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ABSTRACT 
 
 

DESIGN AND FABRICATION OF AN ELBOW MOTION SIMULATOR 
 

Joshua P. Magnusen, MS 
 

University of Pittsburgh, 2004 
 

 
Uncertainty and a lack of knowledge regarding restoration of proper function following an elbow 

injury create a need for expanding the understanding of elbow operation.  An elbow motion 

simulator that is capable of producing motion in a cadaver forearm is designed and developed.  

This device will advance the capabilities of similar preceding elbow simulators by physically 

simulating the full range of motion and force-loading conditions in the elbow.  Electric cylinders 

are used to simulate the muscles.  The five muscles that are modeled are the biceps, brachialis, 

triceps, brachioradialis, and pronator teres.  A braided cable attached to the cylinders inserts on 

the arm at each muscle’s tendonous insertion.  Custom-designed pulley systems are developed 

for the muscles to maintain an accurate line of action within the cable by preserving a 

physiological moment arm about the joint of rotation.    The arm specimen is secured by means 

of a humeral clamp that holds the humeral shaft secure during experimentation.  The device can 

be rotated to test in either a varus or a valgus orientation.  Preliminary testing with a wooden arm 

model is performed to verify the simulator’s capabilities. 
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1.0 INTRODUCTION 
 
 
 
 

1.1 MOTIVATION 
 
 
Injuries of the elbow can be attributed to any number of causes, such as trauma, overuse, and 

sports injuries, and can require a person to miss work, often restricting his or her ability to 

perform basic functions.  Elbow fractures, usually a result of trauma or an athletic injury, will 

sometimes merit an elbow replacement.  In adults, fractures of the radial head, typically caused 

by a fall onto the outstretched hand, represent 5% of all fractures, and approximately 33% of all 

elbow fractures [1, 2].  Effective restoration of a fractured radial head has proven quite difficult.  

Among the options are internal fixation, excision, or excision and replacement of the radial head.  

Which of these methods lends the best results is still very much in question.   

When valgus loads are applied to an elbow, the medial collateral ligament (MCL) is the 

primary provision of stability in the arm, and the radial head is secondary [3, 4].  Activities such 

as pitching in baseball can cause serious injuries to the MCL, at which point the role of the radial 

head becomes more essential in elbow stability.  Additionally, the radial head aids in both 

providing an anterior support for the humerus and in preventing the radius from migrating 

proximally with respect to the ulna [5, 6, 7, 8, 9].  Fractures of the radial head may decrease the 

stability of the radiocapitellar joint, resulting in radiocapitellar subluxation, which could lead to 

painful clicking and secondary osteoarthritis [10].   
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The radial head’s biomechanical significance is clear, and it follows thusly that the 

importance of an expeditious and effective treatment of its fracture is a major concern.  There 

has been a great deal of debate over which technique for treating radial head injuries produces 

the most optimal results.  Typically, displaced radial head fractures are reduced and internally 

stabilized, but it has been shown that this method of treatment can result in less than satisfactory 

outcomes.  Excision of the radial head has been a means of treating a comminuted fracture, but 

patients have complained of an unstable elbow and chronic wrist pain [9, 11].  Several radial 

head prostheses have been developed in an order to restore active elbow motion to severely 

fractured radial heads.  Radial head replacement is also called for when there is a comminuted 

fracture of the radial head, especially when the elbow has undergone a complex injury [12].  

However, the recipients often report complications after they receive the replacement [12].   

The forearm is vital to the everyday functionality of humans, from carrying heavy objects 

to simply taking a drink of water, and the loss of its use would seriously debilitate an individual.  

Past studies have focused on the identifying the geometrical properties of the elbow-forearm 

complex, and have laid the groundwork for understanding the basis of forearm movement [7, 13, 

14].   

Accurate modeling of the muscle forces in the arm is a complex one.  The bones of the 

forearm, the radius and ulna, are connected to the upper arm, the humerus, by a series of 

ligaments and muscles.  A simple, but realistic model of the arm should implement five of the 

eight muscles crossing the elbow joint, that is, the Biceps brachii, Brachialis, Brachioradialis, 

Triceps, and Pronator teres.  The Ancenous, Supinor, and Pronator quadratus will be neglected 

because of their redundancy and the ability to create physiological motion with the 

aforementioned five [15].  Muscles can play two roles: agonist and antagonist.  Agonists are the 
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prime movers of the joint, providing the force that causes the actuation, while antagonists work 

against the agonists to smooth the motion [16, 17].  Both the agonist and antagonist are equally 

important during joint movement. 

The elbow itself is a complex, remarkable joint.  The joint has the ability to act as both a 

hinge joint as well as a revolute joint.  There are two degrees of freedom in the forearm, those 

being the motions of flexion-extension and pronation-supination.  During flexion-extension, the 

axis of rotation passes through the center of the radial head proximally to the center of the ulna 

distally and the forearm is able to rotate about it, similar to a hinge.  Flexion-extension is shown 

in Figure 1. 

 
 

 

Figure 1: Forearm flexion-extension [18]

 

During pronation-supination the axis of rotation is about the distal radioulnar joint and the 

forearm rotating similarly to a revolute joint [19].  An image of a pronated and supinated arm is 

shown below in Figure 2.   
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Figure 2: Forearm pronation-supination [ ] 18

 
 

Table 1 shows each muscle and their roles in flexion-extension and pronation-supination.  

Several muscles are active during a given motion of the arm, making these forces somewhat 

redundant. 

 

Table 1: Primary elbow muscles and their roles in motions 

 

Muscle Flexion Extension Pronation Supination 

Biceps Brachii Agonist Antagonist Antagonist Agonist 

Brachialis Agonist Antagonist Not active Not active 

Brachioradialis Agonist Antagonist Antagonist Agonist 

Pronator Teres Not active Not active Agonist Antagonist 

Triceps Antagonist Agonist Not active Not active 
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In a healthy elbow, the axis of rotation during flexion-extension is believed to be fixed and 

constant, and the axis of rotation during pronation-supination has been measured to deviate by a 

maximum of 1.5 millimeters [19, 20].  These metrics are examples of parameters that can be 

used to evaluate prosthetic elbow implants and compare against current surgical practices.   

 
 
 

1.2 BRIEF OVERVIEW OF JOINT SIMULATORS 
 
 
In an effort to effectively test the various surgical techniques and prosthesis designs used to treat 

a radial head fracture, a device capable of simulating physiological motion of the elbow under 

“real” loading conditions is needed.  Currently, there are two methods of joint control.  They are 

manually and automatically-controlled, with the automatic-control consisting of either open or 

closed-loop.   

