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Adverse drug reactions (ADRs) are the most clinically significant and costly medication-related 

problems in nursing homes (NH), and are associated with an estimated 93,000 deaths a year and 

as much as $4 billion of excess healthcare expenditures.  Current ADR detection and 

management strategies that rely on pharmacist retrospective chart reviews (i.e., usual care) are 

inadequate.  Active medication monitoring systems, such as clinical event monitors, are 

recommended by many safety organizations as an alternative to detect and manage ADRs.  

These systems have been shown to be less expensive, faster, and identify ADRs not normally 

detected by clinicians in the hospital setting.  The main research goal of this dissertation is to 

review the rationale for the development and subsequent evaluation of an active medication 

monitoring system to automate the detection of ADRs in the NH setting.  This dissertation 

includes three parts and each part has its own emphasis and methodology centered on the main 

topic of better understanding of how to detect ADRs in the NH setting. 

 The first paper describes a systematic review of pharmacy and laboratory signals used by 

clinical event monitors to detect ADRs in hospitalized adult patients.   The second paper 

describes the development of a consensus list of agreed upon laboratory, pharmacy, and 

Minimum Data Set signals that can be used by a clinical event monitor to detect potential ADRs.  

The third paper describes the implementation and pharmacist evaluation of a clinical event 

monitor using the signals developed by consensus. 

DETECTING ADVERSE DRUG REACTIONS IN THE NURSING HOME SETTING 
USING A CLINICAL EVENT MONITOR 

  

Steven Mark Handler MD, MS, PhD 

University of Pittsburgh, 2010 
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The findings in the papers described will help us to better understand, design, and 

evaluate active medication monitoring systems to automate the detection of ADRs in the NH 

setting.  Future research is needed to determine if NH patients managed by physicians who 

receive active medication monitoring alerts have more ADRs detected, have a faster ADR 

management response time, and result in more cost-savings from a societal perspective, 

compared to usual care. 
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1.0  INTRODUCTION 

1.1 MEDICATION USE IN NURSING HOMES 

Medications are commonly prescribed to nursing home (NH) residents with the goals of curing 

or palliating disease and improving quality of life.1  Nursing home residents are prescribed more 

medications than patients in any other medical setting because of the number and severity of 

chronic comorbid medical conditions.  Using data from 1997, nursing home residents take an 

average of 8.8 medications per day (7.6 regularly scheduled and 1.2 as needed) and nearly one-

third were prescribed >9 medications (the Centers for Medicare & Medicaid definition of 

polypharmacy).2   Using the most recently available data, the number of NH residents who are 

prescribed >9 medications has increased to 60.9%, as of 2005.3  Medication-related problems are 

a frequent consequence of polypharmacy. 

1.2 MEDICATION-RELATED PROBLEMS IN NURSING HOMES 

The terms adverse drug event and adverse drug reaction are often used interchangeably.  

Although interrelated, these terms represent distinct and measurable phenomena.  The definition, 

terminology, and measurement of adverse drug events (ADEs) and adverse drug reactions 
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(ADRs) in this proposal will follow the World Health Organization’s model 4-5 and the model of 

Naranjo et al. 6, depicted graphically below (Figure 1). 

 
Adverse Event

(AE)
Adverse Drug Event

(ADE)
Adverse Drug Reaction

(ADR)

 
Figure 1. World Health Organization/Naranjo Model of Adverse Drug Reactions. 
 

Adverse events (AEs) are negative patient events that are expressed as symptoms, signs or 

laboratory abnormalities.6  When a relationship between the adverse event and a drug is 

suspected and plausible, then an ADE is assumed.  When an ADE is determined to be causally 

related to a drug, then an ADR is assumed.  Thus, an ADR will be defined as a unintended or 

noxious responses to a drug given in a dosage intended for prophylaxis, diagnosis, or therapy.4-5  

In essence, the model delineates differing levels of certainty about the relationship of an adverse 

patient event to a drug. In our studies we will be using ADRs as the endpoint for all analyses. 

1.3 PUBLIC HEALTH SIGNIFICANCE AND IMPACT OF ADVERSE DRUG 

EVENTS IN NURSING HOMES 

Institutionalized elderly experience ADEs at a rate as high as 10.8 events per 100-patient months, 

often as a result of polypharmacy, multiple comorbid illness, and difficulty with monitoring 

prescribed medications.7-8  This translates into approximately 135 ADEs each year in an average 

size NH (bed size of 105) or approximately 2 million events a year among all U.S. NH patients.  

ADEs represent the most clinically significant and costly medication-related problems in NHs 

and are associated with 93,000 deaths a year and in as much as $4 billion of excess healthcare 
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expenditures.8-9  Excess healthcare expenditures associated with ADEs are usually a result of 

increased physician visits, ordering of additional medications or diagnostic studies, and the 

evaluation and management of patients in the emergency department or hospital setting.10-11  The 

frequency of ADEs will likely increase as the U.S. population ages and the demand for NH 

services increases from the current 1.6 million people receiving care in one of more than 16,000 

NHs to over 3 million people by 2030.12-13 

1.4 EPIDEMIOLOGY OF ADVERSE DRUG EVENTS IN NURSING HOMES 

Investigators have conducted epidemiological studies to attempt to identify a uniform set of 

patient-level risk factors for the development of ADEs in NHs in order to focus detection and 

prevention efforts on high-risk individuals.10-11, 14-18  These studies evaluated the effects of age, 

gender, time since admission, number of comorbid conditions, and number and type of 

prescribed medications.  Only the presence of polypharmacy (not uniformly defined throughout 

the studies) has consistently been found to increase the likelihood of developing an ADE.  The 

lack of easily identifiable patient characteristics has limited the development and implementation 

of efforts to detect and prevent ADEs in the NH.19 

1.5 SYSTEMS ANALYSIS OF ADVERSE DRUG EVENTS IN NURSING HOMES 

A systems analysis is the interdisciplinary part of science, dealing with analysis of sets of 

interacting entities, the systems, often prior to their automation as computer systems, and the 
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interactions within those systems.20-22 A systems analysis of ADEs suggest that as many as half 

of these events are preventable and that they are frequently a direct result of medication errors.7  

Medication errors are commonly defined as errors occurring in the medication use process (e.g., 

prescribing, order communication, dispensing, administration, and monitoring).23  Data about 

preventable ADEs in NHs suggest that most (70-80%) are associated with monitoring, rather 

than prescribing errors.10-11  Monitoring errors generally refer to inadequate laboratory 

evaluation of drug therapies or a delayed or failed response to signs or symptoms of drug toxicity 

or laboratory evidence of toxicity.  Based on the results of these and other studies,24-27 the term 

suboptimal medication monitoring has recently been introduced to explain a common pathway of 

systems failures that underlie monitoring errors causing ADEs in older adults.28 

1.6 LIMITATIONS OF CURRENT METHODS FOR DETECTING ADVERSE DRUG 

EVENTS 

Manual ADE detection techniques, including voluntary reporting through ADE, medication error 

or incident reports, direct observation of medication passes, and retrospective chart reviews have 

formed the foundation for the body of research underlying our current understanding of ADEs in 

the NH setting.  Although retrospective manual chart review is considered to be the criterion 

standard for ADE detection, it is time-consuming, costly, and impractical for routine clinical 

use.29-32 

Manual chart review is also the primary ADE case-finding technique for consultant 

pharmacists, who have a federal mandate to conduct monthly medication regimen reviews in 

NHs (i.e., usual care) and report their findings to the appropriate attending physician.33  
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Consultant pharmacist services have been required in NHs since 1974.34  The Centers for 

Medicare and Medicaid Services outlines the expectations of the NH’s consultant pharmacist in 

Appendix PP of the State Operations Manual that are used to guide and set minimal standards 

during annual state surveys.  The State Operations Manual mandates that the drug regimen of 

each patient must be reviewed at least once a month by a licensed consultant pharmacist who 

must report the presence of ADEs and recommend that a medication should be stopped, changed, 

or monitored more closely by the attending physician.35  The State Operations Manual further 

suggests that the reports made by a consultant pharmacist be acted on by the attending physician 

within 30 days. 

A significant limitation of pharmacist-conducted monthly medication regimen reviews is 

their retrospective nature, which has not been shown to improve clinical outcomes.36-37  

Retrospective chart reviews do not provide the attending physician with real-time notification of 

ADEs, and could result in notification delays of up to 30 days .19  Moreover, in a recent study, 

although attending physicians rated the two most important functions of consultant pharmacists 

as helping the NH comply with state and federal regulations, and monitoring the safety of all 

prescribed medication, physicians also rated these two functions as most in need of 

improvement.38 

1.7 ACTIVE MEDICATION MONITORING SYSTEMS FOR DETECTING 

ADVERSE DRUG EVENTS ARE RECOMMENDED 

The Institute of Medicine and other patient safety organizations recommend that all healthcare 

settings assess the safety of medication use through active monitoring systems within a culture of 
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safety.19, 35, 39-44  Nevertheless, the majority of health information technology interventions to 

improve patient safety with respect to medications have focused on enhancing prescribing 

through the use of with CPOE (computerized provider order entry) with CDS (clinical decision 

support).45-48  These CPOE with CDS interventions have had varying degrees of success in 

detecting and reducing ADEs in diverse clinical settings, including NHs.8, 49  Active medication 

monitoring systems are particularly needed to detect ADEs in priority populations such as 

institutionalized elderly.  This is because of long-standing concern about the quality of their 

pharmaceutical care, presence of polypharmacy, and the limited ability of the NH workforce to 

monitor prescribed medications effectively due to an insufficient healthcare personnel, high staff 

turnover, and a poorly developed safety culture.2, 50-54 

1.8 ACTIVE MEDICATION MONITORING SYSTEMS ARE OPTIMAL FOR 

DETECTING ADVERSE DRUGE EVENTS 

Computerized clinical event monitors, a type of active medication monitoring system, can detect 

ADEs via the processing of signals for laboratory test results and pharmacy orders.31, 55-56  

Compared with manual methods of ADE detection, hospital studies indicate that clinical event 

monitors, which provide feedback to healthcare professionals based on information available in 

electronic format, are less expensive, faster, and can identify ADEs not normally detected by 

clinicians.30, 57-61  Clinical event monitor systems have also been shown in certain studies to 

prevent the development, progression, or mitigate the seriousness of ADEs by promoting the 

early detection and appropriate response to events in evolution in the hospital and ambulatory 

care settings.32, 62-68  Despite the proven benefits of clinical event monitors on improving 
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healthcare quality and efficiency while reducing cost, few healthcare organizations have 

implemented and formally evaluated them.41-42, 49, 69  When used, these active medication 

monitoring systems have been implemented in non-standardized ways that make it difficult to 

reproduce findings and compare their effectiveness across patients and healthcare settings.39, 70  

This lack of generalizability contributes to the suboptimal detection and management of ADEs in 

U.S. hospitals and ambulatory care settings.71  

1.9 BARRIERS TO USING ACTIVE MEDICATION MONITORING SYSTEMS IN 

NURSING HOMES 

Studies have been conducted to assess the adoption and barriers to implementing health 

information technology such as active medication monitoring systems in a variety of clinical 

settings including NHs.72-73  These studies suggest that NHs are the farthest behind in the 

adoption of health information technology.  Moreover, when health information technology is 

available, it is used primarily for state or federal payment and certification requirements.  There 

is minimal use of clinical health information technology applications, and when used, these 

systems are usually not integrated.  Nevertheless, almost all NHs generate laboratory, pharmacy, 

and Minimum Data Set data (MDS; a standardized summary assessment instrument required for 

all NH patients) in electronic format as a byproduct of other work processes.  Studies to assess 

barriers to the use of health information technology in the NH setting74-75 have concluded that 

multiple stakeholders would incur the costs of implementing and maintaining these systems, but 

that these costs would likely not be fully aligned with their benefits.  In addition to concerns 

about cost, other barriers include difficulty in finding health information technology producers 
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that meet their needs, lack of evidence that health information technology will have a positive 

impact on quality of care and operational efficiencies (e.g., alert burden), and lack of the 

hardware or technical support to access and use the electronic data that they generate.76-77 

1.10 SUMMARY AND OBJECTIVE OF DISSERTATION 

ADEs among NH patients are common and costly problems that are likely to increase 

substantially as the U.S. NH population grows.  A lack of easily identifiable patient-specific risk 

factors makes it difficult to routinely detect these events.  Systems analyses of ADEs suggest that 

suboptimal medication monitoring is the most common pathway underlying these events in the 

NH.  Current strategies that rely on voluntary reporting, such as incident reports, direct 

observation of medication passes, and retrospective chart review are time-consuming, costly, and 

impractical for routine clinical use.  Several prominent quality improvement organizations 

recommend active medication monitoring systems as a potential solution to improving 

medication safety.  Active medication monitoring systems are particularly needed to detect 

ADRs in priority populations such as institutionalized elderly because of the long-standing 

concern about the quality of their pharmaceutical care.  Although NHs have yet to adopt a 

significant amount of health information technology, the majority generate laboratory, pharmacy, 

and Minimum Data Set data in electronic format that can be used by active medication 

monitoring systems such as clinical event monitors to automate the detection of ADEs.  The 

main research goal of this dissertation is to review the rationale for the development and 

subsequent evaluation of an active medication monitoring system to automate the detection of 

ADRs in the NH setting. 
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1.11 CONTRIBUTION OF DISSERTATION 

In a comprehensive review of medication-related adverse events in nursing homes, Handler et al. 

reported that there was substantial variability in the incidence of ADEs, ranging from 1.19 to 

7.26 per 100 resident-months.7  The authors concluded that the variability in the incidence of 

ADEs was most likely due to the lack of uniformity in case-finding techniques.  In particular, 

Gurwitz et al.11 reported the highest incidence rate, which was greater than four times higher 

than the rate in their previous study.10  The significant increase in the incidence of ADEs was 

attributed to the investigators using a previously developed clinical event monitor system that 

had been developed for use in the hospital setting. 

The overall goal of my research has been to expand on our previous knowledge by 

developing and testing a clinical event monitor system specifically designed for detecting ADRs 

in the NH setting.  The first step was to conduct a systematic review of hospital-based clinical 

event monitor systems to better understand the universe of signals used to detect ADEs and how 

to calculate and compare their respective performance characteristics using positive predictive 

values.  The second step was to develop NH-specific signals for ADR detection by conducting a 

modified Delphi survey of experts in geriatrics.  The third step was to assess the performance 

characteristic of a NH-specific clinical event monitor system that uses the signals derived by 

expert consensus.  To the best of my knowledge, no previous research has been published on the 

development of a consensus list of signals and/or the evaluation of an active medication 

monitoring system to automate the detection of ADRs in the NH setting. 
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1.12 ORGANIZATION OF DISSERTATION 

The remainder of the dissertation is divided into four chapters including three papers (chapters 2, 

3, and 4), followed by a summary of findings, their significance, and direction of future research.  

Each paper has its own method centered on the theme of development and evaluation of an 

active medication monitoring system to automate the detection of ADRs in the NH setting.  The 

first paper describes a systematic review of pharmacy and laboratory signals used by clinical 

event monitors to detect ADEs in hospitalized adults.  This paper has been published in the 

Journal of the American Medical Informatics Society.60  The second paper describes the 

development of a consensus list of agreed upon laboratory, pharmacy, and Minimum Data Set 

signals that can be used by a clinical event monitor to detect potential ADRs.  This paper has 

been published in the Journal of the American Geriatrics Society.78  The third paper describes the 

implementation and pharmacist evaluation of a clinical event monitor using the signals 

developed by consensus.  This paper has been published in the American Medical Informatics 

Association Annual Symposium Proceedings.79 
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2.0  A SYSTEMATIC REVIEW OF THE PERFORMANCE CHARACTERISTICS OF 

CLINICAL EVENT MONITOR SIGNALS USED TO DETECT ADVERSE DRUG 

EVENTS IN THE HOSPITAL SETTING 

2.1 ABSTRACT 

2.1.1 Objective 

Despite demonstrated benefits, few healthcare organizations have implemented clinical event 

monitors to detect adverse drug events (ADEs).  The objective of this study was to conduct a 

systematic review of pharmacy and laboratory signals used by clinical event monitors to detect 

ADEs in hospitalized adults. 

2.1.2 Design 

We performed a comprehensive search of MEDLINE, CINHAL, and EMBASE to identify 

studies published between 1985 and 2006.  Studies were included if they: described a clinical 

event monitor to detect ADEs in an adult hospital setting; described laboratory or pharmacy 

ADE signals; and provided positive predictive values (PPVs) or information to allow the 

calculation of PPVs for individual ADE signals. 
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2.1.3 Measurements 

We calculated overall estimates of PPVs and 95% confidence intervals (CIs) for signals reported 

in 2 or more studies and contained no evidence heterogeneity. Results were examined by signal 

category: medication levels, laboratory tests, or antidotes. 

2.1.4 Results 

We identified 12 observational studies describing 36 unique ADE signals. Fifteen signals (3 

antidotes, 4 medication levels, and 8 laboratory values) contained no evidence of heterogeneity.  

The pooled PPVs for these individual signals ranged from 0.03 [CI=0.03-0.03] for hypokalemia, 

to 0.50 [CI=0.39-0.61] for supratherapeutic quinidine level. In general, antidotes (range=0.09-

0.11) had the lowest PPVs, followed by laboratory values (0.03-0.27), and medication levels 

(0.03-0.50). 

