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The neurotransmitter dopamine is implicated in cognitive function, emotion, and movement, as 

well as multiple disease states, like Parkinson’s disease, schizophrenia, and drug abuse.  Two 

commonly used techniques used for in the in vivo measurement of dopamine are microdialysis 

and voltammetry with carbon fiber microelectrodes.  Unfortunately, these techniques yield 

conflicting results, complicating our understanding of the dopaminergic mechanisms at work in 

the brain.  Microscopy studies reveal significant disruption to the tissue surrounding 

microdialysis probes, suggesting that alterations in functionality of the damaged tissue might 

contribute to the discrepancy between microdialysis and voltammetry.  In this dissertation, 

microelectrodes were implanted near microdialysis probes to examine the effect of probe 

implantation on stimulated dopamine release and uptake in the tissue surrounding microdialysis 

probes.  Voltammetric studies revealed a gradient in the activity of stimulated dopamine release 

and dopamine uptake near the probe.  Additional pharmacological studies revealed a disrupted 

blood-brain barrier near the probe, suggesting another level of tissue disruption caused by 

microdialysis probe implantation. 

Glutamate is implicated alongside dopamine in a number of the same diseases, including 

schizophrenia and drug abuse.  Although dopaminergic and glutamatergic projections into the 

striatum fail to form direct synaptic contact, an earlier voltammetric study found that local 

antagonism of ionotropic glutamate receptors caused a decrease in striatal dopamine levels, 

 iv



suggesting that glutamate acts locally within the striatum to regulate extracellular dopamine 

levels.  This dissertation expanded on that study to reveal that ionotropic glutamate receptors 

control a non-vesicular release process that contributes to the resting level of extracellular 

dopamine in the brain. 

Microdialysis and voltammetry results show large discrepancies between levels of 

dopamine after uptake inhibition.  Recent voltammetric studies suggest that D2 receptors 

participate in a homeostatic feedback mechanism that regulates extracellular dopamine levels 

after uptake inhibition.  In this study, the mechanism of dopamine release after uptake inhibition 

in rats pretreated with a D2 receptor antagonist was identified.  Dopamine released after systemic 

nomifensine administration in sulpiride-pretreated rats originates from an impulse-dependent 

(vesicular) pool of dopamine, suggesting that D2 receptors may modulate release by controlling 

vesicular stores and/or vesicular transport. 
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1. AN INTRODUCTION TO ELECTROCHEMICAL METHODS IN 
NEUROSCIENCE 

 

Neuroscientists employ numerous tools to examine the workings of the brain and central nervous 

system.  Electrochemical methods are versatile techniques for the study of numerous 

neurochemical environments and molecules, specifically, but not exclusively, catecholaminergic 

neurotransmitters.  These electrochemical methods, which include the use of microelectrodes 

with various voltammetric techniques, are used to monitor and measure a variety of 

neurochemicals in diverse environments, including synaptic vesicles, single cells, tissues, the 

anesthetized brain, and the awake, unanesthetized brain.  The versatility of microelectrodes and 

electrochemical methods extends to their use with other techniques, like patch clamp and 

electrophysiology, to obtain additional insight into these investigations.  This chapter will serve 

as an introduction into the history of electrochemistry in the neurosciences, including its rough 

beginnings and triumphs; the applications of electrochemistry in the neurosciences, where 

electrochemistry can be used, what it can be used to detect, measure and study; and finally, an 

introduction to the fundamentals of electrochemistry, including oxidation and reduction, 

diffusion, electrochemical methods, and electrode properties. 
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1.1. ELECTROCHEMISTRY IN THE BEGINNING: EARLY LESSONS IN 
SELECTIVITY 

 

The foundations of the electrochemical research and methods employed in neuroscience today 

originated from the Nobel Prize-winning work of Jaroslav Heyrovsky.  Heyrovsky and his 

contemporaries were interested in measuring and studying analytes at metal surfaces by 

electrolysis, or the adding or subtracting electrons through the application of a voltage 

difference, or potential.  Heyrovsky correctly predicted and measured the deposition of sodium 

ions by measuring the current produced at a dropping mercury electrode, establishing the first 

electro-analytical measurement.  His novel technique for identifying and quantifying analytes 

became known as “polarography”, named after the automated device (the “polargraph”) 

developed to record the current-voltage plot.  Today, polarography is known as voltammetry, but 

the principles are still the same; monitoring and measuring the current produced by different 

analytes at different applied potentials.  Heyrovsky won the Nobel Prize in 1959 for his 

discovery of polarography, which started the field of analytical electrochemistry, enabling 

scientists to examine electrode processes, chemical reactions and to measure numerous analytes, 

both in solution and in more adventurous media, like the brain. 

 Fifty years after Heyrovsky’s initial discovery, electrochemist Ralph Adams would 

boldly go where no electrochemist had gone before - into the brain.  Adams’ interest in 

monitoring neurochemicals in vivo began with his study of the electrooxidation of phenols, 

catechols and catecholamines.  He hypothesized that small electrodes could be implanted into the 

brain and used to oxidize the electroactive catecholaminergic neurotransmitters, namely 

dopamine and norepinephrine, and their equally active metabolites, such as homovanillic acid 

and DOPAC (Kissinger et al., 1973; Wightman et al., 1976; Adams, 1976).  In vivo voltammetry 
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with micro-sized graphite paste electrodes were used to monitor and measure these 

neurotransmitters, as well as the electroactive neurotransmitter serotonin (5-hydroxytryptamine) 

and its metabolites (Schenk et al., 1983).   While Adams worked with carbon paste 

microelectrodes, Francois Gonon and his colleges in France were implanting microelectrodes 

composed of carbon fibers into rodent brains to detect and monitor neurotransmitters (Ponchon 

et al., 1979; Gonon et al., 1980).   

The early in vivo electrochemical studies by Adams and Gonon were not without 

complications.  The limited selectivity of electrodes in vivo was a major issue.  Interfering 

species in the brain, such as ascorbic acid (AA) and neurotransmitter metabolites, often masked 

the species of interest and led to a number of misinterpretations of early data (Gonon et al., 

1980).  Selectivity improved with the introduction of different electrode pre-treatments and 

electrochemical techniques.  Gonon improved selectivity by electrochemically pretreating carbon 

fiber microcylinder electrodes, which altered the surface properties of the electrode so that 

ascorbic acid and catechols were oxidized at different potentials (Gonon et al., 1981).  

Unfortunately, electrical pretreatment of microelectrodes was not the definitive answer to the 

selectivity problem, in fact, it created some bigger problems.  Overzealous electrochemical 

pretreatment increased selectivity and sensitivity; however, the response time of the electrode 

decreased significantly, diminishing the valued temporal resolution of the technique and 

distorting subsequent interpretation of electrochemical measurements (Gonon et al., 1984).  As 

an alternative to electrochemical pretreatment, electrodes were coated with polyanionic 

polymers, such as the perfluorinated polymer Nafion.  This coating electrostatically rejects the 

anionic AA, while allowing the passage of cationic catechols with minimal temporal deficits 

(Gerhardt et al., 1984; Leszczyszyn et al., 1991).  While numerous novel electrode treatments are 
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investigated for use in creating the “perfect” electrode, which is both highly sensitive and 

selective, electrochemists continue to explore new environments and discover new 

neurochemical features with “less than perfect” electrodes. 

In the absence of a “perfect” electrode, the electrochemistry community has established 

criteria for chemical identification and verification of electrochemical signals from this 

inherently “less” sensitive technique.  These critical guidelines are actually supplemental 

experiments used to verify in vivo signals as originating from a particular analyte.  These critical 

experiments include electrochemical verification, such as in vivo voltammogram identification; 

anatomical and physiological verification, such as post-mortem analysis or electrochemical 

measurement from an area of excess analyte or an area with an absence of analyte; 

pharmacological verification, such as the use of drugs to induce changes in analyte synthesis, 

metabolism, release or uptake; and independent chemical verification, as in comparing the 

electrochemical response to another comparable technique (Phillips and Wightman, 2003).  

These criteria have helped to clarify the origins of the electrochemical signals generated in vivo 

without concentrating solely on maximizing the performance of the electrode. 

 

1.2. IN VIVO ELECTROCHEMISTRY: THE BENEFITS OF SIZE AND SPEED 

 

Electrochemical methods are best suited for measuring transient changes in concentration.  

Electrochemical techniques provide superior temporal resolution over sampling techniques, such 

as microdialysis, by allowing subsecond measurements of neurochemical changes in the brain 

and central nervous system.  Neurochemical events can be observed in real-time with 

electrochemical methods, which have resulted in the development of kinetic models for 
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neurotransmitter synthesis, release, uptake, and metabolism (Wightman and Zimmerman, 1990; 

Wu et al., 2002; Michael et al., 2005).  The kinetic parameters for dopamine, Km (the Michaelis-

Menton constant for uptake) and Vmax (maximal uptake rate), were previously unattainable due 

to the time constraints of microdialysis measurements.  Monitoring changes in these parameters 

under different circumstances, such as after cocaine administration (inhibiting uptake) or after 

receptor blockade, leads to a better understanding of how dopamine neurotransmission functions 

in the brain (Wu et al., 2001; Garris et al., 2003).  Naturally occurring transient increases in 

dopamine concentration have recently been detected on a subsecond time scale by voltammetric 

methods (Robinson et al., 2003; Cheer et al., 2004; Robinson and Wightman, 2004; Roitman et 

al., 2004).  These transients are virtually invisible to even the fastest microdialysis 

measurements, which occur in the minute time scale, nearly 100 times slower than the 

voltammetric measurements.  Real-time dopamine diffusion in vivo, volume transmission 

(Venton et al., 2003), the kinetics of drugs of abuse (cocaine and amphetamine) (Jones et al., 

1995; Greco and Garris, 2003), and transient dopamine release (Robinson et al., 2003; Cheer et 

al., 2004; Robinson and Wightman, 2004; Roitman et al., 2004) are all issues that can only be 

resolved with the superior temporal resolution afforded by electrochemical methods. 

In addition to the superior temporal resolution, electrochemical methods can be used to 

investigate environments off-limits to larger measuring devices.  Microelectrodes, some with 

dimensions in the single micron range, can measure cellular and subcellular events with ease.  

Microelectrodes and microsensors have been used in conjunction with numerous electrochemical 

techniques to monitor the release of different neurochemicals from single cells (Boudko et al., 

2001; Kumar et al., 2001; Smith and Trimarchi, 2001).  Quantal size and vesicular volume have 

also been investigated using microelectrodes (Kozminski et al., 1998; Pothos et al., 1998; 
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Colliver et al., 2000; Pothos et al., 2000), an impossible task for the much larger microdialysis 

probe.  While microdialysis probes may have the excellent selectivity and sensitivity, these 

devices are much too large to accurately and quickly sample the contents of a neurotransmitter-

containing vesicle.  Most sampling devices would have to sample the entire cell, diminishing the 

spatial resolution obtained by using microelectrodes.  In addition, selectivity at the cellular level 

is often not necessary, as cells like the norepinephrine-releasing chromaffin cell only release one 

neuroactive species (Leszczyszyn et al., 1991; Mosharov et al., 2003).  The enhanced spatial 

resolution of localized neurochemical events is only possible through the use of microelectrodes 

in conjunction with electrochemical methods. 

The small size of the electrodes used for in vivo electrochemical measurements makes 

this device particularly useful as an exploratory probe for use in delicate systems, like the brain 

and CNS.  Evidence of damage to the brain tissue surrounding implanted microdialysis probes 

suggests that theses devices are too large to use in vivo without disrupting the normal anatomy 

and physiology of the area.  Microscopy studies show a hole surrounded by dead cells and 

broken blood vessels extending at least 1 mm from the site of an implanted microdialysis probe 

(Clapp-Lilly et al., 1999; Zhou et al., 2001).  Recent evidence of disrupted flow through 

capillaries in the vicinity of implanted microdialysis probes suggests that blood flow and the 

integrity of the blood-brain barrier may also be compromised near microdialysis probes (Motzko 

and Michael, unpublished data).  On the other hand, ultrastructure of the brain tissue surrounding 

implanted microelectrodes revealed tracts too small to be followed by light microscopy, with no 

visible damage except for an occasional neuron with darkened cytoplasm (Peters et al., 2004), 

suggesting that microelectrodes have little negative impact on the structure of the surrounding 

tissue.  Recently, microelectrodes and cyclic voltammetry were used to monitor dopamine 
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activity in the vicinity of the microdialysis probe, revealing a gradient of disrupted dopamine 

release and uptake in the tissue extending at least 220 µm from the microdialysis probe (Borland 

et al., 2005), supporting the idea that larger microdialysis probes negatively affect both the 

structure and function of the surrounding tissue.  Obviously, the small size of the microelectrode 

is an advantage not only for studying small environments (cells, vesicles), but for studying intact, 

functional tissue and systems.   

New electrochemical methods and designs continue to develop, producing better, smaller, 

and faster electrodes, improving this already versatile technique, while simultaneously 

discovering new features and functions of the brain and other neurochemical environments.  

Nearly 30 years after Adams and Gonon first began their in vivo experiments, thousands of 

papers demonstrate the versatility and functionality of electrochemistry for in vivo detection, 

with the field continuing to grow, expand and explore new neurochemical arenas. 

 

1.3. APPLICATION OF ELECTROCHEMISTRY IN THE NEUROSCIENCES 

 

Electrochemical methods and devices provide superior spatial and temporal resolution in the 

detection of numerous species in vivo, making it a useful tool in the neurosciences.  

Electrochemical methods have explored the release of neurotransmitters from vesicles 

(Kozminski et al., 1998; Pothos et al., 1998; Colliver et al., 2000; Pothos et al., 2000), monitored 

chemical secretion from single cells (Boudko et al., 2001; Kumar et al., 2001; Smith and 

Trimarchi, 2001), examined the effect of pharmacological manipulation on dopamine release in 

brain tissue slices (Avshalumov  et al., 2003; Avshalumov and Rice, 2003), monitored glutamate 

activity in the anesthetized brain (Kulagina et al., 1999), and correlated locomotor activity to 
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changes in dopamine levels in the awake brain (Stuber et al., 2005).  The versatility of 

electrochemical methods extends to its use with other techniques, such as patch clamp and 

electrophysiology.  The scope of electrochemistry in the neurosciences extends as far as the 

imagination wishes to take it, with many new discoveries lying ahead. 

Many neurochemical species have been studied using electrochemistry.  The 

electrochemically active catecholamines, including dopamine, norepinephrine, and their 

metabolites, are perhaps the most studied neurochemicals.  In physiological media (pH 7.4) or in 

vivo, the catechol moiety of the catecholamines is oxidized to an ortho-quinone, as shown in 

Figure 1.1.  Serotonin and its tryptamine-derived metabolites are also electro-active and have 

been studied in vivo with voltammetry and microelectrodes (Daws et al., 1998).  The phenollic 

portion of serotonin and its metabolites is also oxidized, to form a ketone, as shown in Figure 

1.1.  While not considered “traditional” neurotransmitters, numerous electro-active species play 

significant roles in the brain and are frequently monitored using electrochemistry.  Ascorbic acid, 

nitric oxide, oxygen, and hydrogen peroxide are easily measured with microelectrodes, with their 

electrochemical schemes represented in Figure 1.2.   

Ascorbic acid is a particularly interesting neurochemical.  Levels of ascorbic acid in the 

brain range from 200-400 µM, making it one of the most prevalent molecules in the brain.  

Unfortunately, ascorbic acid is oxidized at potentials close to that of dopamine and 

norepinephrine, often times masking the voltammetric response of these neurotransmitters.  The 

“interferant” effects of ascorbic acid on the electrochemical detection of dopamine can be 

controlled by increasing the scan rate of the applied potential.  Interferent signals from the 

oxidation of ascorbic acid are decreased by increasing the scan rate because of the slow rate of 

charge transfer of ascorbic acid at the electrode surface.  Ascorbic acid can also interfere with the 
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reduction of dopamine-o-quinone back to dopamine, resulting in an increase in the dopamine 

signal at the electrode, but this effect can also be diminished by using a fast scan rate.  Despite its 

reputation as an in vivo electrochemical interferant, ascorbic acid is considered by some to be a 

neuromodulator of catecholamine function in the brain (Christensen et al., 2000; Rebec and 

Wang, 2001). 
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Figure 1.1. Electroactive neurotransmitters and their metabolites. 
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Figure 1.2.  Additional electroactive species found in the brain – ascorbic acid, nitric oxide, oxygen, and 
hydrogen peroxide. 

 
 

The electrochemical methods used in the neurosciences are not exclusive to the detection 

of neurotransmitters and their metabolites, but includes the detection and measurement of small 

molecules and biologically significant ions, as well.  Ion selective electrodes, such as pH 

electrodes, are often used in vitro, but can be miniaturized for use in various in vivo 

neurochemical applications (Boudko et al., 2001).  The Clark oxygen sensor is a small-molecule, 

rather than ion-selective, electrode that has applicability in vivo.  Oxygen (O2) is reduced to 

produce a measurable current at the electrode surface.  The oxygen sensor is constructed simply 

of a membrane-coated platinum wire electrode; however carbon fiber cylinder electrodes have 

also been used, in place of platinum, to detect oxygen (Kennedy et al., 1992).  Nitric oxide (NO) 

is another small molecule with relevance in vivo.  Nitric oxide sensors, which strongly resemble 

10 



 

oxygen sensors, have been constructed to study and measure NO in a number of different 

environments (Zhang et al., 2000; Kumar et al., 2001; Zhang et al., 2002).  Another small 

molecule of interest to neuroscientists is hydrogen peroxide (H2O2).  This molecule is easily 

detected at carbon fiber or platinum electrodes; however it is often oxidized at the electrode in 

the same potential window as many other electroactive species.   Consequently, a more selective 

electrode or sensor is required to detect and measure H2O2 in vivo.  Luckily, naturally occurring 

enzymes selective for peroxide are available and can be coupled with electrodes to make a H2O2 

sensor (Kulagina and Michael, 2003).   

Electrode selectivity for electroactive compounds like peroxide and ascorbic acid can 

also be improved with the addition of electrode coatings and additives.  Electrode coatings 

include electrodeposited polymers (1,2 diaminobenzene), electronically conducting polymers 

(polypyrrole) and polyelectrolytes (Nafion).  Coating electrodes with a thin film composed of 

polyelectrolytes, like Nafion, is a simple method for increasing electrode selectivity to particular 

analytes in vivo.  Nafion-coated electrodes are ion-selective, as the anionic composition of the 

thin Nafion films promotes preferential permeability to cations (Gerhardt et al., 1984; 

Leszczyszyn et al., 1991).  Polyelectrolyte films, along with a number of different conducting 

and non-conducting electropolymerizable coatings, can also be used to capture or immobilize 

enzymes on an electrode surface, creating a species-selective sensor (review: Bartlett and 

Cooper, 1993).  Enzyme-based electrochemical microsensors are also used to increase selectivity 

for electro-active analytes, like peroxide and AA, and to create novel detection schemes for non-

electroactive compounds, like glucose, glutamate, choline, and lactate (Kulagina et al., 1999; Cui 

et al., 2001; Kulagina and Michael, 2003).   
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Many non-electroactive species, such as glucose, glutamate, lactate and choline, are 

studied using electrochemistry.  In order to measure non-electroactive species, electrodes are 

constructed with specialized coatings and additives, which selectively generate electrochemical 

signals in response to a particular analyte.  Oxidase enzymes are the most commonly 

encapsulated or immobilized enzymes for use in electrochemical sensors, particularly in the 

detection of glucose, glutamate, choline, and lactate.  These enzymes catalyse the conversion of a 

particular substrate between the reduced or oxidized state, which can be then be detected at the 

electrode surface (Bartlett and Cooper, 1993).  These “redox” enzymes typically undergo the 

following reaction scheme to generate an electrochemically sensitive species, which is monitored 

at the electrode surface: 

substrate(RED) + enzyme(OX) → product(OX) + enzyme(RED) 

enzyme(RED) + co-substrate(OX) → enzyme(OX) + co-product(RED) 

Oxidase enzymes use oxygen (O2) as the primary co-substrate, generating hydrogen peroxide 

(H2O2) as the final co-product, which can be electrochemically oxidized at the electrode surface.  

