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Abstract 

Electron transfer reactions constitute a fundamental chemical process and are of intrinsic 

importance in biology, chemistry, and the emerging field of nanotechnology. Electron transfer 

reactions proceed generally in a few limiting regimes: nonadiabatic electron transfer, adiabatic 

electron transfer and solvent controlled electron transfer. Behavior between some of these 

regimes was examined by varying the solvents in which the reaction occurs i.e., the different 

polarization relaxation. In a “fast” solvent, such as acetonitrile, the electron transfer occurs in the 

nonadiabatic regime over a broad temperature range; in a “slow” solvent, such as N-

methylacetamide (NMA) and N-methylpropionamide (NMP), the electron transfer reaction 

occurs in the nonadiabatic regime of high temperature but occurs in the solvent controlled regime 

as the temperature decreases. The semiclassical model was compared to the electron transfer rate 

data in the nonadiabatic regime and the Zusman model was compared to the rate constant in 

solvent controlled regime. Experimental data was discussed and compared to a theoretical 

interpretation between the regimes, − how the electron transfer mechanism converts from a 

nonadiabatic mechanism to a solvent controlled mechanism. 

The fluorescence emission of conjugated polyelectrolytes is highly sensitive to their 

binding with other macromolecules, protein and dendrimers. A detailed investigation on the 

polyelectrolyte fluorescence intensity changes and the fluorescence quenching mechanism were 

 iii



explored. These studies confirm that the quenching mechanism is controlled by the electrostatic 

binding between the macromolecular analytes and the changes in the electronic characteristics of 

the polyelectrolyte. Three possible electrostatic mechanisms for the polyelectrolyte were 

explored: electron transfer, energy transfer, and internal conversion. In many cases, the 

conformational changes of the polyelectrolyte control the internal conversion, hence the 

fluorescence yield, when binding to other macromolecules, a qualitatively different mechanism 

from that found for small molecular analytes.  
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Chapter 1 Introduction 

1.1 Brief Retrospective 

Electron transfer reactions are one of the most elementary reactions in the field of 

chemistry. From photosynthesis in plants and nitrogen fixing in microorganisms to metabolic 

pathways in human beings, electron transfer reactions are essential, directly or indirectly, to all 

life on Earth. Since the late 1940s, the understanding of electron transfer processes has grown 

dramatically. In 1952, Willard Libby described the significance of nuclear reorganization in 

electron transfer1, and Marcus applied this principle in his formulation of electron transfer 

theory.2  It was Marcus’ genius work, beginning from 1956, that built the foundation for much of 

what has been learned in the intervening decades about electron transfer. In recent years, more 

advances in electron transfer research have taken place because of novel molecular design and 

synthesis. With the goal of disentangling the forces behind the electron transfer, small, simple 

molecules have been synthesized in order to impose some constraints on the systems and allow 

the experimental queries to be focused. Closs and Miller’s pioneering work studied through bond 

effects in intermolecular electron transfer.3,4 Other scientists, including Wasielewski, Michel-

Beyerle and Paddon-Row, have furthered our understanding of intramolecular electron transfer 

with their clever molecular designs.5-12 

1.2 Electron Transfer Theory 

Electron transfer can be understood as the movement of an electron from a donor 

molecule to an acceptor molecule, at its most basic level, in the self exchange reaction shown in 

equation 1.  
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nnnn MMMM +⇔+ ++ 11                                              1 

Here, the reactants (and products) can be two metal ions that only differ by their oxidation states, 

e.g., Fe2+ and Fe3+. But the process of electron transfer is often far more complex than the 

example given above and requires an accurately measured approach and an extrapolation for the 

electron transfer rate.  

Marcus’ classical theory and more modern semiclassical theories begin with Fermi’s 

Golden Rule expression for the transition rate.  

FCWDSVk 2)/2( hπ=                                                       2 

where h  is Planck’s constant divided by π2 , |V| is the electronic coupling matrix element, and 

FCWDS is the Franck-Condon weighted density of states.13-15

Figure 1.1 shows the Marcus curves, an icon of electron transfer theory. Two parabolic 

curves represent the potential energy of the reactant and the product. λ represents the energy 

required to reorganize the reactant into the equilibrium geometry of the product without 

undergoing an electron transfer, and ∆rG represents the difference in free energies between the 

reactant and the product. The activation energy ∆G╪ is the energy difference between the 

equilibrium position of the reactant curve and the crossing point.  
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Figure 1.1 Marcus free energy curves for reactant and product states of an electron transfer 

reaction.  

 

The two limiting electron transfer mechanisms are called nonadiabatic and adiabatic 

electron transfer reactions. Nonadiabatic electron transfer reactions are described by Fermi’s 

Golden Rule, equation 2. In this case the rate constant is proportional to the electronic coupling 

|V|2, where the electronic coupling |V| is the interaction between the reactant and the product 

states at the curve crossing (dashed curve in Figure 1.2). In this case, the rate constant increases 

with stronger electronic coupling, which represents better overlap of the reactant and the product 

electronic wave functions. Nonadiabatic electron transfer reactions, e.g., long-distance 

photoinduced electron transfer reactions where the electron donor and the electron acceptor 

interact very weakly, have small |V|, typically |V| << kBT. When the electronic coupling 

becomes large enough, the electron transfer reaction occurs along a single electronic state (black 

 3



curves in Figure 1.2). Adiabatic electron transfer reactions are characterized by large |V|, where 

|V| >> kBT (200 cm-1).4  
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Figure 1.2 Diagram illustrating the two pictures (adiabatic and nonadiabatic) for the electron 

transfer.  

 

A single one dimensional reaction coordinate illustrates how the electron transfer 

mechanism differs in these two regimes. In the adiabatic regime (black curve), the electron 

transfer happens by moving along the lowest energy curve through the transition region and the 

system’s electronic state adiabatically follows the nuclear displacement. In this case the reaction 

rate is controlled by the activation barriers and dynamics of the nuclear motions. In the 

nonadiabatic reactions (dashed curves), the electron moves through the transition state region 

many times (on average) before the electron jumps from the reactant curve to the product curve. 

In this case the rate constant is controlled by the tunneling probability at the transition state and 

the Franck-Condon factors. 

 4



Jortner’s semi-classical expression16 adequately describes the reaction kinetics of 

nonadiabatic electron transfer reactions in most situations. He gives the rate constant expression 

described in equation 3. 
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where
ν

λ
h

S v= . This equation is an expanded form of Fermi’s Golden rule, where FCWDS is 

defined in terms of four parameters, λ0, λv, hν, and ∆rG. This equation takes into account the 

energy required for high-frequency vibrational reorganization λv, when an electron is transferred 

from an electron donor to an electron acceptor. It also accounts for the low-frequency solvent 

reorganization energy, λ0. The hν term refers to the average energy spacing of a single effective 

quantized mode frequency associated with the electron transfer event, which is taken to be a 

characteristic feature of the solute. The sum is performed over all of the vibrational states in the 

product based on a single, effective, high-frequency mode model. 

 The semiclassical theory assumes that the lower frequency modes, which are mostly 

solvent based, have a low enough energy relative to the thermal bath that they can be treated 

classically, whereas the higher frequency modes, which arise from intramolecular vibrations, 

must be treated quantum mechanically, see Figure 1.3.  
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Figure 1.3 Quantum description of the intersection between the reactant and the product 

vibrational levels. Optimal overlap is achieved between the reactant ν = 0 and the product ν’ = 9 

product state. This figure is taken from reference DeVault, D. Quart. Rev. Biophys. 1980, 13, 

387.  

 

The following sections describe the essentials of three important parameters, 

reorganization energy, reaction free energy and electronic coupling, in detail. These parameters 

are used in the semiclassical expression and play a prominent role in modern views of electron 

transfer reactions. 

1.3 Reorganization Energy and Reaction Free Energy 

The reorganization energy, λ, is usually divided into two contributions: 

vλλλ += 0                                                               4 

The solvent-independent inner reorganization energy λv arises from structural differences 

between the equilibrium configurations of the reactant and product states. Because λv is related to 
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the geometry changes of the donor and acceptor groups upon electron transfer, it depends only 

weakly on the solvation environment around the reactant and product. For example, a value of 

0.63 eV was used for λv in all the solvents. Also important for understanding the inner 

reorganization energy is the characteristic frequency hν, which is taken to be 1600 cm-1 for all of 

the U-shaped DBA molecules in this study. These parameter values are based on the fitting of 

molecular charge-transfer absorption and emission spectra, using a single, effective, high-

frequency vibrational mode for an electron-transfer reaction. 17

The outer-sphere reorganization energy λ0, which is also called the solvent reorganization 

energy, arises from differences between the orientation and polarization of solvent molecules 

around the reactant and product states. The solvent reorganization energy and the reaction free 

energy are determined by solvation characteristics; i.e., solute-solvent interaction energies. We 

have used two different models to treat the solute-solvent interactions: a dielectric continuum 

model and a molecular solvation model. 

The dielectric continuum model calculates solvation energies using the static dielectric 

constant εs and a high frequency dielectric constant ∞ε .18-21 The solute is treated as a spherical (or 

ellipsoidal) cavity containing a point charge. For intramolecular electron-transfer reactions, the 

dielectric continuum model treats the solute as a cavity containing a dipole moment. 

 

2a0

µ

Solvent dielectric constant εs

Figure 1.4 The continuum model used to treat intramolecular system 
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The solvent reorganization energy is described as: 
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and the reaction free energy from this model is 
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where µLE is the dipole moment of the initially excited state, µCS is the dipole moment of the 

charge-separated state, and is the cavity radius. ∆µ is the magnitude of the dipole moment 

difference vector for the locally excited and the charge separated states; i.e. 

oa

LECS µµµ rr
−≡∆ . 

 is the reaction Gibbs free energy in the absence of solvation. Gvac∆

Matyushov developed a molecular solvation model, which accounts for the discrete 

nature of the solute and the solvent and incorporates electrostatic, induction and dispersion 

interactions between the molecules in the solution, as modeled in Figure 1.522. The solute is 

considered as a sphere with a point dipole moment µ and polarizability α0. The solvent is 

modeled as a polarizable sphere, with an electrostatic charge distribution and includes both a 

point dipole and a point quadrupole. 

 

 8



 

Figure 1.5 The multiple interactions between solvent and solute molecules 

 

In the molecular model, the reaction free energy Gr∆  is written as a sum of four terms: 

)2()1(
, GGGGG idispidqvacr ∆+∆+∆+∆=∆                                     7 

where  is the vacuum free energy,  contains the first order electrostatic and 

induction contributions,  contains dispersion terms, and  contains the second order 

induction terms. The value of  is adjustable.  and  make the dominant 

contributions to the reaction free energy, whereas 

Gvac∆ )1(
, Gidq∆

Gdisp∆ )2(Gi∆

Gvac∆ )1(
, Gidq∆ )2(Gi∆

Gdisp∆  is small enough to be ignored. The 

outer-sphere reorganization energy λ0 is also written as a sum of three contributions: 

dispindp λλλλ ++=0                                                   8 

where λp includes contributions from the solvent dipole and quadrupole moments, λind includes 

contributions from the induction forces, and λdisp includes contributions from the dispersion 

forces. The parameters given above are all temperature dependent except Gvac∆ . 
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The solute molecule’s characteristics are highly idealized in the dielectric continuum 

model. Its electrostatic potential is treated as a point dipole; its polarizability is ignored; and the 

details of its shape are lost. The molecular model is more appropriate than the continuum model 

because it includes not only the dipole-dipole interactions, but also the dipole-quadrupole 

interactions, quadrupole-quadrupole interactions, induction and dispersion interactions among 

the solute with the solvent molecules and the solvent molecules themselves. The molecular 

model is especially appropriate to accurately describe the temperature dependence of the 

reorganization energy and the reaction free energy, and the electron transfer reactions in weakly 

polar or nonpolar solvents. 

1.4 Electronic Coupling 

The semi-classical electron transfer rate constant is proportional to the electronic 

coupling, |V|2, which depends on the overlap of the electron donor and the electron acceptor 

wavefunctions. For intramolecular electron transfer, the electronic coupling is commonly found 

to be solvent and temperature independent. Several ways are known in which an electron donor 

and an electron acceptor can transfer or exchange an electron, including through bonds 

(σ and π)23-26, through solvent molecules12,27-32, and through non-bonded static contacts with 

organic moieties suspended between electron donor and electron acceptor17,33. 

  As for the electronic coupling through non-bonded static contacts in U-shaped DBA 

molecules, whose existence has been proved by comparing with another reference compound 

with the same donor and acceptor groups but the electronic coupling through bonded contacts, it 

is found that the electronic coupling is strongly dependent on the structure of the pendant units, 

not only the electron donor or acceptor groups. A detail comparison which varies the pendant 
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units to explore the effect on the electronic coupling has been investigated in this thesis. The 

electronic coupling values can be obtained by fitting the electron transfer rate data to the 

semiclassical model. The experiment data demonstrate that the more efficient electron tunneling 

through the aromatic pendant moiety provides a higher electronic coupling than the alkyl 

pendant, although they have the same electron donor and acceptor groups.  

1.5 Dynamic solvent effects 

A solvent molecule can influence a chemical reaction in a number of ways. 34 Basically, 

it can change the energies of the reactant and product statically; it also can enter into the reaction 

proceedings in a more dynamic way by exchanging energy and momentum with reacting species. 

Dynamic solvent effects are mainly associated with the dielectric friction in polar solvents. For 

electron transfer reactions, static interactions are usually the most important, but dynamic aspects 

of polar interactions also play an important role in determining reaction rates.  

The molecular mechanism of dynamic solvation can be viewed as the reorientation of 

dipolar solvent molecules in response to the changing charge distribution of a solute. The more 

polar is the solvent, the stronger is the coupling between the molecules; however the speed of the 

solvation response depends on features of the intermolecular solvent interactions. Zusman35 first 

considered this effect, which has since been studied by several groups.36-41  

The solvation response function of S(t) reflects the motions required to produce the final 

equilibrated environment from the unpolarized solvent surroundings of the neutral solute. 

)()0(
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A number of groups have42-46 used “simple continuum” models to study solvation. These models 

treat the solute as a point dipole in a spherical cavity and it is immersed in a continuum solvent 

which is treated as a continuum, frequency-dependent dielectric. Simple continuum models 

predict that the solvent has an exponential solvation response function, given by 

)/exp()( LttS τ−=                                                            10 

The dynamic solvation time is equal to the longitudinal relaxation time ( Lτ ) of the solvent:  

0ε
εττ ∞= DL                                                                   11 

where ε0 is the static dielectric constant, ∞ε  is the high-frequency dielectric constant, Dτ  is the 

dielectric (or Debye) relaxation time.  

Although predictions based on the continuum dielectric model provide a reasonably good 

measure of the solvation timescale near room temperature, the single exponential solvation 

response function is not accurate for describing the solvation dynamics. For example, in many 

solvents, the relaxation of the solvation energy takes place on two widely separated time scales: a 

fast relaxation within 0.1 ps range and another slower solvation component in the 1 – 10 ps range 

or even hundreds of picoseconds for more viscous solvents, to fully relax the solvation energy. 

At low temperatures or solvents with long lived structure, one finds the very slow processes 

contributing to the solvation response. Since the more general solvation response is not 

exponential, the correlation time of the solvation response function, defined as, 

∫
∞

=
0

)( dttSτ                                                             12 

is used as a measure of the solvation time. Incorporation of molecular aspects of the solute and 

the solvent interaction substantially modifies continuum predictions. By way of example, 

Onsager47 pointed out that only at distances far from the solute is, the continuum dielectric limit 
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of the longitudinal relaxation time τL achieved, because of the slow variation of the electronic 

field. However, at distance near to the solute, it is more possible to have a slower solvation time 

and the response function is non-exponential even in Debye solvents. Thus, the molecular 

solvation predicts a greater value of  <τ> than τL. 

In intramolecular electron transfer reactions, when the electron tunneling rate is much 

faster than the reorientation time of the solvent, the electron transfer reaction is limited by the 

solvent response and the reactant must gain enough energy for successful electron tunneling. In 

this case, the electron transfer rate is limited by the relaxation rate of the solvent and the reaction 

is solvent-controlled. In contrast, when the solvent reorientation rate is much faster than the 

electron transfer rate, the relaxation time of solvent does not effect the electron transfer and it 

occurs in the nonadiabatic limit, as described by equation 2. 

1.6 Fluorescence quenching of polyelectrolyte 

The fluorescence of conjugated polyelectrolytes is highly sensitive to the binding of 

biological or chemical molecules and such materials provide great promise as water soluble 

fluorescent materials48 and sensors.49,50,51 A number of groups are active in using conjugated 

polymer probes as fluorescence probes, mainly polyphenylvinylene (PPV), 

polyphenylethynylene (PPE), polyphenylene, and polythiophene. The development of this field 

has been reviewed recently.49 The binding of a polyelectrolyte with another molecule can quench 

the fluorescence of the polyelectrolyte. Three most likely mechanisms dominate this process: 

electron transfer, energy transfer, and enhancement of the polymer’s self-quenching by changing 

the conformation itself.  
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As for the electron transfer and energy transfer, the fluorescence quenching originates 

from the rapid electron or energy transport through the conjugated chain (typically modeled by 

exciton transport52,53) to a trap-site, where an initially created excitation can efficiently and 

rapidly interact with the trap-site and achieve the fluorescence quenching. The interaction can 

arise from noncovalent binding, or physical association so that analyte species can quench the 

excitation by electron transfer or energy transfer. Electron transfer quenching can be controlled 

by varying the analyte’s redox characteristics; energy transfer quenching depends strongly on the 

polyelectrolyte and the analyte’s spectral characteristics, corresponding to a Förster mechanism 

or a Dexter mechanism.54 Conformational change in the polyelectrolyte chain, which enhances 

its intrinsic nonradiative rate constant,55 can also greatly quench the fluorescence and acts as a 

third possibility. In this case the quenching would mainly depend on the conformational features 

of the polyelectrolyte, instead of the redox and spectral properties of the analyte. However, the 

real situation is more complicated since these mechanisms can exist simultaneously. 

This study investigated the fluorescence quenching by studying the binding with 

macromolecules, such as proteins and dendrimers, to explore the intrinsic quenching mechanism 

of polyphenylene polyelectrolyte. 

1.7 Summary 

The work described in this thesis examines electron transfer mechanisms in three 

different donor-bridge-acceptor systems in detail. Firstly, chapters 2 and 3 illustrate how the 

electron transfer mechanism converts from a nonadiabatic mechanism at high temperature to a 

solvent controlled mechanism as the temperature decreases for DBA molecules (Figure 1.6) in 

slow relaxation solvent – NMA and NMP. The experimental data was compared to the 
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theoretical interpretations and a detailed discussion revealed the dynamic solvent effect on 

controlling the electron transfer pathway and varying the electron transfer mechanism. 
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Figure 1.6 Donor-Bridge-Acceptor molecules studied in chapters 2 and 3. 

 

Secondly, chapter 4 explores another system of U-shaped DBA molecules (see Figure 

1.7), which provide access to understand how the electronic coupling mediated by the pendant 

group influences the electron transfer rate. The pendant group lies in direct line of sight in 

between electron donor and acceptor groups. Variations in solvent choice leads to variations in 

reaction free energies and solvent reorganization parameters, but little change in the degree of 

electronic coupling was observed in these different molecules. 
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Figure 1.7 Donor-Bridge-Acceptor molecules studied in chapter 4.  
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Thirdly, chapter 5 studies another type of the electron transfer − hole transfer in the 

molecule with a 2'-pyrenyl acceptor and a 4'-N,N-dimethylanilinyl donor. The orientations of the 

donor and acceptor units, relative to the spacer, are not rigidly constrained, and their torsional 

motions decreases solvent access to the cleft. Calculations show that rotation of the pyrene group 

about the bond connecting it to the spacer greatly modulates the magnitude of through-space 

coupling between the S1 and CT states. The relationship between the torsional dynamics and the 

electron-transfer dynamics is discussed. 
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Figure 1.8 Molecule structure studied in chapter 5. 
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Figure 1.9 Polyelectrolyte PP1 studied in chapters 6 and 7. 
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Lastly, chapter 6 investigates the fluorescence quenching mechanism of the 

polyelectrolyte PP1 (Figure 1.9) by the study of the fluorescence emission of PP1 as a function 

of the analyte concentrations. A comparison of the different analytes confirms that the quenching 

mechanism is dominated by the electrostatic binding between the macromolecular analytes and 

the polyelectrolyte. Chapter 7 further explores how the conformation of PP1 varies with the 

variation of the environment by adding several different salt electrolytes as a function of the 

ionic strength. The comparison of the spectroscopic behaviors of PP1 in different salt solutions 

demonstrates an extended and swollen conformation upon increasing the ionic strength. 
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Chapter 2 Observation of Dynamic Solvent Effect for Electron 

Tunneling in U-Shaped Molecules 

 

This work has been published as M. Liu, D. H. Waldeck, A. M. Oliver, N. J. Head and M. N. 

Paddon-Row, J. Am. Chem. Soc., 126, 10778, (2004).  

 

The electron transfer rate constant is measured in two U-shaped donor-bridge-acceptor 

molecules over a wide range of temperature in acetonitrile and N-methylacetamide (NMA).  The 

electron transfer rate at high temperature can be well described by a nonadiabatic model of the 

reaction, but at low temperatures the rate in NMA becomes controlled by the solvent. The results 

are discussed in terms of theoretical models for the change in reaction mechanism and its 

dependence on the solute-solvent frictional coupling. 

2.1 Introduction 

This work explores intramolecular electron transfer rates in which the electron tunnels 

through nonbonded contacts between the electron donor and electron acceptor moieties. 

Tunneling pathways through nonbonded contacts are important for many bimolecular electron 

transfer reactions in biology and chemistry. The electron transfer is studied as a function of 

solvent and temperature to elucidate how the mechanism changes from a nonadiabatic electron 

tunneling behavior to a solvent controlled behavior and to explore how nuclear motion can 

change the reaction dynamics. 
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 Electron transfer proceeds from a photoexcited dimethoxydiphenylnaphthalene moiety 

(the electron donor) to a dicyanovinyl moiety (the electron acceptor) in the U-shaped donor-

bridge-acceptor (DBA) molecules 1 and 2 (see Figure 2.1). In our earlier work the electron 

transfer was measured over the temperature range of 273 K to 343 K in five different organic 

solvents and was well-described by a nonadiabatic electron transfer mechanism.1,2  In the 

nonadiabatic limit, the semiclassical rate expression3, 
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was used to describe the electron transfer rate of 1 and 2 in different solvents at different 

temperatures. The five parameters: the reaction free energy ∆rG, the solvent reorganization 

energy λ0, an effective vibrational frequency ν, the electronic coupling |V|, and the Huang-Rhys 

parameter S (defined as S=λv/hν where λν is the inner reorganization energy) were quantified 

through a combination of experimental measurements and modeling. The earlier work quantified 

these parameters for 1 and 2 at higher temperatures and showed that the solvent effects are only 

static, that is, the solvent affects the free energies and the energies of activation, but does not 

participate in the important tunneling pathway(s) between the reactant state and the charge-

separated state.4 The molecular solvation model proposed by Matyushov5 was shown to account 

for the observed free energy changes quite well. Lastly, that study showed that the electron 

tunnels through the pendant moiety (either the 4-ethylphenyl or the propyl group), which lies in 

the ‘line-of-sight’ between the donor and acceptor groups. The electronic couplings extracted 

from that analysis were |V| = 168 cm-1 for 1 and |V| = 46 cm-1 for 2, demonstrating that the 

aromatic pendant group in 1 mediates the electronic tunneling more effectively than the alkyl 

group in 2.  
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Figure 2.1 Two U-shaped donor-bridge-acceptor molecules 

 

The electronic coupling values extracted from this analysis suggest that the electron 

transfer mechanism can be manipulated by changing the temperature. This study extends the 

earlier work to low temperatures to probe the transition from a nonadiabatic electron transfer 

mechanism (where the rate is controlled by electron tunneling) to a mechanism in which the rate 

is controlled by nuclear motion, vide infra. The electron transfer is compared in two solvents, N-

methylacetamide (NMA) and acetonitrile, as a function of temperature. These solvents have very 

similar indices of refraction and molecular sizes, but have dramatically different solvation 

relaxation times and static dielectric constants.6,7 This difference allows us to explore the effect 

of solvent nuclear motion on the electron transfer rate constant.  

The observations show that the electron transfer rate for 1 is significantly faster than for 2 

at room temperature and higher, consistent with a nonadiabatic electron transfer process and 

more efficient electron tunneling via the aromatic pendant group. Upon lowering the temperature 

to 200 K, the electron transfer rates for 1 and 2 in NMA become similar; i.e., 1 is not much faster 

than 2, demonstrating that the electron transfer is controlled by the environment, not the 

tunneling pathway. In contrast, the rate constant in acetonitrile remains controlled by the 

tunneling. The Debye relaxation time of the solvent, N-methylacetamide, is 390 ps at 303 K,6 but 
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increases dramatically as the temperature decreases, to 13 µs at 201 K, where it is much slower 

than the electron transfer reaction.8 In this limit, the electron transfer reaction may be controlled 

by the relaxation time of solvent, a dynamic solvent effect. This effect is manifest by the similar 

electron transfer time constants of 1 and 2 at low temperatures, in contrast to their different rate 

constants at high temperature. These observations demonstrate that the electron transfer 

mechanism changes with temperature in NMA. 

2.2 Electron Transfer mechanisms and the transition between regimes  

Figure 2.2 illustrates essential features of the generally accepted view of electron transfer 

reactions.  The electronic energy is sketched as a function of the electron coordinate (on the left) 

and the nuclear coordinate (on the right); each approximated as an effective one dimensional 

coordinate. The top panel shows the reactant state, the bottom of the Marcus free energy well, for 

which the electronic energy of the reactant is lower than that of the product, and reaction does 

not occur. The bottom panel shows the nuclear coordinate that corresponds to the transition state, 

for which the electronic energies are degenerate and the electron can tunnel along the electron 

coordinate (diagram on the left) between the reactant and product wells. This description of the 

reaction corresponds to the Frank-Condon approximation in which the electronic coupling does 

not depend on the nuclear coordinate but is purely electronic. 

 25



G p (q)

G

q

Gr(q)

U

r

Transition State 

Reactant 

G p (q ) 

G

q

Gr(q)

U

r

G p (q)

G

q

Gr(q)

U

r

G p (q)

G

q

Gr(q)

U

r

Transition State 

Reactant 

G p (q ) 

G

q

Gr(q)

U

r

G p (q ) 

G

q

Gr(q)

U

r

∆E

 

Figure 2.2 Energetics relevant to electron transfer reactions are shown for the reactant state (top 

panel) and the transition state (bottom panel). Both electronic (r) and nuclear (q) coordinates are 

involved in the reaction. 

 

Figure 2.2 underscores the view that a successful electron transfer reaction requires two 

things to happen: the nuclear coordinate(s) must evolve to the transition state and the electronic 

coordinate must change from the reactant to the product. The traditional Marcus theory considers 

two limits for the reaction rate: nonadiabatic and adiabatic.  In the nonadiabatic picture the 

electronic interaction between the product and reactant curves at the transition state is ‘weak’, 

and the electron transfer rate is limited by the electronic motion (probability of tunneling from 

the reactant to product states). In the adiabatic picture the electronic interaction between the 

product and reactant curves at the transition state is ‘strong’, and the electron transfer rate is 
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limited by the nuclear motion to reach the transition state. This traditional view of the reaction 

does not include the effect of solvent dynamics on either the motion along the nuclear coordinate, 

in the adiabatic case, or the electron tunneling pathway, in the nonadiabatic case.  Earlier work 

showed that the solvent does not participate in the electron tunneling pathway for these 

molecules2, so here we restrict the discussion to the solvent’s role in effecting the motion along 

the nuclear reaction coordinate to the transition state.  

The important role of solvent dynamics on electron transfer reactions was first discussed 

by Zusman.9 Since that time a number of workers have addressed this problem.10,11,12 The 

solvent’s role in the reaction mechanism can be elucidated through a consideration of timescales 

for the molecular dynamics in the transition state region.  In the nonadiabatic limit the system 

moves through the transition state region along the nuclear coordinate many times before a 

transition occurs from the reactant electronic state to the product electronic state. Hence the rate-

limiting step is the electronic tunneling, not the nuclear motion.  In the friction (or adiabatic) 

limit the electronic transition from the reactant state to the product state occurs more rapidly than 

the nuclear motion through the transition state region because the nuclear motion is slowed by 

frictional coupling to the environment (or because the electronic coupling is large).  

Zusman and others have derived conditions for assessing whether the electron transfer 

lies in the solvent friction regime. The conditions change somewhat depending on details of the 

model and shape of the energy surface in the transition state region, but they have the same basic 

features. When a single effective quantized mode contributes to the reorganization, Zusman9b 

finds that the solvent controlled limit applies if 
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in which τ is a characteristic solvent relaxation time. If |∆rG| << λ0 and one combines the internal 

reorganization energy term with the electronic coupling to define an effective electronic coupling 

|Veff|,13 the inequality 2 reduces to a form like that found by Onuchic,12 namely 

1
||

0

2

>>=
λ

τ
h
effV

g                                3 

The adiabaticity parameter g compares the characteristic time required for electron tunneling to 

the characteristic time spent in the transition state (Landau-Zener) region.  The reaction is 

adiabatic when g >> 1, and it is nonadiabatic when g << 1. If these criteria are applied using the 

parameters in Table 2.3, τ >> 5 ps for 1, and τ >> 30 ps for 2. 

The observed electron transfer rate is often described by an interpolation formula that 

connects the nonadiabatic and solvent-controlled (adiabatic) limits, namely 

SCNAET k
1

k
1

k
1

+=                                                4 

where kNA is the nonadiabatic rate constant, kSC is the rate constant in the solvent-controlled limit, 

and kET  is the measured electron transfer rate. Equation 4 results because both an electronic state 

change (rate-limiting for kNA) and nuclear motion to the transition state (rate-limiting for kSC) 

must occur for reaction, hence the slower process is rate controlling.  Although Equation 4 

provides a way to interpolate between the two limiting behaviours, it does not describe the 

dynamics of the reaction accurately. For example, the rate is exponential in the nonadiabatic 

regime but can be non-exponential in intermediate regimes.  More dramatically, if the solute-

solvent frictional coupling is strong and slow the reaction trajectory will not go through the 

transition state. Rather it may occur at a range of different polarization coordinates.11,14
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Figure 2.3 A two dimensional V(q,X) reaction coordinate is shown. The shaded area represents 

the reactant surface. The thick line is the dividing line (ridge) between the reactant and product 

surfaces. The reactant well is at the bottom left, the product well is at the top right, and point S is 

the saddle point on the ridge line. Adapted from ref 11. 

 

The Sumi-Marcus model of electron transfer explicitly includes solvent dynamics by 

viewing the reaction as proceeding along a two-dimensional effective potential energy surface, 

V(q,X) (see Figure 2.3). The coordinate q in this reaction surface corresponds to the typical 

reaction coordinate used in electron transfer reactions (Figure 2.2, right hand panels) and 

includes internal and low frequency nuclear degrees of freedom that are always ‘fast’. The 

second coordinate X is the solvent polarization coordinate; i.e., an effective coordinate that 

accounts for the polarization response of the medium to the evolving charge distribution of the 

reactant. They find the reaction rate by solving a Fokker-Planck equation for diffusive motion 
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along X and treat the motion along q through a rate constant k(X) which is X dependent and 

depends on the ‘fast’ motions in the normal way (e.g., Equation 1). In particular, they solve 
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where D is the diffusion coefficient, V(X) is the effective potential for the polarization 

coordinate, and P(X,t) is a probability distribution function for the reactant; i.e., the 

concentration.  This model treats the time evolution of the reactant probability by diffusion along 

the X coordinate (the first two terms describe diffusion in a potential) and its first order decay at 

the different X values (k(X) acts as a loss term for the probability). The time dependent behavior 

of P(X,t) should be reflected by the reactant’s time evolution in an experiment. 

 Sumi and Marcus discuss four limiting cases for the reaction.  The first case they call the 

‘slow reaction limit’. It corresponds to motion along X that is fast compared to the motion along 

q, so that the traditional analysis applies (be it nonadiabatic or adiabatic) and the reaction does 

not depend on solvent frictional coupling. This case applies for the high temperature data (see 

Figure 2.6). Their second case is called the ‘wide reaction window’. It corresponds to a situation 

in which the internal reorganization energy is much larger than the solvent reorganization, so that 

the reaction may proceed at a range of X values but the reaction rate at each of the different X 

values is the same. Their third (‘narrow reaction window’) and fourth (‘nondiffusing limit’) cases 

may be relevant to the low temperature experiments reported here. Both of these latter cases 

predict a non-exponential decay of the reactant population because the motion along the 

polarization coordinate is slow compared to the reaction rate.   

