and packyear (packyear+packyear 
square); CI, confidence interval 
d Adjusted odds ratios (OR) for age, race, smoking status (ever smokers, nonsmokers), packyear (packyear+packyear square), 
and interaction term between CYP1B1 (*1/*3 and *3/*3) genotype and packyear (packyear+packyear square); CI, confidence 
interval 
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4.2. Case only analysis 

4.2.1. Characteristics of case only study population 

There were a total of 177 lung cancer cases evaluated in this analysis. All cases were 

Caucasians. The demographic characteristics of these cases including age, smoking status, 

packyear and occupational exposures are summarized in Tables 31 and 32. Cases were 

categorized into 6 subgroups by family history of lung and other cancer(s), age at diagnosis, 

smoking history, and histological cell types (Table 33). Cases who did not meet the above 

criteria were called sporadic and used as the referent group. There were 23 cases who fell in 

more than one group. Overall mean age, mean packyear, and gender distribution of cases in each 

subgroup and in the sporadic group were similar (Table 34). However, there was a difference in 

mean age for cases who at least one first-degree relative(s) with lung cancer compared to all 

sporadic cases. Mean packyear of younger age onset and uncommon histological cell type 

subgroups were statistically lower than that of all sporadic cases. In addition, the ratio of lifetime 

nonsmoker females to males was higher than that of all sporadic cases. After sporadic cases with 

history of occupational exposures were excluded, the distribution of gender in lifetime 

nonsmokers was not different from that of sporadic cases (Table 35). All cases were combined 

and classified by history of occupational exposures into two groups in order to evaluate the 

overall effect of combined risk factors such as metabolic and DNA repair gene polymorphisms 

and family history of lung and other cancer(s) on increasing risk of lung cancer related to the 

history of occupational exposures. 
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4.2.2. Metabolic and DNA repair gene polymorphisms and lung cancer risk among 

at risk lung cancer cases 

The contribution of both metabolic enzyme and DNA repair gene polymorphisms on greater 

risk of lung cancer development among at risk lung cancer cases was assessed by using the χ2-

test. The relative risk were estimated by comparing the differences in numbers of individuals 

who had one at risk genotype or combined genotypes in each subgroup and all case groups 

compared to sporadic cases. 

There was a gene-gene interaction between CYP1A2 and NAT2* at risk genotypes among 

lung cancer cases with at least one first-degree relative(s) with lung cancer as indicated by an 

overrepresentation of percentages of cases with combined predicted high CYP1A2 activity and 

slow NAT2* genotype compared to sporadic cases (Fig. 12 and Table 36). In group 2 or a group 

of cases with at least two first-degree relatives with other cancer(s), GSTM1 null genotype alone 

was not statistically significant for an increased risk of lung cancer compared to cases also with 

this ‘at risk’ genotype but no family history of cancer(s). However, the risk was significant when 

GSTM1 null genotype was combined with the XPD exon 23 (Lys/Gln and Gln/Gln) genotype. 

(Fig. 13 and Table 37). A contribution of DNA repair gene and phase II enzyme polymorphisms 

(XPD exon 23 (Lys/Gln and Gln/Gln) and GSTP1*A/*B or *B/*B genotypes) for early age onset 

of lung cancer development was found as shown in Fig.14 and Table 38).  

Associations between single loci polymorphisms or gene-gene interactions and lung cancer 

risk were found among lifetime nonsmokers as shown in Fig 15. There was an 

overrepresentation of the number of lifetime nonsmoker cases who had predicted high CYP1A2 

activity compared to ever smoker sporadic cases (Table 39). Furthermore, the combination of 

predicted CYP1A2 activity and NAT2* slow genotype, and predicted reduced DNA repair 
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capacity and GSTM1 null genotype were associated with increased risk of lung cancer among 

these lifetime nonsmokers.  

When all lung cancer cases were combined together and categorized into two subgroups 

according to history of occupational exposures, the contribution of interactions of metabolic 

enzymes and DNA repair gene polymorphisms in combination with other risk factors such as 

family history of cancer(s), early age onset, smoking history, and/or occupational exposures in 

lung cancer development were evaluated. It was found the associations between two different 

combined at risk genotypes (predicted high CYP1A2 activity and slow acetylator, and MPO 

(G/G) and GSTM1 null genotype) and increasing risk of lung cancer among ever smoker cases 

with family history of lung cancer and other cancer(s), and age at diagnosis less than or at 50 

years old compared to ever smokers with no other risk factor(s) (Fig. 16 and Table 40). 

Furthermore, cases who had the above other ‘at risk’ factor(s), also history of occupational 

exposures, and interactions between XPD exon 23 (Lys/Gln and Gln/Gln), or predicted mEPHX 

intermediate and high activity and GSTP1 (*A/*B or *B/*B) genotypes were at greater risk of 

lung cancer compared to lung cancer cases who were ever smokers but no other risk factor(s) 

(Fig 17 and Table 41).   
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Table 31. Age and exposure histories of lung cancer cases (N=177) 

 Mean age (±SD) Non-cigarette 
Smokers (%, total 

cases) 

Asbestos Exposure 
(%, total cases) 

Other 
Occupational 

exposurea (%, total 
cases) 

Men        

(N=118) 

63 (±13) 8   (7.92, 101) 14 (13.2, 106) 54 (50.9, 106) 

Women   

(N=59) 

66 (±12) 11 (22.0, 50) 0    8   (15.6, 52) 

All         

(N=177) 

64 (±13) 20 (13.2, 151) 14 (8.86, 158) 62 (39.2, 158) 

a Includes silicon, petroleum, radon, nickel, chromium and others 

Table 32. Packyear distribution of smoking history by gender ratio of lung cancer cases 

(N=177) 

 0 1-20 21-40 40-60 ≥ 61 Totala  

Number of 

cases 

19 18 45 30 39 151 

Percent of 

total cases 

12.6 11.9 29.8 19.9 25.8 100 

Gender ratio 

(M/F) 

0.7 1.6 3.1 2.0 2.6 2.0 

a Missing information on 26 cases 
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Table 33. Subgroups of lung cancer cases by family history, age at diagnosis, smoking 

status, and histological cell type (N=177) 

Groupa N Mean age in years (±SD) 

All cases 177 64 (±13) 

1. ≥ one 1st-degree relative(s) with lung cancer 56 64 (±11) 

2. ≥ two 1st-degree relative(s) with other cancer 40 68 (±10) 

3. ≤ 50 years at diagnosis 30 43  (± 6) 

4. lifetime nonsmokersb 16 66 (±18) 

5. Uncommon tumor typec 14 62 (±18) 

6. Sporadic 46 68  (± 8) 

 a 23 Cases fall in more than one group   

         Group 1 15  

         Group 2 12  

         Group 3 12  

         Group 4 8  

         Group 5 1  

b < 100 cigarettes during their lifetime 
c carcinoid tumor  
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Table 34. Gender, smoking status, and packyear distributions in each lung cancer 

subgroup  

Gender Smoking status, N (%)  

Group Males 

N (%) 

Females 

N (%) 

Ever-

smokers 

N (%) 

Non-

smokers 

N (%) 

 

Mean Age 

(±SD) 

 

Mean PY 

(±SD) 

1 

(N=56) 

P-Valuea 

 

33 (58.9) 

0.11 

 

23 (41.1) 

 

53 (94.6) 

 

 

3 (5.4) 

 

 

64 (±11) 

0.02 

 

50 (±30.6) 

0.16 

2 

(N=40) 

P-Valuea 

 

28 (70.0)  

0.69 

 

12 (30.0) 

 

36 (90.0) 

 

 

4 (10.0) 

 

68 (±10) 

0.69 

 

49 (±25.7) 

0.13 

3 

(N=30) 

P-Valuea 

 

23 (76.7) 

0.79 

 

7 (23.3) 

 

 

26 (86.7) 

 

 

4 (13.3) 

 

43 (± 6) 

0.00 

 

35 (±40.2) 

0.02 

4 

(N=16) 

P-Valuea 

 

7 (43.8) 

0.03 

 

9 (56.2) 

 

0 

 

16 (100) 

 

66 (±18) 

0.62 

 

0 

5 

(N=14) 

P-Valuea 

 

9 (64.3) 

0.48 

 

5 (35.7) 

 

9 (69.2)  

 

 

4 (30.8) 

 

62 (±18) 

0.18 

 

24 (±17.7) 

0.00 

6 

(N=46) 

 

34 (73.9) 

 

12 (26.1) 

 

45 (100) 

 

0 

 

68  (± 8) 

 

60 (±33.2) 

a P-value were obtained by using χ2-test, comparing values in each subgroup to those of sporadic group 

 128 



  

Table 35. The distribution differences in gender, smoking status, age and packyear for each 

subgroup and combined group compared to sporadic cases with no history of occupational 

exposures  

Gender Smoking status  

Group 

 

Males 

N (%) 

Females 

N (%) 

Ever-

smokers 

N (%) 

Non-

smokers 

N (%) 

 

Mean Age 

(±SD) 

 

Mean PY 

(±SD) 

1 

(N=56) 

P-Valuea 

 

33 (58.9) 

0.66 

 

23 (41.1) 

 

53 (94.6) 

 

 

3 (5.4) 

 

 

64 (±11) 

0.002 

 

50 (±30.6) 

0.29 

2  

(N=40) 

P-Valuea 

 

28 (70.0) 

0.57 

 

12 (30.0) 

 

36 (90.0) 

 

 

4 (10.0) 

 

68 (±10) 

0.26 

 

49 (±25.7) 

0.24 

3 

(N=30) 

P-Valuea 

 

23 (76.7) 

0.26 

 

7 (23.3) 

 

 

26 (86.7) 

 

 

4 (13.3) 

 

43 (± 6) 

0.00 

 

35 (±40.2) 

0.04 

4 

(N=16) 

P-Valuea 

 

7 (43.8) 

0.19 

 

9 (56.2) 

 

0 

 

16 (100) 

 

66 (±18) 

0.41 

 

0 

5 

(N=14) 

P-Valuea 

 

9 (64.3) 

0.97 

 

5 (35.7) 

 

9 (69.2) 

 

 

4 (30.8) 

 

62 (±18) 

0.11 

 

24 (±17.7) 

0.00 

1-5b 

(N=45) 

P-Valuea 

 

38 (84.4) 

0.03 

 

7 (15.6) 

 

41 (91.1) 

 

4 (8.9) 

 

70 (±8) 

0.73 

 

42 (±24) 

0.04 

1-5c 

 (N=59) 

P-Valuea 

 

35 (59.3) 

0.68 

 

24 (40.7) 

 

59 (100) 

 

0 

 

66 (±8) 

0.04 

 

44 (±30) 

0.07 

6d 

(N=33) 

 

21 (63.6) 

 

12 (36.4) 

 

33 (100) 

 

0 

 

70  (± 7) 

 

59 (±35.6) 
a P-value were calculated by using χ2-test, comparing number of cases of each subgroup to the sporadic group 
b All cases in group 1 to 5 who were exposed to occupational exposures were combined 
c All cases in group 1 to 5 who were not exposed to occupational exposures were combined 
d All sporadic who were not exposed to occupational exposures  
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Sporadic Group 1

1
s
1
N

N=56 

62% 

38% 

P=0.012 

87.5% 

N=33 

12.5% 

A2 normal activity &
AT2 fast genotype
CYP1A2 normal activity 
& NAT2 fast genotype 

A2 high activity & NAT2
low  genotype
CYP1A2 high activity & 
NAT2 slow genotype 

Figure 12.  Percentage of combined CYP1A2 activity and NAT2 genotype in lung cancer 

cases with at least one first-degree relative(s) with lung cancer compared to the sporadic 

group 

 

Table 36. Gene-gene interaction for a combination of CYP1A2 and NAT2 gene 

polymorphisms in relation to history of lung cancer in first-degree relative(s) of lung 

cancer probands 

Combined genotypes Number of individuals (%) P-Valuec 

CYP1A2 and NAT2 

 

    Group 1        (N=56) 

CYP1A2 high activity & 

NAT2 slow acetylator 

19b (38.0) 

CYP1A2 normal activity & 

NAT2 fast acetylator 

31 (62.0) 

 

 

0.012 

    Sporadica      (N=33) 4   (12.5) 28 (87.5)  
a Only sporadic who were not exposed to occupational exposures  
b All 19 subjects were ever-smokers and 5 and 1 subjects from 19 were exposed to other occupational and asbestos exposures 
c P-value were obtained by using χ2-test 
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Figure 13. Interaction between GSTM1, XPD exon 23 genotypes and history of other 

cancer(s) in first-degree relative(s) of lung cancer probands  
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Table 37. Association of GSTM1 null genotype and in combination of XPD exon 23 

genotype on lung cancer development in relation to history of other cancer(s) in first-

degree relatives of lung cancer probands 

 Number of individuals (%) P-value 

GSTM1 genotype 

    Group 2       (N=40) 

    Sporadica     (N=33) 

    Sporadicb     (N=46) 

GSTM1 null 

29c (72.5) 

16 (48.5) 

25d (54.3) 

GSTM1 positive 

11 (29.5) 

17 (51.5) 

21 (45.7) 

 

0.04g, 0.08h 

 

 

XPD exon 23 and GSTM1 

 

    Group 2        (N=40) 

XPD (Lys/Gln and Gln/Gln) & 

GSTM1 null 

18e (47.4) 

XPD (Lys/Lys) & GSTM1 

positive 

20 (52.6) 

 

 

0.05h 

    Sporadicb      (N=46) 12f  (26.7) 33 (73.3)  
a Only sporadic who were not exposed to occupational exposures 
b All sporadics were included 
c One and nine cases were exposed to asbestos and other occupational exposures were combined  

d Three and six cases who were exposed to asbestos and other occupational exposures 
e Four were lifetime nonsmokers and 2 from 4 were exposed to other occupational exposures 
f Two and two were exposed to other occupational and asbestos exposures  
g P-value were obtained by using χ2-test, comparing number of individuals in each subgroup to those of sporadica   
h P-value were obtained by using χ2-test, comparing number of individuals in each subgroup to those of sporadicb   
  