 

Only one report of an automatically controlled elbow simulator exists in the open 

literature.  It is an elbow simulator at the University of Western Ontario, in London, Canada, that 

employs open-loop control of the muscle forces to actuate an arm [20].  This simulator allows 

the tendons to be controlled through independent loads, applied directly to the tendons of the 

forearm [21].  Despite the physiologic considerations, it has its shortcomings, including the lack 

of antagonistic muscle control and achieving the desired arm motions that can require several 

iterations [21].  This method of force control has also been shown to lack the ability to achieve 

accurate positioning [21].  Regardless, this represents the most advanced elbow simulator 

reported.  An improved simulator for wrist joints exists at the University of Syracuse; a closed-

loop simulator that implements proportional-integral-derivative (PID) control to provide force 
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control through the antagonist muscles and position control through the agonists [22].  The 

marriage of force and position control in this system seems to be the most effective method for a 

control system of the upper extremity. 

 
 
 

1.3 CONTRIBUTIONS OF THIS WORK 
 
 
This work is concerned with developing an advanced motion simulator for the elbow joint.  The 

need for improving the method of restoration of proper elbow function following radial head 

fracture is clear, and in order to do so, a test-bed for both prosthesis design and surgical 

techniques is required.  The proposed system combines various methodologies utilized in 

previous studies and actuators [21, 22] and creates a method for manipulating the elbow in a 

“real” manner through flexion-extension and pronation-supination by controlling the five major 

muscles across the elbow joint.  There is also an opportunity for expansion of this simulator’s 

capabilities by investigating algorithm development for the implementation of neuromuscular 

control. 
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2.0 JOINT SIMULATORS 
 
 
 
 
There are several existing systems that are capable of simulating motion in various joints.  These 

various simulators and their methods of operation will be reviewed, along with their limitations. 

 
 
 

2.1 OVERVIEW 
 
 
To date, joint simulation has been achieved in joints such as the knee, elbow, wrist, and shoulder.  

Existing simulators employ several methods of joint control.  One method is basically passive 

control of the specimen, and it consists of the operators manually placing the joint at various 

orientations, while measuring the variables of interest [4, 23, 24].  Another type manually 

actuates the specimen through applied external forces [25, 26].  In these studies, the objective 

was to duplicate loads at various joint positions rather than move the joint throughout a large 

range of motion.  Knee simulators exist that apply known forces to bones to study the effects on 

the joint [25, 26].  Other simulators apply forces to the tendons rather than the bones to maintain 

a position and examined the joint under those conditions [27, 28].  A final method uses external 

force control to automatically actuate the limb by applying forces directly to the tendons, 

allowing for study of continuous motion of the joint [21, 22, 29].  Each technique has its 

shortcomings.  In the manual method, the loading of the joint is not based on physiologic data, 

and therefore can be subject to question.  Furthermore, measurements can only be acquired at 

discrete times, restricting the data.  Externally controlled operation, although more meaningful, 
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also has its limitations.  Force control without position control hinders a simulator’s ability to 

reach a desired position.  One report combines force and position control in a wrist joint 

simulator and currently, there are no elbow simulators that operate under these guidelines [22]. 

The vast majority of simulators are based on open loop control and include shoulder 

simulators that apply constant loads to the muscles of the shoulder and utilize motion controlled 

devices that attach to the bone to measure joint motion [30, 31].  There are also elbow simulators 

that employ similar methods [32, 33].   

There are also existing joint simulators that control the forces applied to the specimen 

through a known time-history [34, 35].  A knee simulator at Vanderbilt University uses motion-

controlled motors to simulate knee flexion, using a load-controlled motor to apply the 

compressive force.  Loads are applied directly to the bone using a desired force time history [34].  

Similarly, another knee simulator uses knee flexion time histories at McGill University in 

Montreal to model walking.  Stepper motors are connected directly to the tendons, and 

displacement is controlled [35].  While a viable method for knee simulators, the use of time 

histories is not yet possible in the upper limb since an accurate time history has not yet been 

determined.  There is, at least, a report of an elbow simulator discussed in the next section whose 

concepts of design and operation can be leveraged in this effort. 

 
 
 

2.2 UNIVERSITY OF WESTERN ONTARIO ELBOW SIMULATOR 
 
 
The most advanced device used for elbow testing found in the open literature was designed and 

developed at the University of Western Ontario [21].  Cadaver elbows are controlled in the 

vertical, varus, or valgus orientations.  The simulator utilizes pneumatic actuators to 
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simultaneously apply quasistatic loads to five tendons to create motion.  The muscles of interest 

represented by these actuators were the biceps, brachialis, brachioradialis, triceps, and the 

pronator teres.   

The simulator is designed in an effort to reproduce physiologic motion.  A cadaver arm is 

securely clamped to the apparatus so as to stabilize the specimen.  Cables that attach to each 

tendon are strategically positioned in order to reproduce each muscle’s physiological line of 

action.  The biceps, brachialis, and triceps were modeled by passing their cables through a set of 

pulleys and to their respective tendons.  The cables corresponding to the brachioradialis and 

pronator teres are routed through pulleys and then through delrin sleeves implanted in the 

humerus before attaching to the tendons. 

 In order to calculate the ratio of each muscle’s load, a combination of each muscle’s 

cross-sectional area (CSA) and electromyographic (EMG) data was used.  Relative loading in 

each actuator was then determined based on these ratios.  The achieved motion pathways of the 

elbow reported are as repeatable as those obtained using a load-controlled simulator. 

 The motion of the radius and ulna relative to the humerus is monitored using an 

electromagnetic tracking device.  However, since the system is open-loop, the response is not 

predictable, and several iterations are often required to produce the desired motions.  Varying 

specimen characteristics affect the response in each case, requiring different load levels to 

produce the same motion.  Questions arise concerning the validity of predicting forces based on 

EMG and CSA data, since the study’s investigators questioned this technique due to the lack of 

verification of the EMG – force relationship [21].  Also, the activation of the muscles from this 

simulator differs from other published data [36, 37, 38].   
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 Many aspects of the Ontario elbow simulator translate to the proposed elbow simulator.  

For example, similarities arise in the selection of muscles, clamping the specimen, and multi-

functional capabilities of the frame [21].  While its methods of control are not used, improved 

control strategies will be incorporated from a wrist simulator outlined in the next section. 

 
 
 

2.3 SYRACUSE UNIVERSITY WRIST SIMULATOR 
 
 
The only closed-loop, upper-extremity joint simulator found in the open literature is a dynamic 

wrist simulator at Syracuse University [22].  The purpose of the machine was to be able to move 

a cadaver wrist through various planar and non-planar motions.  Hydraulic actuators manipulate 

the wrist to achieve targeted movements.  Six major tendons of the wrist are controlled to 

simulate planar flexion-extension motions, planar radial-ulnar deviation motions, and combined 

motions.  Loads are applied as high as 267 N (60 lbs) to each tendon and produce motions of at 

least ±30º.  The cable positions are adjustable so that they are as close as possible to the 

anatomical locations of the tendons.  Antagonist muscles that resist the desired motion are 

included in the simulator, serving to prevent slack in the muscles that are not being contracted, 

allowing the limb to respond smoothly and quickly to muscle contractions.   