In the ‘narrow reaction window’ case, Sumi and Marcus assume the electron transfer 

occurs at a particular value of X = X0 and the nonexponentiality arises from the time evolution of 

the reactant population along X.  This limit corresponds to motion in X being slow, so that the 
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time behavior is determined by diffusion along X to the position X0 where the electron transfer 

occurs, given by a ‘sink’ term in the reaction diffusion equation. Hence the reaction coordinate is 

X and effectively one-dimensional.  This limit of the model is useful for understanding dynamic 

Stokes shift experiments, in which the optical excitation and emission can be viewed as an 

electron transfer reaction within the chromophore.6,15

In the ‘nondiffusing limit’ the motion along X is frozen and the electron transfer occurs at 

a range of X values so that the nonexponentiality reflects the dispersion in k(X). This limit is 

quite different from the traditional view of the reaction proceeding through a well-defined 

transition state.  In this case, a range of reaction trajectories are possible and the choice of which 

to follow is determined dynamically by the medium’s polarization response. This limit requires a 

description with at least two-dimensions. 

2.3 Experimental Section 

The synthesis of the U-shaped supermolecules is similar to that reported earlier.16 The 

solvent acetonitrile (99.9% HPLC) was purchased from Burdick & Jackson. N-methylacetamide 

(NMA) was purchased from Aldrich and was fractionally distilled three times using a vigreux 

column under vacuum.  The purified fraction was used immediately in all the experiments. Each 

solution was freeze-pump-thawed a minimum of five times to eliminate dissolved gases. 

In our experiment, the sample was excited at 310 nm by the frequency-doubled cavity-

dumped output of a Coherent CR599-01 dye laser, using Rhodamine 6G dye, which was pumped 

by a mode locked Coherent Antares Nd:YAG. The dye laser pulse train had a repetition rate of 

ca. 300 kHz. Pulse energies were kept below 1 nJ and the count rates were kept below 3 kHz to 
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prevent pile-up effects. All fluorescence measurements were made at the magic angle and data 

was collected until a standard maximum count of 10000 is observed at one channel. 

Time-resolved fluorescence kinetics of 1, 2, and their donor only analogues were 

measured in acetonitrile and NMA as a function of temperature. The lowest temperature was 200 

K and the highest temperature was 338 K. The experimental temperature was controlled by an 

ENDOCAL RTE-4 chiller in the high temperature range, and the temperature was measured 

using a Type-K thermocouple (Fisher-Scientific), accurate to within 0.1 ºC. The low temperature 

experiments were carried out in a VPF-100 Cryostat (Janis Research Company, Inc) and were 

operated with a 2x10-5 torr high vacuum during the experiment. For the low temperature 

experiments, the temperature was measured using a Model 321 Autotuning Temperature 

Controller (LakeShore Cryotronics, Inc.) which has a silicon diode, accurate to within 0.1 K. 

The instrument response function was measured using a sample of colloidal BaSO4. The 

samples 1 and 2 each contain a small amount of unreacted donor compound. Independent 

experiments on the donor only molecules were used to characterize its single exponential 

fluorescence decay, which is much longer than the relaxation time of 1 and 2 at the measured 

temperatures. The contribution of the donor only impurity was removed from the fluorescence 

decay curves for 1 and 2 in the analysis.17 The remaining part of the 1 and 2 decay laws were fit 

to either one or two exponentials using IBH-DAS6 analysis software. Other fitting and data 

presentation, e.g. Equation 1, was performed using Microsoft Excel XP. 

The current work measures the electron transfer kinetics for systems 1 and 2 in 

acetonitrile and N-methylacetamide (NMA) solvents and combines them with earlier data 

obtained in polar solvents CH2Cl2, tetrahydrofuran, acetonitrile, and the weakly polar solvents 

toluene and mesitylene.2 Some properties of NMA and acetonitrile solvents are listed in Table 
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2.1. NMA has a freezing point of 302 K and allows access to very slow polarization response 

times for the solvent.6,8 Electron transfer rate studies in organic solids have been performed 

previously by other groups, and provide no extraordinary technical difficulties.18 No unusual 

features in the reaction kinetics are observed in the region of the freezing point. 

Table 2.1 The properties of solvent acetonitrile (ACN) and NMA at 303 K 

Solvent 
Refractive 

Index 

Static 

Dielectric 

Constant 

Debye 

Relaxation 

Time (ps) 

Density 

(g/ml) 

Viscosity 

(cP) 

Dipole 

Moment 

(D) 

ACN 1.341 34.75 3 0.7696 0.331 3.48 

NMA 1.429 178.9 390 0.9503 3.885 5.05a

 a Calculated using Gaussian/MP2/6-31G 

 

2.4 Results 

The intramolecular photoinduced electron transfer in 1 and 2 occurs from the locally 

excited singlet state of the dimethoxydiphenylnaphthalene donor to the dicyanovinyl acceptor. 

By comparing the fluorescence decay rate of the supermolecule with and without the electron 

acceptor group it is possible to determine the electron transfer rate.1  
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Figure 2.4 Fluorescence decay profiles are shown for 1 in acetonitrile (panel A) at three different 

temperatures: (diamonds) 200 K, (squares) 295 K, and (triangles) 321 K and NMA (panel B) at: 

(diamonds) 200 K, (squares) 295 K, and (triangles) 313 K. 

 

2.4.1 Fluorescence Decay 

Figure 2.4 presents some representative fluorescence decay curves for 1 in acetonitrile 

(panel A) and in NMA (panel B), and Table 2.2 presents the corresponding fitting parameters for 
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these decay curves. The fluorescence decay law in acetonitrile is single exponential over the 

entire temperature range. In this case the fluorescence decay rate constant kf can be used to 

determine the electron transfer rate constant kET.  The electron transfer rate constant is given by 

, where is the fluorescence decay constant determined for the analogue 

molecule without an electron acceptor and provides a good measure of the locally excited state’s 

intrinsic decay rate. 

only
donorfET kkk −=

only
donork

Table 2.2 Fitting parameters for the fluorescence decays in Figure 2.4 

 Τ , Κ τ1  (%), nsa τc , nsb  T , K τ1  (%), nsa τc , nsb

1 in NMA 200 1.64 (74) 3.06 2 in NMA 200 2.41 (79) 4.12 

1 in NMA 295 0.40 (93) 0.49 2 in NMA 295 0.67 (97) 0.68 

1 in NMA 313 0.27 (94) 0.30 2 in NMA 313 0.46 (98) 0.46 

a  τ1 is the fast time constant and % is its percentage contribution to the total decay curve. 

b τc = ΣAiτi where Ai is the percentage of component i and τi is the decay time for component i, 

in a fit of the decay law to a sum of exponentials. 

 

The fluorescence decay law for 1 in NMA is nonexponential (see Figure 2.4B), hence a 

single rate constant does not fully describe the data. Table 2.2 shows parameters for a double 

exponential fit and it is evident that the rate law becomes more exponential as the temperature 

increases.  In fact a fit of the fluorescence decay at 313 K has a fast time constant that comprises 

94% of the overall decay law. In order to quantify these data, we compute the correlation time τc 

for the decay (see Table 2.2). The fluorescence decay data for 2 shows a trend similar to that 

found for 1, except that the nonexponentiality is not as pronounced (see Appendix).  
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To summarize, the decay law in acetonitrile is well described by a single exponential 

over the whole temperature range, and the decay law in NMA is well described by a single 

exponential at high temperatures (above 300 K) but is strongly nonexponential at low 

temperatures (below 290 K).  

2.4.2 Steady-State Spectra 

An important difference between NMA and acetonitrile arises from hydrogen-bonding. 

The hydrogen bonded structures in NMA are largely responsible for the large dielectric constant 

and slow polarization relaxation of the solvent.7,8,19 Figure 2.5 shows the steady-state absorption 

and fluorescence spectra of 1 in acetonitrile and NMA at room temperature.  It is evident that the 

spectral characteristics are very similar in the two solvents. These observations suggest that any 

difference in the interaction between the solute and the solvents, acetonitrile and NMA, does not 

involve any significant perturbation of the donor chromophore.  
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Figure 2.5 The absorption (squares) and fluorescence (diamonds) spectra are shown for 1 in 

NMA (gray) and acetonitrile (black). 
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2.5 Data Analysis 

2.5.1 High Temperature Results 

At high temperatures the rate law in NMA becomes nearly exponential.  The worst case 

scenario is 1 in NMA at 305 K, for which the calculated correlation time is 392 ps and the fast 

decay time in a double exponential fit is 334 ps, about a 15% difference.  As the temperature 

increases the correspondence between the correlation time and the fast decay component 

improves.  Although not rigorous, it is reasonable to approximate the decay law as single 

exponential in this regime. 

The previous work in our group fit the temperature-dependence of the experimental rate 

constant to the semiclassical equation and obtained the electronic coupling |V| and solvent 

reorganization energy λ0 values. The reaction free energy ∆rG was determined from experimental 

fluorescence lifetime data in weakly polar and nonpolar solvents, from which the forward 

electron transfer rate and backward rate can both be determined. Electronic structure calculations 

and the experimental free energies of reaction in the aromatic solvents4 were used to calibrate a 

molecular solvation model and determine the values of parameters in the semiclassical electron 

transfer expression. 
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Figure 2.6 Fitting electron transfer rate of 1 (filled symbols) and 2 (open symbols) in different 

solvents at high temperature: NMA (diamond), THF (triangle), DCM (square), ACN (circule). 

 

Figure 2.6 combines those earlier data with these new data for 1 and 2 in NMA and 

acetonitrile at high temperatures (> 300 K).  When calibrated to the measured free energies in 

nonpolar solvents, the molecular solvation model and the semiclassical equation (Eqn 1) provide 

a good representation of the data. This finding supports the identification of nonadiabatic 

electron transfer for the high temperature mechanism, even in NMA. The experimental electron 

transfer rate constant of 1 is about 1.7 times faster than that for 2 in NMA, which matches well 

with the previous conclusion that the aromatic group is better than an alkyl group at mediating 

the electronic coupling. The fitting was performed in the same manner described previously.1 

Because more data are included in the fit, the best fit parameters changed slightly (see Table 2.3). 

The electronic coupling values for 1 is 146 cm-1 and 2 is 62 cm-1, which is consistent with the 

earlier analysis. 
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Table 2.3 Fitting parameters for 1 and 2 to the nonadiabatic model at high temperature.a

System V ,cm-1 CH3CN 

λ0, eV           ∆rG, eV 

NMA  

λ0, eV                 ∆rG, eV 
1 146 1.48               -0.54 1.03                    -0.35 

2 62 1.46               -0.58 1.01                   -0.39 

a) λv= 0.63 eV and hν = 1600 cm-1 are determined from charge transfer spectra of related species 

(see ref 1). 

 

2.5.2 Low Temperature Results 

Figure 2.7A presents the experimental data in NMA over the temperature range from 

200K to 338K. The electron transfer rates of 1 and 2 are plotted versus 1000/T, and the 

fluorescence decay rate of the donor only molecule is plotted versus 1000/T, as well. This plot 

illustrates the different electron transfer rate constants for 1 and 2 at temperatures higher than 

300 K, and their similar rate constants at lower temperatures, down to 200 K. For temperatures 

below 200 K the electron transfer appears to be frozen out and the fluorescence decay of 1 and 2 

coincides with that of the donor only compound. 

These data do not determine whether the rate law is controlled by the solvent or by 

internal dynamics of the molecule. These two possibilities were analyzed by studying the 

electron transfer in a solvent which has a very fast relaxation time, acetonitrile. Figure 2.7B 

shows the rate data for 1 and 2 in acetonitrile over the entire temperature range along with the 

fluorescence decay rate data for the donor only compound. The plot shows that the electron 

transfer rates of 1 and 2 remain separated even as the temperature approaches 200 K. Since the 

rate constants are still quite different in acetonitrile, this finding demonstrates that temperature 

alone is not the controlling factor for the behaviour in NMA.  
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Figure 2.7 The experimental rate constant of 1 (open triangle), 2 (open square) and the donor 

only compound (filled triangle) is plotted as a function of temperature in NMA (panel A) and in 

acetonitrile (panel B). 

 

The major difference between acetonitrile and NMA is the solvent polarization relaxation 

time. In acetonitrile it is 3.2 ps6 at 298 K which is about 100 times faster than NMA. As the 

acetonitrile is cooled its relaxation time increases, but is still much faster than NMA at room 

temperature. Hence the solvent dynamics does not affect the observed electron transfer rate, even 
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at these low temperatures. In short, the electron transfer rate in acetonitrile follows the same 

trend at low temperature (295 K – 200 K) as at high temperatures (> 295 K) and is well-

described as nonadiabatic.  

2.5.3 Mechanism Change 

 The difference in behavior for the electron transfer rate constant in NMA, compared to 

that in acetonitrile, implies a change in reaction mechanism that is linked to the slow relaxation 

dynamics of the NMA solvent.  The Sumi-Marcus model can explain this behavior as a transition 

from the ‘slow reaction’ limit at high temperature to one of the solvent friction limiting cases at 

low temperature. In the ‘nondiffusing limit’ the reaction rate is inhomogeneous and the observed 

rate behavior depends on the initially prepared distribution of the reactant along X. Although no 

dramatic dependence of the preparation is observed for small changes in the excitation 

conditions, more extensive studies of this sort need to be examined before this limit can be 

discounted.  For the ‘narrow reaction window’ limit the dynamics along the solvent coordinate 

controls the reaction rate. We analyze the implications of this limit for the data and discuss what 

motion may influence the behaviour. 

The transition from the ‘slow reaction’ limit to the ‘narrow reaction window’ limit can be 

approximated by the interpolation formula, Equation 4, for the change in reaction mechanism. 

This approximation provides a way to extract the rate constant kSC for the solvent controlled rate 

process when the nonadiabatic rate constant is known. Because the electron transfer reaction for 

1 and 2 in acetonitrile appears to follow a nonadiabatic mechanism over the entire temperature 

range, these data can be used to determine the displacement in the rate constant magnitudes 

which arises from the different electronic couplings.  If the rate constant for 2 in NMA is 
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assumed to be nonadiabatic over the entire temperature range, then the electronic coupling ratio 

between 2 and 1 can be used to predict what the nonadiabatic rate constant should be for 1 in 

NMA. This predicted rate constant is plotted in Figure 2.8. 
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Figure 2.8 Plots of the electron transfer rate constant versus 1000/T for 1 (triangles) and 2 

(squares) in NMA (open symbols) and acetonitrile (filled symbols). Straight and dashed lines are 

fits to Equation 1. 

 

Figure 2.8 plots the ( )Tkln et  of 1 and 2 in acetonitrile and NMA versus 1000/T. The 

acetonitrile data are fit to the semiclassical expression (equation 1), with the parameters obtained 

from fitting the data in Figure 2.6. Because the NMA solidifies below 303 K, the molecular 

solvation model was not used to determine the solvent reorganization and solute free energy. 

Instead, the rate data for 2 in NMA are fit to equation 1 with the solvent reorganization and 

reaction free energy determined by a dielectric continuum model, while the internal 
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reorganization and electronic coupling parameters are fixed at the values obtained from the high 

temperature fits. Table 2.3 gives the free energy and reorganization parameters for NMA at high 

temperature. Taking the offset in electronic coupling and reaction free energy from the fit to the 

high temperature data in Figure 2.6, the fit for 2 in NMA was used to predict a nonadiabatic rate 

constant for 1 in NMA (upper curve in Figure 2.8).   

20.5

21.5

22.5

23.5

24.5

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

1000/T (K-1)

ln
(k

SC
)

 

Figure 2.9 An Arrhenius plot is shown for the rate constant kSC. See text for details. 

 

Using this predicted nonadiabatic rate constant, the solvent controlled rate constant of 1 

in NMA can be calculated. Figure 2.9 plots the ln(kSC), obtained in this manner, versus 1000/T. 

The plot shows that the rate constant increases as the temperature increases, and the slope gives 

an activation energy of 42 kJ/mol. Although data are not available for the solvation dynamics of 

NMA solid, temperature dependent measurements of NMA’s dielectric relaxation time over the 

range of 201 to 227 K give an activation enthalpy of 84 kJ/mol (70 kJ/mol for the longitudinal 
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relaxation time). If the solvent’s dielectric relaxation is linked to the electron transfer reaction, 

comparison of these data suggest that the coupling lies in an intermediate regime; i.e., the rate 

constant is not inversely proportional to the polarization relaxation time but is correlated with it 

(see references 11 and 20). This comparison is very suggestive and experiments to measure the 

solvation dynamics in NMA, for comparison with these electron transfer rate constants, are 

underway. 

2.5.4 Phenyl Ring Torsion 

An alternative interpretation of the rate constant ksc is conformational gating. This model 

treats the reaction rate as arising from a conformational rearrangement to an activated state 

(geometry) from which nonadiabatic electron transfer may occur. A detailed discussion of 

possible geometrical changes in these electron transfer systems is available elsewhere.1 To 

summarize that discussion, the geometry of the system at which electron transfer occurs is 

different from the reactant geometry. Extrapolating from the computed relaxed geometry of the 

charge-separated state, the electron transfer transition state structure should differ from the 

reactant’s structure only in the two chromophores being bent toward each other. Those findings 

indicate that the molecular volume decreases upon reaching the transition state, hence it is 

unlikely that this change in geometry would be impeded by solvent in the solid state. Because the 

cavity has very little free space, it is unlikely that any solvent molecules occupy the cavity, and 

inward motion of the chromophores would not be impeded. On the other hand, torsion of the 

phenyl group about the imide N-phenyl bond is another likely motion, and may possibly be 

coupled to the solvent coordinate. For this motion to act as a ‘gate’ for the electron transfer, the 
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phenyl torsion must modulate the magnitude of the electronic coupling because of differences in 

the phenyl ring’s interaction with the donor and acceptor groups.  

 

1m 1m-coplanar 1m-perp  

Figure 2.10 Three optimized B3LYP/6-31G(d) gas phase structures of 1m differing in the 

conformation of the phenyl ring with respect to the imide group. 1m differs from 1 only in that 

the four methoxymethylene groups have been replaced with methyl groups and the ethyl 

substituent on the phenyl ring has been removed.  

 

To focus the discussion, we compare the magnitude of the electronic coupling for the 

conformation in which the phenyl ring is nearly coplanar with the imide ring (1m-coplanar, 

Figure 2.10) to that in which the phenyl ring is perpendicular to the imide ring (1m-perp, Figure 

2.10). On the basis of orbital overlap considerations, the donor to acceptor coupling through the 

π and π* molecular orbitals of the central phenyl group might be stronger in the coplanar 

conformation than in the perpendicular one. Indeed, B3LYP/6-31G(d) Koopmans’ Theorem 

calculations20 on the B3LYP/6-31G(d) optimized C2v models 3 (Figure 2.11) suggest that the 
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electronic coupling for the coplanar conformation, 3-coplanar, is stronger than that for the 

perpendicular conformation, 3-perp. The calculations include all types of orbital interactions, 

however the π-orbital interactions make the largest contribution. The electronic coupling was 

obtained from one-half of the splitting energies for the symmetric structures in Figure 2.11, in 

the Koopmans’ Theorem limit.  The HOMO orbital splitting gives an electronic coupling of 40 

cm-1 in the coplanar geometry and 23 cm-1 in the perpendicular geometry. Similarly, the LUMO 

orbital splitting gives couplings of 38 cm-1 in the coplanar geometry and 11 cm-1 in the 

perpendicular geometry. 

In light of this finding, it was deemed necessary to compute the N-phenyl rotational 

barrier and this was done at the B3LYP/6-31G(d) level of theory using the model system, 1m, 

which differs from the experimentally studied one, 1, by replacement of the four 

methoxymethylene groups of the latter system by methyl groups and by removing the ethyl 

substituent from the phenyl ring. All calculations refer to gas phase structures. The fully 

optimized, global minimum energy, structure for 1m, has the phenyl ring oriented 43o with 

respect to the plane of the imide ring. Two distinct rotational barriers for the N-phenyl group 

may be envisaged, namely with the phenyl ring lying either approximately coplanar with the 

imide ring, or perpendicular to it and the transition structures corresponding to these rotational 

barriers were duly located – see 1m-coplanar and 1m-perp (Figure 2.10). Although they were 

optimized using no symmetry constraints, both optimized structures closely resemble the 

expected Cs symmetry. Note that for 1m-coplanar, the phenyl ring actually bends a little out of 

coplanarity with the imide ring, towards the dicyanovinyl group. 
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Figure 2.11 B3LYP/6-31G(d) optimized C2v gas phase structures, 3-coplanr and 3-perp, in 

which the phenyl ring is, respectively, coplanar and perpendicular to the imide ring.  

 

The (vibrationless) rotational barriers, calculated from these structures, are 3.3 kJ/mol for 

passage through 1m-coplanar, and about 1 kJ/mol or less for the 1m-perp. These barriers are 

extremely small and, for all intents and purposes, the phenyl group in 1m (and 1) may be 
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regarded as a free rotor. The magnitude of the electronic coupling between the phenyl group and 

the donor and acceptor chromophores in 1 is a Boltzmann weighted average, determined by the 

shape of the rotational barrier, of the different phenyl geometries.4 Given the extreme 

shallowness of this barrier, it is likely that the magnitude of this coupling will not change 

significantly over the range of temperatures used in our electron transfer experiments. 

Comparison of this small barrier with that obtained from the analysis using equation 4 (vide 

supra), suggests that the phenyl torsion would need to be strongly coupled to the solvent matrix 

to act as the rate controlling step. 

 

2.6 Discussion and Conclusion 

 The experimental observations reveal that the electron transfer for 1 in NMA changes 

from a nonadiabatic mechanism at high temperatures to a solvent controlled (or adiabatic) 

mechanism at low temperatures. This conclusion is supported by two primary observations. First, 

the observed excited state decay law changes from a simple exponential in acetonitrile solvent to 

a nonexponential form in NMA. The nonexponentiality increases with the coupling strength 

between the donor and acceptor species (1 versus 2) and the increase in the solvent relaxation 

time.  Second, when the reaction rate is characterized by the correlation time of the emission 

decay law, the rate constant for 1 and 2 changes from being displaced in magnitude at high 

temperature (because |V| is different) to being the same at low temperature. This change to a rate 

constant that correlates with the solvent relaxation dynamics (characterized by viscosity or 

polarization relaxation time) rather than the electronic coupling strength and the 
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nonexponentiality of the decay law are both experimental signatures of a change in the reaction 

mechanism. 

Two possible explanations for the change in reaction mechanism, a transition from 

nonadiabatic electron transfer to solvent-controlled (adiabatic) electron transfer and 

conformational gating, are discussed. A change in the reaction mechanism from nonadiabatic to 

friction controlled could arise from the increasing polarization relaxation time of the NMA 

solvent as it is cooled. Using the model developed by Zusman9b (Eqn 2) and the fitting 

parameters in Table 2.2, the electron transfer in NMA and acetonitrile solvents at room 

temperature will be in the solvent friction limit when the solvent’s polarization relaxation time 

τ >> 30 ps for 2 and τ >> 5 ps for 1.  The relaxation time in acetonitrile is significantly faster 

than this time scale (< 1 ps at room temperature6) and the electron transfer rate constant appears 

to remain nonadiabatic over the entire temperature range. By lowering the temperature and 

increasing the relaxation time τ in NMA (measured to be 20 to 40 ps at 300 K6), we can move 

the system strongly into the solvent controlled regime. Because the polarization relaxation 

(solvation) time in NMA has not been measured over this temperature range, it is currently not 

possible to ascertain if the rate constant correlates with the solvent relaxation time in the 

predicted manner.  

An ‘alternative’ explanation for the solvent dependent electron transfer is the 

conformational gating mechanism, which has found wide use in protein electron transfer 

studies.21 For example, the torsional motion of the phenyl ring in the cavity can modulate the 

electronic coupling magnitude. It is possible that other motions, in particular compression of the 

donor to acceptor distance, might play a role and couple to the phenyl torsional motion. The 

acetonitrile studies show that such motion is not completely frozen out by the low temperatures, 
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however the large viscosity in NMA may act to hinder this motion and give rise to solvent 

control. Independent studies of the phenyl torsional dynamics can be used to assess whether this 

mechanism is operative.   

Both the ‘gating’ mechanism and the solvation dynamics controlling the electron transfer 

mechanism correspond to the ‘narrow reaction window’ limit of the Sumi-Marcus treatment. In 

the case of electron transfer controlled by the solvent dynamics the polarization coordinate X 

would be interpreted in the manner described by Sumi and Marcus. In the case of conformational 

gating, the X coordinate should correspond to a conformational (or configurational) change of 

the reactant; in this case, identified with the phenyl torsional ‘gate’. An advantage of using the 

Sumi-Marcus description is that the nonexponential character of the reactant’s population density 

is included in a natural way, from the diffusion of the system in the solvent coordinate.   

By studying the electron transfer kinetics of two U-shaped molecules over a wide range 

of temperature in acetonitrile and NMA, a change in the electron transfer mechanism is 

identified. The experimental manifestations of this mechanism change are nonexponential decay 

laws and rate constants that are controlled by the solvent dynamics.  
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2.8 Appendix 

 
Figure 2.12 Fluorescence decay profiles are shown for 2 in acetonitrile (panel A) at three 

different temperatures: (diamond) 200 K, (square) 301 K, and (triangle) 317 K and NMA (panel 

B) at: (diamond) 200 K, (square) 295 K, and (triangle) 313 K. 
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Chapter 3 Solvent Friction Effect on Intramolecular Electron 

Transfer 

 

U-shaped donor-bridge-acceptor molecules with different electronic couplings have been 

investigated as a function of temperature in solvents with slow polarization relaxation, in 

particular N-methylacetamide (NMA) and N-methylpropionamide (NMP). At high temperature, 

the electron transfer rate is well described by a nonadiabatic model; however, the rate at low 

temperature is controlled by the solvent friction. The change of the electron transfer mechanism 

is discussed and compared with theoretical models. 

3.1 Introduction  

Electron transfer reactions are of broad importance in chemistry, biology, and related 

technologies. For this reason a large body of work explores electron transfer processes over a 

broad range of different conditions and systems.1, , ,2 3 4 Our work addresses fundamental issues in 

electron transfer by using donor-bridge-acceptor molecules to manipulate the interaction between 

the electron donor (reductant) and electron acceptor (oxidant) groups. The present work reports 

studies of two different donor-bridge-acceptor molecules in polar solvents with different 

solvation timescales and demonstrates how electron transfer proceeds from electron tunneling 

control to solvent friction control. 

Most studies have found that electron transfer reactions proceed in one of a few limiting 

regimes: nonadiabatic electron transfer, adiabatic electron transfer, or solvent controlled 5  

electron transfer. In nonadiabatic electron transfer reactions the reaction rate constant is 
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appropriately described by a transition state theory rate constant times a transmission factor 

which depends on the electron tunneling probability.  In the adiabatic and solvent-controlled 

electron transfer regimes the reaction rate is controlled by nuclear motion(s) of the system 

through the transition state region, rather than by the electron tunneling probability.  The current 

studies are distinguished from other works by the ability to probe how the electron transfer rate 

constant proceeds from a nonadiabatic mechanism to a solvent-controlled mechanism.  

A previous study considered photoinduced intramolecular electron transfer in two U-

shaped donor-bridge-acceptor molecules 1 and 2 (see scheme 1).  Upon photoexcitation, these 

molecules transfer an electron from the naphthalenic group to the dicyanovinyl group by electron 

tunneling through the imide-functionalized cleft.6  The nature of the chemical group (pendant) in 

the cleft changes the electron tunneling probability.  An earlier study7 demonstrated the transition 

between nonadiabatic (electron tunneling) electron transfer and solvent-controlled electron 

transfer in the system 1, by comparing the rate constant in acetonitrile to that in N-

methylacetamide. The current work extends that study by varying the initial excitation energy of 

the donor, by performing rate studies in N-methylpropionamide, which has dielectric properties 

similar to NMA but remains a liquid over the entire temperature range, and by measuring the 

solvent polarization relaxation times of these solvents, which allows quantitative comparisons of 

the rate constant behavior with model predictions.  
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This report has five major sections. The next section provides background on electron 

transfer models that account for solvent frictional coupling and briefly describes solvation 

models. The following section describes the experimental details. The next two sections analyze 

the experimental results and compare them to models. The last section concludes this work and 

describes its implications. 

3.2 Background  

For the U-shaped molecules investigated here the electronic coupling between the donor 

and acceptor groups is weak enough that a nonadiabatic picture applies. Previous work showed 

that the Golden Rule rate constant expression kNA
8 with a single effective quantum mode,  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++∆
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑

∞

= Tk
nhG

n
SS

Tk
V

h
k

B

or
n

nBo
NA

0

2

0

2
2

4
exp

!
)exp(

4
1||4

λ
νλ

πλ
π               1 

adequately describes the rate behavior in simple solvents with rapid dielectric relaxation times. 

In Equation 1, λ0 is the solvent reorganization energy; ∆rG  is reaction free energy; λv is the 

energy required for high-frequency vibrational reorganization; |V| is the electronic coupling 
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between the reactant and the product states, and 
ν

λν

h
S = .  The hν term is the energy spacing of a 

single effective quantized vibration associated with the electron transfer event, which is taken to 

be a characteristic feature of the solute. The sum is performed over the vibrational states of the 

effective quantum mode. The semiclassical theory treats the low frequency modes classically. 

The electronic coupling |V| in the U-shaped molecules is smaller than kBT, but not much smaller 

and it is possible to observe a change in electron transfer mechanism by changing the solvent 

friction. 

Three different regimes, or mechanisms, are observed in electron transfer reactions: 

nonadiabatic electron transfer, adiabatic electron transfer, and solvent controlled electron transfer. 

In the nonadiabatic case, the electronic coupling is weak |V| << kBT, the rate constant is 

proportional to |V|2 and Equation 1 applies. In this limit, the system may move through the curve 

crossing region q╪ many times before the electronic state changes from r to p (see Figure 3.1). In 

the adiabatic case, |V| >> kBT and the reaction proceeds by nuclear motion through the transition 

state along a single electronic state. The effect of |V| on the rate constant is only manifest 

through its role in determining the energy barrier, ∆G╪ (Figure 3.1). In the solvent controlled 

limit the electronic coupling may still be small; however the rate constant is affected by frictional 

coupling. In this case, the characteristic time spent in the curve crossing region is long enough 

that the electronic state changes from r to p for nearly every approach, even though the coupling 

is weak. Hence the reactant appears adiabatic in the sense that the rate is limited by nuclear 

dynamics rather than by the electron tunneling probability.  
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Figure 3.1 Diagram illustrating the adiabatic and nonadiabatic potential surfaces; for adiabatic 

electron transfer (strong coupling), the solid curves apply, whereas for nonadiabatic electron 

transfer, the diabatic (dashed) curves apply. (r denotes the reactant and p denotes the product) 

 

Zusman9 generalized the rate constant expression for electron transfer kET, to describe a 

transition between the normal nonadiabatic limit kNA and a solvent controlled limit kSC, namely  
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Equation 2 shows that the measured electron transfer rate kET can be limited by either the 

electronic motion (kNA is small) or the nuclear motion (kSC is small). The slower process is rate 

controlling. In the classical limit he found  
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in which the electron transfer rate is proportional to the solvation rate, 1/τs. Since the solvation 

time τs increases dramatically with decreasing temperature, especially in viscous solvents, the 

solvation time becomes more important as the temperature is lowered.  

Sumi and Marcus10 considered the combined effects of intramolecular vibrations and 

diffusive solvent orientational motions on electron transfer. They described the reaction as 

proceeding along a two-dimensional effective potential energy surface, V(q,X) (see Figure 3.2). 

The coordinate X corresponds to the solvent polarization (the polarization response of the 

solvent to changes of the charge distribution), and q is an intramolecular vibrational coordinate, 

which includes the fast nuclear motions typical of electron transfer reaction in the nonadiabatic 

or adiabatic limit. In order to find the reaction rate, they solved the Fokker-Planck equation (Eq. 

4) for diffusive motion along X and treated the motion along q through a rate constant k(X) that 

depends on the ‘fast’ motions in the normal way (e.g., Eq. 1) and depends parametrically on X. 

In particular, they solved  
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where D is the diffusion coefficient, V(X) is the effective potential for the polarization 

coordinate, and Q(X,t) is a probability distribution function for the reactant. The decay of the net 

reactant probability Q(t) determines the fluorescence decays, which are used to measure the 

electron transfer rates in the U-shaped DBA molecules, 1 and 2. 
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Figure 3.2 A two dimensional V(q,X) reaction coordinate. The shaded area represents the 

reactant surface. The thick line is the dividing line (ridge) between the reactant and product 

surfaces. The reactant well is at the bottom left, the product well is at the top right, and point S is 

the saddle point on the ridge line. Adapted from Ref 10. 

