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Polarized epithelial cell function relies on the proper sorting and distribution of newly 

synthesized proteins to either the cells apical or basolateral domains. If trafficking is altered by 

disruptions either the fidelity or efficiency of this sorting then disease can result. There is an 

increasing appreciation for the role of phosphatidylinositol metabolism in membrane traffic, 

including the sorting and delivery of newly synthesized proteins. I have studied how biosynthetic 

delivery pathways are regulated by the expression of phosphatidylinositol-metabolizing 

enzymes. The phosphatidylinositol 4,5-bisphosphate (PIP2)-synthesizing enzyme, murine 

phosphatidylinositol 4-phosphate 5-kinase I alpha (PI5KIα) localizes to the apical pole of Madin-

Darby canine kidney (MDCK) cells and increases cellular PIP2 concentrations over control cell 

levels. Interestingly, expression of exogenous PI5KIα stimulated the rate of surface delivery of a 

subset apical proteins that associate with lipid rafts, including influenza hemagglutinin (HA). 

Conversely, overexpression of the PIP2-5’-phosphatase OCRL (oculocerebrorenal syndrome of 

Lowe), which is defective or absent in patients with Lowe syndrome, decreased cellular PIP2 

levels and inhibited the rate of HA delivery.  

The observation that increases in PIP2 stimulate apical delivery of HA suggests the 

possibility that depletion of OCRL may have a similar effect to overexpression of PI5K. I used 

siRNA to knock down OCRL in MDCK cells and human proximal tubule (HK2) cells and 

The Role of Phosphatidylinositol Metabolism and Actin  
in Polarized Biosynthetic Traffic 

Christopher James Guerriero, PhD 

University of Pittsburgh, 2008

 



 iv 

examined the consequence on HA surface delivery. Knockdown of OCRL slightly increased 

cellular PIP2 levels but did not stimulate HA delivery.  

PI5K-mediated increases in PIP2 results in activation of neuronal Wiskott-Aldrich 

syndrome protein (N-WASP) leading to downstream actin cytoskeleton rearrangements 

including the formation of actin comets. To examine the potential role of N-WASP in HA 

delivery I expressed a dominant negative inhibitor of N-WASP function, the WA domain from a 

WASP family member, WAVE1. Expression of the WA domain significantly and selectively 

inhibited the rate of HA surface delivery. siRNA-mediated knockdown of N-WASP also 

inhibited HA delivery, confirming a role for N-WASP in biosynthetic traffic. Consistent with 

this, PI5KIα and HA (but not p75) were visualized on actin comets in formaldehyde-fixed 

MDCK cells. In summary, my data support a role for PI5K-stimulated actin comet formation in 

apical delivery of a subset of newly synthesized proteins. 

 

 



 v 

TABLE OF CONTENTS 

PREFACE ............................................................................................................................. XII 

ABBREVIATIONS ............................................................................................................. XIV 

1.0 INTRODUCTION.....................................................................................................1 

1.1 OVERVIEW .....................................................................................................1 

1.2 BIOSYNTHETIC TRAFFIC: THE ENDOPLASMIC RETICULUM AND 

BEYOND ...........................................................................................................................4 

1.2.1 Basolateral Sorting in Polarized Epithelial Cells ......................................6 

1.2.2 Apical Sorting in Polarized Epithelial Cells ..............................................6 

1.3 PHOSPHATIDYLINOSITOLS AND THEIR METABOLISM .....................8 

1.3.1 Phosphatidylinositol Localization ..............................................................9 

1.3.2 Phosphatidylinositol Kinases ................................................................... 13 

1.3.3 Phosphatidylinositol Phosphatases .......................................................... 17 

1.4 PHOSPHATIDYLINOSITOLS AND THEIR FUNCTIONS ....................... 21 

1.4.1 Phosphatidylinositols and Signaling ........................................................ 21 

1.4.2 Phosphatidylinositols in Membrane Traffic ............................................ 22 

1.4.2.1 Phosphatidylinositol Binding Domains ............................................ 22 

1.4.2.2 Phosphatidylinositols in Exocytosis and Endocytosis ...................... 24 

1.4.2.3 Phosphatidylinositols in Biosynthetic Membrane Traffic ............... 26 



 vi 

1.4.2.4 PIP-mediated Modulation of Actin .................................................. 28 

1.4.2.5 N-WASP Function in Membrane Traffic......................................... 29 

1.4.2.6 N-WASP-Arp2/3 and its Regulation ................................................ 34 

1.5 PHOSPHATIDYLINOSITOL METABOLISM AND DISEASE ................. 35 

1.5.1 Lowe Syndrome ........................................................................................ 37 

1.6 GOALS OF THIS DISSERATION ................................................................ 39 

2.0 THE ROLE OF PHOSPHATIDYLINOSITOL METABOLISM IN 

POLARIZED BIOSYNTHETIC TRAFFIC .......................................................................... 41 

2.1 INTRODUCTION .......................................................................................... 41 

2.2 RESULTS ........................................................................................................ 44 

2.2.1 Localization of PI5K and OCRL in MDCK Cells ................................... 44 

2.2.2 PI5K Selectively Stimulates Biosynthetic Delivery on an Apical Raft-

associated Protein.................................................................................................... 46 

2.2.3 Overexpression of OCRL Selectively Inhibits Biosynthetic Delivery of 

Influenza HA ........................................................................................................... 50 

2.2.4 Knockdown of OCRL in MDCK Cells .................................................... 50 

2.2.5 OCRL Knockdown Increases PIP2 Levels and Stimulates Actin Comets 

………………………………………………………………………………………...51 

2.2.6 OCRL Knockdown has No Effect on the Biosynthetic Delivery of 

Influenza HA in MDCK or HK2 Cells ................................................................... 56 

2.3 DISCUSSION .................................................................................................. 58 

3.0 THE ROLE OF N-WASP IN BIOSYNTHETIC TRAFFIC ................................. 60 

3.1 INTRODUCTION .......................................................................................... 60 



 vii 

3.2 RESULTS ........................................................................................................ 62 

3.2.1 PI5K Stimulates Actin Comets in MDCK Cells ...................................... 62 

3.2.2 The Effect of PI5K on HA Delivery is Mediated through Arp2/3 .......... 66 

3.2.3 The Effect of Wiskostatin on Membrane Traffic in vivo ........................ 71 

3.2.3.1 Wiskostatin Inhibits Arp2/3-dependent Apical Biosynthetic Traffic 

…………………………………………………………………………………..71 

3.2.3.2 Wiskostatin Inhibits N-WASP-independent Steps in Transport .... 74 

3.2.3.3 Wiskostatin Decreases Cellular ATP Levels .................................... 78 

3.2.4 N-WASP Knockdown Inhibits HA Delivery ........................................... 80 

3.2.5 HA is Associated with Actin Comets in MDCK Cells ............................. 83 

3.3 DISCUSSION .................................................................................................. 85 

3.3.1 The Role of Actin in Biosynthetic Traffic ................................................ 85 

3.3.2 The Use of Wiskostatin as a Probe for N-WASP Function ..................... 86 

3.3.3 The Role of Actin in Polarized Biosynthetic Traffic ............................... 88 

3.3.4 Concerted Cytoskeletal Function in Polarized Membrane Traffic ........ 89 

4.0 CONCLUSION ....................................................................................................... 92 

4.1 THE FUNCTION OF OCRL IN POLARIZED EPITHELIAL CELLS ...... 93 

4.2 THE SITE OF PI5K FUNCTION IN BIOSYNTHETIC TRAFFIC ............ 97 

4.3 DISTINCT FUNCTIONS OF PI5K ISOFORMS IN POLARIZED 

EPITHELIAL CELLS .................................................................................................. 103 

4.4 CONCLUDING COMMENTS .................................................................... 108 

5.0 MATERIALS AND METHODS .......................................................................... 109 



 viii 

5.1 DNA,  REPLICATION-DEFECTIVE RECOMBINANT ADENOVIRUSES, 

AND SIRNA OLIGOS .................................................................................................. 109 

5.2 ANTIBODIES, REAGENTS AND IMMUNOBLOTTING ........................ 110 

5.3 CELL LINES ................................................................................................ 111 

5.4 ADENOVIRAL INFECTION ...................................................................... 112 

5.5 INDIRECT IMMUNOFLUORESCENCE .................................................. 113 

5.6 INTRACELLULAR TRANSPORT AND CELL SURFACE DELIVERY 

ASSAYS ………………………………………………………………………………….114 

5.7 VISUALIZATION AND QUANTITATION OF ACTIN COMETS .......... 115 

5.8 IGA TRANSCYTOSIS ................................................................................. 116 

5.9 IGA ENDOCYTOSIS ................................................................................... 116 

5.10 SIRNA TREATEMENT OF MDCK AND HK2 CELLS ............................ 117 

5.11 DETERMINATION OF CELLULAR ATP LEVELS ................................ 117 

5.12 VISUALIZATION OF CARGO ASSOCIATED WITH ACTIN COMETS 

…………………………………………………………………………………………….118 

BIBLIOGRAPHY ................................................................................................................. 119 



 ix 

 LIST OF TABLES 

 

Table 1.1 Activity and localization of PI-kinases and -phosphatases.   ......................................... 16

Table 2.1 Quantitation of actin comet frequency in MDCK cells.   .............................................. 55



 x 

LIST OF FIGURES 

 

Figure 1.1 Renal tubule cells and a schematic of a polarized epithelial cell.   .................................3

Figure 1.2 Structural diagram of phosphatidylinositol.   .............................................................. 11

Figure 1.3 Intracellular localization of PIPs.   .............................................................................. 12

Figure 1.4 Summary of known reactions in PIP metabolism and the some of the relevant 

enzymes.   ................................................................................................................................... 16

Figure 1.5 Domain organization of the known mammalian 5-phosphatases.   .............................. 20

Figure 1.6 Domain organization of N-WASP, WASP and WAVE.   ............................................ 32

Figure 1.7 Model for N-WASP activation and actin comet formation.   ....................................... 33

Figure 2.1 Localization of OCRL and PI5K in nonpolarized and polarized MDCK cells.   .......... 45

Figure 2.2 Relative PIP2 levels for AV-infected MDCK cells.   ................................................... 47

Figure 2.3 TGN to apical membrane delivery of a raft-associated protein is selectively modulated 

by PI5K and OCRL   ................................................................................................................... 48

Figure 2.4 Knockdown of OCRL in polarized MDCK cells   ....................................................... 53

Figure 2.5 PIP2 levels in OCRL knockdown cells.   ..................................................................... 54

Figure 2.6 TGN to PM delivery of HA is not affected by OCRL knockdown in polarized MDCK 

cells or HK2 cells.   ..................................................................................................................... 57



 xi 

Figure 3.1 PI5K localizes to actin filaments and stimulates actin comet formation in MDCK 

cells.   ......................................................................................................................................... 64

Figure 3.2 PMA and 1-butanol have opposing effects on HA delivery.   ...................................... 65

Figure 3.3 Expression of PI5K or the WA domain of Scar1 does not alter Golgi or actin 

morphology.   .............................................................................................................................. 68

Figure 3.4 Expression of WA selectively inhibits apical delivery of HA.   ................................... 70

Figure 3.5 Wiskostatin inhibits neuronal Wiskott-Aldrich syndrome protein (N-WASP)-

dependent steps in membrane transport.   .................................................................................... 73

Figure 3.6 Wiskostatin inhibits N-WASP-independent steps in protein processing.   ................... 75

Figure 3.7 Wiskostatin inhibits actin-dependent postendocytic membrane trafficking steps.   ...... 77

Figure 3.8 Wiskostatin reduces cellular ATP levels.   .................................................................. 79

Figure 3.9 Knockdown of N-WASP in polarized MDCK cells.   ................................................. 81

Figure 3.10 N-WASP knockdown inhibits biosynthetic delivery.   .............................................. 82

Figure 3.11 HA and PI5K are associated with actin comets in MDCK cells.   .............................. 84

Figure 4.1 YFP-p75 and HA do not co-localize intracellularly after low temperature staging.   . 102

Figure 4.2 Localization of PI5K isoforms in nonpolarized and polarized mCCD cells.   ............ 104

Figure 4.3 mPI5KIα selectively stimulates apical endocytosis of pIgR.   ................................... 106

Figure 4.4 Model for differential regulation of endocytosis by PI5K informs.  .......................... 107

 

 



 xii 

PREFACE 

My completion of this work would not have been possible without the generous support of 

several individuals. I would like to take this opportunity to thank my advisor, Dr. Ora Weisz. 

Ora’s thoughtful guidance over the past 5 years has given me a very positive graduate school 

experience. Thank you for granting me the freedom to explore my interests and for all of your 

mentoring which has made me a better scientist. Your dedication has solidified my path in 

science and given me the tools necessary to blaze that path. I would also like to thank the 

members of my thesis committee, Drs. Gerard Apodaca, Meir Aridor, Jes Klarlund, and Paul 

Kinchington for their always helpful advice and support. 

I would like to thank all of the members of the Weisz lab both past and present who have 

supported me enormously when I started and throughout my research. I would especially like to 

thank Dr. Kelly Weixel who was always available for insightful and informative discussions 

about my project or science in general as well as for teaching me the art of microscopy. I would 

like to thank my fellow graduate student Mark Miedel, who began this journey with me, for 

always being a good friend, collaborator, and distraction when needed. Beth Potter was also a 

great friend and colleague who never turned me away when I needed help with an experiment or 

presentation, and her husband Mike who inadvertently became the Wiesz Lab presentation 

design consultant. I also acknowledge all of the other lab members who have been there when I 

needed technical advice or someone with which to share my good or bad data; Jennifer Bruns, 



 xiii 

Mark Ellis, Kerry Cresawn, Yumei Lai, as well as newer lab members, Polly Matilla, Shanshan 

Cui, and Di Mo who have been a pleasure to work with over the years. The Renal-Electrolyte 

Division has provided me with an excellent training environment and my success would have 

been diminished without the gracious effort of all its members for provide reagents, technical 

assistance, and a friendly atmosphere in which to work.  

I owe my family tremendous thanks for being supportive of me throughout my graduate 

career. My mother, whose career as a medical technician sparked my interest in laboratories and 

experiments. My father, a well rounded college music professor, taught me to appreciate music, 

play the trumpet, and has equipped me with invaluable life skills. Mom and Dad, you have 

provided me with so much love, support, and opportunities over the years that I cannot begin to 

find the words to thank you for everything. You were an inspiration to me and kindled my love 

of both music and science. I love you very much and you have made me the confident, 

inquisitive, and hard working individual I am today. Anita and Bridget, a brother could not ask 

for two better sisters. Anita, your hard work in college and medical school set the bar high and 

helped to foster my own interest in science. Bridget, you have made me proud because you are 

an excellent music teacher and you worked very hard during the summers to obtain your masters 

degree. I am glad that all three of us can share of love of music and science in our lives. Last but 

not least, I would like to thank my wife. Emily, you have been an unending source of love, 

patience, understanding, and support. I could not ask for a better partner in science or in life. You 

are always there when I need you whether its help with a grant I am writing, preparing for a 

presentation, or to listening to me vent about a frustrating day. Thank you for everything and I 

hope I can be there as much for you as you begin your masters degree as a physician assistant. 



 xiv 

ABBREVIATIONS 

AP Adaptor protein 

ATP Adenosine triphosphate 

ADP Adenosine diphosphate 

AV Adenovirus 

Arf ADP-ribosylation factor 

Arp Actin-related protein 

CCP Clathrin coated pit 

CCV Clathrin coated vesicle 

CI-MPR Cation-independent mannose 6-phosphate receptor 

COPII Coat protein complex II 

CLASP Clathrin-associated sorting protein 

DAG Diacylglycerol 

DOX Doxycycline 

EEA1 Early endosome antigen 1 

Endo H Endoglycosidase H 

EGF Epidermal growth factor 

ER Endoplasmic reticulum 



 xv 

ERAD ER-associated degradation 

ERGIC ER-to-Golgi intermediate compartment 

FAPP Four-phosphatase-adaptor proteins 

FYVE Fab1, YOTB, Vac1, EEA1 

GAP GTPase-activating protein 

GEF Guanine nucleotide exchange factor 

GFP Green fluorescent protein 

GGA γ-adaptin ear-containing, Arf binding 

GPCR G protein coupled receptor 

GPI Glycophosphatidylinositol 

GTP Guanosine triphosphate 

HA Hemagglutinin 

HPLC High pressure liquid chromatography 

Inpp5b Neuraminidase 

IP3 Inositol 1,4,5-trisphosphate 

LDL Low density lipoprotein 

lmwp Low molecular weight proteinuria 

MDCK Madin-Darby canine kidney 

m.o.i. Multiplicity of infection 

NPF Nucleation promoting factor 

NSF N-ethylmaleimide-sensitive factor 



 xvi 

N-WASP neuronal Wiskott-Aldrich syndrome protein 

OCRL Oculocerebrorenal syndrome of Lowe 

oligo Oligonucleotide 

OSBP Oxysterol binding protein 

PA Phosphatidic acid 

PC Phosphatidylcholine 

PDK Phosphoinositide-dependent kinase 

PH Plekstrin homology 

pptase Phosphatase 

PI Phosphatidylinositol 

PIP Phosphatidylinositol phosphate 

PI5K Phosphatidylinositol 4-phosphate 5-kinase 

pIgR polymeric Immunoglobulin Receptor 

PLC  Phospholipase C 

PLD Phospholipase D 

PMA Phorbol myristate acetate 

PKC Protein kinase C 

PKD Protein kinase D 

PTEN Phosphatase and Tensin homolog 

PTC Proximal tubule cells 

PX Phox homology 



 xvii 

RNAi RNA interference 

RTK Receptor tyrosine kinase 

SHIP2 Src homology 2-containing inositol-5-pptase 

siRNA Small interfering RNA 

SNARE soluble NSF attachment receptors 

SNX Sorting nexin 

syndapin I syntaptic dynamin-associated protein I 

TGN trans-Golgi network 

Tfn Transferrin 

TLC Thin layer chromatography 

VSV-G Vesicular stomatitis virus G protein 

WAS Wiskott-Aldrich syndrome 

WASP Wiskott-Aldrich syndrome protein 

WAVE WASP family verprolin homologues 

wisk wiskostatin 



  1 

1.0     INTRODUCTION 

1.1 OVERVIEW 

The function of polarized epithelial cells depends largely on their ability to maintain a barrier 

between internal and external environments, as well as their ability to perform specialized tasks, 

including ion transport across the barrier or binding to surface-specific ligands. Barrier function 

is maintained by a series of junctional proteins surrounding cells giving them a cobblestone 

appearance and preventing paracellular flow of solutes (Figure 1.1). Tight junctions also prevent 

the intramembranous flow of proteins and lipids dividing the membrane into two distinct 

domains: apical (luminal; green in Figure 1.1) and basolateral (ablumenal; orange in Figure 1.1). 

Because polarized epithelial cells have two separate membrane domains, they must accurately 

deliver and maintain proteins at their appropriate sites of function. My work concentrates on the 

role of lipids in the delivery of newly synthesized proteins to the plasma membrane, termed 

biosynthetic traffic.  

The plasma membrane is composed of a diverse array of lipids that provide it with 

structural and functional attributes. An important class of lipids is the phosphatidylinositol 

phosphates (PIPs), which exist in many different varieties due to multiple phosphorylation 

arrangements. These lipids have important roles in cellular signaling and regulation of membrane 

traffic. One mechanism by which they affect membrane traffic is through interacting with 
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proteins that modulate actin cytoskeletal dynamics. Actin is broadly important as a structural 

component of cells, but it also has a crucial role in the movement of vesicles. My primary goal 

was to determine if there is a role for PIP metabolism in polarized biosynthetic traffic and if so, 

to determine if actin is directly involved. The following introduction provides the framework 

with which to put my studies into perspective with the current literature on PIPs and polarized 

biosynthetic traffic.  
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Figure 1.1 Renal tubule cells and a schematic of a polarized epithelial cell. 

 
The top panel is a cross section of stained kidney tubules from the Indiana 
University online histology tutorial. Collecting duct (cd) segments, the thin 
(descending) and thick (ascending) limbs of the loop of Henle, and a renal 
vein (vr) are labeled. The bottom panel is a schematic drawing of polarized 
epithelial cells with the apical (green) and basolateral (orange) surfaces 
highlighted. Highly glycosylated proteins (blue) decorate the apical surface of 
these cells forming a protective barrier (glycolcalyx). Also depicted are the 
nucleus (yellow) ER (grey) studded with ribosomes (black spots), Golgi (red) 
and trans-Golgi network (pink). Arrows depict the direction of movement for 
biosynthetic traffic from ER to Golgi to cell surface. Note how the cells are 
arranged in the kidney tubule and how this orientation relates to the polarized 
cell schematic. 
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1.2 BIOSYNTHETIC TRAFFIC: THE ENDOPLASMIC RETICULUM AND 

BEYOND 

The biosynthetic sorting of proteins begins immediately upon protein synthesis. Cytosolic 

proteins are synthesized in the cytoplasm, while nascent proteins containing a hydrophobic 

signal sequence are recognized by a signal recognition particle (SRP) and shuttled to the 

endoplasmic reticulum (ER). Coincident with their translation, transmembrane proteins are 

inserted into the lipid bilayer, while secreted proteins are deposited in the ER lumen. ER-resident 

chaperones sense the folding state of the newly synthesized protein to determine whether it is fit 

for delivery. Misfolded proteins are candidates for ER associated degradation (ERAD) via the 

proteasome (1). During/after co-translational insertion into the ER, proteins can be altered by 

post-translational modifications and assembled into multisubunit oligomeric protein complexes.   

Non-ER resident proteins exit the ER via a mechanism dependent upon the coat protein 

complex II  (COP II) (2). COP II contains the components necessary for formation and release of 

a vesicle from an ER exit site. COPII consists of Sec 23/24, Sec 13/31, and the small GTPase 

Sar1. Sec 23/24 form the cargo recognition component of the coat and are recruited to the ER 

membrane by GTP-bound Sar1.  The Sec13/31 complex is subsequently recruited to the ER and 

forms a cage that promotes vesicle budding. Uncoating of the vesicle occurs when COP II 

components stimulate the GTPase activity of Sar1, which prepares the vesicle for future fusion 

events (3). After exiting the ER, proteins transit through the ER-to-Golgi intermediate 

compartment (ERGIC) before reaching the flattened cisternae of the Golgi complex. The ERGIC 

is a major site of both anterograde (forward) and retrograde (reverse) traffic between the ER and 

Golgi and is thought to contribute to both protein folding and quality control (4).  
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Proteins are further processed in the Golgi complex before packaging and delivery to the 

plasma membrane. In this compartment proteins can be cleaved by proteases and undergo 

processing of core N-glycans added to them in the ER. O-glycans are also added and extended in 

this organelle. After reaching the trans-Golgi network (TGN) proteins may be delivered to the 

plasma membrane by either a direct or indirect pathway. The TGN was long thought to be the 

primary site at which targeting information within proteins was recognized and translated into 

delivery instructions. However, recent evidence suggests that some proteins take an “indirect 

pathway” and traverse endosomal compartments en route to the cell surface (5-7). The 

observation that biosynthetic cargo also intersects with these compartments raises the possibility 

that sorting of some proteins may occur in endosomes.  