  The control algorithm operates via a hybrid position and force feedback using 

Proportional-Integral-Derivative (PID) control.  Agonists, or the prime movers, are controlled 

through position feedback while antagonist muscles are excited with a constant force.  Although 

the antagonist force is expected to vary during motion, no information on how it varies is 

available.  A force transducer is connected in series with the hydraulic cylinders and the tendon 

clamps to provide the force feedback signal.  The transducer is constructed from a four-leg strain 
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gage Wheatstone bridge fastened to a thin piece of aluminum, and it provides the force feedback 

signal to the control algorithm.  A three-degree of freedom electrogoniometer measures flexion-

extension and radial-ulnar deviation.  The electrogoniometer records the motion and an A/D 

board processes the forces from the transducer, and the cylinder forces are then adjusted 

accordingly, thus closing the loop and allowing for control [22].   

 The dynamic wrist simulator has been successful in actively moving cadaver forearms to 

determine the forces in the wrist tendons during ‘physiologic motion.’  Its innovative method of 

design and control provides a valuable precedent for future simulators, including the one 

described in this work.   

 
 
 

2.4 PROPOSED SIMULATOR 
 
 
While each of the previously mentioned simulators are well-designed and have been shown to 

accomplish their intended tasks, components of each can be extracted to construct the more 

advanced simulator that is proposed in this thesis.  Design features from the simulator at the 

University of Western Ontario, such as the method of securing the specimen, the custom-

designed pulley system, the frame’s ability to rotate for varus/valgus testing, and muscles used to 

manipulate the arm will be incorporated [21].  Also, the control algorithms used in the wrist 

simulator at Syracuse University that operate using a combination of force and position feedback 

will be implemented in the proposed simulator to achieve optimal control [22].  The simulator 

will allow the arm specimen to achieve full range of motion in both flexion-extension and 

pronation-supination, as well as allow for testing the specimen in varus/valgus orientations.   
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3.0 SURVEY OF PHYSIOLOGIC KINEMATIC DATA 
 
 
 
 
A critical requirement of any joint motion simulator is that the system is arranged in a manner as 

close to physiological as possible.  The specimen must be able to move unhindered in the desired 

planes of motion within the range of interest.  Several experiments have been published that 

measure variables of interest within the arm such as moment arms and change in various angles 

with respect to joint motion. 

 
 
 

3.1 MOMENT ARMS 
 
 
Moment arms about the rotating joint of each muscle must be reproduced in a mechanical device 

attempting to reconstruct physiological joint motion [15, 39, 40, 41, 42].  In order to calculate the 

proper placement of the self-designed pulley systems, published experiments were surveyed for 

applicable kinematic information.   

Moment arm data from several sources is shown below in Figures 3, 4, 5, 6, and 7 with 

the muscles of interest being the biceps, the brachialis, the triceps, the brachioradialis, and the 

pronator teres [15, 39, 40, 41, 42].  One study investigated the moment arms of ten specimens 

and reported moment arm data for each [42].  Moment arms within this range were assumed to 

be acceptable considering each plot of the moment arms versus flexion angle chiefly followed 

the same trend for each individual muscle.  As seen from the figures, there is a great deal of 

discrepancy in the literature between the moment arm data for each muscle from study to study.  
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Determination of the relevance of each study is important when analyzing the data.  It is worth 

noting that the data from Pigeon et al is a based on a computer model of the forearm, not an 

actual arm specimen [43]. 
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Figure 3: Biceps moment arms 
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Figure 4: Brachialis moment arms 
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Figure 5: Triceps moment arms 
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Figure 6: Brachioradialis moment arms 
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Figure 7: Pronator teres moment arms 

 
 
Discrepancies such as these are expected considering the variation of test subjects.  Factors such 

as age, sex, body type, and even whether the specimen is a right or a left hand can affect the 

results of these experiments.  As such, since there can be no guaranteed “correct” moment arm 

for any muscle, it becomes more important to create a line of action with each cable that is 

within the established range of acceptable results. 

 
 
 

3.2 RELEVANT ANGLES 
 
 
Another significant factor in designing the pulley system is the angular change in each muscle’s 

line of action as the arm moves.  A cable running through a pulley needs to go as straight as 

possible along the axis perpendicular to the pulley’s center axis of rotation to minimize losses in 

the cable due to friction.  Acceptable and unacceptable cable orientations within a pulley are 

shown in Figure 8.   
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Acceptable cable 
alignment 

Unacceptable cable 
alignment  

Figure 8: Pulley cable alignment 

 

Coordinates of each of the five muscles’ origins and insertions are given in Table 2.  The 

coordinates for the origin and insertion points were taken from existing literature [44].  The 

origins are the points of attachment that are fixed during contraction, and the insertions are points 

of attachment to the bone that moves.  The insertions are the points on the arm specimen where 

each cable will attach.  These attachment sites are known as tendonous insertions, because the 

muscle itself does not attach to the bone, but rather to tendons, which are tough bands of fibrous 

tissue that act as connectors between muscle and bone [44]. 
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Table 2: Elbow muscle origins and insertions [44] 

Origin Insertion 

Muscle X (cm) Y (cm) Z (cm) X (cm) Y (cm) Z (cm) 

Brachialis 1.0 -0.6 20.0 0.0 1.2 -33.5 

Biceps 2.5 0.0 1.0 -0.8 -0.2 -36.0 

Triceps -0.8 -1.0 -16.0 -1.5 -2.0 -28.0 

Brachioradialis 0.0 1.5 -27.0 0.0 0.0 -54.5 

Pronator Teres -0.5 3.5 -29.0 0.5 -2.0 -43.5 

 

 

The coordinates in Table 2 are centered about a body-fixed coordinate system with the origin 

fixed at the center of the humeral head.  They were measured in an erect standing position with 

the arm hanging vertically and the forearm fully supinated.  The axis of rotation for flexion-

extension is -30.5 cm along the z-axis in the humeral coordinate system.  This humeral 

coordinate system is shown in Figure 9. 

 

 17



z z

y x

 

Figure 9: Humeral coordinate system [44] 

  
 

The angles are determined by recalculating the insertions of each muscle as the arm rotates, then 

implementing trigonometric relationships between the origin and calculated insertions 

throughout the movement within the plane of interest.  The method for determining the various 

insertion coordinates of the muscles can be found in Appendix D in the MATLAB™ function 

“angles.m.”  Determining these angles will dictate the design of the pulley system.  Small 

angular variations will allow a pulley to be secured at a fixed orientation and still maintain an 
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acceptable line of action within the pulley (see Figure 8).  Large angular variations will require a 

pulley that is capable of rotating with the specimen to prevent friction between the cable and the 

sides of the pulley.   

During flexion-extension, the “upper muscles,” that is, the biceps, brachialis, and triceps 

main angle of interest is that within the lateral plane.  These angles are shown below in Figures 

10, 11, and 12. 

 
 

 

Figure 10: Change in biceps angle through flexion-extension in coronal plane 
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Figure 11: Change in brachialis angle through flexion-extension in coronal plane 

 

 

Figure 12: Change in triceps angle through flexion-extension in coronal plane 
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As shown in the figures, there is very little variation in this angle during flexion-extension for 

each muscle.   The biceps varies about 0.1º, the brachialis about 0.25º, and the triceps about 1.5º, 

none of which are significant.  Therefore, a pulley mounted with a fixed orientation will 

experience little friction and is acceptable for the design. 