Ideally, the rate of H2O2 production is directly related to the concentration of the analyte detected 

by the enzymes at the electrode.  For example, the oxidation of glutamate and subsequent 

oxidation of H2O2 is as follows: 

 glutamate + GluOx(OX) → α-ketoglutarate + NH3 + GluOx(RED) 

 GluOx(RED) + O2 → GluOx(OX) + H2O2 

 At electrode surface:  H2O2 → 2H+ + O2 + 2e- 

In this type of electrochemical sensor, the redox enzymes are immobilized in thin films so as to 

decrease the distance H2O2 has to travel to electrode surface to be oxidized.  Thin films assist in 

limiting peroxide diffusion or superfluous reaction of H2O2, which would result in low sensor 
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sensitivity.   The response time of the electrode also decreases with decreasing film thickness, as 

the diffusion distance of the substrate into the film to react with the enzyme decreases (review: 

Heller, 1992).  Thin films of encapsulated or immobilized redox enzymes are often used 

electrochemical methods of detection that could be easily and readily extended for use in the 

neurosciences. 

There is another type of electrochemical sensor that utilizes enzymes for detection of 

different species, but does not require immobilization of the enzyme on the electrode surface.  

This type of sensor, instead, “wires” enzymes to the electrode using a cross-linked polymeric 

redox macromolecule composed of a poly(vinylpyridine) complexed to Os(bpy)2Cl (Gregg and 

Heller, 1990; Heller, 1992; Kulagina et al., 1999; Kulagina and Michael, 2003).  The redox 

polymer forms a three-dimensional gel that incorporates, but does not immobilize, enzymes, 

while at the same time allowing for rapid in and out diffusion of substrates and products.  

Electrons transferred during the reduction of the enzyme are rapidly “wired” through the redox 

centers of the polymer to the electrode surface and are detected as changes in the current 

response.  Electrochemical sensors of this nature can be constructed to detect and measure 

different non-electroactive species simply by changing the functional enzyme, from glutamate 

oxidase to choline oxidase.  One type of enzyme-wired electrode for the detection of glutamate 

utilizes a cascade consisting of a glutamate oxidase and horseradish peroxidase (HRP).  HRP is 

used in this sensor to reduce the H2O2 produced by the glutamate oxidase reaction with 

glutamate.  The HRP subsequently oxidizes the osmium redox polymer, generating a current 

change in response to glutamate detection (Kulagina et al., 1999) 

It should be mentioned that electrochemistry is used in the neurosciences in many 

capacities, most commonly as an end-line detector for sampling and separation devices, like 
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microdialysis and HPLC; however, this introduction will focus on the utility of this technique as 

an in vivo analytical device.  The benefits of using microelectrodes coupled to voltammetry in 

vivo include real-time, microsecond recording and improved spatial resolution.  The small size of 

microelectrodes also limits implantation-induced damage to the brain tissue, while still allowing 

for extremely fast recording of analytes in the nanomolar concentration range.  The numerous 

features that make microelectrodes excellent tools for in vivo electrochemical applications in 

neuroscience will be described in more detail later in this introduction.  This introduction will 

concentrate on the applications of electrochemical methods in vivo, but with the awareness that 

microelectrodes and electrochemical detection is also widely used in other capacities in the 

neurosciences.  

 

1.4. ELECTROCHEMISTRY FUNDAMENTALS 

 

In the most basic sense, chemical reactions that produce or consume electrons are deemed 

electrochemical reactions.  Corrosion of a metal car bumper is an electrochemical process 

(oxidation).  The batteries that power virtually every gadget we use, from laptop computers, to 

cell phones, to portable CD players, rely on electrochemical reactions to function.  A flow of 

electrons is required for the cells in our body to generate ATP via oxidative phosphorylation.  

This section will briefly describe the fundamentals behind some of the commonly used 

electrochemical methods for in vivo neurochemical detection.   

Electrochemical processes occur at electrode surfaces.  These processes are oxidation, the 

transfer of an electron away from an analyte, and reduction, the addition of an electron to an 

analyte.  Oxidation or reduction can occur at an electrode surface when an applied potential 
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approaches the potential where the analyte is oxidized or reduced, known as the formal potential.  

Rapid electron transfer at the electrode surface is necessary for analytical electrochemical 

measurements; otherwise the electrochemical information used for identification of the analytes, 

such as the oxidation or reduction potentials, will be obscured and indecipherable.  Current, i, is 

the rate at which electrons are moved from the analyte to the electrode, 

t
nF

t ∂
∂

=
∂
∂

=
NQi      Equation 1 

where Q is charge, n is number of electrons, F is Faraday’s constant, and N is moles of analyte.  

From this relationship, we can see that current is dependent upon the concentration of analyte at 

the electrode surface.  The movement of the analyte of interest from its local environment to the 

electrode surface is dictated largely by diffusion, or random molecular motion.  The rate of 

electrolysis of the analyte, or flux (J), is dependent upon the diffusion coefficient (D) for the 

analyte and the concentration gradient (dC/dx) that develops at the electrode surface.  This 

relationship is stated in Fick’s first law (Equation 2):  

x
C
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∂−

=
DJ       Equation 2 

The magnitude of the current response can now be defined as the flux of the analyte to the 

electrode surface.  Current produced at the electrode surface can come from the solution itself, 

known as the charging current, or from the oxidation or reduction of an analyte, known as the 

faradaic current.  Charging current arises from additional electrochemical processes at the 

electrode surface, particularly the build up of potential differences between the solution and the 

electrode.  The electrode is said to behave like a capacitor in this instance, with the charging 

current, sometimes referred to as capacitive current, being proportional to the area of the 

electrode.  All current, faradaic or charging, is dependent upon the applied potential of the 
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electrode, which plays a large role in dictating the rate of the electron transfer and subsequent 

electrolysis of the analyte.   

The simplest method for monitoring the current produced by an analyte at an electrode 

surface is chronoamperometry, which is the monitoring of current with respect to time.  In 

chronoamperometry, the applied potential of the electrode is stepped up from a “resting” 

potential, where little to no electrolysis of the analyte occurs, to an applied potential higher than 

the formal potential of the analyte, which causes oxidation of the analyte.  The stepped potential 

is diagrammed in Figure 1.3A.  The current monitored during the potential step (E2) is directly 

proportional to the concentration of the analyte.  Chronoamperometry under diffusion controlled 

conditions, such as those present in most neuroscience applications, produces a specific current-

time response as stated in the Cottrell equation (Equation 3): 

t

nFA
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oo CD
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where A is the electrode surface area, Do is the diffusion coefficient for the analyte, Co is the 

concentration of the analyte and t is time.  The concentration profile for an analyte being 

oxidized in a chronoamperometric experiment is diagrammed in Figure 1.3C.  The current versus 

time response for a chronoamperometric experiment is shown in Figure 1.3B. 
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Figure 1.3. A. Diagram of the step potential used in chronoamperometry.  B. Current vs. time response 
generated in a chronoamperometric experiment.  C.  Concentration profile for times after the start of the 
chronoamperometric experiment.  Circled Inset: The decrease in the current response during the experiment 
corresponds to a decrease in the slope of the concentration, as described by the Cottrell equation (Equation 
3). 

 

An alternative of chronoamperometry, normal pulse voltammetry (NPV), uses a multi-

step, or multi-pulse, potential profile to oxidize or reduce analytes.  Just as in 

chronoamperometry, the electrode is held at a resting potential (E1) and stepped up to a higher, 

oxidizing potential (E2).  After a designated length of time, the step is ended and the potential is 

dropped back down to the resting potential.  After an interval at the resting potential, the 

potential is stepped back up to a potential (E3) higher than the first step (E2), where it is held for 

the same time interval as the previous step before dropping back to the resting potential again.  
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This potential profile, or waveform, is diagrammed in Figure 1.4.  The current produced during 

each step is proportional to the analyte concentration, as in chronoamperometry.  Normal pulse 

voltammetry has the added benefit of limited electrode fouling or filming and prevents 

accumulation of excess oxidized analyte, which can be neurotoxic.  This is due to the stepping 

down of the potential at each step, which reduces the newly produced oxidized analyte species.  

Also, NPV can be used to help identify the electrolyzed species through examination of the ratio 

of oxidation to reduction current for the species. 

 

E 

time

E1 

E4

E3

E2

Figure 1.4. Diagram of the potential waveform used in normal pulse voltammetry. 

 
 

Differential pulse voltammetry (DPV) is another electrochemical technique that can 

provide increased sensitivity and more efficient differentiation and resolution of different 

species.  This technique resembles normal pulse voltammetry, but with a few modifications.  The 

potential waveform for DPV is diagrammed in Figure 1.5A.  DVP differs from NPV in that the 

resting potential does not return to the initial potential, but changes with each step.  This new 
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resting potential is often referred to as the “base” potential.  The step rises in DVP are also kept 

relatively small in comparison to NPV, ranging from 10 – 100 mV per step, and are kept 

constant in respect to the base potential.  Unlike NPV, the current is sampled immediately before 

the potential is stepped up (ia) and immediately before the potential is stepped down (ib).  The 

difference between these current responses, (ib-ia), is plotted against base potential to produce a 

DPV voltammogram.  The DPV produces a peaked current-potential plot, or voltammogram, 

which provides a more qualitative description of the electrolyzed species, leading to increased 

selectivity and easier identification.  An example of the DPV voltammogram is shown in Figure 

1.5B.   
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Figure 1.5.  A. Diagram of the potential waveform used in differential pulse voltammetry. B.  Differential 
pulse voltammogram.  
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Chronoamperometry, NPV, and DPV measure current with respect to time; however, 

increased sensitivity and selectivity can be achieved with yet another electrochemical method, 

linear sweep voltammetry (LSV).  In this method, the potential applied to the electrode is 

increased progressively over a designated time interval.  The current is monitored as a function 

of the applied potential, producing a voltammogram.  The waveform and resultant 

voltammogram for an analyte electrolyzed by LSV is displayed in Figure 1.6A and B.  The 

voltammogram contains much information about the electrolyzed species.  The height of the 

oxidation peak of the voltammogram is proportional to the analyte concentration, while the 

potential at the point of maximum slope of the voltammogram is the formal potential of the 

analyte, which is used in identifying the electrolyzed species.  Linear sweep voltammetry can be 

used in reverse, to regenerate the original analyte be reducing the oxidized form of the analyte.  

The method of sweeping the potential forward to oxidize and then sweeping the potential back to 

reduce the newly produced oxidant is called cyclic voltammetry.  A waveform and 

voltammogram generated from a cyclic voltammetry experiment are shown in Figure 1.6A and 

B.  Careful examination of cyclic voltammograms produced in vivo can provide qualitative 

information for distinguishing a mixture of analytes without additional separation.  For example, 

increasing the potential scan rate eliminates the current response of ascorbic acid, which would 

normally overlap with that of the catecholamines, like dopamine.  This method is used frequently 

in the neurosciences and can be used to obtain much information, including reaction kinetics, 

electrode properties and quantitative measurement of numerous species. 
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Figure 1.6. A. Diagram of a potential waveform used in linear sweep (cyclic) voltammetry.  B. A cyclic 
voltammogram. 

 
 
 

1.5. THE BENEFICIAL PROPERTIES OF MICROELECTRODES  

 

The device that makes in vivo electrochemistry possible is the ultramicroelectrode (review: 

Wightman, 1981).  Small electrodes produce small currents, which enables microelectrodes be 

used in solutions of high resistance, like those found in physiological media or the brain.   The 

time scale of an experiment utilizing microelectrodes is also quite small, due to the reduced size 

of the diffusion layer the analyte must penetrate to reach the electrode surface.  The charging, or 

capacitive, current of an electrode decreases exponentially with a decrease in the surface area, 

while the time-dependent faradaic current decreases linearly with surface area, thus resulting in 

an increase in the faradaic to charging current ratio, which translates to rapid measurements.  

Catalytic reactions, where O → R → O, such as that which occurs when dopamine is oxidized in 

the presence of ascorbic acid, produce less interference at microelectrodes.  This occurs because 

the average distance the reduced species can diffuse is larger than the radius of the 
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microelectrode, so only a minimal amount of regenerated oxidant is formed at the electrode 

surface, contributing only minimally to the measured current.  Electrochemical measurements in 

vivo are certainly dependent on microelectrode size, in which smaller is better.   

Besides the electrochemical benefits of smaller electrodes, single-digit-micron sized 

electrodes do much less damage to nervous system tissue than larger, hundred-micron sized 

devices (as described in detail in a previous section).  The small size also allows greater spatial 

resolution, allowing investigators to get closer to sites of relevance, like vesicles, synapses, and 

single cells.  Over the years, microelectrodes have been constructed from different materials and 

in many shapes of electrodes for in vivo electrochemical experiments.  Adams’ original 

electrodes were disk-shaped, constructed from graphite paste pressed and sealed into a plastic or 

glass mold (Adams, 1976).  Disk-shaped electrodes are still used; however the graphite paste has 

been replaced by cut and polished carbon fibers encased in glass capillaries.  Perhaps the most 

common and popular electrode, today, is the carbon fiber cylinder electrode (Kovach et al., 

1984).  This microelectrode is easily constructed from commercially available carbon fibers 

pulled and sealed into glass capillaries.  They are available commercially, but are regularly 

fabricated in the laboratory with little labor or cost.  The next generation of electrodes for 

neuroscience application may involve the use of carbon nanotubes, platinum nanowires 

constructed using nanolithography, or even composites of nanoparticles.  Recent advances point 

to trends involving increased miniaturization of these already micro-sized electrodes. 
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1.6. CONCLUSION 

 

 Electrochemical methods are versatile tools for detecting, monitoring and measuring 

various neurochemical species.  Microelectrodes, in conjunction with the electrochemical 

techniques presented within this chapter, have been used to explore environments too small or 

too fragile to be examined by many other devices.   Electrochemical techniques have also been 

used to examine chemical phenomena on a subsecond time scale, providing new kinetic 

information and real-time measurements of neurochemical events.  Overall, the ease of use and 

flexibility in application make electrochemical methods ideal for studies requiring superior 

temporal and spatial resolution of neurochemicals in physiological environments. 
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2. VOLTAMMETRIC STUDY OF EXTRACELLULAR DOPAMINE NEAR 
MICRODIALYSIS PROBES ACUTELY IMPLANTED IN THE STRIATUM OF THE 

ANESTHETIZED RAT 

 

2.1. ABSTRACT 

 

Establishing in vivo microdialysis methods for the quantitative determination of dopamine 

concentrations in the extracellular space of the brain is an important yet challenging objective.  

The source of the challenge is the difficulty in directly measuring the microdialysis recovery of 

dopamine during an in vivo experiment.  The recovery value is needed for quantitative 

microdialysis, regardless of whether conventional or no-net-flux methods are used.  Numerical 

models of microdialysis that incorporate both diffusion and active transport processes suggest 

that dopamine recovery is strongly affected by processes occurring in the tissue closest to the 

probe.  Some evidence suggests that the tissue adjacent to the probe becomes disrupted during 

probe implantation.  Hence, the objective of the present study was to further identify whether the 

tissue adjacent to the probe is disrupted and, if so, whether that disruption might affect dopamine 

recovery.  The experiments were conducted with microdialysis probes implanted acutely in the 

striatum of rats anesthetized with chloral hydrate.  Carbon fiber voltammetric microelectrodes 

were used to monitor extracellular dopamine at three sites near the probes; immediately adjacent 

to the probe, 220-250 μm from the probe, and 1 mm from the probe.   Probes were lowered 

slowly over a 30-min period, so that dialysate dopamine levels were stable, in the low nanomolar 

range, and partially TTX-sensitive by the time experiments began.  Starting 2 hr after probe 
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implantation, dopamine was monitored by fast-scan cyclic voltammetry during electrical 

stimulation of the medial forebrain bundle and during administration of the dopamine uptake 

inhibitor, nomifensine.  The findings of this study show that a gradient of dopamine release and 

uptake activity extends at least 220 μm from microdialysis probes implanted acutely in the 

striatum of the anesthetized rat.   

 

2.2. INTRODUCTION 

 

Microdialysis has been employed over the past several years to sample dopamine from the 

extracellular space of the brain (Parsons and Justice, 1992; DiChiara et al., 1996; Camp et al, 

1997; Bradberry, 2002).  Nevertheless, quantitative determination of the extracellular dopamine 

concentration is challenging because existing methods for in vivo calibration of the probes are 

not so simple (Tang et al., 2003).  Without in vivo calibration of the probe, it is not possible to 

know the relative recovery of dopamine, which is necessary for quantification by both 

conventional and no-net-flux microdialysis.  Conventional microdialysis involves the 

determination of concentrations in dialysate collected with unmodified perfusion fluid.  No-net-

flux microdialysis involves reverse dialysis to find the point at which the concentration at the 

probe outlet, Cd
out, is the same as the concentration at the probe inlet, Cd

in.  Originally, it was 

thought that the no-net-flux concentration, Cnnf, should provide a quantitative measure of the 

concentration in the external medium, Ce
∞, where the infinity symbol denotes concentrations far 

from the probe (Lonnroth et al., 1987; Bungay et al., 1990; Morrison et al., 1991).   

However, where the in vivo microdialysis of dopamine is concerned, some recent studies have 

raised the question of whether Cnnf does in fact equal Ce
∞ (Peters and Michael, 1998; Yang et al., 
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1998; Lu et al., 1998; Yang et al., 2000; Bungay et al., 2003; Chen, 2005).  These studies suggest 

instead that the relationship between Cnnf and Ce
∞ is: 

R
CEC nnf

e
⋅

=∞       Equation 4 

 
where E and R are the extraction fraction and relative recovery, respectively.  According to 

Equation 4, Cnnf is a quantitative measure of Ce
∞ only when the extraction fraction and relative 

recovery are equal to one another.  In many examples of microdialysis (e.g. Zhao et al., 1995; 

Song and Lunte, 1999) the extraction fraction and relative recovery are equal to each other and it 

is appropriate to use the no-net-flux method for quantitative analysis.  In cases where the relative 

recovery has not been measured, however, caution is necessary when assuming that E equals R 

(Peters and Michael, 1998; Yang et al., 1998; Lu et al., 1998; Yang et al., 2000; Bungay et al., 

2003; Chen, 2005a). 

In general, there are two contributions to the concentration at the outlet of a microdialysis 

probe; the concentration recovered from the medium external to the probe and the concentration 

in the perfusion fluid that is not lost due to extraction: 

∞⋅+⋅−= e
in
d

out
d CRC)E1(C      

 
Data collected during reverse dialysis procedures are usually represented on a concentration 

difference plot (Figure 2.1), the form of which is obtained by rearranging the previous 

expression: 

∞⋅−⋅=− e
in
d

out
d

in
d CRCECC      Equation 5 

Equation 4 is obtained by rearranging Equation 5 after setting the left-hand side to zero.  

Equation 5 also shows that the slope of the concentration difference plot gives the extraction 

fraction: 
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which is evaluated by dividing the vertical distance by the horizontal distance (the ‘rise-over- 

run’) between two reference points on the line (Figure 2.1): 

( ) ( )
( )1

in
d2

in
d

1
out
d

in
d2

out
d

in
d

CC
CCCC

E
−

−−−
=  

where the subscripts 1 and 2 identify the reference points.  Usually, but quite arbitrarily, the 

point of no-net-flux is chosen as one of the reference points, so: 

0)CC( 1
out
d

in
d =−     and      nnf1

in
d CC =

0 

Cnnf 

Cd
in-Cd

out 

Cd
in

1

2 

Δx Δy E= 

Δy 

Δx -R·Ce
∞ 

 
 

Figure 2.1.  Schematic to illustrate how the extraction fraction is obtained from the slope of the concentration 
differences plot.  When the point of no-net-flux, labeled 1 on the plot, is used as a point of reference, Equation 
5 of the text is obtained.  Note that the relative recovery, R, is contained only in the y-intercept of the plot.  
Terms are defined in the text. 
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and E becomes:  

( )
( )nnf2

out
d

2
out
d

in
d

CC
CC

E
−
−

=   

which is normally written without the subscript 2: 

nnf
out
d

outin CC − dd

CC
E

−
=      Equation 6 

 
hile E is can be determined explicitly from the slope of the concentration difference plot, the 

situation is not so straightforward for the recovery.  The recovery is contained within the 

intercept of the concentration difference plot, i.e. where and  is the value from 

conventional microdialysis: 

W

0Cin
d = out

dC

∞=
e

alconvention
out
d

C
C

R      Equation 7 

 
quation 7 shows that the relative recovery cannot be found unless  is independently known, 

and vice versa.  Equations 4 and 7 are expressions that contain two unknown quantities and so 

cannot be further solved, which explains why in vivo calibration is necessary for quantitative 

analysis by both conventional and no-net-flux microdialysis. 