Group 3

XPD (Lys/Gln) or
(Gln/Gln) &
GSTP1*A/*B or *B/*B

XPD (Lys/Lys) &
GSTP1*A/*A

Sporadic

81.2% 

18.8% 

55.6% 

44.4% 

N=30 N=33 

P=0.03 

Figure 14. Interaction of XPD exon 23 and GSTP1 genotypes in lung cancer cases with age 

at diagnosis less than or at 50 years old 
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Table 38. Association of combined XPD exon 23 and GSTP1 genotypes and early age onset 

lung cancer cases  

Combined genotypes Number of individuals (%) P-Valuec 

XPD exon 23 and GSTP1 

 

    Group 3        (N=30) 

XPD (Lys/Gln and Gln/Gln) & 

GSTP1*A/*B and *B/*B 

12b (44.4) 

XPD (Lys/Lys) & 

GSTP1*A/*A 

15 (55.6) 

 

 

0.033 

    Sporadica      (N=33) 6   (18.8) 26 (81.2)  
a Only sporadic who were not exposed to occupational exposures  

b Six ever-smokers and 1 lifetime nonsmoker were exposed to other occupational exposures and 1 ever smoker was exposed 
   to asbestos 
c P-value were obtained by using χ2-test 
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Figure 15. Single and multi gene loci polymorphisms and lung cancer risk among lifetime 

nonsmokers 
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Table 39. Interactions of polymorphisms at GSTM1, NAT2 and XPD exon 23 genes among 

lifetime non-smoker lung cancer cases  

Combined genotypes Number of individuals (%) P-Valuee 

CYP1A2 genotype 

    Group 4       (N=16) 

CYP1A2 high activity 

12b (85.7) 

CYP1A2 normal activity 

2  (14.3) 

 

0.054 

    Sporadica     (N=33) 14  (43.8) 18 (56.2)  

CYP1A2 and NAT2 

 

    Group4         (N=16) 

CYP1A2 high activity & slow 

acetylator 

6c (42.9) 

CYP1A2 high activity & 

fast acetylator 

8  (57.1) 

 

 

0.022 

    Sporadica      (N=33) 4   (12.5) 28 (87.5)  

XPD exon 23 and GSTM1 

 

    Group 4        (N=16) 

XPD (Lys/Gln and Gln/Gln) & 

GSTM1 null 

8d (57.1) 

XPD (Lys/Lys) & GSTM1 

positive 

6  (42.9) 

 

 

0.035 

    Sporadica      (N=33) 8  (25.0) 24 (75.0)  
a Only sporadic who were not exposed to occupational exposures 
b Three cases were exposed to other occupational exposures  

c Two were exposed to other occupational exposures  
d Three were exposed to other occupational exposures 
e P-value were obtained by using χ2-test  
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* All cases who were ever smokers and had other at risk factor(s) but no history of 
occupational exposures   

25

12.5

39.6
47.1

0

10

20

30

40

50

Genotypes

Pe
rc

en
ta

ge
 o

f g
en

ot
yp

e

Sporadic
All cases*

P=0.04 

P=0.01 

MPO (G/G) & GSTM1 null CYP1A2 high activity & 
NAT2 slow acetylator 

Figure 16. Interactions between multi at risk genotypes in relation to family history of 

cancer(s), and early age onset  

 

Table 40. Associations of combined at risk genotypes and lung cancer risk among ever 

smoke lung cancer cases with family history of lung and other cancer(s), and early age 

onset 

Combined genotypes Number of individuals (%) P-Valuec 

CYP1A2 and NAT2 

 

    Group 1-5a    (N=59) 

CYP1A2 high activity & 

NAT2 slow acetylator 

21 (39.6) 

CYP1A2 high activity & 

NAT2 fast acetylator 

32 (60.4) 

 

 

0.008 

    Sporadicb      (N=33) 4   (12.5) 28 (87.5)  

MPO and GSTM1 

 

    Group 1-5a     (N=59) 

MPO (G/G) & GSTM1 null 

 

24 (47.1) 

MPO (G/A and A/A) & 

GSTM1 positive 

27 (52.9) 

 

 

0.044 

    Sporadicb      (N=33) 8   (25.0) 24 (75.0)  
a All cases in group 1 to 5 who were not exposed to occupational exposures were combined 
b Only sporadics who were ever smokers but had no history of occupational exposures 
c P-value were obtained by using χ

2
-test 
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* Ever smokers and lifetime nonsmokers who had other risk factor(s) and occupational 
exposures 
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Figure 17. Associations of gene-gene interactions and lung cancer risk in relation to history 

of smoking, occupational exposures, family history of cancer(s) and early age onset  
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Table 41. Contribution of combined at risk genotypes in lung cancer development among 

lung cancer cases with history of smoking, occupational exposures, family history of lung 

and other cancer(s), and early age onset  

Combined genotypes Number of individuals (%) P-Valuec 

XPD exon 23 and GSTP1 

     

    Group 1-5a    (N=45) 

XPD (Lys/Gln and Gln/Gln) & 

GSTP1*A/*B and *B/*B 

17 (41.5) 

XPD (Lys/Lys) & 

GSTP1*A/*A 

24 (59.5) 

 

 

0.038 

    Sporadicb      (N=33) 6   (18.8) 26 (81.2)  

mEPHX and GSTP1 

 

     

    Group 1-5a    (N=45) 

mEPHX high and intermediate 

activity  & GSTP1*A/*B and 

*B/*B 

17 (42.5) 

mEPHX low and very low 

activity & GSTP1*A/*A 

 

23 (57.5) 

 

 

 

0.021 

    Sporadicb      (N=33) 5   (16.7) 25 (83.3)  
a There were eleven  ever-smokers who were exposed to asbestos, thirty ever smokers and four lifetime nonsmokers who were exposed to others 
occupational exposures 
b Only sporadic who were not exposed to occupational exposures 
c P-value were obtained by using χ2-test 
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4.3. mRNA expression  

4.3.1. Lung sample characteristics 

A total of twenty pairs of lung tumors and histological normal adjacent tissues were screened 

for CYP mRNA expression levels. These samples were obtained from three lifetime nonsmokers, 

three current smokers and fourteen former smokers. There were six women and fourteen men, 

with mean age ± SD of 71 ± 8 (range, 61-91 years) and mean packyear ± SD of 59 ± 31 (range, 

14-130 packyear). Three patients were exposed to asbestos, and three patients had other 

occupational exposures. For histological cell type, eleven tumors were adenocarcinoma, and nine 

were squamous cell carcinoma. Each lung tumor sample was histologically examined by a 

pathologist who confirmed that it contained more than 80 percent tumor cells.  

4.3.2. CYP mRNA expression in lung tumors and non-tumor tissues determined by 

RT-PCR FAF-ELOSA 

The CYP1A1, CYP1B1, and CYP2E1 mRNA expression levels were quantitated by using 

the RT-PCR FAF-ELOSA method in lung tumors and corresponding nontumoral (histological 

normal adjacent) tissue samples. The β-actin gene was used as an endogenous control. The levels 

of CYP1A1, CYP1B1, and CYP2E1 mRNA expression in normal liver tissues sample were also 

quantitated as a reference of cytochrome P450 expression in humans. All three CYP mRNAs 

were detected in both lung tumors and non-tumors. The mean levels of CYPs relative to β-actin 

mRNA expression and their standard deviations are provided in Table 42. β-Actin mRNA was 

not detected in a few lung non-tumor and tumor tissues which resulted in missing data in the 

estimation of CYP mRNA quantitation. Moreover, there was not enough total RNA for some 
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samples to be used for determining all three CYP mRNA expression endpoints. Student’s t-test 

was used to compare the mean level of CYP mRNA expression between lung tumor and 

histological normal adjacent tissues. The mean level of CYP1A1 mRNA quantity was similar 

between lung non-tumor and tumor tissues. Higher levels of CYP1B1 and CYP2E1 mRNA were 

observed in lung tumors compared to the mean level in non-tumors, although this was not 

statistically significant. However, the difference in mean level of CYP2E1 mRNA expression 

between tumor and non-tumor tissues was significant at P=0.04 after only matched tissue 

samples were included in comparison analysis (Table 43). The CYP2E1 mRNA was expressed in 

lung tumors more than in their corresponding non-tumors. Moreover, there was a trend of higher 

expression of CYP1B1 mRNA in lung tumors compared to the matched non-tumor tissue 

samples. The pattern of CYP1A1, CYP1B1, and CYP2E1 mRNA levels that expressed in two 

different tissue samples (liver and lung tissues) and in both lung tumors and non-tumors was 

showed in Fig. 18 and 19.  
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Table 42. CYP mRNA expression in lung histological normal adjacent and tumor tissues  

 Lung tissues 

CYP/β-actin (amol/amol) Non-tumor Tumor 

CYP1A1 0.1 ± 0.05a 0.18 ± 0.37b,c 

CYP1B1 17.45 ± 11.68d 20.77 ± 20.24e,f 

CYP2E1 1.98 ± 2.19g 3.40 ± 5.18h,I 

 a Mean ± SD of 11 samples 
 b Mean ± SD of 14 samples 
 c P = 0.44 compared to non-tumor tissues 

d Mean ± SD of 9 samples 
 e Mean ± SD of 12 samples 
 f P = 0.47 compared to non-tumor tissues 

g Mean ± SD of 16 samples including zeros where applicable 
 h Mean ± SD of 17 samples 
  i P = 0.16 compared to non-tumor tissues   

 

Table 43. CYP mRNA expression in matched lung histological normal adjacent and tumor 

tissues 

 Lung tissues 

CYP/β-actin (amol/amol) Non-tumor Tumor 

CYP1A1 0.09 ± 0.05a 0.09 ± 0.14b,c 

CYP1B1 15.08 ± 12.32d 29.99 ± 22.69e,f 

CYP2E1 2.03 ± 2.36g 5.13 ± 5.46h,i 

 a,b Mean ± SD of 8 samples 
 c    P = 0.89 compared to paired-non-tumor tissues 

d,e Mean ± SD of 6 samples 
 f    P = 0.27 compared to paired-non-tumor tissues 

g,h Mean ± SD of 13 samples including zeros where applicable 
 i    P = 0.039 compared to paired-non-tumor tissues   

 

 

 

 

 

 140 



  

CYP1A1 CYP1B1 CYP2E1

Lung Adjacent
Lung Tumor

Liver

0

5

10

15

20

25

CYP

CYP/β-Actin

Lung Adjacent
Lung Tumor
Liver

Figure 18. CYP mRNA expression in unpaired lung tumor and non-tumor tissue samples, 

and normal liver sample 
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CYP2E1 mRNA expression in lung tumors and matched non-tumors was significant difference at P=0.04 

Figure 19. CYP mRNA expression in paired lung tumor and non-tumor tissue samples, 

normal liver sample  
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4.3.3. Comparison of the relative sensitivity of the RT-PCR FAF-ELOSA with the 

sensitivity of the TaqMan assay for CYP1A1, CYP1B1, and CYP2E1 mRNA 

expression in normal liver and lung tissues  

TaqMan assays for the relative quantitation of CYP1A1, CYP1B1, CYP2E1 and endogenous 

control β-GUS mRNA in human tissues were developed. The comparative CT method is used to 

achieve the same result for relative quantitation as the standard curve that was used in the FAF-

ELOSA analysis. A validation experiment was performed to assure that efficiencies of target and 

reference are approximately equal before using the ∆∆CT method for quantitation. Then the 

relative expression of CYP1A1, CYP1B1, and CYP2E1 to endogenous control β-actin mRNA in 

the same liver tissue as determined by FAF-ELOSA were quantitated by TaqMan assays (Fig. 

20). The starting amount of total RNA used in FAF-ELOSA and TaqMan assays were 1000 ng 

and 105 ng, respectively. The expression pattern of mRNA levels of CYP1A1, CYP1B1, and 

CYP2E1 relative to β-actin determined by FAF-ELOSA (Fig. 21) was similar to that of TaqMan.  

After the percentage of each CYP mRNA expression to total CYP that quantitated by both 

FAF-ELOSA and TaqMan assays were calculated and plotted in the same graph (Fig. 22), the 

levels of CYP1B1 mRNA expression was equal. However, the relative quantity of CYP1A1 

mRNA expression detected by TaqMan assay was slightly lower than that of FAF-ELOSA and 

vice versa for the CYP2E1. The differences in those levels of CYP1A1, and CYP2E1 mRNA 

expression determined by FAF-ELOSA and TaqMan can be explained by the difference in the 

percentage values of the coefficient of variance (%CV) from both methods. The percentage of 

coefficient of variance for measuring CYP1A1 mRNA expression among three replications at 

each concentration by TaqMan was between 0.19 and 1.43 which is smaller than the value 
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obtained by FAF-ELOSA (9.49-50) as shown in Fig. 23 and 24. In comparison with FAF-

ELOSA for mRNA quantitation, the TaqMan assay was associated with not only significantly 

lower %CV, but also could be performed using substantially lower starting amount of total RNA. 

