
NUMERICAL SIMULATION OF VAPOR-LIQUID

EQUILIBRIA OF A WATER-ETHANOL MIXTURE

by

Michael Ikeda

B.S. in Mechanical Engineering, California Institute of Technology,

2007

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

M.S. in Mechanical Engineering

University of Pittsburgh

2010

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Michael Ikeda

It was defended on

October 5th, 2010

and approved by

Laura A. Schaefer, Ph. D., Professor

Peyman Givi, Ph. D., Professor

Joseph McCarthy, Ph. D., Professor

Thesis Advisor: Laura A. Schaefer, Ph. D., Professor

ii

Copyright c© by Michael Ikeda

2010

iii

NUMERICAL SIMULATION OF VAPOR-LIQUID EQUILIBRIA OF A

WATER-ETHANOL MIXTURE

Michael Ikeda, M.S.

University of Pittsburgh, 2010

Vapor-liquid equilibrium studies are important to many engineering disciplines. Numerical

simulations using empirical equations of state provide an excellent alternative to time con-

suming experimental measurement. A new methodology is developed to visualize the results

from vapor-liquid equilibrium numerical studies of an aqueous alcohol binary mixture. The

goal is to provide a better technique to determine the cubic equation of state, mixing rule,

and combining rule combinations that will improve the predictability of the simulations, by

reducing their dependence on binary interaction parameters. With an improved understand-

ing of the various equations used in vapor-liquid equilibrium models, simulations can be

more reliably used to predict data under conditions in which experimental data are unavail-

able or not easily obtainable. A vapor-liquid equilibrium simulation program is developed

that can model fluid mixtures with assorted equation of state, mixing rule, and combining

rule blends. A model’s success is appraised via both convergence and performance metrics

over large ranges of binary interaction pairs. It is shown that increases in equation com-

plexity typically lead to improved correlative accuracy. However, models that converge for

large numbers of pairs, and do so with good performance, are chosen as the most predic-

tive combinations due to their ability to reproduce data even with a lack of decent binary

interaction parameters. Furthermore, the relationships between the binary interaction pairs

are examined. For the arithmetic and conventional combining rules, it is observed that only

one experimental fitting parameter is required, for the system under consideration. Using

the designed flexibility of this model, other equations and systems can be incorporated in

iv

the future, leading to the development of enhanced mixing and combining rules that are

linked to specific equations of state, which increase the predictability, and consequently the

usability, of the equations.

v

TABLE OF CONTENTS

1.0 INTRODUCTION AND BACKGROUND 1

1.1 Introduction . 1

1.2 Dew Point and Bubble Point Data . 6

1.3 Fugacity . 7

1.4 Equations of State . 12

1.4.1 Theoretical . 14

1.4.2 Empirical . 17

2.0 APPLICATION OF EQUATIONS TO MIXTURES 23

2.1 Mixing Rules . 25

2.2 Combining Rules . 27

3.0 MATHEMATICAL DERIVATIONS . 31

3.1 Redlich-Kwong-Soave Equation of State 36

3.2 Peng-Robinson Equation of State . 38

3.3 Peng-Robinson-Stryjek-Vera Equation of State 40

4.0 NUMERICAL SIMULATIONS . 42

4.1 Computational Methodology for the Vapor-Liquid Equilibrium Calculations 43

4.2 Modifications For Dew Point Calculations 48

4.3 Performance Improvements . 50

4.3.1 Iterations Update Methods . 50

4.4 Numerical Issues . 51

4.4.1 Complications . 51

4.4.2 The Effect of Parameters on Convergence 53

vi

5.0 RESULTS AND DISCUSSION . 59

5.1 The Effect of Equation Combinations on Standard VLE Studies 61

5.2 Perturbation of the Binary Interaction Parameters 68

5.3 A Quantitative Explanation of Limited Experimental Data 70

5.4 Analysis of a Binary Interaction Parameter Mesh 72

5.5 Analysis of the Optimized Binary Interaction Parameters 80

5.6 Effect of Temperature on the Optimal Binary Interaction Parameters . . . 83

6.0 CONCLUSIONS . 88

APPENDIX A. DERIVATIVES OF MIXING RULE TERMS 94

A.1 Linear . 95

A.2 Quadratic . 96

APPENDIX B. DERIVATIVES OF COMBINING RULE TERMS 98

B.1 Arithmetic . 98

B.2 Geometric . 98

B.3 Margules . 99

B.4 van Laar . 99

APPENDIX C. SYSTEMS USED FOR COMPUTATIONS 100

APPENDIX D. FIXED PRESSURE T-X PLOTS FOR VARIOUS EQUA-

TION COMBINATIONS . 101

APPENDIX E. MULTIPLE TEMPERATURE P-X PLOTS FOR VARI-

OUS EQUATION COMBINATIONS . 105

APPENDIX F. PERTURBATION OF THE BINARY INTERACTION

PARAMETER . 109

APPENDIX G. COMPLETE ANALYSIS OF THE BINARY INTERAC-

TION PARAMETERS . 112

APPENDIX H. EFFECT OF TEMPERATURE ON THE OPTIMAL BI-

NARY INTERACTION PARAMETERS 121

APPENDIX I. CODE FOR MAIN VLE CALCULATIONS 125

I.1 vlemain.f90 . 125

I.2 vlesolve.f90 . 131

vii

APPENDIX J. CODE FOR BINARY INTERACTION PARAMETER PER-

TURBATIONS . 134

J.1 kijperturb.f90 . 134

APPENDIX K. CODE FOR FULL ANALYSIS OF BINARY INTERAC-

TION PARAMETERS . 142

K.1 vledev.f90 . 142

K.2 vledev.f90 . 147

APPENDIX L. MODULES USED BY MULTIPLE PROGRAMS 154

L.1 vlecalcs.f90 . 154

L.2 eosmod.f90 . 167

L.3 mixing.f90 . 176

L.4 combining.f90 . 178

L.5 convfail.f90 . 181

L.6 kijmod.f90 . 184

L.7 rules.f90 . 187

L.8 devcalc.f90 . 189

BIBLIOGRAPHY . 193

viii

LIST OF TABLES

1 Modifications to the Attractive Term of the van der Waals Equation 22

2 Effect of adj Value on Runtime and Convergence 55

3 Effect of perturb Value on Runtime and Convergence 56

4 Effect of conv Value on Runtime and Convergence 57

5 Effect of maxiters Value on Runtime and Convergence 58

6 Numeric indicators for different equations . 60

7 Summary of the experimental VLE data used in this study. 60

8 Optimal kij parameters: T = 323.65K . 62

9 Errors associated with binary interaction parameter choice 71

10 Average errors using optimal binary interaction pairs from different temperatures. 73

11 Maximum percent deviations for each equation set 87

12 Simple combining rule linear fits . 91

ix

LIST OF FIGURES

1 A typical chemical plant layout . 2

2 Diagram of a heat pipe . 3

3 An example of a single-effect absorption refrigeration cycle 4

4 A typical static equilibrium cell used for experimental VLE calculations . . . 4

5 Pressure vs. composition of a Water-EtOH mixture 6

6 Temperature vs. composition of a Water-EtOH mixture 7

7 Equation of state genealogy chart . 13

8 The square-well molecular potential function. 15

9 Critical isotherm of a pure substance . 18

10 The Lennard-Jones potential function . 28

11 Isotherms calculated using the reduced form of the VDW equation of state . . 35

12 A mechanical system depicting equilibrium stability 36

13 An example VLE data set showing individual bubble points 43

14 A flow chart describing the iterative VLE procedure 44

15 VLE results: T = 323.65K, CR = 0, EOS varying 63

16 VLE results: T = 323.65K, EOS = 0 (RKS), CR varying 64

17 VLE results: T = 323.65K, EOS = 1 (PR), CR varying 65

18 VLE results: T = 323.65K, EOS = 2 (PRSV), CR varying 66

19 VLE results: Multiple temperatures, varying equations 67

20 VLE results: perturbed binary interaction parameters 69

21 A skeleton of the code used to determine errors for binary interaction pairs . 75

22 The 3D surface of average percent deviation with a simple combining rule . . 76

x

23 The 3D surface of average percent deviation with a complex combining rule . 76

24 The partial surface of average percent deviation with a simple combining rule 77

25 The partial surface of average percent deviation with a complex combining rule 77

26 The 2D map of average percent deviation with a simple combining rule . . . 78

27 The 2D map of average percent deviation with a complex combining rule . . 78

28 The partial map of average percent deviation with a simple combining rule . 79

29 The partial map of average percent deviation with a complex combining rule 79

30 The number of kij pairs that produce results below an average percent deviation. 81

31 Optimal binary interaction parameter pairs 82

32 Effect of temperature on the optimal kij pairs. 84

33 Average maximum percent deviations for each equation set 86

34 Volume Calculations: perturbed binary interaction parameters 93

35 VLE results: P = 101325Pa, CR = 0, EOS varying 101

36 VLE results: P = 101325 Pa, EOS = 0 (RKS), CR varying 102

37 VLE results: P = 101325 Pa, EOS = 1 (PR), CR varying 103

38 VLE results: P = 101325 Pa, EOS = 2 (PRSV), CR varying 104

39 VLE results: Multiple temperatures, EOS = 0 (RKS) 106

40 VLE results: Multiple temperatures, EOS = 1 (PR) 107

41 VLE results: Multiple temperatures, EOS = 2 (PRSV) 108

42 VLE results: perturbed binary interaction parameters, EOS = 0 109

43 VLE results: perturbed binary interaction parameters, EOS = 1 110

44 VLE results: perturbed binary interaction parameters, EOS = 2 111

45 Average percent deviation: T = 323.65K, Equation set 00010 113

46 Average percent deviation: T = 323.65K, Equation set 01010 114

47 Average percent deviation: T = 323.65K, Equation set 02010 115

48 Average percent deviation: T = 323.65K, Equation set 03010 116

49 Average percent deviation: T = 323.65K, Equation set 10010 117

50 Average percent deviation: T = 323.65K, Equation set 13010 118

51 Average percent deviation: T = 323.65K, Equation set 20010 119

52 Average percent deviation: T = 323.65K, Equation set 23010 120

xi

53 Effect of temperature on the optimal kij pairs using EOS = 0. 121

53 Effect of temperature on the optimal kij pairs using EOS = 0. 122

54 Effect of temperature on the optimal kij pairs using EOS = 1. 123

55 Effect of temperature on the optimal kij pairs using EOS = 2. 124

xii

1.0 INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

Vapor-liquid equilibrium, or VLE, refers to the thermodynamic condition in which the liquid

and vapor phases of a substance co-exist in a stable equilibrium state. More specifically, equi-

librium can be broken down into three types: thermal, mechanical, and chemical potential.

Thermal equilibrium can be expressed as a lack of net heat transfer between phases, resulting

in equal temperatures of both phases (Tliquid = Tvapor). Mechanical equilibrium represents

a balance of forces between the phases. Neglecting interfacial tension due to curved inter-

faces, this corresponds to equal pressures on both phases (Pliquid = Pvapor). Finally, chemical

potential equilibrium implies that the rate of evaporation and the rate of condensation are

equal. At constant temperature and pressure, this represents a minimum in the system free

energy. Microscopically, there is no difference between an equilibrium and a non-equilibrium

state. Molecules are colliding, evaporating, and condensing in both situations. However, on

the macroscale, equilibrium signifies that there are no net changes occurring in the system.

While it would technically take an infinite amount of time to reach an equilibrium state,

VLE studies are interested in the practical equilibria that are reached in a finite time, as

is common in the field of thermodynamics. Data obtained through a VLE analysis include

the temperatures, pressures, and compositions at which the substances of interest exist in

vapor-liquid equilibrium and specifically, the conditions at which they are saturated liquids

or saturated vapors. As will be illustrated in a few brief examples below, an understanding

of VLE processes is vital to a number of engineering disciplines.

A typical chemical plant, diagrammed in Figure 1, is comprised of a chemical reactor

and a number of separators, which often operate on equilibrium principles [1]. These sepa-

1

rators rely on the data obtained through VLE studies to determine the optimal operating

temperatures and pressures in order to separate chemicals to varying levels of purity. This

is important as the temperature and pressure necessary to separate a mixture to one level of

purity can be completely different from another level. For example, at atmospheric pressure,

if a 10% mixture of ethanol in water is heated to around 365 K, at the onset of boiling,

the vapor produced will contain approximately 30% ethanol and 70% water. However, as

the base mixture approaches around 80% ethanol and 20% water, the vapor produced will

contain only slightly more ethanol than water, and the temperature required to boil the

mixture will be more than 10 K lower. In fact, to purify ethanol beyond 96% it becomes

necessary to use desiccants rather than distillation separators as the vapor released during

boiling has the same composition as the base mixture. In other words, the vapor coming off

a 96% ethanol mixture is composed of 96% ethanol as well.

R
aw

 M
at

er
ia

ls

Pr
od

uc
ts

By-products

Reactor Separator

Recycle
Separation and

Purification

Separators

Figure 1: Typical chemical plant layout. Adapted from Wankat [1].

Heat pipes, such as the one depicted in Figure 2, are often used in electronics for cooling,

and rely on flow boiling to enhance heat transfer characteristics [2]. In order to optimize

2

this heat transfer, the two-phase flow profile must be understood, which requires knowledge

of the thermodynamic properties of the system at the vapor-liquid equilibrium point.

Heat Input

Evaporator
Section

Adiabatic
Section

Condenser
Section

Heat Output

Vapor
FlowLiquid

Flow

Figure 2: Diagram of a heat pipe. Adapted from M & M Metals. [2].

Absorption refrigeration systems rely on the use of two-phase flow for both heat ex-

change and chemical separation. An example system is shown in Figure 3 [3]. Analyzing

the performance of these refrigerators requires accurate thermodynamic data at various lo-

cations throughout the system, where substances often exist in vapor-liquid equilibrium.

Furthermore, the operating parameters, and even the fluids used within such systems, can

be optimized using VLE data.

From the distillation of ethanol to the cooling of components in a computer, vapor-liquid

equilibria data are very widely used. Traditionally, experimental studies are undertaken to

determine VLE characteristics. This process can be carried out using a variety of methods,

but one of the most common is the use of a static equilibrium cell, such as the one pictured

in Figure 4 [4].

This apparatus is operated by placing a system with a fixed composition inside a cell.

The system is then allowed to reach equilibrium under a fixed temperature or pressure.

Equilibrium can be verified in a number of ways, such as checking total pressure stability

or using a sampling system which checks that the phase compositions are not changing [5].

These systems are fairly simple, but after each temperature or pressure variation, the system

3

Figure 3: An example of a single-effect absorption refrigeration cycle. Taken from Schaefer

[3].

Stirring
Motor

Equilibrium
Cell

Pressure Gauge

Gas-Phase Sampler

Liquid-Phase
Sampler

Gas-Liquid
Chromatograph

Computer

Constant Temperature Bath

Figure 4: A typical static equilibrium cell used for experimental VLE calculations Adapted

from Pawlikowski, et al. [4]

4

must be allowed to re-equilibrate before the phase compositions can be determined. This

process must be repeated for every temperature, pressure, and composition where data are

desired. As a result, complete data sets of experimental VLE curves are very time consuming

to produce.

To reduce the time required to obtain VLE data, numerical methods can be used to model

the data instead. As will be discussed in this work, one form of this modeling is based on

the calculation of fugacity coefficients derived from equations of state. Thus, the accuracy of

simulated VLE data is highly dependent on the limitations of the modeling equations that are

used. This research seeks to determine the best equation of state, mixing, and combining rule

combinations that increase the usability of the VLE simulation by reducing their dependence

on experimental data. By developing an understanding of the relationship between all the

equations used in a model, simulations can be more reliably used to predict VLE data

under conditions in which experimental data is not available nor easily obtainable. Using

Fortran 90, a VLE simulation code was developed that can model fluid mixtures with various

equations. A model’s success is classified by both convergence and performance metrics over

large ranges of experimental fitting parameters. Models that converge for large numbers of

pairs, and do so with good performance, are chosen as the most predictive combinations due

to their ability to continue to reproduce data even with a lack of decent experimental data. A

method to visualize the difference between correlative and predictive equations is presented

with the hope that a better understanding of these principles may lead to the development

of enhanced equations with increased predictive ability, which consequently, could increase

the usability of those equations.

The following sections will provide an overview of the major thermodynamic concepts

briefly mentioned here, including dew and bubble points, fugacities, equations of state, and

mixing and combining rules.

5

1.2 DEW POINT AND BUBBLE POINT DATA

The primary objective of a vapor-liquid equilibrium calculation is the determination of dew

and bubble points. A bubble point corresponds to the temperature, pressure, and compo-

sition of a fluid mixture at which the mixture exists as a saturated liquid. Any increase in

temperature or decrease in pressure from these determined values would result in the vapor-

ization of one or both components in the mixture, leading to a vapor-liquid mixture. A dew

point, on the other hand, corresponds to the existence of a saturated vapor mixture, where

a decrease in temperature or an increase in pressure would cause the condensation of liquid,

resulting in a vapor-liquid mixture. Bubble point and dew point data is typically shown for

a fixed temperature or a fixed pressure. The variable property acts as the dependent vari-

able and the composition as the independent variable. Figure 5 shows a fixed temperature,

pressure - composition curve and Figure 6 shows a fixed pressure, temperature - composition

curve.

Mole Fraction: z1

P
[k
P
a]

Vapor Only

Liquid Only

Liquid
+

Vapor

0 0.2 0.4 0.6 0.8 1
4

6

8

10

12

Bubble Point
Dew Point

Figure 5: Pressure vs. composition of a Water-EtOH mixture at 303.15 K, showing the

bubble point data as a solid blue curve and the dew point data as a dashed red curve.

It is worth noting here that the thermodynamic definition of equilibrium can be expressed

in a number of equivalent forms, but the two most basic equate the Gibbs free energies, G,

or the chemical potentials, µ, between various phases, I, II, III, . . . , as shown in Equations

(1.1) and (1.2), respectively:

GI (T, P) = GII (T, P) = GIII (T, P) = · · · , (1.1)

6

Mole Fraction: z1

T
[K

]

Liquid Only

Vapor Only

Liquid
+

Vapor

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Point
Dew Point

Figure 6: Temperature vs. composition of a Water-EtOH mixture at 101,325 Pa, showing

the bubble point data as a solid blue curve and the dew point data as a dashed red curve.

µI (T, P) = µII (T, P) = µIII (T, P) = · · · . (1.2)

It is the determination of the thermodynamic properties, such that these equations are

satisfied, that provides the dew and bubble point data of interest. This solution is obtained

using iterative numerical methods that will be described in Chapter 4, following an in-depth

presentation of the underlying mathematics.

1.3 FUGACITY

Fugacity is a concept that often causes confusion. This is due to its entirely mathematical

definition, that is often introduced without a physical interpretation. However, a better

understanding of what the fugacity is can be obtained by examining its derivation. To

begin, the Gibbs-Duhem equation for a pure substance, as shown in Equation (1.3), relates

the chemical potential to the thermodynamic properties of the system:

dµ = −SmdT + VmdP, (1.3)

7

where Sm and Vm are the molar entropy and volume, respectively. Note that molar quantities

are assumed throughout this derivation unless specifically noted. The subscript, m, for the

molar volume will be maintained to avoid confusion as the total volume, labeled Vt, will be

used in later discussions. Following the derivation provided by Richet, the Gibbs-Duhem

equation can be integrated, first isothermally and then isobarically, from (T0, P0) to (T, P)

so that [6]:

µ− µ (T0, P0) = −
∫ T

T0

SmdT +

∫ P

P0

VmdP. (1.4)

For simplicity, the standard chemical potential, µ0, can then be defined as the chemical

potential of a substance at its standard state with a fixed pressure of P0 = 1 bar, so that:

µ◦ = µ (T0, P0)−
∫ T

T0

SmdT. (1.5)

Using this definition, Equation (1.4) can be rewritten as:

µ = µ◦ +

∫ P

P0

VmdP. (1.6)

For an ideal gas Vm = RT
P

, which when substituted into Equation (1.6), leads to:

µ = µ◦ +RT ln

(
P

P0

)
, (1.7)

after integration. Note that this expression can be used interchangibly with the equation of

state as the definition of an ideal gas. In order to maintain the form of Equation (1.7), the

fugacity, f , was introduced on a purely mathematical basis such that Equation (1.8) holds

exactly for a real substance:

µ = µ◦ +RT ln

(
f

f0

)
. (1.8)

Finally, comparing this relation to the corresponding form for an ideal gas shown in

Equation (1.7), it becomes clear that the fugacity is just a theoretical pressure that, at a

given temperature, is required to make a non-ideal gas satisfy an equation for the chemical

potential of an ideal gas [7]. In other words, the fugacity represents the theoretical pressure

of a system, where the real gas would take on the properties that an ideal gas has at the

actual pressure of the system.

8

A few important attributes of the fugacity arise from its mathematical underpinning.

First, it must obey the following limit:

lim
P→0

f = P. (1.9)

This ensures that Equation (1.8) will reduce to Equation (1.7) when the pressure goes to

zero, the theoretical condition where all substances behave as ideal gases.

Furthermore, an interesting problem arises when the fugacity is introduced with the

integral form of the chemical potential. This is obtained by combining Equations (1.6) and

(1.8), yielding:

RT ln

(
f

f0

)
=

∫ P

P0

VmdP. (1.10)

Now, if P0 is allowed to go to zero, the volume of the gas will go to infinity, making it

impossible to calculate the absolute fugacity of a substance. To deal with this issue, the

fugacity coefficient, φ, is introduced, such that by Equation (1.9), φ goes to 1 as P goes to

0 and,

φ =
f

P
. (1.11)

From Equation (1.8), it is clear that if the chemical potentials of two phases are equal,

the fugacities will also be equal, and, similarly, the fugacity coefficients will be equal. Thus,

the thermodynamic relationship that defines equilibrium between phases I, II, III, . . . in

Equation (1.2) can be rewritten in terms of fugacity coefficients as:

φI (T, P) = φII (T, P) = φIII (T, P) = · · · (1.12)

This is the primary condition of equilibrium used in the numerical routine presented in

this work. As such, an explicit formulation of the fugacity coefficient, in terms of easily

measurable substance properties, is desired. Following the derivation by Walas, this expres-

sion is developed by first considering Equation (1.10), which is transformed into a volume

integral for convenience [8]:

RT ln

(
f

f0

)
=

∫ P

P0

VmdP

=

∫ PVm

P0V0

d (PVm)−
∫ Vm

V0

PdVm

= PVm − P0V0 −
∫ Vm

V0

PdVm. (1.13)

9

Now, an expression for the fugacity coefficient can be derived using Equation (1.11) and the

fact that, by the definition of the fugacity, as P goes to 0, f → P and f0 → P0:

RT lnφ = RT ln
f

P

= RT ln

(
f

f0

f0
P

)
= RT ln

f

f0
−RT ln

P

P0

. (1.14)

At this point, the fugacity coefficient can be further developed in terms of integration over

pressure or volume using either Equation (1.10) or Equation (1.13), respectively. Both

of these forms are shown as they are useful for different aspects of this analysis. First,

substituting Equation (1.10) into Equation (1.14) yields:

RT lnφ =

∫ P

P0

VmdP −RT ln
P

P0

=

∫ P

P0

(
Vm −

RT

P

)
dP. (1.15)

Using the definition of compressibility,

Z =
PVm
RT

, (1.16)

and choosing P0 = 0, this can be rewritten as:

lnφ =

∫ P

0

Z − 1

P
dP. (1.17)

From this form, it becomes evident that the fugacity coefficient is just a representation of

the deviation a substance takes from an ideal gas. When the substance of interest behaves as

an ideal gas, either because Z = 1 or as P → 0, the requirement that f → P , and therefore

φ→ 1, holds.

Now, returning to Equation (1.14) and using Equation (1.13), the fugacity coefficient

can also be expressed as follows:

RT lnφ = PVm − P0V0 −
∫ Vm

V0

PdVm −RT ln
P

P0

. (1.18)

10

By adding and subtracting RT
Vm

inside the integrand, this can be rewritten as:

RT lnφ = PVm − P0V0 −
∫ Vm

V0

(
P − RT

Vm

)
dVm −

∫ Vm

V0

(
RT

Vm

)
dVm −RT ln

P

P0

. (1.19)

Integrating:

RT lnφ = PVm − P0V0 −
∫ Vm

V0

(
P − RT

Vm

)
dVm −RT ln

Vm
V0
−RT ln

P

P0

= PVm − P0V0 −
∫ Vm

V0

(
P − RT

Vm

)
dVm −RT ln

(
VmP

RT

RT

V0P0

)
= PVm − P0V0 −

∫ Vm

V0

(
P − RT

Vm

)
dVm −RT ln

VmP

RT
−RT ln

RT

V0P0

= PVm − P0V0 −
∫ Vm

V0

(
P − RT

Vm

)
dVm −RT lnZ −RT lnZ0. (1.20)

If the reference state is taken such that P → 0, it can be assumed that Vm → ∞, Z0 → 1,

and the ideal gas law holds such that P0V0 → RT , leading to:

RT lnφ = PVm −RT −
∫ Vm

∞

(
P − RT

Vm

)
dVm −RT lnZ. (1.21)

Finally, dividing through byRT and reorganizing leads to the final formulation of the fugacity

coefficient of a pure substance, shown in Equation (1.22):

lnφ =
1

RT

∫ ∞
Vm

(
P − RT

Vm

)
dVm − lnZ + Z − 1. (1.22)

It can be seen now that a relationship between the pressure, volume, and temperature

is required to determine the fugacity coefficient. This relationship, also referred to as an

equation of state, is described in the following section.

11

1.4 EQUATIONS OF STATE

An equation of state is a fundamental thermodynamic correlation which relates thermody-

namic properties, and fully defines a system. A common form of an equation of state includes

the absolute temperature, the pressure, and the molar volume. The most basic equation of

state is the ideal gas law, referenced before and shown in Equation (1.23):

PVm = RT, (1.23)

where P is the pressure, Vm is the molar volume, which is equivalent to the total volume

divided by the number of moles (Vt
n

), R is the molar universal gas constant, and T is the

temperature. This equation can also be represented using the compressibility Z, defined

previously as:

Z =
PVm
RT

, (1.24)

which, for an ideal gas, leads to:

Z = 1. (1.25)

This form of the ideal gas law highlights the primary downside of this simple equation.

Based on the assumption that all molecules are incompressible hard-spheres, the ideal gas

law predicts a constant compressibility of 1 for all substances, regardless of composition and

molecular interactions. This inherent limitation has led to the development of equations

of state that seek to include interaction contributions and therefore achieve more realistic

results.

There are two main categories of equations of state that are used for modeling, those

with a theoretical basis and those formulated using empirical data. As shown in Figure

7, the empirically-based equations are primarily derived from the van der Waals equation,

(VDW), while the theoretical forms are based on various molecular and statistical theories

[9]. Each of these groups then branches into a number of different forms of equations, based

on the specific empirical methods or theories used to develop each one.

12

EQUATIONS OF STATEEQUATIONS OF STATEEQUATIONS OF STATEEQUATIONS OF STATEEQUATIONS OF STATEEQUATIONS OF STATEEQUATIONS OF STATE

Experimental EOS ModelsExperimental EOS ModelsExperimental EOS ModelsExperimental EOS ModelsExperimental EOS ModelsExperimental EOS ModelsExperimental EOS ModelsExperimental EOS ModelsExperimental EOS Models Theoretical EOS ModelsTheoretical EOS ModelsTheoretical EOS ModelsTheoretical EOS ModelsTheoretical EOS ModelsTheoretical EOS Models

IGLIGLIGLIGL

VDWVDW SW-TPT-DSW-TPT-DSW-TPT-DSW-TPT-DSW-TPT-D

RKRK
CSdW SAFTSAFT

RKRK
CSdW SAFTSAFT

RKRK

CSRK PHCTPHCT LJLJLJ HSHSCSRK PHCTPHCT LJLJLJ HSHS

RKSRKS
PRPRPRPRPRPR

CF PACTPACT SPHCTSPHCT
PRPRPR

CF PACTPACT SPHCTSPHCT

FullerFuller

TBTB PTPTPT PRSVPRSV HF APACTAPACTTBTB PTPTPT PRSVPRSV HF APACTAPACT

C
ar

na
ha

n
-

St
ar

lin
g

Pe
rt

ur
be

d
H

ar
d

C
ha

in
 T

he
or

y

T
PT

-D

T
he

rm
od

yn
am

ic
 P

er
tu

rb
at

io
n

T
he

or
y

Figure 7: A chart displaying the genealogy of various equations of state, represented by their

common abbreviations. Adapted from Wei & Sadus [9]

13

1.4.1 Theoretical Equations of State

Theoretical equations are based on statistical thermodynamics, which draws from an un-

derstanding of molecular dynamics. While potentially more accurate over larger ranges of

conditions, these equations are very difficult to solve and are therefore extremely computa-

tionally expensive.

The first theoretical equation of state was the virial equation of state. When it was

originally proposed in 1885 by Thiesen, its justification was entirely empirical. However,

later work showed that the form of the equation was consistent with statistical mechanics.

If the density form of the ideal gas law is considered [10–12]:

P

ρnRT
= 1, (1.26)

where R = NAkB, ρn = N/(NAV), and NA is Avogadro’s number, the virial equation is the

natural next step, as it is simply a Maclaurin series expanded around ρn = 0, as shown in

Equation (1.27):
P

ρnRT
= 1 +Bρn + Cρ2n +Dρ3n + · · · . (1.27)

The coefficients in the equation are dependent on temperature and composition and can be

directly related to intermolecular potential energy functions. For example, the square-well

potential function, shown in Figure 8, has a fairly simply mathematical form:

Γ =


∞ if r ≤ σ,

−ε if σ < r ≤ Rσ,

0 if r > Rσ,

(1.28)

where ε is the depth of the energy well (minimum potential energy), σ is the molecular

diameter, R is the reduced well width, and r is the distance between two molecules. This

function can be used to write the second virial coefficient, B, as [13, 14]:

B = b0R
3

(
1− R3 − 1

R3
exp

ε

RT

)
. (1.29)

However, determining the higher order coefficients becomes exceedingly difficult, and un-

fortunately, the equation only converges for low densities, making it unusable for liquid

calculations or temperatures and pressures near the critical point [12].

14

 0

Γ

r

σ

ε

R σ

Figure 8: The square-well molecular potential function.

Although the development of new theoretical equations has become very complicated,

some insight into their formation can be gained by considering the statistical thermodynamics

used as their basis. This approach begins with the fact that the energy of every molecule of

a substance can be divided into various forms. An ideal gas, for example, is characterized

by non-interacting hard-spheres. As a result, the only energy that is considered for an ideal

gas is the translational energy allowed by the individual molecules that comprise it. For a

real substance, however, the rotational, vibrational, and potential energies of each molecule

must also be considered [8, 15]. The amalgamation of these energies is formulated using the

molecular partition function, which is defined as:

Q =
∑
i

gi exp

(
−εi
kBT

)
, (1.30)

where εi is the quantized translational, rotational, vibrational, or potential energy, gi is the

number of quantized states with that energy, and kB is the Boltzmann constant. Using this

function, many thermodynamic properties can be expressed. The internal energy, entropy,

Gibbs free energy, and chemical potential are shown in Equations (1.31) - (1.34), respectively

[8, 15]:

15

U =
∑
i

Niεi

= RT 2

(
∂ lnQ

∂T

)
V

, (1.31)

S = R

[
T

(
∂ lnQ

∂T

)
V

+ lnQ

]
, (1.32)

G = RT

[
V

(
∂ lnQ

∂V

)
T

− lnQ

]
, (1.33)

µi = −RT
(
∂ lnQ

∂ni

)
T,V,nj

. (1.34)

Theoretical equations of state seek to express the interactions between molecules for

various substances and mixtures by defining the different energies associated with different

molecules. It is important to note that, as more detail is used to describe these molecular

interactions, more complexity enters the equations. Excellent examples of theoretical equa-

tions are the Associated Perturbed Anisotropic Chain Theory (APACT) and the Statistical

Associating Fluid Theory (SAFT) equations of state, described briefly here.