 

Sumi and Marcus proposed four limiting cases for the probability distribution. The first 

case is the fast diffusion limit, where the polarization coordinate X is at all times proportional to 

the thermal distribution and Q(t) shows a single exponential decay. In this case, the reaction is 

either adiabatic or nonadiabatic and it does not depend on solvent friction.  The second case is 

called the slow diffusion limit, where the polarization coordinate X is almost frozen because the 

solvation time is much longer than the reaction time and the probability distribution decays 

nonexponentially. The third case is the narrow reaction window, which corresponds to a 

vanishing contribution of the intramolecular degrees of freedom to the electron transfer reaction. 

It occurs when the solvent reorganization is much larger than the internal reorganization energy, 

and nonexponential decays are also predicted in this limit. The last case is called the wide 

 61



reaction window, where the internal reorganization energy is much larger than the solvent 

reorganization energy. More detail on this model is provided in the analysis section as it is 

needed. 

Previous modeling of these U-shaped molecules in fast solvents found an internal 

reorganization energy λν of 0.65 eV and an effective quantum mode frequency of 1600 cm-1. 

Comparison with solvation models indicates that the solvent reorganization energy λ0 lies 

between 1.2 eV and 1.4 eV for 1 and 2 in NMA and NMP (vide infra). The ratio λν/ λ0 is thus 

approximately 0.5, which places these reactions in the narrow reaction window limit of Sumi and 

Marcus. This limit is also one in which Zusman’s predictions (Eqs. 2 and 3) should apply. Sumi 

and Marcus pointed out the nonexponential character in the narrow reaction window limit, 

however Zusman’s treatment does not address this feature. 

3.3 Solvation 

The solvent reorganization energy and reaction free energy are important determinants of 

the electron transfer rate in any of the limits, and accurately modeling these solvation energies as 

a function of temperature is important to properly interpreting the present experiments. Two 

models are currently popular for describing solvation energies − the dielectric continuum model 

and a molecular solvation model. The dielectric continuum model11 calculates solvation energies 

using the static dielectric constant εs and a high frequency dielectric constant ∞ε of the solvent. In 

its simplest implementation, the solute is treated as a spherical (or ellipsoidal) cavity containing a 

point dipole. The solvent reorganization energy is described as: 
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and the reaction free energy from this model is 
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where µLE is the dipole moment of the initially excited state, µCS  is the dipole moment of the 

charge-separated state, and a0 is the cavity radius. ∆µ is the magnitude of the dipole moment 

difference vector between the locally excited and the charge separated states; i.e. 

LECS µµµ rr
−≡∆ . ∆vacG is the reaction Gibbs free energy in the absence of solvation. 

The molecular solvation model developed by Matyushov12 accounts for the discrete 

nature of the solute and the solvent. Typically, the solute is approximated by a sphere with a 

point dipole moment and polarizability, and the solvent is modeled as a polarizable sphere, with 

an electrostatic charge distribution that includes both a point dipole and a point quadrupole. The 

molecular solvation model is more realistic than the dielectric continuum model because it 

includes not only the dipole-dipole interactions, but also the dipole-quadrupole interactions 

between the solute and solvent. Importantly, the molecular model properly accounts for the 

temperature dependence of the solvation.13

Previous reports parameterized the molecular solvation model for 1 and 2 in the weakly 

polar solvents toluene and mesitylene. In that work, excited state equilibria between the charge 

separated state and the locally excited state were used to calibrate the molecular solvation model 

for reaction free energy. This parameterization was shown to provide temperature-dependent 

reorganization energies in good accord with experiment. In the present work, the molecular 

solvation model and these previously derived model parameters were utilized to calculate the 

reaction free energies and solvent reorganization energies of 1 and 2. This procedure provides a 

self-consistent analysis for these solute molecules. 
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3.4 Experimental 

The structures of 1, 2 and 3 are shown in Scheme 1. Synthesis of the U-shaped 

supramolecules is reported elsewhere.14 The solvent N-methylacetamide (NMA) was purchased 

from Aldrich, and N-methylpropionamide (NMP) was purchased from TCI America. NMA and 

NMP were fractionally distilled three times using a vigreux column under vacuum.  The freshly 

purified fraction was used in all the experiments. Each sample went through a freeze-pump-thaw 

procedure five or more times to eliminate dissolved oxygen. 

Time-resolved fluorescence kinetics of 1 and 2 were measured using Time Correlated 

Single Photon Counting technique.15  The instrument used here is based on the frequency-

doubled output of a cavity-dumped Coherent CR599-01 dye laser, which was pumped by a mode 

locked Coherent Antares Nd:YAG laser. The full-width at half maximum of the instrument 

function is ~ 60 ps. Different dyes were used in this experiment to obtain the different excitation 

wavelengths: Rhodamine 6G dye was used to obtain 296 nm and 310 nm wavelength, DCM dye 

was used to obtain 326 nm, and LDS 722 (also named pyridine 2 dye) was used to obtain 359 nm 

wavelength. The dye laser pulse train had a repetition rate of ca. 300 kHz. Pulse energies were 

kept below 1 nJ and the count rates were kept below 3 kHz to prevent pile-up effects. All 

fluorescence measurements were made at the magic angle and data was collected until a standard 

maximum count of 10000 was observed at one channel. 

The experiments for 1, 2 and their donor-only analogues were carried out in NMA and 

NMP as a function of temperature at four different excitation energies. The temperature ranged 

from a low of 226 K to a high of 353 K. At the high end of this range, temperatures were 

controlled by an ENDOCAL RTE-4 chiller, measured using a Type-K thermocouple (Fisher-

Scientific), accurate to within 0.1 ºC. Measurements at lower temperatures employed a VPF-100 
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Cryostat (Janis Research Company, Inc) and a Model 321 Autotuning Temperature Controller 

(LakeShore Cryotronics, Inc.) with a silicon diode sensor. The low temperature instrumental 

setup is shown in the appendix A.  

Temperature measurement was improved from the earlier design by including another 

type-T thermocouple attached on the surface of the cuvette to monitor the temperature, in 

addition to the silicon sensor used for temperature control, which is not directly in contact with 

the sample cuvette. The temperatures measured at the cuvette surface are close to those measured 

when a thermocouple is directly inserted into the liquid sample, within 1 K, but they are 

systematically higher than the temperature measured from the diode sensor. The worst case was 

observed at the lowest temperature (220 K) which has a 10 K difference.  

3.4.1 Lifetime Measurements  

The samples of 1 and 2 each contain a small amount of unreacted donor compound. 

Independent experiments on the donor-only molecule 3 were used to characterize its single 

exponential fluorescence decay, which is much longer than the relaxation times of 1 and 2 at the 

measurement temperatures. To account for emission from this impurity, a component with the 

lifetime of the donor-only molecule 3 was fixed in the fits to the data collected with compounds 

1 and 2. The impurity component amounted to less than 8% of the overall decay law in all cases. 

The remaining part of the 1 and 2 decay laws in NMA and NMP were fitted as a double 

exponential function using IBH-DAS6 analysis software. The instrument response function, 

measured using a sample of colloidal BaSO4, was convoluted with the decay curves.  
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3.4.2 Time-resolved Stokes Shift Measurements 

For solvation measurements, samples at concentrations providing optical densities of ~ 

0.1 for a 1 cm path length were prepared in quartz cuvettes. Samples above 7°C were 

thermostatted to ± 0.1°C using a circulating water bath and sample holder assembly. For lower 

temperature measurements, sealed cryogenic cuvettes were enclosed in a copper block mounted 

on the cold finger of a liquid nitrogen cryostat (Oxford Instruments DN1754). With this system, 

temperatures between 85 K and 300 K could be maintained constant to within ~ 1 K.  

Time-resolved emission measurements were made using a time-correlated single photon 

counting system previously described. 16  This system employed the doubled output of a 

femtosecond mode-locked Ti:sapphire laser (Coherent Mira 900F) for excitation at 420 nm or 

374 nm, and had an overall response time of 25 ps (FWHM) for higher temperatures and 100 ps 

for lower temperatures using the cryostat, as measured by scattering. The repetition rate of the 

excitation was set according to the lifetime of the solvation probe. Emission was collected 

through a single monochromator (ISA H10) with a 4 nm bandpass. Emission decays were fit 

with instrumental response functions using an iterative reconvolution least squares algorithm,17 

which enhances the effective time resolution to ~ 5 ps. Time-resolved emission spectra were 

constructed from a series of nine to twelve magic angle decays recorded at wavelengths spanning 

the emission spectrum, as previously described.18

Steady-state emission spectra were measured on a Spex Fluorolog 1680 (0.22 m double 

spectrometer with 1 s integration time). The steady-state spectra were utilized to normalize the 

time-resolved emission spectra at each temperature. 
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3.5 Results  

3.5.1 Steady-State Spectra  

Steady-state spectra of 1 in three different solvents (acetonitrile, ACN; N-

methylacetamide, NMA; N-methylpropionamide, NMP) are compared in Figure 3.3. It is evident 

that the spectral shapes are very similar in these three solvents, which suggests that the solvent 

molecules do not alter the spectroscopic characteristics of the donor group; that is, the three 

solvents interact similarly with the solute. The higher absorbance of 1 in NMP between 340 − 

360 nm arises from the impurity in NMP. Lifetime measurements were carried out at longer 

wavelengths to avoid interference from this solvent impurity emission. 
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Figure 3.3 Steady-state spectra of 1 in ACN (triangle), NMA (square) and NMP (diamond). The 

absorption spectra are on the left, and the emission spectra are on the right. 
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Table 3.1 The properties of solvent ACN, NMA and NMP at 303 K 

Solvent Refractive 
Indexa

Static 
Dielectric 
Constanta

Debye 
Relaxation 

Time19 
(ps) 

Average 
Solvation 
Time(ps) 

Viscositya 
(cP) 

Dipole 
Moment 

(D) 

ACN 1.34 34.75 3 0.9 0.3 3.48 

NMA 1.43 178.9 390 35c 3.9 5.05d

NMP 1.43 164.4 100 42c 4.6 4.29d

a Beilstein database 

b 298 K, from reference 19 

c  Extracted from the best fit of the dynamic Stoke-shift measurement 

d Calculated using Gaussian/MP2/6-31G 

 

The solvents ACN, NMA, and NMP have similar static dielectric properties but very 

different solvation dynamics. Table 3.1 reports some properties of these solvents at 303 K. ACN 

has very fast relaxation times and low viscosity, so it can reorient much faster than the measured 

electron transfer rate. As for NMA and NMP, the slow relaxation times mean that polarization 

fluctuations occur on timescales that are similar to, or slower than, the electron transfer timescale. 

3.5.2 Solvent Comparisons 

 The intramolecular electron transfer in 1 and 2 occurs from the locally excited state of 

the dimethoxydiphenylnaphthalene donor to generate a non-fluorescent charge separated state. 

Because the electron transfer competes with the intrinsic fluorescence, the change in the 

fluorescence decay law with solvent or temperature directly reflects the change in the electron 

transfer rate if the intrinsic fluorescence rate is unchanging at each temperature in every solvent.  
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By assuming that this intrinsic fluorescence rate constant is given by the observed decay of the 

donor-only compound, kF (3) the electron transfer rate constant kET can be found from the 

measured fluorescence rate constants kF; i.e.,  kET = kF − kF (3). Fluorescence lifetime 

experiments were performed at different temperatures ranging from 360 K to 226 K, in the 

different solvents NMA, NMP and ACN, and at different excitation energies (296 nm, 309 nm, 

326 nm, 359 nm).  

Similar to the results reported earlier in NMA, the fluorescence decay of 1 in NMP is 

nonexponential at low temperature and becomes more exponential at higher temperatures. At 

232 K, a fast lifetime component of 1.96 ns with an amplitude of 52% is observed. With 

increasing temperature, the amplitude of the fast component increases and the overall decay law 

becomes more like a single exponential function. For example, a fast component of 224 ps with a 

94% amplitude ratio is observed at 333 K.  

Because the decay law is not single exponential, the electron transfer rate constant is not 

well-defined. To quantify the rate in terms of an effective rate constant, a correlation time τc is 

computed from the fluorescence decay law, namely τc = f1τ1 + (1-f1)τ2. Here, τ1 and τ2 are the 

two time constants obtained from the decay fits, and f1 is the amplitude of the short time constant, 

excluding the contribution from the donor-only impurity. By subtracting the donor-only lifetime, 

an effective electron transfer rate constant is found, i.e., kET = 1/τc − k(3). This choice goes 

smoothly to the proper rate constant as the decay law becomes single exponential.  

To compare the behavior in NMA and NMP, the decay curves of 1 in NMA and NMP at 

two representative temperatures are plotted in Figure 3.4. The difference between the decay 

curves at 333 K is small. At high temperature, the static dielectric properties of NMA and NMP 

are similar. If the solvation in the two solvents are similar (∆rG and λ), then the nonadiabatic 
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electron transfer rate of 1 in these solvents should be similar, as observed. Note that the second 

component in the decay law in Figure 3.4B is only ~ 3% in amplitude. At 250 K, the two decay 

curves differ more than at high temperature.  
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Figure 3.4 The decay curves of 1 in NMA(black) and NMP(gray) at 250 K(A) and 333 K(B) 

excited at 326 nm. 

 

To better illustrate the differences between electron transfer in NMA and NMP, the 

temperature-dependence of the experimental rate constants are plotted in Figure 3.5. For a given 

solute-solvent combination, this plot should be linear if the semiclassical equation for 

nonadiabatic electron transfer (Eq. 1) is followed, which is supported by the rate data for both 1 

and 2 in each solvent at high temperature. The temperature dependence of the rate constants of 1 

and 2 in NMP are qualitatively similar to that observed in NMA. As the temperature increases, 
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the electron transfer rates of 1 and 2 in NMP become more different, but with decreasing 

temperature, they become more alike. At high temperature, the rate constant of 1 is similar in 

NMA and NMP (also for 2), and differences in the solvent are less important. In contrast, the rate 

constants at low temperature are separated by the solvent type rather than the solute type. 

An earlier report7 compared the electron transfer rate constants in NMA to those in 

acetonitrile and showed that for acetonitrile the rate constants of 1 and 2 remained displaced over 

the entire temperature range. Hence the change in character of the kET versus T plot results from 

properties of the solvents, not just the temperature. 
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Figure 3.5 Electron transfer rate constants of 1 (triangle) and 2 (square) in NMP(gray) and 

NMA(black) as a function of temperature excited at 309 nm. The format of this plot is such that 

the data should be linear if Eq. 1 is obeyed. 

 

Both NMP and NMA are highly polar and have “very slow” dielectric relaxation times 

(see Table 3.1). At high temperatures, the electron transfer rates of 1 and 2 in NMA and NMP 

are very similar, suggesting that the reorganization and reaction free energies are similar, a result 
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which is consistent with the large dielectric constants of these solvents and a nonadiabatic 

electron transfer mechanism. At low temperatures, the electron transfer appears to be controlled 

by the solvent and they are different in NMA and NMP. Considering their different physical 

properties (NMA solidifies at temperatures below 303 K, whereas NMP remains a liquid even at 

226 K; see below), it is reasonable to expect that the solvation time of NMA is longer than that 

of NMP, and that the viscosity of NMA is higher than that of NMP. If the solvent dynamics 

controls the electron transfer rate, then one expects a smaller rate constant for NMA, as observed. 

3.5.3 Excitation Energy 

If the solvent is sluggish enough, then the locally excited state may not be equilibrated 

with the solvent before electron transfer. To test for this nonequilibrium effect on the reaction, 

the fluorescence decay was studied as a function of excitation energy. Figure 3.6 shows the 

temperature dependence of the rate constants for 1 and 2 at two different excitation energies, 309 

nm and 326 nm. Another excitation wavelength 296 nm was also studied, and its rate is not 

distinguishable from that of 309 nm and 326 nm. Experiments, using 359 nm excitation were not 

conclusive because of weak signal levels.  
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Figure 3.6 Electron transfer rates of 1 (triangle) and 2 (square) in NMP at different temperatures 

excited at 309 nm(black) and 326 nm(gray). 

 

As illustrated in Figure 3.6, the electron transfer rates for 1 and 2 do not vary 

significantly with the excitation energy. This behavior is consistent with electron transfer from a 

locally excited state that is equilibrated with the solvent, i.e., even though the solute is excited 

with a higher energy, the solute molecules retain no memory of the initial excess energy. In the 

subsequent analysis, we therefore focus exclusively on data collected using 309 nm excitation. 

3.5.4 Dynamic Stokes-Shift  

To better quantify how the solvent dynamics affects the electron transfer, dynamic 

Stokes-shift measurements of solvation times were performed in NMA and NMP. Because the 

Stokes-shift of 1 and 2 is small, other solute chromophores were used to probe the solvent 

response. In NMP the solute 4-aminophthalimide was used to measure the solvation time. For 

temperatures ranging from 240 K to 298 K, the solvation time varies from 719 ps to 56 ps. 
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Because the relaxation in NMA is so slow, two solutes were used: Ru(bpy)2(CN)2 at 200 K and 

4-aminophthalimide at temperatures ranging from 220 K to 298 K. For Ru(bpy)2(CN)2 in NMA, 

the solvation time is approximately 560 ns at 200 K and for 4-Aminophthalimide in NMA, the 

solvation time varies from 32 ns at 220 K to 70 ps at 298 K.  
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Figure 3.7 The experimental solvation times of NMA (blue triangle) and NMP (red circle) are 

plotted as a function of temperature. The curves in Panel A are the best fit of the data points. 

Panel B compares the solvation times for NMA and NMP to the viscosity η, the Debye 

relaxation time τD, and the longitudinal dielectric relaxation time τL for the solvents (NMA is 

blue, NMP is red) from literature data (see Appendix 3.8.2 for details). 

 

Figure 3.7 compares the solvation times measured in NMA and NMP as functions of 

temperature. The time-dependent Stokes-shift measurements indicate that the solvation time of 

NMA and NMP are similar at high temperature and become more dissimilar as the temperature 

decreases. This behavior is consistent with their effect on the electron transfer.  It is also evident 

that solvation in NMA and NMP are slower than the electron transfer rate of 1 and 2 at low 

temperatures. For example, in NMA at 220 K, the solvation time is 32 ns, whereas the time 
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constant for electron transfer in both solutes is ~ 3 ns. The slower the solvation time, the slower 

are the polarization fluctuations, which can lead to a solvent dependence of the electron transfer 

rates. 

3.6 Data Analysis 

3.6.1 High Temperature Analysis   

At temperatures between 360 K and 295 K, the rate laws for 1 and 2 in NMA and NMP 

are nearly exponential.  For example, for 1 in NMP at 334 K, the midpoint of this range, the fast 

decay time is 231 ps with amplitude of 94%, whereas the correlation time is 259 ps, an 11% 

difference. The worst case is the decay time at 295 K for which the correlation time is 504 ps and 

the fast decay time is 427 ps, a 15% difference.  As the temperature increases the correspondence 

between the correlation time and the fast decay component improves. The molecule 2 in NMA 

and NMP approximates a single exponential decay law even better than 1. This latter finding is 

consistent with the weaker electronic coupling between the donor and acceptor groups in 2, as 

compared to 1. 

Previous studies of 1 and 2 applied the Equation 1 to fit the experimental rate constant of 

1 and 2 as functions of temperature and extracted values of the electronic coupling |V| for the two 

systems. At high temperatures, where the decay rate constants of 1 and 2 in NMA and NMP 

appear to be controlled by the solute molecular properties and the solvents’ static dielectric 

properties, the same analysis can be applied.  
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Figure 3.8 Electron transfer rate constants of 1 (triangle) and 2 (square) in ACN(empty), NMA 

(filled black) and NMP (filled gray) excited at 309 nm. The lines represent fits to Eq. 1. 

 

Figure 3.8 shows a fit to these high temperature data with Equation 1.  For comparison 

purposes, Figure 3.8 includes earlier data for 1 and 2 in acetonitrile with the new data in NMA 

and NMP at high temperatures (>300 K). The data are fit to Equation 1 and calibrated to the 

measured free energies in nonpolar solvents as described in Ref.20. The molecular solvation 

model employed in these fits requires several solvent parameters, which are specified in footnote 

21. The values of the electronic coupling |V|, λv and hν were the same as determined from the 

previous work, and ∆rG and λ0 were predicted using the calibrated Matyushov model. The 

experimental electron transfer rate constant for 1 is faster than that for 2 in these solvents, which 

matches well with the previous conclusion that the aromatic group is better than an alkyl group at 

mediating the electronic coupling. The fitting parameters for 1 and 2 in NMA and NMP are 

listed in Table 3.2. Figure 3.8 also reveals that the electron transfer rate for both 1 and 2 in slow 

solvents NMA and NMP is higher than the rate in acetonitrile. Since the electronic coupling of 1 
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and 2 is assumed to be solvent independent, the difference of the rate constants in NMA and 

NMP with those in acetonitrile is understood as reflecting differences in the activation energies 

in these solvents, ∆G╪ ~ (∆rG + λ)2/4λ. 

Table 3.2 Fitting parameters for 1 and 2 to the nonadiabatic model at high temperature.a 

 

CH3CN(295°C) NMA(303°C)  
 

NMP(295°C)  
 System V ,cm-1

λ0(eV)     ∆rG(eV) λ0(eV)    ∆rG(eV) λ0(eV)     ∆rG(eV)

1 146   1.49         -0.54 1.36       -0.56 1.32        -0.52 

2 62   1.46         -0.58 1.28       -0.61 1.23         -0.57 

a) λv= 0.63 eV and hν = 1600 cm-1 are determined from charge transfer spectra of related 

species  

 

3.6.2 Low Temperature Analysis  

The semiclassical equation (Eq. 1) does not describe the electron transfer dynamics in the 

low temperature limit because it does not account for solvent frictional effects. Figure 3.9 

compares the low-temperature predictions of Equation 1 using parameters obtained from the high 

temperature fit in Figure 3.8. In the case of acetonitrile, the nonadiabatic expression (Eq. 1) 

provides a good description of the rate constant over the whole temperature range studied. In 

contrast, in the slower solvents NMA and NMP, the low-temperature rates observed fall well 

below those extrapolated from the high-temperature fits. 
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Figure 3.9 Electron transfer rate constants of 1 (triangle) and 2 (square) in acetonitrile (empty 

black), NMA (filled black) and NMP (filled gray) excited at 309 nm. The lines represent fits to 

Eq. 1. 

 

Assuming that the rate constant is a serial combination of nonadiabatic and solvent 

controlled rate constants as in Equation 2, the solvent controlled rate constant kSC can be 

obtained from the experimental value kET and the extrapolated nonadiabatic value kNA; i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

NAET

SC

kk

k
11

1                                                7 

Figure 3.10A plots the solvent controlled rate constant for 1 in NMA and NMP as a function of 

1000/T. The rate constant increases with temperature and the activation energy is similar for the 

two solvents, 37 kJ/mol for NMA and 32 kJ/mol for NMP.  
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Figure 3.10 (A) Electron transfer rate constant of 1 in NMA (black) and NMP (gray) in the 

solvent friction region; (B) Interpolation τ*ET of 1 in NMA (black) and NMP (gray) versus 

solvation time; the straight line is a linear fit. The insert expands the region 0 ≤ τs(ps) ≤ 40 for 

clarity. 

 

3.6.3 Zusman Model  

According to Zusman, the electron transfer rate constant is inversely proportional to the 

solvation time when the reaction proceeds in the solvent friction regime, but it becomes 

independent of solvent friction when the solvation time is rapid. The Zusman treatment uses the 

interpolation formula (Eq. 2).  Comparison to this model is facilitated by defining the quantity 

τ*ET as,  
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Figure 3.10B plots the value τ*ET of 1 in NMA a

NMA and NMP over the temperature range from 250 K to

a good linear correlation between τ*ET and the solvation 

smaller values of τs (see the inset), τ*ET is determined

supporting the conclusion that the electron transfer is n

intercept from the fit to Equation 10 (see Figure 3.10B) g
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the solvent effect observed here. The linear fit in Figure 3.10B has a slope of 0.09 eV-1 which is 

sixty times smaller than the slope predicted from Equation 10, 5.2 eV-1. The behavior of 2 in 

NMA and NMP is the similar to that of 1 and the fit to Equation 10 gives |Veff| = 11 cm-1, in good 

agreement with the value of |Veff| = 12 cm-1, calculated from |V| = 62 cm-1 used in the high-

temperature analysis. The linear fit gives a slope of 0.68 eV-1, which is nine times smaller than 

the predicted slope, 6.4 eV-1.  

Zusman derived a criterion to assess whether the dynamic solvent effect is manifest in the 

electron transfer. In particular, if the inequality 
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holds, then the solvent friction should be important. If the reaction occurs in the range of a small 

driving force, that is │∆rG│<< λ0, an effective electronic coupling can be defined 

as ⎟
⎠
⎞

⎜
⎝
⎛−=

2
exp SVVeff . The dynamic solvent effect can be interpreted as an effective change of 

adiabaticity in the reaction, characterized by an adiabaticity parameter g  

1
0

22

≥=
λ

τπ

h

seffV
g                                                        12 

A g value less than one indicates an essentially nonadiabatic electron transfer process, hence no 

dynamic solvent effect. By lowering the temperature, the solvation time can increase sufficiently 

to cause a crossover from nonadiabatic (g < 1) to a solvent friction controlled regime where 

g>>1. Using the parameters in Table 3.2, the dynamic solvent effect should manifest itself when 

τs >> 7 ps for 1 in NMA, τs >> 35 ps for 2 in NMA, τs >> 6 ps for 1 in NMP and τs >> 33 ps for 2 

in NMP. The fit to the experimental data predicts that g ~ 1 (i.e., kSC ~ kNA) for 1 in NMP when 

the solvation time is ~ 309 ps at 254 K and NMA is ~ 201 ps at 270 K. As with the analysis of 
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the full Equation 10, the transition (g ~ 1) occurs at a value of τs about ten times larger than that 

predicted by Zusman. 

The Zusman analysis provides a qualitatively consistent description for the rate constant 

over the entire temperature range.  At high temperature, the solvation dynamics is fast and the 

rate constant is limited by the electron tunneling step; i.e., kNA. At low temperature, the solvation 

is slow and the electron transfer depends on the solvent friction.  

3.6.4 Sumi-Marcus Model ,22  

Electron transfer of 1 and 2 at high temperatures appears to lie in the fast diffusion limit, 

where the electron transfer is nonadiabatic (vide supra).  At lower temperatures, these molecules 

have λv/ λ0 ~ 0.5 and appear to lie closer to the narrow reaction window limit of Sumi and 

Marcus. The reaction rate can be quantified by considering the average survival probability Q(t) 

of the locally excited state. Q(t) is the fraction of reactant molecules that have not transferred 

their electron by time t, and is obtained directly from the fluorescence decay law. Sumi and 

Marcus consider both the correlation time  and the average decay 

time

∫
∞

=
0

)( dttQcτ

∫
∞

=
0c

d)(1 tttQ
τ

τ . These survival times provide valuable information about the timescale 

and temporal characteristic of the reaction rate. For example, if τc= τ  then Q(t) is a single 

exponential decay, whereas  τc≠τ  indicates a nonexponential decay law.  

Figure 3.11 plots τc kET (panel A) and τ kET (panel B) as functions of τskET in NMP and 

NMA. kET is extracted from the fit of the high temperature data to the nonadiabatic model. τ  is 

calculated using a fit to a sum of exponentials. 23 If the reaction proceeded solely in the narrow 
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reaction window limit, the slope of the log-log plot would be unity. However for 0 < λv/ λ0 < 1, 

the slope should lie between zero and unity. 22 In fact, the slope is less than one, 0.58 in NMP 

and 0.72 in NMA (Figure 3.11A), which suggests that the reaction occurs close to the narrow 

reaction window limit. The fact that τc is different fromτ  supports the interpretation that the 

reaction proceeds away from the fast diffusion limit. Comparison of the average survival times τc 

and τ  reveals that τc always deviates fromτ  for 1 in NMA and NMP, the population decay is 

nonexponential and controlled by the solvent friction. In contrast, τc andτ are similar for 2 in 

NMP, suggesting a single exponential decay, and a weak dynamic solvent effect. Figure 3.11 

shows considerable noise for theτ plot of 1 so that the conclusions from it must be qualitative 

only. From Figure 3.11, it is evident that kSC is smaller than the rate of solvation, 1/τs, and this 

occurs because of the activation energy, which also contributes to kSC. 
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Figure 3.11 Plot of log (τckET) (A) and log (τ kET) (B) versus log τskET for 1 (filled triangle) and 

2 (empty square) in NMA (black) and NMP (gray). kET is extracted from the fit of the high 

temperature data to the nonadiabatic model. 

 

3.7 Discussion and Conclusion 

The photoinduced intramolecular electron transfer in 1 and 2 displays a dynamic solvent 

effect in NMA and NMP, even though the electronic coupling is small (see Table 3.2). By 

studying the rate constant over a large range of temperature, the electron transfer mechanism can 

be followed from one in which the electronic coupling dominates the reaction to one in which the 

solvent friction controls the reaction. Since the electronic coupling is mediated by the pendant 
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group, which is different in 1 and 2, the change of fluorescence decay law from a single 

exponential decay at high temperature to a nonexponential decay at low temperature occurs 

differently for these two molecules. The experimental rate constants differ for 1 and 2 at high 

temperature, but tend to be the same at low temperature. This trend is a consequence of the 

slowdown in solvation dynamics with decreasing temperature, as probed by dynamic Stokes-

shift experiments, as the temperature decreases.  

A curious feature revealed by both the electron transfer and the solvation dynamics 

measurements reported here is the qualitative similarity of the dynamics observed in NMA and 

NMP at low temperatures. This similarity is curious because neat NMA crystallizes below 303 K, 

whereas NMP remains liquid to 226 K. Most of the data in NMA was collected using 

polycrystalline samples. Clearly both the solutes used for the solvation measurements and the 

electron transfer molecules sense a local environment which is much more fluid than crystalline. 

Evidently these “impurities” in the NMA solid exist in regions where the fluidity is similar to 

that in liquid NMP. These regions have reproducible properties that are comparable to what is 

expected for supercooled liquid NMA. 

Because the solvation dynamics is relatively slow at low temperatures, experiments with 

different excitation energies were used to assess whether or not the locally excited state was 

equilibrated with the solvent. The rate constants do not change significantly with the excitation 

energy. This behavior confirms that when an electron transfers from the locally excited state to 

the charge separated state, the solute molecule retains no memory of the initial excess energy of 

the excitation. 

Zusman’s model for the effect of solvent friction on electron transfer was compared to 

the observations. The low temperature rate constants correlate with the solvation rate, 1/τs, as 
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determined through dynamic Stokes-Shift measurements. At high temperature the rate constant is 

independent of τs. Quantitative comparison with the model gave an effective electronic coupling 

that is in good agreement with that found using Equation 1 at high temperature (when high 

frequency modes are included), and the adiabaticity parameter g, which can be defined from 

Zusman’s criterion, predicts that the solvent friction limit applies. The plot of τ*ET versus the 

solvation time τs reveals a linear correlation at low temperatures, however, the slope does not 

match the theoretical prediction.  

Three different possibilities can be identified for the discrepancy between the predictions 

of Zusman’s model and the observed dependence of τ*ET on τs. One limitation of the Zusman 

description (Eq. 3) is the failure to explicitly include quantum modes for the reorganization 

energy. This possibility was noted earlier by Walker et al,24 who studied electron transfer in 

betaines and found that the theoretically predicted value was 106 times slower than their 

experimental value.  In that case the electron transfer proceeded in the inverted regime and 

quantum effects are expected to be critically important. They found that electron transfer in the 

slow solvent limit was controlled by vibrational motion. A second limitation of the Zusman 

treatment arises from the use of the high friction (Smoluchowski) limit for the solvent frictional 

coupling.  Recently, Gladkikh et al25 extended Zusman’s ideas to the intermediate friction regime 

and different barrier shapes. They found that the Zusman model overestimated the transfer rate 

by up to 103 and that the dynamics is a sensitive function of |V| (or distance). A third limitation is 

the description of the solvation dynamics by a single relaxation time constant, whereas the 

solvation in these hydrogen bonding solvents is non-exponential. It may be that the faster 

components of the solvation response control the electron transfer dynamics.26 , 27  Although 
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quantitative details of the Zusman description may be questioned, it appears to capture the 

physical picture of the process and approaches the correct nonadiabatic limit. 

