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Ning Yao, PhD

University of Pittsburgh, 2010

Two-thirds the population in the United States of America are overweight or obese. The

annual medical expenditures attributable to obesity may be as high as $215 billion per

year. Obesity has been linked to many types of diseases, including cancer, type 2 diabetes,

cardiovascular diseases, stroke and birth defects. Deaths related to obesity are estimated at

300,000 each year in the United States. In order to understand the etiology of the obesity

epidemic and develop effective weight management methods for obese patients, accurate

dietary data is an essential requirement. However, the current dietary assessment methods,

which depend on self-reported data by the respondents, have an estimated 20% to 50%

discrepancy from the intake. This large error severely affects obesity research.

The recent rapid advances in electrical engineering and information technology fields have

provided sophisticated devices and intelligent algorithms for dietary assessment. Consider-

ing portability and battery-life, systems installed with a single camera have the advantages

of low cost, space saving, and low power consumption. Although several methods have

been proposed to estimate food quantities and dimensions, many of these methods cannot

be used in practice because of their inconvenience, and the requirement of calibration and

maintenance. In this dissertation, we present several approaches to food dimensional esti-

mation using two types of structured lights. These approaches are low in cost and power

consumption, and suitable for small and portable image acquisition devices.

Our first design uses structured laser beams as reference lights. Three identical laser

modules are structured to form an equilateral triangle on the plane orthogonal to the camera

iii



optical axis. A new method based on orthogonal linear regression is proposed to release

restrictions on the laser beams, so that the precision requirement for equilateral triangle

can be relaxed. Based on the perspective projection geometry, intersections of structured

laser beams and perspective projection rays are estimated, which construct a spatial plane

containing the projection of the objects of interest. The dimensions of the objects on the

observed plane are then calculated. In the second design, an LED diode is used as a reference

light. A new algorithm is developed to estimate the object plane using the deformation of

the observed ellipse.

In order to provide a precise system calibration between the structured lights and the

camera, an orthogonal linear regression method is proposed to calibrate the structured lights.

Characteristics of the reference features are investigated. A color-based thresholding method

is proposed to segment features. An ellipse fitting method is used to extract feature param-

eters. The extraction results of our algorithms are very close to those manually performed

by human.

Several experiments are performed to test our designs using both artificial and real food.

Our experimental results show an average estimation error of less than 10%.
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1.0 INTRODUCTION

1.1 SIGNIFICANCE OF THE WORK

More than 190 million Americans, or two-thirds of the population, are overweight or obese,

which is doubled approximately in the last thirty year. Moreover, more than 17% of children

in the United States, about 12.5 million, are overweight or obese, which has tripled in the

last thirty years [1] (Figure 1). Annual medical expenditures attributable to obesity have

doubled in less than a decade, and may be as high as $147 billion per year, according to

a new study by researchers at RTI International, the Agency for Healthcare Research and

Quality, and the U.S. Centers for Disease Control & Prevention, published in the health

policy journal Health Affairs. Obesity has been linked to many types of cancers (e.g., breast,

colon, and prostate cancers) [2], type 2 diabetes [3], cardiovascular diseases [4], stroke [6],

digestive diseases [5], respiratory diseases [7], osteoarthritis [8], and birth defects [10]. In the

U.S., obesity related deaths are estimated to be 300,000 each year [9].

One simple but critical cause of being overweight or obese is when a person’s intake

energy exceeds the amount of energy used. A lack of physical activity is also an important

cause [11]. In order to understand the etiology of the obesity epidemic in the U.S. and to

develop effective weight management methods for obese patients, accurate acquisition of diet

data from free-living individuals is an essential requirement. Current dietary assessments are

largely dependent on self-reported data by respondents. Standard 24-hour recalls itemize

all food and nutrients consumed during the previous reporting day, and food frequency

questionnaires detail the intake frequency of a long list of foods over a specific time [12].

Several dietary assessment tools, such as CalorieKing [13] and CalorieCounter [14], can

provide simple calorie calculation based on food portion size. However, they are of limited use
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Figure 1: Statistics of overweight in the United States (Source from CDC National Center

for Health Statistics)

since it is difficult for users to accurately estimate food sizes. Other forms of dietary recalls

and questionnaires have also been designed to meet specific research needs [16]. Although

these methods have been commonly adopted in various research and public health settings,

nutritional scientists have questioned whether the self-reported data truly reflects the amount

of energy the respondents habitually ingest due to a significant under-reporting [15]. It has

been shown that the discrepancy of energy between the reported intake and the measured

expenditure using the doubly labeled water method is between 20% and 50% [17]. As a result,

the lack of assessment tools capable of producing unbiased objective data have significantly

hampered the progress of obesity research.

We believe that an effective solution to this problem can be found in the fields of elec-

trical engineering and information technology. Rapid advances in these fields have yielded

sophisticated devices and intelligent computational algorithms that automatically acquire

and analyze multimedia data from the real-world environment. We propose the idea of a

ubiquitous multimedia technology capable of providing an accurate estimation of intake en-

ergy based on food quantity. This technology can provide a powerful platform for the study

of obesity.
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A major difference between the proposed approach to dietary assessment and the exist-

ing approaches is the use of extensively and objectively recorded images or videos. With an

electronic visual memory, this powerful technology stores all of the scenes that the individual

has observed throughout the entire recording period. Since “seeing is believing”, our “mon-

itoring” system allows for a more complete understanding of events than current non-video

based methods.

1.2 EXISTING IMAGE-BASED APPROACHES TO FOOD DIMENSIONAL

ESTIMATION

It has been shown that food size, while an important parameter, is difficult to accurately

quantify by self-report or questionnaire. Several image-based approaches and software so-

lutions have been proposed to monitor and manage dietary intake. In order to reduce the

burden of response on the part of the user, electronic devices with built-in cameras have been

proposed to simplify the self-monitoring process and increase computational accuracy, simi-

lar to a miniature camera or smart phone. In addition, it has been shown that technology-

assisted logbook techniques are perceived as less intrusive upon lifestyle than traditional

methods for recording dietary intake [18]. Therefore, approaches based on computer vision

techniques for food volumes estimation have been developed in recent years. Approaches

using a camera with a fixed position to estimate the volumes of fruits such as watermelon,

kiwifruit and orange were reported by Koc [20], Rashidi [22] and Khojastehnazh et al [21].

However, these approaches require the relative positions of the camera and the object to be

known in advance, and are only effective for certain food items. Spherical objects [23, 24]

and checkerboard patterns [25] have been used as fiducial markers to reconstruct 3D objects

from 2D images using computer vision techniques. Puri et al presented a system using three

images and a checkerboard to estimate food volume [27]. The relative camera poses among

the three images were estimated using a peremptive RANSAC-based method [26] and the

scale ambiguity was determined by placing a checkerboard beside the food. Figure 2 shows

the data flow of their system, through which they were able to achieve an accuracy rate of
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Figure 2: Data flow of the entire system in [27]

approximately 90%. A similar approach was proposed by researchers at Purdue University

[19]. They used a checkerboard pattern in each food image to obtain camera parameters and

provided a reference for the food scale (shown in Figure 3). Their testing objects consisted

of spherical and prismatic objects only and their relative errors were between 7% to 15%.

These methods required a relatively inconvenient procedure including placing a checkerboard

at a position near the food before taking pictures. Moreover, the requirement to take several

pictures before and after eating interferes greatly with normal eating patterns and the user’s

lifestyle.

Figure 3: Process of the food portion estimation in [19]

This dissertation aims to overcome the problems of the existing systems. Our system

will provide a set of image processing tools, which computationally measure the volume of

food or drink automatically. Eliminating the need to carry a reference object, our proposed

approach provides a minimum-effort user interface. Unlike other commercial and research
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devices with image/video acquisition functions, the proposed device only requires a single

miniature camera and simple structured lights, which are specially designed to precisely

measure food quantity. Such designs allow greater cost, space and power savings.

This research designs geometric mathematical models and algorithms for our newly devel-

oped wearable devices to efficiently and accurately estimate food dimensions. Our techniques

and algorithms can also be used in other wearable image acquisition devices to reconstruct

the dimensions of indoor objects. The advantages of our techniques are:

• Specific designs of assistant structured lights with low power consumption;

• Low-cost and easy manufacturing, calibration, and maintenance;

• Estimation methods using a single image containing the objects of interest;

• Low complexity geometric algorithms for real-time application;

• Volume estimation for regularly shaped objects.

1.3 OTHER POTENTIAL APPLICATIONS OF PROPOSED DIMENSION

ESTIMATION TECHNIQUES

As a mobile multimedia data acquisition device, our proposed system and techniques have

many potential applications besides food volume measurement. One of the potential appli-

cations is the electronic chronicle, also called e-chronicle, which is defined as an extensive

record of events obtained using multiple sensors and sources of information. An e-chronicle

provides access to such data at multiple levels of granularity and abstractions along temporal

and other contextual dimensions, and uses appropriate access mechanisms in representations

and terminology familiar to application users [28]. For instance, smart phones, one of many

forces driving the emergence of e-chronicles, are becoming an inseparable part of our lives

as true multimedia devices that combine communications, computing, and contents [29].

The sensing and communication capabilities of mobile devices, coupled with e-chronicling

technology, have the potential to change the everyday practices of people in both personal

life and business activity [28]. Unlike other traditional e-chronicles systems which can only

replay the recorded events manually, ours is an advanced system with the unique ability to
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reconstruct 3D information of objects of interest. This will allow e-chronicles to be used in

navigation, 3D retrieval, 3D visualization, etc.

Another potential application is virtual modeling, which is used extensively in computer

games [30] and film making [31, 32]. After new objects are inserted and more view-points

generated, as well as the basic indoor background scenes set up and precisely modeled, recon-

struction of the backgrounds using video and stereo images is often required. However, 3D

models using single-video-based methods usually lack precision or can only be reconstructed

up to a scale. Though stereo systems can improve the scale ambiguity of reconstruction, they

require more expensive equipment, testing, and calibration. The proposed techniques pro-

vide an alternative and easier way to reconstruct relatively simple background scenes, such

as walls, tables, furniture, and floors for 3D computer games and 3D movie applications.

Our system and methods are also potentially useful in applications such as human face

and body modeling, non-contact measurement, real-time object capturing, and 3D modeling

and visualization.

1.4 CONTRIBUTION OF THIS DISSERTATION

This dissertation presents a practical development and implementation of a new food dimen-

sion estimation method. Our method provides a powerful platform for the study of obesity

as well as other potential applications.

The original contributions of the dissertation are summarized as follows.

1. Specific structured lights designs based on laser and LED beams are developed and

implemented for food dimension estimation. These designs are safe for human use, low

in cost and power consumption, and are space saving. To the best of our knowledge, this

is the first quantitative dietary assessment system using structured lights;

2. Geometric dimension estimation algorithms are developed and implemented. Both ideal

and modified system models and algorithms are presented. Height estimation method is

proposed for regularly shaped objects. Our algorithms have low computational complex-
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ity and only need a single image for estimation, which is especially suitable for mobile

and real-time applications.

3. A practical structured lights calibration approach is developed and implemented. An

orthogonal linear regression method is presented to fit spatial lines. The proposed ap-

proach can quickly and easily calibrate our camera and structured light system and

greatly improve the estimation accuracy.

4. Color and shape characteristics of reference features in the captured images are inves-

tigated. Segmentation methods using a histogram-based thresholding are proposed for

both laser and LED spots to extract structured light patterns automatically. An ellipse

fitting method is implemented to improve the accuracy in feature extraction.

5. The proposed approach is tested in experiments using various artificial items and real

foods. The average relative food size estimation error is less than 10% for the laser

beams design, which is much better than the self-reporting and questionnaire methods.

The effects of image resolution, position and orientation of objects and the shape of

objects on the proposed algorithms are further investigated. Our approach gives better

estimation accuracy when an object’s orientation is between 20o and 50o.
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2.0 BACKGROUND

In this chapter, we review the basic concepts of pinhole camera geometry including perspec-

tive projection and affine projection, and introduce definitions of the intrinsic and extrinsic

parameters of the camera. We also review 3D reconstruction techniques. The problem of

dimensional reconstruction from one single image is described, and an extensive review of

existing methods is presented.

