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Retroviral Gag polyproteins are necessary and sufficient for virus budding, but little is known 

about how thousands of Gag polyproteins are transported to the budding sites. The actin 

cytoskeleton has long been speculated to take a role in retrovirus assembly and recent studies 

suggest that HIV-1 assembly is regulated as early as viral RNA nuclear export, however specific 

mechanisms for these regulations are unknown. In contrast to numerous studies of HIV-1 Gag 

assembly and budding, relatively little is reported for these fundamental pathways among animal 

lentiviruses. In this project, we used bimolecular fluorescence complementation (BiFC) (1) to 

reveal intimate (<15nm) and specific associations between EIAV Gag and actin, but not tubulin; 

(2) to characterize and compare assembly sites and budding efficiencies of EIAV and HIV-1 Gag 

in both human and rodent cells when the mRNA nuclear export context is altered to be Rev-

dependent or Rev-independent; (3) to reveal co-assembly of Rev-dependent and Rev-

independent HIV-1 Gag and rescued assembly of Rev-independent HIV-1 Gag in human cells by 

in cis provided membrane targeting signals. The results of these studies showed that (1) 

multimerization of EIAV Gag was required for association with filamentous actin and this 

association correlated with Gag budding efficiency, suggesting that association of Gag multimers 

with filamentous actin is important for efficient virion production; (2) HIV-1 and EIAV Gag 

assembled in different cellular at sites, and HIV-1 but not EIAV Gag assembly was affected by 
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mRNA nuclear export pathways, suggesting that alternative cellular pathways can be adapted for 

lentiviral Gag assembly and budding; (3) Rev-independent HIV-1 Gag was deficient in lipid raft 

targeting and its assembly and budding could be restored by membrane targeting signals 

provided in trans or in cis, suggesting that raft association is critical for HIV-1 assembly and 

budding and is regulated as early as nuclear export of Gag-encoding mRNA. The findings 

presented in these studies are significant for public health because a better understanding of the 

mechanism of retrovirus assembly and budding increase the potential to develop novel antiviral 

therapies targeting this critical step in the viral life cycle.  
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1.0  INTRODUCTION 

1.1 RETROVIRUSES ASSEMBLY AND BUDDING 

1.1.1 General Properties of retroviruses 

Retroviruses comprise a large and diverse family of enveloped RNA viruses defined by common 

taxonomic denominators that include structure, composition, and replicative properties (Coffin et 

al., 1997). The virions are 80-100 nm in diameter and their outer lipid envelope incorporates and 

displays the viral glycoproteins. The shape and location of the internal protein core are 

characteristic for various genera of the family (Table 1-1) (Coffin et al., 1997). Retroviral 

virions encapsulate a virus RNA genome that is linear, single-stranded, nonsegmented RNA. The 

hallmark of the family is the essential steps in its replication cycle: reverse transcription of the 

virion RNA into linear double-stranded DNA and the integration of this DNA into host genome.  

Retroviruses are broadly divided into two categories – simple and complex – 

distinguishable by the organization of their genomes (Table 1-1) (Coffin et al., 1997). All 

retroviruses contain three major coding regions: gag, which encodes for the virion internal 

proteins that form the matrix, the capsid and the nucleoprotein structures; pol, which directs the 

synthesis of reverse transcriptase, protease and integrase enzymes; and env, which encodes the 

viral surface transmembrane envelope glycoproteins. Simple retroviruses usually only carry this 
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elementary information, whereas complex retroviruses code for additional regulatory 

nonstructural proteins derived from multiple-spliced mRNA. Retroviruses are further subdivided 

into seven groups defined by evolutionary relatedness (Table 1-1). Five of them are oncogenic 

retroviruses and the other two groups are the lentiviruses and the spumaviruses. Except the 

human T-cell leukemia virus-bovine leukemia virus (HTLV-BLV), all the oncogenic retroviruses 

are simple retroviruses. HTLV-BLV, lentiviruses and spumaviruses are complex retroviruses. A 

representative example for lentivirus is human immunodeficiency virus (HIV), the causative 

agent of acquired immunodeficiency syndrome (AIDS). Its genome structure and virion 

organization are shown in Fig. 1-1. The first described retroviral disease, equine infectious 

anemia (Vallee and Carre, 1904), is caused by equine infectious anemia virus (EIAV) that is the 

simplest member in lentivirus genus.   

Table 1-1. Classification of Retroviruses 

Genus Example Virion morphology Genome 
1. Alpharetrovirus Rous sarcoma virus 

Avian leucosis virus 
Central, spherical core 

“C particles” 
Simple 

2. Betaretroviurs Mouse mammary 
tumor virus 

Eccentric, spherical core 
“B particles” 

Simple 

3. Gammaretrovirus Moloney murine 
leukemia virus 

Central, spherical core 
“C particles” 

Simple 

4. Deltaretrovirus Human T-cell leukemia 
virus 

Central, spherical core Complex 

5. Epsilonretrovirus Mason-Pfizer monkey 
virus 

Cylindrical core 
“D particles” 

Simple 

6. Lentivirus Human 
immunodeficiency 

virus 

Cone-shaped core Complex 

7. Spumavirus Human foamy virus Central, spherical core Complex 
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Figure 1-1. Organization of HIV-1 genome and viral particle. 

(A) Organization of the HIV-1 proviral genome. (B) Organization of the HIV-1 mature viral 

particle. Reprinted with permission from Suzanne Scarlata and Carol Carter, Role of HIV-1 Gag 

domains in viral assembly. 2003. Biochimica et Biophysica Acta, 1614:62-72. Copyright 2003, 

Elsevier B.V. 
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1.1.2 Retrovirus life cycle 

Taking HIV-1 as the example, retrovirus life cycle is shown in Fig. 1-2. Viruses first attach to 

the receptors on cell surface (step 1), then enter the host cell upon fusion between viral 

membrane and cell membrane (step 2). After disassembly of virus core (step 3), viral RNA is 

reverse transcribed into double-stranded proviral DNA that is associated with a pre-integration 

complex (PIC) (step 4). The PIC enters the host nucleus (step 5), leading to integration of 

proviral DNA into host genome (step 6). Post transcription, both spliced and unspliced viral 

RNA are exported from nucleus (step 7). Gag and Gag-Pol polyproteins are synthesized from 

unspliced viral RNA in cytosol (step 8), while Env glycoproteins are synthesized from spliced 

viral RNA and follow the secretory protein synthesis pathway (step 9). These newly synthesized 

viral structural proteins then traffic to the plasma membrane where they assemble (step 10) and 

bud from the host cell (step 11). Upon virus budding, viral protease mediated Gag processing 

leads to virus maturation (step 12), a morphological transition essential for virus infectivity.   
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Figure 1-2. Life cycle of HIV-1. 

Reprinted with permission from Suzanne Scarlata and Carol Carter, Role of HIV-1 Gag domains 

in viral assembly. 2003. Biochimica et Biophsica Acta, 1614:62-72. Copyright 2003, Elsevier 

B.V. 
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1.1.3 Retrovirus assembly and budding 

Retroviral Gag polyproteins are synthesized in the cytoplasm of the infected cells and assemble 

into virus particles that typically bud from the plasma membrane. Although the envelope 

glycoproteins and the pol-encoded enzymes are required for the production of infectious virions, 

Gag expression alone is generally sufficient for the assembly and release of non-infectious, 

virus-like particles (VLPs). Upon virus release, cleavage of Gag precursor into matrix (MA), 

capsid (CA), and nucleocapsid (NC) by the viral protease leads to virus maturation. Retrovirus 

assembly usually takes place at either of two subcellular locations: cytosol or plasma membrane. 

For type C retroviruses, which include the alpharetroviruses, gammaretroviruses and lentiviruses, 

the assembly of electron-dense structures occurs at the plasma membrane. In contrast, for type B 

and D retroviruses, assembly takes place in the cytosol and the assembled intracytoplasmic 

particles traffic to the plasma membrane where they bud from the cell (Coffin et al., 1997).  

Although expression of Gag proteins alone is generally sufficient to drive retrovirus 

assembly and budding, other retrovirus encoded proteins also play roles in retrovirus assembly 

and budding. Several lines of evidence suggest that Env glycoproteins have a role in virus 

trafficking and budding. In the early 1990s, it was reported that expression of HIV Env drove 

HIV Gag budding from the basolateral side in polarized cells, while Gag budded from both 

apical and basolateral sides without Env expression (Owens et al., 1991). Recently, Sandrin and 

Cosset reported that expression of different viral glycoproteins have different effects on 

retrovirus Gag protein intracellular location (Sandrin and Cosset, 2005). MLV Gag was reported 

to be rerouted from lysosomes to transferrin-positive endosomes in presence of MLV Env 

glycoproteins (Basyuk et al., 2003). For Mason Pfizer Monkey Virus (MPMV), the release of the 
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intracelluarly assembled virus particles requires the recycling of Env glycoproteins (Sfakianos et 

al., 2003;Sfakianos and Hunter, 2003). Similarly, foamy viruses (FV) require expression of the 

envelope protein for budding of intracellular capsids from the cell (Pietschmann et al., 

1999;Stanke et al., 2005). 

HIV-1 encoded accessory protein Viral Protein U (Vpu) also regulates retrovirus 

assembly and budding by a mechanism that is not clear so far. The absence of Vpu results in an 

accumulation of cell-associated viral proteins and blocks progeny virus release (Klimkait et al., 

1990). Vpu enhances HIV-1 particle assembly and release in most human cells, but not in simian 

cells, by overcoming a dominant block to HIV-1 release in human cells (Varthakavi et al., 2003). 

Interestingly, not only the release HIV-1 Gag, but also the release of the Gag proteins of HIV-2, 

visna virus, and Moloney murine leukemia virus can be enhanced by Vpu (Gottlinger et al., 

1993). Recent studies suggest that Vpu enhances HIV-1 assembly and budding by preventing 

endocytosis of virus particles (Harila et al., 2006;Neil et al., 2006). 

 

Figure 1-3. Schematic representation of retroviral Gag proteins and location of retroviral L domains. 
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1.1.4 Role of Gag domains in retrovirus assembly and budding 

Retrovirus Gag polyprotein consists of matrix (MA), capsid (CA), and nucleocapsid (NC) 

proteins and small peptides (late domain and spacer peptides) (Fig. 1-3). These Gag domains 

orchestrate the major steps in virus assembly and budding (Demirov and Freed, 2004;Morita and 

Sundquist, 2004). 

1.1.4.1 Matrix 

The matrix (MA) protein plays a critical role in targeting Gag polyprotein to the host cell 

membrane and mediating Env glycoprotein incorporation into the virion. The membrane 

targeting determinant in HIV MA has been mapped to an N-termianl myristate and a region rich 

in basic amino acids termed the M domain (Freed, 1998;Zhou et al., 1994). The three-

dimensional structure of HIV-1 MA reveals a globular head formed by four α-helices and a C-

terminal α-helix that projects away from the core domain (Hill et al., 1996;Massiah et al., 1994). 

The myristic acid that is covalently attached to the N-terminal glycine residue and the highly 

basic patch formed by conserved positive charged residues clustered on the surface of the MA 

globular head both contribute to HIV-1 MA dependent membrane binding of Gag precursors 

(Scarlata and Carter, 2003).  

Over 10 years ago, it was proposed that the membrane association of the myristoylated 

Gag is regulated by a so-called “myristoyl switch” mechanism whereby the myristate can adopt 

either an exposed or a sequestered conformation (Zhou and Resh, 1996). Recent structural 

studies demonstrate that HIV-1 myristoyl switch is regulated by entropic modulation of a 

preexisting equilibrium between the sequestered and the exposed states upon Gag 

multimerization (Tang et al., 2004), and specific interactions between myristoylated HIV-1 MA 
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and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] trigger a transition of the myristate from 

the sequestered to the exposed conformation, therefore promoting the stable association of MA 

with the membrane (Saad et al., 2006). Several in vivo functional studies also demonstrate that 

Gag multimerization enhances membrane association of HIV-1 Gag polyprotein (Perez-

Caballero et al., 2004;Zhou and Resh, 1996), and PI(4,5)P2 plays a key role in Gag targeting to 

the plasma membrane (Ono et al., 2004). The PI(4,5)P2 induced myristoyl switch might regulate 

lateral targeting of PI(4,5)P2:Gag complexes to lipid rafts, since PI(4,5)P2 may preferentially 

associate with lipid rafts (Caroni Pico, 2001;Golub and Caroni, 2005), although this concept 

remains controversial (McLaughlin and Murray, 2005;van Rheenee et al., 2005). 

Although numerous in vivo studies clearly demonstrate that N-terminal myristoylation of 

HIV-1 Gag is critical for virus assembly and budding by mediating membrane association of Gag 

precursors (Bryant and Ratner, 1990;Gottlinger et al., 1989;Lindwasser and Resh, 2002;Liu et 

al., 1999;Ono and Freed, 1999;Spearman et al., 1997;Zhou et al., 1994), in vitro studies suggest 

that electrostatic interactions between positively charged surface of Gag multimers and 

negatively charged phospholipids drive the membrane association of HIV-1 Gag and that the 

myristoyl moiety only contributes negligibly to membrane interactions (Dalton et al., 

2007;Ehrlich et al., 1992). It is noteworthy that several other retrovirural Gag polyproteins are 

not myristoylated (eg. RSV (Dalton et al., 2007), EIAV (Hatanaka et al., 2002;Provitera et al., 

2000)), indicating that membrane targeting signals other than myristoylation are used.  

Retrovirus MA has been shown to recruit cellular factors to regulate Gag trafficking (see 

below). For example, clathrin adaptor complex AP-3 (Dong et al., 2005) and AP-1 (Camus et al., 

2007) were found to interact with HIV-1 MA, and cytoskeleton regulator IQGAP1 was reported 

to interact with MLV MA (Leung et al., 2006).  
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1.1.4.2 Capsid 

The capsid (CA) plays critical roles in both particle assembly and virus infectivity. In mature 

HIV-1 virion, capsid forms a conical core that encapsulates the viral RNA-protein complex. 

HIV-1 CA alone is able to assemble into particles in vitro (Ehrlich et al., 1992), and in vivo data 

also supports its function in HIV-1 particle assembly (Accola et al., 2000). HIV-1 CA can be 

divided into an N-terminal domain (NTD) and a C-terminal domain (CTD), which are connected 

through a flexible linker region (Berthet-Colominas et al., 1999;Momany et al., 1996).  

Structural comparison between the NTD of HIV-1 CA (Gitti et al., 1996) and the N-

terminal 283 residue fragment of HIV-1 Gag (Tang et al., 2002) reveals a 13-residue β-hairpin 

that is stabilized in part by a salt bridge between the terminal NH2
+ group of Pro1 and the side 

chain carboxy group of Asp51 and that is believed to be formed by refolding of the N-terminus of 

CA upon cleavage of CA from MA. It is thought that this change leads to the dramatic 

transformation of HIV-1 core structure that is essential for HIV-1 infectivity. In contrast to the 

NTD that is essential for formation of mature HIV-1 virion but dispensable for the assembly of 

immature virus particles, the CTD is crucial for Gag oligomerization, particle assembly, and core 

formation (Accola et al., 2000).  

1.1.4.3 Nucleocapsid 

The nucleocapsid (NC) is a highly basic protein and encapsulates viral RNA through its zinc 

fingers. HIV-1 NC contains two zinc fingers that are required for specific packaging of two 

copies of viral genomic RNA into the nascent viral particle through a cis nucleotide segment 

known as the Psi-site (Amarasinghe et al., 2001). However, the viral genomic RNA is completely 

unnecessary for efficient particle assembly in mammalian cells (Mann et al., 1983), and in 

absence of viral RNA, retroviruses recruit and encapsulate other cellular RNAs into assembled 
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virus particles (Khorchid et al., 2002;Muriaux et al., 2001;Muriaux et al., 2002). It is reasonable 

to assume that RNA binding helps to localize and concentrates Gag monomers to promote Gag 

assembly, which means that RNAs can serve as the scaffold for retroviruses assembly.  

The region of NC that binds RNA is the conserved interaction (I) domain containing the 

zinc fingers (Feng et al., 1996;Muriaux et al., 1996) and is a functional domain required for the 

assembly of particles of normal density (Bennett et al., 1993;Parent et al., 1995). It was reported 

that HIV-1 NC can bind actin filaments in cosedimentation experiments, suggesting its role in 

regulating Gag trafficking by employing host cytoskeleton (Liu et al., 1999) (see below).  

1.1.4.4 Spacer peptides 

HIV-1 Gag polyprotein contains two spacer peptides: SP1 and SP2. SP1 has been shown to play 

active role in HIV-1 assembly and budding. Mutations in SP1 diminish particle release and result 

in the production of structurally aberrant, non-infectious virus particles (Krausslich et al., 

1995;Pettit et al., 1994). The SP1 domain is predicted to exhibit α-helical structure that extends 

across the CA-SP1 boundary and is believed essential for virus assembly (Krausslich et al., 

1995;Pettit et al., 1994). Recent NMR based structural studies suggest that SP1 exists as a 

dynamic equilibrium of predominantly random coil and, to a smaller extent, helical states. It has 

been proposed that the transient coil-to-helix equilibrium functions as a ‘molecular switch’ that 

regulates Gag assembly and helps to maintain the order of CA-SP1 cleavage in Gag processing 

(Newman et al., 2004). During viral particle release, SP1 is removed from the C-terminus of CA 

prior to capsid condensation and virus maturation. It is believed that SP1 removal disrupts the α-

helical structure leading to capsid reorganization (Gross et al., 2000;Wiegers et al., 1998). The 

recently developed anti-HIV compound 3-O-(3',3'-dimethylsuccinyl)-betulinic acid (DSB) 
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potently and specifically inhibits human immunodeficiency virus type 1 (HIV-1) replication by 

delaying the cleavage of the CA-SP1 junction in Gag leading to impaired maturation of the viral 

core further demonstrates the critical role of SP1 in infectious HIV-1 virion production (Li et al., 

2003;Li et al., ). Compared to SP1, the functional role of SP2 is largely unknown although one 

study suggests that it is important in the correct positioning of Gag for protelytic processing and 

functions in stabilizing the dimeric form of genomic RNA (Hill et al., 2002).  

1.1.4.5 Late domains 

In addition to MA, CA and NC, retrovirus Gag polyprotein also contains a small protein that 

functions at the late stage of virus assembly and budding process (Fig. 1-3). In HIV-1, it is called 

p6 and located at the C-terminus of the Gag precursor. Budding determinants within p6 have 

been mapped to a highly conserved stretch of amino acids with the consensus sequence 

P(T/S)AP and termed viral late (L) domain (Huang et al., 1995). The L domains are required for 

the pinching off of the newly assembled virion from the host membrane. Even subtle mutations 

in this motif caused a severe defect in virus particle production (Huang et al., 1995). L domains 

with P(T/S)AP motifs were subsequently identified in MPMV (Gottwein et al., 2003) and HTLV 

(Bouamr et al., 2003).  

The proline rich L domain, PPxY, was first identified in the p2 region of RSV Gag 

(Xiang et al., 1996). Subsequently, PPxY L domain motif was identified in MPMV (Yasuda and 

Hunter, 1998), MLV (Yuan et al., 1999) and HTLV (Le Blanc et al., 2002). EIAV encodes a 

unique L domain, YPDL (Puffer et al., 1997), and a related sequence (LYPLASL) was later 

found near the C-terminus of HIV-1 p6 (Strack et al., 2003). 

Numerous studies indicate that retroviral L domains are often exchangeable and display 

positional independence (Accola et al., 2000;Li et al., 2002;Parent et al., 1995;Shehu-Xhilaga et 
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al., 2004;Strack et al., 2002;Strack et al., 2003). Identification of their interacting proteins 

support the model that L domains serve as docking sites for retrovirus budding co-factors 

provided by the cell that will be discussed in the next section. 

1.1.5 Cellular factors involved in retrovirus assembly and budding 

1.1.5.1 Vps proteins and retrovirus budding 

A key step in the trafficking of membrane proteins and lysosomal enzymes to the lysosome (or 

the vacuole in yeast) is the delivery of these proteins to the late endosome prior to their fusion 

with the lysosome. The cargo proteins are initially delivered to early endosomal membranes 

where they are incorporated into vesicles (intralumenal vesicles or ILV) that bud into the lumen 

of the organelle. Early endosomes mature to late endosomes, or multivesicular bodies (MVBs), 

that accumulate ILVs (Katzmann et al., 2002). An interesting connection between MVB 

biogenesis and retrovirus budding is they are topologically equivalent. In both cases, budding is 

directed away from the cytoplasm. Numerous studies of retrovirus L domain interacting proteins 

indicate that retroviruses have evolved to adapt MVB machinery for their release from host cells.  

Morphological characterization of vacuolar protein sorting (Vps) mutants in yeast led to 

the classification of a number of distinct vacuolar morphologies (Raymond et al., 1992). One of 

these morphological classes, “class E” was defined by the formation of an enlarged, pre-vacuolar 

compartment (Katzmann et al., 2002; Raymond et al., 1992). Class E Vps proteins have been 

thought to be cytoplasmic, multidomain proteins that transiently associate with endosomal 

membrane at the site where the inward invagination of cargo loaded vesicles takes place (Hurley 

and Emr, 2006). But a recent ultrastructure study of intracellular localization of Vps proteins 

suggest that majority of these proteins are associated with low affinity with the tubular-vesicular 
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endosomal membranes (Welsch et al., 2006). Many class E Vps proteins assemble into discrete 

complexes named as endosomal sorting complex required for transport (ESCRT) –I, -II or –III 

(Fig. 1-4) (Hurley and Emr, 2006).  

 

Figure 1-4. Model showing the interaction network of mammalian Class E proteins and their roles in 

retrovirus budding.  

Reprinted with permission from Eiji Morita and Wesley I. Sundquist, Retrovirus budding. 

2004. Annu. Rev. Cell Dev. Biol., 20:395-425. Copyright 2004, Annual Reviews. 

 

ESCRT-1 component Tsg101 was first identified as an HIV-1 P(T/S)AP L domain 

interacting protein (Garrus et al., 2001; VerPlank et al., 2001). Depletion of endogenous Tsg101 

by RNAi inhibits HIV-1 virus release (Garrus et al., 2001). Overexpression of the P(T/S)AP 

interacting domain, N-terminal UEV domain of Tsg101 (Garrus et al., 2001; Pornillos et al., 

2002) causes an inhibition of HIV-1 budding (Demirov et al., 2002). In both cases, HIV-1 virus 

particles are tethered to plasma membrane similar to the arrested structure induced by L domain 

mutations. 
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Alix was recently identified as the budding factor of EIAV YPxL L domain and HIV-1 

secondary L domain, LYPLASL (Martin-Serrano et al., 2003; Strack et al., 2003; von Schwedler 

et al., 2003). SiRNA knockdown of endogenous Alix dramatically inhibits EIAV p9 mediated 

budding (Chen et al., 2005; Martin-Serrano et al., 2003), but has relatively little effect on HIV-1 

p6 mediated budding (Martin-Serrano et al., 2003). This is consistent with the function of the 

secondary L domain in HIV-1 p6. Mutation of LYPLASL has a negligible effect on HIV-1 

budding, in contrast to an almost complete block of virus budding induced by P(T/S)AP 

mutations (Fisher et al., 2007). Overexpression of Alix could rescue P(T/S)AP mutated HIV-1 

budding (Fisher et al., 2007), and overexpression of the Alix fragment that interacts with 

LYP(x)nL motif potently inhibits HIV-1 budding (Munshi et al., 2007), indicating that p6-Alix 

interaction plays a role in HIV-1 budding. Alix interacts with both ESCRT-1 and ESCRT-III 

components (Martin-Serrano et al., 2003; Strack et al., 2003; von Schwedler et al., 2003), and its 

V domain is the docking sites for the LYP(x)nL L domain (Lee et al., 2007; Fisher et al., 2007), 

indicating its ability to serve as a connection between ESCRT complexes and a entry portal to 

the Vps network. 

A number of studies have identified Nedd4 and related proteins as the host factors 

interacting with PPxY L domains. Nedd4 family members are E3 ubiquitin ligases that typically 

contain a N-terminal, calcium-inducible membrane binding domain, multiple centrally located 

WW domains, and a C-terminal HECT domain that is the enzyme activity domain (Harvey and 

Kumar, 1999). The PPxY sequence is the consensus binding site for WW protein recognition 

domains, and several groups have demonstrated that WW domains form the Nedd4 family 

members can bind viral PPxY late domains (Gamier et al., 1996; Bouamr et al., 2003; Yasuda et 

al., 2002; Kikonyogo et al., 2001). However, there are multiple Nedd4-like proteins in 
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mammalian cells, and there is not yet a general consensus as to which subsets actually function 

as late domain binding partners. Importantly, Nedd4 and its relatives mediate ubiquitin 

dependent down-regulation of cell surface proteins via the MVB pathway (Harvey and Kumar, 

1999), and the interaction of PPxY L domains with Nedd4 family members may be functionally 

relevant to retrovirus budding (Demirov and Freed, 2004). 

