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LOW DENSITY GRAPH CODES AND NOVEL OPTIMIZATION STRATEGIES 

FOR INFORMATION TRANSFER OVER IMPAIRED MEDIUM 

Cheng-Chun Chang, PhD 

University of Pittsburgh, 2008

 

Effective methods for information transfer over an imperfect medium are of great interest. This 

thesis addresses the following four topics involving low density graph codes and novel 

optimization strategies. 

Firstly, we study the performance of a promising coding technique: low density generator 

matrix (LDGM) codes. LDGM codes provide satisfying performance while maintaining low 

encoding and decoding complexities.  In the thesis, the performance of LDGM codes is extracted 

for both majority-rule-based and sum-product iterative decoding algorithms. The ultimate 

performance of the coding scheme is revealed through distance spectrum analysis. We derive the 

distance spectral for both LDGM codes and concatenated LDGM codes. The results show that 

serial-concatenated LDGM codes deliver extremely low error-floors. This work provides valued 

information for selecting the parameters of LDGM codes.  

Secondly, we investigate network-coding on relay-assisted wireless multiple access 

(WMA) networks.  Network-coding is an effective way to increase robustness and traffic 

capacity of networks. Following the framework of network-coding, we introduce new network 

codes for the WMA networks. The codes are constructed based on sparse graphs, and can 

explore the diversities available from both the time and space domains. The data integrity from 

relays could be compromised when the relays are deployed in open areas. For this, we propose a 

simple but robust security mechanism to verify the data integrity. 
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Thirdly, we study the problem of bandwidth allocation for the transmission of multiple 

sources of data over a single communication medium. We aim to maximize the overall user 

satisfaction, and formulate an optimization problem. Using either the logarithmic or exponential 

form of satisfaction function, we derive closed-form optimal solutions, and show that the optimal 

bandwidth allocation for each type of data is piecewise linear with respect to the total available 

bandwidth.  

Fourthly, we consider the optimization strategy on recovery of target spectrum for filter-

array-based spectrometers. We model the spectrophotometric system as a communication 

system, in which the information content of the target spectrum is passed through distortive 

filters. By exploiting non-negative nature of spectral content, a non-negative least-square optimal 

criterion is found particularly effective. The concept is verified in a hardware implementation. 
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1.0  INTRODUCTION 

Today, communication systems prevail in our daily lives in so many different ways. The mobile 

phones at our hands and the computer terminals in our offices or homes are some classical 

examples that sustain information transfer for the human needs in modern life. It is almost 

endless to list the applications involving the use of communication systems nowadays [1]. In the 

most fundamental sense, communication systems involve the transmission of information from 

one point (or region) to another. We want to transmit information across impaired channels (e.g., 

distortion, noisy or bandwidth limited channels) so that the receiver can determine this 

information with high fidelity, despite the imperfection of the channels. Effective methods to 

achieve this are of great interest. In this thesis, we develop and address the following four areas 

regarding high performance coding techniques and novel optimization strategies: (i) low density 

graph codes for channel coding, (ii) low density graph codes for network coding on multiple 

access networks, (iii) (perceptual-based) optimization on bandwidth allocation, and (iv) (non-

negative constraint) optimization on content recovery in spectrophotometric systems. 

1.1 CODING TECHNIQUES FOR EFFECTIVE INFORMATION TRANSFER 

Channel coding theorem states that as long as the rate of information transmission is below the 

channel capacity, it is possible to have error-free transmission over the channel [2]. This is 

 1 



 

achieved by using a channel encoder in the transmitter and a channel decoder in the receiver. 

Nevertheless, the channel coding theorem is in fact a nonconstructive existence proof that error-

free communication is possible over a noisy channel, but the theorem does not tell us how to 

design the best channel encoder and decoder. Recently to achieve the channel capacity, a 

considerable amount of work has been put in by using modern coding techniques — code on 

graphs and iterative decoding. In the following, we introduce modern coding techniques of both 

channel coding and network coding to achieve effective information transfer.  

1.1.1 Low density graph codes for channel coding: introduction and contribution of this 

thesis 

Channel 
encoder

Channel 
decoder

Noisy channel Sink

1 0 1 1s:

Transmitter Receiver

Source

(Low-density 
graph code)

(Iterative decoding)

Channel 
encoder

Channel 
decoder

Noisy channelNoisy channel Sink

1 0 1 1s: 1 0 1 1s:

Transmitter Receiver

Source

(Low-density 
graph code)

(Iterative decoding)
 

Figure 1. Block diagram of channel coding in communication systems. 

 

Modern coding techniques--codes on graph and iterative decoding--have had a strong impact on 

achieving reliable communications [18]. Codes on sparse graph and iterative decoding were 

originally devised by Gallager in 1960, and then long forgotten [26]. It was rediscovered by 

Berrou, Glavieux, and Thitimajshima in 1993 in the form of turbo codes [3], and independently 

rediscovered by Mackay and McNeal in the mid 90’s in the form close to Gallager’s original 

construction [27]. Nowadays, the modern coding techniques have played an important role in 

reliable transmission of most current wireless communication systems such as DVB-S2, 
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WiMAX, and 10GBase-T Ethernet. A block diagram of the channel coding system is depicted in 

Figure 1, in which the binary information from a source is encoded via a low density graph code, 

passed through a noisy channel, and then decoded iteratively on the receiver side.   

In chapter 2 and chapter 3, we address a new high-performance channel coding technique 

with low system complexity, namely low density generator matrix (LDGM) codes. LDGM codes 

are systematic linear block code with low density generator matrix. LDGM codes provide good 

performance while maintaining low encoding and decoding complexities. The performance of 

LDGM codes under majority-rule based (MB) and sum-product (SP) decoding algorithms are 

extracted via density evolution techniques. The ultimate performance of the coding scheme can 

be revealed through distance spectrum analysis, which indicates how close a codeword in a code 

is to the others. We show how the distance spectrum for both LDGM codes and concatenated 

LDGM codes can be found. The results show that serially concatenated LDGM codes deliver 

extremely low error-floors. This work reveals the performance of LDGM codes and provides 

valued information for selecting the parameters for LDGM codes. 

1.1.2 Low density graph codes for network coding on wireless multiple access networks: 

introduction and contribution of this thesis 

Wireless multiple access networks are the main basis for current and future wireless 

communication networks. A wireless multiple access network consists of multiple users and a 

single access point. Examples of wireless multiple access networks include the uplinks in 

satellite communication systems, the uplinks in cellular networks, the downlinks in peer-to-peer 

file-distribution networks, a basic service set (BSS) in wireless local area networks (e.g., IEEE 

802.11), and a BSS in wireless metropolitan area networks (e.g., IEEE 802.16). However, the 

performance of wireless multiple access networks can be severely limited due to the mutual 
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interference and fading characteristics of wireless channels. Techniques that efficiently use the 

scarce resource of the wireless channels are demanded.     

 

Joint 
network 
channel 
encoder 

via 
assistant 
of relay 
nodes

Noisy channel
Joint 

decoder

(access node)

Sink

…
…

Source N

Source 1

Source 2

Joint 
network 
channel 
encoder 

via 
assistant 
of relay 
nodes

Noisy channelNoisy channel
Joint 

decoder

(access node)

Sink

…
…

Source N

Source 1

Source 2

 

Figure 2. Block diagram of network coding on relay assisted multiple access networks. 

 

We devote ourselves to wireless multiple access networks from network-coding perspective. 

Network-coding is a novel mechanism [25][52]. In December 2007, the Network World NEWS 

stated that network coding could re-engineer routing, content distribution, and wireless vendors. 

Many high tech’s biggest names such as Microsoft, HP, and Intel are starting to embrace the 

network coding techniques in an effort to boost throughput, scalability and efficiency of wired or 

wireless networks [5]. The core principle behind network coding is to allow intermediate nodes 

to encode packets. That is, when an intermediate node (i.e., relay node) initiates to send a packet 

to another node, the intermediate node generates and sends a combination version of its 

incoming messages, instead of relaying the incoming messages individually. On the other side, 

when destination sink nodes receive enough independent combination versions of packets, they 

can reconstruct the original information. For linear combination, as an example, the 

reconstruction process is similar to solving a system of linear equations [6]. 
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In chapter 4 and chapter 5, we address the new issues -- performance and security -- of 

network-coding on relay assisted wireless multiple access (WMA) networks. The block diagram 

of the network-coding WMA networks is depicted in Figure 2, in which messages from different 

source nodes are jointly encoded by means of the helps of relay nodes. On the receiver side, all 

the received messages are recovered jointly through iterative decoding. Under the framework of 

network-coding, space-time mesh codes are proposed. The codes can flexibly exploit the 

diversities from time-domain and from space-domain. We note that relay nodes could be 

deployed in open area, and might be vulnerable to various kinds of physical tampering. For this 

problem, we present a simple, but robust, security method that can effectively verify the data 

integrity from relay nodes, within the framework of the proposed network-coding scheme. 

1.2 EFFECTIVE OPTIMIZATION STRATEGIES FOR INFORMATION 

TRANSFER 

Optimization problems prevail in most disciplines such as engineering, physics, mathematics, 

economics, administration, commerce, social sciences, and even politics. The process of 

optimization is the process of obtaining the “best”, if it is possible to measure and change what is 

“good” or “bad”. Optimization theory is the branch of mathematic encompassing the quantitative 

study of optima and methods for finding them [7]. In the thesis, we provide novel approaches for 

the quantization of optima in two promising applications: bandwidth allocation in perceptual-

based communication systems and recovery of target spectrum in filter-based spectrophotometric 

systems. 
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1.2.1 Optimization on bandwidth allocation: introduction and contribution of this thesis 

(Multiple sources of 
perceptual data)

Channel with 
limited bandwidthPerceptual 

data
Sink

Optimal bandwidth 
allocation

Bandwidth info.

(Multiple sources of 
perceptual data)

Channel with 
limited bandwidthPerceptual 

data
Perceptual 

data
Sink

Optimal bandwidth 
allocation

Bandwidth info.

 

Figure 3. Block diagram of transmission of multiple sources of data. 

 

To effectively and fairly allocate the transmission bandwidth for multiple sources of perceptual 

data over a common communication channel is demanded. Promising applications of this 

scenario include MSN, Skype, and/or tele-surgery systems.  Figure 3 depicts the system block 

diagram, in which an optimal bandwidth allocation mechanism is critical to adjust the source 

rates optimally. Despite the fact that significant improvement in communication infrastructure 

has been attained in recent years and a point to point communication channel with large 

bandwidth would be available to a customer, a channel with smaller bandwidth usually costs less 

to the customer. Hence, how to optimally transmit multiple sources of data over a channel with 

limited bandwidth is of great interest.  The issues concerning the optimal bandwidth allocation in 

reasonable time and fair manner remain challenging, and need to be solved.  

In chapter 6, we study this optimization problem from a human perceptual perspective. 

We aim to maximize the overall user satisfaction, and formulate the optimization problem. Using 

either the logarithmic or exponential form of satisfaction function, we are able to derive closed-

form solutions for the optimization problem. The results are quite interesting. The optimal 
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bandwidth allocation for each type of data is shown to be piecewise linear with respect to the 

total available bandwidth.  

1.2.2 Optimization on content recovery in spectrophotometric systems: introduction and 

contribution of this thesis 

Distortion channel

Spectrophotometric
transducer

Measurement 
results

Sink

Target 
optical signal

Source

Signal processor for anti-distortion

Channel info.

Distortion channel

Spectrophotometric
transducer

Measurement 
results

Sink

Target 
optical signal

Source

Signal processor for anti-distortion

Channel info.

 

Figure 4. Block diagram of a spectrophotometric system. 

The spectrophotometric system can be seen as a communication system. 

 

Spectrophotometry is more and more often the method of choice not only in analysis of 

(bio)chemical substances, but also in the identification of physical properties of various objects 

and their classification. The applications of spectrophotometry include such diversified tasks as 

monitoring of optical telecommunication links, assessment of quality of food, forensic 

classification of papers, detecting of insect infestation of seeds, and classification of textiles [8]. 

In all those applications, large numbers of data, generated by spectrophotometers, can be 

processed by various digital means in order to extract measurement information. 

In the chapter 7, we study the filter-array based spectrometers. We aim to design a fine 

spectrometers based on low-cost (and hence low transduction quality) filters. As depicted in 

Figure 4, we consider a filter-based spectrometer as a communication system, in which the 
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information content of the light spectrum is passed through distortive channels – the imperfect 

filters. Effective methods for anti-distortion at the receiver side (or measuring side) are critical. 

In this thesis, we work on the estimations of target spectrum. A series of optimal estimators for 

effectively recovering target spectrum is introduced. By exploiting the novel optimization 

strategy – the non-negative least square (NNLS) criterion, we can effectively estimate the target 

spectra with high fidelity. The concept is verified in a hardware implementation. We show the 

feasibility of a fine spectrometer on-a-chip based on a low-cost filter-array. 

1.3 THESIS OUTLINE 

From chapter 2 to chapter 5, we consider effective methods for information transfer from coding 

perspective. In chapter 2, we present the performance analysis of regular LDGM codes under 

majority-rule based iterative decoding algorithms and sum-product iterative decoding algorithms. 

The distance spectrum analysis of LDGM codes are provided in chapter 3, in which serially-

concatenated and parallel-concatenated LDGM codes are investigated as well. In chapter 4, we 

show the extension of the application of graph codes to relay assisted wireless multiple access 

networks, in which the notion of network-coding is involved. Security issues and attack resilient 

methods are considered in chapter 5. From chapter 6 to chapter 7, we consider the effective 

methods for information transfer from optimization perspective. In chapter 6, based on user 

satisfaction, we present the strategy for bandwidth allocation for transmission of multiple sources 

of perceptual data over a shared channel. By considering a spectrophotometric system as a 

communication system, we present effective optimization methods for content recovery with 

high fidelity. We present some future directions in chapter 8.  
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2.0  PERFORMANCE ANALYSIS OF REGULAR LDGM CODES UNDER MB AND 

SP ITERATIVE DECODING ALGORITHMS 

We investigate the performance of regular LDGM codes under both the hard-decision majority-

rule based (MB) iterative decoding algorithm and the soft-decision sum-product (SP) iterative 

decoding algorithm. The two eminent error-performances of LDGM codes, threshold and error-

floor, are extracted. For the MB algorithm, we derive a recursive expression for performance 

analysis. Furthermore, a non-recursive lower-bound expression for the error floors is obtained.. 

On the other side, we provide a fast simulation method useful to investigate the performance of 

LDGM codes under the SP algorithm. Supported by the confidence interval analysis, the 

presented method is, for example,  times quicker than the Monte-Carlo computer simulation 

for bit-error-rate (BER) in  region. With these tools, one can efficiently assess the 

performance of LDGM codes of a given degree, and select a best LDGM code under the trade-

off between performance and encoding/decoding complexities. 

810

1010−

2.1 INTRODUCTION 

Low-density generator-matrix (LDGM) codes with moderate code length are of interest not only 

because they can provide satisfying performance at the moderate block length while maintaining 

 9 



 

low encoding/decoding complexities [19][21][22][23], but also because the inherent systematic 

form of LDGM codes make the codes useful to new applications such as cooperative wireless 

multiple access relay network [35] and joint source-channel encoding system [24].  

In this chapter, we investigate the performance of LDGM codes under both hard-decision 

majority-rule based (MB) iterative decoding algorithm and soft-decision sum-product (SP) 

iterative decoding algorithm. MB algorithm has drawn significant amount of interests in the past 

thanks to its simplicity and low computation complexity, which result in fast decoding ability and 

less hardware requirement [23][29][30][31]. On the other side, SP algorithm is well-known for its 

ability to approach the Shannon capacity in variouis channels [26][27][28]. 

For the MB algorithm, by assuming infinite block length and borrowing Gallager’s 

framework [26], we derive a recursive expression which predicts both the threshold and error-

floor behaviors of the codec precisely. Moreover, based on the recursive expression, we further 

derive a non-recursive lower-bound expression as the function of the degree of variable nodes. 

The bound is tight and hence allow us to efficiently assess the best performance of the codec for 

given degrees of LDGM codes. 

For the SP algorithm, we propose a fast simulation method for performance analysis. The 

method is constructed using the general idea of density evolution [28][54].  The method tracks 

the mean of log-likelihood ratio (LLR) samples, and thus enables faster evaluation and removes 

the need for time-consuming Monte-Carlo simulation.   To systematize this approach, we include 

a confidence interval analysis which allows us to determine the number of samples required for a 

targeted accuracy.   

The rest of the chapter is organized as follows. In section 2.2, we briefly introduce LDGM 

codes. In section 2.3, we briefly review the MB iterative decoding algorithm and then derive the 
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recursive expression and the lower bound expression. The fast simulation method is discussed in 

section 2.4.  Results and discussions are providd in section 2.5. Finally, we make a conclusion in 

section 2.6. 

2.2 LDGM CODES 

LDGM codes are linear block codes with parity check matrix H = [P ; I], where P is an (n - k) by 

k sparse matrix and I is the (n-k) by (n-k)  identity matrix.  k denotes the number of input bits and 

n denotes the number of output bits of an LDGM encoder.  The P matrix can be obtained from 

random generation. An LDGM code is called regular if both the number of 1’s in a column in 

the P matrix and that in a row stay fixed for all columns and rows.  Though irregularity can 

provide performance improvement, regularity could lead to simplified modular hardware 

implementation. We denote the degree of a variable node as dv, which is the number of ones in a 

column in the P matrix. Similarly, the degree of a check node, dc, represents the number of ones 

in a row in the H matrix. The code can be completely specified by a bipartite graph [32] 

consisting of check nodes and variable nodes. Since a systematic codeword is composed of 

message bits and parity-check bits, the variable nodes can be further separately into message-bit 

variable (MV) nodes and parity-check-bit variable (PV) nodes.  Based on the structure of the H 

matrix, the code rate R of (dv, dc)-regular LDGM code is given by ( )( )1/ / 1 1v cR d d= − + .  
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2.3 ERROR PERFORMANCE ANALYSIS UNDER MB ITERATIVE DECODING 

ALGORITHMS 

A. MB iterative decoding algorithm: There are two steps in each iteration for the MB 

iterative decoding algorithm. The first step is done in a check node. The output binary message 

from the thi  check node, toward the thj  of its dc variable nodes, is the result of the XOR operation 

on the rest of dc-1 incoming binary messages. That is, 1
, 1,( )

(cd
i j k jk k j

c −

= ≠
= ⊕∑ , )v , where the summation 

is done in modular-2 addition and ,k jv  is the binary message from the thk  variable node to the thi  

check node. The second step is done in a variable node at which the majority rule is applied. 

Let jf , where {0,1},jf ∈  denote the hard-decision binary value of the thj  received signal from 

channel for the thj  bit transmission. The output binary message from the thj  variable node, 

toward the thi  of its vd  check nodes, is obtained from the rest of 1vd −  incoming messages, and is 

given by 

1

,
1,( ),

,   ( , )

,  o.w.

vd

j j
k k ij i

j

k jf if XOR f c m
v

f

−

= ≠

⎧ ⎛ ⎞
≥⎪ ⎜

= ⎨ ⎝
⎪
⎩

∑� ⎟
⎠ .                                 (2.1) 

That is, if m or more than m incoming messages are violated, then the output binary message 

,j iv is the complement of jf ; otherwise, the output message holds the value of jf . At the last 

iteration,   the thj  bit is decoded to be jf�  if ( ),1
( , )vd

j k jk
XOR f c m

=
≥∑ ; otherwise, the thj  bit is 

decoded to be jf . In the algorithm, weight m is an integer between 0 and vd . The weight m needs 

to be carefully chosen in each iteration as it affects the performance of the MB iterative decoding 
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algorithm. From the above description, we note that implementation of the MB iterative 

decoding algorithm is extreme simple. 

