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University of Pittsburgh, 2007

 

 

It has long been suspected that population heterogeneity, either at a genetic level or at a 

protein level, can improve the fitness of an organism under a variety of environmental stresses. 

However, quantitative measurements to substantiate such a hypothesis turn out to be rather 

difficult and have rarely been performed. We examine the response of Escherichia coli (E. coli) 

to infection by viruses known as phage.  In order to inject its DNA into a bacterium, the phage 

must first bind to a specific receptor protein and consequently the number of receptors per 

bacterium is related to the bacterial susceptibility to infection.  Like many proteins in a bacterial 

population, the number of expressed receptor proteins in an individual cell is not deterministic 

but stochastic.  In this project, experiments and model calculations are used to study how the 

noisy expression of phage receptors in a bacterial population changes the short-time population 

dynamics of an isolated and well-mixed E. coli/phage system.  We find that when phage are 

present in the system, the selective killing of bacteria expressing high numbers of phage 

receptors creates a phenotype selection and the bacterial population can no longer be considered 

as having a homogeneous susceptibility to the phage pressure. It is shown that a heterogeneous 

bacterial population is significantly more fit compared to a homogeneous population when 

confronting a phage attack.  We find that a small percentage of cells which are expressing few 

phage receptors become important because these bacteria persist despite the presence of phage.  

In view of their important roles in environmental adaptation, in various diseases and potentially 
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in evolution, a fundamental understanding of this minority of cells remains a significant 

challenge.  
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1.0  INTRODUCTION 

1.1 E. COLI AS A MODEL CELL 

Cells are the basic unit of life and yet are composed of non-living chemicals.  Biologists 

separate cells into three classes; prokaryotes, eukaryotes and archaea.  Prokaryotes are single 

celled organisms which do not have a membrane-bounded nucleus.  Like prokaryotes, archaea 

are single-celled organisms that do not contain a nucleus, but are more closely related to 

eukaryotes.  Eukaryotes are more complex cells and have compartments with specialized 

functions such as the nucleus which contains the DNA (Mader 2004).  

Inside the cell, DNA is generally considered the “information manual” of the cell, the 

amount of DNA content, though, does not necessarily correlate with the amount of genetic 

information or the complexity of the organism.  For example, the worm C. elegans has 100 Mb 

(where b here stands for basepairs), a common fern has ~307,000 Mb, and Homo sapiens have a 

mere 3,000 Mb (Capy 2000).  The DNA content is not a good indicator of complexity because 

biological organisms use a variety of methods to develop complexity. Even though different 

organisms seem incomparable, all organisms are composed of cells.  Within cells, the genes are 

encoded into the DNA.  In all cells, DNA is transcribed into RNA, which is translated into 

proteins.  There are many other cell to cell similarities in highly varying organisms.  While it is 

advantageous to study specific processes that have developed in specific organisms, there are 
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general processes which are common to many if not all living organisms.  These similarities are 

what allow for the use of simple microorganisms such as E. coli as a model to study the basic 

processes of cells such as DNA replication and protein expression.  

1.2 λ PHAGE AND THE PHAGE λ RECEPTOR PROTEIN 

A phage is a virus which infects bacteria.  Most phages are comprised of two basic 

components, DNA and protein.  As can be seen in the cartoon in Figure 1, the phage has a head 

or capsid which contains the DNA, a long tail and a tail fiber which is responsible for binding to 

a receptor (a bacterial protein). The relative simplicity of phage makes them an ideal tool in 

studying some of the basic questions of biological systems.  The famous Hershey-Chase 

experiment used T2 phage to determine that DNA, not protein, is the material that contains genes 

(Weaver 2002, Hershey and Chase 1952).  

 

 

 

 

 

 

 

 

 

Figure 1  Lambda phage cartoon depicting the possible key lock mechanism in phage adsorption.  
 A variation of this figure was presented in Moldovan et. al. 2007.    
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We have chosen to study the particular phage shown in cartoon form in Figure 1.  λ, a 

phage which infects E. coli.  λ is a temperate phage because after infecting a cell it can follow 

one of two pathways.  The first pathway is the lytic pathway in which the phage transcribes and 

translates most of its genes, replicating its DNA quickly, forming heads and tails and leading to 

cell lysis in order to release new phages.  The second pathway is the lysogenic pathway in which 

the phage incorporates its DNA into the bacterial genome and is replicated passively along with 

the bacterial genome (Weaver 2002, Ptashne 2004).  A bacterium that has an incorporated phage 

genome is called a lysogen.  The phage DNA remains integrated into the genome because a 

phage protein called CI, represses the ability to make most of the phage proteins and the phage 

genome remains passive inside the bacterial cell.  A useful lambda phage mutant is known as the 

CI857 mutant.  This mutation was isolated in the 1960s by Sussman and Jacob (Brooks and 

Clark 1967).  This mutation is useful because it causes the repression system (the CI protein) of 

the lambda phage to become temperature sensitive.  This mutation allows for complete 

repression of the lytic cycle at 30°C and complete induction of the lytic cycle at 40°C (Ptashne 

2004).  

In order to infect cells and replicate, the λ phage must first bind to the lambda receptor 

protein (also known as the maltoporin protein) on E. coli.  The functional receptor is composed 

of three individual protein subunits that are transcribed from the lamB gene. The lamB gene is 

located on a genetic network called the maltose regulon which will be discussed in detail later in 

Section 1.5.1.  Figure 2(a) is an electron micrograph of an E. coli bacterium which has been 

adsorbed with a high MOI (multiplicity of infection= 3

3

/
/

cmbacteria
cmphage ).  The phage irreversibly 

binds to the receptor on the outside of the bacterium and then can be visualized using an electron 

microscope. Each bound phage indicates the presence of a maltoporin protein. 
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 The space filling structure of the trimeric maltoporin protein is depicted in Figure 2(b) 

(from Schirmer et. al. 1995).  The trimeric protein allows the passive diffusion of maltose and 

maltodextrins through the outer membrane (Boos and Shuman 1998).  Maltose (a disaccharide of 

two glucose molecules) has other methods of getting into the cell such as through the Omp 

proteins when maltose is present at high concentrations (>10μM).  Therefore, the number of 

maltoporin receptors is only limiting to cell replication when maltodextrins (4 or more glucose 

molecules) or a low concentration of maltose (<10μM) is present (Szmelcman and Hofnung 

1975).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 λ phage infection of E. coli  
(a) electron micrograph  of E. coli with attached phage, from Ryter et. al. 1975.  Reprinted with permission  
from the Journals Department of the American Society of Microbiology. (b) Depiction of the  
space filling structure of the trimeric lambda receptor protein, from Schirmer et. al. 1995.   
Reprinted with permission from AAAS. 

 

 

a) 

b) 



1.3 ADSORPTION: THE FIRST STEP IN INFECTION 

Phage λ must attach to the lambda phage receptor before infection can occur.  Phage have 

no active motility so the infection of bacteria by phages is diffusion-limited. The phage diffuses 

until a random collision causes it to contact a receptor.  At this point, the phage binds, injects its 

DNA and phage replication proceeds.   

Berg and Purcell (1977) developed a quantitative model describing how the number of 

receptors per bacterium relates to the rate of adsorption when receptors can be modeled as 

perfect sinks. Berg later described this model in a more understandable derivation which will be 

summarized here (Berg 1993).  The Berg and Purcell model begins with Fick’s first law in one-

dimension: 

x
CDJ x ∂
∂

−=           (1)    

Where Jx is the flux of a particle, D is the diffusion coefficient of the particles, C is the 

concentration of the particles and x is a measure of distance.  This implies that a net flux of 

particles occurs when a concentration gradient exists.  In an experiment, a gradient can only be 

maintained if there is a source at one point and an adsorber at another point (such as the case 

when there is a bath of phage at infinity and bacterial receptors that act as phage sinks). Now 

considering a small area where particles are not created or destroyed the number conservation 

law applies: 

x
J

t
C x

∂
∂

−=
∂
∂

        (2) 

Filling equation (1) into equation (2) gives rise to Fick’s second law: 

2

2

x
CD

t
C

∂
∂

=
∂
∂

        (3)    
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When sources and adsorbers are present this will reach a steady-state when 0=
∂
∂

t
C .  

Generalizing Fick’s 2nd equation to three dimensions and assuming a steady-state condition, we 

find that .  Because this equation is analogous to Gauss’s equation from 

electromagnetism in the absence of charge, well known solutions from electromagnetism can be 

used to solve these problems. 

02 =∇ C

For phage adsorption, a bacterium is an ellipsoid with N adsorbing disks.  For simplicity, 

here, we will look at a sphere and later generalize to an ellipsoid.  Using an electrical analogy 

Berg and Purcell showed that the diffusion current to a sphere with N disks has the form: 

Ns
aI

I
π

+
=

1

1

0

        (4) 

Where I is the diffusion current, oDaCI π40 = ,  Co is the concentration of the particle at 

infinity, a is the radius of the sphere, D is the diffusion coefficient of the particle, N is the 

number of disk adsorbers and s is the radius of the disk adsorber.  The adsorption coefficient for 

a phage is
oC

I
=γ , and generalizing to an ellipsoid where a2>>b2 we can find an equation for the 

adsorption coefficient γ of a phage to a bacterium with N disks: 

)/2ln( ba
aNs

Ns
o π

γγ
+

=       (5) 

where, 

)/2ln(
4

ba
Da

o
πγ =          (6) 
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There are two limits to note with this result.  First, we look at the low coverage limit (N is small).  

When N is small (Ns<< πa), we find that equation (5) becomes
a

bas
N o

π
γ

γ
)/2ln(

= .  The 

adsorption coefficient becomes linear with N.  In the opposite limit, when Ns>>πa then oγγ → , 

where γo is the maximum theoretical adsorption coefficient.  When we place realistic numbers 

for a, b, s and D, we find the crossover between the two regimes occurs at ~750 receptors,  

meaning that for a fairly low coverage of the receptors on a bacterial cell, γ saturates to its 

maximal value. 

1.4 EPIGENETICS AND PERSISTENCE 

Since DNA sequences were discovered to encode for the information passed from cell to 

cell, it was thought that only DNA could pass information from one generation to another.  More 

recently, scientists have begun to study other methods of information transfer such as how DNA 

methylation gives cells the ability to maintain varying phenotype characteristics over many 

rounds of cell division despite the fact that they contain the same genomic sequence. The 

presence of varying phenotypes with identical genotypes is known as epigenetics. 

A specific type of interesting epigenetic state in bacteria is called bacterial persistence.  It 

has been known since the 1980s that bacteria that were not genetically resistant to antibiotics 

could still persist in the presence of antibiotics for extended periods.  Ampicillin, for example, 

kills growing bacteria.  Therefore, bacteria which are not in a rapidly growing state are not killed 

by ampicillin.  Such cells are persistors because once the antibiotics were lifted from the medium 

the bacteria has a probability of recovering the rapidly growing phenotype.  The resistance to the 
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antibiotics is temporary and not a genetic mutation.  Figure 3 shows an example of such a 

persister. In this experiment fluorescent bacteria were placed in microfluidic channels such that 

the length of the cells in the channel was proportional to the number of bacteria present.  In panel 

A the red arrow is pointing to a bacterium which does not appear to be growing quickly over the 

first 1.5 hours.  Other bacteria in the panel are growing and the length in the microfluidic channel 

becomes larger between panels A and C.  Between C and D, ampicillin is added for 5 hours, 

killing and lysing most of the bacteria.  The ampicillin is then washed out and fresh medium was 

flowed through the microfluidic channel.  Even though before the addition of the antibiotics the 

cells were in a non-growing state, afterwards the antibiotic is removed and the cells have a 

probability of recovering their growth ability and growing again in the microfluidic channel. 

 

 

 

 

 

 

 

 

Figure 3 Bacterial persistence in a microfluidic channel. 
From Balaban et. al. 2004.  Reprinted with permission from AAAS.  The red arrow points to a slowly  
growing bacteria that persists through the 5 hours of antibiotic treatments. 
 

 In this particular study, antibiotic persistence was shown to act as a phenotypic switch as 

is pictured in Figure 4.  In other words, the cells existed in one of two epigenetic states, the 

normal state or the persister state.  The cells have a probability of switching from the persister to 

the normal state and regaining the phenotype of the normal state cells.  Normal cells also have a 
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small probability of switching from the normal to the persister state, gaining the phenotypes of 

the persister cells.   

 

 

 

 

 

 

 

Figure 4 Bacterial persistence can be modeled as a two state switch, from Balaban et. al. 2004.   
Reprinted with permission from AAAS. 

1.5 PROTEIN EXPRESSION IS INHERENTLY NOISY 

To begin to understand bacterial persistence, we must first understand how different 

genetically identical cells can express different phenotypes.  A basic understanding can begin at 

the process of protein expression.  When describing the process of protein expression it has been 

hypothesized that the general flow of information in most organisms follows the path 

DNA→RNA→protein (Crick, 1970).  In this description, the flow of information and process of 

protein expression is seemingly a deterministic process.  If we place protein expression into its 

environmental context, we find that the process of protein expression occurs on a microscopic 

scale and is subject to kT fluctuations and to large number fluctuations when proteins are 

expressed in small quantities (Raser and O’Shea 2005).    

Classifying noisy behavior, Elowitz et. al. (2002) and Swain et. al. (2002) mathematically 

defined two types of noise when studying the stochastic expression of a particular protein.  First, 
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known as extrinsic noise, is the variation in cell-to-cell expression level of proteins due to the 

fact that individual cells experience fluctuations in the amount of protein making machinery and 

vary at different points in the individual cell’s growth cycle.  Second, known as intrinsic noise, is 

the variation in protein expression due to its inherent stochastic nature.  In other words, the 

protein expression of two identical promoters in the same cell have the possibility of expressing 

different levels of protein because RNA polymerases and repressor proteins compete for binding 

sites on promoters.  In the experiment, Elowitz and coworkers placed two different colors of 

fluorescent protein under the expression of identical inducible promoters on the genome in the 

same cell.  Cells expressing the same amount of the two colored proteins appear as yellow in 

Figure 5.  Cells expressing more of one protein are seen as either green or red in the figure.  

Notice when the cells only have small numbers of proteins (panel A), different cells (and the 

same promoter in the same cell) express very different amounts of protein.  Cells which have 

highly expressed protein numbers tend to appear fairly homogeneous as can be seen in panel B 

of the figure.    

 

 

 

 

 

 

 

Figure 5.  Noisy (a) and homogeneous (b) gene expression in bacteria. (c) Noisy gene expression in yeast.  
(a) and (b) are a from Elowitz et. al. (2002).  Reprinted with permission from AAAS. (c) is from Raser and  
O’Shea (2004).  Reprinted with permission AAAS. 
 

 

c) 

 

a) b) 
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Raser and O’Shea (2004) classified noise in eukaryotes, by using the method of Elowitz 

et. al. (2002) in Saccharomyces cerevisiae (budding yeast) which is depicted in Figure C.  They 

showed that stochastic gene expression is similar in eukaryotes and prokaryotes and can be 

placed into three classes depending on the relative rates of promoter reactions.  In class I, the 

promoter is activated infrequently but is stable once activated.  Using simulations they showed 

that for class I promoters, the intrinsic noise is highly dependent on the steady-state mean 

number of proteins and changing the promoter activation rate, transcriptional efficiency or 

translational efficiency, changes the amount of intrinsic noise dramatically.  In class II, the 

promoter is activated infrequently and the activated state is unstable.  In this class the amount of 

intrinsic noise is fairly independent of the promoter activation rate, but as the transcriptional or 

translational efficiency increases, the intrinsic noise strength increases.  In class III, the promoter 

is activated frequently but the activated state is unstable.  In this class, the intrinsic noise strength 

is fairly independent of the strength of the promoter activation rate, the transcriptional efficiency 

or the translational efficiency.  

Other experiments have studied the source of noise in a population of cells when the 

promoter is highly repressed.  These studies looked directly at the effects of both transcriptional 

and translational bursting and the protein distribution that develops (Cai et. al. 2006, Yu et. al. 

2006, Golding et. al. 2005).  While most of these experiments are specific to one promoter inside 

the cell, an experiment by Bar-Even et. al.(2006) attempted to show that the general source of 

noise for many promoters in natural conditions is due to mRNA fluctuations.  In the experiment, 

the authors clone the fluorescent protein GFP behind many natural promoters and use flow 

cytometry to study protein distributions in a population after a chemical perturbation which 

induces expression of the protein.  While the advantage of flow cytometry is its high throughput 

 11 



capability, the disadvantage is the loss of resolution.  In this experiment, the integrated 

autofluorescence of the cells dominated the fluorescent signal of the protein of interest until 

>1000 fluorescent proteins were present inside the cell.   

Like all cells, E. coli is not constantly making all proteins in the DNA sequence.  Instead, 

the DNA encodes genetic networks that can either turn the expression of particular proteins on so 

that they are highly expressed or off so that there is only minimal expression.  

 In a classical paper, Novick and Weiner (1957) discovered using chemical kinetics that 

E. coli cells when placed in the presence of a chemical called TMG (thiomethyl β-D-galactoside) 

could be described as either “on” or “off.”  In other words, the proteins needed for 

metabolization of lactose known as the lacZYA proteins in each cell were either expressed 

maximally or expressed minimally but cells were not generally expressed at an intermediate 

state.  So, even though in situations where only small concentrations of inducer were added and 

the population averaged expression of the lacZYA proteins increased slowly, the inducer actually 

only turned “on” a percentage of cells (that were maximally induced) instead of inducing each 

cell at an intermediate level as can be seen in Figure 6. 

   

 

 

 

 

 

 

 

Figure 6  E. coli cells grown in intermediate concentrations of the chemical TMG, a lactose analog. 
Notice the cells are either highly expressing the lac operon (green) or not expressing (white).  Reprinted by  
permission from Macmillan Publishers Ltd: Nature Ozbudak et. al. (2004), copyright 2004. 
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The lactose network is one metabolism network which is turned off when glucose is present but 

turned on when only lactose is present.  Many metabolism networks have this all-or-none 

behavior, for the study described in this dissertation a more complicated network, the maltose 

regulon, is involved. 

1.5.1 The Maltose Regulon 

In the previous section, there was discussion about the classical lac operon which is one 

of the best studied model genetic networks.  Here we discuss a different regulatory network 

known as the maltose regulon.  Regulons are composed of several genes or operons which are 

under control by the same regulatory protein, while operons are genes with a common function 

that are transcribed on the same mRNA.  A regulon is generally more complex than an operon 

and typically consists of a few operons at different loci on the chromosome. 

The λ-phage receptor is composed of 3 LamB proteins.  The gene which encodes for the 

LamB protein is located on the maltose regulon.  As can be seen in Figure 7, the LamB protein is 

transcribed along with the malK and malM proteins.  While the function of the malM protein is 

still mainly unknown, the malK protein is involved with the transport of maltose molecules 

through the inner membrane of the E. coli.  The genes of the maltose regulon have two things in 

common. They are all involved in the metabolization of maltose and maltodextrins and are all 

regulated by the protein malT which becomes an activator when it binds with the inducer 

maltotriose (a molecule composed of 3 glucose molecules).  An activator is a protein that binds 

near a promoter (such as the malK promoter in Figure 7) and increases expression of the genes 

downstream but when it is absent those genes are repressed completely or only expressed at 
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basal levels.  A second, more global regulator of metabolization operons is the cAMP/CRP 

complex.  This complex is known to have a large effect on the expression of many carbon 

metabolization operons such as the maltose regulon, lac operon and the PTS operon which 

effects glucose metabolization. 

 

 
 

 

Figure 7 Activators of the maltose regulon.  
Green boxes are malT binding sites, blue boxes are cAMP/CRP binding sites. Both activators are necessary  
for the efficient transcription of the malE and malK promoters.  The cAMP/CRP binding sites are  
important for the transcription of malK and malE promoter.  malEFG, malK, lamB and malM are all  
involved in the transport of maltose and maltodextrins into the cell, the diagram was inspired from a figure  
in Boos and Shuman (1998). 

 
It has been hypothesized that malT is activated at low levels even in the absence of the inducer 

maltotriose, preparing the cell for efficient use of low concentrations of maltose or 

maltodextrins, if available.  It is interesting to note that only the transport proteins expressed by 

the malK and malE promoters need cAMP for high expression while other promoters such as 

malS, malP and malZ only need the activator malT.  The malK promoter initiates transcription of 

three genes malK, lamB and malM (Boos and Shuman 1998).   

1.6 PREDATOR-PREY MODELS 

When the phage and E. coli are mixed, it is simple to describe the dynamics using a 

predator-prey model.  The general predator-prey model was first developed independently by 

Lotka (1925) and Volterra (1926) and is now known as the Lotka-Volterra model: 
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xyrx
dt
dx α−=          (7) 

Dyxy
ct
dy

−= β          (8) 

Here, x is the prey density, y is the predator density, r is the unimpeded growth rate of the prey, 

D is a constant of mortality for the predators, α is a proportionality constant linking the mortality 

of the prey to the number of predator, and β is a proportionality constant linking the increase in 

predator to the number of prey.  While these equations, do produce oscillations seen in 

experiment, the amplitude of the oscillations depends completely on the initial conditions of the 

system rather than the intrinsic parameters making them unrealistic to biological systems (May 

1972).  An important theorem by Kolmogorov stated that 2-dimensional nonlinear dynamic 

systems give rise to stable and unstable fixed points. The unstable fixed points give rise to limit 

cycles.  This theorem was tested in biological systems and gave support to the notion that most 

predator-prey systems actually have oscillations due to limit cycles as found in the more specific 

Lotka-Volterra model (May 1972).  In another interesting paper, Robert May reviewed the rich 

spectrum of solutions that can be found in simple nonlinear difference equations, once again to 

give more support to the notion that simple difference equations (modeling simple interactions) 

could give rise to complicated and possibly chaotic behavior  (May 1976)  

 As a variation to the Lotka-Volterra model, Wangersky and Cunningham (1957) added a 

time delay to equations (7) and (8) changing the dynamics of the system: 

 )()()( tytxtrx
dt
dx α−=       (9) 

 )()()( tDytytx
dt
dy

−−−= ττβ        (10) 
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This is a more biologically relevant equation because predators do not instantly increase in 

numbers when an abundant prey is present; more realistically there is a time delay which can be 

thought of as the gestation period.  This equation has no stable solutions, however, because 

adding a finite time delay creates oscillations growing to infinity. For τ=0 in the Lotka-Volterra 

model, a growing oscillation is not possible and the well-known stable oscillations occur. In a 

more realistic biological system where τ is finite, this implies that if predation is linear, such as 

the term )()( tytxα−  in equation (9), then predation cannot be the only limit on prey growth. 

Stability in the system does arise when a carrying capacity K (which implies a resource limited 

environment) is added to the equations:  

 )()())(1)(()( tytx
K
txtrx

dt
tdx α−−=       (11) 

 )()()()( tDytytx
dt

tdy
−−−= ττβ       (12) 

While the time delay is destabilizing, the density-dependent carrying capacity is stabilizing and 

creates the necessary limit on prey growth which allows for both stable and unstable solutions.  