Finally, inhibition of budding by several retroviruses that harbor different L domain can 

be achieved by overexpression of dominant negative Vps4 AAA-ATPase that functions in the 

release of membrane associated ESCRT-III complexes to allow multiple rounds of sorting and 

budding of either intralumenal vesicle or viruses (Garrus et al., 2001; Tanzi et al., 2003), 

suggesting that different retroviruses budding pathways converge at the final step by utilizing 

host Vps machinery. 

1.1.5.2 Intracellular Gag trafficking during retrovirus assembly and budding  

In contrast to the final step mediated by host Vps machinery that is recruited by various 

retrovirus L domains, the earlier steps from Gag synthesis to membrane targeting of newly 

synthesized Gag polyproteins during retrovirus assembly and budding process are largely 

unknown even for the most extensively studied retrovirus, HIV. Multiple challenges have to be 

faced to elucidate these earlier steps of the dynamic, complicated, multi-step assembly and 

budding process. (1) The majority (~80%) of newly synthesized Gag proteins are degraded 

within 2 hours (Tritel and Resh, 2000). (2) Multiple assembly intermediates exist inside cells 

before membrane targeting of Gag polyproteins (Tritel and Resh, 2000; Dooher and Lingappa, 

2004). (3) Newly synthesized Gag polyproteins are targeted to cell membrane soon after 

synthesis (in less than 1 hour)(Tritel and Resh, 2000; Rudner et al., 2005; Perlman and Resh, 

2006). (4) Intracellular Gag proteins are highly mobile (Gomez and Hope, 2006). Therefore, it is 
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difficult to capture the highly dynamic trafficking of newly synthesized Gag proteins that exist in 

a complex containing various assembly intermediates by using traditional imaging approaches 

with fluorescence protein tags that mature on a time scale of hours.  

Intracellular transport of Gag polyproteins can be mediated by the endosomal membrane 

trafficking and/or the host cytoskeleton. Given the critical function of the cytoskeleton in 

membrane trafficking, these two trafficking mechanisms are not independent of each other. 

Microtubule serves as the track for long-range transport of endosomes, while the actin 

cytoskeleton can either propel vesicles by forming “comet tails” on vesicle membranes or serve 

as the track for short-range transport of vesicles (Fig. 1-5). 

It is well established that HIV-1 Gag buds from the plasma membrane of T lymphocytes 

and some epithelial cell lines (Nydegger et al., 2003; Hermida-Matsumoto and Resh, 2000; Ono 

et al., 2004; Demirov and Freed, 2004; Morita and Sundquist, 2004; Nguyen et al., 2003). In 

contrast, MVBs are apparently the sites of HIV-1 Gag accumulation and particle production in 

macrophages and dendritic cells (Blom J. et al., 1993; Morita and Sundquist, 2004; Nguyen et 

al., 2003; Pelchen-Matthews et al., 2003; Raposo et al., 2002). Based on various studies showing 

that HIV-1 Gag may also target to MVBs in other cell types (Nydegger et al., 2003; Ono et al., 

2004; Sherer et al., 2003), MVBs are thought to be the common budding sites for HIV-1. 

However, recent studies appeared to contradict this model by indicating the plasma membrane as 

the productive sites for HIV-1 Gag assembly and budding in various cells (Welsch et al., 2007; 

Jouvenet et al., 2006; Deneka et al., 2007; Finzi et al., 2007), including macrophages where HIV-

1 virions bud from invaginated plasma membranes (Welsch et al., 2007; Deneka et al., 2007). 

These recent studies are consistent with a previous dynamic imaging study of HIV-1 Gag 

trafficking in live cells by biarsenical labeling showing that newly synthesized Gag rapidly 
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concentrates in specific plasma membrane areas (~30 min) after translation (Rudner et al., 2005). 

However, little is known how thousands of copies of Gag molecules are transported to the 

plasma membrane post translation. A dynamic imaging study of HIV-1 Gag in live cells reveals 

a trafficking pathway through several temporal intermediates. Gag first appears diffusely 

distributed in the cytosol, accumulates in perinuclear clusters, passes transiently through a MVB-

like compartment, and then travels to the plasma membrane (Perlman and Resh, 2006). The 

authors suggest that HIV-1 Gag might start its journey on endosome membranes, such that Gag 

“takes ride” on moving endosomes to traffic to budding sites. 

 

Figure 1-5. Cytoskeleton in intracellular membrane trafficking. 

EE, early endosome; LE/MVB, late endosome/multivesicular body; RE, recycling 

endosome; Lys, lysosome; myo, myosin; kin, kinesin; dyn, dynein. 
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1.1.5.3 Endosomal trafficking and retrovirus assembly and budding 

Multiple lines of evidence suggest that intraceullar endosome trafficking might be utilized by 

retroviruses for transporting Gag proteins.  

Fist, several clathrin adaptor protein (AP) complexes have been reported to be recruited 

by retroviruses. AP complexes mediate assembly of clathrin-coated vesicles that selectively 

transport designated cargo molecules between membrane-bound intracellular compartments (Fig. 

1-5). Our lab first reported that the µ2 subunit of AP-2 interacts with EIAV YPDL L domain and 

suggested it as a budding partner for EIAV (Puffer et al., 1998). Depletion of AP-2 by RNAi or 

overexpression of dominant negative µ2 both inhibited EIAV budding, suggesting that AP-2 

plays a role in EIAV assembly and budding. AP-3 was found to associate with the N-terminal 

helix of HIV-1 MA and to direct the intracellular trafficking of HIV-1 Gag, and depletion of AP3 

expression inhibited HIV-1 budding (Dong et al., 2005). AP-2 was found to interact with HIV-1 

Gag polyproteins at the matrix–capsid junction and to confine HIV-1 exit to distinct 

microdomains (Batonick et al., 2005). Recently, AP-1 was reported to facilitate HIV-1 budding 

through direct binding to HIV-1 MA and Tsg101 (Camus et al., 2007). However, where these AP 

complexes are recruited by retroviral Gag polyproteins and how they regulate Gag trafficking are 

not known. 

Second, accumulating evidence indicates a connection between retrovirus release and the 

endosomal sorting signal molecule - ubiquitin (Vogt, 2000). Ubiquitin is a small, highly 

abundant protein that can be covalently attached to a lysine residue in target proteins post-

translationally. It can also be linked to other ubiquitin moieties on target proteins to form 

polyubiquitin chains. The poly-ubiquitin chains generally serve as a signal for protein 

degradation in the proteasome, while a monoubiquitin tag directs membrane-associated proteins 
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for internalization and/or sorting into the endosomal pathway (Mukhopadhyay and Riezman, 

2007).  

Retroviruses have long been known to contain ubiquitin, and monoubiquitylated Gag 

(Chertova et al., 2006; Heidecker et al., 2004; Ott et al., 1998; Putterman et al., 1990). Treatment 

of virus-producing cells with proteasome inhibitors to deplete free ubiquitin by inducing the 

accumulation of polyubiquitin complex inhibits virus release of some (but not all) retroviruses 

(Accola et al., 2000; Patnaik et al., 2000; Patnaik et al., 2002; Schubert et al., 2000). A 

correlation exists between the endocytic function of ubiquitin and HIV-1 particle release. 

Expression of ubiquitin mutants that are deficient in ubiquitin-mediated endocytosis leads to a 

reduction of VLP production (Strack et al., 2002). Retroviral Gag interacts with components of 

the ubiquitylation machinery (Alroy et al., 2005;Bouamr et al., 2003;Gamier et al., 

1996;Kikonyogo et al., 2001;Yasuda et al., 2002). However the precise role of ubiquitin in 

retrovirus assembly and budding and functional relevance of Gag ubiquitination remains unclear. 

Third, annexin 2 was identified as a HIV Gag binding partner in macrophages, and the 

annexin 2-Gag binding was specific for productively infected macrophages (Ryzhova et al., 

2006). Annexin 2 locates on endosomes (Emans et al., 1993) and has been implicated in MVB 

formation, probably mediated by its binding with actin (Futter and White, 2007). Annexin 2 

depletion is associated with a significant decline in the infectivity of released virions that 

correlates with incomplete Gag processing and inefficient incorporation of CD63 (Ryzhova et 

al., 2006), suggesting that interaction with annexin 2 directs HIV-1 Gag to correct membrane 

domains for assembly and budding.  

A recent study showing that HIV-1 virions are efficiently released when Gag is rationally 

targeted to the PM, but not when targeted to endosomes, challenges the model that HIV-1 Gag 

 20 



utilizes endosome trafficking pathways (Jouvenet et al., 2006). In contrast to HIV-1, Mason-

Pfizer monkey virus (M-PMV) is clearly demonstrated to utilize endosome trafficking pathways 

for Gag assembly and budding. This D-type retrovirus specifically targets Gag precursor proteins 

to the pericentriolar region of the cytoplasm in a microtubule dependent process mediated by the 

dynein/dynactin motor complex. The Gag molecules are concentrated in pericentriolar 

microdomains, where they assemble to form immature capsids (Sfakianos et al., 2003). Then 

Env glycoproteins endocytosed from the plasma membrane interacts with Gag at the 

pericentriolar microdomains and transport the immature capsids out via Rab11 dependent 

pericentriolar recycling endosomes (Sfakianos and Hunter, 2003).   

1.1.5.4 Cytoskeleton and retrovirus assembly and budding  

The importance of the integrity and dynamics of host cell cytoskeletal structures for efficient 

HIV-1 replication has long been suggested (Sasaki et al., 1995). However, the detailed 

mechanisms by which retroviruses exploit cytoskeletal dynamics are not known. Recent studies 

suggest that the host cell cytoskeleton is involved in retrovirus entry (Lehmann et al., 2005; 

Iyengar et al., 1998; Jimenez-Baranda et al., 2007; Pontow et al., 2004; Komano et al., 2004), 

transport of virion components (Tang et al., 1999; Rey et al., 1996; Sasaki et al., 2004; Leung et 

al., 2006; Kim et al., 1998), retrovirus release (Jolly et al., 2007; Sasaki et al., 2004), as well as 

retovirus transmission through virological synapse (McDonald et al., 2003; Jolly et al., 2004; 

Jolly et al., 2007). In addition, the export of HIV genomic RNA to the cytosol seems to require 

nuclear actin (Hofmann et al., 2001), and synthesized Gag protein tethers viral RNA to actin 

filaments close to the MTOC (Poole et al., 2005).  

Numerous studies suggest that retroviruses exploit actin cytoskeleton for intracellular 

Gag transport (Chen et al., 2004; Edbauer and Naso, 1983; Ott et al., 1996; Ott et al., 2000; 
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Sasaki et al., 1995; Liu et al., 1999). Perturbation of the actin cytoskeleton affects the assembly 

and budding of several retroviruses (Sasaki et al., 1995; Chen et al., 2004; Maldarelli et al., 1987; 

Audoly et al., 2005). Actin and actin-binding proteins have been identified within highly purified 

HIV-1 virions (Ott et al., 1996; Ott et al., 2000; Chertova et al., 2006; Ott, 2002). Assembly and 

budding of several retroviruses at actin-rich sites has been reported (Maldarelli et al., 1987; 

Mortara and Koch, 1986). Gag polyproteins are present in the same fractions as actin filaments 

in cell fractionation analysis (Chen et al., 2004; Rey et al., 1996). Furthermore, both in vitro 

translated HIV-1 Gag polyprotein (Rey et al., 1996) and purified nucleocapsids of HIV-1 virions 

(Liu et al., 1999) co-sediment on density gradients with polymerized actin filaments. However, 

the mechanism by which retroviruses utilize actin cytoskeleton for Gag trafficking is unknown. 

Microtubule filaments might also serve as the track for retroviral Gag trafficking. HIV-1, 

SIV, MLV, and M-PMV Gag all recruit microtubule based motor protein KIF-4 (Tang et al., 

1999; Kim et al., 1998). However, it is unclear whether the Gag assembly intermediates before 

membrane binding or Gag molecules associated with vesicles recruit KIF-4 for intracellular 

trafficking. In addition, transport of M-PMV Gag precursors to the pericentriolar region of the 

cytoplasm is mediated by the dynein/dynactin motor complex (Sfakianos et al., 2003).  

1.1.5.5 Connections between retroviral genomic RNA nuclear export and virion assembly 

Retroviral Gag polyproteins are synthesized from an unspliced full-length viral genomic mRNA 

that requires specific regulatory factors for nuclear export. The HIV-1 genome contains a cis-

acting RNA element known as the Rev-response element (RRE) that binds to a viral trans-acting 

protein. Rev binds to the nuclear exporter Crm1 protein which in turn binds to Ran, a small 

GTPase that shuttles between the nucleus and the cytoplasm (Fig. 1-6). Some simple 

retroviruses, such as Mason-Pfizer monkey virus (M-PMV) and avian leukosis virus (ALV), 
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contain cis-acting RNA export elements (constitutive transport elements or CTE) that do not 

require viral trans-acting factors. CTE mediated gRNA nuclear export takes the host cell mRNA 

nuclear export pathway by interacting directly with cellular export factors Tap-Nxt1 complex 

(also known as NXF1/NXT complex) (Swanson and Malim, 2006)(Fig. 1-6).  

 

Figure 1-6.  Rev-dependent nuclear export of HIV-1 genomic mRNA.  

a, Transcription and processing of cellular mRNAs give rise to export-competent mRNA-

protein (mRNP) complexes that include the export factors Tap-Nxt1 complex (also known as 

NXF1-Nxt1). b, HIV-1 genomic mRNAs are bound to a distinct export factor, the RanGTP-

dependent Crm1 that is recruited by viral accessory protein, Rev. Adapted from Figure 1 in 

Nature 433, 26-27 (Cullen, 2005). 
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Swanson et al (Swanson et al., 2004) recently demonstrated that altering the RNA 

nuclear export element used by HIV-1 gag-pol mRNA from the RRE to the M-PMV CTE 

resulted in efficient trafficking and assembly of Gag at cellular membranes in murine cells, 

which are notable for their inability to support HIV-1 assembly and budding (Mariani et al., 

2000; Bieniasz and Cullen, 2000; Swanson et al., 2004). Similarly, a deficiency of assembly of 

ALV Gag proteins synthesized in mammalian cells could be overcome by replacement of the 

ALV CTE-mediated mRNA nuclear export pathway with the HIV-1 Rev-RRE-mediated mRNA 

nuclear export pathway (Nasioulas et al., 1995). These results support the model that RNA 

export pathway selection during Gag expression and assembly can affect the cytosolic fate or 

function of the retroviral Gag polyproteins. However, the mechanisms by which trafficking 

pathways of mRNA regulate the intracellular fate of the proteins synthesized from this mRNA 

are unknown. 

Interestingly, Swanson et al also demonstrated that the Gag location and budding 

efficiency in human cells are different between Rev-dependent HIV-1 Gag and codon-optimized 

HIV-1 Gag that is synthesized from mRNA exported from the nucleus by Tap-Nxt1 in a Rev-

independent manner (Swanson and Malim, 2006). Because it is much easier to manipulate Rev-

independent HIV-1 Gag than Rev-dependent Gag, most of the HIV-1 Gag trafficking studies 

have been performed using Rev-independent constructs (Sherer et al., 2003; Rudner et al., 2005; 

Derdowski et al., 2004; Perlman and Resh, 2006; Jouvenet et al., 2006; Gomez and Hope, 2006; 

Nydegger et al., 2003; Ono and Freed, 2004). This technical detail might be one of the reasons 

for some conflicting reports about the specificity of HIV-1 Gag assembly sites reported by 

different groups, MVB versus plasma membrane. Therefore, it should be important to repeat 
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some of the live cell imaging studies mentioned above using Rev-dependent HIV-1 Gag 

constructs.  

1.1.5.6 Lipid rafts on plasma membrane provide the platform for HIV assembly 

Lipid rafts are membrane microdomains that are highly enriched in sphingolipids and cholesterol 

(Simons and Toomre, 2000; Simons and Vaz, 2004). Clustering of separate rafts exposes raft 

associated proteins to a new membrane environment and facilitates raft protein interactions, and 

this dynamic feature enables rafts to serve as concentrating platforms for signal transduction and 

protein trafficking (Simons and Toomre, 2000; Kusumi et al., 2004). Lipid rafts have been 

implicated in the assembly and release of several families of enveloped viruses including 

orthomyxoviruses, paramyxoviruses, filoviruses, and retroviruses (Ono and Freed, 2005; Schmitt 

and Lamb, 2005; Suomalainen, 2002; Briggs et al., 2003). Multiple lines of evidence suggest that 

lipid rafts play a critical role in HIV-1 assembly and budding: (1) The HIV-1 lipid bilayer has 

long been known to be enriched (relative to the host cell plasma membrane) in sphingolipids and 

cholesterol (Brugger et al., 2006; Aloia et al., 1993); (2) HIV-1 Gag was found to associate with 

rafts in detergent-resistant membrane (DRM) binding assays that isolate lipid rafts biochemically 

based on their insolubility in a number of nonionic detergents (e.g., Triton X-100) at low 

temperature (Nguyen and Hildreth, 2000; Ono and Freed, 2001; Ding et al., 2003; Lindwasser 

and Resh, 2001); (3) Gag proteins colocalize or “co-patch” with raft markers (Ono and Freed, 

2001; Nguyen and Hildreth, 2000); and (4) Higher-order Gag assembly and particle production 

of HIV-1 is inhibited by cholesterol depletion (Ono and Freed, 2001; Brugger et al., 2006; Ono 

et al., 2007). Together, these studies suggest that HIV-1 Gag assembly and budding depend on 

Gag targeting to lipid rafts. However, the mechanism of raft targeting is unknown. 
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1.1.5.7 Cellular factors power the energy-dependent retrovirus assembly and budding 

process 

Retroviral assembly and budding are energy-dependent multi-step processes (Tritel and Resh, 

2001; Dooher and Lingappa, 2004; Tritel and Resh, 2000). Recent structural studies indicate 

HIV-1 Gag monomer assumes a folded conformation, with its N-terminal matrix domain near its 

C-terminal nucleocapsid domain (Batonick et al., 2005; Datta et al., 2007). Since Gag is a rod-

shaped molecule in the assembled immature virion, these findings imply that Gag undergoes a 

major conformational change upon virus assembly. It is reasonable to propose that chaperone 

proteins might be recruited by HIV-1 Gag during the Gag assembly process, and this is 

supported by several studies. First, certain heat shock proteins (Hsp60, Hsp70, and Hsc70) were 

reported to associate with HIV-1 virions (Gurer et al., 2002). Second, M-PMV Gag polyprotein 

associates with the TRiC chaperonin complex and this association depends on ATP hydrolysis 

(Hong et al., 2001). Third, HIV-1 Gag recruits the cellular adenosine triphosphatase ABCE1 

(also termed HP68) to an assembly intermediate and dissociation of ABCE1 from Gag correlates 

closely with Gag processing during virion maturation (Dooher and Lingappa, 2004; Zimmerman 

et al., 2002; Dooher et al., 2007). 

1.2 VISUALIZATION OF PROTEIN INTERACTIONS BY BIMOLECULAR 

FLUORESCENCE COMPLEMENTATION 

Selective interactions with different co-factors can enable a single protein to have different 

functions. Retrovirus assembly and budding is a multi-step process mediated by temporally and 
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spatially regulated protein interactions between viral proteins and between viral protein and host 

factors.  

Numerous approaches have been used to study protein interactions. Many of the 

biochemical experimental approaches, such as co-precipitation and co-purification can detect 

protein interactions but require isolation of proteins from their normal environment. In contrast, 

other approaches, such as genetic analysis of compensatory mutations can detect protein 

interactions indirectly in their normal environment by measuring consequences of protein 

interactions. A combination of genetic and biochemical approaches can be used to identify 

thousands of potential proteins interactions, but not to define the cell specificity and the 

subcellular location of these protein interactions.  

Visualization of protein complexes in living cells directly enables characterization of 

protein interactions in their normal environment. Two major methods have been developed to 

visualize protein interactions in living cells. One is fluorescence resonance energy transfer 

(FRET), and the other is bimolecular fluorescence complementation (BiFC). The former 

technique is based on measuring changes in the fluorescence intensities or the lifetimes of two 

fluorophores when they are brought sufficiently close together compared to those parameters in 

individual proteins (Jares-Erijman and Jovin, 2003;Jares-Erijman and Jovin, 2006;Miyawaki, 

2003). And the latter is based on the formation of a fluorescent complex by non-fluorescent 

fragments of fluorescent proteins. The complemenation of these fragments is facilitated by the 

interaction between the proteins fused to these fragments (Hu et al., 2002;Hu and Kerppola, 

2003) (Fig. 1-7).  
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Figure 1-7. Schematic illustration of bimolecular fluorescence complementation (BiFC). 

The BiFC technique is based on the formation of a bimolecular fluorescent complex when two 

non-fluorescent fragments of yellow fluorescent protein are brought together by an interaction 

between proteins (A and B) that are fused to the fragments. 

 

Many proteins, like β-galactosidase (Rossi et al., 1997;Ullmann et al., 1996), ubiquitin 

(Johnsson and Varshavsky, 1994;Miller et al., 2005) and dihydrofolate reductase (Pelletier et al., 

1998), can be divided into fragments that can complement with each other to produce a 

functional complex. Complementation assays that use fragments of different proteins have 

different properties, like enzyme activity or ubiquitin specific protease activation. BiFC has the 

advantage that a complex can be directly visualized in living cells without the needs for staining 

with exogenous molecules, because the complemented fragments are derived from fluorescence 

proteins (Hu et al., 2002;Hu and Kerppola, 2003;Magliery et al., 2005).  

BiFC assays allow the visualization of protein interactions in vivo with minimal 

perturbation of the normal cellular environment, so it is generally applicable for visualizing 

protein interaction in live cells. The formation of a fluorescent complex does not require that the 

interacting protein partners position the fragments in a specific orientation, as long as the 

fragments can be brought in a close proximity (less than 10 nm) (Hu et al., 2002). Although 
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some studies reported that the formation of BiFC complex is reversible under some condition 

(Anderie and Schmid, 2007;Demidov et al., 2006;Magliery et al., 2005), Hu et al reported that 

the BiFC complex formation is essentially irreversible (Hu et al., 2002). Thus, the interacting 

partners do not need to form a complex with a long half-life time in order to form BiFC 

complexes. This property allows the BiFC assay to visualize transient protein interactions 

(Nyfeler et al., 2005). With the identification of numerous green fluorescence protein variants 

with altered spectral and photophysical characteristics (Shaner et al., 2005;Zhang et al., 2002), 

the BiFC assay can be used to visualize multiple protein complexes simultaneously in the same 

cell. The BiFC complexes that are formed of fragments from different fluorescence proteins have 

spectra that differ from those of BiFC complexes formed of fragments from the same 

fluorescence protein (Grinberg et al., 2004;Hu and Kerppola, 2003;Shyu et al., 2006). 

The BiFC technique has been used to study interactions among a wide range of proteins 

in many cell types and organisms. It has been applied to study interactions among transcription 

factors (Grinberg et al., 2004;Hu and Kerppola, 2003;Rajaram and Kerppola, 2004), to identify 

enzyme-substrate interactions (de Virgilio et al., 2004;der Lehr et al., 2003;Niu et al., 

2005;Remy et al., 2004), to visualize the subcellular localization of protein complexes (Grinberg 

et al., 2004;Hu et al., 2002;Hynes et al., 2004a;Hynes et al., 2004b;Niu et al., 2005), to visualize 

protein interactions in signal transduction networks (Hynes et al., 2004a;Hynes et al., 

2004b;Remy et al., 2004), to study post-translational modifications (Fang and Kerppola, 

2004;Nyfeler et al., 2005), to study macromolecular complexes and molecular scaffolds 

(Rackham and Brown, 2004;Stains et al., 2005), to visualize assembly of virus structural proteins 

(Avitabile et al., 2007;Boyko et al., 2006;Jin et al., 2007;Lee et al., 2007b) and to screen protein 

interactions (Ding et al., 2006;Remy and Michnick, 2004a;Remy and Michnick, 2004b). 
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Retrovirus assembly and budding process is a highly dynamic, multi-step process 

mediated by temporally and spatially regulated host-virus interactions. With the advantage to 

directly visualize protein interactions with high sensitivity, the BiFC technique is highly suitable 

to study numerous protein interactions during retrovirus assembly and budding process. 
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2.0  HYPOTHESIS AND SPECIFIC AIMS 

Previous studies suggest linkages between retrovirus Gag assembly and budding and the 

host cell cytoskeleton dynamics as well as the viral gRNA nuclear export pathway. I hypothesize 

that the host cell actin cytoskeleton might be utilized for retrovirus Gag trafficking. And I 

hypothesize further that alternative trafficking pathways might be adapted for different 

retroviruses and for Gag synthesized from mRNA exported from nucleus via different pathways. 