2.1.5 Conclusion 

Results from this study should help clinical information system and computerized decision 

support producers develop or improve existing clinical event monitors to detect ADEs in their 

own hospitals by prioritizing those signals with the highest PPVs. 
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2.2 INTRODUCTION 

Clinical decision support (CDS) systems have been shown to improve patient care and treatment 

outcomes by providing physicians and other healthcare providers with patient-specific 

information that is intelligently filtered and presented at appropriate times.71  Clinical event 

monitors, one of the most common types of CDS systems, provide feedback through alerts and 

reminders to healthcare providers when triggered by certain information available in electronic 

format (i.e., by signals).80  Clinical event monitors can be used to detect medication-related 

problems by processing pharmacy order signals81-82 and laboratory test result signals,83 generated 

by systems with varying levels of automation and sophistication.30 

The most clinically significant medication-related problems are adverse drug events 

(ADEs).  Various definitions have been proposed and used throughout the literature to describe 

ADEs.  For this paper, we use the Institute of Medicine definition which defines ADEs as 

“injuries resulting from a medical intervention related to a drug.”7, 39, 84  ADEs are common and 

occur in 2.4-5.2 per 100 hospitalized adult patients.29, 85-87  A meta-analysis of fatal ADEs 

suggest that these events are between the fourth and sixth leading cause of death in the U.S.88  

Each ADE is estimated to increase the length of hospital stay by 2.2 days and to increase the 

hospital cost by $3,244.89 

Compared with manual methods of ADE detection (e.g., chart review or voluntary 

reporting), clinical event monitors are less expensive and faster, and they often identify ADEs 

not normally detected by clinicians during the course of routine hospital care.57, 61, 90-91  Through 

the early detection and prevention of ADEs, clinical event monitors can improve the quality of 

care, while reducing health care costs by as much as $760,000 per year in a teaching hospital.62, 

92-94  Despite the potential benefits of clinical event monitors and the fact that several prominent 
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national organizations have recommended their use to detect ADEs,41-42 few healthcare systems 

have implemented them.49  Moreover, when they have implemented them, they have done so in 

non-standardized ways that make it difficult to compare and synthesize the results.23, 70  The lack 

of generalizability of results in turn contributes to the problems and suboptimal performance of 

hospitals in the U.S. healthcare system.71 

To begin to address these concerns and to help clinical information system and CDS 

producers develop, select, or improve, systems to detect ADEs, we conducted a systematic 

review of individual pharmacy and laboratory signals that are currently used by clinical event 

monitors to detect ADEs in the adult hospital setting.  When possible, we calculated the positive 

predictive values (PPVs) of individual signals. 

2.3 METHODS 

2.3.1 Study Identification and Eligibility 

Before we implemented our literature search, we established criteria for inclusion and exclusion 

of studies.  We included studies that met the following four criteria: their results were published 

between January 1, 1985, and July 1, 2006; they described a clinical event monitoring system to 

detect ADEs in an adult hospital setting; they described laboratory or pharmacy ADE signals; 

and they provided PPVs or information to allow the calculation of PPVs for individual ADE 

signals.  We excluded studies if they focused on ADE prevention rather than detection (e.g., if 

they focused on computerized physician order entry systems) as this has recently been reviewed 

elsewhere.95  We also excluded studies if they described non-laboratory or non-pharmacy ADE 
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signals, including signals to monitor physiologic data (e.g., blood pressure or heart rate) or 

administrative data (e.g., diagnostic or procedural codes [ICD-9 or CPT]), or if they described 

free-text search strategies to detect potential ADEs.  Because of concerns that non–peer-

reviewed data might introduce bias into our systematic review,96-97 we also excluded studies in 

which data was presented as an abstract, poster presentation, or editorial. 

2.3.2 Information Sources and Search Strategy 

We searched OVID MEDLINE, OVID CINHAL, and EMBASE for articles published in all 

languages between January 1, 1985, and July 1, 2006.  In OVID, we searched for the following 

medical subject headings (MeSH) keywords, and text words: adverse drug event, adverse drug 

reaction, adverse drug reaction reporting systems, clinical event monitor, clinical decisions 

support systems, clinical laboratory information systems, clinical pharmacy information system, 

computer generated signals, decision support system, drug monitoring, medication errors, and 

physiologic monitoring.  In EMBASE, we searched for the above terms plus the following 

EMTREE keywords: computer assisted drug therapy and drug surveillance program.  We 

supplemented the computerized search by reviewing the reference lists of all articles selected for 

inclusion. 

2.3.3 Study Selection, Data Extraction and Review Criteria 

Two reviewers (SH and RA) independently assessed each article for eligibility criteria, with 

adjudication by a third reviewer (JH) in cases of disagreement.  While reviewing each study that 

met the eligibility criteria, the same two authors (SH and RA) used standardized forms to 
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independently extract and record: hospital characteristics (e.g., teaching or community hospital, 

number of beds); patient characteristics (e.g., number of patients included); the signals monitored 

by the hospitals; and, data necessary to record or calculate positive predictive values.  To collect 

the necessary data to calculate a PPV, we reviewed the data from each signal in the individual 

included studies.  For every signal in an included study, we recorded the number of times that a 

specific signal fired and the number of times that a health professional determined that the signal 

represented an ADE.  Study authors were contacted by email for data clarification when 

necessary. 

Signals from each of the studies that met eligibility criteria were included and combined 

if they measured the same parameter (e.g., digoxin level, serum potassium level, or use of 

vitamin K) independent of the reference interval or dosage used in the particular study.  Signals 

were then grouped into one of three categories: antidote signals (triggered by administration of 

medications given to counteract the effects of a poison, toxin, or other agent with toxic effects), 

medication level signals (triggered by elevated, or supratherapeutic, drug levels), and laboratory 

result signals (triggered by abnormal values in blood tests). 

2.3.4 Quantitative Data Synthesis and Statistical Analysis 

To calculate a study-specific PPV for each signal, we divided the number of times that a signal 

fired and an ADE was confirmed (i.e., the number of true-positives), by the number of times the 

signal fired with or without an ADE being confirmed (i.e., the sum of true-positives and false-

positives).  PPVs were chosen as the performance characteristic of interest since the majority of 

studies conducted a targeted verification of signal firings and did not include a corollary gold-

standard measure, such as an independently conducted chart review looking for the presence of 
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ADEs.  As a result, the sensitivity and specificity of individual signals used to detect ADEs could 

not be calculated. 

To determine the appropriateness of computing a pooled PPV, we compared the 

individual study-specific PPVs using the chi-square test for homogeneity of proportions.98  For 

those signals which there was no evidence of heterogeneity (p>0.05) we calculated an overall 

estimate of pooled PPVs and corresponding 95% confidence intervals (CIs).  We used a 

generalized estimating equations (GEE) model by combining the PPVs for signals reported in at 

least two studies.  This model included an exchangeable correlation structure to account for 

within-study correlation, using the total number of signal firings in each study as the weighing 

factor.99-101  We also examined the sensitivity of the overall PPV estimates using a fixed effects 

model recommended in the meta-analytic literature.102 

To determine whether certain studies were heavily influencing the overall PPV estimate 

for each signal, we performed an influence analysis in which we excluded studies, one at a time, 

and reestimated the overall PPVs.  We also examined the cumulative effect on the overall PPV 

estimate by adding studies, one at a time, ordered by year of publication, and hospital bed size.  

If there were any publication bias, it would most likely be caused by the greater probability of 

publication of studies with a larger number of firings or of studies with a smaller number of 

firings but a greater PPV.  We examined this possibility by visually inspecting a scatter plot of 

the PPV and the square root of the number of signals (which is proportional to the reciprocal of 

the standard error) and testing for a significant linear trend between them.  If we found a lack of 

data points near the origin or a statistically significant negative linear trend, we would consider it 

to be evidence of publication bias.103  We conducted all statistical analyses with either SAS 
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version 8.2 for Windows (SAS Institute, Inc., Cary, NC) or Stata version 9.0 for Windows 

(StataCorp, LP, College Station, TX). 

2.4 RESULTS 

Of the 6649 titles that were initially identified, 4243 were from MEDLINE, 859 were from 

CINHAL, and 1547 were from EMBASE.  After removing duplicates and going through a 

thorough screening process (Figure 2), we identified 12 observational studies that met our 

eligibility criteria.56-57, 64, 66, 68, 104-111   Table 1 lists the 12 studies and the characteristics of the 

study sites.  All but two of the studies were conducted in teaching hospitals. 

Unique titles identified for title review (n = 6399)

Articles screened (n= 354)

Rejected on title review (n = 5417)

Titles considered relevant (n = 982)

Rejected on abstract review (n = 628)

Rejected on article review (n = 342)

Articles included (n =12)

Titles identified for title review (n = 6649)

Rejected as duplicates (n = 250)

 

Figure 2. Flow diagram of included and excluded studies. 
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Table 1. Characteristics of studies included in the systematic review. 

Author/Year/Reference Study Site 

Evans et al, 1991 104 500-bed tertiary teaching hospital 

Azaz-Livshits et al, 1998 105 34 bed medical ward in teaching hospital 

Jha et al, 1998 56 726 bed tertiary teaching hospital 

Raschke et al, 1998 64 650 bed community teaching hospital 

Levy et al, 1999 57 34 bed medical ward in teaching hospital 

Dormann et al, 2000 107 9 bed medical ward in a teaching hospital 

Brown et al, 2000 111 238 bed Veterans Administration Medical Center 

Jha et al, 2001 108 726 bed tertiary care teaching hospital 

Thuermann et al, 2002 109 86 bed neurology department in teaching hospital 

Dormann et al, 2004 110 29 bed gastroenterology ward in teaching hospital 

Silverman et al, 2004 66 726 bed tertiary care teaching hospital 

Hartis et al, 2005 68 1,952 beds in six community hospitals 

 

Of the total of 36 signals that we identified in two or more publications and included in our 

analysis, 7 were administrations of antidotes, 10 were supratherapeutic medication levels, and 19 

were abnormal laboratory test results.  Fifteen signals (3 antidotes, 8 laboratory tests, and 4 

medication levels) contained no evidence of heterogeneity (p>0.05) and were pooled to calculate 

overall PPVs and 95% CIs.  Naloxone was not included in the analysis because of the 12 studies 

that met eligibility criteria, only one study provided sufficient information about naloxone to 

calculate PPVs.37  Because we could not calculate a pooled PPV (our primary unit of analysis) 

with the PPV from only one study, naloxone was not included in our systematic review. 



 

  

Of the antidote signals (Table 2), sodium polystyrene administration, had the lowest pooled PPV 0.09 (95% CI, 0.06–0.13), 

and metronidazole or vancomycin administration had the highest 0.11 (95% CI, 0.06–0.20). 

 

Table 2. Signals associated with antidotes. 

Signal* 
Number 

of Studies 

PPV 

Range 

P-value 

Test for 

Heterogeneity 

Overall Estimate 

of  PPV† 

(95% CI) 

Overall Estimate 

of PPV‡ 

(95% CI) 

Vitamin K given 3 0.02 – 0.30 < 0.01 - - 

Activated charcoal given 2 0.08 – 0.45 0.03 - - 

Antihistamine (e.g., diphenhydramine or 

hydroxyzine) given 
3 0.03 – 0.14 < 0.01 - - 

Oral metronidazole or vancomycin given 
2 0.07 – 0.16 0.06 0.11 (0.06–0.20) 

0.10 (0.06 – 

0.14) 

Antidiarrheal (e.g., loperamide, 

diphenoxylate, bismuth) given 
3 0 – 0.11 0.06 0.09 (0.07–0.13) 

0.07 (0.00 – 

0.15) 

Sodium polystyrene (Kayexalate®) given 
3 0.06 – 0.12 0.44 0.09 (0.06–0.13) 

0.08 (0.05 – 

0.12) 



 

  

Oral or topical steroids (e.g., prednisone, 

prednisolone) given 
2 0.04 – 0.09 < 0.01 - - 

* Naloxone not included as data was available from only a single study; †PPV calculated using GEE pooled estimate and CI; 

‡PPV calculated using fixed effects pooled estimate and CI 

 

Of the laboratory test result signals (Table 3), hypokalemia had the lowest pooled PPV 0.03 (95% CI, 0.03–0.03), and hypoglycemia 

had the highest 0.28 (95% CI, 0.24–0.32). 

 



 

  

Table 3. Signals associated with laboratory test results. 

Signal 
Number 

of Studies 

PPV 

Range 

P-value 

Test for 

Heterogeneity 

Overall Estimate 

of PPV† 

(95% CI) 

Overall Estimate 

of PPV‡ 

(95% CI) 

Serum creatinine elevated or increasing 5 0.08 – 0.39 <0.01 - - 

Hypoglycemia (as indicated by low or 

decreasing glucose) 
2 0 – 0.33 0.49 0.27 (0.27–0.27) 0.10 (0.00 – 0.27) 

Hyperbilirubinemia (as indicated by high or 

increasing bilirubin) 
4 0.05 – 0.39 < 0.01 - - 

Hyponatremia (as indicated by low or 

decreasing sodium) 
2 0.24 – 0.33 0.72 0.25 (0.23–0.28) 0.25 (0.09 – 0.41) 

Blood urea nitrogen (BUN) elevated or 

increasing 
3 0 – 0.30 0.41 0.22 (0.14–0.32) 0.17 (0.08 – 0.26) 

Eosinophilia (as indicated by high or 

increasing eosinophils) 
5 0 – 0.62 < 0.01 - - 

Hyperkalemia (as indicated by high or 

increasing potassium) 
5 0 – 0.67 < 0.01 - - 



 

  

Alanine aminotransferase (ALT) elevated or 

increasing 
3 0.12 – 0.38 < 0.01 - - 

Anemia (as indicated by a low or decreasing 

hemoglobin/hematocrit) 
5 0.12 – 0.30 0.14 0.19 (0.12–0.29) 0.16 (0.11 – 0.22) 

Partial thromboplastin time (PTT) elevated or 

increasing 
3 0.04 – 0.92 < 0.01 - - 

Gamma-Glutamyl Transferase (GGTP) 

elevated or increasing 
4 0.03 – 0.19 0.03 - - 

Alkaline phosphatase (ALP) level elevated or 

increasing  
5 0 – 0.31 < 0.01 - - 

Aspartate aminotransferase (AST) elevated or 

increasing 
4 0.01 – 0.23 < 0.01 - - 

Agranulocytosis or leukopenia (as indicated 

by low or decreasing white blood cells) 
4 0.09 – 0.5 0.15 0.11 (0.07–0.17) 0.10 (0.04 – 0.15) 

International normalized ratio (INR) elevated 

or increasing 
4 0.05 – 1.0 < 0.01 - - 



 

  

Lactate dehydrogenase (LDH) elevated or 

increasing 
3 0.02 – 0.17 0.06 0.06 (0.02–0.14) 0.03 (0.00 – 0.06) 

Thrombocytopenia (as indicated by low or 

decreasing platelets) 
4 0.03 – 0.12 0.01 - - 

Hypocalcemia (as indicated by low or 

decreasing calcium) 
2 0 – 0.11 0.25 0.06 (0.02–0.18) 0.02 (0.00 – 0.08) 

Hypokalemia (as indicated by low or 

decreasing potassium) 
2 0 – 0.03 0.86 0.03 (0.03–0.03) 0.03 (0.01 – 0.04) 

PPV= positive predictive value; †PPV calculated using GEE pooled estimate and CI; ‡PPV calculated using fixed effects pooled 

estimate and CI 

 

Of the medication level signals (Table 4), cyclosporine had the lowest pooled PPV 0.03 (95% CI, 0.02–0.06) and quinidine had the 

highest 0.50 (95% CI, 0.39–0.61).  Among the pooled signals considered, the antidote category had the lowest PPVs (range= 0.09-

0.11), followed by the laboratory test result category (range= 0.03-0.27), and the medication level category (range= 0.03-0.50). 



 

  

Table 4. Signals associated with supratherapeutic medication levels. 

Signal 
Number 

of Studies 

PPV 

Range 

P-value 

Test for 

Heterogeneity 

Overall Estimate 

of PPV† 

(95% CI) 

Overall Estimate 

of PPV‡ 

(95% CI) 

Quinidine 2 0.43 – 0.60 0.56 0.50 (0.39–0.61) 0.50 (0.22 – 0.78) 

Phenobarbital 3 0 – 1.0 < 0.01 - - 

Theophylline trough 5 0.25 – 1.0 0.01 - - 

Vancomycin peak or trough levels 3 0.18 – 0.33 0.31 0.26 (0.22–0.32) 0.26 (0.20 – 0.32) 

Procainamide 3 0 – 0.42 <0.01 - - 

Lidocaine 3 0.17 – 0.50 0.51 0.19 (0.17–0.21) 0.18 (0.09 – 0.28) 

Aminoglycoside antibiotic 3 0.04 – 1.0 < 0.01 - - 

Digoxin 8 0.08 – 1.0 < 0.01 - - 

Phenytoin 7 0.07 – 1.0 < 0.01 - - 

Cyclosporine 2 0 – 0.04 0.29 0.03 (0.02–0.06) 0.03 (0.00 – 0.06) 

PPV= positive predictive value; †PPV calculated using GEE pooled estimate and CI; ‡PPV calculated using fixed effects pooled 

estimate and CI 
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There were no meaningful differences in overall PPV estimates calculated with GEE models or 

fixed effects models.  The influence analysis suggested that the removal of certain studies 

affected the PPVs for particular signals.  For example, when the Evans et al. study was removed 

from the analysis of the signal for agranulocytosis or leukopenia, the pooled PPV increased from 

0.11 to 0.23.104  Similarly, when the Theurmann et al. study was removed from the analysis of 

the anemia signal, the PPV increased from 0.19 to 0.26.112  No effects were noted on the overall 

PPV estimates when stratified by study year or bed size. 

Some evidence of publication bias was found for the signal agranulocytosis or 

leukopenia.  Specifically, a significant negative association between the number of firings and 

the PPV (p<0.05), suggesting the possibility that smaller studies with lower PPVs may not have 

been published and may therefore have eluded our systematic review.  For the remaining signals, 

we found no evidence of publication bias. 

2.5 DISCUSSION 

This systematic review analyzed the performance characteristics of individual pharmacy and 

laboratory signals that are currently used by clinical event monitors to detect ADEs in the adult 

hospital setting.  Our review of the PPVs of 36 signals from 12 studies published between 1985 

and 2006 revealed two important findings. 

First, there was evidence of significant between-study heterogeneity for the majority of 

signals, limiting our ability to pool the PPVs of signals across studies.  Of the 36 signals 

identified in two or more publications, 21 contained evidence of heterogeneity and could 

therefore not be pooled to calculate overall PPVs.  There are at least two plausible explanations 
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for this heterogeneity.  First, it may be due to the use of different reference intervals for 

therapeutic medication levels and laboratory values in different studies.  Second, it may be 

attributable to the different hospital and/or patient characteristics which affect the underlying 

prevalence of ADEs.  This is particularly important because PPVs are by definition affected by 

the underlying prevalence of the condition of interest. 