1.7 PHAGE/E. COLI POPULATION DYNAMICS 

The discussion above of prey-predator models were introduced as a general form for 

prey-predator relationships and the solutions that are possible.  Because there are many different 

types of prey-predator interactions, when the specific interactions between the prey and predator 

are known, detailed versions of the above equations can be written down.   

In 1960, Campbell developed a model using differential equations describing the specific 

interactions between bacteria and phage in order to predict equilibrium values of bacteria and 
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phage in a chemostat culture (Campbell 1960).  A chemostat is a constant volume growth vessel 

where nutrients flow into the reaction chamber at a constant rate and debris/phage/bacteria flow 

out of the reaction chamber at the same constant rate.  They found solutions which allow for the 

coexistence of phage and bacteria in the chemostat.  This equilibrium condition, though, requires 

the inactivation of phage either through natural decay or by being washed out of the chemostat.  

Stewart and Levin (1973) developed a model based on two organisms competing for the same 

resource in a chemostat community. This model included the specific density-dependent 

interactions between phage and E. coli and was experimentally testable.  In 1977, Levin et. al. 

modified the model of Campbell (1961) and Stewart and Levin (1973) and tested the model 

results against their experimental findings when bacteria and bacteriophage competed in a 

chemostat.  This group showed that by varying the concentration of nutrients and the flow rate of 

the chemostat, they could find regions where stable oscillations and stable equilibrium of the 

bacteria and bacteriophage occur. This original experiment served as the basis for a series 

ecology studies in bacteria/bacteriophage systems in chemostats.  Chao et. al. (1977) showed that 

in the chemostat community, bacteria-phage interactions were stable, and even after the 

introduction of phage resistant mutants, a low level of phage sensitive bacteria remained which 

kept the phage from becoming extinct.  They hypothesized that in their system, that this low 

level of sensitive bacteria only persisted if phage resistance had a cost, in other words had a 

lower growth rate than the sensitive cells.   

Lenski (1988) wrote an extensive review of many of the studies and models used to 

describe the interaction of bacteria and bacteriophage.  In this review, Lenski raised two 

important points: (1) the Lotka-Volterra-like models are not stable in serial cultures and (2) that a 

non-heritable refuge (that is when bacteria become transiently resistant to phage) could explain 
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the fact that bacteria/phage cultures are much more stable than the Stewart and Levin (1973) 

model predicts.  He shows evidence that a model which includes an individual stage of non-

heritable refuge (either spatial or physiological) could produce stable interactions. 

Schrag and Mittler (1996) tested the four hypotheses for long term coexistence of 

bacteria and phage discussed in Lenski (1988).  The four hypotheses were: 

(1) Numerical refuge hypothesis: 

The bacteria will coexist in a chemostat purely due to the development of stable limit 

cycles due to the natural interactions between bacteria and phage.  This hypothesis is only 

realized in specialized conditions. 

(2) Arms-race hypothesis:   

Coexistence is achieved through mutations in the bacteria and corresponding mutations in 

the phage over an endless arms-race.  It was later shown, though, that in general the host 

will prevail (Hofnung et. al. 1976). 

(3) Physiological refuge hypothesis: 

The bacteria have a physiological state which they switch to which is temporarily 

resistant to phage infection.   

(4) Spatial refuge hypothesis:   

The bacteria use spatial heterogeneity for protection against phage attack, such as wall 

growth in chemostats. 

The authors concluded that while there was some indirect evidence for physiological refuge in 

chemostats, spatial refuge was the hypothesis that explained their experimental results in both the 

chemostat and serial culture experiments.  
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Later, a theoretical group used the basic phage/bacterium model to examine how the 

addition of phage adsorbing to bacterial debris affects long-term co-existence (Rabinovitch et. al. 

2003).  This group found that in order to create coexistence between bacteria and phage, viral 

decay must occur either by natural inactivation or through adsorption to debris.  The viral decay 

is necessary to change the unstable focus of the original model to a possibly stable one 

(Rabinovitch et. al. 2003).  In their analysis, this group used an adsorption coefficient of 10-12 

min-1 ml-1 which is approximately two orders of magnitude lower than values later measured for 

λ phage and E. coli (Moldovan 2006, Moldovan et. al. 2007).  In Chapter  2.0 , we discuss that 

within realistic parameter values, the model always predicts extinction of the bacterial 

population.   
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2.0  MODELING PHAGE/E. COLI DYNAMICS 

 

As was discussed in Sections  1.6 and  1.7, predator-prey relationships and more specifically 

bacteria-phage interactions have been studied for many years.  Recently, though, studies of 

stochastic protein expression and fluorescent detection of single proteins have become common.  

It is this new information that has led us to study the effect of stochastic receptor expression on 

bacteria-phage dynamics.  As an introduction, in Figure 8, we show E. coli K-12 bacteria which 

have been adsorbed with high concentrations of fluorescently labeled λ phage and visualized 

under a fluorescent microscope.  Each phage indicates the presence of a maltoporin protein.  

While most bacteria appear to be covered with fluorescent particles, (Figure 8a), there are 

minority populations that due to their stochastic phenotype express very few proteins and 

therefore can only adsorb a few fluorescent phage (circled in Figure 8b).   
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Figure 8 Example of a minority phenotype present in a genetically homogeneous population of bacteria.   
The picture is of Ymel adsorbed with fluorescent phage, (a) and (b) are the same picture with different 
contrast settings.  The heterogeneity of individual bacteria is shown in this picture.  The circled bacterium 
has fewer phage adsorbed than many of the other bacteria in the picture.  The number of attached phage 
can be counted as they appear as individual diffraction limited disks on the bacteria. 

2.1 PHYSICAL PICTURE: THE SIMPLIFIED MODEL  

In this section, we present a simplified version of the models introduced in Section  1.7 

which describes the phage/E. coli interactions and assumes that the average adsorption 

coefficient of the bacterial population is constant in time.  These equations are based on the 

previously developed models used for the population dynamics of E. coli and phage (Levin et. al. 

1977, Schrag and Mittler 1996, Rabinovitch et. al. 2003).  In order to simplify the equations we 

leave out some of the interactions normally modeled in phage/E. coli dynamics such as limited 

resources and mutations which only dominate the system when studying the long-term dynamics 

of the system which is considered to be greater than ~10 hours.  We focus on the short term 
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behavior of the bacterial population before mutations dominate the system and resources become 

limited.  

 

 

 

 

 

 

 

 

 

 

Figure 9 Cartoon depiction of phage/E. coli dynamics.  
Bacteria naturally grow in a certain chemical environment with a growth rate λ, when bacteria and phage  
are mixed, the phage adsorb to the bacteria with a rate γN which is dependent on the number of receptors  
per bacteria.  Once a phage adsorbs, the phage replicates inside the cell and τ minutes later an average of m  
phage burst out of the infected cell. 

 

In our model, we assume that the bacteria are contained in a closed system with unlimited 

resources.  Depicted in Figure 9, the bacteria replicate at a rate of λ.  In the presence of phage, a 

bacterium can adsorb a phage with a rate that is proportional to the uninfected bacterial 

concentration B(t) and phage concentration P(t) as well as the adsorption coefficient γ.  After a 

latent period of time τ, the bacteria burst producing on average m new phage.  More than one 

phage, though, can attach to a bacterium.  This has been included into the model by adding the 

term I(t) which describes the “debris” in the system. The debris is defined as infected or dead 

 



bacteria that still have the ability to adsorb phage.  The debris degrades with some rate ε.  The 

equations which describe this simplified system are:  

( )( ) tBtγPλ=
dt

dB(t)
− ( )        (13)  

( ) ( ) ( )tεItBtγP=
dt

dI(t)
−        (14)    

( ) ( ) ( ) ( ) ( )( tI+tBtγPτtBτtPm=
dt

dP(t)
−−−γ )     (15)    

This set of equations will be referred to as the homogeneous model. Notice the adsorption 

coefficient γ is the average adsorption coefficient of the initial bacterial population. As will be 

discussed later, the adsorption coefficient is dependent on the number of receptors per bacteria 

but in this model this value has been set as a constant determined by the initial population. These 

equations generally predict extinction unless the parameters are finely tuned.  The addition of the 

debris term has been shown computationally to create a parameter space where bacteria and 

phage may coexist (Rabinovitch et. al. 2003).  We find, however, that when using our measured 

values for all of the rate constants, these equations still predict extinction of the bacterial 

population even though experiments show otherwise.  This can be seen in Figure 10, where a) is 

an experimental population dynamics experiment performed by Radu Moldovan and described in 

his thesis (Moldovan 2006).  When the homogeneous model is simulated using the measured 

constants from Table 1, (Figure 10b)) the model predicts extinction of the bacterial population in 

<10 hours, but this never occurs in actual measurements.  Surviving bacteria were isolated and 

individual surviving colonies were regrown from hour 25 of population dynamic experiments 

similar to the one presented in Figure 10a).  The colonies were checked for their ability to 

support phage growth.  We found that the bacteria that regrew are just as sensitive to phage 

infection as bacteria that were never exposed to phage. The number of plaques formed through 
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addition of phage was measured for 50 colonies (10 colonies from 5 experiments), binned and 

presented in Figure 10c).  When the normalized PDF (probability density function) was fit with a 

Gaussian it was found that ( )meanσ ≈ , implying that the plate to plate variations in colony 

number can be explained completely by the random sampling error of the phage stock.   The 

mean value found in this experiment was approximately equal to the mean found when using 

bacteria that had never been exposed to phage pressure previously.  

 

 

 

 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 

 

a) b)

c)

 
Figure 10 Low MOI population dynamics experiment.   
(a) Experimental population dynamics experiment, the bacterial concentration (black circles) and free  
phage concentration (red squares) are measured over a period of 30 hours (only 20 presented).  (b)  The  
homogeneous model predicts extinction for the bacterial population (black line) when the phage (red line)  
overtake the bacterial population.  (c) The bacteria at about 25 hours are regrown with no phage pressure  
and the ability to form plaques is tested.  Using 50 separate colonies over 5 experiments the number of  
plaques on each plate is counted and the PDF is shown (black circles).  The PDF is fit with a Gaussian (red  

line).  We find ( )meanσ ≈ implying that the plate to plate variations are due to the sampling error.  
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2.2 MODEL DEPENDENCE ON RECEPTOR HETEROGENEITY 

Bacteria develop resistance to phage infection, reaching all levels of the infection 

process.  Because phage need to attach to a specific receptor, the disruption of the attachment 

process is a common target for bacterial resistance and mutations of the receptor compose 70% 

of isolated phage resistant mutants (Hofnung et. al. 1976).  In the next section we will study the 

effect of a bacterial population having a broad, continuous susceptibility to phage infection due 

to varying numbers of receptors present on different genetically identical bacteria in the same 

population.  Different susceptibilities arise due to the varying adsorption rates that are dependent 

on the number of receptors of each bacterium. 

2.2.1 Dependence of Adsorption Coefficient on Receptor Number 

As was discussed in Section  1.3, the adsorption coefficient of an ellipsoid with N 

receptors was derived to be: 

b)a(
πa+Ns

Nsγ=γN

/2ln

0        (16) 

Here s is the receptor radius, a is the length of the semi-major axis and b is the length of the 

semi-minor axis of the elliptical cell as is depicted in Figure 11.  γ0 is the maximum adsorption 

rate for a perfect sink: 

⎟
⎠
⎞

⎜
⎝
⎛

b
a

πDa=γ
2ln

4
0         (17) 
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Here, D is the diffusion coefficient of the phage particle.  By electron microscopy it has been 

shown that the phage head has a radius of ~30 nm.  The diffusion coefficient measured by light 

scattering shows the phage particle to have an equivalent hydrodynamic radius of ~35 nm 

(Moldovan et. al. 2007).  The cell dimensions needed to calculate γ can be measured using light 

microscopy techniques and are described in the Appendix.  

 

 

 

 

 

  

 

Figure 11 The parameters which determine the maximum adsorption coefficient.   
The radius of the phage head is used to approximate the diffusion coefficient of the phage particle, which  
we have previously measured using light scattering. 

2.2.2 Heterogeneous Adsorption Model 

The receptor dependence of the adsorption coefficient will now be incorporated into the 

homogeneous model presented by equations (13), (14) and (15).  Because bacteria with different 

receptor numbers have different adsorption coefficients, as depicted in Figure 12, each bacterial 

subpopulation with N receptors BN(t) adsorbs phage with an adsorption coefficient of γN.  We 

assume here that the growth rate λ is independent of the number of receptors, this is a valid 

assumption when the maltose concentration is >10μM because it has previously been shown that 

maltose can enter the cell through other porins when a large concentration of maltose are present 
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(Szmelcman and Hofnung 1975).  A bacterium with N free receptors that adsorbs a phage now 

becomes debris with N-1 free receptors IN-1(t).  Debris with N+1 free receptors adsorbs a phage 

to become debris with N receptors IN(t). Because we are studying the individual subpopulations 

of bacteria, we have to take into account the ability of bacteria to gain receptors through protein 

production and to lose receptors through degradation or simply through dilution during bacterial 

replication.  For example, bacteria in the subpopulation B1 can create a receptor and move to 

subpopulation B2 at the rate α12. All these interactions can be described with the following 

mathematical model: 

∑ −+−
i

NN
N BαBαP)Bγ(λ=

dt
dB

)( NNiiiN      (18)  

NNN+N+N+N
N IPIγ)I+P(Bγ=

dt
dI

ε−−111     (19) 

)I+(BγPτ)(tBγτ)mP(t=
dt
dP

NN

N

=n
N

N

=N
NN ∑∑ −−−

max

0

max

0

   (20) 

where N=0..Nmax.   

 

 

 

 

 

 

 

 

 

Figure 12 Definition of bacterial subpopulations.   
A subpopulation of bacteria with N receptors in the model is labeled as BN.  Bacteria that have adsorbed at  
least one phage and have N-1 free receptors are labeled as IN-1 
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The observable quantity in the system is the total uninfected bacterial concentration: 

∑
maxN

=N
Ntot B=B

0

        (21) 

When bacteria switch between subpopulations, there are no sink or source terms, so the 

switching must obey a conservation rule, 0)( =−∑∑
N i

NiNiNi BB αα .  Therefore, when we sum 

over all the individual bacterial subpopulations, we find: 

( ) ( ) ( ) ( )∑− tBγtPtλB=
dt

tdB
N

tot
Ntot      (22) 

We can then define 
)(

)(
)(

tB

tB
t

tot

N
NN∑

=
γ

γ and rewrite equation (22) as 

( ) ( ) ( ) ( ) ( )tBtγtPtλB=
dt

tdBtot
tottot −      (23) 

Equations (19) and (20) can be rewritten in a similar manner: 

( ) ( ) ( ) ( )tεItBtPtγ=
dt

dI
tot

tot −       (24) 

( ) ( ) ( ) ( ) ( ) ( )( )tItγ+tBtγtPτ)(tBτtγτ)mP(t=
dt
dP

totItottot −−−−  (25) 

Here, ( )tγ is the average adsorption coefficient of the uninfected bacteria as a function of 

time and ( )tγI is the average adsorption coefficient of the debris as a function of time.  Notice 

that equations (23), (24), (25) are almost identical to equations (13), (14), (15).  The difference is 

that in the heterogeneous model the adsorption coefficient is allowed to vary as a function of 

time.  When first looking at equation (23), it seems that all the switching between subpopulations 

is no longer contained in these equations.  In actuality, it is now implicitly contained in the time 
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dependence of the average adsorption coefficient, rather than explicitly contained in the 

equations themselves.   

2.2.3 Insights Gained in the Limit of Negligible Switching 

In equations (18), (19) and (20), the unknown parameters are the switching terms.  As a 

first step in studying the effect of receptor heterogeneity, we assume that the system is in the 

limit of negligible switching and examine the results of this assumption.  Subpopulation 

switching will be examined extensively in Section  3.8 and Chapter  4.0 .  When 

P>>  and t is small, the phage concentration is approximately constant, , 

and switching can be neglected ( ).  Under these conditions, the term 

is constant, and we can solve the differential equation for each subpopulation BN.   

∑
N

NN )I+N(B oPP ≈

0)( =−∑
i

NiNiNi BB αα

oN Pγλ −

( ) tPeB=B oN
NN

)(0 γλ−        (26) 

Notice that the subpopulation BN is either growing or decaying exponentially depending 

on whether the term oN Pγλ − is positive or negative, respectively.  This indicates that if the term 

is positive, the subpopulation of bacteria with N receptors is effectively growing while if the 

term is negative, then the subpopulation is effectively decaying. The critical point occurs when 

oN Pγλ − =0.  We fill in equation (16) for γN and solve for Po, we find that         

)
N

b)sa(
πa

+(
γ
λ=Po

/2ln1
0

      (27) 

Using the values from Table 1 for the Ymel strain in equation (27), we obtain the graph shown in 

Figure 13.  Figure 13 depicts the phage concentration-receptor number parameter space.  A 
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bacterial subpopulation with N receptors will decay if the phage concentration rises above the 

curve and will grow if the phage concentration falls below the curve.  It is important to note that 

the phage concentration can range over three orders of magnitude and still have a subpopulation 

with at least one receptor effectively growing and another subpopulation with N receptors 

effectively decaying. 

 
 

Figure 13 Different subpopulations can be exponentially growing or decaying under constant conditions.  
In an approximately constant phage concentration, a bacterial subpopulation with N receptors will grow  
exponentially if it falls above the line in parameter space and will exponentially decay if it falls below the  
line.  Notice that this line ranges over 3 orders of magnitude for sensitive bacterial subpopulations. 

2.3 ANALYTICAL SOLUTION: INITIAL GAUSSIAN RECEPTOR DISTRIBUTION 

It is difficult to gain an understanding about the response of the system with many 

coupled differential equations.  We choose to make assumptions that simplify the calculation. 
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We looked again at the solution to the differential equations at a time when the phage 

concentration P is constant and switching is negligible.  Once again this gives us a solution for a 

subpopulation of bacteria with N receptors to be equation (26).  Summing over all 

subpopulations, we find:   

( ) ( tPeB=B oN
maxN

=N
Ntot

γλ−∑ 0
0

)       (28) 

For simplicity, we assume that the initial distribution can be described by a Gaussian of the form: 

( )
( )

2

2
0

2
2

2
1

)
2

(

2
0 σ

NN

e
N

erfc

B
=B

o

o
N

−−

− πσ
σ

    (29) 

The factor 
)

2
(

2

σ
oN

erfc −
 is included to normalize the Gaussian for the range ∞→= 0N .  

The erfc(x) is the complementary error function which goes to 0 as the argument goes to positive 

infinity and goes to 2 as the argument goes to negative infinity.  Substituting equation (29) into 

equation (28): 

( )
( )toPeσ

NN

e
N

erfc

B
=B N

maxN

=no

o
tot

γλ

σ
πσ

−
−−

−
∑

0

2

2
0

2
2

)
2

(

2   (30) 

We also assume that we are studying a distribution in the limit where Ns<<πa which means that 

the surface area of the receptors is much smaller than the surface area of the bacteria.  When this 

assumption is made, we find that 
πa
Ns

oN γγ = .   Using the linear approximation into equation 

(30) and (turning the sum into an integral from 0 to ∞) we can solve this equation exactly with 

the result: 
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( ) ( ) 22
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  (31) 

Here
πa
sγ

=γ 0
1  is the adsorption coefficient of a bacterium with one receptor.  Notice that 

the mean and width of the initial distribution completely determines the response of the bacterial 

system at some constant phage concentration Po because without subpopulation switching the 

bacterial population is composed of many subpopulations that are exponentially growing or 

decaying at varying rates.  At short times, the argument of erfc(x) is negative and therefore the 

erfc(x) is just a constant between 1 and 2.  During these small times the term oo NPγλ 1−  

determines whether the exponential will be positive or negative.  The average receptor density of 

the initial distribution accurately determines whether the population will experience either 

exponential growth or decay.  This suggests that at short times the average homogeneous model 

is an accurate description.   At intermediate times, the second order term ( ) 22
12

1 tσPγ o  (which is 

quadratic in t) will dominate and the bacterial concentration will increase.  At long times, the 

quadratic term competes with the complementary error function and we find that as ∞→t the 

bacterial concentration goes to: 

t

te
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    (32) 

Notice that the rate of growth at longer times is independent of the phage pressure Po.  That is 

because in this model we have assumed the limit of no switching which as will be discussed later 
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causes the average adsorption coefficient to asymptotically approach zero which implies that the 

assumptions used to derive this result fail completely at longer times.  Therefore as t becomes 

large, the bacterial growth rate should be independent of phage pressure. 

To check the validity of the derivation in an obvious limit, let's look at the situation 

where →σ 0. The equation reduces to:  

( ) ( )tNPeB=tB oo
otot

1γλ−       (33) 

This is the solution to the homogeneous model when Po~constant which is expected.  As a 

graphical way of looking at the different solutions found and the times at which they are 

consistent, in Figure 14 the  analytical solution for a Gaussian distribution, equation (31), is 

presented as the solid lines for a phage pressure of Po=2x107 cm-3 (blue) and Po=5x107 cm-3 

(black).  The homogeneous model is presented as the dashed lines, and the short time 

approximation (see Section  3.2) (which is equation (31) without the complementary error 

function) is presented as the dotted line.  Notice, the homogeneous solution is valid for a short 

period of time but eventually the full solution begins to recover while the homogeneous solution 

only exponentially decreases and the two solutions eventually separate.  The short time 

approximation on the other hand (the dotted line) is consistent with the full solution for a longer 

period of time but eventually as it begins to recover, the behavior rises much more quickly than 

the full solution. This is because the quadratic term in the exponential takes over the behavior of 

the system because there is no competition from an erfc term.  This is consistent with our 

assertion in Section  3.2 that the short time approximation is a second order correction to the 

homogeneous solution.  While, this analytical solution for an initial Gaussian distribution is 

illuminating, protein distributions are rarely if ever Gaussian.  A much more common 

distribution used to describe protein distributions is the log-normal distribution. 
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Figure 14 Comparing analytical solutions for an initial Gaussian protein distribution. 
The blue lines are solutions for a constant phage pressure of Po=2x107 cm-3, whereas the black lines are for  
a constant phage pressure of Po=5x107 cm-3.  For both phage pressures the homogeneous solutions drops  
down to extinction, (dashed line), but is valid for short times.  The short time second order correction (no  
erfc terms, dotted line) is consistent with the full analytical solution until it minimizes and starts to increase  
in which case the increase is much greater than is actually possible due to the quadratic term in the  
exponential.  The simulation of equation (31) where at long times the quadratic term  
in the exponential competes with the erfc function, is valid at all times as long as the assumptions made in  
the derivation remain valid. 