 

To test these hypotheses, I propose to address three specific aims:  

 

(1) To characterize the Gag-actin interaction sites and the determinants for this 

interaction; 

 

 (2) To characterize and compare assembly sites and budding efficiencies of EIAV 

and HIV-1 Gag; 

 

(3) To explore the mechanism by which HIV-1 Gag assembly and budding is 

regulated by nuclear export pathway taken by viral genomic RNA. 
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3.0  CHAPTER ONE. ASSOCIATION OF GAG MULTIMERS WITH 

FILAMENTOUS ACTIN DURING EQUINE INFECTIOUS ANEMIA VIRUS 

ASSEMBLY 

3.1 PREFACE 

This chapter is adapted from a published study (Jing Jin1,4, Chaoping Chen5, Marc Rubin3, 

Liangqun Huang5, Timothy Sturgeon1, Kelly M. Weixel2, Donna B. Stolz3, Simon C. Watkins3, 

James R. Bamburg5, Ora A.Weisz2,3, and Ronald C. Montelaro1. Curr HIV Res. 2007 

May;5(3):315-23.).  

1Department of Molecular Genetics and Biochemistry, 2Department of Medicine, Renal-

Electrolyte Division, 3Department of Cell Biology and Physiology, School of Medicine, 

University of Pittsburgh, Pittsburgh, Pennsylvania 

 4Department of Infectious Disease and Microbiology, Graduate School of Public Health, 

University of Pittsburgh, Pittsburgh, Pennsylvania 

5Department of Biochemistry and Molecular Biology, Colorado State University, 

Fort Collins, Colorado 

 

Work described in this chapter is in fulfillment of specific aim 1. 
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3.2 ABSTRACT 

A role for the actin cytoskeleton in retrovirus assembly has long been speculated. However, 

specific mechanisms by which actin facilitates the assembly process remain elusive. We 

previously demonstrated differential effects of experimentally modified actin dynamics on virion 

production of equine infectious anemia virus (EIAV), a lentivirus related to HIV-1, suggesting 

an involvement of actin dynamics in retrovirus production. In the current study, we used 

bimolecular fluorescence complementation (BiFC) to reveal intimate (<15nm) and specific 

associations between EIAV Gag and actin, but not tubulin. Specific interaction between Gag and 

filamentous actin was also demonstrated by co-immunoprecipitation experiments combined with 

the actin severing protein gelsolin to solubilize F-actin. Deletion of capsid (CA) or nucleocapsid 

(NC) genes reduced Gag association with F-actin by 40% and 95%, respectively. Interestingly, 

GCN4, a leucine zipper motif, could substitute for the NC domain in mediating F-actin 

association. Furthermore, deficiency of the ∆NC Gag in F-actin interaction was restored upon 

co-expression of Gag constructs containing both CA and NC or the GCN4, suggesting a 

requirement for Gag polyprotein multimerization prior to F-actin association. The observed Gag-

F-actin association appeared to correlate with viral budding, as enhanced budding of the ∆NC 

mutant was evident upon restoration of F-actin association. Intracellular association of Gag 

complexes with F-actin was also detected by immunoscanning electron microscopy of Triton-

extracted EIAV-infected cells. Together, these data suggest that Gag multimers induced by CA 

and NC domains interact with F-actin and that this association is important for efficient virion 

production. 
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3.3 INTRODUCTION 

Retrovirus assembly and budding is a highly concerted process mediated by specific interactions 

between viral Gag polyproteins and various host cellular cofactors. The Gag polyprotein is the 

primary viral determinant for virion production as expression of the Gag polyproteins alone is 

essential and sufficient to produce virus-like particles (VLPs) in transfected cells (Scarlata and 

Carter, 2003). The Gag polyprotein comprises matrix (MA), capsid (CA), nucleocapsid (NC) and 

late domains, and is cleaved into individual proteins that form virion cores upon virus 

maturation.  These domains perform cooperative roles during retrovirus assembly and budding.  

For example, the myristoylation signal in the N-terminus of MA is essential for targeting HIV-1 

Gag polyprotein to the plasma membrane (Bryant and Ratner, 1990;Bryant et al., 1989;Spearman 

et al., 1994). CA is required for the dimerization of homologous Gag polyproteins during 

assembly (Alfadhli et al., 2005;Gamble et al., 1997;Mayo et al., 2003).  NC is essential for Gag 

multimerization and other viral functions including genomic RNA packaging, reverse 

transcription, integration, and incorporation of Vpr protein into virions (Buckman et al., 

2003;Burniston et al., 1999;Johnson et al., 2002;Rein et al., 1998;Takahashi et al., 2001).  The L-

domains of various retroviruses specifically interact with components involved in steps along the 

endocytic pathway, including the formation of endosomes (Alroy et al., 2005;Chen et al., 

2005;Puffer et al., 1998) and MVBs (Garrus et al., 2001;Strack et al., 2003;VerPlank et al., 

2001;von Schwedler et al., 2003), indicating that retroviruses have adapted cellular membrane 

trafficking machinery for their assembly and budding. 

The Gag polyprotein is synthesized from full length genomic RNA on free cytoplasmic 

ribosomes in infected cells. However, retroviruses predominantly bud from membrane structures, 

including the plasma membrane in T lymphocytes and epithelial cell lines (Finzi et al., 
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2007;Jouvenet et al., 2006;Ono et al., 2004;Ono and Freed, 2001) and multivesicular bodies 

(MVBs) in primary macrophages (Pelchen-Matthews et al., 2003). It remains largely undefined 

how thousands of copies of Gag polyproteins are transported from the site of synthesis to 

assembly and budding sites on target membranes. Our previous studies demonstrate that 

stabilization of filamentous actin inhibited virion production of equine infectious anemia virus 

(EIAV) in infected cells (Chen et al., 2004) and we speculated that the actin cytoskeleton is 

involved in transporting Gag polyproteins within the cytoplasm of infected cells.  

There is considerable evidence in the literature consistent with this idea (Chen et al., 

2004;Edbauer and Naso, 1983;Liu et al., 1999;Ott et al., 1996;Ott et al., 2000;Sasaki et al., 

1995). Perturbation of the actin cytoskeleton affects the assembly and budding of several 

retroviruses (Audoly et al., 2005;Chen et al., 2004;Maldarelli et al., 1987;Sasaki et al., 1995). 

Actin and actin-binding proteins have been identified within highly purified HIV-1 virions 

(Chertova et al., 2006;Ott et al., 1996;Ott et al., 2000;Ott, 2002). Assembly and budding of 

several retroviruses at actin-rich sites has been reported (Maldarelli et al., 1987;Mortara and 

Koch, 1986). Cell fractionation analysis using mild detergents such as Triton X-100 

demonstrates that Gag polyproteins are present in detergent-insoluble fractions, which also 

contain actin filaments (Chen et al., 2004;Rey et al., 1996). Furthermore, both in vitro translated 

HIV-1 Gag polyprotein (Rey et al., 1996) and purified nucleocapsids of HIV-1 virions (Liu et al., 

1999) co-sediment with polymerized actin filaments. However, to date these observations have 

not been considered conclusive due to concerns about the possibility that the observed 

association may be the result of nonspecific interactions between cationic NC Gag protein and 

anionic actin or the result of the formation of insoluble Gag complexes that copurify with 

filamentous actin. Here, we sought to examine the nature of the EIAV Gag-actin interaction 
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using a combination of approaches including high resolution imaging techniques and 

biochemical analyses.  The results of these studies for the first time reveal a highly specific 

intracellular interaction between multimeric Gag complexes and F-actin that appears to 

contribute to efficient virion production.  
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3.4 MATERIALS AND METHODS 

3.4.1 DNA mutagenesis 

Overlapping PCR was used to construct Gag mutations and fusion proteins as previously 

described (Chen et al., 2001b). For bimolecular fluorescence complementation (BiFC) assays, 

sequences encoding the N (1-173, VN)- or C (155-238, VC)- fragments of venus fluorescence 

protein (template generously provided by Dr. Atsushi Miyawaki, RIKEN Brain Science Institute, 

Saitama, JAPAN) were fused to the N-terminus of actin and tubulin via a 6-alanine linker or to 

the C-terminus of Gag MA domain with two flanking 6-alanine linkers. Individual domains of 

the Gag polyprotein were deleted to generate ∆CA, ∆NC and ∆p9, respectively.  A DNA 

fragment encoding the GCN4 leucine zipper sequence was in vitro synthesized by PCR, and the 

resulting fragment was introduced into the EIAV Gag expression vector to replace the NC 

domain in the GCN4 construct. To make HA-tagged Gag polyproteins, the YPYDVPDY epitope 

from influenza virus HA protein was inserted into the C-terminus of MA or p9 protein, 

respectively.  All plasmids were isolated with Qiagen Midiprep Kit (Qiagen, Valencia, CA), and 

the specific mutations were confirmed by DNA sequencing.   

3.4.2 Cell culture and transfection 

Equine dermal (ED) cells (ATCC cat. no. CCL 57, Rockville, MD), Green monkey kidney Cos-7 

cells, and fetal equine kidney (FEK) cells were cultured in MEM medium as described (Chen et 
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al., 2001b). For fluorescence studies (Figs. 1&2), Fugene 6 (Roche, Indianapolis, IN) was 

employed to transfect cells following the recommended procedures by manufacturer. For domain 

mapping and complementation assays (Fig. 3-6), GenePorter II (Gene Therapy Systems, San 

Diego, CA) was used. 

3.4.3 Fluorescence microscopy  

For confocal imaging, transfected cells grown on coverslips were fixed and permeabilized with 

2% paraformaldehyde and 0.1% Triton X-100 in PBS. Images were then captured sequentially 

using a Leica TCS-SL microscope and processed with Metamorph software (Fig. 3-2, panels A-

E). Images of gelsolin-mediated F-actin severing and complementation BiFC (Figs. 3-5&3-7) or 

live BiFC (Fig. 3-4) were captured with a Nikon Diaphot inverted phase/epifluorescence 

microscope. 

3.4.4 Flow cytometry analysis 

Cos-7 cells grown on 6-well plates were transfected with BiFC constructs using FuGene 6 

transfection reagent. At 24 h post transfection, cells were detached with PBS containing 2.5 mM 

EDTA and resuspended in PBS solution. A minimum of 50,000 gated live events were acquired 

on a FACSCalibur (Becton Dickinson) flow cytometer and analyzed with FlowJo batch analysis 

software (Treestar).  
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3.4.5 Cell fractionation and immunoprecipitation 

Separation of Triton X-100 soluble and insoluble fractions has been described previously (Chen 

et al., 2004). Gelsolin was purified as described previously (Larson et al., 2005;Pope et al., 

1997). For gelsolin-mediated fractionation, cells (about 5x106) were collected by centrifugation 

at 500 xG for 5 min and resuspended with 200 µl of extraction buffer (0.5% Triton X-100, 

HEPES 20mM, NaCl 110 mM, KCl 25mM, KOAC 25mM, MgCl2 4mM, 1x protease inhibitor 

cocktail, EGTA 1mM, pH7.4) for 5 min at ambient temperature. The mixture was centrifuged at 

500 xG for 5 min, and the recovered supernatant was designated as the S1 fraction. The pellet 

was further incubated for 5 min in 200 µl of severing buffer (HEPES 20mM, NaCl 110 mM, KCl 

25mM, KOAC 25mM, MgCl2 4mM, 1x protease inhibitor cocktail, CaCl2 2mM, pH 7.4) 

containing 0.2-1 µM of in vitro purified gelsolin. The gelsolin-treated mixture was centrifuged at 

1000 xG for 5-7 min, and the resulting supernatant (S2) collected. The pellet was then 

solubilized in 200 µl lysis buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% deoxycholic 

acid, 1% Triton X-100, 1x protease inhibitor cocktail), centrifuged at 20,800 xg for 2 min to 

remove cell nuclei. The resulting supernatant was designated as the S3 fraction. Each fraction 

(normalized to equal amounts of Gag proteins) was mixed with 5 µl of anti-HA agarose beads 

(Sigma, St. Louis, MO) and incubated at 4oC overnight on an end-to-end shaker. The anti-HA 

beads were washed with 200 µl of the corresponding buffer for three times. Proteins bound to the 

beads were eluted with low pH buffer (Pierce, Rockford, IL) for further analysis. 

 39 



3.4.6 EIAV Gag protein expression assays 

Virus-like particles (VLPs) released into culture medium were pelleted (20,800 xG, 3 h, 4°C) 

and resuspended in 1x PBS solution. Detection of EIAV-specific Gag polyproteins and HA-

tagged fusion proteins were described previously (Chen et al., 2004;Chen et al., 2005).  

3.4.7 Immuno-gold labeling of EIAV Gag proteins and SEM  

Uninfected and infected ED cells were extracted with 0.75% of Triton-X-100 before fixation 

with 2% paraformaldehyde. Purified rabbit IgG against EIAV CA (1:50) and goat anti-rabbit 

antibody (1:25) conjugated to 15nm gold particles (Amersham, Piscataway, NJ) were used to 

immuno-label Gag proteins.  Cells were then fixed in 2.5% glutaraldehyde and processed for 

SEM observation using a JEOL JEM-6335F field emission gun scanning electron microscope 

(JEOL, Peabody, MA, USA). Field emission backscattered electron and standard scanning 

electron digitized images were taken in tandem to identify areas of gold labeling on the cell 

surfaces. 
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3.5 RESULTS 

3.5.1 Intracellular association of EIAV Gag with actin  

We previously reported that perturbation of the actin cytoskeleton altered the efficiency of EIAV 

production(Chen et al., 2004). To determine whether Gag association with filamentous actin was 

responsible for these effects we initially examined Gag-actin interactions by confocal 

microscopy in equine dermal (ED) cells infected with EIAV. Both intact and Triton X-100 

extracted cells were labeled with antibodies specific for EIAV Gag proteins (Fig. 3-1, panels 

A&E) and with fluorescent phalloidin for F-actin (Fig. 3-1, panels B&F).  A subpopulation of 

Gag protein co-localized with F-actin in both intact (Fig. 3-1, panels C, D&I) and detergent-

extracted cells (Fig. 3-1, panels G, H&J). However the prevalence of filamentous actin 

throughout the cytoplasm limited our ability to draw definitive conclusions from these 

colocalization assays.  Therefore, we sought to confirm the observed intracellular association 

between Gag and actin using more specific approaches.  

The bimolecular fluorescence complementation (BiFC) assay is a powerful tool to 

visualize specific protein interactions in the cellular environment (Hu et al., 2002;Kerppola, 

2006;Nyfeler et al., 2005). In this technique, the amino- and carboxy-terminal fragments of 

fluorescent proteins are individually fused to proteins of interest that are co-expressed in pairs. 

Interaction between the fusion protein pairs then facilitates association of the fluorescent protein 

fragments (within a distance less than 15 nm)(Hu et al., 2002) to produce a stable fluorescent 

complex. To test the interaction between EIAV Gag and actin by BiFC methods, we generated a 
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panel of constructs with Gag and actin proteins fused to fragments of the yellow fluorescent 

protein variant “Venus” (VN and VC, respectively)(Shyu et al., 2006). Cos-7 cells expressing the 

VN-actin/VC-actin pair (Fig. 3-2 B) demonstrated a fluorescence pattern similar to that observed 

in YFP-actin transfected cells (Fig. 3-2, panel A), indicating that the actin-Venus fusion proteins 

were efficiently incorporated into filaments. Importantly, positive BiFC signal was readily 

detected in cells expressing the Gag/actin pair (Fig. 3-2, panel C), indicative of a close 

association of Gag and actin in transfected cells. To confirm the specificity of the observed Gag-

actin interactions, we also examined Gag interactions with tubulin, another abundant cytoskeletal 

protein that mediates numerous cellular processes, including pathogen transport. Unlike the 

Gag/actin pair, transfection of the Gag/tubulin pair produced only background levels of 

fluorescence (Fig. 3-2, panel D). The biological activity of these tubulin fusion constructs was 

verified in cells expressing the tubulin/tubulin BiFC pair, in which BiFC signals demonstrated a 

normal cellular microtubule organization (Fig. 3-2, panel E). We also observed Gag-Gag 

interaction-mediated BiFC in cells expressing the VN-Gag/VC-Gag pair (Fig. 3-3, panel A). 

Late endosomes of the same cell were also labeled with CD63 antibody (Fig. 3-3, panel B) and 

the Gag-Gag BiFC signals appeared to colocalize with the CD63-positive compartments (Fig. 3-

3, panel C). A subset of the Gag-actin BiFC complexes also overlapped with CD63 staining 

(Fig. 3-3, panel F). 

To complement the qualitative BiFC interaction assays described above, we next sought 

to obtain quantitative information about Gag-actin interaction by flow cytometry analysis of cells 

transfected with various BiFC pairs (Fig. 3-2, panels F-J). Transfection with only the VC-actin 

served as a control to measure the background level of cellular autofluorescence in our assay 

(Fig. 3-2, panel F). Approximately 9% of cells transfected with the actin/actin BiFC pair 
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exhibited positive fluorescence as a result of BiFC mediated by actin-actin interactions (Fig. 3-2, 

panel G). Similarly, about 8% of cells transfected with the Gag-actin pair were positive for BiFC 

(Fig. 3-2, panel H). In contrast, less than 1% and 2% of cells transfected with the Gag/tubulin 

and the actin/tubulin pairs, respectively, displayed fluorescence above background levels (Fig. 3-

2, panels I&J).  

We next compared Gag-actin and Gag-Gag BiFC signals in living cells.  In Cos-7 cells 

expressing the VN-actin and VC-Gag pair, about 90% of the observed BiFC complexes remained 

stationary when imaged at a 5 sec interval over periods of 5-10 min (data not shown). However, 

about 10% of BiFC complexes migrated rapidly in the cytoplasm with movement towards both 

the cell surface and the nucleus (Fig. 3-4, panel A). Panel 2C-F displays snapshots of a BiFC 

particle that travels from a juxtanuclear region towards the cell periphery. Similarly, in cells 

expressing the Gag-Gag BiFC pair, about 10% positive BiFC signals actively migrated in the 

cytoplasm (Fig. 3-4, panel G). Panel 2H-L demonstrates two BiFC complexes that migrated 

rapidly over a 20 sec time interval. The BiFC complexes did not migrate at a constant velocity; 

instead, rapid movement usually followed a period of restricted local motion of the complex. 

Some BiFC complexes traveled very rapidly; during the 1 sec exposures they appeared as comet-

like streaks (Fig. 3-4, panels D, I&J) with an estimated velocity of up to 0.5-1 µm/s.  

3.5.2 EIAV Gag proteins coimmunoprecipitate with filamentous actin 

We and others previously reported that about 50% of intracellular Gag polyproteins are 

associated with insoluble filamentous actin (F-actin) recovered after treatment of cells with 

Triton X-100 in EIAV-infected ED cells (Chen et al., 2004). Although our BiFC results 

demonstrated close interaction between Gag and actin inside cells, we could not determine 
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whether actin monomers or filaments are recruited by Gag by this assay. To examine whether the 

Triton X-100-insoluble fraction contains Gag-actin complexes, we developed an in vitro actin-

severing protocol using purified gelsolin, a Ca++-dependent F-actin severing protein. Our 

rationale was that actin filaments shortened by gelsolin activity would become soluble, along 

with any actin-associated Gag. The F-actin severing activity of purified gelsolin was verified 

using equine dermal (ED) cells expressing eGFP-actin (Fig. 3-5, panels A-F). Fluorescently-

labeled filamentous actin in these cells is resistant to Triton X-100 washes (Fig. 3-5, panel D). 

Upon brief (2-5 min) incubation with 500 nM gelsolin at ambient temperature, the majority of 

the GFP-actin filaments disappeared, presumably as shortened actin fragments dissolved into the 

reaction buffer (Fig. 3-5, panel F). The observed disappearance of fluorescent actin was specific 

for gelsolin treatment, as incubation of cells with severing reaction buffer alone had no 

significant influence on the fluorescent intensity of actin filaments over a period of 20 min (data 

not shown).  

Using the gelsolin severing assay, we next fractionated EIAV-infected fetal equine 

kidney (FEK) cells to obtain Triton X-100 soluble (S1), gelsolin-soluble (S2) and lysis buffer-

soluble (S3) fractions (Fig. 3-5, panel G). The S1 is equivalent to the Triton X-100 soluble 

fraction described previously (Chen et al., 2004). The S2 contains gelsolin-dissolved F-actin and 

associated proteins, and the S3 contains residual insoluble proteins. Thus, the sum of S2 and S3 

is roughly equivalent to the previously described Triton X-100-insoluble fraction (Chen et al., 

2004). Separation of the S2 and S3 fractions allowed us to differentiate the Gag polyproteins 

associated with F-actin from the Triton X-100 insoluble Gag aggregates formed during the 

process of virion assembly. For these studies, we employed FEK cells chronically infected with 

EIAVuk(MA-HA) virus, a proviral construct modified to contain an influenza virus HA epitope 
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tag in the C-terminal region of the MA domain of Gag polyprotein. The EIAVuk(MA-HA) virus 

was shown in preliminary experiments to replicate as efficiently as the wild type EIAVuk in 

experimentally infected FEK cells (data not shown). Western blotting analysis of equal volume 

of the S1-S3 fractions from the virus infected cells demonstrated the presence of Gag protein in 

all three fractions. The S2 fraction contained about 10-15% of total Gag (the S1 about 50% and 

the S3 about 35-40%) (data not shown), suggesting a subpopulation of Gag was released from 

the insoluble fraction. No Gag protein was detected when gelsolin was eliminated from the 

severing buffer (data not shown).  

To examine whether Gag and actin co-exist as complexes in the three fractions, we next 

immunoprecipitated HA-Gag and associated proteins by adding anti-HA antibodies coupled to 

agarose to each fraction normalized to equal amounts of Gag proteins (Fig. 3-5, panel H, right 

half). The immunoprecipitated proteins recovered from the beads were then examined by 

Western blotting. As shown in Fig. 3-5, panel H (right half), only the HA-tagged Gag proteins 

were specifically recovered in the precipitate from each fraction; mature capsid proteins were not 

detected due to the lack of an HA tag (Fig. 3-5, panel H, right top). Treatment of the same blot 

with anti-β-actin antibody revealed actin in the S2 fraction, evidently as a co-immunoprecipitate 

with HA-Gag (Fig. 3-5, panel H, right bottom). In contrast, co-immunoprecipitation of actin 

with Gag proteins in either the S1 or the S3 fraction was not observed under these conditions. 

Taken together, these data demonstrate the specific association of Gag proteins with F-actin in 

the detergent insoluble complexes. 
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3.5.3 Gag domain requirements for F-actin association 

Previous study shows that purified HIV-1 nucleocapsid proteins (and Gag polyproteins) bind to 

in vitro polymerized actin filaments in a co-sedimentation assay (Liu et al., 1999;Rey et al., 

1996). However, it remains unclear whether this binding is due to nonspecific electrostatic 

interactions or instead mediated by a specific interaction between the two proteins. Here, we 

sought to examine the Gag-actin interactions using a panel of EIAV Gag expression vectors 

lacking individual domains (Fig. 3-6, panel A) Western blots of lysates from ED cells 

transfected with the individual Gag constructs demonstrated expression of each of the mutant 

Gag polyproteins at their expected molecular mass (Fig. 3-6, panel B). Approximately equal 

amounts of the wild-type Gag polyprotein were present in the Triton-soluble and -insoluble 

fractions of the cell lysate, as reported previously (Chen et al., 2004). Deletion of CA in the Gag 

construct reduced the level of insoluble Gag to about 40% of the wild type level (Fig. 3-6, panel 

B). Deletion of NC resulted in a 95% loss in Gag associated with the insoluble fraction. In 

contrast, deletion of p9 enhanced F-actin association by 60% compared to wild type Gag. These 

results indicate that the NC region of the polyprotein is the primary determinant for F-actin 

association, but that other Gag protein domains can influence the interaction, both positively and 

negatively. To further define the role of NC in mediating F-actin association, we constructed a 

chimeric expression vector with the NC domain replaced by the leucine zipper motif of a yeast 

transcription faction (GCN4). The same motif was used to replace HIV-1 NC in the minimal Gag 

construct (Accola et al., 2000). Interestingly, the GCN4 Gag showed wild type levels of F-actin 

association (Fig. 3-6, panel B), suggesting that the oligomer-inducing function rather than the 

specific sequence, of the NC domain plays a role in F-actin association. 
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To define the role of CA in F-actin association, we performed complementation analysis 

to test ability of Gag polyproteins to rescue ∆NC deficiency in F-actin association. The 

distribution of the ∆NC-HA between Triton-soluble and -insoluble fractions generated from 

transfected cells was examined by Western blotting with anti-HA antibody. The percentage of 

insoluble HA-tagged ∆NC as in the total detected ∆NC-HA was calculated to reflect F-actin 

association efficiency of the HA-tagged ∆NC. Less than 5% of the ∆NC-HA was insoluble in 

cells cotransfected with ∆NC-HA and ∆NC at a 1:1 mass ratio. In marked contrast, co-expression 

of ∆NC-HA with wild type Gag produced ~30% insoluble ∆NC-HA (Fig. 3-6, panel C). This 

data indicates that the wild type Gag rescued F-actin association of ∆NC-HA, presumably 

through homolog dimerization mediated by the CA proteins of the two constructs. Co-expression 

of the ∆NC-HA construct with the ∆CA construct failed to rescue the association of HA-∆NC 

with F-actin (<5% insoluble) (Fig. 3-6, panel C), supporting a role for the CA domain in 

complementation. Interestingly, co-expression of the ∆p9 construct rescued F-actin association 

of HA-tagged ∆NC to yield ~50% insoluble protein, a level that was reproducibly higher than the 

~30% observed upon complementation with the wild type Gag construct. The ∆p9 construct 

itself also displayed an enhanced F-actin association (Fig. 3-6, panel B), perhaps indicating an 

inhibitory role for the late domain in F-actin association or an enhanced activity of F-actin 

dissociation (Chen et al., 2004).  Taken together, these data suggested that association with F-

actin requires both CA-mediated dimerization and NC-mediated oligomerization of Gag 

polyproteins. 