The APACT equation, developed by Ikonomou and Donohue, is written as the sum

of compressibility factors that account for isotropic repulsive and attractive interactions

that are independent of association, and anisotropic interactions that arise from dipole and

quadrupole moments, as well as hydrogen bonding. The APACT equation is shown in its

most general form in Equation (1.35) [9, 16, 17]. Each of its terms has been further developed

by Ikonomou, Donohue, Economou, and Vilmalchand [9, 16, 18–22].

Z = 1 + Zrep + Zatt + Zassoc (1.35)

The SAFT equation, based on the sum of four Helmholtz energy terms that account

for hard-sphere repulsive forces, dispersion forces, chain formation, and association, was

16

proposed by Chapman et al. and developed by Huang and Radosz. Its general form is shown

in Equation (1.36) [9, 23–25]:

A

NkT
=
Aideal

NkT
+
Aseg

NkT
+
Achain

NkT
+
Aassoc

NkT
. (1.36)

More detail concerning the individual terms of these equations can be found in the references

given above. Additionally, an excellent overview of these equations, as well their many

modifications, is given by Wei and Sadus [9].

1.4.2 Empirical Equations of State

Empirical equations, compared to theoretical ones, are relatively easy to solve numerically,

typically requiring simple iterative and root-finding procedures. Unfortunately, empirical

equations are not generally applicable for all fluids, in all conditions. That said, many cubic

equations of state have been developed by fitting equation parameters to experimental data

that are capable of reproducing pure fluid properties over a significantly large number of fluids

in a variety of conditions. In fact, at low pressures, empirical equations can provide more

accurate data reproduction than theoretical equations [9]. The vast majority of empirical

equations of state are based on modifications to the van der Waals equation. Originally

proposed in 1873, and shown in Equation (1.37), the van der Waals equation was the first

equation of state with the ability to calculate the simultaneous occurrence of both liquid and

vapor phases in a state of equilibrium [9].

Z = Zrep + Zatt (1.37)

It is interesting to note that, superficially, this equation is similar to the theoretical APACT

equation shown in Equation 1.35. However, instead of segregating the association indepen-

dent repulsive and attractive terms and the association term, as in the APACT equation,

the van der Waals equation only includes one repulsive and one attractive term. Zrep and

Zatt take the following forms for the vdW equation of state:

Zrep =
Vm

Vm − b
, (1.38)

Zatt = − a

RTVm
. (1.39)

17

In these relations, the b parameter represents the covolume, defined such that if the

molecules were hard-spheres with a diameter σ, b would be equal to 2
3
πNσ3. The a parameter,

on the other hand, represents the attractive forces between molecules [9]. Thus, the van der

Waals equation is comprised of two terms, the first is responsible for the repulsion between

molecules due largely to their spatial requirements, and the second represents the attraction

between the molecules. It is important to remember though, that these are inferences applied

to what are, in reality, curve-fitting parameters whose values have been related to physical

properties. Their forms are derived by considering the constraints imposed by the shape

of the critical isotherm of a pure substance, shown in Figure 9 [26]. This requires that the

critical isotherm have a horizontal inflection point at the critical state, implying:(
∂P

∂V

)
T ;cr

= 0, (1.40)(
∂2P

∂V 2

)
T ;cr

= 0. (1.41)

C

P

Pc

Vc V

Figure 9: Critical isotherm of a pure substance. Adapted from Schaum’s Thermodynamics

Outline by Abbott & Van Ness [26].

More detail concerning the practical calculation of the a and b terms for mixtures will be

given in Chapter 2, but it is these parameters that incorporate information about the specific

substances being modeled. For example, in order to calculate the parameters for a pure

18

substance for the van der Waals equation of state, Equations (1.40) and (1.41) are applied

to the equation of state at the critical point and the following expressions are obtained:

a =
27

64

(RTc)
2

Pc
, (1.42)

b =
1

8

RTc
Pc

, (1.43)

where Tc and Pc are the critical temperature and critical pressure of the substance, respec-

tively.

While the van der Waals equation is capable of predicting the coexistence of the liquid and

vapor phases, it is plagued by inaccuracy. For example, regardless of the chosen fluid, the van

der Waals equation calculates the same critical compressibility factor (Zc = PcVm,c

RTc
) of 0.375.

This result, while much better than the Z = 1 calculated by the ideal gas equation, is still

erroneous. Consequently, a great deal of work has gone into modifying the functional form

of the equation, with the majority of time being spent on the attractive term. This includes

attempts to incorporate varying degrees of volumetric and temperature dependence, as well

as further dependence on the covolume parameter, and even the introduction of additional

fitting parameters. While a, b, and other parameters remain calculable from the critical

properties of fluids, the functional form of these expressions has also undergone a good deal

of manipulation and actual values can vary greatly. The result from the last 140 years of

work, much of which as been carried out in the last 60, is an agglomeration of equations,

all with variations on the basic form proposed by van der Waals. Each equation falls into a

different category based on which fluids it can successfully model and at which temperature

and pressure ranges. Some of the most common modifications are shown in Table 1 [9]. The

various parameters shown in these equations have been added to increase the flexibility of

the equations. For example, the α parameter was introduced first in the Redlich-Kwong

equation of state to add a temperature dependence to the attractive term in the following

manner:

Z =
Vm

Vm − b
− aα

RT (Vm + b)
(1.44)

=
Vm

Vm − b
− a

RT 1.5 (Vm + b)
. (1.45)

19

This concept was taken a step further by Soave, with his introduction of a more general

expression for α, including both a temperature dependence and additional fluid properties,

such that:

aα = 0.4274

(
R2T 2

c

P 2
c

)(
1 +m

[
1−

(
T

Tc

)0.5
])2

, (1.46)

with:

m = 0.480 + 1.57ω − 0.176ω2, (1.47)

where ω is the acentric factor of the fluid.

The c parameter in the Patel-Teja equation of state and the c and d parameters of the

Trebble-Bishnoi equation, further increase the ability of the equations to reproduce real fluid

behavior. In a two-parameter equation of state, such as the van der Waals equation, the

critical compressibility and b parameter are constant for all substances. Introducing a third

parameter allows the variability of one of those values, and a fourth makes both variable,

potentially allowing more accurate modeling of a wider range of substances [27–29].

Some equations of state are better for pure fluid property prediction, while others excel

at fluid mixtures with specific interaction properties. It must be remembered however,

that all of these equations, no matter how intricate, are still empirical relations. In the end,

fitting parameters are required in order to correlate the expressions to experimental data sets.

Often, without decent parameters, the equations fail not only to predict data that is accurate,

but can even calculate behavior that is completely unphysical. This highlights an important

aspect of empirical equations of state: they are by nature correlative, not predictive. It is

necessary to have decent a priori knowledge of empirical work before the calculation of data

is possible. This is not to say these equations are not extremely useful. It has been found

that by determining fitting parameters using a relatively small range of data, much larger

ranges can be predicted accurately, using the same parameters. Similarly, by experimentally

determining parameters for one fluid pair, it is often possible to use similar parameters for

fluids with similar properties and interactions. However, it is often difficult to decide which

equations should be used at which times, and to what extent existing parameters can be

used to predictively calculate missing data. It is therefore important, if the implementation

of these equations is desired, to be aware of the true limitations of their usability. Not only

20

will this allow a better insight of the working ranges of the equations, but it will also assist

in the selection of equations based on the availability of good empirical data. This need

provides the primary motivation for this work.

The following chapter will discuss modifications to the fugacity coefficient equation and

the equations of state that were presented above, which are necessary for their application

to the calculation of the vapor-liquid equilibrium of mixtures. This will be followed by

an overview of the procedure used to determine vapor-liquid equilibria data using these

equations. Finally, the behavior of the equations will be analyzed and an enhanced method

for the visualization of performance, from both a correlative and a predictive perspective,

will be introduced.

21

Table 1: Modifications to the Attractive Term of the van der Waals Equation [9]

Equation Attractive Term (−Zatt)

Redlich-Kwong (1949)
aα

RT (Vm+b)

Redlich-Kwong-Soave (1972)
aα

RT (Vm+b)

Peng-Robinson (1976)
aαVm

RT [Vm(Vm+b)+b(Vm−b)]

Patel-Teja (1982)
aαVm

RT [Vm(Vm+b)+c(Vm−b)]

Peng-Robinson-Stryjek-Vera (1986)
aαVm

RT(V 2
m+2bVm−b2)

Trebble-Bishnoi (1987)
aαVm

RT [V 2
m+(b+c)Vm−(bc+d2)]

22

2.0 APPLICATION OF EQUATIONS TO MIXTURES

The previous chapter provided an overview of fugacity and equations of state. However,

little was said about the manner in which these equations can be applied to the calculation

of mixture properties. The following sections will describe the methods used to accomplish

this procedure. Recall that Equation (1.22), which is repeated here for convenience, gives

the expression for the fugacity coefficient of a pure substance:

lnφ =
1

RT

∫ ∞
Vm

(
P − RT

Vm

)
dVm − lnZ + Z − 1. (2.1)

From Hu, et al., the relationship between the partial and the pure fugacity coefficients

can be written as [30]:

ln φ̂i =

(
∂ (n lnφ)

∂ni

)
T,P,nj 6=i,Vt

. (2.2)

Combining Equations (2.1) and (2.2) gives:

ln φ̂i =
∂

∂ni
[nZ − n− n lnZ]− 1

RT

(
∂

∂ni

[∫ Vm

∞

(
nP − nRT

Vm

)
d (Vm)

])
, (2.3)

where the constants of the partial derivatives are assumed but omitted for simplicity. Next,

using the definition that:

n =
∑
i

ni, (2.4)

such that:
∂n

∂ni
= 1, (2.5)

and Vm = Vt/n, each term can be evaluated as follows:

∂ (nZ)

∂ni
=

∂

∂ni

[
n
PVm
RT

]
=

∂

∂ni

[
PVt
RT

]
= 0, (2.6)

23

∂ (n lnZ)

∂ni
=

∂n

∂ni
lnZ + n

∂ lnZ

∂ni

= lnZ +
n

Z

∂Z

∂ni

= lnZ +
n2RT

PVt

∂

∂ni

[
PVt
nRT

]
= lnZ +

n2RT

PVt

PVt
RT

(
− 1

n2

)
= lnZ − 1, (2.7)

1

RT

∂

∂ni

[∫ Vm

∞

(
nP − nRT

Vm

)
dVm

]
=

1

RT

∂

∂ni

[∫ Vt/n

∞

(
nP − n2RT

Vt

)
d

(
Vt
n

)]

=
1

RT

∂

∂ni

[∫ Vt

∞

(
nP − n2RT

Vt

)
1

n
dVt

]
+

1

RT

∂

∂ni

[∫ β

α

(
nPVt − n2RT

)
d

(
1

n

)]
=

1

RT

∫ Vt

∞

[(
∂P

∂ni

)
T,Vt,nj 6=i

− RT

Vt

]
dVt. (2.8)

The α and β in one of the integrals above represent arbitrary limits of integration which

are not important because the integration over 1
n

will yield an expression independent of

ni, causing the derivative of this term to vanish. Applying the terms evaluated above to

Equation (2.3), the partial fugacity coefficient becomes:

RT ln φ̂i =

∫ ∞
Vt

[(
∂P

∂ni

)
T,Vt,nj 6=i

− RT

Vt

]
dVt −RT lnZ, (2.9)

where the pressure and the compressibility factor are determined using equations of state

that describe mixture properties, instead of pure component properties.

In Chapter 1, Section 1.4.2, many equations of state were shown. As was briefly men-

tioned then, the substance properties only affect the parameters in the equations, e.g. the a

and b parameters in the Peng-Robinson equation of state. As a result, the equations shown

there keep the same form for both pure species and mixtures, but the parameters that

comprise them vary to incorporate the effects of interactions between different substances.

The ways in which these interactions are taken into account are described by mixing and

combining rules.

24

2.1 MIXING RULES

As shown for the van der Waals equation of state in Chapter 1, Section 1.4.2, the a and b

parameters are dependent on the critical temperature and critical pressure of the substance

of interest. The pure forms of the parameters for select equations of state will be presented

later, in Chapter 3. However, regardless of the specific form of these parameters for differ-

ent equations of state, in order to apply them to mixtures, a set of mixing rules must be

used. Mixing rules primarily include the effect of mixture composition on the value of the

parameters. This is accomplished by multiplying the pure parameters by either the liquid

or vapor mole fractions and combining them in a way that sets the mixture parameter to an

intermediate value between the pure parameter values. The choice of which mole fraction

to use will depend on whether bubble point or dew point data is desired. To clarify this,

consider the total mole fraction, in any phase, of a component i in a mixture:

zi = xi ∗ LF + yi ∗ V F, (2.10)

where xi is the liquid mole fraction of component i in the mixture, yi is the vapor mole

fraction of component i in the mixture, LF is the total liquid fraction of the mixture, and

V F is the total vapor fraction of the mixture. Now, for a bubble point calculation, the

mixture is in a saturated liquid state, and as a result, LF = 1 and V F = 0. For a dew point

calculation on the other hand, the mixture is saturated vapor so that LF = 0 and V F = 1.

Therefore, we can write the total mole fraction of component i in a mixture at its bubble

point as:

zi = xi, (2.11)

and at its dew point as:

zi = yi. (2.12)

In this work, the mole fraction will just be referred to as zi, with the understanding that this

refers to the liquid mole fraction of component i for the bubble point, and the vapor mole

fraction for the dew point.

25

Now, using this mole fraction, the mixing rules can be defined. There are two primary

forms of mixing rules that are implemented in this work: linear and quadratic. These are

shown in Equations (2.13) and (2.14), respectively, for an arbitrary parameter, ζ:

ζ =
N∑
i

ziζii, (2.13)

ζ =
N∑
i

N∑
j

zizjζij, (2.14)

where N is the total number of components in the mixture. In these expression, the ζii

terms are the pure forms of the parameters, such as would be used for the calculation of

property data for a single, pure component. The ζijs, on the other hand, will depend on

mixture behavior and can be determined through the use of combining rules, which will be

described in the following section. It is important to note that there are a vast number of

mixing rules available and many different techniques have been used in their determination.

Methods such as lumping and spectral decomposition have found particular success in the

modeling of systems with large numbers of components to reduce the order or the system

to be solved [31–33]. However, this work focuses on the two most popular mixing rules in

standard vapor-liquid equilibrium calculations.

For binary mixtures, the linear mixing rule becomes:

ζ = z1ζ11 + z2ζ22, (2.15)

and the quadratic mixing rule is:

ζ = z21ζ11 + z1z2ζ12 + z1z2ζ21 + z22ζ22. (2.16)

Notice that the linear mixing rule does not contain a ζij term. As a result, a parameter

calculated using the linear mixing rule will not depend on a combining rule.

While the linear mixing rule is clearly just a linear combination of the two pure parame-

ters, the quadratic mixing rule can be interpreted physically through a consideration of the

probability that two molecules will interact. This is best illustrated through an example.

Consider a system with only three molecules, two of type 1, and one of type 2. In this

system, the probability that one will encounter a molecule of type 1 is 2 out of 3. This

26

quantity is described by its mole fraction, z1. Likewise, the probability of encountering a

molecule of type 2 is 1 out of 3, or z2. Following this logic, the conditional probability that a

molecule of type 1 will interact with another molecule of type 1 is described by the product

of the two probabilities, z1 ∗ z1, or 4
9
. Similarly, the probability that a molecule of type 1

interacts with a molecule of type 2 becomes z1 ∗ z2, or 2
9
. Thus, the quadratic mixing rule

seeks to formulate a mixture parameter based on the probabilities of molecular interactions

[34]. The importance of this will be revealed when the forms of ζ12 and ζ21 are considered

in the following section.

2.2 COMBINING RULES

Combining rules are the source of much complexity in determining the properties of mixtures.

While there is no quantitative, theoretical basis for combining rules, the idea behind their

forms stems from intermolecular potential theory. When molecules are near each other, they

have some potential energy that either pulls them closer together or pushes them farther

apart. That potential depends of the distance between the molecules and is often expressed

as a potential energy function, Γ. In addition to the square-well potential shown in Chapter

1, Section 1.4.1, another common potential function is the Lennard-Jones potential, shown

in Figure 10 and described by Equation (2.17) [12, 35, 36]:

Γ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2.17)

where, as before, σ represents the molecular diameter, r is the distance between the two

interacting molecules, and ε is the depth of the energy well. However, this potential describes

the energy between two identical molecules. Commonly, the potential between two unlike

molecules is written as:

Γij = εijF

(
rij
σij

)
, (2.18)

where F represents the chosen potential form, such as the Lennard-Jones potential. Now,

expressions for the diameter and energy parameters, σij and εij , for two different molecules

are required. For the diameter, a common choice is the Lorentz rule, shown in Equation

27

 0

Γ
r

σ

ε

Figure 10: The Lennard-Jones potential function.

(2.19). This would be an exact expression if the molecules were actually hard spheres,

following a square-well potential, in which repulsive forces are only significant when the

molecules come into contact, but it is often used as an approximation nonetheless [12, 37].

σ12 =
1

2
(σ11 + σ22) (2.19)

The energy, on the other hand, is often developed by considering a simple geometric combi-

nation between energies, leading to its form as the Berthelot rule:

ε12 = (ε11ε22)
1/2 . (2.20)

There are many different combining rules for the potential energy function parameters, but

these basic expressions are formulated using a simplified understanding of the manner in

which lengths and energies combine. With this background, an analogy between the param-

eters of the potential function and those in an equation of state can be drawn. The energy,

ε, and the a parameter, both seek to describe the attractive energy between molecules. Sim-

ilarly, the molecular diameter, σ, and the b parameter, are measures of a molecules size,

28

assuming it occupies the space of a hard sphere. These interpretations of the parameters in

equations of state allow the application of the same combining rules as follows [35]:

aij = (1− kij)
√
aiiajj, (2.21)

bij =
1

2
(1− lij) (bii + bjj) , (2.22)

where kij and lij represent additional parameters added to fit the simulation to experimental

data. It can now be seen why a consideration of the probabilities of molecular interactions

is useful. The combining rules seek to describe an equation of state parameter for a mixture

based on how the pure component parameters might combine. However, this combination

should only affect the mixture parameter when the molecules are actually in contact. In

other words, implementing a quadratic mixing rule with a combining rule results in the

contribution of the cross-interaction terms being scaled based on the probability that the

molecules involved are in fact interacting.

As with the development of equations of state, while the combining rules presented

above are qualitatively justified, they are empirically based, and therefore can be improved

in various ways. A vast number of different combining rules exists, from the simple, generic

forms shown above, to forms which are highly specialized for a small subset of mixtures. Only

a few will be presented in this work, with an attempt to include both simple and somewhat

complex rules. Those rules, shown in Equations (2.23) - (2.26), are the Arithmetic, the

Geometric, the Margules, and the van Laar combining rules, respectively, which, for binary

mixtures, should be written for i, j ∈ {1, 2} : i 6= j where kij and kji, referred to as binary

interaction parameters, are experimental fitting parameters that can take on different values

for different parameters. Equations (2.21) and (2.22) are rewritten here as well as combining

rules for a generic parameter, ζ.

ζij =
1

2
(1− kij) (ζii + ζjj) (2.23)

ζij = (1− kij)
√
ζiiζjj (2.24)

ζij = (1− zikij − zjkji)
√
ζiiζjj (2.25)

ζij =

(
1− kijkji

zikij + zjkji

)√
ζiiζjj (2.26)

29

Considering the probability argument presented in the previous section, the last two

combining rules shown can be seen to introduce further composition dependence. Physically,

this refers to the possibility that molecules in a mixture may cluster, rather than distribute

randomly, depending on their particular nature. Therefore, the more complex combining

rules seek to better explain the physical phenomena that occur on a molecular level [34].

However, examining the expression for the van Laar combining rule, it becomes evident why

some more specialized combining rules might not always be ideal to use. Because there is

no rule governing the signs of kij and kji, it is possible that zikij + zjkji → 0. When this

occurs, the entire numerical procedure breaks down due to the existence of a pole. Methods

used to address this divergence are discussed in Section 4.4.1.

A significant aspect of these combining rules, and thus of equations of state for mixtures,

are the binary interaction parameters. These are the parameters that act as experimental

fitting values to improve equation accuracy. These values must be chosen separately for

each fluid mixture combination, requiring experimental data of the individual mixture, and

making the equations correlative, as discussed in Chapter 1. As will be shown, these param-

eters can have a profound effect on the accuracy of the final simulated data. Consequently,

the dependence of an equation’s accuracy on the availability of these parameters is a very

interesting complication that arises in vapor-liquid equilibrium modeling. A study of this

behavior will yield the desired analysis of the predictability and usability of equations of

state that is so important in the practical implementation of VLE work.

30

3.0 MATHEMATICAL DERIVATIONS

The detailed mathematical derivations presented in this chapter are important aspects of

the vapor-liquid equilibrium calculation process. Typically, the equations presented in many

treatments of this method are only shown in a reduced form, with specific mixing rules and

combining rules already implemented into the equations of state. This lack of generality

makes it difficult for one to carry out VLE calculations with varying combinations of equa-

tions, removing one’s ability to analyze the effect these combinations have on performance.

Therefore, the mathematical derivations that follow are shown in full detail to allow the

aggregation of a diverse range of equations of state, mixing rules, and combining rules.

The general form of the fugacity coefficient for each component in a mixture, shown in

Equation (2.9), is repeated here for reference:

RT ln φ̂i =

∫ ∞
Vt

[(
∂P

∂ni

)
T,Vt,nj 6=i

− RT

Vt

]
dVt −RT lnZ (3.1)

This expression requires two variations of an equation of state to solve. First, a pressure

explicit form is needed for the calculation of the partial derivative. Second, it is convenient

to have a form of the equation of state in terms of compressibility so that its solution yields

a value for Z. Thus, general formulations of both of these types are given in Equations

(3.2) and (3.4). Each of the following sections then develops these equations to include the

specifics of a few equations of state. It should be noted that all the parameters affected by

mixing and combining rules are potentially composition dependent, and therefore, taking

the partial derivative shown above is not trivial.

The general form of a pressure explicit cubic equation of state is:

P =
RT

Vm − b
− θ (Vm − η)

(Vm − b) (V 2
m + δVm + ε)

, (3.2)

31

where θ, η, δ, and ε will be defined for each equation of state. Solving the definition of

compressibility for volume gives:

Vm =
ZRT

P
, (3.3)

which can be substituted into Equation (3.2), and, after some simplification, a general cubic

equation of state in terms of compressibility is derived:

Z3 +

[
P

RT
(δ − b)− 1

]
Z2 +

[(
P

RT

)2

(ε− δb)−
(
P

RT

)
δ +

(
P

(RT)2

)
θ

]
Z

+

[(
P

RT

)2(
−εb P

RT
− ε− ηθ 1

RT

)]
= 0. (3.4)

Note that this equation will provide 3 roots, due to its cubic nature. Three possibilities exist

for these roots if all are real: three distinct roots, one distinct root and a double root, or one

triple root, labeled by Pr1, Pr2, and Pr3, respectively, in Figure 11 [26]. A triple root exists

only on the critical isotherm, at Pr = 1 and Tr = 1, and corresponds to the critical point of

the fluid. The other two cases can exist for a number of different Pr values. However, their

stability is limited by Maxwell’s equal-area rule, which claims that, at an equilibrium state,

the horizontal line drawn at a constant Pr must intersect the isotherm in such a way that

the areas between the isotherm and the line are equal. Physically, this requirement can be

interpreted by recognizing that the mechanical work done on or by a system is equal to the

area under an isotherm on a pressure-volume curve. If path CDBFA is assumed to be an

equilibrium path and it is followed along the isotherm, the work done on the system can be

expressed as:

WorkCDBFA = WorkACIH +WorkBDC −WorkABF . (3.5)

Next, the path ABC can be followed back to state C by taking infinitely small steps so as to

maintain reversibility, yielding the following expression for the work done by the system:

WorkABC = WorkACIH . (3.6)

Now, because the initial and final states are the same, and because it was assumed that the

paths followed were reversible, equilibrium paths, there should be no net work. Furthermore,

32

because the temperature was held constant, no heat is transformed into work. As a result,

it can be stated that, at equilibrium:

WorkCDBFA −WorkABC = 0. (3.7)

Combining Equation (3.7) with Equations (3.5) and (3.6), Maxwell’s equal-area rule is ob-

tained [38, 39]:

WorkBDC = WorkABF , (3.8)

This concept can be expressed rigorously by considering the change in chemical potential

along an isotherm, from a liquid to a vapor state:

µvapor − µliquid =

∫ vapor

liquid

(
∂µ

∂P

)
T

dP. (3.9)

However, as discussed previously, vapor-liquid equilibrium is defined as:

µvapor(T, P) = µliquid(T, P), (3.10)

yielding the result that: ∫ vapor

liquid

(
∂µ

∂P

)
T

dP = 0. (3.11)

Using the definition of µ:

µ− µ (T0, P0) =

∫ T

T0

SmdT +

∫ P

P0

VmdP, (3.12)

the partial derivative inside the integral becomes:(
∂µ

∂P

)
T

= Vm (3.13)

leading to the expression: ∫ vapor

liquid

VmdP = 0. (3.14)

Taken along an isotherm, such as CDBFA shown in Figure 11, Equation (3.14) is the

mathematical equivalent of Maxwell’s equal-area rule [39]. Interestingly, by starting with

Maxwell’s mechanical work argument and first asserting that the areas between the isotherm

and the constant pressure line must be equal at equilibrium, the mathematical derivation

can be reversed. This approach then leads directly to the conclusion that the equality of

33

chemical potentials is a requirement of equilibrium, which is the fundamental condition used

in VLE modelling.

Now, due to Maxwell’s equal-area rule, Pr is fixed such that it intersects the isotherm

in Figure 11 at A, B, and C. The choice then arises of which values to choose of the three

roots. To make this decision, the concept of stability must be introduced. While equilibrium,

in general, refers to a state that is no longer changing, stability refers to the ability of an

equilibrium state to return to itself following a perturbation. An unstable equilibrium state,

on the other hand, given even the smallest perturbation, would be permanently changed.

A third possibility, a metastable state, is also possible. This refers to a locally stable state

that, given a small perturbation will persist, but with a large enough perturbation will be

altered. Most real systems exist in metastable states [40]. These concepts can be visualized

by considering a mechanical system under the influence of gravity, as shown in Figure 12 [6].

The mathematical criteria for stability can be determined rigorously, but the complete

derivation is beyond the scope of this discussion [39–41]. Here, intuition about a physical

system is adequate to justify that a state in which an increase in volume leads to an in-

crease in pressure is unstable. Such a system would correspond to one in which the thermal

compressibility is negative. This leads to the stability requirement that:(
∂Pr
∂Vr

)
Tr

< 0. (3.15)

An analysis of the roots shown in Figure 11 reveals that the state labeled B is physically

unstable and can never be achieved. Therefore, only states A and C are available as valid

states. These two states correspond to the saturated liquid and saturated vapor states,

respectively. Thus, the largest root will be chosen when the vapor phase is of interest, and

the smallest root for the liquid phase.

The general forms of the equations presented here can now be adapted to specific equa-

tions of state. In this work, the Redlich-Kwong-Soave, the Peng-Robinson, and the Peng-

Robinson-Stryjek-Vera equations are considered.

34

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5 1 1.5 2 2.5

P
r

Vr

Tr = 0.9

Tr = 1

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5 1 1.5 2 2.5

P
r

Vr

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.5 1 1.5 2 2.5

P
r

Vr

P
r1

P
r2

P
r3

G

A B C

DE

F

H I

Figure 11: Isotherms calculated using the reduced form of the van der Waals equation of

state. Possible roots are indicated by black dots. Adapted from Schaum’s Thermodynamics

Outline [26].

35

Stable

MetastableUnstable
Neutral

Figure 12: A mechanical system depicting stable, unstable, metastable, and neutral states.

Adapted from Richet’s The Physical Basis of Thermodynamics [6].

3.1 REDLICH-KWONG-SOAVE EQUATION OF STATE

For the Redlich-Kwong-Soave (RKS) equation of state, the parameters presented in the

general form above are defined as:

η = b, θ = aα, (3.16)

δ = b, ε = 0,

where the a, α, and b mixture parameters will be defined based on the chosen mixing rules

and combining rules as discussed in Chapter 2. However, for the RKS equation, the pure

component parameters that comprise the mixture parameters are defined as:

aii = 0.42747
(RTc,i)

2

Pc,i
, (3.17)

bii = 0.08664
RTc,i
Pc,i

, (3.18)

αii =

[
1 +

(
0.48508 + 1.55171ωi − 0.15613ω2

i

)(
1−

√
T

Tc,i

)]2
. (3.19)

In these expressions, Tc,i and Pc,i are the critical temperature and pressure, respectively, and

ωi is the acentric factor, all of component i.

36

Formulating Equation (3.2) in terms of the parameters given in Equation (3.17), yields

the pressure explicit RKS equation:

P =
RT

Vm − b
− aα

V 2
m + bVm

. (3.20)

Finally, defining A = aαP
(RT)2

and B = bP
RT

yields a simplified RKS compressibility equation:

Z3 − Z2 +
(
−B2 −B + A

)
Z − AB = 0. (3.21)

This cubic equation can be solved using a variety of methods to determine the compressibility,

which will be used in the calculation of the fugacity coefficients.