2.4 ANALYTICAL SOLUTION: INITIAL LOG-NORMAL RECEPTOR 

DISTRIBUTION 

In this section, we use the saddle-point approximation to derive an analytical solution for 

the dynamical behavior of the bacterial population, when the receptor distribution is initially 

distributed log-normally: 

2

2

2
))ln()(ln(

2
1)( θ

μ

πθ

−
−

=
N

e
N

Np       (34) 

Once again we know the solution in the limit when Po~constant and switching can be neglected: 
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Then we can replace: 

)(*)0()0( NpBB totN =       (36) 

Assuming a majority of the distribution is in a subpopulation with high enough N that we can 

replace the sum with an integral, we find: 
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We then substitute y and )ln(
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.  We assume that we can estimate the solution using the saddle 

point approximation to expand the function around the minimum of f(y).  This implies that: 

2*)*)((''
2
1*)()( yyyfyfyf −+≈ .  y* is the point where the function is a minimum, which can 

be found by taking the first derivative of f(y) and solving for the point where it is 0.  
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This is a transcendental equation which we can use to find the solution for y* numerically.  Now 

to finish the saddle point approximation we have to find the second derivative of the f(y) 

evaluated at y*:  
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Using the saddle point approximation we find that, 
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Because the curves are completely determined by the mean and standard deviation of the initial 

log-normal distribution we can now use this equation to approximate the shape mean and 

standard deviation of the initial receptor distribution.  Here we would like to emphasize the 

approximations which were incorporated into the derivation of the above analytical solution: 

1) We are only studying the situation when the term f(y) can be expanded around a 

minimum which approximately corresponds to where y*~y when time is small. 

2) We are studying the situation when the phage concentration is approximately constant. 

3) We are assuming that the switching between subpopulations is slow. 

Since protein expression distributions tend to be log-normal (Figure 17b, blue lines), this 

analytical solution will allow us to extract the mean and standard deviation of the initial receptor 

distribution using the heterogeneous model.  The results can be compared with direct 

measurements of the initial receptor distribution measured using fluorescent microscopy and 

flow cytometry.  
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2.5 CONCLUSION 

We have developed a mathematical model which separates a population of bacteria into 

individual bacterial subpopulations dependent on the number of functional maltoporin proteins 

that are being expressed.  While the model is complicated, we have developed several simplified 

solutions using limits of varying rigor which allow us to understand the impact of receptor 

heterogeneity on the population dynamics.  In Chapters  3.0 and  4.0 this theory will be compared 

with experiment using several assumptions of varying rigor.  Throughout these chapters, there 

will be continual discussion about the study of receptor heterogeneity and its molecular origins in 

E. coli. 
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3.0  COMPARISON OF MODEL WITH EXPERIMENT 

The two parameters used to compare the model discussed in Chapter  2.0 with experimental 

observations are the mean (<N>) and standard deviation (σ<N>) of the initial unperturbed receptor 

distribution.  In this chapter, model independent and model dependent measurements of these 

two quantities are made.  First, a model independent measurement of the receptor distribution 

using fluorescently labeled phage as an “anti-body” for the receptors is presented.  Second, we 

use a correction to the homogeneous model and short time experiments to extract <N> and σ<N>.  

Next, we fit killing curves which satisfy the Po~constant assumption with the analytical solution 

derived in Section  2.4, as a model dependent way to extract the mean and standard deviation of 

the initial receptor distributions.  Finally, the full set of nonlinear differential equations 

(assuming negligible switching) described in Chapter  2.0 is numerically integrated using the 

constants measured in the Appendix and shown in Table 1.  For the full integration, the measured 

receptor distributions, phage and bacterial concentrations are used as the initial conditions of the 

system.  Throughout this chapter, we use the term killing curves which is defined as 

measurements of the bacterial concentration when phage are in excess under the initial 

conditions that MOI>1 (multiplicity of infection, MOI= ).    
o

o

B
P
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Constant Description Ymel  LE392 

a (μm)  Semi-major axis 2.1 2.7

b (μm)  Semi-minor axis 0.46 0.48

γ0 (cm3/s) Maximum effective adsorption rate   9.0x10-11   1.1x10-10

λ (h-1) Growth rate 1.1 1.1

m (phage/infected bacteria) Burst size 14 12

τ (minutes) Latent period 47 45

 
Table 1 Table of constants. 
The description of the measurement of each constant is described in the Appendix and used in all  
simulations.  This table contains all the constants used in both the fit to the analytical solution and the full  
simulation.  The constant ε was treated as an adjustable parameter but must be larger than the latent period.   
It was found that numerical integration at the initial conditions used was fairly independent of ε and  
ε( ) was fixed as the latent period.  Each constant was independently measured for both strains. 1−= τ

3.1 INITIAL RECEPTOR DISTRIBUTIONS 

We have developed a method to measure the maltoporin receptor distribution in a bacterial 

population using fluorescent lambda phage particles as a fluorescent probe with a strong affinity 

for the maltoporin receptor.  Lambda phage tails were previously used as a fluorescent probe for 

the receptors and were found to remain bound to the receptor for extended periods of time 

allowing visualization by fluorescent microscopy (Gibbs et. al. 2004).  Here we choose to use the 

full virus because we can attach many more fluorescent dye molecules to an individual probe.  

For cells with only a few attached phage, we can visualize individual phage which appear as 

diffraction limited spots in Figure 8.  An attached fluorescently labeled virus indicates the 

presence of a maltoporin protein.  We assumed that approximately each available receptor had an 

attached phage because at the phage concentration that was used to infect the cells, a bacterium 
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with a single free receptor will adsorb a phage after on average 4 minutes of incubation in 10mM 

MgSO4.  The size of the phage head could possibly block the attachment of another phage, but 

this steric hindrance should only by a factor when ~2000 phage particles are attached. 

3.1.1 Receptor Labeling Procedure 

The phage were labeled with AlexaFluor 488 (see Appendix).  Exponentially growing 

cells were washed twice and resuspended in 10mM MgSO4 with no carbon source.  A bacterial 

population was incubated with a high fluorescent phage concentration (>4x1010 cm-3).  The cells 

and phage were allowed to adsorb in the dark for 30-35 minutes at 37 °C.  The cells were then 

washed twice with 10 mM MgSO4 to clear out the excess free phage.  A 50 μl sample was taken 

out and diluted into 2 mls of 10 mM MgSO4.  This sample was used to do fluorometry as 

described below.  The remainder of the cells were kept on ice in the dark until the flow 

cytometry was performed.   

3.1.2 Fluorometry 

The flow cytometer used to study fluorescently attached phage was unable to distinguish 

individual quantized phage attached to bacteria and therefore a calibration scheme using a 

fluorometer was used to determine how the arbitrary fluorescent units of the flow cytometer 

related to the number of attached phage.   

The fluorometry measurements were performed on a Bio-Rad VersaFluorTM 

Fluorometer.   The brightness of a known concentration of labeled λ phage was found in FLUs or 

FLuorometer Units.  The same sample was diluted by a known amount and a new reading was 
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taken, this process continued for at least 4 readings.  The data was fit with a straight line using 

the least squares method in OriginPro 7.5 with a y-intercept value of 0 (Figure 15).  

The above procedure was repeated with 1μm yellow-green IDC spheres.  Because the 

illumination volume remained constant, by dividing the two slopes (FLU/phage and FLU/bead) 

we can find the multiplicative factor phage/bead which can be used to calibrate the flow 

cytometer.  It is important to note here that the fluorescence spectra of the IDC spheres and of 

the dye (AlexaFluor488) used to label the phage are very similar, so different filter sets will not 

greatly affect the ratio of the fluorescence readings.   

 

 

 

 

 

 

 

 

 
 
 
Figure 15 Fluorometry dilution curves. 
Fluorescence readings at different dilutions were taken for phage (dark green squares ), fluorescent IDC  
spheres (light green circles), fluorescent phage adsorbed Ymel (red diamonds), fluorescent phage adsorbed 
LE392 (purple triangles) and LE392 autofluorescence (pink stars).  After background subtraction the 
dilution curve was fit with a straight line with a zero y-intercept.  These values were used to calculate 
average receptor numbers as shown in Table 1. 
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3.1.3 Average Receptor Values 

We calculated the average receptor number for both Ymel and LE392 strains using the 

flow cytometer and the fluorometer to check the validity of the calibration described in the 

previous section. The results of several methods to calculate <N> are presented in Table 2.  The 

calculation of the average receptor number using the fluorometer is independent of the ratio of 

bead fluorescence and phage fluorescence whereas the calculation of the average receptor 

number using the flow cytometer is completely dependent on the ratio of the beads and phage 

allowing us to check the validity of the calibration 

The fluorometry dilution procedure was repeated with a sample of bacteria which had 

been adsorbed with saturating concentrations of fluorescent phage (MOI>4000).  After cell 

autofluorescence was subtracted, the slope of the linear fit (FLU/bacteria) was divided by the 

phage dilution slope (FLU/phage) to find the average number of phage/bacteria.  Example 

dilution curves for both Ymel and LE392 can be seen in Figure 15.  After averaging over 3 

independent measurements of the Ymel strain and 5 independent measurements of the LE392 

strain, an average of <N>=270±30 receptors/bacteria and <N>=550±80 receptors/bacteria were 

found for Ymel and LE392, respectively. These values are consistent with individual 

measurements of the average receptor number for both strains of bacteria.     

3.1.4 Flow Cytometry 

The flow cytometry measurements were performed on a Becton Dickinson FACS DiVa 

Flow Cytometer and Cell Sorter or a DAKO Cyan ADP Analyzer.  It was found that the Cyan 

instrument had better resolution between the attached phage signal and the cell autofluorescence, 

 42 



but both instruments yielded similar results.  Only the fluorescence intensity in the green channel 

excited with 488nm laser was considered in this experiment.  The forward and side scatter were 

used to discriminate debris from live bacteria.   

The same samples that were run on the fluorometer were also run on a flow cytometer, along 

with a sample of fluorescent latex spheres. After correcting for autofluorescence (see Section 

 3.1.5), we calculated the receptor distribution in FCUs (arbitrary Fluorescent Units on flow 

cytometer scale) (shown as the red line in Figure 16).  Using the fluorometry measurements, it 

was determined that each phage is a factor of 2.2x10-5 the fluorescence of a bead on the Becton 

Dickinson machine.  Using the average fluorescence value for the beads on the flow cytometer 

scale, it was found that each phage is on average 20 FCUs.  The cells were infected with a very 

high phage concentration so we assume that all receptors have a fluorescent phage attached. In 

other words, the fluorescent phage distribution is the same as the receptor distribution, and 

therefore the receptor distributions of the two cell strains were measured (Figure 17).  

3.1.5 Correction for Autofluorescence  

Deconvoluting the signal and the autofluorescence of cells is a common problem in 

fluorescent studies in biology (Corsetti 1988, Havilio 2006). The standard Fourier transform 

technique was found not to be useful here because the mean value of the large peak of the 

maltose grown cells is 2-3 orders of magnitude larger than both the minor peak and the 

autofluorescence peak (green line in Figure 16).  The numerically deconvoluted functions always 

had false oscillations in place of the minor peak.  Due to this difficulty, we present an alternative 

method of deconvolution below. 
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  Because we want to know the distribution of the minority population with a low 

fluorescence, the deconvolution of the signal from the autofluorescence is important.  While the 

majority of the fluorescent phage distribution was only slightly affected by the autofluorescence 

of the cells, the distribution of the cells with very few attached fluorescent phage were highly 

affected by the autofluorescence of the cells.  The low receptor concentration bacteria are the 

bacteria which will remain alive in the presence of very high concentrations of phage pressure 

while the bacteria with high receptor concentrations will quickly be killed.  So, it is of much less 

importance to know the exact distribution of the cells with high receptor concentrations but may 

be of greater importance to know the distribution of cells with low receptor concentrations.  

All fits in this section were done using a nonlinear regression algorithm in OriginPro 7.5. 

The autofluorescence distributions are shown on Figure 16 as the green line.  The 

autofluorescence distribution has been scaled to fit on the graph.  This distribution was fit with a 

log-normal function to give the autofluorescence probability density function (PDF) pA(A).  The 

probability density function that we measured using the flow cytometer, is the probability of a 

cell having a total fluorescence T=A+R where A is the autofluorescence of the cells and R is the 

fluorescence of the attached phage.  The total measured fluorescence distribution pT(T) was fit 

using the Origin Pro Multi-Peak Fitting Module. The PDF of the total fluorescence pT(T) of each 

cell was fit with the function 

( )
( )( )

( ) ( )( )
( ) ( )

( )( )

( )
( )2

2

2
2

2

2
1

2
1

1

2
2

12
lnln

2
σ

FT

e
πσ

H+σ
FT

e
πTσ

H=TpT

−−
−

−−

  (43) 

In this equation, H is the percentage of cells in the first peak.  This function, which is a 

combination of a log-normal function and Gaussian function, was chosen because it most closely 

describes the data.  While two log-normal functions fit the upper tail of the larger peak better for 
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both the Ymel and LE392 distributions, it is more important to describe accurately the mid to 

low receptor subpopulations and equation (43) more closely describes the data from the average 

value of the larger peak down to the low receptor number subpopulations. 

We know pT(T) and the pA(A) therefore we need to deconvolute these two PDFs in order 

to figure out the fluorescence due to the attached phage pR(R). The measured distribution pT(T) 

is a convolution of the autofluorescence of the cells and the receptor PDF. This is described by 

the equation: 

( ) ( ) ( )ApRp=Tp A

maxF

=A
RT ∑

0

      (44) 

We assume that the autofluorescence and phage fluorescence are uncorrelated.  The total 

fluorescence, then, is just a sum of the autofluorescence and the phage fluorescence, T=A+R.  

Filling this into equation (44) we find that 

( ) ( ) ( )ApATp=Tp A
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RT −∑

0

      (45) 

An error metric minimization method is used to deconvolute the two functions (Mignotte et. al. 

2002).  The first assumption is that the PDF of the signal pR(R) has the same functional form as 

the total measured data pT(T). The second assumption is that H in equation (43) remains 

constant.  In other words, the percentage of cells in each peak does not change under the 

deconvolution.  The other four constants 1F , σ1, 2F , σ2 are then fit by minimizing the left hand 

side of the equation: 
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The LHS of equation (46) was minimized using the amoeba algorithm in Numerical Recipes in 

C.  The amoeba algorithm uses a simplex method to minimize a function in N dimensional 

parameter space (Press et. al. 1988).   

 

 

 

 

 

 

 

 

 
 
 
 
Figure 16 Flow cytometry data with fits to the distribution. 
Fluorescent phage adsorbed cells were measured through a flow cytometer.  The binned PDF for more than  
50,000 cells can be seen for Ymel (black circles).  The autofluorescence curve is scaled to fit on the graph  
and is presented as the green squares along with a scaled fit to a log-normal distribution (green line).   
The total convolution of the phage adsorbed signal PR(R) (calculated using the deconvolution algorithm)  
signal and the PA(A) autofluorescence is the red line, it agrees very well with the measured distribution.   
 

In Figure 16, the black circles are the binned experimental flow cytometry data, the green 

squares the experimental autofluorescence data, the green line is a log-normal fit to the 

autofluorescence and the red line is the convolution of the autofluorescent background and the 

minimized function PR(R).  To change this PDF from FCUs into a quantitative receptor 

distribution, the relationship that 1 phage=20 FCUs is used.  Using the fact that: 

pR(R)dR=pR(N)dN       (47) 
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Here, R is the fluorescence of the deconvoluted signal and N is the number of receptors.  On 

average R=20N, therefore, 

pR(R)=20pR(20N)       (48) 

The receptor distribution for Ymel found using this method is shown in Figure 17.  It was found 

that this deconvolution has very little effect on the shape of the killing curve simulation when 

compared to pure subtraction of the autofluorescent background.  In Figure 17b), the binned flow 

cytometry data for Ymel (black) and LE392 (red).  Therefore, the receptor distribution used to 

initialize the set of nonlinear differential equations for cells grown in maltose is just the original 

data subtracted by the average value of background fluorescence. The distributions are also fit 

with log-normal functions (blue line) for later comparison with results using the analytical 

solution found in Section  2.4 for a log-normal distribution. 

 

 

 

 

 

 

 

 
Figure 17 Initial receptor distributions.  

a) 

b) 

a) Through the fluorometer measurements it was deduced that one phage on average equaled 20 flow  
cytometer fluorescent units.  Therefore we were able to deduce the receptor per bacteria PDF for Ymel.   
The inset is the same PDF but presented on a log scale. b) The PDF for Ymel is depicted as the black line 
whereas the LE392 PDF is the red line.  The blue lines are fits to a log-normal distribution.  These fits will 
be used for comparison with the log-normal analytical model in Section  3.3. 

 47 



3.2 SHORT TIME APPROXIMATION 

One of the results derived in Chapter  2.0  is that at short times the homogeneous model is 

valid.  In this chapter, a short-time correction to the homogeneous model is presented.  By the 

definition of the averaged adsorption coefficient: 
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we can derive the equation: 

)()(2 tDtP +−= γσγ& ,       (50) 

where 222 γγσ γ −=  and i
N i

NiiN BtD ∑∑ −= αγγ )()( .  As a correction to the homogeneous 

model, at short times D(t) is negligible, Po~constant and ~constant.  We assume D(t) is 

negligible because the α terms are smaller than the killing.  While the standard deviation is not 

necessarily constant we find this to be a valid approximation in this system.  We find 

experimentally that the standard deviation remains approximately constant after selective killing 

by phage pressure (see 

2
γσ

Figure 42).  Using these assumptions, we find that oP2
γσγ −≈& .  Taking the 

integral, ><N+−= otPt γσγ γ
2)( .  Filling this into equation (23) and taking the integral again: 
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This is the same as the Gaussian solution presented in Section  2.3 without the erfc terms.  This 

implies that if γ<N>>>σγ, the selective killing does not greatly change the width of the 

distribution.  Equation (51) can be parameterized as:  
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As an example, two experiments fit with equation (52) are shown in Figure 18.  The red 

circles are the Ymel strain and the purples squares are the LE392 strain, both experiments were 

inoculated with an initial phage concentration of 5x108cm-3.  The black lines are the fits to 

equation (52). 

 

 

 

 

 

 

                  

Figure 18 Fitting the short time (<5 minutes) experimental data with equation (52). 
The red circles are a run for Ymel and purple squares are for LE392, both experiments had a P(0)=2x108  
cm-3. 

  

The short term experiments were performed with a variety of initial phage concentrations.  The 

phage concentration was kept >108 phage/cm3 (MOI>100) to ensure it remained approximately 

constant on this timescale.  The next assumption used is the short time assumption, which means 

we are only concerned with a first order correction to the homogeneous model.  This is in the 

region where 222

2
1)( tPtP ooN γσγλ >− ><  which means this assumption is valid when 

22

)(2

o

oN

P
P

t
γσ
γλ ><−

< , which sets a limit on the Po that can be used because experiments need to be 

~5 minutes in length in order to take enough measurement points.  Λeff  was plotted as a function 

of Po and C was plotted as a function of Po
2 because both of the relationships should be linear for 
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validation of the model. Both were fit with a straight line allowing γ<N> and σγ to be extracted.  

The experiments for Ymel (red circles) and LE392 (purples squares) are presented in Figure 19.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b)a) b)

Figure 19 Calculation of model-dependent value for the average and width of the distribution  
in the short time approximation. In these graphs the color coding is the same as Figure 18 (a) The slope of  
the Λeff vs P(0) line is equal to γ . (b) the slope of the C vs. P(0)2 is equal to 0.5σ2   
 

For the two strains, γ<N> was used to calculate <N> while σγ was used to calculate σ<N> 

for comparison with flow cytometry results as given in Table 2.  For this experiment, LE392 was 

found to have <N>=660±170 and σ<N>=250±30.  For Ymel it was found that <N>=140±20 and 

σ<N>=80±10.  While the measured <N> for Ymel was lower than flow cytometry measurements, 

all other measured values were found to agree with the flow cytometry data within the error.  
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3.3 FIT TO THE LOG-NORMAL MODEL DERIVED IN  2.4 

In Section  2.4, we derived an analytical solution for the bacterial concentration B(t) when 

switching is neglected, Po~constant and the initial distribution is a log-normal distribution.  Once 

again, a log-normal distribution is defined as: 
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The analytical solution equation (42) derived in Section  2.4 is used to fit killing curve 

experiments.  For this experiment, killing curves with an MOI >80 and Btot<3x106 cm-3 were fit 

with equation (42) using the OriginPro v7.5 Fitting Module with log-weighting. From this fit, the 

parameters μ=<ln(N)> and  from the log-normal equation were 

extracted.  An example of a typical fit using equation (42) can be seen in Figure 20a).  The black 

circles are the experimentally measured concentration of a population of bacteria which was 

initially inoculated with a phage concentration of ~1.5x108 PFU/cm3.  In order to keep the phage 

concentration approximately constant the bacteria had a low concentration of ~1x106cm-3, which 

under these conditions only decreased below this level.  While the MOI of this system is ~100, 

the low bacterial concentration kept the phage concentration approximately constant.  μ and θ 

were converted into the traditional mean and standard deviation for comparison with the 

measured receptor distributions.  For the log-normal distribution the mean <N> and standard 

deviation σ<N> are defined as: 
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a) b) 

Figure 20 A killing curve with an approximately constant phage concentration.   
(a) Experimental curve with bacterial concentration (black), phage concentration (red) and the fit to the log- 
normal analytical model (blue) (b) For comparison purposes, the full model simulation for both the phage  
(red) and bacteria (black) are presented.  The long period of low effective growth cannot be explained by  
the no-switching model. 

 

 Short Time Fits 

 
Fit to Analytical Solution 

 
Flow Cytometry 

 

Fluorometry

 
 <N> σ <N> σ <N> σ <N> 

LE392 660±170 250±30 600±120 610±130 570±50 200±10 550±80

Ymel 140±20 80±10 310±20 320±30 240±30 140±60 270±30

 

 
Table 2 Comparing the model dependent and model independent measurements of the distributions. 
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The average mean and standard deviation for more than four different fits can be seen in 

Table 2 for both the LE392 and Ymel strains.  The mean and standard deviation of the actual 

receptor distributions were measured as: 
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For both strains the mean is estimated relatively well, but the variance is overestimated 

using this procedure.  The full simulation of the model (described in detail in Section  3.4), using 

the measured receptor distributions as the initial conditions, shows that that the mean correctly 

estimates the killing over shorter times in this case ~1 hour but the experimental curve is flatter 

than the full simulation between hour 1 to hour 7 causing the overestimation of the standard 

deviation.  The flatness of the curve could be due to the fact that the log-normal distribution does 

not accurately mimic the minority populations.  Also, we fit curves over a period of ~10τ and the 

assumption that switching is negligible becomes suspect as we allow the system to evolve over 

longer times.  In Figure 20b), the full simulation of the heterogeneous model using the measured 

bacterial distribution as initial conditions is presented assuming negligible switching and the 

inclusion of the minority bacterial subpopulations does not fully explain the flat region hinting at 

the importance of the switching terms. 
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3.4 RESULTS: KILLING CURVES WITH HIGH MgSO4 CONCENTRATIONS 

Exponentially growing bacteria were inoculated with phage at varying concentrations 

ranging more than two orders of magnitude from MOI~1 to 400.  For the Ymel strain (~300 

receptors/bacteria initially), the homogeneous model, which consistently predicts the initial 

behavior of the bacterial population, predicts that the population should decay when the initial 

phage concentration is greater than ~1x107 cm-3 and the population should grow when the initial 

phage concentration is less than ~1x107cm-3.  Figure 21 shows this range of behaviors.  For 

example, the killing curve with an initial phage concentration of 2x107 cm-3 initially decays and 

the killing curve with an initial phage concentration of 4x106 cm-3 initially grows.  The critical 

point where the bacterial replication and death due to infection is on average 

equal, oPγ=λ >N< =>Po~1x107 cm-3 which is in-between these two values.  A similar pattern is 

apparent for the LE392 strain that has an average ~600 receptors per bacteria.  The initial part of 

the curve should decay when Po>8x106cm-3.  In Figure 21, the killing curve with Po= 3x107 cm-3 

decays and the killing curve with Po=5x106 cm-3 grows, as is expected.   