While the preceding complementation experiments examined the determinants of Gag 

association with F-actin, these studies did not address the correlation between Gag multimer-F-

actin association and virion production. To investigate this correlation, we measured virus-like 
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particle-associated HA-∆NC in the supernatants of the co-transfected ED cells. As presented in 

Fig. 3-6, panel C, virion production was positively correlated with F-actin association 

efficiency. Co-transfection of the HA-∆NC with the ∆NC or ∆CA constructs produced limited 

amounts of VLP, while co-transfection with wild type Gag, the ∆p9 and the GCN4 Gag 

constructs enhanced virion production of the HA-∆NC by an average of about 3 fold. 

We then examined whether the ∆NC mutant interacts with actin using BiFC. In cells co-

transfected with the ∆NC-VN/VC-actin pair, we only observed low levels of diffuse fluorescence 

(Fig. 3-7, panel A). In contrast, with co-expression of wild type Gag, the ∆NC-VN/VC-actin 

pair displayed a punctate staining pattern (Fig. 3-7, panel B) reminiscent of that observed in 

cells expressing the Gag-VN/VC-actin pair (Fig. 3-7, panel D). Co-expression of EIAV Gag-

hCA, a chimeric Gag in which the EIAV CA domain is replaced by the HIV CA domain, failed 

to rescue actin association of ∆NC (Fig. 3-7, panel C).  

In the preceding BiFC assays (Fig. 3-7, panels A-D), we employed plasmids DNA mass 

ratios different from those in the complementation assays based on Gag solubility (Fig. 3-7).  We 

next sought to verify the CA-mediated rescue of the ∆NC deficiency by repeating the insolubility 

complementation assay using the plasmid ratios employed in the BiFC, The results presented in 

Fig. 3-7, panel E demonstrated effective complementation under these transfection conditions. 

Taken together, our data suggested that Gag multimers induced by CA- and NC- function are the 

functional units that interact with actin filaments.   
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3.5.4 Immuno SEM of Gag-actin association 

To obtain higher resolution images of EIAV Gag-actin complexes, we utilized immuno-scanning 

electron microscopy to visualize Gag proteins associated with F-actin in Triton X-100-extracted 

ED cells (Fig. 3-8).  In these studies, the ultrastructure of the insoluble actin cytoskeleton and 

Gag polyproteins stained with gold-labeled antibody in the same field were examined using 

scanning EM. Superimposition of the two images revealed extensive labeling of Gag 

polyproteins associated with the actin filament network (Fig. 3-7, panel A) that was absent in 

uninfected cells (Fig. 3-8, panel B). Examples of representative EIAV Gag complexes 

associated with actin filaments are shown in Fig. 3-8, panel C. The size of Gag complexes 

associated with actin filaments varied from 20 to 70 nm in diameter. As typical mature retrovirus 

virion cores are about 120 nm in diameter (Briggs et al., 2003b;Briggs et al., 2004;Roberts and 

Oroszlan, 1989), this suggests that Gag-actin interactions occur prior to the completion of Gag 

assembly. 
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Figure 3-1. Confocal association of Gag proteins with the actin cytoskeleton in EIAV-infected ED 

cells. 

Intact (A-D, I) and Triton X-100 extracted (E-H, J) ED cells infected with EIAV were stained using a 

rabbit anti-EIAV antibody to detect Gag polyprotein (A, E) and Alexa phalloidin 647 to label filamentous 

actin (B, F). Proximate localization of Gag proteins with F-actin is demonstrated in panels C and G, and 

the indicated regions of these panels are enlarged in D and H. More examples of overlays from intact (I) 

and extracted (J) cells are shown in the bottom panel. Bars: 10µm.  
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Figure 3-2. BiFC analysis of Gag-actin interactions.  

Cos-7 cells grown on glass coverslips were transfected with the indicated plasmids using Fugene 

6. At 24 h post transfection, cells were fixed with 2% paraformaldehyde and imaged with a Leica 

TCS-SL confocal microscope. Fluorescence signals in panel B-E represent positive BiFC activity 

resulting from formation of the Venus fluorescent complex induced by protein-protein 

interaction. To quantify BiFC activity, Cos-7 cells were transfected with the indicated plasmid 

pairs. At 24 h post transfection, about 100,000 transfected cells were collected and analyzed by 

FACS. Cells displaying higher than background fluorescence as a percentage of total population 

were calculated to reflect BiFC activity. 
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Figure 3-3. Colocalization of Gag-Gag and Gag-actin BiFC complexes with CD63 positive 

compartments. 

Transfected Cos-7 cells expressing the VN-Gag/VC-Gag pair (A-C) or VN-Gag/VC-actin pair (D-F) were 

fixed and permeablized at 24 h post transfection. Mouse anti-LAMP-3 antibody and Alexa Fluor®647 

goat anti-mouse were used as primary and secondary antibodies to visualize CD63-positive subcellular 

compartments in transfected cells (B&E). Overlay of two images of the same field revealed colocalization 

of Gag-Gag BiFC complexes(C) or Gag-actin BiFC complexes (F) with CD63 at both perinuclear 

(arrows) and peripheral regions of cells (arrowheads). Bars: 10 µm. 
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Figure 3-4. Live cell imaging of BiFC complexes. 

Cos-7 cells grown on glass-bottom petri dishes were transfected with the VN-Gag/VC-actin (A-

F) or VN-Gag/Gag-VC (G-L) pairs. At 15-24h post transfection, cells were imaged by a Nikon 

Diaphot inverted epifluorescence microscope equipped with a heated stage at 5s intervals.  Panel 

A is a snapshot of a movie showing the motility of Gag-actin BiFC complexes. Panel B-F shows 

snapshots of an area of panel A. Arrowheads point to a migrating particle over the indicated 

time. Panel G is a frame linked to supplemental movie 2 demonstrating migration dynamics of 

Gag-Gag BiFC complexes. A series of snapshots of a small area in panel G are also presented 

(H-L). Arrowheads and arrows denote two individual BiFC complexes that migrated so rapidly 

resulting in comet tail-like streaks. Bars: 5µm. 
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Figure 3-5. Association of Gag with filamentous actin. 

A-F: Gelsolin-mediated F-actin severing in equine dermal cells expressing GFP-actin. Images 

were captured before (A&B) and after (C&D) cells were treated with 0.5% Triton X-100. Cells 

were then incubated with 1µM of gelsolin for 5 min (E&F). Phase (A, C, E) and inverted 

monochromatic fluorescence (B, D, F) images of the same field acquired after each experimental 

manipulation are shown here. The same imaging condition was used except for the exposure 

time as indicated.  

With gelsolin-mediated F-actin severing, three fractions: Triton X-100 soluble (S1); 

gelsolin dissolved actin filaments and association proteins (S2); and residual insoluble 

components (S3) were prepared from fetal equine kidney (FEK) cells chronically infected with 

an EIAVuk virus that contains an HA epitope at the C-terminus of the MA of Gag (G). Each 

fraction normalized to about equal amount of Gag polyprotein was incubated with anti-HA 

antibody conjugated agarose beads to immunoprecipitate HA-tagged Gag and association 

proteins. Proteins bound to the beads were eluted and analyzed by SDS-PAGE and 

immunoblotting (right half). Rabbit anti-EIAV antibody was used to detect EIAV specific Gag 

proteins. The same blot was stripped and reprobed with anti-β-actin antibody to detect cellular 

actin. The IP input lanes (left half) represent about 5% of each fraction used for IP experiments. 
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Figure 3-6. Functions of Gag domains in F-actin association. 

A: Schematic diagram of Gag polyprotein protein structure. B: Cells expressing the indicated 

Gag constructs were fractionated into Triton X-100 soluble and insoluble fractions as described 

previously (23). EIAV Gag proteins in these fractions were detected by Western blotting using a 

reference serum from an EIAV-infected horse (23). C: The ∆NC-HA was cotransfected into ED 

cells with the indicated (untagged) Gag constructs at an equal mass ratio. The ∆NC-HA in 

Triton-soluble and -insoluble fractions (upper panel) and the amount of VLPs produced from 

each transfection (lower panel) were specifically detected with an anti-HA antibody. Data are 

representative of three independent experiments. 
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Figure 3-7. Gag multimers interact with actin.  

Cos-7 cells grown on glass-bottom petri dishes were transfected with plasmid mixtures. A 

constant amount of 0.4 µg total DNA was used for each dish with specified mass ratios (A:  VN-

∆NC:VC-actin:∆NC=2:5:33;  B: VN-∆NC:VC-actin:wtGag=2:5:33;  C: VN-∆NC:VC-

actin:hCA=2:5:33;  D: VN-Gag:VC-actin:wtGag=5:5:30). At 15 h post transfection, images were 

captured with a Nikon Diaphot inverted phase/epifluorescence microscope using the same 

conditions (Bars: 10 µm). Positive signals represent BiFC complexes resulting from association 

of VN-∆NC with VC-actin under the indicated conditions (A-C). Cells transfected with the VN-

Gag/VC-actin pair displayed characteristic punctuated staining (D). The hCA stands for a 

chimeric Gag with the EIAV CA replaced by HIV-1 CA. Complementation of the ∆NC by the 

indicated Gag constructs using the same ratios as in panel A-D showed the similar result as in 

Figure 3-4 (E). 

 56 



 

Figure 3-8. Immuno-SEM images of Gag complexes associated with actin filaments. 

EIAV-infected and uninfected ED cells were Triton X-100 extracted before fixation and 

immuno-gold labeling. Rabbit anti-p26 antibody and 15nm gold conjugated secondary antibody 

were used to label Gag proteins. The actin cytoskeleton structure and gold signal from antibody 

labeling of the same fields were recorded separately and merged to reveal the association of Gag 

complexes with the actin cytoskeleton in infected (A) and uninfected (B) ED cells. Enlarged 

overlays showing individual examples of Gag complexes associated with actin filaments are 

shown in panel C. Bars: 0.1 µm. 
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3.6 DISCUSSION 

There is a history of observations suggesting an involvement of the actin cytoskeleton in the 

assembly and budding of several retroviruses (Audoly et al., 2005;Chen et al., 2004;Edbauer and 

Naso, 1983;Fackler and Krausslich, 2006;Liu et al., 1999;Ott et al., 2000;Rey et al., 1996;Sasaki 

et al., 1995). However, a definitive mechanistic role for actin in these events has not been widely 

accepted due to concerns that co-purification of Gag and actin filaments in detergent fractionated 

cell lysates might represent insoluble Gag assembly complexes rather than specific Gag 

associations, and that actin-modulating reagents might potentially affect Gag assembly and 

virion budding in an indirect manner. Here we have used the recently developed BiFC technique 

to eliminate concerns of Gag insolubility or inhibitor specificity by analyzing actin-Gag 

interactions in living cells. The results presented here for the first time provide definitive 

evidence that Gag multimers interact with filamentous actin in transfected and infected cells and 

that specific Gag-actin interactions are positively correlated with the production of progeny 

virions.   

3.6.1 Specificity of Gag-actin interactions 

Cellular actin is present in two forms, designated globular (G) and filamentous (F) actin. 

Whereas G-actin is soluble; F-actin is predominantly insoluble in detergents such as Triton X-

100. In fact, co-purification of proteins with the insoluble F-actin has been used as evidence of F-

actin interaction with EIAV Gag (Chen et al., 2004) and HIV-1 Gag (Liu et al., 1999;Rey et al., 
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1996). However, this assay can not differentiate insoluble Gag aggregates from specific Gag-

actin complexes. In the current studies we employed imaging and biochemical techniques that 

minimize the potential problem of insoluble actin aggregates to demonstrate the specific 

association of Gag and F-actin. First, the BiFC assay revealed highly specific and close Gag-

actin interactions in live cells that were at a level similar to that observed for Gag-Gag and actin-

actin interactions (Fig. 3-2). As BiFC depends on the two interacting proteins to bring the 

complementary fluorescence protein fragments close enough to fold into stable fluorescence 

complex, a positive BiFC signal implies a distance of less than 15 nm between the two 

interacting proteins (Hu et al., 2002;Kerppola, 2006). Consistent with our BiFC result, HIV-1 

Gag-actin interactions were recently reported using fluorescence resonance energy transfer 

(FRET) assay, suggesting a distance less than 6 nm between the interacting Gag and actin (Poole 

et al., 2005) although these experiments did not distinguish between G-actin and F-actin. 

Importantly, the specificity of the interactions between Gag and actin detected by the BiFC assay 

was confirmed by the lack of BiFC activity between Gag and tubulin, another abundant 

cytoskeletal protein.  Second, EIAV Gag protein was solubilized concomitantly with F-actin 

upon gelsolin treatment and co-immunoprecipitated with actin (Fig. 3-5), further suggesting a 

Gag association with F-actin. However, it should be noted that although both BiFC and co-

immunoprecipitation assays demonstrated positive association of Gag polyprotein and F-actin it 

remains unclear whether the interaction is direct or indirect.  

Gelsolin severing of the Triton X-100 insoluble fraction only released about 10% of total 

Gag proteins from the insoluble fraction, suggesting a small subset of Gag polyprotein is 

associated with F-actin. Similarly, about 10% of Gag-GFP and Gag-actin particles were detected 

as highly mobile particles in transfected cells. Transient association of Gag with F-actin during 
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intracellular transport might account for these phenomena. Further studies are under the way to 

examine whether other cellular factors are present in these Gag-actin complexes.  

3.6.2 Gag multimerization before F-actin association 

Gag polyproteins play numerous roles in the production of viral particles (Zimmerman et al., 

2002), and several assembly intermediates during this process have been described (Derdowski 

et al., 2004;Lee et al., 1999;Zimmerman et al., 2002).  The current results identify a role for the 

association of Gag multimers with F-actin during virus assembly. The oligomerization function 

of the NC domain appears to be the primary determinant for the formation of this intermediate 

(Fig. 3-6, panel B); whereas the CA-mediated dimerization of homologous Gag polyproteins 

also contribute to the formation of Gag multimers (Bennett et al., 1993;Derdowski et al., 

2004;Gamble et al., 1997). Our data support the hypothesis that Gag multimers utilize the 

dynamic actin network to transport themselves in the infected cell. Such a batch-transport 

mechanism could move Gag polyproteins more efficiently. Recent studies demonstrate that 

during early stages of retrovirus assembly, Gag polyproteins (presumably monomers) are 

distributed evenly throughout the cytoplasm (Gomez and Hope, 2006;Neil et al., 2006;Perlman 

and Resh, 2006). The ∆NC mutant that fails to form multimers also showed a diffuse distribution 

pattern in transfected cells (data not shown). Association of Gag multimers with F-actin might 

reflect a stage during which Gag complexes are targeted to specific membrane compartments for 

virion assembly and budding. The specific association of F-actin with Gag-enriched complexes 

that we observed by immuno-SEM supports this idea. The actin interaction-competent 

intermediate identified in this study might be equivalent to the high-molecular-weight, detergen-

resistant HIV-1 assembly intermediates previously described using a similar Triton X-100 
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extraction method (Dooher and Lingappa, 2004;Lee et al., 1999;Lee and Yu, 1998;Sandefur et 

al., 2000). Further characterization of these intermediates should shed light on the mechanism 

and regulation of Gag-actin interaction. In this regard, multimerization and heterologous 

complementation of HIV-1 and HIV-2 Gag has recently been reported, further emphasizing the 

critical role of Gag multimers in viral assembly (Boyko et al., 2006). 

3.6.3 Roles of Gag-actin interaction 

An increasing number of microbes have been reported to exploit the actin cytoskeleton for 

intracellular transport (Dramsi and Cossart, 1998;Lakadamyali et al., 2003;Lehmann et al., 

2005;Wolffe et al., 1997). The identified Gag-actin interactions in this report have led us to 

speculate that Gag multimers utilize the actin cytoskeleton for targeting to budding sites in the 

infected cell. There are two possible mechanisms by which F-actin can mediate the trafficking of 

Gag multimers. The processive movement of myosin and related motors along actin filaments 

can effectively transport associated components (Vale, 2003). Alternatively, nucleation and 

growth of actin filaments can also provide the mechanical force to propel components associated 

with the growing end of these structures, as utilized by Listeria monocytogenes to propel the 

pathogen in infected cells (Dabiri et al., 1990;Merz and Higgs, 2003). In either case, Gag-actin 

interaction is expected to be both transient and dynamic, consistent with our BiFC analysis of 

Gag-actin (Fig. 3-4, panels A-F) and Gag-Gag (Fig. 3-4, panels G-L) complexes,  in which we 

observed about 10% of Gag-actin and Gag-Gag complexes in active migration. Further 

elucidation of the molecular and cellular mechanisms of Gag-actin interactions can provide new 

insights into the role of actin cytoskeleton in retrovirus assembly and budding.  
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The results of the current study are consistent with our previous hypothesis that the actin 

cytoskeleton is involved in intracellular transport of Gag polyproteins (Chen et al., 2004), similar 

to the trafficking of endocytic vesicles (Lee and De Camilli, 2002;Merrifield, 2004) and/or other 

microbes (Dramsi and Cossart, 1998;Lakadamyali et al., 2003;Wolffe et al., 1997). Further 

support for the involvement of the actin cytoskeleton in retroviral replication comes from a 

recent report that Moloney murine leukemia virus matrix protein interacts with IQGAP, an 

effector of Rho-family small GTPases (Rac1 and Cdc42) that modulates actin polymerization 

(Leung et al., 2006). Interestingly, proteomic analysis of highly purified HIV virion produced in 

monocyte-derived macrophages has identified many cellular factors that are known to modulate 

actin dynamics, such as Arp2/3, gelsolin, cofilin, profilin, cdc42 etc, implicating an involvement 

of the actin cytoskeleton in retroviral replication cycles (Chertova et al., 2006). It was also 

recently demonstrated that AIP1/Alix, a conserved endocytic protein recruited by retrovirus L 

domains, regulates actin cytoskeleton dynamics, providing further evidence for the functional 

involvement of actin in retrovirus assembly and budding (Pan et al., 2006). The identification of 

a role for the actin cytoskeleton in EIAV Gag transport has added one more player to the 

repertoire of viruses that have evolved to interact with cytoskeletal elements inside infected cells 

at different stages of viral replication cycle (Sodeik, 2000).  

 

 62 



4.0  CHAPTER TWO. DISTINCT INTRACELLULAR TRAFFICKING OF EIAV 

AND HIV-1 GAG DURING VIRAL ASSEMBLY AND BUDDING REVEALED BY 

BIMOLECULAR FLUORESCENCE COMPLEMENTATION ASSAYS 

4.1 PREFACE 

This chapter is adapted from a published study (Jing Jin1,4, Timothy Sturgeon1, Chaoping Chen5, 

Simon C. Watkins3, Ora A.Weisz2,3, and Ronald C. Montelaro1. J Virol. 2007 Oct;81(20):11226-

35.).  

1Department of Molecular Genetics and Biochemistry, 2Department of Medicine, Renal-
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University of Pittsburgh, Pittsburgh, Pennsylvania 

4Department of Infectious Disease and Microbiology, Graduate School of Public Health, 

University of Pittsburgh, Pittsburgh, Pennsylvania 

5Department of Biochemistry and Molecular Biology, Colorado State University, Fort 
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Work described in this chapter is in fulfillment of specific aim 2. 
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4.2 ABSTRACT 

Retroviral Gag polyproteins are necessary and sufficient for virus budding. Numerous studies of 

HIV-1 Gag assembly and budding mechanisms have been reported, but relatively little is known 

about these fundamental pathways among animal lentiviruses. While there may be a general 

assumption that lentiviruses share common assembly mechanisms, studies of equine infectious 

anemia virus (EIAV) have indicated alternative cellular pathways and cofactors employed 

among lentiviruses for assembly and budding.  In the current study we used bimolecular 

fluorescence complementation (BiFC) to characterize and compare assembly sites and budding 

efficiencies of EIAV and HIV-1 Gag in both human and rodent cells. The results of these studies 

demonstrated that replacing the natural RNA nuclear export element (Rev-response element 

(RRE)) used by HIV-1 and EIAV with the hepatitis B virus (HBV) posttranscriptional regulatory 

element (PRE) altered HIV-1, but not EIAV, Gag assembly sites and budding efficiency in 

human cells. Consistent with this novel observation, different assembly sites were revealed in 

human cells for Rev-dependent EIAV and HIV-1 Gag polyproteins. In rodent cells, Rev-

dependent HIV-1 Gag assembly and budding were blocked, but changing RRE to PRE rescued 

HIV-1 Gag assembly and budding. In contrast, EIAV Gag polyproteins synthesized from mRNA 

exported via either Rev-dependent or PRE-dependent mechanisms were able to assemble and 

bud efficiently in rodent cells. Taken together, our results suggest that lentivirus assembly and 

budding are regulated by the RNA nuclear export pathway and that alternative cellular pathways 

can be adapted for lentiviral Gag assembly and budding. 
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4.3 INTRODUCTION 

Retrovirus assembly and budding is a highly concerted process mediated by largely undefined 

spatially- and temporally-regulated interactions between viral proteins and cellular factors. 

During the viral assembly process, thousands of copies of viral structural polyproteins 

multimerize via noncovalent low affinity interactions to form virus particles. Expression of 

retroviral Gag polyprotein is generally sufficient for the assembly and release of non-infectious 

virus like particles (VLPs). The Gag polyprotein consists of matrix (MA), capsid (CA), 

nucleocapsid (NC), and late (L) domains and is cleaved into the distinct structural proteins upon 

virus maturation (Demirov and Freed, 2004;Morita and Sundquist, 2004). These Gag domains 

orchestrate the major steps in virus assembly and budding (reviews (Demirov and Freed, 

2004;Morita and Sundquist, 2004)).  Recent studies have revealed that retrovirus L domains 

recruit cellular factors that normally function in the invagination of late 

endosomes/multivesicular bodies (MVBs).  However, where and how Gag assembly occurs is 

still controversial. Among the retroviruses, trafficking and assembly of HIV-1 Gag has been the 

most extensively studied. It is well established that HIV-1 Gag buds from the plasma membrane 

of T lymphocytes and of some epithelial cell lines such as HeLa and Cos cells (Demirov and 

Freed, 2004;Hermida-Matsumoto and Resh, 2000;Morita and Sundquist, 2004;Neil et al., 

2006;Nguyen et al., 2003;Nydegger et al., 2003;Ono et al., 2004). In contrast, in macrophages 

and dendritic cells, the major histocompatibility complex (MHC) class II compartment or MVB 

is apparently the site of HIV-1 Gag accumulation and particle production (Blom J. et al., 

1993;Morita and Sundquist, 2004;Neil et al., 2006;Nguyen et al., 2003;Pelchen-Matthews et al., 
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2003;Raposo et al., 2002). In addition, various studies also indicate that  HIV-1 Gag may also 

target to MVBs in other cell types (Nydegger et al., 2003;Ono et al., 2004;Sherer et al., 2003). 

The critical cellular and viral determinants that mediate HIV-1 Gag targeting are not known, 

however, a recent report suggests that HIV-1 Gag assembly is regulated as early as nuclear 

export of its encoding mRNA (Swanson et al., 2004;Swanson and Malim, 2006). 

Retroviral Gag polyproteins are synthesized from an unspliced full-length viral genomic 

mRNA that requires specific regulatory factors for nuclear export. Lentiviruses contain a cis-

acting RNA element known as the Rev-response element (RRE) that binds to a viral trans-acting 

protein (Rev). Rev binds to the cellular Crm1 protein which in turn binds to Ran, a small GTPase 

that shuttles between the nucleus and the cytoplasm. At least some simple retroviruses, such as 

Mason-Pfizer monkey virus (M-PMV), contain cis-acting RNA export elements (constitutive 

transport elements or CTE) that do not require viral trans-acting factors and that function by 

interacting directly with cellular export factors NXF1/NXT (Swanson and Malim, 2006). 