Polarized epithelial cells are unique because they require additional sorting to their two 

distinct membrane domains. Wherever the site of biosynthetic sorting, several signals have been 

identified that are important for polarized delivery. For basolateral proteins, sorting information 

is most often found within the cytoplasmic tail of the protein, ideal for recognition by 

cytoplasmic sorting machinery. Apical sorting signals are more pleomorphic, and include 

lumenal N- and O-linked carbohydrates, transmembrane domains, lipid anchors, and cytoplasmic 

peptide motifs. A common sorting mechanism for these diverse signals is difficult to envision; 

therefore the possibility exists for multiple transport mechanisms. Some data suggest that diverse 

classes of apical proteins take different pathways to the cell surface (7-9). However, the 

trafficking machinery involved for each apical pathway has yet to be determined.  
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1.2.1 Basolateral Sorting in Polarized Epithelial Cells 

Basolateral proteins contain short linear peptide motifs that are recognized by the 

heterotetrameric adaptor protein (AP) complexes. Four AP complexes have been identified: AP-

2 for endocytosis, and AP-1, AP-3, and AP-4, which are localized to the TGN and endosomal 

compartments where they can interact with different signals (10). Basolateral sorting by AP 

complexes can be conferred by the tyrosine-base tetrapeptide motif YXXΦ or by a dileucine 

motif, [D/E]XXXL[L/I] among others. These signals not only function as basolateral targeting 

signals, but can also function as sorting signals for endocytosis and lysosomal delivery (11). Of 

particular interest, there is an epithelial specific isoform of the AP-1 µ subunit (µ1-B). AP1B 

complexes containing this subunit are required for efficient sorting of the basolateral proteins 

transferrin (Tfn) receptor and low-density lipoprotein (LDL) receptor in polarized LLC-PK1 

cells  (12;13). The ability of AP complexes to interact with both cargo and clathrin allows 

proteins to be concentrated in clathrin coated vesicles (CCVs), facilitating their delivery to the 

basolateral surface. Additionally, clathrin itself has been shown to be indispensible for the 

polarized delivery of basolateral proteins, as demonstrated by their apical missorting upon RNA 

interference (RNAi) of clathrin (14).  

1.2.2 Apical Sorting in Polarized Epithelial Cells 

Polarized epithelial cells must be able to recognize and sort the diverse apical sorting signals 

presented by proteins. Some apical proteins, such as rhodopsin and the renal scavenger receptor 

megalin contain cytoplasmic peptide motifs that are important for their apical delivery (15;16). 

Addition of O-linked and N-linked glycosylation is necessary for the apical sorting of proteins 
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like the neurotrophin receptor, p75 and the sialomucin endolyn, respectively  (17;18). Finally, 

sorting of some apical proteins depends on their association with the lipid bilayer. This is the 

case for some proteins modified by glycophosphatidylinositol (GPI) anchors (e.g. placental 

alkaline phosphatase) as well as for some transmembrane proteins that contain apical sorting 

information within their transmembrane domain, such as influenza hemagglutinin (HA) and 

neuraminidase (NA) (19;20). It is plausible that receptor-mediated sorting is used for peptide- 

and glycan-dependent signals; however, this mechanism is less likely for proteins whose apical 

targeting is lipid-dependent. A potential mechanism for sorting of proteins with lipid-dependent 

signals is selective inclusion of these proteins into sphingolipid-enriched detergent-resistant 

microdomains termed lipid rafts.  

In 1988 Kai Simons proposed a model stating that the asymmetric lipid distribution of 

polarized epithelial cells is established by lateral segregation of lipids into microdomains 

destined for either the apical or basolateral surface (21). Support for this model came in 1992 

when Deborah Brown demonstrated that GPI-anchored proteins can be isolated in glycolipid-

enriched low density membranes, later termed lipid rafts (22). Lipid rafts have since been 

reported to play important roles in signal transduction, cytoskeletal organization, pathogen entry, 

and membrane traffic (23). However, the existence of these domains has been challenged largely 

due to the inability to visualize them in living cells, to inconsistency in their predicted size, and 

to the controversial methods used to test for raft function, such as acute cholesterol depletion 

(24). Lipid raft-association of a given protein is best determined by gradient centrifugation and 

largely relies on the characteristic insolubility of rafts in non-ionic detergents and their low 

buoyant density.  While the size and dynamics of rafts continue to be elusive, it is clear that a 
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protein’s ability to partition with raft membranes does provide relevant information about the 

trafficking of that protein (25). 

Both GPI-anchored proteins and HA have been demonstrated to associate with lipid-rafts, 

as assessed by their characteristic insolubility in cold Triton X-100 (26;27). Lipid-rafts have been 

implicated in sorting of proteins to the apical plasma membrane of polarized epithelial cells  

(28;29). Lipid-rafts are highly concentrated in sphingolipids with saturated fatty acid side chains 

and cholesterol allowing them to pack tightly and serve as both signaling and sorting platforms 

(29;30). The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) has been proposed to be enriched 

in rafts, however the presence of PIP2 in rafts has been challenged (31). Hydrolysis of PIP2 can 

contribute to membrane traffic and signaling cascades by producing second messengers such as 

inositol trisphosphate (IP3) and diacylglycerol (DAG) (32-34). Given the fact that some apical 

proteins partition into lipid rafts, it is tempting to speculate that PIP2 may be important for the 

traffic of some apical proteins, but a relationship between these phenomenon has not been 

discovered. 

1.3 PHOSPHATIDYLINOSITOLS AND THEIR METABOLISM 

PIPs are inner leaflet lipids anchored in the membrane by a diacylglycerol tail, which is linked 

via a phosphodiester to an inositol sugar headgroup (Figure 1.2) (35). Phosphatidylinositol (PI) is 

made in the ER and is transported throughout the cell via vesicular transport or by PI transfer 

proteins (36). The inositol headgroup contains five free hydroxyl groups, and the 3’, 4’ and 5’ 

positions are differentially phosphorylated to produce a diverse array of PIP species (37). The 

versatility of PIPs contributes to myriad cellular functions, including cell signaling, regulation of 
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ion channels, and membrane trafficking. Cells specifically localize PI kinases and PI 

phosphatases to maintain a compartmentalized distribution of PIPs. Below I discuss the cellular 

localization of the major PIP species, as well as the enzymes that are responsible for their 

synthesis and degradation. 

1.3.1 Phosphatidylinositol Localization 

In order to accurately study the function of PIPs, it is important to know their steady state 

subcellular localization. This has been difficult as PIPs exist at low abundance and are turned 

over rapidly. In vitro, cellular PIPs can be extracted and analyzed by thin layer chromatography 

(TLC), high pressure liquid chromatography (HPLC), and mass spectroscopy, but within cells 

identification is more complicated (38). Much of what is known about the cellular localization of 

these lipids comes from work employing high specificity probes such as conserved PIP binding 

domains (to be discussed in Chapter 1.4.2.1). These domains have allowed researchers to 

determine the steady state intracellular distribution of individual PIP species (Figure 1.3) (39).  

PIPs are compartmentalized within cells and their general steady state distributions and 

basic functions are detailed in the sections to follow (Figure 1.3). Phosphatidylinositol 3-

phosphate (PI3P) is localized primarily to endosomes and lysosomes. PI3P is thought to provide 

organellar identity to early endosomes, but it also participates functionally in tethering, fusion, 

signaling, and motility (36). In contrast, phosphatidylinositol 4-phosphate (PI4P) is found 

primarily in the Golgi complex. Golgi-localized PI4P has been shown to participate either 

directly or indirectly in membrane trafficking through the actions of various effector molecules. 

PI4P recruits AP-1, lipid-transfer proteins, such as four-phosphatase-adaptor proteins 2 (FAPP2), 

and other proteins greatly influencing membrane traffic from the Golgi (40).  
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Most of the cellular PIP2 is localized at the plasma membrane, where it functions in 

cellular signaling and endocytosis (36;41). However, evidence suggests that there is also a minor 

pool PIP2 in the Golgi complex. First, it has been demonstrated that PIP2 can be formed on 

isolated Golgi membranes in vitro (42). Second, immunoelectron microscopy studies using the 

PIP2 binding domain of phospholipase C (PLC) have detected a small pool of PIP2 in the Golgi 

(43). Finally the PIP2-hydrolyzing enzyme OCRL localizes primarily to the TGN (in addition to 

coated pits, and endosomes) suggests the availability of substrate at that site  (44). While these 

data hint that a pool of PIP2 is present in the Golgi, the role of PIP2 in polarized biosynthetic 

traffic is uncertain. In chapter 2, I modulate cellular PIP2 levels in order to determine the 

consequences on polarized biosynthetic traffic. 
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Figure 1.2 Structural diagram of phosphatidylinositol. 

 

 

The diacylglycerol tail anchors the PIP into the membrane 
and may contain unsaturated carbons (as depicted). A 
phosphodiester link connects the tail to the inositol 
headgroup which can be phosphorylated at the D3, D4, or 
D5 positions on the inositol ring. Figure taken from Irvine 
et al. 2002, full reference in text.  
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Figure 1.3 Intracellular localization of PIPs. 

  

 

 

 

 

 

 

 

 

 

PIP2 at the plasma membrane functions in recruitment of endocytic machinery. PI3P is localized 
mainly to the endosomal system and is important for multivesicular body formation. PI4P is 
primarily found within the Golgi complex and a small pool of PIP2 has been localized the Golgi 
as well. The question mark (?) refers to possible localization of PIP2 on post-Golgi vesicles and 
the potential role for actin in their movement (to be discussed later). Figure adapted from De 
Mateteis et al. 2004, full reference in the text. 
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1.3.2  Phosphatidylinositol Kinases 

Cells maintain their steady state distribution of PIPs by compartmentalizing their synthesis via 

PI-kinases. PIP-synthesizing enzymes are classified based on the substrate they act upon and the 

product they generate. These enzymes fall into three general families, phosphatidylinositol 3-

kinases (PI3Ks), phosphatidylinositol 4-kinases (PI4Ks), and phosphatidylinositol 5-kinases 

(PI5Ks). These kinases are present and conserved throughout higher and lower eukaryotes 

suggeststheir importance to cell physiology (45). Table 1.1 and Figure 1.4 show some of the 

kinase and phosphatase isoforms, their localization, substrate specificity, and the reactions they 

catalyze (39). 

PI3Ks are a diverse group of enzymes involved in numerous signaling and trafficking 

processes. PI3Ks were first identified by their interaction with oncoproteins and cellular growth 

factor receptors (45). More broadly, they are implicated in cell proliferation and survival, 

membrane ruffling, neurite outgrowth, actin reorganization, and chemotaxis. The PI3K family 

can be further sub-divided into 3 classes based on structure, substrate specificity, and sensitivity 

to the fungal metabolite wortmannin (46). In general, these enzymes contain a domain that 

interacts with a regulatory subunit and a catalytic domain (45). Class I enzymes are the best 

characterized and are sensitive to wortmannin in the nanomolar range (47). Class I PI3Ks and are 

composed of a 110kDa catalytic subunit and an 85kDa regulatory subunit to generate PI3P, 

PI3,4P2, and PI3,4,5P3.  

PI4Ks phosphorylate PI to generate PI4P, which can then be used to produce both 

PI3,4P2 and PI4,5P2. PI4Ks are subdivided into class II and III, each having an alpha and beta 

isoform. The class II enzymes are approximately 55kDa in size and are insensitive to 

wortmannin but sensitive to adenosine (48). The class III enzymes are approximately 210 kDa 
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(α) and 110 kDa (β), and are sensitive to wortmannin in the micromolar range (49). The different 

PI4K isoforms localize to distinct compartments within the cell, including the ER, Golgi, and 

endosomes. PI4KIIIβ localizes to the Golgi complex and plays an important role in biosynthetic 

traffic in polarized epithelial cells. Overexpression of PI4KIIIβ inhibits the rate of TGN-to-apical 

surface delivery of the lipid raft-associated protein HA. Conversely, overexpression of a kinase 

dead version of the enzyme stimulates the rate of delivery of HA (50). These data highlight an 

important role for PIP metabolism within the Golgi. Additionally, since PI4P is a substrate for 

production of PIP2 the possibility exists that regulated PIP2 metabolism in the Golgi may also be 

important for polarized biosynthetic traffic.  

There are three isoforms of the Type I PI5Ks, which phosphorylate PI4P at the D5 

position to generate PIP2 (53). The alpha and beta isoforms were cloned in 1996 in both human 

and mouse, but they were unfortunately named in reciprocal manner (51;52). I use murine 

PI5KIα in my studies; therefore I have used the mouse nomenclature throughout. This enzyme is 

equivalent to human PI5KIβ. The PI5K gamma isoform was cloned in 1998 and found to have 

two splice variants, a short isoform (PI5KIγ635) and a longer isoform (PI5KIγ661) with a 26 

amino acid insertion near the carboxy-terminal end that can target it to focal adhesions (53;54). 

The central kinase domain of the three isoforms is highly conserved, with greater than 80% 

sequence identity. In vitro, all three isoforms have similar kinetics and are activated by 

phosphatidic acid (PA), ser/thr dephosphorylation, and small GTPases. However, the isoforms 

have divergent amino and carboxy terminal regions that are likely to be responsible for isoform 

specific function and localization (55). PI5Ks are cytosolic proteins, but they can associate with 

the plasma membrane via two invariant lysine residues within the specificity loop and two highly 

conserved basic residues in the kinase domain (55). However, stimulation by GTPases and 
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binding to specific partners has also been shown to enhance their membrane association and 

localization (36;56-58). In nonpolarized cells all three isoforms are found on the plasma 

membrane, but the reason for this redundancy is unknown (59). The functions and localization of 

PI5K isoforms in polarized epithelial cells have been largely unexplored. However, some 

evidence suggests that PI5K isoforms localize to different surfaces in polarized epithelial cells 

where they may regulate functionally distinct pools of PIP2.  
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Table 1.1 Activity and localization of PI-kinases and -phosphatases. 

PI-kinase Localization Substrate  PI-phosphatase Localization Substrate 
PI3K 
P110 

PM, N PI4,5P2  PTEN (3-pptase) PM, GC, N PI3,4,5P3 
PI3,5P2 

PI4KIIα GC, E PI  Type I and II 4-
pptase 

E, PM PI3,4P2 

PI4KIIβ PM, GC PI     
PI4KIIIα GC, ER PI  OCRL (5-pptase) CCV,GC,E PI4,5P2 

PI4KIIIβ GC, N PI  Synaptojanin 1 SV, MI PI4,5P2 
PI5Kα,β,γ PM PI4P  Inpp5b ND PI4,5P2 

 

 

 

 

Figure 1.4 Summary of known reactions in PIP metabolism and the some of the relevant 
enzymes. 
This figure is a graphic representation of the known PIP metabolism reactions within cells. 
Depicted is the inositol ring and the location of the phosphates for each of the different PIP 
species. The relevant enzymes discussed are labeled above or below the reaction arrows 
depending on the particular reaction they catalyze. Figure adapted from De Matteis et al. 
2004, full reference in text.  

The known localization and in vivo substrate specificity for the discussed PI-kinases and PI-
phosphatases (pptase). Plasma membrane (PM), Golgi complex (GC), endosomes (E), 
endoplasmic reticulum (ER), mitochondria (MI), clathrin coated vesicle (CCV), synaptic vesicle 
(SV), nucleus (N), and not determined (ND). Table adapted from De Matteis et al. 2004, full 
reference in text.  
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1.3.3 Phosphatidylinositol Phosphatases     

The regulation of cellular PIP levels is controlled not only by their synthesis, but by thier 

phosphatase-mediated degradation as well. Naming of the PIP-phosphatases (pptases) does not 

follow the logical convention used for the naming of other enzymes and fails to reveal any 

information about their activity or specificity. PIP-pptases dephosphorylate the inositol ring at 

the 3’, 4’ or 5’ positions to convert PIPs. In general, these enzymes are divided into three 

families based upon the position of the inositol ring on which they act.  

The family of 3-pptases dephosphorylate PI3P, PI3,4P2, PI3,5P2, and PI3,4,5P3 at the 3-

position and are important for regulating growth factor signaling. These enzymes can be found in 

the nucleus, Golgi, ER, and the plasma membrane (Table 1.1). Phosphatase and tensin 

homologue (PTEN) is a ubiquitously expressed 3-pptase that is a known tumor suppressor. 

PTEN dephosphorylates PI3,4,5P3 (PIP3) generating PIP2 which halts PI3K signaling. Loss of 

PTEN leads to increased PIP3 at the plasma membrane and sustained activation of a signaling 

kinase, Akt/PKB. Akt/PKB can influence a number of signaling pathways leading to cell growth 

and proliferation, so sustained activation ultimately causes protection from apoptosis (60).  

Inositol polyphosphate 4-pptases are categorized into types I and II which share 37% 

sequence identity (61). The type I enzymes have been shown to participate in cell growth 

regulation by converting PI3,4P2 to PI3P in the endosomal system (62). Recently, Ungewickell et 

al. identified and characterized type I and II 4-pptases that act on PIP2, are ubiquitously 

expressed, and localize to endosomes and lysosomes (63). Overexpression of either enzyme 

increased epidermal growth factor-(EGF)-receptor degradation following EGF stimulation. 

Additionally, Zou et al. recently found a role for the type I PIP2 4-pptase in stimulating p53-

dependent apoptosis in cells following DNA damage (64).  
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 The inositol polyphosphate 5-pptase (Inpp5p) family is well described and includes 10 

members (Figure 1.5) (65). These enzymes dephosphorylate PIP2 at the 5’ position of the inositol 

ring to produce PI4P. They contain a central catalytic domain flanked by various protein-protein 

interaction domains (66). Below I discuss three of these enzymes and their roles in membrane 

traffic. 

 Synaptojanin is the prototypical Inpp5p involved in clathrin-mediated endocytosis. There 

are two isoforms of this enzyme: synaptojanin 1, which is primarily expressed in neuronal tissue, 

and synaptojanin 2, which is ubiquitously expressed (67). Synaptojanin 1 functions at nerve 

terminals and participates in synaptic vesicle endocytosis. At the synapse, PIP2 helps recruit the 

clathrin adaptor AP-2, and other accessory proteins resulting in the formation and budding of 

clathrin coated vesicles. After endocytosis, synaptojanin 1 dephosphorylates PIP2 causing 

clathrin to dissociate from vesicles (67).  

 Inpp5b is a PIP2 5-pptase with a central 5-phosphatase domain and a carboxy-terminal 

Rho GTPase-activating protein (GAP)-like domain (44). The functional significance of the 

RhoGAP domain is unknown as it lacks a critical catalytic residue GAP activity (68).  PIP2 is the 

preferred substrate for Inpp5b, but it also displays some activity toward PIP3, inositol (1,4,5) 

trisphosphate (IP)3 and I(1,3,4,5) tetrakisphosphate (IP)4  (44). Inpp5b localizes to both the ER-

to-Golgi intermediate compartment (ERGIC) and endosomes through interaction with various 

RabGTPases (69). A knockout mouse model of Inpp5b only exhibited male sterility, revealing 

little about its functions (70). However, consistent with its localization to the early secretory 

pathway, a group has recently reported a role for Inpp5b in membrane traffic at the ERGIC (70).  

 OCRL is the protein encoded by the OCRL1 gene that is mutated or absent in Lowe 

syndrome, a rare X-linked disorder (to be discussed in Chapter 1.5.1). OCRL is highly 



  19 

homologous to Inpp5b, with which it shares 45% amino acid sequence identity, a similar domain 

organization, and substrate specificity. There are two splice variants of OCRL: the longer 

isoform OCRLa is ubiquitously expressed albeit at lower levels than the shorter form OCRLb. 

OCRLb is expressed in all tissues except brain, where OCRLa is most abundant (71). OCRL is 

localized to the TGN, cytoplasmic CCVs, endosomes, and to clathrin coated pits (CCPs) (72-76). 

Localization to the Golgi and endosomes is dependent upon OCRL binding to Rabs, while its 

presence at CCPs is due to the a conserved C-terminal clathrin binding motif (44;77). OCRL 

binds to Rac1 through its RhoGAP domain and translocates to the plasma membrane upon 

growth factor activation of Rac1 (78;79). OCRL’s activity as a PIP2 5- pptase and its localization 

led to the suggestion that OCRL participates in clathrin-mediated trafficking at the TGN and 

endosome interface. Indeed, Choudhury et al. demonstrated that expression of a pptase domain-

deficient version of OCRL inhibited the trafficking of Shiga toxin from endosomes to the TGN. 

Moreover, siRNA-mediated silencing OCRL caused a partial redistribution of the cation-

independent mannose 6-phosphate receptor (CI-MPR) from the TGN to endosomes (75). Given 

its intracellular distribution, it is possible that OCRL may also regulate biosynthetic traffic at 

either the TGN on endosomes, but this possibility has not been tested (5;80). In chapter 2, I use 

siRNA to silence OCRL in MDCK cells to determine whether OCRL is important for 

biosynthetic traffic. 
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Figure 1.5 Domain organization of the known mammalian 5-phosphatases. 