 

Special care must be taken during pronation-supination of the forearm because the radius 

rotates about the ulna.  The center of rotation for this motion is taken to be about an oblique line 

from the center of the radial head to where the radius and the ulna meet distally [44].  Figures 13 

and 14 below show the change in the brachioradialis and pronator teres angles during pronation-

supination within the sagittal plane at 90º of flexion.  At 0º of pronation, the forearm is in the 

fully supinated position. 

 

 

Figure 13: Change in brachioradialis angle through pronation-supination 
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Figure 14: Change in pronator teres angle through pronation-supination 

 
 

As seen in the Figures 13 and 14, through 100º of pronation-supination, the brachioradialis varies 

about 9º and the pronator teres about 11º.  The change in angle in these two muscles during 

pronation-supination is substantial enough that they cannot be modeled using a pulley in a fixed 

orientation, but rather requires a pulley system capable of rotating to accommodate this change.   

The requirements for the pulley design have been presented in this chapter; the actual 

design and the fulfillment of these requirements will be discussed later in Chapters 4 and 5. 
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4.0 SIMULATOR DESIGN 
 
 
 
 
The completed elbow simulator is shown in Figure 15.  The testing set-up is comparable to the 

set-up employed in the previously described elbow simulator design [21].  A humeral clamp 

secures the cadaver specimen to the frame.  Five electromechanical actuators are mounted to the 

frame, one actuator corresponding to each of the five major muscles that cross the elbow 

(brachialis, biceps, triceps, brachioradialis, and pronator teres).  The actuators control cables that 

pass through realignment pulleys and attach to the tendons and/or tendonous insertions of the 

forearm.  Pulleys that connect the cable directly to the specimen are referred to as “primary” 

pulleys, while all other pulleys in the system are called “secondary” pulleys.  The custom-

designed pulleys are positioned so that they maintain each muscle’s line of action, as will be 

further discussed in Chapter 5.  The frame in Figure 15 is described in further detail below. 
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Figure 15: Completed elbow simulator 

 
 
 
 

4.1 FRAME DESIGN 
 

 
The frame assembly for the elbow simulator was designed to be able to support all of the 

necessary components of the simulator (actuators, pulley system, humeral clamp).  Ample 

structural integrity provides stability to prevent vibrations that would affect the movement of the 
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cadaver specimen, while capable of rotating ±90º to simulate varus/valgus motion in addition to 

flexion-extension.  The humerus can be fixed horizontally or vertically, where in the latter the 

forearm is able to move through its full range of flexion-extension.  In the horizontal orientation, 

the humerus is fixed parallel to the ground with the medial elbow inferior or superior to test 

varus or valgus motion respectively [45].  The frame is over-designed in both its selection of 

material and its structural strength to provide the desired functionality and stability. 

In order to manipulate the cadaver specimen, pneumatic actuators control a cable that 

pulls a different tendon.  The actuators are manufactured by Exonic Systems (model no. ETB50 

and ETB80) and have up to 200 mm (7.87 in) of stroke length [46].  They are mounted to the 

frame on the end opposite the specimen and are positioned based on their respective muscle’s 

approach to the elbow (see Figure 15).  The brachialis, biceps, and triceps all run parallel to the 

humerus and then into their respective insertions on the forearm, so they are positioned above the 

specimen so the cables can then be re-directed down to the arm in a physiological manner.  

Because these pulleys are mounted to the top level of the frame, they are referred to as “upper-

level pulleys”.  Conversely, the brachioradialis and pronator teres originate near the humeral 

head and then run parallel to the forearm to their insertion points, so these cylinders are mounted 

with their vertical centers parallel to the forearm when it is positioned at 90º of flexion.  These 

pulleys will be referred to as “lower-level pulleys,” because they are mounted to the lower level 

of the frame.  A cable attached to the end of the actuators is aligned through a pulley alignment 

system and then connected to the specimen.  Ample space is provided between the actuators and 

the secondary pulleys so that the actuators are free to move throughout their entire range of 

motion without inadvertent contact between the two.  The cables run through the re-alignment 

pulley system to the specimen, which is held securely by a clamp on its humeral shaft. 

 25



The humeral clamp is mounted to the front side of the frame and is aligned so that the 

centerline of the humeral shaft centered horizontally on the frame, as seen in Figure 15.  The 

cadaver is supported by the clamp in four locations on the exposed section of the humerus.  One 

side of the clamp is fixed in place so that the specimens’ centerlines are kept constant from 

experiment to experiment.  The other side of the clamp can be adjusted in either direction to fit 

the specimen, and the heads of the clamp are free to rotate about a setscrew so that they can stay 

in the appropriate plane throughout adjustment.  The entire clamp is also mounted to threaded 

rods so that it can be adjusted vertically from specimen to specimen.  A schematic of the 

clamping system is shown in Figure 16. 

 

 

Vertical  
Adjustment Nuts

Adjustable 

 

Figure 16: Specimen clamping system 

 
 

Since the frame also needs to have the capability to rotate ±90º, and because of its tendency to 

slide rather than rotate if unrestrained, the bottom of the frame has small cylinders on both the 
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front and rear ends that are constrained to the ground by locking brackets.  These cylinders act as 

guides for rotating the frame.  The brackets can be removed from one side, allowing the frame to 

rotate about the cylinders on the other side for testing in varus or valgus orientations.  This 

rotation guide and locking system is illustrated in Figure 17.   

 

Locking 
Bracket 

Rotation 
Cylinder  

Figure 17: Frame rotation guide 

 
 
Several small locking brackets are placed along the base of the frame to hinder any vibration of 

the system.  These brackets can also be removed to allow the frame to rotate, then can be locked 

again around the new base.   
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4.2 CABLE SYSTEM DESIGN 
 
 
As previously mentioned, preserving the physiological line of action of the muscles is vital to 

ensuring an accurate representation of the elbow’s motion, and this is accomplished via the 

positioning of the pulleys that direct the cable to the desired insertions on the specimen. 

 
4.2.1 “Upper-Level” Pulleys 
 
 
The “upper-level” pulleys are the pulleys that are located on top of the frame and the muscle’s 

line of action runs along the humeral shaft and they are the brachialis and the biceps.  From the 

cylinders, the cables first pass through a set of “secondary” pulleys that are shown in Figure 18. 

 

Tension 
From Spring 

From Actuator To Center Alignment 
Secondary Pulley 

 

Figure 18: “Upper-level” secondary pulley (top face removed) 

 
 

Because the cables must run as straight as possible from the cylinders to the first pulley, the set is 

placed directly in front of the respective cylinder.  When a cable is attached to the cylinder and 
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loaded through the pulley system, it would be impossible to prevent the presence of slack in the 

line, so a tensioning pulley is positioned so that it can be adjusted and then secured to 

compensate for up to two inches of slack in the cable.   