B. Error performance analysis: We derive the recursive expression (2.2) and the tight 

lower bound expression (2.11). These expressions serve as efficient tools to extract the 

performance of the codec for given degrees of LDGM codes.  

Due to the hard-decision characteristic of the MB decoding algorithm, assume all the 

coded bits are transmitted through a binary symmetric channel with error-probability  Consider 

the error-performance on a MV node. Assume infinite code length and unfold the MB iterative 

decoding onto a cycle-free decoding tree. The error-probability for the message on the MV node 

after the  iteration can be expressed by the recursive form 

0.P

thi

( ) ( )1 0 01 ( , ) (1 ) ( , )i iP P f m P P g m P+ = − + − i                                           (2.2) 
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21
0

12
0

1 1 (1 2 )(1 2 )
( , )

2

1 (1 2 )(1 2 )
                      

2

cv

v
c

ldd
v

l m

d ld

d P x
f m x

l

P x

−−

=

− −−

− ⎛ ⎞+ − −⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝

⎛ ⎞− − −
×⎜ ⎟
⎝ ⎠

∑
⎠                                      (2.3) 

and 
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⎝ ⎠

∑
⎠                                      (2.4) 

The first term in (2.2) represents the probability of an event that the MV node was in the error 

state originally and the error correction mechanism of MB algorithm is not triggered because 

less than m extrinsic messages, out of dv- 1 total, are in violation. Thus the error in the variable 
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node remains unchanged. The second term represents an event that the MV node was in the 

correct state and the error correction mechanism of MB algorithm is falsely triggered--because 

of m or more extrinsic messages in violation--and forces an error.  It is interesting to compare 

this recursion result (2.2) to the Gallager’s analysis result on regular LDPC codes [26].  The 

difference is that we have 2

0(1 2 )(1 2 ) cdP x −− − in the recursion equation, instead of 1(1 2 ) cdx −− .  This 

is a characteristic result of LDGM codes, which is caused by the one and only one connection 

from each PV node to the corresponding check node in the bipartite graph.  This will cause the 

error floor effect in LDGM codes. 

For a given channel error probability , the weight m and the degrees and  

determine the recursive process (2.2) and hence determine the error-performance.  The optimal 

weight m which minimizes P

0P vd
cd

i+1 in (2.2) for the  iteration can be found by exhaustively 

searching for the integer between 0 and , or by solving the smallest integer m which satisfies 

the following inequality 

thi

vd

[26]

2 12
0 0

2
0 0

1 1 (1 2 )(1 2 )
1 (1 2 )(1 2 )

vc

c

m dd
i

d
i

P P P
P P P

− +−

−

⎛− + − −
≤ ⎜

− − −⎝ ⎠

⎞
⎟ .                                (2.5) 

In the following, we derive the lower bound expression based on the recursive expression 

(2.2). Take the partial derivative of (2.2) respective to , we obtain iP

1
0 0(1 )i

i i

P

i

f gP P
P P
+∂

P
∂ ∂

= − + −
∂ ∂ ∂

,                                         (2.6) 

where 

( 111 d mm vv

i

df m
mP )ξ ξ η

− −−+ − −−⎛ ⎞∂
= ⎜ ⎟∂ ⎝ ⎠

,                                  (2.7) 

and 
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( 111 d mm vv

i

dg m
mP )ξ ξ η

− −−− + +−⎛ ⎞∂
= ⎜ ⎟∂ ⎝ ⎠

.                                   (2.8) 

In (2.7) and (2.8), the notations  , , ,and ξ ξ η η+ − + −  are defined as , 

, 

2
0(1 (1 2 )(1 2 ) )/2cd

iP Pξ −+ = + − −

2
0(1 (1 2 )(1 2 ) )/2cd

iP Pξ −− = − − − 3( 2)(1 2 )(1 2 ) cd
c o id P Pη −+ = − − − , and  3( 2)(1 2 )(1 2 ) cd

c o id P Pη −−=− − − − . 

Without loss of generality, assuming P0 and Pi are restricted between [0, 0.5], we observe 

that (2.6) is always non-negative, i.e., 1 /i iP P+ 0∂ ∂ ≥ .  This shows that (2.2) is a monotone increasing 

function of Pi. Therefore, by substituting 0iP =  into (2.2), we obtain a lower bound expression of 

. 1iP+

To determine the optimal weight m such that we obtain the lowest bound, we resort to 

(2.5). By substituting 0iP =  into (2.5), we have 

2 1

0 0

0 0

1 1 (1 2 )
1 (1 2 )

vm d
P P

P P

− +
⎛ ⎞− + −

≤ ⎜ ⎟− −⎝ ⎠
.                                                  (2.9)      

If P0 is restricted within the interval [0, 0.5], (1-P0)/P0 is not less than 1. The inequality is 

satisfied if and only if the exponent of the right hand side is greater than 1, i.e., . The 

smallest integer that satisfies this inequality is 

2 1vm d− + ≥ 1

/ 2vm d= ⎡ ⎤⎢ ⎥ , where ⎡ ⎤⎢ ⎥i  is the ceiling operation. 

Notice that, at the last iteration, the number of available extrinsic messages for an MV node is dv, 

instead of dv-1.  Then, the optimal weight m* to achieve the lowest error floor PEF for a given 

(dv, dc)-regular LDGM code is expressed as 

1
* .

2
vd

m
+⎡ ⎤= ⎢ ⎥⎥

                                                                (2.10) 
⎢

Therefore, the lowest bound expression, which is only a function of the degree of variable 

nodes dv, is given by 
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We note that the results (2.2) and (2.11) are based on the cycle-free assumption, i.e., 

infinite code length. Thus, this renders the best performance of the codec for given degrees of 

LDGM codes. 

2.4 FAST SIMULATION METHOD FOR LDGM CODES UNDER SPA ITERATIVE 

DECODING ALGORITHM 
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Figure 5. The flow diagram of the fast simulation method 

 

The simulation flow diagram of the fast simulation method is depicted in Figure 5. We feed the 

channel LLRs of the all-zero codeword to the standard SP iterative decoder. Then we obtain the 

posterior LLRs, PLLR s , after running the SP iterative decoding algorithm. After that, instead of 

determining the decoded bits from these PLLR s , we calculate the mean of the set of PLLR s .  

We note that the mean of  PLLR s  evolves only up to a certain limit for LDGM codes after 

which it stays at the same level no matter how many further iterations are carried out. This is one 

of the distinct features of LDGM codes: The information provided by the parity-check variable 

nodes always remains the same during the iterations. The reason for this is that all those variable 
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nodes which participate in a single parity-check cannot pass along any extrinsic message to the 

check node.  Extrinsic messages are generated by excluding the old message.  But to those 

variable nodes that only have a single connection to the check nodes, this is not possible.  This 

causes obstruction to continued evolution of density and hence results in error-floors.  We show 

that this behavior can be well evaluated by our fast evaluation system.  

In the output-symmetric AWGN channels, the distribution for channel  is symmetric 

and the symmetry is preserved throughout the message-passing decoding algorithm 

LLRs

[28]. Thus, 

we may treat PLLR s  as Gaussian distributed samples with mean -µ’ and variance 2µ’, see [54].  

Then, the error-probability which is the Gaussian tail probability can be obtained by 

2( ')
2 2 '

0

1
2 2 'eP e

λ μ
μ dλ

π μ

+
−∞

⋅=
⋅∫ ,                                              (2.12) 

or by 0.5 ( '/ 4)erfc μ  in the form of complementary error function. 

It is useful to determine the number of required PLLR samples such that the estimated 

mean is accurate. For this, we resort to the confidence interval analysis, and obtain that  

18664 [ (2 )]eN erfc−= × 2P ,                                                    (2.13) 

where  is the required number of samples, is the inverse of the complementary error 

function, and  is the target error probability in simulation. For example, having the number of 

samples around N =  is sufficient to provide a BER result of  = 

N 1( )erfc− i

eP

510 eP 1010−  region.  We note that 

for the conventional Monte-Carlo computer simulation, if one wants to collect one thousand bit 

errors to have a smooth BER curve in simulation, the required number of PLLR samples is 

, which requires  for  = ' 310 / eN � P 13' 10N = eP 1010− . Therefore, the presented method is  times 

quicker in this example. 

810
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The derivation of (2.13) is elaborated as follows. The confidence interval for the mean α  

of a Gaussian distribution with known variance 2β  is given by [33] { }CONF x xε α− ≤ ≤ + ε , where 

x  is the experimental mean of samples. The positive constant ε  is a tolerant error and is 

associated by /cε β= N , where N  is the number of samples, and c  is a pre-calculated value 

depending on the confidence level γ . For example, 3.291c =  for the 99.9% confidence level 

0.999γ = . We observe that 0.1ε =  is a reasonable value since the estimated mean within the error 

tolerance results in a negligible difference in (2.12). For a given target error probability , we 

note that it is equivalent to investigate the Gaussian distribution with mean  , 

from (2.12), and variance . Since 

eP

14 (2 eerfc Pα −= × )

)2 18 (2 eerfc Pβ −= × /c Nε β= , for 0.1ε = , we obtain 

.  2 1( / ) 8664 [ (2 )]eN c erfc Pβ ε −= = × 2

2.5 SIMULATION RESULTS AND DISCUSSION 

Assuming BPSK modulation over AWGN channels, the error probability of the equivalent 

binary symmetric channel (BSC) for the MB algorithm is obtained by ( )0 00.5 /bP erfc RE N= , 

where R  is the code rate, is the energy per bit, and is the one-sided power spectral density 

of the noise. We evaluate the best possible performance of the codec by using the recursion form 

(2.2) in the following manner. While numerically evaluating the recursion expression (2.2), we 

test out all the possible choices of m in each iteration and then select the best value of m that 

results in the lowest error probability at the end of each iteration. We call it dynamically 

optimized weight. In addition, we let a large number of iterations to ensure the convergence of 

the recursive expression (2.2) 

bE 0N
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The dashed curves in Figure 6 are obtained from the recursive method for a set of rate 1/2 

codes with degrees (8,9), (9,10), (10,11), (11,12), (12,13), (13,14), and for a set of rate around 

1/3 codes with degrees (9,6), (10,6), (11,6), and (11,7). The solid curves in Figure 6 are obtained 

from the non-recursive low bound (2.11). As expected, the lower bound is asymptotically tight 

with respective to channel signal to noise ration (SNR). This is because, at high SNR,  in (2.2) 

can be evolved to a value very close to zero, and hence the assumption  used to derive the 

lower bound is validated. We note that the lower-bound expression predicts the performance well 

in the entire error floor region.  Besides, we note that a code with small degrees exhibits a high 

error floor but a small threshold; whereas a code with large degrees shows a low error floor but a 

large threshold. Considering this trade-offs between error-floors and thresholds, the best degree 

d

iP

0iP =

v for LDGM codes under MB iterative decoding algorithm shall be around 10. LDGM codes 

with other degrees are bad, in terms of either high error floors or large thresholds. In addition, we 

also observe that, for rate half LDGM codes, the curves of (dv, dv +1) and (dv +1, dv +2) converge 

asymptotically for even dv. This behavior of LDGM codes was also reported by J. Garcia-Frias 

[21] in which factor graph decoding scheme is applied. 

Figure 7 shows the BER curves obtained from the Monte Carlo computer simulation. Ten 

iteration in the MB algorithm is used. Two randomly constructed (8, 9) and (9, 10) LDGM codes 

with length 6000 are simulated. To render a good threshold property while maintaining a low 

error-floor for the MB decoding algorithm, we use the following strategy for selecting the weight 

m. Initially, we choose the weight m which has the smallest threshold. This initial weight is used 

all the way through the last iteration, and at the last iteration the weight in use is calculated from 

(2.10) to deliver the lowest error floor. For the (8, 9) LDGM code, the weight of the smallest 

threshold is  m =5 and the weight calculated from (2.10) is also m =5. Hence, we select the 

 19 



 

weight to be 5 throughout the iterations. For the (9, 10) LDGM codes, the weight of the smallest 

threshold is m = 6 whereas the weight calculated from (2.10) is m =5. We choose m = 6 for the 

iterations all the way until the last one, and then choose m =5 for the last iteration. The 

simulation results show that both the (8, 9) LDGM code and (9, 10) LDGM code not only can 

achieve the lower-bound, but also can achieve the thresholds. In other words, the derived 

recursive expression and non-recursive lower bound are tight and can successfully serve as 

efficient tools to access the error-performance of the codec.  

Figure 8 shows the Monte-Carlo computer simulation results and the numerical results 

for rate half (7,8), (8,9), (9,10), (10,11), and (11,12) LDGM codes of length 4080 under the SP 

algorithm. Ten iterations are used in the SP decoding algorithm for the Monte-Carlo computer 

simulation. The numerical results are obtained from the fast evaluation method. The simulation 

and the numerical result match almost perfectly at the error-floor region, while for the waterfall 

region the simulation results are off a fraction of dB to the numerical results. We note that this 

gap can be closed by increasing the number of iterations in Monte-Carlo simulation.  In Figure 8, 

it is also noted that a higher density code has a later waterfall region but a lower error-floor level.   

Figure 9 shows the numerical results for rate 0.500 (10,11), rate 0.5238 (10,12), and 

rate 0.5455 (10,13) LDGM codes.  We note that the higher the rate is, the larger Eb/N0 gets for 

the waterfall region and the lower the error-floor gets. In fact, the error-floors remain at the same 

level in terms of SNR (Es/N0), and are determined by the minimum distance. From chapter 3, the 

minimum distance of this code is determined by . Since  is 10 for all these codes, they all 

have the same minimum distance.  As the rate changes slightly with the variation of the 

parameter , the waterfall region is affected. 

vd vd

cd
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2.6 CONCLUSION 

The presented performance evaluation framework provides the capability to quickly assess the 

performance of LDGM codes under MB or SP iterative decoding algorithms.  Based on the 

framework, we have shown that, for both MB and SP algorithms, the number of 1’s in the 

columns of generator matrix affects the error-floor level, whereas the number of 1’s in the rows 

affects the waterfall region for rate ½ codes. For either MB or SP decoding algorithm, LDGM 

code exhibits two eminent error-performance behaviors: thresholds and error-floors. 
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Figure 6. Analytic performance of LDGM codes under MB iterative decoding algorithm.  

BER performance of (a) rate half LDGM codes, and (b) rate around 1/3 LDGM codes. In the figure, the 

dashed curves represent the BER obtained from the recursive expression (2.2) with dynamic optimized weight m; 

the solid curves represent the BER obtained by the non-recursive lower-bound expression  (2.11). 
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Figure 7. Simulated performance of LDGM codes under MB iterative decoding algorithm. 
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Figure 8. Performance of LDGM codes under the SP algorithm. 

Performance of rate ½ LDGM codes with code length 4080 under AWGN channels. The Sim curves are obtained 

from Monte-Carlo computer simulation with 10 iterations. The Num curves are obtained from the fast simulation 

method. A higher density code has a later waterfall region but a lower error-floor level. 
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Figure 9. Performance of LDGM codes for different rates under the SP algorithm. 

Performance of rate 0.500 (10,11), rate 0.5238 (10,12), and rate 0.5455 (10,13) LDGM codes obtained from the fast 

simulation method. The curves in the sub-figure are drawn with respective to SNR (Es/N0), while the curves in the 

main figure are calibrated to Eb/N0. A higher rate code shows a later waterfall region but a slightly lower error-floor 

level 
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3.0  DISTANCE SPECTRUM ANALYSIS FOR LDGM CODES AND 

CONCATENATED LDGM CODES 

Concatenated error-correction codes have been of interest in the past. By utilizing two relative 

weaker constituent codes, a powerful capacity-achieving code can be obtained. In this chapter, 

we investigate the concatenation of low-density generator matrix (LDGM) codes. By utilizing 

enumeration methods, we derive the average distance distributions not only for LDGM codes, 

but also for serially-concatenated and parallel-concatenated LDGM codes. The results serve as a 

fundamental step to investigate the bounds of the ensemble performance under the optimal 

maximum-likelihood (ML) decoder. We show that serially-concatenated LDGM codes provide 

extremely low error-floors.  

3.1 INTRODUCTION 

Concatenated error-correction codes have been of interest in the past. By utilizing two relative 

weaker constituent codes, it is possible to result in a new code with low-complexity but high 

error-correction performance [9][10]. In this chapter, we study the performance of serially-

concatenated (SC-) and parallel-concatenated (PC-) systematic low-density generator-matrix 

(LDGM) codes, as well as LDGM codes.    
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LDGM codes are a simple variation of Gallager’s low-density parity-check (LDPC) 

codes. Gallager’s LDPC codes [26] are one of the known capacity achieving codes with linear 

decoding complexity. However, the encoding complexity is quadratic due to the dense generator 

matrix obtained from Gaussian elimination procedure. To have a linear encoding complexity as 

these in turbo codes, the notion of LDGM has been raised [21]. However, LDGM codes are 

relative weak codes due to the fact that the code includes the low weight codewords composing 

from the rows of the sparse generator matrix, and hence LDGM codes express noticeable error-

floor levels.  

To reduce the error-floor levels of LDGM codes, concatenation of two LDGM codes are 

introduced in the literatures [11][21]. The authors studied SC-LDGM codes through EXIT 

functions and PC-LDGM codes through density evolution. They stated that PC-LDGM codes and 

SC-LDGM codes provide a performance similar to turbo codes or irregular LDPC codes, while 

the encoding and decoding complexities are maintained to be low. In addition, the performance 

of SC-LDGM matches or out-performs the performance of irregular repeat accumulate (IRA) 

codes1. 

However, the analysis done by the EXIT functions or density evolution can only provide 

threshold values as the performance indices. It is still not clear what the capability of this class of 

concatenated codes is. To prove rigorously that indeed these concatenated codes can provide 

satisfying performance in various channel types, one starting point is to investigate the intrinsic 

performance through the distance distribution analysis [16][17]. The results of distance 

distribution analysis give the information that what the Hamming distances of a codeword are to 

                                                 

1 IRA codes are another class of low-encoding complexity LDPC codes, and are promising in recent standards such as IEEE 802.11n or DVB-
S2 
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other codewords, and hence the results serve as a fundamental step to investigate performance 

bounds under the optimal maximum-likelihood (ML) decoder. 

In this chapter, we utilize the enumeration method [12][13] to derive the average distance 

distributions for ensembles of regular and irregular SC-LDGM and PC-LDGM codes. The 

distance distributions are expressed as a function of the design parameters such as code lengths 

and code degrees of the two constituent codes. In addition, we apply the union bounding 

technique to extract the bit-error-rate (BER) performance. The relationship between the design 

parameters and their effects on the error-performance of the codes can be identified. We show 

that SC-LDGM codes are able to provide extremely low error-floors. These bounds can be used 

as a guideline for the design of sub-optimal message-passing decoders in the future [14][15]. 

It is worth to mention that the study of SC-LDGM or PC-LDGM codes are interesting not 

only because these codes provide a exceeding error-performance while the encoding and 

decoding complexity is low, but also because there exist some new applications such as joint 

source channel encoding system [24] and network-coding on the cooperative wireless multiple 

access relay network [35] in which these codes are found very useful. In addition, the systematic 

form of LDGM codes make the codes as a good candidate to achieve rateless encoding or uneven 

protection due to the flexibility of adding or removing parity check bits [18]. 