The next requirement is to determine the partial derivative term in the fugacity coeffi-

cient. However, in order to differentiate the pressure explicit form of the RKS equation, it

is necessary to write it in terms of the number of moles, n. Using the definition of the molar

volume, Vm = Vt
n

, where Vt is the total volume, Equation (3.20) becomes:

P =
nRT

Vt − nb
− n2aα

V 2
t + nbVt

, (3.22)

where the number of moles, as before, obeys the following equation:

n =
∑
i

ni. (3.23)

Now, differentiating Equation (3.22) with respect to ni at fixed temperature and total vol-

ume: (
∂P

∂ni

)
T,Vt,nj 6=i

=
RT

Vt − nb
+

[
nRT

(Vt − nb)2
+

n2aα

Vt (Vt + nb)2

](
∂nb

∂ni

)
T,Vt,nj 6=i

−
[

1

Vt (Vt + nb)

](
∂n2aα

∂ni

)
T,Vt,nj 6=i

. (3.24)

Combining Equations (3.1) and (3.24) then gives:

RT ln φ̂i =

∫ ∞
Vt

[
RTnb

Vt (Vt − nb)
+

(
nRT

(Vt − nb)2
+

n2aα

Vt (Vt + nb)2

) (
∂ (nb)

∂ni

)
T,Vt,nj 6=i

− 1

Vt (Vt + nb)

(
∂ (n2aα)

∂ni

)
T,Vt,nj 6=i

]
dVt −RT lnZ. (3.25)

37

Because the partial derivatives of the mixture parameters are independent of Vt, this expres-

sion can be integrated directly, yielding:

RT ln φ̂i = −RT ln

(
Vt − nb
Vt

)
+

[
nRT

(Vt − nb)
− naα

b (Vt + nb)
+
aα

b2
ln

(
Vt + nb

Vt

)](
∂nb

∂ni

)
T,Vt,nj 6=i

−
[

1

b
ln

(
Vt + nb

Vt

)](
1

n

)(
∂n2aα

∂ni

)
T,Vt,nj 6=i

−RT lnZ. (3.26)

Using the definition of compressibility and the previous simplifications of A = aαP
(RT)2

and

B = bP
RT

, the final equation for the fugacity coefficient of each mixture component for the

RKS equation of state can be written as:

ln φ̂i =− ln (Z −B)

+

[
B

b

(
1

Z −B

)
− A

b

(
1

Z +B

)
+

A

bB
ln

(
1 +

B

Z

)](
∂nb

∂ni

)
T,Vt,nj 6=i

−
[

1

RTb
ln

(
1 +

B

Z

)](
1

n

)(
∂n2aα

∂ni

)
T,Vt,nj 6=i

. (3.27)

In Appendix A and B, the partial derivatives for the various mixing and combining rules

are presented. In the next sections, this same approach is used to develop expressions for the

fugacity coefficients of the Peng-Robinson and the Peng-Robinson-Stryjek-Vera equations of

state. These derivations are also provided in detail for the sake of completeness, as many

treatments of this process omit too many steps.

3.2 PENG-ROBINSON EQUATION OF STATE

For the Peng-Robinson (PR) equation of state, the general parameters are:

η = b, θ = aα, (3.28)

δ = 2b, ε = −b2,

38

where, as with the RKS equation, a, α, and b are mixture parameters based on the cho-

sen mixing rules and combining rules. The pure component parameters that comprise the

mixture parameters for the PR equation are defined as:

aii = 0.45724
(RTc,i)

2

Pc,i
, (3.29)

bii = 0.07780
RTc,i
Pc,i

, (3.30)

αii =

[
1 +

(
0.37464 + 1.54226ωi − 0.26992ω2

i

)(
1−

√
T

Tc,i

)]2
. (3.31)

Substituting the PR equation parameters into Equation (3.2) leads to:

P =
RT

Vm − b
− aα

V 2
m + 2bVm − b2

. (3.32)

Again, defining A = aαP
(RT)2

and B = bP
RT

gives the simplified PR compressibility equation:

Z3 − (B − 1)Z2 +
(
−3B2 − 2B + A

)
Z + (B3 +B2 − AB) = 0, (3.33)

which is solvable for Z. Equation (3.32) can now be rewritten in terms of the number of

moles and total volume as:

P =
nRT

Vt − nb
− n2aα

V 2
t + 2nbVt − n2b2

. (3.34)

Differentiating Equation (3.34) with respect to ni yields:(
∂P

∂ni

)
T,Vt,nj 6=i

=
RT

Vt − nb
+

[
nRT

(Vt − nb)2
+

2n2aαVt

(V 2
t + 2nbVt − n2b2)

2

](
∂nb

∂ni

)
T,Vt,nj 6=i

−
[

1

(V 2
t + 2nbVt − n2b2)

](
∂n2aα

∂ni

)
T,Vt,nj 6=i

−
[

n2aα

(V 2
t + 2nbVt − n2b2)

2

](
∂n2b2

∂ni

)
T,Vt,nj 6=i

. (3.35)

39

Now, combining Equations (3.1) and (3.35):

RT ln φ̂i =

∫ ∞
Vt

[
RTnb

Vt (Vt − nb)
+

(
nRT

(Vt − nb)2
+

2n2aαVt

(V 2
t + 2nbVt − n2b2)

2

) (
∂ (nb)

∂ni

)
T,Vt,nj 6=i

− 1

(V 2
t + 2nbVt − n2b2)

(
∂ (n2aα)

∂ni

)
T,Vt,nj 6=i

− n2aα

(V 2
t + 2nbVt − n2b2)

2

(
∂ (n2b2)

∂ni

)
T,Vt,nj 6=i

]
dVt −RT lnZ. (3.36)

Finally, integrating this and substituting in for Z, A, and B, as in the previous section, leads

to the partial fugacity coefficient for the PR equation of state:

ln φ̂i = − ln (Z −B)

+

[
B

b

(
1

Z −B

)
+
A

2b

(
B − Z

Z2 + 2BZ −B2

)
+

A

4bB
√

2
ln

(
Z +B

(
1 +
√

2
)

Z +B
(
1−
√

2
))](∂nb

∂ni

)
T,Vt,nj 6=i

−

[
1

2RTb
√

2
ln

(
Z +B

(
1 +
√

2
)

Z +B
(
1−
√

2
))](1

n

)(
∂n2aα

∂ni

)
T,Vt,nj 6=i

+

[
A

8Bb2
√

2
ln

(
Z +B

(
1 +
√

2
)

Z +B
(
1−
√

2
))− A

4b2

(
Z +B

Z2 + 2BZ −B2

)](
1

n

)(
∂n2b2

∂ni

)
T,Vt,nj 6=i

.(3.37)

3.3 PENG-ROBINSON-STRYJEK-VERA EQUATION OF STATE

The Peng-Robinson-Stryjek-Vera (PRSV) equation of state has exactly the same form as

the Peng-Robinson equation. The only difference is the way in which the pure component

parameters are calculated [42, 43]. For the PRSV equation of state, the general equation

parameters are defined as:

aii = 0.457235
(RTc,i)

2

Pc,i

bii = 0.08664
RTc,i
Pc,i

αii =

[
1 + κi

(
1−

√
T

Tc,i

)]2

κii = κ0,i +

[
κ1,i + κ2,i

(
κ3,i −

T

Tc,i

)(
1−

√
T

Tc,i

)](
1 +

√
T

Tc,i

)(
0.7− T

Tc,i

)

40

where κ0,i, κ1,i, κ2,i, and κ3,i are all pure substance specific parameters. As these have no

affect on the overall form of the equation, Equations (3.33) and (3.37) can still be used for

the calculation of the compressibility and the fugacity coefficients, respectively.

A detailed explanation of the derivations was shown here because, with an understanding

of this process, the same method can be used to derive fugacity coefficients for any cubic

equation of state. An important aspect of this process is the expression of the fugacity co-

efficients in terms of the partial derivatives of mixture parameters. While many transcripts

include these derivatives already evaluated in the fugacity coefficient, this generalized ap-

proach allows the incorporation of any number of mixing and combining rules using the

same equations. The following chapter will present the methods used to actually calculate

the vapor-liquid equilibria data of interest using the fugacity coefficient and compressibility

equations derived above.

41

4.0 NUMERICAL SIMULATIONS

In order to produce vapor-liquid equilibrium data using the equations developed in the pre-

vious chapter and to study the effect the different equations have on the results, a numerical

routine was written. The code described here, and shown in full in Appendices I - L, is

written in the Fortran 90 computer language. Fortran 90 was chosen for its combination

of a simple programming language and a powerful compiler capable of fast computation

times. Message Passing Interface (MPI) was incorporated, where beneficial, to parallelize

the computations for execution across multiple CPUs [44]. It is estimated that this imple-

mentation improved computation time by up to 17 times on the available systems. The final

computations were performed on a Dell XPS 9000 and the Warhol system at the Pittsburgh

Supercomputing Center. Details of these platforms are provided in Appendix C.

The iterative numerical procedure of determining the VLE curves is shown in Figure 14

[12]. Throughout the process, there are various values that will be labeled as either fixed

or guessed. These names will be used often and it should be remembered that the fixed

values remain constant throughout the entire numerical step, while the guessed ones may

vary greatly. Here, a numerical step corresponds to the calculation of a single bubble or dew

point, as shown in Figure 13. Referring again to Figure 14, one numerical step would be

the successful completion of the flow chart, arriving at “DONE.” Each loop that is taken

within the flow chart, on the other hand, will be referred to as a single iteration. The

numerical process as a whole will be used to signify the complete calculation of a bubble or

dew point curve, made up of the whole collection of points shown in Figure 13. This process

is accomplished by discretizing the composition and carrying out a complete numerical step

for each mole fraction element in the composition set. In summary, a single loop within

42

the flow chart is a single iteration, the completion of the chart is one numerical step, and

completing the chart multiple times for an entire composition set is the numerical process.

Mole Fraction: x1

P
re
ss
u
re

[k
P
a]

0 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

Figure 13: An example VLE data set showing individual bubble points. The entire set is

referred to as the bubble point curve.

4.1 COMPUTATIONAL METHODOLOGY FOR THE VAPOR-LIQUID

EQUILIBRIUM CALCULATIONS

Step 1 is to fix the mole fractions of one phase and either the temperature or the pressure,

which will yield isothermal or isobaric VLE data, respectively. For the calculation of dew

and bubble points, fixing the mole fractions corresponds to fixing the mole fractions of both

components in one phase. This is a result of the following expression, described previously

in Chapter 2.1:

zi = xi ∗ LF + yi ∗ V F, (4.1)

which reduces, for the bubble point, to:

zi = xi, (4.2)

and for the dew point, to:

zi = yi. (4.3)

43

1. Fix xi & P (or T)

2. Assume T (or P)

3. Assume yi

4. Calculate ϕi(L), ϕi(V) using EOS

10. Iterate T (or P) 5. Calculate yi = Kixi
 iter=1

9. Normalize yi

6. Σ yi ≟ const
NO

 YES

NO
7. Σ yi ≟ 1

 YES

8. DONE - Save yi, T (or P)

Figure 14: A flow chart describing the iterative procedure to determine a single numerical

step of the vapor-liquid equilibrium numerical process. Adapted from Assael, et al. [12]

44

If the mole fraction that is fixed corresponds to the liquid mole fraction as in Equation

(4.2), bubble point data will be determined at that specific mole fraction. Dew point data

will also be calculated, but only at a vapor mole fraction that is also determined during

the numerical step. While fixing the liquid mole fraction allows one to determine bubble

point data for a set range of compositions, at a predetermined step-size, the range of dew

point data determined throughout the process will most likely not span the entire range of

compositions, nor will the data points correspond to the same step-size chosen for liquid

mole fractions. However, if the fixed mole fraction represents the vapor mole fraction, as in

Equation (4.3), the dew point data is calculated regularly at those values, with the bubble

point data arising out of the calculations. As a result, in order to determine complete dew

and bubble point curves, the entire numerical process is carried out twice, once fixing the

liquid mole fractions at each step and once fixing the vapor mole fractions.

It is required that the sum of the mole fractions of all the components in each phase

equals one, as shown in Equation (4.4). ∑
i

zi = 1 (4.4)

For a binary mixture, during the calculation of bubble points, this yields the following

requirement:

z1 + z2 = x1 + x2 = 1. (4.5)

Similarly, for the calculation of dew points for a binary mixture:

z1 + z2 = y1 + y2 = 1. (4.6)

Therefore, in Step 1, it is necessary to fix either the temperature or the pressure and the

mole fraction of only one of the components. The decision of whether bubble or dew point

data is desired will determine if Equation (4.5) or Equation (4.6) is used, respectively. From

this point on, it will be assumed for simplicity that bubble point data is being calculated.

Following the description of the numerical process, in Section 4.2, a few notes will be made

concerning important changes required for the calculation of dew points.

In Step 2, the value of the pressure or the temperature is guessed to simulate an isother-

mal or isobaric data set, respectively. This choice can be done arbitrarily, but making a poor

45

initial guess can greatly decrease the speed of the numerical routine. Better options for this

choice will be discussed in Section 4.3.1.

In Step 3, the mole fraction of the thus undetermined phase is guessed. Specifically, for

the bubble point calculation where the liquid mole fraction was fixed, the vapor mole fraction

is guessed. For convenience, this guess is taken as the current values of the mole fraction of

the fixed phase, yi = xi.

In Step 4, the liquid and vapor fugacity coefficients are calculated from Equation (2.9),

shown again here for convenience:

RT ln φ̂i =

∫ ∞
Vt

[(
∂P

∂ni

)
T,Vt,nj 6=i

− RT

Vt

]
dVt −RT lnZ. (4.7)

As described previously, for the liquid coefficient, the smallest root of the compressibility

equation of state is chosen and for the vapor, the largest. It should be noted that both of

these coefficients are guessed values, as both the pressure and the vapor mole fractions used

in the calculation are only guesses of the current iteration in this numerical step.

In Step 5, the equilibrium ratio is determined in terms of the fugacity coefficients. This

is done by considering that at equilibrium, the fugacity coefficients of the mixture are equal

across phases, as discussed previously. This leads to an expression for the partial fugacity

coefficients at equilibrium as follows:

yiφ̂
V
i = xiφ̂

L
i . (4.8)

Then, using the definition of the equilibrium ratio:

Ki ≡
yi
xi
, (4.9)

Equation (4.8) can be used to write:

Ki =
φ̂Li

φ̂Vi
. (4.10)

These ratios are also guessed values of the current iteration due to their dependence on the

guessed fugacity coefficients. Next, using these values of Ki, new values for yi are guessed.

46

This is done using the original form of the equilibrium ratio in terms of vapor and liquid

mole fractions, leading to the new vapor mole fraction guesses being calculated from:

yi = Ki ∗ xi. (4.11)

During the first iteration, Steps 4 and 5 are carried out again using these new values

of yi. Once completed, the new guesses of yi determined in the second iteration of Step

5 are compared to those found in the previous iteration. To do this, the sum of the yi

values is compared between the two iterations to see if it is changing. An unchanging sum

is represented by Equation (4.12):∣∣∣∣∣∑
i

yoldi −
∑
i

ynewi

∣∣∣∣∣ < ε, (4.12)

where ε is chosen as a very small number representing convergence. The value chosen for ε

can vary and the effect of its variation will be discussed further in Section 4.4.2. Depending

on whether or not Equation (4.12) is satisfied, two different approaches are taken. First, if

it is satisfied, the process continues to Step 7. However, if the sum of yis is changing, the

process jumps to Step 9.

By Step 7, it has been determined that the sum of yis is not changing. Subsequently, the

value of the sum is checked to see if it is equal to one. While this is required by Equation

(4.6), it has not yet been enforced. Therefore, it represents an indication that the correct

values have been guessed. As a result, if Equation (4.13) is satisfied, the numerical step is

complete and the current value of pressure is the bubble point pressure for the fixed values

of the liquid mole fractions and the temperature. Additionally, these values of yi correspond

to dew point data, as discussed previously.∣∣∣∣∣∑
i

yi − 1

∣∣∣∣∣ < ε (4.13)

If Equation (4.13) is not satisfied, then the program progresses to Step 10.

Step 9 only occurs when the sum of yis is changing in Step 6. When this is the case,

the guessed values of the yis are not correct and new values must be chosen. It is debatable

47

what the best method for this update is, but a common approach is to normalize the values

of yi using the sum of the values, as shown in Equation (4.14):

yi =
yi∑
i yi

. (4.14)

After this adjustment is made, the previous steps should be repeated using the new values

of the yis. This corresponds to a return to Step 4. However, there is no need at this

point to repeat the calculation of the liquid fugacity coefficient as the parameters influencing

its calculation have not been modified. Only the vapor fugacity coefficients need to be

recalculated.

Step 10 is executed when Equation (4.13) is not satisfied. When this occurs, the current

value of the sum should be considered and the pressure should be modified accordingly. If∑
i yi < 1, then the guessed value of the pressure is leading to the prediction of too little

vapor and the value should be decreased. However, for
∑

i yi > 1, the guessed value of the

pressure should be increased due to the prediction of too much vapor. After making this

adjustment, a new iteration must be carried out using this new value for pressure. Thus,

the process returns to Step 3 and repeats.

4.2 MODIFICATIONS FOR DEW POINT CALCULATIONS

As noted previously, the routine presented above focused on the calculation of bubble point

data. In order to determine dew point data, a few changes must be made to the numerical

routine. First, in Step 3, the value of xi is guessed. This is done using the value of yi by

simply equating the two, (xi = yi), if no better choice exists. However, a better option for

the guess value will be discussed in Section 4.3.1. Regardless of the manner in which the

value is set, the significance of defining xi as the guessed value and yi as the fixed value will

become clear in the next step.

In Step 5, the ratio of the fugacity coefficients and new values for the xis are calculated.

However, now notice that the solution of Equation (4.9) for xi yields:

xi =
yi
Ki

, (4.15)

48

where Ki is a guessed value. This is an important change, as bad guess values that cause Ki

to approach zero can quickly make the guessed values of xi blow up, creating problems with

convergence. Methods to avoid this issue are discussed in Section 4.4.1.

The routine then progresses in the same manner as if calculating the bubble point data

except the sums of xis are checked for changes and equality to one instead of the sums of the

yis. When the sum of the xis is fixed and yet not equal to one, the direction of adjustment of

the pressure is opposite that of the bubble point routine. In other words, in Steps 7 and 10,

if
∑

i xi < 1, the predicted amount of liquid is too low and the guessed value of the pressure

should be increased. On the other hand, for
∑

i xi > 1, the guessed pressure value needs to

be decreased, as too much liquid is predicted.

Finally, in Step 9, when the liquid mole fraction analog of Equation (4.12), expressed

for simplicity in Equation (4.16), is not satisfied, the adjustment of the guessed xi values

is simply based on Equation (4.17), where the old and new values correspond to those

calculated in the first and second iteration of Step 5, respectively. This approach is taken

instead of normalization to avoid the possible divergence that might arise if
∑

i xi → 0.∣∣∣∣∣∑
i

xoldi −
∑
i

xnewi

∣∣∣∣∣ < ε (4.16)

xoldi = xnewi (4.17)

One final note concerns the calculation of the temperature-composition data at a fixed pres-

sure. When this process is carried out, the direction of the adjustments of the temperature

should be reversed from those used in the isothermal routine. This corresponds, for the

isobaric bubble point calculations, to:

Tnew =

 Told + ∆T if
∑

i yi < 1,

Told − ∆T if
∑

i yi > 1,
(4.18)

and for the dew point calculations, to:

Tnew =

 Told − ∆T if
∑

i xi < 1,

Told + ∆T if
∑

i xi > 1.
(4.19)

49

4.3 PERFORMANCE IMPROVEMENTS

There are many methods that can be used to enhance the performance of the numerical

routines used for vapor-liquid equilibria calculations that are often not discussed in treat-

ments about VLE simulations. The following sections overview a few of the more significant

alterations used in this work.

4.3.1 Iterations Update Methods

The initial guess for the pressure or temperature will greatly affect the performance. As a

result, for the very first composition that is calculated, the guess value is taken as an input

from the user. However, subsequent guess values are taken to be the value calculated for

the previous composition step. If the step-size is chosen to be small enough, this greatly

improves the speed of the process by taking as a guess value, one that is very close to the

actual value to be determined. If the step-size is fairly large on the other hand, a linear

interpolation using the previous two steps is used instead to set the new guess value.

Furthermore, there are a variety of ways one can update the pressure or temperature.

The easiest case is just to incrementally increase or decrease the value by a fixed amount

each time it is necessary. However, this can cause two problems. The first issue is that too

small or too large of an incremental change will lead to very slow changes or large overshoots,

respectively, and consequently, the routine will be inefficient. Additionally, if changes that are

too large are allowed, the possibility emerges that the solution may never actually converge,

with the routine continually increasing, then decreasing the pressure or temperature, while

never reaching a value that satisfies the convergence parameter. As a result, an incremental

change was implemented in this work but it is chosen such that the value of that increment

is dynamically altered based on the current state of the routine. If the current iteration step

is not converging due to a constantly changing sum of the mole fractions, large incremental

steps are taken. However, if the routine finds itself with a constant mole fraction sum that is

not unity, the pressure or temperature value is refined using smaller and smaller incremental

50

steps until convergence is achieved. The choice of the initial size of the incremental step is

an interesting one that will be discussed further below.

Finally, the values of the guessed compositions can be improved when both bubble point

and dew point data are being calculated together. As was discussed previously, some dew

point data is obtained as a result of the bubble point determinations. By storing the liquid

and vapor mole fraction data from the bubble point routine, the fixed vapor mole fractions

used to calculate the dew points can be compared to those calculated in the bubble point.

Then, the corresponding liquid mole fractions of the bubble points can be used as guess

values for the dew points.

4.4 NUMERICAL ISSUES

4.4.1 Complications

The cubic equation of state in terms of the compressibility must be solved at the guessed

pressure and mole fractions. However, methods that are capable of determining “exact

solutions” can be dangerous to implement due to their occasional calculation of erroneous

roots. Similarly, while routines like the Newton-Raphson method are extremely efficient

and fast, they too can have some serious convergence problems if presented with improper

bounds or poor initial guesses. Normally, a Newton-Raphson method or an exact solution

would be completely adequate for determining vapor-liquid equilibrium curves, and these are

very often used successfully. However, a major goal of this work is to test the convergence of

various equations with parameters purposefully set very far from their optimal values. As a

result, it is very important to know that any divergences that are occurring are a consequence

of the equations and their parameters rather than a possible divergence in the calculation

of a root. As a result, the root-finder implemented here is based on Laguerre’s Method, as

implemented in Numerical Recipes in Fortran [45]. Laguerre’s Method is a general method

51

that uses complex computations and a “rather drastic set of assumptions.” The method

assumes that the root being sought, x1, is a distance, a, from the current guess, x, so that:

a ≡ x− x1, (4.20)

and that all of the remaining roots, xi, regardless of where they actually are, exist at the

same distance, b, from the current guess, so that:

b ≡ x− xi. (4.21)

This simplification allows the first root to be found by calculating a for a guessed value of

x, then slowing refining toward the root by using x− a as the subsequent guess value until

a approaches 0 [7, 45]. While the use of this method adds complexity, for a polynomial

with only real roots, convergence by this method is guaranteed regardless of the initial guess

value. This routine is chosen as it represents an excellent trade-off between efficiency and

robustness. A more comprehensive description of Laguerre’s Method can be found in Press’

Numerical Recipes in Fortran, in which the source code is also detailed.

It was mentioned before that the van Laar form of the combining rule is capable of

producing very accurate results given correct binary interaction parameters, but that it can

have mathematical poles given certain (k12, k21) pairs. As a result, it becomes important to

always evaluate z1k12 + z2k21 for the current values of the zis and kijs. If this expression is

zero, the use of the van Laar combing rule with the current values will result in divergence

and the breakdown of the numerical procedure. There are, however, different paths to this

divergence, each of which ought to be addressed differently. For example, if the pole occurs

in the bubble point algorithm during the calculation of liquid fugacity coefficients, then it

is permanent, and the combining rule must be switched if data for the current composition

and binary interaction pairs is desired. Luckily, simpler combining rules can be implemented

which, while not reproducing data as accurately, do not suffer from the divergence problems

of the van Laar form. If the pole exists in another instance, however, such as the calculation

of vapor fugacity coefficients in the bubble point routine, changing the combining rule is

unnecessary. Instead, it is possible to simply change the current values of the mole fractions,

because they are just guessed values in these instances, and proceed normally. The existence

52

of poles is handled in this manner in this work. At the beginning of the bubble and dew

point routines and at each new mole fraction guess, when the van Laar combining rule is

used, it is first checked for poles. If they are found, they are dealt with according to the

above procedure, with an alternative combining rule being specified by the user at the start

of the program.

4.4.2 The Effect of Parameters on Convergence

There are several parameters used throughout the numerical routine that must be set at

the beginning of the simulation. The chosen values of these parameters influence both the

run time and the convergence. A data point that was known to have convergence issues

was purposefully chosen here to provide a more insightful analysis. Tables 2 - 5 show the

result of a study that varies the following parameters: adj, perturb, conv, and maxiters.

For these studies, the bubble points for a mixture of 83.96% ethanol and 16.04% water are

calculated. The value of each binary interaction parameter is allowed to range, inclusively,

between −1 and 1, by 0.1 increments. This leads to the simulation of 212 data points.

The set of 441 calculations is run for varying values of the parameters listed above. There

are some important points to note here. First, these studies do not take performance into

account. Many of the calculated values deviate greatly from the experimental data due to

their use of extremely erroneous binary interaction pairs. The only interest is whether the

points are capable of, or are allowed to, converge. Additionally, while this takes the form

of a sensitivity study, the objective is very different. Many of these parameters affect the

outcome of the simulations, especially maxiters, and this is largely deliberate. Rather than

attempting to find the parameter space that does not impact the results of the calculations,

the intention is to determine the parameter values that provide the best trade-off between

routine convergence and computation times. This focus falls in line with the desire to develop

computational methods with a high degree of usability. While a simulated data point that

converges after multiple hours of iterations does indeed converge, it is not practical to allow,

or even attempt, convergence. It would be better instead, to treat this point as one which

will never converge and move on with the simulation.

53

The adj parameter is the initial value that is used to adjust the guessed pressure value. It

is important to remember that this value will be changed throughout the routine in order to

reduce the possibility of non-convergence. However, the initial value still affects the overall

numerical process. adj is implemented additively, as shown in Equation (4.22).

Pnew = Pold ± adj (4.22)

perturb is a multiplicative value that corresponds to the amount the guessed mole fraction

values, the yis in this case, are perturbed when a pole is encountered in the combining rule

or when the fugacity coefficients are not converging properly. The expression used for this

perturbation takes the following form:

yi,new = yi,old ∗ perturb (4.23)

conv is the parameter that determines when a solution has converged. In the previous

text, conv is referred to as ε.

maxiters corresponds to the maximum number of iterations that are allowed before the

numerical routine decides it is not converging to a solution. When this value is reached, the

program attempts to find a new pressure value that will allow convergence. This is done by

taking a jump from the current guessed pressure value, first to one that is significantly higher

and second, if necessary, to one that is lower. Once one jump is made, the current iteration

count is reset and the routine proceeds another maxiters iterations, trying to converge. After

making both jumps, if the program still has not found a value, it is assumed that the current

kij pair will never converge. As a result, this parameter has a profound effect on the outcome

of the routine. If the parameter is too large, the routine could get stuck trying to convergence

to an invalid value, greatly increasing runtime with little benefit. However, with too small

of a value, the guessed pressure value will behave sporadically, never having adequate time

to converge, and no solution will be found, despite its existence.

The following chapter will present the results obtained using the numerical methods

described above. The parameters which were varied in this chapter are subsequently fixed

to provide a decent trade-off between convergence and runtime and any numerical issues are

dealt with as described in the preceding sections.

54

Table 2: Effect of adj Value on Runtime and Convergence

adj Runtime [s] Non-converged adj Runtime [s] Non-converged

Points Points

0.228365 534.4 387 150.000 85.99 157

0.342548 567.7 379 225.000 81.65 151

0.513823 4495. 358 337.500 39.66 141

0.770734 330.3 309 506.250 63.27 84

1.15610 108.4 262 759.375 23.25 81

1.73415 88.50 255 1139.06 14.04 58

2.60122 87.65 253 1708.59 62.01 77

3.90184 90.02 252 2562.89 21.64 77

5.85276 93.68 250 3844.33 10.12 38

8.77914 101.1 244 5766.50 10.55 39

13.1687 96.42 235 8649.75 52.41 38

19.7530 143.9 215 12974.6 13.35 50

29.6296 170.2 200 19461.9 15.83 50

44.4444 130.2 187 29192.9 18.15 49

66.6666 110.7 173 43789.3 61.47 50

100.000 88.47 168

perturb = 1.001, conv = 1e− 5, and maxiters = 1e4

55

Table 3: Effect of perturb Value on Runtime and Convergence

perturb Runtime [s] Non-converged Points

1.00000000001 47.82 168

1.0000000001 87.72 168

1.000000001 87.71 168

1.00000001 87.84 168

1.0000001 87.86 168

1.000001 47.86 168

1.00001 87.88 168

1.0001 87.87 168

1.001 87.91 168

1.01 87.85 168

1.1 47.89 168

adj = 100, conv = 1e− 5, and maxiters = 1e4

56

Table 4: Effect of conv Value on Runtime and Convergence

conv Runtime [s] Total Non-converged Points

1e-9 99.75 199

1e-8 95.60 195

1e-7 48.35 191

1e-6 89.50 179

1e-5 87.02 168

1e-4* 100.8 160

1e-3* 109.1 153

1e-2* 77.09 83

1e-1* 235.5 694

adj = 100, perturb = 1.001, and maxiters = 1e4

* = Convergence parameters this large will likely produce erroneous results.

57

Table 5: Effect of maxiters Value on Runtime and Convergence

maxiters Runtime [s] Total Non-converged Points

1 0.184 418

10 0.644 415

100 4.486 359

1e3 47.79 237

1e4 47.20 168

1e5 255.5 59

1e6 1502. 47

1e7 25407 46

1e8 N/A N/A

adj = 100, perturb = 1.001, and conv = 1e− 5

N/A = Runtime was prohibitively long.

58

5.0 RESULTS AND DISCUSSION

A typical VLE study involves the calculation of bubble point and dew point data at either a

fixed temperature or fixed pressure, using a specific combination of equations of state, mixing

rules, and combining rules. In this chapter, the results from such studies are presented to

show the fundamental operation of the developed method, utilizing the designed flexibility

of the program to model many different equation combinations. This will be followed by a

discussion concerning the effect of the binary interaction parameters on varying combinations

of equations, as well as the results from an analysis of a broad range of these parameters.

Finally, it will be shown how the availability of data can affect which equations should be

used for VLE modeling.

Throughout the text, the equations that are used are assigned numbers for simplicity.

These numbers are then combined into a string representing the equation set with the form:

equation of state (EOS), a parameter combining rule (CR), b parameter CR, a mixing rule

(MR), b MR. For example, the string 23010 represents the use of EOS number 2, a CR 3,

b CR 0, a MR 1, and b MR 0. Where it is possible without creating too much confusion,

abbreviations are also provided. Table 6 provides a key between the equations and their

numbers and abbreviations. In this study, for simplicity, the linear mixing rule is used for

the b parameter at all times. While this is not required, it is a common practice, as b simply

represents the co-volume parameter [46].

The experimental data used for the following studies, which is summarized in Table

7, was taken from volumes of the Vapor Liquid Equilibrium Data Collection compiled by

Gmehling, Onken, and Arlt [47, 48].

59

Table 6: Numeric indicators for different equations. These are combined in the form: (EOS,

a CR, b CR, a MR, b MR).

Equation Numeric Indicator Abbreviation

Redlich-Kwong-Soave EOS 0 RKS

Peng-Robinson EOS 1 PR

Peng-Robinson-Stryjek-Vera EOS 2 PRSV

Arithmetic CR 0 A

Conventional CR 1 C

Margules Form CR 2 M

van Laar Form CR 3 VL

Linear MR 0 L

Quadratic MR 1 Q

Table 7: Summary of the experimental VLE data used in this study.