The second important finding was that there was significant variability in the PPVs for 

different individual signals, both across studies and within signal categories (e.g., antidotes, 

medication levels, and laboratory test results).  The overall PPV estimates for the 15 pooled 

signals in the analysis ranged from 0.03 for hypokalemia to 0.50 for a supratherapeutic quinidine 

level.  Moreover, antidotes had the lowest PPVs, followed by laboratory test results, and 

medication levels.  It is not surprising that PPVs were highest for medication levels.  For this 

category of signal, the prior odds of an ADE are increased, since the underlying assumption is 

that patients in each case are already receiving the medication of interest and their prescribing 

clinicians are aware of the possibility of an ADE.113  In contrast, the other two categories of 

signals would not necessarily be expected to be associated with an ADE.  Laboratory values are 

often abnormal because of the onset or worsening of medical conditions unrelated to the use of 

medications.  Likewise, the majority of antidotes analyzed in our study can be used to treat 

multiple medical conditions, only a fraction of which are related to the presence of an ADE. 

2.5.1 Limitations and Strengths 

Our systematic review has several limitations that deserve mention.  First, systematic reviews of 

effect sizes often limit their selection of studies to those involving randomized controlled trials 

(RCTs).114  However, analyzing RCTs is not always feasible or preferable for evaluating the 
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performance characteristics of individual signals used to detect ADEs.115-116  For purposes of our 

analysis, we did not limit our systematic review to RCTs, so we were not able to apply 

instruments commonly used to assess the quality of RCTs.117-118  Second, although we found 12 

studies that could be included in the overall analysis, we found few studies that covered each 

ADE signal.  This may have limited our ability to identify the dependence of overall PPVs on 

factors such as facility bed size and to detect publication bias, a problem to which all systematic 

reviews are susceptible.119-120  Third, our analysis focused on data that is widely available in 

electronic format (such as laboratory and pharmacy information) and was thus biased against 

data that cannot be readily computed.  It also excluded some sources of electronic data available 

to enhance ADE detection, such as administrative data (e.g., ICD-9 and CPT codes), allergy 

rules, and free-text searching of clinician progress and discharge notes.31 

Despite these limitations, we believe that our results are important and represent the most 

comprehensive information available on the performance characteristics of ADE signals in the 

adult hospital setting.  Our analysis employed the "best practice" methods recommended for 

conducting systematic reviews of the literature.114  Moreover, in keeping with suggestions of the 

Roadmap for National Action on Clinical Decision Support, the study was designed to capture, 

organize, and assess studies available internationally.71  

2.5.2 Implications 

While the benefits of health information technology are clear at least in theory, adapting 

information systems to healthcare has proven difficult, partly because there are so many non-

standardized and independent approaches to creating and representing clinical knowledge and 

clinical decision support systems.73, 121  In this regard, our systematic review may provide a 
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foundation for and influence the future design and implementation of computerized decision 

support systems used to detect ADEs in the hospital setting.  Having comprehensive information 

on the performance characteristics of individual signals may help hospitals prioritize the signals 

to be included in their systems to maximize the detection of ADEs and to minimize the number 

of false-positive alerts (i.e., alert burden), which is a growing problem.76, 122  To further reduce 

false-positive alerts, investigators have also begun to integrate data from multiple sources, 

including pharmacy, laboratory, and demographic data.123-124  Taking the false-positive rate into 

account is especially important when large-scale information systems are being developed, since 

as many as 30% of information system projects fail and a significantly larger number have cost 

overruns.125 

The fact that many of the signals to detect ADEs have relatively low PPVs should not 

impede the adoption of clinical event monitors.126  In many respects, the monitors can be treated 

as a type of screening test that allows for early ADE identification and intervention, and thereby 

reduces morbidity and mortality rates.127  Indeed, the monitors have been shown to detect ADEs 

not normally detected by clinicians during the course of routine care, and to decrease the length 

of time until diagnosis and treatment.57, 61, 128  Screening tests such as fecal occult blood testing to 

detect colorectal cancer are recommended despite having PPVs that range from 0.02 to 0.18 in 

adults over 50 years old, and are thus similar to the ranges of some signals described in our 

study.129 

2.5.3 Recommendations for Future Work 

Additional studies are needed to improve the performance characteristics of individual ADE 

signals and clinical decision support systems, apply these systems to other clinical environments, 
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develop interoperable systems, and perform economic analyses of these systems.  Studies have 

suggested that ADE detection rates can be improved by combing multiple data sources and 

having a better understanding of the context of the data as they relate to patients' underlying 

medical conditions.130-133  Investigators have begun to use clinical decision support systems to 

detect ADEs in other clinical care settings, such as ambulatory care clinics and nursing homes.11, 

31, 134-135  These systems may be particularly useful in the nursing home setting where patients are 

frail, have multiple comorbid medical conditions, and take more medications per patient than in 

any other clinical setting.2, 11, 136  Since most systems lack standardized methods to export or 

share ADE algorithms, additional studies are required to develop interoperable systems.137-138  

Additional cost-benefit and cost-effectiveness studies are needed not only to determine the 

rational selection, optimal use, and potential success of systems used to detect ADEs, but also to 

determine the costs of developing and maintaining the systems and of responding to true-positive 

and false-positive alerts. 

2.6 CONCLUSIONS 

Our systematic review provides the PPVs of pharmacy and laboratory signals used to detect 

ADEs in the adult hospital setting, and suggests that the PPVs of individual signals vary widely.  

Our findings should help clinical information system and clinical decision support producers 

create and modify clinical decision support systems to detect ADEs in their own institutions.  

Future studies are needed to improve the performance characteristics of individual ADE signals 

and clinical decision support systems, apply these systems to other clinical environments, 

develop interoperable systems, and perform economic analyses of the systems. 
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3.0  CONSENSUS LIST OF SIGNALS TO DETECT POTENTIAL ADVERSE DRUG 

REACTIONS IN NURSING HOMES 

3.1 ABSTRACT 

3.1.1 OBJECTIVES 

To develop a consensus list of agreed upon laboratory, pharmacy, and Minimum Data Set signals 

that can be used by a computer system in the nursing home to detect potential adverse drug 

reactions (ADRs). 

3.1.2 DESIGN AND SETTING 

Literature search for potential ADR signals, followed by an Internet-based, two-round, modified 

Delphi survey of experts in geriatrics. 

3.1.3 PARTICIPANTS 

Panel of 13 physicians, 10 pharmacists, and 13 advanced practitioners. 
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3.1.4 MEASUREMENTS 

Mean score and 95% confidence interval (CI) for each of 80 signals rated on a 5-point Likert 

scale (5=strong agreement with likelihood of indicating potential ADRs). Consensus agreement 

indicated by a lower-limit 95% CI of ≥4.0. 

3.1.5 RESULTS 

Panelists reached consensus agreement on 40 signals: 15 laboratory/medication combinations, 12 

medication concentrations, 10 antidotes, and 3 Resident Assessment Protocols (RAPs).  Highest 

consensus scores (4.6; 95% CI, 4.4–4.9 or 4.4–4.8) were for naloxone when taking opioid 

analgesics; phytonadione when taking warfarin; dextrose, glucagon, or liquid glucose when 

taking hypoglycemic agents; medication-induced hypoglycemia; supratherapeutic international 

normalized ratio when taking warfarin; and triggering the Falls RAP when taking certain 

medications. 

3.1.6 CONCLUSION 

A multidisciplinary expert panel was able to reach consensus agreement on a list of signals to 

detect potential ADRs in nursing home residents.  The results of this study can be used to 

prioritize an initial list of signals to be included in paper or computer-based methods for potential 

ADR detection. 
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3.2 INTRODUCTION 

Adverse drug reactions (ADRs) are the most frequent medication-related adverse events in the 

nursing home setting, with an incidence ranging from 1.19 to 7.26 per 100 resident-months.7  

Other types of medication-related adverse events, include therapeutic failures and adverse drug 

withdrawal events.  However, their precise incidence and impact have not been well 

characterized in the literature.139  Data from the largest study on adverse drug reactions (ADRs) 

in nursing homes suggest that over half of the events are preventable, and that 70% are 

associated with monitoring errors.10  Although comprehensive chart review is the primary ADR 

case-finding technique for research, and is considered by some to be the "gold standard,"30 it is 

time-consuming, costly, and impractical for routine clinical use.29  Therefore, alternative 

surveillance systems are needed in nursing homes to detect and minimize the potential 

consequences of ADRs. 

ADRs can be detected by computerized clinical event monitors via the processing of 

laboratory test result signals and pharmacy order signals.31, 55-56  Hospital studies indicate that 

these automated clinical decision-support systems, which provide feedback to healthcare 

professionals based on information available in electronic format, are less expensive and much 

faster to use than manual chart reviews, and can identify events not normally detected by 

clinicians during the course of routine care.30, 57  More recently, computerized ADR detection has 

been examined in the ambulatory and nursing home settings using many of the same pharmacy 

and laboratory signals used by hospital-based systems.11, 31, 140 

ADR signals from pharmacy order and laboratory test results in nursing homes are likely 

to differ from those used in the hospital setting.  This is because the number and types of 

medications prescribed and the laboratory tests ordered for nursing home residents vary 
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considerably from those of hospitalized patients.141  With the trend towards centralization of 

laboratory, pharmacy, and Minimum Data Set data, resident-specific information available in 

electronic format is becoming increasingly more available in nursing homes.142  The purpose of 

this study was to develop a consensus list of laboratory, pharmacy, and Minimum Data Set 

signals that can be used by a computer system in the nursing home to detect potential ADRs. 

3.3 METHODS 

3.3.1 Literature Review and Identification of Initial Set of Signals 

We conducted a comprehensive literature search to create a preliminary list of signals that can be 

used to detect potential ADRs in nursing homes. With the assistance of a medical librarian, we 

searched OVID MEDLINE, OVID CINHAL, and EMBASE for articles published in all 

languages between January 1, 1985, and July 1, 2006.  In OVID, we searched for the following 

medical subject headings (MeSH) keywords, and text words: aged, adverse drug event, adverse 

drug reaction, adverse drug reaction reporting systems, clinical event monitor, clinical decisions 

support systems, clinical laboratory information systems, clinical pharmacy information system, 

computer generated signals, decision support system, drug monitoring, homes for the aged, 

medication errors, nursing homes, and physiologic monitoring.  In EMBASE, we searched for 

the above terms, plus the following EMTREE keywords: computer assisted drug therapy and 

drug surveillance program.  The first author (SMH) supplemented the computerized search by 

reviewing the reference lists from the identified articles, recent reviews, textbooks, and personal 

files. 
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A total of 29 publications were identified.6-8,10-35  Two authors (SMH and JTH) reviewed 

these publications for relevance, compiled a preliminary list of signals, and placed each potential 

signal into one of four categories: 1) laboratory/medication combination signals (triggered by 

abnormal laboratory values when certain medications are present); 2) medication concentration 

signals (triggered by elevated, or supratherapeutic medication concentrations); 3) antidote signals 

(triggered by administration of medications given to counteract the effects of a medication with 

toxic effects); 4) Resident Assessment Protocol (RAP)143 signals (triggered by responses to 

certain Minimum Data Set items, and taking of certain medications).  The first author (SMH) 

used standard pharmacology textbooks144-146 to provide specific examples of medications that 

may be associated with the firing of each of the signals (e.g., elevated creatinine caused by 

diuretics or hyperglycemia caused by prednisone) with the goal of clarifying the signals.  Then 

other members of the clinical investigative team (JTH, DAN, DBF, and SAS) reviewed and 

further refined the list of signals. 

The final list consisted of 35 laboratory/medication combination signals, 16 medication 

concentration signals, 20 antidote signals, and 9 RAP signals, for a total of 80 signals (Appendix 

A) to be included in the Delphi survey. 

3.3.2 Selection of Study Methodology and Participants 

Our study involved the use of an Internet-based, two-round, modified Delphi survey of experts in 

the field of nursing home care.  The Delphi methodology is a structured group interaction 

process that is directed in "rounds" of opinion collection and feedback.147  We selected the 

modified web-based Delphi consensus method because research suggests that accurate and 

reliable assessments can be achieved by consulting a panel of experts and subsequently accepting 
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the group consensus as the best estimate of the answer to a particular question.148  The modified 

Delphi method is especially useful in studies that deal with medication safety in older adults.149-

152  The methodology used in this study differed from the Delphi process developed by the 

RAND Corporation that relies on face-to-face meetings to achieve consensus.153  However, the 

modified method enables a group of experts to be contacted inexpensively and without 

geographic limitations.  The rounds of the survey were completed confidentially, allowing each 

participant to present and react to ideas without being biased by knowing the identities of other 

participants. 

We selected a multidisciplinary expert panel of members from three professions: 

physicians, pharmacists, and advanced practitioners (i.e., physician assistants or nurse 

practitioners).  We chose these professions because they are all involved in the monitoring phase 

of the medication use process (i.e., assess resident response to medication and document 

outcomes).154  After obtaining the names of potential participants from national geriatrics or 

nursing home organizations, we selected individuals based on their extensive clinical practice or 

large number of publications in the area of nursing home care.  Our goal was to have a similar 

number of participants from each profession.  Because we had encountered a low response rate 

from some groups in a previous study,50 we invited a total of 57 health care professionals, 

including 23 physicians, 13 pharmacists, and 21 advanced practitioners to participate. 

To improve the response rate and reduce the possibility of nonrespondent bias, we 

employed multiple methods, including university sponsorship, nominal monetary incentives ($75 

upon completion of both rounds), and having respondents complete the rounds on the Internet.155 
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3.3.3 Administration and Analysis of the Survey 

We contacted the experts through an e-mail invitation included with round 1.  We asked them to 

complete each survey round within 2 weeks, and sent them a reminder e-mail if they did not do 

so.  During each round, we provided participants with a list of signals, a list of medications that 

might be associated with the firing of each signal, and supporting references concerning the 

signals.  We asked them to use a 5-point Likert scale to evaluate their agreement or disagreement 

with statements concerning the likelihood that each signal would be associated with a potential 

ADR in the nursing home setting.  The scale ranged from 1, (indicating strong disagreement), to 

5, (indicating strong agreement).  For the purposes of the study, we operationally defined a 

nursing home as having custodial, skilled, and subacute levels of care. At the completion of 

round 1, we gave the participants the opportunity to modify existing signals or provide 

suggestions for additional signals to include in round 2. We determined in advance that we 

would include any new or modified signals that were suggested by 2 or more participants. 

After round 1, we compiled the scores and computed a weighted mean score and 95% 

confidence interval (CI) for each signal.  The weighting of individual ratings was designed to 

ensure that all three professions had equal influence, regardless of the number of participants in 

each profession.  Based on work previously published by our group,156-158 we examined the 

lower and upper limits of the 95% CIs, and then classified each signal into one of three 

categories: accepted signals, defined as those having a score with a lower-limit 95% CI of ≥4.0 

(indicating consensus agreement); rejected signals, defined as those having a score with an 

upper-limit 95% CI of <3.0 (consensus disagreement); or equivocal, defined as those having a 

score with a lower-limit 95% CI between 3.0 and 3.9 (indicating the need for reevaluation). 
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In round 2, we did not include the signals that were already accepted or already rejected.  

We included only the equivocal signals from round 1.  For each equivocal signal, we provided 

each participant with his or her round 1 individual score and with the round 1 weighted mean 

group score to aid in the consensus-building process. 

After round 2, we repeated the processes of compiling scores and computing weighted 

scores and 95% CIs.  Again, the weighting of individual ratings ensured that all three professions 

had equal influence.  We again classified signals as accepted if they had a lower-limit 95% CI of 

≥4.0 (indicating consensus agreement). We classified all other signals as rejected.  

For all statistical analyses, we used SAS version 9 for Windows (SAS Institute, Inc., 

Cary, NC).  The University of Pittsburgh Institutional Review Board approved the study as 

exempt; hence, informed consent was not needed for study participation.  The external funding 

sources had no involvement in study design or collection, analysis, or interpretation of data, nor 

did they review or approve this manuscript. 

3.4 RESULTS 

3.4.1 Round 1 

For round 1, the study included 13 physicians, 10 pharmacists, and 13 advanced practitioners, for 

an overall response rate of 63.2% (36/57).  The response rate was 56.5% (13/23) for the invited 

physicians, 61.9% (13/21) for the invited advanced practitioners, and 76.9% (10/13) for the 

invited pharmacists.  The majority of participants were female (66.7%), were affiliated with an 
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academic medical center (63.9%), and worked in the nursing home setting for a median of 5 

years (100%).  

At the end of round 1, of the 80 signals that were considered, 32 were accepted, 0 were 

rejected, and 48 were equivocal.  The accepted signals were 13 laboratory/medication 

combination signals (Table 5), 6 medication concentration signals (Table 6), 10 antidote signals 

(Table 7), and 3 RAP signals (Table 8). There were no signals suggested by two or more 

panelists. 
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Table 5. Final Consensus List of Laboratory/Medication Combination Signals for Detecting Adverse 

Drug Reactions in the Nursing Home Setting. 

Laboratory/Medication Combination Signals* Mean Score 

95% 

CI 

Hypoglycemia (as indicated by a low or decreasing glucose 

concentration) is found in an individual taking a drug that may 

cause or worsen hypoglycemia 

 

4.6 

 

4.4–4.8 

Supratherapeutic (above upper limit of normal range) international 

normalized ratio (INR) is found in an individual taking warfarin 

4.6 4.4–4.8 

Clostridium difficile toxin is found in an individual taking a drug that 

may cause pseudomembranous colitis 

4.5 4.3–4.7 

Hyperkalemia (as indicated by a high or increasing potassium 

concentration) is found in an individual taking a drug that may 

cause or worsen hyperkalemia 

4.5 4.3–4.7 

Hypokalemia (as indicated by a low or decreasing potassium 

concentration) is found in an individual taking a drug that may 

cause or worsen hypokalemia 

4.5 4.3–4.7 

Thrombocytopenia (as indicated by a low or decreasing platelet 

count) is found in an individual taking a drug that may cause or 

worsen thrombocytopenia 

4.5 4.3–4.7 

Supratherapeutic activated partial thromboplastin time (PTT) is found 

in an individual taking heparin 

4.4 4.2–4.7 

Subtherapeutic concentration (below lower limit of normal range) of 4.4 4.2–4.6 
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thyroid-stimulating hormone (TSH) or elevated concentration of 

thyroxine (T4) is found in an individual taking a drug that may 

cause hyperthyroidism 

Hyponatremia (as indicated by a low or decreasing sodium 

concentration) is found in an individual taking a drug that may 

cause or worsen hyponatremia 

4.4 4.2–4.5 

Leukopenia (as indicated by a low or decreasing white blood cell 

count) is found in an individual taking a drug that may cause or 

worsen leukopenia 

4.3 4.1–4.6 

Elevated alanine aminotransferase (ALT) or aspartate 

aminotransferase (AST) concentration is found in an individual 

taking a drug that may cause hepatocellular toxicity 

4.3 4.1–4.5 

Elevated creatinine or blood urea nitrogen (BUN) concentration is 

found in an individual taking a drug that may increase creatinine or 

BUN 

4.3 4.1–4.5 

Supratherapeutic concentration of TSH or decreased concentration of 

T4 is found in an individual taking a drug that may cause 

hypothyroidism† 

4.3 4.1–4.4 

Agranulocytosis or neutropenia (as indicated by a low or decreasing 

neutrophil count) is found in an individual taking a drug that may 

cause or worsen agranulocytosis or neutropenia† 

4.2 4.1–4.3 

Elevated creatine phosphokinase (CPK) concentration is found in an 

individual taking a drug that may increase CPK 

4.2 4.0–4.4 
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*Panel members rated each item on a 5-point Likert scale, with 5 indicating strong agreement 

with the likelihood that the item signaled an adverse drug reaction. The mean likelihood score 

and 95% confidence interval (CI) were calculated for each item. Panel consensus was 

indicated by a lower-limit 95% CI of ≥4.0.  