The rest of the chapter is organized as following. In section 3.2, the definitions and 

notations for LDGM codes, PC-LDGM codes, and SC-LDGM codes are given. We derive the 

distance distributions in ensemble of LDGM codes, SC-LDGM codes and PC-LDGM codes in 

section 3.3. Section 3.4 gives the numerical evaluation methods and results. We draw a 

conclusion in section 3.5. 
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3.2 LDGM CODES, PC-LDGM CODES AND SC-LDGM CODES 

LDGM codes: LDGM codes are systematic linear block codes with parity check matrix H = [P ; 

I], where P is an (n - k) by k sparse matrix and I is the (n-k) by (n-k)  identity matrix.  k denotes 

the number of input bits and n denotes the number of output bits of an LDGM encoder.  An 

LDGM code is called regular if both the number of 1’s in a column in the P matrix and that in a 

row stay fixed for all columns and rows.  Though irregularity can provide performance 

improvement, regularity could lead to simplified modular hardware implementation. For regular 

LDGM codes, the degree of a variable node, denoted as dv, which is the number of ones in a 

column in the P matrix. Similarly, the degree of a check node, dc, represents the number of ones 

in a row in the H matrix.  Based on the structure of H matrix, the code rate R of (dv, dc)-regular 

LDGM code is given by ( )( )1/ 1 / 1v cR d d= + − .    

PC-LDGM codes: As illustrated in Figure 11(a), for a given binary information vector u 

= [u1,…,uk], the upper LDGM encoder generate the binary parity check vector p = [p1,…,pi] 

whereas the lower LDGM encoder generate the binary parity check vector p’ = [p’1,…,p’j]. The 

codeword of a PC-LDGM encoder is obtained from the concatenation {u, p, p’}. If the code 

lengths for the upper and lower LDGM encoder are  and , respectively, we have un ln uk i n+ =  

and . For ( , ) and ( , ) regular LDGM upper code and lower code, the 

individual code rates are 

lk j n+ = ( )u
vd ( )u

cd ( )l
vd ( )l

cd

( )( ) ( )/ 1/ 1 /( 1)u u
u u v cR k n d d= = + −  and ( )( ) ( )/ 1/ 1 /( 1)l l

l l v cR k n d d= = + − , respectively. 

The overall code rate of the PC-LDGM encoder can be associated by 

. The factor graph of the PC-LDGM is depicted as 

shown in 

( ( ) ( ) ( ) ( )/( ) 1/ 1 /( 1) /( 1)u u l l
P v c vR k k i j d d d d= + + = + − + − )c

Figure 12(a).  
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SC-LDGM codes: As illustrated in Figure 11(b), for a given binary information vector u 

= [u1,…,uk], the outer LDGM encoder generate the binary parity check vector p = [p1,…,pi]. The 

concatenation of {u, p} is then feed to the inner LDGM encoder, and the parity check vector p’ = 

[p’1,…,p’j] is obtained. The codeword of a SC-LDGM encoder is the concatenation {u, p, p’}. If 

the code lengths for the outer and inner LDGM encoder are  and , respectively, we 

have  and . For ( , ) and ( , ) regular LDGM outer code and inner 

code, the individual code rates are 

on in

ok i n+ = ik i j n+ + = ( )o
vd ( )o

cd ( )i
vd ( )i

cd

( )( ) ( )/ 1/ 1 /( 1)o o
o o v cR k n d d= = + −  and , 

respectively. The overall code rate of the SC-LDGM encoder is associated by , 

which can be shown to be 

( )( ) ( )/ 1/ 1 /( 1)i i
i o i v cR n n d d= = + −

/( )SR k k i j= + +

( )( )( ( ) ( ) ( ) ( )1/ 1 /( 1) 1 /( 1)o o i i
S v c v cR d d d d= + − + − ) . The factor graph of the SC-

LDGM is depicted as shown in Figure 12(b).  

3.3 DISTANCE SPECTRUM ANALYSIS 

The weight of a codeword, which is the number of 1’s in the codeword, represents the Hamming 

distance seen from the all-zero codeword. For a linear block code, the Hamming distance 

distribution seen by any codeword is identical. Therefore, finding the weight distributions, i.e., 

distance distributions, of a code is equivalent to finding the number of codewords having the 

same weight. In the following, we utilize enumeration methods for the distance distribution 

analysis. For the ease of reading, we summarize and list the definition and notation in the Table 1 

used for the following derivation. 

Averaged distance distribution for LDGM codes: Figure 10 depicts the structure of 

LDGM codes for distance distributions analysis from enumeration methods [13]. Let W  be a 
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random variable denoting the weight of input information vector, and H  be a random variable 

denoting the weight of output parity-check vector. Let ,w hZ  denote the average number of 

codewords (over an ensemble of LDGM codes) with input weight W w=  and output weight 

H h= .  ,w hZ  can be associated by 

, ( |w h

k
)Z P H h W w

w
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

=

) )

,                                                   (3.1) 

where  represents the total possibilities for the input information vector of weight . We note 

that, in the expression, only weight matters.  The positions of 1’s do not matter. That is, 

codewords of the same condition of weights have the same conditional probability 

. To obtain the conditional probability

k
w
⎛ ⎞
⎜ ⎟
⎝ ⎠

w

( |P H h W w= = ( |P H h W w= = , we decompose it as 

0

( | ) ( | ) ( | ,
e t

e

P H h W w P E e W w P H h E e W w
=

=

= = = = = = = =∑ ) ,                       (3.2) 

where E  is a random variable denoting the total number of edges emanating from the 

information variable nodes of the binary message 1. The conditional probability  

can be derived as follows. The total possibilities for W

( |P E e W w= = )

w= , regardless of the number of 

emanating edges E , is . The number of ways of having exactly e  edges emanating from w  

information variable nodes can be computed by the enumeration function

k
w
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

(1 ) i

e w

ki

i x y

x y λ
∞

=

⎢ ⎥
+⎢ ⎥

⎣ ⎦
∏ � , where iλ�  

denotes the fraction of variable nodes which are with i  edges, and ( , ) a bx y
f x y⎢ ⎥⎣ ⎦  denotes the 

coefficient of the term a bx y  in ( , )f x y . Therefore,  
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(1 )
( | )

i

e w

ki

i x y

x y
P E e W w

k
w

λ

∀

⎢ ⎥
+⎢ ⎥

⎣
= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏ �

⎦

)

.                                         (3.3) 

Similarly, the conditional probability ( | ,P H h E e W w= = =  can be derived as follows. Let t  

denote the total number of edges between information variable nodes and parity nodes, i.e., 

1
i

i

t k iλ
∞

=

= ∑ � . The total possibilities for the t check-node “sockets” connecting to the e edges 

emanating from w  information variable nodes is . Denote the number of check nodes as t
e
⎛ ⎞
⎜ ⎟
⎝ ⎠

L , 

i.e., L n k= − .  We note that to count the number of ways of having weight h  of output parity-

check vector is equivalent to  count the number of ways that check  nodes are of odd number of 

connection and the remaining 

h

L h−  check nodes are of even number of connection. Counting the 

number of ways can be associated by the enumeration function [ ]
1

( , ) ( , ) jL

j e hx y

f x j y f x j ρ
∞

− +
=

⎢ ⎥
+⎢ ⎥

⎣ ⎦
∏ �

( , )
j

l

l

, 

where 
[1,3,5,...]

j
f x j x−

∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ l

 is a polynomial representing the number of ways of odd connection on a 

check node, 
[0,2,4,...]

( , )
j

l

l

j
f x j x

l+
∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  representing the number of ways of even connection on a check 

node, and jρ�  denotes the fraction of check nodes that are with j  edges. In the expression, the 

power of the xy  terms keeps tracking the number of such edges. Therefore, we see 

[ ]( , ) ( , )

( | , )

j

e h

L

j x y

f x j y f x j

P H h E e W w
t
e

ρ
− +

∀

⎢ ⎥
+⎢ ⎥

⎣
= = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏ �

⎦ .                                (3.4) 

We note that ( , )f x j−  is equal to the expression (1( , ) (1 ) (1 )
2

j )jf x j x x− = + − − . Likewise, 

(1( , ) (1 ) (1 )
2

j )jf x j x x+ = + + − . In addition, the conditional probability ( | ,P H h E e W w)= = =  is equal to 
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( |P H h E e= = ) , which does not relate to the weight of the input information vector. Combining 

(3.1),(3.2), (3.3) and (3.4), we obtain 

[ ]
,

0

(1 ) ( , ) ( , ) ji

e w e h

Lki

e t i jx y x y
w h

e

x y f x j y f x j

Z
t
e

ρλ
− +

= ∀ ∀

=

⎢ ⎥⎢ ⎥
+ +⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∏ ∏
∑

��

⎦ .                            (3.5) 

For an ensemble of ( , regular LDGM codes. we have followings: (i))v cd d 1iλ =� only 

when ;  elsewhere, (ii)  only whenvi d= 0iλ =� 1ijρ =� cj d= ; 0jρ =�  elsewhere, and (iii)  is necessarily 

equal to .  We have 

e

vwd

( | ) ( | ) ( | ,vP H h W w P E wd W w P H h E wd W w= = = = = = = = )v ,                    (3.6) 

where 

(1 )
( | )

v
wd wv

d k

x y
v

k
x y w

P E wd W w
k k
w w

⎛ ⎞
⎜ ⎟⎢ ⎥+⎣ ⎦ ⎝ ⎠= = = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1=                                  (3.7) 

and 

[ ] ( , ) ( , )( , ) ( , )
( | , )

wdv
wd hv

h L hL
c c xc c

x y
v

v

v v

L
f x d f x df x d y f x d h

P H h E wd W w
t kd

wd wd

−
− +− +

⎛ ⎞ ⎢ ⎥⎢ ⎥ ⎜ ⎟+ ⎣ ⎦⎣ ⎦ ⎝ ⎠= = = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      (3.8) 

Therefore, (3.5) can be expressed as 

( )
,

( , ) ( , ) wdv

h L h
c c x

reg
w h

v

v

k L
f x d f x d

w h
Z

kd
wd

−
− +

⎛ ⎞⎛ ⎞ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                          (3.9) 
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Denote lA to be the averaged (over an ensemble) number of codewords of weight .  Then the 

averaged distance distributions are obtained by 

l

min( , ) min( , )
( ) ( )

,
max(0, ) max(0, )

  
k l k l

reg reg
l w l w l w l w

w l L w l L

A Z or A ,Z− −
= − = −

= =∑ ∑                                       (3.10) 

Averaged distance distribution for PC-LDGM codes: Consider the PC-LDGM codes as 

the parallel concatenation of {u, p, p’}, where p and p’ are obtained from two independent 

LDGM constitute codes. The averaged number of codewords over an ensemble of PC-LDGM 

codes with input weight W and output weight w= ( )
1

upperH h= , ( )
2

lowerH h= is associated by 

( ) ( )

( )

( )

( ) ( ) ( ) ( ) ( )
, ,

( ) ( )

( ) ( )

( )
, ( )

,

( | ) ( |

( | )
                 ( | )

                 

u l

u

l

PC SLDGM upper u lower l
w h h

upper u

lower l

u
w h l

w h

k
Z P H h W w P H h W

w

k
P H h W w

kw
P H h W w

k w
w

Z
Z

k
w

− ⎛ ⎞
= = = = =⎜ ⎟
⎝ ⎠
⎛ ⎞

= =⎜ ⎟ ⎛ ⎞⎝ ⎠= =⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟
⎝ ⎠

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

)w

= ,               (3.11) 

where  

[ ]
( )( )( )( )

( )
( )

( ) ( )
( ) ( )

0

(1 ) ( , ) ( , )

( | )

uuuu
ji

u
ue w e h

Lki

e t i jx y x yupper u
u u

e

x y f x j y f x j

P H h W w
k t
w e

ρλ
− +

= ∀ ∀

=

⎢ ⎥⎢ ⎥
+ +⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
= = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏ ∏
∑

��

     (3.12) 

and 

[ ]
( )( )( )( )

( )
( )

( ) ( )
( ) ( )

0

(1 ) ( , ) ( , )

( | )

llll
ji

l
le w e h

Lki

e t i jx y x ylower l
l l

e

x y f x j y f x j

P H h W w
k t
w e

ρλ
− +

= ∀ ∀

=

⎢ ⎥⎢ ⎥
+ +⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
= = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏ ∏
∑

��

.     (3.13) 
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The superscript “(u)” indicates the parameters of upper code, whereas the superscript “(l)” 

indicates the parameters of lower code. The above conditional probabilities (3.12), (3.13) are 

obtained by following the similar derivation as (3.2). We note that ( ) ( )u lk k k= = . Without loss of 

generosity, we assume ( ) ( )l uL L≤ . The averaged number of codewords of weight l  for the 

ensemble of PC-LDGM codes is therefore given by 

( )

( )

( )

( )

min( , ) min( , )
( ) ( )

, ,
0max(0, )

min( , ) min( , )
( ) ( )

0max(0, )

                  ( | ) ( | )

l

u

l

u

k l l w L
PC SLDGM PC SLDGM

l w l w
w l L

k l l w L
upper lower

w l L

A Z

k
P H l w W w P H W w

w

θ θ
θ

θ

θ θ

−
− −

− −
== −

−

== −

=

⎛ ⎞
= = − − =⎜ ⎟

⎝ ⎠

∑ ∑

∑ ∑ = =

       (3.14) 

We note that 

( ) ( ) ( )
( )

( ) (
, , ,u l l

u

)PC SLDGM lower SLDGM
w h h w h

h

Z Z− −=∑  and ( ) ( ) ( )
( )

( ) (
, , ,u l u

l

)PC SLDGM upper SLDGM
w h h w h

h

Z Z− −=∑ ,                     (3.15) 

where ( ) {1,2,... ,and the emptry }uh H φ∈ . 

For regular PC-LDGM codes with and , the distance spectrum ( ) ( )( ,u u
v cd d ) )( ) ( )( ,l l

v cd d

( )PC SLDGM
lA −  can be expressed as 

( )

( )( )

( )

( )
( ) ( )

min( , ) min( , )
( )

( )
0max(0, )

( )

( , ) ( , )

                                                  

u

ul wdv

u

u
u l w u L l w

c ck l l w L x
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l u
w l L v
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v

L
f x d f x d

k l w
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w kd
wd

θ θ
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− − − + +
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== −
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lwdv
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l l L

c c
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l
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l
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L
f x d f x d

kd
wd

θ θ

θ
+

− +

⎞⎛ ⎞ ⎢ ⎥ ⎟⎜ ⎟ ⎣ ⎦ ⎟⎝ ⎠
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i

      (3.16) 

Averaged distance distribution for SC-LDGM code: Consider the SC-LDGM codes as the 

serial concatenation of two independent LDGM codes. The averaged number of codewords of 

weight  for the ensemble of SC-LDGM codes can be obtained through the following steps. l
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First, the averaged number of codewords of weight obtained by the ensemble of outer codes 

with input weight  is given by 

2w

1w

( )
2

2
( )

1 2

min( , )
( ) ( )

,
max(0, )

o

o

k w
o

w
w w L

A −
= −

= ∑ 1 2 1

o
w w wZ ,                                                       (3.17) 

where 

1 2 1
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( ) ( ) ( )

, 2 1
1

( |
o

o outer outter
w w w

k
1)Z P H w w W w
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and 
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(3.19) 

Since an ensemble of codes is considered, a “random interleaver” can be seen as virtually 

existing between the inner codes and the outer codes for deriving the distance spectrum 

calculation. The averaged number of codewords over an ensemble of the inner codes with input 

weight and output weight ( )
2

innerW = w h( )innerH =  is associated by 

2 2

( ) ( ) ( ) ( )
, ( |inner o inner inner

w h w 2 )Z A P H h W w= = = ,                                      (3.20) 
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The averaged number of codewords of weight l  for the ensemble of SC-LDGM codes is 

therefore associated by 
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For regular SC-LDGM codes with and , the distance spectrum ( ) ( )( ,o o
v cd d ) )( ) ( )( ,i i

v cd d ( )SC SLDGM
lA −  can 

be expressed as 
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       (3.23) 

We note that, in general, PC-LDGM codes and SC-LDGM codes can be seen as irregular 

LDGM codes. These concatenation interpretations simplify the design and may facilitate the 

implementation of iterative decoder. While the performance of SC-LDGM codes is better, the 

PC-LDGM codes would have the advantage over the encoding and decoding complexities and 

delays. 
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Averaged distance spectrum for the layer ensemble LDGM codes: In the following, we 

provide the distance spectrum results based on the layer ensemble. This construction of ensemble 

is inspired by Gallager’s ensemble of LDPC codes. For this ensemble, we observe the property 

of minimum distance that . min 1vd d= +

Consider the following ensemble inspired by Gallager’s ensemble for LDPC codes. 

Consider a parity check matrix composed from two parts: LHS parts and RHS parts. The RHS 

part is an identity matrix of size ( ) , where (n k n k− × − ) /( )c v ck nd d d= + . The LHS part consists of 

 submatrices (or strips) (each strip is of size / ck d / ck d k× ). The first strip is the -fold 

concatenation of the building blocks of size 

cd

/ ck d dc× in which the ith building block contains  

1’s in its i

cd

th row and 0’s elsewhere. Hence, the LHS region of the first strip contains all its 1’s in 

a descending order. The other strips are obtained by permuting at random the columns of the first 

strip, denoted by a series of independent random operators iπ , 1, 2, , 1vi d= −" . An example of 

and  ensemble are shown in 18, 3,vn d= = 3cd = Figure 13(a). We note the the RHS identity matrix can 

be virtually divided into  sub-identity matrix, each of which is of size . In the 

analysis, we see that each strip corresponds to a sub-identity, and, therefore, treat the ensemble 

of LDGM codes as parallel concatenation of  (1, )-regular LDGM codes. The factor graph is 

depiected in 

vd / /ck d k d× c

),

vd cd

Figure 13(b). We note that, in general, there could exist parallel links between check 

nodes and variable in graph-based ensemble. However, for this specific ensemble, since for 

each strip, there is no links existing between check nodes and variable nodes.  

vd

Seen as parallel concatenation of (1, ) regular LDGM codes, individually, we have vd cd

, ( |
iw h i

k
Z P H h W w

w
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 for 1, 2,..., vi d= , and [1, / ]ih k dc∈ .                  (3.24) 
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From the notion of PC-concatenation, we see 

1 2, , ,..., 1 2( | ) ( | )... ( |
d vvw h h h d

k
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= .            (3.25) 

For regular LDGM codes, we have 
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Since , (3.26) reduces to ( ) 1ind
vd =

( , ) ( , )
( | )
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,                          (3.27) 

for each individual code. We note that (3.27) can be represented in the form of , iw hZ , i.e.,  

1 2

1 2

, , ,
, , ,..., 1

...
dv

d vv

w h w h w h
w h h h d

Z Z Z
Z

k
w

−=
⎛ ⎞
⎜ ⎟
⎝ ⎠

.                                                 (3.28) 

Here we note that since the sub-code of the first strip is fixed and determined, it may not be clear 

that  is still in the form of (3.4). The explanation of validating (3.4) is as follows. 