Temperature [K] Number of datapoints Reference

298.15 10 [47]

313.15 13 [48]

323.65 9 [48]

333.75 11 [48]

343.15 13 [48]

60

5.1 THE EFFECT OF EQUATION COMBINATIONS ON STANDARD

VLE STUDIES

A standard VLE calculation was first performed at a fixed temperature of T = 323.65K to

develop bubble and dew point curves for the various equations previously described. Figure

15 compares only a change in the equation of state, with fixed combining and mixing rules.

It should be noted that although some plots are seemingly neglected, this is due to the fact

that certain equation combinations produce identical data. Specifically, if a mixing rule of 0

is chosen for a parameter, ζ, this corresponds to linear mixing (ζmix = z1ζ11+z2ζ22). Because

the combining rule, as discussed previously, is used for the calculation of the cross-terms (ζ12

and ζ21), varying the combining rule with a linear mixing rule would not affect the data. For

those simulations that are affected by the combining rule however, optimal values are used

for the binary interaction parameters, k12 and k21, in this analysis. These values are shown in

Table 8 and are also presented on each plot. Additionally, the % ErrorEXP , labeled simply

% Error on the plots for convenience, is supplied. This value refers to an average of the

percent errors calculated at each available experimental data point, as shown in Equation

(5.1):

% ErrorEXP =
1

N

N∑
i=1

∣∣∣∣Pi,calc − Pi,expPi,exp

∣∣∣∣ ∗ 100. (5.1)

As can be seen by examining the values of this error in Figure 15, the choice of equation of

state alters the performance of the simulated results, the accuracy improving with increasing

equation complexity. However, it is evident that even the most complex equation, the PRSV,

still calculates an erroneous overall shape for the bubble point curve.

Figures 16 - 18 present all of the equation combinations considered in this study. Here,

it can be seen that by varying the complexity of the combining rule, the performance of the

calculated data is significantly affected, even more so than by modifying only the equation of

state. For all of the equations of state, as the complexity of the combining rule increases, so

does the performance of the simulation. However, the simple arithmetic (0) and conventional

(1) combining rules have very similar behavior, as do the complex Margules form (2) and

van Laar form (3) combining rules. While all the equations of state calculate reasonable data

61

Table 8: Optimal kij parameters used for each equation set at T = 323.65K.

Equation Set k12 k21

00010 -0.1 0.07

01010 -0.1 -0.1

02010 -0.06 -0.12

03010 -0.12 -0.07

10010 -0.1 0.06

11010 -0.1 -0.12

12010 -0.09 -0.12

13010 -0.12 -0.09

20010 -0.1 0.07

21010 -0.1 -0.11

22010 -0.08 -0.12

23010 -0.12 -0.09

62

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = 0.0

k21 = 0.0

% Error = 11.005

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) EOS = 0 (RKS)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = 0.0

k21 = 0.0

% Error = 10.744

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) EOS = 1 (PR)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = 0.0

k21 = 0.0

% Error = 7.458

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) EOS = 2 (PRSV)

Figure 15: VLE results at T = 323.65K for varying equation of state.

63

for the bubble point curves for the complex combining rules, an increase in complexity leads

primarily to improvements in the dew point data simulation. As shown in Figure 18d, the

use of complex equations, such as the Peng-Robinson-Stryjek-Vera equation, with the van

Laar combining rule and the quadratic mixing rule for the a parameter, yields very accurate

data reproduction. A similar presentation of figures, which show the VLE simulations at a

fixed pressure, can be found in Appendix D.

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.1

k21 = 0.07

% Error = 9.204

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) CR = 0 (A)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.1

k21 = -0.1

% Error = 9.189

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) CR = 1 (C)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.06

k21 = -0.12

% Error = 6.548

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) CR = 2 (M)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.12

k21 = -0.07

% Error = 6.472

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(d) CR = 3 (VL)

Figure 16: VLE results at T = 323.65K for varying combining rules. EOS = 0 (RKS).

In addition to varying equation combinations, the program can also calculate data for

a variety of temperatures and pressures. Figure 19 shows the VLE simulations at multiple

temperatures for a few of the different equation combinations. The remaining combinations

can be found in Appendix E. As can be seen in these plots, the more complex combining

rules tend to give more accurately shaped curves across the temperature range considered.

64

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.1

k21 = 0.06

% Error = 5.485

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) CR = 0 (A)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.1

k21 = -0.12

% Error = 5.466

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) CR = 1 (C)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.09

k21 = -0.12

% Error = 4.826

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) CR = 2 (M)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.12

k21 = -0.09

% Error = 4.732

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(d) CR = 3 (VL)

Figure 17: VLE results at T = 323.65K for varying combining rules. EOS = 1 (PR).

65

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.1

k21 = 0.07

% Error = 3.265

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) CR = 0 (A)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.1

k21 = -0.11

% Error = 3.265

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) CR = 1 (C)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.08

k21 = -0.12

% Error = 1.721

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) CR = 2 (M)

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 = -0.12

k21 = -0.09

% Error = 1.718

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(d) CR = 3 (VL)

Figure 18: VLE results at T = 323.65K for varying combining rules. EOS = 2 (PRSV).

66

Mole Fraction Alcohol: z1

P
[k

P
a
]

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

333
323

313
298

(a) Equation Set = 01010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(b) Equation Set = 03010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(c) Equation Set = 11010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(d) Equation Set = 13010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(e) Equation Set = 21010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(f) Equation Set = 23010

Figure 19: VLE results at varying temperatures for varying equation combinations.

67

5.2 PERTURBATION OF THE BINARY INTERACTION PARAMETERS

The figures presented above have shown the effect that the choice of combining rule can

have on the performance of a VLE simulation. It is clear that, in general, as the complexity

of the combining rule increases, the performance of the simulation improves. This makes

sense as that is the reason why more complex combining rules are created in the first place.

However, the previous calculations were all carried out using binary interaction parameters

that were optimized for the specific equations and at the specific temperatures being imple-

mented. However, as available experimental data decreases in either quantity or quality, this

optimization becomes less reliable. It is therefore important to understand the limitations

of these equations. To elucidate this concept, each simulation was run again, but in addition

to the optimal binary interaction parameters, perturbed values were also considered. The

perturbations represent 15% deviations from optimal, as shown in Equation (5.2):

kij,perturbed = kij,optimal ± kij,optimal ∗ 0.15. (5.2)

The choice of 15% for the magnitude of the perturbation is based on an analysis of the

optimal kij parameters, which vary up to 15% over the temperature range considered here,

as will be discussed later. It should be remembered though, for larger temperature ranges,

these values could change much more than this.

Three datasets are calculated, the first uses optimal parameters, the second uses param-

eters that are both 15% above optimal, and the third, parameters that are both 15% below.

Each plot presents the optimal parameters, the amount of perturbation applied, and two

errors. The first error, labeled % ErrorEXP , shows the average of the percent error between

simulated values and experimental data, as before. The second error, % ErrorOPT , describes

the difference between the data calculated using perturbed binary interaction pairs and the

data calculated using optimal pairs, as shown in Equation (5.3):

% ErrorOPT =
1

N

N∑
i=1

∣∣∣∣Pi,pert − Pi,optPi,opt

∣∣∣∣ ∗ 100. (5.3)

Figure 34 shows a selection of the results of this study. The remaining plots can be found

in Appendix F. All of these errors are also presented in Table 9 for easy comparison. As

68

% ErrorOPT =
0.6759

0.6852

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = 0.07

kij % Change = 15

% ErrorEXP = 9.204

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(a) Equation Set = 00010

% ErrorOPT =
3.7492

4.0774

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.06

k21 Center = -0.12

kij % Change = 15

% ErrorEXP = 6.548

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(b) Equation Set = 02010

% ErrorOPT =
0.9117

0.9276

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = 0.06

kij % Change = 15

% ErrorEXP = 5.485

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(c) Equation Set = 10010

% ErrorOPT =
4.3413

4.7234

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.09

k21 Center = -0.12

kij % Change = 15

% ErrorEXP = 4.826

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(d) Equation Set = 12010

% ErrorOPT =
4.2765

4.6105

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = -0.11

kij % Change = 15

% ErrorEXP = 3.265

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(e) Equation Set = 21010

% ErrorOPT =
4.2737

4.6001

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.12

k21 Center = -0.09

kij % Change = 15

% ErrorEXP = 1.718

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(f) Equation Set = 23010

Figure 20: VLE results using perturbed kij pairs for varying equation combinations.

69

described previously, increasing the complexity of the combining rule improves performance

compared to experimental data. However, it is evident from this analysis, this only holds true

if the optimal binary interaction parameters are known. When the parameters are perturbed,

the error introduced between the data calculated with optimal values and that calculated

with perturbed values increases with the complexity of the combining rule. For example,

the experimental error, %ErrorEXP of the best performing equation combination, 23010, is

1.718. However, the total error, %ErrorEXP + %ErrorOPT , is ∼ 6.155. When compared

to the an equation set with the same equation of state, but a simple combining rule, such

as 20010, the total error is seen to be only ∼ 3.954. It can therefore be concluded that,

although with optimal kij parameters set 23010 performs best, with only a %15 perturbation

of those values, 20010 becomes more accurate. This behavior indicates that when limited

experimental data is available, it might actually be better to choose a combining rule that

is less affected by the accuracy of the fitting parameters. Using a simple combining rule will

generate at least % ErrorEXP , but the calculated data will remain near this deviation, even

with inaccurate binary interaction pairs. Conversely, with inadequate experimental data

to optimize binary interaction parameters, it becomes harder to predict whether the data

simulated with complex combining rules will even lie close to a certain error. In the following

section, the meaning of limited experimental data will be quantitatively defined through

the examination of VLE data created using kij pairs optimized at different experimental

conditions.

5.3 A QUANTITATIVE EXPLANATION OF LIMITED EXPERIMENTAL

DATA

The previous section showed that by perturbing the kij values, simple combining rules may

provide more accurate results than the complex ones. However, it is difficult to see the

relationship between perturbed binary interaction parameters and the availability of exper-

imental data. To address this, another standard VLE simulation was run in which the kij

pairs used were determined by optimizing the experimental data at conditions differing from

70

Table 9: Errors associated with binary interaction parameter choice for various equation

combinations at T = 323.65K.

Equation Combination % ErrorEXP % AverageErrorOPT Total Error

00010 9.204 0.681 9.885

01010 9.189 4.204 13.393

02010 6.548 3.913 10.461

03010 6.472 3.877 10.349

10010 5.485 0.920 6.405

11010 5.466 4.679 10.145

12010 4.826 4.532 9.358

13010 4.732 4.459 9.191

20010 3.265 0.689 3.954

21010 3.265 4.444 7.709

22010 1.721 4.320 6.041

23010 1.718 4.437 6.155

71

those in the simulation. For example, the VLE simulation was run at a temperature of 343.15

K. However, the binary interaction parameters used were the optimal pairs determined at

different temperatures. This is a common occurrence in the practical implementation of VLE

modeling as very often data exists at one temperature and is used to determine optimal bi-

nary interaction parameters, but it is the data set of a different temperature that one is

interested in predicting. As can be seen in Table 10, as the distance between the simulation

temperature and the temperature used to determine optimal binary interaction parameters,

TOPT , is increased, the experimental errors increase much more significantly for the com-

plex equation combinations. For example, if a researcher is interested in simulating data at

T = 343.15K but only has data for T = 298.15K, the best performing equation combination

is 20010, not 23010. This also highlights the importance of not just considering the equation

of state or the combining rule, but taking into account the entire set of equations, together.

In this instance, for example, with the RKS equation, the best choice for the researcher to

make would still be combining rule 3 (VL) but with the PR and PRSV equations, combining

rule 0 (A) performs best.

In the following section, the perturbation idea is extended and the performance of the

VLE simulation is considered for a wide range of binary interaction parameter values.

5.4 ANALYSIS OF A BINARY INTERACTION PARAMETER MESH

If a large range of binary interaction parameters is now considered, maps can be created

that show the behavior of the VLE simulation as the parameters change. To do this, both

k12 and k21 are allowed to vary from -1 to 1, independently, with a step-size of 0.01. This

range, corresponding to 40,401 pairs, is chosen because a kij value large than 1 is physically

unrealistic, causing the mixture parameter to become negative. The lower bound is selected

by symmetry and proved adequate for the determination of a complete profile. A numerical

step is performed for each pair, at each available experimental data point. This step, as

described in the previous chapter, calculates the bubble and dew point at each experimental

value. The errors between the simulated and experimental data are then found and an

72

Table 10: Average experimental errors calculated from VLE simulations performed at T =

343.15 K using optimal binary interaction parameters from different temperatures.

Equation Set %ERROREXP calculated for TOPT =

343.15 K 333.75 K 323.65 K 313.15 K 298.15 K

00010 6.174 6.174 6.819 6.388 6.252

01010 6.168 6.168 7.249 7.249 6.285

02010 3.6 4.525 5.625 4.525 5.699

03010 3.987 3.987 5.217 4.525 4.525

10010 3.696 3.696 4.419 3.901 3.696

11010 3.723 3.723 5.557 4.586 4.586

12010 3.085 4.329 5.202 4.329 5.202

13010 2.986 3.484 4.701 4.701 6.073

20010 2.722 2.844 3.135 3.135 2.722

21010 2.693 2.693 3.791 3.791 3.791

22010 0.678 1.946 3.098 3.098 6.015

23010 0.803 1.648 3.804 3.378 5.158

73

average error over all of the available experimental data at the fixed temperature is produced.

This process is described in the brief section of code shown in Figure 21, which is written

for an artificially small dataset for clarity.

The result of the analysis can be visualized in a number of ways. First, the entire dataset

can be considered. This corresponds to a 3D surface where each (k12, k21) pair has some

average percent deviation associated with it, as shown in Figures 22 and 23 with percent

deviation expressed on a log axis, for a simple and a complex combining rule, respectively.

While this gives an interesting picture of the entire dataset, it is difficult to see the most

important data, those binary interaction parameters that yield the most accurate results.

This is because some of the percent deviations being shown are artificially large values used

to incorporate kij pairs that do not converge in the numerical routine. Figures 24 and 25

show the same plots, but with a linear axis and a dataset that is limited to those values

of kijs that produce data with an average percent deviation less than 100%. This gives a

better view of the nature of the combining rules. It can be seen that there is a fairly large

range of values for which the simple combining rules produce good results, while only a small

portion of the parameter space produces good data when a complex combining rule is used.

This is further highlighted when 2D maps of this same data is considered. Figures 26 and

27 show the entire datasets and Figures 28 and 29 show the truncated sets. From this view,

the complex combining rule is shown to produce good results for a very tight range, whereas

the simple combining rule actually seems to have a linear correlation between k12 and k21,

which will be described further in the following section.

These figures show that, as one might predict, the simpler combining rule gives more

flexibility but the more complex rule gives greater accuracy. This can be quantified by

considering the number of kij pairs that yield data better than a given percent deviation.

Because 40,401 pairs are analyzed, a log plot is shown of the full dataset in addition to a

linear plot of a partial set. This analysis is shown in Figure 30. Each of these plots shows

the range of combining rules for a single equation of state. A quadratic mixing rule for the

a parameter and a linear mixing rule for the b parameter are used for all of these figures

and the simulation is performed at T = 323.65K. These plots highlight the trade-off that

one must make when choosing a combining rule. To obtain very accurate VLE data, it is

74

k12 ar r = [−1 ,0 ,1] ! An array o f a l l p o s s i b l e va lue s o f k12
k21 ar r = [−1 ,0 ,1] ! A l l p o s s i b l e va lue s o f k21
P arr = [2 , 3 , 4] ! Experimental p r e s su r e va lue s
x a r r = [0 . 1 , 0 . 5 , 0 . 9] ! Experimental compos it ion va lue s that

! correspond to bubble po int data .
y a r r = [0 . 2 , 0 . 3 , 0 . 8] ! Experimental compos it ion va lue s that

! correspond to dew point data .
k12 loop : do i =1,3

k21 loop : do j =1,3

k12 = k12 ar r (i) ! Set the k i j p a i r s
k21 = k21 ar r (j)
BubbleError=0 ! I n i t i a l i z e the e r r o r s f o r t h i s pa i r
DewError=0

exp loop : do k=1,3 ! Step through each exper imenta l datapo int
Pexp = P arr (k)
x = x ar r (k)
y = y ar r (k)
c a l l VLEB(T, x ,PB) ! Ca l l the VLE program at the g iven

! va lue s o f T and x . The ca l c u l a t ed
! va lue o f P i s the bubble po int .

c a l l VLED(T, y ,PD) ! Next , c a l c u l a t e dew point
! p r e s su r e .

bubb l e p e r c en t e r r o r = abs (PB − Pexp)/Pexp∗100
dew perc en t e r ro r = abs (PD − Pexp)/Pexp∗100

BubbleError = BubbleError + bubb l e p e r c en t e r r o r
DewError = DewError + dew percen t e r ro r

end do exp loop

AveError B = BubbleError /3
AveError D = DewError/3
Average Percent Error = (AveError B + Ave Error D)/2

end do k21 loop
end do k12 loop

Figure 21: A skeleton of the code used to determine the average percent error for each binary

interaction parameter pair.

75

Minimum % Deviation = 8.9841

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

101

102

103

%
 D

e
v
ia

ti
o

n

100

101

102

103

104

Figure 22: The 3D surface showing average percent deviation for all kij pairs in the set

[−1, 1] using a simple combining rule at T = 323.65K.

Minimum % Deviation = 6.2922

-1
-0.5

 0
 0.5

 1

k12
-1

-0.5
 0

 0.5
 1

k21

101

102

103

%
 D

e
v
ia

ti
o

n

100

101

102

103

104

Figure 23: The 3D surface showing average percent deviation for all kij pairs in the set

[−1, 1] using a complex combining rule at T = 323.65K.

76

Minimum % Deviation = 8.9841

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

 0

 20

 40

 60

 80

 100
%

 D
e
v
ia

ti
o

n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 24: The 3D surface showing average percent deviation for the kij pairs producing

data with less than 100% error using a simple combining rule at T = 323.65K.

Minimum % Deviation = 6.2922

-1
-0.5

 0
 0.5

 1

k12-1
-0.5

 0
 0.5

 1

k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 25: The 3D surface showing average percent deviation for the kij pairs producing

data with less than 100% error using a complex combining rule at T = 323.65K.

77

Minimum % Deviation = 8.9841

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

Figure 26: The 2D map of average percent deviation for all kij pairs in the set [−1, 1] using

a simple combining rule at T = 323.65K.

Minimum % Deviation = 6.2922

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

Figure 27: The 2D map of average percent deviation for all kij pairs in the set [−1, 1] using

a complex combining rule at T = 323.65K.

78

Minimum % Deviation = 8.9841

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 28: The 2D map of average percent deviation for the kij pairs producing data with

less than 100% error using a simple combining rule at T = 323.65K.

Minimum % Deviation = 6.2922

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 29: The 2D map of average percent deviation for the kij pairs producing data with

less than 100% error using a complex combining rule at T = 323.65K.

79

necessary to use a complex combining rule. However, once a certain error is surpassed, the

lines in these plots cross each other, signifying that simpler combining rules rely less heavily

on the accuracy of kij data, and therefore, a wider range of kij pairs yield better results.

5.5 ANALYSIS OF THE OPTIMIZED BINARY INTERACTION

PARAMETERS

When the maps above are considered, it seems that the optimal binary interaction parameters

for some of the combining rules show a correlation. This effect can be better understood by

focusing on only those kij pairs that give the best performance. As it turns out, when this is

done, entire lines of pairs are revealed for the simple arithmetic and conventional combining

rules, and single pairs arise for the more complex Margules and van Laar form combining

rules. Figure 31 shows these pairs graphically. When a single pair is reported, the values of

the pair are shown, and when a line of pairs exists, the linear fit corresponding to that line

is given. If all of the simple combining rule equation combinations are considered, it turns

out that the linear fits are all exact and all have a slope of -1. This leads to the important

result that only one value is actually required as a binary interaction parameter for the

simple combining rules. Instead of requiring separate values for k12 and k21, by specifying

a y-intercept, b, a value for k12 can be chosen arbitrarily and using Equation 5.4, k21 is

automatically determined.

k21 = −k12 + b (5.4)

Furthermore, contrary to common practice, because the slope is -1 and the y-intercepts

are often non-zero, it is not sufficient, for this specific system, to simply equate the binary

interaction parameters [49, 50]. In fact, for the arithmetic combining rule, it is better practice

to set:

k21 = −k12, (5.5)

if a simplification is required.

80

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 0

Combining Rule = 0

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 0

Combining Rule = 1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 0

Combining Rule = 2

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 0

Combining Rule = 3

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

(a) EQ = 0

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 1

Combining Rule = 0

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 1

Combining Rule = 1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 1

Combining Rule = 2

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 1

Combining Rule = 3

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

(b) EQ = 1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 2

Combining Rule = 0

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 2

Combining Rule = 1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 2

Combining Rule = 2

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

Lo
g 1

0
[N

um
be

r
of

 k
ij

P
ai

rs
]

Average % Deviation

Number of kij Pairs Producing Data Under a Given % Deviation Using Equation 2

Combining Rule = 3

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

N
um

be
r

of
 k

ij
P

ai
rs

(c) EQ = 2

Figure 30: The number of kij pairs that produce results below an average percent deviation.

81

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

k 2
1

k12

k21 = Ak12 + B

A = -1

B = -0.03

Percent Deviation = 8.9841

(a) Equation Set = 00010

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

k 2
1

k12

k12 = -0.12

k21 = -0.07
Percent Deviation = 6.2922

(b) Equation Set = 03010

Figure 31: Optimal binary interaction parameter pairs, calculated average percent deviation

from experimental data, and exact linear fits to reported data.

82

5.6 EFFECT OF TEMPERATURE ON THE OPTIMAL BINARY

INTERACTION PARAMETERS

Finally, the goal of predicting VLE data relies on the ability to use binary interaction pa-

rameters obtained for one set of experimental data and apply them to the simulations of

data at different conditions. As discussed previously, while experimental datasets can be

used to determine binary interaction parameters, if those parameters change significantly

with temperature, they are not useful for data prediction at other temperatures. In order

to better understand the effect of temperature on these values, the optimized kij pairs for

each equation set are plotted together for various temperatures. Two examples are shown in

Figure 32, for two different equation combinations. The remaining combinations are shown

in Appendix H. In order to quantify the scatter of these values, the averages of the optimal

pairs are calculated, which are also shown on the figures. For the simple combining rules

with multiple optimal pairs, single pairs must be chosen first for each temperature. This is

done by choosing a pair for one temperature and then choosing the pairs that are closest to

it on adjacent lines. The average of these chosen pairs is then determined normally.

Using these averages, the maximum percent deviations are calculated from:

PDk12,max = maxi

(∣∣∣∣k12,i − k12,avek12,ave

∣∣∣∣) , (5.6)

where k12,i represents the k12 value optimized at temperature Ti. This is done for each

equation combination so that two values, PDk12,max and PDk21,max, can be used as indicators

of the deviation that is possible in optimal binary interaction parameters over a temperature

range of 45 K. The results of these calculations are shown in Table 11. It is important to

note that these deviations can change based on the mean values. For the complex combining

rules, this is not important as the binary interaction parameters are fixed. For the simple

combining rules, on the other hand, the first parameter is chosen arbitrarily. In this analysis,

the first parameter is chosen as −0.1, in order to match the choice in the perturbation study.

In this manner, the values here and those used in the perturbation study can be directly

compared. Additionally, this choice keeps the resultant binary interaction parameters on

83

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(a) Equation Set = 00010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(b) Equation Set = 03010

Figure 32: Effect of temperature on the optimal kij pairs.

84

the same scale as those that are fixed. Figure 33 shows an average of the maximum percent

deviations for a given equation set:

PDave =
PDk12,max + PDk21,max

2
, (5.7)

and highlights the importance of considering the entire combination of equations. Each

cluster of bars in the figure represents an equation of state, with the bars in the cluster

representing the combining rules, increasing in complexity from left to right. It is clear that

the temperature does significantly affect the optimal kij values that are calculated. However,

it is most interesting to note that the effect of temperature varies among both combining rules

and equations of state. One combining rule may yield the best performance for one equation

of state, but another rule may be preferred for a different equation. For the Redlich-Kwong-

Soave and the Peng-Robinson-Stryjek-Vera equations of state for example, the Margules form

combining rule is significantly more dependent on changes in temperature. However, with

the Peng-Robinson equation of state, all of the combining rules produce similar deviations,

with the Margules form the least dependent.

When considered together, all of these points highlight the importance of taking care

when choosing which equation of state, mixing rules, and combining rules should be used

to simulate VLE data. If the desire is simply to fill in missing composition information for

a dataset with large amounts of accurate experimental data, it is best to choose complex

equations of state and combining rules that will give the most accurate correlations. However,

if one is trying to predict the values for a unique set of conditions, it may be better to choose

a simpler set of equations that, while not as accurate, will more reliably give a solution

within a determinable error.

85

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

EQ = 0 EQ = 1 EQ = 2

A
ve

ra
ge

d
M

ax
im

um
 P

er
ce

nt
 D

ev
ia

tio
ns

Rules

CR = 0
CR = 1
CR = 2
CR = 3

Figure 33: Comparison of the averaged maximum percent deviations of kij pairs optimized

at different temperatures for each equation set.

86

Table 11: Maximum percent deviation for each binary interaction parameter for each equa-

tion set over varying temperature.

Equation k12,ave kk21,ave PDk12,max PDk21,max

Combination

00010 -0.107 0.093 7.5 8.6

01010 -0.102 -0.082 7.8 9.8

02010 -0.05 -0.12 20 8.3

03010 -0.124 -0.062 4.8 12.9

10010 -0.103 0.077 6.8 9.1

11010 -0.097 -0.107 8.2 7.5

12010 -0.084 -0.118 7.1 6.8

13010 -0.12 -0.086 8.3 7.0

20010 -0.101 0.079 5.9 7.6

21010 -0.096 -0.106 6.3 5.7

22010 -0.078 -0.12 15.3 8.3

23010 -0.126 -0.08 4.8 12.5

87

6.0 CONCLUSIONS

Vapor-liquid equilibrium (VLE) data is used in many applications, from the design of chem-

ical separation plants, to the optimization of heat transfer in cooling devices for electronics.

In general, obtaining this data experimentally is a time-consuming process, and, as a result,

numerical methods have been developed to allow their simulation. The method described

in this work relies on the thermodynamics of equilibrium states, where the fugacities of dif-

ferent phases become equal. The fugacity of a system, whose mathematical derivation was

described in Chapter 1, was shown to be a theoretical pressure at which a substance that is

a non-ideal gas takes on the properties that an ideal gas would have at the actual pressure

of that system. The fugacity coefficient, developed to simplify the mathematics, was defined

as the fugacity divided by the pressure. This coefficient relies on a relationship between the

temperature, pressure, and volume of the system, called an equation of state. While many

forms of equations of state exist, they can be divided into theoretical equations, whose bases

lie in statistical thermodynamics and intermolecular potential theory, and empirical equa-

tions, which are primarily correlative relationships. While theoretical equations have the

ability to better predict VLE data, their use is extremely computationally intensive and the

simulation of large, complex systems is often prohibitively difficult. As a result, empirical

equations of state are used to a much greater extent. However, to increase the usability

of these equations, it is necessary to realize their limitations in terms of correlative versus

predictive ability. This work has presented a method which can be utilized to improve the

understanding of these equations and aid in the decision process used to choose the optimal

sets of equations for VLE modeling.

The numerical process used in this study was based on the φ − φ method, as described

in Chapter 4. The code was written in Fortran 90 utilizing the message passing interface,

88

where beneficial, for the parallelization of data execution across multiple CPUs. Laguerre’s

Method was used for finding the roots of the equations of state, in order to guarantee

convergence, and a seeding process was implemented to provide the best initial guess possible

and decrease computation times. Additionally, a technique was developed to dynamically

update the manner in which the temperature or pressure is modified during the iterative

routine. The algorithm also takes into account the possibility of divergence, working to

avoid mathematical poles, and decrease the time spent on attempting the calculation of

non-convergent data points. Finally, the dependence of the routine on various numerical

parameters was detailed.

A comprehensive look at the role of equations of state, combining rules, and mixing rules

on the performance of vapor-liquid equilibrium simulations was undertaken. The Redlich-

Kwong-Soave, Peng-Robinson, and Peng-Robinson-Stryjek-Vera equations of state were con-

sidered, along with linear and quadratic mixing rules. Arithmetic, conventional, Margules

form, and van Laar form combining rules were used to determine the cross-parameters in

the mixing rule equations. These types represent a small subset of the vast library of equa-

tions that is available, but the method developed, as detailed in Chapter 3, was created to

preserve generality in such a way that many different equation combinations can be imple-

mented with relative ease. A mixture of water and ethanol was chosen for this analysis at

a range of temperatures and pressures where adequate experimental data existed. Standard

VLE bubble point and dew point curves were first modeled using binary interaction param-

eters specifically optimized for the equations and conditions of interest. It was shown that

as the complexities of the equations of state and combining rules increase, the accuracy of

data correlation improves greatly, as expected.

The optimal binary interaction parameters were subsequently perturbed and VLE data

was calculated using these new values. From this analysis it became apparent that while

complex combining rules provide the best data correlation, the use of poor binary interaction

parameters introduces significant error into the simulation. The simple combining rules,

on the other hand, while yielding a greater error with optimal parameters, show much less

deviation in accuracy when those parameters are perturbed. This is explicitly shown through

the simulation of VLE data at a temperature of 343.15 K using binary interaction parameters

89

optimized with experimental data at different temperatures. It can be concluded from this

study that when the distance between the conditions of interest and the conditions where

experimental data are available increases sufficiently, simple combining rules provide more

accurate prediction of VLE data than their complex counterparts. For example, for the

Peng-Robinson and the Peng-Robinson-Stryjek-Vera equations of state, it was shown that

the use of binary interaction parameters optimized with data at 323.65 K was enough to

make the error between simulated and experimental data at 343.15 K larger for the van Laar

type combining rule than for the arithmetic rule.

In order to see the full effect of binary interaction parameters on VLE modeling, a mesh

of pairs from -1 to 1 for k12 and k21 was created such that 40,401 different pairs could be used,

independently, for the simulation of data. 3-D surface plots and 2-D maps of the average

percent deviation from experimental data were created to show the nature of the influence

of these parameters. These plots shed light on the conclusions that were developing in the

previous studies. It was shown that the simple combining rules yield surfaces with broad

valleys of minimum deviation, whereas complex combining rules come to sharp points. This

difference was quantified by comparing the number of pairs that converged under a certain

deviation for different combining rules. This depiction made it clear that although complex

combining rules are capable of providing higher accuracy, a trade-off point exists for each

equation of state where complex combining rules have fewer pairs than simple combining

rules that yield data within a certain error. Specifically, for the RKS equation of state,

around 20 binary interaction pairs give an error of less than 7% for the Margules form and

van Laar form combining rules. For the arithmetic and conventional rules, on the other

hand, nearly 550 pairs give less than 7% error.