 

 

 

 

 

 

 

 

5-phosphatase I

5-phosphatase II

OCRL

synaptojanin 1/2

SHIP 1

SHIP 2

PIPP

SKIP

72 kDa 5-phosphatase

5-pptase
CAAX
RhoGAP
Sac-1

Proline-rich
SH2
SAM
SKICH

Each of the 10 mammalian 5-pptases are drawn to indicate their overall domain 
organization. All of the enzymes contain a central catalytic domain. The legend 
reveals the identity of each domain by color, the white areas represents 
segments without characterized domains. Inpp5b is listed in this figure as 5-
phosphatase II. Proline-rich inositol polyphosphatase 5-phosphatase (PIPP) and 
SKIP (a skeletal muscle and kidney enriched inositol polyphosphate 5-
phosphatase) contain a unique C-terminal SKICH domain that is important for 
their membrane localization. Synaptojanin 1/2 contain an extra N-terminal 
catalytic domain (Sac-1) that has very broad specificity toward PI3P, PI4P and 
PI(3,5P)2. SHIP2  contain s a sterile α motif (SAM) wh ich  is a p ro tein  
interaction motif, along with SH2 domains and praline-rich domains. Inpp5b 
and OCRL both contain C-terminal RhoGAP-like domains, whose true 
function is unknown as they lack a critical residue for GAP activity. This 
figure was modified from Astle et al. 2007, full reference in text.  
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1.4 PHOSPHATIDYLINOSITOLS AND THEIR FUNCTIONS 

1.4.1 Phosphatidylinositols and Signaling 

Synthesis and degradation of PIPs plays an important role in signal transduction from the plasma 

membrane and can influence the temporal characteristics of a signal or the type of signaling 

cascade. Cleavage of PIP by phosphatases can terminate a signal. Alternatively, ligand binding to 

a G-protein coupled receptor (GPCR) can result in activation of PLC and the formation of the 

second messengers IP3 and DAG (81). IP3 can  diffuse throughout the cytosol until it encounters 

an IP3 receptor leading to rapid release of calcium from intracellular stores such as the ER (82). 

Signaling pathways that increase cytosolic calcium are tightly regulated and cells are quick to 

restore calcium levels to their normal steady state (83). Released calcium binds to and modulates 

the activities of many cellular proteins making it a potent signaling molecule. Membrane-

embedded DAG activates PKC which phosphorylates many cellular targets influencing 

proliferation, differentiation, and survival through pathways such as MAP kinase and nuclear 

factor (NF) ĸ B. Mo reover, DAG has also been shown to participate in cell signaling via non-

PKC-dependent DAG receptors (84).  

Alternatively, phosphorylation of PIP2 to generate PIP3 can terminate PIP2 signaling and 

give rise to growth factor-like signaling via the PI3K/Akt pathway. In general, response to 

growth factors leads to activation of receptor tyrosine kinases (RTKs) and increased PIP3 

production. The formation of PIP3 recruits the ser/thr kinase Akt/PKB to the plasma membrane 

where it is subsequently phosphorylated by mammalian target of Rapamycin (mTOR) and 

phosphoinositide-dependent kinase 1 (PDK1) (85). Once activated, Akt can affect numerous 

cellular targets to induce downstream effects on growth and metabolism. 
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1.4.2 Phosphatidylinositols in Membrane Traffic 

PIPs can influence membrane traffic by recruiting proteins to the inner leaflet of cell membranes, 

affecting membrane curvature and modulating the actin cytoskeleton. These three mechanisms 

aid in vesicle formation or propulsion driving exocytosis, endocytosis, and biosynthetic 

transport. The ability of the cell to compartmentalize PIPs translates into highly regulated 

recruitment of effector proteins to a particular site. This specificity combined with the tightly 

controlled synthesis and degradation of PIPs allows for spatio-temporal regulation of PIP-

mediated processes. In the next three sections, I discuss various domains that enable proteins to 

bind selectively to PIPs at specific intracellular sites, and the role of these domains in membrane 

traffic and in the modulation of actin cytoskeletal dynamics.  

1.4.2.1 Phosphatidylinositol Binding Domains 

The ability of proteins to transiently associate with the cytosolic aspect of membranes is 

important for many cellular processes including signaling, maintaining cell structure, and 

membrane trafficking (86). Much of this binding is mediated by interaction to PIPs through 

diverse mechanisms including sensing of acidic phospholipids, basic motifs, or conserved PIP-

specific binding domains. There are 10 distinct PIP binding domains that fall into two different 

groups based on their overall specificity (86). Generally, lower specificity domains can impart 

temporal characteristics to recruitment, but lack the spatial control of the more highly specific 

domains. The higher specificity binding domains have been successfully used as probes to study 

the steady state localization of individual PIP species within cells (87;88). Below I briefly 

discuss some of the major PI-binding domains including their general structures and affinities for 

PIPs.  
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The Fab1, YOTB, Vac1, EEA1 (FYVE) domain is a 60-70 amino acid zinc finger 

domain that contains a conserved basic motif that allows it to interact with PI3P (89-91). FYVE 

domain-containing proteins bind specifically to PI3P, which is primarily found in the endosomal 

system (89). A prototypical FYVE domain-containing protein is early endosome antigen 1 

(EEA1), which is important for endosome fusion. Dimerization of FYVE domain-containing 

proteins through a coiled-coil domains has been shown to increase the efficiency of PI3P-binding 

(92;93).  

The phox (PX) domain was first identified as a part of the NADPH oxidase complex and 

was later determined to bind to PI3P (94;95). PX domains are approximately 130 amino acids in 

length and in addition to binding PI3P they also bind to PI3,4P2 or PIP2 (96;97). PX domains are 

found in all sorting nexins (SNX), a diverse group of proteins important for several membrane 

trafficking steps (98). These domains also require some degree of dimerization or interaction 

with an oligomeric complex to increase their efficiency for PI3P binding (99;100).   

 Pleckstrin homology (PH) domains are approximately 100 amino acid motifs originally 

described in the protein pleckstrin, and were shown to bind phosphoinositides (101). The PH 

domain of phospholipase Cδ1 (PLCδ) was demonstrated to bind specifically to PIP2 and has been 

used as a probe to study PIP2  (102;103). The crystal structure of the PLCδ-PH reveals seven β-

strands and one α-helix and a deep pocket containing charged residues that are important for PIP2 

binding (104).  

A key mechanism by which PIPs act as markers of organelle identity or to recruit 

proteins is via coincidence detection. The principle behind coincidence detection is that low 

affinity interactions of a protein with PIPs can be enhanced by binding to a second signal, and 

that this dual interaction increases the strength and specificity of the interaction. The second 
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signal can be another lipid, a protein, or a curved membrane domain (105). For example, the 

recruitment of FAPPs to the Golgi complex requires binding to both PI4P and the small GTPase 

Arf1 (106). Also, SNXs use coincidence detection to recognize PI3P via a PX domain and highly 

curved endosomal tubules through their Bin/Amphiphysin/Rvs domain (107). Coincidence 

detection, through combination of signals, increases the number of ways PIPs can be engaged by 

cytoplasmic proteins to ensure spatial control over cellular processes. 

1.4.2.2 Phosphatidylinositols in Exocytosis and Endocytosis 

The formation of vesicles during endocytosis and the fusion of two membranes during 

exocytosis rely on a significant contribution by the phospholipids in both membranes. 

Phosphatidylinositols, particularly PIP2, have been demonstrated to be important in both 

pathways to regulate recruitment of adaptor proteins and to serve as a biochemical marker of 

membrane identity.  

The events leading up to exocytosis are tethering, docking, priming, and fusion (108). 

The overall goal is to bring the two membranes within close proximity of each other so that the 

vesicle may either fuse or partially fuse to release its contents. The core machinery responsible 

for the fusion event is the soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) proteins. Once a vesicle is tethered, v-SNARES and t-SNARES interact to bring the 

vesicle into close proximity with the membrane (109). Increases in Ca2+ are sensed by 

synaptotagmin which is thought to induce final fusion of the complex by helping to overcome 

the energy barrier of fusion (110). Synaptotagmin has a single transmembrane domain and it 

interacts with PIP2 in a Ca2+-dependent fashion to stimulate vesicle fusion in conjunction with 

increases in Ca2+ (36;111;112). PIP2 may also play a role in marking the plasma membrane as a 

site for fusion and in cooperating with t- and v-SNARE pairing (36;109). Consistent with this, 
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PIP2 forms clusters on the plasma membrane near areas of high syntaxin-(t-SNARE) density that 

contain docked vesicles. Increases in PIP2 show a positive correlation with the number of 

syntaxin clusters and the magnitude of the Ca2+-dependent exocytic response (113-116). In 

polarized epithelial cells, fusion of vesicles with the basolateral surface may be mediated by 

interactions with the exocyst, a known tethering complex, which has been shown to interact with 

PIP2 (117).  

PIP2 also acts as a recruitment factor for endocytic proteins, and is important for all forms 

of endocytosis (36). All of the AP complexes and other clathrin adaptors, such as AP180 and 

epsin, bind to PIP2 at the plasma membrane (67;118;119). Assembly of CCVs requires the 

coordinated action of protein-lipid and protein-protein interactions. Briefly, PIP2 at the plasma 

membrane can recruit the AP-2 complex, which interacts with cargo containing tyrosine- or 

dileucine-based endocytic signals. Subsequently, clathrin triskelia assemble onto the AP-2-cargo 

complex to form a clathrin lattice (120). This assembly is partially responsible for the 

invagination of the membrane. The vesicle is ultimately severed from the membrane by the PIP2-

interacting GTPase, dynamin (121;122). In addition to these classical players in clathrin-

mediated endocytosis, an additional family of adaptors termed clathrin-associated sorting 

proteins (CLASPs) bind to PIP2, APs, and to other cargo endocytic signals, thus increasing the 

range of cargo recruited to coated pits (123). The actin cytoskeleton is also important for 

efficient CCV endocytosis (124). A potent stimulator of actin polymerization, neuronal Wiskott-

Aldrich syndrome protein (N-WASP) is recruited by PIP2 and is thought to help provide the 

force to propel detached CCVs into the cytosol (125). Once endocytosis occurs, pptases such as 

synaptojanin quickly dephosphorylate PIP2 to PI4P allowing the coat components to dissociate 

so they may be recycled for another round of endocytosis (126). Increases in PIP2 at the plasma 
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membrane have been suggested as a mechanism to modulate the rate/efficiency of clathrin 

mediated endocytosis presumably by increasing recruitment of proteins that mediate/regulate 

endocytosis.  This phenomenon has been observed in nonpolarized cells in which overexpression 

of PI5Ks stimulates the rate of Tfn receptor endocytosis and in IgA endocytosis polarized 

epithelial cells (59;127). 

1.4.2.3 Phosphatidylinositols in Biosynthetic Membrane Traffic 

PIPs are important for the recruitment of cytoplasmic machinery for cargo selection, vesicle 

formation, and the movement of proteins though the biosynthetic pathway (128;129). Consistent 

with this, exit from the ER is dependent on COP II, which consists of Sec 23/24, Sec 13/31, and 

the small GTPase Sar1. In studies using liposomes, the recruitment of Sec 23/24 was shown to 

depend on acidic phospholipids, such as phosphatidic acid (PA) and PIP2. Phospholipase D 

(PLD) activity has also been shown to be important for ER exit (130). PLD cleaves an abundant 

membrane constituent, phosphatidylcholine (PC) into PA, a known cofactor/activator of many 

PIP kinases (131). Recently, Blumental-Perry et al. showed that PI4P is locally concentrated at 

ER exit sites. Sar1 was shown to transiently stimulate PI4P and PIP2 formation on ER 

membranes. By expressing PIP-binding domains to sequester PIPs, they demonstrated that both 

PI4P and PIP2 were necessary for efficient ER export (132). Together these studies highlight the 

importance of PIPs in the binding of coat proteins to the ER and the formation of ER vesicles.  

The Golgi complex contains the majority of cellular PI4P. As described earlier, PI4P in 

the Golgi is generated by the action of PI4Ks. Weixel et al. demonstrated that two different 

PI4Ks, PI4KIIα and PI4KIIIβ localize to different subdomains of the Golgi and can regulate 

distinct pools of PI4P (49). One mechanism by which PIPs may affect the Golgi is through 

alterations in membrane curvature. The flattened cisternae of the Golgi have highly curved 
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surfaces at the ends of each stack, which may rely on PI4P to maintain their structure and/or 

stimulate vesicle budding from these sites. In support of this, studies using the expression of 

catalytically-inactive forms of PI4Ks or siRNA knockdown have  revealed that PI4P is important 

for Golgi structure and biosynthetic traffic from the TGN  (50;133;134). In addition, Golgi 

reformation is markedly delayed in cells expressing a dominant-negative PI4K, indicating a 

possible requirement for PI4P in Golgi biogenesis.  

In addition to direct effects on membrane curvature PI4P may influence the Golgi 

through the recruitment of effectors. Indeed, several effector proteins bind to PI4P in the Golgi 

including epsinR, AP-1, four-phosphatase-adaptor proteins (FAPPs), and oxysterol binding 

protein (OSBP) (106;133;135;136). Synthesis of PI4P at the Golgi may be important for 

continued recruitment of effectors in a positive feedback loop that modulates Golgi function. In 

support of this, FAPP binds to PI4P and ADP-ribosylation factor 1 (Arf1) at Golgi exit sites. 

Knockdown or displacement of FAPPs with a competing PH domain disrupts Golgi to plasma 

membrane transport (106). The small GTPase Arf1 is important for vesicle budding because it 

recruits numerous effectors and PI4KIIIβ to Golgi membranes (137;138). Arf1 is also 

responsible for recruiting coat complexes to the Golgi, including the aforementioned AP-1, COP 

I for retrograde transport, and the Golgi-associated, γ-adaptin ear-containing, Arf binding (GGA) 

proteins for Golgi-to-endosome transport (139). These data represent a pathway of Arf activation 

leading to increased PI4P synthesis that allows the recruitment of factors such as FAPPs to 

influence membrane traffic. 

A positive feedback loop involving Arf1 has also been proposed to influence PIP2 in the 

Golgi. Arf1 can stimulate the activity of PLD, resulting in increased cleavage of PC to PA, 

which is a cofactor/activator of PI5K. PI5K could increase Golgi PIP2 by utilizing PI4P as a 
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substrate. PIP2 has also been shown to stimulate Arf activity which would in theory lead to a 

positive feedback loop for increasing PIP2 at the Golgi (58). While there is no direct evidence for 

the existence of this pathway, the circumstantial evidence is strong. Arf1 can also recruit PI5K to 

Golgi membranes to generate PIP2 (42). Although no PI5K isoform has been localized to the 

Golgi, the presence of OCRL in the TGN makes a strong case for regulated PIP2 metabolism in 

the Golgi. Several studies have alluded to the possible roles of PIP2 in biosynthetic traffic at the 

Golgi, but these have not been directly tested. It is possible that PIP2 could help regulate Golgi 

traffic by recruiting coat complexes, specific sorting receptors, or proteins that can modulate 

actin cytoskeletal dynamics. In chapter 3, I explore the role of PIP2 and actin in biosynthetic 

traffic by modulating PIP2 levels or the activity of the PIP2-dependent stimulator of actin 

polymerization N-WASP. 

1.4.2.4 PIP-mediated Modulation of Actin 

Actin plays an important role in many cellular processes including maintenance of cell shape, 

cell motility, and vesicular traffic. Actin is a small globular protein (~42 kDa) that is highly 

conserved throughout higher and lower eukaryotes.  In its monomeric form actin is referred to as 

globular or G-actin. Actin monomers have a binding site for ATP and they will dimerize upon 

ATP binding to create a “nucleation site” for the polymerization of additional actin monomers, 

which assemble into an actin filament (F-actin) with increasing efficiency. Growth of the actin 

filament occurs at what is termed the barbed end (plus end), while depolymerization occurs as 

the slower growing pointed end (minus end). A number of actin accessory proteins exist to 

modify actin filaments by crosslinking, capping, or severing actin filaments. Actin 

polymerization can be regulated by GTPases, nucleation promoting factors (NPFs), or by PIPs 

(140-142).   
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PIPs can modulate actin polymerization through recruitment of proteins that directly bind 

to actin. For example, the recruitment and activation of N-WASP by PIP2 influences vesicle 

movement via actin-mediated propulsion. N-WASP is a ubiquitously expressed neuronally-

enriched member of the Wiskott-Aldrich syndrome protein (WASP)/WASP family verprolin 

homologues (WAVE) family of proteins. Wiskott-Aldrich syndrome (WAS) is a rare X-linked 

disorder caused by mutations in the gene for WASP and symptoms include bloody diarrhea, 

eczema, and greater susceptibility to infections (143;144). WASP is only expressed in 

hematopoietic cells and WAS fits into a group of cytoskeletal diseases including hereditary 

spherocytosis, hereditary elliptocytosis, and Duchenne muscular dystrophy because WASP is 

part of a cytoskeletal complex (145). A known peculiarity of these diseases is the presence of 

surface proteins with abnormal glycosylation or deficiencies in surface glycoproteins, 

implicating the requirement for a normal cytoskeleton in order to properly traffic proteins to the 

cell surface (145). Since N-WASP is ubiquitously expressed it may have roles in protein 

trafficking in all cell types. Below I discuss the functions of N-WASP-Arp2/3 complex and how 

it is regulated by PIP2 and accessory proteins. 

1.4.2.5 N-WASP Function in Membrane Traffic 

N-WASP participates in cellular functions from cell motility to vesicular traffic. The N-WASP-

knockout mouse embryo survives past gastrulation, but severe developmental delays are evident 

followed by death on or before embryonic day 12 (146). This highlights the importance of N-

WASP in development, maintenance of cell shape, and organ integrity.  

N-WASP is well known for its role in the actin-based motility of pathogens such as 

Shigella flexneri, but it is also important for the movement of organelles and vesicles. Some 

bacteria and virus have evolved mechanisms to highjack the cellular machinery controlling actin 
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polymerization in order to enhance their spread (147;148). S. flexneri possesses a protein, VirG, 

that recruits host cell N-WASP to the tip of the bacterium allowing it to exhibit actin-based 

motility (149). By contrast, Listeria monocytogenes uses a protein, ActA, that mimics the 

function of N-WASP giving it the capability to rocket around the host cell and into adjacent cells 

(150). In either case, rocketing is mediated by the localized and highly efficient formation of 

branched actin filaments at the surface of the pathogen. It is apparent that N-WASP is important 

for the movement of intracellular bacteria, but at the time of these studies its role in vesicular 

traffic was not clear. 

N-WASP participates in endocytic traffic by interacting with endocytic complexes and 

helping to promote vesicle scission. N-WASP was first identified by Miki et al. in 1996 as an 

actin-depolymerizing protein that transiently associates with activated epidermal growth factor 

(EGF) receptor (151). The first link between N-WASP and endocytic traffic came from the 

discovery of an interaction between N-WASP and syntaptic dynamin-associated protein I 

(syndapin I). Syndapin I interacts with dynamin I, synaptojanin, and N-WASP providing 

evidence that N-WASP may influence endocytosis (152). Direct evidence demonstrating that N-

WASP is involved in endocytosis was observed in 2002. Kessels et al. disrupted N-WASP 

function or localization and found a profound negative effect on receptor-mediated endocytosis 

(153). It was later shown that N-WASP is recruited to CCVs during the late stages of vesicle 

formation and disrupting recruitment causes an accumulation of CCVs at the plasma membrane 

(154;155). Together, these data indicate that N-WASP is recruited to the site of clathrin-

mediated endocytosis and is important for mediating vesicle scission or movement away from 

the membrane.  



  31 

N-WASP has also been proposed to function in vesicle propulsion at the Golgi. In 1999, 

a group studying vaccinia virus actin-based motility found that “little actin tails” (LATs) were 

associated with clathrin, but not with an endocytic protein (transferrin receptor) (156). They 

interpreted their data to mean that these structures originated from the Golgi complex. 

Interestingly, the outer membrane of vaccinia virus derives from TGN membrane during the 

enveloping process (157). Vaccinia has since been shown to recruit N-WASP, which is 

responsible for its actin-based motility (146). In 2000, Rozelle et al. showed that actin comets 

whose formation was stimulated by PI5K overexpression were enriched in proteins that associate 

with lipid-rafts. They examined the number of comets associated with HA or VSV-G at time 

points between 2 and 6 hours post-infection and found comets to be more enriched in HA than 

VSV-G (158). While these data support a role for N-WASP comets in biosynthetic traffic, it 

cannot be determined from their studies whether actin comets affect the kinetics or some other 

aspects of the transport of these proteins. Therefore, prior to my research, the actual contribution 

of N-WASP in vesicular traffic from the Golgi remains unclear. In chapter 2, I explore the role 

of N-WASP in TGN-to-plasma membrane delivery of raft- and non-raft-associated proteins by 

perturbing N-WASP function. 
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Figure 1.6 Domain organization of N-WASP, WASP and WAVE. 

 

 

 

 

 

 

 

 

 

 

 

 

The various domains of N-WASP, WASP and WAVE are indicated 
starting with the highly conserved N-terminal WASP homology 
domain (WHD) which is highly conserved and is important for 
interaction with WASP-interacting proteins (WIPs). The B motif is a 
highly basic region that mediates interaction with PIP2. WASP and 
N-WASP contain a GTPase binding domain (GBD) causing them to 
interact with GTPases like Cdc42. The poly-proline (P) domain of 
each is important for protein-protein interactions. The verprolin 
homology (V) domain, which binds to actin monomers, the cofilin 
homology (C), and the central acidic (A) domain, which binds to 
Arp2/3, collectively make up the highly conserved functional WA 
domain. This figure was adapted from Stradal et al. 2004, full 
reference in text.  
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Figure 1.7 Model for N-WASP activation and actin comet formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N-WASP assumes an autoinhibitory conformation and remains inactive 
in the cytoplasm. Following PIP2 synthesis, N-WASP is recruited to the 
membrane through an interaction between the B motif and PIP2. Cdc42 
can bind to the GBD domain to help activate N-WASP, which can then 
recruit Arp2/3 leading to branched actin filament formation or actin 
comet formation. Wiskostatin (wisk) can stabilize the autoinhibitory 
conformation locking N-WASP in an inactive state or the WA domain 
can be used to inhibit the association of Arp2/3 with N-WASP. Figure 
adapted from Bompard et al. 2004, full reference in text.  
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1.4.2.6 N-WASP-Arp2/3 and its Regulation 

N-WASP is regulated in a number of ways to ensure exquisite spatial and temporal control of N-

WASP-dependent functions. The V,C, and A domains are collectively termed the VCA region 

(WA domain), where the V (W) domain interacts with actin monomers and the CA (A) domain 

interact with the Arp2/3 complex (159-162) (Figure 1.6). The Arp2/3 complex binds to an 

existing actin filament and uses itself as a nucleation site for the polymerization of a new actin 

filament at a 70º angle to the existing actin filament (163;164). N-WASP is normally folded in an 

autoinhibitory conformation in which the WA domain binds to the GBD domain. This interaction 

prevents the recruitment of the Arp2/3 complex to N-WASP, thereby inhibiting actin 

polymerization (165). Autoinhibition is relieved through dual activation of N-WASP by Cdc42 

and PIP2  (160;161;165-167). The lysine-rich B motif of N-WASP binds to PIP2, while GTP-

bound Cdc42 binds to the GBD, inducing a change in conformation leading to N-WASP 

activation at the target membrane (168;169). It has also been shown that increases in local PIP2 

concentration can  recruit, unfold, and activate N-WASP even in the absence of Cdc42 

(158;170). N-WASP binds numerous SH3 domain-containing proteins through its proline-rich 

region allowing it to be recruited to specific sites (171-173). Phosphorylation of N-WASP’s 

GDB domain by Src-family tyrosine kinases plays an important role in N-WASP’s sustained 

activation presumably by relieving autoinhibition (174-176). To support this, mutations in key 

N-WASP tyrosine residues that mimic phosphorylation result in constitutive activation of N-

WASP (168). 