Swanson et al (Swanson et al., 2004) recently demonstrated in murine cells, which are notable 

for their inability to support HIV-1 assembly and budding(Bieniasz and Cullen, 2000;Mariani et 

al., 2000;Swanson et al., 2004), that altering the RNA nuclear export element used by HIV-1 

gag-pol mRNA from the RRE to the CTE resulted in efficient trafficking and assembly of Gag at 

cellular membranes. These results support the model that RNA export pathway selection during 

Gag expression and assembly can modulate the cytosolic fate or function of the viral core 

polyproteins. This model is also supported by earlier reports that the observed deficiency of 

assembly of avian leukosis virus (ALV) Gag proteins synthesized in mammalian cells could be 

overcome by replacement of the ALV CTE-mediated mRNA nuclear export pathway with the 

HIV-1 Rev-RRE-mediated mRNA nuclear export pathway (Nasioulas et al., 1995). 
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Equine infectious anemia virus (EIAV), an ungulate lentivirus, has been used to examine 

the mechanisms of animal lentivirus assembly and budding, and the results of these studies have 

provided novel insights into the molecular and cellular biology of these fundamental lentiviral 

processes. Unlike other retroviruses, EIAV Gag budding seems to be ubiquitin independent 

(Patnaik et al., 2002;Shehu-Xhilaga et al., 2004), and its unique YPDL L-domain recruits 

Alix/AIP1 as the budding partner (Chen et al., 2005;Martin-Serrano et al., 2003a;Strack et al., 

2003;von Schwedler et al., 2003). Little is known about the trafficking pathway and assembly 

site(s) of EIAV Gag. Like other lentiviruses, EIAV Gag is expressed from full-length genomic 

mRNA that is exported from the nucleus with the aid of the viral accessory protein Rev. Whether 

or not EIAV Gag assembly and budding is regulated by nuclear export of its encoding mRNA is 

unknown. We previously generated an EIAV Gag expression vector by attaching the hepatitis B 

virus posttranscriptional regulatory element (PRE) to the gag gene (Patnaik et al., 2002). This 

PRE-based vector has been used successfully in various applications related to retrovirus 

assembly and budding (Chen et al., 2007;Patnaik et al., 2002;Shehu-Xhilaga et al., 2004), and 

similar results were obtained by using PRE-based EIAV Gag expression vector compared to 

Rev-dependent EIAV proviral constructs (Patnaik et al., 2002). Although the detailed 

mechanisms of PRE-mediated RNA nuclear export remain to be defined, the PRE appears to 

utilize an export pathway different from that of HIV-1 and EIAV Rev and of the M-PMV CTE 

(Otero et al., 1998;Zang and Benedict Yen, 1999), thus providing a novel system in which to 

examine the effects of nuclear export pathways on EIAV Gag assembly and budding in 

comparison to HIV-1.  

In this study, we used the bimolecular fluorescence complementation (BiFC) assay to 

study both Rev-dependent and PRE-dependent (hereafter termed Rev-independent) EIAV and 
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HIV-1 Gag assembly and budding. The BiFC technique offers a powerful new tool to detect 

protein-protein interactions with high levels of specificity and sensitivity (Hu and Kerppola, 

2003;Kerppola, 2006). The BiFC assay has been used to demonstrate co-assembly of HIV-1 and 

HIV-2 Gag (Boyko et al., 2006), and we recently used the BiFC assay to demonstrate close and 

specific interactions between EIAV Gag and actin (Chen et al., 2007). In this assay, a 

fluorescence protein gene is divided into N-terminal and C-terminal segments. Separately, the 

encoded fragments are unable to fluoresce; however, co-expression of interacting proteins 

individually fused to these fragments generates detectable fluorescence signal when the two 

fluorescent protein fragments are placed in close proximity (less than 15 nm). In the current 

studies, we utilized the BiFC assay to characterize and compare assembly of EIAV and HIV-1 

Gag in human and rodent cell lines and to define the influence of variant mRNA nuclear export 

pathways on Gag assembly and budding by the two lentiviruses. 
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4.4 MATERIALS AND METHODS 

4.4.1 DNA mutagenesis  

Overlapping PCR was used to construct Gag mutations and fusion proteins (Chen et al., 2001b). 

For bimolecular fluorescence complementation (BiFC) assays, sequences encoding the amino 

(residues 1-173, VN)- or carboxyl (residues 155-238, VC)- fragments of Venus fluorescence 

protein (template generously provided by Dr. Atsushi Miyawaki, RIKEN Brain Science Institute, 

Saitama, JAPAN) were fused to the C-terminus of EIAV or HIV-1 Gag via a 6-alanine linker. To 

make HA-tagged Gag polyproteins, the YPYDVPDYA epitope from influenza virus HA protein 

was inserted into the C-terminus of p9 or p6 protein, respectively. All plasmids were isolated 

using the Qiagen Midiprep Kit (Qiagen, Valencia, CA), and the specific mutations were 

confirmed by DNA sequencing.   

4.4.2 Cell culture and transfection  

HeLa SS6 and 293T cells were cultured in Dulbecco’s Modified Essential Medium (DMEM) 

supplemented with 10% fetal bovine serum. NIH3T3 cells were maintained in DMEM 

supplemented with 10% newborn calf serum. ED cells were cultured in Minimum Essential 

Medium (MEM) supplemented with 10% fetal bovine serum. Cells were transfected using 

Lipofectamine 2000 (Invitrogen, Calsbad, CA) following the procedures outlined by the 

manufacturer.  
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4.4.3 Gag protein expression assays   

At 48 h post transfection, cells were harvested and lysed in lysis buffer (25 mM Tris-HCl, pH 

8.0, 150 mM NaCl, 1% deoxycholic acid, 1% Triton X-100, 1x protease inhibitor cocktail) and 

centrifuged at 20,800xg for 5 min to remove cell nuclei. Virus-like particles (VLPs) released into 

the culture medium were pelleted by centrifugation (20,800xg for 3 h at 4°C) and resuspended in 

PBS. HA-Gag contained in cell lysates and VLPs was analyzed by Western Blotting using rat 

anti-HA antibody epitope (Roche Applied Science, Indianapolis, IN) and HRP conjugated goat 

anti-rat IgG (Zymed, San Francisco, CA). 

4.4.4 Confocal microscopy  

Transfected cells grown on coverslips were fixed and permeabilized with 2% paraformaldehyde 

and 0.1% Triton X-100 in PBS. VLPs were adsorbed onto coverslips by overnight incubation at 

4oC in the presence of 16 µg/ml polybrene, and then fixed with 2% paraformaldehyde. Images 

were captured using a Leica TCS-SL microscope and processed with Metamorph software. 

4.4.5 Flow cytometry analysis   

HeLa SS6 and NIH3T3 cells grown on 6-well plates were transfected with selected BiFC 

construct pairs. Cells were detached with PBS containing 2.5 mM EDTA and resuspended in 

PBS at 16 h post transfection for HeLa SS6 cells and at 48 h post transfection for NIH3T3 cells. 

For HA staining (Fig. 4-3 and Fig. 4-4), cells were washed three times with PBS containing 5% 

FBS (wash buffer) and fixed in 1% paraformaldehyde for 1 h, followed by permeabilization with 
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PBS containing 5% fetal calf serum and 0.5% saponin. Mouse anti-HA epitope antibody (Santa 

Cruz Biotechnology, Santa Cruz, CA) and Cy5-conjugated goat anti-mouse IgG (Jackson 

ImmunoResearch Laboratory, West Grove, PA) were used to stain HeLa SS6 cells, while rat 

anti-HA epitope antibody and Cy5-conjugated goat anti-rat IgG (Zymed, San Francisco, CA) 

were used to stain NIH3T3 cells. A minimum of 30,000 gated live events were acquired on a 

FACSCalibur (Becton Dickinson, San Jose, CA) flow cytometer and analyzed with FlowJo batch 

analysis software (Treestar, San Carlos, CA) for both yellow fluorescence and HA staining (Fig. 

4-3 and Fig. 4-4).  
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4.5 RESULTS 

4.5.1 Expression of Rev-dependent and Rev-independent EIAV and HIV-1 Gag-BiFC 

constructs  

Using the optimized amino (VN) and carboxy (VC) terminal fragments of Venus fluorescence 

protein (Shyu et al., 2006), we first generated a panel of Gag-BiFC constructs (Fig. 4-1, panel 

A) for EIAV and HIV-1 Gag. The EIAV gag gene in pPRE-Gag (Patnaik et al., 2002) was 

replaced with VN- or VC-tagged EIAV or HIV-1 Gag genes to generate Rev-independent 

expression vectors. Rev-dependent EIAV and HIV-1 Gag-BiFC constructs were generated based 

on EIAV and HIV-1 proviral constructs pCMVuk (Patnaik et al., 2002) and pNL4-3/KFS (Freed 

and Martin, 1995), respectively. The U3 regions of both EIAV and HIV-1 proviral constructs 

were replaced by a CMV promoter to obtain similar transcriptional levels from both Rev-

dependent and Rev-independent vectors. Envelope glycoprotein expression was eliminated by 

introduction of premature stop codon or frame shift, and pol genes were deleted to facilitate 

cloning. The inserted HA epitope provides a common tag to directly compare the expression of 

the various fusion constructs. We first examined the relative efficiency of protein expression and 

VLP budding by the panel of Gag constructs (Fig. 4-1, panel B) in 293T cells transfected with 

the individual vectors. At 48 h post transfection, cell lysates and supernatant VLPs were 

subjected to SDS-PAGE and Western Blot analysis with HA antibody. The immunoblot data 

indicated that all of the Gag-BiFC fusion proteins for EIAV and HIV-1 were expressed and 

released in VLPs. However, differences in the influence of mRNA nuclear export pathways on 
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Gag budding efficiency was observed between EIAV and HIV-1. Expression and budding of 

EIAV Gag-BiFC constructs were similar when expressed in 293T cells from plasmids encoding 

either Rev-independent (Fig. 4-1, lanes 1 and 2) or Rev-dependent (Fig. 4-1, lanes 3 and 4) Gag 

constructs. In contrast, the budding efficiency of HIV-1 Gag-BiFC fusion proteins expressed 

from Rev-independent vectors was roughly 10-fold lower than that of Rev-dependent Gag fusion 

proteins (compare VLPs in lanes 5 and 6 with lanes 7 and 8 and their 10 fold dilution showed in 

lanes 9 and 10 of Fig. 4-1), although the amount of proteins produced in the transfected cells was 

highly comparable under both conditions (compare lysates in lanes 5 and 6 with lanes 7 and 8 of 

Fig. 4-1).  

4.5.2 Demonstration of EIAV Gag assembly by BiFC assay  

We next used the BiFC assay to examine EIAV Gag assembly by confocal microscopy in EIAV 

permissive equine dermal (ED) cells (Fig. 4-2, panels a-c) and in HeLa cells (Fig. 4-2, panels d-

f). Both ED (Fig. 4-2, panel b) and HeLa (Fig. 4-2, panel e) cells expressing Rev-independent 

EIAV-Gag-YFP displayed intracellular punctate YFP signals. In ED (Fig. 4-2, panel a) and 

HeLa cells (Fig. 4-2, panel d) transfected with the Rev-independent EIAV Gag-VN/Gag-VC 

pair, intracellular YFP fluorescence was observed indicating the interaction of Gag monomers 

with one another during VLP assembly. This EIAV Gag-Gag-BiFC distribution pattern 

resembled the Rev-independent EIAV-Gag-YFP intracellular distribution pattern, suggesting 

Gag-Gag-BiFC signals correctly represent intracellular Gag assembly. We previously used the 

BiFC assay and demonstrated a lack of detectable interaction between EIAV Gag and tubulin in 

transfected cells(Chen et al., 2007), so the EIAV Gag-VN/VC-tubulin pair was employed in the 

current study as a negative control for the current BiFC assays. No positive BiFC signal was 
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observed in ED (Fig. 4-2, panel c) or HeLa cells (Fig. 4-2, panel f) transfected with the Gag-

VN/VC-tubulin control pair, confirming the specificity of the observed Gag-Gag interactions. 

4.5.3 Comparison of Rev-dependent and Rev-independent EIAV and HIV-1 Gag 

assembly 

We next used the BiFC assay to characterize and compare EIAV and HIV-1 Gag assembly in 

human (Fig. 4-3) and rodent (Fig. 4-4) cells by confocal microscopic and flow cytometric 

analysis of cells transfected with the indicated Gag-VN/Gag-VC pairs. Due to the lower 

expression level of HIV-Gag-VN compared to HIV-Gag-VC (Fig. 4-1, panel B), a 5:2 mass 

ratio of HIV-1 Gag-VN expression vector to HIV-1 Gag-VC expression vector was used for 

HIV-1 Gag-VN/Gag-VC co-transfection to optimize the BiFC signal. Four µg of total DNA was 

used to transfect one well of cells grown in 6-well-plate for both confocal microscopy and flow 

cytometry analyses.   

Both Rev-dependent and Rev-independent EIAV Gag polyproteins assembled efficiently 

in HeLa and 293T cells (Fig. 4-3, panels A-a, -b, -e and -f), and expression of EIAV Gag-

VN/Gag-VC pairs resulted in a bright punctate fluorescent signal distributed throughout the 

cytoplasm and along the cell surface, with some concentration in the juxtanuclear region. In 

contrast, we observed a dramatic difference between the BiFC patterns in cells expressing Rev-

independent compared to Rev-dependent HIV-1 Gag constructs. Co-transfection of Rev-

independent HIV-1 Gag-VN/Gag-VC constructs into human cells resulted in a weak BiFC signal 

overall, consisting of a few intracellular puncta over a diffuse cytoplasmic background (Fig. 4-3, 

panels A-c and -g). In marked contrast, human cells expressing Rev-dependent HIV-1 Gag-VN/ 

Gag-VC constructs displayed bright cell surface BiFC signal (Fig. 4-3, panels A-d and -h). 
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Examining cells transfected with 4 µg or 0.4 µg of DNA after overnight transfection or as early 

as 9 h post transfection yielded similar results (data not shown). These results indicate that the 

mRNA nuclear export pathways can alter HIV-1 Gag assembly sites, as reported previously 

(Swanson et al., 2004), and that alternative assembly/budding sites are apparently utilized by 

EIAV and HIV-1 Gag.  

To quantify the assembly efficiency of Rev-dependent and Rev-independent EIAV and 

HIV-1 Gag, HeLa cells expressing the indicated BiFC pairs were analyzed by flow cytometry 

(Fig. 4-3, panel B). To normalize differences in transfection efficiency and Gag expression 

levels, fixed and permeabilized cells were stained with mouse HA antibody followed by Cy5 

conjugated secondary antibody. The ratio of HA and BiFC double-positive population to the total 

HA-positive population was used to calculate assembly efficiency. Cells transfected with an HA-

tagged VN-actin/VC-actin pair were used as a positive control, as described previously (Chen et 

al., 2007). In VN-actin/VC-actin co-transfected human cells, almost 44% of HA-positive cells 

exhibited positive BiFC signal (Fig. 4-3, panel B-e), while none of HA-positive cells displayed 

yellow fluorescence in mock-transfected control (Fig. 4-3, panel B-f). A similar assembly 

efficiency was observed for Rev-independent (Fig. 4-3, panel B-a) or Rev-dependent (Fig. 4-3, 

panel B-b) EIAV Gag (13.3% and 14.6%, respectively). In contrast, lower assembly efficiency 

(0.5%) was observed for Rev-independent HIV-1 Gag (Fig. 4-3, panel B-c) compared with the 

assembly efficiency (2.4%) for Rev-dependent HIV-1 Gag (Fig. 4-3, panel B-d).  

As observed in human cells, expression of both Rev-independent (Fig. 4-4, panel A-a) 

and Rev-dependent (Fig. 4-4, panel A-b) EIAV Gag-VN/Gag-VC pairs in mouse-derived 

NIH3T3 cells resulted in an intracellular punctate BiFC pattern. In contrast, a weak but distinct 

BiFC signal was observed when Rev-independent HIV-1 Gag-VN/Gag-VC constructs were 
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expressed in NIH3T3 cells (Fig. 4-4, panel A-c), while only background signal could be 

detected in NIH3T3 cells expressing the Rev-dependent HIV-1 Gag-VN/Gag-VC pair (Fig. 4-4, 

panel A-d). These qualitative microscopy results were further supported by quantitative flow 

cytometry data (Fig. 4-4, panel B). In NIH3T3 cells co-transfected with either Rev-independent 

(Fig. 4-4, panel B-a) or Rev-dependent (Fig. 4-4, panel B-b) EIAV Gag-VN/Gag-VC pairs, 

about 62% and 48% of HA-positive cells displayed positive BiFC signals, respectively. 

However, roughly five fold higher assembly efficiency (49% vs 10%) of Rev-independent (Fig. 

4-4, panel B-c) HIV-1 Gag was observed in NIH3T3 cells compared to Rev-dependent HIV-1 

Gag (Fig. 4-4, panel B-d). Approximately 60% of HA positive cells were BiFC positive in VN-

actin/VC-actin co-transfected NIH3T3 cells (Fig. 4-4, panel B-e), and no BiFC signal was 

detected in negative control rodent cells (Fig. 4-4, panel B-f). These results indicate that the 

block of HIV-1 Gag assembly in NIH3T3 cells with Rev-dependent Gag expression could be 

overcome by PRE-mediated RNA nuclear export. In marked contrast, both Rev-independent and 

Rev-dependent EIAV Gag could assemble efficiently in NIH3T3 cells, indicating critical 

differences in EIAV and HIV-1 Gag assembly processes in rodent cells.  

To confirm that the Gag-Gag-BiFC signals observed in cells transfected with various 

Gag-BiFC pairs represented functional Gag assembly, VLPs released from 293T (Fig. 4-5) or 

NIH3T3 (data not shown) cells were visualized by confocal microscopy. Positive BiFC labeled 

particles could be detected in supernatant pellets produced from 293T cells transfected with 

various Gag-VN/Gag-VC pairs, indicating that the Gag-Gag-BiFC complexes could be 

successfully incorporated into VLPs and that BiFC signals observed in cells represented 

functional assembly of Gag polyproteins. 
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4.5.4 Comparison of Rev-dependent and Rev-independent EIAV and HIV-1 Gag budding  

Rev-dependent and Rev-independent EIAV and HIV-1 Gag budding efficiencies were also 

examined by Western Blot analysis (Fig. 4-6). Four µg of total DNA was used to transfect one 

well of cells grown in 6-well-plate as described above for confocal microscopic and flow 

cytometric analysis. Cell lysates and pelleted VLPs produced from transfected 293T (Fig. 4-6, 

panel A) or NIH3T3 (Fig. 4-6, panels A, B and C) cells were analyzed by Western Blot at 48 h 

post transfection. In human cells, the HIV-1 VLP budding efficiency from Rev-independent 

HIV-1 Gag-VN/Gag-VC pair was roughly 10-fold lower than that of the Rev-dependent HIV-1 

Gag-VN/Gag-VC pair (compare lane 3 with lane 4 and 5 in Fig. 6-6, panel A), consistent with 

the budding efficiency of singly-transfected HIV-1 Gag-BiFC constructs shown in Fig 1B. Both 

Rev-independent (Fig. 6-6, panel A, lane 1) and Rev-dependent (Fig. 6-6, panel A, lane 2) 

EIAV Gag budded with comparable efficiency to Rev-dependent (Fig. 6-6, panel A, lane 4) 

HIV-1 Gag in 293T cells.  

In NIH3T3 cells, both Rev-independent EIAV (Fig. 6-6, panel A, lane 6) and HIV-1 

(Fig. 6-6, panel A, lane 8) Gag-BiFC constructs expressed Gag proteins and released VLPs at 

similar levels. However, the expression level of Rev-dependent EIAV (Fig. 6-6, panel A, lane 7) 

and HIV-1 (Fig. 6-6, panel A, lane 9) Gag-BiFC constructs were relatively low in NIH3T3 cells. 

These reduced Gag-BiFC construct expression levels correlated with greatly reduced VLP 

production by Rev-dependent EIAV Gag-BiFC (Fig. 6-6, panel A, lane 7) and undetectable 

VLP production by Rev-dependent HIV-1 Gag-BiFC (Fig. 6-6, panel A, lane 9).  

To determine if the reduced VLP production by Rev-dependent EIAV or HIV-1 Gag in 

NIH3T3 cells was the result of low Gag protein expression, cells were transfected with reduced 

amounts of Rev-independent EIAV (Fig. 6-6, panel B) and HIV-1 (Fig. 6-6, panel C) Gag-BiFC 
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plasmids and serial dilution of VLP and cell lysates from Rev-independent Gag-BiFC plasmids 

transfected cells were used to compare Rev-dependent and Rev-independent Gag budding at 

equally low protein expression levels. Similar levels of VLPs were released from NIH3T3 cells 

expressing comparable amounts of Rev-dependent (Fig. 6-6, panel B, lane 8) and Rev-

independent (Fig. 6-6, panel B, lanes 5 and 7) EIAV Gag-BiFC constructs. However, in 

NIH3T3 cells expressing comparable levels of Rev-independent (Fig. 6-6, panel C, lanes 5 and 

7) and Rev-dependent (Fig. 6-6, panel C, lane 8) HIV-1 Gag-BiFC constructs, Gag-VN and 

Gag-VC were released only in cells expressing the Rev-independent constructs. 
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Figure 4-1. Expression and budding of Rev-dependent and Rev-independent Gag-BiFC constructs in 

293T cells.  

(A) Schematic diagram of plasmids expressing EIAV and HIV-1 Gag-BiFC fusion proteins in 

either Rev-dependent or Rev-independent manner. An HA epitope indicated by arrow-head was 

inserted at the C-terminus of p9 or p6 protein. (B) Expression and budding of the constructs 

depicted in (A) in transfected 293T cells, as described in Materials and Methods. Lanes 1-8 in 
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(B) correspond directly to constructs 1-8 in (A). Lanes 9 and 10 were loaded with 1:10 diluted 

samples loaded in lanes 7 and 8, respectively. At 48 h post transfection, cell lysates (upper panel) 

and VLPs (lower panel) were analyzed by immunoblotting using HA antibody. 

 

Figure 4-2. Demonstration of EIAV Gag assembly by the BiFC assay. 

ED (panels a-c) and HeLa (panels d-f) cells grown on glass coverslips were transfected with 

pPRE-EIAV-Gag-VN and pPRE-EIAV-Gag-VC (panels a and d), pPRE-EIAV-Gag-YFP 

(panels b and e), pPRE-EIAV-Gag-VN and pCMV-VC-tubulin (panels c and f) plasmid using 

Lipofectamine 2000. At 24 h post transfection, cells were fixed and imaged with a Leica TCS-SL 

confocal microscope. Bar: 10 µm. 
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Figure 4-3. BiFC analysis of EIAV and HIV-1 Gag assembly in human cells. 

(A) Visualization of Gag assembly by BiFC assay. 293T (panels a-d) and HeLa (panels e-h) cells 

grown on glass coverslips were transfected with Rev-independent EIAV-Gag-VN/Gag-

VC(panels a and e), Rev-dependent EIAV-Gag-VN/Gag-VC (panels b and f), Rev-independent 

HIV-Gag-VN/Gag-VC(panels c and g), Rev-dependent HIV-Gag-VN/Gag-VC (panels d and h) 

plasmid pairs using Lipofectamine 2000. At 16 h post transfection, cells were fixed and imaged 

with a Leica TCS-SL confocal microscope. Bar: 10 µm. (B) Quantitative analysis by flow 

cytometry of BiFC signals in transient transfected HeLa cells described in (A). At 16 h post 

transfection, permeablized cells were stained with mouse HA antibody and Cy5 conjugated goat 

anti-mouse IgG. A minimum of 30,000 gated live events were acquired and analyzed both yellow 
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and HA-Cy5 fluorescence. Percentage of HA and BiFC double positive cells in total HA positive 

cells was calculated and labeled below each quadrant plot. 

 

Figure 4-4. BiFC analysis of EIAV and HIV-1 Gag assembly in NIH3T3 cells. 

(A) Visualization of Gag assembly by BiFC assay. NIH3T3 cells grown on glass coverslips were 

transfected with Rev-independent EIAV-Gag-VN/Gag-VC (panel a), Rev-dependent EIAV-Gag-

VN/Gag-VC (panel b), Rev-independent HIV-Gag-VN/Gag-VC (panel c), Rev-dependent HIV-

Gag-VN/Gag-VC (panel d) plasmid pairs using Lipofectamine 2000. At 16 h post transfection, 

cells were fixed and imaged with a Leica TCS-SL confocal microscope. Bar: 10 µm. (B) 

Quantitative analysis by flow cytometry of BiFC signals in transient transfected NIH3T3 cells 

described in (A). At 48 h post transfection, cells were analyzed by flow cytometry as described 

in Fig. 4-3 except that rat HA antibody and Cy5 conjugated goat anti-rat IgG were used. 
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Figure 4-5. Demonstration of BiFC Gag complexes in assembled VLPs. 

VLPs produced from 293T cells transfected with Rev-independent EIAV-Gag-VN/Gag-VC (A), 

Rev-dependent EIAV-Gag-VN/Gag-VC (B), Rev-independent HIV-Gag-VN/Gag-VC(C), Rev-

dependent HIV-Gag-VN/Gag-VC (D), VN-actin/VC-actin (E) plasmid pairs were immobilized 

on coverslips and fixed. Images were acquired on a Leica TCS-SL confocal microscope. 

