Zink, Florian
(2010)
Identification and Attenuation of Losses in Thermoacoustics: Issues Arising in the Miniaturization of Thermoacoustic Devices.
Doctoral Dissertation, University of Pittsburgh.
(Unpublished)
Abstract
Thermoacoustic energy conversion is based on the Stirling cycle and uses sound waves to displace and compress the working gas. When this process occurs inside a porous medium that is subject to a temperature gradient, a thermoacoustic engine creates intense sound. Conversely, when strong sound waves interact with a porous medium, a temperature gradient can be imposed through the attenuation of the pressure amplitude, creating a thermoacoustic refrigerator. The device size is a limiting factor to widespread use. This work investigates issues arising in their miniaturization in three separate ways. To date, the thermal properties of the driving components are largely ignored during the design phase, partially because the traditional design ``works,' and partially because of a lack of understanding of the thermal energy fluxes that occur during operation. First, a direct quantification of the influence of the thermal conductivity of the driving components on the performance of a thermoacoustic engine and refrigerator is performed. It is shown that materials with low thermal conductivity yield the highest sound output and cooling performance, respectively. As a second approach to decreasing the footprint of a thermoacoustic system, the introduction of curvature to the resonator tube was investigated. A CFD analysis of a whole thermoacoustic engine was performed, and the influence of the stack assembly on the flow behavior was investigated. Nonlinearities in the temperature behavior and vortices in the flow close to the stack ends were identified. Resonator curvature prompts a decrease in the amplitude of the pressure, velocity, and temperature oscillations. Furthermore, the total energy transfer from the stack to the fluid is also reduced. Finally, through combining the aforementioned investigations, an optimization scheme is applied to a standing wave engine. A black box solver was used to find the optimal combination of the design parameters subject to four objectives. When focusing solely on acoustic power, for example, the device should be designed to be as large as possible. On the other hand, when attempting to minimize thermal losses, the stack should be designed as small as possible.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Item Type: |
University of Pittsburgh ETD
|
Status: |
Unpublished |
Creators/Authors: |
|
ETD Committee: |
|
Date: |
26 January 2010 |
Date Type: |
Completion |
Defense Date: |
26 May 2009 |
Approval Date: |
26 January 2010 |
Submission Date: |
27 September 2009 |
Access Restriction: |
No restriction; Release the ETD for access worldwide immediately. |
Institution: |
University of Pittsburgh |
Schools and Programs: |
Swanson School of Engineering > Mechanical Engineering |
Degree: |
PhD - Doctor of Philosophy |
Thesis Type: |
Doctoral Dissertation |
Refereed: |
Yes |
Uncontrolled Keywords: |
Fluent; Nelder-Mead Simplex |
Other ID: |
http://etd.library.pitt.edu/ETD/available/etd-09272009-115628/, etd-09272009-115628 |
Date Deposited: |
10 Nov 2011 20:02 |
Last Modified: |
15 Nov 2016 13:50 |
URI: |
http://d-scholarship.pitt.edu/id/eprint/9399 |
Metrics
Monthly Views for the past 3 years
Plum Analytics
Actions (login required)
|
View Item |