The 2-D maps were subsequently processed to extract only the best performing binary

interaction pairs for each equation set. It was determined that this corresponded to a single

pair for complex combining rules and an entire line of pairs for the simple rules. When a fit

was applied the line of pairs, it was discovered that an exact linear correlation existed and

that the equation for the fit always had a slope of -1, regardless of whether the arithmetic or

conventional combining rule was used, and regardless of the equation of state chosen. This

leads to the interesting result that, for the simple combining rules considered here, only one

90

experimental fitting parameter is actually required for the determination of the cross-term

in the equation of state parameters. Given only a y-intercept value, b, the value of the first

binary interaction parameter can be set arbitrarily, with the other being fully defined by:

k21 = −k12 + b. (6.1)

This is contrary to the requirement of complex combining rules, for which two independent

binary interaction parameters must be specified. Additionally, because it was found that the

slope of this function is negative and that the value of the y-intercept is very often non-zero,

the common practice of simply fixing both binary interaction parameters to the same value is

not the best manner in which to calculate accurate data for the system under consideration.

An analysis of the y-intercepts averaged over temperature, shown in Table 12, addresses the

difference between the arithmetic and the conventional combining rules. From these values,

the argument could be made that the simplification:

k21 = −k12, (6.2)

while insufficient for the conventional combining rule, could be used to generate reasonable

results using the arithmetic combining rule. This approach, which corresponds to a collapse

down to a linear mixing rule, would likely be a better method than simply equating the two

parameters.

Table 12: The y-intercept of the linear fit for simple combining rules.

Equation Combination y-intercept (b)

00010 -0.014

01010 -0.184

10010 -0.026

11010 -0.204

20010 -0.022

21010 -0.202

91

To determine the underlying cause of the differing effects of binary interaction parameters

on different equations, the predicted volumes were considered. In an analysis which mimics

the binary interaction parameter perturbation study presented in Chapter 5.2, the volume,

instead of the pressure or temperature, was plotted against composition using both optimal

and perturbed parameters. Those results, shown in Figures 34a and 34b, highlight the effect

on the volume of a parameter perturbation with a simple combining rule and complex one,

respectively. The dashed lines show the calculated volume using optimal parameters, and

the solid lines show the perturbed case. The differing predictions of volume give a possible

insight into why the complex combining rules are more strongly dependent on the accuracy

of the binary interaction parameters. The quadratic mixing rule considered in both of these

simulations is sensitive to differences in volumes between molecules in a system. In fact, a

system with a large disparity in volume between its components simply cannot be accurately

modeled with this rule [51]. The water-ethanol system under consideration maintains an

actual volume ratio within the usable limitation of this mixing rule and the simple combining

rule, while not predicting a completely accurate volume, calculates a volume within this

range, even with non-optimal binary interaction parameters. However, it is possible that

the complex combining rules do not always predict volumes that fall within this range when

provided poor binary interaction parameters. It is thought that this is a potential reason for

the maintenance of reasonable accuracy with simple combining rules and the abrupt failure

of complex combining rules, with parameter perturbation. As a result, if this prediction

holds, it is likely that related systems will show results similar to the water-ethanol system

considered in this work. In support of this claim, preliminary results for a water-butanol

system have been analyzed and it has been observed that many of the same patterns described

in Chapter 5 hold.

In conclusion, it can be stated definitively that the choice of equations used to model

vapor liquid equilibrium data should be based on the availability and quality of experimental

data at or near the parameters of interest. Furthermore, it is not sufficient to choose the

best equation of state and the best combining rule independently. These decisions should

be made together, keeping in mind that some combining rules will be more predictive than

others, depending on the chosen equation of state. This analysis has chosen a relatively

92

Mole Fraction Alcohol: z1

V
o

lu
m

e

0.05

0.075

0.1

0.125

0.15

0 0.2 0.4 0.6 0.8 1

Perturbed

Optimal

(a) Equation Set = 00010

Mole Fraction Alcohol: z1

V
o

lu
m

e

0.05

0.075

0.1

0.125

0.15

0 0.2 0.4 0.6 0.8 1

Perturbed

Optimal

(b) Equation Set = 23010

Figure 34: Calculated volumes using perturbed kij pairs.

small set of equations to provide an insight into these effects. However, the model has been

created such that a large number of equation combinations can be simulated with relative

ease. In this manner, equation sets can be compared to determine which is optimal for any

given simulation.

Future work in this area would benefit from the inclusion of multiple mixtures and a

larger number of equations of state, combining rules, and mixing rules. Using the analy-

sis developed here, a greater understanding of the different interactions between equations

could be obtained. It is possible that, as with the arithmetic combining rule shown here,

additional relationships could be introduced that relate the binary interaction parameters

for other combining rules. This would decrease the experimental fitting parameters required

for VLE modeling and give better approximations for researchers when data is unavailable

or unreliable. Finally, performing such an analysis for a larger set of equations could lead to

the development of a decision tree that would provide a detailed method in which the best

equation combinations could be determined for any given set of experimental data, greatly

increasing the usability of empirical VLE modeling.

93

APPENDIX A

DERIVATIVES OF MIXING RULE TERMS

Derivatives of mixing rules used in this work are presented below as they are an important

aspect of the calculation of fugacity coefficients. Note that for mixtures, the mole frac-

tions are more conveniently expressed in terms of the number of moles using the following

expressions:

zi =
ni
n
, (A.1)

n =
N∑
i

ni. (A.2)

Various forms of each equation are shown for clarity, but all are based on the calculation of

a binary mixture. Also, at times the derivatives are expressed with what seem like arbitrary

multiplications by 1
n
. This is done to make substitution into the general fugacity coefficient

expression more convenient.

94

A.1 LINEAR MIXING RULE

ζ = z1ζ11 + z2ζ22 =
n1

n
ζ11 +

n2

n
ζ22 (A.3)

nζ = n1ζ11 + n2ζ22 (A.4)

n2ζ = nn1ζ11 + nn2ζ22 (A.5)

n2ζ2 = n2
1ζ

2
11 + 2n1n2ζ11ζ22 + n2

2ζ
2
22 (A.6)

∂ (nζ)

∂n1

= ζ11 (A.7)

∂ (nζ)

∂n2

= ζ22 (A.8)

1

n

∂ (n2ζ)

∂n1

= ζ11 (z1 + 1) + z2ζ22 (A.9)

1

n

∂ (n2ζ)

∂n2

= z1ζ11 + ζ22 (z2 + 1) (A.10)

1

n

∂ (n2ζ2)

∂n1

= 2z1ζ
2
11 + 2z2ζ11ζ22 (A.11)

1

n

∂ (n2ζ2)

∂n2

= 2z1ζ11ζ22 + 2z2ζ
2
22 (A.12)

95

A.2 QUADRATIC MIXING RULE

ζ = z21ζ
2
11 + z1z2ζ12 + z1z2ζ21 + z22ζ

2
22

=
n2
1

n2
ζ211 +

n1n2

n2
ζ12 +

n1n2

n2
ζ21 +

n2
2

n2
ζ222 (A.13)

nζ =
n2
1

n
ζ211 +

n1n2

n
ζ12 +

n1n2

n
ζ21 +

n2
2

n
ζ222 (A.14)

n2ζ = n2
1ζ

2
11 + n1n2ζ12 + n1n2ζ21 + n2

2ζ
2
22 (A.15)

n2ζ2 =
n4
1

n2
ζ211 +

2n3
1n2

n2
ζ11ζ12 +

2n3
1n2

n2
ζ11ζ21 +

2n2
1n

2
2

n2
ζ11ζ22 +

n2
1n

2
2

n2
ζ212

+
n2
1n

2
2

n2
ζ221 +

2n2
1n

2
2

n2
ζ12ζ12 +

2n1n
3
2

n2
ζ12ζ22 +

2n1n
3
2

n2
ζ21ζ22 +

n4
2

n2
ζ222 (A.16)

∂ (nζ)

∂n1

= z1ζ11 (2− z1) +

(
z22ζ12 + z1z2n

∂ζ12
∂n1

)
+

(
z22ζ21 + z1z2n

∂ζ21
∂n1

)
− z22ζ22 (A.17)

∂ (nζ)

∂n2

= −z21ζ11 +

(
z21ζ12 + z1z2n

∂ζ12
∂n2

)
+

(
z21ζ21 + z1z2n

∂ζ21
∂n2

)
+ z2ζ22 (2− z2) (A.18)

1

n

∂ (n2ζ)

∂n1

= z2ζ12 + z2ζ21 + 2z1ζ11 + z1z2n
∂ζ12
∂n1

+ z1z2n
∂ζ21
∂n1

(A.19)

1

n

∂ (n2ζ)

∂n2

= z1ζ12 + z1ζ21 + 2z2ζ22 + z1z2n
∂ζ12
∂n2

+ z1z2n
∂ζ21
∂n2

(A.20)

96

1

n

∂ (n2ζ2)

∂n1

= z31 (4− 2z1) ζ
2
11 − 2z42ζ

2
22 + 4z1z

2
2 (1− z1) ζ11ζ22

+ 2z1z
2
2 (1− z1)

(
ζ212 + 2ζ12ζ21 + ζ221

)
+ z21z

2
2

(
2ζ12n

∂ζ12
∂n1

+ 2ζ12n
∂ζ21
∂n1

+ 2ζ21n
∂ζ12
∂n1

+ 2ζ21n
∂ζ21
∂n1

)
+ 2ζ11

[
(ζ12 + ζ21) z

2
1z2 (3− 2z1) + z31z2

(
n
∂ζ12
∂n1

+ n
∂ζ21
∂n1

)]
+ 2ζ22

[
(ζ12 + ζ21) z

3
2 (1− 2z1) + z1z

3
2

(
n
∂ζ12
∂n1

+ n
∂ζ21
∂n1

)]
(A.21)

1

n

∂ (n2ζ2)

∂n2

= z32 (4− 2z2) ζ
2
22 − 2z41ζ

2
11 + 4z21z2 (1− z2) ζ11ζ22

+ 2z21z2 (1− z2)
(
ζ212 + 2ζ12ζ21 + ζ221

)
+ z21z

2
2

(
2ζ12n

∂ζ12
∂n2

+ 2ζ12n
∂ζ21
∂n2

+ 2ζ21n
∂ζ12
∂n2

+ 2ζ21n
∂ζ21
∂n2

)
+ 2ζ11

[
(ζ12 + ζ21) z

3
1 (1− 2z2) + z31z2

(
n
∂ζ12
∂n2

+ n
∂ζ21
∂n2

)]
+ 2ζ22

[
(ζ12 + ζ21) z1z

2
2 (3− 2z2) + z1z

3
2

(
n
∂ζ12
∂n2

+ n
∂ζ21
∂n2

)]
(A.22)

97

APPENDIX B

DERIVATIVES OF COMBINING RULE TERMS

B.1 ARITHMETIC RULE

ζ12 =
1

2
(1− k12) (ζ11 + ζ22) (B.1)

ζ21 =
1

2
(1− k21) (ζ11 + ζ22) (B.2)

n
∂ζ12
∂n1

= n
∂ζ21
∂n1

= 0 (B.3)

n
∂ζ12
∂n2

= n
∂ζ21
∂n2

= 0 (B.4)

B.2 GEOMETRIC RULE

ζ12 = (1− k12)
√
ζ11ζ22 (B.5)

ζ21 = (1− k21)
√
ζ11ζ22 (B.6)

n
∂ζ12
∂n1

= n
∂ζ21
∂n1

= 0 (B.7)

n
∂ζ12
∂n2

= n
∂ζ21
∂n2

= 0 (B.8)

98

B.3 MARGULES RULE

ζ12 = ζ21 =
√
ζ11ζ22 (1− z1k12 − z2k21) (B.9)

n
∂ζ12
∂n1

= n
∂ζ21
∂n1

=
√
ζ11ζ22 (−k12z2 + k21z2) (B.10)

n
∂ζ12
∂n2

= n
∂ζ21
∂n2

=
√
ζ11ζ22 (k12z1 − k21z1) (B.11)

B.4 VAN LAAR RULE

ζ12 = ζ21 =
√
ζ11ζ22

(
1− k12k21

z1k12 + z2k21

)
(B.12)

n
∂ζ12
∂n1

= n
∂ζ21
∂n1

=
k12k21

√
ζ11ζ22

(z1k12 + z2k21)
2 (k12z2 − k21z2) (B.13)

n
∂ζ12
∂n2

= n
∂ζ21
∂n2

=
k12k21

√
ζ11ζ22

(z1k12 + z2k21)
2 (k21z1 − k12z1) (B.14)

99

APPENDIX C

SYSTEMS USED FOR COMPUTATIONS

The Dell XPS 9000 PC consists of a 3.06 GHz Intel Core i7-950 Processor. The processor

consists of 4 physical cores, each supporting 2 virtual cores, for a total of 8 working cores

with 4GB of shared SDRAM.

Warhol, an HP BladeSystem c3000 at the Pittsburgh Supercomputing Center, is com-

prised of 8 nodes, each made up of 2 Intel E5440 quad-core 2.83 GHz processors, for a

total of 64 cores. Each of the nodes use 16 GB of shared memory and communicate us-

ing an InfiniBand communications link. More information can be found on the Pittsburgh

Supercomputing Center’s website [52].

100

APPENDIX D

FIXED PRESSURE T-X PLOTS FOR VARIOUS EQUATION

COMBINATIONS

See Section 5.1 for an explanation of these figures.

Mole Fraction Alcohol: z1

T
[K

]

k12 = 0.0

k21 = 0.0

Ave Error = 0.291

0 0.2 0.4 0.6 0.8 1
350

360

370

380

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) EOS = 0 (RKS)

Mole Fraction Alcohol: z1

T
[K

]

k12 = 0.0

k21 = 0.0

Ave Error = 0.349

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) EOS = 1 (PR)

Mole Fraction Alcohol: z1

T
[K

]

k12 = 0.0

k21 = 0.0

Ave Error = 0.262

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) EOS = 2 (PRSV)

Figure 35: VLE Results at P = 101325 Pa for varying equation of state.

101

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.1

k21 = 0.1

Ave Error = 0.291

0 0.2 0.4 0.6 0.8 1
350

360

370

380

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) CR = 0 (A)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.1

k21 = -0.06

Ave Error = 0.284

0 0.2 0.4 0.6 0.8 1
350

360

370

380

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) CR = 1 (C)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.06

k21 = -0.11

Ave Error = 0.157

0 0.2 0.4 0.6 0.8 1
350

360

370

380

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) CR = 2 (M)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.12

k21 = -0.06

Ave Error = 0.166

0 0.2 0.4 0.6 0.8 1
350

360

370

380

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(d) CR = 3 (VL)

Figure 36: VLE Results at P = 101325 Pa for varying combining rules with EOS = 0.

102

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.1

k21 = 0.07

Ave Error = 0.202

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) CR = 0 (A)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.1

k21 = -0.09

Ave Error = 0.192

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) CR = 1 (C)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.08

k21 = -0.11

Ave Error = 0.136

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) CR = 2 (M)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.11

k21 = -0.08

Ave Error = 0.121

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(d) CR = 3 (VL)

Figure 37: VLE Results at P = 101325 Pa for varying combining rules with EOS = 1.

103

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.1

k21 = 0.08

Ave Error = 0.216

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(a) CR = 0 (A)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.1

k21 = -0.08

Ave Error = 0.21

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(b) CR = 1 (C)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.07

k21 = -0.11

Ave Error = 0.064

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(c) CR = 2 (M)

Mole Fraction Alcohol: z1

T
[K

]

k12 = -0.13

k21 = -0.07

Ave Error = 0.061

0 0.2 0.4 0.6 0.8 1
350

355

360

365

370

375

Bubble Points

Dew Points

Exp Bubble Data

Exp Dew Data

(d) CR = 3 (VL)

Figure 38: VLE Results at P = 101325 Pa for varying combining rules with EOS = 2.

104

APPENDIX E

MULTIPLE TEMPERATURE P-X PLOTS FOR VARIOUS EQUATION

COMBINATIONS

See Section 5.1 for an explanation of these figures.

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(a) Equation Set = 00000

Mole Fraction Alcohol: z1

P
[k

P
a
]

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

333
323

313
298

(b) Equation Set = 00010

Figure 39: VLE results at varying temperatures for EOS = 0.

105

Mole Fraction Alcohol: z1

P
[k

P
a
]

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

333
323

313
298

(c) Equation Set = 01010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(d) Equation Set = 02010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(e) Equation Set = 03010

Figure 39: VLE results at varying temperatures for EOS = 0.

106

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(a) Equation Set = 10000

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(b) Equation Set = 10010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(c) Equation Set = 11010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(d) Equation Set = 12010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

20

40

60

333
323

313
298

(e) Equation Set = 13010

Figure 40: VLE results at varying temperatures for EOS = 1.

107

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(a) Equation Set = 20000

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(b) Equation Set = 20010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(c) Equation Set = 21010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(d) Equation Set = 22010

Mole Fraction Alcohol: z1

P
[k

P
a
]

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

333
323
313
298

(e) Equation Set = 23010

Figure 41: VLE results at varying temperatures for EOS = 2.

108

APPENDIX F

PERTURBATION OF THE BINARY INTERACTION PARAMETER

See Section 5.2 for an explanation of these figures.

% ErrorOPT =
0.6759

0.6852

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = 0.07

kij % Change = 15

% ErrorEXP = 9.204

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(a) Equation Set = 00010

% ErrorOPT =
4.0206

4.3872

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = -0.1

kij % Change = 15

% ErrorEXP = 9.189

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(b) Equation Set = 01010

% ErrorOPT =
3.7492

4.0774

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.06

k21 Center = -0.12

kij % Change = 15

% ErrorEXP = 6.548

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(c) Equation Set = 02010

% ErrorOPT =
3.7162

4.037

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.12

k21 Center = -0.07

kij % Change = 15

% ErrorEXP = 6.472

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(d) Equation Set = 03010

Figure 42: VLE results using perturbed binary interaction parameters for EOS = 0.

109

% ErrorOPT =
0.9117

0.9276

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = 0.06

kij % Change = 15

% ErrorEXP = 5.485

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(a) Equation Set = 10010

% ErrorOPT =
4.4773

4.8802

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = -0.12

kij % Change = 15

% ErrorEXP = 5.466

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(b) Equation Set = 11010

% ErrorOPT =
4.3413

4.7234

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.09

k21 Center = -0.12

kij % Change = 15

% ErrorEXP = 4.826

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(c) Equation Set = 12010

% ErrorOPT =
4.2724

4.6463

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.12

k21 Center = -0.09

kij % Change = 15

% ErrorEXP = 4.732

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(d) Equation Set = 13010

Figure 43: VLE results using perturbed binary interaction parameters for EOS = 1.

110

% ErrorOPT =
0.6852

0.6931

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = 0.07

kij % Change = 15

% ErrorEXP = 3.265

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(a) Equation Set = 20010

% ErrorOPT =
4.2765

4.6105

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.1

k21 Center = -0.11

kij % Change = 15

% ErrorEXP = 3.265

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(b) Equation Set = 21010

% ErrorOPT =
4.1614

4.4777

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.08

k21 Center = -0.12

kij % Change = 15

% ErrorEXP = 1.721

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(c) Equation Set = 22010

% ErrorOPT =
4.2737

4.6001

Mole Fraction Alcohol: z1

P
[k

P
a
]

k12 Center = -0.12

k21 Center = -0.09

kij % Change = 15

% ErrorEXP = 1.718

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

(d) Equation Set = 23010

Figure 44: VLE results using perturbed binary interaction parameters for EOS = 2.

111

APPENDIX G

COMPLETE ANALYSIS OF THE BINARY INTERACTION PARAMETERS

See Section 5.4 for an explanation of these figures.

Minimum % Deviation = 8.9841

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

101

102

103

%
 D

e
v

ia
ti

o
n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 8.9841

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Figure 45: Average percent deviation for kij pairs at T = 323.65K using equation set 00010.

112

Minimum % Deviation = 8.9841

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 8.9841

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 45: Average percent deviation for kij pairs at T = 323.65K using equation set 00010.

113

Minimum % Deviation = 8.9668

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

101

102

103

%
 D

e
v

ia
ti

o
n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 8.9668

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Minimum % Deviation = 8.9668

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 8.9668

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 46: Average percent deviation for kij pairs at T = 323.65K using equation set 01010.

114

Minimum % Deviation = 6.3976

-1
-0.5

 0
 0.5

 1

k12
-1

-0.5
 0

 0.5
 1

k21

101

102

103

%
 D

e
v
ia

ti
o

n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 6.3976

-1
-0.5

 0
 0.5

 1

k12-1
-0.5

 0
 0.5

 1

k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Minimum % Deviation = 6.3976

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 6.3976

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 47: Average percent deviation for kij pairs at T = 323.65K using equation set 02010.

115

Minimum % Deviation = 6.2922

-1
-0.5

 0
 0.5

 1

k12
-1

-0.5
 0

 0.5
 1

k21

101

102

103

%
 D

e
v
ia

ti
o

n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 6.2922

-1
-0.5

 0
 0.5

 1

k12-1
-0.5

 0
 0.5

 1

k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Minimum % Deviation = 6.2922

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 6.2922

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 48: Average percent deviation for kij pairs at T = 323.65K using equation set 03010.

116

Minimum % Deviation = 5.3407

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

101

102

103

%
 D

e
v

ia
ti

o
n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 5.3407

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(b) Partial Surface

Minimum % Deviation = 5.3407

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 5.3407

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(d) Partial Map

Figure 49: Average percent deviation for kij pairs at T = 323.65K using equation set 10010.

117

Minimum % Deviation = 4.6134

-1
-0.5

 0
 0.5

 1

k12
-1

-0.5
 0

 0.5
 1

k21

101

102

103

%
 D

e
v
ia

ti
o

n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 4.6134

-1
-0.5

 0
 0.5

 1

k12-1
-0.5

 0
 0.5

 1

k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Minimum % Deviation = 4.6134

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 4.6134

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 50: Average percent deviation for kij pairs at T = 323.65K using equation set 13010.

118

Minimum % Deviation = 3.2649

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

101

102

103

%
 D

e
v

ia
ti

o
n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 3.2649

-1
-0.5

 0
 0.5

 1

k12

-1
-0.5

 0
 0.5

 1
k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Minimum % Deviation = 3.2649

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 3.2649

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 51: Average percent deviation for kij pairs at T = 323.65K using equation set 20010.

119

Minimum % Deviation = 1.7182

-1
-0.5

 0
 0.5

 1

k12
-1

-0.5
 0

 0.5
 1

k21

101

102

103

%
 D

e
v
ia

ti
o

n

100

101

102

103

104

(a) Full Surface

Minimum % Deviation = 1.7182

-1
-0.5

 0
 0.5

 1

k12-1
-0.5

 0
 0.5

 1

k21

 0

 20

 40

 60

 80

 100

%
 D

e
v

ia
ti

o
n

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(b) Partial Surface

Minimum % Deviation = 1.7182

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

100

101

102

103

104

(c) Full Map

Minimum % Deviation = 1.7182

-1 -0.5 0 0.5 1
k
12

-1

-0.5

 0

 0.5

 1

k
2
1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

(d) Partial Map

Figure 52: Average percent deviation for kij pairs at T = 323.65K using equation set 23010.

120

APPENDIX H

EFFECT OF TEMPERATURE ON THE OPTIMAL BINARY

INTERACTION PARAMETERS

See Section 5.6 for an explanation of these figures.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(a) Equation Set: 00010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(b) Equation Set: 01010

Figure 53: Effect of temperature on the optimal kij pairs using EOS = 0.

121

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(c) Equation Set: 02010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(d) Equation Set: 03010

Figure 53: Effect of temperature on the optimal kij pairs using EOS = 0.

122

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(a) Equation Set: 10010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(b) Equation Set: 11010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(c) Equation Set: 12010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(d) Equation Set: 13010

Figure 54: Effect of temperature on the optimal kij pairs using EOS = 1.

123

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(a) Equation Set: 20010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(b) Equation Set: 21010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(c) Equation Set: 22010

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.3 -0.2 -0.1 0 0.1 0.2

k 2
1

k12

(d) Equation Set: 23010

Figure 55: Effect of temperature on the optimal kij pairs using EOS = 2.

124

APPENDIX I

CODE FOR MAIN VLE CALCULATIONS

I.1 VLEMAIN.F90

The vlemain.f90 code is the frontend for the standard VLE calculations. It calls other
subroutines that are included in Appendix L.

PROGRAM vlemain

! This program i s used to c a l l the gene ra l VLE c a l c u l a t i o n s .
! Provided the f i l e s ’ eth . in ’ , ’ k i j p a i r s ’ , and ’ f i t s ’ , i t
! w i l l c a l c u l a t e bubble and dew point curves at var i ous
! temperatures or p r e s su r e s over f u l l ranges o f compos i t ions us ing
! optimal binary i n t e r a c t i o n parameter pa i r s . Various
! equat ions o f s ta te , combining r u l e s and mixing r u l e s can be
! implemented f o r the se c a l c u l a t i o n s .

! This program f i l e c o n s i s t s p r imar i l y o f methods to read data
! from input f i l e s as we l l as exper imenta l data f i l e s which
! are used as part o f the s imu la t i on .

use nrtype ; use g l oba l ; use v l e s o l v e ; use devca l c ;
use kijmod ; use v l e c a l c s ; use r u l e s ;
imp l i c i t none

charac t e r (l en=20) : : i n f i l e , i nput s t r , r u l e s t r
cha rac t e r (l en=6) : : pstr , v a l s t r
cha rac t e r (l en=3) : : t s t r
l o g i c a l (4) : : d1 , d2 , d3 , incheck , datcheck
i n t e g e r (I4B) : : i , n , bva l idpt , dval idpt , btotpts , dtotpts , method
i n t e g e r (I4B) : : numeos , nummix , numcomb , numvars ,BN
in t e g e r (I4B) , dimension (: , :) , a l l o c a t a b l e : : r u l e s a r r
r e a l (DP) : : T,P, Tadj , Padj

125

r e a l (DP) : : bubavedev , bubaveperdev , dewavedev , dewaveperdev
r e a l (DP) : : btotad , btotapd , dtotad , dtotapd
r e a l (DP) : : type d , va r i a t i on s d , eq d
r e a l (DP) , dimension (2) : : Tc 2 , Pc 2 , w 2 , kap1 2 , kap2 2 , kap3 2
r e a l (DP) , dimension (2) : : mixrules d , comrules d
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : bubarr , dewarr , zarr , xarr , yarr
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : texp temp , pexp temp , &

xexp temp , yexp temp , npexp temp

de l t a = 10000 ! D i s c r e t i z a t i o n o f the compos it ion array
conv = 0.00001 d0 ! A convergence i nd i c a t o r f o r equ iva l ence check ing
Tadj = −1.0d0 ! I n i t i a l adjustment f o r the temperature [K]
Padj = 3844.0 d0 ! I n i t i a l adjustment f o r the p r e s su r e [Pa]

i npu t s t r =’ ethanol ’
i n f i l e = ’ eth . in ’
d a t a f i l e = ’ eth . dat ’

! A l l o ca t e ar rays to s t o r e the i n i t i a l compos it ion and the r e s u l t s .
a l l o c a t e (za r r (d e l t a +1) , xarr (d e l t a +1) , yarr (d e l t a +1) , &

bubarr (d e l t a +1) , dewarr (de l t a +1))

! I n i t i a l i z e the main compos it ion array .
do i =1, d e l t a+1

za r r (i) = i−1
end do
za r r = zar r / de l t a

! Read the input f i l e i n to the c o r r e c t v a r i a b l e s
i nqu i r e (f i l e=i n f i l e , e x i s t=incheck)
i f (incheck) then

open (10 , f i l e=i n f i l e , a c c e s s=’ s equent i a l ’ , &
form=’ formatted ’ , s t a tu s=’old ’)

read (10 , fmt=”(/A1)”) d1 , d2 , d3
read (10 , fmt=”(/F18 . 8) ”)T,P, type d , va r i a t i on s d , eq d , &

comrules d (1) , comrules d (2) , mixru l e s d (1) , mixru l e s d (2) , &
Tc (1) ,Tc (2) , Pc (1) , Pc (2) ,w(1) ,w(2) , rho (1) , rho (2) , &
kap1 (1) , kap1 (2) , kap2 (1) , kap2 (2) , kap3 (1) , kap3 (2) , &
Tc 2 (1) , Tc 2 (2) , Pc 2 (1) , Pc 2 (2) , w 2 (1) , w 2 (2) , &
kap1 2 (1) , kap1 2 (2) , kap2 2 (1) , kap2 2 (2) , kap3 2 (1) , kap3 2 (2)

c l o s e (10)
! Convert data in to the c o r r e c t numeric types
type = in t (type d) ; v a r i a t i o n s = in t (v a r i a t i o n s d) ; eq = in t (eq d)
mixru le s (1) = in t (mixru l e s d (1)) ; mixru le s (2) = in t (mixru l e s d (2))
comrules (1) = in t (comrules d (1)) ; comrules (2) = in t (comrules d (2))
wr i t e (t s t r , fmt=”(I3)”) f l o o r (T)

126

wr i t e (pstr , fmt=”(I6)”) f l o o r (P)
e l s e

p r i n t ∗ , ”ERROR: No input f i l e a v a i l a b l e . Terminating”
stop

end i f

! A l l o ca t e v a r i a b l e s and s t o r e exper imenta l data i f p re sent .
i n qu i r e (f i l e=da t a f i l e , e x i s t=datcheck)
i f (datcheck) then

BN = 1000 ! A big number
a l l o c a t e (texp temp (BN) , xexp temp (BN) , yexp temp (BN) , &

pexp temp (BN) , npexp temp (BN))
open (20 , f i l e=da t a f i l e , s t a tu s=’old ’)
l i n e s = 0
do i =1,BN

! Read each l i n e o f the exp data f i l e i n to l o c a l v a r i a b l e s
read (20 , fmt=∗ ,IOSTAT=EOF) texp temp (i) , xexp temp (i) , &

yexp temp (i) , pexp temp (i) , npexp temp (i)
i f (EOF==−1)e x i t
l i n e s = l i n e s+1 ! Keep track o f the number o f l i n e s .
pexp (i) = pexp (i)/1000 .0 d0 ! Convert p r e s su r e s to kPa .

end do
c l o s e (20)
! Reset to permanent ar rays o f the c o r r e c t s i z e .
a l l o c a t e (texp (l i n e s) , pexp (l i n e s) , npexp (l i n e s) , &

xexp (l i n e s) , yexp (l i n e s))
do i =1, l i n e s

texp (i) = texp temp (i) ; pexp (i) = pexp temp (i)
xexp (i) = xexp temp (i) ; yexp (i) = yexp temp (i)
npexp (i) = npexp temp (i)

enddo
d e a l l o c a t e (texp temp , pexp temp , xexp temp , yexp temp , npexp temp)

e l s e
p r i n t ∗ , ”ERROR: No exper imenta l d a t a f i l e inc luded . ”

end i f

! Set the amount to ad jus t the guessed pr e s su r e or temperature
! during the VLE ca l c u l a t i o n based on the type o f c a l c u l a t i o n
! that i s be ing performed . Note : the s i gn i s important here .
i f (type==0) then

ad jus t = Padj ! Amount to change the p r e s su r e each i t e r a t i o n [Pa]
e l s e

ad jus t = Tadj ! Amount to change the temp each i t e r a t i o n [K]
end i f

! I f the equat ion o f s ta te , combining ru l e s , and mixing r u l e s are
! supposed to vary , setup an array to hold a l l o f the combinat ions .