The TaqMan assay is a very sensitive method that could detect the CYP mRNA expression 

with very low starting amount of total RNA. Figure 25 shows the levels of CYP mRNA 

expression in normal lung tissue with only 1 ng starting amount of lung cDNA. In contrast, the 

FAF-ELOSA required 1000 nanogram of starting amount of RNA.  
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Figure 20. The relative quantity of CYP1A1, CYP1B1, and CYP2E1 to β-actin mRNA 

determined by the TaqMan assay 

Figure 21. The relative quantity of CYP1A1, CYP1B1, and CYP2E1 to β-actin mRNA 
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Figure 23. Plot of CT numbers from each observation and log starting total RNA (ng) of 
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Figure 24. Plot of absorbance and CYP1A1 standard concentration for each observation in 

FAF-ELOSA assay  
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Figure 25. CYP1A1, CYP1B1, and CYP2E1 mRNA expression in normal lung tissue 

quantitated by TaqMan assay with 1 nanogram of starting total RNA  
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DISCUSSION 

Lung cancer has become a major public heath problem and a leading cause of cancer deaths 

for both men and women in the US. Even though tobacco and cigarette smoking are well 

recognized as a major cause of lung cancer, there is evidence that passive exposure, other 

occupational exposures such as asbestos, radon, arsenic, chromium, nickel, dietary carcinogens, 

and host factors also contribute to the risk of lung cancer. These host factors and other 

environmental exposures influence individual susceptibility to cigarette smoking on lung cancer 

risk. A large number of molecular epidemiological studies have focused on the study of host 

susceptibility variability such as differences in metabolism of cigarette smoking components, and 

DNA repair and risk of lung cancer. Many previous studies have evaluated the effects of a single 

gene polymorphism in metabolic enzymes or DNA repair genes on lung cancer risk. There are 

also several reports about the relationship of combined at risk genotypes for phase I and phase II 

metabolic enzyme genes and lung cancer susceptibility.  

This research is the first molecular epidemiological study that investigated the association of 

lung cancer risk with a panel of genetic polymorphisms in metabolic enzymes that are involved 

in tobacco carcinogen metabolism and also of a DNA repair gene involved in the nucleotide 

excision pathway that repairs the bulky DNA adducts caused by polycyclic aromatic 

hydrocarbons in tobacco smoke. This is a major strength of this study that allowed analyses on 

gene-gene or gene-gene-gene interactions of several biologically plausible combinations among 

or between metabolic enzymes and DNA repair genes on lung cancer risk. Furthermore, a 
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occupational exposures and genetic polymorphism in metabolic enzymes and DNA repair genes 

was examined for possible of gene-gene and gene-environment interactions contributing to 

increased risk of lung cancer.  

A population based case control study and case only analysis was conducted to determine 

whether any genetic variants in drug metabolizing enzymes and DNA repair gene represent lung 

cancer susceptibility biomarkers. There were some limitations in the case control analysis in this 

present study. Cases and controls were recruited from different areas, which might introduce a 

confounding effect due to differences in environmental exposures into the analyses of relative 

risk determination. Furthermore, the mean age of controls at the entry of the study was lower 

than those of cases, although this confounding effect was adjusted in all of the logistic regression 

models. Given the significant difficulty and the costs in selecting appropriate control subjects in 

the case control study, a recently proposed study design, a case only analysis, has been 

introduced as an approach to study the role of genetic factors in disease without controls (286). It 

has been used increasingly as an efficient and valid methodology for studying gene-environment 

interactions (287). Moreover, the number of subjects required in a case only study is 

substantially smaller than the number that would be required for a case control study for the 

same power to measure of gene-environment interaction (288). A case only analysis was used in 

this study not only to reduce the needed power to detect the effects of genetic and environmental 

exposures on lung cancer outcome but also to evaluate the contribution of genetic 

polymorphisms in metabolic enzymes and DNA repair genes in lung cancer risk among high risk 

lung cancer cases such as cases who had family history of lung and other cancers, and early age 

onset compared to cases who had none of those risk factors.  

s 
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5.1. Case control study 

In the case control study, associations between single gene loci polymorphisms in CYP1A2, 

CYP1B1, mEPHX, GSTM3, GSTP1, and XPD genes and lung cancer risk were observed. 

Mo

genotypes may be at greater risk of 

lung cancer. It is possible to hypothesize that among smokers who had higher inducible CYP1A2 

reover, significant contributions of gene-gene and gene-environment interactions of several at 

risk genotypes combinations in increasing risk of lung cancer were found.   

5.1.1. Single at risk genotypes and lung cancer risk  

5.1.1.1. CYP1A2 variant alleles 

The CYP1A2*1C and CYP1A2*1F variant allele frequencies were screened as a surrogate 

measure of CYP1A2 enzyme activity. Predicted levels of CYP1A2 activity was classified based 

on in vitro differences in enzyme activity, with approximate 23% reduction for the 

CYP1A2*1C/*1C genotype and 36% increases for the CYP1A2*1F*1F genotype (148-150). An 

association between risk of lung cancer and predicted high CYP1A2 activity was found. The risk 

increased approximately two-fold in ever smokers with predicted high CYP1A2 activity after 

adjustment for age, race, packyear, and occupational exposure. This finding was in agreement 

with the previous report of higher inducibility of CYP1A2 activity by tobacco smoke (150). 

Moreover, a significant increased risk of lung cancer was found in ever smokers with high 

CYP1A2 activity and NAT2 slow genotype (age, race, and packyear adjusted OR=5.01; 95%CI, 

1.25-20.02). CYP1A2 is involved in the metabolic activation of several carcinogens found in 

tobacco smoke and in high-temperature cooked meats such as aromatic and heterocyclic amines, 

and nitroaromatic compounds. Therefore, individuals who regularly smoke and consume high-

temperature cooked meat in combination of having ‘at risk’ 
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genotype with or without the NAT2 slow genotype, might have higher level of reactive 

met

among non-smoking 

women. An association between high CYP1A2 activity and increasing risk of lung 

tigated here, given the low number 

non . However, there was a trend of increasing risk of lung 

can

abolites of tobacco carcinogenic compounds formed in liver and transported to lung tissues 

and resulting in DNA adduct and carcinogenic process in lung epithelium cells.  

CYP1A2 is also involved in the metabolism of endogenous substrates including estrogens, 

which may be associated with increasing risk of lung adenocarcinoma 

adenocarcinoma among nonsmoker females was not inves

smokers in this study population

cer among females and lung adenocarcinoma cases who were ever smokers and had high 

CYP1A2 activity (P=0.12 and 0.09, respectively). These observations could explain the higher 

risk among smoking females when compared to smoking males observed in previous studies. 

The contribution of high CYP1A2 activity in increased risk of lung cancer among smokers 

observed in this study suggests the importance of polymorphisms in the CYP1A2 gene on lung 

cancer development. 

5.1.1.2. CYP1B1*3 variant allele  

CYP1B1 is expressed predominantly in extrahepatic tissues such as lungs and mammary 

glands and has been known to be an important enzyme involved in the metabolism of polycyclic 

aromatic hydrocarbon, arylamines, and endogenous steroid hormones. It has been suggested that 

polymorphisms in the coding region of the CYP1B1 gene may alter the catalytic activity of 

CYP1B1 and may determine interindividual differences in susceptibility toward lung cancer. The 

Leu432Val polymorphism in exon 3 of CYP1B1 gene screened in the present study is located in 

the catalytically important heme-binding domain of the CYP1B1 enzyme. The role of CYP1B1*3 

variant allele as a lung cancer susceptibility biomarker was evaluated.   
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There were no statistically significant differences in the genotype frequencies for either cases 

or controls in the total population or in specific subgroups. There was an overall relationship 

between CYP1B1 (*1/*3 and *3/*3) genotypes with an interaction term between CYP1B1 (*1/*3 

and

bserved among females and in adenocarcinoma subgroup (P = 0.02). 

However, the risk of lung cancer was only borderline significantly associated with the 

CYP

B1 expression in human 

 *3/*3) genotypes and transformed packyear (packyear+packyear square) and lung cancer 

risk. The lung cancer risk was increased 2.6-fold among individuals who were ever smokers and 

had the ‘at risk’ CYP1B1 genotype after adjusting for age, race, packyear, and occupational 

exposures. This significant association between CYP1B1 (*1/*3 and *3/*3) genotypes including 

a gene-environment interaction term and lung cancer risk has not been reported previously. An 

earlier study reported no relationship between CYP1B1*3 genotype and lung cancer (99). The 

difference in results may in part be attributed to a gene-environment interaction (genotype-

smoking interaction) that was found to be a significant interaction term adjusted for in the 

present logistic regression models.   

    The statistically significant interaction between CYP1B1*3 genotype and transformed 

packyear was also o

1B1*3 genotype in both subgroups (age, race, smoking status, packyear and a gene-packyear 

interaction term adjusted OR=3.69; 95%CI, 0.94-14.54, and adjusted OR=2.34; 95%CI, 0.99-

5.53 in female and adenocarcinoma subgroups, respectively). The significant risk of lung cancer 

associated with the CYP1B1*3 genotype which we observed for cases who were ever smokers 

and had history of occupational exposures might be explained by the gene-environment 

interaction and/or the altered function of CYP1B1 by genetic polymorphism. CYP1B1 is known 

to be induced by PAHs found in tobacco and occupational or environmental pollutants 

(257,263,289). Willey et al. (257) observed the higher levels of CYP1

 153 



  

lun

arcinoma in females and the involvement of female sex 

hor

g of smokers compared to those of nonsmokers. Although the effect of the CYP1B1*3 

genotype on catalytic activity of CYP1B1 towards PAHs, and aryl amines has not been fully 

evaluated, it is possible that the Leu432Val substitution may affect the CYP1B1 protein structure 

resulting in changes in its function. Therefore, mutation and DNA damage that already occurred 

in lung tissue of cases from exposures to asbestos, chromium, silicon, radon together with that 

caused by higher level of CYP1B1 induced by PAHs found in cigarette smoke and/or altered 

catalytic activity of CYP1B1 by Leu432Val substitution towards cigarette carcinogens may 

accelerate the pathway of lung cancer development.  

Another interesting observation in this present study was the increased lung cancer risk by 

the CYP1B1*3 genotype found among females and in the adenocarcinoma subgroup. Although 

the associations were not statistically significant, they were consistent with several recent reports 

of higher incidence of lung adenoc

mones in higher risk among smoking females compared to smoking males. CYP1B1 has been 

reported to catalyze 17β-estradiol 4-hydroxylation to give 4-hydroxyestradiol, a pathway which 

has been suggested to be involved in the development of breast cancer in human (97,290,291). 

Shimada et al. (160) reported the relationship between the CPY1B1*3 variant allele and higher 

activity in catalyzing activation of 17β-estradiol 4-hydroxylation by CYP1B1. Therefore, 

individuals who carry the genetic polymorphism in exon 3 of the CYP1B1 gene may have higher 

activity of CYP1B1 involved in estrogen metabolism resulting in high levels of potentially 

carcinogenic 4-hydroxyestradiol and ultimate cancer development. Therefore, a significant 

increase in CYP1B1 protein levels by cigarette smoke induction in female smokers who also had 

CYP1B1*3 genotype may result in higher levels of DNA damage from cigarette carcinogen 

reactive metabolites and 4-hydroxyestradiol contributing to lung carcinogenesis. This could in 
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part explain the differences in risk of lung cancer between female and male smokers. 

Furthermore, it implicates the potentially important role of CYP1B1 in lung carcinogenesis and 

of the CYP1B1*3 genotype as a lung cancer susceptibility biomarker.        

5.1.1.3. mEPHX variant alleles 

Two allelic variants of mEPHX that are located within the coding region of the mEPHX gene 

at exons 3 and 4 and are involved with decreasing and increasing mEPHX activity by 40% and 

25%, respectively, were genotyped to predict hydrolase enzyme activities (high, intermediate, 

low, and very low). Interindividual variation in mEPHX activity is likely to contribute to lung 

cancer susceptibility because of its dual role in the detoxification and activation of 

procarcinogens, depending on the substrate. For example, it is considered an important 

detoxification enzyme in catalyzing the hydrolysis of highly reactive epoxide intermediates to 

less reactive and more water soluble trans-dihydrodiol derivatives. An example of the activation 

role of mEPHX is the generation of trans-dihydrodiols from polycyclic aromatic hydrocarbons, 

which are then substrates for further metabolism to more reactive carcinogenic polycyclic 

hydrocarbon diol epoxides such as BPDE.  

Previous studies exploring the relationship between mEPHX genotypes and lung cancer risk 

have yielded inconsistent results. Among five Caucasian studies, there were two studies that 

found no significant relationship between mEPHX genotype and lung cancer risk (229,292). Two 

other studies found the high mEPHX enzymatic activity had an elevated lung cancer risk 

(227,293). Zhou et al. (225) reported the effects of very low activity of mEPHX genotype on 

increasing risk of lung cancer among nonsmokers and light smokers but on decreased lung 

cancer risk among heavy smokers.   
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In this study, the relationship between predicted mEPHX high and intermediate activity and 

increasing risk of lung cancer was observed only among females. The lung cancer risk increased 

approximately 2.7 fold after adjusting for age, race, smoking status, and packyear. These female 

eve rs with mean packyear of 48.25±33.23 (range, 15-160). 

The

cancer risk in the male subgroup. The packyear 

dis

e (GST) variant alleles 

r smokers were moderate smoke

re were two individuals who had packyears of 100 and 160. This finding is in the same 

direction as that of Benhamou et al. (227) and Zhao et al. (293), observing on increased risk of 

lung cancer for high mEPHX enzyme activity among smokers. The mEPHX enzyme is highly 

expressed in several tissues including lung and can be induced by cigarette smoking. Therefore, 

there is the potential for increases in the activation of polycyclic aromatic hydrocarbon 

compounds found in cigarette smoke by mEPHX enzyme among smokers who also have high 

activity of mEPHX enzyme, thereby resulting in higher concentrations of polycyclic aromatic 

hydrocarbon reactive metabolites and DNA adducts in the lung.  