†Panel consensus was not reached until round 2 of the Delphi survey. 
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Table 6. Final Consensus List of Medication Concentration Signals for Detecting Adverse Drug 

Reactions in the Nursing Home Setting. 

Medication Concentration Signals* Mean Score 

95% 

CI 

Aminoglycoside peak or trough concentration is supratherapeutic in an 

individual taking an aminoglycoside antibiotic (e.g., amikacin, 

gentamicin, or tobramycin) 

4.4 4.2–

4.7 

Phenytoin concentration is supratherapeutic in an individual taking 

phenytoin 

4.4 4.1–

4.7 

Lithium concentration is supratherapeutic in an individual taking 

lithium† 

4.3 4.1–

4.5 

Theophylline trough concentration is supratherapeutic in an individual 

taking theophylline 

4.3 4.0–

4.7 

Digoxin concentration is supratherapeutic in an individual taking digoxin 4.3 4.0–

4.6 

Procainamide concentration or N-acetylprocainamide 

(NAPA)concentration is supratherapeutic in an individual taking 

procainamide 

4.3 4.0–

4.6 

Primidone (Mysoline) concentration or phenobarbital concentration is 

supratherapeutic in an individual taking primidone 

4.3 4.0–

4.5 

Quinidine concentration is supratherapeutic in an individual taking 

quinidine† 

4.2 4.1–

4.4 

Valproic acid concentration is supratherapeutic in an individual taking 4.2 4.1–
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valproic acid† 4.4 

Phenobarbital concentration is supratherapeutic in an individual taking 

phenobarbital† 

4.2 4.0–

4.5 

Carbamazepine concentration is supratherapeutic in an individual taking 

carbamazepine† 

4.2 4.0–

4.4 

Disopyramide (Norpace) concentration is supratherapeutic in an 

individual taking disopyramide† 

4.2 4.0–

4.4 

*Panel members rated each item on a 5-point Likert scale, with 5 indicating strong agreement with 

the likelihood that the item signaled an adverse drug reaction. The mean likelihood score and 

95% confidence interval (CI) were calculated for each item. Panel consensus was indicated by a 

lower-limit 95% CI of ≥4.0.  

†Panel consensus was not reached until round 2 of the Delphi survey. 
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Table 7. Final Consensus List of Antidote Signals for Detecting Adverse Drug Reactions in the 

Nursing Home Setting. 

Antidote Signals* 

Mean 

Score 

 

95% CI 

Naloxone (Narcan) is given to an individual taking an opioid analgesic 4.6 4.4–4.9 

Phytonadione (vitamin K) in oral, subcutaneous, or intravenous form is 

given to an individual taking warfarin 

4.6 4.4–4.9 

Dextrose 50%, glucagon, or liquid glucose is given to an individual 

taking a drug that may cause hypoglycemia 

4.6 4.4–4.8 

Protamine sulfate is given to an individual taking heparin 4.5 4.3–4.8 

Digoxin immune Fab (Digibind) is given to an individual with a 

supratherapeutic digoxin concentration 

4.5 4.2–4.8 

Epinephrine is given to an individual taking a drug that may cause an 

anaphylactic reaction 

4.4 4.1–4.8 

Metronidazole (oral) or vancomycin (oral) is given to an individual who 

has recently taken a drug that may cause pseudomembranous colitis 

4.4 4.1–4.7 

Benztropine (Cogentin), diphenhydramine, or trihexyphenidyl (Artane) is 

given to an individual taking a drug that may cause extrapyramidal 

symptoms 

4.4 4.1–4.6 

Lepirudin (Refludan) is given to an individual taking a drug that may 

cause heparin-induced thrombocytopenia 

4.4 4.1–4.6 

Sodium polystyrene (Kayexalate) is given to an individual taking a drug 

that may cause hyperkalemia 

4.3 4.0–4.6 
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*Panel members rated each item on a 5-point Likert scale, with 5 indicating strong agreement with 

the likelihood that the item signaled an adverse drug reaction. The mean likelihood score and 

95% confidence interval (CI) were calculated for each item. Panel consensus was indicated by a 

lower-limit 95% CI of ≥4.0. For all items shown, panel consensus was reached during round 1 

of the Delphi survey. 
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Table 8. Final Consensus List of Resident Assessment Protocol (RAP) Signals for Detecting Adverse 

Drug Reactions in the Nursing Home Setting. 

RAP Signals* 

Mean 

Score 

 

95% CI 

Falls RAP is triggered in an individual taking a drug that may cause or 

worsen falls (falls with or without injury) 

4.6 4.4–4.8 

Delirium RAP is triggered in an individual taking a drug that may cause 

or worsen delirium (periodic disordered thinking or awareness) 

4.5 4.3–4.7 

Dehydration/Fluid Maintenance RAP is triggered in an individual taking 

a drug that may cause or worsen dehydration (fluid loss exceeding the 

amount of fluid intake)  

4.4 4.2–4.6 

*Panel members rated each item on a 5-point Likert scale, with 5 indicating strong agreement with 

the likelihood that the item signaled an adverse drug reaction. The mean likelihood score and 

95% confidence interval (CI) were calculated for each item. Panel consensus was indicated by a 

lower-limit 95% CI of ≥4.0. For all items shown, panel consensus was reached during round 1 

of the Delphi survey. 

3.4.2 Round 2 

For round 2, the study included 11 of the 13 physicians, all 10 of the pharmacists, and all 13 of 

the advanced practitioners.  The overall response rate for round 2 was 94.4% (34/36). At the end 

of round 2, of the 48 signals that were reconsidered because of their earlier equivocal 

classification, 8 were accepted.  The accepted signals were 2 laboratory/medication combination 

signals (Table 5) and 6 medication concentration signals (Table 6). 
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Overall, 15 of 35 (42.9%) of the laboratory/medication combination signals, 12 of 16 

(75%) of the medication concentration signals, 10 of 20 (50%) of the antidote signals, and 3 of 9 

(33.3%) of the RAP signals reached consensus and were accepted. 

The highest consensus scores (4.6; 95% CI, 4.4–4.9 or 4.4–4.8) were for naloxone when 

taking opioid analgesics; phytonadione (Vitamin K) when taking warfarin; dextrose, glucagon, 

or liquid glucose when taking hypoglycemic agents; medication-induced hypoglycemia; 

supratherapeutic international normalized ratio when taking warfarin; and triggering the Falls 

RAP when taking certain medications. 

3.5 DISCUSSION 

A multidisciplinary expert panel of nursing home physicians, pharmacists, and advanced 

practitioners were able to reach consensus agreement on a list of 40 signals that can be used by a 

computer system to detect potential ADRs in the nursing home setting.  Laboratory/medication 

combinations accounted for over one-third of all signals that reached consensus.  Of the 15 

laboratory/medication combination signals that the panelists agreed were appropriate for the 

nursing home setting, 8 were not reported in the 2005 study of Gurwitz et al.,11 which to our 

knowledge is the only published study concerning a clinical event monitor to detect potential 

ADRs in nursing homes.  These 8 additional signals were drug-induced episodes of the 

following: hypoglycemia, hyponatremia, leukopenia, agranulocytosis/neutropenia, a 

supratherapeutic activated partial thromboplastin time, a supratherapeutic thyroid stimulating 

hormone concentration, an elevated creatinine or blood urea nitrogen concentration, and an 

elevated creatine phosphokinase concentration. 
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The next most common signal category reaching consensus was medication 

concentrations.  The goal of therapeutic medication monitoring is to guide dosing by means of 

drug concentration measurements.  This is particularly useful in cases in which the range 

between the dose necessary to achieve beneficial effects and the dose causing ADRs is narrow, 

and when the medication concentration is not readily predictable from the dose prescribed.  

Moreover, serum medication concentrations are likely to be most useful when used to help 

confirm or refute a resident’s signs or symptoms suggestive of toxicity or lack of efficacy.  When 

the panelists were asked to consider 16 medication concentration signals, they achieved 

consensus on 12 (75%), and it is not surprising that these were for drugs with narrow therapeutic 

ranges.  

A recent study by Raebel et al.,25 suggests that monitoring narrow therapeutic range 

drugs is not being done routinely, with as many as 50% of older adults not receiving drug 

concentration monitoring during 1 year of use.  To reduce the potential for ADRs in the nursing 

home setting, the Center for Medicare and Medicaid Services (CMS) recommends routine 

periodic medication monitoring for most narrow therapeutic range drugs listed in their F329  

guidelines (the deficiency citation for unnecessary drugs).159  This CMS recommendation 

extends to all residents, regardless of whether they are exhibiting signs or symptoms suggestive 

of toxicity or lack of efficacy.  It is important to note however that if a medication concentration 

comes back elevated when ordered for diagnostic purposes, the likelihood of a potential ADR is 

significantly higher then if it was being ordered on a routine basis.  The rationale for this is that 

the prior odds of a potential ADR are significantly increased because the underlying assumption 

is that the resident is already receiving the medication of interest, and the prescribing clinician is 

aware of the possibility of an ADR.113  Of note, our panelists reached consensus on 3 narrow 
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therapeutic range drugs not mentioned in the F329 guidelines—namely, concentrations of Class 

Ia antiarrhythmics including: procainamide, disopyramide, and quinidine. 

Antidote signals accounted for one-quarter of the final 40 signals.  Four of the 10 antidote 

signals had not been reported in the study of Gurwitz et al.,11 and these were the administration 

of epinephrine, digoxin immune Fab, lepirudin, or a medication with anticholinergic properties 

to treat extrapyramidal symptoms.  Four of the 10 antidote signals that had been reported by 

Gurwitz et al.11 did not reach consensus in our study, and these were the administration of an 

antihistamine, an oral or topical steroid, or topical nystatin and the administration of a 

hypoglycemic agent to an individual taking glucocorticoids.  It is important to note, that in a 

recent systematic review of the signals used by hospital-based clinical event monitors to detect 

potential ADRs, the antidote signal category had the lowest overall positive predictive values.60  

The authors of this review concluded that the performance characteristics of this signal category 

was lowest because antidotes can be used to treat multiple medical conditions, only a fraction of 

which are related to the presence of an ADR. 

Unique to this study was that consensus was reached on 3 RAP signals.  Studies in the 

nursing home setting are currently evaluating the effectiveness of computerized decision support 

systems on 2 of the RAP signals on which our panelists reached consensus—namely, the Falls 

RAP and the Delirium RAP.160  This reflects that the evidence for certain medications being 

associated with these specific geriatric syndromes is generally well accepted.161-162  Participants 

also reached consensus that the Dehydration/Fluid Maintenance RAP be used as a signal to 

detect potential ADRs for individuals taking certain medications. 
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3.5.1 Strengths and Limitations 

Our study had several strengths.  First, we chose to include a multidisciplinary panel of 

physician, pharmacist, and advanced practitioner experts to determine which signals can be used 

to detect potential ADRs.  Our methodology ensured that all clinicians involved in the 

monitoring phase of the medication use process in the nursing home setting were included, and 

that their responses were weighted to ensure that each profession had an equal influence on the 

results.  Second, to improve the survey response rate and reduce the possibility of nonrespondent 

bias, we employed multiple methods, including university sponsorship, monetary incentives, 

providing the survey on the Internet, and the distributing reminders to participants.155  The 

overall initial and second round response rates in our study exceeded the minimally acceptable 

mean response rate of 60% for mail surveys reported in the medical literature.163 

Our study had several potential limitations.  First, we used a convenience sample of 

physician, pharmacist, and advanced practitioner experts to participate in the Delphi survey.  As 

a result, the majority of respondents were affiliated with an academic institution.  Using a 

random sampling technique may have strengthened the study by increasing the generalizability 

to the universe of clinical practitioners.  Second, we did not hold face-to-face meetings of the 

panelists, a practice that is sometimes done with Delphi surveys.148, 153, 164  Bringing the panelists 

together allows individual respondents to incorporate the perspectives of others, and may have 

resulted in further refinement of the signals while facilitating the consensus process.  However, 

in person meetings might have limited the broad geographic representation we were able to 

achieve with the use of the Internet.  In addition, by offering two rounds in the survey, 

respondents did benefit from seeing the opinions of others.  Third, we did not provide 95% 

confidence intervals for equivocal signals to panelists during the second round.  Information on 
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the distribution of responses may have been useful to the panelists in order to achieve consensus.  

Fourth, the panelists reached consensus on 40 signals at this time. As new research contributes 

more information about medication safety, the list of signals will need to be modified and may 

expand. 

3.5.2 Implications and Further Research 

The Institute of Medicine recommends that all health care facilities continuously assess 

medication safety through the development and evaluation of various types of data-driven 

triggers for detecting ADRs.  This assessment should occur during routine monitoring, and for 

diagnostic confirmation of signs or symptoms suggestive of toxicity or lack of efficacy.23, 41  

Clinical event monitors can address this recommendation by integrating various sources of 

information for the purpose of ADR detection. All nursing homes are currently capable of 

transmitting Minimum Data Set information electronically, and the use of computerized 

laboratory and medication records is likely to increase significantly over the coming years.73  

These monitors are feasible given knowledge of the data structure of the information resources 

and certain programming capacity.  In nursing homes with appropriate health information 

technology infrastructure, the results of our study can be used to create or modify clinical event 

monitor systems to automate the detection of potential ADRs.  

In nursing homes without appropriate infrastructure, the results can be used to prioritize 

the signals to be included in a paper-based trigger tool.  The trigger tool methodology, developed 

in part by the Institute of Healthcare Improvement, greatly simplifies the chart review process by 

allowing rapid and systematic examination of charts to extract relevant data.  Trigger tools have 

been successfully used to demonstrate the benefits of low-cost error detection strategies focused 
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on high-risk medications in a variety of clinical settings.165-166  Regardless of whether computer 

or paper-based methods for detecting potential ADRs are used, a more detailed assessment of the 

resident would be required to determine if an actual ADR is present. 

Further research is needed in several areas.  Formal research is needed to determine the 

incidence and the positive predictive values of individual signals in nursing homes with different 

levels of care (e.g., custodial, skilled, and subacute care).  Future studies are also needed to 

improve the performance characteristics of antidote signals, which can possibly be enhanced by 

linking the use of these medications to changes in drug therapy or interventions that occurred 

prior to their use.  These data will help nursing homes further prioritize the signals to be included 

in their computerized or paper-based trigger tools, and will thereby help them maximize the 

detection of potential ADRs, and minimize the number of false-positive alerts.  Studies should 

also be conducted to determine if certain errors of omission, including the failure to monitor 

narrow therapeutic index medications or conduct laboratory studies while prescribing certain 

medications, may lead to an increase in potential ADRs in the nursing home setting.  Research is 

also needed to determine if ADR detection rates can be improved by combining multiple data 

sources (e.g., laboratory, pharmacy, and health care records) to gain a better understanding of the 

context of the data as they relate to residents' underlying medical conditions.130-131, 167 

3.6 CONCLUSION 

A multidisciplinary expert panel was able to reach consensus agreement on a defined list of 

signals of potential ADRs in nursing home residents.  This is a necessary initial step toward 

detecting and reducing the future occurrence and impact of ADRs in the nursing home setting.  
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The results of this study can be used to prioritize an initial list of signals to be included in paper 

or computer-based method for potential ADR detection. 
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4.0  ASSESSING THE PERFORMANCE CHARACTERISTICS OF SIGNALS USED 

BY A CLINICAL EVENT MONITOR TO DETECT ADVERSE DRUG REACTIONS IN 

THE NURSING HOME 

4.1 ABSTRACT 

4.1.1 Objective 

Adverse drug reactions (ADRs) are a common cause of morbidity and mortality in the nursing 

home (NH) setting.  Traditional non-automated mechanisms for ADR detection are time-

consuming, costly, and fail to detect the majority of ADRs.  The objective of this study was to 

determine the incidence and positive predictive values of signals specifically designed for use by 

a clinical event monitor to detect ADRs in the NH setting. 

4.1.2 Design 

Case-series. 
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4.1.3 Measurement/Methods 

All patients, except those enrolled in hospice, were included in the 15-week study period 

(October 1, 2007 to January 13, 2008) and who had one of 37 signals present were evaluated.  

Alerts were assessed using the Naranjo causality algorithm.  Positive predictive values (PPVs) 

were calculated as the proportion of alerts that occurred, divided by the number of times that 

alerts occurred and ADRs were confirmed.  

4.1.4 Results 

The overall PPV for all signals combined was 81% (54/67), with individual signal PPVs ranging 

from 0-100%. The PPVs were 53% (10/19) for the antidote signals category and 96% (44/46) for 

the laboratory/ medication combination signals category. The majority 75% (12/16) of the 

preventable ADRs were laboratory/medication combination signals. 

4.1.5 Conclusion 

The results suggest that ADRs can be detected in the NH setting with a high degree of accuracy 

using a clinical event monitor that employs a set of signals derived by expert consensus. 