127

! There are 3 EOS (RKS, PR, PRSV) , 2 mixing (l i n e a r , quadrat i c) ,
! and 4 combining r u l e s (ar i thmet i c , convent iona l , margules ,
! van Laar) cu r r en t l y implemented . They w i l l be s to r ed in r u l e s a r r
! as (eq , comb (1) , comb (2) , mix (1) , mix (2))
i f (v a r i a t i o n s == 1) then

numeos=3; nummix=2; numcomb=4; numvars = numeos∗nummix∗numcomb
a l l o c a t e (r u l e s a r r (numvars , 5))
c a l l v a ry ru l e s (numeos , nummix , numcomb , numvars , r u l e s a r r)

e l s e
numvars=1

end i f

! Loop over the p o s s i b l e eos / cr /mr combinat ions .
n=1
ru l e l o op : do whi l e (n<=numvars)

! Set the cur rent r u l e s from r u l e s a r r i f nece s sa ry .
i f (v a r i a t i o n s==1) then

eq = r u l e s a r r (n , 1)
comrules (1) = r u l e s a r r (n , 2) ; comrules (2) = r u l e s a r r (n , 3)
mixru le s (1) = r u l e s a r r (n , 4) ; mixru le s (2) = r u l e s a r r (n , 5)
c omru l e s f i x (:)= comrules (:)

e nd i f

! Set the k i j va lue s based on the cur rent r u l e combination .
wr i t e (r u l e s t r , fmt=”(I 1 I 1 I 1 I 1 I 1)”) eq , comrules , mixru le s
i f (mixru le s (1)==0) then ! k i j va lue s should be 0 (no e f f e c t)

method=0
e l s e i f (comrules (1)==0. or . comrules (1)==1) then ! Use the f i t s f i l e

method=1
e l s e ! Use the k i j p a i r s f i l e s

method=2
end i f
c a l l s e t k i j (method , r u l e s t r , t s t r , p s t r)

! I f the PRSV−EOS i s s p e c i f i e d , r e s e t to a d i f f e r e n t s e t o f
! v a r i a b l e s to keep i n t e r n a l c on s i s t en cy with the PRSV parameters .
i f (eq==2) then

Tc = Tc 2 ; Pc = Pc 2 ; w = w 2 ;
kap1 = kap1 2 ; kap2 = kap2 2 ; kap3 = kap3 2 ;

end i f

! I n i t i a l i z e the r e s u l t s a r rays and c a l l the VLE c a l c u l a t i o n s .
bubarr (:)=0 .0 d0 ; dewarr (:)=0 . 0 d0 ; xarr (:)=0 . 0 d0 ; yarr (:)=0 . 0 d0
c a l l v l e (T,P, zarr , bubarr , dewarr , xarr , yarr)

! Check the Bubble po int array aga in s t some exper imenta l data and
! c a l c u l a t e both the percent d ev i a t i on s and t o t a l d ev i a t i on s .

128

! Store t h i s in a f i l e so i t can be p l o t t ed .
! The . dat exper imenta l f i l e must e x i s t in order to do t h i s .
i f (datcheck) then

! I n i t i a l i z e the e r r o r s and po int counts .
b to tpt s = 0 ; btotapd = 0 .0 d0 ; btotad = 0 .0 d0
dtotpt s = 0 ; dtotapd = 0 .0 d0 ; dtotad = 0 .0 d0
open (30 , f i l e=ru l e s t r , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)

! Ca l cu la t e the dev i a t i on s by c a l l i n g the devca l c module .
do i = 1 , d e l t a+1

c a l l bubdev (T,P, za r r (i) , bubarr (i) , bva l idpt , &
bubavedev , bubaveperdev)

c a l l dewdev (T,P, za r r (i) , dewarr (i) , dva l idpt , &
dewavedev , dewaveperdev)

i f (type==0)then
bubarr (i) = bubarr (i)/1000 .0 d0
dewarr (i) = dewarr (i)/1000 .0 d0

end i f

! Write the c a l c u l a t ed e r r o r s to a f i l e when they are found .
! I f no exper imenta l data e x i s t s at t h i s point , j u s t wr i t e
! a ’NA’ to the f i l e .
i f (bva l idpt==1.and . dva l idpt==1) then

wr i t e (30 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &
bubavedev , bubaveperdev , dewavedev , dewaveperdev

btotpt s = btotpt s +1; dtotpt s = dtotpt s+1
btotapd = btotapd + bubaveperdev
btotad = btotad + bubavedev
dtotapd = dtotapd + dewaveperdev
dtotad = dtotad + dewavedev

e l s e i f (bva l idpt==1.and . dva l idpt==0) then
wr i t e (30 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &

bubavedev , bubaveperdev , ’NA ’ , ’NA’
btotpt s = btotpt s+1
btotapd = btotapd + bubaveperdev
btotad = btotad + bubavedev

e l s e i f (bva l idpt==0.and . dva l idpt==1) then
wr i t e (30 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &

’NA ’ , ’NA ’ , dewavedev , dewaveperdev
dtotpt s = dtotpt s+1
dtotapd = dtotapd + dewaveperdev
dtotad = dtotad + dewavedev

e l s e
wr i t e (30 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &

’NA ’ , ’NA ’ , ’NA ’ , ’NA’
end i f

129

enddo
c l o s e (30)

! Ca l cu la t e the average e r r o r s i f p o s s i b l e .
i f (btotpts >0)then

bubaveperdev=btotapd/ btotpt s
bubavedev=btotad/ btotpt s

end i f
i f (dtotpts >0)then

dewaveperdev=dtotapd/ dtotpt s
dewavedev=dtotad/ dtotpt s

end i f
e nd i f

! Write the k i j and aveperdev va lue s to a f i l e so they
! can be analyzed l a t e r .
open (40 , f i l e =’ u s edk i j s ’ , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
i f (type==0)then

v a l s t r = t s t r
e l s e

v a l s t r = ps t r
end i f
i f (btotpts >0.and . dtotpts >0)then

wr i t e (40 , fmt=∗) tr im (r u l e s t r) , ’ ’ , tr im (v a l s t r) , &
k12 , k21 , bubaveperdev , dewaveperdev

e l s e i f (btotpts >0.and . dtotpt s==0)then
wr i t e (40 , fmt=∗) tr im (r u l e s t r) , ’ ’ , tr im (v a l s t r) , &

k12 , k21 , bubaveperdev , ’NA’
e l s e i f (b to tpt s==0.and . dtotpts >0)then

wr i t e (40 , fmt=∗) tr im (r u l e s t r) , ’ ’ , tr im (v a l s t r) , &
k12 , k21 , ’NA ’ , dewaveperdev

e l s e
wr i t e (40 , fmt=∗) tr im (r u l e s t r) , ’ ’ , tr im (v a l s t r) , &

k12 , k21 , ’NA ’ , ’NA’
end i f
c l o s e (40)

n=n+1
end do ru l e l o op

! Dea l l o ca t e memory as needed .
d e a l l o c a t e (bubarr , dewarr , zarr , xarr , yarr)
i f (datcheck) d e a l l o c a t e (texp , xexp , yexp , pexp , npexp)
i f (v a r i a t i o n s==1) d e a l l o c a t e (r u l e s a r r)

end PROGRAM vlemain

130

I.2 VLESOLVE.F90

The vlesolve.f90 code contains the outer loop of the VLE calculation.

MODULE v l e s o l v e

CONTAINS

subrout ine v l e (T,P, zarr , bubarr , dewarr , xarr , yarr)
use nrtype ; use g l oba l ; use devca l c ; use v l e c a l c s ;
imp l i c i t none

! This subrout ine conta in s the outer loop o f the v l e process ,
! which corresponds to tak ing s t ep s through the compos it ion array .

r e a l (DP) , i n t en t (IN) : : T,P
r e a l (DP) , dimension (:) , i n t en t (IN) : : z a r r
r e a l (DP) , dimension (:) , i n t en t (OUT) : : bubarr , dewarr , xarr , yarr
r e a l (DP) : : seed , xseed
i n t e g e r (I4B) : : i

! The z l oops run the v l e c a l c u l a t i o n f o r each step o f
! the composit ion , z , from 0 to 1 . F i r s t , c a l c u l a t e the
! bubble po in t s by c a l l i n g vlebub from the v l e c a l c s module .
i=1
zloopbub : do whi l e (i<=de l t a+1)

! Seed the VLE ca l c u l a t i o n with data from the input f i l e
! f o r the f i r s t po int . For the f o l l ow i n g compuations ,
! use the prev ious data to prov ide a be t t e r seed value .
i f (i==1) then

i f (type==0) then
seed = P

e l s e
seed = T

end i f
e l s e i f (i==2) then

seed = bubarr (1)
e l s e

seed = bubarr (i −1) + (bubarr (i −1) − bubarr (i −2))
end i f

c a l l vlebub (T,P, seed , za r r (i) , adjust , bubarr (i) , yarr (i))
f a i l e d=0
i=i+1

end do zloopbub

! The dewcalcs r e qu i r e a f i n e r ad jus t parameter because phiL i s

131

! the main f a c t o r used in ad ju s t i ng the compos i t ions
! and phiL << phiV .
ad jus t=adjus t /100

! Repeat t h i s p roc e s s f o r the dewpoint c a l c u l a t i o n s , c a l l i n g
! vledew from the v l e c a l c s module .
i=1
zloopdew : do whi l e (i<=de l t a+1)

i f (i==1) then
seed = bubarr (1)

e l s e i f (i==2) then
seed = dewarr (1)

e l s e
seed = dewarr (i −1) + (dewarr (i−1)−dewarr (i −2))

end i f

! Seed the value o f x , which i s guessed in vledew us ing
! data c a l c u l a t ed by vlebub .
c a l l dewseedx (i , zarr , yarr , xseed)
c a l l vledew (T,P, seed , za r r (i) , xseed , adjust , dewarr (i) , xarr (i))
f a i l e d=0
i=i+1

end do zloopdew
adjus t=adjus t ∗100

end subrout ine v l e

subrout ine dewseedx (i , zarr , yarr , xseed)
use nrtype ; use g l oba l
imp l i c i t none

! This subrout ine should search the yarr c r ea ted during the
! vlebub subrout ine f o r a value that i s c l o s e to the cur rent
! yval . This index can then be used to f i nd a value with in
! the prev ious xarr to determine a x seed value .

i n t e g e r (I4B) , i n t en t (IN) : : i
r e a l (DP) , dimension (:) , i n t en t (IN) : : zarr , yarr
r e a l (DP) , i n t en t (OUT) : : xseed

i n t e g e r (I4B) : : j , minindx=1
r e a l (DP) : : d i f f , min=10000

do j =1, s i z e (yarr)
d i f f = abs (za r r (i)−yarr (j))

132

i f (j==1)min=d i f f
i f (d i f f<=min) then

min=d i f f
minindx=j

end i f
enddo
xseed = zar r (minindx)

end subrout ine dewseedx
end MODULE v l e s o l v e

133

APPENDIX J

CODE FOR BINARY INTERACTION PARAMETER PERTURBATIONS

The kijperturb.f90 code is the frontend for the calculations involving a perturbation of the

optimal binary interaction parameters. This program also calls the vlesolve module that was

shown in Appendix I.

J.1 KIJPERTURB.F90

PROGRAM k i j p e r t u rb

! This program should be used to run a VLE ca l c u l a t i o n
! f o r the optimal k i j p a i r s in add i t i on to 2 other pa i r s
! that are +−10% dev i a t i on from optimal . The optimal pa i r s
! are read in from a f i l e c a l l e d ’ u s edk i j s ’ that i s produced
! by the vlemain . f90 program .

use nrtype ; use g l oba l ; use v l e s o l v e ; use devca l c ;
use kijmod ; use v l e c a l c s ; use r u l e s ;
imp l i c i t none

charac t e r (l en=20) : : i n f i l e , i nput s t r , r u l e s t r , r e s u l t s f i l e
cha rac t e r (l en=6) : : pstr , v a l s t r
cha rac t e r (l en=3) : : t s t r
l o g i c a l (4) : : d1 , d2 , d3 , incheck , datcheck
i n t e g e r (I4B) : : i ,m, n , bval idpt , dval idpt , btotpts , dtotpts , method
i n t e g e r (I4B) : : numeos , nummix , numcomb , numvars ,BN, numpairs
i n t e g e r (I4B) , dimension (: , :) , a l l o c a t a b l e : : r u l e s a r r
r e a l (DP) : : T,P, Tadj , Padj

134

r e a l (DP) : : dewavedev , dewaveperdev , dtotad , dtotapd
r e a l (DP) : : bubavedev , bubaveperdev , btotad , btotapd
r e a l (DP) : : maxkijpert , k i j p e r t , p e r k i j p e r t , k12center , k21center
r e a l (DP) : : type d , va r i a t i on s d , eq d , k i j ch e ck d
r e a l (DP) , dimension (2) : : Tc 2 , Pc 2 , w 2 , kap1 2 , kap2 2 , kap3 2
r e a l (DP) , dimension (2) : : mixrules d , comrules d
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : bubarr , dewarr , zarr , xarr , yarr
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : texp temp , pexp temp , &

xexp temp , yexp temp , npexp temp

de l t a = 10000 ! D i s c r e t i z a t i o n o f the compos it ion array
conv = 0.00001 d0 ! A convergence i nd i c a t o r f o r equ iva l ence check ing
Tadj = −1.0d0 ! I n i t i a l adjustment f o r the temperature [K]
Padj = 3844.0 d0 ! I n i t i a l adjustment f o r the p r e s su r e [Pa]
numpairs = 3 ! Number o f k i j p a i r s to run . This should be odd .
p e r k i j p e r t = 0 .1 d0 ! Amount to perturb f o r each pa i r
maxki jpert = p e r k i j p e r t ∗ (numpairs − 1)/2 ! Maximum per turbat i on

i npu t s t r =’ ethanol ’
i n f i l e = ’ eth . in ’ ; d a t a f i l e = ’ eth . dat ’ ; l i n e s = 69!286

! A l l o ca t e ar rays to s t o r e the i n i t i a l compos it ion and the r e s u l t s .
a l l o c a t e (za r r (d e l t a +1) , xarr (d e l t a +1) , yarr (d e l t a +1) , &

bubarr (d e l t a +1) , dewarr (de l t a +1))

! I n i t i a l i z e the main compos it ion array .
do i =1, d e l t a+1

za r r (i) = i−1
end do
za r r = zar r / de l t a

! Read the input f i l e i n to the c o r r e c t v a r i a b l e s
i nqu i r e (f i l e=i n f i l e , e x i s t=incheck)
i f (incheck) then

open (10 , f i l e=i n f i l e , a c c e s s=’ s equent i a l ’ , &
form=’ formatted ’ , s t a tu s=’old ’)

read (10 , fmt=”(/A1)”) d1 , d2 , d3
read (10 , fmt=”(/F18 . 8) ”)T,P, type d , va r i a t i on s d , eq d , &

comrules d (1) , comrules d (2) , mixru l e s d (1) , mixru l e s d (2) , &
Tc (1) ,Tc (2) , Pc (1) , Pc (2) ,w(1) ,w(2) , rho (1) , rho (2) , &
kap1 (1) , kap1 (2) , kap2 (1) , kap2 (2) , kap3 (1) , kap3 (2) , &
Tc 2 (1) , Tc 2 (2) , Pc 2 (1) , Pc 2 (2) , w 2 (1) , w 2 (2) , &
kap1 2 (1) , kap1 2 (2) , kap2 2 (1) , kap2 2 (2) , kap3 2 (1) , kap3 2 (2)

c l o s e (10)

135

! Convert data in to the c o r r e c t numeric types
type = in t (type d) ; v a r i a t i o n s = in t (v a r i a t i o n s d) ; eq = in t (eq d)
mixru le s (1) = in t (mixru l e s d (1)) ; mixru le s (2) = in t (mixru l e s d (2))
comrules (1) = in t (comrules d (1)) ; comrules (2) = in t (comrules d (2))
wr i t e (t s t r , fmt=”(I3)”) f l o o r (T)
wr i t e (pstr , fmt=”(I6)”) f l o o r (P)

e l s e
p r i n t ∗ , ”ERROR: No input f i l e a v a i l a b l e . Terminating”
stop

end i f

! A l l o ca t e v a r i a b l e s and s t o r e exper imenta l data i f p re sent .
i n qu i r e (f i l e=da t a f i l e , e x i s t=datcheck)
i f (datcheck) then

BN = 1000 ! A big number
a l l o c a t e (texp temp (BN) , xexp temp (BN) , yexp temp (BN) , &

pexp temp (BN) , npexp temp (BN))
open (20 , f i l e=da t a f i l e , s t a tu s=’old ’)
l i n e s = 0
do i =1,BN

! Read each l i n e o f the exp data f i l e i n to l o c a l v a r i a b l e s
read (20 , fmt=∗ ,IOSTAT=EOF) texp temp (i) , xexp temp (i) , &

yexp temp (i) , pexp temp (i) , npexp temp (i)
i f (EOF==−1)e x i t
l i n e s = l i n e s+1 ! Keep track o f the number o f l i n e s .
pexp (i) = pexp (i)/1000 .0 d0 ! Convert p r e s su r e s to kPa .

end do
c l o s e (20)
! Reset to permanent ar rays o f the c o r r e c t s i z e .
a l l o c a t e (texp (l i n e s) , pexp (l i n e s) , npexp (l i n e s) , &

xexp (l i n e s) , yexp (l i n e s))
do i =1, l i n e s

texp (i) = texp temp (i) ; pexp (i) = pexp temp (i)
xexp (i) = xexp temp (i) ; yexp (i) = yexp temp (i)
npexp (i) = npexp temp (i)

enddo
d e a l l o c a t e (texp temp , pexp temp , xexp temp , yexp temp , npexp temp)

e l s e
p r i n t ∗ , ”ERROR: No exper imenta l d a t a f i l e inc luded . ”

end i f

! Set the amount to ad jus t the guessed pr e s su r e or temperature
! during the VLE ca l c u l a t i o n based on the type o f c a l c u l a t i o n
! that i s be ing performed . Note : the s i gn i s important here .
i f (type==0) then

ad jus t = Padj ! Amount to change the p r e s su r e each i t e r a t i o n [Pa]

136

e l s e
ad jus t = Tadj ! Amount to change the temp each i t e r a t i o n [K]

end i f

! I f the equat ion o f s ta te , combining ru l e s , and mixing r u l e s are
! supposed to vary , setup an array to hold a l l o f the combinat ions .
! There are 3 EOS (RKS, PR, PRSV) , 2 mixing (l i n e a r , quadrat i c) ,
! and 4 combining r u l e s (ar i thmet i c , convent iona l , margules ,
! van Laar) cu r r en t l y implemented . They w i l l be s to r ed in r u l e s a r r
! as (eq , comb (1) , comb (2) , mix (1) , mix (2))
i f (v a r i a t i o n s == 1) then

numeos=3; nummix=2; numcomb=4; numvars = numeos∗nummix∗numcomb
a l l o c a t e (r u l e s a r r (numvars , 5))
c a l l v a ry ru l e s (numeos , nummix , numcomb , numvars , r u l e s a r r)

e l s e
numvars=1

end i f

! Loop over the p o s s i b l e eos / cr /mr combinat ions .
n=1
ru l e l o op : do whi l e (n<=numvars)

! Set the cur rent r u l e s from r u l e s a r r i f nece s sa ry .
i f (v a r i a t i o n s==1) then

eq = r u l e s a r r (n , 1)
comrules (1) = r u l e s a r r (n , 2) ; comrules (2) = r u l e s a r r (n , 3)
mixru le s (1) = r u l e s a r r (n , 4) ; mixru le s (2) = r u l e s a r r (n , 5)
c omru l e s f i x (:)= comrules (:)

e nd i f
! I f the PRSV−EOS i s s p e c i f i e d , r e s e t to a d i f f e r e n t s e t o f
! v a r i a b l e s to keep i n t e r n a l c on s i s t en cy with the PRSV parameters .
i f (eq==2) then

Tc = Tc 2 ; Pc = Pc 2 ; w = w 2 ;
kap1 = kap1 2 ; kap2 = kap2 2 ; kap3 = kap3 2 ;

end i f

! Set the k i j va lue s based on the cur rent r u l e combination .
wr i t e (r u l e s t r , fmt=”(I 1 I 1 I 1 I 1 I 1)”) eq , comrules , mixru le s
i f (mixru le s (1)==0) then ! k i j va lue s should be 0 (no e f f e c t)

method=0
e l s e i f (comrules (1)==0. or . comrules (1)==1) then ! Use the f i t s f i l e

method=1
e l s e ! Use the k i j p a i r s f i l e s

method=2
end i f
c a l l s e t k i j (method , r u l e s t r , t s t r , p s t r)
k12center = k12

137

k21center = k21

! Reset to the maxki jpert f o r each new k i j l o o p
k i j p e r t = maxki jpert

! Only run a per turbat i on i f the re i s a k i j dependence .
i f (mixru le s (1)==0) then

m=numpairs+1
e l s e

m=1
end i f

! Loop over the number o f k i j p a i r s s p e c i f i e d .
k i j l o o p : do whi l e (m<=numpairs)

! Modify the k i j va lue s
k12 = k12center ∗ (1 . 0 d0+k i j p e r t)
k21 = k21center ∗ (1 . 0 d0+k i j p e r t)

! I f the cente r va lue s were 0 , modify the pe r turbat i on method
i f (k12center==0)then

k12 = k i j p e r t ∗0 .01 d0
end i f
i f (k21center==0)then

k21 = k i j p e r t ∗0 .01 d0
end i f

! Update the value o f k i j p e r t
k i j p e r t = (k i j p e r t−p e r k i j p e r t)

! I n i t i a l i z e the r e s u l t s a r rays and c a l l the VLE c a l c u l a t i o n s .
bubarr (:)=0 .0 d0 ; dewarr (:)=0 .0 d0 ; xarr (:)=0 . 0 d0 ; yarr (:)=0 . 0 d0
c a l l v l e (T,P, zarr , bubarr , dewarr , xarr , yarr)

i f (m<10) then
wr i t e (r e s u l t s f i l e , fmt=”(A5A1I1)”) r u l e s t r , ’ ’ ,m

e l s e
wr i t e (r e s u l t s f i l e , fmt=”(A5A1I2)”) r u l e s t r , ’ ’ ,m

end i f
! Check the Bubble po int array aga in s t some exper imenta l data .
! This data i s s to r ed in va l i d . dat so i t can be p l o t t ed .
! Note : The . dat exper imenta l f i l e must e x i s t and the l ength
! o f the f i l e must be s p e c i f i e d above .
! i f (mixru le s (1)==0) then
! wr i t e (r e s u l t s f i l e , fmt=”(A5A2)”) r u l e s t r , ’ 1 ’
i f (m<10) then

wr i t e (r e s u l t s f i l e , fmt=”(A5A1I1)”) r u l e s t r , ’ ’ ,m

138

e l s e
wr i t e (r e s u l t s f i l e , fmt=”(A5A1I2)”) r u l e s t r , ’ ’ ,m

end i f

! Check the Bubble po int array aga in s t some exper imenta l
! data and c a l c u l a t e both the percent d ev i a t i on s and t o t a l
! d ev i a t i on s . Store t h i s in a f i l e so i t can be p l o t t ed .
! The . dat exper imenta l f i l e must e x i s t in order to do t h i s .
i f (datcheck) then

btotpt s = 0 ; btotapd = 0 .0 d0 ; btotad = 0 .0 d0
dtotpt s = 0 ; dtotapd = 0 .0 d0 ; dtotad = 0 .0 d0
open (30 , f i l e=r e s u l t s f i l e , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)

! Ca l cu la t e the dev i a t i on s by c a l l i n g the devca l c module .
do i = 1 , d e l t a+1

c a l l bubdev (m,T,P, za r r (i) , bubarr (i) , bva l idpt , &
bubavedev , bubaveperdev)

c a l l dewdev (m,T,P, za r r (i) , dewarr (i) , dva l idpt , &
dewavedev , dewaveperdev)

i f (type==0)then
bubarr (i) = bubarr (i)/1000 .0 d0
dewarr (i) = dewarr (i)/1000 .0 d0

end i f

! Write the c a l c u l a t ed e r r o r s to a f i l e when they are
! found . I f no exper imenta l data e x i s t s at t h i s point ,
! j u s t wr i t e a ’NA’ to the f i l e .
i f (bva l idpt==1.and . dva l idpt==1) then

wr i t e (320 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &
bubavedev , bubaveperdev , dewavedev , dewaveperdev

btotpt s = btotpt s +1; dto tpt s = dtotpt s+1
btotapd = btotapd + bubaveperdev
btotad = btotad + bubavedev
dtotapd = dtotapd + dewaveperdev
dtotad = dtotad + dewavedev

e l s e i f (bva l idpt==1.and . dva l idpt /=1) then
wr i t e (320 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &

bubavedev , bubaveperdev , ’NA ’ , ’NA ’
btotpt s = btotpt s+1
btotapd = btotapd + bubaveperdev
btotad = btotad + bubavedev

e l s e i f (bva l idpt /=1.and . dva l idpt==1) then
wr i t e (320 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &

’NA ’ , ’NA ’ , dewavedev , dewaveperdev
dtotpt s = dtotpt s+1
dtotapd = dtotapd + dewaveperdev
dtotad = dtotad + dewavedev

139

e l s e
wr i t e (320 , fmt=∗) za r r (i) , bubarr (i) , dewarr (i) , &

’NA ’ , ’NA ’ , ’NA ’ , ’NA ’
end i f

enddo
c l o s e (30)

! Ca l cu la t e the average e r r o r s i f p o s s i b l e .
i f (btotpts >0)then

bubaveperdev=btotapd/ btotpt s
bubavedev=btotad/ btotpt s

end i f
i f (dtotpts >0)then

dewaveperdev=dtotapd/ dtotpt s
dewavedev=dtotad/ dtotpt s

end i f
e nd i f

! Write the k i j and aveperdev va lue s to a f i l e so they
! can be analyzed l a t e r .
open (40 , f i l e =’ u s edk i j s ’ , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
i f (type==0)then

v a l s t r = t s t r
e l s e

v a l s t r = ps t r
end i f

i f (btotpts >0.and . dtotpts >0)then
wr i t e (40 , fmt=∗) tr im (r e s u l t s f i l e) , ’ ’ , tr im (v a l s t r) , &

k12 , k21 , bubaveperdev , dewaveperdev
e l s e i f (btotpts >0.and . dtotpt s==0)then

wr i t e (40 , fmt=∗) tr im (r e s u l t s f i l e) , ’ ’ , tr im (v a l s t r) , &
k12 , k21 , bubaveperdev , ’NA’

e l s e i f (b to tpt s==0.and . dtotpts >0)then
wr i t e (40 , fmt=∗) tr im (r e s u l t s f i l e) , ’ ’ , tr im (v a l s t r) , &

k12 , k21 , ’NA’ , dewaveperdev
e l s e

wr i t e (40 , fmt=∗) tr im (r e s u l t s f i l e) , ’ ’ , tr im (v a l s t r) , &
k12 , k21 , ’NA ’ , ’NA’

end i f
c l o s e (40)

m=m+1
end do k i j l o o p

n=n+1
end do ru l e l o op

140

! Dea l l o ca t e memory as needed .
d e a l l o c a t e (bubarr , dewarr , zarr , xarr , yarr)
i f (datcheck) d e a l l o c a t e (texp , xexp , yexp , pexp , npexp)
i f (v a r i a t i o n s==1) d e a l l o c a t e (r u l e s a r r)

end PROGRAM k i j p e r t u rb

141

APPENDIX K

CODE FOR FULL ANALYSIS OF BINARY INTERACTION PARAMETERS

K.1 VLEDEV.F90

The vledev.f90 code is the frontend for the program that calculates the bubble and dew
points for a full range of binary interaction parameters at every available experimental data
point. It should be noted that this program relies on the MPI module for parallelization.