2.1 BASIC CONCEPTS OF THE PINHOLE CAMERA MODEL

There are many types of imaging devices that convert measurements of light into information

about spatial and material properties of a scene, such as a camera and a retina. The first

model of the camera invented in the 16th century used a pinhole to focus light rays onto

a wall or translucent plate, which demonstrated the laws of linear perspective (shown in

Figure 4 (a)) discovered a century earlier by Filippo Brunelleschi [47]. Later, the pinholes

were replaced by more complicated lenses.

In current computer vision community, people usually use the mathematical model of a

pinhole lens or a thin lens instead of a real optical system. The principle of a pinhole camera is

shown in Figure 4 (b). Light rays from an object pass through a small hole to form an image.

These models not only reduce the process of image formation by tracing rays from points

on objects to pixels in images, but also are proved to be workable in most applications [46].

There are two major geometrical projections used for pinhole camera models: perspective

projection and affine projection. We will introduce them in the following section.

8



(a) (b)

Figure 4: (a) Rays of light travel from the object through the picture plane to the viewer’s

eye O. (b)Space principle of a pinhole camera. (Courtesy of [47])

2.1.1 Perspective and Affine Spaces

A frontal pinhole imaging model is shown in Figure 5. The image of a 3D point P is the

point p, which is the intersection of the image plane and the ray passing through the pinhole

camera optical center O. f is the focal length in front of the optical center.

The optical axis of a camera is an imaginary line that defines the path along which

light propagates through the system. For a system composed of simple lenses, the optical

axis passes through the center of curvature of each surface, and coincides with the axis of

rotational symmetry [47]. In a pinhole camera model, the camera plane is defined as the

imaging sensors plane that contains the object’s projected image, and lies beyond the focal

point.

Let us consider a generic point P in 3D space with coordinates P = [xc, yc, zc]
T ∈ R3 in

the camera coordinate system (also called camera frame). The same point has coordinates

P = [Xw, Yw, Zw]T in the world coordinate system (also called world frame). The rigid-body

transformation between the two coordinates’ systems can be described by a rotation matrix
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Figure 5: Frontal pinhole imaging model

R ∈ R3×3 and a translation vector T ∈ R3×1. Therefore we can establish the relationship

between the coordinates of a point under two coordinates frames as follows:


xc

yc

zc

 = R


Xw

Yw

Zw

 + T (2.1)

The rotation matrix R is characterized by the following properties: (1) the inverse of a

rotation matrix is equal to its transpose, i.e. RTR = RRT = I; and (2) its determinant

is equal to 1, i.e. det(R)=1. By this definition, the columns of a rotation matrix form a

right-handed orthonormal coordinate system, so do its rows.

Adopting the pinhole camera model in Figure 5, we get the perspective projection equa-

tion, which projects a point P (xc, yc, zc) onto the camera plane at p(x, y)

p =

 x

y

 =
f

zc

 xc

yc

 (2.2)

where f is the focal length and zc is the P ’s coordinate in z direction.

As noted, pinhole perspective is only an approximation of the geometry of the imaging

process. Other approximations such as affine projection models are used in some applications.
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One of the affine models, the weak-perspective model, assumes that all line segments in the

fronto-parallel plane are projected with the same magnification. Therefore the projection

equation can be rewritten as

x′ = −mx

y′ = −my
(2.3)

where m = −f
z

and z is scene depth to the pinhole.

With the assumption that the camera always remains at a roughly constant distance

from the scene with all light rays parallel to the camera optical axis and orthogonal to the

image plane, we can further normalize the image coordinates and let m = −1. This is called

orthographic projection, which is defined by

x′ = x

y′ = y
(2.4)

Although weak-perspective projection is an acceptable model for many imaging condi-

tions, the assumption of pure orthographic projection [33] is usually unrealistic. In this work,

we employ the most frequently used perspective projection model in all the algorithms and

performance analysis.

2.1.2 Camera Intrinsic and Extrinsic Parameters

In computer vision, the intrinsic and extrinsic parameters of the camera are used to describe

the mapping from the coordinates of a 3D point to the 2D image coordinates of the point’s

projection onto the image plane. Therefore, we introduce these two important definitions.

2.1.2.1 Intrinsic Parameters

To specify the relationship between the camera plane coordinate system and the pixel

array in an image, we consider the model shown in Figure 6. Let (x, y) be metric units (e.g.

millimeters), and (xs, ys) be scaled versions that correspond to the coordinates of the pixel.
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Figure 6: Image coordinate frame origin translation.

The transformation can be described by a scaling matrix

 xs

ys

 =

 sx 0

0 sy

 x

y

 (2.5)

Here sx and sy depend on the size of the pixel in metric units (sometimes called pitch size)

along the x and y directions.

In practice, a digital camera records the measurements in terms of pixels (x′, y′) with

the origin of the image frame typically in the upper-left corner of the image. We need to

translate the origin of the reference frame to this corner as shown in Figure 6.

x′ = xs + ox

y′ = ys + oy
(2.6)

where (ox, oy) are the coordinates (in pixels) of the principal point relative to the image

reference frame.

In cases where the pixels are not rectangular, a more general form of the scaling matrix

can be considered

 sx sθ

0 sy

∈ R2 (2.7)
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where sθ is called a skew factor and is proportional to cos(θ), where θ is the angle between

the image axes xs and ys.

The coordinate transformation matrix (also called intrinsic matrix) in homogeneous rep-

resentation has the following general form

K =


sx sθ ox

0 sy oy

0 0 1

∈ R3 (2.8)

Thus, the homogenous coordinate transformation between a point on the camera plane

and its image is as follows:


xs

ys

1

 = K


x

y

1

 (2.9)

2.1.2.2 Extrinsic Parameters

The geometric relationship between a point of coordinates X = [Xw, Yw, Zw] relative to

the world frame and its corresponding image coordinates x = [x′, y′, 1] (in pixels) depends on

both the intrinsic matrix K and the rigid-body motion (R,T) relative to the camera frame,

which are called extrinsic calibration parameters. The camera extrinsic parameters describe

the coordinate system transformations from 3D world coordinates to 3D camera coordinates.

Therefore, with the intrinsic matrix K and extrinsic parameters R and T, we can model

the image formation with a general projection matrix P = [KR,KT]. It is of practical

interest to put some restrictions on the intrinsic parameters since some of these parameters

are fixed and known. A camera with a known nonzero skew and non-unit aspect-ratio can be

transformed into a camera with zero skew and unit aspect-ratio by an appropriate change of

image coordinate. Faugeras proved the necessary and sufficient conditions for a perspective

projection matrix [48]. Here we ignore the linear and nonlinear radial distortions by assuming

that we can eliminate those with pre-processing. The interested reader can refer to related

literature such as [49,50,55] for details.
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To find the camera’s intrinsic and extrinsic parameters, a process called Camera Cal-

ibration is often implemented at an early stage in computer vision. Since the accuracy of

those parameters is critical, research has been conducted to find robust and efficient methods

for camera calibration under different situations. We will introduce details of our camera

calibration and structured light calibration approaches in Chapter 5.

2.2 REVIEW OF 3D RECONSTRUCTION METHODS

Reconstruction of real world objects has many applications, from archaeology to architecture,

and even more emerging areas like the biomedical and film industries. There are several

popular techniques and research areas which use various equipment and methods to achieve

similar goals. We briefly introduce some common methods in this section.

2.2.1 3D Reconstruction from Range Scanner

Range scanners can densely measure the distance from sensors to reflective points on objects

in a grid pattern using points, strips, or 2D patterns. If we represent the range of each point

as pixel intensity, the recorded grid pattern can be visualized as a range image. To construct

a complete 3D model, range data from multiple views is required. There are a variety of

technologies for acquiring the range of points. They are typically divided into two types:

contact and non-contact 3D scanners.

Contact 3D scanners probe the subject through physical touch. A CMM (Coordinate

Measuring Machine) is an example of a contact 3D scanner. The disadvantage of CMMs

is the risk of modifying or damaging the measuring object. They are also relatively slow

compared to other scanning methods. Non-contact 3D scanners can be further divided

into two main categories, active scanners and passive scanners. An active scanner emits

some type of radiation or light and detects its reflection in order to compute the structure.

Visible or invisible light, such as ultrasound and x-ray are some common forms of emission.

Based on their physical models, various methods have been proposed to use time-of-flight,
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(a) stereoscopic camera (b) stereoscopic viewer

Figure 7: Stereoscopic camera and stereoscopic viewer

triangulation, structured or modulated light, and Computed Tomography technologies for

active scanners. Non-contact passive scanners do not emit radiation themselves, but instead

work by detecting the reflected ambient radiation. Both visible light and infrared can be

used for such scanners. One advantage of passive methods is that they are inexpensive,

such as a common digital camera [73]. [60] describes a few of the common range scanning

technologies and walks through a pipeline taking the range data into a single geometric

model. [61] proposes a 3D mapping of indoor and outdoor environments using a mobile

range scanner method, which smoothes surface by area decreasing flow. Recently, Song

Zhang and Peisen Huang from Stony Brook University developed a real-time scanner using

digital fringe projection and a phase-shifting technique (a various structured light method).

The system is able to capture, reconstruct, and render the high-density details of dynamically

deformable objects (such as facial expressions) at 40 frames per second [62]. [73] reviews

the developments in the field of 3D laser imaging in the past 20 years, and emphasizes

commercial techniques and systems currently available.

2.2.2 3D Reconstruction from Stereo or Successive Image Sequences

The motivation for stereo methods comes directly from the biological structure of human

eyes. These technologies are non-contact and passive, and the depth from binocular disparity
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provides the fundamentals of all variations of stereo reconstruction methods. Stereoscopic

image pairs were a popular form for education and entertainment in the late 19th and early

20th centuries[47]. These pictures were taken with a camera (much like the one in Fig 7

(a)), which had two lenses mounted a few inches apart. A stereoscopic viewer (Figure 7 (b))

was used to view the pictures which were mounted in pairs on cards a few inches apart so

that they created a three dimensional effect. There is a huge amount of work investigating

each major component of this problem, such as stereo camera calibration [63,64,67], epipolar

geometry [65], essential matrix and fundamental matrix acquisition [46,48], correspondence

matching [46,48,66], image rectification[68–71], disparity computation [72], and so on. Active

stereo with structured light is also used to simplify the correspondence problem [76].

The stereo approaches require accurate calibration of the camera optical parameters and

physical location. However, in many applications the information is not available or reliable

enough. Autocalibration or self-calibration from motion provides a solution to reconstruct

metric structure from video sequences in the uncalibrated case. Hartley and Zisserman

provided a useful discussion of the self-calibration methods, implementations and evaluations

in [46] for solving this kind of problem.

2.2.3 Structured Lights Aided 3D Reconstruction

The principle of using structured light is that projecting a certain pattern of light on to a

shaped surface produces a distorted illumination which can be used for an exact geometric

reconstruction of the surface shape. Structured light methods utilize active range sensing,

which helps to develop highly accurate correspondence algorithms to reconstruct a precise

3D structure.

One of the most common forms of structured light is optical triangulation. Figure 8(a)

shows its fundamental principle [60]. A focused beam of light illuminates a tiny spot on the

surface of an object. This light is scattered in every directions for a matt surface. We can

compute the position of the center point of this spot and trace a line of sight through that

point until it intersects the illumination beam at the point on the surface of the object. If

we use a plane of light instead of a beam, as shown in Figure 8(b), we can sweep the light
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Figure 8: Optical triangulation. (a) 2D triangulation using a laser beam for illumination;

(b) Extension to 3D; (c) Red laser line projected onto small (20cm) statuette; (d) Reflected

light captured by CCD camera. (Courtesy of [60])

over the surface of the object and compute its shape based on the intersection of the line of

sight with the laser plane. Figure 8(c) and (d) show a light stripe cast onto a real object

and the reflection captured by the camera. Other techniques such as multi-strip system and

hierarchical striping methods are proposed to reduce the number of shots [74]. Although

many variants of structured light projection are proposed, patterns of parallel stripes are

widely used. Figure 9 shows a parallel stripes projection on a seat and its reconstruction

[47]. Imaging radar, based on time of flight radar system, is becoming increasingly popular

because of its accuracy and ease of use [75]. [76] proposed a complex system that can be used

to set up a ground truth data base for testing performance of different 3D reconstruction

methods.