The cable passes through this pulley to the “center-alignment secondary” pulleys, which 

can be seen below in Figure 19.   

 

 

 

To Primary 
Pulley 

Figure 19: “Center-alignment secondary” pulleys 

 

This set of pulleys consists of two pulleys that are at the same height as the previous set of 

secondary pulleys, with one side higher than the other to compensate for the different heights of 

each of the top cylinders.  The entire block can be rotated 180º in the event that the biceps and 

brachialis cylinders are swapped to switch from a right to a left arm specimen.  The cable wraps 

around the pulley and is redirected to the primary pulleys at the front of the frame.  
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The primary pulleys redirect the cable over the front of the frame and to the specimen and 

are shown below in Figure 20.   

From Secondary 
Pulleys 

To Specimen  

Figure 20: “Upper-level” primary pulley 

 

For the two actuators on top of the frame, the biceps and brachialis, this final pulley sticks out 

over the edge of the frame, allowing the cable to run in front of the humeral shaft to each 

insertion point.  This final pulley’s placement for the brachialis will always remain constant, so it 
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is fixed in its position in the center, but the biceps will switch sides, depending on whether the 

specimen is a right or a left arm.  Therefore, there is a primary pulley for the biceps on both sides 

of the center pulley, and only one will be used at a time. 

Although the triceps acts along the length of the humeral shaft and inserts into the 

forearm like the biceps and brachialis, its pulley is positioned more distally than the “upper-

level” pulleys since it inserts behind the elbow. 

 
4.2.2 Triceps Pulleys 
 
 
The cylinder representing the triceps is secured on underside of the cross-member that also 

supports the biceps and brachialis in the horizontal center.  Because it is centered, it only needs 

one set of secondary pulleys to provide tension.  The secondary pulleys are shown in Figure 21. 
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Figure 21: Secondary triceps pulley (front face removed) 

 

The primary pulley design for the triceps is similar to that of the biceps and brachialis, except 

that it is mounted underneath the front cross-member.  The primary triceps pulley is shown in 

Figure 22. 
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Figure 22: Primary triceps pulley 

 
4.2.3 “Lower-Level” Pulleys 
 
 
As previously mentioned, the muscles on the lower level of the frame, the brachioradialis and 

pronator teres are mainly responsible for pronation-supination.  These muscles originate on 

either side of the humeral head and insert on the forearm.  The actuators for the brachioradialis 

and pronator teres are positioned so that their centers are aligned with the secondary pulleys, 

which are very similar to the triceps’ secondary pulleys, but the third pulley is positioned lower 

than the first pulley so it is in line with the first pulley in the primary set.  The secondary pulley 

system for the “lower-level” muscles in shown below in Figure 23. 
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Figure 23: “Lower-level” secondary pulleys (front face removed) 

 

The line of action for these muscles is difficult to model with pulleys for several reasons.  First 

of all, both muscles’ origins are on the humeral head, so in order to accurately represent the 

muscle, the cable would have to be as close as possible to the bone, which is not easily 

accomplished.  Secondly, as the arm is flexed, the line of action changes in two dimensions, so 

the pulley must be designed to accommodate changes in both directions simultaneously.  The 

lower-level pulleys shown below in Figure 24 are capable of doing so. 
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Figure 24: “Lower-level” primary pulleys 

 

The arm that it is attached to the vertical pulleys can rotate about the horizontal pulley as shown 

in the figure to provide a straight line of travel throughout pronation-supination.  Additionally, 

using this horizontal pulley as the center of rotation is important because this allows the cable to 

travel a straight line between pulleys regardless of how much the system has rotated.  After 

passing the first horizontal pulley, the cable then wraps around under one vertically positioned 

pulley and over another, whereby upon exiting this pulley, the cable has the freedom to track any 

angle of flexion-extension.  Also, wrapping the cable around this pulley is what provides the 

radial force on the inner edge of the pulley’s groove that rotates the pulley arm. 

 The springs that were chosen to provide tension in the cable were initially selected 

arbitrarily.  As the testing becomes more dynamic, it will become increasingly evident how stiff 

the spring must be to maintain the cable’s tension and allow the system to operate unhindered. 
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4.2.4 Pulley Selection 
 
 
The pulleys that are used in the custom-designed pulley guides must be capable of withstanding 

the loading conditions during experimentation, must be low-friction to minimize losses in the 

cable, and must be small enough to fit in their designed housings.  The CPS-2038 zinc-plated 

steel pulleys from Sava Industries, Inc. were determined to be a suitable fit.  They are precision-

machined ball bearing pulleys specifically grooved for small cables.  The pulley’s outer diameter 

is 0.500”, can handle cable sizes up to 3/64”, and can withstand a radial load capacity of up to 

160 N at 50 RPM [47].  While higher load pulleys may be required in the future as the loads 

increase, these pulleys will suffice to satisfy the current requirements. 

 
4.2.5 Cable Selection 
 

The cable connection between the electric cylinders and the muscle insertion points is made with 

a high strength fishing line, inspired by the cable selection of the University of Western Ontario 

elbow simulator [21].  The line that is used must be strong enough to withstand the loads it will 

be subjected to during testing of an arm specimen, but must also have a smaller outer diameter 

than the 3/64” the pulleys can accommodate.  The Stren® Super Braid 80 lb. test is made of 

braided Spectra® fiber was chosen for the tests.  The 80 lb. test (~356 N) provides ample 

strength in the initial stages of testing.  While a stronger line may be required in the future as the 

tests become more elaborate, this line meets all preliminary strength requirements.  The Super 

Braid’s outer diameter is rated at 0.020”; less than the maximum diameter of 0.046875” the 

pulleys require [48].   
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4.3 CONTROL SYSTEM 
 
 
In order to control an arm specimen when it is mounted in the completed frame, an advanced 

control system is required.  A five-axis controller is coupled with five electrically driven 

cylinders from Exonic Systems that attach to the tendons and has the ability to achieve flexion-

extension and pronation-supination movements with a given specimen.  Only five of the eight 

axes on the controller are used currently, the remaining three are available for future 

modifications.  The ultimate goal is to automatically control the arm specimen using feedback 

from position and force data, allowing flexion-extension, pronation-supination, or both 

simultaneously in a physiological and meaningful manner.  The complete control system setup is 

shown below in Figure 25.   
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Figure 25: Control system setup 

 

A critical first step in controlling the system is the selection and implementation of the hardware 

required. 
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4.3.1 Hardware 
 

4.3.1.1 Compumotor Hardware The “brain” of the control system is the controller card.  

The ACR8020 controller card from Compumotor is its premier controller for PCI bus operation.  

The card is a Digital Signal Processor (DSP) based, 32-bit floating point controller, with a multi-

tasking operating system that allows up to 24 tasks to be run simultaneously.  It has up to eight 

axes for servo or stepper motors (although only five are required by this application) and comes 

equipped with 64 digital optically isolated input channels.  Coupled with the ACR8020 card is 

Compumotor’s RBD Breakout Module.  This is a general application breakout board and it 

features screw terminals for encoder position feedback for each of the eight axes as well as screw 

terminals for the 64 digital inputs.  All commands to and from the ACR8020 first pass through 

the RBD Breakout Module before they are executed. 