The total possibilities of input of weight w  is . The number of input messages of weight 

resulting output weight of  (through the first strip) can be obtained through the enumeration 

polynomial 

1( |P H h W w= = )

]

k
w
⎛ ⎞
⎜ ⎟
⎝ ⎠

w 1h

[
1

( , ) ( , )
hw

L
c c

x y
f x d y f x d− +

⎢ ⎥
⎦+⎣ ). Therefore, the expression for  of the first 

strip is exactly the same as (3.27).  

1( |P H h W w= =
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To facilitate the numerical evaluation, if we are only interested in finding , where  is 

the overall output weight of the whole code, the expression can be calculate by layering the 

calculation into group of 2’s power. That is, we calculate 

, ow hZ 0h

( )1
2

1 22

2 ( )1
1 2

min( , )
, ,( )

,
max(0, )

c
c

c c c

c
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c c

L h
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w h
h h L

Z Z
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k
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−

= −

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ 1 ,                                              (3.29) 

where 1( ) /c
cL k d= , representing parallel concatenation of two codes. Next, we obtain 
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2 44
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where 2( ) 2 /c
cL k d= × , representing parallel concatenation of four codes.  Next, we can compute 
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where 4( ) 4 /c
cL k d= × , and so on. Finally, for example, if 9vd =  for the whole code, we have 

( )8 8
9

8 9 89

9 ( 1)
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where 8( ) 8 /c
cL k d= × .  
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3.4 NUMERICAL EVALUATION METHODS AND RESULTS 

We now first introduce the log-evaluation methods for numerical analysis, union bounding 

techniques for BER extraction, and then provide and discuss the obtained numerical results.   

The log-evaluation method: To carry on these numerical expressions with large power (or 

multiplication) of polynomials of large coefficients, we provide the log-evaluation methods, 

developed in [20], in the following. The key idea is to express the coefficients in the exp-log 

form.  

Suppose we have two polynomials ( )f x  and ( )g x . We represent the coefficients in exp-

log form as  

ln2
0 1 2

0 0

ln2
0 1 2

0 0

( ) ...

( ) ...

i
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n n
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n i
i i

m m
bm j

m j
j j

i

j

f x a a x a x a x a x e x

g x b b x b x b x b x e x

= =

= =

= + + + + = =

= + + + + = =

∑ ∑

∑ ∑
.                                 (3.33) 

The coefficients of the polynomial of ( ) ( )f x g x  (from 0x  to n mx + ) can be expressed as 

, where  indicates the series of the 

coefficients, i.e., . Similarly, . 

We see that  

lnln[ ( ) ( )] ([ ,  1, 2,..., ],[ ,  1, 2,..., ])ji bacoef f x g x conv e i n e j m= = = ln[ iae ]
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,               (3.34) 

where . We note that l  is the indices for the  coefficient,  . 

According to the convolution rule,  is a positive integer running from  to .  

( ) (ln ln )l
k k lc a b −= + thl 0,1, 2,...,l n= +

k max(0, )l m− min( , )l n
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Now, if we let , we see that the coefficients of the 

polynomial 

( ) ( )max( , max(0, ) : min( , ))l l
kc k l m l mμ = = −

( ) ( )f x g x  in log form can be expressed as 

( )( )min( , )
( )( )

max(0, ),
ln( [ ( ) ( )]) [ ln(1 ),  0,1,..., ]

ll
k

k l n
c cl

k l m
k

coef f x g x c e l n mμ
μ

μ

=
− −

= −
≠

= + + = +∑ .            (3.35) 

Since , the implementation in the exp-log form avoid the over flow numerical 

problem in programming. 

( )( )( )0
ll

kc ce μ− −< 1≤

kRecall that , we note that the output coefficients in log-form is a 

function of the input coefficients in log-form. Since both of the input and output are in log-form, 

we can use this method recursively when there are more than two polynomials in multiplication. 

( ) (ln ln )l
k k lc a b −= +

Union Bound techniques for BER performance extraction: Union bound is known to be 

tight at high SNR. Let  and  designate, respectively, the minimal and the maximal 

Hamming weight (d) so that . The union upper bound on the ML decoding block error 

probability of linear block codes whose transmission takes place over an AWGN channel is give 

by 

mind maxd

0dS ≠

[17]

max

min 0

2d
s

e d
d d

dE
P S Q

N=

⎛ ⎞⎟⎜ ⎟⎜≤ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ ,                                                              (3.36) 

To compute an upper bound on the bit error probability, the distance spectrum  is replaced by dS

,
1

nR

w d
w

w A
nR=

⎧⎛ ⎞⎪⎪ ⎟⎜ ⎟⎨⎜ ⎟⎜⎪⎝ ⎠⎪ ⎪⎩ ⎭
∑

⎫⎪⎪⎬⎪
 where kR

n
 designates the rate and ,w dA  designates the number of codewords 

whose Hamming weight is equal to d , and which are encoded by information bits of Hamming 

weight  (i.e., w ,w dA  designates the input-output weight enumerator of the code C ). 
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For regular LDGM codes, we have , ,w d w d wA Z −= . For a given d ,  is ranging from 

 to . For the calculation of substitution of , we have 

. For PC-LDGM codes, we have 

w
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where  is ranging from : . Therefore, For the calculation of the 

substitution of , we have . The notation 

w ( )max(0, )ud L− min( , )k d

dS ( )max(1, ) : min( , )uw d L k= − d ( )lL  or ( )uL  represent the 

number of parity bits in the lower or upper encoder. For SC-LDGM codes, we have 
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∑ 2,Z ,                                              (3.38) 

where  is ranging from . For the calculation of substitution of , we have . w ( )0 : ok dS ( )1 : ow k=

Numerical results for LDGM codes and concatenated LDGM codes: Figure 14 shows the 

numerical results of the average distance distributions for (a) 1100,  9,  9v cn d d= = =  graph 

ensemble LDGM codes, (b) 1100,  7,  7v cn d d= = =  graph ensemble LDGM codes, (c) 

 layered ensemble LDGM codes (i.e., number of block = 60, 9 strips, 

n=600,L=60 for each strip), and (d) 

1080,  9,  9v cn d d= = =

1120,  7,  7v cn d d= = =  layered ensemble LDGM codes (i.e., 

number of block = 80, 7strips, n=640,L=80 for each strip). The parameters (or the code length) 

of layered ensemble are chosen such that the resulting code length is most close to 1100. The 

upper subfigure shows the whole distance spectrum, while the lower subfigure shows the details 

for the number of codewords with weights up to 40.  We note that codes with high degree have 

better distance property in the sense that the number of codeword with low weight is suppressed 
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more. Similarly, layered ensemble LDGM codes have  better distance property than graph 

ensemble LDGM codes. For layered ensembles, we note that the minimum distance is 10 1vd= +  

and , respectively. Besides, 8 vd= +1 10 540.0124lA = =  and 8 560.0704lA = = , respectively. It implies 

that the number of codewords with minimum distance directly comes from the 540 rows (and the 

560) rows of G matrix (with the input weight 1).  The minimum distance property of the layered 

ensemble is better than the graph-based ensemble, and thus the distance spectrum derived based 

on the graph ensemble could be used as a bottom line for performance evaluation. 

Figure 15 shows the BER performance among the graph ensemble LDGM codes and the 

layered ensemble LDGM codes. We As suggested by the distance distributions, we see that the 

error floors are decreased when the degrees of the codes increase. Also, the layered ensemble 

LDGM codes have slightly lower error floors than the graph ensemble LDGM codes. .  

Figure 16 shows the distance distributions of PC-LDGM codes for (a) upper code 

 and lower code 1000,  9,  9v cn d d= = = 550,  5,  50v cn d d= = = , (b) upper code  

and lower code , and (c) upper code 

1000,  9,  9v cn d d= = =

550,  9,  90v cn d d= = = 1000,  9,  9v cn d d= = =  and lower code 

, and (d) upper code 550,  15,  150v cn d d= = = 1000,  7,  7v cn d d= = =  and lower code 

, and (e) upper code 550,  5,  50v cn d d= = = 1000,  7,  7v cn d d= = =  and lower code 

, and (f) upper code 550,  9,  90v cn d d= = = 1000,  7,  7v cn d d= = =  and lower code 

. The settings are suggested by 550,  15,  150v cn d d= = = [24], as for low error floor while 

maintaining low threshold. In these bottom subfigures, we see that there is no codeword of 

weight one. Also, two layers appears in the distance distribution – one for the codewords of even 

weight and the other for the codewords of odd weight. Compared among (a) to (f), we see that 

when degree increase in either upper or lower code, the number of codewords with low weights 

are suppressed.  
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The BER performance based on union bound analysis for these PC-LDGM codes are 

shown in Figure 17. As suggested by the distance distributions, codes with higher degrees have 

lower error-floors. Increasing the degree of upper codes from (7,7) to (9,9) provides (lower code 

stay at (5,50)) has the similar effect as increasing the degree of lower codes form (5,50) to (9,90) 

(upper codes stay at (7,7)). It suggests that increasing the degree of the upper codes is more 

efficient to lower the error floor than  increasing the degree of the lower codes.  

Figure 18 shows the distance distributions of SC-LDGM codes while Figure 19 shows 

the BER performance based on union bound for (a) outer code 1100,  9,  9v cn d d= = =  and inner 

code , (b) outer code 550,  5,  50v cn d d= = = 1100,  9,  9v cn d d= = =  and inner code 

, and (c) outer code 550,  9,  90v cn d d= = = 1100,  9,  9v cn d d= = =  and inner code 

, and (d) outer code 550,  15,  150v cn d d= = = 1100,  7,  7v cn d d= = =  and inner code 

, and (e) outer code 550,  5,  50v cn d d= = = 1100,  7,  7v cn d d= = =  and inner code 

, and (f) outer code 550,  9,  90v cn d d= = = 1100,  7,  7v cn d d= = =  and inner code 

. The settings are suggested by 550,  15,  150v cn d d= = = [11], as for low error floors while 

maintaining low thresholds. In these bottom subfigures, we see that there is no codeword of odd 

weights. In the bottom subfigures, we see tooth-like shapes appear in the distance distributions. 

Compared among (a) to (f), we see that when degree increase in either outer or inner code, the 

number of codewords with low weights are suppressed. Compared to PC-LDGM codes, SC-

LDGM codes with similar settings provide significant suppression of codewords with low 

weights. In the distance distributions, PC-LDGM codes provide a deeper starting (refer to the 

number of codewords of weight two) but a big slope, whereas the SC-LDGM codes provide a 

shallow starting but a relatively flat slope. This property helps SC-LDGM codes to achieve 
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extremely low error floors, as shown in Figure 19. We see that, with similarly settings, SC-

LDGM outperforms PC-LDGM codes significantly. 

3.5 CONCLUSION 

We provide self-contained methods to numerically calculate the distance distributions of 

ensembles of graph LDGM codes, layered LDGM codes, parallel-concatenated LDGM codes, 

and serially-concatenated LDGM codes. The distance distributions reveals the internal properties 

of these codes and provide valuable information such as (a) the minimum distance of layered 

ensemble LDGM ocdes is  (b) serial concatenation results in a tooth-like distance 

distribution with relatively flat slope for low weight codewords, whereas  parallel concatenation 

results in a two-layered-like distance distribution with relatively high slope for low weight 

codeword. Based on these distance distributions, the achievable error-floors under ML decoders 

for ensembles of graph LDGM codes, layered LDGM codes, PC-LDGM codes, and SC-LDGM 

are illustrated through union bounding analysis. While both PC-LDGM codes and SC-LDGM 

codes can bring down the error floors effectively, SC-LDGM codes in particular deliver 

extremely low error-floors. 

1vd +
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Table 1. Definition and notation for distance spectrum calculation 

iλ�  The fraction of variable nodes which are with i  edges. These variable nodes will 
be treated emanating  edges in the enumeration method. i
 

iρ�  The fraction of check nodes that are with  j  edges. These check nodes will be 
treated as having j  sockets in the enumeration method. 
 

H  A random variable denoting the weight of output parity-check vector. 
 

W  A random variable denoting the weight of input information vector. 
 

,w hZ  The number of codewords (of a LDGM code) with input weight W  and 
output weight 

w=
H h=  

 
,w hZ  The average number of codewords (over an ensemble of LDGM codes) with input 

weight W  and output weight w= H h= . For a fixed ,w ,w hZ  gives the averaged 
(over the ensemble) weight-distribution of the output parity-check vector. 
 

lA  Denote the averaged (over an ensemble) number of codewords of weight .   l
 

E  A random variable denoting the total number of edges emanating from the 
information variable nodes of the binary message 1. 
 

t  

1
i

i

t k iλ
∞

=
∑ �� , which is the total number of edges between information variable 

nodes and parity nodes. 
 

L  L n k= − , denoting the number of check nodes. Recall that n  is the code length 
and  is the length of input information vector. k
 

( , ) a bx y
f x y⎢ ⎥⎣ ⎦  For a polynomial ( , )f x y , we denote by ( , ) a bx y

f x y⎢ ⎥⎣ ⎦ , the coefficient of the term 

a bx y  in     ( , )f x y , i.e., ( , ) ( , ) a b
a b

x y
a b

f x y f x y x y= ⎢ ⎥⎣ ⎦∑∑ . 
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Figure 10. Structure of LDGM codes for distance distributions analysis. 
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outer encoder inner encoderu {u,p} {u,p,p’}

 
(b) 

 

Figure 11. Block diagrams of parallel and serially concatenated LDGM codes. 

We show (a) parallel-concatenated LDGM codes and (b) serially-concatenated LDGM codes. Information 

bits are denoted by u = [u1,…,uk]. Parity bits are denoted by p = [p1,…,pi] and p’ = [p’1,…,p’j], respectively, for the 

two constituent codes. 

 

u1 uk p1 pi p’1

random permutation π1

p’l

random permutation π2

PCLDGM

u1 uk p1 pi p’1

random permutation π1

p’l

random permutation π2

PCLDGM

 
(a) 

u1 uk p1 pi p’1

random permutation π1

p’l

random permutation π2

SCLDGM

u1 uk p1 pi p’1

random permutation π1

p’l

random permutation π2

SCLDGM

 
(b) 

 

Figure 12. Factor graphs of parallel and serially concatenated LDGM codes. 

(a) parallel-concatenated LDGM codes and (b) serially-concatenated LDGM codes. Squares denote the 

check nodes. Cycles denote the variable nodes. Information bits are denoted by white cycles, u1,…,uk. Parity bits are 

denoted by green cycles, p1,…,pi,  and blue cycles, p’1,…,p’j, respectively, for the two constituent codes. 
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Figure 13. An example of the layered ensemble of LDGM codes. 

In the figure, symbol π  represents a random permutation. Subfigure (a) represents a parity-check matrix 

for , and subfigure (b) represents the factor graph. 18, 3, 3c vn d d= = =

(The subfigure (a) is adopted from [20]) 
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Figure 14. Distance spectrum of the graph ensemble and layered ensemble LDGM codes. 
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Figure 15. Union bound on BER performance of LDGM codes. 

Graph-ensemble versus layered-ensemble. The layered ensemble has slightly lower error-floor than the 

graph-ensemble. 
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Figure 16. Distance distributions of PC-LDGM codes. 
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Figure 17. Union bound on BER performance of PC-LDGM codes. 
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Figure 18. Distance distributions of SC-LDGM codes. 
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Figure 19. Union bound on BER performance of SC-LDGM codes. 
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4.0  SPACE-TIME MESH CODE FOR WMA-NETWORKS 

We consider a wireless multiple access relay network where the sender nodes are aided by a 

number of relay nodes. A transmission of bit-messages is completed in two phases: in the first 

phase each sender node originates its message which is overheard at the relay node, and in the 

second phase each relay node transmits the parity bit calculated from the overheard bit-messages. 

Low-density parity-check (LDPC) codes are used at the sender nodes in the time-domain. At the 

access node, the received bits from multiple sender nodes and relay nodes are thus encoded in 

both the time and the spatial domain. We call this combination a space-time mesh code here.  An 

iterative decoding scheme is designed for the mesh code and its BER performance in AWGN, 

fast Rayleigh fading, and quasi-static Rayleigh fading channels are investigated.  We note that 

there is an important trade-off relation between the time-domain and the spatial domain coding.  

Namely, the time-domain coding is desired when the channel exhibits fast fading; while the 

spatial domain coding is preferred when the channel is in quasi-static fading state.. 

4.1 INTRODUCTION 

Since the seminal paper by Ahlswede, Cai, Li, and Yeung  , the idea of network-coding has 

drawn a lot of interests from the research community. In the network-coding framework, an 

intermediate relay node can be configured to transmit the result of linear combination of its 

[25]
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incoming messages over a finite field. It has been shown that the use of this network-coding can 

increase the traffic carrying capacity of certain wired networks in the multicast application 

. Specifically, if senders and relays are only allowed to cope with binary messages, the 

linear combination operation is reduced to a simple modulo-2 addition. That is, a relay transmits 

the result of the binary parity-check operation of its incoming bit-messages. We call this the 

parity-checking network-coding in this chapter. The parity-checking network-coding has a 

further application in the wireless multiple-access relay network. Since all bits from the senders, 

information bits, and relays, the parity-check bits, are collected at the access node, the access 

node can virtually treat all the received bits as a codeword of a linear block code. Thus, the 

access node can utilize the built-in spatial-domain coding offered by the multiple-access relay 

network to improve the reception. 

[25][52]

 Bao and Li proposed a two-phase-transmission scenario for the multiple-access network 

similar to ours (refer to section 4.2 for a detailed description), and showed that the parity-

checking network-coding is better than simple routing in simulations [35]. In [37], the authors 

further investigated the spatial-domain diversity offered by implementing the parity-checking 

network-coding. However, they assume that each sender processes only a single information bit 

to be transmitted at a time, rather than a coded bit stream. Thus, the time-domain diversity is not 

utilized in this scenario. 

On the other hand, Hausl et. al. in [34] considered the time-domain coding, rather than a 

single-bit transmission, in a similar multiple access relay network. However, they considered a 

rather limited cooperation scheme in which there are only few senders, each of which employs 

low-density parity-check (LDPC) code.  They investigated the performance of the iterative 

receiver at the access node in simulation.  In this scenario, although the time-domain diversity is 
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utilized, the spatial-domain diversity is not fully explored, due to lack of senders. 

Straightforwardly, a coding scheme that can jointly utilize time-domain and spatial-domain 

diversities is demanded.  

In this chapter, we propose the idea of space-time mesh code. The space-time mesh code 

can utilize both the spatial and time diversity which might available in the channel. The other 

effect is that the block length of the code can be increased by combining signaling over the both 

dimensions.  We provide an iterative decoder for this code, and present its bit error rate (BER) 

simulation results. We show that with the proposed coding framework we can investigate the 

trade-off relationship between the spatial and the time domain coding.  Utilizing this tradeoff 

relation the network code can adapt to different channel condition in an optimal manner.  

The organization of this chapter is as follows. An introduction is given in section 4.1. 

Section 4.2 provides the model of the wireless multiple access relay network. Section 4.3 

discusses the space-time mesh codes and iterative decoders at access node. In section 4.4, 

experimental performance analysis is provided. We draw a conclusion and future work in section 

4.5. 
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4.2 WMA-NETWORK MODEL 
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Figure 20. Example of a multiple-access relay network. 

In the network are sender nodes and1S S" 8 41D D" are relay nodes. 