2.2.4 3D Reconstruction from a Single Image

It is well known that, a single image provides less geometric cues to infer depth than stereop-

sis and multiple images. There are a few active research efforts contributing to reconstruction

of 3D information from a single image such as shape from shading and texture, vanishing

17



Figure 9: 3D reconstruction of a car seat (Photo courtesy of [47])

points algorithms, statistical model based methods, focusing or defocusing methods, struc-

tured lights methods, circular feature methods, and approaches using other assistant optical

instruments. Since we use a single camera to reconstruct 3D structure in our proposed

device, we will briefly review these aforementioned methods in more details in Section 2.3.

2.3 ALTERNATIVE METHODS FOR 3D RECONSTRUCTION FROM A

SINGLE IMAGE

2.3.1 Shade from Shading and Texture

Shape from shading (SFS) methods basically recover the shapes from a gradual variation of

shading in the image. The Lambertian model [58] in Figure 10 has been used widely as a

simple model of image formation, in which the pixel gray level depends on the light source

direction and the surface normal. However, real images do not always follow the Lambertian

model. Many pioneers researched reconstruction for decades to use shading of one view

[34,35,38]. Zhang et al. implemented and compared six well-known SFS algorithms in their

survey [38], and concluded that, in general the minimization approaches are more robust,

while other approaches are faster. Recently, a method was proposed in [37] for reconstructing

the shape of a deformed surface from a single image by combining the cues of shading and
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Figure 10: From a monocular view with a constant intensity light source (left figure) and

a single distant light source of known incident orientation upon an object with known re-

flectance map (right figure)

texture. Their method solved the ambiguities locally but required a texture estimate as

a priori knowledge. The quality of their reconstruction was a middle ground between the

flexibility of single cue, single view reconstruction and the accuracy of multi-view techniques.

2.3.2 Vanishing Point

In [39, 40, 59], vanishing points (VP) were proposed to be used to reconstruct 3D shape

from a single image. Those methods assumed perfect perspective projection in the images

and used the lines drawn on an object as clues to rebuild their 3D structures. Yoon et

al. present a method using VP to recover the dimensions of an object and its pose from a

single image with a camera of unknown focal length [41]. However, their algorithm needed

to accurately extract the information of a VP in order to have orthogonal property from the

image, otherwise nonlinear optimization techniques were not able to improve the accuracy in

comparison with conventional methods. Jelinek modeled the object as a polyhedron where

a linear function of a dimension vector is expressed using the coordinates of the vertices

[42]. This was also a nonlinear optimization problem and greatly relies on the initialization

selection and searching strategy.

19



2.3.3 Statistical Models

Recently, Andrew Y. Ng and his group estimated detailed 3D structure from unstructured

indoor and outdoor environments for both quantitatively accurate as well as visually pleasing

purposes [77–79]. They combined the monocular image cues with triangulation cues to build

a photo-realistic model of a scene. After learning the relation between the image features

and the location/orientation of the planes, and also the relationships between various parts

of the image, a hierarchical, multiscale Markov Random Field (MRF) was used to predict the

value of the depth map as a function of the image. They believed that even a single image

can infer a significant portion of the scene’s 3D structure [43]. Their algorithm investigated

the visual cues for scene understanding and worked well for the visualization of large-scale

scenes. However their reconstruction was only quantitatively accurate, which was insufficient

for precise dimension reconstruction.

Another statistical image-based model proposed by Grauman [80] could infer 3D struc-

ture parameters using a probabilistic“shape+structure”. The 3D shape of an object class was

represented by a set of contours from silhouette views simultaneously observed from multiple

calibrated cameras. Given a novel set of contours, the method inferred the unknown struc-

ture parameters from the new shape’s Bayesian reconstruction. Their shape model enabled

an accurate estimate of structure despite segmentation error or missing views in the input

silhouettes, working with only a single input view. However, the proposed model was only

based on human body silhouette structures which are not easily transferrable to other 3D

objects.

2.3.4 Focusing and Defocusing Methods

The focusing and defocusing method is another major technique which can use only one

image to reconstruct 3D dimensions. Image Focus Analysis (IFA) methods search the camera

parameters that correspond to focusing the object [84, 85]. A larger number of images are

needed as input to compute a focus measure in order to determine the focused image and 3D

shape. Subbarao and Tae-Choi [83] proposed a shape from image focus methods which was

based on finding the best focus measure on a focused image surface instead of over image
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frames sensed by a planar image detector. The problem of how to choose the best focus

measure was also an important issue for any IFA method. Some examples of focus measures

are image energy, energy of Laplacian and energy of image gradient [86].

Image Defocus Analysis (IDA) has recently attracted the attention of researchers. This

method is usually based on the assumption that a defocused image of an object is the con-

volution of a sharp image of the same object with a two-dimensional window function, for

example Gaussian function, whose parameters are related to the object depth. Pentland and

Subbarao [44, 93] firstly proposed to use the amount of defocus or blurring to determine its

depth and Grossamnn called it the depth-from-focus (DFF) method [94]. Other algorithms

based on the same basic assumption appeared later [81,82,87,88]. The fundamental advan-

tage of the newly developed methods is the two-dimensionality of the aperture, which is less

sensitive to the noise disturbance of measurements and allows more robust estimation [89].

2.3.5 Structured Light Methods

Since structured light and devices provide greater depth cues, various instruments have been

developed based on their requirements. A part from the technologies we introduced in Section

2.2.3, several specially designed lights or devices have been proposed to compensate for the

shortcomings of a single image. Lu [90] split a single camera view into stereo vision, with an

option to project a color-coded light structure onto the object using a synchronized flash light

source. Levin [91] carried out their modification to insert a patterned occluder within the

aperture of the camera lens, creating a coded aperture. Using a statistical model of images,

they recovered both depth information and an all-focus image from single photographs taken

with the modified camera. A fish-eye lens and a cylinder whose inside is coated by a silver

reflective layer were developed and used in [36] to capture an image that includes a set of

points observed from multiple viewpoints.

2.3.6 Circular Feature Methods

3D location estimation, which includes 3D position estimation and 3D orientation estima-

tion, have been extensively addressed in the literature. They play important roles in 3D
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scene reconstruction and robot navigation. With known camera intrinsic parameters and

3D location of the object, it is straightforward to reconstruct the 3D structure of an object.

Circular features are the most common quadratic-curved features that have been addressed

for 3D location estimation. The advantages of using a circular shape are that [97]: (1) many

manufactured objects have circular holes or circular surface contours; (2) a circle has good

properties from a mathematical perspective, such as its perspective projection in any arbi-

trary orientation is always an exact ellipse, and it can be defined with only three parameters

due to its symmetry with respect to its center; (3) a circle has been shown to have the

property of high image-location accuracy [95, 96]; and (4) the complete boundary or an arc

of a projected circular feature can be used without knowing the exact point correspondence.

For circular feature-based 3D location estimation, approximation-based methods [98–

100]and closed-form solution methods [101–103] have been proposed. In the approximation-

based methods, difficulties remain for the mathematical presentation. In order to reduce

the complexity of a 3D problem, some simplifying assumptions have to be made, such as

assuming that the optical axis of the camera passes through the center of the circular feature,

using affine or orthogonal projection instead of perspective projection, etc. Moreover, it is

very difficult to analyze the error introduced by each approximation in some methods. There

have been several methods proposed in a scene under general conditions without simplifying

assumptions [101, 102]. However, these methods are mathematically complex and algebra-

based. They lack geometric representations of the problem and geometric interpretations of

the solutions.

Various optical assistant systems have been presented to measure three dimensional struc-

ture. Unfortunately, most of the previous structured light methods need either a well trained

model or complicated assistant system, which greatly increase the cost of implementation.

In this dissertation, we present new device designs with simple assistant structured light

and fast algorithms. Although our designs relating to food dimension estimation were moti-

vated by a specific target application, they can be used in other applications, such as mobile

consumer electronics, health care devices, and robotic navigation.
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3.0 MEASUREMENT SYSTEM DESIGN

3.1 DESIGN OF WEARABLE DEVICE FOR DIETARY ASSESSMENT

(a) Subject wearing the electronic mobile device (b) Close view of the wearable device

Figure 11: Prototype of wearable electronic device

Recent advances in microelectronics offer unique opportunities to develop electronic de-

vices and methods for objective dietary assessment. Our group is leveraging these advances

to design and evaluate new systems that minimize intrusion into the users’ lives. Currently,

we have designed and implemented several prototypes and are still working to improve the

accuracy and mobility of these devices and their supporting softwares.

The electronic system contains two major components, a wearable unit and a data anal-

ysis software package installed in a computer at the dietitians office. One of the prototypes

of the wearable unit is shown in Figure 11. The circular device presently looks like a wear-
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Figure 12: Laser point-array pattern generated by a diffraction grating glass

able MP3 player, suitable for both men and women. The appearance of the device may be

tailored according to individual preference. Currently, the device has a diameter of 62 mm,

which will be reduced substantially in the future. A large-capacity (2700 mAh), recharge-

able, lithium-ion battery (rectangular object in Figure 11) is placed in the back of the neck

connected to the circular device using adjustable cables.

As a significant component of our mobile device, the development and implementation

of a 3-dimensional estimation unit using a miniature camera with reference lights is the

major focus of in this dissertation. A safe-to-human structured light pattern is needed in

our dimensional estimation unit to provide 3D information for retrieving the dimensions of

food objects. Low-power laser modules and LED diodes are two appropriate candidates of

the structured lights which are described in the following sections.

3.2 LASER BEAM BASED STRUCTURED LIGHT DESIGN

In one of our prototypes, we designed a dimension estimation unit using laser beam based

structured lights with a single camera. With the help of a pre-measured laser beam system,
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we were able to estimate the physical dimensions of objects on an arbitrarily positioned plane.

We investigated a method using one laser module with an attached diffraction grating film

to project a point array.

The major advantage of using one laser module with a diffraction film is the reduced

costs of both space and energy. The diffraction grating film diffracts light into several beams

traveling in different directions. The directions of these beams depend on the spacing of the

grating and the wavelength of the light. As a spatially coherent (with identical frequency and

phase), narrow beam, the laser light is diffracted by the grating film and forms a point-array

with s known pattern. Figure 12 shows a diffraction grating glass creating an expanding

grid of multiple laser beams when a single laser beam is passed through it. However, the

energy of the original beam will be split after the diffraction. The farther the points are

located from the center of the original beam, the weaker the intensity at these points. Under

common illumination conditions, the outer points are difficult to be detected by a camera,

which will bring difficulty for feature detection in the image processing phase.

Using more laser modules can help to solve the visibility issue of the features. To deter-

mine the location of a 3D plane, we need at least three noncollinear points. Therefore, we

proposed an original method to use three individual laser modules to construct a structured

triangle as a reference pattern with the allowance of system energy distribution. Figure 14(a)

shows a testing board with three laser highlighted spots.

For safety considerations, we chose low intensity optical diodes to protect human eyes. An

experimental model shown in the left image in Figure 13 was used to verify and evaluate the

proposed dimension estimation algorithms. Three laser diodes were mounted on a plexiglass

board. Each laser diode and a focusing lens were adhered to a small panel which was attached

to curved sheets of copper as shown in the right image in Figure 13. A screw was used to

adjust the beam angle by forcing the copper sheet to bend. A voltage/current source was

used to drive the laser diodes. The three diodes were connected in series. The operational

voltage and current of each of the three laser diodes were 2.1V and 20mA, respectively, and

the operational power of each laser diode was about 40mW.
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Figure 13: Experimental instruments with three laser diodes

3.3 LED BASED STRUCTURED LIGHT DESIGN

In order to minimize the use of power and space, we developed another structured light sys-

tem, which uses only one LED diode. We also studied its corresponding geometric algorithm

to estimate the dimensions of the spatial object. The LED diode produced an ellipse-like

pattern on the object (Figure 14(b)) which provided enough information to locate the po-

sition and orientation of the object plane. Our algorithm was based on the circular feature

perspective projection geometry between the real world and a camera plane to estimate an

object’s dimension using its position information.