The electron transfer in 1 and 2 appears to lie in the narrow reaction window limit of the 

Sumi-Marcus treatment. Supporting this conclusion is the ratio of λν/λ0 ~ 0.5 and the 

nonexponentiality of the locally excited state’s population decay. In this limit, the electron 

transfer reaction occurs predominantly at a particular solvent polarization value of X0 and the 

nonexponentiality arises from the time evolution of the reactant population along X. The 

deviation of the correlation time τc and the average time τ  verifies the characteristics of 

nonexponential decay law for the reaction. Other considerations of the Sumi-Marcus treatment, 

e.g. the electron transfer rate is proportional to the solvation rate, are similar to the Zusman 

prediction. The important difference between the two models in this limit is that Sumi-Marcus 

predicts a nonexponential decay law, as observed, whereas the Zusman model does not address 

the issue. 

By exploring the electron transfer dynamics of two U-shaped molecules as a function of 

temperature in the slowly relaxing solvents NMA and NMP, the change in electron transfer 

mechanism from a nonadiabatic reaction to a friction controlled reaction is observed. 

Comparison to the theoretical model of Sumi-Marcus, shows that the decay law is 

nonexponential in the solvent friction limit. This study provides new insights into the factors 

governing the dynamics of electron transfer through non-bonded contacts.  
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3.9 Appendix 

3.9.1 Electron Transfer Rate Constant 

1 in NMP excited at 309nm 

T(K) Donor kD (s-1) kET (s-1) 
250 1.01 X 108 4.32 X 108

252 1.02 X 108 4.61 X 108

256 1.08 X 108 5.66 X 108

258 1.14 X 108 6.09 X 108

262 1.24 X 108 7.19 X 108

270 1.34 X 108 9.67 X 108

272 1.38 X 108 1.07 X 108

284 1.63 X 108 1.40 X 108

295 1.85 X 108 1.80 X 108

303 2.09 X 108 2.19 X 108

314 2.37 X 108 2.67 X 108

319 2.51 X 108 3.09 X 108

323 2.62 X 108 3.01 X 108

332 2.91 X 108 3.41 X 108

334 2.92 X 108 3.57 X 108

350 3.39 X 108 4.57 X 108
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2 in NMP excited at 309nm 

T(K) Donor kD (s-1) kET (s-1) 
250 1.01 X 108 4.12 X 108

252 1.02 X 108 4.35 X 108

256 1.08 X 108 4.94 X 108

258 1.14 X 108 5.66 X 108

262 1.24 X 108 6.61 X 108

267 1.35 X 108 7.45 X 108

270 1.34 X 108 8.10 X 108

272 1.38 X 108 9.08 X 108

284 1.63 X 108 1.08 X 109

295 1.85 X 108 1.33 X 109

303 2.09 X 108 1.48 X 109

309 2.24 X 108 1.56 X 109

314 2.37 X 108 1.68 X 109

319 2.51 X 108 1.79 X 109

323 2.62 X 108 1.83 X 109

332 2.91 X 108 1.88 X 109

334 2.92 X 108 2.00 X 109

353 3.48 X 108 2.21 X 109
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1 in NMP excited at 326nm 

T(K) Donor kD (s-1) kET (s-1) 

232 7.74 X 107 2.65 X 108

238 8.46 X 107 3.44 X 108

245 9.34 X 107 4.54 X 108

250 1.00 X 108 4.84 X 108

253 1.04 X 108 5.72 X 108

254 1.04 X 108 5.75 X 108

258 1.11 X 108 7.19 X 108

260 1.13 X 108 7.23 X 108

262 1.16 X 108 8.85 X 108

267 1.22 X 108 9.36 X 108

271 1.32 X 108 9.56 X 108

283 1.50 X 108 1.37 X 109

295 1.72 X 108 1.73 X 109

304 1.91 X 108 2.15 X 109

314 2.15 X 108 2.52 X 109

324 2.38 X 108 3.01 X 109

333 2.63 X 108 3.26 X 109

 
 

2 in NMP excited at 326nm 

T(K) Donor kD (s-1) kET (s-1) 

226 7.04 X 107 2.31 X 108

234 7.98 X 107 3.18 X 108

243 9.08 X 107 4.24 X 108

250 1.00 X 108 4.22 X 108

251 1.01 X 108 5.50 X 108

254 1.04 X 108 5.08 X 108

258 1.11 X 108 6.19 X 108

260 1.13 X 108 6.79 X 108

262 1.16 X 108 7.38 X 108

267 1.22 X 108 8.25 X 108

271 1.32 X 108 8.42 X 108

283 1.50 X 108 1.10 X 109

295 1.72 X 108 1.32 X 109

304 1.91 X 108 1.54 X 109

314 2.15 X 108 1.71 X 109

324 2.38 X 108 1.87 X 109

333 2.63 X 108 2.02 X 109
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1 in NMA excited at 309nm 

T(K) Donor kD (s-1) kET (s-1) 

250 1.28 X 108 2.93 X 108

254 1.24 X 108 3.50 X 108

258 1.27 X 108 4.41 X 108

262 1.41 X 108 5.45 X 108

267 1.53 X 108 6.49 X 108

270 1.40 X 108 7.83 X 108

274 1.47 X 108 1.06 X 109

284 1.64 X 108 1.11 X 109

288 1.71 X 108 1.39 X 109

295 1.83 X 108 1.86 X 109

303 1.99 X 108 1.97 X 109

310 2.07 X 108 2.87 X 109

313 2.16 X 108 3.08 X 109

320 2.31 X 108 3.63 X 109

333 2.57 X 108 5.08 X 109

 
 

2 in NMA excited at 309nm 

T(K) Donor kD (s-1) kET (s-1) 

250 1.28 X 108 2.59 X 108

254 1.24 X 108 3.39 X 108

258 1.27 X 108 4.24 X 108

262 1.41 X 108 5.01 X 108

267 1.53 X 108 6.06 X 108

270 1.40 X 108 7.76 X 108

274 1.47 X 108 8.83 X 108

284 1.64 X 108 1.06 X 109

288 1.71 X 108 1.12 X 109

295 1.83 X 108 1.28 X 109

303 1.99 X 108 1.24 X 109

310 2.07 X 108 1.45 X 109

313 2.16 X 108 1.94 X 109

320 2.31 X 108 1.99 X 109

331 2.53 X 108 1.93 X 109

338 2.68 X 108 2.31 X 109
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3.9.2 Solvation Dynamics Fitting 

The viscosities and dielectric properties of the liquid amides plotted here are from 

parameterizations of the form: 

    23
2

3
10 )/K10()/K10()( TaTaaT ++=ε 0)( aT =∞ε  

  23
2

3
10 )/K10()/K10(}cP/)(ln{ TaTaaT ++=η

   23
2

3
1010 )/K10()/K10(}ns/)({log TaTaaTD ++=τ )(

)(
)()( T

T
TT DL τ

ε
ετ ∞=  

with the parameters: 

N-Methylpropionamide 

Property a0 a1 a2

ε 99.5 -114 39.8 
ε∞ 6 --- --- 
τD -3.26 1.60 --- 
η -7.58 3.14 -.114 

 

N-Methylacetamide 

Property a0 a1 a2

ε 69.1 -84.8 35.9 
ε∞ 10.5 --- --- 
τD -2.86 1.44 --- 
η -6.08 2.25 --- 

 
These parameterizations are based on fits to the data contained in the references 

1-8: 

1. Firman, P.; Eyring, E. M.; Xu, M.; Marchitti, A.; Petrucci, S. J. Phys. Chem. 1992, 96, 41. 

2. Maroncelli, M.; Fleming, G. R. J. Chem. Phys. 1990, 92, 3251. 

3. Bennetto, H. P.; Evans, G. F.; Sheppard, R. J. J. Chem. Soc., Faraday Trans. I. 1983, 79, 245. 

4. Brownsell, V. L.; Price, A. H. J. Phys. Chem. 1970, 74, 4004. 
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5. Millero, F. J. J. Phys. Chem. 1968, 72, 3209. 

6. Gopal, R.; Rizvi, S. A. 1966, 43, 179. 

7. Bass, S. J.; Nathan, W. I.; Meighan, R. M.; Cole, R. H. J. Phys. Chem. 1964, 68, 509. 

8. Hoover, T. B. J. Phys. Chem. 1964, 68, 876. 
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Chapter 4  Pendant Unit Effect on Electron Tunneling in U-Shaped 

Molecules  

 

The electron transfer reactions of three U-shaped donor-bridge-acceptor molecules with 

different pendant groups have been studied in different solvents as a function of temperature. 

The pendant group mediates the electronic coupling and varies the electron tunneling efficiency 

through nonbonded contacts with the donor and acceptor groups. Quantitative analysis of the 

temperature dependent rate data provides the electronic coupling. The influence of steric changes 

on the electronic coupling magnitudes is explored by structural variation of the pendant groups. 

4.1 Introduction 

Electron transfer reactions are one of the most fundamental reactions in chemistry and 

play important roles in biology and in the emerging field of molecular electronics. Electron 

transfer reactions are distinguished from other chemical reactions by their ability to proceed even 

when the reductant (electron donor) and oxidant (electron acceptor) are not in direct contact, 

although they are in contact through some kind of intervening medium (e.g. hydrocarbon groups, 

protein segments). For example, photosynthesis reaction centers in plants use light driven 

electron transfer to produce a charge separated state across a membrane. This electron transfer 

occurs by a sequence of electron transfer steps, each one proceeding by a super-exchange 

mechanism in which the donor – acceptor electronic coupling is mediated by the interaction of 

the donor and acceptor states with virtual ionic states of the intervening medium.   
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Over the past four decades, rigid, covalently linked donor-bridge-acceptor (DBA) 

molecules, in which the donor and acceptor chromophores are held at well-defined separations 

and orientations with respect to each other, have been successfully used to explore the 

dependence of electron transfer dynamics on a variety of factors,1 including interchromophore 

distance2 and orientation,3 bridge configuration4 and orbital symmetry.5 These studies have 

revealed that the electronic interaction between the donor (reductant) group and the acceptor 

(oxidant) group is controlled by the covalent linkages in the molecules. Changes in the bonding 

patterns in the bridging group and their energetics may be used to manipulate the electronic 

coupling magnitude and hence the electron transfer rate.6  

In the past ten years, electron transfer kinetics in highly curved DBA molecules7, where 

the distances between two redox centers are significantly larger than the sum of their van der 

Waal’s radius, has been used to investigate electron tunneling through nonbonded contacts. 

When the electron transfer is nonadiabatic, the tunneling probability is proportional to the 

electronic coupling squared, |V|2.  Previous work8 shows that the placement and electronic 

properties of the pendant group in U-shaped DBA molecules can strongly affect the electron 

tunneling efficiency. Corresponding studies on C-shaped molecules which display electron 

tunneling by way of solvent molecules located in the cleft are also available.9 ,  10  These studies 

show that the electron tunneling efficiency correlates with the electron affinity of the solvent 

molecules and their ability to fit in the cleft, i.e. steric constraints. 
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The current work studied electron transfer in three U-shaped molecules (1, 2 and 3) and 

compared them to the previously studied compound 4 to explore how steric properties of the 

pendant group affect the electronic coupling. The U-shaped DBA molecules (1−5) have a highly 

curved and rigid bridge, which holds the donor and an acceptor groups at a fixed distance and 

orientation. A pendant group is covalently attached to the bridge and occupies the space between 

the donor and acceptor unit. Previous studies explored how the electron transfer rate constants 

and electronic couplings vary amongst the compounds 4, 5 and 6. The results revealed that the 

coupling for 4 is 2.5 times larger than that for 58b. The electronic coupling is enhanced by an 

aromatic pendant group, compared to an alkyl group, in the “line-of-sight” between the donor 

and acceptor, because the virtual ionic states of the pendant aromatic ring in 4, being mainly of π 

character, are energetically closer to the naphthalene donor and dicyanovinyl acceptor states than 

are the virtual ionic σ states of the pendant alkyl group in 5. The photoinduced electron transfer 

rate constant of 4 is 15 times faster than compound 6 in toluene8a. Compound 6 has a bridge, 

with the same number of bonds linking the donor and acceptor units as do 4 and 5, but it is not 
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U-shaped. Thus, the electronic coupling between the naphthalene and dicyanovinyl groups in 6 

can only occur by way of a superexchange mechanism operating through the bridge and is 

weaker than the corresponding electronic coupling in 4 and 5 which takes place more directly, 

through superexchange involving the pendant group. 

The schematic energy diagram in Figure 4.1 shows an effective one-dimensional nuclear 

reaction coordinate. Two possible electron transfer regimes are distinguished by the strength of 

the electronic coupling |V|, the interaction between the reactant and the product states at the 

curve crossing. When the electronic coupling is weak |V| << kBT, the reaction is nonadiabatic 

(dashed curve in Figure 4.1) and the rate constant is proportional to |V|2. In this regime, the 

system may move through the curve crossing region q╪ many times before the electronic state 

changes. The second regime is adiabatic electron transfer, where |V| >> kBT (solid curves in 

Figure 4.1). In this limit, the electronic state change evolves as the nuclear motion proceeds; i.e., 

the strong coupling mixes the donor and acceptor states and the reaction proceeds along a single 

electronic state.  
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Figure 4.1 Diagram illustrating the adiabatic (the solid curves) − strong coupling − and 

nonadiabatic (the diabatic dashed curves) – weak coupling.  
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For the U-shaped molecules, the electronic coupling between the donor and acceptor 

moieties is weak enough that the electron transfer lies in the nonadiabatic limit. The 

semiclassical model for electron transfer in the nonadiabatic limit begins with a Fermi’s Golden 

Rule expression for the transition rate; namely  

FCWDSVk 2)/2( hπ=                                                      1 

where h  is Planck’s constant divided by π2 , |V| is the electronic coupling matrix element, and 

FCWDS is the Franck-Condon weighted density of states. The FCWDS term accounts for the 

probability that the system achieves a nuclear configuration in which the electronic state can 

change. The square of the coupling, |V|2, measures the probability of changing from the reactant 

to product electronic state. 

4.2 Modelling the Rate Constant 

Previous work successfully applied the Golden Rule rate constant expression with a 

single effective quantum mode, and described kET by the semiclassical rate equation.  
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where λ0 is the solvent reorganization energy; ∆rG  is the reaction free energy; 
ν

λ
h

S v=  and λv is 

the internal reorganization energy. The hν term refers to the average energy spacing of a single 

effective quantized mode frequency in the electron transfer reaction and is a characteristic of the 

solute. The sum is performed over the vibrational states of the effective quantum mode.  

The quantities hν and λv are determined primarily by the donor and acceptor groups and 

is not sensitive to their separation. Charge-transfer absorption and emission measurements of 
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compound 7 in hexane, in conjunction with theoretical calculations11 were used to quantify hν 

and λv. This analysis provided a value of 1600 cm-1 for the single effective quantized mode and 

0.63 eV for the solute reorganization energy λv. This effective frequency is comparable to 

typical carbon-carbon stretching frequencies in aromatic ring systems, such as the naphthalene, 

which primarily show stretching modes of ~ 1600 cm-1 upon formation of the cation.8a A lower 

frequency of 1088 cm-1 7b,12 is associated with out-of-plane bending of the dicyanovinyl group. 

A previous study8a showed that inclusion of this mode frequency affected the absolute 

magnitude of |V|, that is extracted from the data but did not affect the relative magnitude of |V|, 

for 4 and 5. The internal reorganization energy is dominated by the dicyanovinyl acceptor 

which provides values in a range of 0.30 – 0.50 eV from the charge transfer emission 

experiment7b.  The values of hν and λv are consistent with those reported for charge transfer 

complexes of hexamethylbenzene with tetracyanoethylene in CCl4 and cyclohexane.13 In the 

current work, these two parameters are kept fixed in the fit of the rate constant to equation 2. 

 

NC

CNOMe

MeO

7  

The values of the three remaining parameters contained in the semiclassical rate 

expression (Eqn 2), namely λ0, |V| and ∆rG, need to be determined. The solvent reorganization 

energy λ0 and the reaction free energy ∆rG are determined by calibration of Matyushov’s 

molecular solvation model14 with experimental ∆rG data. The reaction free energy ∆rG in weakly 

polar or non-polar solvents can be experimentally measured from an analysis of the equilibrium 
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between the locally excited state and the charge-separated state. Previous reports8a parameterized 

the molecular solvation model for 4 in the solvents toluene and mesitylene and used it to predict 

the reaction free energy and the solvent reorganization energy in polar solvents. This model, 

parameterized in the same way, was used to fit the electron transfer reaction rate constant in the 

new U-shaped molecules, 1, 2 and 3. 

The Matyushov solvation model accounts for the discrete nature of the solute and the 

solvent. The solute is treated as a sphere with a point dipole moment and polarizability. The 

solvent is modeled as a polarizable sphere with an electrostatic charge distribution that includes 

both a point dipole and a point quadrupole. The model incorporates the interactions between the 

solute and the solvent molecules and amongst the solvent molecules themselves, including the 

dipole-dipole interactions, the dipole-quadrupole interactions, the quadrupole-quadrupole 

interactions, the induction, and dispersion interactions. The molecular model properly describes 

the temperature dependence of the solvation15, as compared to a continuum model, and is 

superior for analyzing these data.  

The current work reports the electron transfer behavior of three new U-shaped molecules 

(1 – 3) with pendant groups having different steric properties, compared to compound 4. 

Compound 4 has a para ethyl group on the phenyl ring, 1 has a para t-butyl unit, 2 has one 

methyl at a meta position of the phenyl ring; and 3 has two methyl groups, one at each meta 

position. The rate constant model described above is used to compare the electronic coupling in 

these U-shaped molecules. The similarity found for the electronic coupling in these dissimilar 

substitution patterns suggests that the average orientation of the phenyl ring, with respect to the 

donor and acceptor, is similar. 
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4.3 Experimental Section 

4.3.1 Time-Resolved Fluorescence Studies 

Each sample was dissolved in the different solvents at a peak optical density of less than 

0.2 in all of the experiments. The solvent acetonitrile (99.9% HPLC) was purchased from 

Burdick & Jackson without further purification. The solvents toluene, mesitylene and p-xylene 

were fractionally distilled two times using a vigreux column under vacuum after purchased from 

Aldrich. The purified fraction was used immediately in all the experiments. Each solution was 

freeze-pump-thawed a minimum of five cycles. 

Each sample was excited at 326 nm by the frequency-doubled cavity-dumped output of 

a Coherent CR599-01 dye laser, using DCM (4-dicyanomethylene-2-methyl-6-p-

dimethylamino-styryl-4H-Pyran) dye, which was pumped by a mode locked Coherent Antares 

Nd:YAG. The dye laser pulse train had a repetition rate of 300 kHz. Pulse energies were kept 

below 1 nJ, and the count rates were kept below 3 kHz to prevent pile up effect. All 

fluorescence measurements were made at the magic angle, and data were collected until a 

standard maximum count of 10,000 was observed at one channel. 

The time-resolved fluorescence kinetics for 1, 2 and 3 and their donor only analogues 

were carried out in different solvents as a function of temperature. The temperature ranged from 

273 K to a high of 346 K. The experimental temperature was controlled by an ENDOCAL RTE-

4 chiller and the temperature was measured using a Type-K thermocouple (Fisher-Scientific), 

accurate to within 0.1 ºC. 

The instrument response function was measured using a sample of colloidal BaSO4. The 

fluorescence decay curve was fit by a convolution and compare method using IBH-DAS6 
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analysis software. Independent experiments on individual donor only molecules at the measured 

temperatures, always a single exponential fluorescence decay, was used to determine the intrinsic 

fluorescence decay rate of the locally excited state. The DBA molecules 1 – 4 have a small 

amount of donor only impurity. The measurement of the donor only molecule’s characteristic in 

each solvent and temperature allowed their contribution to be subtracted from the decay law of 

their DBA molecules. The decay law of 1 – 4 in acetonitrile was a single exponential function 

and in weakly polar solvents toluene, mesitylene and p-xylene was a double exponential function.  

Fitting to the semiclassical equation (equation 2) was performed using Microsoft Excel 2003. 

4.4 Results and Analysis 

4.4.1 Steady-State Spectra 

The U-shaped molecules 1, 2, 3 and 4 have been studied in the polar solvent acetonitrile, 

the weakly polar solvent toluene, and the nonpolar solvents mesitylene and p-xylene. The spectra 

of the DBA molecules are the same as those of the donor only analogues, hence the 

spectroscopic properties of the donor units in these molecules dominate the spectral features. 

Figure 4.2 shows the absorption and emission spectra of these molecules in acetonitrile and 

mesitylene. 
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Figure 4.2 Absorption spectra (left) and emission spectra (right) of 1 (black), 2 (green), 3 (blue) 

and 4 (red) in acetonitrile (A) and mesitylene (B)  

 

The donor unit of compounds 1 through 4 is the same, 1,4–dimethoxy-5,8-

diphenylnaphthalene, and accounts for the similarity of the spectra in a given solvent. The 

naphthalene chromophore has two close lying excited electronic states, 1La and 1Lb in the Platt 

notation, that are accessed in the ultraviolet.  The red shift of the donor spectrum and the loss of 

vibronic structure, as compared to naphthalene, are consistent with the methoxy group (and 

phenyl) substitution.16  Although 1-substituted naphthalenes typically have the 1Lb state below 

the 1La state (transition is polarized along the short axis), high-resolution spectra of 1-

aminonaphthalene in a jet expansion show a reversal of this ordering; i.e., the 1La state is below 
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the 1Lb state.17 This example underscores the sensitivity of the relative ordering of the 1Lb and 1La 

states to perturbations.  

The variations in the spectral substructure must arise from changes in the excited state 

properties with changes in the solvent and the pendant group. The spectra in mesitylene solvent 

(Figure 4.2B) are shown because it is expected to perturb the chromophore the least of all the 

solvents and illustrate the spectral perturbations that arise from the changes in the pendant groups.  

Polar solvent molecules, such as acetonitrile (Figure 4.2A) interact with the solute to stabilize the 

excited 1Lb state and this changes the relative intensity of the two peaks in the emission spectrum. 

Despite the change in intensity of these two emission peaks the fluorescence decay law does not 

change with emission wavelength; i.e., it is the same across the band.  

Although the absorption spectra show different absorption bands, the fluorescence 

spectrum and lifetime do not depend on the excitation energy. It is understood that both 

electronic configurations involve π-π* single electron excitations and the energy difference is 

small enough that the 1La and 1Lb states are strongly mixed. This claim is supported by the 

identical emission spectra that were obtained at different excitation energies for each compound 

and by the fact that the lifetime of compound 4 does not change with the excitation energy from 

296 nm to 359 nm.  

4.4.2 Fluorescence Kinetics 

In polar solvents, like acetonitrile, the fluorescence decay of the U-shaped molecules is 

single exponential with rate constant kobs, and the electron transfer rate constant can be 

determined from kET = kobs − kf , where kf is the fluorescence decay rate of the donor only 

molecule and kET is the electron transfer rate.  
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In toluene and nonpolar solvents, mesitylene and p-xylene, the fluorescence decay is 

double exponential. The biexponential kinetic arises because the free energy of the charge 

separated state is close to zero and an equilibrium between the locally excited state (LE) and the 

charge separated state (CS) occurs (see scheme 2). The double exponential kinetics can be 

analyzed to extract the reaction free energy, ∆rG, from the experiment. By writing the 

fluorescence intensity as 

)exp()1()exp()( tkatkatI −+++ −−+−=                                        3 

the forward electron transfer rate constant is 
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The experimentally determined reaction free energy for all these U-shaped molecules as a 

function of temperature in toluene, mesitylene and p-xylene are used to calibrate the solute 

parameters in this model.  

4.4.3 Reaction Free Energy ∆rG 

A number of solvent parameters (some of them are listed in Table 4.1) are required to 

analyze the molecular solvation model. The polarizability of toluene, mesitylene and acetonitrile 

were kept the same as used previously8a and the polarizability of p-xylene was obtained from 

literature. 18   The dipole moments and quadrupole moments of the different solvents were 

computed using Gaussian 2003 at the MP2/6-31 G level. Rather than use the quadrupole moment 

tensor, an effective axial moment ∑= 2/12 )
3
2( iii QQ was evaluated.19 The sizes (sigma) of the 

solvents and the Lennard-Jones energies were obtained from the literature. 20,21

Table 4.1 Solvent parameters used in the Molecular Solvation Model 

 

Solvent Polarizability 
(Å3) 

Quad 
Moment 

(D Å) 

Dipole 
Moment 

(D) 

Sigma 
(Å) 

Lennard-Jones 
energy (K) 

Toluene 12.32 8.76 0.363 5.68 603 
Mesitylene 16.14 8.58 0.0671 6.40 720 
Acetonitrile 4.48 3.37 4.0664 4.24 405 

p-xylene 14.23 8.77 0.0542 6.04 725 

 

 

 

 

 

The best fit of the experimental reaction free energies to the solvation model provides the 

solute parameters listed in Table 4.2. Details of the analysis are available elsewhere. Because the 

bridge is so rigid and the size changes on the pendant group are small compared to the overall 
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molecular size, the radius of solute was kept constant at 7.66 Å for the different molecules. The 

solute’s ground and excited state dipole moments were kept the same as the previous 

calculation8a, 5.75 D for the ground state and 28.64 D for the charge-separated state. The 

polarizabilities of 1 – 4 were adjusted slightly to account for changes in the pendant group.22 The 

polarizability of 4 is 128 Å3; the same as previously.8a The ∆Gvac value was chosen 

independently for the four solutes and treated as an adjustable parameter when fitting the 

experimental free energy to the molecular solvation model. The best fit provides similar ∆Gvac 

values for these solutes, see Table 4.2. 

Table 4.2 Solute parameters used in the Molecular Solvation Model 

System Radiusa(Å) ∆γa 
(Å3)

µex 
(D) 

µgs 
(D) 

Polarizability 
(Å3) 

∆Gvac
a 

(eV) 
1 133 0.19 
2 128 0.18 
3 130 0.17 
4 

7.66 5.29 28.64 5.75

128 0.18 
a. obtained from the best fit of the molecular solvation model 

 

Figure 4.3 plots the reaction free energy of 1, 2, 3 and 4 in mesitylene as a function of 

temperature. The model fits the experimental data well in each case where the Gibbs energy 

change could be measured experimentally. The reaction free energy for these U-shaped 

molecules in mesitylene changes systematically with temperature from -0.10 to -0.05 eV (see 

Figure 4.3). Similar behavior was observed in toluene and p-xylene.  
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Figure 4.3 The experimental ∆rG values are plotted for 1 (diamond), 2 (triangle), 3 (circle) and 4 

(square) in mesitylene. The lines show the ∆rG values predicted from the molecular model with 

the solvent parameters given in Table 4.1. 

 

After parameterization, the reaction free energies of these molecules in acetonitrile were 

predicted. Table 4.3 compares the free energies of these compounds at 295 K in different 

solvents. The free energy becomes more negative as the solvent becomes more polar. Mesitylene 

and p-xylene which have no dipole moment have the most positive ∆rG. Toluene has a small 

dipole moment and the ∆rG becomes more negative, whereas the strongly polar acetonitrile has 

the most negative reaction free energy. 

Table 4.3 Best fit of ∆rG (295 K) values for U-shaped molecules 

∆rG, eV (295 K) System 
Toluene Mesitylene p-xylene Acetonitrile 

1 -0.11 -0.082 -0.087 -0.55 

2 -0.12 -0.094 -0.099 -0.55 
3 -0.13 -0.10 -0.11 -0.57 
4 -0.12 -0.087 -0.092 -0.55 

 111



For molecules 1 – 4 in weakly polar and nonpolar solvents, ∆rG becomes more negative 

as the size of the phenyl ring’s substituent increases; in the more polar acetonitrile the variation 

of ∆rG with the pendant group is not apparent. Although the molecular model provides a means 

for estimating ∆rG as a function of temperature, it contains significant simplifying assumptions; 

for example, it treats the solute as a sphere containing a point dipole moment and polarizability. 

In comparing the model with the experimental ∆rG for compounds 1 – 4 in mesitylene (see 

Figure 4.3), the ∆rG difference in 1 varies from -8.4% to 2.1%; 2 varies from -3.7% to 1.2%; 3 

varies from -0.89% to 1.3%; and 4 varies from -2.5% ~2.1%. Although this finding suggests 

some slight systematic error in the model fitting, the overall agreement is excellent. A previous 

analysis reported a ∆rG of -0.52 eV for 4 in acetonitrile8a, whereas the current value is -0.55 eV 

(see Table 4.3), a 5% deviation. Although the fit of the molecular model to the ∆rG data depends 

on three adjustable solute parameters, the ability to fit a range of different solvents and use very 

similar solute parameters for compounds 1 to 4 indicates that the molecular model provides a 

reliable and consistent description of the reaction free energy.   

4.4.4 Kinetic Analysis 

With the reaction free energy obtained from the model and the internal reorganization 

energy parameters from the previous studies,8a it is possible to fit the temperature dependent rate 

constant data to equation 2 and extract the electronic coupling |V| and the solvent reorganization 

energy λ0. |V| is treated as a temperature independent quantity. The solvent reorganization energy 

has a temperature dependence because the solvation is temperature dependent. The temperature 

dependence of the solvent reorganization energy was predicted from the molecular solvation 

model and the best fit was used to extract the solvent reorganization energy at 295 K. 
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The fit of the temperature dependent rate constant data to equation 2 (see Figure 4.4) was 

used to determine the electronic coupling |V| and λ0 (295 K), listed in Table 4.4. Figure 4.4 

shows fits of the experimental rate constant to the model for these four molecules in mesitylene 

and acetonitrile. The rate data in toluene and p-xylene behave similarly. Table 4.4 lists the 

solvent reorganization energies, λ0, at 295 K and electronic couplings |V| that are obtained for the 

four solutes by fitting to the temperature dependent rate constant expression, equation 2. 

 

20.0

21.5

23.0

24.5

2.8 3.1 3.4 3.7
1000 / T (K-1)

ln
(k

E
T
T

0.
5 )

20.0

21.5

23.0

24.5

2.8 3.1 3.4 3.7
1000 / T (K-1)

ln
(k

E
T
T

0.
5 )

 
Figure 4.4 Experimental rate constant data are plotted versus 1/T, for 1 (diamond), 2 (triangle), 3 

(circle) and 4 (square) in mesitylene (black) and acetonitrile (gray). The lines represent the best 

fits to equation 2. 

 

The reorganization energies in weakly polar and nonpolar solvents at 295 K lie in the 

range of 0.66 to 0.85 eV; in acetonitrile they are considerably higher within 1.50 to 1.72 eV. In 

these analyses, the solvent reorganization λ0 is modeled as temperature dependent and an 

adjustable λ0 offset is used to fit the data. From the molecular model prediction, λ0 is associated 
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with both solvent rotational degrees of freedom, which increase slightly with increasing 

temperature, and solvent translational degrees of freedom, which decrease with increasing 

temperature. 23 For compounds 1 – 4 in mesitylene from 273 K to 346 K, the net decrease in λ0 is 

10% to 13% of the adjustable λ0 offset. The previous molecular model fitting of λ0 (295) for 48a 

reported a value of 0.69 eV in mesitylene and 1.50 eV in acetonitrile, which are consistent with 

the current fit (Table 4.4). The values of λ0 for compounds 1 – 3 are close to those found for 4, as 

expected.  

Table 4.4 Best fit of |V| and λ0 (295 K) values for U-shaped molecules 

λ0, eV (295 K) System |V|, cm-1

Toluene Mesitylene p-xylene Acetonitrile 

1 139 0.75 0.71 0.72 1.53 

2 147 0.78 0.73 0.75 1.67 
3 130 0.85 0.77 0.80 1.72 
4 147 0.70 0.66 0.67 1.50 

 

 

Table 4.4 lists the values of |V| for 1 – 4 obtained from the best fit to equation 2. 

Compound 1 with a t-butyl substituent on the phenyl ring gives a |V| of 139 cm-1; 2 has one 

methyl group and a |V| of 147 cm-1; 3 has two methyl substituents and a somewhat lower |V| of 

130 cm-1. In comparison with a |V| value of 168 cm-1, for 4 reported previously8a, a 13% smaller 

value of 147 cm-1 was obtained from the current fit. The disparity of the electronic coupling from 

the different fits is within expected errors in the analysis. Although the steric properties of the 

pendant group in these U-shaped molecules may change the phenyl ring geometry, the values of 

the electronic couplings are similar.  
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Figure 4.5 Contours of constant |V| are shown for 4 in acetonitrile (panel A) and mesitylene 

(panel B).  The rectangular region contains parameter values for which the χ2 parameter in the fit 

is ≤ 3 times its optimal value.  Outside of this region the fits to the rate data visibly deviate. 

 

Although |V| is treated as independent of the solvent, it strongly relies on the value of the 

parameters λ0, λv, ∆rG and dλ0/dt in the fit.  Figure 4.5 illustrates how the best fit value of the 

electronic coupling changes with the magnitude of the internal reorganization energy and the 

outer sphere reorganization energy used in the analysis.  The contours represent different values 

of the electronic coupling.  The boxed region in each case identifies the range for λv and λoffset 

over which the χ2 changes by a factor of three. 