Individual control of each axis is provided by Gemini servo drives/controllers from 

Compumotor.  Each drive is easily configurable using its RS-232 port and its corresponding 

software, Compumotor’s Motion Planner™, enabling it to receive commands from the ACR8020 

card.  The drive is capable of operating under several modes of operation, including torque, 

velocity, step and direction, or clockwise/counter-clockwise, depending on the system’s 

requirements.  However, since the Acroloop card only provides position feedback, it is the 

control mode that is used.  Commands are sent from the drives to the motors, and feedback is 

returned to the drives, allowing for optimal position control of each axis [49]. 

 

4.3.1.2 Secondary Breakout Box Although Compumotor produces all of the aforementioned 

equipment, due to the flexibility the products provide in terms of compatibility with various 

motors, drivers, and controllers, connectors are not provided to make the all of the necessary 
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connections between each component.  Rather, as in the case of the servo drive’s 50 pin I/O 

connection, a single-ended connector cable is provided, leaving the other end open to wire 

accordingly, depending on the desired method of control (torque, velocity, step/direction, etc.).  

Therefore, a secondary breakout box was constructed to provide a casing for the interconnects 

that must be made between the Acroloop card, the encoder feedback channels on the Acroloop 

RBD breakout box, and between the I/O connection port on the servo drives.  This secondary 

breakout box can be seen above in Figure 25, and Figure 26 below shows a typical axis 

connection, in this case, Axis 1.  Detailed connections and their specific functions for this 

breakout box are outlined in Appendix A. 
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Figure 26: Axis 1 connections in secondary breakout box 

 

With the various instruments set up to operate together, a control programming language is 

required that is not only powerful enough to process the incoming data and transmit the 

necessary commands to the rest of the system, but also basic enough to allow for simplified 

programming and debugging. 

 
4.3.2 Software 
 

The Acroloop motion control system is programmed using Compumotor’s program language, 

Acroview, which simplifies programming, debugging, and executing an application [49].  The 

“Setup Wizard” feature guides the user through the setup and configuration of the controller and 

other hardware.  The program and ladder editors allow basic motion command execution, as well 

as developing I/O application code. 
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The versatility and capabilities of the control system creates a framework for expansion 

of the simulator.  However, the design of the simulator must satisfy the criteria discussed in 

Chapter 3.  Ultimately, the hardware and software will be used to create a combination force and 

position feedback control system that would close the loop and automatically control a specimen.   
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5.0 FULFILLING KINEMATIC REQUIREMENTS 
 
 
 
 

Chapter 3 presents the requirements for moment arms and angles when simulating muscles and 

accurately recreating their lines of action; this chapter discusses how those requirements are met. 

 
 
 

5.1 SIMULATOR MOMENT ARMS 
 
 
In a real arm, the muscle attachment sites to the fixed portion of the specimen are referred to as 

origins.  The aim in designing the pulley system in this simulator was not to reproduce the exact 

muscle origins as found in the literature.  Therefore, the leading edge of the each pulley will 

represent that muscle’s “virtual origin.”  These virtual origins are then converted to the same 

coordinate system used for the points in Table 2.  While they are quite different that the actual 

muscle origins in the published literature, they serve a functional purpose in recreating the line of 

action within each muscle.  The insertions are taken from Table 2, and the virtual muscular 

origins in the humeral coordinate system are shown below in Table 3.  The number in 

parentheses represents the adjustable range of each origin.  Three orthographic views with 

dimensions for each of the pulleys, representing the virtual origins, are provided in Appendix B 

as Figures 37, 38, and 39. 

 

 43



Table 3: Virtual muscle origins in the elbow simulator 

Muscle X (cm) Y (cm) Z (cm) 

Biceps 5.9 (-2.5) ±0.8 31.4 

Brachialis 5.5 (-2.5) 0.0 33.3 

Triceps -3.0 0.0 25.1 

Pronator Teres 2.7 5.0 (±2.5) 2.5 

Brachioradialis 2.7 -5.0 (±2.5) 2.5 

 

 

A flowchart illustrating the moment arm calculations is shown in Figure 40 in Appendix C.  The 

MATLAB™ program “moments.m” in Appendix E calculates the moment arms for each muscle 

during flexion-extension from 0° to 140°, using the functions “rot.m” in Appendix D and 

“perp.m” in Appendix E.  The results for each muscle are shown below in Figures 27, 28, 29, 30, 

and 31 along with the highest and lowest moment arms from the literature for each muscle, and 

the averages of each data set.  The average standard deviation is also shown on each plot. 
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Figure 27: Biceps moment arm results 
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Figure 28: Brachialis moment arm results 
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Figure 29: Triceps moment arm results 
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Figure 30: Brachioradialis moment arm results 
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Figure 31: Pronator teres moment arm results 
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The pulleys for the biceps, brachialis, pronator teres, and brachioradialis are adjustable, so their 

respective moment arms will change as the pulleys are moved throughout their range of 

adjustment.  Each muscle’s range of moment arms are shown below in Figures 32, 33, 34, and 

35. 

 

 

 

Figure 32: Range of biceps’ moment arms 
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Figure 33: Range of brachialis’ moment arms 

 

 

Figure 34: Range of pronator teres’ moment arms 
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Figure 35: Range of brachioradialis’ moment arms 

 

The moment arms are chiefly in concurrence with the published moment arm data for these five 

muscles [15, 39, 40, 41, 42].  As seen in the figures, each muscle’s moment arm follows the 

same trend as the published data and falls within the range of established results.  Slight 

discrepancy is noted for the biceps above 130°, but the error is at the end of the flexion-extension 

range and is acceptable.  Although the insertion points will vary from specimen to specimen due 

to several criteria, which is to be expected, the virtual origins are positioned such that the 

moment arms that are reproduced will be suitable for testing. 

 The moment arms for the biceps and pronator teres during pronation-supination are also 

of interest, but due to the lack of any published data, there is no precedent by which to verify 

them.  When this data appears in literature, calculations will be made to ensure these moment 

arms are also acceptable. 
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The cable system has been shown to meet its physiological requirements as prescribed 

through testing in the open literature; its functionality must be verified using a test specimen 

before it can be tested on an arm cadaver.  

 
 
 

5.2 OPERATION VERIFICATION 
 
 
Due to variability, uncertainty, and the frequency of unforeseen occurrences during preliminary 

experimentation, verification of the system is first performed on a wooden arm model that is 

representative of an actual arm specimen.  The model is shown below in Figure 36. 
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Figure 36: Mock wooden arm for testing 

 

It is essential that the arm model maintain the important characteristics of an actual arm for 

testing purposes.  Among these characteristics are functionality (flexion-extension, pronation-

supination), size (length, diameter) of the bones, location of the elbow joint with respect to the 

humerus, ulna, and radius, the path of the active muscles, and the moment arms of those muscles.   