4.2 INTRODUCTION 

The most frequent medication-related adverse events in nursing homes in the United States are 

adverse drug reactions (ADRs).7  ADRs are defined by the World Health Organization as 
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unintended or noxious responses to a drug given in a dosage intended for prophylaxis, diagnosis, 

or therapy.5  In the nursing home (NH) setting, the incidence of ADRs ranges from 1.19 to 7.26 

per 100 patient-months.  Although comprehensive chart review is the primary ADR case-finding 

technique for research, and is considered by some to be the "gold standard," it is time-

consuming, costly, and impractical for routine clinical use.30  Therefore, a critical need exists for 

the development of alternative strategies to detect ADRs in NHs. 

ADRs can be detected by computerized clinical event monitors through the processing of 

pharmacy order signals and laboratory test result signals.  Hospital studies indicate that these 

automated clinical decision support systems, which provide feedback to healthcare professionals 

based on information available in electronic format, are less expensive and much faster to use 

than manual chart reviews, and can identify events not often detected by clinicians during the 

course of routine care.30  However, there is increasing concern about the false-positive alerts 

(i.e., alert fatigue) generated by hospital-based clinical event monitors which have been in use 

for over two decades, and have been described in more detail in a recent systematic review.60 

More recently, computerized ADR detection has been examined in the ambulatory and 

NH settings using largely the same pharmacy and laboratory signals used by hospital-based 

systems.11, 31  The objective of this study was to determine the incidence and positive predictive 

values of signals specifically designed for use by a clinical event monitor to detect ADRs in the 

NH setting. 
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4.3 METHODS 

4.3.1 Setting and Subjects  

The project was conducted in a single, independently owned, non-profit NH affiliated with the 

University of Pittsburgh Medical Center.  The facility is located in a suburban setting, with 178 

licensed beds. Prescribers were primarily community physicians and advanced practitioners (i.e., 

nurse practitioners and physician assistants).  All patients, except those enrolled in hospice, were 

included in the 15-week study period (October 1, 2007 to January 13, 2008).  The study protocol 

was reviewed and determined to be a quality improvement project by the University of 

Pittsburgh Institutional Review Board (IRB).  The University of Pittsburgh Medical Center Total 

Quality Council approved this study as a quality improvement project.  No additional IRB 

approval was required prior to publication. 

4.3.2 Source of Patient Data 

The Medical Archival System (MARS) data repository has been collecting and archiving clinical 

and financial records from all University of Pittsburgh Medical Center hospitals since 1986.168  

In order to collect relevant nursing-home specific patient data in electronic format, we developed 

a new data repository, called MARS-LTC. MARS-LTC contains long-term care (e.g., NH)  

specific patient data that are stored as they are generated. Current real-time data feeds exist for 

laboratory data (Quest Diagnostics), pharmacy data (Rx Partners-LTC), and census and 

Minimum Data Set data (Achieve Healthcare Technologies). 
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4.3.3 Clinical Event Monitor Description 

MARS-AiDE is a rule-based expert system that consists of a knowledgebase of signals that are 

applied by a rule engine to patient data contained within MARS-LTC.  An overview of the 

MARS-AiDE clinical event monitor is shown in the Figure 3 below. 
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Figure 3. Overview of MARS-AiDE clinical event monitor for detecting adverse drug reactions. 

 

We identified all active NH patients in the census database in MARS-LTC.  Using the 

medical record number from the census, a list of active medications was generated.  For certain 

rules, this information was then compared against current laboratory information.  This process 

generated a list of alerts that fulfills the conditions of one or more of the signals, suggesting a 

potential ADR. 
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4.3.4 Signals Used by the Clinical Event Monitor 

A detailed description of the development and selection of the knowledgebase of signals to 

detect potential ADRs in the NH is reported elsewhere.78  Briefly, a multidisciplinary expert 

panel of NH physicians, pharmacists, and advanced practitioners reached consensus agreement 

on a list of 40 signals that a clinical event monitor can use to detect potential ADRs in the NH 

setting. 

In this manuscript, we present the findings associated with 37 of the 40 signals 

categorized into one of the following three groups: 1) 15 laboratory/medication combination 

signals (triggered by abnormal laboratory values when certain medications are present); 2) 12 

medication concentration signals (triggered by elevated, or supratherapeutic medication 

concentrations); and, 3) 10 antidote signals (triggered by administration of medications given to 

counteract the effects of a medication with toxic effects).  The 3 Resident Assessment Protocol 

signals (triggered by responses to certain Minimum Data Set items, and taking of certain 

medications) will be presented in a subsequent publication. 

For each of the 37 signals, we created additional rules to try and improve specificity. This 

resulted in a total of 24 laboratory/medication combination rules, 32 medication concentration 

rules, and 20 antidote rules.  For example, the elevated creatinine or blood urea nitrogen 

concentration signal was operationalized into the following 3 rules: absolute increase > 0.25 

mg/dL in baseline serum creatinine, relative increase > 25% in baseline serum creatinine, and 

absolute increase > 10 mg/dL in baseline blood urea nitrogen. 
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4.3.5 Knowledge Engineering/Development 

For each of the 15 laboratory/medication combination signals, the first author (SMH) used 

standard pharmacy reference textbooks to create an initial list of medications that were reported 

to be associated with a particular laboratory abnormality.  A drug information specialist (AHK) 

expanded the initial list of medications by using additional online references.  The drug 

information specialist then conducted a comprehensive primary literature search using OVID, 

MEDLINE, and PUBMED for articles published in the English language between January 1, 

1975, and July 1, 2007, using various MeSH terms and limiting the search to adults. 

Based on the results of the primary literature search, additional medications were added if 

the evidence supporting the association between the medication and laboratory test of interest 

was derived from case reports or study designs with stronger empirical evidence (e.g., case 

series, cohort studies, case-control, cohort studies with controls, etc.).  Similarly, medications 

were removed from the initial list if evidence was not sufficient to support the association 

between the medication and laboratory test of interest.  Any discrepancies in the data regarding 

the association between the medication and laboratory test of interest were resolved by 

discussion between two study investigators (SMH and JTH). 

4.3.6 Clinician Notification 

Similar to other clinical event monitors, the rules within MARS-AiDE are used to define 

computer-detectable events that potentially indicate an ADR.  The MARS-AiDE system is 

designed as a screening tool. Its signals and associated rules have been chosen to be sensitive, 

but not specific.  When the conditions specified by a rule are met, the MARS-AiDE system 



 

 62 

issues an alert to be acted upon by a consultant pharmacist (a pharmacist who is mandated by 

United States Federal law to review and manage the medication regimens of NH patients). 

On a weekly basis during the study period, a consultant pharmacist received a list of 

patients by email that contained alerts detailing the possible ADRs during the previous 7 days.  

Each alert showed the patient’s location, medical record number, attending physician, the rule 

that was triggered, and the date and time of the firing. Each alert also included extensive 

medication information, including the name, strength, frequency, route of administration, start 

and stop date, and if the medication was a standing or an as-needed (PRN) medication.  If the 

alert was triggered by laboratory data, then each record also included the normal laboratory 

reference range, the most recent value, and the baseline value and corresponding dates (when 

available) (Figure 4). 

 

Figure 4. Sample MARS-AiDE alert. 

4.3.7 Adverse Drug Reaction Assessments 

For each potential ADR alert, the consultant pharmacist used a structured implicit review process 

according to the following criteria: whether an ADR was present, if the ADR was preventable, 

and the seriousness of the ADR. 
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We used the Naranjo causality algorithm169 to determine the likelihood of whether an ADR was 

actually due to the drug identified by the clinical event monitor, rather than the result of other 

factors.  The Naranjo algorithm is used to compute a weighted score based on answers to a short 

standardized questionnaire that correlates with causality probability (Appendix B).  Similar to 

other clinical event monitor studies, computer alert signals with a score of >1 on the Naranjo 

scale, indicating a possible ADR, were classified as a true positives.104 

ADRs were considered preventable if they were associated with a medication error.  We 

used the National Coordinating Council for Medication Error Reporting and Prevention (NCC 

MERP) definition of medication errors 170, defined as any event that may cause or lead to 

inappropriate medication use or patient harm while the medication is in the control of the health 

care professional, patient, or consumer.  Medication errors were further characterized by the 

step(s) in the medication use process where the error may have occurred, including: prescribing, 

order communication, dispensing, administering, and monitoring. ADRs were considered serious 

if they resulted in a transfer to a higher level of care (e.g., emergency department evaluation or 

hospitalization) or death. 

After an extensive training period, between-pharmacist-investigator reliability for 

identifying and classifying ADRs was assessed through independent review of the same 10 

medical records by the consultant pharmacist (SBS) and two study investigators (SMH and JTH).  

All three identified and classified the incidents the same way. To assure that the ADR 

assessments were applied consistently, a senior investigator (JTH) verified the accuracy for 

every tenth patient evaluated. 
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4.3.8 Calculation of Performance Characteristics 

For counting purposes, multiple firings on the same day, for the same patient, for the same rule 

were counted as a single alert. Specifically, multiple firings triggered by a single drug 

administration (e.g., multiple administrations of sodium polystyrene for hyperkalemia) were 

treated as a single alert.  Similarly, if multiple drugs generated multiple alerts (e.g., furosemide 

and lisinopril are being administered in the presence of increasing creatinine), they were treated 

as a single alert.  When more than one drug was associated with a single potential ADR at a 

given time, the drug-event pair with the highest Naranjo was retained and used for all 

calculations. 

To calculate a positive predictive value (PPV) for each signal, we divided the number of 

times that an alert was issued with respect to a particular rule and an ADR was confirmed (i.e., 

the number of true-positives), by the number of times the alert issued with or without an ADR 

being confirmed (i.e., the sum of true-positives and false-positives).  Simple descriptive statistics 

were used to summarize ADR preventability and seriousness. 

4.4 RESULTS 

During the 15-week study period, there were a total of 274 unique patients that met inclusion 

criteria.  The clinical event monitor processed 5,729 medication orders, generating 67 alerts, an 

average of 4.8 per week.  The overall PPV for all signals combined was 81% (54/67).  Individual 

signal PPVs ranged from 0-100% (Table 9).  The PPVs were 53% (10/19) for the antidote 

signals category and 96% (44/46) for the laboratory/medication combination signals category.  
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Alerts were generated for 50% (5/10) of the antidote signals and 73% (11/15) of the 

laboratory/medication combination signals.  There were no medication concentration signal 

firings. 

Of the true positive firings, 30% (16/54) were considered preventable ADRs. The 

majority (75% or 12/16) of the preventable ADRs were laboratory/medication combination 

signals.  Of the preventable ADRs, 88% (14/16) occurred at the monitoring and 69% (11/16) at 

the prescribing stage of the medication use process.  Overall, 6% (3/54) of the confirmed ADRs 

were considered serious, requiring emergency department evaluation, or hospitalization.  All 

ADRs that were rated as serious were also considered preventable. 
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Table 9. Positive Predictive Values (PPV) of Signals to Detect Potential Adverse Drug Reactions. 

Antidote Signals 

# of 

Alerts 

#  of 

ADRs PPV (%) 

Anticholinergic medication is given to a patient taking a 

drug that may cause extrapyramidal side effects 
3 0 0 

Dextrose 50%, glucagon, or liquid glucose is given to a 

patient taking a drug that may cause hypoglycemia 
2 1 50 

Metronidazole or vancomycin is given to a patient who 

has recently taken a drug that may cause 

pseudomembranous colitis 

10 4 40 

Sodium polystyrene is given to a patient taking a drug 

that may cause hyperkalemia 
2 1 50 

Vitamin K is given to a patient taking warfarin 4 4 100 

Laboratory/Medication Signals    

Clostridium difficile toxin positive and taking a drug 

that may cause pseudomembranous colitis 
2 2 100 

Elevated alanine aminotransferase concentration and 

taking a drug that may cause or worsen hepatocellular 

toxicity 

5 5 100 

Elevated aspartate aminotransferase concentration and 

taking a drug that may cause or worsen hepatocellular 

toxicity 

8 8 100 

Elevated blood urea nitrogen (> 10mg/dL of baseline) 4 4 100 
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and taking a drug that may increase blood urea 

nitrogen 

Elevated creatinine (> 0.25mg/dL) and taking a drug 

that may increase creatinine 
4 4 100 

Elevated creatinine (> 25% of baseline) and taking a 

drug that may increase creatinine 
4 4 100 

Hyperkalemia and taking a drug that may cause or 

worsen hyperkalemia 
2 2 100 

Hypoglycemia and taking a drug that may cause or 

worsen hypoglycemia 
2 2 100 

Hypokalemia and taking a drug that may cause or 

worsen hypokalemia 
1 1 100 

Hyponatremia and taking a drug that may cause or 

worsen hyponatremia 
6 5 83 

Leukopenia and taking a drug that may cause or worsen 

leukopenia 
2 2 100 

Supratherapeutic international normalized ratio and 

taking warfarin 
3 3 100 

Thrombocytopenia and taking a drug that may cause or 

worsen thrombocytopenia 
2 2 100 

Supratherapeutic thyroid stimulating hormone and 

taking a drug that may cause or worsen 

hypothyroidism 

1 0 0 
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4.5 DISCUSSION 

Our results suggest that ADRs can be detected using a clinical event monitor in the NH setting 

with a high degree of accuracy.  The overall PPV of 81% is substantially higher than PPVs 

previously reported in the literature, which range from 3-50%.60  It is possible that our clinical 

event monitor performed better than previously described systems because: 1) we developed a 

list of consensus signals to detect potential ADRs by experts in geriatrics, rather than using 

existing hospital-based signals; 2) we simultaneously combined multiple data sources in order to 

enhance ADR detection; and, 3) we employed a standardized knowledge engineering process for 

the laboratory/medication combination signals category. 

Similar to previous studies, signals associated with laboratory test results performed 

better than antidote signals.60  The antidote signals category may not have performed as well 

because these medications can be used to treat multiple medical conditions, only a fraction of 

which are related to the presence of an ADR.  Having a better understanding of the context of the 

data as they relate to patients’ underlying medical conditions may help to improve this signal 

category’s performance.  It is also important to note that during the course of our study, no 

signals from the medication concentration category fired.  This is not entirely surprising since 

previous research suggests that a substantial proportion of older adults do not receive appropriate 

laboratory monitoring while being prescribed chronic medications.25 

Our results suggest that about one-third of the ADRs were preventable, and that of the 

preventable ADRs, 88% were associated with errors in the monitoring stage of the medication 

use process.  This differs slightly from the only other study that used a clinical event monitor to 
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detect ADRs in the NH setting, where 42% were judged preventable and 80% occurred at the 

monitoring stage.11  

4.5.1 Implications 

Developing a clinical decision support system that has a relatively low false-positive rate is 

particularly important in order to reduce alert fatigue.  Furthermore, having a system that 

produces an average of less than 5 alerts per week could allow for the routine inclusion of ADR 

assessments as part of the monthly medication regimen review process conducted by consultant 

pharmacists on all NH patients in the United States. 

4.5.2 Future Direction 

Further research needs to be conducted to do the following: 1) determine the incidence and PPVs 

of the 3 Resident Assessment Protocol signals selected by expert consensus; 2) validate the 

findings of this study for a longer period of time in NHs with differing resident or facility 

characteristics; and, 3) describe the epidemiology and patient characteristics associated with 

ADRs detected by our clinical event monitor.  The results of this study are being used by our 

health-system to select appropriate signals to develop a clinical event monitor system that can 

maximize the detection and possible prevention of potential ADRs, while minimizing the 

number of false-positive alerts. 
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4.6 CONCLUSION 

The results suggest that ADRs can be detected in the NH setting with a high degree of accuracy 

using a clinical event monitor that employs a set of signals derived by expert consensus. 
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5.0  SUMMARY OF STUDY FINDINGS 

In the first paper, we identified the importance of using PPVs in performing accurate 

assessments of individual signals used to automate the detection of ADEs in the hospital setting.  

Based on this experience, we were also able to hypothesize why the performance characteristics 

were generally poor, and think of simple solutions for potentially improving them.  Finally, we 

recognized that the signals used in hospital-based active medication monitoring systems are 

likely to be different from those used in other clinical environments such as the NH setting.  

Consequently, a new set of setting-specific signals were needed. 

In the second paper, we used the list of signals in the hospital setting as a starting point, 

but then conducted a comprehensive literature search to create a preliminary list of signals that 

can be used to detect potential ADRs in nursing homes.  We then queried a panel of experts in 

geriatrics to complete an Internet-based, two-round, modified Delphi survey to develop a 

consensus list of  laboratory, pharmacy, and Minimum Data Set signals that an active medication 

monitoring system can use to detect potential ADRs in the NH setting.  Panelists reached 

consensus agreement on 40 signals, including several signals that have never been used in any 

previous system to detect ADRs. 

In the third paper, we described the implementation and pharmacist evaluation of a 

clinical event monitor using signals previously developed by a panel of experts in geriatrics.  The 

results suggest that ADRs can be detected in the NH setting with a high degree of accuracy using 
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a clinical event monitor that employs a set of signals derived by expert consensus.  The overall 

positive predictive value for all signals combined was 81%, representing the highest overall 

value ever reported in the literature. 

5.1 SIGNIFICANCE OF STUDY FINDINGS 

ADEs among NH patients are common and costly problems that are likely to increase 

substantially due to the aging U.S. population, and the increasing need for NH services.  A lack 

of easily identifiable patient-specific risk factors makes it difficult to routinely detect these 

events.  Systems analyses of ADEs suggest that suboptimal medication monitoring is the most 

common factor underlying these events in the NH.  Current strategies that rely on voluntary 

reporting, such as incident reports, direct observation of medication passes, and retrospective 

chart review are time-consuming, costly, and impractical for routine clinical use.  Several 

prominent quality improvement organizations recommend active medication monitoring systems 

as a potential solution to improving medication safety.  Active medication monitoring systems 

are particularly needed to detect ADEs in priority populations such as institutionalized elderly 

because of the long-standing concern about the quality of their pharmaceutical care.  The 

compilation of the three projects presented in this dissertation are the initial steps and first 

reported accounts of the development and testing of an active medication monitoring system for 

use in the NH setting. 
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5.2 FUTURE RESEARCH DIRECTION AND IMPLICATIONS 

Preliminary data collected by our group demonstrates that ADRs can be detected in the NH 

setting with a high degree of accuracy using an active medication monitoring system that 

employs a set of signals derived by expert consensus.  However, research conducted using a 

more rigorous study design, over a longer duration of time, and in a larger number of NHs is 

necessary before recommendations can be made about how the results of our study may affect 

clinical practice or have policy implications.  From a clinical perspective, if the active 

medication monitoring system is shown to be effective, it can help physicians detect and respond 

to ADEs more frequently and quickly when compared to usual care.  More widespread 

implementation of the system has great potential to reduce impairment of functional and 

cognitive status, morbidity, mortality, and health services utilization for institutionalized elderly.  