In the case of dopamine, it has been suggested that the extraction fraction and relative 

recovery may not be equal during in vivo microdialysis (Peters and Michael, 1998; Yang et al., 

1998; Lu et al., 1998; Yang et al., 2000; Bungay et al., 2003; Chen 2005a).  Briefly, we 

hypothesize that this is a consequence of the ability of dopamine uptake to promote dopamine 

extraction but inhibit dopamine recovery.  Exactly how and why this occurs, however, remains to 

be fully and quantitatively explained (Chen 2005b).  For example, some evidence suggests that a 

layer of traumatized tissue adjacent to the microdialysis probe (Clapp-Lilly et al., 1999; Zhou et 

∞
eCE
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al., 2001) also contributes to the difference between E and R (Yang et al., 2000; Tang et al., 

2003; Bungay et al., 2003).  Mathematical models of microdialysis that incorporate diffusion, 

active transport, and a trauma layer adjacent to the probe support the idea that the extraction and 

recovery values may not be the same (Yang et al., 2000; Bungay et al., 2003; Chen 2005a).  In 

contrast, Chen (2005b) suggests that a minor trauma layer (a 40% loss of dopamine release in a 

20-μm thick trauma layer) will not cause dopamine recovery to be suppressed by dopamine 

uptake.  Hence, it remains to be determined if the trauma layer that exists during in vivo 

microdialysis experiments is sufficient to compromise quantitative measurements of extracellular 

dopamine levels.  

The objective of the present study was to obtain more information about the situation that 

exists during acute in vivo microdialysis experiments in the striatum of anesthetized rats.  

Previously, (Lu et al., 1998; Yang et al., 1998) we placed carbon fiber microelectrodes 

immediately adjacent to and 1 mm from the microdialysis probes.  In the present study, we also 

positioned microelectrodes at a distance of 220-250 μm from the probes.  We monitored evoked 

dopamine release during electrical stimulation of the medial forebrain bundle (MFB) prior to 

probe implantation, after implantation, and after administration of a dopamine uptake inhibitor 

(nomifensine, 20 mg/kg i.p.).  In addition, voltammetry and microdialysis were used to monitor 

dopamine simultaneously, without electrical stimulation, after nomifensine administration.    
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2.3. MATERIALS AND METHODS 

 

2.3.1. Analytical techniques 

 

Voltammetric microelectrodes (7 μm in diameter, 400 μm in length) were prepared and used 

exactly as described before (Yang et al, 1998).  Individual carbon fibers (Thornell T300, Amoco 

Performance Products, Inc., Greenville, SC, USA) were sealed with epoxy into pulled glass tubes 

and trimmed to a length of 400 μm.  Electrodes were calibrated before and after in vivo 

experiments in an artificial cerebrospinal fluid (aCSF; 145 mM Na+, 1.2 mM Ca2+, 2.7 mM K+, 

1.0 Mg2+, 152 mM Cl- and 2.0 mM phosphate adjusted to pH 7.4) containing known 

concentrations of dopamine.  Dopamine was detected by fast-scan cyclic voltammetry (Yang et 

al., 1998).  Voltammetric currents recorded in vivo were converted to units of dopamine 

concentration by postcalibration of the microelectrodes if the background subtracted 

voltammograms were consistent with the in vivo detection of dopamine (Baur et al., 1988; 

Borland and Michael, 2004). 

Vertical concentric microdialysis probes (220 μm o.d., 4 mm long) with an integrated 

carbon fiber microelectrode mounted on the outer surface (Figure 2.2) were constructed with 

hollow fiber dialysis membrane (Spectra-Por RC Hollow Fiber, MWCO: 13,000, 160 μm i.d., 

Spectrum Laboratories Inc., Rancho Dominguez, CA, USA) and fused silica outlet lines (150 μm 

o.d., 75 μm i.d., Polymicro Technologies, Phoenix, AZ, USA).  The integrated carbon fiber 

microelectrode (800 μm long) was mounted immediately adjacent to the outer surface of the 

microdialysis membrane, exactly as described before (Yang et al., 1998).  For simplicity of 

notation, we call the combined microdialysis-voltammetry probe a ‘dialytrode.’ 
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Figure 2.2.  Schematic to illustrate how the carbon fiber microelectrode is incorporated into the design of the 
microdialysis probes used during this work.  The microelectrode is placed immediately adjacent to the outer 
surface of the probe and held in place with a minimal amount of epoxy applied to the tip of the electrode.  
The combined device is called a dialytrode in the text. 

 

 
 
2.3.2. Animals and surgical procedures 

 

All procedures involving animals were conducted with approval of the Institutional Animal Care 

and Use Committee of the University of Pittsburgh.  Male Sprague-Dawley rats (250-375 g, 

Hilltop, Scottdale, PA, USA) were anesthetized with chloral hydrate (initial dose of 300 mg/kg 

i.p. with additional doses of 50 mg/kg i.p. as needed to maintain anesthesia) and wrapped in a 

homeothermic blanket (EKEG Electronics, Vancouver, BC, Canada).  The rats were placed in a 

stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA) with the incisor bar set at 5 mm 
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above the interaural line (Pellegrino et al., 1979) and appropriately placed holes were drilled 

through the skull.  Electrical contact between brain tissue and a Ag/AgCl reference electrode was 

established with a salt bridge (a plastic pipet tip plugged with tissue paper and filled with PBS). 

 

2.3.3. Evoked dopamine release immediately adjacent to and 1 mm from microdialysis 

probes 

 
Carbon fiber microelectrodes were implanted at two sites in the striatum, separated by a distance 

of 1 mm in the sagital plane.  The posterior site was 1.8 mm anterior to bregma, 2.5 mm lateral 

from midline, and 4.5 mm below dura.  The anterior site was 1 mm anterior to the first location.  

A stainless steel bipolar stimulating electrode (MS303/1; Plastics One, Roanoke, VA, USA) was 

lowered towards the ipsilateral MFB until evoked dopamine release produced a response of at 

least 30 nA in amplitude at both voltammetric electrodes.  The optically isolated stimulus 

waveform was a biphasic, constant-current square wave with a pulse duration of 2 ms, a pulse 

height of 280 μA, a frequency of 45 Hz, and a train length of 25 s.  Stimuli were delivered at 20-

min intervals. 

Once stable stimulus responses were established at both electrodes, the microelectrode 

was removed from the anterior site and replaced with a dialytrode.  The dialytrode was lowered 

over a period of 30 minutes until its tip was 7.0 mm below dura.  By this procedure, the tip of the 

integrated carbon fiber was lowered to approximately the same depth as the original stand-alone 

microelectrode.  The dialytrodes were perfused with aCSF at a rate of 0.109 μL/min.  Electrical 

stimulation of the MFB recommenced 2 hrs after placement of the dialytrode and continued at 

20-min intervals.  Nomifensine (20 mg/kg i.p.) was administered 5 min after the third stimulus, 

and a post-drug response was recorded 20 min later.  
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2.3.4. Evoked dopamine release 220-250 μm from microdialysis probes 

 

In a separate series of experiments, evoked dopamine release was monitored with a 

microelectrode positioned 220-250 μm from a microdialysis probe.  For these experiments, it 

was necessary to implant the microelectrode at an angle of 5o from the vertical to prevent the 

barrel of the electrode from colliding with the body of the microdialysis probe.  Due to this 

angle, the bottom of the carbon fiber was approximately 220 μm from the outer surface of the 

microdialysis probe while the top of the fiber was approximately 250 μm from the probe. The 

microelectrode was positioned in the striatum and a stimulating electrode was lowered into the 

MFB until a response of at least 30 nA was established using the same stimulus parameters as 

described above.  The microdialysis probe was implanted over a period of 30 min to the 

following coordinates: 2.5 mm anterior to bregma, 2.5 mm lateral to from midline and 7.0 mm 

below dura.  The probe was perfused at 0.109 μL/min.  Electrical stimulation of the MFB 

recommenced 2 hrs after placement of the probe and continued at 20-min intervals.  Nomifensine 

(20 mg/kg i.p.) was administered 5 min after the third stimulus was delivered, and a post-drug 

response was recorded 20 min later.  

 

2.3.5. Effect of uptake inhibition on nonevoked dopamine levels near microdialysis 

probes 

 

Microelectrodes and dialytrodes were implanted in the striatum by the procedures explained 

above.  The dialytrodes were perfused with aCSF at 0.586 μL/min for two hours, after which the 
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collection of 20-min microdialysate samples began.  Nomifensine (20 mg/kg i.p.) was 

administered just after the collection of the third 20-min microdialysate sample, with adjustment 

for the time needed for the dialysate sample to pass through the probe’s outlet line.  FSCV 

recording continued in vivo throughout.  In a separate group of animals, tetrodotoxin (TTX) was 

added to the perfusion fluid. 

The dopamine concentration in microdialysate samples was determined by means of 

HPLC and electrochemical detection (BAS, West Lafayette, IN).  The small-bore column (1.0 

mm in inner diameter and 100 mm in length) was packed with C18 stationary phase on 3-μm 

particles.  The mobile phase (50 mM sodium phosphate, 0.1 mM sodium EDTA, 2.6 mM sodium 

octylsulfate, 5.0 mM triethylamine and 15% methanol (v/v), pH 5.6) was delivered at a flow rate 

of 70 μL/min.  Dopamine was detected at an applied potential of 650 mV vs Ag/AgCl. 

   

2.3.6. Drugs and solutions 

 

Chloral hydrate, nomifensine, and dopamine were used as received from Sigma (St. Louis, MO, 

USA).  Chloral hydrate and nomifensine were dissolved in phosphate buffered saline (PBS; 155 

mM NaCl, 100 mM phosphate, pH 7.4).  All solutions were prepared with ultrapure water 

(NANOPure; Barnstead, Dubuque, IA, USA). 
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2.4. RESULTS 

 

2.4.1. Impact of probe implantation on evoked dopamine release 

 

Voltammetric responses to electrical stimulation of the MFB were noticeably different at the 

three recording sites (see Figure 2.3 for individual representative responses).  Prior to 

implantation of a microdialysis probe, electrical stimulation of the MFB evoked voltammetric 

responses of similar amplitude at pairs of carbon fiber microelectrodes placed 1 mm apart in the 

ipsilateral striatum (solid lines in Figure 2.3, A and C).   There was no significant difference 

between the response amplitudes observed at the posterior and anterior sites, 17.9 ± 8.8 μM and 

15.9 ± 7.4 μM (mean ± standard deviation, n = 12 rats), respectively.   

After the preliminary stimulus responses had been recorded, the microelectrode was 

removed from the anterior site and replaced with a dialytrode.  The microelectrode at the 

posterior site was not disturbed during this operation.  The stimulus response amplitude recorded 

at the posterior site 2 hr after probe implantation (12.5 ± 7.5 μM; mean ± s.d., n=12), was 

noticeably but not significantly smaller than the response amplitude recorded before probe 

implantation (Fig. 2.3A).  Probe implantation caused nearly a 10-fold decrease of, but did not 

completely abolish, the evoked response at microelectrodes positioned 220-250 μm from the 

probe (Fig. 2.3B).  The response amplitudes observed after probe implantation were 12.6 ± 8.3 % 

(mean ± s.d., n=5) of those recorded before probe implantation.  The decrease was significant 

(t-test, p<.001).  No evoked responses were observed at the microelectrodes mounted on 

dialytrodes (Fig. 2.3C), suggesting that evoked dopamine release is completely abolished near 

the probes.  
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Figure 2.3.  Individual representative stimulus responses recorded with a voltammetric microelectrode at the 
posterior site 1 mm away from the probe (A), the site 220-250 μm away from the probe (B), and the anterior 
site adjacent to the probe (C).  The results in panel (A) and (C) were recorded at two electrodes in the same 
rat.  The results in (B) are from a different rat.  At each site, the solid line is the voltammetric response 
observed before probe implantation and the line with round symbols is the response observed 2 hrs after 
probe implantation.  The open circles signify the start and end of the electrical stimulation.  The 
concentration scale bars were determined by postcalibration of the microelectrodes. 

 

2.4.2. Evoked dopamine release after nomifensine administration 

 

The magnitude of the effect of systemic nomifensine administration (20 mg/kg i.p.) on the 

voltammetric stimulus responses was also different at the three recording sites (see Figure 2.4 for 

individual representative responses).  Nomifensine increased the response amplitude 1.5- to 2-

fold at the microelectrodes placed 1 mm from the probes (Fig 2.4A).  Nomifensine increased the 

response amplitude 3- to 4-fold at the microelectrodes placed 220-250 μm from the probes 

(Fig 2.4B).  A stimulus response was detectable after nomifensine administration at the 
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microelectrodes mounted on dialytrodes (Fig 2.4C), whereas no response was observed prior to 

uptake inhibition. 

time (s)
10 20 30 40

pre

post

1 μM

A) 1 mm from probe
(posterior site)

B) 220 μm from probe

time (s)
10 20 30 40

pre

post

3 μM

time (s)
10 20 30 40

pre

0.4 μM

C) adjacent to probe
(anterior site)

post

 

Figure 2.4.  Individual representative stimulus responses recorded with a voltammetric microelectrode before 
and 20 min after systemic administration of nomifensine (20 mg/kg i.p.).  Responses were recorded at sites 1 
mm from the probe (A), 220-250 μm from the probe (B), and adjacent to the probe (C).  The results in panels 
(A) and (C) were recorded from two electrodes implanted in the same rat.  The results in (B) are from a 
different rat.  The responses were recorded before (pre, dotted line) and 20-25 min after (post, solid line) 
systemic nomifensine (20 mg/kg i.p.).  The results in (B) are from a different rat.  At each site, the solid line 
with round symbols is the response recorded before nomifensine and the solid line is the response observed 
after nomifensine.  The open circles signify the start and end of the electrical stimulation.  The concentration 
scale bars were determined by postcalibration of the microelectrodes. 

 

2.4.3. Summary of the stimulus responses 

 

A summary of the results from a group of rats (Fig 2.5) shows that the stimulus response 

amplitude was affected by the distance between the microelectrodes and the microdialysis 

probes.  Probe implantation did not significantly alter the stimulus response amplitude at the site 

1 mm from the probes, decreased the response amplitude by nearly 10-fold at the site 

37 



 

220-250 μm from the probes, and completely abolished the response at the microelectrodes 

mounted on dialytrodes.  A trend is also evident in the responses observed after nomifensine 

administration, which were largest at the site 1 mm from the probes, smaller at the site 

220-250 μm from the probes, and smaller still at the dialytrode.  On the other hand, the 

proportional effect of nomifensine on the stimulus response amplitude was modest at the site 

1 mm from the probe (169 ± 31% of the predrug amplitude, mean ± stnd. err.), larger at the 

220-250 μm from the probe (415 ± 170% of the predrug amplitude, mean ± stnd. err.), and larger 

still at the site of the dialytrode.  Because of the absence of a detectable response prior to uptake 

inhibition at the microelectrodes mounted on the dialytrodes, it is not possible to quantify a 

percentage increase at this recording site. 
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Figure 2.5.  Summary of the effect of probe implantation and uptake inhibition after probe implantation on 
the amplitude of evoked dopamine responses recorded at voltammetric microelectrodes placed 1 mm from, 
220-250 μm from, and adjacent to microdialysis probes.  The bars represent the mean ± s.d. (n=3 
observations at the posterior and anterior sites; n=5 observations ate the site 220-250 μm from the probes).  
The solid trend line connects the responses obtained after probe implantation.  The dashed trend line 
connects the responses obtained after nomifensine administration. 
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The increase in response amplitude after nomifensine administration at the site 1 mm 

from the probes (169 ± 31%, mean ± stnd. err, n = 3) which was not significantly different from 

the increase at stand-alone microelectrodes (168 ± 32% mean ± stnd. err., n=3). 

 

2.4.4. Simultaneous microdialysis and voltammetry without electrical stimulation 

 

Basal levels of dopamine in dialysate samples collected beginning two hours after the 

completion of probe implantation were stable, in the low nanomolar range, and decreased by 60 

± 14% (mean ± stnd. dev., n=3) 1 hr after addition of TTX (10 μM) was added to the perfusion 

fluid (data not shown).  Systemic administration of nomifensine (20 mg/kg i.p.) caused a 

significant increase in dialystate dopamine levels (Fig 2.6A).  Dialysate dopamine levels reached 

a maximum of 144.1 ± 18.9 nM (mean ± s.d., n=5), a 10-fold increase over the predrug level.  

The effect of nomifensine was significant (one-way ANOVA, f=76.7, df=6,28, p<0.001).  

According to Duncan’s multiple range test, the dopamine concentrations in all four samples 

collected after nomifensine administration were significantly increased compared to the predrug 

basal level (p<0.05).  

In the absence of electrical stimulation, systemic administration of nomifensine 

(20 mg/kg i.p.) caused no dopamine response at microelectrodes implanted alone in the striatum 

or at microelectrodes placed 1 mm from microdialysis probes.  On the other hand, systemic 

administration of nomifensine caused a noticeable voltammetric response (non-evoked) at 

microelectrodes placed 220-250 μm from the probes (Fig. 2.6B).  At this recording site, the 

voltammetric signal began to increase within 5 min of drug administration, peaked 15-20 min 

after administration, and then returned steadily towards the predrug signal level.  Background 
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subtracted voltammograms obtained near the maximum of the response confirmed that the 

increase in the voltammetric signal was due to an increase in extracellular dopamine (inset, Fig. 

2.6B).  The voltammograms exhibit the expected peaks for the oxidation of dopamine and the 

reduction of dopamine-o-quinone.  In shape, position, and relative size, these peaks match those 

observed during postcalibration of the microelectrodes in dopamine standard solutions.  The 

voltammetric currents were therefore converted by postcalibration of the microelectrodes to units 

of dopamine concentration.  The solid line in Fig. 2.6B is the average change in dopamine 

concentration as measured by FSCV, which reached a maximum of 2.0 ± 1.2 μM (mean ± stnd. 

dev., n=6) above the predrug baseline.  The symbols in Fig. 2.6B show the average and standard 

deviation of the response at 10 min intervals.  The effect of nomifensine on the data symbols was 

significant (one-way ANOVA: f=3.76, df=4,25, p<0.05).  Duncan’s test showed that the results 

obtained 15 and 25 min after drug administration were significantly different from those 

obtained 5 min before drug administration (p<0.05). 

Fig. 2.6C directly compares the amplitude and time course of the change in dopamine 

concentration after nomifensine administration as measured by voltammetry (solid line) and 

microdialysis (solid line with round symbols).  The absolute amplitude and the time to reach the 

maximum response are clearly different between the two methods.  Some of this difference may 

be caused by the fact that the microdialysis reports the average dopamine recovered over the 

20 min prior to the collection of the sample.  To account for this, 20-min averages of the 

voltammetric responses were also calculated (solid line with triangular symbols).  Indeed, 

whereas the raw voltammetric trace peaked 15-20 min after nomifensine administration, the 

20-min averaged results peaked at 40 min.  However, the peak in the microdialysis response was 
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at 40-60 min, suggesting additional temporal delay in the response from sources other than 

averaging.   
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Figure 2.6.  (A)  The effect of nomifensine (20 mg/kg i.p.) on the dopamine concentration in striatal 
microdialysate (mean ± standard deviation, n=5).  The asterisks indicate a significant difference compared to 
the concentration at 0 min (ANOVA followed by Duncan’s test, p<0.05).   (B) The effect of nomifensine on 
dopamine as measured by FSCV with microelectrodes placed 220-250 μm from dialytrodes. The solid line is 
the average of the response recorded in 6 animals.  The symbols indicate the mean ± the standard deviation of 
the signal at 10-min intervals.  The asterisks indicate a significant difference compared to the response 
observed 5 min prior to nomifensine administration (ANOVA followed by Duncan’s test, p<0.05).  Inset: A 
representative background subtracted cyclic voltammogram obtained in one rat displaying the features 
expected for dopamine.  (C)  Dialysate and voltammetric responses for dopamine after uptake inhibition are 
plotted together to show the contrast in the responses observed by these two techniques.  The solid line is the 
averaged voltammetric response from panel (B).  The triangular symbols were obtained by time-averaging 
the voltammetric signals over the 20-min intervals just prior to the time at which the symbols are plotted.  
The round symbols are the microdialysis results from panel (A). 
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No nonevoked voltammetric response was observed at the microelectrodes placed 

adjacent to the microdialysis probes.  Since no nonevoked response was evident at 

microelectrodes 1-mm from the probes and adjacent to the probes, it appears that the tissue 

220-250 μm from the probe responds in a unique fashion to the systemic administration of 

nomifensine. 