To achieve the arm’s two degrees of movement, the wooden model uses a construction 

similar to anatomical human skeletal models for teaching purposes.  A simple pin joint inserted 

through the ulna and the humerus proximally allows for the flexion-extension motion, and it is 

capable of achieving the full range of motion native to real arms.  For the pronation-supination 

motion, a pin joint inserts into the radial head along the shaft of the radius.  A small bracket 
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attached to the distal end of the radius rotates about a pin at the distal end of the ulna, allowing 

for pronation-supination while securing the two together.  Eyehooks were inserted as close to the 

published insertions as possible.  The cables were attached to the cylinders, wound through the 

pulley systems, and then tied to the eyehooks on the arm. 

Open loop control was used to manipulate the arm.  Muscles were displaced through 

known distances to achieve flexion-extension, pronation-supination, and both motions at the 

same time.  While this method of control is crude and relatively simple, it is successful in 

moving the wooden arm and verifying the operation of the simulator.  Based on the literature and 

the results of the cable system design, the integrity of each muscle’s line of action is preserved 

and proves to be fully functional for testing. 

Although not implemented into testing, Appendix F illustrates a program that moves two 

actuators at different amplitudes and directions of a sine wave of the same period. 
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6.0 CONCLUSIONS AND FUTURE WORK 
 
 
 
 

6.1 SUMMARY 
 
 
A device has been designed and fabricated that is capable of manipulating a cadaver arm 

specimen in a meaningful and physiological manner throughout its full range of motion.  This 

elbow motion simulator utilizes electromechanical actuators to simulate muscle action within the 

arm.  Custom-designed pulley guides align the cable system to establish a correct positioning for 

the origins of each muscle and maintain them throughout the travel of the arm.  The insertion 

points were determined by surveying the body of literature for the forearm muscle groups.  A 

humeral clamp secures the specimen via the humeral shaft to maintain an accurate position.  

Rudimentary open-loop testing using a mock forearm constructed from wood demonstrated that 

the test frame performs as expected.  Following this work, a closed-loop control algorithm needs 

to be developed with a combination of position and force feedback.  The algorithm will be 

implemented and tested on a wooden arm model first, and then on a real arm specimen.  The 

creation of this simulator and the further development of the control algorithms will allow 

investigation into a range of studies involving the arm. 
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6.2 ELBOW FUNCTION 
 
 
In-vitro studies of the elbow joint will be performed to augment knowledge of the elbow.  There 

are many questions regarding the kinematics of the normal and pathological elbow.  Limitations 

in the study of elbow motion have been experienced by previous researchers, but can be 

overcome by this elbow simulator.  The effects of varying radial head orientation and placement 

will be studied in a radial head replacement and compared to forearm kinematics in a normal 

arm, an area that has not been addressed in the literature. 

 
 
 

6.3 DYNAMIC STUDIES 
 
 

The simulator can be used to study ligament reconstruction and dynamic elbow movement.  

While static tests have been previously conducted, no work has moved the arm physiologically.  

This simulator will simultaneously flex/extend and pronate-supinate the arm at speeds as fast as 

300°/sec.  This speed will be able to reproduce a flexion-extension motion in about the same 

amount of time as that of an average adult.  Concurrent movements will be studied at physiologic 

speeds.  Additionally, the simulator will move the forearm with a 7-kg weight attached to the 

hand, flexing completely in about 5 seconds.  Elbow replacement design must consider complex 

movements and large load capacity.  This simulator will test the replacements under 

physiological loading conditions, moved at physiological speeds. 
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6.4 NEURAL CONTROL STUDIES 
 
 
Several theories exist on the neural process used for motor control, such as sum of the squares of 

neural activations or the weighted sum of a function of muscle forces [50, 51].  These theories 

are based solely on computer models of the forearm.  This simulator can validate neuromuscular 

control theories rather than focus solely on model validation.  Robotic arms attached to 

humanoid robots have been stabilized using simple neural circuits [52].  These devices can now 

be examined under the dynamics and non-linearities of the human system. 
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APPENDIX A: HARDWARE CONNECTION DETAILS 
 
 

Table 4: DB37 to Acroloop card connections 

5 

4 

3 

2 

1 

Axis Connector Pin No. DB 37 Cable Wire ColorFunction 

24 Black/Blue -10V CMD 

5 White/Red +10V CMD 

23 White/Blue -10V CMD 

4 Red +10V CMD 

22 Blue -10V CMD 

3 Black/Brown +10V CMD 

21 Black/Teal -10V CMD 

2 White/Brown +10V CMD 

20 White/Teal -10V CMD 

1 Brown +10V CMD 
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APPENDIX B: DIMENSIONS OF PULLEY POSITIONS 
 
 

All dimensions are in centimeters 
 

66.0 

33.0 

32.2 32.2 

 

33.0 

66.0

28±2.5  28±2.5 

Figure 37: Frame front view 
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33.3 

31.4 

25.1 

2.5 

 
 

Figure 38: Frame right view 
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4.3±1.3 
2.7 4.7±1.3 

 
Figure 39: Frame top view 
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APPENDIX C: FLOWCHART FOR MOMENT ARM CALCULATION 
 
 
 

 

 

Calculate new coordinates of 
insertions after flexing through 

specified angle 

Angle of 
flexion-

extension 

Input muscle 
origins 

Output 
moment arms 

Calculate perpendicular 
distance between the line from 
the origin to the insertions and 

the center of the axis of 
rotation

Input muscle 
insertions

Figure 40: Moment arm calculation flowchart 
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APPENDIX D: MATLAB™ CODE FOR ANGULAR DATA 
 
 
 
%angles.m 
%Calculate change in angles for forearm muscles during motion 
 
%Muscle origins and insertions [44] 
 
%Biceps origins 
bi_o = [2.5, 0, 1.0]; bi_i = [-0.8, -0.2, -36.0]; 
%Brachialis origins 
br_o = [1.0, -0.6, 20]; br_i = [0, 1.2, -33.5]; 
%Triceps origins 
tr_o = [-0.8, -1, -16]; tr_i = [-1.5, -2, -28]; 
%Brachioradialis origins 
bd_o = [0, -1.5, -27]; bd_i = [0, -3, -54.5]; 
%Pronator teres origins 
pt_o = [-.5, 3.5, -29]; pt_i = [.5, -2, -43.5]; 
 
%Vector with angles from 0 to 140 deg. in multiples of 5 
angle = linspace(0, 140, 29); 
 
%calculate angles for flexion-extension 
for i = 1:29 
    %run 'rot.m' function 
    bi_i_new = rot(bi_i, angle(i));  
    br_i_new = rot(br_i, angle(i)); 
    tr_i_new = rot(tr_i, angle(i)); 
     