3.4 SYSTEM INTEGRATION

It is critical for our prototype system to be portable and functional enough for real-life ap-

plication. As shown in Figure 11, two separate smaller devices, connected to the front device

by the same cables, reach locations on the upper body and head. These devices can be ear-

phones, microphones, accelerometers, or skin-surface electrodes for various applications, such

as user interface and physiological measurements. The front device contains several sensors

and data processing/storage components, including a miniature camera for video recording,
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(a) Object with three laser highlighted spots (b) Food with LED spot

Figure 14: Structured lights with object of interest

reference lights for food dimension measurement as described above, an accelerometer for

physical activity monitoring, a microphone for the identification of eating episodes using

ambient sound, a global positioning system (GPS) for location identification, a central pro-

cessor for data processing, and an 8-GB microSDHC flash memory for storing data. All

electronic components are installed on an eight-layer printed circuit board. The hardware

design has been completed, and the embedded software (routines that provide interface to

hardware modules) is being developed.
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4.0 GEOMETRIC DIMENSIONAL ESTIMATION ALGORITHMS BASED

ON PERSPECTIVE AND STRUCTURED LIGHTS

To measure an object’s physical dimensions from a single still image is a difficult when only

one view of a scene is available. Most of the solutions for single image 3D reconstruction

problems must be based on assumptions of the object’s shape and the knowledge of explicit

camera intrinsic parameters, camera position, and the location of the object of interest.

However, the information is difficult to obtain in most cases, especially for a mobile device.

In this chapter, we propose several new measuring methods utilizing our structured lights

designs, using either laser beam or LED spotlight. Using the geometric information of the

pre-measured structured lights, we can estimate the physical dimensions of objects on an

arbitrarily positioned plane.

We mainly focus on two canonical types of measurement: (i) dimensions of segments on

planar surfaces and (ii) distances of observation points to the object of interest. In many

cases, these two types of measurements have been proved to be sufficient for a partial or

complete three-dimensional measurement and reconstruction of the observed scene.

4.1 ASSUMPTIONS AND GEOMETRIC RELATIONS AMONG IMAGE,

CAMERA PLANE, LASER BEAMS AND OBJECT PLANE

Figure 15 shows the geometric model of our measurement system. In this figure, I is one

of the three laser beams, and O′A′ is the perspective projection ray of one laser highlighted

spot A′ on an object plane. O is the pre-determined origin of the world coordinate system.

The plane which is defined by the triangle ABC is the camera plane. The center of the
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camera plane is on the optical axis passing through the camera optical center O′. 2β is the

camera angle of view and z0 is the focal length. A′, B′, C ′ are three laser highlighted spots on

the object plane and A,B,C are their projections on the camera plane. The transformation

between camera plane coordinate system and world coordinate system has been described

in Eq. 2.1.

Figure 15: Geometric relationships among camera plane, object plane, and camera origin

The point A′ on the object surface is the highlighted spot caused by the reflection of

laser beam I. Two skew lines I and O′A′ intersect at point A′. Under ideal conditions,

if the equations of two spatial lines are exactly known, we can solve them and obtain the

coordinates of A′. Therefore, in order to obtain the coordinates of points A′, B′, C ′, we need

to know equations of six lines and to calculate the intersection of each pair of lines, including

line I and line O′A′, line II and line O′B′, and line III and line O′C ′.

4.2 IDEAL LASER BEAM MODEL AND CORRESPONDING

ALGORITHM

We utilize a pinhole camera perspective projection model (described in section 2.1.1) to

reconstruct the optical path of points of interest. The three laser beams are calibrated using
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an image processing approach and a fitting method called Orthogonal Linear Regression

which will be described in Chapter 5. Based on perspective geometry, we estimate the

equation of an arbitrarily positioned plane, where the points of interest are located. Once

the equation of this plane is successfully estimated, we can estimate the dimensions of any

objects on the determined plane.

An ideal setup of three laser beams is shown in Figure 16. The three laser modules are

symmetrically mounted at position O′(0, 0,−L) and their beams can construct an equilateral

triangle on a plane perpendicular to the camera optical axis (z axis). Other parameters are

the same as those described in Section 4.1. The angles between each ray of light and the z

axis is α. If we fix the angle between beam I and the x axis at α + π/2, the angle between

I and y axis is π/2. It is not difficult to calculate the angles between the other laser beams

with x and y axes as:

Angle between II and x axis: arccos( sinα
2

)

Angle between II and y axis: arccos(
√
3 sinα
2

)

Angle between I and x axis: arccos( sinα
2

)

Angle between II and y axis: π − arccos(
√
3 sinα
2

)

C’
x

L Cameraplane

Object plane
length, is the 

camera angle of view. O
and O’

0z 2

A
B C
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α

y

zOO’
L plane

0z2β
each laser beam and z
axis,  A’, B’, C’
reflected highlights on 

an object plane. 

α

and O’
laser beams.

A, B, C,
Figure 16: Geometric relationship of ideal laser beams design

Without loss of generality, we assume that the coordinates of A,B,C on the camera

plane are A(xA, yA, z0), B(xB, yB, z0), C(xC , yC , z0). According to the two-point form of a

30



line equation, we can obtain the spacial equations for three virtual perspective projection

rays as

OA : y = 0, x
xA

= z
z0

OB : x
xB

= y
yB

= z
z0

OC : x
xC

= y
yC

= z
z0

(4.1)

By applying the point-slope form, with point O′(0, 0,−L) and skew line direction vectors

[cos π/2, cos(α+π/2), cosα], [
√

3 sinα/2, sinα/2, cosα], [−
√

3 sinα/2, sinα/2, cosα], we can

write the line equations of O′A′, O′B′, O′C ′ as

O′A′ : y = 0, x
− sinα

= z+L
cosα

O′B′ : x
(sinα)/2

= y

(
√
3 sinα)/2

= z+L
cosα

O′C ′ : x
(sinα)

= y

−(
√
3 sinα)/2/2

= z+L
cosα

(4.2)

Note that point A′ is the intersection of the corresponding spatial lines OA and O′A′, so

are B′ and C ′. Therefore, coordinates of the three points, A′, B′, and C ′, can be obtained

by solving the equations

OA = O′A′

OB = O′B′

OC = O′C ′

(4.3)

Thus the solutions are

A′ :
[
(xA, 0, z0) × − tanα

xA+z0 tanα
L
]

B′ :
[
(xB, yB, z0) × tanα

2xB−z0 tanα
L
]

C ′ :
[
(xC , yC , z0) × tanα

2xC−z0 tanα
L
]

We can then compute the equation of plane A′B′C ′ by setting a parametric equation

given by

c1x + c2y + c3z = 1 (4.4)
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After substituting the coordinates of A′, B′, C ′ in Eq. 4.4, respectively, and rearranging

them to a matrix form, we have

Tc = b, (4.5)

where T =


−xA 0 z0

xB yB z0

xC yC z0

, undetermined coefficients c =


c1

c2

c3

 and b =


xA+z0 tanα

L·tanα

2yB−z0 tanα
L·tanα

2yC−z0 tanα
L·tanα


.

Since points A′, B′, C ′ are non-colinear, T is always invertible. The coefficients c can

be solved with c as c = T−1b. Let |D′E ′| be the dimension of an arbitrary object of

interest on the plane A′B′C ′. With their projections on the camera plane D(xD, yD, z0),

and E(xE, yE, z0), we can obtain the line equations of OD, OE using their two-point forms.

The coordinates of D′(x′
D, y

′
D, z

′
D) and E ′(x′

E, y
′
E, z

′
E) are solutions of the equations, which

represent the intersection of the lines OD, OE with the object plane A′B′C ′

d = PDT
−1b

e = PET
−1b

(4.6)

where d =
[

1
xD′

, 1
yD′

, 1
zD′

]T
, e =

[
1

xE′
, 1
yE′

, 1
zE′

]T
, PD =


1 yD

xD

z0
xD

xD

yD
1 z0

yD

xD

z0

yD
z0

1

, and

PE =


1 yE

xE

z0
xE

xE

yE
1 z0

yE

xE

z0

yE
z0

1

 .

Once the coordinates of each end of a segment D′E ′ is known, it is straightforward to

calculate the magnitude of D′E ′ in the direction
−−→
DE.
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4.3 MODIFIED LASER BEAM MODEL AND CORRESPONDING

ALGORITHM

4.3.1 Estimation of Approximate Intersections’ Coordinates and Planar Patch

Equation

In the implementation of 3D plane reconstruction, because the laser beams and projection

rays are all estimated from the information extracted from images, the line equations are

usually distorted by measurement noise and processing noise. As a result, two estimated

skew lines never intersect at a certain point under real experimental conditions. However,

with well controlled calibration and feature detection, the minimum distance between two

skew lines is very small and an approximated intersection point can be calculated using a

gradient descent searching method.

First, we measure the spatial line equation through a calibration step. There are several

ways to represent the equations of OA,OB, and OC. We choose to use the two-point form

equation in this method. Therefore we need to measure: 1) Points A′, B′, and C ′ with their

pixel coordinates under the image coordinate system; 2) camera intrinsic matrix; 3) camera

optical center position O; 4) and the coordinates of A,B, and C on the camera plane. Details

of the calibration process and coordinates transformation will be provided in Chapter 5.

It is an algebraic problem to solve the intersection of two skew lines. Since all the six line

equations have been obtained from above analysis, we are able to estimate the intersections

of Line I and OA, Line II and OB, and Line III and OC. The six line equations are:

Line I :


x = x1 + a1t

y = y1 + b1t

z = z1 + c1t

Line II :


x = x2 + a2t

y = y2 + b2t

z = z2 + c2t

Line III :


x = x3 + a3t

y = y3 + b3t

z = z3 + c3t

OA :


x = xA + aAt

y = yA + bAt

z = zA + cAt

OB :


x = xB + aBt

y = yB + bBt

z = zB + cBt

OC :


x = xC + aCt

y = yC + bCt

z = zC + cCt

33



−100 −50 0 50 100
−50

0

50

100
100

150

200

250

300

350

400

Figure 17: Six skew lines and estimate intersections

Figure 17 shows the six spatial lines and the approximated intersections. A search method

as described in Table 12 (see Appendix) is adopted to search for two points on the two skew

lines that have the shortest distance between them, and the point in the middle of them is

used as the approximated intersection.

With the coordinates of three approximated intersections A′(x′
A, y

′
A, z

′
A), B′(x′

B, y
′
B, z

′
B),

C ′(x′
C , y

′
C , z

′
C), we are able to determine the equation of the object plane, which contains the

three intersections, as

∣∣∣∣∣∣∣∣∣
x− x′

A y − y′A z − z′A

x− x′
B y − y′B z − z′B

x− x′
C y − y′C z − z′C

∣∣∣∣∣∣∣∣∣ = 0 (4.7)

.
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4.4 ASSUMPTIONS AND GEOMETRIC RELATION AMONG IMAGE,

CAMERA PLANE, LED BEAM AND OBJECT PLANE

In our second design, an LED spotlight is used as a reference light. A spotlight, which forms

a conic region, is projected from the LED onto the object plane, as shown in Figure 18.

The spot pattern, represented by a feature ellipse, is the intersection of the object plane and

the lightening cone. The object plane intersects the optical axis (center line) of the LED at

point P ′. The distance between the camera optical center O and the LED optical origin O′

is L. We assume that the optical axis of the camera and the center line of the LED cone

are parallel, which can be controlled when we setup the device. Let the plane determined

by the two parallel axes, the z axis and LED optical axis, to be Π. We assume that the

pre-measured falloff angle of the LED cone is β and the dihedral angle between object plane

and a vertical plane is θ, which is produced by rotating object plane along y axis only. One

of the semi-axes, which is located in the plane Π, is r.

x

O
Camera plane

Object plane

0z z

Dihedralangle is θ

θ

Q’QL r

y z

Feature EllipseEnlarged view
x’

y’

O’

Q’

S’

P’

L

Center of wide beam
O’ β

Center line r

Figure 18: Geometrical relationships among image, camera plane, LED spotlight and object

plane
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4.5 LED BEAM SYSTEM MODEL AND CORRESPONDING

ALGORITHM

The equation of the feature ellipse on the object plane can be derived from the following

equation [106]:

(cos2 β − sin2 θ) · x′2 + cos2 β · y′2 + r · sin 2β · sin θ · x′ − r2 cos2 β = 0 (4.8)

.