From a policy perspective, if shown to result in cost-savings, our results can be used to inform 

CMS and other large healthcare systems (e.g., the VA) to institute pharmacy regulations in the 

U.S. that promote the more widespread use of such active medication monitoring systems. 
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APPENDIX A 

INITIAL LIST OF 80 POTENTIAL SIGNALS FOR ADVERSE DRUG REACTIONS IN 

THE NURSING HOME SETTING, BASED ON A COMPREHENSIVE LITERATURE 

SEARCH AND CLINICAL INVESTIGATIVE REVIEW 

Medication/Laboratory Combinations 

Agranulocytosis or neutropenia (as indicated by a low or decreasing neutrophil count) is found 

in an individual taking a drug that may cause or worsen agranulocytosis or neutropenia (e.g., 

ticlopidine) 

Anemia (as indicated by a low or decreasing hemoglobin or hematocrit concentration) is found 

in an individual taking a drug that may cause or worsen anemia (e.g., nonsteroidal anti-

inflammatory agents) 

Clostridium difficile toxin is found in an individual taking a drug that may cause 

pseudomembranous colitis (e.g., fluoroquinolone antibiotics) 

Elevated alanine aminotransferase (ALT) or aspartate aminotransferase (AST) concentration is 

found in an individual taking a drug that may cause hepatocellular toxicity (e.g., 

thiazolidinediones) 

Elevated creatine phosphokinase (CPK) concentration is found in an individual taking a drug 



 

 75 

that may increase CPK (e.g., statins) 

Elevated creatinine or blood urea nitrogen (BUN) concentration is found in an individual taking 

a drug that may increase the creatinine or BUN concentration (e.g., diuretics) 

Eosinophilia (as indicated by a high or increasing eosinophil count) is found in an individual 

taking a drug that may cause or worsen eosinophilia (e.g., proton pump inhibitors) 

Erythrocytosis (as indicated by a high or increasing hemoglobin or hematocrit concentration) is 

found in an individual taking a drug that may cause or worsen erythrocytosis (e.g., epoetin 

alpha) 

Hyperammonemia (as indicated by a high or increasing ammonia concentration) is found in an 

individual taking a drug that may cause or worsen hyperammonemia (e.g., valproic acid) 

Hyperamylasemia (as indicated by a high or increasing amylase concentration) is found in an 

individual taking a drug that may cause or worsen hyperamylasemia (e.g., nonsteroidal anti-

inflammatory agents) 

Hyperbilirubinemia (as indicated by a high or increasing bilirubin concentration), elevated 

alkaline phosphatase (ALP) concentration, or elevated gamma-glutamyltransferase (GGT) 

concentration is found in an individual taking a drug that may cause cholestatic 

hepatotoxicity (e.g., allopurinol) 

Hypercalcemia (as indicated by a high or increasing calcium concentration) is found in an 

individual taking a drug that may cause or worsen hypercalcemia (e.g., calcium 

supplements) 

Hyperchloremia (as indicated by a high or increasing chloride concentration) is found in an 

individual taking a drug that may cause or worsen hyperchloremia (e.g., laxatives) 

Hyperglycemia (as indicated by a high or increasing glucose concentration) is found in an 
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individual taking a drug that may cause or worsen hyperglycemia (e.g., prednisone) 

Hyperkalemia (as indicated by a high or increasing potassium concentration) is found in an 

individual taking a drug that may cause or worsen hyperkalemia (e.g., potassium sparing 

diuretics) 

Hyperlipidemia (as indicated by high or increasing lipid concentrations) is found in an 

individual taking a drug that may cause or increase cholesterol (e.g., colchicine) 

Hypermagnesemia (as indicated by a high or increasing magnesium concentration) is found in 

an individual taking a drug that may cause or increase magnesium (e.g., magnesium 

supplements) 

Hypernatremia (as indicated by a high or increasing sodium concentration) is found in an 

individual taking a drug that may cause or worsen hypernatremia (e.g., prednisone) 

Hypertriglyceridemia (as indicated by a high or increasing triglyceride concentration) is found 

in an individual taking a drug that may cause or increase triglyceride (e.g., cyclosporine) 

Hyperuricemia (as indicated by a high or increasing uric acid concentration) is found in an 

individual taking a drug that may increase uric acid (e.g., nicotinic acid) 

Hypoalbuminemia (as indicated by a low or decreasing albumin concentration) is found in an 

individual taking a drug that may decrease albumin by causing anorexia (e.g., 

acetylcholinesterase inhibitors) 

Hypocalcemia (as indicated by a low or decreasing calcium concentration) is found in an 

individual taking a drug that may cause or worsen hypocalcemia (e.g., valproic acid) 

Hypoglycemia (as indicated by a low or decreasing glucose concentration) is found in an 

individual taking a drug that may cause or worsen hypoglycemia (e.g., insulin) 

Hypokalemia (as indicated by a low or decreasing potassium concentration) is found in an 
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individual taking a drug that may cause or worsen hypokalemia (e.g., diuretics) 

Hypomagnesemia (as indicated by a low or decreasing magnesium concentration) is found in an 

individual taking a drug that may cause or worsen hypomagnesemia (e.g., thiazide diuretics) 

Hyponatremia (as indicated by a low or decreasing sodium concentration) is found in an 

individual taking a drug that may cause or worsen hyponatremia (e.g., selective serotonin 

reuptake inhibitors) 

Hypophosphatemia (as indicated by a low or decreasing phosphate concentration) is found in an 

individual taking a drug that may cause or worsen hypophosphatemia (e.g., sorbitol,) 

Leukocytosis (as indicated by a high or increasing white blood cell count) is found in an 

individual taking a drug that may cause or worsen leukocytosis (e.g., etanercept) 

Leukopenia (as indicated by a low or decreasing white blood cell count) is found in an 

individual taking a drug that may cause or worsen leukopenia (e.g., beta-lactam antibiotics) 

Subtherapeutic concentration (below lower limit of normal range) of thyroid-stimulating 

hormone (TSH)  elevated concentration of thyroxine (T4) is found in an individual taking a 

drug that may cause hyperthyroidism (e.g., amiodarone) 

Supratherapeutic concentration (above upper limit of normal range) of TSH or decreased 

concentration of T4 is found in an individual taking a drug that may cause hypothyroidism 

(e.g., amiodarone) 

Supratherapeutic activated partial thromboplastin time (PTT) is found in an individual taking 

heparin 

Supratherapeutic international normalized ratio (INR) is found in an individual taking warfarin 

Thrombocytopenia (as indicated by a low or decreasing platelet count) is found in an individual 

taking a drug that may cause or worsen thrombocytopenia (e.g., clopidogrel) 
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Thrombocytosis (as indicated by a high or increasing platelet count) is found in an individual 

taking a drug that may cause or worsen thrombocytosis (e.g., beta-lactam antibiotics) 

 

Medication Concentrations 

Acetaminophen concentration is supratherapeutic in an individual taking acetaminophen 

Aminoglycoside peak or trough concentration is supratherapeutic in an individual taking an 

aminoglycoside antibiotic (e.g., amikacin, gentamicin, or tobramycin) 

Carbamazepine concentration is supratherapeutic in an individual taking carbamazepine 

Digoxin concentration is supratherapeutic in an individual taking digoxin 

Disopyramide (Norpace) concentration is supratherapeutic in an individual taking disopyramide  

Lithium concentration is supratherapeutic in an individual taking lithium 

Phenobarbital concentration is supratherapeutic in an individual taking phenobarbital  

Phenytoin concentration is supratherapeutic in an individual taking phenytoin 

Primidone (Mysoline) concentration or phenobarbital concentration is supratherapeutic in an 

individual taking primidone 

Procainamide concentration or N-acetylprocainamide (NAPA) concentration is supratherapeutic 

in an individual taking procainamide 

Quinidine concentration is supratherapeutic in an individual taking quinidine 

Salicylate (aspirin, salsalate, or choline magnesium trisalicylate) concentration is 

supratherapeutic in an individual taking salicylate 

Theophylline trough concentration is supratherapeutic in an individual taking theophylline  

Tricyclic antidepressant (e.g., amitriptyline, desipramine, or imipramine) concentration is 

supratherapeutic in an individual taking a tricyclic antidepressant 
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Valproic acid concentration is supratherapeutic in an individual taking valproic acid 

Vancomycin peak or trough concentration is supratherapeutic in an individual taking 

vancomycin 

 

Antidotes/Tracer Medications 

Anticonvulsant (e.g., benzodiazepine or phenytoin) is given to an individual taking a drug that 

may cause seizures (e.g., tramadol) 

Antidiarrheal (e.g., loperamide, diphenoxylate, or bismuth) is given to an individual taking a 

drug that may cause diarrhea (e.g., laxatives) 

Antiemetic (e.g., ondansetron, promethazine, or prochlorperazine) is given to an individual 

taking a drug that may cause nausea (e.g., opioid analgesics) 

Antifungal (e.g., clotrimazole, fluconazole, miconazole, or nystatin) is given to an individual 

taking a drug that may cause oral or vaginal candidiasis (e.g., antibiotics) 

Antihistamine (e.g., diphenhydramine or hydroxyzine) is given to an individual taking a drug 

that may cause a drug-induced rash (e.g., beta-lactam antibiotics) 

Atropine is given to an individual taking a drug that may cause bradycardia (e.g., beta-blockers) 

Benztropine (Cogentin), diphenhydramine, or trihexyphenidyl (Artane) is given to an individual 

taking a drug that may cause extrapyramidal symptoms (e.g., metoclopramide) 

Dextrose 50%, glucagon, or liquid glucose is given to an individual taking a drug that may 

cause hypoglycemia (e.g., insulin) 

Digoxin immune Fab (Digibind) is given to an individual whose digoxin concentration is 

supratherapeutic 

Epinephrine is given to an individual taking a drug that may cause an anaphylactic reaction 
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(e.g., aspirin) 

Flumazenil (Romazicon) is given to an individual taking a benzodiazepine (e.g., lorazepam) 

Lepirudin (Refludan) is given to an individual taking a drug that may cause heparin-induced 

thrombocytopenia 

Lidocaine is given to an individual taking an antiarrhythmic agent (e.g., procainamide) 

Metronidazole (oral) or vancomycin (oral) is given to an individual who has recently taken a 

drug that may cause pseudomembranous colitis (e.g., fluoroquinolone antibiotic) 

Naloxone (Narcan) is given to an individual taking an opioid analgesic (e.g., morphine) 

Phytonadione (Vitamin K) is given to an individual taking warfarin 

Protamine sulfate is given to an individual taking heparin 

Sodium polystyrene is given to an individual taking a drug that may cause hyperkalemia (e.g., 

potassium sparing diuretics) 

Steroids (oral) are given to an individual taking a drug that may cause a drug-induced rash (e.g., 

beta-lactam antibiotics) 

Steroids (topical) are given to an individual taking a drug that may cause a drug-induced rash 

(e.g., aspirin) 

 

Resident Assessment Protocols (RAPs) 

Activities of Daily Living Function RAP is triggered in an individual taking a drug (e.g., 

barbiturates) that may impair or worsen activities of daily living (bed mobility, transfers, 

eating, toilet use, or ambulation)  

Behavioral Symptoms RAP is triggered in an individual taking a drug (e.g., anticholinergics 

agents) that may cause or worsen behavioral symptoms (wandering, being verbally abusive, 
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being physically abusive, being socially inappropriate, or resisting care)  

Cognitive Loss RAP is triggered in an individual taking a drug (e.g., benzodiazepines) that may 

cause or worsen cognitive impairment (changes in level of consciousness, cognitive skills for 

daily decision-making, short-term or long-term memory, thinking, awareness, or recall)  

Dehydration/Fluid Maintenance RAP is triggered in an individual taking a drug (e.g., diuretics) 

that may cause or worsen dehydration (fluid loss exceeding the amount of fluid intake) 

Delirium RAP is triggered in an individual taking a drug (e.g., anticholinergic agents) that may 

cause or worsen delirium (periodic disordered thinking or awareness) 

Falls RAP is triggered in an individual taking a drug (e.g., opioid analgesics) that may cause or 

worsen falls (falls with or without injury)  

Mood State RAP is triggered in an individual taking a drug (e.g., beta-blockers) that may cause 

or worsen mood states (depression, anxiety, sad mood, or sleep cycle issues) 

Nutritional Status RAP is triggered in an individual taking a drug (e.g., acetylcholinesterase 

inhibitors) that may cause or worsen weight loss (chewing, swallowing, oral pain, weight 

changes, or dysgeusia) 

Urinary Incontinence RAP is triggered in an individual taking a drug (e.g., diuretics) that may 

cause or worsen urinary incontinence (control of urinary bladder function or bowel 

movements) 
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APPENDIX B 

Naranjo’s Causality Algorithm (refer to detailed instructions): 

 Yes No 

1.  Are there previous conclusive reports of this 

reaction? 

DK 

+1 0 0 

2.  Did the adverse event appear after the 

suspected drug was administered? 
+2 -1 0 

3.  Did the adverse reaction improve when the 

drug was discontinued OR was a specific 

antagonist (i.e., antidote) was administered? 

+1 0 0 

4.  Did the adverse reaction reappear when the 

drug was re-administered? 
+2 -1 0 

5.  Are there alternative causes (other than the 

drug) that could, on their own, have caused 

the reaction? 

-1 +2 0 

6.  Did the reaction reappear when a placebo 

was given? 
-1 +1 0 
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7.  Was the drug detected in the blood (or other 

fluids) in concentrations known to be toxic 

(i.e., above normal reference range)? 

+1 0 0 

8.  Was the reaction more severe when the 

dose was increased or less severe when it 

was decreased? 

+1 0 0 

9.  Did the patient have a similar reaction to the 

same or similar drugs in any previous 

exposure? 

+1 0 0 

10.  Was the adverse event confirmed by any 

objective evidence (i.e., laboratory data)? 
+1 0 0 

POINT TOTAL=  

Scoring: Doubtful < 0; Possible 1-4; Probable 5-8; Definite > 9 

 



 

 84 

BIBLIOGRAPHY 

1. Avorn J, Gurwitz JH. Drug use in the nursing home. Ann Intern Med. 1995;123(3):195-

204. 

2. Doshi JA, Shaffer T, Briesacher BA. National estimates of medication use in nursing 

homes: findings from the 1997 medicare current beneficiary survey and the 1996 medical 

expenditure survey. J Am Geriatr Soc. Mar 2005;53(3):438-443. 

3. Centers for Medicare & Medicaid Services. MDS 2.0 Public Quality Indicator and 

Resident Reports: Use of 9 or More Different Medications.  

http://www.cms.hhs.gov/MDSPubQIandResRep/03_qireports.asp?isSubmitted=qi3&gro

up=03&qtr=21. Accessed August 31, 2009. 

4. Venulet J, Ten-Ham M. Methods for monitoring and documenting adverse drug 

reactions. Int J Clin Pharmacol Ther. Mar 1996;34(3):112-129. 

5. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and 

management. Lancet. Oct 7 2000;356(9237):1255-1259. 

6. Naranjo CA, Shear NH, Lanctot KL. Advances in the diagnosis of adverse drug 

reactions. J Clin Pharmacol. 1992;32(10):897-904. 

7. Handler SM, Wright RM, Ruby CM, Hanlon JT. Epidemiology of medication-related 

adverse events in nursing homes. Am J Geriatr Pharmacother. Sep 2006;4(3):264-272. 

http://www.cms.hhs.gov/MDSPubQIandResRep/03_qireports.asp?isSubmitted=qi3&group=03&qtr=21�
http://www.cms.hhs.gov/MDSPubQIandResRep/03_qireports.asp?isSubmitted=qi3&group=03&qtr=21�


 

 85 

8. Gurwitz JH, Field TS, Rochon P, Judge J, Harrold LR, Bell CM, et al. Effect of 

computerized provider order entry with clinical decision support on adverse drug events 

in the long-term care setting. J Am Geriatr Soc. 2008;56(12):2225-2233. 

9. Bootman JL, Harrison DL, Cox E. The health care cost of drug-related morbidity and 

mortality in nursing facilities. Arch Intern Med. 1997;157(18):2089-2096. 

10. Gurwitz JH, Field TS, Avorn J, McCormick D, Jain S, Eckler M, et al. Incidence and 

preventability of adverse drug events in nursing homes. Am J Med. 2000;109(2):87-94. 

11. Gurwitz JH, Field TS, Judge J, Rochon P, Harrold LR, Cadoret C, et al. The incidence of 

adverse drug events in two large academic long-term care facilities. Am J Med. Mar 

2005;118(3):251-258. 

12. Bernabei R, Gambassi G, Lapane K, Sgadari A, Landi F, Gatsonis C, et al. 

Characteristics of the SAGE database: a new resource for research on outcomes in long-

term care. SAGE (Systematic Assessment of Geriatric drug use via Epidemiology) Study 

Group. J Gerontol A-Biol. Jan 1999;54(1):M25-33. 

13. Harrington C, Chapman S, Miller E, Miller N, Newcomer R. Trends in the Supply of 

Long-Term-Care Facilities and Beds in the United States. J Appl Gerontol. 

2005;24(4):265-282. 

14. Field TS, Gurwitz JH, Avorn J, McCormick D, Jain S, Eckler M, et al. Risk factors for 

adverse drug events among nursing home residents. Arch Intern Med. Jul 9 

2001;161(13):1629-1634. 

15. Cooper JW. Probable adverse drug reactions in a rural geriatric nursing home population: 

a four-year study. J Am Geriatr Soc. 1996;44(2):194-197. 



 

 86 

16. Alfred L, Golden A, Preston R, Silverman M, Bergman R. Implementation of a 

pharmacist directed program to monitor adverse drug reactions. Consult Pharm. 

2000;15:1032-1037. 

17. Nguyen JK, Fouts MM, Kotabe SE, Lo E. Polypharmacy as a risk factor for adverse drug 

reactions in geriatric nursing home residents. Am J Geriatr Pharmacother. Mar 

2006;4(1):36-41. 

18. Gerety MB, Cornell JE, Plichta DT, Eimer M. Adverse events related to drugs and drug 

withdrawal in nursing home residents. J Am Geriatr Soc. Dec 1993;41(12):1326-1332. 