4.5 Theoretical Calculations 

Structural features of the U-shaped systems were investigated by carrying out geometry 

optimizations of the ground states of 1 − 3 at the B3LYP/6-31G(d) level of theory, which has 

been demonstrated previously to be acceptable for these types of systems. Complete geometry 

optimizations were carried out with no imposed constraints using Gaussian 03.24 Each system 
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was found to have two stable conformations differing in the orientation of the naphthalene 

methoxy groups. The lowest energy conformation for each system, exemplified by 1a (Figure 

4.6), has both methoxy groups lying in the plane of the naphthalene ring, whereas in the other 

conformation, exemplified by 1b, one of the methoxy groups is twisted out of the plane of the 

naphthalene ring. Unsurprisingly, conformation b in each system is 8 - 9 kJ/mol less stable than 

conformation a, and therefore is expected not to play a significant role in the electron transfer 

dynamics. In any case, apart from the differences in methoxy group orientation, conformations a 

and b have very similar structural features, particularly with respect to interchromophore 

separation and pendant group twisting about the N-C (phenyl) bond.  Two additional 

conformations were located for each of 2a and 2b, distinguished by the different direction of 

twisting of the pendant 3-methylphenyl ring about the N-C (phenyl) bond. In one conformation, 

the 3-methyl side of the pendant group is twisted towards the naphalene ring whereas in the other 

conformation, it is twisted towards the dicyanovinyl group. The former conformation is slightly 

more stable than the latter, by about 1.5 kJ/mol.  
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Figure 4.6 B3LYP/6-31G(d) optimized geometries of two conformations of 1, namely 1a (more 

stable), in which both OMe groups of the 1,4-dimethoxy-5,8-diphenylnaphthalene ring 

approximately lie in the plane of the naphthalene and 1b (less stable), in which one of the 

methoxy groups is twisted out of the naphthalene plane. A planee view of 1a is shown (minus all 

H atoms and the tert-butyl group for clarity) which depicts the degree of twisting of the N-tert-

butylphenyl pendant group about the N-C(phenyl) bond. A space-filling depiction of 1a is also 

shown (using standard van der Waals atomic radii). 

  

 The following discussion of geometries refers to the lowest energy conformation for each 

system. The space-filling depiction of 1a is representative of all three molecules and shows that 

the pendant group is fairly close to both the donor and acceptor moieties. Another important 
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geometric parameter, which is linked to the distances between the pendant and donor and 

acceptor groups, is the torsional (twist) angle about the C-N bond connecting the pendant group 

to the succinimide ring. The twist angle is equal to 0o when the planes of the pendant aromatic 

ring and succinimydyl ring coincide and it is equal to 90o when the two planes are orthogonal to 

each other. The twist angle and closest distances between the donor, pendant and acceptor groups 

for the lowest energy conformation of each molecule are given in Table 4.5.  The pendant group 

in 8 is the unsubstituted phenyl group (i.e. 8 is 1 with tert-butyl replaced by H).   

Table 4.5 Twist angles (degrees) and closest distances (Å) between the pendant group and 

acceptor and donor groups and the closest distance between the donor and acceptor. 

Molecule Twista r(dcv-ar)b r(nap-ar)c r(dcv-napd)b

1 44 3.8 4.0 9.4 
2 40 3.8 4.2 9.6 
3 32 4.5 4.2 9.9 
4e 47 3.8 3.9 9.4 
8f 48 3.8 3.9 9.5 

a Torsional angle about the N-C(aromatic pendant group) bond. b Closest distance between the 

dicyanovinyl and the aromatic pendant groups. c Closest distance between the naphthalene and 

the aromatic pendant groups. d Closest distance between the dicyanovinyl and thenaphthalene 

groups. e The pendant group has a methyl substituent rather than the ethyl substituent of 4. 
fphenyl (C6H5). 

 

 In none of the stable molecular conformations are the pendant and succinimide rings 

coplanar, a consequence of steric repulsions between the two ortho C-H hydrogens of the 

pendant aromatic ring with the carbonyl groups of the succinimide ring which are present in the 

coplanar conformation. The twist angle decreases along the series 1 > 2 > 3 and this trend 

reflects the increasing steric bulk at the meta positions of the pendant aromatic ring, by the 
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presence of methyl substituents. Reducing the magnitude of the twist angle therefore reduces 

destabilizing steric interactions of the pendant group with the acceptor and donor groups. This 

increasing steric interaction along the series 3 > 2 > 1 is also probably responsible for the slight 

increases in the closest distances between the various groups along the series 1 < 2 < 3 (Table 

4.5). The placement of a tert-butyl group (or an ethyl group 4) at the para position of the pendant 

aromatic ring has little effect on the molecular geometry (c.f. 1 and 8). This is understandable 

because the para substituent is remote (> 4 Å) from the donor and acceptor groups.  

 It is difficult to predict the trend in the strengths of the electronic coupling term in the 

series of U-shaped systems because it seems to depend, not only on the closest distances between 

the pendant group and the donor and acceptor groups, but also on the type of overlap between the 

π orbitals of the pendant group with those of the donor and acceptor. Thus, model calculations 

reported previously8c suggested that the coupling is stronger when the plane of the pendant ring 

is parallel to those of the donor and acceptor (twist angle = 0o) than when it is perpendicular to 

those planes (twist angle = 90o). In the former case, the overlap of the π orbitals is of σ-type 

whereas for the latter case, it is a mixture of σ- and π-types. The data shown in Table 4.5 indicate 

that as the twist angle decreases along the series 1 > 2 > 3, the closest distances between the 

pendant ring and the donor and acceptor groups increase slightly. Thus, the electronic coupling 

term may well be approximately constant along the series.   

4.6 Discussion 

The electron transfer rate constants in compounds 1 through 3 behave similarly to 

changes in temperature and solvent as does 4. The electron transfer rate constants in these 

molecules are not the same; e.g., at 298 K 4 is ten times faster than 3 in acetonitrile and three 
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times faster in mesitylene. The differences in the electron transfer rate constants arise from 

changes in the energetics rather than changes in the couplings. The difference in the electron 

transfer energetics is apparent from Figure 4.3 and Table 4.3 which shows the experimentally 

determined reaction free energy for the four solutes in mesitylene. Because the only change 

between the compounds is alkylation of the pendant phenyl ring, these energetic differences 

likely arise from changes in the pendant polarizability and the extent of Coulomb stabilization of 

the charge separated state. 

A fit of the rate constant data as a function of temperature to Equation 2 was used to 

extract values for the solvent reorganization energy and the electronic couplings (see Table 4.4).  

The reorganization energies in the aromatic solvents range from 0.66 eV to 0.85 eV, whereas 

those in acetonitrile range from 1.5 eV to 1.7 eV.  The reorganization energy for 1, 2, and 3 are 

similar in size to those reported previously for 4. The magnitudes of the reorganization energies 

reported here are larger than those reported for analogous systems containing a 

methoxyanthracene donor and a diacetylvinyl acceptor, however this difference can be attributed 

to differences in size of the donor and acceptor moieties and distortion of the dicyanovinyl 

acceptor group in the charge separated state. In particular, the distortion of the dicyanovinyl 

group may contribute up to 0.5 eV 25  in reorganization energy. The trend in solvent 

reorganization energy correlates with the changes in solvent polarity. The variations in the 

reorganization energy between solutes is consistent for the different solvent systems, however 

they are small enough compared to the expected error that they are not interpreted here. 

In the nonadiabatic picture the electron transfer rate constant is directly proportional to 

the electronic coupling squared |V|2, which gives the probability for electron tunneling from the 

locally excited state to the charge separated state.  For the four solutes studied here (1 through 4) 
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the electronic couplings are all very similar, ranging from 130 cm-1 to 150 cm-1.  This 

observation is consistent with electron affinities of alkyl benzenes that do not vary much with 

substitution pattern.26 Previous work demonstrated that the electronic coupling in systems of this 

type occurs by electron mediated superexchange.27,28 The similar |V| values are consistent with 

the computational studies and may reflect a compensation between a decrease of the electronic 

coupling as the phenyl ring twists away from 0° and an increase of the electronic coupling as the 

donor and acceptor groups distance decreases with the phenyl twist (vide supra).  

Studies of electron tunneling through nonbonded contacts in related compounds, 

containing a dimethoxyanthracene donor and a diacetylvinyl acceptor separated by a 7 angstrom 

gap found a significant variation of the electronic coupling with the substitution pattern and 

steric bulk of the molecule in the gap between the donor and acceptor group.9,10 In those studies 

the alkylated phenyl moiety was a solvent molecule and not tethered to the bridge, hence the 

change in electronic coupling could reflect either intrinsic changes arising from electronic state 

differences of the alkylbenzene or geometric changes arising from steric constraints.  The current 

studies show that placement of the aromatic moiety in the cleft gives electronic couplings that do 

not vary significantly with alkylation and supports the conclusions made in reference 9 that the 

electronic coupling variation results from steric constraints rather than intrinsic electronic 

differences.  

 The small changes in the electronic coupling magnitudes for the different systems studied 

here bears on studies of 4 in the slowly relaxing solvent N-methylacetamide.  That study8c 

reported that 4 and 5 have different electron transfer rates at high temperatures, arising from 

differences in the electronic coupling, but have similar rates at low temperature. The possibility 

that phenyl ring rotation in 4 can conformationally gate the electron transfer in that system was 
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proposed as a possible explanation.  The small variation of the electronic coupling with the 

amount of alkyl substitution and the related geometric changes of the pendant group in the cleft 

suggest that modulation of the electron tunneling probability by changes in the phenyl ring 

geometry is not the cause of that behavior. 

4.7 Conclusion 

 The electron transfer in U-shaped molecules containing a pendant group in the line of 

sight between an electron donor and an electron acceptor was studied. In each case the pendant 

group was an alkylsubstituted phenyl and had the aromatic moiety in the same location, although 

twisted at different average angles.  The electronic coupling in these systems does not vary 

significantly. 
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4.9 Appendix 

 
 
 
 
 
 
 

Toluene 
System 

T(K) Donor 
τ (ps) A1% τ1 (ps) τ2 (ps) kfor (s-1) kback (s-1) ∆rG (eV)

4 
 
 
 
 
1 
 
 
 
 
2 
 
 
 
 
3 

295.0 
305.6 
314.7 
323.9 
336.6 

 
295.0 
304.6 
314.0 
324.3 
338.1 

 
295.0 
304.4 
313.6 
324.4 
338.0 

 
295.0 
304.4 
313.6 
324.4 
338.1 

4203 
3980 
3814 
3663 
3479 

 
3610 
3449 
3262 
3115 
2914 

 
4352 
4181 
3995 
3809 
3602 

 
5452 
5216 
4981 
4720 
4407 

99.0 
98.5 
98.0 
97.0 
95.8 

 
99.2 
98.9 
98.3 
97.6 
95.8 

 
99.2 
99.0 
98.8 
98.0 
96.8 

 
94.7 
98.1 
99.2 
99.0 
98.4 

399 
355 
324 
279 
264 

 
642 
595 
541 
506 
425 

 
706 
634 
565 
484 
436 

 
1214 
1127 
1044 
928 
820 

25515 
39882 
41885 
42236 
38555 

 
18894 
25233 
36867 
35573 
32979 

 
20376 
17595 
35721 
51482 
52504 

 
1764 
5836 

46604 
38192 
45718 

2.24 X 109

2.52 X 109

2.77 X 109

3.21 X 109

3.35 X 109

 
1.27 X 109

1.37 X 109

1.51 X 109

1.61 X 109

1.91 X 109

 
1.18 X 109

1.32 X 109

1.50 X 109

1.77 X 109

1.94 X 109

 
6.26 X 108

6.81 X 108

7.50 X 108

8.56 X 108

9.73 X 108

2.59 X 107

4.63 X 107

6.58 X 107

1.15 X 107

1.70 X 107

 
1.45 X 107

2.13 X 107

3.76 X 107

5.51 X 107

1.13 X 107

 
1.22 X 107

1.69 X 107

2.50 X 107

4.59 X 107

8.27 X 107

 
5.32 X 106

1.43 X 106

9.42 X 106

1.28 X 107

2.31 X 107

-1.13 X 10-1

-1.05 X 10-1

-1.01 X 10-1

-9.30 X 10-2

-8.64 X 10-2

 
-1.14 X 10-1

-1.09 X 10-1

-9.99 X 10-2

-9.43 X 10-2

-8.25 X 10-2

 
-1.16 X 10-1

-1.14 X 10-1

-1.11 X 10-1

-1.02 X 10-1

-9.20 X 10-2

 
-1.21 X 10-1

-1.01 X 10-1

-1.18 X 10-1

-1.18 X 10-1

-1.09 X 10-1

 

 123



 
 
 
 
 
 
 

Mesitylene 
System 

T(K) Donor 
τ (ps) A1% τ1 (ps) τ2 (ps) kfor (s-1) kback (s-1) ∆rG (eV) 

 
4 
 
 
 
 
1 
 
 
 
 
 
 
 
2 
 
 
 
 
 
3 
 

295.0 
306.3 
314.9 
323.7 
333.7 

 
273.3 
281.7 
294.9 
304.4 
314.3 
324.3 
331.5 
338.1 
346.3 

 
304.5 
314.6 
324.8 
331.5 
339.4 
346.3 

 
308.3 
317.4 
327.8 
331.5 
341.5 
346.3 

3474 
3294 
3174 
3063 
2950 

 
4392 
4139 
3792 
3588 
3407 
3241 
3120 
3020 
2921 

 
3928 
3739 
3951 
3462 
3342 
3266 

 
4873 
4624 
4354 
4258 
4025 
3958 

97.2 
96.1 
94.8 
93.5 
91.8 

 
98.8 
98.5 
97.6 
96.5 
95.2 
93.3 
91.1 
89.6 
86.9 

 
97.6 
96.5 
95.4 
94.2 
92.4 
91.2 

 
98.2 
97.5 
96.6 
96.1 
95.2 
94.1 

407 
349 
316 
296 
260 

 
897 
809 
702 
639 
584 
543 
498 
473 
443 

 
616 
541 
513 
437 
423 
379 

 
936 
869 
762 
707 
672 
606 

28211 
28426 
28059 
27106 
25142 

 
42871 
37068 
43591 
41463 
36678 
31378 
26001 
22567 
18316 

 
47992 
46466 
41172 
36195 
31387 
27944 

 
54290 
49846 
46523 
47701 
41206 
38478 

2.10 X 109

2.45 X 109

2.69 X 109

2.84 X 109

3.19 X 109

 
8.74 X 108

9.76 X 108

1.13 X 109

1.23 X 109

1.34 X 109

1.41 X 109

1.51 X 109

1.57 X 109

1.63 X 109

 
1.33 X 109

1.52 X 109

1.58 X 109

1.87 X 109

1.89 X 109

2.10 X 109

 
8.45 X 108

9.07 X 108

1.04 X 109

1.13 X 109

1.17 X 109

1.30 X 109

7.59 X 107

1.23 X 108

1.78 X 108

2.40 X 108

3.39 X 108

 
1.59 X 107

2.26 X 107

4.11 X 107

6.56 X 107

9.79 X 107

1.46 X 108

2.08 X 108

2.56 X 108

3.39 X 107

 
4.56 X 107

7.38 X 107

1.03 X 108

1.50 X 108

2.03 X 108

2.57 X 108

 
2.29 X 107

3.38 X 107

5.22 X 107

6.39 X 107

8.36 X 107

1.12 X 108

-8.44 X 10-2

-7.90 X 10-2

-7.36 X 10-2

-6.89 X 10-2

-6.45 X 10-2

 
-9.44 X 10-2

-9.15 X 10-2

-8.42 X 10-2

-7.70 X 10-2

-7.08 X 10-2

-6.35 X 10-2

-5.67 X 10-2

-5.28 X 10-2

-4.69 X 10-2

 
-8.85 X 10-2

-8.20 X 10-2

-7.63 X 10-2

-7.21 X 10-2

-6.52 X 10-2

-6.28 X 10-2

 
-9.59 X 10-2

-9.00 X 10-2

-8.45 X 10-2

-8.20 X 10-2

-7.77 X 10-2

-7.33 X 10-2
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p-Xylene 
System 

T(K) Donor 
τ (ps) A1% τ1 (ps) τ2 (ps) kfor (s-1) kback (s-1) ∆rG (eV) 

 
4 
 
 
 
 
1 
 
 
 
 
2 
 
 
 
 
3 
 

295.0 
305.1 
314.6 
323.1 
333.6 

 
295.0 
305.3 
313.6 
323.5 
335.0 

 
295.0 
305.3 
313.1 
323.7 
334.4 

 
295.0 
305.1 
315.3 
323.3 
333.9 

4051 
3834 
3641 
3488 
3317 

 
3851 
3672 
3496 
3329 
3128 

 
4217 
4011 
3860 
3675 
3497 

 
5377 
5072 
4824 
4585 
4326 

97.9 
97.0 
96.1 
94.9 
93.4 

 
97.8 
96.8 
95.5 
94.0 
91.7 

 
98.7 
98.0 
97.3 
96.3 
94.6 

 
98.9 
98.9 
98.5 
97.8 
97.0 

418 
364 
339 
306 
265 

 
722 
666 
611 
565 
512 

 
763 
653 
578 
508 
448 

 
1299 
1120 
1006 
898 
789 

48039 
46308 
44762 
41869 
36500 

 
82187 
69655 
59909 
46653 
34368 

 
38878 
52550 
59762 
57896 
49157 

 
5377 

50337 
57091 
64473 
62787 

2.10 X 109

2.40 X 109

2.56 X 109

2.82 X 109

3.23 X 109

 
1.10 X 109

1.18 X 109

1.28 X 109

1.37 X 109

1.48 X 109

 
1.06 X 109

1.25 X 109

1.43 X 109

1.62 X 109

1.83 X 109

 
5.77 X 108

6.86 X 108

7.72 X 108

8.72 X 108

9.99 X 108

5.53 X 107

8.94 X 107

1.26 X 108

1.80 X 108

2.69 X 108

 
3.72 X 107

5.77 X 107

8.73 X 107

1.27 X 108

1.92 X 108

 
1.95 X 107

3.50 X 107

5.34 X 107

8.37 X 107

1.36 X 108

 
6.57 X 106

1.18 X 107

1.85 X 107

2.92 X 107

4.58 X 107

-9.24 X 10-2

-8.66 X 10-2

-8.18 X 10-2

-7.66 X 10-2

-7.14 X 10-2

 
-8.60 X 10-2

-7.95 X 10-2

-7.26 X 10-2

-6.62 X 10-2

-5.89 X 10-2

 
-1.02 X 10-1

-9.42 X 10-2

-8.87 X 10-2

-8.27 X 10-2

-7.49 X 10-2

 
-1.14 X 10-1

-1.07 X 10-1

-1.01 X 10-1

-9.47 X 10-2

-8.87 X 10-2
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Acetonitrile 
System 

T(K) Donor 
τ (ps) τ1 (ps) kET (s-1) 

4 
 
 
 
 
 
1 
 
 
 
 
 
 
2 
 
 
 
 
 
3 
 

301 
309 
317 
327 
337 

 
273 
281 
295 
305 
314 
324 
340 

 
276 
282 
295 
304 
315 
324 

 
276 
282 
295 
305 
315 
323 
338 

11375 
11102 
10472 
9897 
9389 

 
10900 
10492 
10478 
10049 
8985 
9089 
8401 

 
12828 
12335 
11432 
11071 
10448 
10098 

 
14211 
13952 
13488 
13218 
12929 
12757 
12370 

1382 
1172 
1069 
918 
806 

 
2575 
2286 
1879 
1662 
1446 
1295 
1085 

 
6542 
5858 
4501 
3893 
3225 
2775 

 
8040 
7498 
6265 
5487 
4848 
4245 
3467 

6.36 X 108

7.63 X 108

8.40 X 108

9.88 X 108

1.13 X 109

 
2.97 X 108

3.42 X 108

4.37 X 108

5.02 X 108

5.80 X 108

6.62 X 108

8.02 X 108 

 
7.49 X 107

8.96 X 107

1.35 X 108

1.67 X 108

2.14 X 108

2.61 X 108 

 
5.40 X 107

6.17 X 107

8.55 X 107

1.07 X 108 

1.29 X 108

1.57 X 108 

2.08 X 108

 

 126



4.10 Reference

 

 

1. a) Closs, G. L.; Miller, J. R. Science, 1988, 240, 440; b) Paddon-Row, M. N. Acc. Chem. Res., 

1994, 27, 18. c) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem., 1996, 100, 13148; 

d) Paddon-Row, M. N., In “Electron Transfer In Chemistry”; Balzani, V., Ed.; Wiley-VCH: 

Weinheim, 2001; Vol. Vol. 3, Part 2, Chapter 1; p.179. 

2. a) Hush, N. S.; Paddon-Row, M. N.; Cotsaris, E.; Oevering, H.; Verhoeven, J. W.; Heppener, 

M. Chem. Phys. Lett., 1985, 117, 8; b) Penfield, K. W.; Miller, J. R.; Paddon-Row, M. N.; 

Cotsaris, E.; Oliver, A. M.; Hush, N. S. J. Am. Chem. Soc., 1987, 109, 5061; c) Pispisa, B.; 

Venanzi, M.; Palleschi, A. J. Chem. Soc. Far. Trans., 1994, 90, 435; d) Closs, G. L.; 

Calcaterra, L. T.; Green, N. J.; Penfield, K. W.; Miller, J. R. J. Phys. Chem., 1986, 90, 3673; e) 

Leland, B. A.; Joran, A. D.; Felker, P. M.; Hopfield, J. J.; Zewail, A. H.; Dervan, P. B. J. Phys. 

Chem., 1985, 89, 5571. 

3. a) Helms, A.; Heiler, D.; McClendon, G. J. Am. Chem. Soc., 1991, 113, 4325; b) Sakata, Y.; 

Tsue, H.; O’Neil, M. P.; Wiederrecht, G. P.; Wasielewski, M. R. J. Am. Chem. Soc., 1994, 

116, 6904; c) Guldi, D. M.; Luo, C.; Prato, M.; Troisi, A.; Zerbetto, F.; Scheloske, M.; Dietel, 

E.; Bauer, W.; Hirsch, A. J. Am. Chem. Soc., 2001, 123, 9166. 

4. a)  Kroon, J.; Oliver, A. M.; Paddon-Row, M. N. and Verhoeven, J. W.  Rec, Trav. Chim. 

Pays-Ba, 1988, 107, 509; b) Oliver, A. M.; Craig, D. C.; Paddon-Row, M. N.; Kroon, J. and 

Verhoeven, J. W. Chem. Phys. Lett., 1988, 150, 366; c) Lawson, J. M.; Craig, D. C.; Paddon-

Row, M. N.; Kroon, J. and Verhoeven, J. W. Chem. Phys. Lett., 1989, 164, 120. 

5. a) Zeng Y. and Zimmt, M. B. J. Am. Chem. Soc., 1991, 113, 5107; b) Oliver, A. M.; Paddon-

Row, M. N.; Kroon, J. and Verhoeven, J. W. Chem. Phys. Lett., 1992, 191, 371. 

 127



 

 

6. Paddon-Row, M. N., Shephard, M. H. J. Am. Chem. Soc., 1997, 119, 5355. 

7. a) Kumar, K.; Lin, Z.; Waldeck, D. H.; Zimmt, M. B. J. Am. Chem. Soc., 1996, 118, 243; b) 

Kumar, K.; Kurnikov, I.; Beratan, D. N.; Waldeck, D. H.; Zimmt, M. B. J. Phys. Chem. A, 

1998, 102, 5529; c) Lokan, N. R.; Craig, D. C.; Paddon-Row, M. N. Synlett, 1999, 397; d) 

Lokan, N. R.; Paddon-Row, M. N.; Koeberg, M.; Verhoeven, J. W. J. Am. Chem. Soc., 2000, 

122, 5075; e) Jolliffe, K. A.; Bell, T. D. M.; Ghiggino, K. P. ; Langford, S. J. ; Paddon-Row, 

M. N. Angew. Chem., Int. Ed., 1998, 37, 915; f) Bell, T. D. M.; Jolliffe, K. A.; Ghiggino, K. P.; 

Oliver, A. M.; Shephard, M. J.; Langford, S. J.; Paddon-Row, M. N. J. Am. Chem. Soc., 2000, 

122, 10661; g) Bell, T. D. M.; Ghiggino, K. P.; Jolliffe, K. A.; Ranasinge, M. G.; Langford, S. 

J.; Shephard, M. J.; Paddon-Row, M. N. J. Phys. Chem. A, 2002, 106, 10079; h) Smith, T. A.; 

Lokan, N.; Cabral, N.; Davies, S. R.; Paddon-Row, M. N.; Ghiggino, K. P. J. Photochem. 

Photobiol. A: Chem., 2002, 149, 55. 

8. a) Napper, A. M.; Head, N. J.; Oliver, A. M.; Shephard, M. J.; Paddon-Row, M. N.; Read, I.; 

Waldeck, D. H. J. Am. Chem. Soc, 2002, 124, 10171; b) Napper, A. M.; Read, I.; Waldeck, D. 

H.; Head, N. J.; Oliver, A. M.; Paddon-Row, M. N. J. Am. Chem. Soc., 2000, 122, 5220; c) 

Liu, M.; Waldeck, D. H.; Oliver, A. M.; Head, N. J.; Paddon-Row, M. N. J. Am. Chem. Soc., 

2004, 126, 10778. 

9. Read, I.; Napper, A. M.; Kaplan, R.; Zimmt, M. B.; Waldeck, D. H. J. Am. Chem. Soc., 1999, 

121, 10976. 

10. Zimmt, M. B. and Waldeck, D. H. J. Phys. Chem. A, 2003, 107, 3580. 

 128



 

 

11. a) Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Warman, J. M. Tetrahedron, 1989, 

45, 4751; b) Oevering, H.; Paddon-Row, M. N.; Heppener, H.; Oliver, A. M.; Cotsaris, E.; 

Verhoeven, J. W.; Hush, N. S. J. Am. Chem. Soc., 1987, 109, 3258. 

12. Wong, M. W. Chem. Phys. Lett., 1996, 256, 391. 

13. Kulinowski, K.; Gould, I. R.; Myers, A. B. J. Phys. Chem., 1995, 99, 9017. 

14. Matyushov, D. V. and Voth, G. A. J. Chem. Phys., 1999, 111, 3630. 

15. Vath, P.; Zimmt, M. B.; Matyushov, D. V.; Voth, G. A. J. Phys. Chem. B., 1999, 103, 9130. 

16. Birks, J. B. Photophysics of Aromatic Molecules (Wiley, NY, 1970). 

17. Berden, G.; Meerts, W. L.; Plusquellic, D. F.; Fujita, I.; Pratt, D. W. J. Chem. Phys., 1996, 

104, 3935. 

18. Martin, B.; Geneck, P.; Clark, T. International Journal of Quantum Chemistry, 2000, 77, 473. 

19. Gray, C. G.; Gubbins, K. E., “Theory of Molecular Fluids”, Vol. 1; Clarendon Press: Oxford, 

1984 

20. Ben-Amotz, D. and Willis, K. G. J. Phys. Chem., 1993, 97, 7736. 

21. Matyushov, D. V. and Schmid, R. J. Chem. Phys., 1996, 104, 8627. 

22. The pendant’s polarizability was estimated from Ma, B.; Lii, J.-H.; Allinger, N. L. J. Comput. 

Chem., 2000, 21, 813. The perpendicular polarizability, 5.7 Å3 was used for the propyl group; 

the polarizability perpendicular to the phenyl axis was taken to be 7.4 Å3; the average 

polarizability of toluene (12.30 Å3), 2-methylpropene (8.29 Å3), methane (2.56 Å3) were used 

to approximate the polarizability of compound 1 – 3. The change of the polarizability matches 

with the increasing size of the pendant groups in compound 1- 4. This similar calculation 

predicts a shift in the reaction free energy amongst compound 1 – 4. 

 129



 

 

23. a) Matyushov, D. V. Chem. Phys., 1993, 174, 199; b) Matyushov, D. V. Mol. Phys., 1993, 79, 

795. 

24. Gaussian 03, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; 

Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. 

C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, 

G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; 

Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; 

Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, 

R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; 

Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; 

Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; 

Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. 

B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-

Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; 

Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Pittsburgh PA, 2003. 

25. Rothenfluh, D. F. and Paddon-Row, M. N. J. Chem. Soc. Perkin. Trans. 2, 1996, 639. 

26. Jordan, K. D.; Michejda, J. A.; Burrow, P. D. J. Am. Chem. Soc., 1976, 98, 1295. 

27. a) Napper, A. M.; Read, I.; Kaplan, R.; Zimmt, M. B. and Waldeck, D.H. J. Phys. Chem. A, 

2002, 106, 5288; b) Kaplan, R.; Napper, A. M.; Waldeck, D. H. and Zimmt, M. B. J. Phys. 

Chem. A, 2002, 106, 1917. 

28. Koeberg, M.; de Groot, M.; Verhoeven, J. W.; Lokan, N. R.; Shephard, M. J. and Paddon-

Row, M. N. J. Phys. Chem. A, 2001, 105, 3417; b) Goes, M.; de Groot, M.; Koeberg, M.; 

 130



 
Verhoeven, J. W.; Lokan, N. R.; Shephard, M. J. and Paddon-Row, M. N. J. Phys. Chem. A, 

2002, 106, 2129. 

 131



Chapter 5  Hole Transfer in a C-shaped Molecule: Conformational 

Freedom Obviates Solvent Mediated Coupling 

 

This work has been published as J. M. Nadeau, M. Liu, D. H. Waldeck, M. B. Zimmt, J. Am. 

Chem. Soc., 125, 15964, (2003). 

 

The electronic coupling matrix elements attending the charge separation reactions of a C-

shaped molecule containing an excited pyrene as the electron acceptor and a dimethylaniline as 

the donor are determined in aromatic, ether, and ester solvents. Band shape analyses of the 

charge-transfer emission spectra (CT→S0) provide values of the reaction free energy, the solvent 

reorganization energy, and the vibrational reorganization energy in each solvent. The free energy 

for charge separation in benzene and toluene solvent is independently determined from the 

excited state equilibrium established between the locally excited pyrene S1 state and the charge-

transfer state. Analysis of the charge separation kinetics using the spectroscopically determined 

reorganization energies and reaction free energies indicate that the electronic coupling is solvent 

independent, despite the presence of a cleft between the donor and acceptor. Hence, solvent 

molecules are not involved in the coupling pathway. The orientations of the donor and acceptor 

units, relative to the spacer, are not rigidly constrained, and their torsional motions decreases 

solvent access to the cleft. Generalized Mulliken-Hush calculations show that rotation of the 

pyrene group about the bond connecting it to the spacer greatly modulates the magnitude of 

through-space coupling between the S1 and CT states. The relationship between the torsional 

dynamics and the electron-transfer dynamics is discussed. 
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5.1 Introduction 

The great progress in understanding unimolecular electron-transfer processes during the 

past two decades has occurred by combining experiments and theoretical calculations on well-

defined donor-spacer-acceptor molecules.1 In these studies, the electron-transfer rate constant is 

described by a Golden Rule expression which treats nuclear and electronic degrees of freedom as 

independent quantities.2 This rate formulation is appropriate when the donor-acceptor electronic 

coupling (which is a measure of these groups' quantum mechanical mixing) is small and the 

same every time the transition state is accessed. This criterion (the Condon approximation) is 

best satisfied in conformationally restricted systems, such as "rigid", linear donor-bridge-

acceptor molecules. The dependence of electronic coupling magnitude on bridge structure in a 

variety of "rigid" systems has been investigated and is well understood.3 In contrast to such 

systems, the C-shaped molecule studied here has two potential sources of nuclear coordinate-

dependent electronic coupling: (i) a direct, through-space interaction that is modulated by the 

conformational freedom of the donor and acceptor groups and (ii) an indirect, solvent-mediated 

interaction that is modulated by a solvent molecule's placement in the cleft that lies between the 

donor and acceptor. The influence of these nuclear coordinates on the overall electronic coupling 

and on the electron-transfer process is explored in this investigation.  

The dynamical consequences of nuclear coordinate-dependent electronic coupling have 

been addressed in a number of limiting cases. When interconversion rates between a 

predominant system conformation and a number of highly reactive conformations are slow, the 

experimental transfer rate constant reflects conformational dynamics more than intrinsic 

electron-transfer rate constants; that is, the system is conformationally gated.4 Additional kinetic 

complexity arises in systems when interconversion rates among multiple reactive conformations 
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are comparable to the transfer rate constants of the individual conformations. A different 

category of complexity arises if a set of nuclear coordinates influences the barrier to electron 

transfer (i.e., the nuclear Franck-Condon factors) and also strongly modulates the donor-acceptor 

electronic coupling. This produces an explicit nuclear dependence of the coupling matrix 

element, which violates the Condon approximation and may invalidate use of the Golden Rule 

rate expression. Systems that may fall into this category include protein electron transfers,5 

symmetry forbidden but vibronically allowed electron transfers,6 and solvent-mediated electron 

transfers.7 In the latter systems, different placements of solvent molecules generate different 

values of the donor-acceptor coupling matrix element, thus altering the electron tunneling 

probability, and at the same time contribute to the activation barrier through solvation and 

reorganization effects.  