 

A. System of interest: The wireless multiple-access relay network is depicted in Figure 20.  There 

is a single access node depicted as the square box. The circle nodes are the traffic-originating 

sender nodes and the triangle nodes are the relay nodes.  Each sender node transmits k 

information bits independently generated from those of other sender nodes. This information bits 

are individually encoded with a low-density parity-check (LDPC) code. Here, we adopt the 

LDPC code due to its ability not only to achieve channel capacity [38], but also to cooperate with 

the spatial systematic low-density generator matrix (LDGM) code (details in section 4.3). An 

LDPC codeword of length n is to be transmitted to the access node through each sender’s 

dedicated wireless channel. The dedicated channels imply that each sender has its own 

transmission channel which can be achieved either in a random-access manner or in a fixed-
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access manner. For simplicity, here we assume that the common access node can provide the 

necessary synchronization and channel assignment, and consider the fixed-access manner in 

which the signals are multiplexed into a different time, a different frequency or a different 

spreading code. The objective is that no inter-user signal interference occurs at the access node. 

To better define the system, we assume  

1. The sender and the relay nodes form a cluster such that these nodes within the cluster are 

randomly but closely located with each other. The access node is located (far) outside the 

cluster. 

2. Each relay node has the capability to listen to signals from its neighboring sender nodes. 

A particular relay is able to pick up a number of channels on which the reception quality 

is good. It can decode the coded bit streams, if necessary, to ensure that the wireless 

links from the picked sender nodes to the relay node are error-free. 

To utilize the broadcast nature of the wireless media and apply the notion of network-

coding, we provide the following two phase transmission schemes built on [36]. 

In the first phase period, each sender node transmits a coded bit-stream to the access 

node. Meanwhile, because of the broadcast nature, a relay node can collect, and store in its 

buffer, a number of error-free messages from its neighboring sender nodes in this period. In the 

second phase period, each relay node transmits the calculated parity-checking bit-stream, by 

summation on its incoming bit-messages under mod-2 operation, to the access node through its 

dedicated channel (and hence no interference incurred).  

Practical network-coding system for multicasting information in packet networks has 

been studied in [39]. We note that the parity-checking multiple-access relay network is highly 

applicable to real packet networks. Figure 21 shows a possible packet format for the system.  The 
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cluster ID indicates which cluster the packet belongs to, if more than one cluster exists. 

Similarly, the sender node ID in a sender node packet indicates which sender node the packet 

belongs to. The encoding vector in a relay node packet records the composition of this packet as 

a result of parity-checking the indicated source messages. That is, the payload in this packet is 

obtained from , where 
1

(mod 2)S

i

N
S ii=∑ 1 x {0,1}

iS ∈1  is an indicator function, and  is the payload of 

 

ix

iS

PayloadSNSS1
…

cluster ID encoding vector

Packet format for a relay node

PayloadSi

cluster ID sender node ID

Packet format for a sender node

PayloadSNSS1
…

cluster ID encoding vector

Packet format for a relay node

PayloadSi

cluster ID sender node ID

Packet format for a sender node  

Figure 21. A possible packet format for practical system. 

(The figure is adopted from [38]) 

 

B. Network channel model: Each sender’s signal sent in different channels can be 

collected at the access node.  The received signal ,s ty  at the access node is written as  

 , , , ,  ,s t S s t s t s ty E x wα= +                                                            (4.1) 

for  and .  The index s is for the spatial-channels, and t for the 

time index. is the transmitted symbol energy at each sender or relay; 

1, 2, , , , ( ),
S S

s N N= +" "
D

N n1, 2, ,t = "

SE ,s tx is the binary phase 

shift keying symbol for the tth time-epoch of the sth transmitter.  It either refers to the signal sent 

by the senders if the spatial index s is less than the number of sender nodes sN , i.e. for 1, 2, ,
S

s N= " , 

or the signal sent by the relays if  1, ,( )S S Ds N N= + +" N , where DN  is the number relay nodes. We 
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assume perfect phase de-rotation.  The fading gain is denoted as ,s tα , samples of ,s tα are drawn 

from the Rayleigh distribution.    For any fixed spatial-index s, the channel is called quasi-static 

fading when ,s tα is held as a constant during the whole codeword length (i.e., ,s tα is fixed once 

chosen for the duration of whole transmission period, 1, 2, ,t n= " ).  It independently varies from 

one period of the codeword to the other.  On the other hand, the fast fading channel is 

implemented by having  ,s tα  independently varied at every time index . In this chapter, we 

assume all the spatial channels are independent and undergo the same type of fading, i.e., all 

undergo either the quasi-static or the fast fading channel condition. It shall be noted that we can 

let for the AWGN channel.  

t

, 1s tα =

4.3 SPACE-TIME MESH CODE AND THE ITERATIVE DECODER 
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Figure 22. The space-time mesh code. 
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To visualize the relationship among transmitted message bits and parity bits received at the 

access station, we use Figure 22 which depicts an example of the Tanner graph for the space-

time mesh code. The Tanner graph shown in the horizontal axis is for the coding done across the 

spatial domain. It represents the parity-check equations, generated through the two phase 

transmission scheme. The bits related by a parity-check equation sum up to zero under the mod-2 

operation. The graph is formed across the transmitting and relay nodes for a single time-epoch. 

For each of the senders , there is a vertical arrow which represents the time domain LDPC 

code.  It has its own corresponding Tanner graph, although it is not shown there for simplicity.  

Thus, each bit transmitted either in time or space is related with some others.  Due to this 

entanglement across time and space, we call this space-time mesh code in this chapter.  

1S S" 8

4

8

It shall be noted that the arrows for delays are the derivatives for the coded bit-

streams of , and are the consequences of the two phase transmission operation for a single 

epoch t. Moreover, we notice that the code in the spatial domain is in the form of Low-density 

Generator Matrix (LDGM) codes. 

1D D"

1S S"

   In general, the parity-check matrix 
spH of the spatial LDGM code for total  senders 

and 

SN

DN relays can be described by 

 ,                                           (4.2) ,1 , 2 ,

( )

| | |

;

| | |
S D D

D S D

sp sp sp sp N N N

N N N

I
×

× +

=

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

H h h h" ⎥

where the j-th position of 1’s in the 
DN  by 1 vector ,sp kh , , represents there exists a 

error-free data link from the k-th sender to j-th relay. For each sender, 

1, , Sk = " N

1, 2, , Ss N= … , the parity-

 64 



 

check matrices s

tH  of the time domain LDPC codes with code length n and code rate k/n is given 

by  

 ,1 , 2 , ,

( )

| | | |

| | | |

s s s s s

t t t t k t n

n k n− ×

=

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

H h h h h" … ⎥

N

                                             (4.3) 

for . Given the parity-check matrices 1,2, , Ss = … spH and , 1,2, ,s

t Ss N=H … , and consider a 

codeword of the space-time code by concatenating bits in Figure 22 row by row, it can be shown 

that the parity-check matrix H for the space-time mesh code is given by the matrix (4.4).   

 

,1 ,2 , ( ) ( )

1

( ) ,1 ,2 , ( )
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( ) ( ) ,1 ,2 ,

1
,1

| | |
;
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;

| | |

| | |
;

| | |

| |
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N N N s s s N N N N N N

N N N N N N s s s N N N

n

t

× × + × +

× + × × +

× + × + ×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦=

h h h I 0 0

0 h h h I 0

0 0 h h h I

H

h

" "

" "

# # % #

" "

( ) ( ) ( )

( ) ( )

1 1
,2 , ,2 ,2 , , ,2 ,

1 2

2 2
,2 ,1 , ,2 ,2 ,

1

| | | | | | |
; ; ;

| | | | || | |

| | | | | |
; ;

| | | || |

n k N n k N n k ND D DS S S

n k N n k ND DS S

v v N t v v N t n v v N

n

v t v N v t v N

− × − × − ×

− × − ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

0 0 0 h 0 0 0 h 0 0 0

0 h 0 0 0 h 0 0

" " … "

" " ( )

( ) ( ) ( )

2
,2 , ,

1 1

,2 ,3 ,1 ,2 ,3 ,2 ,2 ,3 ,

1 1 1

| | |
;

| | |

| | | | | | | | |
; ; ;

| | | | | | | | |

n k N DS

S S S
n k N n k N n k ND D D

v t n v N

N N N
v v t v v t v v t n

− ×

− × − × − ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡ ⎤
⎢ ⎥

⎥ ⎢ ⎥
⎥ ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣

0 h 0 0

0 0 h 0 0 0 h 0 0 0 h 0

… "

# # … #

" " " "

( )
        ( )

D S S
D S

n N N k N
n N N
+ −

× +

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

                                                                                                                                                    (4.4) 

 65 



 

We denote that , , is an n by 1 all zero vector. The code rate of the mesh code is 

defined as the ratio of the total number of information bits to the total transmitted coded bits such 

that 

,v k0 2, , Sk = " N

 
( )

S
Mesh

S D

kN
R

n N N
=

+
                                                             (4.5) 

One thing that can be noted here is that the length of the mesh code can become very 

large, proportionately increasing with the number of the cooperating sender nodes, and that of 

the relay nodes.  Thus, the space-time mesh code can be used to subsume both the traditional 

time-domain coding and the emerging spatial network-coding. 

After having the parity-check matrix of a typical space-time mesh code (4.4), the access 

node can apply the standard message-passing iterative decoding algorithm to decode the received 

message from all senders.  In this chapter, we adopt the Gallager’s sum-product algorithm 

[26][38]for decoding of the mesh code, and refer to it as the mesh decoder.  Based on the check 

equations embedded in (4.4), the mesh decoder updates the extrinsic log-likelihood ratios (LLRs) 

between the check nodes and the bit nodes. 

One alternative decoding strategy is to divide and conquer.  From Figure 22, we know 

that the access node will get each row of the mesh code one at a time. The access node can 

choose to decode the LDGM-code coded bits row by row upon it receives each of them.  In fact, 

without making hard decisions on the log-likelihood ratios (LLRs), they can be forwarded to the 

next step.  After all rows have been processed, decoding over the time domain coding can be 

initiated at each column.  This phase of decoding is based on the code graph of the time-domain 

LDPC code.  The extrinsic LLRs from the first step can be used to initiate this decoding process.   
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This option can shorten the decoding latency and may lead to a reduced complexity 

implementation solution thanks to a shortened decoding block at each decoder. However, if we 

only allow a one way “message flow,” i.e., only a single flow from the spatial-domain to the 

time-domain, the method will suffer from performance loss.  In fact, our simulation results 

confirm that the performance of this method can be as much as about 3dB worse than that of the 

mesh code decoder. The performance of the second method would probably be improved by 

further iterations between the spatial and the temporal decoders.  However, we note that this 

iterative decoder would still be inferior to the mesh decoder in terms of the performance. 

In the sequel, therefore, we assume the use of the mesh decoder, and focus on the 

determination of the performance of the mesh decoder under different channel settings. 

4.4 EXPERIMENTAL PERFORMANCE ANALYSIS 

In this section, we first compare the performance of the mesh code in various temporal 

and spatial domain settings.  One benefit of this study is that we will be able to adjust the 

parameters of the mesh code according to the variation of the channel’s fading state.  In this 

chapter, we show our results on the following four settings:  

1. NS=20,   ND=10,   ICR=8, n=200 LDPC codes 

2. Ns=200, ND=100, ICR=8, n=20   LDPC codes 

3. NS=20,   ND=0,     ICR=0, n=200 LDPC codes 

4. NS=200, ND=0,     ICR=0, n=20   LDPC codes 

where NS  is the number of senders,  ND is the number of relays, ICR is the number of  Incoming 

Connections per Relay.  For example, the ICR in Figure 20 is two.  We use 5 iterations for the 
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mesh code decoder. Figure 23 shows the extensive computer simulation results of these settings. 

Here we let each and every relay/sender has the same incoming/outgoing connections. The 

parameter n is the codeword length of the time-domain LDPC codes. We use the ensemble of the 

Gallager’s (3, 6) LDPC codes, i.e., three 1’s in each column and six 1’s in each row of the parity-

check matrix. In addition, each sender has its own parity-check matrix  

Based on the code rate defined in (4.5), the BER curves are calibrated with respect 

to , the ratio of the information bit energy to the power-spectral density, for fair comparison. 

Settings 1 and 2 represent the performance of the space-time mesh codes, whereas settings 3 and 

4 represent the performance, averaged over all senders, of a single LDPC decoder (N

0
/

b
E N

D = 0).   As 

expected, the space-time entangled mesh code easily out-performs the single LDPC code.  It 

should be noted that the both entangled mesh codes in settings 1 and 2 are of code length 6000 

which is much longer than 200 and 20 of the settings 3 and 4 respectively.   

Let us consider the settings 1 and 2 more closely.  They both have the same size parity-

check matrix of the form given in (4.4), and thus have the same code length and the same code 

rate. An interesting observation is that the performance of the two mesh codes is however very 

different. Setting 2 tends to produce an error floor in BER curves while Setting 1 does not. This 

phenomenon is in fact somewhat expected and can be explained from the parity-check matrix of 

the mesh codes.  

Consider the extreme case for n = 1 and only 1-bit information is to be transmitted at 

each sender such that there is no time-domain LDPC codes applied.  Then, the dimension of the 

parity-check matrix given in (4.4) becomes 
DN by 

D SN N+ . This matrix is exactly in the form of 

LDGM code. That is, the parity-check matrix is in the systematic form, H , where P is a 

sparse matrix and I is the identity matrix.  We note that the minimal distance of regular LDGM 

[ ;
LDGM

= P I]
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codes are equal to the number of 1’s in a column of the P matrix plus one, i.e., degree+1, and this 

small minimal distance causes a significant error floor. For a fixed code length, as we observe 

from (4.4), the higher the ratio , the more the code looks and behaves like an LDGM code 

(e.g. Setting 2). On the other hand, the lower the ratio , the more the code looks and behaves 

like an LDPC code, i.e., the proportion of the identity matrix in (4.4) becomes smaller (e.g. 

Setting 1). It shall be noticed that the minimum distance of an LDPC code increases in 

proportion to the code length 

/DN n

/DN n

[26].  Thus, Setting 1 shows much better BER performance than 

Setting 2 does.  

Now we investigate the first two settings in different channel conditions, such as AWGN, 

the fast Rayleigh fading, and the quasi-static Raleigh fading channels and see how the BER 

performance changes in these different channels. The results shown in Figure 24 indicate that in 

both AWGN and fast Rayleigh fading channels, the LDPC-like mesh code, setting 1, is better 

than the LDGM-like code, setting 2. On the other hand, for the quasi-static Rayleigh channel the 

results of the LDGM-like mesh code, setting 2, is better. This phenomenon can be explained in 

the following way. For the fast fading channel, each and every redundant bit, either in time or 

spatial domain, suffers an independent fading coefficient drawn from the same Rayleigh 

distribution. Thus, statistically, there is no difference as to placing the redundant bits either in the 

time or in the spatial domain.  Even though the total number of redundant bits are the same in 

Setting 1 and Setting 2, placing more redundant bits in the time domain makes the mesh code 

shaped more like an LDPC code, which out-performs the LDGM-like mesh code formed by 

setting 2. For the quasi-static fading channel, however, the situation takes a different form.  

Under quasi-static fading, if a sender suffers a deep fade, then all of its bit-messages are likely to 
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be lost. There is no time-diversity benefit at all. Thus, it is more beneficial to put coding effort 

more in the spatial domain.   

From the results so far, it is worth to note that the LDGM-like mesh code would be 

beneficial in certain network situations where some links from senders/relays to the access node 

are completely blocked (erased) perhaps by their surrounding building, but the other links from 

the senders/relays to the access node are clean.  

In addition, it is worthy to mention that the ICR determines, and is proportional to, the 

degree of the spatial domain LDGM code.  Also, recall that the minimum distance of the LDGM 

code is proportional to the degree.   Thus, for LDGM-like mesh codes such as Setting 2, 

choosing a higher ICR value will have the error floor lowered.  Our simulation results show that 

by increasing ICR to 8 from 4 in Setting 2, the error floor is lowered by as much as 1dB at BER 

10-4. 

Finally, we have considered ways to pick a better mesh code from the ensemble.  We first 

notice that if we let all the sender nodes employ exactly the same parity-check matrix for their 

LDPC codes, instead of varying them one from another, the parity-check matrix of the mesh 

code (4.4) becomes quite regular. This regularity may cause short cycles, which limit the 

extrinsic information flow in the iterative decoding and hence degrade the BER performance. 

However, by randomly choosing a single parity-check matrix and applying it to all sender 

nodes, our experimental result shows that the BER performance is only 0.5 dB worse at the BER 

10

tH

-4 in the setting Ns=8, Nd=4, ICR=2, and n=30. At the expense of this much performance loss, 

one possible benefit is the reduction in hardware complexity of the iterative decoder thanks to 

the regular structure. 
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4.5 CONCLUSION 

We propose the idea of the space-time mesh codes for the multiple-access relay network, and 

present detailed discussions on the BER performance of the codes, under the sum-product 

iterative decoding algorithm. Given a fixed length of the mesh code, the parity-check matrix can 

be varied from a LDGM-like code to a LDPC-like code by choosing an appropriate parametric 

setting of the mesh code for the multiple-access relay network.   The more number of relays and 

the shorter LDPC code on senders, the more LDGM-like the mesh code becomes. We provided 

the BER simulation results of the mesh code in different types of channels such as AWGN, fast 

fading, and quasi-static fading channels. The LDPC-like mesh code out-performs the LDGM-

like mesh code in AWGN and fast fading channels, whereas the LDGM-like mesh code out-

performs the LDPC-like mesh code in quasi-static fading channels.  Namely, we confirm that 

time-domain coding should be emphasized when the channel exhibits large time-diversity benefit 

while the spatial-domain coding should be emphasized when the channel exhibits large spatial 

diversity benefit.  

Our future work focuses on finding the distance spectrum properties of an ensemble of 

mesh codes and providing performance prediction based on union bound techniques.  We 

envision that this analytic tool can serve as design guidance for finding the best network code for 

different multiple-access network. 
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Figure 23. BER performance: the space-time mesh code versus the single LDPC code. 
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Figure 24. BER performance of the space-time mesh code in different types of channels.  

In the figure, AWGN channels, fast Rayleigh fading channels , and quasi-static Rayleigh fading channels 

are simulated. 
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5.0  A SIMPLE PHYSICAL LAYER SECURITY MECHANISM FOR WMA-

NETWORKS 

Relay assisted wireless multiple access networks equipped with network-coding via a two-phase 

transmission protocol have drawn significant interests in recent years owing to their robust 

performance.  However, relays can be compromised, and malicious data from compromised 

relays can be lethal to reliable network communications.  For this problem, we propose a simple, 

but robust, security mechanism operating within the realm of channel coding in the physical 

layer. The method can not only check the integrity of the data from relay nodes but also reverse 

the effect of attack 

5.1 INTRODUCTION 

Network-coding over wireless multiple access networks, implemented with a two-phase 

transmission (see section 5.2), has received significant attention recently, as seen from examples 

in [35][40][41][42][43]. Messages overheard in the first phase transmission are parity checked 

by relay nodes and then forwarded to the access node in the second phase transmission.  By 

means of this two phase transmission, a virtual low density parity-check (LDPC) code graph can 

be formed across the spatial domain, in which parity bits forwarded by a relay node are produced 

from a selected subset of overheard source bits.  We call this Wireless Multiple Access (WMA) 
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network code, and call such networks WMA networks. The WMA networks are, thus, related to 

diversity-coding networks [44][45] and relay-assisted CDMA networks [46]. By allowing the 

relays to encode the messages from source nodes, robust communications between the source 

nodes and the access node can be established.  