Enlarged images of boxed areas in A-E were presented as A’-E’. Bar: 10 µm. 
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Figure 4-6. Comparison budding efficiency of Rev-dependent and Rev-independent EIAV and HIV-1 

Gag in human and rodent cells. 
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Figure 4-6. continue 

(A) Expression and budding of co-transfected Gag-BiFC constructs. 293T (lanes 1-5) and 

NIH3T3(lanes 6-9) cells were co-transfected with Rev-independent EIAV-Gag-VN/Gag-VC 

(lanes 1 and 6), Rev-dependent EIAV-Gag-VN/Gag-VC (lanes 2 and 7), Rev-independent HIV-

Gag-VN/Gag-VC(lanes 3 and 8), Rev-dependent HIV-Gag-VN/Gag-VC (lanes 4, 5 and 9) 

plasmid pairs using Lipofectamine 2000. At 48 h post transfection, cell lysates (upper panel) and 

VLPs (lower panel) were analyzed by immunoblotting using HA antibody. 10 fold diluted 

sample loaded on lane 4 was loaded on lane 5. (B) Comparison of budding efficiencies of Rev-

independent and Rev-dependent EIAV in NIH3T3 cells. The indicated amount of Rev-

independent and Rev-dependent EIAV and Gag-BiFC plasmid pairs were used for transfection in 

NIH3T3 cells.  At 48 h post transfection, cell lysates (upper panel) and VLPs (lower panel) were 

analyzed by immunoblotting using HA antibody. Serial dilutions of Rev-independent samples 

were analyzed in parallel. (C) Compare budding efficiencies of Rev-independent and Rev-

dependent HIV-1 in NIH3T3 cells as described in (B) except that HIV-1 Gag-BiFC plasmid pairs 

were used for transfection. 
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4.6 DISCUSSION 

In the current study, we utilized the newly developed BiFC assay to study EIAV and HIV-1 Gag 

assembly and budding in human and mouse cell types, both qualitatively and quantitatively. 

Using the BiFC method, which enables highly specific and sensitive detection of in vivo protein-

protein interactions (Hu et al., 2002;Kerppola, 2006;Nyfeler et al., 2005), we were able to 

correlate Gag assembly efficiency with VLP budding efficiency, as well as to confirm the 

incorporation of Gag-Gag BiFC complexes into VLPs, further validating this technique as a tool 

to study functional viral assembly. The BiFC studies described here for the first time compare in 

one study the Gag assembly sites of an animal lentivirus with HIV-1, directly testing the 

assumption that all lentiviruses assemble via identical pathways in the same target cell. Thus, the 

results of these comparative studies reveal novel insights into fundamental properties of 

lentivirus assembly mechanisms and identify new systems in which to elucidate specific virus-

cell interactions that can facilitate or inhibit assembly in human or rodent cells.  

4.6.1 EIAV and HIV-1 Gag use distinct trafficking routes during viral assembly/budding  

Currently, the sites of retrovirus assembly and budding are vigorously debated topics. It has been 

generally assumed that lentiviral assembly and budding pathways follow the assembly pathway 

defined for type-C oncoviruses, such as murine or avian leukemia viruses, in which Gag 

polyproteins assemble and bud at specific plasma membrane sites to form viral particles. 

Although a large number of studies have been performed to characterize HIV-1 assembly and 
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budding in various cell types using diverse techniques, assembly and budding mechanisms of 

other lentiviruses have not been well characterized. Data from our lab and others have previously 

indicated  that EIAV and HIV-1 may use related but distinct assembly pathways, and that these 

differences could be exploited to define critical virus-cell interactions that mediate Gag 

trafficking and assembly (Chen et al., 2005;Patnaik et al., 2002;Puffer et al., 1998;Shehu-Xhilaga 

et al., 2004). For example, EIAV is unique from other retroviruses in that its assembly and 

budding is insensitive to proteasome inhibitor treatments that deplete intracellular free ubiquitin, 

whereas budding of HIV-1 and other retroviruses were inhibited by the same proteasome 

inhibitor treatments (Patnaik et al., 2000;Patnaik et al., 2002). Like other retroviruses, EIAV 

assembly and budding is suppressed by dominant negative VPS4A (Martin-Serrano et al., 

2003b;Shehu-Xhilaga et al., 2004;Tanzi et al., 2003), but is insensitive to the expression of 

carboxy-terminal fragments of TSG101 that inhibit PTAP and PPPY L domain-mediated Gag 

assembly and budding (Shehu-Xhilaga et al., 2004). EIAV Gag utilizes a unique L domain, 

YPDL motif, that recruits host VPS protein Alix/AIP1 (Martin-Serrano et al., 2003a;Strack et al., 

2003;von Schwedler et al., 2003) and adaptor protein complex AP-2 (Puffer et al., 1998), both of 

which are required for efficient EIAV budding (Chen et al., 2005). Therefore, although EIAV 

Gag assembly and budding pathways converge with other retroviral assembly and budding 

pathways at the final step by entry into ESCRTs endosomal sorting network, these differences 

suggest that EIAV Gag may use a unique portal of entry to endosomal sorting network and 

upstream trafficking pathway. 

In the current study we characterized EIAV Gag assembly in various cell lines and 

compared EIAV Gag and HIV-1 Gag assembly and budding by the BiFC assay. Distinct 

assembly sites for EIAV Gag (intracellular) and HIV-1 Gag (cell surface) were revealed in 
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human cells where both Gag species budded efficiently. In rodent cells, compared to the efficient 

assembly and budding of EIAV Gag, HIV-1 Gag neither assembled nor budded. It is important 

to note that there was a close correlation between the levels of Gag multimerization detected by 

BiFC in various cell types and the levels of VLP production from the respective cell types. 

Taken together, these data indicate distinct intracellular trafficking of EIAV and HIV-1 Gag in 

the same target human or rodent cells. Interestingly, while the intracellular assembly pattern of 

EIAV Gag in fibroblastic cells is distinct from that of HIV-1 in these cells (Demirov and Freed, 

2004;Morita and Sundquist, 2004;Neil et al., 2006;Ono and Freed, 2004), it is reminiscent of 

HIV-1 Gag intracellular assembly observed in human macrophages (Pelchen-Matthews et al., 

2003;Raposo et al., 2002). Recent studies have suggested that HIV-1 in human macrophages 

may assemble and bud from invaginated membrane domains that resemble endosomal structures 

but are contiguous with the plasma membrane (Deneka et al., 2007;Welsch et al., 2007). Earlier 

reports demonstrated a failure to release HIV-1 Gag that was targeted to endosomes either by 

inducing phosphatidylinositol 4,5-bisphosphate synthesis on endosome membranes(Ono et al., 

2004) or by replacing the HIV-1 Gag membrane targeting signal with phosphatidylinositol 3-

phosphate binding domains (Jouvenet et al., 2006), supporting the model that plasma membrane 

is the productive budding site for HIV-1 in human cells. In contrast to HIV-1 Gag, intracellularly 

assembled EIAV Gag budded efficiently from both human and rodent cells, the latter being 

unable to support HIV-1 Gag assembly and budding.  Identification of the intracellular sites 

where EIAV Gag assembles and the cellular factors that mediate EIAV release in various cell 

types will enable us to determine both common and distinct paradigms of retrovirus assembly 

and budding.  
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The intracellular assembly pattern of EIAV Gag was also observed in equine fibroblasts. 

It remains to be determined if these patterns are also observed in equine macrophages, the natural 

target cell for primary isolates of EIAV. However, it is important to note that the EIAVuk 

proviral strain used in this study is cell-adapted via changes in its LTR sequences(Cook et al., 

1998) such that it can productively infect cultured equine fibroblastic cells and is able to produce 

fully infectious virus particles from various transfected human cell lines. In this regard, equine 

and human fibroblastic cell lines have been used extensively to study EIAV assembly and 

budding (Chen et al., 2005;Chen et al., 2007;Li et al., 2002;Patnaik et al., 2002;Shehu-Xhilaga et 

al., 2004). With the development of the BiFC assay to study EIAV Gag assembly, it should now 

be possible to extend these types of studies to define EIAV assembly in its natural target cells.   

4.6.2 mRNA nuclear export pathways influence Gag assembly and budding sites  

Although no obvious changes in EIAV Gag assembly and budding were observed after altering 

Rev-mediated mRNA nuclear export to HBV PRE-mediated mRNA nuclear export, marked 

changes in HIV-1 Gag assembly location and assembly/budding efficiency were observed. These 

differences included relocation of HIV-1 Gag assembly sites from the plasma membrane to 

intracellular sites in human cells and rescue of HIV-1 Gag assembly and budding in NIH3T3 

cells. Rev-dependent HIV-1 Gag was reported to form condensed, electron-dense structures 

(Mariani et al., 2000), presumably aggregates of Gag polyproteins, and to display a diffuse 

distribution pattern in NIH3T3 cells, indicating an assembly deficiency (Chen et al., 

2001a;Swanson et al., 2004). The current results showed that Rev-dependent HIV-1 Gag did not 

form BiFC complexes in mouse cells, indicating either that the reported abnormal aggregation of 

HIV-1 Gag in NIH3T3 cells is extremely inefficient or that Gag polyproteins in the aggregates 
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are not associated in an arrangement that favors BiFC complex formation. Alternative HIV-1 

Gag assembly and budding pathways were previously reported in different cells types (Nydegger 

et al., 2003;Ono and Freed, 2004), as well as in nonlymphoid cell lines expressing HLA-DR 

epigenetically(Finzi et al., 2006). However, the mechanisms that drive the selection of alternative 

assembly and budding pathways are largely unknown. Consistent with a recent study (Swanson 

et al., 2004), the current data indicate that distinct mRNA export pathways regulate HIV-1 Gag 

assembly and budding pathways.  

RNA export pathways could modulate the cytosolic fate or function of Gag polyproteins 

at three levels. (1) Retroviral genomic RNA (gRNA) is associated with proteins to form 

ribonucleoprotein particles (RNP), and RNP components might regulate gRNA trafficking and 

subsequent Gag assembly (Cochrane et al., 2006). Indeed, one such component (hnRNP A2) has 

previously been reported to regulate HIV-1 gRNA trafficking and virus production (Levesque et 

al., 2006). (2) Retrovirus Gag assembly is a stepwise, energy-dependent process that requires 

chaperone proteins (Dooher and Lingappa, 2004;Gurer et al., 2002;Hong et al., 

2001;Zimmerman et al., 2002). Therefore differences in Gag synthesis sites as a consequence of 

different RNA nuclear export pathways might lead to exposure of Gag to different cellular 

factors. The failure to recruit necessary chaperones could result in defective assembly and 

explain the inefficient assembly of Rev-dependent HIV-1 Gag in NIH3T3 cells. (3) Retroviral 

Gag trafficking to budding sites also depends on other cellular factors including motor proteins 

and membrane trafficking regulators (Chen et al., 2005;Chen et al., 2007;Demirov and Freed, 

2004;Dong et al., 2005;Leung et al., 2006;Morita and Sundquist, 2004;Sasaki et al., 1995;Tang 

et al., 1999). Mislocalization of Gag polyproteins might prevent recruitment of partners required 
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for Gag transport, even if Gag assembly per se is competent. The latter might explain the low 

budding efficiency of intracellularly assembled HIV-1 Gag in human cells.  

Elucidating the mechanisms by which Rev-dependent HIV-1 Gag assembly is blocked in 

rodent cells and by which Rev-independent Gag overcomes this block could help to develop 

small animal models of HIV-1 replication and pathogenesis. Further studies are needed to 

examine how RNA export regulates HIV-1 Gag trafficking and assembly, to define what factors 

regulate the release of intracellular versus plasma membrane assembled HIV-1 in human cells, 

and to identify the machinery that enables efficient intracellular assembly/budding of EIAV Gag. 

Based on the current studies of EIAV and HIV-1 Gag assembly, we propose that additional 

comparisons of animal and human lentivirus assembly pathways can accelerate these 

mechanistic studies of lentivirus Gag assembly and budding processes and increase the potential 

to develop novel antiviral therapies targeting Gag assembly and budding. 
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5.0  CHAPTER THREE. LIPID RAFT ASSOCIATION OF HIV-1 GAG IS 

REGULATED BY THE TRAFFICKING OF GAG-ENCODING MRNA 

5.1 PREFACE 
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Work described in this chapter is in fulfillment of specific aim 3. 
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5.2 ABSTRACT 

Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 

Gag assembly takes place at the plasma membrane, however, little is known about the 

mechanisms by which thousands of Gag proteins are transported to the plasma membrane. Using 

a bimolecular fluorescence complementation (BiFC) assay, we recently reported that the cellular 

sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA 

export from the nucleus, known to be mediated by Rev. In the current study, we further explore 

the defect of Rev-independent HIV-1 Gag. It assembles with slower kinetics, accumulates 

intracellularly and does not reach a lipid raft compartment at the surface where the wild-type 

Rev-dependent HIV-1 Gag efficiently assembles. Importantly, the defect of Rev-independent 

Gag can be rescued by co-expression of Rev-dependent Gag. Rescue in trans depends on the 

ability of Gag to interact with other Gag molecules and the ability to interact with cellular 

membrane. All other known functions of the rescuing Gag molecule such as matrix-dependent 

trafficking or the engagement of Tsg101 are not required. In addition, Rev-independent HIV-1 

Gag assembly and budding could be rescued by plasma membrane targeting signals provided in 

cis and correlated with the restored lipid raft association. Taken together, our results suggest that 

lipid rafts are critical for HIV-1 Gag assembly and budding and that raft targeting of HIV-1 Gag 

is regulated as early as nuclear export of Gag-encoding mRNA. 
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5.3 INTRODUCTION 

Retrovirus assembly and budding is a highly concerted process mediated by largely undefined 

spatially- and temporally-regulated interactions between viral proteins and cellular factors. 

During the viral assembly process, thousands of copies of viral structural polyproteins 

multimerize to form virus particles via an energy-dependent, multi-step process. Expression of 

retroviral Gag polyprotein is generally sufficient for the assembly and release of non-infectious 

virus like particles (VLPs). The Gag polyprotein consists of matrix (MA), capsid (CA), 

nucleocapsid (NC), late domain and spacer proteins and is cleaved into the distinct structural 

proteins upon virus maturation (Demirov and Freed, 2004;Morita and Sundquist, 2004). These 

Gag domains orchestrate the major steps in virus assembly and budding (reviews (Demirov and 

Freed, 2004;Morita and Sundquist, 2004)). It is well established that HIV-1 Gag buds from the 

plasma membrane of T lymphocytes and some epithelial cell lines (Demirov and Freed, 

2004;Hermida-Matsumoto and Resh, 2000;Morita and Sundquist, 2004;Neil et al., 2006;Nguyen 

et al., 2003;Nydegger et al., 2003;Ono et al., 2004). In contrast, the major histocompatibility 

complex (MHC) class II compartments or multivesicular bodies (MVBs) are apparently the sites 

of HIV-1 Gag accumulation and particle production in macrophages and dendritic cells (Blom J. 

et al., 1993;Morita and Sundquist, 2004;Neil et al., 2006;Nguyen et al., 2003;Pelchen-Matthews 

et al., 2003;Raposo et al., 2002). Based various studies showing that  HIV-1 Gag may also target 

to MVBs in other cell types (Nydegger et al., 2003;Ono et al., 2004;Sherer et al., 2003), MVBs 

are thought to be the common budding sites for HIV-1. However, recent studies appeared to 

contradict this model by indicating the plasma membrane as the productive sites for HIV-1 Gag 

assembly and budding in various cells (Deneka et al., 2007;Finzi et al., 2007;Jouvenet et al., 

2006;Welsch et al., 2007), including macrophages where HIV-1 virions bud from invaginated 
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plasma membranes (Deneka et al., 2007;Welsch et al., 2007). Little is known about the precise 

mechanisms by which thousands of copies of Gag molecules synthesized from ribosomes in the 

cytoplasm are transported to specific locations on the plasma membrane for assembly and 

budding. Consistent with results published by Malim and colleagues (Swanson et al., 

2004;Swanson and Malim, 2006), our recent work suggests that HIV-1 Gag assembly is 

regulated at a step as early as nuclear export of its encoding mRNA (Jin et al., 2007). 

Retroviral Gag polyproteins are synthesized from an unspliced full-length viral genomic 

mRNA that requires specific regulatory factors for nuclear export. The HIV-1 genome contains a 

cis-acting RNA element known as the Rev-response element (RRE) that binds to a viral trans-

acting protein. Rev binds to the cellular Crm1 protein which in turn binds to Ran, a small 

GTPase that shuttles between the nucleus and the cytoplasm. Some simple retroviruses, such as 

Mason-Pfizer monkey virus (M-PMV), contain cis-acting RNA export elements (constitutive 

transport elements or CTE) that do not require viral trans-acting factors and that function by 

interacting directly with cellular export factors NXF1/NXT (Swanson and Malim, 2006). 

Swanson et al (Swanson et al., 2004) recently demonstrated that altering the RNA nuclear export 

element used by HIV-1 gag-pol mRNA from the RRE to the CTE resulted in efficient trafficking 

and assembly of Gag at cellular membranes in murine cells, which are notable for their inability 

to support HIV-1 assembly and budding (Bieniasz and Cullen, 2000;Mariani et al., 

2000;Swanson et al., 2004). Our recent study also demonstrated that HIV-1 Gag assembly and 

budding in mouse cells could be rescued by substitution of the Rev-dependent RNA nuclear 

export signal with the hepatitis B virus posttranscriptional regulatory element (PRE) (Jin et al., 

2007). Interestingly, in human cells the PRE-dependent, Rev-independent HIV-1 Gag showed 

lower assembly efficiency and different assembly sites compared with Rev-dependent HIV-1 
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Gag (Jin et al., 2007). These results support the model that RNA export pathway selection during 

Gag expression and assembly can affect the cytosolic fate or function of the HIV-1 Gag 

polyproteins.  

In the current study, we sought to define the determinants for this RNA export 

dependence of efficient HIV-1 Gag assembly in human cells and to test whether Rev-

independent HIV-1 Gag assembly and budding can be rescued by altering these determinants.  
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5.4 MATERIALS AND METHODS 

5.4.1 DNA mutagenesis 

Overlapping PCR was used to construct Gag mutations and fusion proteins. Rev-dependent and 

Rev-independent HIV-1 [pNL4-3 proviral clone(Adachi et al., 1986)] and EIAV [pEIAVuk 

proviral clone (Cook et al., 1998)] Gag expression vectors were described previously (Jin et al., 

2007). For BiFC assays, gene sequences encoding the amino (residues 1-173, VN)- or carboxyl 

(residues 155-238, VC)- fragments of Venus fluorescence protein were fused to the C-terminus 

of EIAV or HIV-1 Gag via a 6-alanine linker as described previously (Jin et al., 2007). To make 

the VC-Tsg101 construct, VC was fused to the N-terminus of human Tsg101 (template 

generously provided by Dr. Walther Mothes, Yale University, CT) via a 6-alanine linker. To 

make hemagglutinin (HA) epitope-tagged Gag polyproteins, the YPYDVPDYA epitope from 

influenza virus HA protein was inserted into the C-terminus of p9 or p6 protein, respectively. All 

plasmids were isolated using the Qiagen Midiprep Kit (Qiagen, Valencia, CA), and the specific 

mutations were confirmed by DNA sequencing.   

5.4.2 Cell culture and transfection 

HeLa SS6 and 293T cells were cultured in Dulbecco’s Modified Essential Medium (DMEM) 

supplemented with 10% fetal bovine serum. Cells were transfected using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) following the procedures outlined by the manufacturer.  
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5.4.3 Gag budding assays 

At 24 h post transfection, cells were harvested and lysed in lysis buffer (25 mM Tris-HCl, pH 

8.0, 150 mM NaCl, 1% deoxycholic acid, 1% Triton X-100, 1x protease inhibitor cocktail) and 

centrifuged at 20,800xg for 5 min to remove cell nuclei. Virus-like particles (VLPs) released into 

the culture medium were pelleted by centrifugation (20,800xg for 3 h at 4°C) and resuspended in 

PBS. HA-Gag contained in cell lysates and VLPs was analyzed by Western Blotting using rat 

anti-HA antibody (Roche Applied Science, Indianapolis, IN) and HRP conjugated goat anti-rat 

IgG (Invitrogen, Carlsbad, CA), as described previously(Jin et al., 2007). 

5.4.4 Confocal microscopy 

Transfected cells grown on coverslips were fixed and permeabilized with 2% paraformaldehyde 

and 0.1% Triton X-100 in PBS. Images were captured using a Leica TCS-SL microscope and 

processed with Metamorph software. 

5.4.5 Flow cytometry analysis 

HeLa SS6 cells grown on 6-well plates were transfected with selected BiFC construct pairs. 

Cells were detached with PBS containing 2.5 mM EDTA and resuspended in PBS at 16 h post-

transfection. For HA staining (Figs. 5-3 and 5-4), cells were washed three times with PBS 

containing 5% FBS (wash buffer) and fixed in 1% paraformaldehyde for 1 h, followed by 

permeabilization with PBS containing 5% fetal calf serum and 0.5% saponin. Cells were 

incubated with mouse anti-HA epitope antibody (Santa Cruz Biotechnology, Santa Cruz, CA), 
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washed, and then incubated with Cy5-conjugated goat anti-mouse IgG (Jackson 

ImmunoResearch Laboratory, West Grove, PA). A minimum of 30,000 gated live events were 

acquired on a FACSCalibur (Becton Dickinson, San Jose, CA) flow cytometer and analyzed with 

FlowJo batch analysis software (Treestar, San Carlos, CA) for both yellow fluorescence and HA 

staining.  

5.4.6 Membrane flotation analysis 

Membrane flotation procedures were performed as described (Chatel-Chaix et al., 2007;Ono and 

Freed, 1999). At 24 h post-transfection, 293T cells were washed twice with phosphate-buffered 

saline, collected, and homogenized in 300 µl of TE buffer (10mM Tris [pH 7.4], 1mM EDTA 

[pH 8]) containing 10% sucrose and protease inhibitor cocktail by passaging 24 times through a 

23G11/4 needle. Nuclei were removed by centrifugation at 1,000xg. A 250 µl sample of post 

nuclear supernatants (PNSs) were mixed with 1.25 ml of TE 85.5% sucrose (adjusting the 

concentration of sucrose to 73%) and deposited at the bottom of a 5-ml centrifugation tube. TE 

65% sucrose (2.5ml) and then 1ml of TE 10% sucrose were layered above the lysate. The 

samples were subjected to ultracentrifugation at 100,000xg for at least 14 h at 4oC in a SW55Ti 

rotor (Beckman Coulter). For lipid raft association, PNSs were treated with Trion X-100 (final 

concentration 0.5%) for 30 min on ice prior to flotation centrifugation. Nine fractions of 550 µl 

were collected from the top and analyzed by Western Blotting using the rat monoclonal anti-HA 

antibody (Roche Applied Science, Indianapolis, IN), mouse monoclonal anti-human transferrin 

receptor antibody (Invitrogen, Carlsbad, CA) and mouse monoclonal anti-β actin antibody 

(Sigma-Aldrich, Saint Louis, MO).      
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5.4.7 Immunoprecipitation 

At 24 h post-transfection, 293T cells were washed twice with phosphate-buffered saline, 

collected, and lysed in RIPA buffer. Clarified cell lysates were immunoprecipitated with 

monoclonal anti-HA agarose conjugate (Sigma-Aldrich, Saint Louis, MO) overnight at 4℃ prior 

to SDS-PAGE and Western Blot analysis with mouse anti-GFP (Roche Applied Science, 

Indianapolis, IN) and rat anti-HA antibody (Roche Applied Science, Indianapolis, IN).   
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5.5 RESULTS 

5.5.1 Distinct Intracellular Distribution of Rev-dependent and Rev-independent HIV-1 

Gag  

We recently demonstrated different assembly efficiencies and assembly sites between Rev-

dependent and Rev-independent HIV-1 Gag in both human and mouse cell lines (Jin et al., 

2007). We proposed that distinct intracellular traffic of Gag after synthesis from mRNA exported 

from the nucleus via different pathways accounted for this distinct Gag assembly pattern. Since 

the BiFC assays used in our previous study only revealed assembled Gag multimers inside cells, 

in the current study we first compared the steady-state distribution of the total population of Rev-

dependent or Rev-independent HIV-1 Gag-GFP in HeLa cells. The results of these studies 

revealed that Rev-dependent HIV-1 Gag-GFP was primarily localized to cell surface puncta in 

most cells (Fig. 5-1, panel A-a). In contrast, Rev-independent HIV-1 Gag-GFP was present 

largely in intracellular puncta (Fig. 5-1, panel A-c). These observations are consistent with the 

different Gag trafficking patterns between Rev-dependent and Rev-independent HIV-1 Gag that 

we demonstrated previously using the BiFC assay (Jin et al., 2007). We also observed a diffuse 

distribution pattern in some cells expressing either Rev-dependent or Rev-independent HIV-1 

Gag (Fig. 5-1, panels A-b and -d), consistent with the reported distribution of Rev-independent 

HIV-1 Gag distribution at early times after expression (Gomez and Hope, 2006;Jouvenet et al., 

2006;Perez-Caballero et al., 2004;Perlman and Resh, 2006). The distribution patterns of Rev-

dependent and Rev-independent HIV-1 Gag-GFP were quantified at 8 h and 16 h post-
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transfection (Fig. 5-1, panel A-e). At least 100 GFP positive cells were randomly chosen for 

each condition, and their distribution patterns scored as punctate or diffuse. The distribution of 

Rev-dependent HIV-1 Gag-GFP was punctate in a majority (>80%) of cells at both time points. 