 
 

2.5. DISCUSSION 

 

During this study, voltammetric microelectrodes were placed at three recording sites near 

microdialysis probes acutely implanted in the striatum of rats anesthetized with chloral hydrate.  

Voltammetric recordings of evoked dopamine release produced different responses at each 

recording site, both before and after the administration of the dopamine uptake inhibitor, 

nomifensine (20 mg/kg i.p.).  One of these sites also yielded a voltammetrically-detectable 

increase in nonevoked dopamine after nomifensine.  The observation that no two recording sites 

produced equivalent results reveals the presence of a gradient in dopaminergic activity in the 

tissue surrounding acutely implanted probes.  These findings suggest that disruption of the 

dopaminergic system associated with probe implantation extends at least 220-250 μm from the 

probes, although slight disruption was noticed 1 mm from the probe where stimulus response 

amplitudes were noticeably but not significantly decreased after probe implantation.   
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2.5.1. Methodological considerations 

 

The objective of this study was to further examine if implantation of microdialysis probes 

disrupts dopaminergic activity in the adjacent tissue.  We reasoned that this can be accomplished 

by placing carbon fiber microelectrodes near the probes.  The diameter of the carbon fiber 

microelectrodes is less than 15 times that of the microdialysis probes and the electrodes are also 

shorter.  The volume of the probes is ~10,000 times that of the microelectrodes.  Given that the 

extent of trauma associated with implantation is related to the size of the implanted device 

(Szarowski et al., 2003), we reason that the additional trauma caused by the microelectrodes 

would be negligible compared to the trauma caused by the probes.  This reasoning is consistent 

with our recent ultastructural study of carbon fiber implantation sites, which showed that 

physical tissue damage is mainly limited to a region about 3 μm larger than the fiber (Peters et 

al., 2004).  Other studies suggest that microdialysis probes lead to disruptions extending for 

hundreds to thousands of micrometers (Clapp-Lilly et al., 1999; Zhou et al., 2001).  It must be 

noted; however, that ultrastructural studies have not yet been performed after acute 

microdialysis, such as was performed during the present study.  

The majority of microdialysis studies use a wait time of 16-24 hrs between implantation 

of the microdialysis probe and the collection of dialysate samples for analysis.  In the present 

study, however, the wait time was only 2 hrs because the experiments were performed in 

anesthetized animals to allow close placement of the microdialysis probes and the 

microelectrodes using stereotaxic carriers.   Nevertheless, this acute study is relevant in that it 

provides an indication of the volume of tissue impacted by disruption associated with probe 

implantation.  Our findings clearly show that the tissue 220-250 μm from the probes is disrupted 
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at the time of probe implantation, which is important to know.  It remains to be determined if this 

same tissue recovers 16-24 hrs after implantation.  Histological results suggest that it might not.  

Szarowski et al. (2003) have demonstrated that glial activation is detectable on the day after the 

implantation of a micro-machined device of dimensions similar to those of microdialysis probes.  

Retterer et al., (2004) show that increased MAPK immunoreactivity, an accepted marker of cell 

stress, is present one hour after implantation and extensive on the day after implantation.  The 

inclusion of an extended wait period is an accepted practice in dopamine microdialysis because 

dialysate dopamine levels are stable and TTX-sensitive 16-24 hr after probe implantation.  Yet, it 

remains unclear if these are characteristics of tissue in a new ‘perturbed steady-state’ or tissue 

that has returned to normal after the probe-induced disruption. 

 In the present study, microdialysis probes were lowered slowly through brain tissue.  We 

spent 30 min lowering the probe tip to a depth of 7 mm below the surface of the brain.  This was 

primarily to assure the survival of the integrated carbon fiber microelectrodes, which can be torn 

away from the probe if care is not used.   With this slow-lowering procedure, we found that 

dialysate dopamine levels were stable and in the low-nanomolar range essentially immediately 

after implantation.  Moreover, 2 hrs after implantation, dopamine output was largely, but not 

completely, TTX-sensitive.  Together, these observations may indicate that the slow lowering 

procedure allows the tissue to reach a new stable state rapidly after probe implantation.  Other 

laboratories have also noticed the benefit of slowly lowering the microdialysis probe (DeBoer 

and Abercrombie, 1996; West and Grace, 2002).  

 

 

 

44 



 

2.5.2. A gradient in evoked release near microdialysis probes 

 

The amplitude of the voltammetric response to MFB stimulation became steadily smaller as the 

distance between the microelectrode and the probe became smaller (Figs. 2.3 and 2.5).   This 

same trend was also evident in the absolute amplitude of the stimulus responses observed after 

nomifensine administration (Figs. 2.4 and 2.5).  On the other hand, the proportional effect of 

nomifensine on the amplitude of stimulus response tended to increase as the separation between 

the electrode and the microdialysis probe decreased.  These results reveal the presence of a 

gradient in the activity of evoked dopamine release and dopamine uptake that extends at least 

220-250 μm from the probe.  The stimulus responses support the idea that the recovery of 

evoked dopamine is inherently low because evoked dopamine release is negligible near the 

probes compared to evoked release in the normal surrounding tissue.  In addition, the responses 

support the idea that the relative recovery of evoked dopamine is increased after uptake 

inhibition.  We attribute the latter observation to the increased ability of dopamine to diffuse to 

the probe after uptake inhibition.   

 

2.5.3. A gradient in nonevoked dopamine levels near microdialysis probes after 

nomifensine 

 

Nomifensine administration did not elicit a voltammetrically detectable increase in extracellular 

dopamine at stand-alone microelectrodes or at microelectrodes placed 1 mm from the 

microdialysis probes.  In contrast, an increase in extracellular dopamine (nonevoked) was 

observed at the microelectrodes placed 220-250 μm from the probes (Fig.  2.6). Similar to the 
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case with evoked dopamine release, this result can be attributed to the enhanced ability of 

dopamine to diffuse into the disrupted tissue after uptake inhibition.   Consistent with this idea, 

we recently found that the blockade of ionotropic glutamate receptors in the striatum leads to a 

ca. 2-μM drop in extracellular dopamine levels from their resting values, suggesting that the 

resting dopamine concentrations in striatal tissue may normally be in the micromolar range 

(Kulagina et al, 2001, Borland and Michael, 2004).  The normally high concentration of 

dopamine in the surrounding normal tissue creates a concentration gradient towards the probe.  

Prior to uptake inhibition, however, the dopamine penetration distance, kD , might be too 

small to permit extensive diffusion to the probe.  After uptake inhibition, however, the 

penetration distance should increase, allowing greater absolute and relative dopamine recovery.  

This explanation is consistent with the idea that dopamine uptake continues to operate in the 

tissue adjacent to the probe despite the disruption to that tissue (Bungay et al., 2003).   

Apparently, however, the increased penetration of dopamine into the disrupted tissue is 

sufficient only to cause a voltammetrically detectable increase of the dopamine concentration at 

the microelectrode placed 220-250 μm from the probe but not at the microelectrode placed 

adjacent to the probe.  This is likely due to the fact that the dopamine concentrations in the 

immediate vicinity of the probe remain below the detection limits of FSCV, even after uptake 

inhibition.  The nanomolar concentrations found in the microdialysate samples (Fig. 2.6A) are 

consistent with this idea.  This reinforces our previous suggestion that the microdialysate 

concentration of dopamine tracks the concentration of dopamine in the tissue immediately 

adjacent to the probe while the concentrations in the surrounding tissue may exhibit different 

behaviors.  
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Although increased diffusion of dopamine from the normal surrounding tissue into the 

disrupted tissue adjacent to the probe provides a simple explanation for the contrast between the 

dopamine responses at each recording site, other processes might also be involved.   For 

example, several factors regulate the kinetics of the dopamine transporter (see review by Gulley 

and Zahnizer, 2003).  Dopamine transporter levels can change rapidly due to transporter 

trafficking (Saunders et al., 2000), transporter kinetics are regulated by D2 receptors (Meiegerd 

et al., 1993; Cass and Gerhardt, 1994; Garris et al., 2003), and transporter kinetics are voltage 

dependent (Hoffman et al., 1999).  It is possible that any one or a combination of these 

regulatory factors could alter uptake kinetics differently in the disrupted tissue adjacent to the 

probe compared to the normal tissue.  However, the present study was not appropriately designed 

to address these possibilities in detail.  For one, the study involved an acute preparation and it 

remains to be seen how the results would be different had the usual 16- to 24-hr recovery period 

been used.  In addition, the present study was performed under chloral hydrate anesthesia, which 

itself affects dopamine clearance (Sabeti et al., 2003).  Thus, further conclusions regarding the 

involvement of the various mechanisms that regulate dopamine uptake kinetics at the different 

recording locations should not be drawn from the results of the present study. 

The numerous factors that regulate the kinetics of the dopamine transporter may also be 

involved in the absence of an obvious FSCV response at stand alone microelectrodes and 

microelectrodes placed 1 mm from the probes.  Preliminary reports from this laboratory (Khan 

and Michael, 2003; Mitala and Michael, 2003;) show that dopamine levels increase substantially 

when dopamine uptake inhibitors are given to rats pretreated with dopamine D2 receptor 

antagonists.  These observations suggest that dopamine levels as measured by fast scan 
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voltammetry are subject to a homeostatic mechanism mediated by D2 receptors after uptake 

inhibition. 

 

2.5.4. Implications for quantitative microdialysis 

 

The results of this study provide further support for the idea that uptake inhibition causes an 

increase in dopamine recovery (Peters and Michael, 1998; Yang et al., 1998; Lu et al., 1998; 

Yang et al., 2000).  Nomifensine caused a 10-fold increase in the dialysate concentration of 

dopamine, even though no such 10-fold increase was evident at the voltammetric site 1 mm from 

the probe.  A recent study from this laboratory suggested that dopamine levels in the striatum of 

the anesthetized rat, as measured by FSCV, rest near 2 μM (Kulagina et al, 2001, Borland and 

Michael, 2004).  A 10-fold increase from this resting level would undoubtedly be detectable, 

even by FSCV.  Prior to this study, our conclusion that uptake inhibition causes an increase in 

dopamine relative recovery was based only on studies of evoked release (Yang et al., 1998; Lu et 

al, 1998), a strategy that has been criticized (Chen, 2005b).  But, the present study supports the 

same conclusion on the basis of measurements performed without electrical stimulation.   

However, it also appears from our results (Fig. 2.6) that the somewhat unique response of the 

tissue 220-250 μm from the probe may contribute substantially to the increase in relative 

recovery.  It is import to emphasize, therefore, that the definition of relative recovery is based on 

concentrations in the external medium sufficiently far from the probe so that the external 

medium is no longer perturbed by the probe, i.e., in Equations 4 and 7, above. ∞
eC

Quantitative microdialysis requires that the extraction fraction and relative recovery be 

equal to each other (Equation 4).  However, there is now evidence to suggest that this is unlikely 
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to be the case for dopamine.  Smith and Justice (1994) demonstrated that uptake inhibition 

decreases the slope of the dopamine concentration difference plot and, therefore, the extraction 

fraction of dopamine (Equation 6).  The present study supports the idea that the relative recovery 

increases under the same conditions.  Two parameters that change in the opposite direction at the 

same time cannot be equal to each other.   

Several research groups have developed numerical models of microdialysis that 

incorporate descriptions of diffusion, active transport, and tissue disruption (Yang et al., 2000; 

Bungay et al., 2003; Chen 2005a).  In each of these models, however, the traumatized tissue was 

described as a thin layer possessing a sharp, well defined boundary with the surrounding normal 

tissue.  Chen (2005a), for example, used a 20-μm thick layer of tissue in which dopamine release 

is decreased by 40% to describe the traumatize tissue.  At least under the acute conditions of the 

present study, the dimensions of the disrupted layer is 10-fold larger at least.  The loss of evoked 

release is complete immediately adjacent to the probe and 90% at 220-250 μm.  So, existing 

microdialysis models probably have not yet fully accounted for the magnitude of probe-induced 

tissue disruption or the fact that there is a gradient of disruption rather than a sharp boundary 

between the disrupted and surrounding normal tissues. 
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3. VOLTAMMETRIC STUDY OF BLOOD BRAIN BARRIER PERMEABILITY IN 

THE AREA SURROUNDING MICRODIALYSIS PROBES  

 

3.1. ABSTRACT 

 

Microdialysis and fast-scan cyclic voltammetry with carbon fiber microelectrodes are two 

techniques for measuring dopamine in the extracellular space of the brain.  Unfortunately, these 

two techniques give differing results for the concentration of dopamine in the brain.  The 

discrepancy in results may be attributable to differences in the tissue structure surrounding these 

two different devices.  We recently reported that microdialysis implantation creates a gradient of 

dopamine activity in the tissue surrounding microdialysis probes, as measured by FSCV with 

microelectrodes (Borland et al., 2005).  In the present study, we expand on this theme to examine 

the effects of microdialysis probe implantation on the permeability of the blood-brain barrier 

(BBB).  HPLC was used to assess the movement of the BBB-impermeable drug, carbidopa, 

across the BBB after probe implantation.  Carbon fiber microelectrodes and FSCV were used to 

examine the effect of carbidopa on stimulated dopamine release in the tissue 220-250 µm from 

microdialysis probes.  Carbidopa was detected in microdialysate by HPLC; however, systemic 

carbidopa had no effect on stimulated dopamine after probe implantation.  These findings 

suggest that microdialysis probe implantation increases BBB permeability, but that the tissue 

surrounding microdialysis probes may suffer from additional functional deficiencies.   
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3.2. INTRODUCTION 

 

Microdialysis is a commonly used technique to sample extracellular brain fluid (ECF) and is 

used extensively in the study of neurotransmitters in the brain.  This universally simple technique 

operates on the principle of diffusion, where small molecules move across a concentration 

gradient from the extracellular space and into the dialysis fluid inside the microdialysis probe.  

The sampled dialysate is collected and analyzed via high performance liquid chromatography 

(HPLC) or capillary electrophoresis (CE).   

Another technique used to monitor neurotransmitters in vivo is fast-scan cyclic 

voltammetry (FSCV).  In FSCV, a triangular waveform potential is applied to a carbon fiber 

microelectrode to oxidize or reduce electroactive species, which generates a current response.  

Electroactive species can be identified through their characteristic cyclic voltammograms, which 

are based on the formal potential of the species.  This allows for a high degree of temporal and 

chemical resolution (Robinson, et al., 2003).   

The neurotransmitter dopamine is implicated in a number of disease states, including 

Parkinson’s disease, schizophrenia and drug abuse.  Investigations into this ubiquitous 

neurotransmitter have employed both microdialysis and FSCV with microelectrodes.  However, 

voltammetric and microdialysis studies report differences in the concentration of resting, or 

basal, dopamine in extracellular brain fluid (Borland and Michael, 2004).  The discrepancy in 

results may be attributable to differences in tissue structure surrounding these two different 

devices, the microdialysis probe vs. the carbon fiber microelectrode.   

Ultrastructural analysis of the brain tissue surrounding microdialysis probes reveals a 

zone of damaged tissue extending a least 1 mm from the site of implantation (Zhou et al, 2001; 

Clapp-Lily, et al., 1999); however, light microscopy revealed virtually no tissue damage from an 
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implanted microelectrode (Peters et al., 2004).  Subsequent voltammetric studies of extracellular 

dopamine in the vicinity of acutely implanted microdialysis probes reveal a gradient of dopamine 

release and uptake (Borland et al, 2005), suggesting that probe-induced tissue damage affects 

dopamine activity, as well.  The connection between microdialysis probe-induced tissue damage 

and decreased dopaminergic function in the vicinity of the probes is the subject of intense 

investigation in this laboratory. 

Damage due to probe insertion inevitably causes damage to the surrounding blood 

vessels, as the size of a typical microdialysis probe (220 µm diameter x 4 mm length) is 

significantly larger than the intercapillary distance in the brain (Morgan et al., 1996).  Disrupted 

blood flow, particularly the disruption of oxygen delivery to the surrounding tissue, may 

contribute to the impairment of dopamine activity in the region.  During hypoxia, oxygen levels 

decrease and levels of reactive intermediates, including reactive oxygen species and excitotoxic 

glutamate, also increase.  These factors could contribute to the decreased function of dopamine 

near microdialysis probes by interfering with the normal functioning of the dopamine-releasing 

terminals or by contributing to the death of said terminals.  Damage to brain capillaries could 

also adversely affect the functions of the blood brain barrier (BBB).  The BBB carefully 

regulates the passage of nutrients and other water-soluble compounds from the bloodstream to 

the brain.  Evidence of changes in BBB permeability after insertion of microdialysis probes 

suggests that the BBB is disrupted during microdialysis (Groothuis et al., 1998).  We speculate 

that damage to blood vessels and subsequent changes in BBB permeability affect the activity of 

neurotransmitters and other species in the tissue surrounding microdialysis probes. 

Evidence of increased BBB permeability after insertion of a microdialysis probe suggests 

that species have uninhibited access to cross over from the blood stream and into the brain tissue 
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to interact with the surrounding environment.  The amino acid decarboxylase (AADC) inhibitor, 

carbidopa, is normally restricted from entering brain tissue by the BBB, regulating its function to 

the periphery.  However, probe implantation increases its permeability into the brain, increasing 

its ability to affect dopamine levels (Kaakkola et al., 1992).  Similarly, other drugs or treatments 

administered through the bloodstream could artificially affect dopamine processes in the brain, 

due to increased permeability of the BBB, affecting the perceived outcome of microdialysis 

experiments.   

In this study, we extend our examination of the tissue surrounding microdialysis probes, 

focusing the permeability of the BBB near microdialysis probes.  Systemic carbidopa was 

administered to anesthetized rats and microdialysate samples analyzed by HPLC-PFET to access 

the permeability of the BBB after microdialysis probe implantation.  Carbon fiber microcylinder 

electrodes (3.5 µm radius) in conjunction with fast scan cyclic voltammetry were used to assess 

the effect of systemic carbidopa on stimulated dopamine release and probe implantation on 

stimulated dopamine release in the tissue adjacent to (220-250 µm) acutely implanted 

microdialysis probes. 

 

3.3. MATERIALS AND METHODS 

 

3.3.1. Microdialysis probes 

 

Vertical concentric microdialysis probes (220 µm o.d., 4 mm in length) were constructed with 

hollow fiber dialysis membrane (Spectra-Por RC Hollow Fiber, MWCO: 13,000, 160 µm i.d., 

Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA) and fused silica outlet lines (150 
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µm o.d., 75 µm i.d., Polymicro Technologies, Phoenix, AZ, USA) as described elsewhere 

(Abercrombie et al., 1989).  Probes were perfused with aCSF at a rate of 0.586 µL/min for all 

experiments.    

 

3.3.2. Voltammetric microelectrodes and techniques 

 

Carbon fiber microcylinder electrodes were constructed as described previously (Borland and 

Michael, 2004).  Briefly, a single 7 µm diameter carbon fiber (Thornell Carbon Fiber, T300, 

Amoco Performance Products, Inc. Greenville, SC, USA) was sealed with epoxy into a 

borosilicate glass capillary and trimmed to a length of 400 µm.  The electrodes were pre-treated 

with 100 cycles of 0-2 V vs. Ag/AgCl triangular waveform delivered at 200 V/s.  Dopamine was 

detected by fast-scan cyclic voltammetry.  The applied potential was held at 0 V vs. Ag/AgCl 

between scans.  Dopamine was detected by linearly sweeping the potential to +1.0 V, then to -0.5 

V, and back to the resting potential at a rate of 300 V/s, with the scans repeated every 100 ms.  