19. Bain KT. Adverse drug reactions and current state of drug regimen review in nursing 

facilities: need for a change? Consult Pharm. Jul 2007;22(7):586-592. 

20. Huff ED. Systems analysis of adverse drug events. JAMA. 1996;275(1):33-34; discussion 

34-35. 

21. Leape LL, Bates DW, Cullen DJ, Cooper J, Demonaco HJ, Gallivan T, et al. Systems 

analysis of adverse drug events. ADE Prevention Study Group. JAMA. 1995;274(1):35-

43. 

22. Karsh BT. Beyond usability: designing effective technology implementation systems to 

promote patient safety. Qual Saf Health Care. Oct 2004;13(5):388-394. 

23. Institute of Medicine. Preventing Medication Errors. Washington, DC: National 

Academy Press; 2006. 

24. Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. 

National surveillance of emergency department visits for outpatient adverse drug events. 

JAMA. Oct 18 2006;296(15):1858-1866. 



 

 87 

25. Raebel MA, Carroll NM, Andrade SE, Chester EA, Lafata JE, Feldstein A, et al. 

Monitoring of drugs with a narrow therapeutic range in ambulatory care. Am J Manag 

Care. May 2006;12(5):268-274. 

26. Raebel MA, Lyons EE, Andrade SE, Chan KA, Chester EA, Davis RL, et al. Laboratory 

monitoring of drugs at initiation of therapy in ambulatory care. J Gen Intern Med. Dec 

2005;20(12):1120-1126. 

27. Higashi T, Shekelle PG, Solomon DH, Knight EL, Roth C, Chang JT, et al. The Quality 

of Pharmacologic Care for Vulnerable Older Patients. Ann Intern Med. 2004;140(May 

4):714-720. 

28. Hanlon J, Handler S, Maher R, Schmader K. Geriatric Pharmacotherapy and 

Polypharmacy. In: Fillit H, Rockwood K, Woodhouse L, eds. Brocklehurst’s Textbook of 

Geriatric Medicine and Gerontology. Seventh ed ed. London, UK: Churchill 

Livingstone; (in press). 

29. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, et al. Incidence of 

adverse drug events and potential adverse drug events. Implications for prevention. ADE 

Prevention Study Group. JAMA. 1995;274(1):29-34. 

30. Bates DW, Evans RS, Murff H, Stetson PD, Pizziferri L, Hripcsak G. Detecting adverse 

events using information technology. J Am Med Inform Assoc. Mar-Apr 2003;10(2):115-

128. 

31. Honigman B, Lee J, Rothschild J, Light P, Pulling RM, Yu T, et al. Using computerized 

data to identify adverse drug events in outpatients. J Am Med Inform Assoc. May-Jun 

2001;8(3):254-266. 



 

 88 

32. Jha AK, Laguette J, Seger A, Bates DW. Can Surveillance Systems Identify and Avert 

Adverse Drug Events? A Prospective Evaluation of a Commercial Application. J Am 

Med Inform Assoc. Sep-Oct 2008;15(5):647-653. 

33. Handler SM, Shirts BH, Perera S, Becich MJ, Castle NG, Hanlon JT. Frequency of 

laboratory monitoring of chronic medications administered to nursing facility residents: 

results of a national internet-based study. Consult Pharm. May 2008;23(5):387-395. 

34. Conditions of participation: skilled nursing facilities. CFR Sec 405.1127(a); 1975:228. 

35. Martin CM, McSpadden CS. Changes in the state operations manual: implications for 

consultant pharmacy practice. Consult Pharm. Dec 2006;21(12):948-961. 

36. Hennessy S, Bilker WB, Zhou L, Weber AL, Brensinger C, Wang Y, et al. Retrospective 

drug utilization review, prescribing errors, and clinical outcomes. JAMA. Sep 17 

2003;290(11):1494-1499. 

37. Holland R, Desborough J, Goodyer L, Hall S, Wright D, Loke YK. Does pharmacist-led 

medication review help to reduce hospital admissions and deaths in older people? A 

systematic review and meta-analysis. Br J Clin Pharmacol. Mar 2008;65(3):303-316. 

38. Clark TR. Gap analysis: assessing the value perception of consultant pharmacist services 

and the performance of consultant pharmacists. Consult Pharm. Sep 2008;23 Suppl C:3-

15. 

39. Institute of Medicine. Preventing Medication Errors. Washington, DC: National 

Academies Press; 2007. 

40. National Quality Forum. Safe Practices for Better Healthcare: A Consensus Report 2003. 

41. Institute of Medicine. Patient Safety: Achieving a New Standard for Care. Washington, 

D.C.: The National Academies Press; 2004. 



 

 89 

42. Shojania KG, Duncan BW, McDonald KM, Watchter RM. Making Health Care Safer: A 

Critical Analysis of Patient Safety Practices. Rockville, MD: Agency for Healthcare 

Research and Quality; 2001. 43. 

43. U.S. Department of Health and Human Services and Centers for Medicare & Medicaid 

Services, Guidance to surveyors for long term care facilities. State Operations Provider 

Certification [http://www.cms.hhs.gov/transmittals/downloads/R22SOMA.pdf. Accessed 

September 10, 2008. 

44. Kilbridge PM, Classen DC. Automated surveillance for adverse events in hospitalized 

patients: back to the future. Qual Saf Health Care. Jun 2006;15(3):148-149. 

45. Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and 

clinical decision support systems on medication safety: a systematic review. Arch Intern 

Med. Jun 23 2003;163(12):1409-1416. 

46. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et 

al. Effects of computerized clinical decision support systems on practitioner performance 

and patient outcomes: a systematic review. JAMA. Mar 9 2005;293(10):1223-1238. 

47. Durieux P, Trinquart L, Colombet I, Nies J, Walton R, Rajeswaran A, et al. 

Computerized advice on drug dosage to improve prescribing practice. Cochrane 

Database of Systematic Reviews. 2008(3):CD002894. 

48. Yourman L, Concato J, Agostini J. Use of computer decision support interventions to 

improve medication prescribing in older adults: a systematic review. Am J Geriatr 

Pharmacother. 2008;6(2):119-129. 

http://www.cms.hhs.gov/transmittals/downloads/R22SOMA.pdf�


 

 90 

49. Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, et al. Systematic review: 

impact of health information technology on quality, efficiency, and costs of medical care. 

Ann Intern Med. May 16 2006;144(10):742-752. 

50. Handler S, Castle N, Studenski S, Perera S, Fridsma D, Nace D, et al. Patient safety 

culture assessment in the nursing home. Qual Saf Health Care. Dec 2006;15(6):400-404. 

51. Institute of Medicine. Retooling for an Aging America: Building the Health Care 

Workforce. Washington, DC: The National Academies Press; 2008. 

52. Levy C, Palat SI, Kramer AM, Levy C, Palat S-IT, Kramer AM. Physician practice 

patterns in nursing homes. J Am Med Dir Assoc. Nov 2007;8(9):558-567. 

53. Bonner AF, Perera S, Castle NG, Handler SM. Patient Safety Culture: A Review of the 

Nursing Home Literature and Recommendations for Practice. Ann Long Term Care. 

2008;16(3):18-22. 

54. Institute of Medicine. Improving the Quality of Care in Nursing Homes. Washington, 

D.C.: National Academy Press; 1986. 

55. Classen DC, Pestotnik SL, Evans RS, Burke JP. Computerized surveillance of adverse 

drug events in hospital patients. JAMA. 1991;266(20):2847-2851. 

56. Jha AK, Kuperman GJ, Teich JM, Leape L, Shea B, Rittenberg E, et al. Identifying 

adverse drug events: development of a computer-based monitor and comparison with 

chart review and stimulated voluntary report. J Am Med Inform Assoc. May-Jun 

1998;5(3):305-314. 

57. Levy M, Azaz-Livshits T, Sadan B, Shalit M, Geisslinger G, Brune K. Computerized 

surveillance of adverse drug reactions in hospital: implementation. Eur J Clin 

Pharmacol. 1999;54(11):887-892. 



 

 91 

58. Murff HJ, Patel VL, Hripcsak G, Bates DW. Detecting adverse events for patient safety 

research: a review of current methodologies. J Biomed Inform. Feb-Apr 2003;36(1-

2):131-143. 

59. Morimoto T, Gandhi TK, Seger AC, Hsieh TC, Bates DW. Adverse drug events and 

medication errors: detection and classification methods. Qual Saf Health Care. Aug 

2004;13(4):306-314. 

60. Handler SM, Altman RL, Perera S, Hanlon JT, Studenski SA, Bost JE, et al. A systematic 

review of the performance characteristics of clinical event monitor signals used to detect 

adverse drug events in the hospital setting. J Am Med Inform Assoc. Jul-Aug 

2007;14(4):451-458. 

61. Tegeder I, Levy M, Muth-Selbach U, Oelkers R, Neumann F, Dormann H, et al. 

Retrospective analysis of the frequency and recognition of adverse drug reactions by 

means of automatically recorded laboratory signals. Br J Clin Pharmacol. May 

1999;47(5):557-564. 

62. Evans RS, Pestotnik SL, Classen DC, Bass SB, Burke JP. Prevention of adverse drug 

events through computerized surveillance. Proc Annu Symp Comput Appl Med Care. 

1992:437-441. 

63. Evans RS, Pestotnik SL, Classen DC, Horn SD, Bass SB, Burke JP. Preventing adverse 

drug events in hospitalized patients. Ann Pharmacother. Apr 1994;28(4):523-527. 

64. Raschke RA, Gollihare B, Wunderlich TA, Guidry JR, Leibowitz AI, Peirce JC, et al. A 

computer alert system to prevent injury from adverse drug events: development and 

evaluation in a community teaching hospital. JAMA. 1998;280(15):1317-1320. 



 

 92 

65. Reducing and Preventing Adverse Drug Events To Decrease Hospital Costs. Rockville, 

MD: Agency for Healthcare Research and Quality; 2001. AHRQ Publication Number 01-

0020. 

66. Silverman JB, Stapinski CD, Huber C, Ghandi TK, Churchill WW. Computer-based 

system for preventing adverse drug events. Am J Health Syst Pharm. Aug 1 

2004;61(15):1599-1603. 

67. Peterson JF, Williams DH, Seger A, Gandhi TK, Bates DW. Drug-lab triggers have the 

potential to prevent adverse drug events in outpatients. J Am Med Inform Assoc. Nov-Dec 

2002;9(6):S39-40. 

68. Hartis CE, Gum MO, Lederer JW, Jr. Use of specific indicators to detect warfarin-related 

adverse events. Am J Health Syst Pharm. Aug 15 2005;62(16):1683-1688. 

69. Longo DR, Hewett JE, Ge B, Schubert S, Longo DR, Hewett JE, et al. The long road to 

patient safety: a status report on patient safety systems. JAMA. Dec 14 

2005;294(22):2858-2865. 

70. Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st 

Century. Washington, DC: National Academy Press; 2001. 

71. Osheroff JA, Teich JM, Middleton B, Steen EB, Wright A, Detmer DE. A roadmap for 

national action on clinical decision support. J Am Med Inform Assoc. Mar-Apr 

2007;14(2):141-145. 

72. Poon EG, Jha AK, Christino M, Honour MM, Fernandopulle R, Middleton B, et al. 

Assessing the level of healthcare information technology adoption in the United States: a 

snapshot. BMC Med Inf Decis Mak. 2006;6:1. 



 

 93 

73. Kaushal R, Bates DW, Poon EG, Jha AK, Blumenthal D, Harvard Interfaculty Program 

for Health Systems Improvement NHIN Working Group. Functional gaps in attaining a 

national health information network. What will it take to get there in five years? Health 

Aff (Millwood). Sep-Oct 2005;24(5):1281-1289. 

74. Hudak S, Sharkey S. Health Information Technology: Are Long Term Care Providers 

Ready?: California Healthcare Foundation; 2007. 

75. Subramanian S, Hoover S, Gilman B, Field TS, Mutter R, Gurwitz JH. Computerized 

Physician Order Entry with Clinical Decision Support in Long-Term Care Facilities: 

Costs and Benefits to Stakeholders J Am Geriatr Soc. 2007:1451-1457. 

76. Judge J, Field TS, DeFlorio M, Laprino J, Auger J, Rochon P, et al. Prescribers' 

responses to alerts during medication ordering in the long term care setting. J Am Med 

Inform Assoc. Jul-Aug 2006;13(4):385-390. 

77. Rochon PA, Field TS, Bates DW, Lee M, Gavendo L, Erramuspe-Mainard J, et al. 

Computerized Physician Order Entry with Clinical Decision Support in the Long-Term 

Care Setting: Insights from the Baycrest Centre for Geriatric Care. J Am Geriatr Soc. 

2005;53(10):1780-1789. 

78. Handler SM, Hanlon JT, Perera S, Roumani YF, Nace DA, Fridsma DB, et al. Consensus 

list of signals to detect potential adverse drug reactions in nursing homes. J Am Geriatr 

Soc. May 2008;56(5):808-815. 

79. Handler SM, Hanlon JT, Perera S, Saul MI, Fridsma DB, Visweswaran S, et al. 

Assessing the Performance Characteristics of Signals Used by a Clinical Event Monitor 

to Detect Adverse Drug Reactions in the Nursing Home. Proceedings / AMIA. 2008:278-

282. 



 

 94 

80. Hripcsak G, Clayton PD, Jenders RA, Cimino JJ, Johnson SB. Design of a clinical event 

monitor. Comput Biomed Res. Jun 1996;29(3):194-221. 

81. Rind DM, Safran C, Phillips RS, Wang Q, Calkins DR, Delbanco TL, et al. Effect of 

computer-based alerts on the treatment and outcomes of hospitalized patients. Arch Intern 

Med. 1994;154(13):1511-1517. 

82. Haug PJ, Gardner RM, Tate KE, Evans RS, East TD, Kuperman G, et al. Decision 

support in medicine: examples from the HELP system. Comput Biomed Res. Oct 

1994;27(5):396-418. 

83. Haug PJ, Rocha BH, Evans RS. Decision support in medicine: lessons from the HELP 

system. Int J Med Inf. Mar 2003;69(2-3):273-284. 

84. Institute of Medicine. To Err Is Human: Building a Safer Health System. Washington, 

DC: National Academy Press; 2000. 

85. Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in 

hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 

1997;277(4):301-306. 

86. Senst BL, Achusim LE, Genest RP, Cosentino LA, Ford CC, Little JA, et al. Practical 

approach to determining costs and frequency of adverse drug events in a health care 

network. Am J Health Syst Pharm. Jun 15 2001;58(12):1126-1132. 

87. Nebeker JR, Hoffman JM, Weir CR, Bennett CL, Hurdle JF. High rates of adverse drug 

events in a highly computerized hospital. Arch Intern Med. May 23 2005;165(10):1111-

1116. 

88. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized 

patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200-1205. 



 

 95 

89. Bates DM, Spell N, Cullen DJ, Burdick E, Laird N, Petersen LA, et al. The Costs of 

Adverse Drug Events in Hospitalized Patients. JAMA. 1997;277(4):307-311. 

90. Cullen DJ, Bates DW, Small SD, Cooper JB, Nemeskal AR, Leape LL. The incident 

reporting system does not detect adverse drug events: a problem for quality improvement. 

Jt Comm J Qual Improv. 1995;21(10):541-548. 

91. Gandhi TK, Seger DL, Bates DW. Identifying drug safety issues: from research to 

practice. Int J Qual Health Care. Feb 2000;12(1):69-76. 

92. Classen DC, Pestotnik SL, Evans RS, Burke JP. Description of a computerized adverse 

drug event monitor using a hospital information system. Hosp Pharm. 1992;27(9):774, 

776-779, 783. 

93. Payne TH, Savarino J. Development of a clinical event monitor for use with the Veterans 

Affairs Computerized Patient Record System and other data sources. Proceedings / 

AMIA. 1998:145-149. 

94. Kaushal R, Jha AK, Franz C, Glaser J, Shetty KD, Jaggi T, et al. Return on Investment 

for a Computerized Physician Order Entry System. J Am Med Inform Assoc. 

2006;13(3):261-266. 

95. Kuperman GJ, Bobb A, Payne TH, Avery AJ, Gandhi TK, Burns G, et al. Medication-

related clinical decision support in computerized provider order entry systems: a review. 

J Am Med Inform Assoc. Jan-Feb 2007;14(1):29-40. 

96. Juni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials 

for meta-analysis. JAMA. Sep 15 1999;282(11):1054-1060. 

97. Huwiler-Muntener K, Juni P, Junker C, Egger M. Quality of reporting of randomized 

trials as a measure of methodologic quality. JAMA. Jun 5 2002;287(21):2801-2804. 



 

 96 

98. Fleiss JL. The statistical basis of meta-analysis. Stat Methods Med Res. 1993;2(2):121-

145. 

99. Liang K, Zeger S. Longitudinal data analysis using generalized linear models. 

Biometrika. 1986;73:13-22. 

100. Lipsitz SR, Fitzmaurice GM, Orav EJ, Laird NM. Performance of generalized estimating 

equations in practical situations. Biometrics. Mar 1994;50(1):270-278. 

101. Diggle P, Heagerty P, Liang K, Zeger S. Analysis of longitudinal data. 2nd ed. New 

York, NY: Oxford University Press; 2002. 

102. Sutton A, Abrams K, Jones D, Sheldon T, Song F. Methods for Meta-Analaysis in 

Medical Research. Sussex, England: John Wiley and Sons; 2000. 

103. Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication bias in 

meta-analyses of diagnostic accuracy. Int J Epidemiol. Feb 2002;31(1):88-95. 

104. Evans RS, Pestotnik SL, Classen DC, Bass SB, Menlove RL, Gardner RM, et al. 

Development of a computerized adverse drug event monitor. Proc Annu Symp Comput 

Appl Med Care. 1991:23-27. 

105. Azaz-Livshits T, Levy M, Sadan B, Shalit M, Geisslinger G, Brune K. Computerized 

survelliance of adverse drug reactions in hospital: pilot study. Br J Clin Pharmacol. Mar 

1998;45(3):309-314. 

106. Henz S. Improved ADR Detection without Using a Computer-Assisted Alert System. In: 

James B, ed. Salt Lake City, Utah: Institute of Healthcare Delivery Research.; 2000. 