During the past few years, we have analyzed electron-transfer dynamics from a number 

of systems in which coupling is primarily solvent mediated. These investigations employ rigid C-

shaped structures with a solvent-accessible cleft directly between the donor and acceptor groups. 

The rigidity guarantees that each molecule populates only one conformation. The length and 

topology of the spacers, in conjunction with the attachment geometries of the donor and acceptor, 

were designed to reduce through-bond coupling magnitudes so that solvent-mediated coupling 

dominates. In these systems, solvent molecules within the cleft constitute the electron tunneling 

pathway between the donor and acceptor group. Striking evidence for the solvent's participation 

in the electron tunneling pathway comes from the strong correlation between the experimentally 

derived electronic coupling magnitude and the solvent's LUMO energy.8 Because the electron-

transfer reaction within the C-shaped molecule is initiated by photoexcitation of the donor, the 

transferring electron originates in the donor LUMO. The energetic proximity of vacant solvent 
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orbitals to the LUMO of the excited donor provides a rationale for the observed correlations. 

Solvent molecules with a lower energy LUMO enhance the excited donor to acceptor coupling 

because they provide lower energy excited configurations (resonance structures), such as D+S-A, 

that more effectively mix into the donor excited state and, simultaneously, increase the acceptor's 

proximity to the transferring electron.9 This explanation suggests that a C-shaped molecule 

employing an electronically excited acceptor might display solvent-mediated coupling 

magnitudes that correlate with solvent HOMO energy; that is, energetic proximity of solvent 

valence orbitals to the transferring hole in the HOMO of an excited acceptor should enhance 

electron tunneling from D to A*.  

 

 

R

1.  R =  NMe2
2. R = H Scheme 1 

 

This manuscript analyzes the electron-transfer kinetics and charge-transfer emission 

spectra from a C-shaped molecule containing an excited acceptor and a ground state donor. 

Molecule 1 (Scheme 1) has a 2'-pyrenyl acceptor (A) and a 4'-N,N-dimethylanilinyl donor (D) 

that are connected by single bonds to the terminal, CH2 bridges of a tetradecahydro-1,4:5,8:9,10-

trimethanoanthracene spacer. Eight σ bonds separate the acceptor and donor groups. In the 

molecule's lowest energy conformation, the pyrene and dimethylaniline groups lie in roughly 

parallel planes displaced by 6.7 Å. Molecular mechanics calculations indicate that the cleft 
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defined by the donor, spacer, and acceptor is just large enough to accommodate aromatic or other 

nearly planar solvent molecules. The gas phase, vertical ionization potential of dimethylaniline is 

~7.4 eV.10 The gas phase, vertical ionization potentials of the solvents employed in this 

investigation range from 8.4 eV (anisole) to 10.4 eV (ethyl acetate). The energy of a virtual (A-)-

(solvent+)-D superexchange9a,b configuration changes substantially across this set of solvents, as 

should its mixing with the acceptor excited state.8 If donor-acceptor coupling in 1 is 

predominantly solvent mediated, the experimentally determined coupling value ought to 

decrease as the energy of the virtual9a A--(solvent+)-D configuration increases, that is, from 

anisole to ethyl acetate. In contrast to this prediction, the experimentally determined coupling 

magnitudes are solvent independent, exhibiting no correlation with solvent ionization potential 

(HOMO level) or solvent electron affinity (LUMO level). This is evidence against the 

involvement of solvent in the electron tunneling pathway. Surprisingly, calculations reveal 

negligible electronic coupling in the lowest energy conformation of molecule 1, indicating that 

through-space and through-bond tunneling pathways are inactive. Instead, the calculations 

predict large donor-acceptor* electronic coupling in conformations formed by twisting the 

pyrene or the dimethylaniline about the σ bonds connecting these groups to the spacer. Taken 

together, the experiments and calculations indicate that donor-acceptor electronic coupling in 1 is 

strongly modulated by the conformational degrees of freedom of the molecule.  

5.2 Experimental Section 

The preparation of 1 and its acceptor only analogue 2 are reported elsewhere.11 Samples 

used for steady-state spectroscopy had optical densities of 0.05-0.15 at the excitation wavelength 

(331 nm) in freshly dried and distilled solvents. Spectra were recorded on a SPEX F111X1 
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fluorimeter using 0.1 mm slits and were corrected for the detection system response. Samples for 

nanosecond time-resolved fluorescence spectroscopy (λexc 331 nm) and picosecond time-

resolved photon counting (λexc 321 nm) were freeze-pump-thaw degassed a minimum of four 

cycles. Samples investigated at temperatures above 25 ºC were back-filled with high purity argon 

to prevent solvent distillation. The apparatus for both time-resolved fluorescence methods was 

previously described.12 Fluorescence decays of the excited pyrene were recorded at 380 nm to 

eliminate contributions from the charge-transfer (CT) emission band. Fluorescence decays of the 

CT band were detected at wavelengths longer than 490 nm. Fluorescence decays were fit by 

iterative convolution of a mono-, bi-, or triexponential expression with an instrument response 

function obtained from a BaSO4-glycerol colloid. Fits to a triexponential expression were 

realized by adjusting three amplitudes and two decay rate constants. The slowest decay rate 

constant was independently determined from a single-exponential fit of the final 100 ns of the 

photon counting data or from a 500 ns data set obtained with the nanosecond apparatus.  

Samples of compound 1 contained trace amounts of an unidentified impurity and of a 

pyrene-spacer molecule that lacked an active donor group. HPLC purification reduced but did 

not eliminate these impurities from the sample. The emission spectrum of the unidentified 

impurity overlapped significantly with that of pyrene; however, its decay rate constant, which 

varied with solvent between 0.2 and 0.5 ns-1, was considerably slower than the charge separation 

rate constants for 1 and much faster than the decay rate constants of the CT state. The impurity's 

presence necessitated a triexponential analysis of the fluorescence decay, but otherwise provided 

little interference in the kinetic analyses or in the analyses of charge-transfer emission line 

shapes. The pyrene-spacer impurity contributed 3.3% of the pyrene fluorescence decay 

amplitude detected at 380 nm. This value was determined in polar solvents, where the S1 → CT 
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transition is irreversible. The contribution of this impurity was removed prior to determination of 

the charge separation free energy, ∆rG (S1 → CT), from the ratio of the fast and slow pyrene 

decay amplitudes.8  

5.3 Results and Discussion 

5.3.1 Emission Spectroscopy  

The steady-state emission spectrum of 1 exhibits structured, pyrene-like peaks between 

370 and 470 nm and a broad, featureless band that extends to wavelengths greater than 600 nm 

(Figure 5.1).  
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Figure 5.1 Steady state fluorescence spectra from 1 in cyclohexane (gray line, intensity × 0.4), 

benzene (black line), anisole (cross), tetrahydrofuran (shaded circles, intensity × 3.0). The arrow 

points to Raman peaks (C-H) from the solvent. 
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The latter emission is obscured partially by the red edge of the pyrene-like emission. The 

overall intensity of the structured region varies with solvent, but the positions of the peaks 

remain constant at 375, 386, and 394 nm. The structured emission from 1 is assigned as 

fluorescence from the lowest excited singlet state (S1, LE) of the pyrene acceptor on the basis of 

its similarity to the spectrum from the pyrene-spacer analogue, 2. The intensity and position of 

the broad featureless emission is strongly solvent dependent. The large red shift of this band with 

increasing solvent polarity identifies it as a charge-transfer (CT → S0) emission.  

The solvatochromic shift of a CT band can be analyzed using the Lippert-Mataga 

relationship,13,14
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where νmax is the CT emission maximum in a given solvent (expressed in cm-1), ν0
max is the CT 

emission maximum for ∆f = 0 (where ∆f = [(ε- 1)/(2ε + 1)] - [(n2 - 1)/(4n2 + 2)]), a is the 

effective spherical radius of the cavity that the donor-spacer-acceptor molecule occupies in the 

solvent, µdip is the CT state dipole moment, ε is the solvent dielectric constant, and n is the 

refractive index of the solvent. This form of equation 1 is appropriate because the ground-state 

dipole moment of 1 is small (< 1.5 D). CT spectra and emission maxima were determined in 

ether and ester solvents (Table 5.1). The data points (Figure 5.2) deviate somewhat from a 

straight line, with the values in acyclic ethers somewhat offset from those in the ester solvents. 

The slope obtained from a linear fit to the data is -30 560 cm-1 and yields µdip(D) = (3.03 × a3)1/2. 

Assuming a cavity radius of 6 or 7 Å produces a charge-separated state dipole moment of 25.6 or 

32.3 D, respectively.15 These values correspond to transfer of a full electron over a distance of 

5.3 and 6.7 Å, which is consistent with the ground state, donor-acceptor separation. The spectral 
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analysis is too crude to determine whether charge separation induces a significant reduction of 

the donor-acceptor separation in 1.  

Table 5.1 CT emission maxima (νmax) of 1 in dipolar solvents at 295 K.a  Solvent polarity 

parameters, n, εs, and ∆f, are listed for each solvent.b,c

Solvent n εs ∆f Experimental 
νmax (cm-1) 

n-butyl ether 1.40 3.1 0.194 21,500 
n-propyl ether 1.38 3.4 0.214 21,200 
isopropyl ether 1.37 3.9 0.238 20,800 

ethyl ether 1.35 4.3 0.255 20,300 
n-butyl propionate 1.40 4.83 0.261 19,300 

n-butyl acetate 1.39 5.1 0.269 19,200 
n-propyl acetate 1.38 5.5 0.281 19,000 

ethyl acetate 1.37 6.0 0.292 18,700 
THF 1.41 7.5 0.307 18,300 

a An instrument correction factor for the monochromator and detector response was applied to 

each spectrum.b nD values were obtained from the Aldrich Handbook of Fine Chemicals and 

Laboratory Equipment, 2001-2002.c εs values were obtained from either: (a) Kaplan, R.; Napper, 

M.; Waldeck, D. H.; Zimmt, M. B. J. Phys. Chem. A 2002, 106, 1917-1925 or (b) Madelung, O. 

Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, 

New Series IV; Springer-Verlag: New York, 1991; Vol. 6. 
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Figure 5.2 Lippert-Mataga plot for the CT emission band of 1 (see eq 1). Ether solvents are 

indicated by empty circle. Ester solvents are indicated with black square. 

 

5.3.2 Electron-Transfer Thermodynamics and Reorganization Parameters.  

The charge recombination driving force, ∆rG (CT → S0), for 1 dissolved in weakly and 

moderately polar solvents may be estimated through simulation of the CT emission line 

shape.16,17 Such fits provide estimates of ∆rG (CT → S0) and other electron-transfer parameters 

included in the semiclassical model: λ0, the solvent (low frequency) reorganization energy; λv, 

the vibrational (high frequency) reorganization energy; and ħω, the average mode spacing 

associated with the high frequency reorganization. Many combinations of the four parameters 

accurately reproduce the experimental line shapes. Fortunately, 1 exhibits LE CT equilibrium 

in weakly polar solvents, and analysis of the kinetic data (vide infra) provides an independent 

value of the charge separation free energy, ∆

⇔

rG (S1 → CT), in benzene (-0.11 eV) and toluene (-

0.05 eV). These free energies were used to constrain fits to the CT spectra so as to obtain more 

accurate reorganization parameters.  
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The CT line shape analysis for 1 in benzene and toluene was constrained by setting ∆rG 

(CT → S0) = -∆rG (S1 → CT) − 3.33 eV, where 3.33 eV is the pyrene excited state energy. The 

CT emission spectra from these two solvents were fit simultaneously with a single λv parameter 

for both solvents, a separate λ0 parameter for each solvent, and a single fixed value of ħω.18 The 

procedure was repeated with ħω fixed to values between 0.12 and 0.22 eV in steps of 0.02 eV. 

The best fits were obtained with ħω between 0.18 and 0.22 eV (Figure 5.3). The analysis yielded 

five (ħω, λv) pairs correlated to one of five values of λ0 for benzene and for toluene. In general, 

larger assumed values of ħω produced smaller λv and larger λ0 values. Line shape analyses for 1 

in the remaining solvents employed the five (ħω, λv) pairs and generated five corresponding pairs 

of (∆rG (CT → S0), λ0) for each solvent.  
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Figure 5.3 Experimental (circle) and calculated (lines) charge transfer emission spectra from 1 in 

Benzene (left) and Toluene (right). The spectra were calculated using λv = 0.15 eV, ħω = 0.20 eV 

and ∆rG (CT→S0) = -3.22 eV (benzene) and -3.28 eV (toluene). Fitting yielded λ0 = 0.54 eV 

(benzene) and 0.56 eV in toluene. 

 

Table 5.2 lists mean values and the range of values, as an error, for ∆rG (CT → S0) and λ0 

in the eight solvents. The solvent dependence of ∆rG (CT → S0) determined via line shape 
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analysis for the nonaromatic solvents (Table 5.2) is in reasonable agreement (within 0.1 eV) with 

predictions of a continuum solvation model (eq 2) using the slope of the Lippert-Mataga analysis 

(µ2/a3) and ∆rG (CT → S0)VAC = -3.83 eV. 
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By contrast, the experimental values of ∆rG (CT → S0) in the aromatic solvents are 0.3 − 

0.4 eV less exoergic than the continuum predictions, indicating that these solvents stabilize the 

charge-transfer state to a greater extent than predicted by their static dielectric constants. This 

additional solvation arises from the aromatic solvents' large quadrupole moments.19 In the case 

of chlorobenzene, other factors may be involved (vide infra). Generally, the energy of a CT 

emission band maximum (Franck-Condon maximum18) can be approximated as hνFC-max ≈ -∆rG 

(CT → S0) – λ0 – λv.20 For each solvent in Table 5.2, -∆rG (CT → S0) – λ0 determined from the 

fit parameters is 0.1 eV larger than hνFC-max.18 This suggests an approximate value of 0.1 eV for 

λv, in agreement with the value used in the fitting procedure (vide infra). 

Table 5.2 Charge Recombination Free Energy and Solvent Reorganization Energy 

Determined from the CT Emission Analyses and from a Continuum Solvation Modela

Solvent ε (εEFF
b) 

CT 
FCMAX 
(eV) 

∆rG(CT S0) 
(line shape) 

eVc

∆rG(CT S0) 
(cont.) 

eVe

λ0 
(lineshape) 

eVc

λ0 
(cont.) f

eV 
Benzene 2.3 (4.4) -2.57 -3.22 ± 0.00d -3.61 (-3.18) 0.54 ± 0.02 0.22 
Toluene 2.4 (3.6) -2.65 -3.28 ± 0.00d -3.59 (-3.23) 0.56 ± 0.02 0.18 
Anisole 4.3 (6.4) -2.38 -3.10 ± 0.01 -3.40 (-3.09) 0.60 ± 0.02 0.30 

Ethyl Ether 4.3 -2.52 -3.24 ± 0.01 -3.35 0.61 ± 0.02 0.32 
Butyl Acetate 5.1 -2.36 -3.17 ± 0.01 -3.14 0.70 ± 0.02 0.33 

Chlorobenzene 5.7 (5.7) -2.45 -3.03 ± 0.01 -3.34 (-3.34) 0.46 ± 0.02 0.28 
Ethyl Acetate 6.0 -2.30 -3.12 ± 0.01 -3.10 0.75 ± 0.02 0.38 

THF 7.5 -2.26 -3.09 ± 0.01 -3.06 0.72 ± 0.03 0.39 
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a Mean value of ħω = 0.20 eV; mean value of λv = 0.15 eV. b See text for εEFF definition. c Errors 

represent one standard deviation for the five (ħω, λv) pairs. d Value not varied. e Continuum value 

calculated using eq 2; values in parentheses calculated using εEFF. f Continuum values calculated 

using eq 3 and ε for the nonaromatic solvents or εEFF for the aromatic solvents.  

 

Independent estimates of vibrational reorganization energies are available from ionization 

energies and from theory. The difference between the vertical and adiabatic ionization potentials 

for aniline, ~ 0.33 eV, and for N,N-dimethylaniline, 0.2 − 0.45 eV, indicate significant 

vibrational reorganization upon oxidation of aromatic amine donors.21 AM1 calculations predict 

vibrational reorganization energies, λv for pyrene reduction and dimethylaniline oxidation of 

0.13 and 0.23 eV, respectively. The nitrogen of dimethylaniline is pyramidal in the neutral 

structure and planar in the equilibrated radical cation geometry. Vibrational frequencies related 

to this motion are low (< 200 cm-1)22 and can be treated as a low frequency (solvent) contribution 

in a single quantized mode model.23 The calculated λv for dimethylaniline is only 0.06 eV if the 

dimethylamino group's improper torsion angle is constrained to the value for the neutral structure. 

Combined with the pyrene reorganization, this yields a total, calculated high-frequency 

reorganization energy of 0.19 eV, in reasonable agreement with the average value, 0.15 eV, 

derived from CT line shape analysis for 1 in benzene and toluene. This internal reorganization 

energy is associated with the planar aromatic groups, whose C=C vibrations lie near 1600 cm-1. 

The remaining 0.17 eV of the AM1 calculated internal reorganization energy for dimethylaniline 

is coupled to the low frequency, pyramidalization coordinate of the dimethylamino group.  

The line shape derived estimates of λ0 increase with increasing solvent dielectric constant, 

with the notable exception of chlorobenzene (Table 5.2). Overall, the values are somewhat large 

for the moderately polar solvents used here. The slope of the Lippert-Mataga analysis (µ2/a3) in 
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combination with eq 3 provides independent, continuum model estimates of λ0 for the 

nonaromatic, dipolar solvents (eq 3, Table 5.2). 
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The λ0 values determined by line shape analyses are 0.29 − 0.37 eV larger than the 

continuum estimates. A significant part of this discrepancy derives from the vibrational 

reorganization involving the dimethylamino group (~ 0.17 eV, vide supra). The origin of the 

residual 0.1 − 0.2 eV difference is not clear. The other solvents in Table 5.2 are weakly polar 

aromatics. Continuum model predictions of λ0 for these solvents are usually too small because 

quadrupolar solvation is not included.19 One can define "effective" dielectric constants, εEFF, for 

the aromatic solvents using the Lippert-Mataga slope, the solvent refractive indices, and the CT 

emission maxima (Table 5.2). This procedure doubles benzene's dielectric constant, enhances 

those of toluene and anisole by 50%, but leaves chlorobenzene's unchanged. The "continuum" λ0 

values calculated using the εEFF for the aromatic solvents (Table 5.2) are smaller than the line 

shape values by 0.18 − 0.38 eV. The underestimates for the aromatic solvents are comparable to 

those found for the nonaromatic solvents and may be explained similarly.  

kf krec

kback

kfor

S1

CT

S0 Scheme 2 
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The CT emission full width at half-maximum is smallest in chlorobenzene. Fitting the CT 

line shape in this solvent yields the smallest value of λ0 and the lowest CT state energy (Table 

5.2). This contrasts with the continuum estimates of λ0 and the CT state energy for 

chlorobenzene, which lie roughly in the middle of the ranges predicted for all of the solvents. 

The small λ0 and low CT state energy translate into a small activation barrier and a large driving 

force for electron transfer in chlorobenzene. Analysis of the kinetic data using these spectral 

fitting parameters produces a small value of the electronic coupling in chlorobenzene (vide infra). 

The origin of the small CT spectral width in chlorobenzene is unknown.  

5.3.3 Electron-Transfer Rate Constants and Coupling Magnitudes 

The shape of the time-resolved fluorescence signal from 1 depends strongly on the 

detection wavelength, sample temperature, and solvent. If fluorescence is detected at a 

wavelength where the charge-transfer band dominates, for example, 540 nm, the emission 

intensity rises and reaches a maximum within a few nanoseconds after excitation. The 

subsequent decay of the emission intensity requires many hundreds of nanoseconds. By contrast, 

the fluorescence intensity decays to a small fraction of its peak value within a few nanoseconds 

following excitation when detecting at 380 nm where pyrene emission dominates. The residual 

emission intensity requires many hundreds of nanoseconds to decay. Increasing the sample 

temperature reduces the time required for the fast intensity decay (growth) observed at 380 (540) 

nm. In toluene and benzene, increasing the sample temperature increases the amplitude of the 

long-lived component detected at 380 nm. In solvents more polar than benzene or toluene, the 

amplitude of this long-lived component (~ 3%) is temperature independent.  
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The solvent and temperature dependences of the emission decay profile indicate the 

establishment of an excited-state equilibrium between the pyrene S1 and CT states of 1 (Scheme 

2).24 The initially prepared pyrene S1 state evolves to an interconverting mixture of S1 and CT. 

The equilibrium constant for this step depends on the charge separation driving force, ∆rG (S1 → 

CT) and the sample temperature. Back transfer from CT to S1 occurs to a measurable extent only 

if ∆rG (S1 → CT) is more positive than -0.12 eV. The equations relating the observed 

fluorescence decay parameters to the four rate constants in Scheme 2 are well known.8 The 

intrinsic decay rate constants of the pyrene S1 and CT states (kf and krec) are so small that the 

observed fast decay rate constant is equal to kfor + kback and the ratio of the fast decay amplitude 

to the slow decay amplitude detected at 380 nm is equal to kfor/kback. Figure 5.4 displays the 

temperature dependence of kfor, kback, and ∆rG (S1 → CT) determined by analyzing the 

picosecond photon counting data for 1 in toluene.  
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Figure 5.4 Left axis: Arrhenius type plot of k  (black triangle) and k  (black square) for 1 in 

toluene versus the reciprocal temperature. Right axis: Plot of ∆ G (S CT) (circule) versus the 

reciprocal temperature. 
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The value of ∆rG (S1 → CT) determined for 1 from the excited-state equilibrium is -0.05 

eV in toluene at 293 K and is -0.11 eV in benzene at 295 K. These two experimental values were 

used to extract values of (ħω, λv, λ0) from the CT spectra in these two solvents and, ultimately, 

(∆rG (CT → S0), λ0) values for the other solvents (vide supra). These reorganization parameters 

characterize the charge recombination to ground-state reaction, and their use for analyzing the S1 

→ CT electron-transfer reaction is not rigorously justified. Nevertheless, the CT → S0 

reorganization parameter sets provide the best estimates for the S1 → CT reaction and will be 

used in the absence of other information.25  

Table 5.3 lists the charge separation free energy, ∆rG (S1 → CT), and charge separation 

rate constants (kfor) determined for 1 at 295 K. The solvents are ordered from smallest to largest 

vertical ionization potential (column 2). The rate constants vary by less than a factor of 7 from 

the largest value in anisole to the smallest value in toluene. The small reaction free energy in the 

latter solvent likely is responsible for the slow transfer rate. Values of the donor-acceptor 

electronic coupling were determined from the charge separation rate constant8 using the single 

high-frequency mode, semiclassical rate equation26 and the free energy and reorganization 

parameters determined from the CT spectra. Excluding the chlorobenzene result, the coupling 

magnitudes exhibit no clear solvent dependence (mean value for seven solvents, 23 ± 3 cm-1). 

The values determined for the aromatic solvents are, perhaps, slightly smaller than the values for 

the nonaromatic solvents, but the difference is comparable to the systematic uncertainties and to 

the accuracy that this sort of analysis produces. The coupling exhibits no obvious dependence on 

the solvent ionization potential (HOMO energy) or on the solvent's electron affinity (LUMO 

energy, data not shown). If solvent mediates donor-acceptor coupling for 1, its contribution is 

either minor or weakly solvent dependent.  
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Table 5.3 Charge separation rate constants and electronic coupling magnitudes determined 

as a function of solvent for 1 at 295 K. 

Solvent IPVERT (eV) k(S1 CT) / s-1 ∆rG (S1 CT) eV |V|  cm-1

Anisole 8.4 6.5 x 109 -0.23 ± 0.01 19 ± 1 
Toluene 8.9 9.4 x 108 -0.05 ± 0.00 23 ± 1 
Chlorobenzene 9.1 5.6 x 109 -0.30 ± 0.01 7.2 ± 0.5 
Benzene 9.2 2.2 x 109 -0.11 ± 0.00 19 ± 1 
THF 9.6 4.0 x 109 -0.24 ± 0.01 25 ± 3 
Ethyl Ether 9.6 1.4 x 109 -0.09 ± 0.01 27 ± 3 
Butyl Acetate 10.1 1.3 x 109 -0.16 ± 0.01 24 ± 3 
Ethyl Acetate 10.4 1.8 x 109 -0.21 ± 0.01 22 ± 3 

 

5.3.4 Theoretical Calculations of Electronic Coupling Magnitudes for 1 

Because the experimental results indicate that a solvent insensitive pathway is the 

dominant source of electronic coupling in the charge separation reaction of 1, through-bond and 

through-space coupling pathways were evaluated by quantum chemical calculation. The 

ZINDO27/Generalized Mulliken Hush (GMH)28 method was used to calculate electronic coupling 

magnitudes between (i) the CT state and the ground state and (ii) the CT state and the S1 state, 

which is an equal mixture of the HOMO → LUMO + 1 and HOMO − 1→ LUMO configurations. 

For 1 in its ground-state equilibrium conformation, both calculated couplings magnitudes are at 

least 1 order of magnitude smaller than the experimental value of the S1 ⇔ CT coupling (Figure 

5.5: Eq. Geom.). Through-bond coupling and direct through-space interaction (6.7 Å) at the 

equilibrium geometry of 1 do not impart coupling comparable to the experimentally determined 

values. Consequently, conformational distortions, involving the donor and acceptor groups, were 

explored to investigate whether higher energy conformations provide larger electronic coupling.  
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Eq. Geom: Side View           Eq.Geom: End View          17o wag:  End View

                     
States Coupled         Equilibrium Geometry           17o Wag 

                             |V| (S0 ⇔ CT)      1.5 cm-1    6 cm-1

                             |V| (S1 ⇔ CT)      0.6 cm-1             0.5 cm-1

 

Figure 5.5 ZINDO / GMH calculated couplings for the equilibrium and “17o wag” 

conformations. 

 

Calculations have been performed for three types of structural deformation. Twisting the 

spacer such that the donor and acceptor remain in parallel planes but that a 17º dihedral angle is 

formed by the atoms in the σ bonds connecting these groups to the spacer (Figure 5.5: 17º wag) 

barely alters the S1 CT coupling, although it increases the S⇔ 0 ⇔ CT coupling 4-fold. Starting 

from the equilibrium geometry, compression of the donor-acceptor separation by 1.5 Å increases 

V  (S1 ⇔ CT) by only 2 cm-1. In contrast to these ineffectual distortions, rotation of the pyrene 

about the bond connecting it to the spacer strongly modulates the pyrene/DMA electronic 

coupling magnitude (Figure 5.6). A structure in which the pyrene group is rotated by 45º 

generates S1 CT coupling comparable to the experimental values. This rotation positions the 

edge of the pyrene closer to the dimethylaniline. The source of the coupling increase is discussed 

below.  

⇔
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0o Twist                           22o twist    45o twist                                                  

   
|V| (S0 ⇔ CT)       1.5 cm-1 (0.2 cm-1)  34 cm-1 (11cm-1)    171 cm-1 (110 cm-1) 
|V| (S1 ⇔ CT)       0.6 cm-1 (1.6 cm-1)  4 cm-1  ( 3 cm-1)      23 cm-1 (  26 cm-1) 

 

Figure 5.6 ZINDO / GMH calculated couplings for the equilibrium, “22o twist” and “45o twist” 

conformations. Removal of the central norbornane unit of the spacer generates the couplings 

listed in parentheses. 

 

Assessing whether twisted pyrene conformations are relevant to the electron-transfer 

event requires an estimate of their energy and probability of formation. Molecular mechanics 

calculations indicate that a 22º twist about the bond connecting pyrene to the spacer (the "22º 

twist" conformer) lies 1.6 kcal/mol above the lowest energy ("0º twist") conformer and the "45º 

twist" conformer lies 8.3 kcal/mol above the lowest energy conformer (Scheme 4). Thus, it is 

feasible that twisting of the aryl groups could be an important nuclear motion for generating 

electronic coupling.29 Evaluation of the thermally averaged coupling magnitude in a 

conformationally unconstrained system requires a molecular dynamics/electronic coupling 

calculation.30 An estimate of the coupling generated by pyrene rotations alone was obtained from 

the calculated GMH couplings and molecular mechanics energies as a function of the twist angle 

(Figure 5.7). 
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Figure 5.7 Influence of rotation of the pyrene spacer bond on the S1 ⇔ CT electronic coupling 

(left axis, circle) and the molecular mechanics energy (right axis, square) of molecule 1.  A 0o 

twist angle corresponds to the lowest energy conformer of molecule 1. 

 

The S1 CT coupling magnitude and the conformer energy vary quadratically with 

twist angle (between 0º and 45º). Using this dependence on twist angle, a Boltzmann weighted, 

root-mean-square value of the coupling may be calculated

⇔
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where Ej is the energy of a particular conformation, Vj  is the S1 ⇔ CT coupling in that 

conformation, and E0 is the energy of the most stable conformation. This yields a Vrms of 6.6 cm-1 

at 295 K and 8.4 cm-1 at 360 K.29 It is possible that combinations of distortions, for example, 

pyrene and dimethylaniline rotations and compression, might generate Vrms values that approach 

the experimental values. Interestingly, higher energy conformers of 1 that offer larger S1 ⇔ CT 

coupling most likely cannot be populated when solvent molecules are situated in the cleft 
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directly between the donor and acceptor. Thus, solvents that easily enter the cleft might actually 

reduce the coupling. As both pyrene and dimethylaniline are relatively electron rich, electron-

deficient solvents would have the greatest propensity for cleft insertion.31 Although the 

preceding analysis uses a crude molecular mechanics model for the conformer energetics and 

neglects the energetics of solvent-substrate interactions,32 it illustrates that the conformational 

freedom of the minimally constrained donor and acceptor groups is a likely source of significant 

donor acceptor electronic coupling.  

The enhanced coupling attending twisting of the pyrene can be dissected to ascertain 

whether it arises from changes in through-bond pathways, through-space pathways, or both. 

ZINDO/GMH values of V (S1 CT) are unchanged by removal of the spacer's central 

norbornane unit (Scheme 4, values in parentheses) when the donor and acceptor geometries are 

otherwise maintained as in the full calculation. This finding implicates direct, through-space, 

donor-acceptor interactions as the primary pathway for S

⇔

1 ⇔ CT coupling in the twisted 

conformers. Through-bond coupling contributions are minimal. This contrasts with the results 

for S0 CT coupling following clipping of the spacer unit, where through-bond and through-

space interactions interfere constructively to generate the coupling. Thus, the S

⇔

0 and S1 states of 

pyrene in 1 employ different combinations of coupling pathways to interact with the same CT 

state.  
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Figure 5.8 CPK models of the pyrene containing, C-shaped hole transfer molecule, 1 (left) and 

the anthracene containing, C-shaped electron transfer molecule, 3 (right). 

 

The ZINDO/GMH calculations suggest that the charge separation reactions of 1 obtain S1 

CT coupling from thermally populated, twisted conformers. If this is correct, the electronic 

coupling in 1 should be temperature dependent.