The dopamine oxidation signal was obtained by calculating the average current value between 

0.6 and 0.8 V on the first sweep of each scan.  Electrodes were calibrated before and after use in 

artificial cerebral spinal fluid (aCSF: 145 mM Na+, 1.2 mM Ca2+, 2.7 mM K+, 1.0 Mg2+, 152 mM 

Cl- and 2.0 mM phosphate adjusted to pH 7.4) containing known concentrations of dopamine.   

 

3.3.3. Animals and surgical procedures 

 

All procedures involving animals were carried out with the approval of the Institutional Animal 

Care and Use Committee of the University of Pittsburgh.  Male Sprague-Dawley rats (Hilltop, 
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Scottsdale, PA, USA) (250-375g) were anesthetized with chloral hydrate (400 mg/kg i.p.) and 

wrapped in a homoeothermic blanket (EKEG Electronics, Vancouver, BC, Canada) to maintain a 

body temperature of 37oC.  The rats were placed in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA, USA) with the incisor bar 5 mm above the interaural line (Pellegrino et al., 1979).  

Holes were drilled through the skull in the appropriate positions to expose the underlying dura 

and brain tissue.  In the experiments requiring a reference electrode, the reference electrode made 

contact with the brain tissue via a modified salt bridge.  The dura was removed with a scalpel to 

allow for placement of the microelectrode and/or microdialysis probe into the brain tissue with 

minimal disruption to the surrounding blood vessels.   

 

3.3.4. HPLC analysis of carbidopa and dopamine in microdialysate 

 

In a separate set of animals, a microdialysis probe was lowered over 30 min into the striatum (2.5 

mm anterior to bregma, 2.5 mm lateral from midline and 7.0 mm below dura).  Microdialysate 

was sampled every 10 minutes beginning 2 hours after probe implantation.  Carbidopa (150 

mg/kg i.p.) or vehicle (PBS) was administered 3 hours after probe implantation.  Sampling 

continued at 10 minute intervals after drug administration.  All samples were collected in 0.65 

μL of 1M acetic acid to aid in dopamine and carbidopa detection.   

 Carbidopa and dopamine concentration in the microdialysate samples were determined 

by means of high performance liquid chromatography with photoluminescence following 

electron transfer (HPLC-PFET).  Two HPLC pumps (models 590 and 600/626S, Waters, 

Milford, MA) or a syringe pump (model 100DM, ISCO, Lincon, NE) with simple tees as flow 

splits delivered solutions at ~1 μL/min.  One pump was used to deliver the mobile phase and 
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another to deliver the PFET reagent.  The mobile phase consisted of an aqueous buffer 

containing a mixture of monochloroacetic acid and sodium acetate (total concentration of 100 

mM), 0.15 mM disodium EDTA, SOS (pH adjusted with concentrated NaOH solution) and 

acetonitrile.  The mobile phase was passed through a Nylon filter with 0.45 μm pores (Osmonics, 

Minnetonka, MN).  The PFET reagent, Os(bpy)3(PF6)2 (1) was prepared and recrystallized in our 

laboratory according to previously reported procedures (Gaudiello et al., 1984). Crystals of 

osmium complex were dissolved in acetonitrile, to make a 1.0 mM stock solution.  Aliquots of 

the stock solution were diluted in an acidic electrolyte solution (0.2% TFA and 0.1 M NaClO4 in 

acetonitrile) to prepare the PFET reagent solution.  The resulting solution was used after filtering 

through a disposable 0.45 μm PTFE/PP syringe filter (Chrom Tech, Apple Valley, MN). 

 Homemade capillary columns were packed by previously described techniques (Beisler et 

al., 2004) using 100 μm i.d., 360 μm o.d. fused-silica capillaries as the column blank.  The 

capillary column was slurry packed to 7.6 cm with 2.6 μm XTerra MS-C18 (Waters, Milford, 

MA) reversed phase particles and connected directly to an Upchurch loop microinjector (Oak 

Harbor, WA), which introduced 500 nL of each sample into the column.  A Capillary Taylor 

Reactor (CTR) was used to mix the chromatographic eluents and the postcolumn PFET solution. 

They were prepared according to the previously reported procedure (Beisler et al., 2004; Jung 

and Weber, 2005; Sahlin et al., 2002)  

A laser beam from a 30-mW variable-power blue-line argon ion laser (model 2201-30BL, 

Cyonics/Uniphase, San Jose, CA) passed through a 488-nm band-pass filter and was focused 

onto an optically transparent capillary. Photoluminescence from 12+ was measured using an 

epifluorescence optical setup: a microscopic objective lens (Plan Neofluar 20x, NA 0.5, Carl 

Zeiss, Thornwood, NY) focused the optical emission from the capillary and a combination of a 
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dichroic mirror (cutoff at 500 nm) and optical filters (a 600-nm long-pass filter and a 750-nm 

band-pass filter, angle tuned) allowed the photoluminescence into an IR-sensitive 

photomultiplier tube (R374, Hamamatsu, Bridgewater, NJ). A Keithley 6485 picoammeter 

(Cleveland,OH) converted photocurrent from the photomultiplier tube to a dc voltage signal. An 

IBM-compatible computer with a PeakSimple Chromatographic Data System (SRI Instruments, 

Torrance, CA) collected the dc signal after a 0.4-Hz eight-pole low-pass filter (Wavetek 852 

Dual filter, San Diego, CA). 

 

3.3.5. Effect of carbidopa on evoked dopamine release in the striatum of anesthetized 

rats 

 

A microcylinder electrode (400 µm in length) was placed in the striatum of the rat, positioned at 

2.5 mm anterior with respect to bregma, 2.5 mm lateral with respect to the midline and 4.5 mm 

below dura.  The MFB was stimulated with a constant current, biphasic square wave with a 

frequency of 60 Hz, a pulse width of 2 ms, a pulse height of 280 µA, and a train length of 10 s.  

Experiments commenced only after stimulated dopamine release produced a response of at least 

50 nA in amplitude at the voltammetric electrode.  Stimuli were delivered at 20 min intervals.  

Carbidopa (150 mg/kg i.p.) or vehicle (PBS) was administered immediately after the third stable 

stimulus response.  Electrical stimulation commenced 20 min later and continued at 20 min 

intervals.  
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3.3.6. Effect of carbidopa on evoked dopamine release 220-250 µm from microdialysis 

probes 

 

In this set of experiments, evoked dopamine was monitored 220-250 µm from an implanted 

microdialysis probe.  A microelectrode was aligned at an angle to a microdialysis probe and 

lowered into the striatum.  The ipsilateral MFB was stimulated with constant current, biphasic 

square wave with a frequency of 60 Hz, a pulse width of 2 ms, a pulse height of 280 µA, and a 

train length of 10 s.  After a series of stable evoked dopamine responses at least 50 nA in 

amplitude, the microdialysis probe was slowly lowered over 30 min to a final position of 2.5 mm 

anterior to bregma, 2.5 mm lateral from midline and 7.0 mm below dura.  Electrical stimulation 

commenced 2 hours after probe placement.  Immediately after the first stimulation after probe 

implantation, carbidopa (150 mg/kg i.p.) or vehicle (PBS) was administered.  Electrical 

stimulation continued at 20 min intervals following drug administration.    

 

3.3.7. Chemicals and solutions 

 

Chloral hydrate, carbidopa and dopamine were used as received from Sigma (St. Louis, MO, 

USA).  Chloral hydrate was dissolved in phosphate buffered saline (PBS: 155 mM NaCl, 100 

mM phosphate, pH 7.4).  Carbidopa was administered as a suspension in PBS.  All solutions 

were prepared with ultrapure water (NANOPure; Barnstead, Dubuque, IA, USA).    
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3.4. RESULTS 

 

3.4.1. Analysis of rat brain microdialysate for carbidopa and dopamine 

 

The rat brain microdialysis samples were analyzed at the optimal separation conditions to 

determine the carbidopa and dopamine concentrations.  Calibration fits were constructed using 

standard solutions containing 0 – 100 nM carbidopa and dopamine before analyzing each set of 

rat brain dialysates.  Typical regression equations for peak heights versus concentrations 

(mV/nM) were: y = 1.58 x + 1.63 (r2 = 0.9993) for dopamine and y = 2.84 x + 1.99 (r2 = 0.9997) 

for carbidopa.  The concentration detection limits were calculated from the calibration fit using 

signal to noise ratio of 3.  Typical concentration detection limits were 570 pM for dopamine and 

320 pM for carbidopa.  Corresponding mass detection limits based on 500 nL injection were 290 

amol for dopamine and 160 amol for carbidopa.  

Concentration changes of dopamine and carbidopa with time are shown in Figure 3.1.  

The concentration of carbidopa increased just after the injection of carbidopa, with no observable 

change upon injection of PBS.   The apparent presence of carbidopa in the brain dialysates of rats 

treated with PBS and in the dialysate samples taken prior to treatment in the carbidopa-treated 

rats is due to an unidentified transient peak overlapping the carbidopa peak.  The unidentified 

peaks were not found in all dialysates, and dialysates from the same set showed different 

responses, as well.  Regardless, the height of the unidentified peak was always negligible 

compared to that of carbidopa peak.  Thus it is unlikely that the large increase in the peak height 

after the injection was due to the unidentified peak.  Moreover, an increase in the peak height 

was never observed when the rat was given PBS.  
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Figure 3.1.  (Top) Concentrations of dopamine and carbidopa in microdialysate of rats treated with PBS 
(vehicle). (Bottom) Concentrations of dopamine and carbidopa in microdialysate of rats treated with 
carbidopa (150 mg/kg i.p.).  In both set of experiments, the injection took place at t = 0 minutes.  The symbols 
indicate the mean ± standard error (n=3). 

 
 
3.4.2. Voltammetric response of stimulated dopamine to systemic carbidopa after probe 

implantation 

 

As previously reported, stimulated dopamine release decreased significantly after microdialysis 

probe implantation.  The stimulated dopamine response decreased 91 ± 8 % (mean ± s.d., n=3) 

from the pre-implantation response after probe implantation.  Systemic administration of 

carbidopa (150 mg/kg i.p.) did not alter the stimulated dopamine response after probe 

implantation (Figure 3.2).  The response following probe implantation remained steady 2 hours 

after carbidopa administration.  Systemic treatment with PBS (vehicle) after probe implantation 

also had no effect on the voltammetric response, with a steady decrease of 82 ± 14 % (mean ± 
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s.d., n=3) from the pre-probe levels.  Neither systemic carbidopa nor PBS (vehicle) administered 

after probe implantation caused a change in the stimulated dopamine response after probe 

implantation.  
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Figure 3.2.  Stimulated dopamine release after probe implantation and carbidopa administration.  Probe 
implantation caused a significant decrease in stimulated dopamine release from pre-probe levels in both the 
carbidopa (91 ± 8%, n=3) and the PBS (vehicle) (82 ± 14%, n=3) pretreated animals; however no additional 
changes in stimulated dopamine release were observed following systemic drug administration. 

 

 

3.4.3. Voltammetric response of stimulated dopamine to systemic carbidopa 

 

Systemic administration of carbidopa (150 mg/kg i.p.) decreased stimulated dopamine release in 

the striatum of the anesthetized rat (Figure 3.3).  The decrease reached a maximum nearly 2 

hours after carbidopa administration, decreasing 36 ± 13 % (mean ± s.d., n=3) from the pre-drug 
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level.  However, stimulated dopamine release also decreased significantly in rats treated with 

PBS (vehicle).  This decrease also reached a maximum after 2 hours for a 30 ± 5 % (mean ± s.d., 

n=3) decrease from the pre-treatment response.  Two-way ANOVA analysis helps to explain that 

there is no significant difference between the treatments (carbidopa vs. PBS (vehicle)), verifying 

that the response after systemic carbidopa administration has no effect on the stimulated 

dopamine response.  The steady decrease in the stimulated responses probably arises from a slow 

and steady depletion of the vesicular pool of dopamine, from which the stimulated response is 

generated.  Due to the magnitude of the stimulation (60 Hz, 10 sec, 280 µA), it is no surprise that 

the stimulated dopamine response would decrease slowly after three hours of continuous 

stimulation. 
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Figure 3.3.  Stimulated dopamine release after drug administration.  Two-way ANOVA shows that there is no 
significant difference between the treatments (PBS (vehicle) vs. carbidopa; F=1.17, df=1,53).  The symbols 
indicate the mean ± standard deviation of the signal (n=3). 
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3.5. DISCUSSION 

 

Analysis of dialysate from rats treated systemically with the BBB-restricted aromatic amino acid 

decarboxylase (AADC) inhibitor, carbidopa, confirmed that BBB permeability increased in the 

presence of a microdialysis probe.  Carbidopa was detected in dialysate samples 10 minutes after 

systemic administration (carbidopa: 150mg/kg, i.p.)  This observation is supported by an earlier 

report of carbidopa detection in microdialysate by HPLC (Kaakkola et al., 1992), confirming that 

carbidopa crosses the BBB during microdialysis.  Dialysate samples from animals treated with 

much lower concentrations of carbidopa (i.e. 25 mg/kg i.p.) also exhibited increased carbidopa 

levels, suggesting that the ability of carbidopa to cross the BBB is not entirely concentration 

dependent (Kaakkola et al., 1992).  Evidence of significantly elevated levels of carbidopa in the 

tissue homogenate from the probe-impaled striatum, compared to the contralateral striatum, 

further suggests a breakdown of the BBB (Kaakkola et al., 1992).  Interestingly, both studies 

observed no significant change in the extracellular levels of dopamine after the systemic 

administration of carbidopa.  These results are in contrast to earlier research on the BBB which 

show an intact BBB immediately after microdialysis probe implantation. (Benveniste et al., 

1984; Tossman and Ungerstedt, 1986).  Later reports of focal disturbances of blood flow and 

glucose metabolism around implanted microdialysis probes (Benveniste et al., 1987) suggest that 

the BBB may not be as intact as previously concluded.  

As stated previously, HPLC results indicate that carbidopa did cross the blood brain 

barrier and thus was detectable in the dialysate.  The concentration of carbidopa increased just 

after the injection of carbidopa, with no observable change upon injection of PBS.   The apparent 

presence of carbidopa in the brain dialysates of rats treated with PBS and in the dialysate 

samples taken prior to treatment in the carbidopa-treated rats is due to an unidentified transient 
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peak overlapping the carbidopa peak.  The unidentified peaks were not found in all dialysates, 

and dialysates from the same set showed different responses, as well.  Regardless, the height of 

the unidentified peak was always negligible compared to that of carbidopa peak.  Thus it is 

unlikely that the large increase in the peak height after the injection was due to the unidentified 

peak.  Moreover, an increase in the peak height was never observed when the rat was given PBS.  

Carbidopa had no effect on stimulated dopamine release in the absence of the 

microdialysis probe implantation, which was expected since carbidopa does not readily cross 

BBB, even at high (>100 mg/kg) doses.  In agreement with previous microdialysis data, 

carbidopa did not affect stimulated dopamine release after probe implantation, when the BBB 

was compromised and the permeability of carbidopa into the striatum increased.  The inability of 

carbidopa to decrease extracellular dopamine levels might be due to other underlying deficits in 

dopamine function in the terminals surrounding implanted microdialysis probes.  If, perhaps, the 

synthesis mechanism is destroyed by probe insertion, subsequent inhibition of dopamine 

synthesis by carbidopa would be ineffective or superfluous.  The remaining response from 

stimulated dopamine release observed after probe implantation may be remnants of old vesicular 

stores, which are recycled after stimulation, eliminating the need for additional synthesis.  

Naturally, there is need for additional investigations into the functionality of the tissue 

surrounding microdialysis probes, including synthesis, receptor activity, and transport activity, in 

order to complete the picture of dopamine function in this damaged region. 
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3.6. CONCLUSION 

 

Implantation of microdialysis probes creates tissue damage that alters blood flow, dopamine 

activity, and the functionality of the blood-brain barrier.  The tissue surrounding the site of probe 

implantation exhibits a 90% decrease in stimulated dopamine release, in addition to a 

compromised BBB.  Dialysate collected from animals treated with the BBB-impermeable drug, 

carbidopa, showed traces of the drug, but with no effects on dopamine levels in the area.  Lack of 

a dopaminergic response to carbidopa suggests another level of compromised tissue functionality 

that requires additional study.         
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4. VOLTAMMETRIC STUDY OF THE CONTROL OF STRIATAL DOPAMINE 

RELEASE BY GLUTAMATE 

 

4.1. ABSTRACT 

 

The central dopamine systems are involved in several aspects of normal brain function and are 

implicated in a number of human disorders.  Hence, it is important to understand the mechanisms 

that control dopamine release in the brain.  The striatum of the rat receives both dopaminergic 

and glutamatergic projections that synaptically target striatal neurons but not each other.  

Nevertheless, these afferents do form frequent appositional contacts, which has engendered 

interest in the question of whether they communicate with each other despite the absence of a 

direct synaptic connection.  In this study, we used voltammetry in conjunction with carbon fiber 

microelectrodes in anesthetized rats to further examine the effect of the ionotropic glutamate 

antagonist, kynurenate, on extracellular dopamine levels in the striatum.  Intrastriatal infusions of 

kynurenate decreased extracellular dopamine levels, suggesting that glutamate acts locally within 

the striatum via ionotropic receptors to regulate the basal extracellular dopamine concentration.  

Infusion of tetrodotoxin into the medial forebrain bundle or the striatum did not alter the 

voltammetric response to the intrastriatal kynurenate infusions, suggesting that glutamate 

receptors control a nonvesicular release process that contributes to the basal extracellular 

dopamine level.  However, systemic administration of the dopamine uptake inhibitor, 

nomifensine (20 mg/kg i.p.), markedly decreased the amplitude of the response to kynurenate 

infusions, suggesting that the dopamine transporter mediates nonvesicular dopamine release.  
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Collectively, these findings are consistent with the idea that endogenous glutamate acts locally 

within the striatum via ionotropic receptors to control a tonic, impulse-independent, transporter-

mediated mode of dopamine release.  Although numerous prior in vitro studies had suggested 

that such a process might exist, it has not previously been clearly demonstrated in an in vivo 

experiment.  

 

4.2. INTRODUCTION 

 

The nigrostriatal and mesolimbic dopamine pathways of the brain play significant roles in motor 

control, cognitive function, and the regulation of mood and affect (Cousins and Salamone, 1996; 

Schultz et al., 1997; Diehl and Gershon, 1992).  These pathways are also implicated in the 

pathophysiology of human diseases, including schizophrenia, Parkinson’s disease, attention 

deficit/hyperactivity disorder, and substance abuse (Carlsson et al., 1999; Carlsson and Carlsson, 

1990; Koob and Bloom, 1988).  Hence, it is important to understand the mechanisms that 

regulate dopamine release the brain.   

Early studies involving in vitro preparations, such as tissue slices and synaptosomes, 

suggested that both impulse-dependent and impulse-independent mechanisms might contribute 

to dopamine release in the striatum (Giorguieff et al., 1977; Raiteri et al., 1979; Desce, et al., 

1992).  These mechanisms have also been called phasic release and tonic release, respectively 

(Grace, 1991).  Phasic release involves the fusion of synaptic vesicles to terminal membranes, 

while some evidence suggests that reversal of the dopamine transporter (DAT) might mediate 

tonic release (Raiteri et al., 1979; Lonart and Zigmond, 1991; Leviel, 2001).  It has been 

hypothesized that phasic and tonic release contribute synergistically to central dopaminergic 
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transmission (Grace, 1991), with tonic release modulating the responsiveness of dopamine 

receptors to phasic release. 