 Several approaches have been used to inhibit N-WASP function. The WA domain of N-

WASP or other WAVE family proteins has been used as a dominant negative construct for N-

WASP (158;161). When used for in vitro actin polymerization experiments, the WA domain acts 
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as a constitutively active construct because it not autoinhibited like full-length N-WASP (177). 

However, in vivo the WA domain binds to and sequesters Arp2/3 from N-WASP thereby 

inhibiting actin polymerization downstream of N-WASP (Figure 1.7) (169). Use of the WA 

domain lacks complete specificity as this domain is highly conserved among the WASP/WAVE 

family; therefore, this construct could also inhibit Arp2/3-mediated actin polymerization 

downstream of other NPFs such as WAVEs. A more selective way to inhibit N-WASP was 

described in 2003 by Peterson et al., who conducted a screen for compounds that inhibit PIP2-

stimulated actin polymerization in vitro. The study identified wiskostatin as a small molecule 

inhibitor that binds to and stabilizes the autoinhibitory conformation of N-WASP (wisk; Figure 

1.7). Using assays that measure the rate and extent of actin polymerization the group showed that 

wiskostatin potently inhibits N-WASP activity in vitro (178). In addition to this approach, some 

groups have also used either siRNA or a knockout mouse to study the role of N-WASP in 

various cellular processes. In chapter 3, I explore the role of N-WASP in polarized biosynthetic 

traffic using expression of the WA domain, wiskostatin, and siRNA-mediated knockdown to 

disrupt N-WASP function. 

1.5 PHOSPHATIDYLINOSITOL METABOLISM AND DISEASE 

Given the multiple roles of PIPs in cell homeostasis it is not surprising to find diseases resulting 

from aberrant PIP metabolism. Loss of proper PIP metabolism and signaling has been linked to 

diseases such as cancer, Type 2 diabetes, Down syndrome, and Lowe syndrome (179). The 

fundamental differences between these diseases reinforce the diversity of cellular functions that 
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rely on efficient PIP metabolism. In the following sections, I briefly discuss the faulty pathway 

that leads to each disease.  

PI3K/PTEN-regulated PIP3 metabolism is involved in cell proliferation, apoptosis, 

metabolism, signaling, and cell growth (180). The gene for PTEN was first identified as a tumor 

suppressor located in an area of chromosome 10 associated with breast and prostate cancer 

(181;182). The ability of PTEN to suppress tumors was later found to be the result of its ability 

to dephosphorylate PIP3 (183;184). Mutations in PTEN cause the inherited diseases Cowden 

disease and Bannayan-Zonana syndrome, which are characterized by multiple hamartomas 

(benign growths) but also an increased risk of malignant tumors (179). Mutations that increase 

PI3K activity have also been linked to certain cancers, such as colorectal cancer and 

glioblastomas (85). 

Type 2 diabetes results from a decreased or loss of response to insulin leading to 

hyperglycemia. A number of proteins normally act as modifiers of this pathway by suppressing 

downstream signaling from the insulin receptor, including the PIP3 5-pptase Src homology 2-

containing inositol-5-phosphatase (SHIP2) (179). Insulin signaling is mediated through the 

PI3K/Akt pathway, and SHIP2 activity suppresses insulin signals by decreasing the available 

PIP3. In a study that compared 4 control subjects and 8 patients with type 2 diabetes, it was found 

that one disease patient was lacking a 16 bp region of the SHIP2 3’ untranslated region. Deletion 

of this region increases SHIP2 expression thereby dampening insulin signaling resulting in type 

2 diabetes (185;186).  

Symptoms of complex multi-gene disorders, such as Down syndrome, have been 

attributed to problems with PIP2 metabolism. Down syndrome is caused by chromosome 21 

trisomy, and therefore patients have an extra copy of chromosome 21 genes, including 
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synaptojanin 1 (synj1). Researchers discovered that the Down syndrome model mouse has a 

defect in PIP2 homeostasis. As discussed earlier, regulation of PIP2 metabolism is important for 

synaptic vesicle cycling, therefore dysregulation of PIP2 may be responsible for altered cognitive 

function in Down patients. Furthermore, altered PIP2 metabolism is recapitulated in transgenic 

mice designed to contain an extra copy of Synj1 causing the mice to have a deficit in completing 

cognitive tasks (187).     

1.5.1 Lowe Syndrome 

Lowe syndrome results from mutations in the gene OCRL1. Lowe syndrome is a rare X-linked 

disorder characterized by mental retardation, congenital cataracts, poor muscle tone, and renal 

Fanconi syndrome (low molecular weight proteinuria (lmwp), hypercalciuria, and 

nephrocalcinosis) (44;188). The cause of the pathologies of Lowe syndrome are not known, but 

it is hypothesized that they may be due to defects in membrane traffic. OCRL is a 105kDa PIP2 

5-pptase that was originally localized to lysosomes, but has since been found primarily in the 

TGN, endosomes, and CCPs (73;75;76). The localization of OCRL is not coincident with the 

major pool of PIP2 in the plasma membrane. Therefore, OCRL may function to regulate a small 

pool of PIP2 that is generated and important at intracellular sites. 

  OCRL shares a similar phenotype with another X-linked disorder, Dent disease, which 

arises from mutations in the chloride-proton antiporter, ClC-5, and ultimately results in renal 

Fanconi syndrome (lmwp, glycosuria, aminoaciduria, and phosphaturia) (189;190). While Dent 

disease is predominantly caused by ClC-5 mutations, some Dent patients were found to have 

mutations in OCRL. These patients exhibited lmwp, but not the other main clinical phenotypes 

of Lowe syndrome (189;191). A detailed study comparing the kidney phenotype of Dent patients 
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and Lowe patients revealed that Lowe syndrome seems to result in a selective proximal tubule 

dysfunction, and lack the glycosuria found in Dent disease (192). Of note, are mutations OCRL 

that cause Dent disease are often found on or before exon 7 of the OCRL gene. However, this 

finding provides little insight into the mild Lowe phenotype of these patients as the mutations 

frequently result in complete loss of protein expression (189;193). The similarities in the reneal 

symptoms between the Dent disease and Lowe syndrome suggest that they share a common 

mechanism underlying their pathophysiology. Fanconi syndrome in Dent disease is thought to be 

caused by a loss of function of the multi-ligand scavenger receptor megalin, which reabsorbs 

proteins and other ligands in the kidney proximal tubule (194). It has been hypothesized that the 

Fanconi syndrome phenotype in Lowe syndrome is similarly caused by aberrant megalin 

trafficking, but this has not been examined directly. 

 Megalin is a member of the LDL-receptor family that is trafficked through the secretory 

pathway in association with its chaperone receptor associated protein (RAP), which prevents 

premature ligand binding to the receptor. At the cell surface megalin associates and traffics with 

a co-receptor cubilin. Together, megalin and cubilin internalize over 20 different ligands from 

the kidney filtrate. Once the ligand has been internalized and dissociates from the receptor, 

megalin then recycles to the cell surface (195). Interestingly, Lowe syndrome patients have been 

shown to shed less megalin in their urine, also a feature of Dent disease. Megalin normally 

undergoes regulated intramembranous proteolysis at a low basal rate, therefore less megalin in 

the urine suggests that less of the receptor is present at the apical surface at steady state 

(196;197). Since OCRL has been localized to both endosomes and the TGN, it is reasonable to 

hypothesize that OCRL activity may influence membrane traffic of megalin along either the 

biosynthetic or the endocytic/recycling routes (75). Indeed, OCRL has been shown to play a role 
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in endosome-to-TGN traffic of CI-MPR, but whether OCRL is involved in membrane traffic 

along the biosynthetic pathway remains to be tested. 

1.6 GOALS OF THIS DISSERATION 

For my dissertation I investigated the role of PIP metabolism in biosynthetic traffic. In polarized 

epithelial cells, biosynthetic transport of proteins is directed by sorting at either the TGN or 

endosomes that ensures proteins are sent to the correct membrane domain. Some information is 

available about the mechanisms that regulate basolateral sorting, however those that govern the 

sorting of distinct classes of apical proteins have not been thoroughly investigated. Lipids, 

including phosphatidylinositols, play important roles in vesicular traffic. PI4P is highly enriched 

in the Golgi complex and influences membrane traffic through that organelle. PI4P may also 

serve as a substrate for synthesis of PIP2 in the Golgi. The role of PIP2 metabolism in polarized 

biosynthetic traffic is not well known but could involve PIP2 effector proteins, such as N-WASP 

to engage the actin cytoskeleton. In addition, while actin is known to be important for membrane 

traffic, the involvement of N-WASP in biosynthetic traffic has been largely unexplored. 

To explore the role of phosphatidylinositol metabolism in polarized biosynthetic traffic, I 

have studied the effect of overexpression or knockdown of PIP2-metabolizing enzymes on 

biosynthetic traffic of apical and basolateral proteins. The first goal of this study was to 

determine if there is a role for PIP2-metabolism in biosynthetic traffic and to characterize 

proteins that are sensitive to PIP2 levels based on their sorting signal. The second goal of my 

work was to determine if actin polymerization via N-WASP/Arp2/3 is important in biosynthetic 
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traffic. These studies fill an important gap within the literature and have the potential to 

contribute to therapeutic treatments for Lowe syndrome.  
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2.0     THE ROLE OF PHOSPHATIDYLINOSITOL METABOLISM IN POLARIZED 

BIOSYNTHETIC TRAFFIC 

2.1 INTRODUCTION 

The maintenance of polarized cell function requires continuous active sorting and delivery of 

newly synthesized proteins and lipids to differentiated apical and basolateral plasma membrane 

domains. Tight junctions between the cells prevent the diffusion of surface proteins between 

these domains, but polarity is established and maintained largely by the selective delivery and 

recycling of proteins to their appropriate site of function. In polarized renal cells, it is thought 

that newly synthesized proteins are sorted initially at the trans-Golgi network (TGN) into distinct 

carriers destined for the apical or basolateral domain  (29;198). Transport of some proteins to 

their ultimate destination may be indirect and include passage through endosomal compartments 

or the opposite surface domain (198).  

The sorting of individual proteins to the apical and basolateral cell surface domains is 

signal-mediated. Basolateral sorting signals generally reside in the cytoplasmically-disposed 

regions of proteins whereas glycan-, lipid-, and peptide-dependent signals have been identified 

that reside in the lumenal, membrane-associated, or cytoplasmic regions of distinct apically-

targeted proteins  (198). Little is known about how the sorting machinery recognizes these 

diverse signals.  A current model suggests that preferential incorporation of a subset of apical 
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proteins, including those with glycosphingolipid anchors or sorting signals within their 

transmembrane domains, into glycolipid-enriched microdomains (lipid rafts) is important for 

their polarized delivery (29). Interestingly, apical delivery of raft vs. non-raft proteins may 

involve distinct transport carriers that are independently regulated (9;199).  

There is increasing evidence for a role of phosphatidylinositols in the regulation of 

biosynthetic membrane traffic (59). The Golgi contains a sizable pool of PI4P and harbors two 

PI4P-synthesizing enzymes (PI4KIIIβ and PI4KIIα) (49;50;134;200). Previously it has been 

demonstrated that overexpression of PI4KIIIβ inhibits the rate of apical membrane delivery of 

the raft-associated protein influenza HA, whereas expression of a kinase-deficient mutant 

stimulates delivery  (50). However, it is conceivable that these effects are due to a downstream 

metabolite of PI4P, such as PIP2. Indeed, although there is only a small amount of this lipid that 

can be visualized in the Golgi complex (43), PIP2 is readily generated on isolated Golgi 

membranes incubated with phosphatidylinositol 4-phosphate 5-kinases [PI5Ks; (42)] and several 

possible functions for PIP2 in biosynthetic membrane traffic have been postulated (59;201;202). 

Additionally, the presence of OCRL, a TGN-localized PIP2 5-pptase that is defective or absent in 

patients with oculocerebrorenal syndrome of Lowe, lends further support to a role for PIP2 

metabolism in that compartment (72;73).  

Lowe syndrome is characterized by mental retardation, congenital cataracts, and renal 

Fanconi syndrome (44;188). While the degree of each phenotype may vary, Lowe Syndrome 

patients universally have renal Fanconi syndrome, which is characterized by defective absorption 

of low molecular weight proteins in the proximal tubule. Protein uptake from the apical surface 

of these cells is dependent on megalin, a recycling receptor that mediates the uptake and ultimate 

degradation of protein ligands (195). Observations made in cells from Lowe syndrome patients 
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reveals that PIP2 levels are slightly increased due to lack of OCRL, consistent with its function as 

a PIP2 5-pptase (203). While a role for OCRL in endosome to TGN traffic has been reported, the 

role of OCRL-regulated PIP2 metabolism in biosynthetic traffic has not been explored (75). Here 

I have examined the effect of increasing PIP2 synthesis on polarized biosynthetic traffic in 

Madin-Darby canine kidney (MDCK) cells.  
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2.2 RESULTS 

2.2.1 Localization of PI5K and OCRL in MDCK Cells 

The localization of murine PI5KIα (PI5K) and human OCRL was determined via adenoviral 

(AV)-mediated overexpression in MDCK cells, as they are a well established model to study 

trafficking in polarized epithelial cells. Due to the lack of available antibodies that recognize 

endogenous canine PI5K, indirect immunofluorescence was performed to visualize the HA 

epitope tag of overexpressed PI5K. In nonpolarized MDCK cells, PI5K localizes to the plasma 

membrane and also to filamentous structures in the cytoplasm (Figure 2.1 top row). This 

localization is reminiscent of the observed localization of PI5Ks in other adherent cell lines 

(204). However, in polarized MDCK cells, PI5K is highly concentrated in the apical pole of the 

cells and is absent from the basolateral surface (Figure 2.1 middle and bottom panels). By 

contrast, in nonpolarized cells OCRL has a very defined localization to cytoplasmic punctae and 

the juxtanuclear region consistent with its reported localization in endosomes and the TGN 

(Figure 2.1 top row). Prior to this work, the localization of OCRL in polarized epithelial cells 

had not been examined. My data indicate that OCRL is localized to punctae in the periphery of 

the cell and above the nucleus (Figure 2.1 middle and bottom panels). Since the OCRL antibody 

I used only recognized exogenously expressed OCRL, these data must be interpreted cautiously. 

However, the bright OCRL staining above the nucleus and below the tight junctions (not shown) 

is consistent with Golgi localization, while the lateral punctae may be endosomal compartments.  
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 Figure 2.1 Localization of OCRL and PI5K in nonpolarized and polarized MDCK cells. 

 

 

 

 

MDCK cells were electroporated with a cDNA construct encoding mPI5KIα, or infected 
with AV-OCRL and plated sparsely on coverslips (top row) or plated onto Transwell filters 
for 3 days prior to fixation and processing for immunofluorescence(remaining panels).  HA-
tagged PI5K and OCRL were detected using a monoclonal antibodies and an AlexaFluor 488 
secondary antibody.  Confocal sections were captured using a spinning disc confocal 
deconvolved using Metamporph software show representative PI5K or OCRL staining from 
the apical pole, lateral and basal regions of the cell.  The bottom row shows deconvolved xz 
sections from the filter-grown cells. Scale bars represent ~10μm.  
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2.2.2 PI5K Selectively Stimulates Biosynthetic Delivery on an Apical Raft-associated 

Protein 

I examined the effect of AV-mediated overexpression of PI5K on biosynthetic traffic in 

polarized MDCK cells. Overexpression of PI5K increased cellular levels of PIP2 by 2-fold 

(Figure 2.2) but did not alter intra-Golgi kinetics based on the quantitation of the rate of HA 

acquisition of endoglycosidase H (endo H) resistance (Figure 2.3A). To examine the effects of 

PI5K on post-Golgi transport, I staged newly-synthesized HA in the TGN at 19ºC, and using a 

cell surface trypsinization assay measured the rate of its delivery to the cell surface upon 

warming to 37ºC. Roughly 50% of the total HA expressed in control cells reached the apical 

membrane in 1 h (Figure 2.3B). In contrast, HA delivery was markedly stimulated in cells 

overexpressing PI5K (~67% at 1 h). 

I next examined the effect of PI5K on the TGN-to-surface transport kinetics of p75, an 

apical marker that is not known to associate with lipid rafts in MDCK cells (Figure 2.3 C), as 

well as on the basolateral marker vesicular stomatitis virus G protein (VSV-G) (Figure 2.3D). 

PI5K had no effect on the biosynthetic delivery of either of these proteins. Thus, the stimulatory 

effect of PI5K on surface delivery appears to be selective for raft-associated proteins.  
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Figure 2.2 Relative PIP2 levels for AV-infected MDCK cells. 
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Filter-grown MDCK cells were infected with control AV, AV-
PI5K, AV-OCRL or AV-OCRL mutant (mut; R483G).  To 
assay for phospholipids levels, cells were incubated briefly in 
phosphate-free media, labeled for 4 hr with 32P-orthophosphate 
and extracted using chloroform:methanol:HCl.  Extracted lipids 
were separated using thin layer chromatography (TLC).  
Densitometry was used to quantify the intensity of each band 
and relative amounts were determined.  Data for PIP2 were 
normalized to the control PIP2 percentage.  Error bars represent 
mean +/- std error for at least n=4 independent experiments. * 
represents p≤0.004. 
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Figure 2.3 TGN to apical membrane delivery of a raft-associated protein is selectively 
modulated by PI5K and OCRL 
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A, Filter-grown MDCK cells co-infected with AV-HA and either control AV or AV-PI5K were 
starved, radiolabeled for 5 min, and chased at 37ºC for the indicated time periods. HA was 
immunoprecipitated from cell lysates, the samples were treated with endo H, and the fraction of 
HA that was resistant to endo H at each time point was quantitated. Similar results were 
obtained in three experiments. B, MDCK cells co-infected with AV-HA and either control AV, 
AV-PI5K or AV-OCRL were radiolabeled for 15 min and chased for 2 h at 19ºC. Apical 
delivery of HA was quantitated by cell surface trypsinization at various times after warming to 
37ºC. Similar results were obtained in 13 experiments comparing HA transport in control and 
PI5K-expressing cells. C, MDCK cells co-infected with AV-p75 and either control AV or AV-
PI5K were radiolabeled for 2 h at 18oC with [35S]-sulfate prior to warming to 37ºC for the 
indicated times. Apical delivery of p75 was quantitated by domain selective biotinylation. 
Similar results were obtained in three independent experiments. D, MDCK cells co-infected 
with AV-VSV-G and either control AV or AV-PI5K were radiolabeled and then chased for 2 h 
at 19ºC prior to warming to 37ºC for 0 or 60 min. Basolateral delivery was quantitated by 
domain selective biotinylation. The mean +/- S.E.M. of the indicated number of experiments 
performed in triplicate or quadruplicate is plotted;  n=3 for 0’;  n≥4 for 60’. * p≤0.02 vs. control 
at 0’. MDCK cells co-infected with AV-HA (E) or AV-p75 (F) and either control AV or AVs 
expressing wild-type or kinase-deficient OCRL were starved in sulfate-free media for 30 min 
and radiolabeled for 2.5 h at 18ºC with [35S]-sulfate prior to warming to 37ºC. Apical delivery 
of HA (at 1 h) was quantified using cell surface trypsinization; delivery of p75 (at 2 h) was 
quantitated by domain selective biotinylation. The percent delivery (mean +/- S.E.M.) of HA 
(n=3) and p75 (n=5-6) is shown. * denotes statistical significance from control measured using 
Student’s t test (p=0.004) 

 



  50 

2.2.3 Overexpression of OCRL Selectively Inhibits Biosynthetic Delivery of Influenza HA 

To examine whether stimulation of PIP2 synthesis in the TGN was responsible for the effect of 

PI5K, I compared the effect of overexpressing the TGN-localized PIP2 5-pptase OCRL or 

expressing a phosphatase-deficient mutant of OCRL on the delivery of HA and p75. 

Overexpression of OCRL decreased PIP2 levels by approximately 30% while expression of the 

phosphatase-deficient mutant had no significant effect on PIP2 levels (Figure 2.2). Because 

overexpression of both wild type and mutant OCRL slowed intra-Golgi transport as assessed by 

monitoring endo H kinetics, I used [35S]-sulfate to selectively radiolabel proteins in the TGN. As 

shown in Figure 1.3B, expression of wild type OCRL inhibited TGN to apical delivery of HA, 

whereas mutant OCRL had no effect (Figure 2.3E). Consistent with the selective effect of PI5K 

on HA delivery, neither wild type nor mutant OCRL affected the kinetics of p75 delivery (Figure 

2.3F).  

2.2.4 Knockdown of OCRL in MDCK Cells 

Lowe syndrome patients can have mutations anywhere throughout the coding sequence of 

OCRL1 and often, the result of such mutations is complete loss of OCRL protein expression. 

Therefore, to mimic the conditions in Lowe syndrome patients, I sought to use a knockdown 

approach to silence expression of endogenous OCRL in MDCK cells. The sequence for a canine-

specific OCRL siRNA oligonucleotide (oligo) and a protocol for introducing the oligo into 

MDCK cells were obtained from Dr. Alex Ungewickell (Washington University). The oligo 

GGTTCCCTGCCATTTTTCA contains a single mismatch in the 3’ end of the sense strand that 

has been shown to increase the efficiency of siRNA oligos, presumably by enhancing unwinding 
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and increasing degradation of the target mRNA (205-207). An Amaxa Nucleofector © was used 

to introduce 2.5 or 5µg of control (firefly luciferase) or OCRL siRNA oligo into MDCK cells 

cultured to 50% confluence. After electroporation, cells were either allowed to recover for 1 day 

on a culture dish or plated directly to Transwell filters. After 2-3 days, cells were harvested and 

Western blotted with an antibody against endogenous OCRL to assay the extent of knockdown. 