PROGRAM vledev

! This program should be used to run a k i j d ev i a t i on c a l c u l a t i o n .
! A mesh o f va lue s w i l l be c rea ted and k i j p a i r s w i l l be used to
! c a l c u l a t e VLE data at a v a i l a b l e exper imenta l data po in t s .
! The dev i a t i on between s imulated and exper imenta l va lue s
! w i l l be determined and s t o r e f o r l a t e r a n a l y s i s . This program
! implements MPI f o r p a r a l l e l i z a t i o n ac r o s s mu l t ip l e CPUs .

use nrtype ; use g l oba l ; use kijmod ;
use r u l e s ; use pv l e s o l v e ; use mpi
imp l i c i t none

charac t e r (l en=20) : : i n f i l e , i npu t s t r
l o g i c a l (4) : : d1 , d2 , d3 , incheck , datcheck
i n t e g e r (I4B) : : h , i , j , k , beg ,BN, numeos , nummix , numcomb , myid , rc
i n t e g e r (I4B) , dimension (:) , a l l o c a t a b l e : : j v a l i d l o n g , j v a l i d
i n t e g e r (I4B) , dimension (: , :) , a l l o c a t a b l e : : r u l e s a r r
r e a l (DP) : : T,P, Tadj , Padj , s t a r t t ime , end time
r e a l (DP) : : type d , va r i a t i on s d , eq d , k i j ch e ck d
r e a l (DP) , dimension (2) : : mixrules d , comrules d
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : k12arr , k21arr
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : texp temp , pexp temp , &

xexp temp , yexp temp , npexp temp
r e a l (DP) , dimension (: , :) , a l l o c a t a b l e : : pa i ra r r , pa i rar r temp

142

! Setup a l l the r equ i r ed MPI components
c a l l MPI INIT(i e r r)
i f (i e r r . ne .MPI SUCCESS) then

pr in t ∗ , ’ Error s t a r t i n g MPI program . Terminating . ’
c a l l MPI ABORT(MPICOMMWORLD, rc , i e r r) ; stop

end i f
c a l l MPI COMMRANK(MPICOMMWORLD,myid , i e r r)
c a l l MPI COMM SIZE(MPICOMMWORLD, numprocs , i e r r)
p r i n t ∗ , ’ Process ’ , myid , ’ o f ’ , numprocs−1, ’ i s a l i v e ’
i f (myid==0) c a l l cpu time (s t a r t t ime)

! Run these s t ep s f o r every proce s s as each one needs t h i s data .

f r on t=1 ! Current p o s i t i o n in pa i r a r r
Tadj = −1.0d0 ! I n i t i a l adjustment f o r the temperature [K]
Padj = 3844.0 d0 ! I n i t i a l adjustment f o r the p r e s su r e [Pa]

! Setup the parameters f o r the k i j mesh .
k12center=−0.0d0 ; k21center =0.0d0
k12lenparam=200; k21lenparam=k12lenparam
k12chparam=0.01d0 ; k21chparam=k12chparam

k12 = k12center ; k21 = k21center
k12len = k12lenparam ; k21len = k21lenparam
k12change = k12chparam ; k21change = k21chparam
pa i r a r r l e n = (k12len+1)∗(k21len+1)

! Set the name o f the input f i l e with substance s p e c i f i c data
i npu t s t r =’ ethanol ’
i n f i l e = ’ eth . in ’
d a t a f i l e = ’ eth . dat ’

! Read the input f i l e i n to the c o r r e c t v a r i a b l e s
i nqu i r e (f i l e=i n f i l e , e x i s t=incheck)

i f (incheck) then
open (10 , f i l e=i n f i l e , a c c e s s=’ s equent i a l ’ , &

form=’ formatted ’ , s t a tu s=’old ’)
read (10 , fmt=”(/A1)”) d1 , d2 , d3
read (10 , fmt=”(/F18 . 8) ”)T,P, type d , va r i a t i on s d , eq d , &

comrules d (1) , comrules d (2) , mixru l e s d (1) , mixru l e s d (2) , &
Tc (1) ,Tc (2) , Pc (1) , Pc (2) ,w(1) ,w(2) , rho (1) , rho (2) , &
kap1 (1) , kap1 (2) , kap2 (1) , kap2 (2) , kap3 (1) , kap3 (2) , &
Tc 2 (1) , Tc 2 (2) , Pc 2 (1) , Pc 2 (2) , w 2 (1) , w 2 (2) , &
kap1 2 (1) , kap1 2 (2) , kap2 2 (1) , kap2 2 (2) , kap3 2 (1) , kap3 2 (2)

143

c l o s e (10)
! Convert data in to the c o r r e c t numeric types
type = in t (type d) ; v a r i a t i o n s = in t (v a r i a t i o n s d) ; eq = in t (eq d)
mixru le s (1) = in t (mixru l e s d (1)) ; mixru le s (2) = in t (mixru l e s d (2))
comrules (1) = in t (comrules d (1)) ; comrules (2) = in t (comrules d (2))
wr i t e (t s t r , fmt=”(I3)”) f l o o r (T)
wr i t e (pstr , fmt=”(I6)”) f l o o r (P)

e l s e
p r i n t ∗ , ”ERROR: No input f i l e a v a i l a b l e . Terminating”
stop

end i f

! A l l o ca t e v a r i a b l e s and s t o r e exper imenta l data i f p re sent .
i n qu i r e (f i l e=da t a f i l e , e x i s t=datcheck)
i f (datcheck) then

BN = 1000 ! A big number
a l l o c a t e (texp temp (BN) , xexp temp (BN) , yexp temp (BN) , &

pexp temp (BN) , npexp temp (BN))
open (20 , f i l e=da t a f i l e , s t a tu s=’old ’)
l i n e s = 0
do i =1,BN

! Read each l i n e o f the exp data f i l e i n to l o c a l v a r i a b l e s
read (20 , fmt=∗ ,IOSTAT=EOF) texp temp (i) , xexp temp (i) , &

yexp temp (i) , pexp temp (i) , npexp temp (i)
i f (EOF==−1)e x i t
l i n e s = l i n e s+1 ! Keep track o f the number o f l i n e s .
pexp (i) = pexp (i)/1000 .0 d0 ! Convert p r e s su r e s to kPa .

end do
c l o s e (20)
! Reset to permanent ar rays o f the c o r r e c t s i z e .
a l l o c a t e (texp (l i n e s) , pexp (l i n e s) , npexp (l i n e s) , &

xexp (l i n e s) , yexp (l i n e s))
do i =1, l i n e s

texp (i) = texp temp (i) ; pexp (i) = pexp temp (i)
xexp (i) = xexp temp (i) ; yexp (i) = yexp temp (i)
npexp (i) = npexp temp (i)

enddo
d e a l l o c a t e (texp temp , pexp temp , xexp temp , yexp temp , npexp temp)

e l s e
p r i n t ∗ , ”ERROR: No exper imenta l d a t a f i l e inc luded . ”

end i f

! Setup some arrays to s t o r e r e l e van t exp data l i n e s from ∗ . dat
a l l o c a t e (j v a l i d l o n g (l i n e s)) ; j v a l i d l o n g (:) = 0 ; va l idcount = 0
exp : do j =1, l i n e s ! Check ar rays . For P−x , check T; For T−x , P.

i f (type == 0) then
i f (abs (texp (j) − T) > conv) cy c l e exp

144

e l s e i f (type==1) then
i f (abs (pexp (j)∗1000 .0 d0 − P) > conv) cy c l e exp

end i f
va l idcount=va l idcount+1
j v a l i d l o n g (va l idcount) = j

end do exp
! Create j v a l i d with the l i n e numbers o f v a l i d data po in t s .
a l l o c a t e (j v a l i d (va l idcount))
do j =1, va l idcount

j v a l i d (j) = j v a l i d l o n g (j)
enddo
d e a l l o c a t e (j v a l i d l o n g)

! Set the amount to ad jus t the guessed pr e s su r e or temperature
! during the VLE ca l c u l a t i o n based on the type o f c a l c u l a t i o n
! that i s be ing performed . Note : the s i gn i s important here .
i f (type==0) then

ad jus t = Padj ! Amount to change the p r e s su r e each i t e r a t i o n [Pa]
e l s e

ad jus t = Tadj ! Amount to change the temp each i t e r a t i o n [K]
end i f

! I f the equat ion o f s ta te , combining ru l e s , and mixing r u l e s are
! supposed to vary , setup an array to hold a l l o f the combinat ions .
! There are 3 EOS (RKS, PR, PRSV) , 2 mixing (l i n e a r , quadrat i c) ,
! and 4 combining r u l e s (ar i thmet i c , convent iona l , margules ,
! van Laar) cu r r en t l y implemented . They w i l l be s to r ed in r u l e s a r r
! as (eq , comb (1) , comb (2) , mix (1) , mix (2))
i f (v a r i a t i o n s == 1) then

numeos=3; nummix=1; numcomb=4; numvars = numeos∗nummix∗numcomb
a l l o c a t e (r u l e s a r r (numvars , 5))
c a l l v a ry ru l e s (numeos , nummix , numcomb , r u l e s a r r)

e l s e
numvars=1
wr i t e (e r r o r f i l e , fmt=”(I1 I1 I1 I1 I1A6)”) eq , comrules , mixrules , ’ e r r o r s ’

e nd i f

! Now, setup the k i j mesh only on the root p roce s s
i f (myid==0)then

! Create and i n i t i a l i z e the k i j a r rays .
a l l o c a t e (k12arr (k12len +1)) ; c a l l s e tk12a r r (k12arr)
a l l o c a t e (k21arr (k21len +1)) ; c a l l s e tk21a r r (k21arr)

! Create an array o f duples where each duple i s a k i j pa i r
a l l o c a t e (pa i rar r temp (pa i r a r r l en , 2) , p a i r a r r (pa i r a r r l en , 2))

! In order to use optimal chunks ize whi l e keeping an even

145

! d i s t r i b u t i o n o f k i j p a i r s on each proc , setup the pa i r a r r
! based on the numprocs a v a i l a b l e .
! F i r s t , s e t a l l the pa i r s toge the r as duples .
j=0
do k=1, k12len+1

do h=1, k21len+1
j=j+1
pa i rar r temp (j , 1) = k12arr (k)
pa i rar r temp (j , 2) = k21arr (h)

enddo
enddo

! Then , r e o r gan i z e the pa i r s based on numprocs .
beg = 1
j=0
do k=1,numprocs

do h=beg , pa i r a r r l e n , numprocs
j=j+1
pa i r a r r (j , 1) = pa i rar r temp (h , 1)
p a i r a r r (j , 2) = pa i rar r temp (h , 2)

enddo
beg=beg+1

enddo
d e a l l o c a t e (pa i rar r temp)

end i f

! Ca l l the VLE c a l c u l a t i o n on every p roc e s s o r .
c a l l pv le (T,P, myid , pa i r a r r , j v a l i d , r u l e s a r r)

! F in i sh up a few th ing s in the root p roce s s only .
i f (myid==0)then

c a l l cpu time (end time)
! Dea l l o ca t e root p roce s s s p e c i f i c memory
d e a l l o c a t e (k12arr , k21arr , p a i r a r r)

end i f

! Dea l l o ca t e memory on a l l p r o c e s s e s as needed .
i f (datcheck) d e a l l o c a t e (texp , xexp , yexp , pexp , npexp)
i f (v a r i a t i o n s==1) d e a l l o c a t e (r u l e s a r r)
d e a l l o c a t e (j v a l i d)

! F i n a l i z e the MPI proce s s .
c a l l MPI FINALIZE(i e r r)

end PROGRAM vledev

146

K.2 VLEDEV.F90

The pvlesolve.f90 code is the parallelized equivalent of the vlesolve.f90 module shown in
Appendix I. In includes subroutines to divide the binary interaction parameters arrays among
different processors, communicate with those processors to determine the status of the work,
and send jobs to those processors.

MODULE pv l e s o l v e
! This module i s c a r r i e d out f o r every p roc e s s o r us ing MPI .
! I t l oops through a chunk o f the k i j p a i r s as we l l as
! any matching exper imenta l data and over EOS/CR/MR combos .
! Average e r r o r s over the exp data s e t s are c a l c u l a t ed f o r each
! k i j pa i r and ru l e combination .

CONTAINS

subrout ine pvle (T,P, myid , pa i r a r r , j v a l i d , r u l e s a r r)
use nrtype ; use g l oba l ; use pkijmod ; use devca l c
use v l e s o l v e ; use v l e c a l c s ; use mpi
imp l i c i t none

r e a l (DP) , i n t en t (IN) : : T,P
i n t e g e r (I4B) , i n t en t (IN) : : myid
r e a l (DP) , dimension (: , :) , i n t en t (IN) : : p a i r a r r
i n t e g e r (I4B) , dimension (:) , i n t en t (IN) : : j v a l i d
i n t e g e r (I4B) , dimension (: , :) , i n t en t (IN) : : r u l e s a r r
l o g i c a l (4) : : s t i l l w o r k i n g =. t rue . , work ava i l ,ALL PROCS DONE=. f a l s e .
i n t e g e r (I4B) : : j , h , i , chunk loc , ktag=0, ctag=1, &

s ta tu s (MPI STATUS SIZE) , dest , req=0,n
r e a l (DP) : : dev ia t ion , perdev , BubTotErr , DewTotErr , &

BubAveErr , DewAveErr , bubval , yval , seed , dewval , xval , xseed
r e a l (DP) , dimension (: , :) , a l l o c a t a b l e : : p a i r a r r l o c , pa i rar r temp

! Assume that the re i s enough work f o r a l l procs i n i t i a l l y .
work ava i l =. t rue .
ALL PROCS DONE=. f a l s e .

! Each pa i r could take a very long time , so l im i t how
! l a r g e chunks ize can be , o therw i se bas ing chunks ize on numprocs .
! in order to minimize communcation overhead .
chunks ize = pa i r a r r l e n /numprocs
i f (chunksize >3) chunks ize=3

! Store chunks ize so i t can be used as an upperbound f o r MPI c a l l s
chunk loc = chunks ize

! Setup the l o c a l array f o r each pro c e s s o r

147

a l l o c a t e (p a i r a r r l o c (chunksize , 2))

! Send out i n i t i a l s e t o f work to procs from root .
i f (myid==0)then

! Temp array to send to other procs
a l l o c a t e (pa i rar r temp (chunksize , 2))
f r on t = 1 ! Star t at the beg inning o f p a i r a r r
do i =0,numprocs−1

dest = i
req = i
i f (i==0)then ! Don ’ t s e l f −send , j u s t s e t the l o c a l array

p a i r a r r l o c (: , 1) = pa i r a r r (f r on t : f r on t+chunksize −1 ,1)
p a i r a r r l o c (: , 2) = pa i r a r r (f r on t : f r on t+chunksize −1 ,2)

e l s e
pa i rar r temp (: , 1) = pa i r a r r (f r on t : f r on t+chunksize −1 ,1)
pa i rar r temp (: , 2) = pa i r a r r (f r on t : f r on t+chunksize −1 ,2)
c a l l MPI SEND(pairarr temp , chunks ize ∗2 , &

MPI DOUBLE PRECISION, dest , ktag ,MPICOMMWORLD, i e r r)
end i f
f r on t = f r on t + chunks ize

enddo
e l s e

c a l l MPI RECV(pa i r a r r l o c , chunks ize ∗2 , &
MPI DOUBLE PRECISION, 0 , ktag ,MPICOMMWORLD, status , i e r r)

end i f

! S ta r t a loop that cont inues un t i l a l l work i s done .
do whi l e (work ava i l)

! Cycle through the cur rent chunk
do h=1, chunk loc

k12 = p a i r a r r l o c (h , 1)
k21 = p a i r a r r l o c (h , 2)

! Loop over the p o s s i b l e eos / cr /mr combinat ions .
n=1
ru l e l o op : do whi l e (n<=numvars)

i f (v a r i a t i o n s==1) then
eq = r u l e s a r r (n , 1)
comrules (1) = r u l e s a r r (n , 2)
comrules (2) = r u l e s a r r (n , 3)
mixru le s (1) = 1 ! Force the quadrat i c MR f o r a
mixru le s (2) = r u l e s a r r (n , 5)
wr i t e (e r r o r f i l e , fmt=”(I1 I1 I1 I1 I1A6)”) eq , comrules ,&

mixrules , ’ e r r o r s ’
open (40 , f i l e =’ e r r o r f i l e l i s t ’ , s t a tu s=’unknown ’ , &

po s i t i o n=’append ’)

148

wr i t e (40 , fmt=∗) e r r o r f i l e
c l o s e (40)

end i f

! I f the PRSV−EOS i s s p e c i f i e d , r e s e t to a
! d i f f e r e n t s e t o f v a r i a b l e s
i f (eq==2) then

Tc = Tc 2 ; Pc = Pc 2 ; w = w 2 ;
kap1 = kap1 2 ; kap2 = kap2 2 ; kap3 = kap3 2 ;

end i f

BubTotErr=0.0d0 ; DewTotErr=0.0d0 ! I n i t i a l i z e the Errors
exp2 : do i =1, va l idcount ! Step through the data po in t s

j = j v a l i d (i)
! Seed the ca l cua t i on depending on the type
i f (type==) then

seed=pexp (j)∗1000 .0 d0
e l s e

seed=texp (j)
end i f
! Ca l l the bubble po int c a l c u l a t i o n
c a l l vlebub (T,P, seed , xexp (j) , adjsuc , bubval , yval)
! Ca l cu la t e the e r r o r s
c a l l dev (j , bubval , dev iat ion , perdev)
BubTotErr = BubTotErr + perdev

! Set the xseed to improve s imu la t i on speed and
! modify ad jus t and maxiters f o r the dewpoint rou t in e .
xseed = xexp (j)
ad jus t = adjus t /100 .0 d0
maxiters = maxiters ∗ 10
c a l l vledew (T,P, seed , yexp (j) , xseed , adjust , dewval , xval)
c a l l dev (j , dewval , dev ia t ion , perdev)
DewTotErr = DewTotErr + perdev
ad jus t = adjus t ∗100 .0 d0
maxiters = maxiters /10

end do exp2

! Determine the average e r r o r s
BubAveErr = BubTotErr/ va l idcount
DewAveErr = DewTotErr/ va l idcount

! Write the r e s u l t s to a f i l e
i f (myid<10) then

wr i t e (e r r o r f i l e , fmt=”(A11I1)”) e r r o r f i l e , myid
e l s e i f (myid<100) then

149

wr i t e (e r r o r f i l e , fmt=”(A11I2)”) e r r o r f i l e , myid
end i f
open (30 , f i l e=e r r o r f i l e , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
wr i t e (30 , fmt=∗)BubAveErr , DewAveErr , k12 , k21
c l o s e (30)

n=n+1
enddo ru l e l o op

! I f t h i s i s the root proc , check the s t a tu s o f the work .
i f (myid==0)then

! Check i f the l a s t pa i r on the root proc i s done .
i f (h==chunk loc) s t i l l w o r k i n g =. f a l s e .
! Check i f a l l the other procs are done
i f (ALL PROCS DONE) rootworkcheck (1)=−1
! Ca l l queue work i f some procs are wai t ing .
i f (rootworkcheck (1) . ne .−1) c a l l queue work (pa i ra r r , &

pa i r a r r l o c , pa irarr temp , s t i l lwo r k i n g ,ALL PROCS DONE)
end i f

enddo

! I f t h i s i s the root proc , check to see i f a l l the work i s done
i f (myid==0)then

i f (rootworkcheck (1)==−1)then
work ava i l = . f a l s e . ; c y c l e ! End root p roce s s

e l s e i f (rootworkcheck (1)==0) then
chunk loc=workcheck (2)

end i f
e l s e

! I f t h i s i s not root , t h i s work i s f i n i s h e d .
! Send a s i g n a l root
c a l l MPI SEND(workcheck , 2 ,MPI INTEGER,0 , ctag , &

MPICOMMWORLD, i e r r)
! Rece ive workcheck and the l o c a l k i j array from root .
c a l l MPI RECV(workcheck , 2 ,MPI INTEGER,0 , ctag , &

MPICOMMWORLD, status , i e r r)
c a l l MPI RECV(pa i r a r r l o c , chunks ize ∗2 , &

MPI DOUBLE PRECISION, 0 , ktag ,MPICOMMWORLD, status , i e r r)

! I f root says a l l work i s done , end . Otherwise , cont inue .
i f (workcheck(1)==−1)then

work ava i l =. f a l s e . ; c y c l e ! End cur rent proc
e l s e i f (workcheck (1)==0) then

chunk loc = workcheck (2)
end i f

150

end i f
end do

d e a l l o c a t e (p a i r a r r l o c)
i f (myid==0)d e a l l o c a t e (pa i rar r temp)

end subrout ine pvle

subrout ine queue work (pa i ra r r , p a i r a r r l o c , pa irarr temp , &
s t i l lwo r k i n g ,ALL PROCS DONE)

use nrtype ; use g l oba l ; use mpi
r e a l (DP) , dimension (: , :) , i n t en t (IN) : : p a i r a r r
r e a l (DP) , dimension (: , :) , i n t en t (INOUT) : : p a i r a r r l o c , pa i rar r temp
l o g i c a l (4) , i n t en t (INOUT) : : s t i l lwo r k i n g , ALL PROCS DONE
l o g i c a l (4) : : f l a g
i n t e g e r (I4B) : : i , s rc , dest , ktag=0, ctag=1, &

s ta tu s (MPI STATUS SIZE) , newchunk=1, arraycheck=1

do i =0,numprocs−1
s r c=i
dest=i
! Find out where we are in the pa i r a r r
i f (f ront>pa i r a r r l e n) then ! Already done

arraycheck = −1
e l s e i f (f r on t+chunksize−1>pa i r a r r l e n) then

! Going to run o f f the end o f the array at the next chunk
arraycheck = 0

e l s e ! S t i l l good
arraycheck = 1

end i f

! I f t h i s i s the root proc
i f (i==0)then

i f (s t i l l w o r k i n g) then
cy c l e ! We are s t i l l in the middle o f a chunk

e l s e ! We need a new chunk on the root proc
i f (arraycheck==−1)then ! Already done

rootworkcheck (1)=−1
cy c l e

e l s e i f (arraycheck==0) then ! Going to run o f f end
newchunk = pa i r a r r l e n − f r on t + 1
rootworkcheck (1) = 0 ; rootworkcheck (2) = newchunk

e l s e ! S t i l l good
newchunk=chunks ize

end i f
p a i r a r r l o c (1 : newchunk , 1) = &

151

pa i r a r r (f r on t : f r on t+newchunk−1 ,1)
p a i r a r r l o c (1 : newchunk , 2) = &

pa i r a r r (f r on t : f r on t+newchunk−1 ,2)
f r on t=f r on t+chunks ize
s t i l l w o r k i n g =. t rue .

end i f

e l s e
! I f the array was f i n i s h e d during t h i s loop , wait f o r
! a l l the prev procs to f i n i s h and send workcheck=−1 to
! everyth ing . NOTE: I t i s p o s s i b l e that root s t i l l has
! a l a s t chunk to f i n i s h here .
i f (ALL PROCS DONE) cy c l e
i f (arraycheck==−1)then

do j =1,numprocs−1
s r c=j
dest=j
c a l l MPI RECV(workcheck , 2 ,MPI INTEGER, src , ctag , &

MPICOMMWORLD, status , i e r r)
workcheck(1)=−1
c a l l MPI SEND(workcheck , 2 ,MPI INTEGER, dest , ctag , &

MPICOMMWORLD, i e r r)
c a l l MPI SEND(pairarr temp , chunks ize ∗2 , &

MPI DOUBLE PRECISION, dest , ktag , &
MPICOMMWORLD, i e r r)

ALL PROCS DONE=. true .
enddo

e l s e
c a l l MPI IPROBE(src , ctag ,MPICOMMWORLD, f l ag , s tatus , i e r r)
i f (f l a g) then ! s r c i s done working

c a l l MPI RECV(workcheck , 2 ,MPI INTEGER, src , ctag , &
MPICOMMWORLD, status , i e r r)

i f (arraycheck==0)then ! Going to run o f f
newchunk = pa i r a r r l e n − f r on t + 1
workcheck (1) = 0 ; workcheck (2) = newchunk

e l s e ! S t i l l good
newchunk = chunks ize

end i f
pa i rar r temp (1 : newchunk , 1) = &

pa i r a r r (f r on t : f r on t+newchunk−1 ,1)
pa i rar r temp (1 : newchunk , 2) = &

pa i r a r r (f r on t : f r on t+newchunk−1 ,2)
! Use o r i g i n a l chunks ize here as i t needs to match
! the other procs and i t w i l l always be the
! upperbound o f newchunk which i s a l l owab l e .
c a l l MPI SEND(workcheck , 2 ,MPI INTEGER, dest , ctag , &

152

MPICOMMWORLD, i e r r)
c a l l MPI SEND(pairarr temp , chunks ize ∗2 , &

MPI DOUBLE PRECISION, dest , ktag , &
MPICOMMWORLD, i e r r)

f r on t=f r on t+chunks ize
end i f

e nd i f
e nd i f

enddo
end subrout ine queue work

end MODULE pv l e s o l v e

153

APPENDIX L

MODULES USED BY MULTIPLE PROGRAMS

The code files shown below are the body of the VLE calculations. All the modules to loop

through a numerical step, set the equations of state, mixing rules, and combining rules,

determine fugacity coefficients, and calculated deviations are included here. Not included

are the modules used for root finding as the code for those can be found in Numerical Recipes

[45].

L.1 VLECALCS.F90

The vlecalcs.f90 code contains the bulk of the VLE routine. It corresponds to one numerical
step, as described in Chapter 4 and is called by all of the main programs shown above.

MODULE v l e c a l c s

CONTAINS
subrout ine vlebub (T,P, seed , zval , adjust , bubval , yval)

use nrtype ; use g l oba l ; use eosmod ; use c o n v f a i l
imp l i c i t none

! This module c a l c u l a t e s the bubble po in t s o f the
! vapor−l i q u i d equ i l i b r i um of a mixture us ing the Phi−Phi
! method i s used with the Equation o f State , Mixing Rules
! and Combining Rules that are s p e c i f i e d .

! The s t ag e s o f the VLE algor i thm are l ab e l ed throughout as we l l .
! Stage 1 and 2 invo lv e f i x i n g x i and P (or T) and assuming
! va lue s f o r T (or P) . This i s a l r eady done be f o r e t h i s

154

! subrout ine i s c a l l e d .

r e a l (DP) , i n t en t (IN) : : T,P
r e a l (DP) , i n t en t (IN) : : seed , zva l
r e a l (DP) , i n t en t (INOUT) : : ad jus t
r e a l (DP) , i n t en t (OUT) : : bubval , yval
i n t e g e r (I4B) : : phase , t o t a l i t e r s i n =0, t o t a l i t e r s o u t =0, &

checker=0, sk ip1=0, sk ip2=0, b i gva l =1000000
r e a l (DP) : : ysum=0,sum new=0, change=0, va l=0, l c l a d j
r e a l (DP) , dimension (comp) : : phi , x , y , phiL , phiV ,K

! I f the prev ious i t e r a t i o n f a i l e d , don ’ t use i t s va lue
! to seed the next run , i n s t ead j u s t use the value that
! was provided in the input f i l e . Also , r e s e t ad jus t .
i f (f a i l e d==1) then

i f (type==0) then
va l = P

e l s e
va l = T

end i f
c a l l r e s e t a d j (l c l a d j)

e l s e
va l = seed
l c l a d j=ad jus t

end i f

! Reset a l l va lue s f o r the new i t e r a t i o n
f a i l e d =0; checker=0; t o t a l i t e r s i n =0; t o t a l i t e r s o u t =0;
numadj=0;jump=0; case =0; sk ip1=0; sk ip2=0

! z loop runs the v l e c a l c u l a t i o n f o r a s i n g l e s tep o f z
i n f l o o p : do whi l e (.TRUE.)

! sk ip1 = 0 f o r a new z step or i f sum didn ’ t change but /= 1
i f (sk ip1==0) then

! sk ip2 = 0 only i f we are beg inning a new z step
i f (sk ip2==0) then

! I n i t i a l i z e everyth ing f o r a new i t e r a t i o n step .
phiL (:)=0 . 0 d0 ; phiV (:)=0 .0 d0 ; phi (:)=0 . 0 d0
! x (i)=z (i) bc t h i s i s BUBBLEPT and L=1,V=0
! z (1)+z (2)=1 ==> x(1)+x(2)=1
x (1) = zva l ; x (2) = 1 .0 d0 − x (1)

! STAGE 3 : ASSUME VALUES FOR y i
y(1)=x (1) ; y(2)=x (2) ;
! Ca l l d ivchecker with div=1 to check f o r po l e s o f x
c a l l d ivchecker (1 , x , y)

155

! Ca l l d ivchecker with div=2 to check f o r po l e s o f y
c a l l d ivchecker (2 , x , y)

end i f

! The loop r e tu rn s here when sk ip2=1 and sk ip1=0.
! This cor responds to a constant va lue o f ysum that
! does not equal 1 . va l has j u s t been adjusted us ing
! l c l a d j i f t h i s i sn ’ t the f i r s t i t e r a t i o n o f
! the i n f l o o p .

! I f t o t a l i t e r s i n exceeds a maximum value , modify ad jus t
! to i n c r e a s e chance o f convergence .
! I f t h i s f a i l s , terminate the i t e r a t i o n proper ly .
! Skip t h i s f o r the f i r s t va lue to reduce the r i s k
! o f e x i t i n g due to a poor seed value .
! A poor seed value should in s t ead be handled by tak ing
! l a r g e i t e r a t i o n s t ep s as used in ” outer loop d ive rgence ”
i f (t o t a l i t e r s i n > maxiters . and . zva l . ne . 0 . 0 d0) then

! Ca l l the noconv subrout ine with case =0. Exit i f
! f a i l e d . Otherwise , cont inue with new adjus t va lue .
case =0; c a l l noconv (x , l c l a d j , va l)
i f (f a i l e d==1) then

bubval=b igva l ; e x i t i n f l o o p
e l s e

t o t a l i t e r s i n =0; t o t a l i t e r s o u t =0; checker=0
end i f

e nd i f

! STAGE 4 : Ca l cu la t e the Liquid Fugacity Coef f s ,
! phiL (1) and phiL (2)
phase=1;
c a l l eos (phase ,T,P, val , x , phi)
! I f phi va lue s are inva l i d , e x i t i t e r a t i o n with case =4.
i f (phi (1)/=phi (1) . or . phi (2)/= phi (2)) then

case =4; c a l l noconv (x , l c l a d j , va l)
bubval=b igva l ; e x i t i n f l o o p

end i f

! I f r oo t s did not converge , e x i t i t e r a t i o n proper ly
! with case =2.
i f (f a i l e d==1) then

case =2; c a l l noconv (x , l c l a d j , va l) ;
bubval=b igva l ; e x i t i n f l o o p

end i f
phiL=phi

! STAGE 4 : Ca l cu la t e the Vapor Fugacity Coef f s ,

156

! phiV (1) and phiV (2)
phase=2;
c a l l eos (phase ,T,P, val , y , phi)
! I f phi va lue s are inva l i d , e x i t i t e r a t i o n with case =4.
i f (phi (1)/=phi (1) . or . phi (2)/= phi (2)) then

case =4; c a l l noconv (x , l c l a d j , va l)
bubval=b igva l ; e x i t i n f l o o p

end i f

! I f r oo t s did not converge , e x i t i t e r a t i o n proper ly
! with case =2.
i f (f a i l e d==1) then

case =2; c a l l noconv (x , l c l a d j , va l) ;
bubval=b igva l ; e x i t i n f l o o p

end i f
phiV=phi

! STAGE 5 : Ca l cu la t e phiL/phiV and a new guess f o r y
ysum=0
K(1)=phiL (1)/ phiV (1) ; K(2)=phiL (2)/ phiV (2)
c a l l newcomposition (K, x , y)
ysum=y(1)+y (2)

! Ca l l d ivchecker to check the new va lues o f y
! and perturb i f r equ i r ed .
c a l l d ivchecker (2 , x , y)

end i f

! I f sk ip1=1 the loop p i ck s up here .
! This occurs during the cont inuat i on o f a prev ious
! z s tep when the sum i s s t i l l changing .

! Check i f the outer loop has exceeded maxiters and
! handle ac co rd ing ly .
i f (t o t a l i t e r s o u t > maxiters) then

case =0; c a l l noconv (x , l c l a d j , va l)
i f (f a i l e d==1) then

bubval=b igva l ; e x i t i n f l o o p
end i f
t o t a l i t e r s o u t =0; t o t a l i t e r s i n =0; checker=0
sk ip1=1; sk ip2=0; cy c l e i n f l o o p

end i f

! STAGE4−5: Reca l cu la t e Phi with the new y value
sk ip1=0; sk ip2=0;

157

phase=2;
c a l l eos (phase ,T,P, val , y , phi)
! I f phi va lue s are inva l i d , e x i t i t e r a t i o n with case =4.
i f (phi (1)/=phi (1) . or . phi (2)/= phi (2)) then

case =4; c a l l noconv (x , l c l a d j , va l)
bubval=b igva l ; e x i t i n f l o o p

end i f

! I f r oo t s did not converge , e x i t i t e r a t i o n proper ly
! with case =2.
i f (f a i l e d==1) then

case =2; c a l l noconv (x , l c l a d j , va l) ;
bubval=b igva l ; e x i t i n f l o o p

end i f
phiV=phi

K(1)=phiL (1)/ phiV (1) ; K(2)=phiL (2)/ phiV (2)
c a l l newcomposition (K, x , y)
sum new=y(1)+y (2)
change = sum new − ysum

! Cal l d ivchecker with div=2 to check f o r y po l e s
! and perturb i f r equ i r ed .
c a l l d ivchecker (2 , x , y)

! STAGE 6 : IS YSUM STAYING CONSTANT?
! Now we can check i f the sum i s changing and i f i t i s = 1 .
! I f the sum hasn ’ t changed and i s 1 , we s t o r e t h i s P value .
! I f the sum hasn ’ t changed but isn ’ t 1 , we w i l l ad jus t P.
! We w i l l use checker in t h i s s tep to make sure we don ’ t get
! s tuck in a loop , c on t i nua l l y i n c r then decr P.
! I f the sum has changed , we w i l l ad jus t our y va lue s .
i f (abs (change) < conv) then ! I f sum has not changed

! STAGE 7 : IS YSUM=1?
i f (abs (sum new−1.0d0) <= conv) then

! STAGE 8 : OUTPUT VALUES − DONE!
bubval = va l ; yval = y (1) ; ad jus t=l c l a d j ;
e x i t i n f l o o p

e l s e ! I f sum new doesn ’ t converge to 1
! STAGE 10 : ITERATE T OR P AND RETURN TO STAGE 3
i f (sum new < 1) then ! i f sum < 1 , decr P, i n c r T

i f (checker == 20) then
! We j u s t i n c r P/ decr T, dec r ea se ad jus t
case =5; c a l l noconv (x , l c l a d j , va l)

end i f

158

checker=10
! Decrease P or Inc r T, prevent ing negat ive va lue s
i f (val−l c l a d j <0)then

va l=va l /2 .0 d0
e l s e

va l = va l − l c l a d j
end i f
t o t a l i t e r s i n=t o t a l i t e r s i n+1
sk ip1=0; sk ip2=1; cy c l e i n f l o o p

e l s e ! i f sum > 1 , i n c r P, decr T
i f (checker == 10) then

! We j u s t decr P/ i n c r T, dec r ea se ad jus t
case =5; c a l l noconv (x , l c l a d j , va l)

end i f
checker=20
! In c r e a s e P or Decr T, prevent ing negat ive va lue s
i f (va l+l c l a d j <0)then

va l=va l /2 .0 d0
e l s e

va l = va l + l c l a d j
end i f
t o t a l i t e r s i n=t o t a l i t e r s i n+1
sk ip1=0; sk ip2=1; cy c l e i n f l o o p

end i f
end i f

e l s e ! I f sum has changed , f i nd new y
! STAGE 9 : SUM IS CHANGING, NORMALIZE Y
t o t a l i t e r s o u t=t o t a l i t e r s o u t+1
ysum=sum new
c a l l newcomposition (K, x , y)
y (1) = y (1)/ysum
y (2) = y (2)/ysum

! Ca l l d ivchecker with div=2 to check new y va lue s
! f o r po l e s and perturb .
c a l l d ivchecker (2 , x , y)

! I f the method i s not converg ing i t could be because
! the ad jus t parameter i s j u s t too l a r g e .
! Only dec r ea s e l c l a d j i f i t remains l a r g e r than conv .
! Otherwise , va l may be f o r c ed to jump be f o r e maxiters .
i f (t o t a l i t e r s o u t==maxiters /100 . and . abs (l c l a d j)>=conv) then

case =0; c a l l noconv (x , l c l a d j , va l)
end i f
! Try dec r ea s ing ad jus t twice .