In contrast, in vivo studies, mainly based on microdialysis, have suggested that striatal 

dopamine release occurs primarily in an impulse-dependent fashion (Westerink et al., 1987; 

Westerink and deVries, 1988).  Although certain drugs, such as amphetamine, may stimulate 

impulse-independent dopamine release (Leviel, 2001; Westerink et al., 1987), dopamine as 

measured by microdialysis is generally highly sensitive to tetrodotoxin (Westerink et al., 1987).  

In light of this point, some authors have begun to attribute tonic release to the non-burst firing 

activity of midbrain dopamine neurons (Floresco et al., 2001; Floresco et al., 2003) rather than 

reverse transport. 

In vitro studies had also suggested that impulse-independent dopamine release in the 

striatum is stimulated by glutamate possibly derived from terminals of the corticostriatal 

projection (Morari et al., 1998; Roberts and Sharif, 1978; Roberts and Anderson, 1979; Clow and 

Jhamandas, 1989; Krebs et al., 1991; Iravani and Kruk, 1996).  This putative action of glutamate 

on striatal dopamine terminals attracted much attention due to its potential significance in the 

mechanisms underlying schizophrenia (Grace, 1991; Moghaddam and Adams, 1998; Adams and 

Moghaddam, 1998; Carlsson et al., 1999).  However, in vivo microdialysis studies have 

suggested instead that cortico-midbrain projections control subcortical dopamine release by 

affecting the impulse activity of dopaminergic neurons (Youngren et al., 1993; Karreman and 

Moghaddam, 1996; Taber et al., 1996; Takahata and Moghaddam, 2000).  Microdialysis results 

do not support the idea that the corticostriatal projection acts locally on striatal dopamine 

terminals (Moghaddam et al., 1990; Moghaddam and Gruen, 1991; Keefe et al., 1992).   
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On other the hand, we have recently studied striatal dopamine release in the anesthetized 

rat using in vivo voltammetry in conjunction with carbon fiber microelectrodes (Kulagina et al., 

2001).  In our hands, the intrastriatal infusion of kynurenate, a broad-spectrum antagonist of the 

ionotropic glutamate receptors (Stone, 1993), significantly decreased the extracellular dopamine 

concentration (Kulagina et al., 2001).  This observation is consistent with the idea that 

endogenous glutamate, by acting at ionotropic receptors located within the striatum, controls 

basal dopamine release.  In the present study, we further show that the effect of kynurenate on 

extracellular dopamine levels is independent of nigrostriatal impulse activity but is dependent on 

DAT activity.   

 

4.3. MATERIALS AND METHODS 

 

4.3.1. Voltammetric microelectrodes and techniques  

 

Voltammetric microelectrodes were of conventional design.  A single carbon fiber (3.5-μm 

radius T300 fiber, Union Carbide, Inc) was sealed with epoxy into a pulled borosilicate glass 

capillary.  The exposed fiber, which served as the active sensing region of the electrode, was 

trimmed with a scalpel to a length of 400 μm.  The electrodes were pretreated with 100 cycles of 

0-2 V vs. Ag/AgCl triangular waveform delivered at 200 V/s.  Dopamine was detected by fast-

scan cyclic voltammetry (EI-400; Ensman Instruments, Bloomington, IN, U.S.A.).  The applied 

potential was held at 0 V vs. Ag/AgCl between voltammetric scans.  During each voltammetric 

scan the potential was swept linearly to 1.0 V, then to –0.5 V, and back to the starting potential 

of 0 V.  The scan rate was 300 V/s and scans were repeated at 400-ms intervals. 
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Conversion of signals recorded during in vivo experiments to units of dopamine 

concentration was based on electrode sensitivity values obtained during post-calibration after the 

microelectrodes were removed from the rat brain.  For calibration purposes, the microelectrodes 

were mounted in the center of a small flow-through chamber.  A flow of artificial cerebrospinal 

fluid (aCSF: 145 mM Na+, 1.2 mM Ca2+, 2.7 mM K+, 1.0 mM Mg2+, 152 mM Cl- and 2.0 mM 

phosphate adjusted to pH 7.4) (Moghaddam and Bunney, 1989) was maintained by gravity feed 

from an elevated reservoir.  Standard solutions of dopamine at concentrations ranging from 100 

nM to 10 μM dissolved in aCSF were introduced to the flowing stream by means of a sample-

loop valve. 

 The in vivo experiments performed during this work involved inspection of voltammetric 

signals over time periods lasting up to 40 min.  Over time periods of this duration, drift in the 

voltammetric background signal is possible and may confound observation of the voltammetric 

dopamine signal.  Throughout this work, the following procedure was used to correct for 

baseline drift.  The time course of the voltammetric response was recorded in two windows of 

the applied potential, one corresponding to a background response (200-300 mV vs Ag/AgCl) 

and one corresponding the dopamine oxidation response superimposed on the background 

response (500-700 mV vs Ag/AgCl).  Correction for background drift was accomplished by 

subtracting the response recorded in the 200-300 mV potential window from that recorded in the 

500-700 mV potential window.  This procedure was applied to both the data collected during in 

vivo experiments and during in vitro calibration procedures.  Further details of this procedure are 

provided in the Results section. 

Difference voltammograms were used to aid in the identification of the substance 

responsible for changes in the voltammetric signal observed during in vivo experiments.  All the 
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voltammograms recorded over selected 200-s time windows (500 voltammograms in each time 

window) were averaged.  Difference voltammograms were calculated by subtracting the 

averaged voltammograms obtained in different time windows (details in the Results section).  

The features of the resulting difference voltammogram were compared to those of difference 

voltammograms obtained during postcalibration of the microelectrode in dopamine standard 

solutions.  The presence of features corresponding to the oxidation of dopamine and the 

reduction of dopamine’s oxidation product, dopamine-o-quinone, served to identify whether 

dopamine was the substance responsible for changes in the voltammetric signal observed in vivo.   

 

4.3.2. Animals and surgical procedures 

 

Experiments involving animals were in accordance with NIH guidelines and were conducted 

with the approval of the Animal Care and Use Committee of the University of Pittsburgh.  Male 

Sprague-Dawley rats weighing 250-300 g were anesthetized with chloral hydrate (300 mg/kg 

i.p.) and wrapped in a homeothermic blanket to maintain a body temperature of 37oC.  The rats 

were placed in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, U.S.A.) with the 

upper incisor bar raised 5 mm above the interaural line (Pellegrino et al., 1979).  Holes were 

drilled through the skull to permit placement of voltammetric microelectrodes and microinfusion 

pipets in the striatum or parietal cortex, as well as stimulating electrodes in the medial forebrain 

bundle.  A single voltammetric microelectrode was lowered into the striatum (4.5 mm below 

dura, 2.5 mm lateral from midline, and 2.5 mm anterior to bregma) or the cortex (1.5 mm below 

dura, 2.3 mm lateral from midline, and 3.0 mm anterior to bregma).   
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Microinfusion pipets were fashioned from short lengths of fused silica capillary tubing 

with a nominal inner diameter of 25 μm.  Several millimeters of the outlet end of the capillary 

were etched in HF until the wall thickness at the outlet was ~2 μm.  For intrastriatal infusions, 

the inlet end of the capillary was epoxy-sealed to a gas-tight 50-uL syringe mounted on a 

stepper-motor driver (NA-1, Sutter Instruments) and preloaded with a 1-mM solution of 

kynurenate dissolved in aCSF or aCSF vehicle alone.  The pipets were lowed into the striatum 

such that the outlet of the pipet was positioned 150 μm laterally from the mid-point of the active 

sensing portion of the carbon fiber microelectrode.   For microinfusion into the MFB, a pipet of 

the same style was attached with epoxy to a bipolar stimulating electrode such that the outlet of 

the pipet was aligned vertically with the tip of the electrode.  The combination device was 

lowered to a point just above the MFB (7.5 mm below dura, 1.6 mm lateral from midline, 2.2 

mm posterior to bregma).  The final vertical coordinate of the stimulation electrode was 

determined by slowly lowering it until the stimulation evoked dopamine release in the ipsilateral 

striatum.  Electrical stimulation of the MFB was performed with a train of biphasic constant 

current square pulse with the following parameters: duration 10 s, frequency 60 Hz, pulse width 

2 ms, intensity 280 μA peak-to-peak.  Once in place, microinfusions of TTX (100 μM in 200 nL) 

or aCSF vehicle (200 nL) into the MFB were performed.  This concentration and volume of TTX 

was found to cause a long lasting, complete abolition of evoked dopamine release, indicating 

effective blockade of nigrostriatal impulse traffic.  
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4.3.3. Chemicals and drugs 

 

Nomifensine maleate, kynurenic acid and chloral hydrate were used as received from Sigma (St. 

Louis, Mo, U.S.A.).  Tetrodotoxin with citrate was used as received from Alomone Labs 

(Jerusalem, Israel). Kynurenic acid and tetrodotoxin were dissolved in aCSF.  Chloral hydrate 

and nomifensine were dissolved in phosphate buffered saline (PBS; 155 mM NaCl, 100 mM 

phosphate, pH 7.4).  All solutions were prepared with ultrapure water (NANOPure; Barnstead, 

Dubuque, IA, U.S.A.). 

 

4.4. RESULTS 

 

4.4.1. Intrastriatal delivery of kynurenate inhibits dopamine release  

 

Intrastriatal microinfusion of kynurenate caused a decrease in the dopamine signal at a nearby 

carbon fiber voltammetric microelectrode (Fig. 4.1).  Microelectrodes and microinfusion pipets 

were implanted ~150 μm apart in the dorsal striatum of anesthetized rats.   Recording by fast-

scan cyclic voltammetry was initiated immediately after implantation and continued for the 

duration of the experiment.  Microinfusion of kynurenate (1 mM in 200 nL) was initiated after an 

equilibration period of at least 2 hr.  The temporal features of the voltammetric response to the 

microinfusions were examined in two separate windows of the applied potential (Fig 4.1, inset), 

one corresponding to the dopamine oxidation signal (500-700 mV v. Ag/AgCl) and the other 

corresponding to the nondopamine background signal (200-300 mV v. Ag/AgCl).  The 

difference between the temporal profiles recorded in each potential window (Fig 4.1, main panel) 
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usually exhibited a biphasic response to the microinfusion.  The first phase of the response was a 

rapid rise and fall of the signal that began with the microinfusion itself and usually lasted about 

5 min.  This was followed by a prolonged second phase of the response, during which the signal 

remained well below the preinfusion baseline.   

 time (min)
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tw1 
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prolonged second 
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Figure 4.1.  Fast scan cyclic voltammetry shows that intrastriatal infusion of kynurenate decreases 
extracellular dopamine levels.  Inset panel: Traces of the raw signals recorded in two separate windows of the 
applied voltammetric waveform (trace a, 200 300 mV; trace b, 500 700 mV).  Main panel:  Trace c is the 
difference signal obtained by subtracting trace a (inset panel) from trace b (inset panel).   The difference 
signal (trace c) responds in a biphasic manner to the kynurenate infusion, which took place during the time 
interval indicated by the horizontal bars labeled kyn.  An initial transient phase lasting approximately 5 min 
is followed by a prolonged second phase during which the signal stabilizes at a level well below the 
preinfusion baseline.  The vertical concentration scale bar in the main panel was determined by post-
calibration of the microelectrode immediately after it was removed from the rat brain.  (The time windows 
labeled tw1, tw2, and tw3 are discussed in the legend of Fig. 4. 2.) 
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Cyclic voltammograms (i.e. plots of the current v. potential response recorded during 

each voltammetric scans of the applied potential) obtained before and after the kynurenate 

microinfusion were used to identify whether the responses were related to changes in the 

extracellular concentration of dopamine (Fig 4.2).  For this purpose, the voltammograms 

recorded in 200-s time windows (labeled tw1, tw2, and tw3 in Fig. 4.1) prior to the infusion 

(tw1), during the initial transient phase of the response (tw3), and during the prolonged second 

phase of the response (tw2) were averaged.  The left panel of Fig. 4.2 compares the averaged 

voltammograms obtained in tw1 and tw2.  The voltammograms are indistinguishable until they 

are plotted on an expanded scale (left panel, inset).  Subtraction is used to accentuate the small 

difference between these voltammograms (Fig 4.2, right panel, voltammogram a).   The resultant 

difference voltammogram exhibits a distinct oxidation peak in the vicinity of 500 to 700 mV and 

a distinct reduction peak in the vicinity of 0 to –200 mV.  These oxidation and reduction peaks 

compare well with those obtained during postcalibration of the microelectrode in a 5-μM DA 

standard (Fig. 4.2, right panel, voltammogram b).  The correspondence between the oxidation 

and reduction features of the difference voltammogram obtained upon infusion of kynurenate 

into the striatum with those features obtained during postcalibration provide a voltammetric basis 

for concluding that the prolonged decrease in the signal observed in vivo is due to a prolonged 

decrease in the extracellular concentration of dopamine.  The difference voltammogram 

associated with the initial transient phase of the response was not consistent with dopamine (Fig. 

4.2, right panel, voltammogram c), which shows that the initial transient is not related to 

dopamine and is therefore presumed to be an infusion artifact.  The transient signal was 

inconsistent in amplitude, and on numerous occasions was absent altogether.  The transient 

response is more pronounced in the present study compared to our earlier report (Kulagina et al., 
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2001) because the pipet used for kynurenate infusion in the present study was placed about 

100 μm closer to the voltammetric microelectrode, which increased the amplitude and 

reproducibility of the second phase of the response. 

 potential (mV)
-4000400800

500 nA

5 nA

20 nA

7 nA

potential (mV)
-4000400800
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b

c tw2 

tw1 

tw1 – tw2 

tw3 – tw1 

Figure 4.2.  Left panel:  Non-subtracted voltammograms recorded during time windows before (tw1, Fig. 4.1) 
and after (tw 2, Fig 4.1) kynurenate infusion.  Differences between the voltammograms are subtle but become 
evident when they are plotted on an expanded scale (inset).   Right panel.  Difference voltammograms 
obtained by background subtraction.  Difference voltammogram a was obtained by subtracting the 
voltammogram obtained after kynurenate infusion (tw2, Fig. 4.1) from that obtained before the infusion (tw1, 
Fig 4.1).  Difference voltammogram b was obtained during postcalibration of the microelectrode in dopamine 
(5 µM).  Difference voltammogram c was obtained by subtracting the preinfusion voltammogram (tw1, Fig. 
4.1) from that recorded during the initial transient phase of the infusion response (tw3, Fig. 4.1). 
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The second prolonged phase of the voltammetric response to the intrastriatal infusion of 

kynurenate was consistently observed in multiple animals (Fig. 4.3).  Furthermore, when both 

the microelectrodes and the micropipets were implanted in the parietal cortex instead of the 

striatum, microinfusion of kynurenate had no prolonged effect on the signal (Fig. 4.3), which 

demonstrates that the effect of kynurenate on the voltammetric response is anatomically specific.  

This anatomical specificity contributes to demonstrating that the prolonged phase of the 

voltammetric response to the infusion observed in the striatum is not an artifact. 

Figures 4.1-4.3 extend the previous report of Kulagina et al. (2001), which also showed 

that the prolonged decrease in the voltammetric signal was sensitive to the inhibition of 

dopamine synthesis with α-methyl-p-tyrosine, resistant to the blockade of dopamine metabolism 

with pargyline, diminished in the presence of exogenous glutamate, and absent if the experiment 

was performed in the thalamus rather than the striatum.  Thus, the prolonged decrease in the 

signal following intrastriatal infusion of kynurenate meets voltammetric, pharmacological, and 

anatomical criteria for being identified as a decrease in the extracellular dopamine concentration 

pursuant to the blockade of ionotropic glutamate receptors located within the striatum. 

  The voltammetric signals recorded in vivo were converted to values of dopamine 

concentration by calibration of the electrodes after they were removed from the brain.  

According to this procedure, the maximum decrease in the voltammetric signal following the 

kynurenate infusion corresponds to a decrease in the extracellular dopamine concentration of 

2.6 ± 0.7 μM (mean ± standard deviation, n = 26 infusions performed in 19 rats). The decrease in 

dopamine concentration observed during the present study was larger than we reported before 

(Kulagina et al., 2001), which we attribute to the closer placement of the infusion pipet to the 

microelectrode causing a larger effective dose of kynurenate in the present study.   
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Figure 4.3.  Left panel: Intrastriatal microinfusion of kynurenate significantly decreases extracellular 
dopamine as measured by voltammetry in the striatum (a, solid line).   Microinfusion of kynurenate into the 
parietal cortex had no prolonged effect on the voltammetric signal recorded at a nearby carbon fiber 
microelectrode (b, dashed line).  The horizontal bar labeled kyn indicates when the infusion took place.  The 
lines were obtained by averaging the traces recorded in each of a group of animals (a, n= 26 in 19 animals: b, 
n=3 in 3 animals).  The symbols indicate the mean and the standard deviations upon which statistical analyses 
were based.  The infusion had a significant effect in the striatum (one-way ANOVA: f = 43.97, df = 3,103, 
p<0.001) but not in the parietal cortex.  Right panel: Difference voltammograms obtained in the striatum (c, 
solid line) and cortex (d, dashed line).  These difference voltammograms were obtained by subtracting the 
voltammograms recorded after the infusions (tw2, left panel) from those recorded before the infusion (tw1, 
left panel).  The difference voltammogram obtained in the striatum exhibits dopamine oxidation and 
reduction features whereas that obtained in the cortex does not. 

 

4.4.2. Kynurenate inhibits tonic, impulse-independent dopamine release 

 

Delivery of tetrodotoxin to the medial forebrain bundle (MFB) by means of a micropipet 

mounted on a stimulating electrode (stimulus-guided infusion) was highly effective at 

terminating nigrostriatal impulse traffic (Fig. 4.4).  A micropipet was glued to a bipolar stainless 
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steel stimulating electrode.  The stimulating electrode was lowered slowly towards the MFB until 

electrical stimulation evoked dopamine release in the ipsilateral striatum as measured by the 

voltammetric microelectrode (Kuhr et al., 1984).  Subsequent infusion of tetrodotoxin (100 μM 

in 200 nL) into the MFB completely abolished any further response to electrical stimulation, 

indicating that TTX was accurately and effectively delivered so as to terminate impulse traffic in 

the nigrostriatal dopamine fibers.   

 time (s)
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-4000400800
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Figure 4.4.  Left panel: Electrical stimulation of the MFB evokes dopamine release in the striatum before (a, 
solid line) but not after (b, dashed line) the microinfusion of TTX into the MFB. The open circle indicates 
when the stimulus began and the closed circles indicate when it stopped.  Right panel: Background-
subtracted cyclic voltammograms obtained during electrical stimulation of the MFB before (c) and after (d) 
the TTX infusion. 
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Stimulus-guided infusions of vehicle (aCSF) or TTX into the MFB had no impact on the 

prolonged decrease in extracellular dopamine following intrastriatal microinfusion of kynurenate 

(Fig. 4.5).  The voltammetric response to an initial infusion of kynurenate was recorded as 

described above.  A stimulus-guided infusion of aCSF or TTX into the MFB was performed 70 

min after the first intrastriatal infusion of kynurenate.  Then, 20 min after the infusion into the 

MFB, a second intrastriatal kynurenate infusion was performed.  There were no statistically 

significant differences between the voltammetric response to the first and second kynurenate 

infusion (Fig. 4.5).  Hence, kynurenate appears to act within the striatum to inhibit a dopamine 

release process that occurs independently of nigrostriatal impulse traffic. 

The intrastriatal infusion of TTX also abolished evoked dopamine release during electrical 

stimulation of the MFB without affecting the voltammetric response to kynurenate infusions (not 

shown).  A voltammetric microelectrode was placed in the striatum along with two 

microinfusion pipets, one on either side of the microelectrode.  One pipet was used for the 

intrastriatal infusion of vehicle or TTX between two consecutive infusions of kynurenate via the 

other pipet.  Infusion of vehicle or TTX directly into the striatum had no impact on the prolonged 

decrease in extracellular dopamine evoked by intrastriatal infusion of kynurenate.  Thus, 

kynurenate also acts on dopamine release in the absence of local impulse activity within the 

striatum.  
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Figure 4.5.  Intrastriatal microinfusion of kynurenate affects an impulse-independent mode of dopamine 
release.  Left panel: The responses to intrastriatal infusion of kynurenate before (solid line) and after (dashed 
line) infusion of either aCSF (a) or TTX (b) into the MFB.  The symbols show the mean and standard 
deviation of the responses at 10 min intervals.  According to 2-way ANOVA, neither the infusion of aCSF nor 
the infusion of TTX significantly changed the response to the infusion of kynurenate.  The horizontal bars 
indicate when the infusion of kynurenate took place.  Right panel: Difference voltammograms obtained by 
subtracting the voltammograms recorded after the kynurenate infusion from those recoded before the 
kynurenate infusion.  The difference voltammograms obtained before (dashed) and after (solid) the infusion 
of either aCSF (c) or TTX (d) all exhibit the dopamine oxidation and quinone reduction features. 