As shown in Figure 21, the homogeneous, heterogeneous models and experimental 

results are presented and tend to agree with each other for times less than ½ hour.  The length of 

time that the heterogeneous and homogeneous models agree is dependent on the strength of the 

initial phage perturbation.  For the Ymel strain in Figure 21a), b) and c) the homogeneous and 

heterogeneous models agree for ~5 hours for the curve with an initial phage concentration of 

4x106cm-3, whereas the two models of the curve with an initial phage concentration of 4x108cm-3 

only agree for times less than about half an hour.     

 54 



We used the two different strains LE392 and Ymel in order to compare the change of the 

initial PDF on the shape of the killing curves.  The simulation of the heterogeneous models for 

the two strains (Figure 21b), d)) shows that the Ymel curve and LE392 curve do exhibit subtle 

differences.  In the experiment, besides the comparisons made above, there are no systematic 

differences that can be seen between the killing curves of the two strains.  The run to run 

variations in the shape of the killing curves vary as much as the differences between the two 

strains. 

 

 

 

 

    

 

 

 

 

 

 

 
 

 
 
Figure 21 Killing curves of Ymel and LE392. 

a) 

b) 

c) 

d)

e)

f) 

These graphs are (a, d) experimental, (b, e) theoretical heterogeneous model and (c, f) theoretical  
homogeneous model killing curves for Ymel and LE392 respectively.  The curves show the evolution of  
Btot for a system with an initial phage concentration of 4x106 (pink), 2x107 (red), 7x107 (green), 2x108  
(purple), and 4x108 (brown) cm-3 for Ymel; and a phage  concentration of 5x106 (pink), 3x107 (red), 5x107  
(green), 2x108 (purple), and 4x108 (brown) cm-3 for LE392.   
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3.5 RESULTS: KILLING CURVES WITH LOW MgSO4 CONCENTRATIONS 

By decreasing the MgSO4 in the media, we can decrease the rate of adsorption 

(Moldovan et. al. 2007).  The main issue with decreasing the salt concentration is that the 

validity of the Berg-Purcell model is now called into question.  In the Berg-Purcell model, the 

receptors are assumed to be perfect sinks and by decreasing the salt concentration this is not 

necessarily true, because the adsorption is no longer diffusion-limited. We found that by 

changing the MgSO4 concentration in the media from 10mM to 1mM decreases the phage 

adsorption by a factor of ~4 (see Appendix).  The only way to be consistent with the Berg-

Purcell model is to assume that the number of “functional” phage binding receptors is decreased 

by a factor of 4 in this low salt condition.  We model this decrease in adsorption simply as a 

factor of 4 decrease in the number of receptors measured in the 10 mM MgSO4 condition.  We 

can then determine the effect of a decrease in adsorption on the killing curves.    

Because we find similar results for Ymel and LE392, we only present the results of 

decreasing the salt concentration on the LE392 strain, although both strains were examined. 

Figure 22 is the experimental killing curves for the LE392 strain in 1mM MgSO4.  The curves 

range from an initial phage concentration of 3x106 cm-3 to 3x108 cm-3.  According to the 

homogeneous model the bacterial population should exponentially increase at phage 

concentrations <3x107 cm-3.  Once again the experimental results confirm that the initial curves 

grow exponentially until the initial phage concentration reaches the critical point of ~3x107cm-3.  

The bacterial population can no longer be described by the average homogeneous model because 

the high phage concentrations are on average selectively killing the bacteria with high receptor 

numbers. 
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This particular experiment also contributes to the evidence that the decrease in the rate of 

adsorption of phage in the middle of a killing curve is the main factor in the persistence of the 

bacterial population and suggests that the number of available receptors is an important factor in 

explaining bacterial persistence to phage.  In the Appendix, we present an experiment where we 

add the plasmid pTAS1 which constitutively expresses receptors and the number of persistent 

cells decreases.  This evidence emphasizes the idea that persistence occurs as a result of receptor 

heterogeneity.   

c) 

b) 

a) 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 22 Killing Curves of LE392 in 1mM MgSO4 
These graphs are (a) experimental, (b) theoretical heterogeneous model and (c) theoretical homogeneous  
model killing curves for LE392.  The media in this experiment has only 1mM MgSO4 rather than the  
10mM in the previous experiment.  In the model, the number of functional receptors is decreased by ¼ 
while every other parameter remains the same as the previous experiment.  The curves show the evolution 
of Btot for a system with an initial phage concentration of 3x106 (pink), 2x107 (black), 3x107 (red), 8x107 
(green), 1x108 (purple), and 3x108 (brown) cm-3.   
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3.6 E. COLI IN GLUCOSE AND GLYCEROL 

As a last, extreme example of the effects of phenotype heterogeneity, we present the 

killing curves of E. coli in two different carbon sources which induce the maltose regulon to 

different receptor expression levels.  As can be seen in Figure 23, glucose grown cells have very 

few attached phage and correspondingly few receptors, causing the autofluorescence and signal 

distributions to have a large overlap.  Because of the large overlap, deconvolution of the 

distribution is important for determining the actual receptor distribution and numerical Fourier 

transform techniques do work.  In Chapter  4.0 , the Fourier transform technique was used to 

deconvolute the two distributions but here we use the deconvolution method (described in 

Section  3.1.5), using simple log-normal distributions to characterize the experimental data.  In 

Figure 23a), the experimental data (black circles) is presented along with the convolution of the 

autofluorescence distribution and the signal distribution (purple line).  The deconvolution was 

essentially the same if we used a quantized distribution (red line) or a continuous distribution 

(blue line).   

Killing curves were performed (Figure 23b)) for over one order of magnitude of phage 

concentrations (7x108cm-3<Po<1010cm-3) including a concentration so high only the 

subpopulation with zero receptors should be able to grow.  Notice when Po<2x109 cm-3 there is 

almost no killing which is expected with both heterogeneous and homogeneous models, whereas 

when Po≥ 2x109 cm-3 there is some killing (Figure 23b) inset) but this killing very quickly 

becomes independent of the phage pressure.  The quantized distribution in Figure 23a) (red line) 

was used as the initial receptor distribution to simulate the killing curves of the glucose grown 

cells.  The parameters in Table 1 were used for the glucose simulation except for the growth rate 

(λ=1.3 h-1) and bursting coefficient (m=30 phage/bacteria) which were both larger in glucose 
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grown cells.  Measurements of these parameters were identical to those presented for maltose 

grown cells in the Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Effect of heterogeneity on LE392 cells grown in glucose. 
(a) The receptor distribution of LE392 cells grown in glucose.  The blue line is the continuous,  
deconvoluted distribution, the red line is the quantized deconvolution distribution.  The black circles are the  

a) b) 

c) d) e) 

experimental data and the purple line is the convolution of the autofluorescence and the quantized  
distribution. (b) The LE392 killing curve in glucose zoomed into the first hour.  The glucose cells exposed  
to Po=7x108 cm-3 (purple) of phage show almost no killing, whereas the cells exposed to Po=2x109 cm-3  
(red) and Po=1010 cm-3 (black) do show some minor killing but it seems to be independent of the phage  
Pressure. In (c) the experimental killing curves are presented for 5 hours until the bacteria becomes 
saturated.  (d) LE392 heterogeneous model simulation which mimics the experimental killing curves well.  
(e) the homogeneous simulation which shows a large dependence on the phage pressure, an effect not seen  
in experiment or the heterogeneous model. 

 
According to the our measurement, LE392 cells grown in glycerol do not have a well-

defined steady state.  Instead, two different distinct distributions were found which are presented 
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in Figure 24a) as the purple and black PDFs.  Because of the ill-defined steady state, the 

simulation of the heterogeneous model is meaningless.  Therefore, we just note here that all 

states of receptor expression in glycerol are intermediately expressed between the glucose grown 

LE392 cells (blue line, Figure 24a)) and maltose grown LE392 cells. As expected, the 

experiment shows intermediate levels of killing and persistence which reflects the large 

percentage of cells with few receptors.  Because of both the strain dependence and the media 

dependence of p(N), the mean and standard deviation of the receptor distributions that were 

measured with different strains and in different media have been tabulated in Table 3. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

a) b)

Figure 24 Persistence in LE392 cells grown in glycerol. 
(a) The glycerol grown LE392 distributions (black and purple) are compared against the glucose grown  
distribution (blue).  The glycerol distributions express values higher than glucose and lower than Ymel but  
a well-defined steady state was not found.  (b)  The killing curves for glycerol grown LE392 show an  
intermediate level of persistence.  For example not much killing or growing is seen in the glycerol  
distribution with P(0)=7x108 cm-3 (black). 
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LE392 (glucose) LE392 (glycerol) LE392 (glycerol) LE392 (maltose) Ymel (maltose) 

n  2 20 100 570 240 

σn 2 25 75 200 140 

 

Table 3 The mean and standard deviation of p(N) in different media.   
p(N) is highly strain and media dependent. 

3.7 UNDERSTANDING PHENOTYPE HETEROGENEITY 

Here we strive to understand the response of the bacterial system during times of 

immense killing pressure by phage.  The bacterial population is generally modeled as a 

homogeneous population which is a valid assumption when the bacteria outnumber the phage but 

once the phage concentration increases above the critical point (
Nγ
λ>P0 ) this assumption is no 

longer valid.  The homogeneous model predicts extinction of the bacterial population in most 

cases which is at odds with experimental observations.  LamB heterogeneity greatly increases the 

fitness of the bacterial population when phage are present.  This increase, though, is associated 

with the cost of the decreased ability to transport maltodextrins into the cell, but when the carbon 

source is maltose (not maltodextrins), low lamB expression has been found to only decrease cell 

fitness when the maltose is present at limiting concentrations (Boos and Shuman 1998). 

After a large percentage of the bacterial population has been killed the average receptor 

density is no longer the same as it was under lack of stress.  The bacteria with higher receptor 

densities are more likely to be killed and therefore the average receptor density of live bacteria is 
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lower than it would be under no pressure.  It is also important to note that the bacteria with high 

receptor densities do not adsorb just one phage, they adsorb many phage.  The high receptor 

subpopulations act as a phage sink.  For example, in the λ phage/Ymel system the high density 

bacteria have an average of around 250 receptors while they only burst to produce around 10 

phage.  The majority of these bacteria have the possibility of adsorbing 25x more phage then 

they produce.   

During times of high phage pressure, selective killing of high receptor number 

subpopulations creates a cell state selection gaining time for genetic selection.  In this 

experiment, though, the observable quantity is always ∑=
N

Ntot BB which does not provide much 

information about the behavior of individual subpopulations.  While we have provided a simple 

mathematical model of bacteria which includes switching between subpopulations, fluorescent 

phage techniques could be used to study how the individual subpopulations responds after a 

pulse of high phage pressure, rather than just observing the sum over the subpopulations.    

 

 

   

 

 

 

 

Figure 25 Revisiting the experiment which originally motivated the study. 

a) b)

The heterogeneous model predicts that the effective average receptor number of the bacterial population  
will decrease until the bacterial population has a chance to recover.  The heterogeneous model closely  
resembles the experimental findings in (a).  These experiments and simulations had the same growth  
conditions and parameters as the killing curves.  The only difference is the initial conditions. 
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In Figure 25, we revisit the experiment that originally motivated the study.  In this 

experiment, a low initial phage concentration is added and the phage are allowed to amplify 

during the experiment.  Phenotype heterogeneity does explain the increase of the sensitive 

bacterial population at around hour 13 of the experiment as can be seen in the full simulation 

Figure 25b).  Phenotype heterogeneity increases the ability of the bacterial population to respond 

to the environmental phage pressure. 

3.8 WHAT IS THE EFFECT OF THE SWITCHING TERMS? 

All the model/experiment comparisons above have neglected the effect of switching 

between subpopulations.  As a beginning study of the effect of subpopulation switching, we first 

rearrange equation (23): 

)()(

)(
)(

tBtP
dt
dBtB

t
−

=
λ

γ         (57) 

In this equation, all the terms on the right hand side are observable quantities so the average 

adsorption coefficient can be calculated.  Phage at varying initial concentrations were added to 

exponentially growing bacteria.  The phage and bacterial concentrations were measured over a 

periods of time around 4 hours.  The bacterial concentration was interpolated for measurements 

so that the derivative 
dt
dB  can be evaluated.  The derivative was calculated using the difference 

method: 

t
B

dt
dB

B
tot

Δ
Δ

≈
ln1         (58) 
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Figure 26a) shows a typical experiment where Bo=3x107 cm-3 and Po=1x108 cm-3 where 

the blue circles are the measured bacterial concentration, the red circles are the measured phage 

concentration and the black line is the interpolation of the curves, which was used to calculate 

the derivative.  The average adsorption coefficient was calculated using equation (57) and the 

average receptor number was calculated using the Berg and Purcell relationship (equation (5)).  

Figure 26b) shows three independent measurements of the average receptor number with three 

different initial phage concentrations, Po=4x107 (purple line), Po=1x108 (red line) and Po=1x109 

(black line) cm-3.  

a)

b)

 

 

 

 

 

 

 

 

Figure 26 Testing the change in the adsorption coefficient as a function of time. 
(a)  A highly sampled killing curve. Blue circles are the bacterial concentration and red circles are the  
phage concentration and the black line is the interpolation used to calculate dB/dt.  (b)  Change in the  
average receptor number as a function of time for an initial phage concentration of 4x107(purple),  
1x108(red) and 1x109(black) cm-3. 
 

There are two important observations from this figure.  First, as is expected, the higher the initial 

phage concentration the smaller that the average receptor number is after about ½ hour of killing.  

This is expected from the prediction that an introduction of phage creates a process of selective 

killing and the higher the pressure the more severe the selective killing is.  The second important 
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aspect to notice is that the average adsorption coefficient does not drop down to zero.  This gives 

information about the switching terms.  Revisiting equation (50): 

)()(2 tDtP +−= γσγ&  

If the switching terms are negligible and D(t)~0 then the adsorption coefficient can never 

increase and can only monotonically decrease in the presence of phage.  In the experiment 

(Figure 26), we find that the average adsorption coefficient does not continually decrease but can 

remain stable for an extended period of time.  This indicates that after extensive killing the 

switching terms are no longer negligible and do become important to the dynamics of the system.  

The next chapter will study the subpopulation switching explicitly.    
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4.0  STUDYING THE LamB RESPONSE AFTER A PERTURBATION 

Cells have evolved at least two schemes to respond to fluctuating environments.  The first 

method is to sense the environmental change and adapt when a variation occurs.  This is at the 

cost, though, of maintaining the sensing machinery.  The second method known in ecology as 

“bet-hedging” is to use population diversity as a strategy of survival.  In other words, organisms 

which are genetic clones use stochastic switching mechanisms to create different subpopulations 

that are phenotypically more fit in different environments.  Theoretically, several groups have 

developed models to explain the fitness advantages and costs due to the use of these two 

mechanisms (Thattai and van Oudenaarden 2004, Kussell and Leibler 2005, Kussell et. al. 2005).  

The mechanism that is advantageous has been shown to depend on the type and timescale of the 

natural environmental fluctuations.   

In this experiment, we study the changes in expression of the functional lambda phage 

receptors under two different environmental perturbations by taking advantage of two functions 

of the LamB trimer.  The protein is both a transporter of maltose/maltodextrins as well as a point 

of attack for λ phage.  It is well known that the maltose regulon is “off” in the presence of 

glucose, expressing very few LamB proteins.  The regulon can “sense” the presence of maltose 

and responds by inducing the maltose regulon. On the other hand, λ phage bind to this protein in 

order to infect cells and a large majority of the bacterial population die.  In order to survive, we 

found in Chapter  3.0 that a minority population of bacteria express very few receptors even 
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under full induction. When isolated, though, the minority bacteria with a small number of 

receptors do eventually recover and exhibit the same phenotypes as the majority population.  In 

this chapter, we study the dynamics as the receptor distribution of the LE392 strain responds 

after two different environmental perturbations.  In the first environmental perturbation we 

change the carbon source from glucose to maltose.  This carbon source change induces the 

maltose regulon. The majority of the population initially is expressing very few proteins due to 

repression of the regulon in the glucose environment. Once placed in the maltose environment 

the regulon becomes induced and the cells begin expressing many proteins.  We assay the change 

in the receptor distribution of the population as the regulon becomes induced.  In the second 

case, the regulon is initially fully induced. We select the cells with very few receptors by 

selectively killing cells highly expressing LamB receptors.  The selective killing decreases the 

average number of LamB receptors in the bacterial population.  The minority population we 

selected which are expressing low levels of LamB eventually recovers the initial steady-state 

receptor distribution.  We find that the recovery dynamics after the two perturbations are very 

different.  While the chemical induction of the regulon causes a quick response and relaxation 

into the steady-state of the environment containing the maltose carbon source, the bacteria that 

were able to survive phage attack tend to maintain very few receptors for many generations and 

the relaxation is approximately an order of magnitude slower.   

4.1 USING FLOW CYTOMETRY TO STUDY MINORITY POPULATIONS 

In Section 3.1, a method to quantitatively characterize the LamB protein distribution was 

described in detail.  This method is used extensively in this chapter.  The AlexaFluor 
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(succinimidyl ester) dyes are available in a variety of colors with different emission and 

excitation spectra and because the dyes react with primary amines (a functional group located on 

a subset of amino acids), amine-reactive dyes will generally conjugate with most proteins.  It had 

been found previously that AlexaFluor 488 nonspecifically binds to the phage without affecting 

the infectivity of >99% of the phage; therefore the phage can be labeled in a variety of colors 

with each color signifying a different role in an experiment (Moldovan 2006).  In this 

experiment, we use phage labeled with either AlexaFluor 488 or AlexaFluor 633.  These two 

colors were chosen because their emission and excitation spectra are well separated and the 

excitation maxima correspond to standard excitation lasers (488 nm and 635 nm) used in 

commercial flow cytometers.  A false color photo of the labeled phage attached to bacteria can 

be seen in Figure 27.   

 

 

 

 

 

 

Figure 27 Phage can be labeled in a variety of colors to signify their role in the experiment. 
a) A picture of E. coli grown to exponential phase and adsorbed with phage labeled with AlexaFluor 488.  
b) A picture of E. coli cell grown to exponential phase and adsorbed with phage labeled with AlexaFluor 

633. 
The picture of the bacteria with adsorbed green phage (Figure 27a)) appears sharper than 

the picture of bacteria with adsorbed red phage (Figure 27b)).  Using microscope objectives with 

the same numerical aperture, the resolving power of two objects is described by; λθ ∝min ,where 

θmin is the minimum angle in which two objects can be resolved (which can be related to the 

distance between two objects) and λ is the wavelength of light.  The emission maximum of the 

 
 

a) b)



AlexaFluor 633 is ~650nm while the emission maximum for AlexaFluor 488 is ~515nm.  

Therefore the resolution of the phage attached with AlexaFluor 488 is ~1.3 times better than the 

resolution of the phage attached with AlexaFluor 633.  This effect is apparent when comparing 

Figure 27 a) and b). 

 

4.1.1 Verifying the Receptor Distribution Calibration 

The two different colors of phage allow us to determine whether the calibration for the receptor 

number distribution described in Section  3.1.5 is dependent on different emission wavelengths 

and sets of excitation/emission filters. Low intensity fluorescent beads with excitation and 

emission spectra highly similar to AlexaFluor 488 (green phage) and AlexaFluor 633 (far red 

phage) were bought from Molecular Probes (product #L14823, green), (product #L14818, deep 

red).  These are spherical polystyrene beads with a 2.5 μm diameter and have been labeled with 

fluorescent dye to varying intensities.   

In the following calibration the beads marked 0.1% (green) and 0.2% (far red) were used. 

This fluorescent intensity was chosen because it is close to the fluorescent intensity of the phage 

and still far away from the autofluorescence of the polystyrene spheres.  The following 

fluorometry measurements were performed on the BioRad TM fluorometer using the same 

method described in Chapter  3.0 .  For the following green measurements an excitation filter of 

480±10 nm and an emission filter of 520±5 nm were used, while for the far red measurements an 

excitation filter of 620±30 nm and an emission filter of 700±33 nm were used. As in Section  3.1, 

dilution curves were taken for phage/bacteria/beads.  The background media fluorescence was 

subtracted and each set of dilution data was fit with a straight line with a y-intercept of 0.  An 
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example run for the green phage (Figure 28a) and for the red phage (Figure 28b) are presented.  

As was done in Chapter 3.0 the approximate average receptor value was calculated by taking the 

slope of bacteria+phage subtracting autofluorescence and dividing by the slope of the phage.  For 

this particular run, in the green channel the calculated average receptor number was ~650 

receptors/bacteria while in the red channel the calculated average receptor number was ~700 

receptors/bacteria which is in reasonable agreement with Table 2. 

 

 

 

 

 

 

 

 

 

 

Figure 28 Fluorometry dilution curves with green emission (a) and red emission (b). 
The symbols represent bacteria adsorbed with saturating phage concentration (blue circles), 0.1% or 0.2%  
beads (cyan squares), polystyrene spheres with no fluorescent labeling (red diamonds), cell  
autofluorescence (green up triangles), labeled phage (pink down triangles).  The black lines are the fits to a  
line with a zero y-intercept value. 
 
Each new stock of fluorescent phage was independently calibrated and the level of error 

in the multiplicative factor between beads and phage varies from calibration to calibration.  After 

three separate runs for each phage stock, it was found that for the green channel the relative 

fluorescence of the phage is 400±100 phage/bead when compared to the green beads labeled as 

 

a)

b)



0.1%, while the far red phage were found to be approximately 2000±1000 phage/bead when 

compared to 0.2% far red beads. 

All the following flow cytometry data was taken on a Dako Cyan ADP 9-color analyzer.  

The green beads were run on the flow cytometer, excited with the 488 nm laser line and analyzed 

from the FITC emission channel.  The beads were found to create an approximate Gaussian 

distribution with an average value of 1070 FCUs.  After several runs, it was then calculated that 

for this particular set of phage on this flow cytometer each phage was equal to 3±0.7 

FCUs/phage.  LE392 was adsorbed with saturating concentrations of green phage and run on the 

flow cytometer.  The FCUs were then calibrated into receptor numbers using the multiplicative 

factor of 3±0.7 FCUs/phage.  This corresponds to a measured <N>=650±160 and σ=200±50 

which can be seen in Figure 29a). 

The far red beads were run on the flow cytometer, excited with the 635 nm laser line and 

analyzed from the APC emission channel.  The beads were measured to be 2050 FCUs, which on 

average is 1±0.5 FCUs/phage.  LE392 was adsorbed with saturating concentrations of red phage 

and run on the flow cytometer.  The FCUs were then calibrated into receptor numbers using the 

multiplicative factor of 1±0.5 FCUs/phage which corresponds to a measured <N>=660±300 and 

σ=240±100 which is presented in Figure 29b).  In Figure 29c), it is shown that the distribution 

calculated from measurement in the red and green channels are highly similar for the same 

bacterial population separated into two aliquots and assayed with the two colors of phage. 