An association between high activity of mEPHX enzyme and lung cancer risk was not found 

in all cases, and other subgroups. In contrast, there was a trend towards a protective effect of 

high mEPHX enzyme activity on lung 

tribution among males was not remarkably different from that of females although males were 

more likely to be moderate to heavy smokers. Differences in associations between genders can 

result from other environmental and occupational exposures, for example a higher ratio of 

occupational exposures history among males, additional allelic variants that modulate overall 

metabolic enzyme activity, and endogenous hormones. The observations in this study suggest the 

possibility of both variants in mEPHX gene as a lung cancer susceptibility biomarker.        

5.1.1.4. Glutathione S-transferas
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Glutathione S-transferases are involved in the detoxification of several reactive tobacco 

related metabolites and carcinogens. Polymorphisms in the GST Mu, Theta, and Pi class genes, 

which result in variation in glutathione S-transferase enzyme activity may influence the 

susceptibility to lung cancer. The effect of interindividual differences in GST enzyme activity 

related to the GSTM1 null genotype in modulating the lung cancer susceptibility has been 

extensively studied. To a lesser degree, studies have also focused on the relationship between 

GSTT1 null, GSTM3*A/*A, GSTP1*B, and GSTP1*C and lung cancer risk. Again however, the 

results were inconsistent. Neither GSTM1, nor GSTT1 null genotypes contributes significantly to 

the risk of lung cancer in the present study. The prevalence of GSTM1 null genotype was similar 

among cases (57.6%) and controls (58%). The GSTT1 null genotype was underrepresented in 

cases (22%) compared to controls (34%). These could explain the lack of an association between 

GSTM1 and/or GSTT1 null genotypes and increased risk of lung cancer that observed in this 

stud

ved in 

our served in previous studies among 

Caucasians (181,185,284). Conversely, there was a significant higher frequency of the 

y as well as in other several studies (184,185,241,294). 

The genetic polymorphisms of GSTM3, and GSTP1 and lung cancer susceptibility have been 

recently been studied since their proteins are abundant in human lung tissues. The GSTM3*B 

variant allele has been postulated to result in increase GSTM3 transcription. It has been reported 

that this allele is linked with increased GSTM3 expression and associated with decreased risk for 

lung adenocarcinoma (240). There are a few other studies evaluating the role of this 

polymorphism and lung cancer risk but no significant association was found (184,185). This 

finding either is or is not a consequence of the similar distribution of GSTM3 genotype between 

the lung cancer cases and the controls. The prevalence of the GSTM3*B*B genotype obser

 controls (0.04) in the present study was similar to that ob
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GST

 1.03-4.25) observed in the present 

stu

M3*A/*A genotype among cases compared to controls in this study population. The 

GSTM3*A/*A genotype have shown increased overall lung cancer risk (age, race, smoking 

status, packyear, and occupational exposures adjusted OR=1.84; 95%CI, 1.03-3.31). Moreover, 

the risk of lung cancer was increased 3-fold among females. These results suggest the potential 

of GSTM3*A/*A genotype as a modifier of lung cancer susceptibility.   

Polymorphisms in exon 5 and 6 of GSTP1 result in two genetic variants, GSTP1*B and 

GSTP1*C. The variant allele GSTP1*B, has been shown to be associated with reduced GST 

activity in lung tissue (113). Ryberg et al. (190) found a significant increasing risk of lung cancer 

among male lung cancer patients who had GSTP1*A/*B and GSTP1*B/*B genotype. The 

correlation between GSTP1*B genotype and lung cancer risk was not observed for other 

Caucasian populations among males or both genders (184,185,191,294). A significant increased 

risk of lung cancer among male ever smokers who had GSTP1*A/*B and GSTP1*B/*B genotype 

(age, race, and smoking status adjusted OR=2.09; 95%CI,

dy was similar to a 1.7-fold increase in the risk of lung cancer that reported by Ryberg et al. 

(190). This finding indicates GSTP1*B genotype may also contribute to lung cancer 

susceptibility.  

GSTM1, GSTM3, GSTP1, and GSTT1 are all known to catalyze detoxification of active 

intermediates of PAHs, with considerable overlap in substrate specificity for GSTM1 and 

GSTP1. Tissue specificity of expression of the GST enzymes is observed. GSTM1 and GSTT1 

are mainly expressed in liver, with very low levels expressed in the lung. In contrast, GSTM3 

and GSTP1 are highly expressed in lung. The relative level of combined GSTs expressed in a 

target tissue may influence detoxification capability. Lung tissues are exposed to carcinogens 

from both inhalation and bloodstream distribution. Lack of GSTM1 and GSTT1 activities may 
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therefore increase reactive metabolite presence in the lung. Variability in the expression of 

GSTM3 and GSTP1 due to genetic polymorphisms in the lung may also influence the 

detoxification of carcinogens. This data taken together suggests that both GSTM3 and GSTP1 

genotypes may be important in lung cancer etiology. 

5.1.1.5. XPD exon 23 variant allele         

The XPD gene encodes for XPD proteins involved in the nucleotide excision repair (NER) 

pathway that removes DNA bulky adducts induced by exposure to tobacco related carcinogenic 

compounds. Several genetic polymorphisms in the XPD gene have been identified. There are 

four amino acid substitution variants that exist in coding regions of XPD gene. The effects of 

these polymorphisms on DNA repair capacity have not been fully explored. However, there is 

evolutionary conservation at the sites of these amino acid substitutions suggesting a functional 

relevance. Furthermore, NER consists of several proteins that work together as a large protein 

complex in a DNA repair process. It is likely that the amino acids changes could affect the XPD 

protein structure, and therefore bindings with other proteins in the NER pathway, and alter DNA 

repair efficiency. Consequently, it has been hypothesized that genetic polymorphisms in XPD 

gene may influence risk of lung cancer. Two polymorphic variants of XPD that have been 

studied as possible modulators of cancer risk are the polymorphisms at Asp312Asn in exon 10, 

and Lys751Gln in exon 23 because of their high allele frequencies in the population (0.42, and 

0.30, respectively). In this study, we only screened the XPD exon 23 variant allele.   

The relationship between the XPD exon 23 polymorphism and DNA repair capacity has been 

studied but there are inconsistent results. Lunn et al. (233) first reported the XPD-751Lys 

common allele may alter the XPD protein product resulting in suboptimal repair of X-ray-

induced DNA damage in 31 Caucasian women. Similarly, an association between XPD-
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751Lys/Lys genotype and increased risk of basal cell carcinoma was observed by Dybdahl et al. 

(295). In contrast, the XPD-751Gln variant allele was found to be associated with less optimal 

DNA repair capacity and increased prostate cancer risk in study 66 cases and 54 controls by Hu 

et al. (296). Sturgis et al. (297) also reported the effect of the variant allele of XPD exon 23 on 

incr of head and neck. Similarly, Spitz et al. (298) 

rep

ontrols, but 

the 

eased risk of squamous cell carcinoma 

orted a correlation of the XPD-751Gln variant genotype to reduced DNA repair capacity in a 

study on DNA repair phenotype and XPD genotypes among 360 healthy controls and 341 lung 

cancer cases. The observed lower DNA repair capacity associated with the XPD-751Gln variant 

allele suggests a functional significance of this polymorphism.  

To date, no overall relationship between the XPD (Lys751Gln) polymorphism and lung 

cancer risk has been reported in several studies (234,298-300). The present study is the first 

study found an overall significant relationship between XPD-751Gln variant genotype and 

increasing risk of lung cancer. After adjusting for age, race, smoking status, and/or packyear, 

and/or occupational exposures, the XPD (Lys751Gln) polymorphism contributed a 2-3-fold 

increased risk of lung cancer in all cases and in specific subgroups of gender, histological 

subtypes, and no history of occupational exposures. No significant associations between the 

XPD-751Gln variant genotype and lung cancer risk has been reported in previous studies 

(234,298-300) (Table 44). However, in the study of Davis-Beabes et al. (299), the percentages of 

XPD Gln/Gln homozygous variant allele were higher in cases compared to that of c

difference did not reach statistical significance. A slight increase in the percentage of the 

homozygous variant allele among cases was also observed in two other studies by Spitz et al. 

(298) and Zhou et al. (300). It is important to note that the XPD-751Gln variant allele frequency 

of 0.29 among controls observed in this study was identical to that of 0.29 first reported by Shen 
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et al. (121), 0.26 by Lunn et al. (233), and 0.33 by Spitz et al. (298). Therefore, our significant 

findings of an elevated risk in lung cancer cases with the XPD-751Gln variant allele in this study 

were not due to unusual allelic frequencies.  

Table 44. Genotype frequencies and lung cancer risk in relation to the XPD exon 23 

polymorphism observed in different studies 

Genotype Cases Controls Adjusted ORb Reference 

N (%) N (%) (95%CI) 

XPD exon 23     

    Lys/Lys 

    Gln/Gln 

67  (37.6) 

34  (19.1) 

197 (43.5) 

58   (12.8) 

1.00 

1.34 (0.74-2.42) 

(299) 

    Lys/Gln 

    Lys/Gln+Gln/Gln 

77  (43.3) 

111 (62.4) 

198 (43.7) 

256 (56.5) 

0.97 (0.62-1.52) 

1.06 (0.70-1.61) 

    Lys/Lys 

    Gln/Gln 

141 (41.3) 

47   (13.8) 

159 (44.2) 

39   (10.8) 

1.00 

1.36 (0.84-2.20) 

(298) 

    Lys/Lys 428 (39.2) 499 (40.2) 1.00 (300) 

    Lys/Lys 

    Lys/Gln+Gln/Gln 

77  (40.3) 

114 (59.7) 

97 (54.8) 

80 (45.2) 

1.00 

2.56e (1.45-4.51) 

Present study 

    Lys/Gln 153 (44.9) 162 (45.0) 1.07 (0.78-1.47) 

    Lys/Gln 

    Gln/Gln 

498 (45.6) 

166 (15.2) 

575 (46.4) 

166 (13.4) 

0.98 (0.8-1.2) 

1.06 (0.8-1.4) 

    Lys/Gln 

    Gln/Gln 

87  (45.6) 

 27  (14.1)d 

  59 (33.3)a 

21 (11.9) 

2.11c (1.21-3.67) 

1.64c (0.74-3.64) 

a Significant difference from genotype frequency of cases at P = 0.006 obtained from two-sided χ2 test 

c Adjusted OR for age, race, and smoking status 
d 2

Adjusted OR for age, race, smoking status (packyear), and occupational exposures 

 

It is clear that multiple genes are involved in cigarette smoke carcinogen metabolism. An 

imbalance of enzyme activities resulting from genetic polymorphisms in the genes involved in 

b Adjusted OR for age, sex, and smoking status 

 Not significant higher than that of controls at P = 0.14 obtained from two-sided χ  test 
e 

5.1.2. Gene-gene and gene-environment interactions and lung cancer risk 

activation, detoxification, and repair may influence risk of lung cancer. Therefore, it is plausible 
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that interactions among or between metabolic and repair genes would be expected to affect the 

risk of lung cancer. Although a number of studies have evaluated gene-gene interactions for 

metabolic genes, this is the first study to report a significant interaction between the DNA repair 

the significant associations between combined 

predic nd interm e mEPHX activity a

that occurred only among female lung cancer patients were first observed in this study. The joint 

effects of a combination between two different ‘at risk’ genotypes and/or cigarette smoke 

e n increased lun obse resent study included additive, 

synergistic, and multiplicative effects. An additive effect is described by the combined effect of 

t nt at risk ge hat  the dividual effects. If the effect of 

t ed genotyp ncr  of l ears to be greater than the effect 

genotype individually, or the sum dual is called a synergistic effect. A 

m ve effect is by ffect  factors, which is the product of 

their effects. 

D (Lys/Gl /Gln e, p g reduced DNA repair capacity 

teracted with the CYP1B1 (*1/*3 and *3/*3) genotype, which may influence the catalytic 

ard PAHs and aryl amines and has been shown to be involved 

w  found to be associated with 2-3-fold 

increased risk of lung cancer in all cases, adenocarcinomoa and squamous cell carcinoma 

balance of 

acti

enzyme, XPD (Lys/Gln and Gln/Gln), and ‘at risk’ genotypes for activation or detoxification of 

cigarette carcinogen metabolism. Moreover, 

ted high a ediat nd other ‘at risk’ genotypes in lung cancer risk 

xposure o  risk of g cancer rved in this p

wo differe notypes t  is equal to  sum of their in

wo combin es on an i eased risk ung cancer app

 of indivi effects, this 

ultiplicati  defined the joint e  of two main

The XP n and Gln ) genotyp ossibly reflectin

in

activity of CYP1B1 enzyme tow

ith higher rate of 17β-estradiol 4-hydroxylation, was

subgroups. The interaction between these two ‘at risk’ genotypes contributed to an im

vation and repair pathways of carcinogenic compound metabolism. The increase in risk of 

lung cancer conferred by the interaction effect of the XPD (Lys/Gln and Gln/Gln) and CYP1B1 
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(*1/*3 and *3/*3) genotypes compared to the risk determined by each individual gene was 

stronger among females (OR=5.6) than in all cases, adenocarcinoma, and squamous cell 

carcinoma subgroups.  