 
 

4.4.3. The role of the dopamine transporter 

 

Blockade of the dopamine transporter (DAT) by means of the systemic administration of 

nomifensine either decreased or abolished the prolonged decrease in the voltammetric signal 

after the intrastriatal microinfusion of kynurenate (Fig. 4.6).  Two groups of rats received an 
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intraperitoneal injection of saline or nomifensine 70 min after an initial kynurenate infusion and 

20 min prior to the second kynurenate infusion.  At the dose used here, 20 mg/kg, nomifensine is 

well-known to block dopamine uptake in the striatum (Church et al., 1987; Yang et al., 1998).  In 

half of the rats studied (4 of 8), nomifensine completely abolished the prolonged decrease in the 

voltammetric signal following the second kynurenate infusion: the time trace exhibited no 

prolonged decrease in the signal (Fig 4.6a) and the difference voltammogram exhibited no 

oxidation or reduction features to indicate that a change in dopamine concentration had occurred 

(Fig 4.6b).  In the other 4 rats studied, nomifensine diminished the amplitude of the prolonged 

response to kynurenate (Fig. 4.6c) and the difference voltammograms before and after 

nomifensine exhibited the oxidation and reduction features consistent with dopamine (Fig. 4.6d).  

Intraperitoneal injection of saline had no effect on the response to kynurenate (Fig. 4.6e) and 

again the difference voltammograms obtained before and after saline exhibited oxidation and 

reduction features consistent with dopamine (Fig. 4.6f).  These findings suggest that DAT is 

involved in the mechanism by which glutamate locally regulates basal extracellular dopamine 

concentrations via striatal ionotropic receptors.  This is consistent with the idea that a DAT-

mediated reverse-transport process contributes to the basal extracellular dopamine concentration 

in the striatum. 
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Figure 4.6.  Systemic administration of the nomifensine (20 mg/kg i.p.) either abolishes (a and b) or 
significantly diminishes (c and d) the effect of kynurenate on extracellular dopamine.  (a) In 4 of 8 animals 
(dashed line) nomifensine eliminated the effect of kynurenate (two-way ANOVA; p<0.001).  (b) In these 
animals, subtracted cyclic voltammograms obtained prior to nomifensine administration (solid line) were 
characteristic of dopamine.  Voltammograms obtained after nomifensine administration were not 
characteristic of dopamine (dashed line).  (c) In 4 other animals, systemic administration of nomifensine 
(dashed line) significantly diminished the response to kynurenate infusion (two-way ANOVA, p<0.05).  (d) In 
these animals, subtracted voltammograms were characteristic of dopamine both before (solid line) and after 
(dashed line) nomifensine administration.  (e) Systemic administration of saline had no affect on the response 
to kynurenate (two-way ANOVA). (f) Voltammograms obtained before (solid line) and after (dashed line) 
saline were characteristic of dopamine. The horizontal bars indicate when the infusions took place. 
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4.5. DISCUSSION 

 

This report contains the first collective body of evidence obtained under in vivo conditions to 

suggest that 1) tonic dopamine release occurring via an impulse-independent mechanism 

contributes to basal dopamine in the striatal extracellular space of the anesthetized rat, 2) 

glutamatergic tone on striatal ionotropic glutamate receptors is necessary for the maintenance of 

tonic dopamine release in the striatum, and 3) tonic dopamine release occurs via DAT-mediated 

reverse transport.  In previous in vivo experiments, impulse-independent dopamine release has 

mainly been observed in animals treated with amphetamine-like substances (Westerink et al., 

1987; Westerink and deVries, 1988).  The findings of the present study, however, suggest that 

impulse-independent dopamine release contributes to the basal extracellular dopamine 

concentration in the striatum of the anesthetized rat even in the absence of amphetamine-like 

substances.  Furthermore, these findings support the conclusion that impulse-independent 

dopamine release is a component of both normal brain physiology and, possibly, the 

pathophysiology of dopamine-related disorders. 

 

4.5.1. Methodological considerations 

 

The results of this study suggest that a DAT-mediated reverse transport process gives rise to an 

impulse-independent mode of dopamine release that, under the influence of glutamate acting at 

ionotropic receptors located within the striatum, contributes to the extracellular concentration of 

dopamine in the rat striatum.  While studies conducted on in vitro preparations reached a similar 

conclusion (Giorguieff et al., 1977; Desce et al., 1992; Lonart and Zigmond, 1991; Morari et al., 

1998; Roberts and Anderson, 1979; Iravani and Kruk, 1996), in vivo microdialysis studies 
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reached the different conclusion that basal dopamine release is strictly impulse-dependent 

(Westerink et al., 1987; Westerink and deVries, 1988).  Hence, there is a notable difference 

between the present voltammetry-based findings and prior microdialysis-based finding. 

Bungay et al. (2003) have considered the origins of differences between voltammetry and 

microdialysis results relevant to striatal dopamine (Bungay et al., 2003).  Some of those origins 

may be attributed to the trauma associated with the implantation of microdialysis probes (Clapp-

Lilly et al., 1999; Zhou et al., 2001).  This trauma appears to slow the kinetics of dopamine 

release and uptake in the tissue surrounding microdialysis probes (Yang et al., 1998; Bungay et 

al., 2003).  The same might occur in the case of glutamate.  Using microsensors designed to 

detect glutamate (Kulagina et al., 1999), we found the extracellular glutamate concentration in 

striatum to be about 10-fold higher than that reported by quantitative microdialysis (Miele et al., 

1996).  So, we speculate that tonic dopamine release may not be clearly detected by in vivo 

microdialysis because there is insufficient tone on ionotropic glutamate receptors, a necessary 

condition for tonic dopamine release, in the tissue surrounding the probes.  Some existing 

microdialysis data are consistent with this speculation.  For example, adding glutamate agonists 

to the perfusion medium caused a TTX-insensitive increase in dopamine concentrations in 

striatal dialysate samples (Keefe et al., 1992; Verma and Moghaddam, 1998), which could 

signify that perfusing with a glutamate agonist reinstates a normally occurring tone on the 

ionotropic glutamate receptors near the probe, thereby reinstating a normally occurring tonic 

mode of dopamine release. 

The magnitude of the decrease in the dopamine concentration upon intrastriatal infusion of 

kynurenate is considerably larger than previous estimates of the basal dopamine concentration 

obtained with both microdialysis (Smith and Justice, 1994) and voltammetric methods (Gonon 
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and Buda, 1985; Marcus et al., 2001).   Bungay et al. (2003) have discussed the possibility that 

the trauma associated with microdialysis probes may lead to an underestimation of basal 

dopamine concentrations.  However, since Gonon and coworkers (Gonon and Buda, 1985) 

obtained their estimate of the basal concentration using a carbon fiber microelectrode of similar 

dimensions to the ones we used, differences between the amount of trauma in our work and 

Gonon’s seem unlikely.  The different concentration estimates may be related to differences 

between the styles of voltammetry we used, fast-scan cyclic voltammetry, and that Gonon and 

coworkers used, differential normal pulse voltammetry.  Also, Gonon and coworkers used a 

more extensive electrode pretreatment regimen that we do.  The details as to why these two 

voltammetric procedures would lead to such different estimates of extracellular dopamine 

concentrations are not clear.  However, numerous differences can be found between the outcome 

of experiments based on these different voltammetric procedures.  For example, when fast-scan 

voltammetry is used to monitor evoked dopamine release during electrical stimulation of the 

MFB, many laboratories have found that dopamine concentrations increase immediately with the 

start of the electrical stimulation and return to baseline within a few seconds when the 

stimulation ends (Garris et al., 1994; Cragg et al., 1997; Gonon, 1997; Dickinson et al., 1999; 

Peters and Michael, 2000).  However, according to differential normal pulse voltammetry, 

dopamine levels may not increase until after the stimulation and may take several minutes to 

return to baseline (Gonon and Buda, 1985).    Because we do not have first-hand experience with 

the differential normal pulse technique, we are not in a position to offer a detailed explanation 

for the different results these procedures yield. 
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4.5.2. Physiological significance of tonic dopamine release 

 

In our hands, intrastriatal microinfusions of kynurenate caused extracellular dopamine 

concentrations to drop by micromolar amounts.  This suggests that tonic dopamine release, 

mediated by reversal of the dopamine transporter, produces an extracellular dopamine 

concentration sufficient to occupy both D1 and D2 receptors (Missale et al., 1998).  Hence, 

similar to the conclusion reached in the case of transporter-mediated glutamate release (Baker et 

al., 2002a; Baker et al., 2002b), the present study suggests that transporter-mediated dopamine 

release might play a physiological role in dopaminergic transmission within the striatum. 

The present study did not address the nature of the physiological role of tonically released 

dopamine but Grace (Grace, 1991) has previously hypothesized that tonically released dopamine 

modulates the responsiveness of dopamine receptors to phasic dopamine release.  Grace also 

hypothesized that a decrease in tonic dopamine release caused by inadequate tone on striatal 

glutamate receptors might trigger a hyper-responsiveness of postsynaptic targets to phasically 

released dopamine, possibly eliciting the symptoms of schizophrenia.  Hence, the results of the 

present study are significant in that they provide the most direct in vivo neurochemical evidence 

available to date that endogenous glutamate acts within the striatum to control tonic dopamine 

release. 

  

 

 

 

 

87 



 

4.5.3. Modes of dopamine transmission in the striatum 

 

Together with other reports (Floresco et al., 2001; Floresco et al., 2003), the present study 

suggests that three distinct modes of dopamine release might contribute synergistically to 

dopaminergic transmission in the striatum: a tonic, DAT-mediated mode of release as revealed 

by the present study; a slow phasic mode of release associated with the non-burst firing of 

midbrain dopamine neurons; and an impulse-dependent mode of release associated with the burst 

firing of midbrain dopamine neurons.  Several studies have demonstrated that midbrain afferents 

may differentially affect the non-burst firing and burst firing of dopamine neurons, suggesting 

the existence of two distinct modes of impulse-dependent dopamine transmission (Floresco et al., 

2001; Floresco et al., 2003). 

 

4.5.4. Dopamine-glutamate interactions 

 

One argument against direct interactions between dopaminergic and glutamatergic striatal 

afferents originates in ultrastructural findings that they do not form direct synaptic connections 

with each other (Sesack and Pickel, 1992). They do, however, make frequent appositional 

contacts (Sesack and Pickel, 1992), which raises the possibility that volume transmission could 

be involved.  Consistent with this ides, some studies have suggested that dopamine molecules 

readily escape the small synaptic clefts found in the striatum (Gonon, 1997; Zoli et al., 1998; 

Garris et al., 1994), possibly enabling volume transmission.  Our finding that DAT-mediated 

transport contributes to dopamine release increases the likelihood that dopaminergic transmission 

occurs in the volume mode, because ultrastructural studies have located DAT protein on the 
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extrasynaptic surfaces of striatal terminals (Nirenberg et al., 1996), suggesting that reverse 

transport might deliver dopamine directly to the extrasynaptic space.  In addition, ultrastructural 

studies have located dopamine receptors on the extrasynaptic surfaces of pre- and post-synaptic 

membranes (Pickel et al., 1996), suggesting that dopamine molecules exiting terminals via the 

transporter may directly affect such receptors.   

 Possible targets of dopaminergic volume transmission within the striatum include the 

glutamate-releasing terminals of the corticostriatal pathway, which have recently been shown to 

express D2 dopamine receptors (Wang and Pickel, 2002), and which are a potential source of the 

glutamate responsible for maintaining tone at the ionotropic glutamate receptors that seems to 

drive dopamine reverse transport.  Since glutamate release also involves a transporter (Baker et 

al., 2002a; Baker et al., 2002b) and because the response to the kynurenate infusion was not 

altered by the intrastriatal application of TTX, it may be possible that the local effect of 

glutamate on striatal dopamine terminals is also mediated by volume transmission.  This point, 

however, can not be made with certainty because to date evidence for the presence of ionotropic 

glutamate receptors on dopamine terminals has not been obtained (Bernard et al., 1997; Chen et 

al., 1998).   So, although the results of our study are consistent with a local action involving 

ionotropic glutamate receptors within the striatum, our results to not demonstrate that the action 

is direct.   The recent studies of Avshamulov (2003), for example, raise the possibility that 

diffusible messengers might carry information between striatal terminals. 
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5. VOLTAMMETRIC STUDIES IN THE ANESTHETIZED RAT BRAIN FOR 
INVESTIGATING THE MECHANISMS OF DOPAMINE RELEASE AFTER 

UPTAKE INHIBITION 

 

5.1. ABSTRACT 

 

Drugs of abuse, such as cocaine and amphetamine, block dopamine uptake, causing changes in 

dopamine activity in the brain.  Dopamine receptors and different mechanisms of dopamine 

release also regulate dopamine levels in the brain.  Vesicular release, which is driven by 

dopamine nerve impulse firing, and dopamine transporter-assisted release, also known as reverse 

transport, are two mechanisms of dopamine release that may be involved in the changes in 

extracellular dopamine after uptake inhibition.  In this study, we used fast-scan cyclic 

voltammetry in conjunction with carbon fiber microelectrodes to determine by what mechanism 

dopamine D2 receptors control dopamine release after uptake inhibition.   

Systemic administration of the uptake blocker, nomifensine, increased extracellular 

dopamine levels in the striatum of anesthetized rats pretreated with the D2 receptor blocker, 

sulpiride.  Local treatment with the sodium channel blocker, tetrodotoxin (TTX), in the medial 

forebrain bundle (MFB) or the striatum blocked the effect of systemic nomifensine 

administration in the striatum of sulpiride-pretreated rats.  Blockade of dopamine nerve impulses 

by TTX, both locally in the striatum and along the MFB, prevented the nomifensine-induced 

increase in extracellular dopamine in the sulpiride pretreated rats.  We conclude that D2 receptors 

90 



 

mediate control of extracellular dopamine after uptake inhibition through a dopamine nerve 

impulse-dependent mechanism.   

 

5.2. INTRODUCTION 

 

The nigrostriatal dopamine pathway is a carefully regulated system, containing numerous 

processes that actively participate in maintaining dopamine homeostasis.  Striatal ionotropic 

glutamate receptors regulate striatal dopamine levels through their control of the dopamine 

transporter (Kulagina et al., 2001, Borland and Michael, 2004).  These same dopamine 

transporters act to remove excess dopamine from the extracellular space, in a process known as 

reuptake.  Dopamine D2 receptors control the rate of reuptake of the transporters, while 

simultaneously controlling dopamine synthesis, neuronal firing and vesicular release of 

dopamine into the synapse ((Mercuri et al., 1991; Mercuri et al., 1992; Mercuri et al., 1997; 

Mereu et al., 1983; Werkman et al., 2001; Meiergerd et al., 1993; Dickinson et al., 1999; Wu et 

al., 2002).  These checks and balances within the striatum are essential for maintaining a healthy 

dopamine system. 

 Drugs of abuse, such as cocaine and amphetamine, have a profound affect on dopamine 

neurotransmission in the striatum.  Numerous studies show that cocaine and similar drugs of 

abuse act by blocking dopamine transporters, thereby inhibiting reuptake and, by consequence, 

increasing extracellular dopamine levels (Church et al., 1987; DiChiara et al., 1996).  Although 

cocaine directly decreases the rate of uptake, other processes involved in regulating dopamine 

levels are affected.  Dopamine D2 receptors, for example, are found to play a role in mediating 

drug-induced changes in dopamine levels.  Studies involving D2 receptor knock-out mice reveal 
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a link between D2 receptors and an increased susceptibility to drug abuse (Schmitz et al., 2001; 

Benoit-Marand et al., 2001; Rougé-Pont et al., 2002).  After systemic cocaine administration, 

dopamine levels increased significantly in mice lacking D2 receptor function.  Cocaine, however, 

did not significantly increase dopamine levels in mice with full D2 receptor function (Rougé-

Pont et al., 2002).  In addition to mediating resting extracellular dopamine levels, D2 receptors 

also participate in the regulation of drug-induced alterations in the striatal dopamine. 

Overstimulation of dopamine receptors by a drug-induced increase in dopamine is the 

prevailing model used to explain the effects of drug abuse on the brain.  This model relies on 

inactivated dopamine receptors to be activated by increases in dopamine, through changes in 

neuronal firing and release, or through a reduction in transporter reuptake, like that caused by 

cocaine.  However, recent evidence suggests that glutamate regulates a resting extracellular pool 

of dopamine of ~2 µM (Borland and Michael, 2004).  At this concentration, dopamine receptors 

would be activated, suggesting that D2 receptors would prevent a large increase in extracellular 

dopamine after uptake inhibition, which is consistent with previous reports (Benoit-Marand et 

al., 2001; Rougé-Pont et al., 2002). 

 In this study, we used carbon fiber microelectrodes in conjunction with fast-scan cyclic 

voltammetry to test the hypothesis that D2 receptors participate in a feedback mechanism that 

regulates extracellular dopamine levels after uptake inhibition.  We monitored the change in 

dopamine after systemic administration of the uptake inhibition, nomifensine, in anesthetized 

rats pretreated with the D2 receptor antagonist sulpiride.  Tetrodotoxin was infused locally and at 

the medial forebrain bundle (MFB) to examine the impact of impulse inhibition on basal 

dopamine levels after uptake inhibition in D2-antagonized rats. 
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5.3. MATERIALS AND METHODS 

 

5.3.1. Voltammetric electrodes and techniques 

 

Carbon fiber microcylinder electrodes were constructed as previously described (Yang et al., 

1998).  Briefly, 7 µm diameter carbon fibers (Thornell Carbon Fiber, T300, Amoco Performance 

Products, Inc., Greenville, SC, USA) were pulled and epoxy sealed into borosilicate glass 

capillaries (Sutter Instruments, Novato, CA, USA) and trimmed to 400 µm.  Electrical contact 

was made using mercury and a nichrome wire.  Prior to use, the microelectrodes were placed in a 

gravity-fed flow stream apparatus.  The flow cell was filled with room temperature, N2-purged 

artificial cerebral spinal fluid (aCSF, 145 mM Na+, 1.2 mM Ca2+, 2.7 mM K+, 1.0 mM Mg2+, 152 

mM Cl- and 2.0 mM phosphate adjusted to pH 7.4) (Moghaddam and Bunney, 1989).  The 

electrodes were electrically pretreated (Kovach et al., 1984; Feng et al., 1987) with a triangular 

potential waveform (0-2 V vs. Ag/AgCl reference at 200 V/s for 1s). 

 Fast scan cyclic voltammetry (Borland and Michael, 2004; Baur et al., 1988) was 

performed with a computer-controlled potentiostat (EI-400, Ensman Instruments, Bloomington, 

IN, USA) and software developed in-house.  The potential was scanned in the positive direction 

to +1.0 V, then to -0.5 V and back to a resting potential of 0 V vs. Ag/AgCl at a rate of 300 V/s. 

The applied potential was held at 0 V vs. Ag/AgCl between voltammetric scans.  Scans were 

repeated at 400 ms intervals for all experiments.   

 Dopamine oxidation signals were monitored by integrating the current between 500 mV-

700 mV vs. Ag/AgCl on the initial sweep of each scan.  Conversion of the dopamine oxidation 

current to dopamine concentration was based on post-calibration of the electrode after immediate 

removal from the rat brain.  Identification of dopamine was accomplished by comparing the 
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background-subtracted voltammograms in vivo to those obtained during post-calibration of the 

electrode.  The response of the microelectrode to other analytes, as well as its sensitivity and 

response time towards dopamine, was also tested as during post-calibration. 