⇔

8 The charge separation driving force for 1 in 

benzene at 295 K is the same as for a 7 Å C-shaped molecule, 3, previously characterized 

(Figure 5.8).8 The temperature dependence of ∆rG (S1 → CT) in both systems are similar.33 

Despite these similarities, the charge separation rate constants for 1 and 3 exhibit very different 

temperature dependences: kfor in 1 increases with temperature (EA ≈1.8 kcal/mol), but kfor in 3 

decreases with temperature (EA ≈ -1.4 kcal/mol). The apparent barrier to charge separation is 

significantly larger for 1 than for 3. The low-frequency reorganization energy for 1 in benzene is 

larger than the λ0 attributed to 3 and certainly contributes to the more positive activation energy 

observed for 1. A contribution to the larger activation energy from a temperature-dependent 

electronic coupling in 1 cannot be ruled out, however.  
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5.3.5 Charge Recombination Reactions  

Although the S1 ↔ CT electron-transfer kinetics are the primary focus of this 

investigation, the CT state decay kinetics are noteworthy. The CT state is formed with greater 

than 98% efficiency, and its decay rate constant, which ranges from 4 X106 s-1 in tetrahydrofuran 

to 9 X 106 s-1 in chlorobenzene, is ~ 1000 times smaller than the CT state formation rate 

constant.34 Numerous processes potentially depopulate the charge-transfer state. Nonradiative 

CT → S0 charge recombination lies deep within the Marcus inverted region: ∆rG (CT → S0) ≈    

-3.1 eV. Using the reorganization parameters obtained from the charge-transfer band line shape 

fitting, the V  (S0 ⇔ CT) coupling magnitude would need to be larger than 2000 cm-1 to produce 

the observed decay rate constants. Although couplings of this magnitude are known for contact 

ion pairs and short donor-bridge-acceptor molecules,35 the calculated GMH couplings are not 

close to this magnitude. Thus, nonradiative CT → S0 transitions are not the dominant CT decay 

process. The charge-transfer emission quantum yield is less than 0.05, so radiative CT → S0 

charge recombination is also not the dominant decay process. Diffusion-controlled, 

intermolecular charge shift reactions are too slow because the DSA concentration is less than 10 

µM. Other possible contributors to the decay of the CT emission include charge recombination 

with direct formation of the pyrene triplet36 and a two-step process for formation of the pyrene 

triplet involving intersystem crossing to the 3CT state followed by charge recombination.37 The 

pyrene triplet state energy is 2.1 eV; thus CT → T1 charge recombination processes lie close to 

the peak of the Marcus curve in these solvents. Donor-acceptor coupling V  (T1 ⇔ 1,3CT) of 

1cm-1 or less is sufficient to produce the observed rate constants using the estimated 

reorganization parameters. Pyrene triplet is likely the dominant product formed from the CT state.  
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5.4 Conclusion 

For the C-shaped pyrene*-spacer-dimethylaniline molecule investigated here, the 

coupling is essentially solvent independent. No correlation between coupling magnitude and 

solvent HOMO or LUMO energy is discernible. The shape of molecule 1 in its equilibrium 

geometry is similar to that of a C-shaped molecule, 3, previously used extensively in 

investigations of solvent-mediated electronic coupling (Figure 5.8). Two structural differences 

between these molecules are likely responsible for their disparate sensitivity to solvent-mediated 

coupling. The donor and acceptor "walls" defining the solvent-accessible cleft in the lowest 

energy conformation of molecule 1 are parallel to each other and separated by 6.7 Å. The 

corresponding "walls" in 3 are angled slightly, generating a cleft whose static width varies 

between 6.9 and 7.4 Å. In both molecules, the thickness of the donor and acceptor excludes ~ 3.5 

Å of the cleft. Thus, the wider, wedge-shaped cleft 3 may be more amenable to solvent entry. 

Mixed solvent NMR studies confirm that benzene entry into the cleft of 1 is not facile.11 The 

second major structural difference between these molecules is the connection to the spacer. The 

donor and acceptor in 3 are each "rigidly" attached to the spacer by two σ bonds, so there is only 

one thermally accessible conformation of the molecule. By contrast, the donor and acceptor in 1 

are each attached to the spacer by a single σ bond. The barriers to rotation about these σ bonds 

are small, and rotation of the donor and acceptor groups sharply reduces the cleft size of 1, 

making solvent entry more difficult, and brings the edges of the donor and acceptor into 

proximity, enhancing the direct through-space electronic interaction. The failure to observe 

solvent-mediated coupling for 1 likely results from the small separation of the donor and 

acceptor groups (< 6.7 Å) and because of their conformational freedom.  
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Although the donor and acceptor group conformational mobility obviates significant 

solvent-mediated coupling pathways, it allows the donor and acceptor moieties to approach near 

van der Waals contact and enable direct, through-space electronic interaction. This importance of 

this process was evaluated through a combination of GMH/ZINDO and molecular mechanics 

calculations. The GMH calculations reveal that twisted pyrene conformers have significant 

electronic coupling magnitudes. Although only a small sample of 1's conformations is explored 

here, they illustrate the enhanced coupling afforded in some higher energy conformations and 

suggest that a more extensive theoretical study will demonstrate significant dependence of the 

electronic coupling on nuclear geometry. Within this model, the experimentally derived 

electronic couplings reported in Table 5.3 must correspond to ensemble averages of different 

donor to acceptor geometries.  

Most electron-transfer investigations tacitly assume that any variation of the donor 

acceptor electron coupling with nuclear structure is unimportant. Both this and prior 

investigations of electron transfer in C-shaped molecules find coupling variations with nuclear 

structure to be of considerable importance. The most appropriate framework within which to 

interpret the dynamics of such systems has yet to be established. One particular case, 

conformational gating of electron-transfer reactions, has been treated theoretically and analyzed 

in a number of protein systems.4 The dynamics of 1 fall into a different limit and delineate a new 

direction of investigation. Beratan and Onuchic analyzed the role of nuclear dynamics in 

determining the adiabatic or nonadiabatic character of an electron-transfer process.38 Their 

analysis highlighted the importance of two time scales: the characteristic time a system spends in 

the Landau-Zener (transition state) region, τLZ, and the time required to interconvert the reactant 

electronic state to the product electronic state, τH = ħ / V . Provided τLZ << τH, a reaction is 
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nonadiabatic. Analysis of the electron-transfer reactions of 1, using the nonadiabatic 

approximation, generated V  ≈ 20 cm-1 so that τH ≈ 10-11 s. The polarization relaxation times for 

the solvents employed here limit τLZ to time scales of 10-12 − 10-13 s or less. Comparison of these 

time scales indicates that the electron-transfer reactions of 1 lie in the nonadiabatic regime. 

However, the electron-transfer process for 1 is coupled to torsional (and other) motions of the 

donor and acceptor units. Given a torsional frequency of 6X1011 Hz,39 we estimate a 1 ps 

correlation time, τv, for fluctuations of the electronic coupling due to the nuclear motions of 1. 

Hence, the three relevant time scales are ordered τLZ ≤ τv < τH, and the following picture of the 

dynamics for 1 is proposed.  

During any single entry into the transition state region, the electronic coupling is 

relatively constant and the transition probability is small. Thus, the transfer event should remain 

nonadiabatic. However, each time the transition state region is accessed, the value of the 

coupling is different due to its strong dependence on nuclear structure. As a result, the 

experimentally determined coupling value is a root-mean-square average (eq 4) over the 

thermally accessible conformations. In this limit, the dependence of the electronic coupling on 

the nuclear coordinate is not immediately obvious in the kinetics. It should be possible to reveal 

the nuclear coordinate dependence of the coupling by modifying the relative ordering of the three 

time scales. For example, a significant increase of τv, such that τv >> τH > τLZ, would produce a 

distribution of persistent coupling magnitudes and generate a range of transfer rate constants.5h 

The fluorescence decay kinetics in such a system would appear nonexponential.  

The role of nuclear dynamics in accessing the electron-transfer transition state is well 

understood. By contrast, the implications of the electronic coupling itself being coupled to 

nuclear dynamics are not well established. Future studies, in which the conformational motion is 
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inhibited, should allow exploration of an electron-transfer mechanism that is controlled by the 

torsional motion of the donor and acceptor groups and investigation of the dynamics in the 

regime τv /τH ≈ 1 to τv / τH >> 1.  
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Chapter 6 The Fluorescence Quenching Mechanism of a 

Polyphenylene Polyelectrolyte with Other Macromolecules: 

Cytochrome c and Dendrimers 

 

This work has been published as M. Liu, P. Kaur, D. H. Waldeck, C. Xue, H. Liu, Langmuir, 21, 

1687, (2005).  

 

This study investigates the fluorescence quenching of a polyphenyl based polyelectrolyte 

by positively charged macromolecules (proteins and dendrimers). This work shows that the 

fluorescence quenching of the dendrimer materials does not involve energy transfer or electron 

transfer, but is correlated to the overall charge on the dendrimer and its size. The quenching is 

hypothesized to result from conformational changes that occur upon binding the polyelectrolyte 

to the protein, or dendrimer.  This mechanism is qualitatively different from that invoked for 

small molecule analytes.  

6.1 Introduction 

Conjugated polyelectrolytes offer great possibilities as water soluble fluorescent 

materials1 and sensors,2, ,3 4 especially for small molecule analytes.5  A number of groups are 

active in using conjugated polymers as fluorescence probes and this field has been reviewed 

recently.6  Typically, a trap-site is created when an analyte molecule binds to the polymer, 

sometimes via a receptor, and quenches the emission by electron transfer or energy transfer.  The 

sensitivity of these materials arises from the presence of many binding sites, of which only one 
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or a few need to be occupied to quench the polymer’s intrinsic fluorescence. More recently, 

conjugated polyelectrolytes are being used for the detection of proteins and oligonucleotides, 

however the mechanism of fluorescence quenching has not been as thoroughly studied.  

Fluorescence quenching of a polyelectrolyte by binding with another macromolecule can 

occur from a number of different processes, but three are likely to dominate.  These are electron 

transfer, energy transfer, and enhancement of the polymer’s self-quenching, eg. internal 

conversion.   Electron transfer quenching is often invoked with these sensor materials and can be 

controlled by changing the analyte’s redox characteristics. Energy transfer quenching should 

depend strongly on the polyelectrolyte and the analyte’s spectral characteristics, whether it is a 

Förster mechanism or a Dexter mechanism.7 A third possibility for the quenching mechanism is 

a binding event that induces a conformational change in the polymer which enhances its intrinsic 

nonradiative rate constant.8  In this case the quenching would not depend on the redox and 

spectral properties of the analyte, but would depend on conformational features of the binding. 

Lastly, these mechanisms are not exclusive; they could operate simultaneously. 

This study compares the quenching mechanism for the protein cytochrome c with a 

polyphenylene polyelectrolyte to that observed for similarly sized dendrimers with the same 

polyelectrolyte. The fluorescence of poly[sodium 2,5-(3-sulfopropoxy)-1,4-phenylphenylene] 

(identified as PP1) is quenched by positively charged dendrimers and the protein cytochrome c.  

Cytochrome c is a positively charged heme protein that acts as an electron carrier in the 

respiratory chain of aerobic organisms9 and has been implicated in apoptosis.10 A recent report 

by Fan demonstrated the utility of using a PPV based polyelectrolyte (poly[lithium 5-methoxy-2-

(4-sulfobutoxy)-1,4-phenylenevinylene) to detect cytochrome c and concluded that the 

quenching occurs by electron transfer in that case.  
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6.2 Experimental Details 

 Poly[2,5-bis(3-sulfonatopropoxy)-1,4-phenylene-alt-1,4-phenylene) was prepared in a 

manner similar to that reported in the literature.11 The molecular weight was found to be 9900 

and the polydispersity was 1.26, as determined by size exclusion chromatography.12  
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Both proteins and dendrimer materials were studied as analytes. The ferric cytochrome c 

was purchased from Sigma and purified in the manner described previously.13 The ferric material 

was chemically reduced to ferrous with sodium dithionate.14 The myoglobin was purchased from 

Sigma and used without further purification.  The PAMAM (polyamidoamine) and the DAB 

(DAB-Am-32, Polypropylenimine dotriacontaamine Dendrimer, Generation 4.0) dendrimer 

materials were obtained from Dendritech and Sigma-Aldrich, respectively.  

Steady-state absorption spectra were measured on an Agilent 8453 spectrometer and the 

steady-state emission spectra were measured on a Spex Fluorolog 0.22 m double spectrometer.  

The time-resolved fluorescence data were collected using the time-correlated single photon 

counting method; see reference 15 for details of the apparatus. 
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6.2.1 Quenching with Proteins  

The steady-state electronic spectra of PP1 and cytochrome c are presented in Figure 6.1. 

The absorption spectrum of PP1 has a λmax at 338 nm, significantly blue of the Soret band of the 

cytochrome c.  The shift in absorption wavelength of cytochrome c is consistent with the native 

state of the ferrous and ferric forms of the protein. In aqueous solution at pH = 7 (20 mM 

phosphate buffer) PP1 is highly fluorescent.  The fluorescence spectrum in Figure 6.1 was taken 

with an excitation wavelength of 338 nm. The overlap of the polyelectrolyte’s emission band 

with the absorption band of the protein shows that energy transfer quenching is possible for this 

system.  
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Figure 6.1 The absorption spectrum (solid black line) and fluorescence spectrum (dashed black 

line) of the polymer are shown. The absorption spectrum of ferric (solid gray line) and ferrous 

(dashed gray line) are also shown.  
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Upon addition of cytochrome c to a solution of PP1, the fluorescence emission intensity 

decreases. Figure 6.2A shows Stern-Volmer plots for a 0.3 µM solution of PP1 with cytochrome 

c and another heme protein, myoglobin. At low concentrations of analyte good linear fits to the 

data are found.16 Table 6.1 presents the Stern-Volmer constants that are obtained by analyzing 

these data. The quenching of the emission by ferric cytochrome c is greater than that by ferrous 

cytochrome c, and the quenching by cytochrome c is stronger than that for myoglobin; a finding 

that correlates with the smaller surface charge for myoglobin. 
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Figure 6.2 Panel A shows Stern-Volmer plots for PP1 with ferric cytochrome c (squares), 

ferrous cytochrome c (circles) and myoglobin (triangles). The lines show fits corresponding to 

the Stern-Volmer constants in Table 6.1. Panel B shows the fluorescence decay of PP1 with 

cytochrome c at 0.0 M (diamonds), 0.46 mM (circles), and 0.92 mM (squares).  

 

Figure 6.2B shows the fluorescence decay curves for solutions of PP1 with cytochrome c. 

The fluorescence decay of PP1 in aqueous solution is nonexponential with an average 

fluorescence lifetime of 857 ps. In a methanol/water mixture the same polymer sample displays a 
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single exponential fluorescence decay law (see Figure 6.3B). Because the polymer is highly 

soluble in both systems, the different behavior is not ascribed to fractionation of the sample, but 

is believed to arise from differences in PP1’s conformation in the two solvents.  As cytochrome 

c is added to the aqueous PP1 solution, the fluorescence decay profile becomes more highly 

nonexponential. A fit of the data to a sum of exponentials shows that the fast relaxation 

component (ca. 100 ps lifetime) increases in amplitude as the concentration of cytochrome c 

increases. Although the lifetime distribution appears to be inhomogeneous, the short time 

component was ascribed to quenching of the polymer emission by static quenching.  

The quenching mechanism for the polymer with cytochrome c was analyzed in several 

ways. Table 6.1 shows that the quenching of the ferrous and ferric forms of the protein are 

similar, suggesting that electron transfer quenching is not dominant. The influence of molecular 

geometry on the quenching was studied by denaturing the protein.  The ferric form of the protein 

was heated to 353 K and cooled back to room temperature (denaturation was verified by 

measuring CD and UV/visible spectra, see Appendix). This form of the protein also quenched 

the polymer fluorescence but with about 71% the efficiency of the native protein, KSV = 3.7 x 106 

M-1. In a second experiment, apocytochrome c was prepared.17 The CD spectrum for this form of 

the protein was similar to that reported earlier, and it did not display any heme features, as 

expected. The KSV for the apocytochrome c was 6.3 x 105 M-1, which is about six times smaller 

than that for the denatured protein and eight times smaller than that for the native protein.  

Assuming that the PP1’s self-quenching and energy transfer quenching are independent 

relaxation processes, comparison of these two KSV values suggest that the energy transfer 

quenching mechanism is more important than the conformational quenching mechanism for the 

denatured cytochrome c.18
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Table 6.1 The Stern-Volmer constants for PP1 with some different macromolecules 
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.3 Panel A shows Stern-Volmer plots for PP1 with different macromolecular quenchers: 

 (X), PAMAM 3G (diamonds), and ferric cytochrome c (squares). The lines show fits 

ding to the Stern-Volmer constants in Table 6.1. Panel B shows the fluorescence decay 

1 in water/methanol mixtures at PAMAM 3G concentrations of 0.0 M (diamonds) and 

(squares). 

gure 6.3A shows Stern-Volmer plots for PP1 with PAMAM 3G and DAB 4G 

rs. Interestingly the quenching by the dendrimers is even stronger than that of the 
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cytochrome c. Each of these dendrimers contains 32 ammonium groups in its outer shell and they 

are expected to bind strongly to PP1.  Figure 6.3B shows the fluorescence decay of PP1 with 

PAMAM 3G in methanol/water solutions.  These data reveal that the quenching mechanism is 

static; i.e., the unbound polyelectrolyte has a single exponential decay law with a 843 ps lifetime 

and the bound polyelectrolyte has a 210 ps fast component lifetime.  The relative amplitude of 

the two components changes with PAMAM 3G concentration, but the lifetimes are the same. 

The change in quenching efficiency for each of the analytes correlates with the expected change 

in electrostatic binding for the macromolecules (see Table 6.1). Such a correlation was identified 

by Wang et al19 for binding of PPV with differently charged viologens. 

Although the dendrimer molecules PAMAM 3G and DAB 4G have the largest Stern 

Volmer constants, they do not possess visible chromophores. A Förster energy transfer 

quenching mechanism between PP1 and the analyte requires an overlap of PP1’s emission 

spectrum with the analyte’s absorption spectrum, and hence this mechanism is clearly not 

operative for the dendrimer molecules. A comparison of the absorption spectra are provided in 

Appendix. 

An electron transfer quenching mechanism was also discounted. The dendrimers do not 

possess good electron acceptor groups, but possess primary and tertiary amines which might 

quench the fluorescence by an electron transfer mechanism.7a The importance of this mechanism 

was probed by changing the pH of the solution. A titration curve of PAMAM 3G dendrimer 

showed that the ammonium groups on the dendrimer are almost fully ionized at pH 7 (≥ 30 of the 

32 groups). To assess the importance of this mechanism the pH was raised to 12 in order to 

reduce the surface charge and generate more amines. In this latter case, no quenching was found. 

At intermediate pH values, between 7 and 12, the Stern-Volmer constant decreases from its value 
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at pH = 7 because the net positive charge on the dendrimer surface is decreasing.  By lowering 

the solution pH, it is possible to fully protonate the surface amines and significantly protonate the 

‘interior’ tertiary amines of the dendrimer. The Stern-Volmer constants do not change much, less 

than a factor of 2, as the pH is lowered − KSV = 6.8 x 106  M-1 at pH = 4 and KSV = 1.8 x 107  M-1 

at pH = 2.15. These studies show that the quenching is not sensitive to amine availability (hence 

electron transfer quenching is not important) but is sensitive to the dendrimer charge.  

The data in Table 6.1 show a correlation of the quenching efficiency with the positive 

charge on the analyte, however the quenching also depends on the analyte’s size. This 

dependence is evident when comparing different generations of the same dendrimer material, for 

example the quenching efficiency of the PAMAM 3G dendrimer with that of the PAMAM 0G 

dendrimer.  By increasing the PAMAM 0G dendrimer concentration to eight times that of 

PAMAM 3G the same equivalents of ammonium groups are made available to PP1, however the 

quenching efficiency is very low. The KSV for the PAMAM 0G is < 3.3x103 M-1. If this value is 

modified to account for the number of ammonium groups (multiplied by eight), it is < 2.7x104 

M-1, more than 400 times smaller than that found for PAMAM 3G. The Stern-Volmer constant 

observed for PAMAM 0G is also much smaller than that obtained for the common electron 

transfer quencher, methylviologen (for which KSV was found to be 1.0x106 M-1), corroborating 

the unimportance of electron transfer quenching for PAMAM. 

6.3 Discussion and Conclusion 

These observations demonstrate that the fluorescence quenching of conjugated 

polyelectrolyte PP1 by charged macromolecules need not involve the typically used mechanisms 

of electron transfer or energy transfer.  The dependence of the quenching efficiency on the 
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dendrimer size and charge suggests that the polyelectrolyte changes conformation upon binding.  

When the dendrimer size is small (zero or one generation) the charged units on the dendrimer 

probably interact with only two sequentially charged units on the polymer backbone.  The larger 

analyte molecules allow for more interactions with the PP1 backbone, so that the PP1 can distort 

and/or ‘wrap’ itself onto the analyte’s surface. This process should cause conformational changes 

in the PP1 and create conditions for enhanced coupling between the electronically excited state 

and the ground state, increasing the internal conversion rate. 

This work investigated the mechanism of fluorescence quenching in a conjugated 

polymer electrolyte when it binds with other macromolecules, in particular proteins and 

dendrimers. The binding constants can be quite large, supporting the promise of these materials 

as fluorescence sensors. A comparison of the different analytes confirms that the quenching 

mechanism is controlled by the electrostatic interactions between the macromolecular analytes 

and the polyelectrolyte. This study demonstrates that electron transfer and electronic energy 

transfer need not be present to cause quenching. The dependence of the quenching efficiency for 

a particular polyelectrolyte on the size and charge of the dendrimer analyte suggests a 

mechanism in which the polyelectrolyte has multiple ‘contacts’ with the dendrimer surface.  We 

hypothesize that the multiple interactions between the polymer and the dendrimer changes the 

polymer’s conformation and enhances the internal conversion, ‘self-trapping’. 
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6.5 Appendix 

The spectra shown below demonstrate that the dendrimer absorption spectrum is blue 

shifted from that of the PPP polyelectrolyte. 

Absorption and Fuorescence spectra of Polymer with Dendrimers
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Figure 6.4 Absorption and fluorescence spectra of PP1 with dendrimers 

 

Shown below are CD spectra for the native cytochrome c, denatured cytochrome c, and 

the apocytochrome c. 
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Figure 6.5 CD spectra for different cytochrome c 
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Chapter 7 Ionic Strength Effect on the Rigidity of a Conjugated 

Polyelectrolyte 

 

The properties of polyelectrolytes and their origin in molecular structure and 

conformation have been a challenge for many decades. This work studies the spectroscopic 

behavior of a polyelectrolyte with a polyphenylene backbone and a sodium sulfopropoxy side 

chain. Study of the variation in fluorescence with ionic strength and the electrolyte nature is used 

to probe changes in molecular conformation, albeit indirectly. The observed fluorescence and 

absorption spectra indicate that the conjugated polyelectrolyte chain becomes extended and more 

rigid because of the Coulomb interactions with the salt counterions. An explicit discussion of the 

experimental data and its interpretation is provided.   

7.1 Introduction 

Polyelectrolytes are a special class of polymers which contain a large number of charged 

groups. The biopolymers DNA, RNA, and polysaccharides are polyelectrolytes and have 

attracted considerable attention because of their fundamental role in biological systems. 1 , 2  

Although the understanding of polyelectrolyte solutions is desirable, it is still limited both 

theoretically and experimentally.3, ,4 5  

When a polyelectrolyte dissolves in a polar solvent like water, it dissociates into charged 

counterions, and a charged polyion. The counterions and polyion are subject to long-range 

Coulomb interactions which provide a rich variety of effects not found in neutral polymer 

solutions. As a result, the addition of electrolyte is a key means to alter the properties of solution 
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containing polyions and allows the influence of the ionic distribution on the polyion chains to be 

investigated.  

 Experimental characterization of polyelectrolyte chain conformation in solution has been 

studied extensively with a variety of techniques; intrinsic viscosity6, static and dynamic light 

scattering7 and small angle neutron scattering (SANS)8 are prominent ones. Wang et al used the 

SANS technique to show that the addition of excess electrolyte screens the repulsive interchain 

interaction and increases the polymer’s persistence length, presumably by a combination of the 

intrinsic rigidity of the conjugated backbone and a stiffening from the charges along the 

polyelectrolyte chain. However, these techniques require high concentrations (40 mg/ml) of the 

solute in order to get a good detection signal. As a result, the interactions between polyion chains 

are likely to be important and may cause deviations from the conformation of isolated chains. 

Highly sensitive spectroscopic methods, such as fluorescence and absorption techniques are able 

to probe dilute solutions of a polyelectrolyte (lower than 2 X 10-3 mg/ml). This work investigates 

how the polyphenylphenylene polyelectrolyte’s spectra change upon varying the solution’s ionic 

strength. 

This study contains four major sections. The next section provides the description of the 

theoretical models. The following section describes the experimental details. The next section 

analyzes the experimental results and compares them to models. The last section concludes this 

work and describes its implications. 

7.2 Theoretical Models 

Over the past few decades, the evolution of theoretical models for understanding neutral 

polymers in solution has been widely developed, largely by employing modern scaling 
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concepts.9 Compared to neutral polymers an understanding of the properties of polyelectrolytes 

is still limited, however ideas and methods have been developed for many years for charged 

colloidal systems. Direct experimental tests of the theoretical models are typically not possible 

because of idealizing assumptions in the theory and the lack of detailed control over the 

experimental system. Therefore, computer dynamics simulations play a key role in mimicking 

the experimental system and in testing the theoretical models. Although the accuracy of 

simulations is still below that obtained from neutral polymers, they provide a useful means to 

understand the properties of polyelectrolytes.    

Molecular dynamics simulations of salt-free polyelectrolyte systems have been developed 

to overcome major theoretical difficulties10,11 one of which is to calculate the ionic density on the 

polyelectrolyte chain. Almost all calculations which study polyelectrolyte conformation apply 

the Debye-Hückel approximation12, which is a linearization of the Poisson-Boltzmann equation13 

(see equation 1) and assumes that the Coulomb interaction energy is much less than the average 

thermal energy kBT.  
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In equation 1, the solvent is treated as a dielectric continuum of dielectric constant εrε0. ψj(r) is 

the mean electrostatic potential around an ion of charge zje positioned at the origin and ρj is the 

charge density defined by 

∑ −=
i

Bjiiij Tkezezr )/exp()( ψρρ                                        2 

where ρi is the number density of ionic species i in solution.  
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Stevens et al 14  performed molecular dynamics simulations on polyelectrolytes for 

different chain lengths and different ionic strengths, and compared the time averaged end-to-end 

distance, R, to the inverse Debye length κ. The inverse Debye length κ is defined as 

∑=
i

ii
B

z
Tk
e 2

2
2 4 ρ

ε
πκ                                                        3 

They simulated the conformation of the polyelectrolyte with several different repeat units (N) 

and salt concentrations and found that for a given N, R depends only on the value of κ. The 

densities studied there are mainly in the dilute regime. However, the Poisson-Boltzmann 

approximation fails quantitatively and qualitatively in cases with higher densities, larger 

coupling strengths, and multivalent salt and counterions15, ,16 17 because the Coulomb interaction is 

much stronger than kBT. Because of strong attractive interactions, counterions buildup in the 

volume surrounding the polyions, whereas ions with the same sign as the polyions are excluded 

out of this area. The Debye-Hückel model is not accurate enough to explain the strong influence 

of salt on the environment of the polyions in this regime. 

Vlachy18 discussed the salt effect beyond the Poisson-Boltzmann theory and used three 

basic models to interpret the experimental results for polyelectrolyte solutions: the cell model, 

the one component model and the isotropic model. The cell model19, ,20 21 assumes that the 

Coulomb repulsion between polyions is so strong that the polyions stay far away from each other, 

on average. As a result, the solution is treated as an assembly of noninteracting cells and the 

model only considers the interaction between a polyion and counterions. Each polyion is 

approximated as spherical or cylindrical in shape, and uniformly spread throughout the solution. 

The cell model considers the size and charge asymmetry between the polyion and small ions in 

solution. The cell model is not adequate for describing solutions containing divalent counterions 

because of the strong spatial correlations between divalent counterions, a feature not included in 

 182



the cell model. However, it can be applied to model the effect of the monovalent counterions on 

the polyelectrolyte in the current study. 

The second model is called the one component model22, ,23 24  and it further develops the 

cell model, by considering spatial correlations between polyions. It treats the solution as an 

effective one-component fluid in which the polyions interact via a screened Coulomb potential. 

In conjunction with the Mean Spherical Approximation (MSA)25,26 or HyperNetted Chain (HNC) 

approximation27, the one-component model can somewhat predict the structure of the solution or 

extract the number of charges on a polyion. However, neither the cell model nor one component 

model provides information about all the interparticle correlations.  

The isotropic model28,29 treats the particles as charged hard (soft) spheres but considers 

all the ionic species on an equal level, immersed in a dielectric continuum. Although the 

isotropic model realistically includes all ionic species in solution, it requires that an integral 

equation theory29, MSA and HNC approximation, be used to model the structure. Valchy et al30 

compared Monte Carlo results to the HNC approximation and found that the HNC 

approximation predicts a counterion to polyion distance that is too small; in short it 

underestimates the repulsive interactions between polyions. Overall, a comprehensive and simple 

model for interpreting the salt effect on polyelectrolytes is not available. 

The current study compares the behavior of the experimental fluorescence intensities in 

variable electrolyte solutions as a function of the inverse Debye length κ, and the dependence of 

this correlation on the size and charge of the counterions.   
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7.3 Experimental 

Poly[2,5-bis(3-sulfonatopropoxy)-1,4-phenylene-alt-1,4-phenylene) (identified as PP1) 

was prepared in a manner similar to that reported in the literature.31 The molecular weight was 

found to be 9900 and the polydispersity was 1.26, as determined by size exclusion 

chromatography. 32  Steady-state absorption spectra were measured on an Agilent 8453 

spectrometer and the steady-state emission spectra were measured on a Spex Fluorolog 0.22 m 

double spectrometer.33  The time-resolved fluorescence data were collected using the time-

correlated single photon counting method.34
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Figure 7.1 Structure of PP1 

 

PP1 is a polyelectrolyte with negative charges on its side chains in every other phenyl 

ring. In order to avoid intermolecular interactions between PP1 chains, the experimental 

concentration was dilute, 3 x 10-3 mg/ml, ~ 3 x 10-7 M assuming 9900 g/mol molecular weight. 

Since the concentration of electrolyte is comparable or higher than the concentration of PP1, the 

properties of the electrolyte solution, such as the charges and the sizes of the ions and the 

magnitude of the ionic strength, can be explored. In the current experiment, the ionic strength of 

electrolyte was varied from 10-5 M to 0.1 M. 
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The electrolyte solutions are separated into three groups. The first group is composed of 

cations with a single charge, such as Li+, Na+, K+, Cs+ and Cl-, I-, phosphate counterions. The 

second group contains three organic electrolytes which are tetrabutylammonium 

tetrafluoroborate (TBAF), tetraethylammonium tetrafluoroborate (TEAF) and ammonium 

tetrafluoroborate (AF). The last group is composed of cations with a double charge, such as Mg2+, 

Ca2+ and Ba2+.  

7.4 Results and Analysis 

7.4.1 Singly charged ions (Li+, Na+, K+, Cs+, I-, Phosphate, Cl-) 

Absorption and fluorescence spectra of PP1 (concentration fixed at 3 x 10-7 M) were 

measured in different ionic strength solutions. Figure 7.2 shows the absorption spectra of PP1 in 

LiCl solutions for ionic strengths from 0.5 mM to 100 mM. The absorption spectrum of PP1 in 

water has an absorption peak λmax at 338 nm, which red-shifts with increasing ionic strength as 

shown in Figure 7.2. When the ionic strength is less than 1.25 mM, the absorption peak is close 

to the 338 nm value measured for PP1 in water and it has a similar absorbance. Upon further 

increasing the ionic strength, the absorbance increases and an isosbestic point is observed at 339 

nm. As the ionic strength increases above 8 mM, the absorbance peak slightly shifts to a redder 

wavelength while preserving the isosbestic point. The absorbance at high ionic strength remains 

constant, even with further increase of the ionic strength by up to ten times. 

 

 185



  

0

0.08

0.16

300 350 400

0 mM
1 mM
2 mM
4 mM
8 mM

339 nm

Wavelength (nm)

A
bs

or
ba

nc
e

0 mM
1 mM
2 mM
4 mM
8 mM

0

0.08

0.16

300 350 400

0 mM
1 mM
2 mM
4 mM
8 mM

339 nm339 nm

Wavelength (nm)

A
bs

or
ba

nc
e

0 mM
1 mM
2 mM
4 mM
8 mM

 
Figure 7.2 Absorption spectra of PP1 in LiCl solutions. Ionic strength varies from 0 mM to 8 

mM. The absorbance increases with increasing the ionic strength, accompanying with the 

spectrum red-shift. The different color represents the different ionic strength.  

 

The spectroscopic behavior of PP1 in NaCl, KCl, CsCl electrolyte solutions are similar to 

that in LiCl. The observed isosbestic points lie at 340 nm, 341 nm and 342 nm, respectively and 

it red-shifts in the order of increasing radii from Li+ (0.59 Å), Na+ (1.02 Å), K+ (1.33 Å) to Cs+ 

(1.74 Å). The change on the absorption spectrum is stronger at lower ionic strength and stops at 

higher ionic strength.  
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Figure 7.3 Theoretical fit to a two states model for the absorption spectrum of PP1 in LiCl 

solutions. A) extinction coefficient versus absorption wavelength; B) change of concentration 

versus ionic strength. Red line represents the free PP1 species and green line represents the 

complexed species. 

 

Table 7.1 Theoretical fit of the absorption spectrum of PP1 in MCl, a two species model. 