As a verification of the calibration accuracy for low receptor numbers, the receptor 

distribution of LE392 cells grown in glucose was calculated using a fluorescent microscope and 

the flow cytometer.  A sample of cells grown in glucose and assayed with green fluorescent 

phage were run on the flow cytometer which can be seen in Figure 30a) (black line) along with 
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the autofluorescence curve (red line).  Because of the large overlap, the cells were deconvoluted 

using the standard Fourier transformation technique (described in detail in the Appendix).  The 

deconvolution of the two measured distributions of Figure 30a) is presented in Figure 30b).   

 

 

 

 

 

 

 

 

 

Figure 29 Comparing red and green flow cytometry calibration. 
(a)  Green flow cytometry curves.  The solid line is the average calibration; the dashed lines are ± the error  
of the mean.  (b)  Far red flow cytometry calibrations, dashed lines are ± the error of the mean.  (c) The  
average calibration for the red and green curves are consistent but the red calibration has about 2x greater  
error. 
 
To compare this observed distribution using a second method of calculation, LE392 cells 

grown in glucose and adsorbed with fluorescent phage were viewed under a fluorescent 

microscope while being illuminated with a xenon arc lamp and video images were taken of 

different groups of bacteria. The depth of field for a 100x, 1.3 NA oil immersion objective is 

~0.5 μm, which is approximately ½ of the width of a bacterial cell.  Because the entire depth of 

field is 0.5 μm we can place one face of the bacteria in focus at a time, the face attached to the 

glass and the face that is away from the glass, which can be seen in Figure 30c, panel ii and iii.  

First, a picture of a group of bacteria attached to the glass was taken using phase contrast.  A 

fluorescent picture was then taken of the bacteria ensuring that the phage which attached to the 
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glass outside of the region of the bacteria were in focus, Figure 30c) (panel ii).  The focus was 

then shifted by approximately 1μm to place the side of the bacteria that is located away from the 

glass cover slip in focus (panel iii).  The phage attached to the glass are no longer visible but the 

phage attached to the face of the bacteria located away from the glass are in focus.  Each 

fluorescent disk was counted as one phage and the number of phage attached to each bacterium 

was counted for 244 bacteria.  A bacterium with up to 11 phage was placed in the appropriate bin 

and all bacteria with >11 phage were lumped into a bin which ranged from 12-100.  The hand 

counted PDF is the red line, the average of seven deconvoluted glucose signals is the black line, 

and the deconvoluted signal using the least squares fitting method in Section 3.1.5 is the purple 

line in Figure 30d).  The three PDFs appear to be highly similar which verifies the 

reproducibility of the low number receptor calibration of the PDFs.    

The distribution calculated above (hand counting fluorescent disks; Figure 30d, redline) 

can also be used as a calibration method to determine the relationship between average attached 

fluorescent phage number and the integrated grey level. The same group of cells used to measure 

the receptor PDF by hand counting were also used to measure the fluorescent intensity PDF. The 

phase pictures like the example in panel i in Figure 30c) was used to identify a Region Of 

Interest (ROI).  The grey level was integrated over the ROI of the corresponding fluorescence 

picture.  In the hand counting measurement, each face of the bacteria was treated separately.  

This was because the eye needed to recognize each disk.  This is unnecessary for the ROI 

measurement because even though the eye does not recognize a disk, the diffuse light which is 

slightly out of focus is still present from both sides and will be calculated in the integrated grey 

level of the picture even if the Airy disk is not completely in focus.  The grey level distribution 

was then minimized to fit the hand counting distribution using the equation, 
ϕ
Φ−

=
FN .   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 Distribution deconvolution of glucose grown LE392 using the microscope and flow cytometry. 

 

 

 

c) i) 

ii) 

iii) 

a) 

d)

b)

a) the signal from LE392 grown in glucose and adsorbed with fluorescent phage (black line) and the  
autofluorescence of LE392 (red line), b) the signal from a) is deconvoluted using standard Fourier 
transform techniques c) fluorescent phage attached to bacteria can be counted by hand in the low receptor 
number limit (top panel) a picture of a bacteria taken using phase contrast, (middle panel) the same 
bacteria, this time a fluorescent  picture is taken ensuring phage attached to the glass are in focus, (bottom 
panel) the same bacteria with a 1 μm shift in the focus of the lens, d) red line is the receptor distribution 
measured using the hand counting technique, black line is the average of seven deconvoluted signals and 
the purple line is the deconvoluted distribution found in Section  3.1.5 using the method presented there. 

 

Correspondingly, to ensure the normalization of the PDF, we use the relationship 

, after simple algebra we find, dFFpdNNp )()( = )()( FpNp =ϕ . Here, N is the number of 

receptors, F is the integrated grey level, Φ is the background grey level, and φ is the number of 
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fluorescent units per phage.  The value for Φ was found to be approximately equivalent to 2620 

grey level per pixel which is consistent with individual measurements of the background level of 

2550 grey level per pixel when considering that the autofluorescence of the bacteria increases the 

background fluorescence.  In Figure 31a), it also appears that for the first 3 bins we can 

recognize different quantized peaks of the grey level distribution (red diamonds) which tend to 

line-up with the binned, hand counted values (black line).   

 

a) b) 

 

 

 

 

 

 

 

Figure 31 Microscope measurements of average receptor number. 
a) The black line is the distribution of phage per bacteria measured by hand counting.  The red line is the  
distribution of phage per bacteria measured by outlining the ROI(region of interest) and summing over the 
grey value of each pixel. b)  The receptor distribution for Ymel (black line) and LE392 (red line) as was 
measured using summation of the grey value of each pixel and the calibration of the glucose grown cells. 

 
The same measurement procedure described above for calculating the grey level 

fluorescence for individual bacteria attached with phage was repeated for fully induced Ymel 

and LE392.  Using the calibrated values of Φ and φ found using the uninduced LE392, we 

calculated the receptor distributions of induced Ymel (172 bacteria, black line) and LE392 (64 

bacteria, red line) shown in Figure 31b).  The average receptor number calculated for Ymel is 

<N>=350 and σ=260 where for LE392 is <N>=575 and σ=390.  While the average receptor 
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numbers are in agreement with the values displayed Table 2 the width of the distribution is 

overestimated.  This is attributed to the additional measurement noise associated with the 

microscope measurement technique.   

4.2 CHEMICAL PERTURBATIONS 

The lamB gene is located in a genetic network that is silenced in the presence of glucose.  When 

the environment changes such that maltose is present, the bacterial population responds to the 

new carbon source through induction of the maltose regulon allowing the bacteria to metabolize 

maltose.  The induction of the maltose regulon does not only occur in the presence of maltose; 

expression of the lambda receptor protein varies greatly in different carbon sources due to 

endogenous induction of the regulon, examples of the different levels of regulon induction were 

presented in Table 3 when LE392 and Ymel were in the presence of glucose, glycerol and 

maltose (Schwartz 1976, Boos and Shuman 1998).   

The steady state receptor PDFs for LE392 are presented in Figure 32 in M9 media 

supplemented with different carbon sources.  LE392 expresses 600 receptors in maltose (blue 

line), 2 receptors in glucose (green line), between 25 and 100 in glycerol (red line) and between 

10 and 1000 in glucose depending on the concentration of external cAMP.  It is known that the 

malK promoter (which controls lamB) is activated by the presence of the induced activator malT 

and the cAMP/CRP complex.  The induction by glycerol has previously been explained as being 

due to the fact that the activator of the maltose operon maltotriose is endogenously expressed 

activating the malT protein. Growth in glycerol then increases the internal cAMP levels which 

causes expression of the lambda receptor protein at intermediate levels even in the absence of the 

 76 



external maltose or maltodextrins (Boos and Shuman 1998).  The level of expression of the 

lambda receptor protein not only varies in the presence of different carbon sources but also 

varies greatly strain to strain. For example under highly expressed conditions the average number 

of receptors for Ymel is ~300 when grown in either glucose or maltose (Moldovan et. al. 2007). 

A third classical strain HfrG6 (obtained from the Yale E. coli Genetic Stock Center; Schwartz 

1976) expresses ~600 receptors when grown in maltose and still maintains a basal level of ~100 

when grown in glucose (data not shown).  

 

 

 

 

 

 

 

 

Figure 32 The maltose operon can be tuned to a variety of expression levels. 
 

As can be seen in the graph in the presence of glucose there is very little lamB expression, but with the  
addition of different carbon sources or cAMP the expression of lamB can be finely tuned. 
 
To measure the dynamic rate at which the maltose regulon in E. coli cells responds after 

an environmental change, the functional receptor distribution was measured after a sudden 

introduction of uninduced (glucose-grown) cells into an inducing environment (maltose, cAMP, 

glycerol etc.). The distribution of functional receptors after intervals of uninterrupted regrowth 

was assayed.  After 3 hours of growth, the cells were washed and resuspended in fresh media and 

diluted to keep the cell concentration low and to ensure the nutrient level remained high.  In 

Figure 33a), the raw flow cytometry data showing the forward scatter and green fluorescence for 
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a maltose perturbation is presented.  The glucose grown cells show little green fluorescence 

(panel i), but after perturbation quickly begin expressing a large number of functional receptors 

which is reflected in the increasing green fluorescence (panel ii).  The steady state is reached 

within 2 hours (panel iii).  Normally forward scatter value is interpreted as a measurement of cell 

size.  While this is in general a valid approximation, small changes in forward scatter are not 

necessarily related to a change in cell size (Shapiro 2003).  While in the raw data, the forward 

scatter is highly correlated with fluorescence for cells with high green fluorescence, this does not 

seem to be due to a change in cell size.  This is because the cell autofluorescence distribution 

grown in any carbon source and all mutants resistant to phage infection never show a forward 

scatter value greater than ~32 units.  The forward scatter value only increases to 64 units when 

the cells are adsorbed with many fluorescent or non-fluorescent phage.   

Figure 33b) shows the dynamics of phage receptor creation in four different perturbation 

media.  The circles represent the receptor dynamics of cells which were perturbed with 

glucose+0.5 mM cAMP (purple), glycerol (black), maltose (red and cyan), and glucose+5 mM 

cAMP (blue).   Notice that for the maltose (red and cyan) and glucose+5mM cAMP (blue) the 

average receptor number increases until it saturates at a steady state value greater than 500 

receptors.  While the maltose cells remain in a steady state, the average receptor number of the 

cells in glucose+5mM cAMP decreases at times >2 hrs.  This is due to the depletion of the 

cAMP in the medium. The average receptor number greatly decreases at hour 3 until the cells are 

diluted into fresh glucose+5mM cAMP after hour 3 where the average receptor number increases 

once again.    
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b) c) 

 
Figure 33 Chemical perturbations in different media. 
(a) Cells grown in glucose were perturbed by transfer into maltose supplemented media.  The receptors  
were assayed and run on the flow cytometer.  This is the original flow cytometry data showing the forward  
scatter and green fluorescence.  The dynamic increase of functional receptors is evident between panel i-iii.  
panel i) is the glucose grown cells, panel ii) is 20 minutes after maltose perturbation and panel iii) is 2  
hours after maltose perturbation. b,c) Cells grown in glucose were chemically perturbed in order to induce  
lambda phage receptors at varying levels of expression.  The perturbing media was glucose+0.5 mM cAMP 
(purple), glycerol (black), maltose (red and cyan), and glucose+5 mM cAMP (blue).  All lines (except 
glycerol perturbation, black) are fits to equation  59a in b) and equation 59b in c).   
 
While most theories of noise propagation in the process of protein expression only 

consider the steady-state distribution, Thattai and van Oudenaarden (2001) showed that if one 

assumes that the mRNA molecules equilibrate independent of their protein product, reach a 

Poisson distribution and the mRNA degradation rate is much larger than the protein degradation 

rate, for a single gene that is turned on at t=0: 
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In these equations, σ is the standard deviation of the measured distribution, κr is the rate of 

transcriptional bursts (ρ=
p

r

κ
κ ; is the number of bursts per cell cycle), β is the number of receptors 

per burst and κp(=ln(2)/Tp) where Tp is the half-life of the protein.  Most proteins (such as LamB) 

have a long half-life and the degradation is dominated by dilution during cell division, therefore 

Tp just corresponds to the length of the cell-cycle.  In Figure 33b) the chemical perturbation 

curves were fit with equation 59a.  Because the cell cycle time in M9 media is known, κp( 1h1 −≈ ) 

was set to this value.  All chemical perturbation curves were fit except for the glycerol 

perturbation (black) because two distinct steady states were found.  The values found from the fit 

are as follows, for the maltose perturbation (red and cyan) it was found that ρβ≈700 

receptors/cell cycle, the glucose+5mM cAMP was ρβ=800 receptors/cell cycle, the 

glucose+0.5mM cAMP ρβ=9 receptors/cell cycle.  In Figure 33c), the maltose perturbation 

curves were also fit with equation 59b to determine ρ and β separately.  It was found using this 

fit that β≈50 receptors/burst and ρ≈13 bursts/cell cycle (red) and β≈100 receptors/burst and 

ρ≈7 bursts/cell cycle (cyan).  Averaging over three separate runs, it was found that β≈80± 30 

receptors/burst and ρ 9 4 bursts/cell cycle. The numbers found using this perturbation analysis 

can be compared with the steady-state analysis described below. 

≈ ±

A useful parameter for steady-state analysis is the coefficient of variation: 

><
=

N
ση ,        (60) 
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The standard use of the coefficient of variation is as a measure of the natural variation of a 

particular protein amongst a population of bacteria.  η as a function of <N> for a protein has been 

measured previously for promoters of varying activities expressing the green fluorescent protein 

(GFP) in bacteria but GFP is generally not measured in actual protein numbers but in relative 

fluorescence values (Ozbudak et. al. 2002).  Bar-Even et. al. (2006) fused GFP with naturally 

expressed proteins. The investigators then used known average values of the naturally expressed 

proteins to calibrate how the number of proteins related to the fluorescence of the GFP-fusion 

proteins in Saccharomyces cerevisiae (yeast).  The integral autofluorescence of a cell, though, is 

equal to ~1000 GFP molecules and only GFP concentrations >~1000 proteins/bacteria are 

detectable by this flow cytometer.   At high expression levels (>1000 proteins/cell) Bar-Even et. 

al. (2006) showed that for naturally expressed proteins:  

η2=A<N>-1        (61) 

For a Poisson process it is expected that A=1 in equation (61) but it has been shown that protein 

expression is not strictly a Poisson process because of transcriptional (Golding et. al. 2005) and 

translational (Cai et. al. 2006, Yu et. al. 2006) bursting.  Protein expression then can be modeled 

as a Poisson process with bursting, in which case, η2α<N>-1 should hold if the increase in 

average protein number is due to an increase in the rate of bursting or the noise is due to low-

copy number mRNA fluctuations (Bar-Even et. al. 2006).   

The expression of proteins under a highly repressed promoter has been previously studied 

at the single cell level (Yu et. al. 2006, Cai et. al. 2006, Friedman et. al. 2006).  For uncorrelated 

burst events an equation can be derived describing the expression distribution if the number of 

reporters per burst is described by an exponential distribution.  While an exponential distribution 

is continuous, it was shown in Cai et. al. (2006) and Yu et. al. (2006) to be a valid approximation 
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for the number of reporters per burst for the lac promoter in a repressed state.  Using these 

approximations, the number of proteins in a population is described by the gamma distribution: 

)(
)(

/1

ρβ ρ

βρ

Γ
=

−− NeNNp        (62) 

Both of the parameters β and ρ have a specific physical meaning in this derivation.  The 

parameter ρ is the average number of bursts per cell cycle while β is the average number of 

reporters per burst.  The gamma distribution unlike the Poisson distribution is a two parameter 

distribution.  The two parameters β and ρ can be determined independently: 

><=

= −

N2

2

ηβ

ηρ
        (63)   

This model is valid for the steady state distribution in both a repressed or induced state, but 

cannot accurately be applied to a transient distribution. 

We can graph the data presented in Figure 33 so that it can be analyzed by the formulism 

presented in the previous paragraph.  This allows us to observe two regions of noise, the highly 

repressed and highly induced region.  In Figure 34a) and b), the black circles are the distributions 

measured during the chemical perturbations.  The proportionality of ρ=η-2 to <N> seen from 

<N>=100-1000 is expected for high protein numbers and is in agreement with the work of Bar-

Even and coworkers (the blue line that ranges from <N>=100-1000 in Figure 34b) is a straight 

line with a slope of 1).  Unlike previous experiments, though, our experiment has sufficient 

sensitivity to observe a second noise regime at low average receptors numbers, and we find that 

when <N> is less than ~100 molecules the scaling behavior changes dramatically.   

Figure 34a) shows that in the highly repressed region ( 〈N ~1-100) β increases linearly 

(ρ is constant) and for N 〉 >100, β becomes constant while ρ increases linearly with 

〉

〈 〈N 〉 .  In 

order to quantitatively compare these results with the formulism of Cai et. al. (2006) and 
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Friedman et. al. (2006), the distributions which persisted for more than a few generations were 

given the description of steady state or quasi-steady state in the case of the glycerol cells where 

two distinct distributions were found.  These distributions were then fit with a gamma 

distribution Eq. (62) and the values found for ρ and β, were plotted in Figure 34 (red circles).  

The two different methods of calculating ρ and β were consistent and qualitatively similar across 

the entire range of measurement.  The glucose grown LE392 cells where 〈N  ranges from 2 to 4 

did show quantitatively different results because while the gamma distribution does fit well the 

majority distribution 

〉

Figure 34c), it does not accurately mimic the long minority tails measured 

in the actual distribution as can be seen in Figure 34d).  The values calculated using the fit to the 

gamma distribution (red circles) were then fit with the equation: 

BNA ><=ρ         (64) 

Where it can be seen that from N 〉 =2 to 〈 〈 N 〉 ~100, ρ=0.8 is constant and when  N >100 ρ is 

proportional to N , with A=0.017 and B~1.  Correspondingly, for the regime N =2 to 

N ~100, β is proportional of N 〉  with 

〈 〉

〈〈 〉 〉

〈 〉 〈 3.1=β 〈N 〉  (A=1.3, B=1) for the regime where 

N >100, β=60 proteins/burst.  Comparing with the values we find using the transient analysis, 

here we find that in the maltose environment (

〈 〉

〈 N =600 receptors), β 60 proteins/burst 

(compared with β 80 30 receptors/burst calculated using the transient analysis) and ρ

〉 ≈

≈ ± ≈ 10 

burst/cell cycle (compared with ρ≈9± 4 bursts/cell cycle).  Both values found using the transient 

and steady-state analysis are consistent.   

The regime from N 〉 =2 to 〈 〈 N 〉 =100 is interesting because β is increasing linearly.  

Hidden within the parameter β, is both the transcriptional bursting and translational bursting 

(Friedman et. al. 2006).  There are two explanations for an increase in β.  First, the increase 
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could be due to an increase in the number of proteins created per mRNA transcript, which is at 

the level of translation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

c)

d)

 

Figure 34 Studying the dominant source of noise under chemical perturbation. 

(a) and (b) The black circles are all chemically perturbed distributions calculated using 
><

=
N

2σβ  and 

1
2

2

)( −

><
=

N
σρ .  The red circles are distributions which remain in a steady-state or quasi-steady state over 

several generations and β and ρ were calculated by fitting the flow cytometry data with a gamma 
distribution.  The steady-state distributions generally fit a gamma distribution well and calculation of β and 
ρ were consistent using both methods except for the glucose distributions <N><~3 receptors where a small 
subset of cells with a large number of proteins create a long tail (black circles) (d) which is not accurately 
mimicked by the gamma distribution (red line) even though a gamma distribution fits the majority of the 
population well (c). 
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Second, we know that transcriptional bursting exists (Golding et. al. 2005) and the 

increase in β could reflect an increase in the amount of time that a promoter remains “on” and 

continually creating mRNA before being turned “off”.  We know that the increase in N 〉  in this 

regime is due to an increase in internal cAMP within the cell.  The cAMP/CRP complex is 

known to be a transcription activator (Busby and Ebright 1999).  Therefore it is most likely that 

the linear increase of β with N 〉  is due to the larger number of cAMP/CRP complexes 

increasing the average “on” time of the promoter.    

〈

〈

It should be emphasized, here, that in this experiment we can only measure the number of 

functional receptors per cell and not the number of transcribed monomers.  There are many 

processes between the transcription of a monomer and the expression of a functional receptor on 

the membrane.  A recent experiment showed that kinetic assembly of the maltoporin trimers is so 

fast at 37 °C that the intermediates (such as LamB monomers) are vanishingly small (Ureta et. al. 

2007).   But which process is required to make the receptor “phage functional” is unknown.   

Some experiments from the 1970s suggested that the functional receptors are not inserted 

constantly throughout the replication cycle of a bacterium but only during the late stage of 

replication.  This was found for both LamB (Ryter et. al. 1975) and for the protein TSX which is 

the receptor of T6 phage (Leal and Marcovich 1975).  It could be useful to also quantify the 

mRNA distribution using a method such as FISH (Fluorescent in situ Hybridization) in order to 

determine that the noise vs. mean relationship we are observing is dominated by the 

transcriptional and/or translational events and not from other sources of noise (Maamar et. al. 

2007). 
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4.3 EXPLANATION OF PHAGE PERTURBATION EXPERIMENTS  

In the previous section, we extensively characterized the activity of the maltose promoter for the 

majority of the bacterial population in different chemical environments.  In this section, we focus 

on a constant chemical environment (M9 media+maltose at 37° C) and study the activity of a 

minority population of cells that manage to survive in the presence of a high phage pressure.  

The analysis of the chemical perturbations done in the previous section will be important to 

compare the protein production activity of the majority cell population to the activity of the 

minority cell population.  

In Chapter  3.0  there was discussion about the importance of the spreading term in the 

equation, 

 )(2 tDP +−= γσγ&        (65) 

when considering the population dynamics of E. coli and phage.  When phage are present, the 

killing term (-Pσγ2) decreases the average receptor number of the bacterial population and 

competes with the spreading rate of the distribution D(t).  It remains an interesting possibility 

that these two competing effects may result in a quasi-steady state in the adsorption rate. 

Like physical systems in a steady-state, when the receptor distribution is in a steady-state 

the changes in microstates of the system cannot be measured because the average spreading rate 

D(t)=0.  For example, diffusion is impossible to observe when a dye/water mixture is well 

mixed, but it is easily observed when one drop of dye is placed in a tub of water.  In these 

experiments, we want to study how the bacteria switch between subpopulations while the 

nutrient environment of the bacteria remains stationary.  In order to do this, we perturb the 

steady-state distribution and measure the change in the distribution as it relaxes back into its 
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stationary state. If the phage pressure is negligible, (P<<
oγ
λ ) during the period of distribution 

relaxation, then measuring the change in the number of receptors is a direct measure of D(t).   

In this experiment, the phage play two distinct roles.  The first role is as a perturbation.  