The joint effect between the XPD and CYP1B1 ‘at risk’ genotypes among females appears to 

be more than an additive effect, i.e., a synergistic effect. In contrast, additive effects of these two 

polymorphic genes were indicated in all cases, and other subgroups. This could be a result of an 

important role of CYP1B1 in estrogen metabolism that may enhance the carcinogenic process 

caused by cigarette smoking. Estrogen metabolism can influence the carcinogenic process by the 

formation of catechol estrogens, the 2-OH and 4-OH derivatives, mainly by CYP1A1 and 

CYP1B1 respectively (301). Generally these two catechol estrogens are mainly inactivated by O-

methylation and other possible conjugations such as glucuronidation and sulfation. If these 

conjugations are incomplete, the 2-OH and 4-OH catechol estrogens are oxidized to 

semiquinones and quinones (302). The quinones are reactive eletrophilic metabolites, which are 

capable of forming DNA adducts. Further DNA damage results from quinone-semiquinone 

redox cycling generated by enzymatic reduction of catechol estrogen quinones to semiquinones 

and subsequent auto-oxidation back to quinones (301). In addition, estrogen 4-hydroxylation that 

primarily catalyzed by CYP1B1 had received particular attention because of the fact that the 2-

OH and 4-OH catechol estrogens differ in carcinogenicity (301). The 4-OH catechol estrogen 

significantly increased 8-hydroxydeoxyguanosine levels and induced DNA single strand break 

whereas 2-OH catechol estrogen had negligible effects (301). Furthermore, comparison of the 

corresponding catechol estrogen quinones showed that the quinones that derived from 4-OH 

derivatives produced two to three orders of magnitude higher levels of depurinating adducts than 

the those quinones derived from 2-OH derivatives (302). Given the carcinogenic potential from 

 163 



  

estrogen metabolism and the findings that support the causative role of 4-OH catechol estrogens 

in carcinogenesis, it implicates the synergistic action of estrogen-mediated carcinogenesis on 

lung cancer risk related to cigarette smoke exposure and the joint effect of the XPD and CYP1B1 

‘at risk’ genotypes among females.           

Similarly, a significant association for increased risk of lung cancer was the combination of 

the XPD (Lys/Gln and Gln/Gln) genotype and predicted high and intermediate mEPHX activity 

observed in all cases, non occupational exposures, female and adenocarcinoma subgroups. The 

odds ratio of 5.81 obtained among females with these two combined genotypes was nearly twice 

greater than the value of 2.72 for the XPD (Lys/Gln and Gln/Gln) genotype alone and of 2.41 

with predicted high and intermediate mEPHX activity. This result indicates more than an 

additive effect but less than a multiplicative effect. In contrast, the 2-2.4-fold increased in risk 

with combined genotypes in all cases, adenocarcinoma and non-occupational exposures 

subgroups probably resulted mainly from the effect of the XPD at risk genotype as the odds ratio 

determined by combined genotypes were similar to those predicted by the XPD (Lys/Gln and 

Gln/Gln) genotype alone. Moreover, there was no overall relationship between ‘at risk’ 

genotypes of mEPHX and lung cancer risk in all cases, adenocarcinoma, and non- occupational 

exposures subgroups. Interestingly, the relative risk was increased to six-fold among lung 

adenocarcinoma cases who had combined genotypes of the XPD (Lys/Gln and Gln/Gln) and 

predicted intermediate mEPHX activity. The interaction effect between these two ‘at risk’ 

genotypes was more than a multiplicative effect. Several magnitudes increased in risk of lung 

cancer among these lung cancer cases who were heavy ever smokers could be a result of an 

imbalance of activation and repair pathways of cigarette smoke carcinogenic compound 
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metabolism, genetic effect, which further interacted with environmental factor, cigarette smoke 

exposure.  

Further, a significant increase in lung cancer risk determined by the interaction between the 

XPD (Lys/Gln and Gln/Gln) and the MPO (G/G) genotypes was observed among females, 

squ

this study population together with the distribution of females in the groups of all cases with or 

amous cell carcinoma, and non occupational exposures subgroups. Again, this is likely a 

result of an increased activation of cigarette carcinogen metabolism and decreased DNA repair 

capacity. However, the odds ratio values determined from the gene-gene interaction were not 

different from those values predicted by the XPD (Lys/Gln and Gln/Gln) genotype alone. 

Therefore, it is likely that genetic polymorphism in the XPD exon 23 gene shows a stronger 

effect on modulating lung cancer risk than the effect of polymorphism in MPO gene when these 

two polymorphisms were combined.  

  The effects of gene-gene interaction between genes, which encode the detoxification and 

DNA repair enzymes on increased lung cancer risk were first observed in this present study. The 

GSTP1*B variant allele has been shown to be associated with reduced enzyme activity and 

decreased detoxifying capacity against the reactive intermediates occurred during cigarette 

carcinogen metabolism. Moreover, suboptimal DNA repair capacity that related to the genetic 

polymorphism in the XPD exon 23 further accelerates the carcinogenic process initiated by the 

reactive intermediates. The additive effect of combined polymorphic genes in the XPD and 

GSTP1 on 2.8-fold increased in lung cancer risk was found among males. The increase in risk 

modulated by the effect of interaction between these two at risk genotypes in all cases who had 

or had no history of occupational exposures appears to be mainly effect of the XPD (Lys/Gln and 

Gln/Gln) genotype alone. The higher proportion of heavy smokers among males than females in 
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without history of occupational exposures may explain why the combined two polymorphic 

variants of the XPD and GSTP1 showed significant additive effect on lung cancer risk only 

amo

variant allele. In this study population, there was an 

ove

ng male population. 

Another combination of GST and DNA repair enzymes that has been hypothesized to 

influence the host susceptibility to lung cancer and first examined in this study was the 

interaction between the XPD (Lys/Gln and Gln/Gln) and GSTM3*A/*A genotypes. GSTM3 is 

highly expressed in human lung tissues. The polymorphism in the GSTM3 gene called the 

GSTM3*B variant allele has been shown to increase GSTM3 transcription and result in higher 

level of GST enzyme. Therefore, individuals who carry a wild type GSTM3*A/*A allele, that is 

not inducible, may have lower level of GST enzyme in their lung tissues compared to individuals 

who carry a GSTM3 polymorphic 

rrepresentation of GSTM3*A/*A at risk allele among cases. Also, the XPD Gln751 allele was 

over represented among cases. Together, the combined effect of these two at risk genotypes on 

increased risk of lung cancer were significantly pronounced in all cases and each specific 

subgroup. 

The higher degree of risk conferred by the combination of these two ‘at risk’ genotypes 

compared to the risk estimated by individual gene separately was indicated in all cases and 

among females. This result was in accordance with the hypothesis that the combination of the 

putative ‘at risk’ genotypes could result in higher risk. This is also supported by certain 

biological findings. The interaction effect observed in adenocarcinoma and non occupational 

exposures subgroup is likely due to the main effect of XPD ‘at risk’ genotype. In contrast, the 

GSTM3*A/*A genotype demonstrated significant modifying the risk of lung cancer contributed 

by the XPD (Lys/Gln and Gln/Gln) genotype in squamous cell carcinoma and male subgroup 
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after combined these two at risk genotypes together. This finding indicates the combination of 

different genetic polymorphisms may have additive effects on lung cancer risk. 

A significant association was observed for concurrent decreases in the level of GST enzymes 

as a

3*A/*A genotypes would affect the host susceptibility to lung cancer especially for 

squ

 result of polymorphism in the GSTP1 gene and the GSTM3*A/*A allele and susceptibility to 

squamous cell carcinoma. Smokers having both deficient GSTM3 and GSTP1 genotypes had a 

significant increased risk 2.75-fold to lung squamous cell carcinoma. This significant increase in 

risk of lung cancer linked to the joint effect of GSTP1*B and GSTM3*A/*A genotypes gives 

some support to the hypothesis of combination of at risk GST genotypes appear to be important 

determinants of lung cancer rather than considered separately. Moreover, this finding may be in 

accordance with other studies that indicating the role of GSTs in proximal or bronchial parts of 

the lung where squamous cell carcinomas are usually located (190,240). The bronchial lung is 

exposed to cigarette carcinogens directly by inhaled cigarette smoke and also to reactive 

metabolites from liver metabolism by systemic circulation. The GSTM3 and GSTP1 are highly 

expressed in human lung tissues. Therefore, deficiencies in lung GSTs associated with GSTP1*B 

and GSTM

amous cell carcinoma histological subtype. 

To date, the associations between the interactions of mEPHX and CYP1B1, MPO, and GST 

polymorphisms and lung cancer risk have not been explored. This study first found the 

contribution of combined these ‘at risk’ genotypes to lung cancer risk among females. Two 

significant interactions among enzymes involved in the activation pathway of cigarette 

carcinogens metabolism that affected the risk of lung cancer only among females that observed 

in this study were the combinations of predicted high and intermediate mEPHX activity with 

CYP1B1 (*1/*3 and *3/*3) or MPO (G/G) genotypes. 
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Both CYP1B1 and mEPHX catalyze an activation step in the metabolism of PAH 

compounds found in cigarette smoke. Increasing activities of both enzymes caused by genetic 

pol

tremely reactive and can bind to macromolecules 

(30

ymorphisms could potentially affect a balance of the carcinogen metabolism pathways. A 

nine-fold increased risk of lung cancer after adjusting for age, race, smoking status, and packyear 

among females who carried CYP1B1*3 genotype together with having high and intermediate 

mEPHX activity suggests more than a multiplicative effect for joint effect of these two 

polymorphic genes as lower degree of risk were observed when studied separately. Gene-gene, 

gene-environment (CYP1B1*3 and transformed packyear), and gene-gene-environment (mEPHX 

and CYP1B1*3 and transformed packyear) interactions that appeared to be significant first and 

second order of interaction terms adjusted in logistic regression model show this highest risk of 

lung cancer among females with these combinations. 

CYP1B1 has been reported as a very active enzyme in catalyzing the activation of PAHs 

such as B[a]P, and B[a]P-7,8-dihydrodiol (160,303). For B[a]P metabolism, the presence of 

mEPHX shifts formation away from phenols to diol metabolites (303). The 7,8-dihydrodiol 

metabolite is further metabolized by the P450 enzymes of the CYP1 family including CYP1B1 

to the mutagenic (±)-BPDE species which is ex

3). Both CYP1B1 (257) and mEPHX (257,304) are expressed in human lung tissues. 

Therefore, the joint effect of smoking induced CYP1B1 expression, altered function of CYP1B1 

by polymorphism at position 432, and higher mEPHX activity can result in higher levels of DNA 

adducts, DNA damage and lung cancer development. Moreover, this carcinogenesis process can 

be enhanced by the effect of the CYP1B1*3 genotype on increasing catalytic activity towards 

17β-estradiol 4-hydroxylation as described previously. 
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An increasing in the rate of the mutagenic B[a]P diol-epoxide formation can also be 

influenced by the combined effects of higher mEPHX and MPO activities in lung tissues. MPO 

is expressed in neutrophils and metabolically activates a wide range of tobacco smoke 

carcinogens and environmental pollutants to DNA-damaging metabolites including PAHs, 

aromatic amines, and heterocyclic amines (305). Neutrophil recruitment into lung tissue occurs 

after exposure to a variety insults such as tobacco smoke particulates, asbestos, and infection. A 

single base substitution (G to A) within the Alu element 463 base pair preceding the MPO gene 

confers less transcriptional activity compared to the allele that contains a G residue (119). 

Possession of the MPO (G/G) genotype have been shown to be associated with an increased the 

risk of lung cancer (231,306).  

In this study, lung cancer risk associated with predicted high and intermediate mEPHX 

acti

g cancer associated with high mEPHX 

activity through activation of procarcinogens, production of free radicals by MPO under 

vity observed among females was enhanced by the effect of the MPO (G/G) genotype.  An 

increasing in risk from 2.8-fold to be 5.5-fold after adjusting age, race, smoking status, and 

packyear suggests the joint effect of these two at risk genotypes in a multiplicative way. 

Exposures to tobacco smoke particulates and/or other chemicals leads to the recruitment of 

neutrophils into the lung and the releasing of MPO enzyme from these recruited neutrophils. 

Compared to female cases who had predicted low or very low activity of mEPHX together with 

the MPO (G/A or A/A) genotypes which related to low level expression of MPO, female cases 

who had more activity of mEPHX enzyme and normal amount of MPO in lung tissues possibly 

contributed to greater rate of B[a]P-dihydrodiol expoxide formation which lead to higher level of 

DNA adducts, and DNA damage, mutation, and lung cancer development. In addition to an 

important role of MPO in enhancing the risk of lun
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resp

cording to this, individuals who have high and intermediate 

mE

iratory burst might possibly be another explanation. The consistency of agreement between 

previous reports and this study suggests the contribution of MPO in lung cancer etiology.  

Among females, the present study first found the significant modulation of lung cancer risk 

associated the combined effect of high and intermediate mEPHX activity and the GSTM3*A/*A 

genotype. When studied separately, each of these ‘at risk’ genotypes associates with an increased 

risk of lung cancer. An additive effect of having higher capacity of mEPHX enzyme to catalyze 

B[a]P-7,8-epoxide to the dihydrodiol and a lower level of GSTM3 enzyme to detoxify both 

B[a]P-7,8-epoxide and B[a]P-7,8-diol-9,10-epoxide potentially lead to an accumulation of 

reactive metabolites in lung tissues and further react with DNA in target cells which may cause 

lung cancer development. Ac

PHX activity and lower level of GSTM3 are likely to be more susceptible to lung cancer 

induced by cigarette smoke carcinogens compared to individuals who have deficient mEPHX 

activity and the protective GSTM3 genotype. 

A significant interaction between combined three ‘at risk’ genotypes such as mEPHX, 

GSTM1, and GSTM3 influenced the risk of lung cancer was also found among this female 

subgroup. This is an interesting finding about the effect of a gene-gene-gene interaction on the 

risk of lung cancer. The polymorphic in the mEPHX gene resulting in high and intermediate 

mEPHX activity interacted with the GSTM1 null and GSTM3*A/*A genotypes that causes low 

level of GST enzymes could easily shift a balance of activation and detoxification pathway of 

cigarette smoke carcinogens and therefore place these females at higher risk of lung cancer.  

Similarly, another significant modulation of lung cancer risk by a combination of three at risk 

genotypes observed in the present study was a 2-fold increased in relative risk for individuals 

who had a combination of the XPD exon 23, GSTM1, and GSTM3 at risk genotypes after 
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adjusting for age, race, smoking status, packyear, and history of occupational exposures. The 

effect of the combined these three polymorphic genes on increased risk of lung cancer could 

pro

 genotypes has been hypothesized to 

ass

5.2. Case only analysis 

performed in all cases and in each particular subgroup based on type of risk factors. The results 

bably be a result of reduced capacity in detoxification and DNA repair that possibly leaded to 

higher level of reactive metabolites, DNA adducts, DNA damage and cancer development.  