If we take an arbitrary point Q′ on the 2D feature ellipse with coordinate (x′, y′), the

projection of Q′ on the camera plane is Q with coordinates (x, y) and S ′ is the perpendicular

foot of the point Q′ to the x axis on ellipse plane. With the knowledge of camera focal length

z0 and the distance L, and denoting that the distance between point S ′ and the camera plane

is l, we can easily obtain the relation between the coordinates of object Q′ and its image Q

in their own coordinate system as{
x

L+x′·cos θ = z0
z0+l−x′·sin θ

y
y′ = z0

z0+l−x′·sin θ
(4.9)

x′, y′ can be solved from Eq. (4.9),{
x′ = (z0+l)·x−z0·L

x·sin θ+z0·cos θ
y′ = L·sin θ+(z0+l)·cos θ

x·sin θ+z0·cos θ y.
(4.10)

The radius r can be calculated by

r = (z0 + l) · tan β. (4.11)

Substituting Eqs. 4.10 and 4.11 into Eq. 4.8, we have

x2 +(1+
L

z0 + l
tan θ)2 ·y2−2

z0 · L
z0 + l

·x+
z0

2 ·  L2

(zo + l)2
−f 2 ·tan2 β ·(1+

L

z0 + l
tan θ)2 = 0. (4.12)
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Eq. 4.12 can be rewritten into a standard ellipse equation :

(x− x0)
2

a2
+

y2

b2
= 1, (4.13)

where x0 = z0·L
z0+l

, a = z0 · tan β · (1 + L
z0+l

tan θ), and b = z0 · tan β.

Therefore, the image of the light pattern projected on a tilted plane is also an ellipse.

To eliminate the measurement of falloff angle β, we define a dissimilarity measure as

dissimilarity =
a

b
− 1 =

L

z0 + l
tan θ. (4.14)

The distance l can be estimated from the position of the ellipse center x0. The oblique

angle θ of the object plane can be calculated from the dissimilarity index. For a given l, the

greater the dissimilarity, the more elongated the ellipse, and hence the more tilted the object.

After estimating l and θ, the coordinates of an arbitrary point in the object plane can be

obtained from its image according to Eq. 4.10, and the equation of the planar patches is

determined by the center and oblique angle of the ellipse. In this manner, the actual object

size can be calculated.

The above algorithm can estimate an object’s dimensions when the object plane is rotated

along y axis. In fact, an object plane can be rotated along any combination of the three axes.

However, the analytical expression of an arbitrary rotation is too complicated to derive. We

analyze the rotation of an object plane separately with two independent parts: along y axis

and along x axis, since the rotation along z axis will not affect our algorithm. The solution

of a rotation along the x axis is similar with Eq. 4.10.

4.6 HEIGHT AND VOLUME ESTIMATION OF REGULARLY SHAPED

OBJECTS

Using the algorithms described above, we are now able to estimate the 2D dimensions on

the determined object plane from only one image. However, in many 3D reconstruction

applications, the estimation of object volume is required. Fortunately, for certain regularly
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shaped objects, prior knowledge of their profiles is available. We can use some clues from

the object’s shape and their profiles to estimate their height and volume.

S2P4

P3 Height needs to be 

S1
P1 P2

n
P3 estimated

Figure 19: Height estimation on a perpendicular plane S2.

No information is available about the third dimension of the object besides what we can

derive from the reference lights. However, we can utilize the shape of an object to find an

equivalent height of the food, which can be estimated either manually or computationally.

To simplify the description of the following derivation, we rename the object plane A′B′C ′

as plane S1 and the equation of S1 is given by c1x+ c2y + c3z = 1. As shown in Figure 19, if

there is a perpendicular plane S2 in the image, we can easily find two points P1(x1, y1, z1) and

P2(x2, y2, z2) on the line, which is the intersection of the two planes. Since the normal vector

n(c1, c2, c3) of plane S1, which passes point P1, is on the plane S2 , we can obtain another

point P3(x3, y3, z3) = P1 + n on the plane S2. With the coordinates of three points P1, P2,

and P3, it is straightforward to calculate the equation of the plane S2 using a three-point

form as

∣∣∣∣∣∣∣∣∣
x− x1 y − y1 z − z1

x− x2 y − y2 z − z2

x− x3 y − y3 z − z3

∣∣∣∣∣∣∣∣∣ = 0 (4.15)

.
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Assume that the height we need to estimate is available and one of its ends is on the

plane S2. We can reconstruct the metric coordinates of this end from the image using the

line-plane intersection approach. For instance, let P4(x4, y4, z4) be the other end of the height

segment on plane S2. The dimension D of the height is just the distance from P4 to plane

S1,

D =
|n−w|

|n|
=

|c1(x− x4) + c2(y − y4) + c3(z − z4)|√
c12 + c22 + c32

=
|1 − c1x4 − c2y4 − c3z4|√

c12 + c22 + c32
(4.16)

where w = −


x− x4

y − y4

z − z4

.

As long as we can find a perpendicular plane which contains the desired height of the

object, we can use the above method to estimate the height based on the knowledge of

determined object plane S1 and clues of the object’s shape from the image. However, for

objects with irregular and complicated shapes, we have to tolerate a larger error in the

estimation of the third dimension, or employ more sophisticated methods which are part of

the future work. In this dissertation, we manually select equivalent heights for various food

objects.
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5.0 SYSTEM CALIBRATION

There are several different coordinate systems in our dimensional estimation model, including

image, camera, world, and structured lights coordinate systems. We need to first transfer

them into a uniform coordinate system and then apply the proposed methods within this

system. Two system calibration processes are implemented: 1) Camera system calibration

that connects a 2D image system using pixel unit with 3D real world system using metric

unit; and 2) Structured lights system calibration which connects each component of the

structured light with the camera system. In this chapter, we provide the details of our

calibration processes.

5.1 CAMERA SYSTEM CALIBRATION

5.1.1 Checkerboard Approach

Camera calibration, often referred to as camera resectioning, is a way of examining an image,

or a video, and deducing what the camera situation was at the time the image was captured.

It was used primarily in robotic applications, but modern software applications make it quite

easy to achieve, even for home use.

More specifically, camera calibration is the process of determining the internal camera ge-

ometric and optical characteristics (intrinsic parameters) and the 3D position and orientation

of the camera coordinate system to a certain world coordinate system (extrinsic parameters).

Several factors need to be considered in the calibration stage, such as the fact that camera

pixels are not necessarily square, or that images are obtained by Analog-to-Digital card.
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According to the dimensions of the calibration objects, we can classify the techniques

into three categories: 3D reference object-based calibration [48, 51], 2D plane-based cali-

bration[55, 56], and self-calibration [45, 57]. Other techniques also exist such as vanishing

points[39, 40, 59] for orthogonal directions, and calibration from pure rotation [104, 105]. In

our work, we used a 2D plane-based calibration approach. The classical 2D approaches used

in early years entail solving for a large number of calibration parameters which required large

scale nonlinear search [52]. The conventional way of avoiding this nonlinear search is to use

the approaches similar to Direct Linear Transformation (DLT) [53,54] that solves for a set of

parameters with linear equations, ignoring the dependency between the parameters and the

lens distortion. Tsai [51] proposed a well-known fast approach using a real constraint called

radial alignment constraint and a two-stage technique to optimize the camera parameters.

The solution is generally designed for mono-view calibration. In contrast to Tsai’s method,

Zhang proposed a flexible technique which requires at least two different orientations of an

observed planar pattern to calibrate a free motion camera [55]. Without expensive cali-

bration apparatus and elaborate setup, the requirement of calibrating a camera is further

simplified. To calibrate our camera system, we used a modified approach based on Zhang

and Tsai’s method with a public Matlab toolbox from Jean-Yves Bouguet [92] in our camera

calibration.

We use a checkerboard to calibrate the camera intrinsic parameters as shown in Fig 20.

The intrinsic matrix K combines a normalized coordinate system ( focal length f = 1) and

additional transformation parameters of the camera, which is shown in Eq. 2.8

K =


fsx fsθ ox

0 fsy oy

0 0 1

 (5.1)

The relation between normalized pixel coordinates in the image and normalized metric

coordinates on the camera plane can be written as


xs

ys

1

 = K


xc

yc

1

 (5.2)
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(a) Intrinsic parameters calibration
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(b) Extrinsic parameter calibration

Figure 20: Intrinsic and extrinsic parameter calibrations

where xc and yc are normalized by assuming the distance between camera optical center and

camera plane is 1.

From the normalized camera plane coordinates in Eq. 5.2, the estimated coordinates of

three points A,B, and C, which are the projections of all three laser spots on the camera

plane (as shown in Figure 16) under the camera frame can be calculated using Eq. 5.3


Xc

Yc

Zc

 = f


xc

yc

1

 (5.3)

Similarly, we transfer all the coordinates of other points, such as O′, A′, B′, and C ′ from

the world frame to the camera frame by Eq. (2.1).
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5.2 STRUCTURED LIGHTS CALIBRATION

Our method uses structured light to retrieve the distance as well as the orientation informa-

tion of a planar object, therefore a precise calibration of the structured light is necessary.

However, to manufacture and calibrate a precise equilateral triangle structure with three

laser beams is very difficult. In fact, a perfect equilateral triangle structure is not necessary

for our algorithm as long as we can measure the spatial equation of each laser beam indi-

vidually. We designed a flexible and simple structured light calibration approach based on

the Orthogonal Linear Regression (OLR) line-fitting method. This approach is also used to

calibrate the LED spotlight.

5.2.1 Laser Beams Calibration

5.2.1.1 Orthogonal Linear Regression Method

In ordinary linear regression, the goal is to minimize the sum of the squared vertical dis-

tances between multi-dimensional data values and the corresponding values on the fitted line.

In orthogonal regression, alternatively the goal is to minimize the orthogonal (perpendicular)

distances from data points to the fitted line.

For example, the slope-intercept equation for a 2D line is:

Y = m ·X + b (5.4)

where m is the slope and b is the intercept.

A line perpendicular to this line will have a slope of - 1
m

, and its equation will be

Y ′ = −X

m
+ b′. (5.5)

If this line passes through some data point (X0, Y0), its equation will be

Y ′ = −X

m
+ (

X0

m
+ Y0). (5.6)
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The perpendicular line will intersect the fitted line at a point (Xi, Yi), where Xi and Yi

are defined by:

Xi = (X0 + m · Y0 −m · b)/(m2 + 1)

Yi = m ·Xi + b.
(5.7)

Therefore the orthogonal distance from (X0, Y0) to the fitted line is the distance between

(X0, Y0) and (Xi, Yi), which is computed by

di =
√

(X0 −Xi)2 + (Y0 − Yi)2. (5.8)

By minimizing the total orthogonal distances
∑

i di, we can fit 2D data to a line. The

3D spatial line fitting is quite similar by minimizing the three-dimensional total orthogonal

distance ∑
i

√
(X0 −Xi)2 + (Y0 − Yi)2 + (Z0 − Zi)2 (5.9)

This fitting method allows our system to be more flexible since there is no constraint on

the perfect alignment of the structured lights.

5.2.1.2 Measurement Of Spatial Line Equation of O′A′, O′B′ and O′C ′

To calibrate the structured light with respect to the camera coordinate system, we pro-

pose an image processing approach to implement the sampling and feature localization. After

that, the OLR algorithm is used to fit the samples into a spatial line.

First, we fix the camera and the structured lights at one testing panel (see Figure 21 (a)).

The testing panel is placed parallel to the x−y plane and its position is marked under a pre-

defined world coordinate system. The measurement pattern (see Figure 21 (b)) is marked

by rulers in both x and y directions and is aligned parallel to the testing panel well and fixed

on a rail which allowed us to slide the measurement pattern along the z direction. When we

turned on the laser or LED light, the highlighted spots were captured by the camera and

shown in images like Figure 21 (b).