In contrast, the distribution of Rev-independent HIV-1 Gag-GFP changed with expression time. 

Gag distribution was diffuse in >90% of cells at 8 h post transfection, and the diffuse population 

decreased to 40% by 16 h post transfection. This trend is reminiscent of the time-dependent 

distribution pattern of codon-optimized HIV-1 Gag (another Rev-independent HIV-1 Gag) in 

293T cells (Jouvenet et al., 2006). If the punctate Gag-GFP signal represents assembled Gag 

multimers as previously suggested (Gomez and Hope, 2006), our results indicate faster assembly 

kinetics of Rev-dependent HIV-1 Gag compared with Rev-independent HIV-1 Gag, consistent 

with our recent report that Rev-dependent HIV-1 Gag assembles more efficiently in human cells 

compared with Rev-independent HIV-1 Gag.  

We next took advantage of the BiFC assay that enables us to selectively observe 

interacting protein complexes (as opposed to the total pool of expressed proteins) to compare the 

interactions of Rev-dependent or Rev-independent HIV-1 Gag with Tsg101, the budding partner 

for HIV-1 late domain PTAP. The amino (VN) terminal fragment of Venus fluorescence protein 

was appended to the C-terminus of HIV-1 Gag to make Rev-dependent and Rev-independent 

HIV-1 Gag-VN constructs (Jin et al., 2007), and the carboxy (VC) terminal fragment was added 

to the N-terminus of human Tsg101 to make VC-Tsg101. HeLa cells were transfected with VC-

Tsg101 paired with either Rev-dependent or Rev-independent HIV-1 Gag-VN. The results 

showed that at 8 h post-transfection, both Rev-dependent and Rev-independent HIV-1 Gag 

interacted with Tsg101, resulting in bright BiFC signals in Gag-VN and VC-Tsg101 co-

transfected HeLa cells (Fig. 5-1, panel B). However Rev-dependent HIV-1 Gag and Rev-
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independent HIV-1 Gag appeared to recruit Tsg101 to different sites. The Rev-dependent HIV-1 

Gag-Tsg101 BiFC signal was located at the cell surface and at intracellular sites that colocalized 

with late endosome/MVB marker CD63 (Fig. 5-1, panels B-a to -d). In contrast, Rev-

independent HIV-1 Gag interacted with Tsg101 exclusively at intracellular sites that did not 

colocalize with CD63 (Fig. 5-1, panels B-e to -h). These results further confirm the distinct 

trafficking of Rev-dependent and Rev-independent HIV-1 Gag in human cells.  

5.5.2 Co-assembly of Rev-dependent and Rev-independent HIV-1 Gag Rescues Budding 

of Rev-independent HIV-1 Gag 

We next sought to test whether Rev-dependent and Rev-independent HIV-1 Gag can interact 

with each other even though they take different trafficking pathways. Co-expression of Rev-

dependent Gag-VC with Rev-independent Gag-VN (Fig. 5-2, panel A-c) or of Rev-dependent 

Gag-VN with Rev-independent Gag-VC (Fig. 5-2, panel A-d) both resulted in bright punctate 

BiFC signals on the plasma membrane. This pattern was similar to the BiFC pattern obtained 

upon coexpression of  Rev-dependent HIV-1 Gag VN and VC pairs (Fig. 5-2, panel A-a) In 

marked contrast, expression of Rev-independent HIV-1 Gag VN and VC pairs resulted in a 

weaker intracellular punctate signal above a diffuse background (Fig. 5-2, panel A-b) as we 

reported previously (Jin et al., 2007).  

Recently, several groups reported that the plasma membrane is the productive assembly 

and budding sites for HIV-1 (Deneka et al., 2007;Finzi et al., 2007;Jouvenet et al., 2006;Welsch 

et al., 2007), even in primary macrophages (Nguyen et al., 2003;Nydegger et al., 2003;Pelchen-

Matthews et al., 2003;Raposo et al., 2002). Our previous observation that Rev-dependent HIV-1 

Gag assembled at plasma membrane budded far more efficiently than Rev-independent HIV-1 
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Gag, which failed to assemble at the plasma membrane also supports this model (Jin et al., 

2007). Since Rev-dependent HIV-1 Gag could co-assemble with Rev-independent Gag at the 

plasma membrane, we next tested whether this co-assembly at productive sites can rescue Rev-

independent HIV-1 Gag budding in human cells. Rev-independent HIV-1 Gag-GFP was co-

transfected with HA-tagged Rev-independent or Rev-dependent HIV-1 Gag in 293T cells. At 24 

h post transfection, cell lysates and supernatant pellets (VLPs) were subjected to SDS-PAGE and 

Western Blotting to determine budding efficiencies. Co-expression with Rev-dependent HIV-1 

Gag-HA enhanced Rev-independent HIV-1 Gag-GFP budding by about 10 fold (Fig. 5-2, panel 

D, compare lanes 1 and 3). In contrast, co-expression of Rev-independent HIV-1 Gag-HA only 

enhanced budding of Rev-independent HIV-1 Gag-GFP by less than 2 fold (Fig. 5-2, panel D, 

compare lanes 1 and 2). This modest enhancement is likely due to the increase in intracellular 

Gag concentration when the two Rev-independent constructs are co-expressed.  

To gain further insight into the key determinants in Rev-dependent Gag required to 

restore budding of co-expressed Rev-independent Gag, we generated a panel of Rev-dependent 

HIV-1 Gag mutants (Fig. 5-2, panel B) and tested their ability to rescue Rev-independent HIV-1 

Gag-GFP budding (Fig. 5-2, panel D). All of these constructs expressed well in 293T cells, and 

as expected, the deletion of CA (∆CA) or mutation of two critical amino acids at the Gag 

dimerization interface W184M185 (WM184,185AA) abrogated Gag budding, presumably due to their 

deficiency in Gag multimerization (Fig. 5-2, panel C, lanes 6 and 7). The myristoylation 

deficient G2A mutant, which cannot insert into membranes, was also deficient in VLP release 

(Fig. 5-2, panel C, lane 3). In addition, budding of PTAP L domain deletion mutant (∆PTAP) 

was lower than wild type Gag (Fig. 5-2, panel C, lane 2), as expected due to the lack of 

interaction with endocytic co-factors. Replacing MA with the myristoylation signal of v-Src 

 104 



(Src∆MA) or deletion of the MA globular head (residues 8-126; ∆8-126) to produce Gag 

polyproteins with constitutively exposed myristoyl residues (Reil H et al., 1998;Saad et al., 

2006;Spearman et al., 1997;Tang et al., 2004) yielded Gag constructs that both were budding 

competent (Fig. 5-2, panel C, lanes 4 and 5). This panel of mutants was then co-expressed with 

Rev-independent HIV-1 Gag-GFP, and budding of the latter was monitored (Fig. 5-2, panel D). 

The L-domain mutant (Fig. 5-2, panel D, lane 4) and two MA mutants with constitutively 

exposed myristoyl residues (Fig. 5-2, panel D, lanes 5 and 6) could rescue budding of co-

expressed Rev-independent HIV-1 Gag-GFP as efficiently as wild type Rev-dependent HIV-1 

Gag. However, the G2A mutant (Fig. 5-2, panel D, lane 7) and the two dimerization mutants 

(Fig. 5-2, panel D, lanes 8 and 9) were unable to enhance budding of co-expressed Rev-

independent HIV-1 Gag-GFP compared to co-expression of Rev-independent wild type HIV-1 

Gag (Fig. 5-2, panel D, lane 2).  

To test if the inability to rescue Rev-independent HIV-1 Gag assembly and budding by 

G2A mutant was due to its inability to bind membrane and to interact with Rev-independent 

HIV-1 Gag, we next performed a co-immunoprecipitation assay to assess the ability of these 

Rev-dependent HIV-1 Gag constructs to interact with co-expressed Rev-independent Gag in 

293T cells (Fig. 5-2, panel E). Rev-independent HIV-1 Gag-GFP was co-expressed with wild 

type or mutant Rev-dependent HIV-1 Gag-HA or with Rev-independent HIV-1 Gag-HA, as 

described above. HA-tagged Gag and associated proteins were then immunoprecipitated by 

adding agarose-bound anti-HA antibodies to the cell lysates, and the immunoprecipitated 

proteins were examined by immunoblotting using HA- and GFP-specific antibodies. The results 

of these assays revealed that Rev-independent HIV-1 Gag-GFP co-precipitated with wild type 

and with ∆PTAP Rev-dependent HIV-1 Gag(Fig. 5-2, panel E, lanes 3 and 4), but not with 
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Rev-independent HIV-1 Gag(Fig. 5-2, panel E, lane 2), indicating higher Gag assembly 

efficiency in a system containing Rev-dependent Gag relative to one containing only Rev-

independent Gag. The co-precipitation specificity was confirmed by the lack of detectable Gag-

GFP precipitated by anti-HA antibody (Fig. 5-2, panel E, lane 1). As expected, Rev-independent 

HIV-1 Gag-GFP could not be precipitated with ∆CA and WM184,185AA mutants that lost Gag-

Gag interaction ability (Fig. 5-2, panel E, lanes 6 and 7).  In contrast, the G2A mutant was able 

to bind with Rev-independent HIV-1 Gag-GFP (Fig. 5-2, panel E, lane 5). Together, these data 

demonstrate that proper membrane association of Rev-dependent HIV-1 Gag construct and co-

assembly of Rev-dependent Gag with Rev-independent Gag are required to rescue the budding 

of Rev-independent HIV-1 Gag in human cells. 

5.5.3 Substitution of the Membrane Binding Domain Rescues Rev-independent HIV-1 

Gag Assembly and Budding 

Because our results suggested that membrane targeting of Rev-dependent HIV-1 Gag is required 

to rescue budding of co-expressed Rev-independent HIV-1 Gag, we next asked whether Rev-

independent HIV-1 Gag assembly and budding in human cells can be rescued by substitution of 

the HIV-1 membrane binding motif with other membrane targeting motifs. As we previously 

reported that unlike HIV-1 Gag, both Rev-dependent and Rev-independent EIAV Gag could 

efficiently assemble and bud from human cells (Jin et al., 2007), we also tested whether 

switching MA domains of EIAV and HIV-1 Gag altered their assembly and budding phenotypes.  

We first constructed a panel of Rev-independent HIV-1 Gag and EIAV Gag MA mutants 

(Fig. 5-3, panel A). For each, we made three constructs: a C-terminally HA-tagged construct for 

the budding assay (Fig. 5-3, panel B), and C-terminal HA-VN and HA-VC tagged pairs for the 
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BiFC-based assembly assays (Fig. 5-3, panel C).  293T cells were transfected with this panel of 

HA tagged Rev-independent HIV-1 Gag and EIAV Gag constructs, followed by Western 

Blotting of cell lysates and pelleted VLPs at 24 h post transfection. The results of these assays 

revealed that the budding efficiency of Rev-independent HIV-1 Gag in human cells was as low 

as that of the myristoylation-deficient G2A mutant (Fig. 5-3, panel B, compare lanes 1 and 5). 

Replacing the HIV MA with the v-Src myristoylation signal or adding the v-Src myristoylation 

signal directly to the N-terminus of HIV-1 Gag both rescued Rev-independent HIV-1 Gag 

budding (Fig. 5-3, panel B, lane 2 and lane 3). Consistent with what we reported previously (Jin 

et al., 2007), and in contrast to Rev-independent HIV-1 Gag, Rev-independent EIAV Gag could 

bud efficiently from human cells (Fig. 5-3, panel B, compare lane 1 and lane 6). Interestingly, 

MA swapping reversed this phenotype. Rev-independent chimeric HIV-1 Gag containing EIAV 

MA budded efficiently (Fig. 5-3, panel B, lane 4), whereas Rev-independent chimeric EIAV 

Gag containing HIV MA did not (Fig. 5-3, panel B, lane 8). This Rev-independent EIAV Gag 

budding deficiency seemed to be specific for the HIV MA, because replacing EIAV MA with the 

v-Src myristoylation signal did not interfere with chimeric EIAV Gag budding (Fig. 5-3, panel 

B, lane 7).    

We next used the BiFC assay to characterize and compare Rev-independent HIV-1 Gag 

and EIAV Gag assembly in HeLa cells (Fig. 5-3, panel C). Cells were transfected with Gag-

BiFC pairs, and then analyzed by confocal microscopy at 8 h post transfection to reveal the 

intracellular Gag assembly pattern. At 16 h post transfection, cells were analyzed by flow 

cytometry to quantify Gag assembly efficiency, as described previously (Jin et al., 2007). 

Briefly, cells were fixed and permeabilized, stained with mouse HA antibody followed by Cy5 

conjugated secondary antibody, and then both BiFC and Cy5 signals were analyzed by flow 
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cytometry. To normalize differences in transfection efficiency and Gag expression levels, the 

ratio of the HA and BiFC double-positive population to the total HA-positive population was 

used to calculate assembly efficiency. Cells transfected with an HA-tagged VN-actin/VC-actin 

pair were used as a positive control (Chen et al., 2007;Jin et al., 2007). In VN-actin/VC-actin co-

transfected HeLa cells, 92% of HA-positive cells exhibited positive BiFC signal (Fig. 5-3, panel 

C-i), while none of the HA-positive cells displayed yellow fluorescence in a mock-transfected 

control (Fig. 5-3, panel C-j). As we reported previously, Rev-independent HIV-1 Gag 

assembled inefficiently in HeLa cells with an efficiency (13%) as low as the myristoylation 

deficient Gag mutant (Fig. 5-3, panel C, compare panels C-a and C-e). Replacing HIV matrix 

with the v-Src myristoylation signal (Fig. 5-3, panel C-b) or adding it directly to the N-terminus 

of HIV-1 Gag (Fig. 5-3, panel C-c) rescued Rev-independent HIV-1 Gag assembly, resulting in 

bright intracellular and cell surface BiFC signals with assembly efficiencies of 40% and 37%, 

respectively. Interestingly, replacing HIV MA with EIAV MA also increased Rev-independent 

HIV-1 Gag assembly from 13% to 39% (Fig. 5-3, panel C, compare panel C-a and C-d). 

However, substitution of EIAV MA with HIV MA reduced Rev-independent EIAV Gag 

assembly efficiency from 41% to 24% (Fig. 5-3, panel C, compare panel C-f and C-h). 

Moreover, the block of chimeric EIAV Gag assembly seemed to be specific for HIV-1 MA, 

because the chimeric EIAV Gag with EIAV MA substituted by the v-Src myristoylation signal 

still yielded bright BiFC signals with high efficiency (53%) (Fig. 5-3, panel C-g). Thus, the 

efficiency of Gag assembly as determined using BiFC assays (Fig. 5-3, panel C) correlated well 

with VLP release as demonstrated by immunoblotting analysis (Fig. 5-3, panel B). 
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5.5.4 mRNA Nuclear Export Pathway Regulates HIV-1 Gag Targeting to Lipid Raft  

Our results showed that budding of Rev-independent HIV-1 Gag in human cells could be rescued 

by providing correct membrane targeting signals either in trans [by co-expressing dimerization 

and membrane targeting competent Rev-dependent HIV-1 Gag (Fig. 5-2)] or in cis [by replacing 

HIV-1 matrix with other functional membrane binding motifs (Fig. 5-3)]. This observation 

suggests that membrane targeting of Rev-independent HIV-1 Gag is deficient in human cells. 

Therefore, we tested whether membrane association of HIV-1 is regulated by mRNA nuclear 

export pathways (Fig. 5-4, panel A). Postnuclear supernatants derived from 293T cells 

expressing either Rev-dependent HIV-1 Gag or Rev-independent HIV-1 Gag were analyzed 

using membrane flotation to segregate membrane-associated and soluble Gag (Chatel-Chaix et 

al., 2007;Ono and Freed, 1999). After centrifugation, gradient fractions were collected and 

analyzed for Gag content by Western blotting. Transferrin receptor and actin were used as 

markers for membrane (fraction 1 to 3) and soluble (fraction 7 to 9) fractions, respectively. 

Roughly equal amounts of Rev-dependent and Rev-independent HIV-1 Gag were found in 

membrane fractions, and these populations represented a significant proportion of the total Gag 

expressed in each case. Under the same condition, myristoylation deficient G2A mutants were 

not present in membrane fractions regardless of whether they were expressed in a Rev-dependent 

or Rev-independent context, consistent with previous reports (Ding et al., 2003;Jager et al., 

2007;Ono and Freed, 1999). These data indicate that Rev-independent HIV-1 Gag can target cell 

membranes  and is unlikely to be myristoylation deficient in human cells, consistent with other 

studies showing efficient membrane association of Rev-independent HIV-1 Gag in human cells 

(Hatziioannou et al., 2005;Jager et al., 2007;Spearman et al., 1997).  
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It has been reported that plasma membrane lipid rafts play a critical role in HIV-1 Gag 

assembly and budding (Brugger et al., 2006;Ono et al., 2007;Ono and Freed, 2001), so we next 

tested whether Rev-dependent and Rev-independent HIV-1 Gag were differentially targeted to 

lipid rafts (Fig. 5-4, panel B). Postnuclear supernatants derived from 293T cells expressing 

either Rev-dependent HIV-1 Gag or Rev-independent HIV-1 Gag were analyzed as described 

above except that they were treated with 0.5% Triton X-100 on ice for 30 min before being 

subjected to membrane flotation. Under these conditions, transferrin receptor, a membrane 

protein known to not partition into detergent-insoluble microdomains, was not detected in 

membrane fractions. As reported previously, Rev-dependent HIV-1 Gag could still be detected in 

membrane fractions after cold Triton X-100 treatment, demonstrating its association with lipid 

rafts or detergent-resistant membranes. In contrast, Rev-independent HIV-1 Gag was present 

exclusively in non-membrane fractions after detergent extraction, suggesting it is localized to 

non-raft membrane fractions in human cells.  

Since our previous results showed that substitution of HIV MA with either v-Src 

membrane targeting signal or EIAV MA rescued Rev-independent HIV-1 Gag assembly and 

budding in human cells (Fig. 5-3), we next tested if these mutants associate with lipid rafts (Fig. 

5-4, panel C). Postnuclear supernatants derived from 293T cells expressing wild type and 

mutant Rev-independent HIV-1 Gag were subjected to membrane flotation assay with or without 

prior treatment with 0.5% Triton X-100 on ice for 30 min. Membrane fractions (fraction 1 to 3) 

and soluble fractions (fraction 7 to 9) were pooled together before Western blotting analysis for 

Gag content. As shown in Fig. 4B, most of the membrane-bound Rev-independent HIV-1 Gag 

shifted to the soluble fractions upon cold Triton X-100 treatment. In contrast, Src∆MA, Src+ and 

eMA∆MA mutants, all of which are assembly and budding competent (Fig. 5-3), were still 
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present in membrane fractions after Triton X-100 extraction, demonstrating their association 

with lipid rafts. Taken together, these results demonstrate a positive correlation between lipid raft 

association of HIV-1 Gag and Gag assembly and budding. 
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Figure 5-1. Distinct intracellular distribution of Rev-dependent and Rev-independent HIV-1 Gag.  

(A) Distribution of Rev-dependent and Rev-independent HIV-1 Gag-GFP in HeLa cells. HeLa 

cells grown on glass coverslips were transfected with Rev-dependent HIV-1 Gag-GFP (panels a 

and b) or Rev-independent HIV-1 Gag-GFP (panels c and d) expression vectors. At 8 h and 16 h 

post transfection, cells were fixed and imaged. Bar: 10 µm. The number of cells in which Gag-
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GFP accumulation was observed as punctate or as diffuse signals was counted (panel e). At least 

100 randomly picked GFP positive cells were evaluated at each time point. (B) BiFC analysis of 

Rev-dependent and Rev-independent HIV-1 Gag interaction with Tsg101. HeLa cells grown on 

glass coverslips were transfected with plasmid pairs expressing Rev-dependent HIV-1 Gag-VN 

and VC-Tsg101 (panels a to d) or Rev-independent HIV-1 Gag-VN and VC-Tsg101 (panels e to 

h). At 8 h post transfection, cells were fixed, permeabilized, and stained with mouse anti-CD63 

and Alexa 647 conjugated secondary antibody. Cells were imaged by confocal microscopy. 

Enlarged images of boxed areas in panels c and g are presented in panels d and h. Bar: 10 µm.   
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Figure 5-2. Co-assembly with Rev-dependent HIV-1 Gag rescued Rev-independent HIV-1 Gag 

budding. 

 114 



Figure 5-2. continue 

 (A) Demonstration of co-assembly of Rev-dependent and Rev-independent HIV-1 Gag by 

BiFC. HeLa cells grown on glass coverslips were transfected with plasmids expressing the 

indicated HIV-1 Gag-BiFC pair. At 8 h post transfection, cells were fixed and imaged. Bar: 10 

µm. (B) Schematic diagram of plasmids expressing HA tagged Rev-dependent HIV-1 Gag 

mutants. (C) Expression and budding of the constructs depicted in (A) in transfected 293T cells. 

At 24 h post transfection, VLPs (upper panel) and cell lysates (lower panel) were analyzed by 

immunoblotting using anti-HA antibody. (D) Budding of Rev-independent HIV-1 Gag-GFP 

upon co-expression with Rev-independent or Rev-dependent HIV-1 Gag-HA. Rev-independent 

HIV-1 Gag-GFP was co-transfected at an equal molar ratio into 293T cells with empty vector, 

Rev-independent HIV-1 Gag-HA, or the indicated Rev-dependent HIV-1 Gag-HA constructs 

described in A and B. At 24 h post transfection, VLPs (upper panel) and cell lysates (lower 

panel) were analyzed by immunoblotting using GFP and HA antibody. (E) Interaction of Rev-

independent HIV-1 Gag-GFP with co-expressed Gag-HA. Rev-independent HIV-1 Gag-GFP 

was transfected into 293T cells with empty vector, Rev-independent HIV-1 Gag-HA, or 

indicated Rev-dependent HIV-1 Gag-HA at an equal molar ratio. At 24 h post transfection, cell 

lysates were subjected to immuno-precipitation with HA antibody followed by immunoblotting 

analysis of precipitated proteins using GFP and HA antibody. 
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Figure 5-3. Substitution of HIV-1 matrix with other membrane targeting domains rescued Rev-

independent HIV-1 Gag assembly and budding in human cells. 
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Figure 5-3. continue 

(A) Schematic diagram of plasmids expressing HA tagged Rev-independent HIV-1 Gag mutants 

(upper panel) and EIAV Gag mutants (lower panel). (B) Budding of Rev-independent HIV-1 and 

EIAV Gag mutants. 293T cells were transfected with the indicated Rev-independent HIV-1 and 

EIAV Gag mutants described in (A). At 24 h post transfection, VLPs (upper panel) and cell 

lysates (lower panel) were analyzed by immunoblotting using HA antibody. (C) Demonstration 

of Rev-independent HIV-1 (panels a to e) and EIAV Gag mutant (panels f to h) association by 

BiFC assays. HeLa cells were transfected with the indicated BiFC pairs and imaged at 8 h post 

transfection. At 16 h post transfection cells were fixed and analyzed using flow cytometry to 

quantifiy BiFC signals as described in Materials and Methods. The percentage of HA and BiFC 

double-positive cells relative to total HA positive cells was calculated and labeled in each 

quadrant plot. Bar: 10 µm. 
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Figure 5-4. Rev-independent HIV-1 Gag failed to associate with lipid raft in human cells.  
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Figure 5-5. continue 

(A) Both Rev-dependent and Rev-independent HIV-1 Gag are membrane-associated in human 

cells. Postnuclear supernatants derived from 293T cells expressing Rev-dependent or Rev-

independent HIV-1 Gag, Rev-dependent or Rev-independent G2A mutant were subjected to 

equilibrium flotation centrifugation. Pr55Gag, TfR and actin were detected by Western Blotting. 

Membrane- and non-membrane-associated fractions were shown. (B) Rev-dependent HIV-1 Gag 

but not Rev-independent HIV-1 Gag is associated with Triton X-100 insoluble lipid rafts in 

human cells. Postnuclear supernatants derived from 293T cells expressing Rev-dependent or 

Rev-independent HIV-1 Gag were treated with 0.5% Triton X-100 on ice for 30 min prior to 

membrane flotation analysis. Pr55Gag, TfR and actin were detected by Western Blotting. Raft and 

non-raft fractions are indicated. (C) Assembly and budding competent Rev-independent HIV-1 

Gag mutants are associated with Triton X-100 insoluble lipid rafts in human cells. Postnuclear 

supernatants derived from 293T cells expressing wild type or mutant Rev-independent HIV-1 

Gag were treated with or without 0.5% Triton X-100 on ice for 30 min prior to membrane 

flotation analysis. Pooled membrane fractions (fraction 1-3) and soluble fractions (fraction 7-9) 

were analyzed for Gag content by Western Blotting. 

 119 



5.6 DISCUSSION 

Recently, we reported that HIV-1 Gag assembly and budding are regulated by the nuclear export 

pathway of Gag-encoding mRNA and proposed that altered Gag trafficking is responsible for 

these differences in Gag assembly and budding. In the current study, we have confirmed 

differential trafficking of Rev-dependent and Rev-independent HIV-1 Gag in human cells and 

performed a mechanistic analysis of the regulation of HIV-1 Gag traffic by mRNA nuclear 

export pathways. The current studies for the fist time clearly demonstrate that HIV-1 Gag 

targeting to lipid rafts is regulated as early as nuclear export of the Gag encoding mRNA.    