Salt Reactant 
λmax (nm) 

Product 
λmax (nm) 

Stability 
Constant (ln K)

Percentage of Free 
PP1 in 0.01 M Salt 

(%) 
LiCl 334 352 6.9 9 
NaCl 338 354 6.0 20 
KCl 334 352 7.3 7 
CsCl 335 355 6.6 12 
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By assuming a two species equilibrium reaction, the absorption spectrum was fit to obtain 

an equilibrium constant, K, or, stability constant. Figure 7.3 gives an example of the fitting 

results for PP1 in LiCl solutions. Figure 7.3A shows the theoretical absorption spectra for each 

of two species in the equilibrium reaction. Figure 7.3B shows the change in concentration of the 

two species with increasing the ionic strength. Table 7.1 summarizes the equilibrium constant K 

and gives the absorption peaks of the two species from the fit for all singly charged cations. The 

absorption peak of the free PP1 varies from 334 nm to 338 nm, and the absorption peak of the 

complexed PP1 varies from 352 nm to 355 nm. The concentration of the free PP1 varies from 

85% in free-salt solution to 7% in 0.01 M salt solution. This observation indicates one species 

appearing and simultaneously another species disappearing with ionic strength. 
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Figure 7.4 Fluorescence spectra of PP1 in LiCl solutions. Ionic strength varies from 0 mM to 8 

mM. The fluorescence intensity enhances with increasing the ionic strength. The different color 

represents the different ionic strength.  
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The fluorescence spectrum of PP1 in LiCl solution was measured as a function of 

increasing ionic strength, shown in Figure 7.4. The peak of the fluorescence spectrum for PP1 

remained at 420 nm; the fluorescence intensity increases with increasing the ionic strength. In 

comparison with the changes in absorbance at different ionic strengths, the fluorescence intensity 

increases more dramatically; e.g. the quantum yield of PP1 increases 1.3 times in 1 mM salt and 

increases by 2.3 times in 8 mM ionic strength, as compared to that in water. From the absorption 

spectrum fits (see Figure 7.3), the two species have different radiative rates, 3.6 x 106 s-1 and 4.8 

x 106 s-1. This increase is not large enough to account for the change in the fluorescence yield, 

implying that the nonradiative rates of the two species must decrease. This result indicates that 

the increase of the fluorescence intensity is not caused only by the effect of the oscillator strength 

of the transition in PP1 from the absorption spectrum, but it is affected also by the change of the 

internal conversion rate of the excited state. 
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Figure 7.5 Fluorescence intensity ratio of PP1 in ionic LiCl solutions (F) to that in water (F0) 

versus the ionic strength. The fluorescence intensity was summed up the whole spectrum area. 

The spectrum was obtained by exciting three excitation wavelengths, the peak absorption 
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wavelength (diamond), the 20 nm shorter than the peak wavelength (square) and the 20 nm 

longer than the peak wavelength (triangle). 

 

Figure 7.5 plots the fluorescence intensity ratio of PP1 in LiCl solution to its intensity in 

deionized water versus the ionic strength. The fluorescence intensity ratio curves in Figure 7.5 

are shown for three excitation wavelengths: the peak absorption wavelength, a wavelength 20 nm 

shorter than the peak wavelength and a wavelength 20 nm longer than the peak wavelength. Each 

data set shows that the fluorescence intensity increases rapidly at low ionic strength (below 2 

mM), and then stops increasing before it starts to weakly decrease. This behavior corresponds to 

the red-shift of the absorption spectrum, crossing an isosbestic point at low ionic strength with 

the intensity increasing and preserving the isosbestic point at high ionic strength. For the 

spectrum collected at 20 nm shorter exciting wavelength than the peak wavelength, the 

fluorescence intensity is the highest; for exciting at 20 nm longer and exciting at peak 

wavelength, the fluorescence intensities are similar. The wavelength dependence can be 

predicted using the two state model. In this equilibrium the two species have different 

absorbance at every wavelength, see Figure 7.3A, hence different excitation wavelengths can 

cause exciting different percentage of the two species in the excited state.  
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Figure 7.6 Fluorescence intensity ratio of PP1 in LiCl (diamond), NaCl (square), KCl (triangle) 

and CsCl (circle) to PP1 in water versus the ionic strength. 

 

To better understand the ionic strength effects, the fluorescence of PP1 in other singly 

charged cation electrolyte solutions was also studied. The comparison of F/F0 for different singly 

charged ions is shown in Figure 7.6. The fluorescence spectrum was collected by exciting at the 

peak absorption wavelength for each ionic solution. Like the observed behavior of PP1 in LiCl 

solutions, the fluorescence intensities of other monocations increases rapidly at low ionic 

strength, then saturates at higher ionic strength before decreasing. Comparing their fluorescence 

behavior, the fluorescence intensity increases with a similarly fast extent, however when the 

intensity saturates, the solutions with the smaller Li+ shows a higher fluorescence intensity than 

the other ions. The larger cations K+ and Cs+ behave similarly. Although the smaller cation can 

get closer to the polyion chain, causing a stronger Coulomb interaction than bigger cations, the 

difference among these singly charged ions is small. After the spectrum saturates, further 

increasing the ionic strength causes the fluorescence to decrease, however the order is preserved 

Li+ > Na+ > K+, Cs+. 
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Figure 7.7 compares the fluorescence intensity ratio for different counter anions: 

phosphate, Cl- and I-. These data show that the size of the anion affects the fluorescence intensity 

of PP1. In particular, I- has the smallest charge to size ratio and the largest fluorescence yield, 

whereas Cl- has the largest charge to size ratio and the smallest fluorescence yield. This trend is 

opposite to that observed for the cations. To summarize, the fluorescence intensity increases with 

the charge to size ratio of the cationic counterions, but decreases with the charge to size ratio of 

the anionic counterions.  
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Figure 7.7 Fluorescence intensity ratio of PP1 in NaCl (square), sodium phosphate buffer at pH 

= 7 (triangle) and NaI (diamond) verse PP1 in water. 

 

As a whole, all of the different singly charged salt ions show a similar behavior on the 

ionic strength of a solution. The different magnitudes appear to be related to their different sizes 

for both cations and anions.  
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7.4.2 Organic charged ions (TBAF, TEAF, AF) 

Three organic singly charged ions TBAF, TEAF and AF were studied to further explore 

the ionic strength effect on PP1. Compared to the inorganic ions, the organic ions have a large 

steric size. Figure 7.8 shows the absorption spectrum of PP1 in TBAF solution, which red-shifts 

with increasing ionic strength and displays an isosbestic point at 351 nm. The isosbestic point in 

TEAF and AF is 345nm and 339nm, respectively.  
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Figure 7.8 The absorption spectra of PP1 for aqueous solutions with different TBAF 

concentrations 
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Figure 7.9 Fluorescence intensity ratio of PP1 in AF (diamond), TEAF (triangle) and TBAF 

(square) to PP1 in water as a function of the ionic strength. The ionic strength range is small due 

to the weak solubility of TBAF in water. 

 

Figure 7.9 shows that the fluorescence intensity ratio increases in all the solutions and by 

an amount between 2.5 to 3 times as a function of ionic strength. The ratio increases with 

different slopes, e.g. faster in TBAF at low ionic strength than it does in AF solutions. The slope 

correlates with the size of the cation, namely TBAF > TEAF > AF. The fluorescence intensity 

ratios in TBAF as a function of ionic strength at three different excitation wavelengths were also 

compared. The data showed a similar trend to that for the LiCl solutions (Figure 7.5), that is, the 

highest fluorescence ratio is collected at a 20 nm shorter excitation wavelength. 

Four different ionic strengths (0 mM, 0.25 mM, 0.5 mM and 15 mM) of TBAF were 

studied in detail. Figure 7.10 shows the normalized absorption spectrum of PP1 in solutions of 

these four ionic strengths. The spectra reveal two features, a dominant ‘red’ peak and a weaker 

‘blue’ (ca. 290 nm) peak. The relative intensity of this ‘blue’ peak decreases with increasing 

ionic strength. In comparison with biphenyl, p-terphenyl and p-quaterphenyl in heptane, which 

have S1 structure at 246 nm, 278 nm and 296 nm, respectively35, it suggests that the small bump 

 194



might be a more localized (two to three phenyl rings) transition of the polymer backbone. As the 

ionic strength increases, this transition decreases in intensity relative to the major peak. The red-

shift in the localized transition with increasing ionic strength could correspond to the red-shift of 

the aromatic hydrocarbons as the size of the molecule increases, (for example, from biphenyl to 

p-quaterphenyl36), demonstrating that the PP1 chain becomes more extended with increasing 

ionic strength.  
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Figure 7.10 A) Normalized absorption spectra of PP1 in 0 mM (black, peaks at 388 nm and 288 

nm), 0.25 mM (pink, peaks at 356 nm and 293 nm), 0.5 mM (blue, peaks at 362 nm and 295 nm) 

and 15 mM (red, peaks at 365 nm and 295 nm) TBAF solutions; B) comparison of the absorption 
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spectrum of biphenyl (gray, peak at 246 nm), p-terphenyl (green, peak at 278 nm) and p-

quaterphenyl (orange, peak at 296 nm) with PP1 in water (0 mM). 

 

7.4.3 Doubly charged ions (Ca2+, Mg2+, Ba2+) 

 Doubly charged ions, Mg2+, Ca2+ and Ba2+, have cation radii 0.72 Å, 1.00 Å and 1.42 Å, 

respectively. Comparing the size of doubly charged ions with singly charged ions, Mg2+ is 

slightly bigger than Li+ (0.59Å); Ca2+ is close to Na+ (1.02 Å), and Ba2+ is similar to K+ (1.33 Å). 

Figure 7.11 shows the absorption spectrum of PP1 in Mg2+ solution. The absorption spectrum of 

PP1 in doubly charged electrolyte solutions also red-shifts with increasing ionic strength. The 

isosbestic point appears for MgCl2 and CaCl2 at 345 nm and 346 nm, respectively. Comparing to 

the isosbestic point obtained from the similar sizes of the singly charged ions, they shift 6 nm 

more toward red wavelengths. These data show that the magnitude of the charge also affects the 

spectral shift.  
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Figure 7.11 Absorption spectra of PP1 in different ionic strength of MgCl2 solution. 
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Figure 7.12 Fluorescence intensity ratio of PP1 in MgCl2 (square), CaCl2 (diamond) and BaCl2 

(triangle) ionic solutions to the intensity in water as a function of ionic strength. 

 

Figure 7.12 plots the fluorescence intensity ratio of PP1 as a function of the ionic 

strength for the doubly charged ions. The intensity ratio rapidly increases at low ionic strength 

(below 0.075 mM) and the magnitude of the increased fluorescence between 2 to 2.5 times is 

comparable to the effect of singly charged ions. Mg2+ with the smallest size and the highest 

charge density, increases the fluorescence intensity the strongest compared to other doubly 

charged ions, the same trend as seen for Li+. In contrast to the slow decrease of fluorescence 

intensity which is observed from the singly charged ions, a dramatic fluorescence decrease is 

found for the doubly charged ions. This quenching increases with the size of the cation. 
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Figure 7.13 The comparison of the fluorescence intensity ratio of PP1 in TBAF (square), MgCl2 

(triangle) and LiCl (diamond) to PP1 in water. 

 

Figure 7.13 compares the fluorescence of PP1 in different kinds of electrolytes at small 

ionic strength, where it is increasing. The data show that the organic salt TBAF has the steepest 

slope and the slope of the doubly charged cation Mg2+ is steeper than that of the singly charged 

ion Li+. This comparison suggests that TBAF enhances the fluorescence intensity of PP1 more 

than the other electrolytes.  In comparison with the properties of these electrolytes, TBAF has the 

biggest size and the smallest charge to size ratio, hence TBAF should have the weakest 

interactions with polyion. The experiment shows a most dramatic fluorescence increasing in 

TBAF solutions as the ionic strength increases, however this behavior suggests that the Coulomb 

interactions between salt and the polyelectrolyte is not the only origin for the change in the 

fluorescence yield of PP1.  
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7.4.4 Lifetime measurements 

The time-resolved fluorescence of PP1 at ten TBAF ionic strengths was collected at two 

emission wavelengths 420 nm and 500 nm. The data could be well described by fitting to a sum 

of two exponential decay functions. Table 7.2 provides the lifetime fitting parameters. 

Table 7.2 The lifetime fits for PP1 in TBAF ionic solutions at 500 nm emission 

Ionic Strength(mM) τ1 (ps)a τ 2 (ps) A2 (%) τc (ps)b χ2

0 217 860 9.3 277 1.06 
0.025 263 848 34.4 464 0.86 
0.05 287 802 43.5 511 1.10 
0.1 291 817 65.2 634 1.05 
0.2 271 833 76.1 699 1.21 
2 187 833 86.5 746 1.01 
4 253 848 81.8 739 0.94 
5 213 838 86.4 752 0.91 
10 255 837 85.5 752 0.91 
15 285 847 81.8 745 1.06 

a. The fluorescence decay is fit to a double exponential function: τ1 is the fast time constant, τ2   

is the slow time constant and A2 % is its percentage contribution to the total decay curve. 

b. The Correlation time is defined as τc = ΣAiτi where τi is the decay time for component i and Ai 

is the percentage of decay time i in a fit of the decay law to a sum of two exponentials. 

 

The fluorescence decay of PP1 was fit to a double exponential function, in which one fast 

time component 217 ps dominates 90.7% for PP1 in water. With increasing ionic strength, the 

fast time component varies from 217 ps to 291 ps and its contribution drops to 18% at high ionic 

strength. Another slow time component (average 837 ps) becomes dominant as the ionic strength 

increases and the decay curve becomes nearly single exponential at high ionic strength. These 
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data suggest that two species exist in solution, one with a lifetime of about 254 ps and one with a 

lifetime of 837 ps, and the amount of the longer lived species increases with the ionic strength.  
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Figure 7.14 The A2% percentage (circle) of the longer lived component obtained from the 

lifetime measurements compares with the concentration ratio (square) of the new complexed 

species obtained from the theoretical fit on the absorption spectrum as a function of ionic 

strength. The open squares adjust the data for the absorbance difference of the two species at the 

excitation wavelength. 

 

The result obtained from the lifetime measurements has the same trend as the theoretical 

fit of the absorption spectrum, see Figure 7.14. For example, when the ionic strength is 0.025 

mM, the complexed species is 21% of the total concentration and corresponds to the longer-lived 

component with a 34% amplitude percentage. When the ionic strength increases to 0.2 mM, the 

complexed species has a concentration ratio of 68% from the absorption spectra and a value of 

76% amplitude contribution from longer-lived component. Although Figure 7.14 shows similar 

trend for these two different percentages obtained from absorption spectrum and lifetime data, at 

each ionic strength, two percentages do not fall on a same curve. The reason is that the 
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fluorescence decay was excited at one specific excitation wavelength (326 nm), at which two 

species have different absorbance, but the absorption spectrum includes concentration of the 

whole wavelength region. From the simulated absorption spectra for two species at 326 nm 

wavelength, the absorbance ratio of PP1 in TBAF to free PP1 is 1.3. Accounting for this 

absorbance difference, the concentration ratio can be corrected; the open squares fall on a similar 

curve as the percentage obtained from the lifetime data, see Figure 7.14. Therefore, the 

increasing amplitude of the long lived component from the fluorescence lifetime fits corresponds 

to the increasing concentration of the new species from the absorption spectrum fits.  
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Figure 7.15 The average lifetime τc of PP1 as a function of TBAF ionic strengths. The 

fluorescence decay was excited at 326 nm and the emission was collected at 420 nm (diamond) 

and 500 nm (square). 

 

The correlation time τc is plotted versus the ionic strength in Figure 7.15. The correlation 

time of PP1 collected at longer wavelength (500 nm) is slower than that at a shorter wavelength 

(420 nm) in each ionic strength solution. Assuming that the less conjugated conformation 
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contributes more to the emission at blue wavelengths and the more conjugated conformation 

contributes more at red wavelengths, these data indicate that the more conjugated form (‘red’) 

has a long lifetime and the flexibility of the chain (internal conversion rate) decreases with 

increasing ionic strength. However, comparing with the plot of F/F0 versus ionic strength in 

Figure 7.9, the fluorescence intensity slightly decreases at high ionic strength, unlike the 

behavior of the correlation time which keeps flat at high ionic strength, see Figure 7.15. 

Like the fluorescence decay of PP1 in TBAF, the correlation time in LiCl behaves with a 

similar trend, that is, a longer lifetime collected at the wavelength of 500 nm corresponds to a 

shorter lifetime at a shorter wavelength 420 nm. As a whole, the correlation time becomes longer 

as the ionic strength increases.   

7.5 Discussion 

The current work explores how the absorption and fluorescence properties of PP1 change 

with ionic strength. Varying the charge and the size of ions (singly charged inorganic ions, 

organic ions and doubly charged inorganic ions), different spectroscopic behaviors were 

observed and studied.  

The absorption spectrum of PP1 shows an isosbestic point in all of these salt solutions 

and the isosbestic point red-shifts with increase in the size and charge of the counterions. It 

indicates that with adding salt, a new species is forming by the equilibrium reaction. For the 

fluorescence spectrum, the intensity increases at low ionic strength and reaches a maximum, then 

decreases upon further increasing ionic strength. These changes follow the order of the size to 

charge ratio. The increase of the fluorescence intensity confirms that the new species has a high 

quantum yield, probably from forming a more conjugated polymer chain. The fluorescence 
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lifetime data shows a growing percentage of a long-lived species with increasing ionic strength 

and this behavior demonstrates that PP1’s chain becomes more rigid and conjugated. 

A two states model is applied to simulate the absorption spectrum in the current study. 

This model uses the idea of the equilibrium existing between one state, the free PP1, and another 

state, the complexed PP1. The theoretical fit gives a value of the stability constant, K and hence 

a ∆rG to form a new complex when adding the salt into the polyion solution. For the different 

cations, ∆rG varies from 15 kJ/mol to 18 kJ/mol for singly charged small ions, an averaged value 

around 25 kJ/mol for the doubly charged ions, a value close to 23 kJ/mol for the biggest TBAF. 

This variation confirms that the charge density and size of cation are key factors to describing the 

interaction with polyion. Higher charge density interacts strongly with polyion, as well as a 

bigger size of cation. The two state model oversimplifies the actual case, i.e., a large number of 

conformations and species exist at every ionic strength. Nevertheless, it appears that the system 

can be divided into two subpopulations based on their fluorescence lifetimes and absorption 

spectra which do not change with ionic strength; only their percentages vary with adding salt.  

Using molecular dynamics simulation, Stevens demonstrated that the end-to-end distance 

of a polyelectrolyte in dilute salt solution, in which ln κσ varies from -4 to 2, depends on the 

product of the Debye screening length κ and the ion radius σ; κσ. This finding suggests that the 

conformation changes of the PP1 polyelectrolyte should correlate with the parameter κσ. If the 

spectroscopic data also correlate with κσ, then it supports the interpretation that the spectroscopic 

changes result from conformational changes. 
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Figure 7.16 The fluorescence intensity ratio of PP1 in (A) and (B) monovalent salt solutions 

including Li+ (black), Na+ (gray), K+ (blue), Cs+ (green) and ammonium solutions including AF 

(pink), TEAF (red) and TBAF (orange); and in (C) and (D) divalent salt solutions including 

Mg2+ (pink), Ca2+ (black), Ba2+ (red). (A) and (C) are the plots of ln (ionic strength) versus F/F0; 

(B) and (D) are the plots of ln (κσ) versus F/F0. σ accounts for the diameter of the cation, Li+ 

1.18 Å, Na+ 2.04 Å, K+ 2.66 Å, Cs+ 3.48 Å, NH4
+ 2.86 Å, TEA+ 6.07 Å, TBA+ 11.65 Å, Mg2+ 

1.44 Å, Ca2+ 2.00 Å, and Ba2+ 2.84 Å, respectively. Diameters of organic salts were optimized 

using CAChe (PM3 in water). 

 

Figure 7.16 shows the fluorescence ratio of PP1 in different electrolytes as a function of 

ln (κσ) (shown in Figure 7.16B and D) and ln (ionic strength) (shown in Figure 7.16A and C). 

The fluorescence of PP1 in monovalent salts (both organic and inorganic) behaves similarly 

upon increasing the charge density. At small κ (low charge density) or low ionic strength, the 

fluorescence is enhanced (a regime in which the chain length extends); further increase of κ 
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(increase ionic strength) causes the fluorescence to approach a maximum. At high κ (high ionic 

strength) the electrostatic interactions are screened and the chain length decreases, corresponding 

to the decrease of the fluorescence intensity. Stevens shows that the ionic density increases 

significantly near the polyelectrolyte chains with increasing ionic strength. This result 

corresponds similarly to what is observed in Figure 7.16.  

In comparison with individual monovalent cation, the plot of ionic strength shows 

different curves for TBAF and TEAF to the other small cations, but the plot of ln κσ adjusts the 

size difference of these cations, shown a single curve for all of small cations in Figure 7.16B. 

The distance of a counterion from a polyion chain depends on the size and the magnitude of the 

counterions charge. Particularly, TBAF has the biggest size, hence it is far from the chain in 

comparison with the inorganic ions. The fluorescence intensity in TBAF changes much stronger 

than that in other salts, however. It suggests that the Coulomb interaction is not the only effect on 

changing the spectroscopic behavior of PP1. Instead, TBAF can ‘trap’ more binding sites which 

can produce another possibility to interact strongly with polyions.  

Figure 7.16B and D show the fluorescence trends of PP1 in divalent counterions. As well 

as the monovalent counterions, small κ (low ionic strength) enhances the fluorescence of PP1. 

But the fluorescence is found to increase dramatically and then decrease rapidly. These 

observations are consistent with modeling studies that show strong ionic interactions to polyion 

at low charge density, then charge screening at high ionic strength. The data do not rescale and 

lie on a single curve as seen in singly charged ions, rather they show a consistent trend which is 

proportional to the size of the cations. Mg2+ has the smallest size and provides the least 

electrostatic screening interactions and Ba2+ has the largest size with the strongest interactions.  
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7.6 Conclusion 

The current work studies the fluorescence and absorption characteristics of the 

polyelectrolyte − PP1 as a function of ionic strength. The ionic solutions differ by the charge and 

the size of the cation. In general, the fluorescence intensity of PP1 is enhanced by adding a small 

amount of electrolyte to the solution until the fluorescence approaches a maximum. At large 

ionic strength the fluorescence yield decreases, presumably because of a strong electrostatic 

screening effect from extra ionic species. The absorption spectrum reveals an isosbestic point for 

different electrolytes and the wavelength of the isosbestic point is associated with the strength of 

the ionic effect on the change of the chain conformation.  

The time-resolved fluorescence studies show that the lifetime of PP1 also varies with 

ionic strength. The fluorescence decay law is well described by a double exponential function 

and the shorter lifetime dominates under salt free conditions. With increasing ionic strength, the 

longer lifetime component becomes dominant and it also causes the correlation time τc to 

increase with ionic strength. The change of τc is fast at low ionic strength and saturates at high 

ionic strength. The fluorescence lifetime at different emission wavelengths reveals that a red 

component has a longer correlation time. The fluorescence lifetime of PP1 in inorganic 

electrolyte solution also gives the similar behavior as that of the organic electrolyte, that is, the 

correlation time increases with ionic strength.  

The spectroscopic behavior of PP1 with salt concentration is interpreted to result from 

changes in the chain rigidity, which is expected to be influenced strongly by the properties and 

composition of the salt. At the same ionic strength, the ionic effect of the monovalent cations is 

much gentler than the divalent cations because of the lower charge density. Monocations of 

different ion size interact with the chain differently. For example, for singly charged inorganic 
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ions, the smaller sized Li+ ions can be closer to the polyion chain and cause a stronger Coulomb 

attraction, in comparison with other inorganic ions. However, the biggest size of TBAF shows 

the highest fluorescence which might arise from the interaction with multiple chain sites. For 

doubly charged inorganic ions, the high charge density interacts strongly enough that the 

fluorescence intensity of PP1 increases very fast at low ionic strength.  

The fluorescence yield was compared to a product of the inverse Debye length and the 

ionic radius σ. The comparison shows a consistent trend that fluorescence increases at small 

values of κσ and reaches a maximum, then decreases at high values of κσ. For the singly charged 

cations, the fluorescence ratios lie on the same curve. The cation TBAF deviates somewhat from 

the curve and this may result from its unusually large size. Doubly charged counterions have 

much bigger charge to size ratio and quench the fluorescence more strongly. This screening 

effect is size dependent, for example, Mg2+ with the smallest size screens the fluorescence at a 

low extent than the biggest Ba2+ does.          

Changes in the spectroscopic behavior of fluorescent polyelectrolytes with increasing 

solution ionic strength can be understood to arise from changes in the rigidity of the polyions. 

This work indicates that the chain rigidity and extent of PP1 increases at low ionic strength, 

saturates, and then decreases at high ionic strength. This work would benefit from a molecular 

dynamics simulation to mimic the experimental conditions and confirm the conclusions.  
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Chapter 8 Conclusion 

Electron transfer reactions are the fundamental and ubiquitous chemical processes. 

Nonadiabatic electron transfer in donor-bridge-acceptor (DBA) molecules can be viewed as 

electron tunneling through a barrier that is determined by the orbitals of the atoms along a path 

between the donor (D) and acceptor (A) groups. The U-shaped DBA systems under investigation 

provide unique insight into the nature of nonadiabatic electron transfer processes, which involves 

electron tunneling through noncovalent contacts. The tunneling efficiency during this process is 

quantified by the electronic coupling matrix element, |V|, which characterizes the electronic 

interaction between an electron donor and acceptor.  

The studies of the electron transfer reaction of the U-shaped molecules in chapters 2 and 

3 is focused on understanding the mechanism switch from nonadiabatic electron transfer reaction 

to a solvent controlled electron transfer reaction. Specifically, in solvents with rapid dielectric 

response, such as acetonitrile which has a low viscosity and fast relaxation time, the electron 

transfer mechanism is nonadiabatic. In solvents with a ‘slow’ dielectric response, such as N-

methylacetamide and N-methylpropionamide which have high viscosities and slow relaxation 

times, the electron transfer mechanism changes and is controlled by the solvent’s relaxation, 

called the ‘solvent friction’ limit. A detailed investigation on electron transfer as a function of 

solvent and temperature were used to understand how the electron transfer mechanism switches. 

This finding is the first experimental example to require that both electron displacement and 

atom displacements be treated equally in electron transfer reactions, which goes against the 

commonly-held assumption that the reaction rate is controlled by either the electron’s movement 

or atom’s movement. 
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Two types of motions may be important for the switch in electron transfer mechanism: 

one is rearrangement of solvent molecules during the reaction and another is motion of the 

pendant group, that is, conformational gating. To distinguish the importance of the solvation 

motion, the dynamic Stoke-Shift in these slow solvents were measured to obtain the solvation 

time. If the electron transfer is limited by the solvent friction, the electron transfer rate should 

correlate with the solvation time; but if it proceeds by electron tunneling, it will not. As a fact, 

the low temperature rate constants correlate with the solvation rate, 1/τs, as determined through 

dynamic Stokes-Shift measurements. At high temperature the rate constant is independent of τs.. 

A comparison of Zusman prediction provides good agreement of the effective electronic 

coupling with that found for nonadiabatic electron transfer, using the semi-classical equation. 

The adiabaticity parameter g, which can be defined from Zusman’s criterion, predicts that the 

solvent friction limit applies in these slow relaxation solvents. The characteristics of electron 

transfer at low temperature also matches with Sumi and Marcus prediction and the electron 

transfer appears to lie in the narrow reaction window limit of the Sumi-Marcus treatment because 

of the ratio of λν/λ0 ~ 0.5 and the nonexponentiality of the locally excited state’s population 

decay. 

Chapter 4 describes a study of three new U-shaped molecule systems with the same 

electron donor and electron acceptor, but different pendant moiety. These new systems 

investigate whether rotation of the pendant group changes the electronic coupling and effects the 

reaction. The results show that placement of the aromatic moiety in the cleft gives electronic 

couplings that do not vary significantly with alkylation. The small variation of the electronic 

coupling with the amount of alkyl substitution and the related geometric changes of the pendant 

group in the cleft suggest that modulation of the electron tunneling probability by changes in the 
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phenyl ring geometry is not the cause of the change of the electron transfer mechanism from 

nonadiabatic to solvent controlled reaction. 

Chapters 6 and 7 demonstrate that the fluorescence emission of a conjugated 

polyelectrolyte is highly sensitive to the binding of protein and dendrimers. A detailed study of 

how the polyelectrolyte’s fluorescence intensity changes as a function of analyte concentrations 

explores that the quenching mechanism is mainly due to the conformation changes of the 

polyelectrolyte. A comparison of the different analytes confirms that the quenching mechanism 

is controlled by the electrostatic interactions between the macromolecular analytes and the 

polyelectrolytes. The ionic strength studies indicate that the conformation of polyelectrolyte 

varies with the environment and this variation causes an increase of the fluorescence intensity 

with increasing ionic strength and the extent of the enhancement correlates with the sizes and 

charges of the ions. 

In summary, this thesis consists of studies into photoinduced electron transfer systems 

and the result demonstrates how the pendant moiety efficiently mediates the electronic coupling. 

By varying the solvent systems from ‘fast’ response solvents to ‘slow’ response solvents, a 

switch of the electron transfer mechanism is observed. The fluorescence quenching mechanism 

of polyelectrolyte with different analytes has been investigated and internal conversion rather 

than electron transfer, dominates the quenching of the polyelectrolyte. The sensitivity of the 

quenching is dependent on the size and the charge of the analytes.  
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Appendix 

A. Cryostat vacuum system operation 
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Cryostat vacuum system contains several major components: a cryostat, a mechanical 

pump, a diffusion pump, a water chiller, two manual valves, a three-way valve, a leak valve, two 

TC gauges and one ion gauge. The function of the mechanical pump is to pump down the full 

line as well as to facilitate the diffusion pump. Normally, the vacuum can reach less than 100 

mTorr when only the mechanical pump is running. The diffusion pump can provide much higher 

vacuum and for this system, the normal vacuum can remain around 2X10-6 Torr with liquid 

nitrogen in the trap. 

The procedure to operate this system is as following: 

1. Turn on the mechanical pump. 
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2. Turn the three-way valve to the full line and pump down the full line until vacuum is 

below 100 mTorr (check TC gauge). Make sure the manual valve in the full line and the 

valve on the cryostat are both opened. 

3. Switch the three-way valve toward the diffusion pump and wait until the vacuum is less 

than 50 mTorr (check TC gauge).  

4. Turn on the water chiller and the diffusion pump and wait for about half hour to one hour 

to warm the diffusion pump up. Make sure the manual valve on the top of the diffusion 

top is closed. 

5. Recheck the vacuum of the full line to make sure the vacuum is below 100 mTorr. 

Otherwise, switch the three-way valve to the full line and pump it down to 100 mTorr 

again. 

6. Before opening the manual valve, double check the three-way valve and verify that it is 

toward the diffusion pump. 

7. Open the manual valve on the top of the diffusion pump slowly and watch the vacuum 

reading on the TC gauge controller. When the reading is below zero, turn on the ion 

gauge. 

8. Pump the system with the diffusion pump for a couple of hours and watch the reading of 

the vacuum until it is stable. 

9. Fill the liquid nitrogen trap on the top of the diffusion pump. 

10. Fill the cryostat with liquid nitrogen and change the temperature to an appropriate 

temperature. 

11. The three-way valve is always toward the diffusion pump during the experiment. 
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12. Before turning off the system, make sure that all the liquid nitrogen has gone (suggest 

leaving the system overnight). 

13. Turn off the ion gauge and close the manual valve on the top of the diffusion pump. 

14. Turn off the diffusion pump and cool it down.  

15. Turn off the water chiller. 

16. Turn off the mechanical pump. 
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B. Solvent purification 

The solvent N-methylacetamide (NMA) was purchased from Aldrich, and N-

methylpropionamide (NMP) was purchased from TCI America. NMA and NMP were 

fractionally distilled three times using a vigreux column under vacuum. In the distillation process, 

several points need to be emphasized. 

1. Distill high boiling point solvents NMA and NMP under the vacuum. 

2. Increase the temperature of the silicon oil very slowly and keep the oil temperature less 

than 130 ºC all the time. 

3. Collect the first distillate in one flask until the distilling temperature is stable. 

4. Switch to another flask after the temperature has been stable for couple of minutes.  

5. The temperature might increase after sometime because of the pump’s fluctuation. If the 

temperature increases 5 ºC higher, switch to another flask. 

6. Don’t collect all of the distillate (leave couple of milliliter liquid in the original flask) 

and turn off the heating. 

7. After the temperature of the glassware is cooled down, turn off the vacuum and vent the 

system. 

8. For distilling NMA and NMP, it is necessary to repeat the distillation multiple times 

until the fluorescence is cut down to the least. (compare the fluorescence spectrum of 

different distillate to decide whether it is necessary to repeat the distillation, but two 

times of distillation is strongly recommended) 
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