The very feature that allows relay nodes to mix (parity-check) their incoming data, 

however, makes the network vulnerable to jamming attack [47]. An adversary can gain access to 

the relay nodes which are often left alone in an open field and compromise them to produce 

malicious messages afterward.  In WMA networks, since the WMA network code is an expander 

graph, a single compromised relay can have an effect on the messages of many source nodes.  

With a strong attack (many relays attacked), the decoder at the access node may fail causing 

frequent access errors. To protect these network-coding networks from jamming attacks, 

homomorphic hashing schemes (HHS) have been proposed [47][48]. 

Homomorphic hashing functions have the property that the hash value of a linear 

combination of inputs can be constructed by a combination of the individual hash values. For 

example, for three input binary messages , , and , the hash value of a linear combination 

 can be obtained from product of individual hashes, i.e.,  

. Then, with error free observation of the messages , , 

 and  (or , ,  and ), the integrity of the encoded message m  can be 

checked before the transmission of the message m . Since  is of much smaller size than m is, 

the HHS provides an advantage in terms of bandwidth efficiency. 

1m 2m 3m

1 1 2 2 3 3c c c= + +m m m m�

31 2
1 2( ) ( ) ( ) ( )cc ch h h h= ⋅ ⋅m m m m� 3

)

( )h m� 1( )h m

2( )h m 3(h m ( )h m� 1m 2m 3m �

� ( )h m� �

However, the threat of jamming attacks remains unsolved in the WMA networks. First, it 

is easy for sophisticated attackers to only transmit a correct , but then still transmit a 

corrupted message m .  Hence, the HHS can completely fail, and in fact a real-time monitoring 

( )h m�

�
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on the data integrity of m is needed. Second, we notice that it is trivial to determine whether or 

not a relay node is under attack with the availability of the messages m , , , and .  

Decoding for each message individually can be made with the use of conventional channel 

coding techniques.  But the individual decoding of messages will nullify the key performance 

enhancing feature of the WMA network code:  the coding benefit obtained through the network 

code and its joint decoding on the soft signals received from both the source and the relay nodes. 

�

� 1m 2m 3m

We are interested in a security mechanism that can check the data integrity while 

allowing the joint decoding operation.  The main contribution of this chapter therefore is to 

propose a security mechanism for the WMA network code and its decoder.  It is capable of both 

checking data integrity and correcting errors caused by jamming attacks and channel noises; thus 

it enables robust and secure communications for the WMA networks.   

Code based cryptosystems such as McEliece or Niederreiter systems have been studied in 

the past for public-key cryptography in open networks [49][50]. Physical layer treatment for secure 

wireless transmissions has also been considered in [51]. In this chapter, we initiate a new effort 

on the network code based physical layer security to remedy jamming attacks for the WMA 

networks. By exploiting the parity check relationships of the graph code constructed across the 

network, we propose an attack detection method to test the integrity of data from relay nodes. 

Besides, methods for reversing the effect of attacks are provided (see section 5.3). We show that 

the proposed method is robust and effective via simulation (see section 5.4).  
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5.2 NETWORK MODEL 

As depicted in Figure 25, we consider the relay assisted wireless multiple access network in 

which K source nodes, denoted by 1 2, ,..., KS S S , forward their messages to the access node with the 

assistance of L  relay nodes, denoted by 1 2, , , LR R R" .  A rate K/(L+K) network code formed with 

two phase transmission protocol can be implemented as follows. 

Phase I: Originating Transmission Phase: Source nodes send their messages directly to 

the access node through their orthogonal channels. For the  source node, let the message be a 

binary codeword of length n , denoted by , where . The binary 

sequence is modulated via binary phase shift keying (BPSK), i.e., . The 

received signals at the access node under additive white Gaussian noise (AWGN) channels are 

written as 

thk

[ ] [ ] [ ] [ ]
1 2[ , ,...,  k k k

nm m m=m ]k

1}

[ ] {0,1}k
im ∈

[ ] [ ] [ ]2 1,  { 1,k k k
i i ix m x= − ∈ −

[ ] [ ] [ ] [ ]k k k k
i i ix w= +y E , for 1,2,...,i n=  and 1, 2,...,k K= .  is the transmission symbol 

energy of the  source node, and  is the additive noise drawn from i.i.d. Gaussian 

distribution of zero mean and variance . Because of the broadcast nature of the wireless 

transmission, relay nodes can overhear sources’ transmissions, and each is able to successfully 

decode messages from a subset of sources. 

[ ]kE

thk [ ]k
iw

0 / 2N

Phase II: Relaying Transmission Phase: Let  denote the set of indices for successfully 

decoded source nodes for the relay node. The  relay node successfully overhears and 

decodes the message from the  source node if . The  relay node, for , 

encodes the overheard information by XORing the overheard messages , . We denote it 

as . Note that this linear encoding complies well with the idea of network-coding 

lD

thl thl

thk lk ∈ D thl 1,2,...,l L=

[ ]k
im lk ∈D

[ ] [ ]

l

l K k
i

k
m +

∈

= ⊕∑
D

�im

[52][53].  In phase II, each relay node transmits the processed binary sequences of length n  to 
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the access node through its orthogonal channel. Then, the received signals at the access node can 

be written as [ ] [ ] [ ] [(2 1)l K l K l K l K
i iy E m w+ + += − ]

i
++ , for 1, 2,...,l L=  and 1,2,...,i n= . Similary, [ ]l kE +  is the 

transmission symbol energy of the  relay node, and thl [ ]l k
iw +  is the i.i.d. Gaussian distributed noise 

of zero mean and variance . 0 / 2N

The consequence of performing the two phase transmission is that a systematic graph-

code is created across the spatial network domain. As depicted in Figure 25, the circles represent 

source nodes, while the triangles represent relay nodes.  Each relay node can overhear some 

source nodes.  The parity-checkings of these overheard messages at relay nodes are represented 

by edges in the bi-partite graph. In the graph, each relay node shown as the darkened circle is 

paired with a check node shown as the square. Thus, there are equal number of relay nodes and 

check nodes, and there is a single edge connecting each relay to its check node.  The number of 

edges connecting a check node to source nodes can be more than one. It is the number of 

messages that the relay node can overhear and successfully decode.  Thus, the number of edges 

connecting the check node paired with the  relay node to the source nodes on the graph-code is 

the size of the set . 

thl

Dl

The parity-check relationships for the messages from source nodes and relay nodes can 

be succinctly described in the bi-partite graph shown in Figure 25, which are given by  

[1] [2] [3] [1 8]

[3] [4] [2 8]

[4] [5] [6] [3 8]

[6] [7] [8] [4 8]

0

0
  

0

0

i i i i

i i i

i i i i

i i i i

m m m m

m m m
i

m m m m

m m m m

+

+

+

+

⎧ ⊕ ⊕ ⊕ =
⎪

⊕ ⊕ =⎪ ∀⎨
⊕ ⊕ ⊕ =⎪

⎪ ⊕ ⊕ ⊕ =⎩

. 

Utilizing these parity-check relationships, a parity-check matrix can be formed, and a 

standard message passing (MP) decoder can be implemented at the access node. That is, the 
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decoder takes the received signals carrying for the messages from both source nodes and relay 

nodes, forms log-likelihood ratios (LLRs), and feeds them to the message passing decoder 

working on the bi-partite graph.  After a fixed number of iterations, or after convergence, the 

independent messages from sources can be decoded. This spatial domain coding provides 

significant coding and diversity benefits [35][40].   

5.3 METHODS FOR DETECTING AND RELIEVING ATTACKS 

Relay nodes are often deployed in an open field, and thus are vulnerable to attacks. Many 

kinds of attacks are conceivable. Here we consider the kind of attacks in which an adversary 

directly alters the messages forwarded by relay nodes.  First, the adversary can choose to block 

or erase the messages from relay nodes.  In such a case, the channel between relay nodes and the 

access node can be modeled as erasure channels.  This kind of attack is easy to detect due to the 

absence of the received signals. Once labeled as compromised nodes, the access node can simply 

discard the messages from these relay nodes and feed the MP decoder with zero LLRs. Second, 

the adversary can choose to alter the message in a way that is not easily detectable.  One choice 

is to flip the binary value of the parity bit.  This is non-trivial to detect, and will lead to the worst 

situation in terms of its impact on decoder’s performance degradation.  

The second type of attack, which is stronger, is the main consideration in the chapter. In 

subsequent sections, we present our methods for detecting and reversing the effect of attack. 

Detecting Attacks:  At the access node, the MP decoding algorithm is run on the bi-partite 

graph. This algorithm is set to run once it is fed with channel LLRs.  The channel LLRs are 

generated from the signals received from the source and relay channels.  The MP decoder refines 

 79 



 

the initial LLRs by enforcing the parity-check relationships and produces posterior LLRs. This 

refinement can continue for a specified number of iterations, say for the maximum iteration 

count.  Then, the MP stops and completes the decoding by thresholding the most updated 

posterior LLRs at the last iteration.  Now, we discuss how the normal MP decoding algorithm 

can be modified into an attack detection mechanism. Let’s denote  as the channel LLR, and 

denote  as the extrinsic LLR obtained at the last iteration. Also, let’s denote 

LLRc

LLRe HLLRc  and 

HLLRe  as their hard decisions, i.e., 1 if 0HLLRc LLRc= >  0 otherwiseHLLRc = , and similarly, 

, .  1 if 0HLLRe LLRe= > 0 otherwiseHLLRe =

As an attack detection mechanism to detect whether a relay node is under attack or not, 

we propose the polarity contradiction (PC) probability between the two numbers HLLRc  and 

HLLRe .  

It is inspired by the analysis given below.  For this analysis, we assume the system is 

operating at a decent signal to noise ratio (SNR) at which 10-3 or smaller bit error rates are 

expected, without an attack. Since the graph-code is a linear code, without loss of generality, the 

all-zero message is assumed to be transmitted from source nodes.  This is for the analysis 

purpose only.  We use randomly generated codeword transmission in simulations given in 

section 5.4 to test our detection method (given in Table 2). 

Analysis on Attack Detection:  Let δ  be the binary random variable indicating the 

polarity contradiction between the two hard decisions, HLLRc and HLLRe . That is, 1δ =  when they 

contradict with each other, and 0δ =  otherwise. Hence, the PC probability for a relay node can 

be written as 

( 1) ( 1 | 0) ( 0)

                   ( 0 | 1) ( 1).
H H H

H H H

P P LLRc LLRe P LLRe

P LLRc LLRe P LLRe

δ = = = = =

+ = = =
                          (5.1) 
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Using the idea from density evolution [54], and the assumption of a decent SNR where the 

graph-code is decodable with low error rates, it implies the mean of  is far below zero. This 

suggests that  and 

LLRe

( 1)HP LLRe = → 0 1( 0)HP LLRe = → . Thus, we have 

( 1) ( 1| 0

              ( 1)
H H

H

P P LLRc LLRe

P LLRc

δ )= ≈ =

= =

= .                                            (5.2) 

For the second line, we use the assumption that HLLRc  and HLLRe  are independent after the 

maximum number of iterations.  This assumption is valid since HLLRe  is generated after all 

information from other nodes have been incorporated via iterations.   

Eq. (5.2) implies the following: Under the assumption that there is no attack, PC 

probability ( 1P )δ =  can be accurately approximated by the probability of a positive channel 

LLR, i.e., .  ( 1HP LLRc = )

Now, let us include attack in the input/output model for relay nodes. That is, we have 

( )2( ) 1y E a x= ⊕ − w+ , where is the random variable indicating the probability of an attack on 

the relay node, i.e.,  if the adversary attacks, and 

a

1a = 0a =  otherwise. Then, the probability 

can then be written by ( HP LLRc =1)

0)( 1) ( 0) ( 1 |

                        ( 1) ( 1 | 1)
H H

H

P LLRc P a P LLRc a

P a P LLRc a

= = = = =

+ = = =
.                                      (5.3) 

In AWGN channels, the LLR  of the all-zero codeword is Gaussian distributed with the mean c

04 /sE Nμ = −  and the variance 2 2σ μ= . The conditional probability can be calculated from  

( 1| 0) 0.5 ( / 2

( 1| 1) 1 0.5 (
H

H

P LLRc a erfc

P LLRc a erfc

μ

μ

⎧ = = =⎪
⎨

= = = −⎪⎩

)

/ 2)
.                                           (5.4) 

It shall be noticed that 0.5 ( / 2) 1 0.5 ( / 2)erfc erfcμ μ< −  when 0μ < .  
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Eq. (5.3) can be used to find the estimator for attack detection. If there is no attack, 

i.e., , then the probability is ( 0)P a = =1 0)( 1) ( 1|H HP LLRc P LLRc a= = = =

0

1)

.  For a given SNR, this 

probability can be calculated from (5.4). Let us call it baseline PC probability.  Now let’s see 

what happens when . Looking back at (5.3), we first notice that 

 and 

( 1)P a = ≠

( 1| 0) ( 1|H HP LLRc a P LLRc a= = < = = ( 0) ( 1) 1P a P a= + = = , we see that as the attack probability ( 1P a )=  

is increased from zero, the PC probability grow larger than the baseline PC probability as well. 

In other word, for any relay node under attack, the PC probability grows larger than the baseline 

PC probability.   

The analysis so far implies that by observing the level of polarity contradiction for each 

relay we are able to determine whether or not a relay is under attack.  We develop this idea into 

an attack detection method in the next subsection.  

Attack Detection Algorithm: In this subsection, we aim to provide an algorithm to 

estimate the polarity contradiction probability for the  relay node.  The algorithm is outlined in thl

Table 2.  Namely, we compute the average-suspicion-index (ASI) as an estimate of the polarity 

contradiction probability. The PC probability is estimated as the frequency of polarity 

contradiction occurrences here. Each relay sends n bits for a burst. For each bit transmission, 

polarity contraction can be obtained.  Averaging them for n trials, we have an estimate.   

For each bit transmission, say the ith, the channel LLR and the extrinsic LLR for the  

relay node, 

thl

[ ]lLLRc  and [ ]lLLRe , can be compared to see if their polarities contradict with each 

other.  Here we use the superscript notation [ ]  as the index for the  relay node.  We use 

instantaneous suspicion index, denoted as , to record the presence of contradiction for the i

l thl

[ ]l
iISI th 

bit of  relay node, i.e., it is 1 if the two contradict and 0 otherwise.  Averaging  over a thl [ ]l
iISI
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total of n bits, we obtain the [ ]lASI  for the  relay node.  This calculation can be repeated for 

each relay, i.e., . As increases, the estimate becomes more accurate. 

thl

1, 2, ,l L= " n

1)

One more observation we can make from (5.3) is that when the network is operating at a 

decent channel SNR, ( HP LLRc =  is approximately equal to .  The 

probabilities  and

( 1P a = )

0) 1)( 1|HP LLRc a= = ( 1|HP LLRc a= =  are close to 0 and 1 respectively.  Therefore, 

we see that, via (5.2) and (5.3), [ ]lASI  can serve as an estimation of the attack probability for the 

 relay node, i.e., .  Summarizing observation made so far, we have: thl [ ]( 1) lP a =

1. [ ]lASI  is an estimate of attack probability for the l-th relay node. 

2. When a relay node is under attack with a significant attack probability, its ASI deviates 

significantly from the baseline. 
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Table 2. The attack detection method for WMA-networks 

 

I. For ith bit, i n1, 2, ,= " , 

1. Make hard decisions on  and for the  relay 
nodes for all , i.e., 

LLRc LLRe thl
l

[ ]
[ ]

[ ]

0, if 0
  ,

1,  if 0

l
l

H l

LLRc
LLRc l

LLRc

⎧ <⎪= ∀⎨
>⎪⎩

 

[ ]
[ ]

[ ]

0, if 0
  ,

1,  if 0

l
Hl

H l
H

LLRe
LLRe l

LLRe

⎧ <⎪= ∀⎨
>⎪⎩

 

  2.  Compute the instant suspicion index (ISI) for the l  relay 

nodes for all  by 

th

l

[ ] [ ] [ ]   ,l l l
i H HISI LLRc LLRe l= ⊕ ∀  

II. Obtain the average suspicion index (ASI) by         averaging 

ISI over n ISIs:  

[ ]

[ ] 1   ,

n
l

i
l i

ISI
ASI l

n
== ∀
∑

 

 

 

Method for Reversing Attacks: If the attacked relay node can be identified successfully, 

could we use that information to reverse the action of attack?  We aim to answer this question 

now.  Namely, if the identification of attacked relays is possible, why don’t we take an active 

step and try to correct the compromised messages.  This is an attempt to reverse the effect of the 

flip attacks and restore the original performance of the WMA network code.  This is possible.  It 

can be approached in two slightly different ways.  The first approach is to discard the channel 

LLR information from attacked relays; the second is to adjust the channel LLR information from 

those relay nodes identified as under attack. The first response is simply setting , for all [ ] 0lLLRc =
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those relay nodes which are identified as under attack. The second approach is to correct their 

channel LLRs by the following operation 

[ ] [ ] [ ]
0

[ ] [ ] [ ]
0

ˆ 2(4 / ),   0
ˆ 2(4 / ),   0

l l l
b

l l l
b

L LLRc E N LLRc

L LLRc E N LLRc

⎧ = −⎪
⎨

≥

= + <⎪⎩
.                                       (5.5) 

Since the magnitude of the mean of the channel LLRs is , this operation is 

equivalent to flip the polarity of the bit sent by the relay.  It should be noticed that this treatment 

will be more effective when the attack probability 

04 /bE N

( 1P a )=  is high. Simulation results for both the 

treatments are provided in section 5.4. 

5.4 SIMULATION RESULTS AND DISCUSSION 

The simulation is based on 100 source and 100 relay nodes. Each relay node is able to 

check with 5 source nodes.  We assume that all source nodes and relay nodes have equal distance 

to the access node such that the noise variances of the channels are the same. This corresponds to 

the case where source nodes and relay nodes are located in the vicinity of each other and are all 

sufficiently far from the destination.  

First, we set the attack probability equal to 1, i.e., ( 1)P a 1= = , and investigate the bit error 

rate (BER) performance of the WMA network code as we vary attack density.  The attack 

density is defined as the percentage of relay nodes under attack. We tried 0%, 5% and 15%.  The 

results are shown in Figure 26 (see the “raw” curves). We note that the performance degrades 

dramatically as attack density is increased.  With 0% attack density, 10-4 BER is obtained at 4dB 

Eb/No.  BER is increased to 10-2 and 10-1 at 4dB Eb/No for attack density of 5% and 15% 
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respectively.  In fact, with 15% attack density, the BER curve forms an irreducible error floor at 

10-1. 