MDCK cells electroporated with 2.5µg siRNA/0.5 x 106 cells plated directly onto Transwell 

filters exhibited approximately 98% knockdown on day 3, while the other conditions exhibited 

equal or less efficient knockdown (Figure 2.4). In addition to knockdown in polarized MDCK 

cells, significant knockdown was also achieved in a nonpolarized human proximal tubule (HK2) 

cell line (not shown). 

2.2.5 OCRL Knockdown Increases PIP2 Levels and Stimulates Actin Comets 

To determine whether OCRL knockdown recapitulated Lowe syndrome I assayed the published 

cellular phenotypes of Lowe syndrome cells. One report indicated that proximal tubule cells 

from Lowe syndrome patients exhibited increased PIP2 levels (208). Briefly, cellular 

phospholipids were labeled upon incubation with 32P-orthophosphate prior to extraction with 

chloroform-methanol and separation by thin layer chromatography (TLC). MDCK cells lacking 

OCRL had slightly increased PIP2 levels compared with cells treated with control siRNA (Figure 

2.5). While the increase was not statistically significant or as dramatic as that seen with PI5K 

overexpression, it is consistent with the known localization of OCRL in compartments that have 

low relative PIP2 levels.  

Abnormalities in the cytoskeleton have also been described in cells from Lowe syndrome 

patients. Features of this phenotype include decreased stress fibers, increased sensitivity to the 
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actin depolymerizing agent, cytochalasin D, and increased actin comet formation (209;210). I 

examined the actin comet phenotype as increases in PIP2 via PI5K also increase actin comets 

(158). For these experiments, I generated MDCK cells that were stably transfected with cDNA 

encoding GFP-actin. These cells were electroporated with either control or OCRL siRNA and 

then plated onto Transwell filters for 2 days before being grown in culture dishes designed for 

live cell microscopy. Short movies (3-4 min) were taken of random fields and reviewed for the 

presence of actin comets. Analysis revealed that OCRL-knockdown cells had an increased 

frequency of actin comets (~20% of cells) compared to control cells (~4%) (Table 2.1).  
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Figure 2.4 Knockdown of OCRL in polarized MDCK cells 
Low passage MDCK cells grown to 50% confluence were trypsinized and 
resuspended into Amaxa solution mix at a density of 1 x 106 cells/100ul solution. 
100 ul of the cells were mixed with 2.5 or 5 ug of control or OCRL siRNA and 
placed into a cuvette.  Samples were nucleofected using program T-020 and were 
then either put directly onto filters (left) or allowed to recover for 1 day on a 10 
cm dish before being plated to filters for 3 days.  Samples were harvested and 
analyzed by western blot for OCRL and actin as a loading control. Quantitation of 
data using a VersaDoc (BioRad) and Quantity One software were performed. The 
left side of the image is labeled to denote the OCRL and β-actin bands.  Above the 
image, the type of siRNA treatment is denoted and below individual lanes are 
labeled C for control siRNA and O for OCRL siRNA.   
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Figure 2.5 PIP2 levels in OCRL knockdown cells. 
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MDCK cells were treated with either control or 
OCRL siRNA and plated directly onto filters for 3 
days. Phospholipids were labeled with 32P-
orthophosphate and analyzed by TLC to determine 
relative phospholipids levels. PIP2 values for OCRL 
knockdown were normalized to control in each of 
n=3 independent experiments and mean +/- std 
error is plotted. 
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Table 2.1 Quantitation of actin comet frequency in MDCK cells. 

 

 

 

 

 

   

MDCK cells stably expressing GFP actin were imaged under the indicated 
conditions.  Three minute movies were taken of random frames with either 
a 60X or 100 X oil immersion objective.  Movies were reviewed multiple 
times to determine the percentage of cells with actin comets.  n represents 
the number of cells counted for each condition. For siRNA samples, 
MDCK cells were electroporated with control or OCRL siRNA and plated 
onto filters for two days before being transferred to Bioptech 0.17 mm ΔT 
dishes for imaging. For adenovirus infected samples, MDCK cells seeded 
onto Bioptech dishes were infected with either control AV or AVs 
encoding WA, PI5K, or OCRL (m.o.i. 100-250). The samples were kept in 
0.25 ng/ml DOX overnight to suppress protein expression from the AVs. 
The next day, DOX was thoroughly washed and random fields were 
imaged for 3 min intervals starting 5 h later. The effects of PMA and 
cytochalasin D (cyto D) were determined after a brief treatment with 5 
μg/ml of each drug or 1% v/v 1-butanol. 

 

Condition 
% cells 

with 
comets 

n 

OCRL siRNA 22 69 
control siRNA 3.6 55 

   
control-AV 7.4 27 
AV-PI5K 27 212 
AV-WA 0 10 

WA+PI5K 0 44 
PI5K + OCRL 0 47 
PI5K + cyto D 0 10 

PMA 31 33 
PI5K + 1-butanol 6.7 15 

PI5K + OCRL 0 47 
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2.2.6 OCRL Knockdown has No Effect on the Biosynthetic Delivery of Influenza HA in 

MDCK or HK2 Cells 

Because increases in cellular PIP2 levels upon overexpression of PI5K stimulated TGN-to-apical 

membrane delivery of HA, knockdown of OCRL might also be expected to stimulate the rate of 

HA delivery. To test this, electroporation of siRNA oligos was used to deplete OCRL from 

MDCK cells. I examined the effect of OCRL knockdown on the delivery of HA from the TGN to 

the apical plasma membrane. In several experiments I detected no significant changes in the rate 

of HA delivery (Figure 2.6 Top). OCRL-null mice show no Lowe syndrome phenotype 

presumably due to compensation by another related PIP2 5-pptase, Inpp5b (211). It is unknown 

whether canine cells lacking OCRL would exhibit the clinical/cellular phenotypes of Lowe 

syndrome or be rescued by compensation. Therefore, to confirm my results in a species known to 

have renal phenotype, I tested the effect of OCRL knockdown on HA delivery in the human 

kidney proximal tubule cell line HK2. Similar to my results in MDCL cells, knockdown of 

OCRL caused no significant change in the rate of HA delivery in these cells (Figure 2.6 Bottom).  
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Figure 2.6 TGN to PM delivery of HA is not affected by OCRL 
knockdown in polarized MDCK cells or HK2 cells. 
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MDCK or HK2 cells were treated with either control or OCRL siRNA prior 
to infection with AV-HA. The next day, cells were radiolabeled for 15 min 
and chased for 2 h at 19ºC. Apical or plasma membrane delivery of HA was 
quantitated by cell surface trypsinization at various times after warming to 
37ºC. One representative experiment is shown for both MDCK (top;n=6) 
and HK2 (bottom; n=4) error bars in HK2 graph represent the range.  
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2.3 DISCUSSION 

Here I investigated the role of PIP2 metabolism in polarized biosynthetic traffic. Expression of 

PI5K in polarized MDCK cells markedly stimulated TGN-to-apical delivery of the lipid raft-

associated protein influenza HA, whereas overexpression of OCRL inhibited delivery. Delivery 

of the non-raft associated apical protein p75 and of the basolateral protein VSV-G were 

unaffected by PI5K, and expression of OCRL also had no effect on the rate of apical p75 

delivery. Knockdown of OCRL slightly stimulated PIP2 levels and robustly stimulated the 

formation of actin comets in MDCK cells. However, OCRL knockdown had little to no effect on 

HA delivery, contrary to my initial predictions that delivery would be stimulated. Together these 

data suggest a role for PIP2 in the efficient biosynthetic delivery of a lipid-raft associated protein. 

However the pathological defects observed in Lowe syndrome appear not to be related to defects 

in biosynthetic traffic.  

It is necessary to consider my results in the context of previous studies on the major 

Golgi phosphatidylinositol, PI4P. Overexpression of PI4K increases PI4P levels and inhibits HA 

delivery in MDCK cells (50). The relationship between PI4P and PIP2 in polarized biosynthetic 

traffic may be more complex than a simple precursor-product relationship, as PI4P has many 

functions. A likely scenario is that PI4P and PIP2 function independently to modulate distinct 

steps in membrane transport. 

The roles of OCRL-mediated PIP2 metabolism in the pathology of Lowe syndrome 

remain unclear. The renal Fanconi syndrome common in Lowe patients is likely due to a defect 

in megalin traffic, however, the site of and mechanism of dysfunction remain to be determined. 

OCRL could regulate megalin traffic along the biosynthetic or the endocytic/recycling routes. 

While my data lend less support for a contribution to the biosynthetic route, strong evidence still 
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exists for OCRL-mediated regulation of megalin endocytosis/recycling, including the 

observation that Lowe syndrome patients shed less megalin into their urine (196). While I did not 

identify the compartment to which OCRL localizes in polarized cells, it is possible that the 

supranuclear punctae represent the apical recycling endosome. The apical recycling endosome is 

a compartment unique to polarized epithelial cells which is marked by the small GTPase, Rab11. 

Indeed, this compartment is traversed by megalin in a mechanism dependent on the clathrin 

sorting adaptor, autosomal recessive hypercholesterolemia (ARH) (212). OCRL has been shown 

to interact with clathrin through a conserved clathrin-binding motif, and may function in clathrin-

mediated vesicular traffic of megalin through the endosomal recycling system. 

The site of action of PI5K in TGN-to-apical membrane delivery of HA remains to be 

determined. Whereas no PI5K isoform has been localized to the Golgi complex, the majority of 

the PI5K in polarized MDCK cells was associated with actin filaments near the apical surface, 

close to the supranuclear Golgi complex (Figure 3.1A). There are strong indications that 

apically-destined proteins traverse endosomal intermediates en route to the cell surface 

suggesting the possibility that the PI5K- and OCRL-mediated effects on HA transport might 

occur at post-TGN sites (5;213;214). Overall, my data suggest that PIP2 influences HA traffic 

through modulation of the actin cytoskeleton, but further research is necessary determine the 

mechanism of PIP2’s role in biosynthetic traffic. 

 

 

 

*Some text in this chapter, Figure 2.3 and portions of Table 2.1 are published in Guerriero et al. 

JBC 2006 and were used with the permission of the Journal of Biological Chemistry. 
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3.0  THE ROLE OF N-WASP IN BIOSYNTHETIC TRAFFIC 

3.1 INTRODUCTION 

Polarized epithelial cells line the surfaces of our bodies and maintain internal homeostasis 

through the regulation of a selective barrier for pathogens and solutes. Both the actin and 

microtubule cytoskeleton have been implicated in proper biosynthetic membrane traffic. The 

dynamic polymerization of actin into straight or branched filaments regulates diverse cellular 

processes including ion transport, membrane trafficking, and cell migration (215-217). An 

important modulator of actin polymerization is the actin-related protein (Arp)2/3 complex, which 

nucleates the polymerization of actin on existing filaments to create a branched network. 

Members of the Wiskott-Aldrich syndrome protein (WASP) and SCAR/WAVE families of 

proteins activate Arp2/3-mediated actin polymerization, leading to distinct downstream effects. 

For example, Rac-mediated association of WAVE proteins with Arp2/3 regulates the formation 

of lamellopodia, whereas Cdc42- and PIP2-stimulated binding of the ubiquitously expressed 

WASP family member N-WASP to Arp2/3 has been implicated in the intracytoplasmic 

propulsion via actin comets of transport vesicles, organelles, and invading pathogens 

(141;163;218).  

 N-WASP contains multiple domains that contribute to its function, including a WASP 

homology (WH)1 domain, a GTPase binding domain (GBD), a proline-rich region, and a WA 



  61 

domain that binds to both actin and Arp2/3. The protein normally exists in an autoinhibited state 

that is maintained by cis interactions between the GBD and the conserved COOH-terminal WA 

domain. Interaction with GTP-bound Cdc42 and PIP2 relieves the autoinhibition and promotes N-

WASP-mediated activation of Arp2/3.  

Data in chapter 2 show that apical delivery of a lipid raft-associated protein is dependent 

on PIP2. Increases in PIP2 levels upon expression of PI5Ks also leads to production of rapidly 

nucleating branches of actin filaments termed actin comets, which are capable of propelling 

transport vesicles through the cytoplasm (219). N-WASP is activated by PIP2 and transduces 

elevated PIP2 levels into an increased frequency of actin comets (220). N-WASP and Arp2/3 are 

localized to the Golgi complex (among other sites), and a link between actin comets and 

biosynthetic traffic has been previously suggested (158). Activation of Arp2/3 by WASP and 

WAVE proteins can be blocked in vivo by expression of the highly homologous WA domains of 

these proteins, which function as dominant-negative inhibitors (162). In addition, wiskostatin, a 

chemical inhibitor of N-WASP, was recently identified in a high-throughput screen for inhibitors 

of PIP2-mediated actin polymerization (221). In vitro studies demonstrated that wiskostatin binds 

to the GBD of N-WASP, thereby stabilizing the autoinhibited conformation of the protein (178). 

However, the effects of manipulating N-WASP activity on the fidelity or rate of biosynthetic 

transport have not been explored.  

The goal of these studies is to define the requirement for N-WASP in the biosynthetic 

traffic of both apical/basolateral proteins and determine if a link exists between PI5K-stimulated 

apical delivery and N-WASP-mediated actin comets. Here I have examined the effect of 

inhibition of N-WASP/Arp2/3-mediated actin polymerization on biosynthetic delivery in 

polarized MDCK cells. To inhibit N-WASP/Arp2/3 function I used a dominant negative 
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inhibitor of N-WASP, the commercial inhibitor wiskostatin, and an siRNA oligonucleotide 

directed against N-WASP.  

3.2 RESULTS 

3.2.1 PI5K Stimulates Actin Comets in MDCK Cells 

Because PI5K-stimulated actin comets have been implicated in the transport of raft-associated 

proteins (158), I asked whether actin comet-mediated propulsion of HA transport carriers could 

be responsible for the stimulated surface delivery I previously observed. First, I sought to 

determine the relationship between PI5K and actin in fixed cells. MDCK cells were infected with 

AV expressing PI5K, then fixed and processed for indirect immunofluorescence 16 h later. Actin 

filaments were visualized using rhodamine phalloidin and the HA epitope tag on PI5K was 

detected using a monoclonal mouse antibody. PI5K colocalized extensively with actin filaments 

in confocal sections of MDCK cells (Figure 3.1A). This is consistent with previous reports that 

PI5K is found in actin-rich fractions isolated from thrombin-activated platelets (222;223). Next, I 

used a live cell approach to determine whether PI5K stimulates the formation of actin comets. 

Actin comets have not previously been reported in MDCK cells. MDCK cells were seeded on 

glass coverslips, infected with AV encoding PI5K or control AV, and then incubated in the 

presence of 0.25 ng/ml DOX to suppress PI5K expression. The following day, the DOX was 

washed out and cells were microinjected with cDNA encoding GFP-actin. Random fields were 

imaged 5 h later for 4-min intervals using an Olympus IX81 equipped with a 100X Olympus 

UPlanApo objective. Actin comets were defined as rapidly moving bursts of actin followed by a 
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fading tail of presumably depolymerizing actin. Comets generated in MDCK cells were distinct 

but generally smaller than comets described by others using different cell lines, which have been 

reported to be up to 5 µm in length  (158;224;225). Comets were observed in 7.4% of control 

cells and in 27% of the cells overexpressing PI5K (Table 2.1 and Figure 3.1B). 

Additionally, I could increase the frequency of actin comet formation in control cells by 

addition of the protein kinase C activator PMA, which has been previously demonstrated to 

stimulate actin comets in vivo (Table 2.1) (219). PMA also stimulated the rate of apical delivery 

of HA to an extent comparable with that observed upon overexpression of PI5K I reported 

previously (Figure 2.3B). Conversely, addition of 1-butanol, which disrupts phospholipase D-

mediated synthesis of the PI5K activator phosphatidic acid (PA), profoundly inhibited the 

formation of PI5K-stimulated actin comets (Table 2.1) and also blocked delivery of TGN-staged 

HA to the apical surface (Figure 3.2). 1-Butanol-mediated inhibition of PA synthesis has 

previously been implicated in the release of secretory vesicles from the TGN of endocrine cells 

(226). In contrast, t-butanol, which does not affect PA synthesis, had no effect on comet 

formation or HA delivery (Figure 3.2).  
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Figure 3.1 PI5K localizes to actin filaments and stimulates actin comet formation 
in MDCK cells. 

 

 

 

 

 

A, MDCK cells seeded on coverslips were infected with AV-PI5K and processed for 
indirect immunofluorescence the following day to detect actin (with rhodamine 
phalloidin) and the PI5K HA epitope tag (visualized using Alexa 488-conjugated goat 
anti-mouse secondary antibody). Individual confocal sections and a merged image are 
shown. The enlarged insets highlight areas where colocalization of PI5K with short 
actin filaments is clearly evident. Scale bar, 7.5 µM. B, MDCK cells stably expressing 
GFP-actin were infected with AV-PI5K for 6 h and then imaged every 2 s. Enlarged 
areas shown are from individual frames from the supplementary movie. Two comets 
are seen to initiate from the area highlighted by the square over the time course; one at 
108 s, and the other at 146 s. The starting points for each comet are marked with white 
arrowheads in subsequent frames. 
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Figure 3.2 PMA and 1-butanol have opposing effects on HA delivery. 
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MDCK cells infected with AV-HA were radiolabeled for 15 min and 
chased for 2 h at 19°C. PMA (5 µg/ml PMA), 1-butanol (n-butanol; 1% 
v/v), or t-butyl alcohol (t-butanol; 1% v/v) were added as indicated 10 
min prior to the end of the chase period and included upon subsequent 
incubation at 37 °C for the indicated times. HA delivery to the apical 
surface was measured by cell surface trypsinization. Similar results 
were obtained in at least three experiments for each condition. 
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3.2.2 The Effect of PI5K on HA Delivery is Mediated through Arp2/3 

If actin comets are involved in the TGN to apical membrane delivery of HA, then blockade of N-

WASP-Arp2/3-mediated actin polymerization would be expected to inhibit HA transport. The 

WA domain of WASP/WAVE family proteins provides the binding sites for actin monomers and 

Arp2/3, and when expressed in isolation is a potent inhibitor of N-WASP function  (158;161). As 

a control, I expressed the W domain, which binds to actin monomers but not to Arp2/3  (161). 

Infection of MDCK cells with AVs encoding W or WA yielded comparable levels of the 

expected protein products (W ~16 kDa; WA ~18 kDa Figure 3.3A). As expected, expression of 

WA abolished PI5K-mediated formation of actin comets, demonstrating effective inhibition of 

Arp2/3 function (Table 2.1). I next examined the effect of the WA domain and PI5K on the 

morphology of polarized, filter-grown MDCK cells. Neither the WA domain nor PI5K had any 

apparent effect on cytoskeletal organization in polarized cells (Figure 3.3B; similar results for W 

domain, not shown). Moreover, neither tight junction morphology nor the positioning and 

morphology of the Golgi complex was affected by expression of these constructs (Figure 3.3, C 

and D), although I did notice in cells expressing very high levels of WA that the Golgi appeared 

to be somewhat dispersed toward the edges of the cells. As observed previously (Figure 2.1), 

PI5K was concentrated near the apical membrane, a region that contains the supranuclear Golgi 

complex and the actin-rich terminal web of these cells (Figure 3.3C).  In contrast, WA was 

diffusely expressed throughout the cytoplasm of polarized MDCK cells (Figure 3.3C). 

I next assessed the impact of W or WA domain expression on early transport of HA 

through the early biosynthetic pathway by monitoring the kinetics of HA acquisition of endo H 

resistance. Expression of WA or W had no discernable effects on the kinetics of HA traffic 

through the early Golgi (data not shown). Next, I examined the effects of these domains on HA 



  67 

delivery from the TGN to the plasma membrane. Expression of WA inhibited kinetics of HA 

delivery to the apical cell surface by approximately ~50–75% relative to control over a 60-min 

chase period (Figure 3.4, A and B). Expression of the W domain did not significantly alter the 

delivery of HA indicating that expression of WA was not generally disrupting actin-driven 

processes. As with PI5K expression, the effect of WA on HA delivery was on rate rather than 

sorting, as HA surface polarity measured after long chase times was not compromised (not 

shown). The stimulatory and inhibitory effects of PI5K and WA on HA delivery kinetics were 

highly reproducible, and were statistically significant as assessed by Student's t test analysis of 

multiple experiments (Figure 3.4B). The inhibitory effect of the WA domain was specific for 

lipid raft-enriched apical cargo, as there was no effect of the domain on the apical delivery of p75 

(Figure 3.4C). Moreover, expression of WA had no effect on the delivery of the basolateral 

marker VSV-G (Figure 3.4D). 
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Figure 3.3 Expression of PI5K or the WA domain of Scar1 does not 
alter Golgi or actin morphology. 
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A, MDCK cells were mock-infected or infected with AVs encoding the W or WA domain of 
Scar1, radiolabeled for 1 h, and lysates run on a 15% SDS gel. The positions of molecular weight 
markers (MW) are shown. W and WA migrate at their expected molecular masses (16 and 18 
kDa, respectively). B, expression of PI5K or WA does not disrupt actin morphology in polarized 
MDCK cells. Confocal sections from the apical, lateral, and basal portions of rhodamine 
phalloidin-labeled PI5K- or WA-expressing cells are shown. C, expression of PI5K or WA does 
not alter tight junction morphology of MDCK cells. Filter-grown cells were infected with either 
PI5K- or WA-expressing AVs. Samples were fixed and processed for indirect 
immunofluorescence to detect ZO-1, and PI5K or WA. ZO-1 was detected using secondary 
antibody coupled to Alexa 647 and PI5K or WA was visualized using Alexa 488-conjugated goat 
anti-mouse secondary antibody. Rhodamine phalloidin was included in the secondary antibody 
incubations to detect filamentous actin. Samples were imaged by confocal microscopy, and five 
slices (0.5 µm apart) through the region of the tight junctions were overlaid to make a maximum 
projection. Individual projections and merged xyz and xzy images are shown. D, samples infected 
as in B were stained with rhodamine phalloidin and monoclonal anti-giantin antibody followed by 
Alexa 488-conjugated secondary antibody. A projection of five sections taken through the Golgi 
region is shown. AV-infected cells (asterisks) were identified by co-labeling to detect PI5K (left 
panel) or WA (right panel). Scale bar = 7.5 µm for all xyz sections shown. 
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Figure 3.4 Expression of WA selectively inhibits apical delivery of HA. 