    %Calculate angle from muscle origin and array of insertions 
    bi_angle(i,:) = atan((bi_o(2) - bi_i_new(2))/(bi_o(3) –  
    bi_i_new(3))); 
    br_angle(i,:) = atan((br_o(2) - br_i_new(2))/(br_o(3) –  
    br_i_new(3))); 
    tr_angle(i,:) = atan((tr_o(2) - tr_i_new(2))/(tr_o(3) –  
    tr_i_new(3))); 
     
end 
 
%calculate angles for pronation-supination 
angle_ps = linspace(0, -100, 21); 
 
%Move insertions to 90 deg flexed position 
bd_i = rot(bd_i, 90); 
pt_i = rot(pt_i, 90); 
 
for i = 1:21 
    %run 'rot_ps.m' function 
    bd_i_new = rot_ps(bd_i, angle_ps(i)); 
    pt_i_new = rot_ps(pt_i, angle_ps(i)); 
 
    %calculate angle from muscle angle and array of  insertions 
    bd_angle(i,:) = atan((bd_o(2) - bd_i_new(2))/(bd_o(1) –  
    bd_i_new(1))); 
    pt_angle(i,:) = atan((pt_o(2) - pt_i_new(2))/(pt_o(1) - 
    pt_i_new(1))); 
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end 
     
%convert radians to degrees 
bi_angle = bi_angle * 180/pi; 
br_angle = br_angle * 180/pi;  
tr_angle = tr_angle * 180/pi; 
bd_angle = bd_angle * 180/pi;  
pt_angle = pt_angle * 180/pi;  
 
%plot results 
figure; 
plot(angle, bi_angle); 
xlabel('Flexion Angle (deg)'); 
ylabel('Angular Variation (deg)'); 
 
figure; 
plot(angle, br_angle); 
xlabel('Flexion Angle (deg)'); 
ylabel('Angular Variation (deg)'); 
 
figure; 
plot(angle, tr_angle); 
xlabel('Flexion Angle (deg)'); 
ylabel('Angular Variation (deg)'); 
 
figure; 
plot(-angle_ps, bd_angle); 
xlabel('Pronation Angle (deg)'); 
ylabel('Angular Variation (deg)'); 
 
figure; 
plot(-angle_ps, pt_angle); 
xlabel('Pronation Angle (deg)'); 
ylabel('Angular Variation (deg)');  
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%function rot.m 
 
%Determine new muscle insertion after flexion 
 
%Input variables 
%% 'ins': insertion points  
%% 'angle': angle of rotation 
 
%Output variables  
%% 'ins_new': new insertion coordinates after rotation 
 
function [ins_new] = rot(ins, angle); 
 
%Convert degrees to radians 
angle = angle*pi/180; 
 
%Make coordinate system about elbow (axis of rotation) 
ins(3) = ins(3) + 30.5; 
 
%Rotation matrix [53] 
R = [cos(angle) 0 -sin(angle); 0 1 0; sin(angle) 0 cos(angle)]; 
 
%Calculate new insertions and move z-coord back to humeral CS 
ins_new = R * [ins]'; 
ins_new(3) = ins_new(3) - 30.5; 
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%rot_ps.m 
 
%calculates angle throughout 100 deg of pronation-supination 
 
%Input variables 
%% 'ins': insertion points  
%% 'angle': angle of rotation 
 
%Output variables  
%% 'ins_new': new insertion coordinates after rotation 
 
function [ins_new] = rot(ins, angle); 
 
%Convert degrees to radians 
angle = angle*pi/180; 
 
%Make coordinate system about elbow (axis of rotation) 
ins(3) = ins(3) + 30.5; 
 
%Rotation matrix 
R = [1 0 0; 0 cos(angle) -sin(angle); 0 sin(angle) cos(angle)]; 
 
%Calculate new insertions and move z-coord back to humeral CS 
ins_new = R * [ins]'; 
ins_new(3) = ins_new(3) - 30.5;
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APPENDIX E: MATLAB™ CODE FOR MOMENT ARM DATA  
 
 
 
 
%moments.m 
 
%Calculate moment arms through 140 deg of flexion 
 
%Prompt for muscle origin 
orig_x = input('Muscle Origin x: '); 
orig_y = input('Muscle Origin y: '); 
orig_z = input('Muscle Origin z: '); 
 
orig = [orig_x, orig_y, orig_z]; 
 
 
%Prompt for muscle insertion 
ins_x = input('Muscle Insertion x: '); 
ins_y = input('Muscle Insertion y: '); 
ins_z = input('Muscle Insertion z: '); 
 
ins = [ins_x, ins_y, ins_z]; 
 
 
%Vector with angles from 0 to 140 deg. in multiples of 5 
angle = linspace(0, 140, 29); 
 
%Calculate moment arms throughout motion 
 
for i = 1:29 
 
    %run 'rot.m' function 
    ins_new = rot(ins, angle(i));  
    %run 'perp.m' function 
    moment(i) = perp(orig, ins_new); 
 
end 
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APPENDIX F: SINUSOIDAL MOVEMENTS IN TWO CYLINDERS  
 
 
 
 
REM THIS PROGRAM TAKES A SINE WAVE AND MOVES TWO CYLINDERS... 
REM IN OPPOSITE DIRECTIONS AND AT DIFFERENT FREQUENCIES 
 
PROG0 
HALT ALL    REM HALTS ALL MOTION COMMANDS 
NEW ALL    REM CREATES A NEW PROGRAM 
DETACH ALL    REM DETACHES ALL AXES 
ATTACH MASTER0   REM DEFINES MASTER0 
ATTACH SLAVE0 AXIS0 "X" REM ATTACHES SLAVE AXIS0 "X" 
ATTACH SLAVE1 AXIS1 "Y" 
 
10 ACC10 DEC10 VEL10 STP10 REM CREATES MOTION PROFILE 
20 X3 Y3    REM MOVES X AND Y AXIS TO 3 INCHES 
 
REM MOVE X IN SINUSOID ENDING AT 0 DEG WITH 0 DEG PHASE... 
REM 1440 DEG AND AMPLITUDE OF 3 
REM MOVE Y IN SINUSOID ENDING AT 0 DEG WITH 180 DEG PHASE... 
REM 1440 DEG AND AMPLITUDE OF 1 
30 SINE X(0,0,1440,3) SINE Y(0, 180, 1440, 1) 
40 END
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%function perp.m 
 
%Calculate perpindicular distance from muscle to center of %rotation 
 
%Input variables 
%% 'orig': muscle's origin coordinates 
%% 'ins': muscle's insertion coordinates 
 
%Output variables 
%% 'dist': calculated moment arm 
 
function [dist] = per(orig, ins); 
 
 
x1 = orig(1); y1 = orig(2); z1 = orig(3); 
x2 = ins(1); y2 = ins(2); z2 = ins(3); 
 
A = [x2-x1,y2-y1,z2-z1,0;1,0,0,x1-x2;0,1,0,y1-y2;0,0,1,z1-z2]; 
B = [0;x1;y1;z1]; 
 
point = A\B; 
 
dist = sqrt((point(1)^2)+(point(2)^2)+point(3)^2); 
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