Figure 27 (a)-(f) show the ASI’s averaged over 1000 samples for 5% and 15% attack 

density. We tried 0.3, 0.5, and 1.0 attack probability respectively. In simulation, the outputs from 

1st to 5th relay node are flipped (see Figure 27 (a), (c), and (e)) and that from 1st to 15th relay node 

are flipped (see Figure 27 (b), (d), and (f)). We tested 0dB and 5dB SNR in each case.  Note that 

in general the ASI’s are large for the attacked relay nodes but small for the un-attacked relay 

nodes. As discussed in section 5.3, we expect that, for the 5dB curves, the ASI’s of the attacked 

relay nodes in Figure 27 (a) and (b) are approximate to the attack probability 0.3. Similarly, the 

ASI’s of the attacked relay nodes (for the 5 dB curves) in Figure 27 (c) and (d) are approximate 

to the attack probability 0.5. The attack probability 1.0 is well captured in Figure 27 (e), but not 

in Figure 27 (f). We note that, in Figure 27 (f), the baseline is significantly higher. This suggests 

that the WMA network code is not decodable to a low error-rate when the attack density is 15% 

with 1.0 attack probability.  In each of the cases (a) through (f), although the gaps between the 

ASI’s of attacked relay nodes and those of un-attacked relay nodes at 0dB SNR are smaller than 

that at 5dB SNR, the gaps are still clearly visible. This shows the robustness of the attack 

detection algorithm which can provide a decent identification capability even at the low SNR of 

0dB.  

Now, we show the restored performance after the attack detection is done. We tried two 

sample sizes, n = 100 and n = 1000 for the two proposed attack reversing methods: (i) discarding 

the LLR information (see the “w/E” curves in Figure 26), and (ii) correcting the LLR 

information (see the “w/C” curves in Figure 26).  It is clear that both methods can restore the 

performance significantly for every attack density we tried. We note that both the curves “5% 
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w/C” overlap each other. Both the curves “5% w/E” also overlap each other. This implies that 

averaging over 100 samples (n = 100) is good enough for 5% attack density. On the other hand, 

averaging over 1000 samples (n = 1000) provides significant performance improvement when 

attack density is 15% (see both the curves “15% w/C” and both the curves “15% w/E”). This is 

expected because it is more difficult to accurately identify the under attack relay nodes when the 

attack density increases – the graph code becomes more vulnerable.  Besides, erasing is more 

effective than correcting the LLR information from attacked relay nodes. We note that erasing 

the LLR information effectively results in a new graph code with a higher network code rate. On 

the other hand, the correction mechanism involves hard-decision process and hence results in a 

sub optimal performance.   

5.5 CONCLUSION 

We show that it is effective to identify attacked relay nodes by simply investigating the 

level of contradiction between the hard decision LLRs. After suspicious relay nodes are 

identified, the attack actions can be reversed by discarding the un-trustable messages from these 

relay nodes. Our proposed method is simple but robust. The graph coded wireless multiple 

access relay networks not only provide an enhancement in error-performance, but also provide 

an opportunity to verify the data integrity for messages from relay nodes. Further considerations 

such as optimal threshold for identifying (un)attacked relay nodes will be carried out in the 

future.  
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Figure 25. Example of the WMA-network and its corresponding graph-code.  

In the figure, are source nodes and are relay nodes. The graph-code is obtained through the 

two phase transmission protocol. 
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(The upper part of the figure is modified from [46]) 
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Figure 26. BER performance of the WMA network code under different attack densities. 

We show the BER curves with and without the restoring methods. Averaging over 100 and 1000 samples 

are performed for both restoring methods. In the network, 100 source nodes and 100 relay nodes are simulated. 
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Figure 27. Average suspicious index under different attack densities and attack probabilities. 

 (a) 5% attack density with 0.3 attack probability, (b)  15% attack density with 0.3 attack probability, (c) 

5% attack density with 0.5 attack probability, (d) 15% attack density with 0.5 attack probability, (e) 5% attack 

density with 1.0 attack probability, and (f) 15% attack density with 1.0 attack probability. All ASI realizations are 

obtained by averaging over 1000 samples for both 0dB SNR  and 5dB SNR. 

 

 

 90 



 

6.0  USER-SATISFACTION BASED BANDWIDTH ALLOCATION FOR 

TRANSMISSION OF MULTIPLE SOURCES OF DATA 

In this chapter, we study the bandwidth allocation for multiple sources of data transmitted over a 

single communication medium. We aim to maximize the overall user satisfaction in data 

transmission, and formulate an optimization problem for the bandwidth allocation. Using either 

the logarithmic or exponential form of satisfaction function, we are able to derive closed-form 

solutions for the optimization problem. We show that the optimal bandwidth allocation for each 

type of data is piecewise linear with respect to the total available bandwidth. 

6.1 INTRODUCTION 

In recent years, more and more communication systems involve simultaneous transmission of 

multiple sources of data over a single communication medium. For example, in a telesurgery 

system, streams of video, audio, and haptic data need to be sent from a field hospital to a remote 

surgeon via a packet-switched network or a dedicated satellite link. Each type of data demands a 

certain range of transmission rate. This might create conflicts among these data when the 

available bandwidth is limited. So as to achieve the best overall QoS (quality of service) or user 

satisfaction, it is desirable to optimize bandwidth allocation for different types of data. Moreover, 

since the available bandwidth and quality of communication may vary significantly from time to 
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time, it is important that the optimal solutions for bandwidth allocation are obtained and 

implemented in real time. 

User-satisfaction based bandwidth allocation has been investigated in several studies 

(e.g., [55][56][57][58]). These studies have quantified the QoS based on user-satisfaction 

oriented models, and formulated the bandwidth allocation for multiple sources of data into 

optimization problems. However, solving these optimization problems is not so straightforward. 

Although necessary conditions have been derived for the optimal strategy of bandwidth 

allocation [58], an explicit form of the solution is still not available. Miao and Niu have proposed 

to use Rosen’s gradient project method to find the optimal strategy [55][56][59], but their 

method requires iterative searching and thus cannot provide closed-form solutions.  

In this chapter, we aim to solve the optimization problem for bandwidth allocation that 

maximizes the overall user satisfaction.  We model the user satisfaction as a weighted sum of the 

satisfactory functions for individual types of data. Researchers have already used logarithmic 

functions (e.g., [60][61][62]) or exponential functions (e.g., [63]) to characterize human 

perceptual satisfaction. Utilizing these forms of satisfaction functions, we are able to derive 

closed-form solutions for the bandwidth allocation problem (Section 6.3). Moreover, we show 

that the optimal bandwidth allocation for each type of data is piecewise linear with respect to the 

total available bandwidth (Section 6.3). This result allows us to calculate the optimal bandwidth 

allocation immediately (in real time) without replying to the conventional iterative updates. In 

the situations when the parameters of the satisfaction functions or weights of priorities for the 

data types are unknown, we provide strategies to characterize these parameters using data from 

human experiments (Section 6.4). We show that the piecewise-linear property of the optimal 

solution enables closed-form expressions for parameter estimation (Section 6.5). 
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6.2 PROBLEM FORMULATION 

The problem of bandwidth allocation for multiple sources of data can be formulated into an 

optimization problem:  

                                                           maximize  
1

( )
N

i i i
i

w I r
=
∑

subject to 
1

N

i
i

r R
=

≤∑  and                     (6.1) 

                                                                           ,min ,maxi i ir r r≤ ≤ for 1,..., .i N=           

The notations in the above problem are explained as follows. We use wi to represent the weights 

of importance or priority for different types of data, where the subscript i is the index for a data 

type (e.g., video, audio, or haptic data) and N is the total number of data types under 

consideration. We use ri to denote the bandwidth or transmission rate allocated for the i-th type 

of data. The rate ri is bounded from below by ri,min and from above by ri,max, where (i) ri,min is the 

minimum perception-quality requirement for the i-th type of data (ri,min can also be the minimum 

required rate for the encoder/decoder of the i-th type of data to work) and (ii) ri,max is the 

maximum rate at which the quality of the i-th type of data can be fully satisfied. Since all the 

sources of data are simultaneously transmitted over a common communication medium, they are 

subject to the total available bandwidth of the medium, denoted R. We use Ii(⋅) to represent the 

satisfaction function of the i-th data type.  It is a monotonic increasing and concave function of 

the data transmission rate. Following [60][61][62][63], we utilize two forms of satisfaction 

functions for Ii(⋅): the logarithmic and exponential functions (see Section 6.3).  

The optimization problem (6.1) is easy to solve for two special cases of R (the total 

available bandwidth): (i)  and (ii) , where  and  denote  and minR R< maxR R> minR maxR ,min1

N
ii

r
=∑
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,max1

N
ii

r
=∑ , respectively. For case (i), (6.1) has no feasible solution. For case (ii), the available 

bandwidth allows all types of data to be transmitted at their maximum rates, and hence the 

optimal solution is  for .  ,maxi ir r= 1,...,i N=

Therefore, in the rest of the chapter, we only need to consider the value of R within the 

range of . For this range of R, it can be seen that the optimal solution of (6.1) must 

satisfy the equality in  (making full use of the bandwidth), and thus the first constraint 

of (6.1) is reduced to  

min maxR R R≤ ≤

1

N
ii

r R
=

≤∑

 

                                      
1

.
N

i
i

r R
=

=∑                                                                   (6.2)               

6.3 OPTIMAL BANDWIDTH ALLOCATION 

In this section, we consider two forms of satisfaction functions, the logarithmic and exponential 

functions, to characterize the human perceptual satisfaction in presence of different transmission 

rates of a specific type of data. We aim to derive closed-form solutions for the optimal 

bandwidth allocation.  

A. Using Logarithmic Satisfaction Function: Consider the following form of satisfaction 

function  

                           ( ) ln i
i i i

i

rI r iβα
γ
−

=                                                           (6.3)                   

where iα , iβ , and iγ  are the parameters characterizing the shape of the satisfaction function for 

the i-th type of data transmitted within the range of ,min ,maxi i ir r r≤ ≤ .  
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To solve (6.1) with the equality constraint (6.2), we construct the Lagrangian function  

                                       (6.4) 1

,min ,max
1 1 1

( )

     ( )+ ( ) ( ).

N

i i i
i

N N N

i i i i i i
i i i

L w I r

r R r r r rλ μ υ

=

= = =

=

+ − − + −

∑

∑ ∑ ∑ i

NLet , , be the optimal solution to (6.1) for a value of R satisfying ir
∗ 1,...,i = min maxR R R≤ ≤ . 

According to the Kuhn-Tucker conditions [64], there exist unique Lagrange multipliers λ∗ , iμ
∗ , 

and iυ
∗ , , such that 1,...,i = N

          
*

0,   1,...,i i
i i

i i i
i i

wL i
r rr r

α λ μ υ
β

∗ ∗ ∗
∗

∂
= + − + = =

∂ −=
N

N

N

                                 (6.5a) 

                                                                                         (6.5b) 
1

0
N

i
i

r R∗

=

− =∑

                                          (6.5c) ,min 0  for  { | 0,  1,..., }i i ii i r r iμ∗ ∗≤ ∈ ≡ − = =K

                                                                                   (6.5d)  =0  for  i iμ∗ ∉K

                                          (6.5e) ,max 0  for  { | 0,  1,..., }i i ii i r r iυ∗ ∗≤ ∈ ≡ − = =Q

          =0  for  i iυ∗ ∉Q                                                                            (6.5f) 

 

Consider the following two cases. 

 Case 1: Both and  [defined in (6.5c) and (6.5e), respectively] are empty for the 

optimal solution. That is,   and  for 

K Q

,mini ir r∗ > ,maxi ir r∗ < 1,...,i N= . From (6.5d) and (6.5f), we see 

 and  for any i. Therefore, (6.5a) becomes  0iμ
∗ = 0iυ

∗ =

                    0,   1,...,i i

i i

w i
r

Nα λ
β

∗
∗ + = =
−

.                                                  (6.6) 

Using (6.5b) and (6.6), we can find the optimal solution:    
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The above expression can also be written as  

                                                                                                  (6.8) i i ir c d∗ = +

where  

                              
1

/ (N
i i i j jj

d w wα α
=

= ∑                                                        (6.9a) 

                              ( )1

N
i i i jj

c dβ β
=

= − ∑ .                                                        (6.9b) 

It can be seen that , , and 0 1id< <
1

1N
ii

d
=

=∑ 1
0N

ii
c

=
=∑ . 

Equations (6.7) and (6.8) clearly show that ir
∗ , the optimal bandwidth allocation for the i-

th type of data, is a linear function of the total available bandwidth R as long as the condition of 

Case 1 is satisfied.  

Case 2:  is nonempty for the optimal solution. Then (6.5a) becomes  ∪K Q

               0  for  i i

i i

w i
r

α λ
β

∗
∗ + = ∉ ∪
−

K Q                                                (6.10a) 

and (6.5b) becomes  

             ,min ,max 0i j k
i j k

r R r r∗

∉ ∪ ∈ ∈

⎞⎛
− − − ⎟⎜
⎝ ⎠

∑ ∑ ∑
K Q K Q

= .                                        (6.10b) 

By using (6.10a) and (6.10b), the optimal bandwidth ir
∗  allocated for the i-th data type 

can be calculated: 
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where  

 

                             / (i i i j j
j

d w wα α
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K Q
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                             i i i j
j
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K Q
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It can be seen that , 0 1id< < 1ii
d

∉ ∪
=∑ K Q

, and  0ii
c

∉ ∪
=∑ K Q

. 

Equation (6.1) shows that , the optimal bandwidth allocation for the i-th type of data, is 

a linear function of the total available bandwidth R as long as  and  remain unchanged. 

Equation (6.7) or (6.8) can be viewed as a special case of (6.11) when both  and are empty.  

ir
∗

K Q

K Q

Summarizing the observations from the above two cases, we may conclude that the 

optimal bandwidth allocation for each type of data should be a piecewise linear function of R. 

Further discussion about this will be given in Section 6.3-C.  

B. Using Exponential Satisfaction Function: Consider the following form of satisfaction 

function  

                       ( )( ) 1 i i ir
i i i iI r e α βδ γ− −⎡ ⎤= −⎣ +⎦                                                   (6.13)                

where iα , iβ , iγ , and iδ are the parameters characterizing the shape of the satisfaction function 

for the i-th type of data transmitted within the range of ,min ,maxi i ir r r≤ ≤ .  
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So as to solve the bandwidth allocation problem given (6.3), we follow the similar steps 

as described in Section 6.3-A.  Constructing the Lagrangian function in the same form of (6.4), 

we may derive 

          
( )

*
0,   1,...,

i i i

i i i
i ir

i
i i

wL i
r er r

α β

δ α λ μ υ∗
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−
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= + − + = =

∂ =
N

i

                                      (6.14) 

together with (6.5b)-(6.5f). Following the similar derivation as provided in Section 6.3-A, we can 

obtain  
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where and  are defined in (6.5c) and (6.5e), respectively, and K Q

     
{ }ln( ) /

1 ln( )
1/

j j j j j
j

i i i i
i i

j

w
c w

j

δ α α β
δ α

α α α
∉ ∪

∉ ∪

⎡ ⎤ +⎣ ⎦
= −

∑
∑

K Q

K Q

                            (6.16a) 

 1
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i j
j
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α α
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K Q

.                                                                     (6.16b) 

It can be seen that , 0 1id< < 1ii
d

∉ ∪
=∑ K Q

, and  i ii i
c β

∉ ∪ ∉ ∪
= −∑ ∑K Q K Q

. 

Similar to the results in Section 6.3-A, the optimal bandwidth allocation derived here is 

also a piecewise linear function of R, as demonstrated in (6.15).  

C. Piecewise Linear Solutions: From the results obtained in Sections 6.3-A and III-B, we 

have observed piecewise linear dependency of the optimal bandwidth allocation on the total 

available bandwidth R. Here we provide further illustrations.  
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Figure 28(a) shows the piecewise linear “trajectories” for the optimal bandwidth 

allocation in the case of three sources of data. Let us first consider the range of R within which 

the optimal solution to (6.1), ri, satisfies ri,min < ri < ri,max for all the three data types (i = 1, 2, and 

3). In this range of R [depicted in region (R3) of Figure 28(a)], the optimal trajectory of ri is a 

strictly increasing line for each data type, according to (6.8) where 0 < di < 1 for any i. Within 

this region, ri decreases as R  decreases. Without loss of generality, let us assume r1 hits r1,min 

first as R decreases. When R further decreases from there, now in region (R2) of Figure 28(a), r1 

remains at r1,min, and r2 and r3 decrease linearly with R and share a bandwidth of . This 

continues until r

1,minR r−

2 hits r2,min or r3 hits r3,min. Without loss of generality, assume r2 hits r2,min first. 

Now if R further decreases [in region (R1) of Figure 28(a)], r1 and r2 will remain at r1,min and 

r2,min, respectively, and all the rest of bandwidth 1,min 2,minR r r− −  will be allocated to r3. When R is 

less than R r , the optimization problem (6.1) has no solution. In the other 

direction, when we increase the value of R from region (R3) to regions (R4) and (R5) in 

min 1,min 2,min 3,minr r= + +

1

Figure 

28(a), similar characteristics of piecewise linearity may be observed in the optimal trajectories of 

ri. It can be verified that the number of regions of linearity, where the slopes of the optimal 

trajectories of ri stay constant, should be no more than 2N −  (N is the total number of data types 

under consideration).  
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Figure 28. The optimal distribution of bandwidth allocation for a given available bandwidth. 

(a) Illustration of the piecewise linear solution for the optimal bandwidth allocation. Within each indicated 

range of R, denoted by (R1), (R2), etc., the optimal bandwidth allocation is linear with respect to R.  (b) A toy 

example, where only video and audio data are involved. 

 100 



 

Figure 28(b) presents a toy example, where only video and audio data are involved. 

These two types of data are given the same priority ( 1w w2= ), and their satisfaction functions are 

chosen as  (  ranging from 16 Kbps to 206 Kbps) for the audio data and 

 (  ranging from 64 Kbps to 822 Kbps) for the video data, respectively. 

10.0223
1 1( ) 1 rI r e−= − 1r

20.0056
2 2( ) 1 rI r e−= − 2r Figure 

28(b) demonstrates the piecewise linear dependency of the optimal solution on the total available 

bandwidth R. There are three regions of linearity. In region (R2), the optimal trajectories of ri 

with respect to R are strictly increasing lines for both the audio and video data. In this region, 

incremental bandwidth will be allocated to the two types of data in proportion. In region (R1), 

the optimal strategy is to allocate bandwidth to the audio data as much as possible while keeping 

the minimally required bandwidth for the video data. In this region, increasing bandwidth of the 

audio data tends to create more satisfaction than increasing bandwidth of the video data by the 

same amount. On the other hand, in region (R3), the optimal strategy is to “sacrifice” the audio 

data, because the bandwidth allocated to it, r1, already reaches r1,max.    

6.4 TRAJECTORY FITTING FOR THE OPTIMAL SOLUTION 

In Section 6.3, we derived closed-form solutions for the optimal bandwidth allocation for 

multiple sources of data. However, the calculation cannot be completed if the parameters of the 

satisfaction functions or weights of priorities for different types of data are not available. To deal 

with this situation, we consider using data from human experiments. The purpose of the 

experiments is to obtain samples of human decisions on the best combinations of bandwidths 

allocated for multiple sources of data for some given values of R. However, in this section, our 

focus is not to design or run the human experiments, but to propose a strategy of using the 
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experimental data (assumed to be available already) to fit the optimal solutions—the optimal 

trajectories of ri with respect to R.  

Suppose we acquired the data  and  (k = 1,…,K; i = 1,…,N) from some perception 

experiments tested on a human subject, where: (i) , k = 1,…,K, is a set of K values of the total 

available bandwidth tested in the experiments; (ii) for each , the bandwidth combination 

 is what the human subject decides to be the best among a set of candidate 

combinations of bandwidths allocated for the N sources of data. We further assume that these 

data samples belong to the same region of linearity, e.g., region (R3) in 

[ ]kR [ ]k
ir

[ ]kR

[ ]kR

[ ] [ ]
1{ ,..., }k k

Nr r

Figure 28(a). (If not, we 

can pick up those samples that belong to the same region. The regions of linearity should be 

visually identifiable due to the piecewise linearity of the optimal trajectories of ri.) In the 

following, we try to find the optimal trajectories of ri that fit the experimental data best.  