As was discussed previously, phage adsorb preferentially to high receptor number bacteria and 

therefore high receptor number bacteria are selectively killed pushing the receptor distribution to 

smaller numbers.  The second role that the bacteria play is as “antibody” labeling for receptors 

using the technique describe in detail in Section  3.1.  We differentiate between the two different 

roles played by the phage by dyeing the phage two different colors.  The perturbing phage are 

labeled with AlexaFluor 633 (red, excitation max: 632 nm, emission max: 650 nm).   The phage 

that play the role of the receptor antibody are labeled with AlexaFluor 488 (green, excitation 

max: 495 nm, emission max: 519 nm).  In some experiments, after the killing with red phage, a 

dye called propidium iodide (PI) was added for a period of 35 minutes.  PI is a fluorescent dye 

which can only enter dead cells or cells with a compromised membrane, once the dye integrates 

into the bacterial genome its fluorescence increases 20-30 fold similar to the popular dye 

ethidium bromide (Ericsson et. al. 2000). PI dyes dead cells a bright orange color.  The following 

protocol was used for the phage perturbation experiments. 

1) Figure 35a,d,e): Perturbative phage are added at intermediate concentrations.  Times 

of perturbation (when red phage are present in the system) are represented as negative 

times in the response curve in Figure 36. 

2) Figure 35f) The perturbative phage are washed out of the media and fresh warm 

media is added to the bacterial population along with a final concentration of 5 μg/ml 

of PI.   (In some experiments, PI was not added and only red phage were used to 

distinguish between debris and live bacteria).  After 35 minutes the PI is washed out 
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of the reaction.  Any dead cells or cells with a compromised membrane will have PI 

integrated into the DNA and RNA inside the cell.  The uninfected bacteria regrow 

and are continually washed and diluted into fresh warm media after intervals of 

uninterrupted regrowth, allowing the cells to grow with minimal phage pressure and 

without reaching nutrient saturation.  This corresponds to positive time in Figure 36. 

 

  

a) c) b)

Attached red and  
green phage 

A dead cell with 
propidium iodide 
and attached 
green phage 
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Attached green phage 

 

  

 

 

 

 

 

 

 

 

  

d) e)

  

g)f) 

Figure 35 Cartoon explaining the phage perturbation experiment.  

 

3) Figure 35f) The perturbative phage are washed out of the media and fresh warm 

media is added to the bacterial population along with a final concentration of 5 μg/ml 

of PI.   (In some experiments, PI was not added and only red phage were used to 

distinguish between debris and live bacteria).  After 35 minutes the PI is washed out 

of the reaction.  Any dead cells or cells with a compromised membrane will have PI 

integrated into the DNA and RNA inside the cell.  The uninfected bacteria regrow 
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and are continually washed and diluted into fresh warm media after intervals of 

uninterrupted regrowth, allowing the cells to grow with minimal phage pressure and 

without reaching nutrient saturation.  This corresponds to positive time in Figure 36. 

4) Figure 35b, c, g) At different time points while the cells are growing, a sample is 

removed from the experiment and is assayed for receptors with antibody (green) 

phage.  The bacteria which have attached red phage and contain PI inside the cell are 

debris (Figure 35b). Bacteria that have no attached red phage and show no PI 

fluorescence but only green antibody phage are the live bacteria in the system (Figure 

35c). 

5) The background phage concentration is kept at <5x105 phage/cm3 in order to 

minimize the effect of background phage on the regrowing population.  

 

 

 

 

 

 

 

 

Figure 36 Killing curves from the perturbation experiment. 
At negative times the perturbative phage are mixed with the bacteria at intermediate concentrations  
and the receptor distribution is disturbed due to selective killing.  At positive times the bacteria are  
removed from the phage pressure and allowed to regrow in fresh media far away from nutrient saturation  
(through repeated dilutions). The different curves were exposed to different phage pressures, P(0)=2x108  
(green), P(0)=2x109 (purple) and P(0)=5x109 cm-3 (black), all for a period of 0.5 h. The blue line is  
a population of cells that grew never having been exposed to phage.  At each time point a sample was  
removed from the population and assayed with green phage for the receptor distribution.  Notice, the  
perturbed bacterial populations regrow with a growth rate approximately equivalent to cells which had  
never been exposed to phage.  
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Figure 36 shows the change in bacterial concentration as a function of time during several 

perturbation experiments.  The blue line is a population of cells that were never exposed to phage 

and allowed to grow far away from nutrient saturation (B<2x107 cm-3).   The negative times in 

Figure 36 are times at which red phage are present.  The phage are washed out of the medium at 

t=0 and the cells are allowed to regrow without phage pressure and far from nutrient saturation 

through washing and dilution every 4-8 hours. 

4.4 FLOW CYTOMETRY DATA AND ANALYSIS 

After sampling as described above, the cells were placed on ice until run on the flow 

cytometer.  Figure 37 shows an example of an experiment where the cells were never perturbed 

by phage but allowed to grow exponentially without reaching nutrient saturation (blue line in 

Figure 36) and intermittently assayed for the receptor distribution. All cells were run on the flow 

cytometer at approximately the same time.  Notice that between hour 0 and hour 16 there are 

only small changes in the shape of the distribution which correspond to natural variations in the 

distribution over time.  Cells can be left on ice for periods up to 24 hours before being run on a 

flow cytometer without variation in the resulting measured distribution.  

 

 

 

 

 Figure 37 The natural receptor distribution variation. 
Cells that were never previously exposed to phage pressure were grown with saturating nutrients and far  
away from population saturation for a time of 16 hours.  At several time points the cells were assayed for the receptor  
distribution.  The distributions did not show large variation and remained in the steady state.   
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In the phage perturbation experiment, the difficult step is determining which bacteria run 

through the flow cytometer are debris and which bacteria run through the flow cytometer are the 

live bacteria of interest. In this experiment there are three methods for determining debris from 

live bacteria.  The first filter is the forward and side scatter.  The forward and side scatter 

determines whether the object will be counted and are used to gate the bacterial population.  In 

this particular experiment the value in the “APC” (FL8) (far red) and the “TexasRed” (FL3) 

(orange) emission channels also determines whether or not the object is debris or live bacteria.  

Any object adsorbed with a red phage was previously infected and is therefore considered debris.  

In the PI experiments, any object with a compromised membrane will allow PI to enter and 

therefore is also considered debris.  In the flow cytometer, though, while it is simple to 

deconvolute the far red signal from the autofluorescent signal, the system does not have 

significant resolution to determine the difference between a bacterium with small red 

autofluorescence and several attached red phage versus a bacteria with no attached phage and a 

large autofluorescence.   Therefore we use the value of the red fluorescence to ensure that the red 

fluorescence of the population of cells that are counted as live bacteria is equivalent to the red 

autofluorescence of the bacterial population never having been exposed to phage. For 

experiments without PI, when the average value of the red fluorescence has decreased down to 

the value of the autofluorescence, the majority of the measured population is the live bacterial 

population.  Even after bacteria have burst, the remnants of the cell can still be counted by the 

flow cytometer and the debris remains the majority until the live bacterial population has 

regrown.  The time series in Figure 38 corresponds to the black line in Figure 36.  At each time 

point, though, not only is the red fluorescence value describing the debris in the system 

measured, but also the green fluorescence value of each bacterium which describes the number 
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of free receptors.  An accurate description of the live bacteria cannot be determined, though, until 

the debris is only a minimal background in this system due to debris degradation and the 

continual growth of the live bacterial population. 

 

 

 

 

 

 

 

 

 

Figure 38 Evolution of bacteria with attached red phage. 
The debris remains the majority of the counted points until t>8 h were the red fluorescence is equivalent to  
the autofluorescence of the cells.  No PI was used in this experiment. 
 
In the case of Figure 38, above, that is at t>8 h.  Another indication that the sample is 

composed mostly of live bacteria is the increase in the number of bacteria which are counted 

using the forward and side scatter in a constant volume of liquid.  This point also corresponds to 

t>8 h in Figure 38.  This point accurately reflects the distribution of the receptors in the live 

bacterial population.  As can be seen in Figure 39, the distribution is greatly disturbed from its 

original PDF even after 19 hours of uninterrupted regrowth.  Figure 39 is a very large disruption 

which is expected when more than three orders of magnitude (~99.98%) of the original 

population was killed.   
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Figure 39 Green fluorescence distribution for the large perturbation (black line in Figure 36) 
The green channel measurements for the same experiment as seen in Figure 38.  The green channel 
represents the free receptor distribution in the experiment.  Even after 19 hours of uninterrupted regrowth 
the distribution has not completely recovered.  While the majority population >100 receptors has evolved 
into a distribution similar to the steady state, the minority population <100 receptors is still much larger 
than in the steady state. 
 
On the other hand, the fluorescence of the PI in the FL3 channel has the resolution to 

determine the difference between the live population and dead population. Looking at the 

population of cells without PI, we find that the red fluorescence distribution is equivalent to the 

autofluorescence of the cells (Figure 40a). The green channel then accurately measures the 

receptor distribution of the live cells.  In this experiment where the cells were killed for ½ hour 

with P(0)=1x109 cm-3 approximately 1-2 orders of magnitude of the original bacterial population 

was killed.   As can be seen in Figure 40b), the receptor distribution is greatly perturbed but 

evolves back (within the natural variation of distributions) in <~8 hrs.  This relaxation time is 

very long compared to the chemical perturbation which moved from 2 receptors to the steady 

state average of 600 receptors in ~2 hours.  

Two parameters we can extract easily from these distributions are the standard deviation σ and 

the mean <N>.  In the results section analysis of these two parameters are used to describe the 

dynamical change of the receptor distribution after a perturbation as it evolves back into its 

natural steady state. 
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Figure 40 PI distinguishes between live and dead cells (this experiment; P(0)=1x109 cm-3). 
a)  The red fluorescence of cells with no attached phage (black line) is the autofluorescence of the bacterial 
population.  While the red fluorescence of the population of the cells increases after a perturbation due to 
attached red labeled phage (red line), the red fluorescence of the population of cells that is considered the 
live population by discrimination with PI generally has the same red fluorescence as the autofluorescent 
cells (blue line) independent of regrowth hour.  Any distribution showing large red fluorescence is thrown 
out  b) The receptor distribution is still perturbed after 6 hours of uninterrupted regrowth but after 8 hours 
of uninterrupted regrowth the receptor distribution has evolved back to its original position. 

4.5 RESULTS 

In these perturbation experiments, we study the LamB production in the minority subpopulation 

of bacteria that survive despite the presence of viruses.  In Figure 41a), we can see the relaxation 

of a chemical perturbation experiment and phage perturbation experiments with varying levels of 

phage pressure.  The blue triangles in Figure 41a) correspond to an experiment performed over 

16 hours in which a distribution was not perturbed but allowed to exponentially grow far away 

from nutrient saturation.  The deviation of the steady state distribution is small over a long period 

of time (16 hrs which corresponds to ~26 generations.) For the phage perturbed experiments, the 

larger the perturbation, the longer the period of relaxation (green circles, P(0)=2x108 cm-3; pink 

circles P(0)=1x109 cm-3; purple circles, P(0)=2x109 cm-3) .  The period of relaxation is much 

longer than the glucose to maltose chemical perturbation which is presented as the red squares.  

The lines in Figure 41a) correspond to a fit to an exponential, and are included to help guide the 

 

a) b)



eye.  The relaxation rate of the phage perturbed distributions are similar, approximately 

independent of the phage pressure during perturbation, but the relaxation rate is slower than the 

chemical perturbations.  

In a set of experiments, LE392 was transformed with the pTAS1 plasmid which confers 

ampicillin resistance and constitutively expresses the LamB protein.  The cells were then 

subjected to the similar perturbation experiments as the cells without the plasmid.  The bacteria 

transformed with pTAS1 show less persistence in their killing curves (Appendix).  Similarly, in 

Figure 41b) it is shown that for similar phage pressures more cells are killed when LE392 

contains the plasmid rather than without the plasmid.  The response of the LE392/pTAS1 

bacteria will be discussed in more detail in Figure 43. 

 

 

 

  

 

 

 
 

Figure 41 Perturbed distributions relax back to original distribution. 
(a) The perturbed LE392 distributions (circles) do evolve back into the steady state distribution but only  
after many generations of regrowth.  For example, after killing only ~90% of the initial distribution (green  
line) the distribution does not evolve to the steady state until ~6 hrs after phage pressure was removed.   
The color coding in the figure corresponds to the color coding in Figure 36 except for the pink circles  
which were killed with P(0)=1x109 cm-3.  The red squares are the relaxation after the glucose to maltose  
chemical perturbation.  The relaxation rate is ~4 times greater than the phage perturbed distributions.  The  
lines in the figure are fits to an exponential, they are only included to help guide the eye. (b)  The survival  
fraction of bacteria after a ½ hour perturbation with varying P(0).  For similar phage pressures, more cells 
in the population of LE392/pTAS1 cells were killed. 
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In Figure 42, we reproduce the chemical perturbation data from Figure 34 except we have 

focused specifically on the region in which the chemically perturbed distributions vary as 

.  The black circles represent how the coefficient of variation squared changes with 

<N> during chemical perturbations.  The blue squares in 

12 −>∝< Nη

22 −>∝< Nη

Figure 42 are values of the coefficient 

of variation squared calculated from the phage perturbed distributions.  Notice these distributions 

are wider than the chemically perturbed distributions.  These distributions vary as approximately 

.   This indicates that the distributions become broad for small changes in the mean 

number when exposed to a short burst of phage and that they do not keep the same distribution 

shape as they relax into the steady state.   

 

 

 

 

 

 

Figure 42 Comparing the width of chemically and phage perturbed distribution. 
For chemically perturbed distributions vary as η2~<N>-1 while phage perturbed distributions are  
wider for similar changes in <N>, the relationship of η2~<N>-2 holds. 
 
A second method of describing the dynamics of the system is to study the amount of time 

it takes the population to increase its mean value of receptors.  First we define the average 

receptor velocity (
t
N
Δ
Δ ) and average receptor number (Nav) between two points which are 

consecutive in time: 
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Here, N2 is the average receptor value at some time t2, N1 is the average receptor value at some 

time t1, where t2>t1 and consecutive with t1.  While the average receptor number and average 

receptor velocity are useful for comparing perturbations with similar steady state values, we also 

define a normalized receptor velocity to compare chemical and phage perturbed distributions 

with different values for the steady state <N>: 
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In Figure 43a), the normalized receptor velocity is plotted as a function of the distance 

away from the steady state.  This distance is defined as Nd=Ns-N1, where Ns is the average value 

of the steady state distribution.  For chemical perturbations, Ns is defined as the average value of 

the distribution once it has relaxed into its steady state.  For phage perturbations, it is defined as 

the value of the distribution before the phage perturbation.  Presented in Figure 43a) are the 

receptor velocities for phage perturbation experiments performed with LE392 (black circles) and 

LE392/pTAS1 (red circles). While, a larger percentage of LE392/pTAS1 cells were killed for 

similar phage pressures than the LE392 cells (Figure 41b)), the recovery of the receptor 

distribution was highly similar to the LE392 cells.  The receptor distributions for both LE392 and 

LE392/pTAS1 evolved back with the same receptor velocities for equal distances away from the 

steady state.  In Figure 43b), the receptor velocities of the phage perturbed distribution are 

compared with the receptor velocities of the chemical perturbation from glucose to maltose 

(purple triangles).  Notice during the glucose to maltose chemical perturbation, the average 

receptor number increases much more quickly than the phage perturbed distributions.  At a 

distance of Nd=400 receptors the normalized receptor velocity of the maltose perturbed cells is 
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approximately one order of magnitude larger than the receptor velocity of the phage perturbed 

cells.  The cells with few receptors do not switch to the maximum expression state with the same 

probability as the majority of the population when the maltose regulon is becoming induced.  

This implies that the mechanism which maintains the cells in the low expression state despite the 

presence of maltose is not just a stochastically uninduced regulon. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

a) b)

c) d)

Figure 43 Receptor velocity as a function of the distance from the steady state. 
(a)  The normalized receptor velocities (with units of h-1) measured after a phage perturbation for LE392  
(black circles) and LE392 (red circles) (b) The receptor velocities after a chemical perturbation of maltose  
(purple triangle), glucose+5mM cAMP (green diamonds), and glucose+0.5 mM cAMP (blue diamonds).   
The data presented in a) were averaged over four equal sized bins for comparison with chemical  
perturbations,. (LE392 (black squares) and LE392/pTAS1 (red squares)). c) The non-normalized receptor  
(with units of receptors/hour) velocity is compared for the maltose perturbation and the phage  
perturbations.  The lines are fits to equation 68.  (d) is the same data from (c) but reproduced on a log graph  
to emphasize the phage perturbed data . 
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While defining a normalized velocity allows us to compare the phage perturbation with 

the different chemical perturbations, it is more quantitatively useful to examine the non-

normalized receptor velocity as is done in Figure 43c).  Both the chemical (purple triangles) and 

phage perturbed velocities (circles) are highly non-linear.  For the chemical perturbations this is 

attributed to the lag period of the response of the maltose regulon and the inability to describe the 

system when σ~<N>.  It was found, though, that the chemical perturbed distributions do show a 

linear region when Nav is larger than σ which corresponds to Nav>200 receptors.  For a 

population of cells with a constant receptor production rate and where receptor degradation is 

dominated by dilution (Thattai et. al. 2001, Cai et. al. 2006, Friedman et. al. 2006) : 

><−=
Δ
Δ

≅
>< N

t
N

dt
Nd

pκω      (68) 

Where ω(=κpρβ) is the constant rate of receptor creation and κp is the dilution of the receptor due 

to cell division.  When fitting the maltose data (purple triangles), we find values of ω≈700 

receptors per hour and κp=0.9 h-1, as is expected they are reasonably consistent with values found 

using other methods.  When fitting the perturbed distributions, for Nav>400 receptors, though, it 

was found that ω 200 receptors per hour and κp=0.3 h-1.  But from the killing curves we know 

that the dilution rate (or the growth rate) is always κp 

≈

≈1 h-1.  Therefore, ω or the rate of receptor 

production per cell must also be a function of <N>.  This implies that after killing the majority of 

the cell population, there exists a population of cells with a heterogeneous receptor production 

rate and describing the system as having one constant value of receptor production is no longer 

valid.  The population relaxation is not that of a homogeneous population but of a population of 

cells with a set of heterogeneous (or stochastic) ω’s.  This heterogeneity becomes manifested in 

the homogeneous model as a slow receptor production and dilution rate.   
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4.6 CONCLUSIONS 

In both experiments, the population of cells is exposed to an environmental perturbation 

and the functional receptor distribution is assayed as the distribution relaxes into the steady state 

of the current chemical environment.  The biological difference between the carbon source and 

phage perturbation experiments is that in the chemical perturbation experiment, we study the 

majority population as the genetic network is induced so that the increase in receptors is due to 

the induction of the maltose regulon.  In the phage perturbation experiment, we study the 

minority population of cells that despite the inducing carbon source (in this case maltose) still 

have very few receptors.  We find that the phage selection not only selects the cells with very 

few receptors, but also selects the cells which switch slowly from the low expression phenotype 

back into the full expression phenotype.  In other words, not only is the number of proteins 

stochastic but also the level of protein production is stochastic.   The selection of the slow 

switchers is also consistent with the experiment in Chapter  3.0 where we found that we could 

capture essential features of the bacterial killing curve even in the negligible switching rate limit.   

Another way to describe the slow switching phenotype found in the phage perturbation 

experiments is that a cell that is producing LamB proteins slowly tends to remain producing 

them slowly.  The idea that stochastically expressed phenotypes can be passed on to the progeny 

for several generations was discussed in a recent experiment in yeast (Kaufmann et. al. 2007).  

Through both experiment and simulation, the authors found that the stochastic phenotypes can be 

hereditary if the bursting size of a regulatory protein is large.  For example, if the burst size of 

the malT activator protein or the burst size of cAMP or CRP is sufficiently large, it is expected 

that there is significant correlation in the stochastic phenotype of mothers, daughters and 

granddaughters.  
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Important questions remain to be answered such as the molecular origin of the noise 

which creates the minority phenotypes.  This experiment also raises many questions about the 

evolution of noise in individual networks.  Are cells truly “hedging a bet” and the existence of a 

minority phenotype is programmed into the genetic code to protect against an environmental 

perturbation, or is the expression noise just an accidental consequence of protein expression.  
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APPENDIX A 

A.1 NUMERICAL METHODS 

A.1.1 Details of Numerical Integration 

The simulation of the heterogeneous model and the average homogeneous model are 

presented in the main text in Figure 21b), c), e), f), and Figure 22b), c) for varying initial 

conditions. The 2(Nmax+1) coupled differential delay equations were integrated using the 4th 

order Runge-Kutta algorithm from Numerical Recipes in C which was adapted for use with delay 

equations (Press et. al. 1988).  For the simulation of the heterogeneous model the initial 

conditions for the BNs were set to be the PDF that was measured in Figure 17b) multiplied by the 

total bacterial concentration measured at the beginning of each experimental run.  For the 

average homogeneous model, the bacterial subpopulation BN where N=<N> the average number 

of receptors of the entire population was set equal to the experimentally measured total initial 

bacterial concentration Btot, while all other bacterial subpopulations were set to an initial 

concentration of 0.  Because there is no switching between subpopulations in the numerically 

integrated model, this is equivalent to setting γ as a constant based on the average receptor values 

of the majority population.     

 102 



To ensure that the Numerical Recipes function was implemented correctly, the well-

known differential equations were numerically integrated: 

y
dt
dx

=         (69) 

x
dt
dy

−=         (70) 

The known solutions to these two equations are: 
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         (71) 

The output from the implementation of the 4th order Runge-Kutta algorithm is pictured in Figure 

44. 

 

 

 

 

 

  

 

 

  

Figure 44  Numerical integration of differential equations (69) and (70).  
As expected the solutions are a x(t)=sin(t) (black line)  and y(t)=cos(t) (red line).  
 

The second method of algorithm verification was to compare the numerical integration of 

equation (18) for N=0..Nmax with the analytical solution derived in Section  2.4.  Because to 

derive the analytical solution, we assumed a pure log-normal distribution as the initial condition 
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for each BN, a constant Po and no switching; in order to compare the numerical integration with 

the analytical solution all conditions must be satisfied in the numerical integration. This 

numerical integration then can be compared to the simulation of the analytical solution derived in 

Section 2.4.  The results are presented in Figure 45, the results from the analytical model (red 

line) and the numerical integration (black line) are nearly identical. 

 

 

 

 

 

 

 

 

 

Figure 45 Comparison of analytical model and numerical integration. 
The simulation of the analytical solution for a distribution with an initial log-normal distribution (red line)  
and the numerical integration of the full model with the same assumptions (black line) are found to be  
nearly identical for 2 different initial log-normal distributions and 3 different initial phage concentrations. 

 

A.1.2 Fourier Transform Deconvolution 

The theory of Fourier transform deconvolution is well established and efficient algorithms have 

been written (Press et. al. 1988).  The basic theoretical background will be summarized here. For 

an integral of the form: 

∫= dAApFpTp AFT )()()(       (72) 

 



Assuming pT(T) and pA(A) is known, and we want to find pF(F).  First, if we assume that the 

variable F and A are uncorrelated we can write that T=F+A. 

We will define the Fourier transform of a function as: 

∫ −= dTeTpWp iWT)()(~       (73) 

)(~ Wp is the same function but displayed in frequency space rather than in temporal space.  