Regarding the lower degree of relative risk for the two combinations of three ‘at risk’ 

genotypes (mEPHX, GSTM1and GSTM3; OR=3.04 and XPD, GSTM1 and GSTM3; OR=2.02) 

compared to those odds ratio obtained from two genes combination (mEPHX and GSTM3; 

OR=3.74 and XPD and GSTM3; OR=3.18), an explaination might be the lack of relationship 

between GSTM1 null genotype alone and lung cancer risk in this study population. However, as 

described earlier, GSTM1 is mainly expressed in liver and is involved in the detoxification of 

PAH compounds metabolism. Deficiencies in liver GSTM1 enzyme possibly affect the level of 

PAHs reactive metabolites that recirculate to lung and lung epithelial cells. Therefore, the 

combined effect of GSTM1 null along with GSTM3*A/*A

ociate with the level of GSTs indicated the capacity of detoxifying lung carcinogens. The 

results agreed with the hypotheses that individuals who had lower level of GST enzymes from 

combined GSTM1 null and GSTM3*A/*A genotypes together with higher activation or lower 

DNA repair capacity are at higher risk of lung cancer compared to those who had reference 

genotypes.  

The effects of the single and combined polymorphic genes on higher risk of lung cancer 

observed in our case control study were further evaluated in a case only analysis, for example, 

among cases who had family history of cancer(s), and early age onset. The analyses were 
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of the case only analysis were in agreement with the findings from case control study. 

Furthermore, it also indicated additive effects of other risk factor(s) such as family history of 

cancer(s) and occupational exposures to the effects of lung cancer susceptibility genes such as 

metabolic and DNA repair genes on greater risk of lung cancer development.  

The combined effect between genetic polymorphisms in metabolic genes, family history of 

lung cancer and/or occupational exposures on increasing risk of lung cancer was found in the 

first subgroup, for example, the group of lung cancer cases who had at least one first-degree 

relative(s) with lung cancer. The mean age at diagnosis among cases in this group was 

significantly lower than those of sporadic. The distribution of packyear in both groups was 

similar. Cases who had a family history of lung cancer were all ever smokers and thirty-two 

percent were exposed to occupational exposures. Similarly, all sporadic cases were ever smokers 

but did not have history of family with lung cancer and occupational exposures. There was a 

significant overrepresentation in the number of cases who had predicted high CYP1A2 activity 

and slow NAT2 genotype in this group compared to the sporadic cases. The age adjusted OR of 

5.3 (95%CI, 1.18-23.28) was found among these at risk lung cases who were ever smokers, had 

predicted high CYP1A2 activity and slow NAT2 genotype together with family history of lung 

cancer and/or occupational exposures. This result was in agreement with the finding of overall 5-

fold increased risk of lung cancer among cases who had two combined at risk genotypes in a 

case control study. As discussed previously, both CYP1A2 and NAT2 enzymes are involved in 

the metabolism of carcinogens found in cigarette smoke, combustion products, high temperature 

cooked meats, and other occupational exposures. Having genetic polymorphisms in both genes 

could shift the balance between activation and detoxification to higher level of DNA adducts, 

ultimately resulting in lung cancer development.  
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High-risk ever smokers from lung cancer families showed higher percent of individuals 

(38%) who carried these at risk genotypes compared to 12.5% of the sporadic cases. This finding 

supported the hypothesis that there is a genetic predisposition to lung cancer. An estimated 90% 

of lung cancer is attributable to cigarette smoking however there were approximately only 10% 

of s

cupational exposures. Therefore, these results 

mokers develops lung cancer (307). A genetic predisposition to lung cancer may contribute 

to interindividual susceptibility to cigarette carcinogen metabolism and familial aggregation. The 

result obtained in this analysis indicated that smokers with metabolic enzyme polymorphisms in 

combination with a family history of lung cancer and/or environmental risk factor (occupational 

exposures) are likely to be at greater risk of lung cancer compared to smokers who had no family 

history of lung cancer and occupational exposures. According to the similar results from both the 

case control and case only analyses, combination of predicted high CYP1A2 activity and NAT2 

slow genotype contributed to host susceptibility of lung cancer.  

Among at risk lung cancer cases in group 2 or cases who had at least two first-degree 

relatives with other cancer type(s), borderline associations between single gene loci 

polymorphism at the GSTM1 gene or in combination with XPD (Lys/Gln and Gln/Gln) genotype 

and increased risk of lung cancer were observed. Twenty-nine of forty cancer family cases had 

GSTM1 null genotype compared to twenty-five of forty-six sporadic cases. The crude odds ratio 

was 2.22 (95%CI, 0.90-5.47). Similarly, there was higher proportion of family cancer cases who 

carried both the GSTM1 and XPD exon 23 at risk genotypes with the relative risk of 2.5 (95%CI, 

0.99-6.20) compared to the sporadic cases. The mean age, and packyear, and the distribution of 

number of individuals who had history of occupational exposures among high-risk cases and 

sporadic cases who had at risk genotypes were similar. There were four family cancer cases who 

were lifetime nonsmokers, two of which had oc
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sug

ith history of smoking, and/or 

occ

gest that metabolic enzyme and DNA repair gene polymorphisms in combination with family 

history of other cancer(s) is likely to contribute to the greater risk of lung cancer development. 

  Lung cancer cases who had age at diagnosis less than or at 50 years old were classified into 

the third at risk lung cancer case group. There was a significantly higher number of cases who 

had the combined XPD exon 23 and GSTP1 ‘at risk’ genotypes in the early age onset subgroup 

compared to the sporadic cases. There were two lifetime nonsmokers among these cases, and one 

had occupational exposure. In contrast, all sporadics who had XPD (Lys/Gln and Gln/Gln) and 

GSTP1 (*A/*B and *B/*B) genotypes were ever smokers and did not have occupational 

exposures. Also the sporadic cases had higher packyear histories compared to the early age onset 

lung cancer cases. However, fifty percent of the ever smokers among the early age onset lung 

cancer cases had history of occupational exposures. According to this observation, carrying 

metabolic enzyme and DNA repair at risk genotypes together w

upational exposures might result in individuals developing lung cancer at early ages.       

It is interesting that there were twelve of fourteen lifetime nonsmoker lung cancer cases who 

had the higher inducible CYP1A2 allele (CYP1A2*1F/*1F) and wild type genotype for the 

CYP1A2*1C allele that resulted predicted high CYP1A2 activity compared to fourteen from 

thirty two of the sporadic cases, although this was not quite statistically significant (P=0.054). 

However, a significant association between two combined at risk genotypes for CYP1A2 and 

NAT2 gene and increased risk of lung cancer was observed among lifetime nonsmoker cases 

(OR=5.3; 95%CI, 1.52-18.59). Moreover, there was a significant overrepresentation of cases 

who carried both GSTM1 null and XPD (Lys/Gln and Gln/Gln) genotypes among lifetime 

nonsmokers group compared to the sporadic cases. The distribution of age and gender of 

nonsmoker lung cancer cases was similar to those of sporadic cases. There were three cases who 
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had history of occupational exposures and two of them had family history of other cancer(s). 

There was one lifetime nonsmoker who had at least one first-degree relative(s) with lung cancer. 

pair 

gen

Among the twelve nonsmoker cases who had high CYP1A2 activity, there were two cases 

who had occupational exposures and family history of other cancer(s). There was also one case 

who had family history of lung cancer and another case who was only exposed to occupational 

exposures. Furthermore, six and eight of these twelve nonsmokers were slow acetylators and had 

combined GSTM1 and XPD exon 23 at risk genotypes, respectively. Taken together, it is 

possible to suggest that passive smoking and/or other environmental such as combustion and 

charbroiled foods and/or occupational exposures in combination with having higher enzyme 

activity in activation, lower capacity in detoxifying carcinogenic reactive metabolites and repair 

DNA damage put these lifetime nonsmokers at risk of lung cancer development. 

Since twenty-three lung cases fell in more than one subgroup, all cases were combined in 

order to further evaluate the influence of genetic polymorphisms in metabolic and/or DNA re

es on greater risk of lung cancer among the entire group of higher-risk cases. Furthermore, ‘at 

risk’ lung cancer cases were categorized into two all case groups based on history of 

occupational exposures for examining an additive effect of occupational exposures together with 

other risk factors for lung cancer development.  

Among high risk cases who did not have history of occupational exposures, there were two 

combinations of combined ‘at risk’ genotypes that were shown to be significantly associated 

with a 5- or 3-fold increased risk of lung cancer compared to the sporadic cases who also did not 

exposed to occupational exposures. These were the combined predicted high CYP1A2 activity, 

and NAT2 slow genotypes and the MPO (G/G), and GSTM1 null genotypes (P=0.01 and 0.03, 

respectively). The mean age and packyear among the ‘at risk’ lung cancer cases who had these at 
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risk genotype combinations and sporadic cases were similar. Interestingly, there were nine of 

fifty-nine high-risk lung cancer cases who had the combination of all four genotypes; high 

CY

of occupational 

exp

l exposures influence risk of lung cancer by 3 to 

4 ti

P1A2 activity, NAT2 slow, MPO (G/G), and GSTM1 null genotypes while no sporadic cases 

had all four. These findings are in agreement with results from the case control study supporting 

a role of genetic polymorphisms in the genes that encode for enzymes involved in cigarette 

carcinogen metabolism as lung cancer susceptibility biomarkers. The data also suggests an effect 

of metabolic gene polymorphisms in a combination other risk factors such as family history of 

lung and other cancers and early age onset on higher risk of lung cancer development.  

The effect of occupational exposures in combination with genetic polymorphisms in 

metabolic and DNA repair genes and family history of lung and other cancers on early age onset 

of lung cancer was observed among all high-risk cases who ever had a history 

osures. There were significant overrepresentations of high-risk lung cancer cases with 

combined GSTP1 (*A/*B and *B/*B) genotype combined with XPD (Lys/Gln and Gln/Gln) 

genotype or predicted mEPHX high and intermediate activity compared to sporadic cases who 

did not have both family history of lung or other cancers and occupational exposures. Not only 

did the combination of carrying metabolic and DNA repair ‘at risk’ genotypes with family 

history of lung or other cancers, and occupationa

mes, but it also affected the age at onset compared to sporadic cases. The mean age among 

cases who had at risk genotypes at GSTP1 and XPD exon 23 or mEPHX genes together with ever 

exposed to occupational exposures and had family history of cancers (59±16 and 55±14, 

respectively) appeared to be significantly lower than sporadic cases who carried the same 

combination of at risk genotypes but did not have occupational exposures and family history of 

cancers (72±11 and 70±5; P=0.04 and 0.002, respectively).  
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Moreover, there were twelve ‘at risk’ lung cancer cases compared to only three sporadic 

cases who had the combination of predicted high and intermediate mEPHX activity, GSTP1 

(*A/*B and *B/*B), and XPD (Lys/Gln and Gln/Gln) genotypes with a statistical significant 

difference at P=0.04. Similarly, taking together the risk factors of having family history of lung 

and other cancer(s), occupational exposures, and at risk genotypes at mEPHX, GSTP1, and XPD 

exon 23 genes was shown to be associated with early age at onset among cases with these risk 

factors compared to the sporadic cases (mean age 52±13 and 73±2, respectively). Lung cancer is 

clearly a multistep carcinogenesis process that requires several genetic and/or epigenetic events 

in o

other risk factors such as cigarette 

rder to drive the carcinogenic pathway to show a malignant phenotype. The results observed 

were in agreement with this concept. For example, individuals with a family history of cancer at 

risk lung cancer cases might have some genes already mutated in the germline that provides 

hereditary predisposition to lung carcinogenesis. Cellular transformation can be further caused 

by environmental factors such as exposed to asbestos, chromium, silica and other occupational 

exposures, cigarette smoke, combustion, and high temperature cooked meat. Then, 

polymorphisms in metabolic activation and detoxification and DNA repair enzymes play 

important roles in the acquisition of susceptibility to those environmental factors and could 

possibly enhance the entire lung carcinogenic process. Therefore, the joint effect between genetic 

host factors (interindividual variations in carcinogen metabolism and DNA repair and familial 

aggregation) and environment factors (environmental and occupational exposures) potentially 

influence individual to develop lung cancer at early age. 

The results obtained from both case control and case only analyses were in agreement and 

indicated an association between metabolic enzyme, DNA repair enzyme genetic polymorphisms 

and lung cancer risk, particularly in a combination with 

 177 



  

smo

5.3. mRNA expression 

reactive metabolites. In the present study, the determination of CYP mRNA expression levels in 

lung tissue was performed to evaluate the potential for local bioactivation and as smoking 

exposure biomarker. The levels of CYP1A1, CYP1B1, and CYP2E1 mRNA expression were 

measured in twenty pairs of lung tumors and histologically normal adjacent lung tissues. The 

results on CYP expression in both lung tumors and histological normal adjacent lung tissues 

obtained in this study were in agreement with those presented in earlier studies (255-

y Petruzzelli et al. (255) that the effect 

of c

disappeared in normal lung tissue within 6 weeks after smoking cessation. There were three pairs 

king, occupational exposures, an early age onset, and family history of lung and other 

cancers.  

In order to answer the key question about tissue specific chemical carcinogenesis, it is 

important to determine the capacity of the actual target tissue to convert procarcinogens to 

257,263,265,308,309,309). 