 

 

 

 

 

 

 

 

 

 

A, WA inhibits apical delivery of TGN-staged HA. The kinetics of HA surface delivery 
were quantitated in MDCK cells co-infected with AV-HA, and either control AV or WA-, 
W-, or PI5K-expressing AVs as described previously. B, quantitation of the effects of 
WA, W, and PI5K on HA delivery. The bar graph shows the mean % of total HA (± S.E.) 
at the apical surface after a 60-min chase in at least 8 experiments for each condition. * 
denotes statistical significance from control measured using Student's t test (WA, n = 8, p 

0.001; PI5K, n = 13, p = 0.001). C, expression of WA has no effect on p75 delivery to 
the apical surface. Kinetics of p75 delivery were measured as described in the legend to 
Figure 2.3. Similar results were obtained in three experiments. D, WA does not affect 
basolateral delivery of TGN-staged VSV-G. MDCK cells were co-infected with VSV-G, 
and control, WA- or W-expressing AVs. VSV-G delivery to the basolateral cell surface 
was determined by cell surface biotinylation. Each experiment was performed using 
triplicate or quadruplicate samples, and mean ± S.E. from the indicated number of 
experiments is plotted. Data for control at 0 and 60 min are the same as those shown in 
Figure 2.3D. * denotes significant difference from control at 0 min (control at 0 min, n = 
3; control at 60 min, n = 8, p = 0.02; WA, n = 7, p = 0.005; W, n = 7, p = 0.03; PI5K, n = 
4, p = 0.03). 
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3.2.3 The Effect of Wiskostatin on Membrane Traffic in vivo 

Expression of the WA domain of WAVE1 indicated that N-WASP was involved in biosynthetic 

traffic by significantly decreasing the rate of delivery of lipid-raft cargo, without changing the 

delivery rate of other types of apical proteins or a basolateral protein. However, the WA domain 

could also inhibit WAVE proteins, in addition to N-WASP. A rapidly growing number of 

publications have reported the use of wiskostatin to assess the role of N-WASP in various 

cellular processes (227-231). In some cases, the effects of wiskostatin on these pathways were 

interpreted as evidence for known or novel roles for N-WASP in cellular pathways. For example, 

addition of 50 µM wiskostatin to intestinal epithelial cells was found to inhibit the formation of 

nascent adherens junctions (227). A more recent report found that addition of 10 µM wiskostatin 

to B16-F1 cells rapidly dispersed mTuba-containing punctae and inhibited membrane ruffling 

(229). Another report used 50 µM wiskostatin to show that N-WASP-mediated vesicle motility is 

a downstream event in nonclassic apoptosis triggered by the adenoviral protein E4orf4  (230). 

Finally, Haller et al.  (228) used 40 µM wiskostatin to demonstrate that N-WASP activation is 

important for the maturation of immunologic synapses on T-lymphocyte stimulation. In order to 

determine the role of N-WASP in polarized biosynthetic traffic, I tested the effect of wiskostatin 

treatment on the biosynthetic delivery of HA. 

3.2.3.1 Wiskostatin Inhibits Arp2/3-dependent Apical Biosynthetic Traffic 

I chose to use wiskostatin as a more specific inhibitor of N-WASP in order to confirm my results 

using the WA domain. On the basis of my data in Chapter 2, I hypothesized that wiskostatin 

would inhibit HA delivery to a level comparable to that of WA expression. HA-expressing 

MDCK cells (control or overexpressing PI5K) were radiolabeled for 15 min, incubated at 19ºC to 
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stage newly synthesized membrane proteins in the TGN, and then warmed to 37ºC, and HA 

surface delivery was monitored after 1 h with a surface trypsinization assay as described in 

Henkel et al. 2000 (232) As observed previously, HA delivery was stimulated relative to control 

in cells overexpressing PI5K and inhibited by expression of WA (Figure 3.5A). Inclusion of 50 

µM wiskostatin during the 37ºC chase caused a profound inhibition of HA delivery in both 

control and PI5K-overexpressing cells. In contrast, the effect of WA domain expression on HA 

delivery was largely rescued by PI5K coexpression. 

Next I examined the dose dependence of wiskostatin's effect on HA delivery. HA-

expressing MDCK cells were radiolabeled, HA was staged in the TGN at 19ºC for 2 h, and 10–

50 µM wiskostatin or vehicle alone was added to the cells before warming to 37ºC and 

quantitation of surface delivery kinetics. Additionally, some samples were treated with 50 µM 

wiskostatin during the 2-h stage and then washed extensively before warming to 37ºC to assess 

the reversibility of wiskostatin's effect (Figure 3.5B). HA surface delivery was unaffected by 

acute addition of 10 µM wiskostatin, but treatment with higher concentrations (25 or 50 µM) 

resulted in a virtual blockade in apical delivery. Moreover, the effect of wiskostatin treatment 

was irreversible over this period, because washout of the drug before warming failed to restore 

normal delivery kinetics. 
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Figure 3.5 Wiskostatin inhibits neuronal Wiskott-Aldrich syndrome protein (N-
WASP)-dependent steps in membrane transport. 

 

 

 

 

 

A: polarized Madin-Darby canine kidney (MDCK) cells were infected with replication-
defective recombinant adenoviruses encoding influenza hemagglutinin (HA) and 
phosphatidylinositol 4-phosphate 5-kinase (PI5K) and/or a construct encoding a dominant-
negative inhibitor of N-WASP function (WA) as indicated. The following day, cells were 
radiolabeled for 15 min and chased for 2 h at 19°C to accumulate newly synthesized 
proteins in the trans-Golgi network. Apical delivery of HA was quantitated after warming to 
37°C for 1 h in the presence or absence of 50 µM wiskostatin (wisk). B: cells were prepared 
as in A and were treated with wiskostatin at the indicated concentrations or with 50 µM 
wiskostatin during the 2-h chase followed by washout before warming to 37°C. The results 
of a single experiment in each case are shown. PM, plasma membrane. 
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3.2.3.2  Wiskostatin Inhibits N-WASP-independent Steps in Transport 

As a control to ensure the selectivity of wiskostatin for N-WASP-dependent cellular processes, I 

examined the effect of this drug on early steps in biosynthetic transport that are thought to be N-

WASP-independent (233;234). MDCK cells expressing HA were starved in methionine-free 

medium, radiolabeled for 15 min, incubated for 2 h at 19ºC to accumulate mature (sialylated) HA 

in the TGN, and then either solubilized or warmed to 37°C for 1 h, and surface delivery was 

assessed (Figure 3.6). Wiskostatin (50, 25, or 10 µM) was added at various stages during this 

pulse-chase protocol. Addition of wiskostatin for 2 h at 19ºC after the radiolabeling period 

decreased the accumulation of sialylated HA compared with a mock-treated sample in a dose-

dependent manner (Figure 3.6, lanes C and A, respectively), consistent with inhibition of either 

intra-Golgi transport or the cellular glycosylation processing machinery. On subsequent warming 

to 37ºC in the continued presence of wiskostatin, only 1.8% (50 µM), 2.7% (25 µM), or 20% (10 

µM) of the total HA reached the cell surface in wiskostatin-treated cells (Figure 3.6, lane D). In 

contrast, 53% of the total HA in mock-treated samples reached the surface during this period, as 

assessed by the susceptibility of HA to cleavage into HA1 and HA2 fragments on surface 

trypsinization (Figure 3.6, lane E). Moreover, when wiskostatin was added to cells during the 30-

min starvation period and in subsequent steps, I observed a loss in the synthesis of radiolabeled 

HA, particularly at the higher wiskostatin concentrations (Figure 3.6, lane B). In cells treated 

with 50 µM wiskostatin during the starve and pulse, HA recovery was decreased by 92% 

compared with control, whereas 25 µM and 10 µM wiskostatin decreased recovery by 28% and 

7.3%, respectively. Thus wiskostatin appears to inhibit uptake of radioactive methionine and/or 

disrupt protein synthesis. 
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Figure 3.6 Wiskostatin inhibits N-WASP-independent steps in protein processing. 
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HA-expressing MDCK cells were starved (S) for 30 min, radiolabeled (P) for 15 min, 
incubated for 2 h at 19°C ,and then either solubilized immediately (samples in lanes A, B, 
and C) or incubated for 1 h at 37°C and trypsinized to quantitate surface delivery of HA 
before solubilization. HA was visualized after immunoprecipitation and SDS-PAGE. 
Samples in lanes A and E were mock-treated, whereas wiskostatin was added to the 
remaining samples beginning at the starve (lane B) or at the start of the 19°C incubation 
(lanes C and D). The migration of immature (ns) and sialylated (sial) forms of HA as well 
as the cleavage products generated on surface trypsinization (HA1 and HA2) are 
indicated. Surface delivery of HA in the samples in lanes D and E was 1.8% (50 µM), 
2.7% (25 µM), 20% (10 µM), and 53% (control, lane E) of the total HA. Similar results 
were obtained in 2 experiments. 
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My results described above suggested that wiskostatin inhibits multiple steps along the 

biosynthetic pathway. To examine its role in postendocytic transport, I measured the effect of 

wiskostatin on basolateral-to-apical transcytosis of IgA in MDCK cells stably expressing the 

rabbit pIgR. In this multistep pathway, IgA binds to pIgR at the basolateral cell surface and is 

transported across the cell, where pIgR is cleaved to release a soluble IgA-pIgR complex into the 

apical medium. Transcytosis of IgA in these cells has previously been demonstrated to be actin-

dependent  (235). MDCK cells were incubated for 10 min at 37ºC with basolaterally added 125I-

IgA, washed extensively on ice, and then warmed to 37ºC in the presence or absence of the 

indicated concentrations of wiskostatin. Transcytosis was quantitated as the release of 125I-IgA 

into the apical medium as described in Henkel et al. 1998 (236). Transcytosis was rapid and 

efficient, approaching 80% of the internalized 125I-IgA within 1 h of warm-up (Figure 3.7). In 

contrast, transcytosis was rapidly inhibited in a dose-dependent manner when wiskostatin was 

added to the cells at the start of the 37°C warm-up period. Inhibition of 125I-IgA transcytosis by 

wiskostatin could reflect a block in membrane traffic or alternatively, inhibition of the 

proteolysis step required for the apical release of secretory component. However, when 50 µM 

wiskostatin was added to cells before the incubation with 125I-IgA, internalization of the 

radioligand was completely inhibited (data not shown). 
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Polarized MDCK cells were incubated with basolaterally added 125I-labeled IgA for 10 min at 
37°C and then washed extensively on ice. Apical release of 125I-IgA was quantitated on 
warming to 37°C in the presence or absence of the indicated concentrations of wiskostatin 
added after IgA internalization. Means ± SD of triplicate samples are plotted. 

Figure 3.7 Wiskostatin inhibits actin-dependent postendocytic membrane trafficking steps. 
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3.2.3.3 Wiskostatin Decreases Cellular ATP Levels 

 It was shown previously that depletion of cellular ATP by energy poisons such as sodium azide 

dramatically inhibits protein processing and secretion (237). The rapid and profound effects of 

wiskostatin on multiple steps in protein synthesis, endocytosis, and membrane traffic suggested 

that this drug may similarly perturb cellular ATP levels. To examine this possibility, MDCK 

cells plated in 12-well dishes were treated with wiskostatin at 10, 25, or 50 µM or vehicle for 0–1 

h at 37°C. ATP was extracted and quantified with a luminometry-based assay (Figure 3.8). 

Addition of 25 µM and 50 µM wiskostatin, respectively, resulted in the rapid and nearly 

complete loss of cellular ATP, decreasing the levels to 57% and 30% of control within 15 min 

and to 18% and 9.4% of control within 1 h. Treatment with 2% sodium azide resulted in a 

comparable drop in ATP levels, to 4.6% of control after 1 h of treatment (not shown). 

Wiskostatin added at a lower concentration (10 µM) had a less dramatic effect on cellular ATP in 

MDCK cells (84% and 81% of control at 15 min and 1 h, respectively). Washout of the drug for 

30 min after a 1 h treatment with any concentration of wiskostatin did not restore normal ATP 

levels, suggesting that the effects of the drug on cellular energy status are irreversible over this 

time period. 
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MDCK cells plated in 12-well dishes were treated with vehicle alone or with wiskostatin at 
50, 25, or 10 µM for the indicated time periods. Some drug-treated samples were washed 
extensively after 1 h of treatment and incubated for an additional 30 min (washout) before 
assessment of cellular ATP levels as described in materials and methods. The dose- and time-
dependent effect of wiskostatin on ATP levels was normalized to control cells and plotted 
(means ± SE of 3 independent experiments). *p < 0.05 compared with control based on paired 
t-test of log-transformed raw data. Treatment with the known energy poison sodium azide 
(2%) decreased cellular ATP levels to 4.6% of control after 1 h of treatment (not shown). 

 

 

Figure 3.8 Wiskostatin reduces cellular ATP levels. 
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3.2.4 N-WASP Knockdown Inhibits HA Delivery 

The data generated with wiskostatin did not convincingly support a role for N-WASP in 

biosynthetic traffic, as wiskostatin had multiple off-target effects in vivo. To more specifically 

probe for N-WASP-dependent effects, I chose to use siRNA. This approach was not chosen 

initially because knockdown in polarized cells is notoriously difficult, but new approaches 

including siRNA electroporation became available during the course of my work. I designed an 

siRNA targeting canine N-WASP based on a previously published siRNA oligo (238). I assessed 

the extent of knockdown using Western blotting and found only modest knockdown, 15-40% 

(Figure 3.9). However, when I examined the effect of N-WASP knockdown on polarized 

biosynthetic traffic I found that despite the modest knockdown, the rate of biosynthetic delivery 

was inhibited by up to 53% relative to control (Figure 3.10). These data confirm my initial 

observation and support my conclusion that N-WASP-mediated actin polymerization plays an 

important role in the rate of biosynthetic delivery of lipid raft-associated proteins. 
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Figure 3.9 Knockdown of N-WASP in polarized MDCK cells. 
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Low passage MDCK cells grown to 50% confluence were trypsinized and resuspended 
into Amaxa solution mix at a density of 1 x 106 cells/100μl solution. 100 ul of the cells 
were mixed with 2.5 or 5 ug of control or OCRL siRNA and placed into a cuvette.  
Samples were nucleofected using program T-020 and were then either put directly onto 
filters for either two or 3 days.  Samples were harvested and analyzed by western blot 
for N-WASP and β-actin as a loading control. Quantitation of data using a VersaDoc 
(BioRad) and Quantity One software were performed.  The left side of the image is 
labeled to denote the N-WASP and β-actin bands.  Above the image, the days of siRNA 
treatment is denoted and below individual lanes are labeled C for control siRNA and 
NW for N-WASP siRNA.   
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Figure 3.10 N-WASP knockdown inhibits biosynthetic delivery. 
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MDCK cells were electroporated in buffer containing either control (C) or N-WASP 
(NW) siRNA oligo. The cells were then seeded onto Transwell filters and infected 
with control(Cntl)-AV or PI5K-AV before the experiment on day 3.  HA infected 
cells were starved, pulsed with 35S-TransLabel and chased for 2 h. Surface delivery 
was measured using a cell surface trypsinization assay. The graph represents one 
experiment from n=3 independent experiments with similar results. 
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3.2.5 HA is Associated with Actin Comets in MDCK Cells 

The data described above suggested the selective involvement of PI5K-stimulated, N-WASP-

dependent actin comets in the TGN-to-apical membrane delivery of HA. To test whether newly 

synthesized HA could be visualized in association with actin comets, MDCK cells seeded on 

glass coverslips were co-infected with AV-PI5K and AV-HA for 8 h, and then incubated at 19ºC 

for 2.5 h to accumulate HA in the TGN. Samples were then warmed to 37ºC for 30 min, fixed, 

and processed for indirect immunofluorescence to visualize actin, HA, and PI5K (Figure 3.11). 

Numerous actin comets were detected in these cells, many of which stained positively for both 

PI5K and HA (Figure 3.11, arrows). In 25 images I observed 71 comets of which 20 (28%) were 

positive for both HA and PI5K. By contrast, in 20 images I observed 57 comets of which only 2 

(3.5%) were positive for p75 and PI5K.  
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Figure 3.11 HA and PI5K are associated with actin comets in MDCK cells. 

 
MDCK cells grown on coverslips were co-infected with AV-HA and either control or 
PI5K for 8 h. HA was staged in the TGN for 2.5 h and 19°C, then warmed to 37°C for 
30 min prior to fixation and processing for indirect immunofluorescence. Actin was 
stained using rhodamine phalloidin; HA was visualized using monoclonal antibody 
Fc125 followed by a Alexa 488-conjugated goat anti-mouse, and the PI5K HA epitope 
tag was visualized using a polyclonal antibody followed by Alexa 647-conjugated goat 
anti-rabbit. Individual confocal sections for each channel and a merged image 
demonstrating several examples of actin comets that co-label with HA and PI5K 
(marked with arrows) are shown. Scale bar, 7.5 µm. 
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3.3 DISCUSSION 

I investigated the role of N-WASP in polarized biosynthetic traffic downstream of PI5K activity. 

I found that MDCK cells are capable of forming actin comets and that expression of AV-PI5K 

dramatically increases the rate of actin comet formation. Moreover, pharmacological treatments 

that modify actin comets, such as PMA or 1-butanol have parallel effects on actin comet 

formation and HA delivery. Inhibition of Arp2/3 via expression of the WAVE1 WA domain 

significantly inhibited the rate of HA delivery, while having no effect on either another apical 

marker (p75) or a basolateral maker (VSV-G). Wiskostatin was used to specifically test for N-

WASP involvement in comet formation, but was found to have non-specific effects on 

membrane traffic. Ultimately, knockdown of N-WASP indicated that N-WASP is important in 

HA delivery, and immunofluorescence microscopy confirmed that both HA and PI5K were 

found associated with actin comets in fixed cells. Together these biochemical and imaging data 

provide strong evidence for a novel role for actin comets in polarized biosynthetic delivery of 

lipid raft-associated proteins. 

3.3.1 The Role of Actin in Biosynthetic Traffic 

Numerous studies have documented the roles of actin in intra- and post-Golgi transport (239). 

These have ranged from observations of the presence of actin and actin-associated proteins 

associated with the Golgi complex (240-242) to more mechanistic insights into the potential roles 

of actin polymerization in biosynthetic traffic (217). Interestingly, the ADP-ribosylation factor, 

Arf1 appears to be important for actin assembly on Golgi membranes  (241) and this process 

requires coatomer-bound Cdc42 and activation of the Arp2/3 complex (243;244). Cdc42 may 
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also regulate recruitment of dynein to coatomer protein complex I vesicles (245). However, the 

consequences of these signaling cascades on intra-Golgi membrane traffic are not clear. I found 

no effect of expression of either PI5K or the WA domain of WAVE1 on intra-Golgi transport 

kinetics, suggesting that PIP2- and Arp2/3-mediated actin polymerization are not required for the 

transport or maturation of cargo.  

Arf-dependent actin recruitment has also been implicated in post-Golgi transport. 

Recruitment to Golgi membranes of the actin-binding protein cortactin was shown to be Arf-

dependent, and disruption of this complex in BHK cells had profound effects on the surface 

delivery of VSV-G without affecting intra-Golgi transport (246). However, our laboratory has 

previously demonstrated that TGN export of HA occurs independently of Arf function (6). 

Modulation of actin dynamics by the clathrin- and actin-binding protein Hip1R has also been 

suggested to regulate formation and release of clathrin-coated vesicles from the TGN (247).  

3.3.2 The Use of Wiskostatin as a Probe for N-WASP Function 

The studies described in this chapter suggest that wiskostatin has global and likely nonspecific 

effects on membrane traffic and other pathways. Treatment of polarized MDCK cells with this 

drug inhibited protein synthesis and maturation and disrupted both biosynthetic and 

postendocytic traffic. The effects of wiskostatin on these transport steps were dose dependent, 

irreversible, and roughly paralleled in magnitude the effects of the drug on cellular ATP levels. 

Notably, however, gross cellular morphology and actin structure were not visibly altered after a 1 

h incubation with 50 µM wiskostatin, indicating that cell death was not occurring during this 

period (data not shown).  
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I can only speculate as to the mechanism by which wiskostatin perturbs cellular ATP 

levels. Metabolic energy poisons fall into one of four classes, the first two of which are most 

common: 1) inhibitors of electron transport, 2) uncouplers/ionophores, 3) inhibitors of ATP 

synthase, and 4) inhibitors of transport systems (248). Members of the first group include 

rotenone, cyanide, and sodium azide, which block electron transport by interacting irreversibly or 

competitively with components of the electron transport chain (249;250). The second group 

includes 2,4-dinitrophenol (DNP) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone 

(FCCP), which disrupt the proton gradient by acting as proton ionophores (251;252). The 

aromatic structure of wiskostatin suggests the possibility that, like DNP, it may also disrupt 

membrane integrity; however, elucidating the mechanism by which this drug interferes with 

cellular ATP homeostasis requires further study.  

The effect of wiskostatin on most cellular transport steps and on ATP levels demonstrated 

a steep dose-dependent response at concentrations between 10 and 25 µM. Treatment with 10 

µM wiskostatin decreased ATP levels by only ~20% after a 1-h treatment and had comparable 

effects on protein synthesis and maturation when added acutely to cells (Figure 3.6, lanes B and 

C). In contrast, treatment with 25 µM wiskostatin decreased ATP levels by 80% over this time 

period. Interestingly, 10 µM wiskostatin did not affect the efficiency of surface delivery when 

added acutely after cargo had been prestaged in the TGN (Figure 3.5); however, surface delivery 

(but not HA maturation) was severely compromised (by 80%) when the drug was added at the 

start of the 2-h TGN staging period at 19ºC (Figure 3.6, lane D). A possible explanation is that 

post-Golgi transport may be insensitive to acute ATP depletion compared with other steps; 

however, longer incubations with this concentration of wiskostatin might sufficiently affect ATP 

levels to inhibit this step or otherwise disrupt other cellular functions required for efficient 
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membrane traffic. Ironically, it is this very step in membrane transport, namely TGN-to-apical 

surface delivery of HA, that I found to be N-WASP-dependent based on my studies using the 

WA domain (234). Previously published studies have utilized variable concentrations of 

wiskostatin, ranging from 10 to 50 µM (227-231). In all of these reports, rapid and profound 

effects on the particular cellular function being studied were noted and ascribed to selective 

inhibition of an N-WASP-dependent pathway. Given the global effects of wiskostatin on cellular 

transport processes and ATP levels, however, it is clear that this drug is inappropriate for in vivo 

studies aimed at selectively perturbing N-WASP function, or for potential therapeutic use as 

previously suggested (221). Moreover, novel roles ascribed to N-WASP in cellular pathways 

based solely on in vivo effects observed with wiskostatin merit careful reexamination.  