Multiplying both sides of equation (69) by e-iWT and taking the integral: 

∫ ∫ ∫ −− −= dAdTeApATpdTeTp iWT
AF

iWT
T )()()(   (74) 

Multiplying the LHS of the equation by , we find: WAAie )(1 −−=
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AF
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Rearranging: 
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Realizing that we have three separate Fourier transforms, we can fill in the functions: 

)(~)(~)(~ WpWpWp AFT =       (77) 

Dividing: 
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Taking the inverse Fourier transform we find: 
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We have now calculated the desired PDF.  Numerically, this algorithm is only useful in certain 

regimes.  For example, a highly peaked function is very broad once it has been Fourier 

transformed.  Therefore, in order for the inverse Fourier transform to calculate the correct PDF in 

temporal space, we have to keep essentially all terms in frequency space.  In reality, numerical 
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algorithms cannot keep all terms and therefore numerical Fourier deconvolution is not a good 

method for the deconvolution of a highly peaked function. 

In this case, the glucose distribution and the autofluorescence distribution have a large 

portion of overlap so neither distribution appears highly peaked compared to the other 

distribution.  For the Fourier transform deconvolution of the glucose grown LE392 cells, the 

distribution for the glucose cells was placed into quantized bins along with the autofluorescence 

distribution and the convlv algorithm from Numerical Recipes in C was implemented in order to 

deconvolute the low signal from the autofluorescence distribution. The results were presented in 

the main text in Figure 30.      

A.2 EXPERIMENTAL METHODS 

A.2.1 Experimental Conditions 

All experiments followed this beginning protocol unless specified otherwise.  E. coli cells 

were grown overnight in M9 minimal media supplemented with maltose.   The cells were then 

diluted 1:100 into fresh M9 media and allowed to grow to a concentration of ~107cells/ml.  Cells 

prepared using this method are called exponential phase cells throughout the dissertation  

A.2.2 Killing Curves 

For killing curve measurements, an excess of phage was added to a set of bacterial 

cultures, in which we varied the initial phage concentration. We then measured the response of 
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the bacterial populations to determine if the results corresponded to our model calculations for 

times of up to 7 hours.  To do this, exponentially growing cells were diluted 1:15 into fresh pre-

warmed, pre-shaken M9 media to give an initial bacterial concentration of ~106 cm-3.  An aliquot 

was removed to determine the initial bacterial concentration.  Phage were then added at a variety 

of initial concentrations, the cultures were mixed (vortexed) and a sample was removed to 

measure the initial phage concentrations using the phage plaque assay. This was done by diluting 

the sample and adding 0.5 ml of Ymel bacteria (grown overnight in LB), adding  2.5 ml of soft 

agar and pouring onto a λ plate.  Throughout the dissertation, the killing curves are designated by 

using this measured initial phage concentration.  The reaction tubes were then incubated at 37°C 

with shaking at 200 rpm.  Every hour an aliquot is taken from the reaction tube, diluted in 

MgSO4 buffer and plated onto LB plates to determine the viable cell concentration measured in 

colony forming units (CFUs).   

A.2.3 Fluorescent labeling of phage 

λ phage (CI857Sam7 obtained from New England Biolabs) was grown as described in the 

Appendix of Moldovan (2006) and purified using CsCl density gradient method.  The phage 

were then dialyzed 3x against λ phage buffer and stored at 4 °C.  To prepare for fluorescent 

labeling, the phage were dialyzed 3x against a pure 10 mM MgSO4 pH 8.4 solution in order to 

get rid of all traces of the Tris buffer.   1M sodium bicarbonate (pH 8.4) was added at a volume 

to volume ratio of 1:10; (1 part sodium bicarbonate to 10 parts phage solution). The phage 

solution (generally at a concentration of 1012-1013 phage/cm3) was used to dissolve a dried 

aliquot of AlexaFluor 488 or AlexaFluor 633 (Molecular Probes), the molecule/phage ratio was 
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of 103.  The mixture was shaken 150 rpm for 1 hour at room temperature (22 °C) in the dark., 

and finally dialyzed (3 changes of buffer for >12 hours) against λ phage buffer at 4 °C.        

A.3 ESTIMATION OF MODEL PARAMETERS 

A.3.1 Size of the cell (a and b) 

This section will describe the use of the light microscope to determine the approximate size of 

the semi-major axis and semi-minor axis of the E. coli cells under experimental conditions.  

About 1 ml of the exponential phase cells was pipetted onto a poly-D-lysine coated coverslip and 

allowed to sit for 10 minutes.  The cell suspension was rinsed off the coverslip with 5 ml 

modified λ-dilution buffer (10mM MgSO4, pH 7.4) and the attached cells were immersed in the 

same buffer and viewed with a Nikon TE300 microscope under phase contrast at 100x 

magnification and images were recorded with a Hamamatsu C9100 CCD camera.  A typical 

image is shown in Figure 46a.  Using the SimplePCI program (v.5.3.0) an elliptical region of 

interest (ROI) was outlined for each cell and the maximum length and width of each elliptical 

cell was measured. The probability distribution of the measured values were then calculated and 

binned as can be seen in Figure 46b) and c) for the Ymel strain.  The PDF of the radius of the 

semi-major axis (a) and semi-minor axis (b) of the cells were fit using a log-normal distribution 

and a Gaussian distribution respectively.  The average value found from this fit was reported in 

the main text and used in all simulations.  All constants were independently measured for each 

strain used. 
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Figure 46 Measurement of the bacterial length and width.  
(a)  A typical phase picture taken while the strain of interest was attached to a coverslip.  (b) PDF of the  
radius of the semi-major axis of the bacteria LE392.  (b)  PDF of the radius of the semi-minor axis of the  
bacteria LE392. 

 

A.3.2 Maximum adsorption rate (γo) 

The Berg and Purcell model described in Section  1.3 assumes that the receptors on the 

bacteria are perfect sinks.  It was previously found that the adsorption rate for Ymel is 

comparable to that expected by a bacteria with ~300 receptors using Berg and Purcell's model 

when adsorption curves were performed in 10mM MgSO4 media pH 7.4 (Moldovan et. al. 2007).  

For the population dynamics experiment, cells need nutrient supplements for growth and protein 
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production.  Because of this requirement, adsorption experiments were performed in M9 minimal 

media to test the effect of the salt on the phage adsorption.  

Effect of Low Salt Concentrations on Adsorption Coefficients  

It has been found previously that the adsorption coefficient is highly dependent on the 

salt concentrations and more specifically the divalent cations such as MgSO4. Adsorption curves 

were measured in three different conditions.  The first condition was a 10 mM MgSO4 solution 

similar to previous experiments, the second condition was standard M9 minimal media (1mM 

MgSO4, no carbon source) and M9 minimal media supplemented with 10mM MgSO4 (no carbon 

source).  The adsorption curves were measured following the protocol that has been previously 

described (Moldovan 2006, Moldovan et. al. 2007). 

The lack of nutrient supplements will greatly decrease bacterial growth so that the 

B~constant assumption used in Moldovan et. al. 2007 remains valid.  Figure 47 is the graph of 

the adsorption curves which are performed in the B>>P limit ( 3105 −≈ x
B
P ).  The blue squares 

were the curve that was measured in M9 media with 1mM MgSO4.  Notice that that phage are 

adsorbed much slower than the curves in the 10mM MgSO4 solution (red squares) and the M9 

with 10mM MgSO4 (black circles). 

In previous work (Moldovan 2006, Moldovan et. al. 2007) it has been shown that phage 

adsorption is a two stage process which in the B>>P limit can be modeled as a double 

exponential.  In Figure 47a), we show the adsorption curves with similar initial bacterial 

concentrations fit with the double exponential function: 
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Both the adsorption times τ1, τ2 are ~4 times larger in the solution containing 1mM 

MgSO4 versus the solution containing 10mM MgSO4 for similar values of A.  This can also be 

seen in Figure 47b), where only adsorption over short times <15 minutes are fit with a single 

exponential and once again we find that the adsorption time in 1mM MgSO4 is 4 times greater 

than solution with 10mM MgSO4.  The experiments in the main text performed in the M9 with 

1mM MgSO4 are the killing curves in decreased salt concentration.  The maximum adsorption 

rate in the decreased salt concentration is modeled as
4
0

0S
γ=γ . 

 

 

 

 

 

 

 

 
  

Figure 47 Adsorption measurements in different media with similar initial bacterial concentrations.  
 The adsorption is strongest in media containing 10mM MgSO4 (red diamonds) and M9 media with 10mM  
MgSO4 (black circles).  The adsorption is ~4x slower in standard M9 media which only contain 1mM  
MgSO4. 
 
Double Exponential Adsorption is a Property of Wild-Type Receptors 

The Ymel bacteria adsorbs phage with a double exponential behavior (Moldovan 2006, 

Moldovan et. al. 2007).  In this work, a second strain LE392 is used which shows the double 

exponential behavior in adsorption.  This behavior, though, is not consistent with the adsorption 

measurements previously reported (Schwartz 1975).  In order to check if this behavior is 
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consistent with the wild-type protein, sequence analyses were performed on the Ymel lamB 

gene.  

 

 

 

 

 

 

 

 

 

Figure 48 Amplification of the lamB gene for DNA sequencing. 
The lamB gene was amplified using PCR and run on a gel (second lane) to check for length and quantity of  
the fragment for subsequent sequencing analyses.  When compared with a GeneChoice quantitative ladder  
(first lane).  The PCR product showed a length of ~1500 bps which is comparable to the expected 1504 bps.   
Subsequent analyses showed that the Ymel lamB gene is the wild-type lamB gene. 
 
The lamB gene was amplified by colony PCR using pfuUltraII (Stratagene Cat. No. 

600670) and the primers 5'CACACAAAGCCTGTCACAGGTGATG'3 and 

5'CGCATCAGGCGTTGGTTGCCGAAT'3 which are located 58 bps upstream and 55 base pairs 

downstream respectively of the lamB gene.  The product was visualized on a gel and shown to 

have a length of ~1500 bps as can be seen in the second lane when compared with the 

GeneChoice Quantitative Ladder I in the first lane in Figure 48.  The expected length was 1504 

bps which is in good agreement with the gel measurement.  The PCR product was sequenced by 

automatic sequencing at the DNA Sequencing Center which is a part of the University of 

Pittsburgh School of Medicine Biomedical Research Support Facilities.  The primers used for 

forward sequencing were: 

 112 



5'AGAAAAGCAATGACTCAGGAGATAGA'3 

5'ATGATGATTACTCTGCGCAAACTTCC'3 

5'ATCTGGGCAGGTAAGCGCTTCT'3 

5'CTACAATATCAACAACAACGGTCAC'3 

The first 400 bps were also sequenced in reverse using the reverse primer 

5'GAAGTCGATCATATGAACGTCATG'3 to ensure the accuracy of the first 50 base pairs.  

The sequence was then compared to the known sequence of the MG1655 strain as described in 

the ASAP database (Glasner et. al. 2003).  We found 100% agreement between the lamB gene in 

Ymel and MG1655.    

A.3.3 Growth Rate (λ) 

 

 

 

 

 

 

 

  

Figure 49 Measurement of the growth rate of the bacteria.   
The black circles are the relative CFU/cm3 after dilution corrections.  The measurements were fit with an  
exponential function (red line) to find the growth rate of the bacterial strains. A typical run for the Ymel  
strain in which the cells were repeatedly diluted into fresh media and the relative concentration was  
measured over a period of 26 hours. 
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This section describes the measurement of the growth rate (λ) of the bacteria without 

inhibition by phage or lack of nutrients.  Cells were grown to exponential phase. The cells were 

then allowed to shake at 200 rpm at 37°C for 2 hours.  At certain time intervals, the colonies 

were diluted and plated.  The experimental curve was then fit with an exponential function to 

find the growth rate of each cell line.  A run for the Ymel strain along with the exponential fit 

can be seen in Figure 49, relative concentration indicates that the growth rate was measured over 

a period of time in which the cells were diluted into fresh warmed media in order to keep the cell 

growth away from nutrient saturation.  The relative concentration is the extrapolated 

concentration if the media could hold an infinite number of cells without saturation.  The value 

given in the text is an average of three separate runs.   

 

A.3.4 Bursting Coefficient (m) and Latent Period (τ) 

The bursting coefficient (m) and latent period (τ) were measured using the classical one-step 

infection procedure first introduced by Ellis and Delbrück (1939). The bacteria were grown to 

mid-exponential phase and mixed with λ phage at moi~1. The phage were allowed to absorb for 

15 minutes at 37 °C, and the reaction was stopped by spinning down the cells at 104 g for 2 

minutes at room temperature. The pellet was resuspended in a pre-warmed M9 medium, and the 

washing process was repeated again to reduce the background phage concentration. The cells 

were diluted 1:10 into a pre-warmed fresh medium and were kept in a 37 °C water bath. An 

aliquot was taken out of the sample periodically, diluted, and mixed with indicator bacteria. An 

infected bacterium, before bursting, will appear as one single plaque on the λ plate.  However, 

after bursting each bacterium produces multiple phage and each of them resulting in one plaque.  
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As seen in Figure 50, a time delay τ after infection was stopped an step in the phage 

concentration, indicating nearly synchronized bacterial bursting. Using the method of Alvarez et. 

al. (2006), the experimental points were fit to the function 

)(1 θ−−+
+= tke

NIP ,       (81)  

where I is the concentration of the infected cells, N is the total number of phage produced per 

volume, and k is a measure of synchrony in cell bursts. The fitting procedure yields the bursting 

coefficient m=N/I≈13 and θ=55.5 minutes. Since the total adsorption time is 15 minutes, we 

assign the latent period τ=θ-15/2≈48 minutes. We found that while τ is reasonably consistent 

with previous observations, m is about a factor of 10 smaller than previous experiments.  The 

low phage production is due to the minimal M9 medium used and previous measurements are in 

rich media (Alvarez et. al. 2006).  We also found that when using glucose instead of maltose the 

bursting coefficient did increase by ~ a factor of 2 indicating the low burst size is due to the 

minimal medium and carbon source used. 

 

 

 

 

 

 

 

 

 

Figure 50 Measurement of the bursting coefficient and latent period. 
The PFUs from time 25 minutes to 45 minutes (black circles) are the cells which had been previously  
infected.  The PFUs from time 60 minutes to 80 minutes are the free phage after the bursting event.  The  
ratio of these two constant numbers yields the average bursting coefficient for each strain.  The beginning  
of the bursting event yields the latent period. 
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A.3.5 Debris Dissolution Rate 

The simulations described in the main text are relatively insensitive to the debris 

degradation because the concentration of debris is low because the initial bacterial concentration 

in most experiments was ~106 bacteria/cc.  This is not true when the initial bacterial 

concentration is greater than ~2x107 cells/cc.  To estimate the debris degradation rate, LE392 

cells at an initial concentration of ~5x107 were mixed with varying initial phage concentrations.  

 

 

 

 

 

 

 

 

 

Figure 51 Measurement of the debris dissolution rate.   
Phage and bacteria at high concentrations are adsorbed and the free phage concentration is measured.  The  
heterogeneous model was then simulated and ε is varied until the simulated phage concentration (red line)  
and measured phage concentration (black circles) are similar.  
 

The free phage and bacteria were measured as indicated in the Figure 51.  Simulations 

were run and η was varied until the behavior of the simulated phage population closely 

resembled the experimental results.  An example of both experiment and simulation can be seen 

in Figure 51 where the initial phage concentration ~2x108 phage/cm3.  The value of η that 
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allowed the best consistency between simulation and experiment consistent for most runs. Η was 

fixed at the average value of 0.0003 which is approximately 1/τ, where τ is the latent period.  

For the killing curves presented in the main text, though, because the debris is at a low 

concentration ~106 cm-3, it was found that large variation of the debris dissolution rate for 

numerical integrations only minimally changed the shape of the killing curves. 

A.3.6 When do we need to consider genotype mutants? 

The heterogeneous model predicts that to kill all sensitive bacteria, the phage 

concentration must be greater than a phage concentration where the average time of adsorption 

for a bacteria with one receptor 1/(γ1P) is less than the doubling time of the bacteria and the 

phage concentration has to be greater than the number of receptors present ( NBPo ×> tot ) to 

account for the possibility that the extra receptors per bacteria do not sink the effective phage 

pressure. In order to test the effects of adding an extremely large phage concentration we added 

4x1010 phage/cm3 to an exponentially growing bacterial population.  The bacterial population 

was then sampled at hour intervals.  As can be seen in Figure 52, the blue circles show that there 

is an initial immense killing of two orders of magnitude of the bacteria are killed over a period of 

an hour and then a slower decay where another two orders of magnitude of bacteria are killed 

over a period of 4 hours.  After hour 5 the bacteria begin growing exponentially at a rate 

comparable to bacteria that are not under phage pressure.  The bacteria that were plated at hour 9 

do not form plaques after being regrown without pressure (the cells did not form plaques with 

either λ-CI857 or λ-vir).  Extrapolating back to t=0, after an average of  independent experiments 

we find that in a population of bacteria with an initial concentration of 3x107cm-3 that we find 

4±3 mutants, indicating that the probability of finding a mutant is about 10-7.  We assume that 
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this is our baseline mutant background in the persister experiments and being that the initial 

bacterial concentration in those experiments is 106cm-3 we should find a mutant in the initial 

population only about 10% of the time, which would only become dominate in the population 

after >10 hours which is longer than the experiment. 

 

 

 

 

 

 

 

 
 
Figure 52 Testing for mutants.  
The Ymel strain is bombarded with an immense phage concentration ~4x1010 phage/cm3.   This phage  
concentration kills about 4 orders of magnitude of Ymel (blue circles) cells which are not sensitive when  
regrown without pressure.  Ymel/PTAS1 (red squares) are also bombarded with a high phage concentration  
and show greater killing but also begin to regrow at 5 hours with cells that are insensitive to phage  
infection. 
 

Ymel was transformed with the plasmid pTAS1 which was a kind gift from the Lawrence 

lab (Kolko et. al. 2001).  pTAS1 is a plasmid which confers ampicillin resistance and 

constitutively expresses the maltoporin protein.  The Ymel/pTAS1 cells were grown to the 

overnight state in M9 media with maltose and supplemented with ampicillin, the cells were 

diluted 1:15 and allowed to grow for ~2 hours to mid-exponential phase.  A high phage 

concentration ~4x1010 cm-3 was added and the reaction was sampled every hour.  The red 

squares in Figure 52 are the killing curve for Ymel/pTAS1.  Notice in the constitutively 

expressed cells, the initial killing (between hour 0 and 1) is approximately 1 order of magnitude 
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greater than the Ymel cells without a plasmid.  The slow killing between hour 1 and hour 5 is 

also greater for the pTAS1 cells, killing about an order of magnitude greater than the Ymel cells 

without the plasmid.   

To test the sensitivity of the pTAS1 cells, ten colonies from each time point on the 

pTAS1 killing curve were regrown and tested for their ability to form plaques on a soft agar 

plate.  Figure 53 shows the percentage of regrown cells at each time point that formed plaques.  

Initially (hours 0-2) all cells were sensitive, but the percentage of sensitive regrown cells 

decreases in hours 3-5 until no regrown cells are sensitive at hour 6 at the time in the killing 

curve when the cells begin to grow exponentially at a rate comparable to that of the wild-type 

Ymel.  Because these cells are not sensitive when regrown under lack of pressure and because 

the cells still show ampicillin resistance implying the cells still carry the high copy number 

pTAS1 plasmid, the cells are most likely insensitive to phage infection due to mutations that are 

not associated with the maltose regulon.  This is reminiscent of the pel- mutants which have been 

described previously (Elliot and Arber 1978).   

 

 

 

 

 

 

Figure 53 Examining the appearance of mutants. 
The Ymel/pTAS1 cells can initially all be regrown and show sensitivity to phage infection (hours 0-2)  but  
beginning at hour 3 a percentage of the regrown cells appear to be insensitive to phage infection until hour  
6 where none of the regrown cells show sensitivity to phage infection this correlates well with the position  
in the killing curve where the cells begin to regrow insensitive to phage pressure.  The red squares are for  
the Ymel/pTAS1 run and the blue circle is for the Ymel run presented in Figure 52. 
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A.3.7 A plasmid with the malK promoter. 

In order to investigate the expression level of the malK promoter independent of the appearance 

of functional receptors, a plasmid was created that confers ampicillin resistance and controls 

expression of the Green Fluorescent Protein by the malK promoter.  The pBV1114 plasmid was 

a gift from the Larsson lab at the Swedish Centre for Bioprocess Technology (Bostrom and 

Larsson 2004).  It is a plasmid with confers ampicillin resistance and the malK promoter controls 

expression of the lacZ gene. The pELC1 plasmid was previously constructed and is a high copy 

number plasmid which controls the GFPmut2 (Cormack et. al. 1996) gene using the λPR 

promoter.  

 

 

 

 

 

 

 

 
 

c)b)a)

Figure 54  LE392 cells with a plasmid which controls the expression of GFP with the malK promoter. 
The cells are grown in glucose and assayed with red phage where it is found that the addition of the  
plasmid has actually increased the leakage of functional receptors in the uninduced state (a).  The cells are  
then perturbed by changing the carbon source to maltose.  After 20 minutes both the red and green  
fluorescence has increased (b).  3 hours after the maltose perturbation the cells are not growing quickly but  
for cells which expressed the green fluorescence higher than the background, there is a correlation between  
the green and red fluorescence (c).     

 

 The malK promoter from pBV1114 promoter was cut out of the plasmid at the EcoRI and 

BamHI sites and the λPR promoter on the pELC1 plasmid was replaced by the malK promoter.  
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The new plasmid was called pELC12.  In order to replace the origin of replication to create a low 

copy number plasmid, the origin of replication was cut out of the pELC12 at the AccI and EcoRI 

sites and replaced with the pSC101 origin of replication from the pCIA2 plasmid which was a 

gift from the Jim Collins laboratory at Boston University (Gardner et. al. 2000). The newly 

constructed plasmid pELC15 is a low copy number plasmid (pSC101 generally has ~5 copies per 

cell) which confers ampicillin resistance and controls the GFPmut2 gene with the malK 

promoter.  This plasmid was transformed into the LE392 cells that were used in the main text.  

All experiments were performed in the presence of ampicillin to ensure all cells contained the 

pELC15 plasmid.  The functional receptors were assayed using phage labeled with Alexa Fluor 

633. 

Figure 54a) is the flow cytometry data of LE392 cells grown in glucose and assayed with 

red phage.  The green fluorescence is a measure of the relative expression of the malK promoter 

and the red fluorescence is a measure of the number of functional receptors.  The first thing to 

notice is that by adding the plasmid (which introduces several extra sinks for the activator malT 

and cAMP/CRP) the number of expressed functional receptors actually increases an interesting 

consequence of the perturbation of the maltose regulon network.  Notice the red fluorescence 

when the cells are grown in glucose has an average of ~120 which corresponds to approximately 

100 functional receptors per bacteria in the presence of glucose which is an order of magnitude 

higher than LE392 without the plasmid but is approximately the number of functional receptors 

expressed by the strain HfrG6 discussed briefly in the main text when it is grown in glucose.  