In this study, CYP1A1 was expressed at low levels in both lung tumors and histologically 

normal tissue. The levels of expression among tumors were not statistically significantly 

different from their corresponding adjacent histological non-tumor samples for both former 

smokers and nonsmokers. Furthermore, the levels of CYP1A1 mRNA that was expressed in lung 

tumor and histologically normal adjacent lung tissues of former smokers were similar to those of 

nonsmokers. This finding is probably due to the cessation of cigarette smoking more than 3 

months prior to the beginning of the study. As reported b

igarette smoking on inducible CYP1A1 expression in lung tissues could last up to 60 days 

after cessation of smoking. Also, McLemore et al. (256) reported that the decrease in CYP1A1 

mRNA levels was noted as early as 2 weeks after cessation of cigarette smoking and completely 

 178 



  

of lung tumors and histological normal adjacent lung tissues that obtained from current smokers 

in this study. However, there were insufficient total RNA amounts to measure the level of 

CYP1A1 expression in lung tissue samples from one of these current smokers. β-Actin mRNA 

was not detectable in the remaining two samples.  

There was interindividual variation in the amount of constitutive CYP1A1 mRNA in 

histological normal adjacent lung tissue. The range of CYP1A1 expression in eleven histological 

normal adjacent lung tissues was 0.04- to 0.21 amol/amol β-actin. The levels of CYP1A1 mRNA 

in histological normal adjacent lung tissues of four former smokers and two nonsmokers were 

between 0.04 and 0.07 amol/amol β-actin, which in accordance with the results of previous 

studies. The levels of expression in histological normal adjacent lung tissues of two current 

smokers were higher than those of former smokers and nonsmokers (0.12 and 0.14 amol 

CYP1A1/amol β-actin). However, one nonsmoker had showed a level of CYP1A1 mRNA in 

histological normal adjacent lung tissue as those of current smokers (0.13 amol/amol β-actin). 

This may either be due to misreporting of smoking history and/or greater inducibility of 

constitutive levels due to carrying the variant CYP1A1 genotype as well as possible exposures to 

petroleum and other occupational carcinogenic PAH compounds. This could also explain the 

detected levels of 0.15 and 0.21 amol CYP1A1/amol β-actin in histological normal adjacent lung 

tissues of two former smokers who were exposed to petroleum and occupational pollutants and 

also had the inducible CYP1A1 genotype. 

In comparing the levels of CYP1A1 mRNA expression between eight pairs of lung tumors 

and their corresponding histological normal adjacent tissues obtained from five former smokers 

and three nonsmokers, the mean level of CYP1A1 mRNA detected among tumors was not 

different from the mean value of histological normal adjacent lung tissues as shown in Table 42. 
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However, CYP1A1 expression in lung tumors is most likely to be lower than that observed in the 

corresponding histologically normal adjacent lung tissues (observed in six from eight pairs of 

lung samples). Furthermore, after the two pairs of lung samples that showed higher CYP1A1 

mRNA in tumors compared to their histological normal adjacent tissues were excluded, the mean 

leve

YP1A1 mRNA indicates the expression of CYP1A1 

in l

l of CYP1A1 mRNA was 2.3-fold lower (P=0.02) in tumors (0.032 ± 0.01) compared to the 

matched histological normal adjacent lung tissues (0.075 ± 0.03). This is in accordance with 

previous studies that showed 3-fold lower of CYP1A1 expression in tumors compared to the 

corresponding normal tissues (308) and a decreased level of AHH in non small cell lung cancers 

versus normal lung tissue (310). This decrease in CYP1A1 mRNA expression in lung tumors 

may be related to altered CYP1A1 gene regulatory pathways. Higher levels of CYP1A1 

expression that was observed in lung tumors compared to those of matched histological normal 

adjacent tissues in both a former smoker with a history of petroleum and asbestos exposures and 

another not exposed to other environmental inducers might also be related to altered CYP1A1 

gene expression such as activation the CYP1A1 gene in tumor cells. Further studies are required 

to examine an expression of CYP1A1 in lung tumor cells because the CYP1A1 regulation may 

be altered in tumor tissue and may be important with respect to lung carcinogenesis. 

Both histological normal adjacent lung tissues and lung tumors from former smokers and 

lifetime nonsmokers in the absence of cigarette smoking and other environmental pollutants 

displaying constitutive expression of the C

ung tissue and the possible existence of local bioactivation of lung carcinogens by CYP1A1 

in specific target lung tissue, although the presence of mRNA can not be regarded as a direct 

indication of the existence of corresponding CYP1A1 proteins. However, detectable mRNA can 

potentially be translated to functional protein in the specific target tissue. Higher levels of 
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CYP1A1 mRNA expression detected in histologically normal adjacent lung tissue from current 

smokers and former smokers and lifetime nonsmokers who had exposed to other environmental 

inducers suggests an important role of CYP1A1 mRNA as a cigarette exposure biomarker. No 

correlation between the expression of CYP1A1 mRNA in histological normal adjacent lung and 

lung tumor tissues is evident in the present study. This lack of correlation should be investigated 

for changes occurring in tumor cells that may lead to altered expression of CYP1A1 in lung 

tumors further in future studies. Also, the role of CYP1A1 mRNA expression as a cigarette 

smoking exposure biomarker should to be further evaluated in larger numbers of lung tumors and 

normal lung from current smokers. 

 The present study also demonstrated the expression of CYP1B1 in both lung tumors and 

histological non-tumors at the mRNA level. There was considerable interindividual variation in 

expression of CYP1B1 mRNA regardless of tissue types (tumors or non-tumors), smoking status, 

and subjects’ lung function. For example, the lowest mRNA level of CYP1B1 was detected in 

histologically normal adjacent lung tissue obtained from a current smoker. A weak association 

between the levels of detected CYP1B1 mRNA in histologically normal adjacent lung tissues 

and airway obstructive diagnosis from the tested lung function results was observed. CYP1B1 

mRNA was also detected in the histologically normal adjacent lung tissues obtained from 

lifetime nonsmokers and former smokers who either had or did not have history of exposures to 

other environmental and occupational pollutants and/or carcinogenic compounds. These findings 

were in accordance with the previous reports for CYP1B1 gene expression in bronchial epithelial 

cells of nonsmokers (252), current smokers (257) and in lung tumors and non-tumors of current 

and former smokers (263). Regarding the observation of CYP1B1 expression in lung tissues of 

two lifetime nonsmokers who had reported no history of other environmental and occupational 
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exposures, this could due to passive smoking exposure and inhalation of non-cigarette 

procarcinogens such as engine exhaust. Also this might possibly be very low constitutive 

expression of the CYP1B1 gene in lung tissue and was in agreement with the previous report that 

CYP1B1 is expressed constitutively in normal adult lung tissue (156,252).  

The detectable level of CYP1B1 mRNA in histological normal adjacent lung tissues of 

former smokers might also be explained by the exposures to other environmental inducers and 

tobacco smoke and/or the mechanisms of CYP1B1 expression induced by cigarette smoke. There 

are important questions that remain to be answered and cannot be addressed in this study such as 

how soon the effect of smoking induction starts, how long does it last, is there possible 

cumulative effect of smoking on CYP1B1 expression and interindividual differences in the level 

of induction. Human CYP1B1 gene expression induced by polycyclic aromatic hydrocarbons has 

been well documented and involves the Ah receptor for increasing transcriptional of the CYP1B1 

gene (262,311). However, non-Ah receptor mediated pathways of transcriptional regulation and 

post-transcriptional mechanisms may also contribute to regulating expression of CYP1B1 gene. 

Since human CYP1B1 mRNA contains multiple polyadenylation sites, it has been suggested that 

there is cell-type-specific alternative processing of CYP1B1 mRNA, which may regulate the 

amount and/or the ability of the final transcript to be translated (311,312). Furthermore, the 

stability of CYP1B1 mRNA that can be influenced by any other alternative processing may be 

responsible for the regulation of the CYP1B1 gene expression (312).  

Conversely, the presence of CYP1B1 mRNA in histological normal lung tissue of former 

smokers may represent constitutive expression of CYP1B1 gene in lung tissue. The great 

CYP1B1 interindividual variability observed in this study may not be based on genetic 

polymorphism in the CYP1B1 gene as there was not an association between the CYP1B1*3 
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variant allele and the constitutive amount of CYP1B1 mRNA detected in histological normal 

adjacent lung tissues. In the present study, the plasma nicotine and/or cotinine levels were not 

measured in any of blood samples from patients whose lung samples collected in order to 

correlate the self-report smoking status and cigarette smoke exposure. However, Spivack et al. 

(26

g tumors compared to that 

of t

3) reported the expression of CYP1B1 in lung tumors and non-tumors of former smokers with 

no detectable nicotine and cotinine present in their plasma samples. Furthermore, none of these 

subjects had reported exposures to other inhaled toxicants and medications. Taking the results 

from the earlier study and this study, it appears that CYP1B1 is expressed in human lung tissue 

at the mRNA level with a wide interindividual variation in expression. This also indicates a 

potential role of CYP1B1 mRNA expression as a susceptibility biomarker of lung cancer for 

preferential bioactivation of procarcinogens in lung tissue.                  

As shown in Table 42, the mean level of CYP1B1 mRNA measured in histological normal 

adjacent lung tissue was not statistically significantly different from the observed mean value of 

unmatched lung tumors. However, there was a trend of higher expression in level of CYP1B1 

mRNA in tumors compared to their matched histological normal adjacent (measured in six pairs 

of lung tissue samples) (Table 43). There were two of six pairs lung tissue samples showed lower 

level of CYP1B1 mRNA detected in tumors compared to their corresponding histological normal 

adjacent tissues. After the values obtained from these two pairs of lung samples were excluded, 

an increasing in the mean level of CYP1B1 mRNA expression in lun

heir matched histological normal adjacent tissues did reach statistical significance (P=0.01). 

The mechanism of the discrepancy between the observed levels of CYP1B1 mRNA expression 

among lung tumors possibly resulted from the differences in constitutive levels of CYP1B1 

mRNA, regulatory control of CYP1B1 expression by AhR and non-AhR-dependent factors, and 
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cell type specific regulating expression of CYP1B1 as described previously. However, the 

finding of a tendency towards overexpression of CYP1B1 mRNA expression in lung tumors 

could potentially be important in determining utility of CYP1B1 mRNA as a smoking and/or 

environmental exposure biomarker. Moreover, it is likely that there is a mechanistic link between 

cigarette smoke and/or environmental procarcinogens exposures and lung carcinogenesis but it 

should be evaluated in future studies.    

In the present study, CYP2E1 appeared to be expressed in both lung tumors and 

histologically normal adjacent lung tissue with several orders of differences in detected mRNA 

levels across individuals. The range of the CYP2E1 mRNA levels detected in histological normal 

adjacent lung tissues was between 0 to 8 amol CYP2E1/amol β-actin (among former smokers 

who had reported none of environmental and occupational exposures) and was between 0.22 to 

4.5 amol CYP2E1/amol β-actin (among current smokers, nonsmokers and former smokers who 

had exposed to petroleum and other environmental and/or occupational exposures). Higher 

expression of CYP2E1 in histological normal adjacent lung tissues of current smokers (2-3 amol 

CYP2E1/amol β-actin) compared to nonsmokers (0.8 amol CYP2E1/amol β-actin) with no 

history of environmental and/or occupational CYP2E1 inducers was observed which indicated 

the induction of CYP2E1 gene expression by cigarette smoke. The detection of CYP2E1 mRNA 

in histological normal adjacent lung tissues of former smokers and nonsmokers who were 

exposed to petroleum and/or other environmental compounds might be a consequence of the 

CYP2E1 induction effect of polycyclic aromatic hydrocarbons and benzene. The mechanism of 

CYP2E1 induction by cigarette smoke has been thought to involve protein and/or mRNA 

stabilization. Therefore, it is likely that the CYP2E1 mRNA observed in histological normal 

adjacent lung tissues of current smokers and former smokers and nonsmokers who were exposed 
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to cigarette smoke or petroleum and other compounds in this study may be due to mRNA 

stabilization. Further studies are required to examine the mechanistic effect of CYP2E1 

induction by cigarette smoke and other agents.  

Similar to the observed results of CYP1A1 and CYP1B1 mRNA expression, the finding of a 

wide variation of CYP2E1 mRNA expression across individuals in this study was not likely to be 

influenced by differences in the ability for mRNA production in their lung tissues since the 

diagnosed lung function as mild or borderline airway obstruction or normal airflow was weakly 

associated with the levels of mRNA expressed in histological normal adjacent lung tissues. 

However, the limitation of these lung tissue samples clinical and demographic information on 

other contributing factors to variability in CYP2E1 mRNA expression such as diet and alcohol 

intake might be an explanation. Nevertheless, these results suggest the presence of 

interindividual susceptibility to local bioactivation of lung procarcinogens as indicated by the 

variation of the constitutive amount of CYP2E1 expressed in lung tissues. Furthermore, it 

indicates the potential of CYP2E1 mRNA as cigarette smoke and/or other CYP2E1 inducers 

exposure biomarker as the observation of CYP2E1 expression induced by cigarette smoking 

and/or petroleum and other environmental and occupational exposures.  

The mean level of CYP2E1 mRNA measured in sixteen histological normal adjacent lung 

tissues was not statistically different from the mean mRNA level detected in seventeen unpaired 

lung tumors, which is likely to be an effect of an interindividual variation in the CYP2E1 mRNA 

levels. However, the significant elevation of CYP2E1 mRNA in lung tumors was shown after 

comparing the expression of CYP2E1 among thirteen matched tumors and non-tumors (Table 

43). An overexpression of CYP2E1 mRNA in tumors suggests a mechanistic link between 

environmental procarcinogens and/or cigarette smoke exposure and lung carcinogenesis. Also, 
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an alteration of CYP2E1 gene expression is likely to occur in the neoplastic cells during lung 

cancer development. The function of CYP2E1 in activation of procarcinogens found in cigarette 

smoke and environmental pollutants, the presence of constitutive CYP2E1 in lung tissues, and 

ind

d to those of CYP1A1 

dete

ucibility of CYP2E1 by cigarette smoke, benzene, and other compounds indicates the 

potential for a significant contribution of CYP2E1 for local bioactivation of lung procarcinogens 

in the target lung tissue and in lung carcinogenesis.  