By sliding the measurement pattern to a sequence of controlled positions, we can read

the x and y coordinates of the spot’s center from the captured image sequence and read the

corresponding coordinate on z direction from the marked rail (see Figure 22). We record the
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(a)Testing board with laser modules and a camera (b)View captured by the camera

Figure 21: Structured light calibration system setup

sampling measurements from multiple positions for each of the laser beams or LED spotlight

and provide the resulting data to an OLR estimator to estimate the spatial line equations in

a least-squared sense. Figure 23 shows the OLR fitting results for three laser beams in a 3D

view and a 2D side view. The circles represent the sampled positions and the three colored

solid lines are the approximated lines for each of the laser beams. As shown in Figure 23

(b), three laser beams do not intersect at one point because the three laser modules could

not be centered at a single point in the real experimental instruments. This drawback can

be eliminated if we use a single laser module with a diffraction grating film. We proposed a

modified method in Sec. 4.3 to deal with this less than ideal structured light situation. As

long as we can measure each beam’s spatial equation, our proposed algorithms can estimate

the dimensions from a single view.

Although the laser beams are narrow and well focused, they diverge as the distance

increases. We use the center point of a laser highlighted spot to represent the intersection of

a laser beam and the object. The method to extract the highlighted spot center point will

be described in Chapter 6.
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Figure 22: Sampling along the z direction

5.2.2 LED Beam Calibration

The calibration of the LED spotlight is similar to the calibration of the laser beams. To

implement the algorithm which uses LED circular feature to estimate the position and ori-

entation of an object plane, we need to know the center of the LED spot and the ratio

between the major semi-axis and minor semi-axis. In the calibration process, we mount

a calibrated camera and an LED diode on a testing panel which is parallel to the x − y

plane of the world coordinate system, and then move the measurement panel along the z

direction. The experimental environment is shown in Figure 24 (a) and one snapshot of the

measurement panel with a highlighted spot is shown in Figure 24 (b). To find the center of

the LED spot from images, we need to detect the contour of the highlighted region and fit

the segmented region into an ellipse. Figure 24 (c) shows the estimated contour of an LED

highlighted spot in one of the measurement images. The center of the LED spot is the center

of the detected ellipse. We will provide the details of the ellipse extraction in Chapter 6.
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Figure 23: Spatial lines fitting using Orthogonal Linear Regression

(a) The setup of laser and LED diode calibration (b) A highlighted spot on a measurement panel

(c) LED pattern extraction and fitting

Figure 24: LED diode calibration experimental setup, measurement and fitting
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6.0 CIRCULAR PATTERN EXTRACTION

In order to estimate the position and orientation of the projected structured lights, such as

laser and LED spotlight, we must extract the structured light patterns from the background

of the captured images and estimate their parameters. This feature extraction problem

involves multiple tasks, such as segmentation, shape fitting, parameter estimation and local-

ization.

Given a digitized image containing several objects, the feature extraction process consists

of two major phases. The first phase is image segmentation in which the region of interest

(ROI) is isolated from the rest of the scene. The second phase is feature extraction where the

objects are measured and a set of features (usually comprising a feature vector) representing

some significant characteristic of the objects is produced. Feature vector represents the nec-

essary knowledge upon which subsequent classification decisions are based. This drastically

reduced the amount of information compared to the original image or segments of the im-

age. In this chapter, we will introduce our solutions to these problems based on particular

characteristics of the structured lights that we used in our devices.

6.1 TECHNIQUES FOR CIRCULAR FEATURE PATTERN EXTRACTION

6.1.1 Pattern Segmentation

Thresholding is a particularly simple and effective technique to segment scenes containing

solid objects resting upon a contrasting background [116]. Generally, the thresholding meth-

ods can be categorized into six groups [107]: histogram shape-based methods, clustering-
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based methods, entropy-bases methods, object attribute-based methods, spatial methods

using higher-order statistics, and local methods. There have been a number of survey papers

on thresholding. Lee conducted a comparative analysis of five global thresholding methods

and studied advanced useful criteria for thresholding performance evaluation [108]. Trier and

Jain provided an extensive comparison basis (19 methods) in the context of character seg-

mentation from complex image background [109]. Glasbey demonstrated the relationships

and performance differences among 11 histogram-based algorithms based on an extensive

statistical study [110]. Thresholding works well if the objects of interest have a nearly uni-

form gray level. After the thresholding process, the image is converted into a binary one

representing the object and background classes. In this dissertation, we propose to use a

single channel or a linear combination of two or three channels to map the original color

image into a gray level image. Then, we use thresholding methods to segment the ROI.

Laser has ”coherent light”, which denotes a light source that produces (emits) light

of in-step waves of identical frequency, phase, and polarization. The laser modules used

in our device produce known monochromatic light. However, considering the reflection

characteristics of different materials, color, and position and orientation of the reflection

surface, the observed color and shape of a laser spotlight in images varies. We investigated

the color properties of selected laser modules and LED diodes and proposed appropriate

methods in Section 6.2 to segment their signatures from various image backgrounds. The

output of this segmentation is a binary image containing 1 and 0 to represent the ROI and

background or inverse.

6.1.2 Feature Vector Extraction

To extract the features after segmentation, without loss of generality, we assume that the

laser module produces an isotropic diverging narrow monochromatic beam. We will assume

that the reflecting spot is a circle in the captured image. A three-dimensional feature vector,

Vlaser = {x0, y0, r}, is used to represent a circle in the feature space in our problem. Here,

x0 and y0 are the coordinates of the center of circle in the image, and r is the radius. For the

LED diode case, we use a right cone with a known falloff angle to represent the lightening
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region. The intersection of this cone and the object plane has been shown in Chapter 4 to

be an ellipse. Therefore, a five-dimensional feature vector, VLED = {x0, y0, a, b, θ}, is used

to represent an ellipse. Here, x0 and y0 are the coordinates of the ellipse center, a and b are

the major and minor axes, and θ is the orientation of the ellipse.

To estimate the corresponding feature vectors of a circle or an ellipse, we first perform an

edge detection on the binary image which is the output of the segmentation phase. Normally,

we will have discontinuous edge segments after segmentation. To obtain a reasonable feature

vector, we utilize an ellipse fitting method proposed by Taubin [111] to estimate the five

parameters with a Matlab package developed by Nikolai Chernov [112]. Taubin developed

an approximate distance, which is a first-order approximation of the real distance, from a

point to a curve or surface, and turned the problem of fitting curves and surfaces into the

minimization of the approximate mean square distance. They showed that this nonlinear

least-squared problem can be reduced to a generalized eigenvector fit for certain families

of nonsingular curves and surfaces and presented a variable-order segmentation algorithm

based on the algorithm.

After fitting the detected edge into an ellipse, we know the position of the ellipse center

and the ellipse’s orientation. For the laser beams design, the circular feature spots became

ellipses with the same major and minor axes. The centers of three ellipses are used to

determine an object plane. For the LED spotlight design, the plane determined by the

ellipse is the plane of object.

There may be multiple objects, especially an elliptic object, with similar color and shape

as the structured lights in the image. Therefore, more information is needed to better

recognize the structured light, such as the possible position range and the size of the features.

Though we currently use a human-supervision approach to classify the desired features from

other objects, we will pursue the auto-classification of the feature patterns in our future

work.
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6.2 COLOR-BASED THRESHOLDING SEGMENTATION AND PATTERN

EXTRACTION

6.2.1 Laser Pattern Extraction

In the first device prototype design, we used three narrow-beam red laser modules to con-

struct a triangle-shape structured light. Since the laser beam diverges slightly as the distance

increases, usually we can detect a circular or an elliptical red spot in the observed image.

The center point of a highlighted spot is used to represent the intersection of the laser beam

and the object surface. The intensity of these spots varies in different images depending on

the illumination conditions and the reflection property of the object surface. Intuitively, we

first split the color image into three channels: red(R), green(G), and blue(B) channels. Fig-

ure 25 (a) shows the original color image and the split R-channel, G-channel, and B-channel

of a red laser spot reflected by a white paper. We can distinguish the difference between

R-channel and the other channels within the region of the laser spot. In the region around

the center of the spot, intensity is saturated. Therefore all channels have high values. The

R-channel shows a larger high intensity region because the laser emits red light. Figure 26

shows the 3D shapes of the pattern intensity in the region of laser spot in three channels with

a uniform background (white paper). However, this difference changes as the background

object changes. For instance, when the red laser beams are reflected by a slice of wheat

bread or a slice of yellow cheese, the absolute intensity in the spot region at each channel

has considerate difference. Since no uniform threshold can be set for different backgrounds,

a fixed intensity value is not a robust threshold to separate the ROI from the background.

HSV(Hue, Saturation, Value) or related models, such as HSL (Hue, Saturation, Light-

ness), or HSI (Hue, Saturation, Intensity), are often used in computer vision and image

analysis for feature detection or image segmentation. The applications of such tools include

object detection for robot vision, object recognition, text or license plates detection, content-

based image retrieval, and analysis of medical images [113]. The motivation for using the

HSV model is that RGB color models does not define color relationships the same way the

human eye does and some researchers think that users are better at describing colors in
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terms of HSL than RGB coordinates [114]. Since our structured light has particular known

colors (red and blue-white), we split the color images into HSV channels and apply the seg-

mentation process to them. Figure 25 (b) shows the splitting results of a laser spot on a

piece of white paper. We can see the ROI has obviously higher intensity compared with the

backgrounds at the V-channel.

We want to maximize knowledge of the monochromatic and intensity superposition of

the spot patterns. Upon further investigation of the difference between R-,G-,B-channels, we

found the Difference-Image between the red and green channels is also a possible candidate

for applying a global thresholding method. We used two different thresholding methods, a

popular clustering-based thresholding method proposed by Otsu [115] as well as a histogram-

based thresholding method, on different reflective surfaces with three candidate images: Red-

channel, Difference-Image, and Value-channel. Otsu’s method minimizes the weighted sum

of within-class variances of the foreground and background pixels to establish an optimum

threshold. The goal then is to select the threshold that minimizes the combined spread.

From the segmentation results, we find that for a clean background, good outer edges can be

obtained from all of the three candidate images with Otsu’s threshold and histogram-based

method. Figure 30 shows the segmentation using Otsu’s method on three gray-level images.

The ellipse fitting process is then applied to these segmentation results. The solid line

represents the fitting result and the ellipse center is marked by a star. The Difference-Image

has a hole in the middle because of the saturation in both R- and G-channels of the laser

spot. With a complicated background, the histogram-based method performs better than

the Otsu’s method, likely because two clusters are not enough to separate the features from

various background contents. With the histogram-based thresholding method, we slightly

adjusted the threshold values based on experimental performances. For the R-channel and

V-channel images, we used a value between 0.75 to 0.80. For the Difference-Image, we used

a value between 0.18 to 0.3. Figure 27, 28, and 29 show the segmentation results using both

thresholding methods.The results obtained from a number of experiments have shown the

validity of the presented method for satisfactory practical use.
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Red Channel

Green Channel

Original laser highlighted spot on white paper

Blue Channel

(a)

Hue Channel

Saturation Channel

Original laser highlighted spot on white paper

Value Channel

(b)

Figure 25: Intensity comparison of channel splitting : (a) A laser spot on a white paper

background in Red, Green, and Blue channels. (b)A laser spot on a white paper background

in Hue, Saturation, and Value channels.
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Figure 26: 3D shapes of intensities in Red, Green, and Blue channels.

6.2.2 LED Pattern Extraction

Apart from the red laser beams, we used a blue-white light LED diode in the LED structured

light design. The monochromatic advantage of the laser beams device is no longer available

with this design. However, we found that the ROI has relatively better contrast in the R-,

G-, H-, and S-channels (see Figure 31 (a) and (b)). We believe that is because the LED

light superposes extra illumination on the object surface and the reflections of these regions

have a naturally higher intensity. For this reason, we select the R-, G-, H-, and S- channels

as the inputs for the segmentation phase. A comparison is made using histogram-based

and clustering-based segmentation methods on different channels with other objects in the

image. The combination of the G-channel and histogram-based thresholding method has

shown the best segmentation performance. From the segmentation results shown in Figures

32 and 33, the G-channel image is shown to be the best candidate for segmentation, and the

histogram-based method has shown better performance than Otsu’s method. Therefore, we

used the combination of G-channel and histogram-based thresholding method in the LED

feature extraction phase.