This figure also shows the green background fluorescence of the cells has increased by a factor 

from a value of 2 FCUs to a value of 4 FCUs which is consistent with a small leakage of GFP 

proteins from the plasmid. Both the autofluorescence of cells without the plasmid and no GFP 
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have a correlation coefficient 
YX

YXXYCC
σσ

>><<−><
= ~0 where X and Y are two variables 

and σX is the standard deviation of X and σY is the standard deviation of Y.  

The glucose grown cells were then perturbed by placing them in media containing 

maltose as the sole carbon source.  20 minutes after the maltose perturbation the cells were once 

again assayed with red phage.  The data is presented in Figure 54b) both the red fluorescence and 

the green fluorescence have increased.  The mean red fluorescence has increased to 500 FCUs 

corresponding to ~500 functional receptors, the green fluorescence has also increased by a factor 

of 5 to 20 FCUs.  The interesting aspect of this graphs is that while CC=-0.1 for the entire 

population, the cells whose green fluorescence has increased above the natural background have 

CC=0.1 so we do begin to see the expected correlation between the red and green fluorescence.   

In Figure 54c), the data is presented for the same cells 3 hours after the maltose 

perturbation.  The cells were unable to grow well in maltose when the plasmid is present, but the 

viable cells still expressed both red and green fluorescence.  After 3 hours the cells are now 

expressing 600 functional receptors which is about equal to the maximum in the cells without the 

plasmid.  The green fluorescence has also increased to 70 FCUs.  For the entire population, 

CC=0 and there seems to be no correlation but once again just looking at the cells that express 

green fluorescence above the background it is found that CC=0.4 meaning that we have found a 

correlation between our functional receptor assay and the internal expression of protein.   

 122 



BIBLIOGRAPHY 

Alvarez, L.J., P. Thomen, T. Makushok and D. Chatenay.  2007.  Propagation of Fluorescent 

viruses in growing plaques.  Biotechnol. Bioeng.  96:615-621. 

Balaban, N.Q., J. Merrin, R. Chait, L. Kowalik, and S. Leibler. 2004. Bacterial Persistence as a 

Phenotypic Switch. Science 305:1622-1625. 

Bar-Even, A. J. Paulsson, N. Maheshri, M. Carmi, E. O’Shea, Y. Pilpel and N. Barkai. 2006. 

Noise in protein expression scales with natural protein abundance.  Nat. Gen. 38: 636-

643. 

Berg, H. C. 1993.  Random Walks in Biology.  Princeton University Press, Princeton. 1st ed.  

Berg, H. C., and E. M. Purcell. 1977. Physics of Chemoreception. Biophys. J. 20:193-219. 

Blaxter, M.  1998.  Caenorhabditis elegans Is a Nematode.  Science.  282:2041-2046. 

Boos, W., and H. Shuman. 1998.  Maltose/Maltodextrin System of Escherichia coli: Transport, 

Metabolism, and Regulation. Microbio. Mol. Bio. Rev. 62:204-229. 

Bostrom, M. and G. Larsson. 2004. Process design for recombinant protein production based on 

the promoter, Pmalk. Appl. Microbiol. Biotechnol. 66:200-208.  

Braun, V., and H. J. Krieger-Brauer. 1977.  Interrelationship of phage λ receptor protein and 

maltose transport in mutants of Escherichia coli K12.  Biochim. Biophys. Acta. 469:89-

98.  

 123 



Brooks, K., and A. J. Clark.  1967.  Behavior of λ Bacteriophage in a Recombination Deficient 

Strain of Escherichia coli.  J. Virol.  1:283-293. 

Busby, S. and R. Ebright.  1999.  Transcription Activation by Catabolite Activator Protein 

(CAP).  J. Mol. Biol.  293:199-213. 

Cai, L., N. Friedman, and X. S. Xie. 2006.  Stochastic protein expression in individual cells at 

the single molecule level.  Nature.  440: 358-362. 

Capy, P.  2000.  Is Bigger Better in Cricket?  Science.  287:985-986. 

Casadesus, J. and R. D'Ari. 2002.  Memory in Bacteria and Phage.  BioEssays.  24:512-518. 

Chao, L., B. R. Levin, and F. M. Stewart.  1977.  A Complex Community in a Simple Habitat: 

An Experimental Study with Bacteria and Phage.  Ecology.  58:369-378. 

Chapman-McQuiston, E. and X.L. Wu.  Stochastic Receptor Expression Allows Sensitive 

Bacteria to Evade Phage Attack. Part I: Experiments. (submitted to Biophys. J., 2007). 

Chapman-McQuiston, E. and X.L. Wu.  Stochastic Receptor Expression Allows Sensitive 

Bacteria to Evade Phage Attack. Part II: Theoretical Analyses. (submitted to Biophys. J., 

2007). 

Charbit, A., K. Gehring. H. Nikaido. T. Ferenci. and M. Hofnug. 1988. Maltose Transport and 

Starch Binding in Phage-resistant Point Mutants of Maltoporin. J. Mol. Biol. 201:487-

496. 

Cormack, B. P., R. H. Valdivia, and S. Falkow.  1996.  FACS-optimized mutants of the green 

fluorescent protein (GFP).  Gene.  173:33-38.  

Corsetti, J. P., S. V. Sotirchos, C. Cox, J. W. Cowles, J. F. Leary, and N. Blumburg.  1988.  

Correction of Cellular Autofluorescence in Flow Cytometry by Mathematical Modeling 

of Cellular Fluorescence.  Cytometry.  9:539-547. 

 124 



Crick, F.  1970.  Central Dogma of Molecular Biology.  Nature.  227:561-563. 

Ellis, E. and M. Delbrück.  1939.  The Growth of Bacteriophage.  J. Gen. Phys.  22:365-284. 

Elliott, J., and W. Arber.  1978.  E. coli K-12 pel mutants, which block phage lambda DNA 

injection, coincide with ptsM, which determines a component of a sugar transport system.  

Mol. Gen. Genet.  161:1-8. 

Elowitz, M. B., A. J. Levine, E. D. Siggia, and P. S. Swain.  2002.  Stochastic Gene Expression 

in a Single Cell.  Science.  297:1183-1186. 

Ericsson, M., D. Hanstorp, P. Hagerberg, J. Enger, and T. Nystrom.  2000.  Sorting Out Bacterial 

Viability with Optical Tweezers.  J. Bacteriol.  182:5551-5555. 

Friedman, N., L. Cai, and X. S. Xie. 2006.  Linking Stochastic Dynamics to Population 

Distribution: An Analytical Framework of Gene Expression.  Phys. Rev. Let. 97: 168302 

Gardner, T.S., C.R. Cantor and J.J. Collins. (2000).  Construction of a genetic toggle switch in 

Escherichia coli.  Nature.  403:339-342. 

Gibbs, K. A., D. D. Isaac, J. Xu, R. W. Hendrix, T. J. Silhavy and J. A. Theriot. (2004) Complex 

spatial distribution and dynamics of an abundant Escherichia coli outer membrane 

protein, LamB. Mol. Microbiol. 53:1771-1783. 

Glasner, J. D., P. Liss, G. Plunkett III, A. Darling, T. Prasad, M. Rusch, A. Byrnes, M. Gilson, B. 

Biehl, F.R. Blattner, and N. T. Perna.  2003. ASAP, a systematic annotation package for 

community analysis of genomes.  Nucleic Acids. Res.  31:147-151. 

Golding, I., J. Paulsson, S. M. Zawilski and E. C. Cox. (2005) Real-Time Kinetics of Gene 

Activity in Individual Bacteria. Cell.  123: 1025-1036. 

Halme, A., S. Bumgarner, C. Styles, and G. R. Fink.  2004.  Genetic and Epigenetic Regulation 

of the FLO Gene Family Generates Cell-Surface Variation in Yeast.  Cell. 116:405-415. 

 125 



Havilio, M.  2006.  Signal Deconvolution Based Expression-Detection and Background 

Adjustment for Microarray Data.  J. Comput. Biol. 13:63-80. 

Hershey, A.D. and Chase, M. 1952. Independent functions of viral protein and nucleic acid in 

growth of bacteriophage. J Gen Physiol. 1:39-56. 

Hofnung, M., A. Jezierska, and C. Braun-Breton. 1976. lamB mutations in E. coli K12: growth 

of lambda host range mutants and effect of nonsense suppressors. Mol. Gen. Genet. 145:  

207-213. 

Leal, J.  and H. Marcovich.  1975.  Electron Microscopic Observations of the tsxs Gene 

Expression in Escherichia coli K12F- Cells after Conjugation with Hfr Bacteria.  Molec. 

Gen. Genet.  139:203-212. 

Lenski, R.E. 1988. Dynamics of Interactions between Bacteria and Virulent Bacteriophage. In 

Advances in Microbial Ecology. Marshall KC, editor. Plenum Press, New York. 1-44. 

Lenski, R.E., and B.R. Levin. 1985. Constraints on the Coevolution of Bacteria and Virulent 

Phage: A Model, Some Experiments, and Predictions for Natural Communities. 

American Naturalist 125(4):585-602. 

Levin, B.R., F.M. Stewart, and L. Chao. 1977. Resource-limited growth, competition and 

predation: a model and experimental studies with bacteria and bacteriophage. American 

Naturalist 111:3-24. 

Lipsitch, M., E. A. Herre and M. A. Nowak.  1995.  Host Population Structure and the Evolution 

of Virulence:  A “Law of Diminishing Returns.”  Evolution.  49:743-748 

Lotka, A. J. 1925. Elements of physical biology. Baltimore: Williams & Wilkins Co. 

Kaufmann, B., Q. Yang, J. Mettetal, and A. van Oudenaarden.  2007.  Heritable Stochastic 

Switching Revealed by Single-Cell Genealogy.  PLoS Biology. 5:e239. 

 126 

http://en.wikipedia.org/wiki/1952
http://www.jgp.org/cgi/content/abstract/36/1/39
http://www.jgp.org/cgi/content/abstract/36/1/39
http://en.wikipedia.org/w/index.php?title=J_Gen_Physiol.&action=edit


Kolko, M. M., L. A. Kapetanovich, and J. G. Lawrence.  2001.  Alternative pathways for 

siroheme synthesis in Klebsiella aerogenes.  J. Bacteriol.  183:328-335. 

Kussel, E., R. Kishnoy, N. Q. Balaban and S. Leibler.  2005.  Bacterial Persistence:  A Model of 

Survival in Changing Environments.  Genetics.  169:1807-1814. 

Maamar, H., A. Raj and D. Dubnau. 2007. Noise in Gene Expression Determines Cell Fate in 

Bacillus subtilis.  Science. 317:526-529.  

Mader, S.  2004.  Biology.  McGraw-Hill, New York.  8th ed. 

Mangan, S., A. Zaslaver and U. Alon. 2003. The Coherent Feedforward Loop Serves as a Sign-

sensitive Delay Element in Transcription Networks. J. Mol. Biol. 334:197-204. 

May, R.  1976.  Simple mathematical models with very complicated dynamics.  Nature.  

261:459-467. 

May, R.  1972.  Limit Cycles in Predator-Prey Communities.  Science.  177:900-902. 

Mignotte, M., J. Meunier, J.-P. Soucy, and C. Janicki.  2002.  Comparison of deconvolution 

techniques using a distribution mixture parameter estimation:  Application in single 

photon emission computed tomography imagery. Journal of Electronic Imaging.  11:11-

24. 

Moldovan, R. 2006.  The Interaction Between Lambda Phage and Its Bacterial Host. Ph.D. 

thesis. University of Pittsburgh, Pittsburgh.  pp 98. 

Moldovan, R., E. Chapman-McQuiston, and X.L. Wu. 2007. On Kinetics of Phage Adsorption.  

Biophys. J.  93:303-315. 

Novick, A. and M. Weiner. 1957. Enzyme Induction as an All-or-None Phenomenon. Proc. Natl. 

Acad. Sci. USA. 43:553-566.  

 127 



Ozbudak, E. M., M. Thattai, I. Kurtser, A. D. Grossman and A. van Oudenaareden. 2002. 

Regulation of noise in the expression of a single gene. Nature Genetics. 31:69-73. 

Ozbudak, E. M., M. Thattai, H. N. Lim, B. I. Shraiman and A. van Oudenaareden. 2004. 

Multistability in the lactose utilization network of Escherichia coli. Nature. 427:737-740. 

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery.  1988.  Numerical Recipes 

in C: The Art of Scientific Computing.  Cambridge University Press, New York. 

Ptashne, M.  2004.  A genetic switch: phage lambda revisited. Cold Spring Harbor Press, Cold 

Spring Harbor, NY.  3rd ed. 

Rabinovitch, A., I. Aviram, and A. Zaritsky. 2003. Bacterial debris--an ecological mechanism for 

coexistence of bacteria and their viruses. J. Theor. Biol. 224:377-383. 

Raser J. M. and E. K. O'Shea.  2004.  Control of Stochasticity in Eukaryotic Gene Expression.  

Science.  304:1811-1814. 

Raser, J. M. and E. K. O'Shea.  2005.  Noise in Gene Expression: Origins, Consequences and 

Control.  Science.  309:2010-2013. 

Rosenfeld. N.,  J.W. Young, U. Alon, P. S. Swain and M. B. Elowitz. 2005.  Gene Regulation at 

the Single-Cell Level.  Science.  307:1962-1965. 

Ryter, A., H. Shuman, and M. Schwartz.  1975.  Integration of the Receptor for Bacteriophage 

Lambda in the Outer Membrane of Escherichia coli:  Coupling with Cell Division. J. 

Bact.  122:295-301.   

Schirmer, T., Keller, T.A., Wang, Y.F., and J. P. Rosenbusch.  1995.  Structural basis for sugar 

translocation through maltoporin channels at 3.1 Ǻ resolution.  Science.   267:473-474.  

Schrag, S.J., and J.E. Mittler. 1996. Host-Parasite Coexistence:  The Role of Spatial Refuges in 

Stabilizing Bacteria-Phage Interactions. The American Naturalist 148(2):348-377. 

 128 



Schwartz, M. 1975.  Reversible interaction between coliphage lambda and its receptor protein.  

J. Mol. Biol. 99:185-201. 

Schwartz, M.  1976.  The Adsorption of Coliphage Lambda to its Host:  Effect of Variations in 

the Surface Density of Receptor and in Phage-Receptor Affinity.  J. Mol. Biol.  103:521-

536. 

Schwartz, M. 1987.  The Maltose Regulon. In Escherichia coli and Salmonella typhimurium.  

Neidhardt FC, editor.  American Society for Microbiology, Washington, D.C. 

Shapiro, H. M.  2003.  Practical Flow Cytometry.  John Wiley & Sons, Inc.  Hoboken, New 

Jersey.  4th ed. 

Shen-Orr, S. S., R. Milo, S. Mangan and U. Alon.  2002.  Network motifs in the transcriptional 

regulation network of Escherichia coli.  Nature Genetics. 31:64-68. 

Siegele, D. A. and J. C. Hu. 1997. Gene expression from plasmids containing the araBAD 

promoter at subsaturating inducer concentrations represents mixed populations. Proc. 

Natl. Acad. Sci. USA. 94:8168-8172. 

Swain, P., M. B. Elowitz, and E. Siggia. 2002. Intrinsic and extrinsic contributions to 

stochasticity in gene expression.  Proc. Natl. Acad. Sci. USA. 99:12795-12800. 

Szmelcman, S. and M. Hofnug.  1975.  Maltose Transport in Escherichia coli K-12:  

Involvement of the Bacteriophage Lambda Receptor.  J. Bacteriol. 124:112-118.  

Thattai, M. and A. van Oudenaarden.  2001.  Intrinsic noise in gene regulatory networks.  Proc. 

Natl. Acad. Sci. USA. 98:8614-8619.   

Thattai M. and A. van Oudenaarden. 2004.  Stochastic gene expression in fluctuating 

environments.  Genetics.  167:523:530. 

Ureta, A.R., R. Endres, N. Wingreen and T. Silhavy.  2007.  Kinetic analysis of the assembly of  

 129 



 130 

the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or 

targeting factor in a different cellular compartment. J. Bacteriol. 189:446-454 

Volterra, V. 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. 

Mem. R. Accad. Naz. dei Lincei. Ser. VI, vol. 2. 

Wangersky, P. and W. Cunningham.  1957.  Time Lab in Prey-Predator Population Models.  

Ecology.  38:136-139. 

Weaver, R. F. 2002.  Molecular Biology.  McGraw-Hill, New York, 2nd ed.   

Yu, J., J. Xiao, X. Ren, K. Lao and X. S. Xie.  2006.  Probing Gene Expression in Live Cells 

One Protein Molecule at a Time.  Science.  311:1600-1603. 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1 Table of constants.
	Table 2 Comparing the model dependent and model independent measurements of the distributions.
	Table 3 The mean and standard deviation of p(N) in different media.  

	LIST OF FIGURES
	Figure 1 Lambda phage cartoon depicting the possible key lock mechanism in phage adsorption.
	Figure 2 λ phage infection of E. coli
	Figure 3 Bacterial persistence in a microfluidic channel.
	Figure 4 Bacterial persistence can be modeled as a two state switch, from Balaban et. al. 2004.
	Figure 5.  Noisy (a) and homogeneous (b) gene expression in bacteria. (c) Noisy gene expression in yeast. 
	Figure 6  E. coli cells grown in intermediate concentrations of the chemical TMG, a lactose analog.
	Figure 7 Activators of the maltose regulon. 
	Figure 8 Example of a minority phenotype present in a genetically homogeneous population of bacteria.  
	Figure 9 Cartoon depiction of phage/E. coli dynamics.
	Figure 10 Low MOI population dynamics experiment.  
	Figure 11 The parameters which determine the maximum adsorption coefficient.  
	Figure 12 Definition of bacterial subpopulations.  
	Figure 13 Different subpopulations can be exponentially growing or decaying under constant conditions. 
	Figure 14 Comparing analytical solutions for an initial Gaussian protein distribution.
	Figure 15 Fluorometry dilution curves.
	Figure 16 Flow cytometry data with fits to the distribution.
	Figure 17 Initial receptor distributions.
	Figure 18 Fitting the short time (<5 minutes) experimental data with equation (52).
	Figure 19 Calculation of model-dependent value for the average and width of the distribution 
	Figure 20 A killing curve with an approximately constant phage concentration.  
	Figure 21 Killing curves of Ymel and LE392.
	Figure 22 Killing Curves of LE392 in 1mM MgSO4
	Figure 23 Effect of heterogeneity on LE392 cells grown in glucose.
	Figure 24 Persistence in LE392 cells grown in glycerol.
	Figure 25 Revisiting the experiment which originally motivated the study.
	Figure 26 Testing the change in the adsorption coefficient as a function of time.
	Figure 27 Phage can be labeled in a variety of colors to signify their role in the experiment.
	Figure 28 Fluorometry dilution curves with green emission (a) and red emission (b).
	Figure 29 Comparing red and green flow cytometry calibration.
	Figure 30 Distribution deconvolution of glucose grown LE392 using the microscope and flow cytometry.
	Figure 31 Microscope measurements of average receptor number.
	Figure 32 The maltose operon can be tuned to a variety of expression levels.
	Figure 33 Chemical perturbations in different media.
	Figure 34 Studying the dominant source of noise under chemical perturbation.
	Figure 35 Cartoon explaining the phage perturbation experiment. 
	Figure 36 Killing curves from the perturbation experiment.
	Figure 37 The natural receptor distribution variation.
	Figure 38 Evolution of bacteria with attached red phage.
	Figure 39 Green fluorescence distribution for the large perturbation (black line in Figure 36)
	Figure 40 PI distinguishes between live and dead cells (this experiment; P(0)=1x109 cm-3).
	Figure 41 Perturbed distributions relax back to original distribution.
	Figure 42 Comparing the width of chemically and phage perturbed distribution.
	Figure 43 Receptor velocity as a function of the distance from the steady state.
	Figure 44  Numerical integration of differential equations (69) and (70). 
	Figure 45 Comparison of analytical model and numerical integration.
	Figure 46 Measurement of the bacterial length and width. 
	Figure 47 Adsorption measurements in different media with similar initial bacterial concentrations. 
	Figure 48 Amplification of the lamB gene for DNA sequencing.
	Figure 49 Measurement of the growth rate of the bacteria.  
	Figure 50 Measurement of the bursting coefficient and latent period.
	Figure 51 Measurement of the debris dissolution rate.  
	Figure 52 Testing for mutants. 
	Figure 53 Examining the appearance of mutants.
	Figure 54  LE392 cells with a plasmid which controls the expression of GFP with the malK promoter.

	1.0  INTRODUCTION
	1.1 E. COLI AS A MODEL CELL
	1.2 λ PHAGE AND THE PHAGE λ RECEPTOR PROTEIN
	1.3 ADSORPTION: THE FIRST STEP IN INFECTION
	1.4 EPIGENETICS AND PERSISTENCE
	1.5 PROTEIN EXPRESSION IS INHERENTLY NOISY
	1.5.1 The Maltose Regulon

	1.6 PREDATOR-PREY MODELS
	1.7 PHAGE/E. COLI POPULATION DYNAMICS

	2.0  MODELING PHAGE/E. COLI DYNAMICS
	2.1 PHYSICAL PICTURE: THE SIMPLIFIED MODEL 
	2.2 MODEL DEPENDENCE ON RECEPTOR HETEROGENEITY
	2.2.1 Dependence of Adsorption Coefficient on Receptor Number
	2.2.2 Heterogeneous Adsorption Model
	2.2.3 Insights Gained in the Limit of Negligible Switching

	2.3 ANALYTICAL SOLUTION: INITIAL GAUSSIAN RECEPTOR DISTRIBUTION
	2.4 ANALYTICAL SOLUTION: INITIAL LOG-NORMAL RECEPTOR DISTRIBUTION
	2.5 CONCLUSION

	3.0  COMPARISON OF MODEL WITH EXPERIMENT
	3.1 INITIAL RECEPTOR DISTRIBUTIONS
	3.1.1 Receptor Labeling Procedure
	3.1.2 Fluorometry
	3.1.3 Average Receptor Values
	3.1.4 Flow Cytometry
	3.1.5 Correction for Autofluorescence 

	3.2 SHORT TIME APPROXIMATION
	3.3 FIT TO THE LOG-NORMAL MODEL DERIVED IN ‎2.4
	3.4 RESULTS: KILLING CURVES WITH HIGH MgSO4 CONCENTRATIONS
	3.5 RESULTS: KILLING CURVES WITH LOW MgSO4 CONCENTRATIONS
	3.6 E. COLI IN GLUCOSE AND GLYCEROL
	3.7 UNDERSTANDING PHENOTYPE HETEROGENEITY
	3.8 WHAT IS THE EFFECT OF THE SWITCHING TERMS?

	4.0  STUDYING THE LamB RESPONSE AFTER A PERTURBATION
	4.1 USING FLOW CYTOMETRY TO STUDY MINORITY POPULATIONS
	4.1.1 Verifying the Receptor Distribution Calibration

	4.2 CHEMICAL PERTURBATIONS
	4.3 EXPLANATION OF PHAGE PERTURBATION EXPERIMENTS 
	4.4 FLOW CYTOMETRY DATA AND ANALYSIS
	4.5 RESULTS
	4.6 CONCLUSIONS

	APPENDIX A
	BIBLIOGRAPHY