We may consider two approaches. The first approach is to find the parameters , iw iα , iβ , 

iγ , and iδ  that minimize , where  is a function of these parameters and is 

determined by (6.1)-(6.2b) or (6.5)-(6.6b). However, it is very difficult to obtain explicit forms of 

the parameters via this approach.  

( 2[ ] *
1 1

K N k
i ik i

r r
= =

−∑ ∑ )

)

*
ir

The second approach is to find the parameters ci and di [see (6.1) and (6.5)] that minimize 

. Based on the property that  is a linear function of c( 2[ ] *
1 1

K N k
i ik i

r r
= =

−∑ ∑ *
ir i and di, we can derive 

closed-form expressions for these parameters, which suffice to determine the optimal trajectories 

of ri.  

Without loss of generality, in the following we only consider the situation where  

is empty, i.e.,  for any i = 1,…,N. For the other situations involving nonempty 

, the procedure to fit  c

∪K Q

,min ,maxi i ir r r< <

∪K Q i and di is similar.  
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If we use logarithmic satisfaction functions, the problem is to find ci and di that minimize 

( )2[ ] [ ]
1 1

K N k
i i ik i

r c d R
= =

− −∑ ∑ k  subject to 
1

1N
ii

d
=

=∑  and 
1

0N
ii

c
=

=∑ . The closed-form solution is 

[ ] [ ] 2 [ ] [ ] [ ]

1 1 1 1
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where 

                                                    [ ] [ ]
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If using the exponential satisfaction function, we need to consider the 

constraint
1

N N
ii i

c
1 iβ= =

= −∑ ∑ , the right-hand side of which is an unknown quantity. For curve fitting 

purpose, we ignore this constraint, and only consider the constraint  when minimizing 
1

1N
ii

d
=

=∑

( )2[ ] [ ]
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K N k
i i ik i

r c d R
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− −∑ ∑ k . We can derive  
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where 
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6.5 CONCLUSION 

In this chapter we studied the maximization of user satisfaction in the transmission of multiple 

sources of data over a single communication medium. We derived closed-form solutions for 

optimal bandwidth allocation for different types of data, using either logarithmic or exponential 

satisfaction functions. This optimal solution piecewise-linearly depends on the total available 

bandwidth, and can be easily calculated in real time. When the parameters of the satisfaction 

functions or priorities of the data types are not totally unknown, we provided strategies to 

characterize these parameters through a set of specifically-designed human experiments. 
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7.0  ON THE ESTIMATION OF TARGET SPECTRUM FOR FILTER-ARRAY 

BASED SPECTROMETERS 

Miniature spectrometers have been drawn researchers much attention due to its wide variety of 

possible applications. In this chapter, we show the achievability of a fine spectrometer on-a-chip 

based on a low-performance, low-cost filter-array.  A low quality filter-array is augmented with 

digital signal processing techniques. A series of estimators for recovering target spectrum is 

introduced.  By exploiting non-negative nature of spectral content, a non-negative least-square 

algorithm is found particularly useful for spectrum recovery. The concept is verified in a 

hardware implementation. 

7.1 INTRODUCTION 

Recently, miniature spectrometers have been drawn researchers great attention. Miniature 

spectrometers provide solutions to a variety of promising applications in biological, chemical, 

medical, or pharmaceutical industries, in which small, light-weight, and non-fragile properties of 

spectrometers are demanded [65][69][70]. Currently, MEMS, CMOS, micro-optic 

electromechanical systems, or integrated optics technologies are the main means to build a 

miniature- or micro- spectrometer. Based on the underlying operation principle, spectrometers 

can be classified such as grating-based, Fourier-transform based, or filter-based [67][68][69]. 
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Filter-based static spectrometers utilize different filter functions to filter spectral energy 

emanating from a target. Recent literatures [70][71][72] have demonstrated that filter-based 

spectrometers are capable of high-resolution and allowed to fabricate on-a-chip. By 

implementing multiple filters and detectors, these spectrometers are avoided to have moving 

elements, and hence are static and rigid. Furthermore, they have the ability to capture the target 

spectrum in a very short time. This property is demanded for certain applications especially in 

biological, biochemical or biomedical industries. 

For low-cost fabrication, filters may not have delta-function-like shapes with a narrow 

range response. The spectrum obtained directly from these filtered results is severely distorted, 

and hence is unacceptable as it is. However, signal processing techniques can be applied to 

estimate and restore the target spectrum. 

In this chapter, we discuss and provide digital-signal-processing (DSP) methods for filter-

array based spectrometers. Based on a discrete linear system model, a series of estimators for 

spectrum recovery is introduced. By exploiting the non-negative nature of spectral content, we 

found the non-negative least-squares (NNLS) algorithm particularly useful to estimate and 

restore the target spectrum with high fidelity. A hardware implementation for the filter-array 

based spectrometer is demonstrated via a commercialized CCD camera and a DSP board. This 

prototype shows the achievability of a fine spectrometer on-a-chip based on a low-performance, 

low-cost filter-array. 

Section 7.2 shows the system model of the filter-array based spectrometer. Section 7.3 

discusses and provides the estimators for restoring a target spectrum. A hardware 

implementation and experimental results are shown in section 7.4. Section 7.5 draws the 

summary and conclusion. 
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7.2 SYSTEM MODEL 

Figure 29 shows the basic system model of the static filter-array based spectrometer. An array of 

filters is directly placed on top of an array of photoelectric sensors such as CCD sensors. A filter 

may correspond to a CCD sensor or a group of CCD sensors. The outputs from the CCD sensors 

are then fed into a digital signal processor. We note that the 1-D structure shown in Figure 29 

can be extended to a 2-D structure straightforwardly by placing filters and CCD sensors in a 2-D 

plane. In this chapter, we will restrict our discussion on the drawn 1-D structure.  

photoelectric 
sensor-array 

f1 f2

light sources
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Signal Processing

raw data output

Spectrum of the light sources
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Dj(λ) = fj(λ)d(λ)
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λ λ λ= ∫

fj fN
d d d d photoelectric 
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f1 f2

light sources

filter-array
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s(λ)

Dj(λ) = fj(λ)d(λ)

( ) ( )j jr D s d
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λ λ λ= ∫

fj fN
d d d d

 

Figure 29. System structure of the filter-array based spectrometers. 

 

We assume all the CCD sensors have the same sensitivity function, denoted by ( )d λ , 

where λ is the continuous wavelength. Denote ( )jf λ as the filter transmission function for jth 

filter with respect to wavelength λ  (each filter may have a different transmission function). A 

filter and its corresponding CCD sensors compose a spectral detector. The overall sensitivity 
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function of the jth spectral detector can be expressed as ( ) ( ) ( )j jD f dλ λ λ= . For a target with 

spectral content ( )s λ , the output from the jth detector is ( ) ( )j jr D s d
λ

λ λ λ= ∫ . 

We consider the system and the target spectrum based on a discrete model. The 

transformation between the target spectrum and the CCD-sensor outputs is associated by the 

matrix equation 

= +r Hs n ,                            (7.1) 

where 
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The dimensionalities of and are ,r ,H ,s n 1,N × ,N M× 1,M × and 1N × , respectively. r is an 

observed signal vector whose elements are the outputs of CCD-sensors. The elements in r  can 

be observed simultaneously via each individual detector. n is a noise vector. There are N  

detectors in this model.  is a detector sensitivity matrix. The H M elements in a row of H  matrix 

represent the sensitivity function of a detector, obtained by evenly sampling the sensitivity 

function over a certain wavelength range. s is a source signal vector, whose elements represent 

the target spectrum evenly sampled in the wavelength domain. The minimum number of samples 

required for a given target-spectrum can be obtained through the sampling theorem. That is, 

consider the shape of the target-spectrum as a continuous function of a unit interval. If B  is the 

minimum value such that  the Fourier transform of the function over the unit interval S( )θ  

satisfying ( ) 0S θ =  for Bθ > , 2B  is the minimum number of samples to specify the continuous 

function [74]. We call these samples resolved points in this chapter. The number of resolved 
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points for a given application is critical since it determines the number of required detectors as 

we will see in section 7.3. In addition, we note that the sensitivity characteristic of the detectors 

needs not to be a delta-function shape with a narrow range response. 

7.3 ESTIMATORS FOR RESTORING TARGET SPECTRAL 

Working on the observation vector r , an estimator provides an estimation  of the input 

spectrum by considering all possible source signal vectors s . One criterion we can use here as 

the starting point is the maximum a posteriori (MAP) rule 

ŝ

[74]. The MAP estimator is obtained 

by maximizing the posterior probability, i.e., 

ˆ arg max ( | )MAP P=
S

s s r .                (7.2) 

From the Bayes’ rule, the posterior probability can be written as ( | ) ( | ) ( ) ( ).P P P P=s r r s s r  When 

we do not have any information on the source signal such that  is uniformly distributed, the 

MAP estimator becomes the maximum likelihood (ML) estimator. The ML estimator maximizes 

the likelihood function, i.e., 

( )P s

ˆ arg max ( | )ML P=
S

s r s

=n 0 nn

.                 (7.3) 

For the filter-array spectrometer, the observed signal vector r  and the source signal 

vector  can be associated by Eq. (7.1) as discussed. Now assume the noise vector n is 

multivariate Gaussian with zero mean and covariance matrix , i.e., , and , 

where the superscript T  denotes the transpose operation. The ML estimator then is obtained by 

maximizing the likelihood function 

s

nR [ ]E [ ]T
nE = R
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r s r Hs R r Hs

R
.            (7.4) 

To solve for the estimator, it is equivalent to find the vector s  which minimizes the scale 

exponent . The solution can be found by solving the partial differential 

equation 

1( ) (T
n
−− −r Hs R r Hs)

1( ) ( )T
n
−∂ − − ∂ =r Hs R r Hs s 0.  That is,  1 1 1( 2 )T T T T

n n n
− − −∂ − +r R ∂ =r R Hs s H R Hs s

=

r

r

r  

. If the matrix  is nonsingular (i.e., if inverse exists), the solution 

is  

1 12 2T T
n n
− −− +H R r H R H 0 1T

n
−H R H

1 1 1ˆ ( )T T
ML n n

− − −=s H R H H R .             (7.5) 

Furthermore, if there is no knowledge about the correlation of the Gaussian noise vector 

(or if the elements are mutually independent), it is reasonable to substitute the covariant matrix 

 by the identity matrix I . Thus the ML estimator, Eq. (7.5), is reduced to the least-squares 

(LS) estimator, i.e.,  

nR

1ˆ ( )T T
LS

−=s H H H .                                    (7.6) 

It requires that the inverse of the square matrix  exists. Recall that the 

dimensionality of H is . For the inverse to exist, 

TH H

N M× M  needs to be less than or equal to  and 

the 

N

M M× TH H  matrix should be of full rank M . That is, the number of filters used in the filter-

array spectrometer needs to be greater than or equal to the number of resolved points in the 

wavelength-domain. For a practical consideration, we take M N= , i.e., H  is a square matrix.  

Then, the LS estimator can be reduced to  

1ˆ ( )T T
inv

−=s H H H r H 1−= r .                                                 (7.7) 

It is worth to mention that, for zero-mean noise, the ˆMLs , ˆLSs , and ˆ are unbiased, e.g., 

. Therefore, for a fixed unknown source signal vector s , we may 

invs

1 1 1ˆ[ ] ( )T T
ML n nE − − −=s H R H H R Hs = s
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have the received signal vector r  measured multiple times over either the temporal or spatial 

domain. This unbiased property ensures the enhancement of estimation accuracy after averaging 

operation.  

The estimation-error covariance-matrix of the ML estimator, Eq. (7.5), can be calculated 

and expressed as ( ) 11?( )( ) .T T
ML ML nE

−−⎡ ⎤− − =⎣ ⎦s s H R Hs s  We note that it is a function of the filter matrix 

H.  Thus, it can tell us how good an estimator can be for a particular filter-array. We note that, 

although the covariance matrix of system noise  is fixed, the variance of the estimation error 

can be amplified by the detector sensitivity matrix H . In this chapter, we are interested in the 

case that H  is a square matrix. Conventionally, the singular value decomposition (SVD) is 

considered as a powerful technique to deal with the noise amplification issue. This method 

computes the inverse of the H  matrix based on the singular value decomposition where an 

eigenvalue less than a certain threshold can be discarded. The threshold needs to be carefully 

chosen. A larger threshold results in a worse approximation of the H matrix, but less noise 

amplification.  

nR

By exploiting the non-negative nature of the spectral content, we found the non-negative 

constrained least-squares (NNLS) algorithm work particularly well to estimate the target spectra. 

NNLS can be seen as a member of the family of the least squares estimator. NNLS returns the 

vector  that minimizes the norm ŝ
2

ˆ −Hs r  subject to  ˆ >s 0 [66]. The original design of the 

algorithm was by C. L. Lawson,and R. J. Hanson [73]. Although the NNLS algorithm solves the 

solution iteratively, the iteration always converges. 

It is worth to point out the weakness of using pseudo-inverse intending for “high” 

resolution estimation. Consider the same model of Eg. (7.1), and assume , i.e., the number 

of filters is less than the number of resolved points in the wavelength-domain. Suppose we could 

N M<
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find an M N×  matrix  (by any methods) such that *H * ,=H H I  where  is the identity matrix. 

Then we could have . In this case, we could recover the source signal vector 

with high resolution by only using a few filters. However, this supposition can not be fulfilled, 

and the estimation done this way is always biased. Since H  is an  

I

* *[ ] [ ]E E= + =H r s H n s

N M×  matrix with N M< , the 

M M×   matrix is not possible to be full rank and thus can not be the identity matrix, i.e., 

 where is an arbitrary matrix other than the identity matrix. Also the inverse of A  (in 

the strict sense) does not exist. Therefore,  the estimated source signal 

vector is always a biased version of the original input spectrum even in a no noise environment.   

*H H

*   ,=H H A A

* *[ ] [ ]E E ,=H r As n As= +H

7.4 DSP IMPLEMENTATION AND EXPERIMENTAL RESULTS 

DSP board 

digital camera
PC

DSP board 

digital camera
PC

 

Figure 30. System set-up for DSP implementation. 

 

Figure 30 illustrates the system set-up for our experimental filter-array based 

spectrometer. A digital camera (IMx-1040FT), a DSP board (TMDSDSK6713), and a personal 

computer (PC) are used for the preliminary demonstration. The PC serves as a bridge and 

monitor. The camera is connected to the PC via the FireWire interface carrying digital signals 
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from each CCD sensor in 8-bit depth.  The PC passes the digitalized signals received from the 

camera to the DSP board via the USB interface. Digital signal processing is performed on the 

DSP board. The processed data are then acquired by the PC and shown on the PC screen.  Forty 

filters arranged in a straight line configuration are directly placed on top of CCD-sensors. Each 

of the filters occupies 5 CCD sensors along the horizontal direction. In this system, we only 

adopt the signal from one CCD sensor near the center of the filter for reducing the possible stray-

light effect, which may come from the gap between filters and CCD sensors. We note that this 

preliminary system serves as a complete prototype for spectrometers on-a-chip consisting of a 

detector unit and a DSP unit. We implemented both the SVD-inverse algorithm and the NNLS 

algorithm on the DSP board.  

Ideally, if the sensitivity functions are delta-function-like with narrow response ranges, the 

output directly from the detectors would compose the spectral content. However, the spectral 

detectors used in this system are far from delta-function-like for the consideration to low-cost 

fabrication. As illustrated in Figure 31, the detectors show broad ranges of response while each 

has its own peak response spot.  The shapes of the responses are different as well. Therefore, the 

spectral outputs obtained directly from the detectors are very different from the input spectral 

shape.   

Figure 32 shows the experimental results of the filter-array based spectrometer measured 

by shining a red LED whose center peak is at 650nm (LED model: HLMP-4100). The original 

data were in 10nm intervals. The curves shown in Figure 32 are obtained by a cubic interpolation 

processing as suggested by the Commission Internationale de l’Eclairage (CIE). Figure 32 (a) 

depicts the spectrum of the LED provided by the manufacturer. Figure 32 (b) shows the spectral 

content directly obtained from the detector outputs, whereas Figure 32 (c) shows the estimated 
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spectral content by the NNLS algorithm. The NNLS algorithm shows an excellent estimation of 

the target spectrum. We have also tried different LEDs whose center peaks vary from 450nm to 

700nm. All of the estimations show excellent agreements with the peak-wise target spectra. On 

the other hand, Figure 32 (d) shows the estimated spectral content by the SVD-inverse algorithm 

with the threshold set to zero. We have tried every possible threshold, and note that the results 

from the SVD-inverse algorithm do not reflect the LED spectra correctly. 

We note that the required memory size of both algorithms are dominated by the pre-stored 

digitalized coefficients of the detector sensitivity matrix H , and are less than 200 kilobyte. 

However, the required processing power is significantly different. In our implementation, the 

total number of execution cycles for the NNLS algorithm is 64,898,987 whereas that for the 

SVD-inverse algorithm is 1,200,737, which are equivalent to 0.1102 second and 0.0013 second, 

respectively, execution time on the TI 6713 DSP chip operating at 225 MHz. The NNLS is two 

orders of magnitude slower than the SVD-based method. Thus, a further research on high-

performance but low-complexity algorithms is desired. 

7.5 CONCLUSION 

In this chapter, we consider a filter-array based spectrometer in which a low-quality but low-cost 

filter-array is used. Target spectra can be estimated and recovered accurately through DSP 

techniques. By exploiting the non-negative property of the spectral content, NNLS algorithm is 

found particularly useful for this application. Through hardware demonstration, we verified the 

achievability of a fine spectrometer based on a low-quality, low-cost filter-array 
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Figure 31. Sensitivity response of the 1st, 10th, 20th, 30th,and 40th spectral detectors. 
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Figure 32. Experimental results for HLMP-4100 red LED, peak at 650nm. 

(a) spectrum of the LED provided by the manufacturer, (b) spectrum obtained directly from the spectral 

detector outputs, (c) spectrum obtained after digital-signal-processing (DSP) based on the NNLS algorithm, and (d) 

spectrum obtained after DSP based on the SVD algorithm. 
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8.0  FUTURE DIRECTION 

It is probably for sure that there is no boundary for any research in any field. In the 

following, we would like to point out some possible future directions related to the thesis.  

One direction to extend the work in chapter 3 is to apply tight bounding techniques such 

as the tangential sphere bound (TSB). These techniques could help us to understand the genuine 

performance, and therefore help us to investigate the trade-off between encoding/decoding 

hardware complexity and error-performance. Regarding the relay assisted wireless multiple 

access networks, as discussed in chapter 4 and chapter 5, one interesting and critical direction is 

to investigate the practical or realistic benefits after imposing the management costs of the 

implementation of network-coding techniques. Studying the trade-off between the coding gain 

and coding (system) overhead shall be a significant direction. In chapter 6, we think it is 

interesting to study and establish accurate human perceptual models, as it would be a great help 

for efficiently designing sensory-based or perceptual-based (communication) systems dedicated 

to human users. In chapter 7, we wish to design application-oriented algorithms for 

spectrometers to extract valued information in bio-applications such as toxic test or glucose 

measurement.  
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