3.3.3 The Role of Actin in Polarized Biosynthetic Traffic 

Specific roles for actin polymerization in the transport of apical proteins, and lipid raft-associated 

cargo in particular, have previously been suggested. Rozelle et al.  (158) observed that newly 

synthesized HA was preferentially localized to the tips of short polymers of actin reminiscent of 

N-WASP-dependent comets in PI5K-overexpressing cells. In support of this, PIP2 has been 

suggested to be enriched in lipid rafts (253-255) although this conclusion has recently been 

challenged (31;256). Moreover, my observation that expression of either PI5K or WA had no 

effect on apical delivery of a non-raft-associated protein adds support to the idea that transport of 

raft-associated and raft-independent proteins is differentially regulated. Jacob et al. (9;199) have 

previously suggested that biosynthetic transport carriers containing the lipid raft-associated 

hydrolase sucrase isomaltase traffic via actin cables to the cell surface, whereas carriers enriched 

in the non-raft apical protein lactase-phlorizin hydrolase traffic in separate carriers in an actin-
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independent manner. Recently, the same group identified α-kinase 1, which phosphorylates the 

motor protein myosin I, as a component of sucrase isomaltase but not lactase-phlorizin 

hydrolase-containing vesicles and demonstrated a role for this motor in apical delivery of sucrase 

isomaltase (257). Whether α-kinase 1 activity is important for the PI5K-mediated stimulation of 

HA delivery I observed is not known; however, in a parallel scenario, both myosin motors and N-

WASP-Arp2/3-mediated actin polymerization have been suggested as mechanisms that propel 

internalized endocytic vesicles through the actin-rich cortical cytoskeleton (154;219;258-260). 

3.3.4 Concerted Cytoskeletal Function in Polarized Membrane Traffic 

Regardless of the role (s) for actin polymerization in apical membrane traffic, it is likely that the 

long-range directionality of biosynthetic membrane traffic is provided ultimately by the 

microtubule network. Previous biochemical studies have demonstrated a role for microtubules in 

polarized membrane transport in MDCK cells (261-264). In addition, live cell imaging has 

clearly shown that VSV-G-containing transport carriers move to the plasma membrane on 

microtubule tracks (265;266). I found that disruption of actin with cytochalasin D or by 

expression of WA in concert with nocodazole treatment virtually abolished delivery of HA to the 

apical membrane, and ultimately disrupted the polarity of delivery (not shown). In contrast, 

expression of WA alone had no effect on HA polarity. My data are reminiscent of studies by 

Maples et al. who demonstrated a concerted role for actin and microtubules in basolateral to 

apical transcytosis of the polymeric immunoglobulin receptor (235). My results do not 

necessarily suggest that actin comets are obligatory for apical delivery, but rather that they may 

facilitate apical transport of HA under some conditions. I hypothesize that actin-based movement 

of HA-containing transport carriers facilitates their access to microtubule tracks that provide the 
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directionality for efficient transport to the apical membrane, and/or ferries transport carriers 

across the actin-rich terminal web to their site of fusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Some text in this chapter and Figures 3.1, 3.2, 3.3, 3.4, and 3.11 are published in Guerriero et 

al. JBC 2006 and were used with the permission of the Journal of Biological Chemistry. 

**Some text in this chapter and Figures 3.5, 3.6, 3.7, and 3.8 are published in Guerriero et al. 

Am J Physiol Cell Physiol 2007 and were used with the permission of the American Journal of 

Physiology Cell Physiology. 
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4.0     CONCLUSION 

Protein sorting along the biosynthetic pathway is a multi-step process that requires the 

coordinated action of both proteins and lipids. In recent years there has been an increasing 

appreciation of the role of lipid metabolism in membrane trafficking pathways. Diseases of 

phosphatidylinositol metabolism can disrupt physiological processes like renal protein 

reabsorption, as observed in Lowe Syndrome, which highlights the importance of lipid 

metabolism for normal membrane traffic in polarized kidney cells.  

In this dissertation, I investigated the role of PIP2 metabolism in biosynthetic traffic of 

polarized MDCK cells. Previously, apical biosynthetic traffic was shown to be regulated by 

levels of PI4P in the Golgi (50). Many lines of evidence also point toward a role for PIP2 

metabolism in normal Golgi function. I found that overexpression of the α isoform of PI5K 

stimulates the rate of biosynthetic traffic of the lipid raft-associated marker HA. Moreover, 

decreasing cellular PIP2 (via OCRL overexpression) inhibits the rate of HA delivery, 

demonstrating a correlation between PIP2 levels and biosynthetic traffic of HA. While 

knockdown of OCRL did not affect biosynthetic traffic, a clear role exists for PIP2 in surface 

delivery of newly synthesized HA.  

Actin participates in and provides the motile force for many membrane trafficking events, 

including endocytosis and pathogen motility. An upstream controller of actin-based motility is 

PIP2, which can recruit nucleation promoting factors (NPFs) to the surface of the motile 
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structure. One such NPF, N-WASP is responsible for branched actin filament formation via the 

Arp2/3 complex and is activated by PIP2. Using multiple approaches, including dominant 

negative inhibitors and siRNA-mediated knockdown, I demonstrated that N-WASP is required 

for HA delivery. Moreover, I found that PI5K and HA are associated with actin comets in 

MDCK cells, linking PI5K-stimulated HA delivery, PIP2 metabolism, and actin comet formation. 

Together, my data support the discovery of a novel role for PIP2 metabolism and N-WASP-

mediated actin comets in the efficient polarized biosynthetic traffic of lipid raft-associated 

proteins. Below I discuss the implications of my findings with respect to our understanding of 

polarized membrane traffic and the pathogenesis of Lowe syndrome.   

4.1 THE FUNCTION OF OCRL IN POLARIZED EPITHELIAL CELLS 

I found that overexpression of OCRL inhibits the rate of HA delivery, likely due to a decrease in 

cellular PIP2 levels. To examine the consequences of loss of OCRL I used siRNA-mediated 

knockdown to silence endogenous canine OCRL. OCRL knockdown stimulated the rate of actin 

comet formation similar to PI5K overexpression. In addition, knockdown slightly increased PIP2 

levels. Therefore, I predicted that knockdown may also stimulate HA delivery as I saw with 

PI5K overexpression, but this was not observed. There are several possible explanations for why 

siRNA knockdown of OCRL did not produce to the hypothesized effects on biosynthetic 

delivery.  

One interpretation for the increase in actin comets without a concomitant trafficking 

phenotype is that actin comets resulting from OCRL knockdown originate from a different 

compartment than those stimulated by PI5K overexpression. In live cell microscopy studies I 
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found that actin comets resulting from PI5K seem to originate from a region localized near the 

TGN (not shown).  While I was unable to directly see comets emanating from the TGN, these 

data do suggest that comets form in close proximity to the Golgi complex. Comets generated by 

OCRL knockdown may instead form on endosomes or endocytic vesicles. Live cell microscopy 

could be used to test if comets in OCRL-deficient cells are more frequently associated with 

endosomes than comets in PI5K-overexpressing cells. The percentage of comets on endocytic 

structures could be determined by monitoring actin comet formation in cells preloaded with a 

fluorescently-tagged dextran to mark endocytic compartments. I predict that OCRL comets will 

more frequently propel structures loaded with dextran than PI5K-stimulated comets. Another 

approach to test the origin of OCRL-stimulated comets would be to look for association of 

comets with biosynthetic cargo in fixed cells. I found that TGN-staged HA was enriched on 

PI5K-induced actin comets when compared to another apical marker p75. Therefore, a similar 

approach could be used in OCRL KD cells and determine if OCRL comets are associated with 

HA to a greater or lesser extent than PI5K-stimulated comets. I found that ~30% of PI5K comets 

associate with HA, and I predict that OCRL-stimulated comets are less likely to be associated 

with HA. 

A second interpretation of my results is that OCRL’s regulation of actin comet formation 

is not linked to the role of PIP2 in biosynthetic membrane traffic. OCRL interacts with clathrin 

and AP-2 and has been found associated with CCVs providing evidence that OCRL may be 

important for endocytic traffic (74). Additionally, OCRL interacts with the Rab5 effector 

APPL1, which is found on a subset of peripheral early endosomes (76). Total internal reflection 

fluorescence microscopy studies showed that a small fraction of OCRL is recruited to CCPs and 

then moves towards APPL1 positive early endosomes after endocytosis. APPL1 has been 
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described as an adaptor protein for cell surface receptors such as megalin, with which it interacts 

as a part of a larger protein complex (267). Therefore, the role of OCRL in vesicular traffic may 

be more like that of synaptojanin which is important for uncoating of endocytic CCVs. If this 

were true, then it is possible that actin comet formation on vesicles is only a secondary effect due 

to an accumulation of PIP2 on endocytic vesicles. To test if the comets seen in Lowe syndrome 

cells and OCRL KD are important for membrane traffic, trafficking experiments could be 

performed under conditions that inhibit actin comets. Megalin endocytosis or CI-MPR 

trafficking could be assayed in knockdown cells with or without the addition of N-WASP siRNA 

to inhibit comet formation. I predict that N-WASP siRNA will have no effect on OCRL-

mediated membrane traffic. However, these experiments may be difficult to interpret as the 

endocytosis of some surface receptors is N-WASP-dependent (259). If OCRL is necessary for 

uncoating of a subset of endocytic vesicles then a defect in this process could lead to problems 

with vesicle endocytosis or recycling similar to what has been shown in neurons of synaptojanin 

1-deficinet mice which accumulate CCVs near the synapse (268).   

It is also plausible that the loss of OCRL does not influence PIP2 levels enough to change 

the rate of biosynthetic delivery. Indeed, increases in PIP2 upon OCRL knockdown are modest 

(~130% of control) and not statistically significant, compared to PI5K overexpression (~225% of 

control). Since OCRL does not localize to the plasma membrane at steady state, it is reasonable 

to assume that only modest changes in PIP2 would be observed after knockdown. However, 

published studies in primary proximal tubule cells from Lowe syndrome patients report a large 

increase in PIP2 (~190% of control) (208). Why do I observe only small increases in PIP2 levels 

upon OCRL knockdown? One explanation may be that loss of OCRL could be compensated by 

another enzyme(s). In support of this, OCRL knockout mice have no discernable Lowe 
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syndrome phenotype, possibly because mice have higher expression of the OCRL-homologue 

Inpp5b than humans. OCRL/Inpp5b double knockout mice are embryonically lethal, suggesting 

that while Inpp5b can compensate for loss of OCRL, the loss of both enzymes is debilitating 

(211). To test the possibility that Inpp5b can compensate for OCRL, siRNA could be used to 

simultaneously knock down OCRL and Inpp5b in polarized MDCK cells. If Inpp5b is 

compensating for loss of OCRL, then double knockdown should more potently increase PIP2 

levels than OCRL knockdown alone and effect biosynthetic delivery.  

One caveat of my OCRL knockdown studies is the reliance on immortalized cell lines to 

recapitulate in vivo disease phenotypes. Cultured cells are less than ideal, as often these systems 

behave differently than they would within an organ due to genetic drift (269). Indeed, while HK2 

cells are relevant for studies involving OCRL and megalin because of their proximal tubular 

identity, they do not form a polarized monolayer and also express much less megalin than in vivo 

proximal tubules (Linton Traub, personal communication). Therefore, it may ultimately be 

necessary to move to an in vivo system, such as an animal model to study OCRL. However, as 

noted above, knockout of OCRL in mice does not result in a disease phenotype (211). 

Unpublished observations from our collaborator Dr. Robert Nussbaum suggest that this 

difference between humans and mice stems from alternate splicing of mouse Inpp5b. In mice 

50% of the Inpp5b mRNA uses an alternate splice site, thus producing a mixed population of 

Inpp5b protein. It is hypothesized that the alternatively spliced mouse Inpp5b is more capable 

than human Inpp5b at compensating for loss of OCRL. To test this hypothesis, OCRL/Inpp5b 

knockout mice have recently been engineered to express a single copy of human Inpp5b from a 

bacterial artificial chromosome. The goal of this experiment is to determine if human Inpp5b is 

less efficient at compensating for OCRL than mouse Inpp5b. To determine the effect of this 
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treatment, urine was collected from the mice and analyzed for the presence of low molecular 

weight proteins. Very preliminary results suggest that double knockout mice supplemented with 

a single copy of human Inpp5b had proteinuria very similar to that found in Lowe syndrome, 

while mice containing a single copy of mouse Inpp5b had no discernable proteinuria. These data 

point to a fundamental difference between the expression or function of human and mouse 

Inpp5b and open the door for future study. Whole animal studies using iodinated megalin ligands 

could be performed to examine the ability of megalin to internalize ligands in mice lacking 

OCRL and Inpp5b that are supplemented with a single copy of human Inpp5b. Additionally, the 

mouse studies further validate the prediction that Inpp5b can compensate for lack of OCRL 

activity and increases the probability that experiments designed to study the effect of double 

knockdown in cell lines will yield positive results.   

4.2 THE SITE OF PI5K FUNCTION IN BIOSYNTHETIC TRAFFIC 

My data demonstrate that biosynthetic delivery of HA is sensitive to both increases and 

decreases in cellular PIP2 levels. Furthermore, biosynthetic delivery of HA is also dependent on 

actin polymerization via the PIP2 effector, N-WASP. However, the exact site at which PI5K and 

N-WASP exert their action(s) cannot be elucidated from my studies. While the TGN has long 

been thought to be the site where proteins accumulate when subjected to a low temperature 

block, this has not been exhaustively characterized for all classes of proteins. Indeed, I observed 

that HA may stage at a site other than the Golgi. Briefly, MDCK cells grown on coverslips were 

infected with AVs encoding HA, VSV-G, or YFP-p75 for a short period before staging at 19ºC 

for 3 h followed by fixation and processing for immunofluorescence. Co-staining for each cargo 
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protein and furin (a TGN marker) revealed that both VSV-G and p75 stage in a compartment that 

is coincident with furin; however, HA does not localize the furin-containing compartment and 

does not overlap with YFP-p75 (Figure 4.1). Biochemical studies confirmed that HA expressed 

under similar conditions is largely mature (sialyated) and intracellular. While I was unable to 

positively identify the HA-containing compartment, my data does raise the possibility that the 

PI5K and N-WASP effects occur at a post-TGN site.  

Recent studies indicate that different classes of apical proteins traverse distinct endocytic 

compartments on their way to the apical surface (7). Initially Ang et al. showed that VSV G is 

delivered to the common recycling endosome of polarized epithelial cells before reaching the 

basolateral surface (5). Cresawn et al. further demonstrated that a lipid raft-independent apical 

protein transits through the apical recycling endosome, while lipid raft-dependent proteins move 

through a different compartment accessible to internalized wheat-germ agglutinin (7). These 

studies lend support to a role for endosomes in biosynthetic traffic and raise the possibility that 

PI5K-stimulated comets may be forming on endosomes or endosome-derived vesicles and not 

the TGN. The site at which PI5K and N-WASP function in biosynthetic delivery of HA could be 

tested by performing live cell microscopy in cells expressing fluorescent cargo, actin, and 

different endosomal makers. It would be interesting to compare cells expressing HA and VSV-G, 

as these cargo move through distinct endosomal intermediates. I predict that actin comets would 

primarily associate with vesicular or endosomal structures containing HA but not VSV-G. These 

experiments may help to determine if HA associates with actin comets on vesicles or endosomes. 

While VSV-G has been shown to transit through the common recycling endosome in polarized 

cells, the identity of the endosomal compartment involved in apical delivery of HA is less clear, 

and may represent a previously undescribed apical endosome or a subdomain of a described 
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organelle (7). An alternative method to identify the HA compartment would be to affinity purify 

HA- or VSV-G-containing compartments after a 19ºC stage and perform mass spectrometry 

analysis to identify the components. I predict that N-WASP/Arp2/3 would associate primarily 

with HA-containing carriers/compartments, and that other proteins revealed by the analysis may 

uncover the identity of the compartment. 

What is the role of lipid rafts in apical delivery? Lipid rafts have been proposed to act as 

a platform for recruitment of proteins and for the propagation signaling cascades (270). My data 

revealed that raft-dependent (HA) and raft-independent (p75) apical cargo use different 

mechanisms for apical delivery based on their differential requirement for N-WASP. HA 

associates with lipid rafts and segregates in a different compartment than p75 upon low 

temperature staging (Figure 4.1). These data suggest that because of their sorting signals p-75 

(O-glycan-containing stalk) and HA (transmembrane domain) may be found in diverse lipid 

environments. However, the mechanistic details regarding how rafts mediate apical delivery 

remain elusive. The disputed existence of rafts and discrepancies regarding their size and 

composition make this question difficult to explore. It is likely that a component or distinct 

morphological feature of lipid rafts is responsible for apical sorting of these domains. To answer 

these questions, specialized tools to alter raft composition must be developed so that researchers 

can discover the relationship between composition and function.    

What mechanism do cells use to direct HA-containing cargo carriers to the apical 

surface? Lipid raft-association is not sufficient for apical sorting as lipid rafts and raft-enriched 

cargo do appear at the basolateral cell surface (271;272). Moreover, apically sorted mutants of 

HA exist that are not associated with lipid rafts (20). However, since the sorting information for 

HA is located within the transmembrane domain interaction with a lipid such as PIP2 may be 
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important. In polarized epithelial cells, most of the PIP2 is found at the apical plasma membrane, 

so it is possible that PIP2 synthesis on Golgi localized lipid raft domains could serve as a marker 

to direct that membrane to the apical surface. Concentrated PIP2 at this domain could have a 

twofold effect. The increased negative charge density on the inner leaflet could affect membrane 

curvature leading to bowing of the membrane toward the cytoplasm promoting vesicle budding. 

At this point, a number of scenarios are possible to select the vesicle for apical delivery. 

Recognition of this of this domain by cytosolic factors could be enhanced by the increased local 

PIP2 concentration leading to an overall increased avidity for the membrane. Alternatively, a 

cytosolic protein(s) could recognize both PIP2 and a cargo motif resulting in stronger binding to 

the forming carrier.  

If PI5K is necessary to generate PIP2 on a HA-enriched Golgi domain, then what signal 

recruits the enzyme? It is possible that the abundance of PI5K’s substrate PI4P on the Golgi 

complex could serve to help recruit PI5K. This theory could be tested in vitro by incubating 

purified enzymes with liposomes containing different ratios of lipid species. It is likely that 

recruitment of cytosolic factors such as PI5K and N-WASP rely on coincidence detection 

perhaps with cargo to enhance low affinity interactions. This could be tested using post-TGN 

vesicles immunoisolated from cells either expressing HA or p75. I predict that PI5K and N-

WASP may interact more strongly with HA-containing vesicles, since HA is more frequently 

found on comets. Subsequently, apical delivery of the vesicle probably relies on the concerted 

actions of both the microtubule and actin cytoskeletons. 

How could cells utilize both microtubules and actin direct the polarized delivery of a 

Golgi-derived HA carrier? In polarized epithelial cells microtubules originate from the 

juxtanuclear microtubule organizing center so that their fast growing (plus) ends are directed 
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toward the nucleus and the slow growing (minus) ends are directed toward the apical membrane 

(273). However, a recent study also demonstrated that a large number of plus end microtubules 

are oriented toward the apical pole of polarized cells (274). Therefore, both minus end 

microtubule motors (dyneins or minus end kinesins) or plus end motors (plus end kinesins) could 

be utilized to provide ultimate directionality to carriers propelled from the Golgi by comets. The 

involvement of microtubule motors in apical traffic could be tested by expressing dominant-

negative forms of various microtubule motor proteins and measuring the rate and polarity of 

protein delivery. If microtubules are involved in apical delivery, then disrupting a motor may 

decrease the rate of delivery or aberrant delivery to the basolateral surface. It is possible that 

actin comets are necessary for budding of a raft-enriched cargo carrier from the TGN or 

movement away from the Golgi before contacting and moving along a microtubule for final 

apical delivery. Answering these questions will help us gain a better understanding of the 

underlying mechanisms of apical sorting and delivery. 
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MDCK cells were infected with adenoviruses encoding YFP-p75, VSV-G, and/or HA for 1 h and 
then incubated for 5 h at 37 °C and 3 h at 19 °C. Cycloheximide was included during the last hour 
at 19 °C. The cells were then fixed and processed for immunofluorescence to detect each marker 
and furin (rows a–c) or to visualize co-expressed HA and YFP-p75 (row d). The insets in row d 
show enlarged versions of the boxed regions. Individual confocal sections and a merged image 
are shown for each condition. Scale bar, 30 µM. The nuclear fluorescence in the YFP-p75 panel in 
row d represents background from the polyclonal anti-GFP used in this sample. In contrast, cells 
in row b were labeled using a monoclonal anti-GFP antibody; in both cases, this protocol was 
used to amplify the fluorescent signal for p75 over that provided by the YFP moiety (see 
"Materials and Methods").  

Figure 4.1 YFP-p75 and HA do not co-localize intracellularly after low temperature staging. 
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4.3 DISTINCT FUNCTIONS OF PI5K ISOFORMS IN POLARIZED EPITHELIAL 

CELLS 

As detailed earlier, there are three isoforms of PI5Ks in mammalian cells. What is the purpose of 

three different enzymes with overlapping substrate specificity? In polarized mouse cortical 

collecting duct (mCCD) cells, PI5KIα is localized exclusively to the apical pole of the cells, 

PI5KIβ is present in both the cytoplasm and at membranes, and PI5KIγ localizes primarily to the 

basolateral surface (Figure 4.2). This raises the possibility that the different isoforms regulate 

functionally-distinct pools of PIP2 in polarized cells. I hypothesize that a given isoform will 

regulate endocytic events at the surface where it localizes. Evidence for this comes from 

published studies by Padron et al., demonstrating that in nonpolarized cells overexpression of 

PI5KIα and PI5KIβ, but not PI5KIγ stimulate transferrin (Tfn) endocytosis (204). In contrast, 

Bairstow et al. showed that in polarized cells, expression of PI5KIγ stimulates Tfn endocytosis 

(275). One interpretation of these contrasting observations is that in nonpolarized cells, the Tfn 

receptor is localized throughout the plasma membrane and PI5KIγ may have minimal influence 

due to the presence of the other two kinase isoforms. However, in polarized cells the Tfn 

receptor is mainly localized to the basolateral membrane where PI5KIγ is found making PI5KIγ 

the preferential kinase to influence Tfn endocytosis. 
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Figure 4.2 Localization of PI5K isoforms in nonpolarized and polarized mCCD cells. 
 