HIV-1 assembly and budding have been proposed to occur at plasma membrane 

microdomains that are highly enriched in sphingolipids and cholesterol, termed lipid rafts (Ono 

and Freed, 2001;Simons and Toomre, 2000;Simons and Vaz, 2004). Clustering of separate rafts 

exposes raft associated proteins to a new membrane environment and facilitates raft protein 

interactions. This dynamic feature enables rafts to serve as concentrating platforms for signal 

transduction and protein trafficking (Kusumi et al., 2004;Simons and Toomre, 2000). Lipid rafts 

have been implicated in the assembly and release of several families of enveloped viruses 

including orthomyxoviruses, paramyxoviruses, filoviruses, and retroviruses (Briggs et al., 

2003a;Ono and Freed, 2005;Schmitt and Lamb, 2005;Suomalainen, 2002). Multiple lines of 

evidence suggest that lipid rafts play a critical role in HIV-1 assembly and budding: (1) The 

HIV-1 lipid bilayer has long been known to be enriched (relative to the host cell plasma 

membrane) in sphingolipids and cholesterol (Aloia et al., 1993;Brugger et al., 2006); (2) HIV-1 

Gag was found to associate with rafts in detergent-resistant membrane (DRM) binding assays 
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that isolate lipid rafts biochemically based on their insolubility in a number of nonionic 

detergents (e.g., Triton X-100) at low temperature(Ding et al., 2003;Lindwasser and Resh, 

2001;Nguyen and Hildreth, 2000;Ono and Freed, 2001); (3) Gag proteins colocalize or “co-

patch” with raft markers (Nguyen and Hildreth, 2000;Ono and Freed, 2001); and (4) Higher-

order Gag assembly and particle production of HIV-1 is inhibited by cholesterol depletion 

(Brugger et al., 2006;Ono et al., 2007;Ono and Freed, 2001). Together, these studies suggest that 

HIV-1 Gag assembly and budding depend on Gag targeting to lipid rafts, however the 

mechanism of targeting is unknown. In the current study we demonstrated that HIV-1 Gag 

targeting to lipid rafts in human cells is regulated as early as Gag mRNA nuclear export. 

Although both Rev-dependent and Rev-independent HIV-1 Gag could associate with membrane, 

only Rev-dependent HIV-1 Gag associated with lipid rafts (Fig. 5-4). In human cells, the non-

raft associated, Rev-independent HIV-1 Gag showed slower assembly kinetics (Fig. 5-1, panel 

A) and lower assembly and budding efficiency (Jin et al., 2007) relative to raft-associated Rev-

dependent HIV-1 Gag. Replacing HIV-1 Gag membrane targeting signal with v-Src or EIAV 

Gag membrane targeting signals restored lipid raft association of Rev-independent HIV-1 Gag 

(Fig. 5-4, panel C) as well as Gag assembly and budding (Fig. 5-3). Association with lipid rafts 

may enhance Gag multimerization and virion assembly and budding, possibly via the 

coalescence of lipid raft microdomains to form an assembly and budding platform. Lipid rafts 

are most abundant at the plasma membrane, but they can also be found in the biosynthetic and 

endocytic pathways. Our results clearly demonstrate that Rev-independent HIV-1 Gag associates 

with membranes, however, the specificity of these membrane fractions remains to be defined, 

because the membrane flotation assays used in this study could not distinguish plasma membrane 

and other cellular membrane fractions. Based on our BiFC studies, it likely that Rev-independent 
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HIV-1 Gag fails to target plasma membrane. A membrane fractionation assay that is able to 

separate plasma membrane from other cellular membrane will be needed to define the membrane 

fractions where Rev-independent HIV-1 Gag is preferentially targeted. 

HIV-1 encodes the accessory protein Vpu that regulates virus assembly and budding 

efficiency (Harila et al., 2006;Neil et al., 2006;Varthakavi et al., 2003).  The Rev-independent 

HIV-1 Gag expression vectors used in this study do not encode Vpu, in contrast to the Rev-

dependent Gag expression vectors that also encode Vpu. Thus, the difference in Vpu expression 

might explain the differences we reported in this and a previous study between Rev-dependent 

and Rev-independent HIV-1 Gag assembly and budding (Jin et al., 2007). However we think that 

Vpu expression is unlikely to explain the different Gag trafficking patterns, because not all co-

expressed Rev-dependent HIV-1 Gag constructs could rescue Rev-independent HIV-1 Gag 

assembly and budding (Fig. 5-2). It is known that retroviral  genomic RNA (gRNA) is associated 

with proteins to form ribonucleoprotein particles (RNP), and RNP components might regulate 

gRNA trafficking and subsequent Gag assembly (Cochrane et al., 2006). For example, RNP 

component hnRNP A2 and Staufen1 have been reported to regulate HIV-1 virus production 

(Chatel-Chaix et al., 2007;Levesque et al., 2006). Because the panel of Rev-dependent HIV-1 

Gag constructs showed differences in their ability to rescue assembly and budding of co-

expressed Rev-independent HIV-1 Gag, it is unlikely that the missing gRNA region in Rev-

independent HIV-1 Gag expression vectors can cause deficient assembly and budding of Rev-

independent HIV-1 Gag.  

Our results suggest that HIV MA is the determinant for Rev-independent HIV-1 Gag 

assembly/budding deficiency in human cells, because replacing HIV MA with EIAV MA 

rescued Rev-independent HIV-1 Gag assembly and budding; however substitution of EIAV MA 
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with HIV MA blocked Rev-independent EIAV assembly and budding (Fig. 5-3). The primary 

function of the MA domain in retrovirus assembly is thought to be membrane association. The 

three-dimensional structure of HIV-1 MA reveals a globular head formed by four α-helices and a 

C-terminal α-helix that projects away from the core domain (Hill et al., 1996;Massiah et al., 

1994). The myristic acid that is covalently attached to the N-terminal glycine residue and the 

highly basic patch formed by conserved positive charged residues clustered on the surface of the 

MA globular head both contribute to HIV-1 MA dependent membrane binding of Gag precursors 

(Scarlata and Carter, 2003). The membrane association of the myristoylated Gag is regulated by 

a so-called “myristoyl switch” mechanism whereby the myristate can adopt either an exposed or 

a sequestered conformation. Recent structural studies demonstrate specific interactions between 

myristoylated HIV-1 MA and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] trigger a 

change in protein conformation that flips myristate from the sequestered to the exposed 

conformation, therefore promoting the stable association of MA with the membrane (Saad et al., 

2006). Previous in vivo functional studies also demonstrate that PI(4,5)P2 plays a key role in Gag 

targeting to the plasma membrane (Ono et al., 2004). The PI(4,5)P2 induced myristoyl switch 

might regulate lateral targeting of PI(4,5)P2:Gag complexes to lipid rafts, since PI(4,5)P2 may 

preferentially associate with lipid rafts (Caroni Pico, 2001;Golub and Caroni, 2005) although this 

is controversial (McLaughlin and Murray, 2005;van Rheenee et al., 2005). Therefore, it is 

possible that Rev-independent HIV-1 Gag may lack PI(4,5)P2 binding ability, resulting in a loss 

of membrane selection and/or PI(4,5)P2-mediated myristoyl switching. It is likely that the 

myristic acid moiety of Rev-independent HIV-1 Gag is exposed rather than in the sequestered 

conformation, because of its demonstrated ability to associate with membranes, in distinct 

contrast to myristoylation deficient mutants (Fig. 5-4, panel A). However it is possible that 
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myristic acid exposure is not regulated, resulting in a relatively nonspecific association of the 

Rev-independent HIV-1 Gag with various cellular membranes. Two Rev-independent HIV-1 

Gag mutants containing constitutively exposed myristate (Src∆MA and Src+) both assembled 

and budded efficiently in human cells (Fig. 5-3).  

At this time, we can only speculate as to how RNA export pathways affect the cytosolic 

fate or function of Gag polyproteins. One possibility is that these pathways expose newly 

synthesized Gag to distinct cellular factors that mediate the differential membrane targeting 

observed in the current studies. HIV-1 MA has been shown to recruit cellular factors to regulate 

Gag trafficking. For example, clathrin adaptor complex AP-3 was found to associate with the N-

terminal helix of HIV-1 MA and to direct the intracellular trafficking of HIV-1 Gag (Dong et al., 

2005). Recently, AP-1 was reported to facilitate HIV-1 budding through direct binding to HIV-1 

MA (Camus et al., 2007). However, it is unlikely that failure to recruit AP-3 or AP-1 accounts 

for Rev-independent HIV-1 Gag trafficking deficiency, as co-expression with Rev-dependent 

HIV-1 Gag mutants with a deletion of the MA globular head or with MA replaced by the v-Src 

myristoylation signal rescued Rev-independent HIV-1 Gag assembly and budding to the same 

level as wild type Gag, although these two mutants lack the ability to recruit AP-3 and AP-1. It is 

possible that Rev-independent HIV-1 Gag fails to recruit chaperone proteins like HP68 and 

HP70 (Dooher and Lingappa, 2004;Gurer et al., 2002;Hong et al., 2001;Zimmerman et al., 2002) 

or motor proteins, such as kinesin superfamily member 4 (KIF4) (Tang et al., 1999), and 

therefore fails to target to correct membrane microdomains that support efficient Gag assembly 

and budding. Further comparative studies will be needed to define the differences in cellular 

factor recruitment between HIV-1 Gag polyproteins expressed from mRNAs that utilize distinct 

nuclear export pathways. Results from these studies will help us to better understand how HIV-1 
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Gag trafficking is regulated at early stages in viral assembly and offer the potential of suggesting 

novel antiviral therapies targeting this pathway. 
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6.0  OVERALL DISCUSSION AND FUTURE DIRECTIONS 

6.1 SUMMARY OF FINDINGS 

Retrovirus assembly and budding is the last step of the viral life cycle. Temporally and spatially 

regulated interactions between host factors and viral proteins direct this energy dependent multi-

step process. The major retroviral structural protein, Gag polyprotein, is synthesized from 

unspliced viral genomic RNA (gRNA) in the cytoplasm. Thousands copies of Gag polyproteins 

assemble at specific virus budding sites. Recent advances in retrovirus assembly and budding 

study suggest that different retroviruses usurp host Vps machinery to stimulate their final release 

from host cells (Morita and Sundquist, 2004). Studies from our lab and other groups suggest that 

the integrity and dynamics of host cytoskeleton is critical for retrovirus assembly and budding 

and that different retroviruses might take alternative trafficking pathways before they converge at 

the final step by entering the Vps network. Most recent studies also indicate that different gRNA 

nuclear export pathwasys lead to differences in Gag assembly and budding. Based on these 

studies, I hypothesized that retroviruses utilize the host cell cytoskeleton for Gag trafficking, that 

alternative Gag trafficking pathways might be adapted for assembly and budding of different 

retroviruses, and that these pathways might be regulated as early as nuclear export of the viral 

genomic RNA. 

 126 



To test this hypothesis, I developed the following specific aims: (1) To characterize the 

Gag-actin interaction sites and the determinants for this interaction; (2) To characterize and 

compare assembly sites and budding efficiencies of EIAV and HIV-1 Gag; (3) To explore the 

mechanism by which HIV-1 Gag assembly and budding is regulated by nuclear export pathway 

taken by viral genomic RNA. 

The study in Chapter I demonstrated close and specific interaction between EIAV Gag 

and cellular actin by newly developed BiFC assays. This interaction was further characterized to 

be an interaction between Gag multimers and actin filaments by biochemical and imaging 

approaches. This study for the first time provides definitive evidence that Gag multimers interact 

with filamentous actin in transfected and infected cells and that specific Gag-actin interactions 

are positively correlated with the production of progeny virions, suggesting that actin 

cytoskeleton is utilized for retrovirus assembly and budding. 

The study in Chapter I revealed an intracellular assembly pattern for EIAV that is 

different from that reported for the closely related lentivirus, HIV-1, suggesting that different 

retroviruses can utilize different assembly and budding pathways. In Chapter II, using BiFC 

assays developed for these studies, I characterized and compared assembly sites and budding 

efficiencies of EIAV and HIV-1 Gag in both human and rodent cells. The results demonstrated 

that replacing the natural RNA nuclear export element (Rev-response element (RRE)) used by 

HIV-1 and EIAV with the hepatitis B virus (HBV) posttranscriptional regulatory element (PRE) 

altered HIV-1, but not EIAV, Gag assembly sites and budding efficiency in human cells. In 

addition, different assembly sites were revealed in human cells for Rev-dependent EIAV and 

HIV-1 Gag polyproteins. In contrast to the inability of Rev-dependent HIV-1 Gag to assemble 

and bud in rodent cells, both Rev-dependent and Rev-independent EIAV Gag were able to 

 127 



assemble and bud efficiently in rodent cells. Taken together, our results suggest that alternative 

cellular pathways can in fact be adapted for lentiviral Gag assembly and budding.  

The study in Chapter II suggests that HIV-I assembly and budding are regulated by the 

RNA nuclear export pathway by an unknown mechanism. In Chapter III, mechanistic studies 

were performed to examine how mRNA export regulates HIV-1 Gag assembly. The results 

demonstrated slower assembly kinetics of Rev-independent HIV-1 Gag in human cells compared 

to Rev-dependent HIV-1 Gag and also revealed differences in the respective Gag-Tsg101 

recruitment sites. Co-assembly with membrane targeting and multimerization competent Rev-

dependent HIV-1 Gag could rescue the release of the Rev-independent Gag. In addition, Rev-

independent HIV-1 Gag assembly and budding could also be rescued by plasma membrane 

targeting signals provided in cis. Finally, using a membrane flotation assay, we demonstrated 

deficient lipid raft association of Rev-independent HIV-1 Gag in human cells and an ability of 

exogenous membrane targeting signals provided in cis to restore lipid raft association of Rev-

independent HIV-1 Gag. Taken together, these studies suggest that lipid rafts are critical for 

HIV-1 Gag assembly and budding and for the fist time clearly demonstrate that HIV-1 Gag 

targeting to lipid rafts is regulated as early as nuclear export of the Gag encoding mRNA. 
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6.2 PUBLIC HEALTH SIGNIFICANCE 

Acquired immunodeficiency syndrome (AIDS) is the name given to the end-stage disease caused 

by infection with HIV. By killing or damaging cells of the body's immune system, HIV 

progressively destroys the body's ability to fight infections and certain cancers. People diagnosed 

with AIDS may get life-threatening diseases called opportunistic infections, which are caused by 

microbes such as viruses or bacteria that usually do not make healthy people sick. 

 

Table 6-1. Global AIDS epidemic 

 

 People living 
with HIV  

New 
infections 
2006  

AIDS 
deaths 2006  

Adult 
prevalence %  

Sub-Saharan Africa  24.7 million 2.8 million 2.1 million  5.9% 

South and South East Asia  7.8 million 860,000 590,000  0.6% 

East Asia  750 000 100,000 43,000  0.1% 

Latin America  1.7 million 140,000 65,000  0.5% 

North America  1.4 million 43,000 18,000  0.8% 

Western & Central Europe  740 000 22,000 12,000  0.3% 
Eastern Europe & Central 
Asia  

1.7 million 270,000 84,000  0.9% 

Middle-East & North Africa  460,000 68,000 36,000 0.2% 

Caribbean  250,000 27,000 19,000 1.2% 

Oceania  81,000 7,100 4,000 0.4% 

Total  39.5 million 4.3 million 2.9 million  1% 
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AIDS was first reported in the United States in 1981 and has since become a major 

worldwide epidemic. HIV continues to spread faster than any known persistent infectious agent 

in the last half century. According to the latest UNAIDS/WHO AIDS Epidemic Update (Table 

6-1), an estimated 39.5 million people were living with HIV in 2006. There were 4.3 million new 

infections in 2006 (400 000 more than in 2004) with 2.8 million (65%) of these occurring in sub-

Saharan Africa and important increases in Eastern Europe and Central Asia, where there are 

some indications that infection rates have risen by more than 50% since 2004. In 2006, 2.9 

million people died of AIDS-related illnesses. In many regions of the world, new HIV infections 

are heavily concentrated among young people (15–24 years of age). Among adults 15 years and 

older, young people accounted for 40% of new HIV infections in 2006. By almost any criteria, 

HIV qualifies as one of the world’s deadlist scourges. 

The high rate of viral replication, low fidelity of reverse transcription, and the ability to 

recombine are the viral characteristics that lead to the diversity of HIV-1 species (quasi-species) 

in chronically infected individuals. Therefore drug and vaccine developers have to face an ever-

changing target. The ability of HIV to mutate and reproduce itself in the presence of 

antiretroviral drugs is called HIV drug resistance. The consequences of drug resistance include 

treatment failure, increased direct and indirect health costs associated with the need to start more 

costly second-line treatment for patients, the spread of resistant strains of HIV and the need to 

develop new anti-HIV drugs (Simon et al., 2006). 

The high genetic variability of HIV provided the rationale for highly active antiretroviral 

treatments (HAART) – a combination of three antiretroviruals (ARVs) from at least two drug 

classes. There are three classes of ARVs are currently prescribed. They are nucleoside reverse 

transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and 
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protease inhibitors (PIs). The first two classes are designed to target virus reverse transcriptase, 

and the third class targests viral protease. Since the advent in 1995 of HAART (Gulick et al., 

1997;Hammer et al., 1997;Ho, 1995), a dramatic improvement has been seen in the number of 

patients attaining undetectable viral loads, improved CD4 counts, and improved survival. 

However, viral resistance has been described to every antiretroviral drug and therefore poses a 

serious clinical as well as public-health problem (Simon et al., 2006). Other problems with these 

agents, such as persistence of viral reservoirs, poor patient compliance due to complicated 

regimens, and toxic side effects, have emphasized the need for development of new drugs with 

novel mechanisms of action. Multiple steps in HIV life cycle, including virus entry (Este and 

Telenti, 2007), integration of proviral DNA (Zeinalipour-Loizidou et al., 2007), virus assembly 

and budding (Li and Wild, 2005), and the final maturation step (Li et al., 2003) provide novel 

targets for new ARVs development.  

Retrovirus assembly and budding is a multistep process that provides a number of 

potentially attractive targets for the development of new therapeutic agents. Compounds 

targeting CA assembly, NC zinc fingers, Tsg101 interaction with p6 are being developed and 

evaluated (Li and Wild, 2005). The studies described here help to better understand the 

complicated retrovirus assembly and budding process by elucidating the mechanism by which 

the virus regulates this last step in its life cycle. This information can be used to develop novel 

targets for ARIs. For example, the dramatic difference in virus budding efficiency between Rev-

dependent and Rev-independent HIV-1 Gag in human cell lines suggests that disturbing viral 

gRNA trafficking has the potential to inhibit HIV-1 release.  

One challenge to the development of an HIV vaccine and anti-HIV drugs is the lack of 

small animal models due to various defects in HIV replication in rodent cells. Our results 
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showing that altering HIV-1 Gag encoding mRNA nuclear export pathway from Rev-dependent 

to Rev-independent pathway overcame a cellular block in virus assembly and budding in rodent 

cells. In addition, the closely related lentivirus, EIAV, can release from rodent cells no matter 

which RNA nuclear export pathway is used. Using these viral systems, it is now possible to 

examine the mechanisms by which different Gag trafficking pathways are regulated in rodent 

cells, with the goal of developing small animal model for HIV-1 research. 
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6.3 FUTURE DIRECTION 

6.3.1 Characterize and compare retroviruses assembly and budding in live cells 

The study in chapter II clearly demonstrated different assembly sites between two lentiviruses, 

HIV-1 and EIAV. We propose this is due to the different Gag trafficking pathways that should 

be able to be revealed by live cell imaging.  

Most recent studies of HIV-1 assembly and budding indicate that the plasma membrane 

is the productive site for HIV-1 assembly and budding (Deneka et al., 2007;Finzi et al., 

2007;Jouvenet et al., 2006;Welsch et al., 2007). However, different locations have been reported 

previously for intracellular HIV-1 Gag (Ono and Freed, 2004;Sherer et al., 2003). With the 

identification of the apparently intracellular membranes from which HIV-1 buds in macrophage 

as plasma membrane (Deneka et al., 2007;Welsch et al., 2007), it will be interesting to 

characterize the intracellular membranes where HIV-1 buds in other cell types. One possibility 

resulting in different HIV-1 Gag distribution patterns in different cell types is the different 

endocytic properties between different cell types. The difference in the balance between virus 

budding and endocytosis rates may lead to the difference in viral Gag location at steady state. To 

study this delicate balance between dynamic processes, state-of-the-art live-cell imaging 

techniques are needed.  

Because EIAV (Jin et al., 2007) and MLV (Sherer et al., 2003) Gag displayed an 

intracellular distribution pattern in cells whereas HIV-1 Gag showed an exclusively plasma 

membrane location, it is interesting to compare their trafficking pathways with HIV-1 Gag in 
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live cells. Results from these live cell imaging studies will better illustrate the complicated 

retroviruses assembly and budding process, therefore increasing the potential to identify novel 

targets for antiviral therapeutics.  

6.3.2 Explore the mechanism by which mRNA nuclear export pathway regulates HIV-1 

Gag lipid rafts targeting 

The study in chapter III clearly demonstrates that Rev-independent HIV-1 Gag is deficient in 

lipid raft targeting. Results in chapter II demonstrate that Rev-independent HIV-1 Gag is able to 

bud efficiently from rodent cells where Rev-dependent HIV-1 Gag fails to assemble and bud. It 

should be interesting to perform similar raft association studies in rodent cells to see if raft 

targeting is blocked for Rev-dependent HIV-1 Gag in rodent cells. Comparison studies between 

EIAV and HIV-1 will help to address whether lipid raft targeting is critical for other lentiviruses 

or only critical for HIV-1 and whether the difference in dependence on lipid rafts association 

results in the difference in ability to release between HIV-1 and EIAV in rodent cells. 

Our studies, for the first time, link viral gRNA trafficking to HIV-1 Gag association with 

lipid rafts, two previous recognized elements critical for HIV-1 assembly and budding (Ono and 

Freed, 2001;Swanson et al., 2004). However, there is a big gap that needs to be filled between 

these two steps. It is possible that different mRNA nuclear export pathways lead to different Gag 

synthesis sites that result in recruitment of different host factors either by Gag itself or by viral 

RNA. The different host factors might direct Gag trafficking via different pathways, therefore 

targeting Gag to different cellular membranes and resulting in different assembly and budding 

efficiencies. It is worth performing similar comparison studies between Rev-dependent and Rev-

independent HIV-1 Gag in HIV-1 natural target cells (T lymphocytes and macrophages) to 
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confirm the phenotype we reported. Once confirmed, comparison proteomic studies of Rev-

dependent and Rev-independent HIV-1 Gag polyproteins and their interacting proteins will help 

to address what dictates their different fates. In addition, tracking different Gag encoding mRNA 

trafficking in the same cell by tagging them with MS2 (Haim et al., 2007) and lambdaN22 

(Daigle and Ellenberg, 2007) will help to address whether different RNA trafficking results in 

different Gag synthesis sites. 

6.3.3 Develop BiFC based antiviral compound screening system 

Viral assembly is the final stage of viral replication, requiring multimerization of viral structural 

proteins to form mature, infectious virions. Viral structural proteins, normally Gag for 

retroviruses, and Matrix (M) or Capsid (CA) protein for other enveloped RNA viruses, are the 

driving force for viral assembly. Viral structure proteins (Gag, M, or CA) mediate formation of a 

multimeric budding structure through a complex combination of interactions between 

themselves, between them and other viral components, and between them and cellular proteins. 

Numerous protein-protein interactions take place during assembly and should provide several 

targets for novel therapeutics. A relatively subtle perturbation in the efficiency and timing of 

multimerization can disrupt proper viral assembly and block virus infectivity (Li et al., 

2003;Sticht et al., 2005;Stray et al., 2005;Stray et al., 2006;Tang et al., 2003). This is the 

foundation for two recently described novel inhibitors that disrupt HIV-1 Gag assembly (Sticht 

et al., 2005;Tang et al., 2003). Unfortunately, few viral assembly inhibitors have been identified 

to date in any viral system including HIV, in part because a lack in suitable screening methods. 

Our results and studies from other lab clearly demonstrated that BiFC assay is a powerful 

tool to study functional retroviral assembly (Boyko et al., 2006;Jin et al., 2007;Lee et al., 2007b). 
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This technique was also used to demonstrate assembly of herpes simplex virus glycoprotein gB, 

gD, gH, and interaction between gD and receptor recently (Avitabile et al., 2007). Together with 

our results showing interaction between EIAV Gag and cellular actin by BiFC (Chen et al., 

2007), we propose that this technique can be used to monitor interactions between viral structural 

proteins and between viral protein and critical host factors. With its quantitative features, the 

BiFC based assay provides the potential to screen antiviral compounds targeting viral assembly 

as well as critical virus-host interfaces, not only for retroviruses but also for other important 

human viruses. 
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