After obtaining a successful segmentation, we apply the ellipse fitting method to estimate

the feature vector on the desired objects. The fitting results are shown in Fig 34. The solid

lines are the fitted ellipses and the stars are the centers of ellipses.
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Figure 27: Performance comparison on wheat bread: (a) Histogram-based method;

(b)Clustering-based method.
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Figure 28: Performance comparison on yellow cheese: (a) Histogram-based method;

(b)Clustering-based method.
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Figure 29: Performance comparison on a plate of noodle and beans: (a) Histogram-based

method; (b)Clustering-based method.
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Original Laser spot on white paper. Segmentation at Red Channel.

 

 

Edge
Fitting ellipse

Segmentationat Difference−Image. Segmentation at Value Channel

Figure 30: Segmentation on Red channel, Difference-Image, and Value channel and auto-

matic ellipse-fitting are shown on the Red channel and Value channel.
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Figure 31: Intensity comparison of channel splitting : (a) An LED spot on a white paper

background in Red, Green, and Blue channels. (b)An LED spot on a white paper background

in Hue, Saturation, and Value channels.

59



Original Image On Red−channel

On Green−channel On Saturation−channel

(a)

Original Image On Red−channel

On Green−channel

500 1000 1500

200

400

600

800

1000

1200

On Saturation−channel

500 1000 1500

200

400

600

800

1000

1200

(b)

Figure 32: Performance comparison: (a) Histogram-based method; (b) Clustering-based

method.
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Figure 33: Performance comparison: (a) Histogram-based method; (b) Clustering-based

method.
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Segmentation at Red Channel. Segmentation at Green Channel.

 

 

Edge
Fitting ellipse

Segmentation at Hue Channel. Segmentation at Saturation Channel

Figure 34: Segmentation and automatic ellipse fitting on Red, Green, Hue and Saturation

channels.
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7.0 EXPERIMENTAL RESULTS

We perform a number of experiments to verify the performance of the proposed prototypes,

the laser beams structured light prototype, and the LED structured light prototype. Both

artificial objects and real objects are used to test the performance of the proposed 3D di-

mension estimation algorithms. Two imaging instruments, a high resolution digital camera

and a median resolution miniature camera were both tested to evaluate the system perfor-

mance and robustness with different inputs. The experimental setup, estimation results, and

further discussion are presented in this chapter.

7.1 EVALUATION OF LASER BEAMS DESIGN

In order to obtain a good segmentation of the laser highlighted spots, we chose to use three

identical laser modules as reference lights because they had similar illumination intensities.

The laser modules were mounted on a testing panel. The details have been described in

Section 3.2.

7.1.1 Experiment with High Resolution Digital Camera

First, we performed an experiment with a high resolution digital camera as the image ac-

quisition device (a Sony DSC-F828 with resolution 2592×1944pixels). The instrument and

system setup is shown in Figure 35. Several trials were conducted to test our laser beams ge-

ometric algorithm with both artificial objects and real food objects. The three laser modules

were connected in series and driven by a voltage/current source. The operational voltage
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and current of each laser diode was 2.1V and 20mA, respectively, and the operational power

was about 40mW.

Figure 35: Prototype with laser beams structured light and high resolution digital camera

used in our experiment.

The spatial equations of all three laser beams were estimated using the method discussed

in section 5.2.1 as
x+30.5513
−0.2125 = y+29.3961

−0.173 = z−438.8792
0.9619

x−68.7446
0.341 = y+25.6228

−0.1445 = z−435.8595
0.9289

x−14.5248
0.0389 = y−66.6045

0.3387 = z−437.9242
0.9997

(7.1)

The camera calibration was performed using a checkerboard and a Matlabr camera

calibration toolbox by Bouguet [92]. The measured intrinsic matrix was

K =


2203.1 0 1308.2

0 2216.2 973

0 0 1


The elements in K were in the pixel units. The camera pitch size was given in manu-

facturer’s specification sheet as 2.7 µm. The measured fixed focal length was 5.95mm. The

measured rotation matrix and translation vectors (in millimeters) were

R =


0.030564 −0.999531 0.002113

−0.004408 −0.002248 −0.999988

0.999523 0.030554 −0.004475

 , T =


−34.742984

138.076016

387.721180


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Given a single image, we first extracted the feature vector, and then reconstructed the

projection rays of the spots. For example, we estimated three highlighted spots’ coordinates

reflected from a paper board as shown in Figure 36 (a) based on the perspective projection

theory. From their pixel coordinates in the image and the estimated parameters K, R, and

T, we obtained equations of the three projecting rays:

x
−0.4262 = y

−0.36383 = z+5.95
5.95

x
0.93561 = y

−0.31349 = z+5.95
5.95

x
0.1897 = y

0.95254 = z+5.95
5.95

(7.2)

(a) laser beams highlighted spots on a paper board
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Image 11; average distance = 439.7983 mm.    Physical length estimate error of three line segments are [2.3283      -1.385     -1.8406] mm

(b) Intersection estimation

Figure 36: Distance and dimension estimation on a perpendicular plane

In this experimental setting, the paper board with attached rulers was perpendicular

to the table and parallel to the camera. Therefore, the three highlights had the same “z”

distance to the camera origin. The measured distance between the paper board and the

origin as shown in Figure 15 was 440 mm. The estimated “z” distances of the three points

were 442.13 mm, 438.41 mm, and 437.96 mm, respectively, with an average of 439.7983 mm.

Figure 36 (b) shows the three approximated intersection points. The solid line in the middle

is the camera optical axis. With the coordinates of three intersection points, we estimated

the distance between object and camera, as well as dimensions of arbitrary object on the

board.
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In this dissertation, we define two values to compare the estimation performance: Abso-

lute Error and Relative Error as

Absolute Error = |X − X̂|, and

Relative Error = |X−X̂|
X

× 100%. where X is the true dimension and X̂ is the estimated

dimension using our algorithm.

     (a)        (b) 

(c) (d)

Figure 37: Real food samples for the dimension estimation experiments.

Various artificial objects and real foods were placed on a white paper plate (Figure 37)

at random positions. The statistical estimation results of distance and physical dimension

are listed in Table 1 and Table 2. The relative estimation errors of our method are less than

10% of the true dimensions.
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Table 1: Distance and physical length estimation with artificial objects

Distance to

a vertical plane

Dimension on

a vertical plane

Dimension on

a rotated plane

Number of Trials 11 12 24

Absolute mean

of error (mm)
2.0 3.3 3.7

Mean and STD of

relative Error(%)
0.44 ± 0.76 2.1 ± 1.7 2.44 ± 2.31

Table 2: Real food physical length estimation at arbitrary position using laser structured

light.

Bread Cheese slice Round steak Noodle

Number of Trials 13 15 12 14

True Dimension

(mm)
107 76 80 130

Average Estimated

Dimension (mm)
109.3 81.34 81.4 135.2

Mean of error

(mm)
2.3 5.4 1.4 5.2

Mean and STD of

relative Error(%)
2.1 ± 4.7 7.1 ± 5.4 1.8 ± 1.0 4.0 ± 5.0
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7.1.2 Experiment with Miniature Camera

Secondly, we performed experiments with a median resolution miniature camera as the image

acquisition device (Logitech web-camera with resolution 1600×1200pixels). The prototype

and system setup were shown in Figure 38. Several trials are conducted to test the laser

beams geometric algorithm with a set of real food objects.

Figure 38: Prototype with a miniature camera.

We re-calibrated the laser beams and the camera with the method discussed in Chapter

5. The spatial equations of all three laser beams were estimated as

x+42.6925
0.2018 = y+71.9837

0.1024 = z−329.4578
0.9741

x−13.2503
−0.2334 = y−10.2144

−0.1274 = z−329.6447
0.9640

x+28.0141
−0.0170 = y+60.9772

0.3809 = z−329.4865
0.9245

(7.3)

The camera intrinsic matrix K in the pixel units was found to be

K =


1313.26058 0 774.89935

0 1328.44812 600.44398

0 0 1


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The camera pitch size was 2.8 µm as provided in the specification sheets and the measured

fixed focal length was 3.7 mm. The measured rotation matrix and translation vectors were

R =


0.997709 −0.004644 −0.067489

−0.011712 −0.994433 −0.104716

−0.066627 0.105266 −0.992210

 , T =


50.063508

214.271946

528.517606


Our algorithm was tested by placing a paper board parallel with the camera. Seven real

objects were placed at 20, 50, 90 degrees to the horizontal plane with different distances

(shown in Figure 39). The estimation results of the dimension and height are listed in Table

3 to Table 7.

Table 3: Dimension and height estimates using laser structured lights at different distances.

The degree of rotation of the object was 20o with respect.

Cookie Hamburger Ball pizza

Number of Trials 23 17 15 9

Mean and STD of

Absolute Error of Length (mm)
2.92 ± 3.41 2.52 ± 2.30 7.75 ± 3.38 14.2 ± 18.3

Mean and STD of

Relative Error of Length (%)
4.49 ± 5.26 4.20 ± 3.84 19.30 ± 6.64 14.2 ± 18.3
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Table 4: Dimension and height estimates using laser structured lights at different distances.

The degree of rotation of the object was 20o with respect (cont.).

Box Bread Cup

Number of Trials 30 25 10

Mean and STD of

Absolute Error of Length (mm)
1.82 ± 1.91 3.80 ± 4.22 2.78 ± 3.15

Mean and STD of

Absolute Error of Height (mm)
1.02 ± 0.74 1.71 ± 1.76 4.85 ± 6.07

Mean and STD of

Relative Error of Length (%)
2.69 ± 2.81 3.92 ± 4.36 4.49 ± 5.09

Mean and STD of

Relative Error of Height (%)
4.88 ± 3.51 13.2 ± 13.5 4.05 ± 5.07

Table 5: Dimension and height estimates using laser structured lights at different distances.

The degree of rotation of the object was 50o with respect.

Cookie Hamburger Ball pizza

Number of Trials 23 17 15 9

Mean and STD of

Absolute Error of Length (mm)
2.38 ± 2.76 1.42 ± 1.78 7.68 ± 3.64 9.32 ± 4.50

Mean and STD of

Relative Error of Length (%)
3.66 ± 4.26 3.37 ± 2.96 19.2 ± 9.1 9.32 ± 4.50
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Table 6: Dimension and height estimates using laser structured lights at different distances.

The degree of rotation of the object was 50o with respect (cont.).

Box Bread Cup

Number of Trials 30 25 10

Mean and STD of

Absolute Error of Length (mm)
2.44 ± 2.36 3.50 ± 3.14 1.94 ± 3.05

Mean and STD of

Absolute Error of Height (mm)
6.30 ± 2.65 1.92 ± 1.28 23.9 ± 10.00

Mean and STD of

Relative Error of Length (%)
3.59 ± 3.46 3.61 ± 3.25 3.14 ± 4.93

Mean and STD of

Relative Error of Height (%)
30 ± 12.6 14.82 ± 9.88 19.9 ± 8.38

Table 7: Dimension and height estimates using laser structured lights at different distances.

The degree of rotation of the object was 90o with respect.

Paper Board Cookie Box Bread

Number of Trials 26 23 30 25

Mean and STD of

Absolute Error of Length (mm)
2.35 ± 1.35 1.88 ± 1.83 6.03 ± 3.91 4.10 ± 2.47

Mean and STD of

Relative Error of Length (%)
5.87 ± 3.39 2.90 ± 2.80 8.87 ± 5.75 4.24 ± 2.55
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Figure 39: Real objects used for dimension and height estimation
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7.2 LED BEAM DESIGN EXPERIMENT

Three experiments were performed to evaluate the feasibility and performance of the LED

spotlight design. The device prototype is shown in Figure 38. The first experiment was to

estimate the distance while keeping the object plane perpendicular to the camera optical

axis. The second experiment was to estimate both the oblique angle and distance for a

tilted object plane. The third experiment was to estimate the dimension and height of eight

objects (shown in Figure 39). The intrinsic parameters of the camera were calibrated before

the experiments. In each image, the center position and dissimilarity of the spotlight pattern

were extracted after segmentation and ellipse fitting. The experimental results are listed in

Tables 8 through 11.