 

 

 

 

 

 

 mCCD cells were infected with AVs encoding PI5KIα, PI5KIβ or PI5KIγ and plated 
sparsely on coverslips (top row) or plated onto Transwell filters for 3 days prior to fixation 
and processing for immunofluorescence. Confocal sections show representative kinase 
staining from the apical pole and lateral regions of the cell. The bottom row shows 
deconvolved xz sections from the filter-grown cells. Scale bars represent ~10μm. 
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Whether PI5K isoforms differentially regulate endocytic events at polarized membrane 

domains could be tested by measuring internalization rates of proteins that are endocytosed from 

both the apical and basolateral surfaces. These studies could be performed using mCCD cells, as 

there are reagents available for both detection of endogenous PI5Ks and siRNA knockdown. I 

predict that overexpression of mPI5KIα will increase the endocytosis of proteins from the apical 

surface, whereas basolateral endocytosis will remain unaffected. In preliminary studies, I 

examined the rate of endocytosis of the polymeric immunoglobulin receptor (pIgR), using 125I-

labeled polymeric IgA that has been pre-bound to the cell surface. Consistent with my 

hypothesis, overexpression of mPI5KIα stimulated apical endocytosis of pIgR in mCCD cells, 

but had no effect on basolateral endocytosis of pIgR (Figure 4.3). These studies could be 

furthered by using siRNA to knock down each isoform. I predict that knockdown will have a 

negative effect on endocytosis at either the apical or basolateral surface according to kinase 

localization. The idea that PI5Ks control different endocytic events is appealing and might 

explain the need for multiple isoforms. PI5Ks may exert this differential action by physically 

interacting with or producing distinct pools of PIP2 enabling the recruitment of endocytic 

adaptors and/or CLASPs required for the endocytosis of a given receptor. CLASPs are PIP2-

binding clathrin-associated sorting adaptors that increase the range of signals recognized for 

clathrin-mediated endocytosis of cargo proteins. It is likely that CLASPs utilize coincidence 

detection in order to interact with a receptor more strongly when the receptor is in a PIP2-rich 

environment. This phenomenon may give cells a mechanism to up-regulate the endocytosis of 

certain classes of receptors in response to cell surface changes in PIP2 levels without globally 

affecting all endocytic events (Figure 4.4).   
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Figure 4.3 mPI5KIα selectively stimulates apical endocytosis of pIgR. 
 

 

 

 

 

 

 

 

 mCCD cells were plated onto Transwell filters for 3 days prior to 
infection with AV-Control or PI5KIα and AV-pIgR. The cells were 
allowed to recover for 1 night in 1 ng/ml doxycycline (dox). The day 
after dox washout, I-125 IgA was bound to either the apical surface (A) 
or the basolateral surface (B) for 1 hr on ice and after extensive 
washing IgA was internalized for 0, 2.5, or 5 min. The remaining 
surface counts were stripped using 150mM glycine pH 2.3 and 
internalized counts were determined using a γ-counter.  Error bars 
represent mean +/- std error from n=4 for apical or mean +/- range for 
one representative basolateral experiment.  
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Figure 4.4 Model for differential regulation of endocytosis by PI5K informs. 
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Polarized epithelial cells segregate the different PI5K isoforms to different 
surface domains.  Because PI5KIα is localized exclusively to the apical surface, 
it will likely be important for apical endocytic events.  Conversely, the 
basolateral localization of PI5KIγ ideally places it to influence basolateral 
end ocytic events.  PI5 KIβ is fou nd  at bo th su rfaces as well as on internal 
structures and may be involved in endocytosis/recycling or biosynthetic 
trafficking.  This spatial regulation of PIP2 production could be important for 
helping cells specifically upregulate the endocytosis of certain ligands, from 
either surface.   
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4.4 CONCLUDING COMMENTS 

In this dissertation I presented data that help to expand our current knowledge about the 

contribution of PIP2 metabolism and actin polymerization in polarized biosynthetic traffic. The 

discovery that biosynthetic delivery of lipid raft-associated proteins is preferentially sensitive to 

PIP2 solidifies the emerging concept that distinct classes of apical proteins use different 

mechanisms to mediate their apical sorting and trafficking. Furthermore, the identification that 

N-WASP is important not only for HA delivery under PI5K-stimulated conditions, but under 

basal conditions as well firmly places N-WASP as a modulator of biosynthetic pathways. Insight 

gained by these studies regarding regulation of biosynthetic transport is critical to furthering our 

understanding of basic cell physiology and may one day open the door to therapeutic treatments 

for diseases such as Lowe syndrome. 

 

 

 

 

 

 

 

 

 

* Figure 4.1 from this chapter is published in Guerriero et al. JBC 2008 and was used with the 

permission of the Journal of Biological Chemistry. 
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5.0  MATERIALS AND METHODS 

5.1 DNA,  REPLICATION-DEFECTIVE RECOMBINANT ADENOVIRUSES, AND 

SIRNA OLIGOS 

The α isoform of murine phosphatidylinositol 4-phosphate 5-kinase (PI5K) cloned into the pAdtet 

vector was provided by Dr. Andreas Jeromin (Baylor University). The β isoform of PI5K was the 

kind gift of Dr. Philip Stahl (Washington University). The γ isoform of PI5K was provided Dr. 

Richard Anderson via Dr. Linton Traub (University of Pittsburgh). Constructs encoding myc-

tagged W and WA domains of WAVE1 were generous gifts of Dr. Dorothy Schafer and Dr. 

James Casanova (University of Virginia). Fluorescent protein-tagged actin constructs were 

provided by Dr. Ronald Montelaro (University of Pittsburgh). The generation and purification of 

replication-defective recombinant adenoviruses (AVs) encoding tetracycline-repressible 

influenza HA (Japan serotype), VSV-G, and a control virus (encoding the influenza Rostock M2 

coding sequence in the reverse orientation) has been previously described (50;236). AVs 

encoding PI5K α, β,γ and human OCRL (both wild type and the phosphatase-deficient mutant 

R483G; constructs provided by Robert Nussbaum, MD University of California, San Franscisco) 

were generated using similar methods. AV encoding p75NTR was provided by Dr. Enrique 

Rodriguez-Boulan (Weill Medical College) with permission from Dr. Moses Chao, and AV-W 

and WA were kind gifts of Dr. James Casanova (University of Virginia).  
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Firefly luciferase siRNA was used as a control for siRNA experiments; 5’-

GAATATTGTTGCACGATTT-3’. The sequence for the OCRL siRNA was obtained from Dr. 

Philip Majerus’ lab (Dr. Alex Ungewickell) and matches human, mouse, and canine OCRL; 5’-

GGTTCCCTGCCATTTTTCA-3’. An siRNA targeting canine N-WASP was based on a 

published siRNA targeting rat N-WASP; 5’-GGCGAGACCCCCCAAATGC-3’ (238). The 

OCRL and N-WASP siRNAs have an intentional mismatch at the 3’ end of the sense strand 

which creates a bias for the antisense strand entering the RNA-induced silencing complex 

(RISC) and increases the rate of target mRNA degradation (205-207). All siRNAs were 

purchased from Dharmacon and were reconstituted in Dharmacon’s 1X siRNA buffer at a 

concentration of 1 µg/µl (Thermo Scientific, Lafayette, CO).  

5.2 ANTIBODIES, REAGENTS AND IMMUNOBLOTTING 

Immunoprecipitation (IP) or immunofluorescence (IF) of HA, VSV-G, or p75 was performed 

using supernatants from cultured hybridomas (Fc125 from Dr. Thomas Braciale, University of 

Virginia; 8G5 from Dr. Douglas Lyles, Wake Forest University  (276); and MA 20.1 from Dr. 

Enrique Rodriguez-Boulan, Weill Medical College, respectively). Mouse anti-OCRL ascities for 

western blotting and IF were obtained from Dr. Sharon Suchy and Dr. Robert Nussbaum. Mouse 

anti-giantin was a gift from Dr. Adam Lindstet (Carnegie Mellon University). Rabbit anti-furin 

was purchased from Affinity BioReagents (Golden, CO). Mouse anti-HA-tag was obtained from 

Covance (Berkley, CA) and rat anti-HA-tag was obtained from Roche (Indianapolis, IN). Rabbit 

monoclonal anti-N-WASP was obtained from Cell Signalling Technology (Danvers, MA). 

Rabbit anti-GFP was obtained from Invitrogen (Molecular Probes, Carlsbad, CA). Mouse anti-β-
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actin, cytochalasin D, nocodazole, n-butanol, t-butanol, and phorbol myristate acetate (PMA) 

were obtained from Sigma (St. Louis, MO). Wiskostatin was obtained from Calbiochem (San 

Diego, CA). 

Blotting samples were resolved on BioRad 4-15% Criterion precast gels and transferred 

to nitrocellulose (GE Healthcare, Piscataway, NJ) using the Criterion transfer apparatus (BioRad, 

Hercules, CA). Nonspecific background was reduced by incubating blots for 1 h in PBS 

containing 5% non-fat dry milk. Blots were then incubated with 1º antibody for 1-2 h in PBS 

containing 1% milk, washed with PBS, incubated with a 2º anti-HRP antibody for 1 hr, washed, 

and incubated with Pierce SuperSignal (Thermo Scientific, Rockford, IL). Exposures were taken 

using a BioRad VersaDoc and quantitated using Quantity One software (BioRad).  

5.3 CELL LINES  

Madin-Darby canine kidney (MDCK) type II cells stably expressing the tetracycline 

transactivator (TA) and the rabbit pIgR were cultured in modified Eagle's medium (Sigma) 

supplemented with 10% fetal bovine serum (FBS) (Atlanta Biologicals). Mouse cortical 

collecting duct (mCCD) cells were cultured in 1:1 low glucose Dulbecco’s Modified Eagles’s 

Medium (DMEM) (Sigma) and Ham’s F12 (Gibco) supplemented with 60 nM sodium selenate, 

5 µg/ml transferrin, 2 mM glutamine, 50 nM dexamethasone, 1 nM triiodothyronine, 10 ng/ml 

epidermal growth factor, 5 µg/ml insulin, 20 mM D-glucose, 20 mM HEPES and 2% heat-

inactivated FBS (277). For measurements of intra-Golgi transport, kinetics of surface delivery, 

surface polarity, transcytosis, and endocytosis; cells were seeded at superconfluence in 12-mm 

Transwells (0.4-µm pore; Costar, Cambridge, MA) for 2–4 days prior to infection with 
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recombinant AVs. For IgA transcytosis and endocytosis experiments, pIgR expression was 

enhanced by incubation with 2 mM sodium butyrate for 16 h. Experiments were performed the 

following day. 

HK2 cells were obtained from ATCC and maintained in DMEM:F12 (Sigma) 

supplemented with 5 µg/ml insulin and 50 nM dexamethasone. Cells were grown in 10 cm 

culture dishes (Falcon) and plated onto 12-well dishes (Corning) for experimentation.  

5.4 ADENOVIRAL INFECTION 

On the day prior to the experiment cells were washed two times with PBS supplemented with 

1mM MgCl2 (PBS-Mg2+). Cells were then incubated with the intended adenovirus (AV) at the 

following multiplicity of infection (m.o.i.) (control AV, AV-PI5K, AV-W,  AV-WA, AV-OCRL, 

and AV-OCRL mutant, m.o.i. 100–250; AV-TA, AV-pIgR, AV-HA, AV-p75, AV-YFP-p75,  

and AV-VSV-G, m.o.i. 25–50) as described in Henkel et al. 1998 (236). Following the infection 

cells were rinsed with PBS-Mg2+ before being returned to culture in normal growth medium. 

Experiments were performed the following day. CCD cells were allowed to recover for 1 night 

following infection and virus expression was repressing by including 1 ng/ml DOX in their 

medium. 
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5.5 INDIRECT IMMUNOFLUORESCENCE 

MDCK cells grown on Transwell filters or coverslips were infected with AVs at the indicated 

m.o.i. The following day, cells were rinsed with PBS, fixed in 3.7% formaldehyde, rinsed with 

PBS containing 10 mM glycine (PBS-G), and then permeabilized with 0.5% Triton X-100 in 

PBS-G for 3 min at room temperature. After washing, nonspecific binding sites were blocked by 

incubation for 5 min in PBS-G containing 0.25% (w/v) ovalbumin. Coverslips were incubated for 

30 min with monoclonal anti-HA tag antibody (1:500 dilution; Covance) followed by washing in 

blocking buffer. Cells were then incubated for 30 min with secondary antibodies Alexa Fluor 

goat anti-mouse 488 (1:500; Invitrogen, Carlsbad, CA). Rhodamine phalloidin (1:80; Invitrogen, 

Molecular Probes) was included in this step where indicated. After extensive washing, coverslips 

or filters were mounted onto glass slides.  

Filter-grown MDCK or mCCD cells were fixed with formaldehyde using a pH-shift 

protocol with paraformaldyhyde in a cacodylate buffer. For the pH-shift protocol, samples were 

treated as described in Apodaca et al. 1994  (278). Alternatively, cells were washed by dipping 

into warm PBS, and samples were fixed for 15 min in 4% paraformaldehyde diluted into 100 

mM sodium cacodylate at 37ºC. The fixation was quenched using 20 mM glycine and 75 mM 

NH4Cl in PBS, followed by 10 min in 0.1% TX-100, and then blocking in PBS with 1% 

BSA/0.1% saponin. Images were captured using a Leica TCS-SL confocal microscope equipped 

with argon and green and red helium neon lasers (Leica, Dearfield, IL). Images were taken with a 

100X (1.4 numerical aperture (NA)) plan apochromat oil objective. TIFF images were processed 

using Adobe Photoshop (Adobe, San Jose, CA). Some fixed samples and all live samples were 

imaged using an Olympus IX-81 inverted microscope equipped with a Perkin Elmer spinning 

disc confocal. Images were taken with either an Olympus 60X PlanApo (NA 1.40) or a 100X 
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UPlanApo (NA 1.35) oil immersion objective. Live images were captured and analyzed using 

Metamorph imaging software (Molecular Devices, Downington, PA).  

5.6 INTRACELLULAR TRANSPORT AND CELL SURFACE DELIVERY ASSAYS 

AV-infected filter-grown MDCK cells were starved for 30 min and radiolabeled for 5–10 min 

(for endoglycosidase H (endo H) kinetics) or 15–20 min ( for TGN to surface delivery) on drops 

containing 1 mCi/ml Tran-35S-label® (MP Biomedicals, Irvine, CA). To measure endo H 

kinetics, cells were chased in bicarbonate-free modified Eagle's medium for the indicated periods, 

solubilized, and HA was IPed as previously described in Henkel et al. 1998 (236). After 

collection of antibody-antigen complexes, samples were eluted, divided in half, and mock-treated 

or treated overnight with endo H prior to electrophoresis on 10% SDS-PAGE gels. To measure 

TGN-to- cell surface delivery, radiolabeled cells were chased at 19ºC for 2 h unless otherwise 

indicated to stage newly synthesized membrane proteins in the TGN. The cells were then rapidly 

warmed to 32°C or 37°C as indicated. Apical delivery of HA was measured by trypsinization as 

described in Henkel et al. 2000 (232). Briefly, after each time point samples were rapidly cooled 

to 4°C, by a wash with cold media. Samples were then incubated in cold media supplemented 

with TPCK-treated trypsin for 30 min followed by two 10 min washes in media supplemented 

with soy bean trypsin inhibitor. Basolateral delivery of VSV-G was quantitated using domain 

selective biotinylation as described in Ref.  (279). Briefly, after each time point cells were 

washed thoroughly with cold PBS containing 1mM MgCl2 and 1mM CaCl2. The apical or 

basolateral surface was biotinylated twice for 10 min each with sulfo-NHS-SS-biotin (0.5 

mg/ml;Cat # 21331, Thermo-Fisher, Pierce) in TEA-buffered saline, pH 7.6. The biotinylation 
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reaction was quenched by incubation in media containing 10% FBS. To quantitate surface 

delivery of p75NTR or HA delivery in OCRL-expressing samples, cells were radiolabeled on 25-

µl drops of sulfate-free medium containing 100 µCi of [35S]sulfate at 18°C and the rate of surface 

delivery was assessed using domain selective biotinylation upon subsequent warm-up to 37°C 

(280).  

5.7 VISUALIZATION AND QUANTITATION OF ACTIN COMETS 

MDCK cells (2 x 105) were seeded on Bioptech 0.17-mm ΔT dishes (Bioptech Inc., Butler, PA). 

The following day cells were infected with AVs (m.o.i. 100–250) encoding the indicated 

proteins, and incubated overnight with 0.25 ng/ml doxycycline (DOX) to partially suppress 

protein expression. The following morning DOX was removed by thorough washing. Cells were 

then pressure-injected with cDNA encoding GFP- or YFP-actin and were returned to culture for 5 

h. Following that time the cells were imaged on an Olympus IX81 microscope using a 100 X 

Olympus UPlanApo objective (numerical aperture 1.35). Random fields containing cells 

expressing fluorescent actin were imaged every 2 s for 3-4 min. Data were analyzed using 

acquisition software (Slidebook or Metamorph) to determine the percentage of cells with comets. 

Stable cells lines expressing fluorescent protein-tagged actin were generated using Lipofectamine 

2000 and mixed populations were isolated by selection in G418. These cells were infected with 

AV-PI5K where indicated and used for the quantification of actin comets in cells treated with 

PMA PMA (5 µg/ml), cytochalasin D (25 µg/ml), n-butanol (1% v/v), t-butanol (1% v/v), or 

OCRL siRNA. 
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5.8 IGA TRANSCYTOSIS 

Filter-grown MDCK cells stably expressing pIgR were treated with wiskostatin at the indicated 

time and concentration. Samples were washed thoroughly with cold MEM + 0.6% BSA and then 

placed on drops of MEM containing 5 µl dimeric 125I-IgA (~ 0.8-1.5 x 106 counts/µl) at 37ºC for 

10 min. Next, the cells were washed for 5 min to remove nonspecifically bound 125I-IgA. Apical 

medium was collected over a 120’ time course and the secreted and cell-associated counts per 

minute were determined and used to calculate the percent IgA transcytosed over time.   

5.9 IGA ENDOCYTOSIS 

Filter-grown mCCD cells were infected with AV-pIgR and AV-transactivator and either a 

control AV or AV-mPI5KIα. Cells were k ep t in 1  ng /ml DOX overn ight to  allow the cells to  

recover prior to protein expression. The next day the cells were washed 4 times with media to 

remove the DOX and were fed with media containing 2% sodium butyrate to induce expression 

of pIgR. The following day, samples were washed thoroughly with cold MEM containing 0.6% 

BSA to block nonspecific binding sites. Samples were then placed on drops of MEM containing 

5 µl dimeric IgA (for basolateral endocytosis) or incubated with iodinated IgA apically (for 

apical endocytosis) for 1 h at 4ºC. Samples were washed extensively to remove nonspecific IgA 

and then warmed for 0, 2.5 or 5 min. At each time point the samples were rapidly cooled and 

placed into media containing 10 µg/ml TPCK-treated trypsin to remove remaining surface IgA. 

The samples were then placed in cold PBS containing 150 mM glycine pH 2.3 to further strip 

IgA from the cell surface. The apical or basolateral media, the trypsin wash, the glycine wash, 
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and the cells were collected and counted in a γ-counter to determine the relative percentage cell-

associated IgA over the time course.    

5.10 SIRNA TREATEMENT OF MDCK AND HK2 CELLS 

MDCK or HK 2 cells were grown to 50% confluence prior to trypisnization to prepare for 

electroporation. Cells were counted and reuspended at a density of 1 x 106 cells/100 µl Amaxa 

solution mix (see below). Cells were mixed with 5 µg siRNA/1 x 106 cells and electroporated 

using Amaxa program T-020 in a single cuvette. Cells were immediately plated onto Transwell 

filters at a density of 0.5 x 106 cells/filter and the media was changed the following morning to 

remove cell debris. Knockdown was assayed using western blot 3 days after electroporation. The 

recipe for the Amaxa solutions was obtained from Dr. Alex Ungewickell. For Amaxa solution I, 

a solution of 36 µM ATP and 59 µM MgCl2 were mixed with 10 ml dH2O, filter sterilized, and 

stored at -80ºC in 20 µl aliquots. Amaxa solution II contains 440 µM KH2PO4, 70 µM NaHCO3, 

and 11 µM D-Glucose which was dissolved in 500 ml dH2O, adjusted to pH 7.4 with NaOH, 

filter sterilized, and stored in 1 ml aliquots. Immediately before cell resuspension, aliquots of 

each solution were mixed together and kept on ice.  

5.11 DETERMINATION OF CELLULAR ATP LEVELS 

MDCK cells were plated at 50,000 cells/well in 12-well dishes (Costar). The following day the 

cells were treated for 0–1 h with vehicle, wiskostatin, or 2% sodium azide (as a positive control) 
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and then solubilized by the method described in Yang et al. (281). Briefly, cells were washed 

twice with PBS followed by the addition of 1 ml of boiling distilled H2O to each well, the cells 

were removed by pipetting, and the samples were centrifuged at 4ºC for 5 min at 13,000 rpm to 

pellet debris. To assess the reversibility of drug treatment, cells were rinsed three times and 

incubated in fresh drug-free medium for 30 min before harvesting. To determine cellular ATP 

levels after treatment, 20 µl of each lysate was mixed with 100 µl of rLuciferase/Luciferin 

(Promega) and relative luminescence units were measured with a luminometer (Turner Designs 

TD-20.20). The ATP concentration in each sample was calculated by comparing the 

experimental values to a standard curve constructed with known concentrations of ATP and 

plotted as the percentage of control values obtained for mock-treated samples. Raw data were log 

transformed and analyzed by paired t-test. A P value of <0.05 was considered statistically 

different. 

5.12 VISUALIZATION OF CARGO ASSOCIATED WITH ACTIN COMETS 

MDCK cells (3 x 105) were seeded onto coverslips in 12-well dishes. The following day the cells 

were co-infected with AVs encoding HA and either PI5K or control AV. After 8 h at 37ºC, the 

cells were incubated at 19ºC for 2.5 h to stage HA in the TGN. Dishes were then warmed to 37ºC 

for 0 or 30 min before fixation and processing for indirect immunofluorescence to detect HA, 

PI5K, and actin. 
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