 

5.3.2. Microinfusion pipets 

 

Microinfusion pipets were constructed using fused silica capillary tubing (350 µm O.D., 25 µm 

I.D., Polymicro Technologies, Phoenix, AZ, USA).  The outlet tip of the capillary was etched to 

40 µm O.D. with concentrated hydrofluoric acid.  The inlet end of the capillary was attached to a 

50 µL syringe (Hamilton, Reno, NV, USA) driven by a microprocessor-controlled driver (Sutter 

Instruments, Novato, CA, USA) and pre-filled with the appropriate drug solution.  The rate of 

delivery of the infusion solution was 90 µL/min. 

 

5.3.3. Animals and surgical procedures 

 

All procedures involving animals were carried out with the approval of the Institutional Animal 

Care and Use Committee of the University of Pittsburgh.  Male Sprague-Dawley rats (Hilltop, 

Scottsdale, PA, USA) (250-375g) were anesthetized with chloral hydrate (400 mg/kg i.p.) and 

wrapped in a homoeothermic blanket (EKEG Electronics, Vancouver, BC, Canada) to maintain a 

body temperature of 37oC.  The rats were placed in a stereotaxic frame (David Kopf Instruments, 

Tujunga, CA, USA) with the incisor bar 5 mm above the interaural line (Pellegrino et al., 1979).  

Holes were drilled through the skull in the appropriate positions to expose the underlying dura 

and brain tissue.  A reference electrode made contact with the brain tissue via a modified salt 
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bridge.  The dura was removed with a scalpel to allow for placement of the microelectrode into 

the brain tissue with minimal disruption to the surrounding blood vessels.  

 In all experiments, a microcylinder electrode (400 µm in length) was placed in the 

striatum of the rat, positioned at 2.5 mm anterior with respect to bregma, 2.5 mm lateral with 

respect to the midline and 4.5 mm below dura.  The voltammetric signal was recorded every 400 

ms beginning two hours after electrode implantation.  Nomifensine was delivered i.p. 60 min 

after vehicle or sulpiride. 

 

5.3.4. Pharmacological agents and procedures 

 

Approximately two hours after microelectrode implantation, each rat was pretreated with 

sulpiride (100 mg/kg i.p.) or vehicle (i.p.).  Nomifensine (20 mg/kg i.p.) was administered one 

hour after either sulpiride or vehicle.  Where designated, tetrodotoxin (100 μM, 200 nL) was 

delivered via a micropipette to either the striatum or MFB 10 or 15 min prior to nomifensine 

administration. 

 

 

5.3.5. Materials and solutions 

 

Chloral hydrate, nomifensine maleate salt, (-)-sulpiride and dopamine were used as received 

from Sigma (St. Louis, MO, USA).  Tetrodotoxin (with citrate) was used as received from 

Alomone Labs (Jerusalem, Israel).  Chloral hydrate and nomifensine were dissolved in phosphate 

buffered saline (PBS: 155 mM NaCl, 100 mM phosphate, pH 7.4).  Sulpiride was dissolved in 
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1% (wt/vol) tartaric acid/0.9% saline (155 mM NaCl). Vehicle was a solution of 1% (wt/vol) 

tartaric acid/0.9% saline.  TTX was dissolved in aCSF.  All solutions were prepared with 

ultrapure water (NANOPure, Barnstead, Dubuque, IA, USA). 

 

5.3.6. Local delivery of tetrodotoxin to the striatum 

 

In a series of experiments, a microinfusion pipet containing tetrodotoxin (TTX) was placed in the 

striatum 200 μm from the microelectrode.  The voltammetric current was recorded as above.  

TTX was delivered locally to the striatum 50 min after systemic sulpiride administration.  

Nomifensine was administered 10 min later.  Figure 5.1A shows the arrangement of the 

micropipette and the microelectrode in the striatum of the rat brain. 
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Figure 5.1. Schematic diagrams showing the position of devices in the rat brain.  (A) Voltammetric 
microelectrodes placed 200 µm from infusion pipet in the striatum.  (B) Voltammetric microelectrode in the 
striatum with stimulation electrode-infusion pipet located at the medial forebrain bundle (MFB). 
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5.3.7. Local delivery of tetrodotoxin to the medial forebrain bundle 

 

In another series of experiments, a TTX-filled microinfusion pipet glued to a stimulation 

electrode was placed in the ipsilateral medial forebrain bundle (MFB, 2.2 mm posterior to 

bregma, 1.6 mm from midline, and initially 7.5 mm below dura).  Figure 5.1B shows the 

placement of the stimulation electrode-infusion pipet in relation to the carbon fiber 

microelectrode in the dopamine nigrostriatal pathway of the rat brain.  The MFB was stimulated 

with an optically isolated, constant current, biphasic square wave with a pulse duration of 2 ms, a 

pulse height of 280 μA, a frequency of 60 Hz, and a train length of 10 s.  The position of the 

stimulating electrode was adjusted until evoked dopamine release produced a response of at least 

50 nA.  TTX was delivered locally to the MFB 45 min after systemic sulpiride administration.  

An additional MFB stimulation was delivered 5 min after TTX infusion to confirm delivery of 

the drug to the MFB.  Nomifensine was administered systemically 10 min after local infusion of 

TTX to the MFB.  A time line of events is featured in Figure 5.2, displaying the time and 

voltammetric response following the initial MFB stimulation, sulpiride injection, TTX infusion 

to the MFB, “confirmation” stimulation, nomifensine injection and subsequent voltammetric 

response. 
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Figure 5.2.  Timeline of events for experiments containing local delivery of tetrodotoxin (TTX) to the medial 
forebrain bundle (MFB).  After implantation of the stimulation electrode-micropipet device, the MFB was 
stimulated, producing an initial stimulation response (far left) corresponding to an increase in dopamine 
(inset).  Ten minutes later, i.p. sulpiride was administered.  Fifty minutes later, TTX was delivered to the 
MFB via the stim electrode-micropipet device.  The effectiveness of the TTX in shutting off stimulated 
dopamine release was confirmed by a second, confirmation stim.  Nomifensine was administered systemically 
five minutes after the confirmation stimulation. 
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5.4. RESULTS 

 

5.4.1. Data analysis 

 

The current response of each experiment was recorded before, during and after drug 

administration.  The current signal was continuously monitored at potentials corresponding to the 

maximum of the dopamine oxidation peak (50-700 mV vs. Ag/AgCl).  Difference 

voltammograms (Borland and Michael, 2004) were used to determine if the substance causing 

the change in the voltammetric response was dopamine.  Briefly, cyclic voltammograms 

recorded over a 200 s interval prior to drug administration are averaged and subtracted from 

voltammograms averaged over a 200 s interval near the peak of the response.  A difference 

voltammogram exhibiting a distinct oxidation peak in the vicinity of 500-700 mV and a distinct 

reduction peak in the vicinity of 0-200 mV signals the detection of a change in dopamine.  In the 

event that the difference voltammogram resembled dopamine, the current response is converted 

to units of dopamine by means of the sensitivity values obtained during in vitro post-calibration 

of the microelectrodes.  Pooled data at specific time points were analyzed by one-way ANOVA 

followed by Duncan’s multiple range test. 

Difference voltammograms recorded in vivo after A) stimulated dopamine release in the 

striatum, B) after systemic administration of the uptake inhibitor, nomifensine, and C) after 

nomifensine administration in a sulpiride-pretreated rat are compared to D) the difference 

voltammogram recorded during microelectrode post-calibration in vitro in a 5 µM dopamine 

standard (Figure 5.3).  The voltammogram recorded after nomifensine in the sulpiride-pretreated 

rat (Figure 5.3C) very closely resembles both the in vitro post-calibration voltammogram (Figure 

5.3D) and the voltammogram of stimulated dopamine release (Figure 5.3A).  The shape and 
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location of the oxidation and reduction peaks of the sulpiride-pretreated rat voltammogram 

correspond precisely with that of the in vitro and stimulated voltammograms, confirming that the 

change in signal after nomifensine after sulpiride-pretreatment is caused by dopamine.  The 

difference voltammogram from the rat treated with nomifensine alone did not exhibit these 

characteristic peaks.  The peak in the potential range for dopamine oxidation to dopamine-o-

quinone (500-700 mV) is too broad and the peak corresponding to the reduction of the 

dopamine-o-quinone back to dopamine (-100 – -300 mV) is nonexistent.  Comparison of the 

difference voltammograms confirms that administration of nomifensine alone does not cause an 

increase in dopamine. 

 

5.4.2. Voltammetric response to dopamine after uptake inhibition and blockade of D2 

receptors 

 

Administration of the uptake inhibitor, nomifensine, caused an increase in the voltammetric 

response in both vehicle and sulpiride-pretreated rats (Figure 5.4).  In the vehicle-pretreated rats, 

nomifensine caused an average signal increase of 6.66 ± 0.623 nA (mean ± standard error, n=4).  

The average signal is plotted along with error bars showing the standard error at several time 

points (Figure 5.4A).  According to one-way ANOVA, the increase in the signal caused by 

nomifensine was significant (f=11.69, df=3,15, p<0.001).  Duncan’s multiple range test confirms 

that the current recorded at 15, 25, and 35 min was significantly different (p<0.01) from the 

current recorded 5 min, immediately before nomifensine.   
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Figure 5.3.  Background-subtracted fast scan cyclic voltammograms recorded: A) after stimulated dopamine 
release in the striatum, B) after systemic administration of nomifensine, C) after nomifensine in a sulpiride-
pretreated rat, D) during in vitro post-calibration with 5 µM dopamine. 
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Nomifensine, alone, did not induce a change in dopamine in 75% of the animals tested, as 

detected by fast-scan cyclic voltammetry.  In 3 out of the 4 vehicle-pretreated rats, the 

background-subtracted voltammograms exhibited none of the features attributed to dopamine.  

Changes in brain pH have been observed by microelectrodes after uptake inhibition, identifying a 

likely cause of the observed increase in current in these animals, even in the absence of any 

changes in dopamine.   

 Blockade of the dopamine D2 receptors caused a much larger increase in the effect of 

nomifensine on the voltammetric signal, as seen in Figure 5.4B.  Unlike the vehicle-pretreated 

rats, each sulpiride-pretreated rat exhibited background-subtracted voltammograms resembling 

dopamine.  The current responses were, therefore, converted to units of dopamine concentration 

using the sensitivity values obtained during in vitro post-calibration of each microelectrode.  The 

maximum signal increase after nomifensine, converted to dopamine concentration, was 3.58 ± 

0.38 μM (mean ± standard error, n=4).  For comparison, the average signal response of the 

sulpiride-pretreated rats is shown as a current response in Figure 5.4B.  The maximum signal 

increase after nomifensine administration was 18.58 ± 3.49 nA (mean ± standard error, n=4).  

One-way ANOVA showed a significant increase in signal after nomifensine (f=6.07, df=3,15, 

p<0.01).  Duncan’s multiple range test revealed significant differences (p<0.01) between the 

current recorded at 5 min, immediately before nomifensine administration, and the current at 15, 

25 and 35 min.  Two-way ANOVA of the sulpiride-pretreated and vehicle-pretreated current 

responses confirms that sulpiride-pretreatment has a significant effect on the increase in signal 

after nomifensine administration (f=31.67, df=1,31 ,p<0.001) 
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Figure 5.4.  Summary of nomifensine-induced voltammetric response observed in vehicle-pretreated rats (A) 
and sulpiride-pretreated rats (B).  The error bars represent the standard error of the signal at the time point 
indicated. The asterisks indicate significance compared to t = 5 min, determined by one-way ANOVA 
followed by Duncan’s multiple range test (*p<0.01, **p<0.001).   

 

5.4.3. Inhibition of local impulse traffic blocks the dopaminergic response after uptake 

inhibition and D2 receptor antagonism 

 

The average current responses following systemic nomifensine administration immediately 

following the local administration of aCSF or tetrodotoxin to the striatum in sulpiride-pretreated 

rats is compared in Figure 5.5.  Microinfusion of aCSF or TTX caused a small, transient increase 

in the voltammetric responses.  The microinfusion, itself, did not cause any changes in 

dopamine, as confirmed by examination of the background-subtracted voltammograms.  After 
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nomifensine, a steady and prolonged increase in the voltammetric signal was observed in the rats 

treated locally with aCSF (Figure 5.5B).  The average signal is plotted along with error bars 

showing the standard error at several time points.  The maximum signal increase was 10.66 ± 

4.82 nA (mean ± standard error, n=3).  Background-subtracted voltammograms obtained after 

nomifensine administration resembled dopamine and the current signal was converted to 

dopamine concentration, yielding an increase of 2.15 ± 1.77 μM (mean ± standard error, n=3) 

(Figure 5.5B).  The increase in signal was significant, according to one-way ANOVA (f=4.33, 

df=3,11, p<0.05).  In the 3 rats treated locally with TTX, the nomifensine-induced increase in 

dopamine was abolished completely (Figure 5.5A).  For comparison, the average current 

response of the TTX-treated rats was plotted with representative time points and standard error 

bars.   

 

5.4.4. Inhibition of nigrostriatal impulse traffic blocks the dopaminergic response after 

uptake inhibition and D2 receptor antagonism 

 

Figure 5.6 compares the voltammetric response obtained following systemic nomifensine 

administration after TTX or aCSF delivery to the medial forebrain bundle (MFB) in sulpiride-

pretreated rats.  An increase in the voltammetric signal was observed after nomifensine in the 

aCSF-treated rats.  Background-subtracted voltammograms confirmed the change in current to 

be from dopamine.  The average current response is plotted with time points and standard error 

bars in Figure 5.6B.  The maximum increase in current was 14.08 ± 2.84 nA (mean ± standard 

error, n=5), while conversion of the current signal to dopamine concentration shows an increase 

in dopamine of 2.94 ± 0.75 µM (mean ± standard error, n=5).  One-way ANOVA showed that 
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the increase in signal did reach significance (f=4.59, df=3,19, p<0.05).  As shown in Figure 5.2, 

delivery of TTX to the MFB effectively eliminated the stimulated dopamine response in the 

striatum.  Tetrodotoxin-induced blockade of impulse traffic from the MFB eliminated the 

increase in signal after systemic nomifensine.  The average current response is plotted as Figure 

5.6A, for comparison. 
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Figure 5.5.  Summary of nomifensine-induced voltammetric response observed in sulpiride-pretreated rats 
interstriatally infused with TTX (A) or aCSF (B).  The error bars represent the standard error of the signal 
at the time point indicated. The asterisks indicate significance compared to t = 1 min, determined by one-way 
ANOVA followed by Duncan’s multiple range test (*p<0.05).   
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Figure 5.6.  Summary of nomifensine-induced voltammetric response observed in sulpiride-pretreated rats  
infused with TTX (A) or aCSF (B) at the MFB.  The error bars represent the standard error of the signal at 
the time point indicated. The asterisks indicate significance compared to t = 2 min, determined by one-way 
ANOVA followed by Duncan’s multiple range test (*p<0.05).   

 

 

5.5. DISCUSSION 

 

In this voltammetric study, we showed that dopamine levels are homeostatically controlled by 

tonically activated D2 receptors via an impulse-dependent mechanism.  Uptake inhibition, alone, 

failed to cause an increase in dopamine levels, as measured by fast scan cyclic voltammetry with 
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carbon fiber microelectrodes.  Dopamine levels only increased after uptake inhibition in animals 

pretreated with the D2 receptor antagonist, sulpiride.  Tetrodotoxin effectively blocked impulse 

activity locally in the striatum and along the medial forebrain bundle, preventing the dopamine 

increase after uptake inhibition in sulpiride-pretreated rats.  These data suggest that dopamine D2 

receptors participate in a mechanism that regulates dopamine levels in the striatum under normal, 

resting conditions, as well as after uptake inhibition. 

 

5.5.1. Methodological considerations 

 

Previous work in dopamine D2 receptor knock-out mice support the idea that D2 receptors 

regulate extracellular dopamine levels after uptake inhibition.  An increase was clearly 

noticeable after uptake inhibition, although significantly attenuated, in the mice with full D2 

receptor function (Rougé-Pont et al., 2002).  In the present study, however, 75% of the animals 

exhibited no increase in dopamine after uptake inhibition.  We attribute this response to the 

difference in the techniques used to monitor extracellular dopamine in the brain.   

Carbon fiber microcylinder electrodes are 10,000 times smaller in area than microdialysis 

probes and ultramicrostructural analysis shows that the implantation damage from these devices 

does not extend beyond 6.5 µm.  Implantation of microdialysis probes, on the other hand, causes 

considerable trauma to the surrounding tissue (Clapp-Lilly et al., 1999; Zhou et al., 2001), with 

the damaged area extending at least 250 µm away from the probe (Borland et al., 2005).  

Significant alterations in dopamine uptake and release exist in the damaged area, with a gradient 

of dopamine activity extending into the traumatized tissue zone (Borland et al., 2005).  

Presumably, other neuronal processes that would normally regulate dopamine levels in the brain 
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could be adversely affected.  Glutamate afferents, in particular, could be badly damaged upon 

microdialysis probe implantation, destroying another key regulatory component of dopamine in 

the striatum.   

 

5.5.2. An impulse-dependent mechanism regulates DA release after D2 receptor 

inhibition 

 

The experiments performed utilizing tetrodotoxin in the striatum and MFB exclude dopamine 

transporters from contributing to the modulation of dopamine release after nomifensine 

administration.  Tetrodotoxin inhibits propagation of the action potential by blocking Na+ 

permeability through voltage-gated ion channels.  Inhibition of the action potential suppresses 

neuronal firing and subsequent exocytosis, which would normally result in neurotransmitter 

release.  The reverse transport of dopamine, which accompanies the drug action of uptake 

inhibitors in the family of amphetamines, causes a release of dopamine from the transporter that 

is tetrodotoxin-insensitive (impulse-independent) (Westerink et al., 1987; Lonart and Zigmond, 

1991; Leviel, 2001).  Since no change in the current signal was observed after locally applied 

tetrodotoxin to either the striatum or the MFB, reverse transport as a mechanism for dopamine 

release after nomifensine administration in rats pretreated with a D2 antagonist is ruled out. 

A probable mechanism for D2 receptor control of release is modulation of the vesicles (Reimer et 

al., 1998; Pothos et al., 1998; Pothos et al., 2000; Colliver et al., 2000; Sulzer and Edwards, 

2000).  Various studies into the quantal size and volume of dopamine-containing vesicles 

provide evidence that the rate of vesicular fusion and release is maintained, while the amount of 

neurotransmitter released is severely reduced.  Pothos et al. (1998) found that activation of D2 
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receptors decreased the quantal size by inhibiting tyrosine hydroxylase activity, which reduced 

cytosolic dopamine available for vesicle accumulation.  Pothos et al. (1998) also suspect that D2 

agonists do not decrease the rate of vesicular exocytosis, rather, that the quanta are simply 

releasing levels of neurotransmitter below the detection limit.  The discovery of terminal-level 

D2 receptor modulation of extracellular levels of dopamine (Mitala and Michael, unpublished 

results) agrees with the idea of D2 receptor control of quantal size rather than firing rates.  

Furthermore, the tetrodotoxin data presented in this report supports vesicular modulation, since 

no change in dopamine was observed following inhibition of the action potential at either site.  

Such observations support D2 receptor control of vesicular modulation as a possible feedback 

mechanism after uptake inhibition.   

 

5.6. CONCLUSION 

 

Evidence of dopamine D2 receptor modulation of extracellular dopamine after uptake inhibition 

is abundant in our lab.  In this study, we discovered that D2 receptor control of dopamine release 

after uptake inhibition was impulse-dependent.  The use of tetrodotoxin to inhibit the 

propagation of the action potential at both the medial forebrain bundle and in the striatum 

revealed that D2 receptor mediation of dopamine release is dependent upon neuronal firing, an 

idea supported by electrophysiological studies utilizing D2 agonists and antagonists (Mercuri et 

al., 1991; Mercuri et al., 1992; Mercuri et al., 1997; Einhorn et al., 1988).  Our study also rules 

out the involvement of reverse transport by the dopamine transporter as a mechanism of 

increased release after D2 receptor blockade followed by uptake inhibition.   
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