Table 8: Estimated distances from perpendicular object plane

Distance l

(mm)
20 25 30 35 40 45

Estimated l

(mm)
20.65 25.21 29.97 34.71 40.14 45.22

Table 9: Estimated distances and angles from tilted object planes

Two experiments were performed to evaluate the feasibility 

of this measurement system. The first experiment was to 

keeping the object plane 

perpendicular to the camera optical axis. The second 

experiment was to estimate both the oblique angle and distance 

T II. E D A T O P  

l=30cm l=40cm                  True 

Estimated        !=30° ! =40° ! =50° ! =30° ! =40° ! =50° 

l (cm) 29.10   28.87 28.95 38.33   38.46 38.33 

! (°) 24.3 36.2 48.3 23.4   41.7 51.9 
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Table 10: Dimension and height estimates using LED structured light at different distances

and a plane tilted by 20o

Box Bread Cookie Hamburger

Number of Trials 10 10 10 10

Mean and STD

of Absolute

Error of

Length (mm)

1.95 ± 2.29 13.15 ± 25.48 7.95 ± 6.10 0.88 ± 0.70

Mean and STD

of Relative

Error of

Length (%)

2.87 ± 3.37 13.56 ± 26.27 12.62 ± 9.69 2.95 ± 2.35

Mean and STD

of Absolute

Error of

Height (mm)

1.96 ± 1.16 4.72 ± 1.58 0.55 ± 0.71 4.62 ± 2.55

Mean and STD

of Relative

Error of

Height (%)

9.33 ± 5.51 47.24 ± 15.80 13.75 ± 17.87 13.06 ± 7.5
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Table 11: Dimension and height estimates using LED structured light at different distances

and a plane tilted by 50o

Box Bread Cookie Hamburger

Number of Trials 10 10 10 10

Mean and STD

of Absolute

Error of

Length (mm)

-2.87 ± 2.62 11.91 ± 23.39 -7.82 ± 4.55 -1.50 ± 0.72

Mean and STD

of Relative

Error of

Length (%)

-4.22 ± 3.86 12.28 ± 24.12 -12.4 ± 7.23 -4.99 ± 2.43

Mean and STD

of Absolute

Error of

Height (mm)

2.39 ± 2.33 1.17 ± 1.24 0.43 ± 1.57 -0.56 ± 5.79

Mean and STD

of Relative

Error of

Height (%)

11.40 ± 11.68 12.37 ± 15.80 10.65 ± 39.27 -1.66 ± 17.04
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7.3 DISCUSSION

In this chapter, we have tested the proposed prototypes and dimension estimation algorithms

by performing experiments with various artificial objects and real foods. Cameras with both

high and median resolutions have been used as image acquisition instruments of the system.

For the laser beam design, the distance and physical dimension estimates with a higher

resolution camera show better performance because the higher resolution reduced image

processing errors in system calibration and feature extraction. The relative average error

with a high resolution camera is less than 10 % (shown in Table 1 and Table 2). With a

median resolution camera, both the dimensions in the object plane and the height of the

object are estimated at configurations with three angles (20o, 50o, and 90o to the horizontal

plane) and multiple distances. For objects with a cubic shape, the dimension estimates have

an average relative error of less than 10%. The average errors are similar for other test

objects at all angles. The results show the robustness of our estimation algorithms. The

edges of objects with certain shapes (e.g., a slice of pizza) are more difficult to extract, which

lead to bigger estimation errors. The height estimation was tested with three objects: a box,

a slice of bread, and a paper cup. The absolute average errors for the box and bread slice

are approximately 2mm and 3.5mm at 20o tilted plane, 9mm and 3mm at 50o tilted plane,

and 10mm and 6mm at 90o tilted plane, respectively. Our comparative study shows that the

height estimation algorithm performs better at smaller angles, and the dimension estimation

algorithms achieve better accuracy at angles between 20o and 50o. Because the shape of the

cup is not considered a regular shape, the estimation error is relatively larger.

For the LED spotlight design, our algorithms estimated the distance from the camera

to a parallel object plane, the tilted angle of object plane with respect to the horizontal

plane, and the object dimensions. The distance estimation from the perpendicular object

plane has an absolute average error of less than 1mm for objects at different positions (Table

8). This error is mainly caused by the system calibration error and the image processing

error. The distance estimation in tilted object planes shows different performances (Table 9).

The larger the tilted angle, the larger the estimation error. This is likely caused by uneven

attenuation on the edges of the LED spotlight resulting in bias at the elliptic center. For a
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larger tilted angle, the differences of intensity attenuation in different directions are larger.

The dimensional and height estimates of five objects (Table 10 and 11) in planes with tilted

angles between 20 and 50 degrees show similar absolute and relative errors.

Our findings are summarized as follows:

• The laser beam method works well on cubic objects at a wide range of locations. However,

the energy requirement, space, and cost of this design is higher than the LED design;

• The LED spotlight method works better when the object plane is parallel (or almost

parallel) to the camera plane than at largely tilted positions;

• The standard deviations are both relatively large because the number of trials is not

sufficiently large;

• For cubic objects, both methods work well when the rotation angle of the tilted plane is

between 20o and 50o ;

• For non-cubic objects, height estimates have larger errors because of the difficulty in

finding the points that define height.
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8.0 CONCLUSION

An accurate food dimension estimation method with a portable and affordable device is

highly desirable in dietary assessment for obesity study and treatment. In this dissertation,

we have presented two newly designed prototypes, a laser beam structured lights prototype

and an LED spotlight prototype. Novel methods based on geometric perspective projection

have been presented to accurately estimate 3D physical dimensions of food from a single

image. The proposed methods successfully estimated food dimensions in arbitrary positions

with the help of simple structured lights. The flowchart of the proposed food dimension

estimation approach is described in Figure 40.

Laser beam 

measurement

Feature points 

selection from 

Intersection 

estimation/ 

Object’s 

plane Object 

selection 
selection from 

images

Camera 

intrinsic & 

extrinsic 

parameter 

calibration 

Projection 

rays’ 

equations 

estimation

estimation/ 

approximation

plane 

estimation selection 

and 

dimension 

estimation

Figure 40: Flowchart of the proposed food dimension estimation approach

Two geometric algorithms have been developed, which were based on perspective projec-

tion geometry and optical triangulation. The first algorithm utilized laser beam structured

lights and was based on an ideal model of equilateral triangular structured lights. The plane

containing three reflected laser spots was determined by the geometry of the pinhole camera
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and all three laser beams. To handle the difficulty in setting up a very precise equilateral

triangle with three laser beams, an approach to individually calibrate and reconstruct the

laser beams was developed. An orthogonal linear regression method was used to reconstruct

the paths of the laser beams. Due to errors from system calibration, feature extraction,

and image digitalization, the approximated object plane was estimated using a modified

algorithm. The experimental results verified the performance of the proposed methods in

estimating dimensions with both artificial and real foods, in which a relative average error

less than 10% was achieved.

The second algorithm utilized an LED structured light based on the circular feature’s

deformation caused by the rotation, transformation, and reflection of a planar surface. The

image of LED spot was described by a feature vector, including the ratio of major and

minor axes, the position of the center, and the skew of the ellipse. The deformation of

structured light pattern was modeled as a function of the location of the object plane. The

spatial position of the plane was determined using the feature vector obtained in the feature

extraction phase, and the dimensions of the objects were then calculated from it. This

algorithm currently worked well with object planes rotated in a single direction and it was

more sensitive to the error in rotation angle estimation than the laser beams design.

A height estimation algorithm was also developed for regularly shaped objects in order

to estimate food volume. Accuracy of this algorithm depended on two factors: the accuracy

in the object plane estimation and the accuracy in height segmentation. The limitation of

this algorithm is that it depends on the visibility of the object’s height in the image.

To extract the structured spotlight from images, we applied a global thresholding method

to segment the spotlight and used an ellipse fitting method. After investigating the color

properties of the laser beam and the LED spotlight, we selected the difference-image and the

green-channel as the inputs for segmentation for the two structured light designs, respectively.

A histogram-based thresholding method and a clustering-based thresholding method were

applied. A comparative study with these two methods was conducted, and the former method

showed better performance on our image data sets. The Sobel edge detector was used to

detect the edges of spotlight after segmentation. The detected edges were discontinuous

and noisy. One reason was that the laser spots and the LED spots possessed blurred edges
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in the acquired images because of the natural divergence of the light beams. Moreover,

the reflective surface was usually not smooth, so the intensities of the regions close to the

boundaries were uneven. Since the projected patterns were known to be circular, we applied

an ellipse fitting algorithm to compensate for the noise effect.

Prototypes have been developed and are ready for the clinical tests [117]. We believe the

proposed approaches and techniques have many other potential applications in medical and

non-medical fields.
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9.0 FUTURE WORK

9.1 MORE EFFICIENT SYSTEM DESIGN AND FEATURE

EXTRACTION DIFFICULTIES

In this dissertation, several algorithms based on structured laser beams prototype have

shown satisfactory performance to determine planar patch dimensions accurately and effi-

ciently. However, the laser beams prototype requires more power and space to place and

drive three laser modules. Under some conditions, we cannot detect all three highlights from

the captured images because of occlusion, reflection, object’s color and other uncertainties.

One laser beam with a diffraction grating film is a more efficient in design and can provide

multiple reference points (such as a point array). However, the feature extraction of uneven

illumination intensity is still a very challenging image processing problem. A global thresh-

olding segmentation technique, such as that used in this dissertation, will no longer work in

the given situation. An adaptive local thresholding method is more suitable for the design

with attenuating point array pattern. Therefore, we will pursue the development of good

adaptive segmentation methods with respect to the characteristics of particular features in

our future work.

The proposed structured lights design and their corresponding estimation algorithms as-

sume that the laser and LED highlighted regions are elliptic and isotropically attenuating.

However, the laser highlights and the LED light spots present different intensities on the

closer edges and further edges in real images. This is caused by the different travel distances

of the light. This property results in difficulties in accurately extracting the regions of high-

lighted areas. Currently, we use same thresholds to segment spots in every directions. Since

good segmentation and shape analysis of the structured lights in images directly determine
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geometric parameters of the algorithm, we will develop new algorithms to improve perfor-

mance of the segmentation for varying attenuation in different direction of the laser and

LED highlights.

9.2 ROBUST DIMENSION ESTIMATION

We currently use a traditional optical triangular method to estimate the 3D coordinates

of a point based on the perspective model of a pinhole camera. The algebraic solution of

this model is neat and easy to be implemented. However, this method suffers from system

calibration errors and image processing noise. In our future work, we will develop robust

methods with better tolerance to such noises and uncertainties to improve the performance

of the 3D dimension estimation.
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APPENDIX

GRADIENT DESCENT SEARCHING METHOD

We propose a gradient descent searching method to find two points on each of two skew

lines, which have the smallest distance between two lines. The middle-point of these two

points is used as the approximated intersection in our method.
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Table 12: Searching the approximated intersection point between two skew lines

Definition:

l and l′ : Two skew lines,

p, and p′ : Point on line l and line l′,

d̂ = d(p̂, p̂′), shortest distance between two skew lines l and l′, known,

d(p, l′) = min d(p, p′), p′ ∈ l′, shortest distance between a point p and a line l′,

µ : Step-size with 0 < µ < 1,

ϵ : Stop criterion.

There are two steps to approximate the intersection point of two skew lines.

Step One: searching the closest point p̂ to line l′.

Iteration (for n = 1, 2, . . . , N), while e(n) < ϵ,

d(n) = d(pn, l
′),

e(n) = d(n) − d̂,

pn+1 = translate pn on l alone positive z direction by e(n) · µ

d(n + 1) = d(pn+1, l
′),

If d(n + 1) > d(n), pn+1 = translate pn on l alone negative z direction by e(n) · µ
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Table 13: Searching the approximated intersection point between two skew lines (Continued)

Step Two: searching the closest point p̂′ to point p̂.

Iteration (for m = 1, 2, . . . ,M), while e(m) < ϵ,

d(m) = d(p′m, p̂),

e(m) = d(m) − d̂,

p′m+1 = translate p′m on l′ alone positive z direction by e(m) · µ

d(m + 1) = d(p′m+1, p̂),

If d(m + 1) > d(m), pm+1 = translate pm on l alone negative z direction by e(m) · µ
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