107. Dormann H, Muth-Selbach U, Krebs S, Criegee-Rieck M, Tegeder I, Schneider HT, et al. 

Incidence and costs of adverse drug reactions during hospitalisation: computerised 

monitoring versus stimulated spontaneous reporting. Drug Saf. Feb 2000;22(2):161-168. 



 

 97 

108. Jha AK, Kuperman GJ, Rittenberg E, Teich JM, Bates DW. Identifying hospital 

admissions due to adverse drug events using a computer-based monitor. 

Pharmacoepidemiol Drug Saf. Mar-Apr 2001;10(2):113-119. 

109. Thuermann PA, Windecker R, Steffen J, Schaefer M, Tenter U, Reese E, et al. Detection 

of adverse drug reactions in a neurological department: comparison between intensified 

surveillance and a computer-assisted approach. Drug Saf. 2002;25(10):713-724. 

110. Dormann H, Criegee-Rieck M, Neubert A, Egger T, Levy M, Hahn EG, et al. 

Implementation of a computer-assisted monitoring system for the detection of adverse 

drug reactions in gastroenterology. Aliment Pharmacol Ther. Feb 1 2004;19(3):303-309. 

111. Brown S, Black K, Mrochek S, Wood A, Bess T, Cobb J, et al. RADARx: Recognizing, 

Assessing, and Documenting Adverse Rx events. Proceedings / AMIA. 2000:101-105. 

112. Thurmann PA. Methods and systems to detect adverse drug reactions in hospitals. Drug 

Saf. 2001;24(13):961-968. 

113. Goroll AH, Mulley AG, eds. Primary Care Medicine: Office Evaluation and 

Management of the Adult Patient. 5th ed ed. Philadelphia, PA: Lippincott Williams & 

Wilkins; 2006. 

114. Owens DK, Nease RF, Jr. A normative analytic framework for development of practice 

guidelines for specific clinical populations. Med Decis Making. Oct-Dec 1997;17(4):409-

426. 

115. Burkle T, Ammenwerth E, Prokosch HU, Dudeck J. Evaluation of clinical information 

systems. What can be evaluated and what cannot? J Eval Clin Pract. Nov 2001;7(4):373-

385. 



 

 98 

116. Poissant L, Pereira J, Tamblyn R, Kawasumi Y. The impact of electronic health records 

on time efficiency of physicians and nurses: a systematic review. J Am Med Inform 

Assoc. Sep-Oct 2005;12(5):505-516. 

117. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. 

Assessing the quality of reports of randomized clinical trials: is blinding necessary? 

Control Clin Trials. Feb 1996;17(1):1-12. 

118. Cook DJ, Sackett DL, Spitzer WO. Methodologic guidelines for systematic reviews of 

randomized control trials in health care from the Potsdam Consultation on Meta-

Analysis. J Clin Epidemiol. Jan 1995;48(1):167-171. 

119. Irwig L, Tosteson AN, Gatsonis C, Lau J, Colditz G, Chalmers TC, et al. Guidelines for 

meta-analyses evaluating diagnostic tests. Ann Intern Med. Apr 15 1994;120(8):667-676. 

120. Irwig L, Macaskill P, Glasziou P, Fahey M. Meta-analytic methods for diagnostic test 

accuracy. J Clin Epidemiol. Jan 1995;48(1):119-130; discussion 131-112. 

121. Ash JS, Gorman PN, Seshadri V, Hersh WR. Computerized physician order entry in U.S. 

hospitals: results of a 2002 survey. J Am Med Inform Assoc. Mar-Apr 2004;11(2):95-99. 

122. van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in 

computerized physician order entry. J Am Med Inform Assoc. Mar-Apr 2006;13(2):138-

147. 

123. Kilbridge PM, Alexander L, Ahmad A. Implementation of a system for computerized 

adverse drug event surveillance and intervention at an academic medical center. J Clin 

Out Manag. 2006;13(2):94-100. 



 

 99 

124. Kilbridge PM, Campbell UC, Cozart HB, Mojarrad MG. Automated surveillance for 

adverse drug events at a community hospital and an academic medical center. J Am Med 

Inform Assoc. Jul-Aug 2006;13(4):372-377. 

125. Southon FC, Sauer C, Grant CN. Information technology in complex health services: 

organizational impediments to successful technology transfer and diffusion. J Am Med 

Inform Assoc. Mar-Apr 1997;4(2):112-124. 

126. Bates DW, Evans RS, Murff H, Stetson PD, Pizziferri L, Hripcsak G. Policy and the 

future of adverse event detection using information technology. J Am Med Inform Assoc. 

Mar-Apr 2003;10(2):226-228. 

127. Aschengrau A, Seage GR. Essentials of epidemiology in public health. Sudbury, MA: 

Jones and Baetlett Publishers0-7637-2537-4; 2003. 

128. Kuperman G, Teich J, Tanasijevic M, Ma'Luf N, Rittenberg E, Jha A, et al. Improving 

response to critical laboratory results with automation: results of a randomized controlled 

trial. J Am Med Inform Assoc. 1999;6(6):512-522. 

129. Pignone M, Rich M, Teutsch SM, Berg AO, Lohr KN. Screening for colorectal cancer in 

adults at average risk: a summary of the evidence for the U.S. Preventive Services Task 

Force. Ann Intern Med. Jul 16 2002;137(2):132-141. 

130. Schiff GD, Klass D, Peterson J, Shah G, Bates DW. Linking laboratory and pharmacy: 

opportunities for reducing errors and improving care. Arch Intern Med. Apr 28 

2003;163(8):893-900. 

131. Wick JY, Zanni GR. Integrating pharmacy and laboratory systems: quality improvement 

implications. Consult Pharm. 2000;15(Oct):1009-1023. 



 

 100 

132. Becich MJ, Gilbertson JR, Gupta D, Patel A, Grzybicki DM, Raab SS. Pathology and 

patient safety: the critical role of pathology informatics in error reduction and quality 

initiatives. Clin Lab Med. 2004 Dec 2004;24(4):913-943. 

133. Bates DW, Cohen M, Leape LL, Overhage JM, Shabot MM, Sheridan T. Reducing the 

frequency of errors in medicine using information technology. J Am Med Inform Assoc. 

2001;8(4):299-308. 

134. Gurwitz JH, Field TS, Harrold LR, Rothschild J, Debellis K, Seger AC, et al. Incidence 

and preventability of adverse drug events among older persons in the ambulatory setting. 

JAMA. 2003;289(9):1107-1116. 

135. Honigman B, Light P, Pulling RM, Bates DW. A computerized method for identifying 

incidents associated with adverse drug events in outpatients. Int J Med Inf. Apr 

2001;61(1):21-32. 

136. Guay DR, Artz MB, Hanlon JT, Schmader KE. The pharmacology of aging. In: Tallis 

RC, Fillit HM, eds. Brocklehurst's textbook of geriatric medicine and gerontology. New 

York, New York: Churchill Livingstone; 2003:155-161. 

137. Bakken S, Campbell KE, Cimino JJ, Huff SM, Hammond WE. Toward vocabulary 

domain specifications for health level 7-coded data elements. J Am Med Inform Assoc. 

Jul-Aug 2000;7(4):333-342. 

138. Kawamoto K, Lobach DF. Proposal for fulfilling strategic objectives of the U.S. 

Roadmap for national action on clinical decision support through a service-oriented 

architecture leveraging HL7 services. J Am Med Inform Assoc. Mar-Apr 2007;14(2):146-

155. 



 

 101 

139. Hanlon JT, Schmader KE, Ruby CM, Weinberger M. Suboptimal prescribing in older 

inpatients and outpatients. J Am Geriatr Soc. 2001;49(2):200-209. 

140. Field TS, Gurwitz JH, Harrold LR, Rothschild JM, Debellis K, Seger AC, et al. Strategies 

for detecting adverse drug events among older persons in the ambulatory setting. J Am 

Med Inform Assoc. Nov-Dec 2004;11(6):492-498. 

141. Hanlon JT, Lindblad CI, Maher RL, Schmader KE. Geriatric pharmacotherapy. In: Tallis 

RC, Fillit HM, eds. Brocklehurst's Textbook of Geriatric Medicine and Gerontology. 

New York, New York: Churchill Livingstone; 2003:1289-1296. 

142. Kaushal R, Blumenthal D, Poon EG, Jha AK, Franz C, Middleton B, et al. The costs of a 

national health information network. Ann Intern Med. Aug 2 2005;143(3):165-173. 

143. Hawes C, Morris JN, Phillips CD, Fries BE, Murphy K, Mor V. Development of the 

nursing home Resident Assessment Instrument in the USA. Age Ageing. Sep 1997;26 

Suppl 2:19-25. 

144. Aronson JK, ed. Meyler's side effects of drugs: the international encyclopedia of adverse 

drug reactions and interactions. 15th ed: Elsevier; 2006. 

145. Tisdale JE, Miller DA, eds. Drug-induced diseases: prevention, detection, and 

management. Bethesda, MD: American Society of Health-System Pharmacists; 2005. 

146. United States Pharmacopeial Convention. Drug information for the health care 

professional. Vol One. 26th ed. Greenwood Village, CO: MICROMEDEX; 2006. 

147. Delbecq AL, Van de Ven AH, Gustafson DH. Group techniques for program planning: a 

guide to nominal group and delphi processses. Glenview, Ill.: Scott Foresman; 1975. 

148. Jones J, Hunter D. Consensus methods for medical and health services research. BMJ. 

1995;311(7001):376-380. 



 

 102 

149. Beers MH, Ouslander JG, Rollingher I, Reuben DB, Brooks J, Beck JC. Explicit criteria 

for determining inappropriate medication use in nursing home residents. Arch Intern 

Med. 1991;151(9):1825-1832. 

150. Campbell SM, Cantrill JA. Consensus methods in prescribing research. J Clin Pharm 

Ther. Feb 2001;26(1):5-14. 

151. Morris CJ, Cantrill JA. Preventing drug-related morbidity--the development of quality 

indicators. J Clin Pharm Ther. Aug 2003;28(4):295-305. 

152. Morris CJ, Cantrill JA, Hepler CD, Noyce PR. Preventing drug-related morbidity--

determining valid indicators. Int J Qual Health Care. Jun 2002;14(3):183-198. 

153. McGlynn EA, Asch SM. Developing a clinical performance measure. Am J Prev Med. 

Apr 1998;14(3 Suppl):14-21. 

154. Handler SM, Nace DA, Studenski SA, Fridsma DB. Medication error reporting in long-

term care. Am J Geriatr Pharmacother. Sep 2004;2(3):190-196. 

155. Edwards P, Roberts I, Clarke M, DiGuiseppi C, Pratap S, Wentz R, et al. Increasing 

response rates to postal questionnaires: systematic review. BMJ. May 18 

2002;324(7347):1183. 

156. Fouts M, Hanlon J, Pieper C, Perfetto E, Feinberg J. Identification of elderly nursing 

facility residents at high risk for drug-related problems. Consult Pharm. 

1997;12(10):1103-1111. 

157. Hajjar ER, Hanlon JT, Artz MB, Lindblad CI, Pieper CF, Sloane RJ, et al. Adverse drug 

reaction risk factors in older outpatients. Am J Geriatr Pharmacother. 2003;1(2):82-89. 



 

 103 

158. Lindblad CI, Hanlon JT, Gross CR, Sloane RJ, Pieper CF, Hajjar ER, et al. Clinically 

important drug-disease interactions and their prevalence in older adults. Clin Ther. Aug 

2006;28(8):1133-1143. 

159. Department of Health & Human Services (DHHS) and Centers for Medicare & Medicaid 

Services (CMS). CMS Manual System, Pub. 100-07 State Operations Provider 

Certification, Transmittal 22. CMS Manual System [December 15, 2006; 

http://www.cms.hhs.gov/transmittals/downloads/R22SOMA.pdf. Accessed July 18, 2007. 

160. Feinberg JL, Cameron KA, Lapane KL, Allsworth JE. The use of Gram Software to 

improve patient safety in nursing facilities. Consult Pharm. 2004;19(5):398-413. 

161. Fink HA, Wyman JF, Hanlon JT. Falls. In: Tallis RC, Fillit HM, eds. Brocklehurst's 

Textbook of Geriatric Medicine and Gerontology. New York, New York: Churchill 

Livingstone; 2003:1337--1346. 

162. Kotylar M, Gray SL, Lindblad CI, Hanlon JT. Psychiatric manifestations of medications 

in the elderly. In: Malletta GJ, Agronin ME, eds. Principles and Practices of Geriatric 

Psychiatry. Philadelphia: Lippincott Williams & Wilkins; 2005:800. 

163. Asch DA, Jedrziewski MK, Christakis NA. Response rates to mail surveys published in 

medical journals. J Clin Epidemiol. Oct 1997;50(10):1129-1136. 

164. Saliba D, Schnelle JF. Indicators of the quality of nursing home residential care. J Am 

Geriatr Soc. Aug 2002;50(8):1421-1430. 

165. Resar RK, Rozich JD, Classen D. Methodology and rationale for the measurement of 

harm with trigger tools. Qual Saf Health Care. Dec 2003;12(Suppl 2):ii39-45. 

http://www.cms.hhs.gov/transmittals/downloads/R22SOMA.pdf�


 

 104 

166. Rozich JD, Haraden CR, Resar RK. Adverse drug event trigger tool: a practical 

methodology for measuring medication related harm. Qual Saf Health Care. Jun 

2003;12(3):194-200. 

167. Raebel MA, Charles J, Dugan J, Carroll NM, Korner EJ, Brand DW, et al. Randomized 

trial to improve prescribing safety in ambulatory elderly patients. J Am Geriatr Soc. Jul 

2007;55(7):977-985. 

168. Yount R, Vries JK, Council C. The Medical Archival System: Information retrieval 

system based on distributed parallel processing. Inf Proc Manag. 1991;27(4). 

169. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for 

estimating the probability of adverse drug reactions. Clin Pharmacol Ther. Aug 

1981;30(2):239-245. 

170. Forrey RA, Pedersen CA, Schneider PJ. Interrater agreement with a standard scheme for 

classifying medication errors. Am J Health Syst Pharm. 2007;64(2):175-181. 

 

 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	1.0  INTRODUCTION
	1.1 MEDICATION USE IN NURSING HOMES
	1.2 MEDICATION-RELATED PROBLEMS IN NURSING HOMES
	1.3 PUBLIC HEALTH SIGNIFICANCE AND IMPACT OF ADVERSE DRUG EVENTS IN NURSING HOMES
	1.4 EPIDEMIOLOGY OF ADVERSE DRUG EVENTS IN NURSING HOMES
	1.5 SYSTEMS ANALYSIS OF ADVERSE DRUG EVENTS IN NURSING HOMES
	1.6 LIMITATIONS OF CURRENT METHODS FOR DETECTING ADVERSE DRUG EVENTS
	1.7 ACTIVE MEDICATION MONITORING SYSTEMS FOR DETECTING ADVERSE DRUG EVENTS ARE RECOMMENDED
	1.8 ACTIVE MEDICATION MONITORING SYSTEMS ARE OPTIMAL FOR DETECTING ADVERSE DRUGE EVENTS
	1.9 BARRIERS TO USING ACTIVE MEDICATION MONITORING SYSTEMS IN NURSING HOMES
	1.10 SUMMARY AND OBJECTIVE OF DISSERTATION
	1.11 CONTRIBUTION OF DISSERTATION
	1.12 ORGANIZATION OF DISSERTATION

	2.0  A SYSTEMATIC REVIEW OF THE PERFORMANCE CHARACTERISTICS OF CLINICAL EVENT MONITOR SIGNALS USED TO DETECT ADVERSE DRUG EVENTS IN THE HOSPITAL SETTING
	2.1 ABSTRACT
	2.1.1 Objective
	2.1.2 Design
	2.1.3 Measurements
	2.1.4 Results
	2.1.5 Conclusion

	2.2 INTRODUCTION
	2.3 METHODS
	2.3.1 Study Identification and Eligibility
	2.3.2 Information Sources and Search Strategy
	2.3.3 Study Selection, Data Extraction and Review Criteria
	2.3.4 Quantitative Data Synthesis and Statistical Analysis

	2.4 RESULTS
	2.5 DISCUSSION
	2.5.1 Limitations and Strengths
	2.5.2 Implications
	2.5.3 Recommendations for Future Work

	2.6 CONCLUSIONS

	3.0  CONSENSUS LIST OF SIGNALS TO DETECT POTENTIAL ADVERSE DRUG REACTIONS IN NURSING HOMES
	3.1 ABSTRACT
	3.1.1 OBJECTIVES
	3.1.2 DESIGN AND SETTING
	3.1.3 PARTICIPANTS
	3.1.4 MEASUREMENTS
	3.1.5 RESULTS
	3.1.6 CONCLUSION

	3.2 INTRODUCTION
	3.3 METHODS
	3.3.1 Literature Review and Identification of Initial Set of Signals
	3.3.2 Selection of Study Methodology and Participants
	3.3.3 Administration and Analysis of the Survey

	3.4 RESULTS
	3.4.1 Round 1
	3.4.2 Round 2

	3.5 DISCUSSION
	3.5.1 Strengths and Limitations
	3.5.2 Implications and Further Research

	3.6 CONCLUSION

	4.0  ASSESSING THE PERFORMANCE CHARACTERISTICS OF SIGNALS USED BY A CLINICAL EVENT MONITOR TO DETECT ADVERSE DRUG REACTIONS IN THE NURSING HOME
	4.1 ABSTRACT
	4.1.1 Objective
	4.1.2 Design
	4.1.3 Measurement/Methods
	4.1.4 Results
	4.1.5 Conclusion

	4.2 INTRODUCTION
	4.3 METHODS
	4.3.1 Setting and Subjects 
	4.3.2 Source of Patient Data
	4.3.3 Clinical Event Monitor Description
	4.3.4 Signals Used by the Clinical Event Monitor
	4.3.5 Knowledge Engineering/Development
	4.3.6 Clinician Notification
	4.3.7 Adverse Drug Reaction Assessments
	4.3.8 Calculation of Performance Characteristics

	4.4 RESULTS
	4.5 DISCUSSION
	4.5.1 Implications
	4.5.2 Future Direction

	4.6 CONCLUSION

	5.0  SUMMARY OF STUDY FINDINGS
	5.1 SIGNIFICANCE OF STUDY FINDINGS
	5.2 FUTURE RESEARCH DIRECTION AND IMPLICATIONS

	APPENDIX A 
	APPENDIX B
	BIBLIOGRAPHY