According to these results for CYP mRNA quantitation, CYP1A1, CYP1B1, and CYP2E1 

are expressed in both lung tumors and non-tumors. Compared to CYP1A1 gene expression, 

CYP1B1 appears to show several orders of magnitude greater levels of expressed mRNA 

consistent with a previous report (263). The significant difference in the detected mRNA 

expression levels between CYP1A1 and CYP1B1 is not likely to be an effect of analytical 

variability as cDNA from a normal liver sample was used as a control across all plates over time 

for normalization of any plate-to-plate variation. The level of CYP mRNA expression in relation 

to an endogenous gene (β-actin) was used in order to minimize differences in the initial input 

amount of the total RNA. Also, the effect of probe variability was also normalized for each CYP 

mRNA determination. The higher levels of CYP1B1 mRNA compare

cted in histological normal lung tissues from current smokers, former smokers and 

nonsmokers could be explained by the differences in the degree and/or mechanisms and/or long 

lasting effects of both CYPs mRNA induced by cigarette smoke and/or other environmental and 

occupational compounds and/or by the differences in the constitutive amount that expressed in 

lung tissue.  

CYP1A1 and CYP1B1 are expressed predominantly in extrahepatic tissues including lung 

and they participate principally in the activation of carcinogenic polycyclic aromatic 
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hydrocarbons. However, it has been shown that CYP1B1 is able to catalyze the activation of 

both polycyclic aromatic hydrocarbons and aryl amines. Also, CYP1B1 has shown the higher 

catalytic activities compared to CYP1A1 toward several PAHs including (±)B[a]P-diol, and 

dibenzo[a,l]pyrene-11,12-diol and several aryl amines including 2-aminoanthracene, and 6-

aminochrysene (156). Moreover, It has been demonstrated that CYP1B1 is a catalytically 

efficient 17β-estradiol 4-hydroxylase, and a slight 2-hydroxylase (290). According to the 

cap

activates low molecular weight carcinogens found in cigarette smoke and 

env

acity of CYP1B1 in activation of a wide range of carcinogenic chemicals and endogenous 

estrogen hormone and the finding of highly expressed of CYP1B1 in lung tissue in this study, it 

suggests an important of another CYP1 family member, CYP1B1, for local bioactivation of 

procarcinogens, interindividual susceptibility to lung cancer and lung cancer risk especially 

among females in addition to the well established role of CYP1A1 in polycyclic aromatic 

hydrocarbons metabolism and as cigarette exposure biomarker. 

The present study has demonstrated the existence of the constitutive CYP2E1 mRNA in lung 

tissues among current, former smokers and nonsmokers, which was in accordance with the 

previous report (309). Also, Willey et al. (252) and Crawford et al. (313) reported that CYP2E1 

was expressed in bronchial epithelial cells of nonsmokers. Additionally, CYP2E1 gene 

expression induced by cigarette smoke and/or benzene and other environment inducers was 

indicated in this study. These findings support the role of CYP2E1 mRNA as a cigarette smoke 

and other environmental inducers exposure biomarker and as an interindividual lung cancer 

susceptibility biomarker for local procarcinogen bioactivation.  

CYP2E1 

ironmental pollutants such as vinyl choride, benzene, and some nitrosamines including NNK 

and NNAL, all of which have been postulated to be responsible for lung adenocarcinoma. 
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Although there were no observable differences in the levels of CYP2E1 mRNA in both 

histological normal adjacent lung tissues and lung tumors between lung adenocarcinoma and 

squamous cell carcinoma analyzed lung tissue samples in this study, the presence of constitutive 

levels of CYP2E1 mRNA indicated pulmonary NNK and other cigarette and/or environmental 

carcinogen biotransformation, which is believed to play a role in lung carcinogenesis. 

Interindividual variation in constitutive levels CYP2E1 mRNA, CYP2E1 mRNA induction by 

exposed to other CYP2E1 inducers, mechanisms of regulatory system for CYP2E1 expression, 

an involvement of procarcinogens activation by CYP2E1 and other cytochrome P450s in liver, 

which bronchial epithelial cells can be exposed to these blood-borne carcinogenic reactive 

metabolites, the expression of other activation enzymes such as CYP2A6 and CYP2B6 that also 

involved in catalyzing the nitrosamines compounds in the lung, and cytochrome P450 

independent pathways for NNK metabolism in human lung may contribute to the negative 

asso

n by the RT-PCR FAF-ELOSA 

tech

ciation of CYP2E1 mRNA levels in lung tissues and their corresponding histological 

adenocarcinoma cell type.  

In order to be able to quantify the relative low constitutive amount of mRNA and screen the 

gene expression of several metabolic enzymes in large numbers human lung samples, a reliable 

method that requires a small amount of biological sample that is sensitive, reproducible, fast and 

precise is necessary. The limitation of the mRNA results obtained from this study was primarily 

due to the limited yields of total RNA in some lung tissue samples as well as the relative high 

initial amount of cDNA needed for measuring mRNA expressio

nique. The real-time quantitative RT-PCR technique, TaqMan assay, offers higher 

sensitivity, rapid, accuracy, and high-through capability over other conventional RNA 

quantification methods. Therefore, the TaqMan based assays for quantification of CYP1A1, 
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CYP1B1, CYP2E1, and endogenous β-GUS mRNA expression were developed in the present 

study. A comparison of relative sensitivity of the RT-PCR FAF-ELOSA and the TaqMan assays 

for measuring CYP1A1, CYP1B1, and CYP2E1 mRNA in the same normal liver sample was 

performed. Since there was limited amount of total RNA extracted from 20 pairs of lung tumors 

and histological normal adjacent tissues, the results obtained only the comparison of the mRNA 

levels in liver sample detected by two methods.  

Using the relative levels of CYP mRNA expression to endogenous β-actin, estimated levels 

of CYP1A1, CYP1B1, and CYP2E1 mRNA/β-actin of liver cDNA sample detected by both 

TaqMan assay and RT-PCR FAF-ELOSA were similar as shown in Fig. 17 and 18. A similar 

pattern of these three CYP expression levels in the same liver sample between the two 

techniques was demonstrated (Fig. 22) although there was a slight difference in the measured 

levels of CYP1A1 and CYP2E1 between two methods. As the liver cDNA were analyzed in 

triplicate for each concentration by TaqMan assay, the results showed that the C  values were 

reproducible with intra-assa

T

y coefficients of variations of 0.19-1.43% (Fig. 23). In contrast, with 

a d

CYP1A1 and CYP2E1 mRNA in the same liver sample detected by both methods. 

Another important aspect of quantitative mRNA measurement is the need for a reliable RT-

PCR method to show a high sensitivity. For the TaqMan assay, the starting amount of total 

RNA analyzed was 105 ng (an average of three concentrations of 180, 90 and 45 ng) compared 

to 1000 ng for FAF-ELOSA, constituting a 10-fold higher sensitivity for TaqMan assay than 

the FAF-ELOSA. A 20-fold higher sensitivity in the quantification of CYP1A1, CYP1B1, and 

uplication of each concentration analyzed by FAF-ELOSA, the results showed intra-assay 

coefficients of variations of 9.49-50% (Fig. 24). This finding indicate higher reproducibility of 

the TaqMan assay compared to FAF-ELOSA and could explain the differences in the levels of 
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CYP2E1 mRNA at the lowest starting amount of template 45 ng of liver cDNA with the 

TaqMan assay compared to 1000 ng used in the FAF-ELOSA method was also shown. 

Furthermore, the TaqMan assay demonstrated high sensitivity in the quantification of 

CYP1A1, CYP1B1, and CYP2E1 relative to endogenous β-GUS mRNA in normal human lung 

tissue compared to reference normal liver tissue with an early detectable CT of 17 only with a 1 

ng starting amount of lung and liver cDNA. In comparison with FAF-ELOSA method, 

TaqMan assay therefore has been shown to achieve its potential increase in sensitivity, 

reproducibility, rapid and reliability in quantification of gene expression.  
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This study has evaluated the contribution of several genetic polymorphisms in metabolic and 

DNA repair genes that are involved in cigarette smoke carcinogen metabolism and in the 

nucleotide excision repair pathway in lung cancer risk The panel of genes screened include 

CYP1A1, CYP1A2, CYP1B1, CYP2D6, CYP2E1, mEPHX, MPO, GSTM1, GSTM3, GSTT1, 

GSTP1, NAT2* and XPD. Significant increases in risk of lung cancer were observed for subjects 

with multiple genetic polymorphisms. The additive or multiplicative effect of the combinations 

of different genetic polymorphisms on increased risk of lung cancer emphasized the importance 

of screening a panel of metabolic and DNA repair enzyme polymorphisms for determining risk 

of lung cancer. The central hypothesis in this study to characterize the interactions between 

genetic and environmental factors in lung cancer risk was confirmed in both case/control 

analysis and case only study. The genetic risk factors identified included a single ‘at risk’ 

genotype or the combinations of two or three ‘at risk’ genotypes, family history of lung cancer 

and other cancer(s), and early age onset. The significant environmental risk factors consisted of 

history of cigarette smoking and occupational exposures such as asbestos, petroleum, nickel, 

chromium, silicon, radon, and others. The gene-environment interactions not only resulted in an 

increasing risk of lung cancer but also an earlier age of onset of lung cancer development.    

Local bioactivation of cigarette smoke and other environmental carcinogens has been shown 

to be another important determinant of interindividual susceptibility to lung cancer by the study 

of CYP1A1, CYP1B1, and CYP2E1 gene expression in target lung tissues. High but variable 

constitutive levels of CYP1B1 mRNA expression in lung tissues were observed in the present 

CONCLUSIONS 
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study. This data, taken together with information presented in the literature that CYP1B1 plays a 

significant role in catalyzing the activation of various carcinogens found in cigarette smoke and 

the environment, suggests an important role of CYP1B1 in lung carcinogenesis. The role of 

CYP2E1 mRNA expression as lung cancer susceptibility biomarker and cigarette and/or other 

environmental carcinogens exposure biomarker has been supported by the observations of 

interindividual variation in constitutive amounts of CYP2E1 mRNA and also the detectable 

levels of CYP2E1 mRNA induced by cigarette smoke and/or other environmental carcinogens 

that were observed in histological normal adjacent lung tissues. The significant increase in the 

levels of CYP2E1 mRNA expression in lung tumors compared to their corresponding 

histological normal adjacent tissues among current and former smokers and nonsmokers who 

were exposed to petroleum and/or other environmental exposures further suggest a mechanistic 

link between environmental carcinogens exposures and lung cancer development. These results 

provide evidence for the potential of local procarcinogen bioactivation in lung tissues by 

CYP1B1 and CYP2E1. Future studies are required to explore the mechanisms of cigarette smoke 

and/or other environmental carcinogens induce CYP1B1, and CYP2E1 mRNA expression.  

Based on overlapping substrate specificity of CYP enzymes and an involvement of several 

activation and detoxification enzymes in the metabolism of procarcinogens found in cigarette 

smoke and environment together with the presence of local bioactivation of lung carcinogens in 

lung tissues suggested by the findings in the present study, the importance of determining 

endogenous factors for host susceptibility to lung cancer is indicated. There are other metabolic 

enzymes such as CYP2A6, CYP2B6, mEPHX, GSTs, and NADPH oxidoreductase that have 

been reported to express in human lung and metabolize major carcinogenic compounds in 

cigarette smoke and environmental pollutants (252,313). Measurement of the expression of those 
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genes in target lung tissues is therefore likely to also be an important determinant of metabolic 

capabilities and consequences host factors in susceptibility of lung cancer.  

Therefore, individual susceptibility to lung cancer determined by endogenous host factors 

such as genetic polymorphisms in metabolic and DNA repair genes, family history of lung and 

other cancers, early age onset, and interindividual differences in capacity of local procarcinogens 

bioactivation could interact with each other or interact with individual exposures or other 

exogenous factors such as cigarette smoke, environmental carcinogens and occupational 

exposures in modifying lung cancer risk. Taken together, the results in the present molecular 

epidemiological study indicated the contribution of both gene-gene and gene-environment 

interactions in lung carcinogenesis. Furthermore, it supports the usefulness of the multi-risk 

factor paradigm, gene-gene and gene-environment interactions, for improved human cancer risk 

assessment. Moreover, the gene-gene and gene-environment interactions characterized in this 

study could be very useful in public health intervention strategies for lung cancer such as the 

identification of individuals who would most benefit from modification of hazardous lifestyles, 

rational therapeutic strategies and the reduction of involuntary exposure to carcinogens by 

regulation. Not only has this study explored several lung cancer susceptibility biomarkers that 

can be used to identify individual lung cancer risk, but it also demonstrates the significant power 

of current molecular genetic technologies, which can be used to facilitate massive population 

screening in a rapid, efficient, cost effective fashion to enhance human cancer risk assessment.  

Although the relative levels of encoded proteins and their functional significance cannot be 

predicted by the determination of the polymorphic genes and the abundance of mRNA 

expression as well as lung cancer risk is also influenced by other contributors such as other 

metabolic and DNA repair polymorphic variant alleles, mutation in oncogenes and tumor 
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suppressor genes, and genomic instability, it is likely that the findings in this study have 

provided the evidence to suggest the important role of interindividual variation in host 

susceptibilities to lung cancer and how they modify the effects of cigarette smoke and/or other 

environmental carcinogens and/or occupational exposures. Further functional assays for these 

polymorphic encoded proteins and the mechanisms related to lung cancer risk are required to be 

elucidated in order to accomplish the ultimate goal in cancer research for lung cancer prevention. 
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