159

i f (t o t a l i t e r s o u t==maxiters /10 . and . abs (l c l a d j)>=conv) then
case =0; c a l l noconv (x , l c l a d j , va l)
i f (abs (l c l a d j)>=conv) c a l l noconv (x , l c l a d j , va l)

end i f
! Decrease mu l t ip l e t imes as maxiters i s approached to
! avoid reach ing that po int . This w i l l ensure non−
! convergence i s not due to a bad ad jus t va lue be f o r e
! a l a r g e jump o f va l i s taken .
i f (t o t a l i t e r s o u t >(maxiters /1)−5.and . abs (l c l a d j)>=conv) then

case =0; c a l l noconv (x , l c l a d j , va l)
i f (abs (l c l a d j)>=conv) c a l l noconv (x , l c l a d j , va l)
i f (abs (l c l a d j)>=conv) c a l l noconv (x , l c l a d j , va l)

end i f
checker = 0 ; sk ip1=1; cy c l e i n f l o o p ;

end i f
end do i n f l o o p

end subrout ine vlebub

subrout ine vledew (T,P, seed , zval , xseed , adjust , dewval , xval)
use nrtype ; use g l oba l ; use eosmod ; use c o n v f a i l
imp l i c i t none

! This module c a l c u l a t e s the dew po in t s o f the
! vapor−l i q u i d equ i l i b r i um of a mixture us ing the Phi−Phi
! method i s used with the Equation o f State , Mixing Rules
! and Combining Rules that are s p e c i f i e d .

r e a l (DP) , i n t en t (IN) : : T,P
r e a l (DP) , i n t en t (IN) : : seed , zval , xseed
r e a l (DP) , i n t en t (INOUT) : : ad jus t
r e a l (DP) , i n t en t (OUT) : : dewval , xval
i n t e g e r (I4B) : : i , phase , checker=0, t o t a l i t e r s i n =0, &

t o t a l i t e r s o u t =0, b i gva l =1000000 , sk ip1=0, sk ip2=0
r e a l (DP) : : xsum=0,sum new=0, change=0, va l=0, l c l a d j
r e a l (DP) , dimension (comp) : : phi , x , x new , y , phiL , phiV ,K

i f (f a i l e d==1) then
i f (type==0) then

va l = P
e l s e

va l = T
end i f
c a l l r e s e t a d j (l c l a d j)

e l s e
va l = seed
l c l a d j=ad jus t

160

end i f

f a i l e d =0; checker=0; t o t a l i t e r s i n =0; t o t a l i t e r s o u t =0;
numadj=0;jump=0; case =0; sk ip1=0; sk ip2=0

i n f l o o p : do whi l e (.TRUE.)
i f (sk ip1==0) then

i f (sk ip2==0) then
phiL (:)=0 . 0 d0 ; phiV (:)=0 .0 d0 ; phi (:)=0 . 0 d0
! y (i)=z (i) bc t h i s i s DEWPT and L=0,V=1
! z (1)+z (2)=1 , y(1)+y(2)=1
y (1) = zva l ; y (2) = 1 .0 d0 − y (1)
x(1)= xseed ; x (2)=1.0d0−x (1) ; ! Guess va lue s f o r x (i)
! Ca l l d ivchecker with div=3 to check f o r po l e s o f y
c a l l d ivchecker (3 , x , y)
! Ca l l d ivchecker with div=4 to check f o r po l e s o f x
c a l l d ivchecker (4 , x , y)

end i f

i f (t o t a l i t e r s i n > maxiters . and . zva l . ne . 0 . 0 d0) then
case =0; c a l l noconv (y , l c l a d j , va l)
i f (f a i l e d==1) then

dewval=b igva l ; e x i t i n f l o o p
e l s e

t o t a l i t e r s i n =0; t o t a l i t e r s o u t =0; checker=0
end i f

e nd i f

! STAGE 4 : Ca l cu la t e the Liquid Fugacity Coef f s ,
! phiL (1) and phiL (2)
phase=1
c a l l eos (phase ,T,P, val , x , phi)
i f (phi (1)/=phi (1) . or . phi (2)/= phi (2)) then

case =4; c a l l noconv (y , l c l a d j , va l)
dewval=b igva l ; e x i t i n f l o o p

end i f
i f (f a i l e d==1) then

case =2; c a l l noconv (y , l c l a d j , va l) ;
dewval=b igva l ; e x i t i n f l o o p

end i f
phiL=phi

! STAGE 4 : Ca l cu la t e the Vapor Fugacity Co e f f i c i e n t s ,
! phiV (1) and phiV (2)
phase=2
c a l l eos (phase ,T,P, val , y , phi)
i f (phi (1)/=phi (1) . or . phi (2)/= phi (2)) then

161

case =4; c a l l noconv (y , l c l a d j , va l)
dewval=b igva l ; e x i t i n f l o o p

end i f

i f (f a i l e d==1) then
case =2; c a l l noconv (y , l c l a d j , va l) ;
dewval=b igva l ; e x i t i n f l o o p

end i f
phiV=phi
i f (DEBUG) pr in t ∗ , ’ phiV1 ’ , phiV

! STAGE 5 : Ca l cu la t e phiL/phiV and a new guess f o r x
xsum=0
kloop1 : do i =1,comp , 1

K(i) = phiL (i)/ phiV (i)
x (i) = y (i)/K(i)
xsum=xsum+x(i)

end do kloop1
! Ca l l d ivchecker with div=4 to check f o r x po l e s
! and perturb
c a l l d ivchecker (4 , x , y)

end i f

i f (t o t a l i t e r s o u t > maxiters) then
case =0; c a l l noconv (y , l c l a d j , va l)
i f (f a i l e d==1) then

dewval=b igva l ; e x i t i n f l o o p
e l s e

t o t a l i t e r s o u t =0; t o t a l i t e r s i n =0; checker=0
sk ip1=1; sk ip2=0; cy c l e i n f l o o p

end i f
end i f

! STAGE4−5: Reca l cu la t e Phi with new x value
sk ip1=0; sk ip2=0;
phase=1
c a l l eos (phase ,T,P, val , x , phi)

i f (phi (1)/=phi (1) . or . phi (2)/= phi (2)) then
case =4; c a l l noconv (y , l c l a d j , va l)
dewval=b igva l ; e x i t i n f l o o p

end i f

i f (f a i l e d==1) then
case =2; c a l l noconv (x , l c l a d j , va l) ;
dewval=b igva l ; e x i t i n f l o o p

end i f

162

phiL=phi

sum new=0
kloop2 : do i =1,comp , 1

K(i) = phiL (i)/ phiV (i)
x new (i) = y(i)/K(i)
sum new=sum new+x new (i)

end do kloop2
change = sum new − xsum
c a l l d ivchecker (4 , x , y)

! STAGE 6 : IS XSUM STAYING CONSTANT?
! Now we can check i f the sum i s changing and i f i t i s = 1 .
! I f the sum hasn ’ t changed and i s 1 , we s t o r e t h i s P value .
! I f the sum hasn ’ t changed but isn ’ t 1 , we w i l l ad jus t P.
! We w i l l use checker in t h i s s tep to make sure we don ’ t get
! s tuck in a loop , c on t i nua l l y i n c r then decr P.
! I f the sum has changed , we w i l l ad jus t our x va lue s .
i f (abs (change) < conv) then ! I f sum has not changed

! STAGE 7 : IS XSUM=1?
i f (abs (sum new−1.0d0) <= conv) then

! STAGE 8 : OUTPUT VALUES − DONE!
dewval = va l ; xval = x new (1) ; ad jus t=l c l a d j ;
e x i t i n f l o o p

e l s e ! I f sum new doesn ’ t converge to 1
! STAGE 10 : ITERATE T OR P AND RETURN TO STAGE 3
i f (sum new < 1) then ! i f sum < 1 , i n c r P/decr T

i f (checker == 20) then
case =5; c a l l noconv (y , l c l a d j , va l)

end i f
checker = 10
! In c r e a s e P or Decr T, prevent ing negat ive va lue s
i f (va l+l c l a d j <0)then

va l=va l /2 .0 d0
e l s e

va l = va l + l c l a d j
end i f
t o t a l i t e r s i n=t o t a l i t e r s i n+1
sk ip1=0; sk ip2=1; cy c l e i n f l o o p

e l s e ! I f sum > 1 , decr P/ i n c r T
i f (checker == 10) then

case =5; c a l l noconv (y , l c l a d j , va l)
end i f
checker = 20

163

! Decrease P or Inc r T, prevent ing negat ive va lue s
i f (val−l c l a d j <0)then

va l=va l /2 .0 d0
e l s e

va l = va l − l c l a d j
end i f
t o t a l i t e r s i n=t o t a l i t e r s i n+1
sk ip1=0; sk ip2=1; cy c l e i n f l o o p

end i f
end i f

e l s e ! I f sum has changed , f i nd new x
! STAGE 9 : SUM IS CHANGING, NORMALIZE X
t o t a l i t e r s o u t=t o t a l i t e r s o u t+1
xsum=sum new
x(1)=x new (1)
x(2)=x new (2)

! Ca l l d ivchecker with div=4 to check f o r x po l e s
! and perturb .
c a l l d ivchecker (4 , x , y)

! I f the method i s not converg ing i t could be because
! the ad jus t parameter i s j u s t too l a r g e .
i f (t o t a l i t e r s o u t==maxiters /100) then

case =0; c a l l noconv (y , l c l a d j , va l)
end i f
! Try dec r ea s ing ad jus t twice .
i f (t o t a l i t e r s o u t==maxiters /10) then

case =0; c a l l noconv (y , l c l a d j , va l)
case =0; c a l l noconv (y , l c l a d j , va l)

end i f
! Decrease mu l t ip l e t imes as maxiters i s approached to
! avoid reach ing that po int . This w i l l ensure non−
! convergence i s not due to a bad ad jus t va lue be f o r e
! a l a r g e jump o f va l i s taken .
i f (t o t a l i t e r s o u t>maxiters /1−5) then

case =0; c a l l noconv (y , l c l a d j , va l)
case =0; c a l l noconv (y , l c l a d j , va l)
case =0; c a l l noconv (y , l c l a d j , va l)

end i f

i f (f a i l e d==1) then
dewval=b igva l ; e x i t i n f l o o p

end i f

sk ip1=1; checker=0; c y c l e i n f l o o p

164

end i f
end do i n f l o o p

end subrout ine vledew

subrout ine d ivchecker (div , x , y)
use nrtype ; use g l oba l
imp l i c i t none

! This subrout ine w i l l perform san i ty checks to make sure
! the va lue s in the v l e c a l c s are not d iv e rg ing . I f they
! are , data i s s to r ed and c o r r e c t i o n s are made to prevent
! the breakdown o f the c a l c u l a t i o n s .

i n t e g e r (I4B) , i n t en t (IN) : : d iv
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : x , y

i f (mixru le s (1)>0. or . mixru les (2)>0) then
i f (comrules (1)==3) then

i f (div==1) then
! Check f o r a po le with the l i q u i d compos i t ions
! in bubcalc . I f one i s found here , the combining
! r u l e should be r e s e t .
i f (abs (x (1)∗ k12+x (2)∗ k21)<=abs (po l e)) then

comrules (1)=newcomrule
end i f

e l s e i f (div==2) then
! Check f o r a po le with the vapor compos i t ions in
! bubcalc . Also , check i f the f uga c i t y c o e f f i c i e n t
! i s d i v e rg ing . I f e i t h e r i s found here , a smal l
! pe r turbat i on o f y i s needed .
i f (abs (y (1)∗ k12+y (2)∗ k21)<=abs (po l e)) then

y(1)=y (1)∗ perturb ; y(2)=y (2)∗ perturb
e l s e i f (l o gd i v==1) then

y(1)=y (1)∗ perturb ; y(2)=y (2)∗ perturb
end i f

e l s e i f (div==3) then
! Check f o r a po le with the vapor compos i t ions in
! dewcalc . I f one i s found here , the combining ru l e
! should be r e s e t .
i f (abs (y (1)∗ k12+y (2)∗ k21)<=abs (po l e)) then

comrules (1)=newcomrule
end i f

e l s e i f (div==4) then

165

! Check f o r a po le with the l i q u i d compos i t ions
! in dewcalc . I f one i s found here , a smal l
! pe r turbat i on o f x i s needed .
i f (abs (x (1)∗ k12+x (2)∗ k21)<=abs (po l e)) then

x(1)=x (1)∗ perturb ; x(2)=x (2)∗ perturb
end i f

e nd i f
e nd i f

e nd i f

! Check the f i n a l va lue s
i f (div==1.or . d iv==2) then

i f (y(1)<conv . and . y(2)<conv) then
y (1)=0.1 d0
y (2)=0.1 d0

end i f
e l s e i f (div==3.or . div==4) then

i f (x(1)<conv . and . x(2)<conv) then
x (1)=0.1 d0
x (2)=0.1 d0

end i f
e nd i f

end subrout ine d ivchecker

subrout ine newcomposition (K, fc , cc)
use nrtype ; use g l oba l ;
imp l i c i t none

r e a l (DP) , dimension (:) , i n t en t (IN) : : K
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : fc , cc

i n t e g e r (I4B) : : kd iverg
kd iverg=10∗∗9

i f (K(1)> kdiverg . and .K(2)< kdiverg) then
cc (2)= f c (2)∗K(2) ; cc (1)=1.0d0−cc (2)

e l s e i f (K(1)< kdiverg . and .K(2)> kdiverg) then
cc (1)= f c (1)∗K(1) ; cc (2)=1.0d0−cc (1)

e l s e i f (K(1)> kdiverg . and .K(2)> kdiverg) then
cc (1)= f c (1) ; cc (2)= f c (2)

e l s e i f (K(1)< kdiverg . and .K(2)< kdiverg) then
cc (1)= f c (1)∗K(1) ; cc (2)= f c (2)∗K(2)

end i f

166

end subrout ine newcomposition

end MODULE v l e c a l c s

L.2 EOSMOD.F90

MODULE eosmod

! This module conta in s a l l the subrout ine s nece s sa ry to s e t an
! equat ion o f s ta te , and i t s parameters .

CONTAINS

subrout ine eos (phase ,T,P, val , x , phi)
use nrtype ; use n ru t i l , only : n r e r r o r ; use g l oba l ; use mixing ;
use combining ; use s o l v e r ; use kijmod ;
imp l i c i t none

! This subrout ine checks the value o f eq and uses i t to s e t
! the equat ion o f s t a t e .

i n t e g e r (I4B) , i n t en t (IN) : : phase
r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (OUT) : : phi

i n t e g e r (I4B) : : i=0
r e a l (DP) : : temp , press , A st , B st
r e a l (DP) , dimension (8) : : a i j s (8) , b i j s (8) , a l p h a i j s (8) , &

a a l p h a i j s (8) , aa s t1 (8) , aa s t2 (8)

l ogd iv=0
! Set the l o c a l p r e s su r e and temperature va lue s .
i f (type==0) then

pre s s = va l
temp = T

e l s e
p r e s s = P
temp = val

end i f

! I n i t i a l i z e the parameter ar rays

167

a i j s (:)=0 . 0 d0 ; b i j s (:)=0 . 0 d0
a l p h a i j s (:)=0 . 0 d0 ; a a l p h a i j s (:)=0 . 0 d0

! Set the va lue s o f a11 , a22 , b11 , b22 based on the s p e c i f i e d EOS
! where p i j s (1) = p11 , p i j s (2) = p22 , p i j s (3) = p12 , p i j s (4) = p21
i f (eq==1) then

c a l l prparams (T,P, val , a i j s , b i j s , a l p h a i j s)
e l s e i f (eq==0) then

c a l l rksparams (T,P, val , a i j s , b i j s , a l p h a i j s)
e l s e i f (eq==2) then

c a l l prsvparams (T,P, val , a i j s , b i j s , a l p h a i j s)
e l s e i f (eq==3) then

c a l l tbsparams (T,P, val , a i j s , b i j s , a l p h a i j s)
end i f

! Determine parameter va lue s us ing the s p e c i f i e d combining r u l e s .
! Do t h i s f o r a alpha , and b va lue s s epara t e ly ,
! where v a l i j s (1) = val11 , (2) = 22 , (3) = 12 , (4) = 21
! (5) = n∗ d(val12)/dn1 , (6) n∗ d(val21)/dn1
! (7) = n∗ d(val12)/dn2 , (8) n∗ d(val21)/dn2
! NOTE: The d e r i v a t i v e s returned are a l l mu l t i p l i e d by n
a a l p h a i j s (1) = a i j s (1)∗ a l p h a i j s (1)
a a l p h a i j s (2) = a i j s (2)∗ a l p h a i j s (2)
do i =1,8

aa s t1 (i) = a a l p h a i j s (i)
end do
c a l l combine (comrules (1) , x , a a l p h a i j s)
c a l l combine (comrules (2) , x , b i j s)
do i =1,8

aa s t2 (i) = a a l p h a i j s (i)
end do

! Use the mixing r u l e s to determine the mixture parameters .
! mixvals (1) = pmix
! mixvals (2) = d(np)/dn1
! mixvals (3) = d(np)/dn2
! mixvals (4) = 1/n∗ d(nˆ2 p)/dn1
! mixvals (5) = 1/n∗ d(nˆ2 p)/dn2
! mixvals (6) = 1/n∗ d(nˆ2 pˆ2)/dn1
! mixvals (7) = 1/n∗ d(nˆ2 pˆ2)/dn2
! NOTE: The d e r i v a t i v e s returned are mu l t i p l i e d by 1/n
c a l l mixrule (mixru le s (1) , x , a a l pha i j s , a a lphava l s)
c a l l mixrule (mixru le s (2) , x , b i j s , bva l s)

! Def ine the parameters f o r the c omp r e s s i b i l i t y equat ion
! c o e f f i c i e n t s

168

A = a a lphava l s (1) ∗ pre s s / (R D ∗ temp)∗∗2
B = bva l s (1) ∗ pre s s / (R D ∗ temp)

! Ca l l the s p e c i f i e d Equation o f State
i f (eq==1) then

c a l l pengrob (phase ,T,P, val , phi)
e l s e i f (eq==0) then

c a l l rks (phase ,T,P, val , phi)
e l s e i f (eq==2) then

c a l l prsv (phase ,T,P, val , x , phi)
e l s e i f (eq==3) then

c a l l tbs (phase ,T,P, val , phi)
end i f

end subrout ine eos

subrout ine prparams (T,P, val , a i j s , b i j s , a l p h a i j s)
use nrtype ; use g l oba l ;
imp l i c i t none

! Program to c a l c u l a t e the parameters f o r
! the Peng−Robinson Equation o f State .

r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : a i j s , b i j s , a l p h a i j s

i n t e g e r (I4B) : : i=0
r e a l (DP) : : temp , p r e s s
r e a l (DP) , a l l o c a t a b l e : : n (:) , Pr (:) , Tr (:)

a l l o c a t e (n(comp) , Pr (comp) ,Tr (comp))
i f (type==0) then

pre s s = va l
temp = T

e l s e
p r e s s = P
temp = val

end i f

! Set the parameters f o r PR EOS
! p i j s (1) = p11 , p i j s (2) = p22
params : do i =1,comp , 1

Pr (i) = pre s s /(Pc(i)) ; Tr (i) = temp/(Tc(i))
n(i) = 0.37464 d0 + w(i)∗ (1 . 54226 d0 − w(i)∗0 .26992 d0)
a l p h a i j s (i) = (1 . 0 d0 + n(i) ∗ (1 . 0 d0 − s q r t (Tr (i))))∗∗2
a i j s (i) = 0.45724 d0 ∗ ((R D∗Tc(i))∗∗2)/ (Pc(i))

169

b i j s (i) = 0.07780 d0 ∗ R D∗Tc(i)/ (Pc(i))
end do params

d e a l l o c a t e (n , Pr , Tr)
end subrout ine prparams

subrout ine pengrob (phase ,T,P, val , phi)
use nrtype ; use n ru t i l , only : n r e r r o r ; use g l oba l ; use s o l v e r
imp l i c i t none

! Program to c a l c u l a t e the p a r t i a l f u ga c i t y c o e f f i c i e n t
! us ing the Peng−Robinson Equation o f State .

i n t e g e r (I4B) , i n t en t (IN) : : phase
r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (OUT) : : phi
r e a l (DP) : : temp , press , Z , f l n=0
complex (DPC) , dimension (eo so rde r) : : r oo t s
complex (DPC) , dimension (eo so rde r+1) : : e o s c o e f f s
l o g i c a l : : p o l i s h =. t rue .

i f (type==0) then
pre s s = va l
temp = T

e l s e
p r e s s = P
temp = val

end i f

! Use Laguerre ’ s Method with po l i s h i n g to determine the roo t s
! o f the Peng−Robinson c omp r e s s i b i l i t y equat ion .
!
! eqn = Z∗∗3 − (1−Bmix)∗Z∗∗2 + (Amix−3∗Bmix∗∗2−2∗Bmix)∗Z −
! (Amix∗Bmix−Bmix∗∗2−Bmix∗∗3)

e o s c o e f f s (1) = −B∗(A−B∗ (1 . 0 d0 + B))
e o s c o e f f s (2) = A−B∗ (2 . 0 d0 + 3 .0 d0 ∗ B)
e o s c o e f f s (3) = B − 1 .0 d0
e o s c o e f f s (4) = 1 .0 d0

c a l l z r oo t s (e o s c o e f f s , roots , p o l i s h)
c a l l p i c k r e a l po s (phase , roots , Z)
! I f the convergence o f the roo t s f a i l e d ,

170

! e x i t t h i s i t e r a t i o n reasonab ly .
i f (f a i l e d==1)return

! De f i n i t i o n o f mixvals array f o r parameter p
! mixvals (1) = pmix
! mixvals (2) = d(np)/dn1 , mixvals (3) = d(np)/dn2
! mixvals (4) = 1/n∗ d(nˆ2 p)/dn1
! mixvals (5) = 1/n∗ d(nˆ2 p)/dn2
! mixvals (6) = 1/n∗ d(nˆ2 pˆ2)/dn1
! mixvals (7) = 1/n∗ d(nˆ2 pˆ2)/dn2
! NOTE: The d e r i v a t i v e s returned are mu l t i p l i e d by 1/n

! Def ine f l n as the repeated log term in the fug c o e f f to
! s imp l i f y phi e xp r e s s i on s
f l n = LOG((Z + B∗ (1 . 0 d0+sq r t (2 . 0 d0))) / (Z+B∗ (1 . 0 d0−s q r t (2 . 0 d0))))

phi (1) = EXP(−LOG(Z−B) + bva l s (2) ∗ (B/(bva l s (1)∗ (Z−B))+ &
A/(4 . 0 d0∗B∗ bva l s (1)∗ s q r t (2 . 0 d0))∗ f l n + &
A∗(B−Z)/ (2 . 0 d0∗ bva l s (1)∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2)))− &
a a lphava l s (4)∗ (f l n / (2 . 0 d0∗ bva l s (1)∗R D∗temp∗ s q r t (2 . 0 d0)))+ &
bva l s (6) ∗ (A∗ f l n / (8 . 0 d0∗B∗ bva l s (1)∗∗2∗ s q r t (2 . 0 d0))−
A∗(Z+B)/ (4 . 0 d0∗ bva l s (1)∗∗2∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2))))

phi (2) = EXP(−LOG(Z−B) + bva l s (3) ∗ (B/(bva l s (1)∗ (Z−B))+ &
A/(4 . 0 d0∗B∗ bva l s (1)∗ s q r t (2 . 0 d0))∗ f l n+ &
A∗(B−Z)/ (2 . 0 d0∗ bva l s (1)∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2)))− &
a a lphava l s (5)∗ (f l n / (2 . 0 d0∗ bva l s (1)∗R D∗temp∗ s q r t (2 . 0 d0)))+ &
bva l s (7) ∗ (A∗ f l n / (8 . 0 d0∗B∗ bva l s (1)∗∗2∗ s q r t (2 . 0 d0))− &
A∗(Z+B)/ (4 . 0 d0∗ bva l s (1)∗∗2∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2))))

end subrout ine pengrob

subrout ine rksparams (T,P, val , a i j s , b i j s , a l p h a i j s)
use nrtype ; use g l oba l ;
imp l i c i t none

! Program to c a l c u l a t e the parameters f o r
! the Redlich−Kwong−Soave Equation o f State .

r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : a i j s , b i j s , a l p h a i j s

i n t e g e r (I4B) : : i=0
r e a l (DP) : : temp , p r e s s
r e a l (DP) , a l l o c a t a b l e : : n (:) , Pr (:) , Tr (:)

171

a l l o c a t e (n(comp) , Pr (comp) ,Tr (comp))
temp=T
pre s s=P
i f (type==0) then

pre s s = va l
e l s e

temp = val
end i f

! Set Parameters f o r RKS EOS
! p i j s (1) = p11 , p i j s (2) = p22
params : do i =1,comp , 1

Pr (i) = pre s s /(Pc(i)) ; Tr (i) = temp/(Tc(i))
n(i) = 0.48508 d0 + w(i) ∗ (1 .55171 d0 − w(i) ∗ 0.15613 d0)
a l p h a i j s (i) = (1 . 0 d0 + n(i) ∗ (1 . 0 d0 − s q r t (Tr (i))))∗∗2
a i j s (i) = 0.42747 d0 ∗ ((R D∗Tc(i))∗∗2)/ (Pc(i))
b i j s (i) = 0.08664 d0 ∗ R D∗Tc(i)/ (Pc(i))

end do params
d e a l l o c a t e (n , Pr , Tr)

end subrout ine rksparams

subrout ine rks (phase ,T,P, val , phi)
use nrtype ; use n ru t i l , only : n r e r r o r ; use g l oba l ; use s o l v e r ;
imp l i c i t none

! Program to c a l c u l a t e the p a r t i a l f u ga c i t y c o e f f i c i e n t
! us ing the RKS Equation o f State .

i n t e g e r (I4B) , i n t en t (IN) : : phase
r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (OUT) : : phi

r e a l (DP) : : temp , press , Z
complex (DPC) , dimension (eo so rde r) : : r oo t s
complex (DPC) , dimension (eo so rde r+1) : : e o s c o e f f s
l o g i c a l : : p o l i s h =. t rue .

temp=T
pre s s=P
i f (type==0) then

pr e s s = va l
e l s e

temp = val
end i f

172

! Use Laguerre ’ s Method with po l i s h i n g to determine the roo t s
! o f the RKS comp r e s s i b i l i t y equat ion .
!
! eqn = Z∗∗3 − (1 . 0 d0)∗Z∗∗2 + (Amix−3∗Bmix∗∗2−2∗Bmix)∗Z −
! (Amix∗Bmix−Bmix∗∗2−Bmix∗∗3)

e o s c o e f f s (1) = −A∗B
e o s c o e f f s (2) = A − B∗ (1 . 0 d0 + B)
e o s c o e f f s (3) = −1.0d0
e o s c o e f f s (4) = 1 .0 d0

c a l l z r oo t s (e o s c o e f f s , roots , p o l i s h)
c a l l p i c k r e a l po s (phase , roots , Z)
! I f the convergence o f the roo t s f a i l e d ,
! e x i t t h i s i t e r a t i o n reasonab ly .
i f (f a i l e d==1)return

! De f i n i t i o n o f mixvals array f o r parameter p
! mixvals (1) = pmix
! mixvals (2) = d(np)/dn1 , mixvals (3) = d(np)/dn2
! mixvals (4) = 1/n∗ d(nˆ2 p)/dn1
! mixvals (5) = 1/n∗ d(nˆ2 p)/dn2
! mixvals (6) = 1/n∗ d(nˆ2 pˆ2)/dn1
! mixvals (7) = 1/n∗ d(nˆ2 pˆ2)/dn2
! NOTE: The d e r i v a t i v e s returned are mu l t i p l i e d by 1/n

phi (1) = EXP(−LOG(Z−B) + bva l s (2) ∗ (B/(bva l s (1)∗ (Z−B))− &
A/(bva l s (1)∗ (Z+B)) + (A/(B∗ bva l s (1)))∗LOG(1+B/Z))− &
1/(R D∗temp∗ bva l s (1))∗LOG(1+B/Z) ∗ a a lphava l s (4))

phi (2) = exp(−LOG(Z−B) + bva l s (3) ∗ (B/(bva l s (1)∗ (Z−B))− &
A/(bva l s (1)∗ (Z+B)) + A/(bva l s (1)∗B)∗LOG(1+B/Z))− &
1/(R D∗temp∗ bva l s (1))∗LOG(1+B/Z) ∗ a a lphava l s (5))

end subrout ine rks

subrout ine prsvparams (T,P, val , a i j s , b i j s , a l p h a i j s)
use nrtype ; use g l oba l ;
imp l i c i t none

! Program to c a l c u l a t e the parameters f o r
! the PRSV Equation o f State .

r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : a i j s , b i j s , a l p h a i j s
i n t e g e r (I4B) : : i=0
r e a l (DP) : : temp , p r e s s

173

r e a l (DP) , a l l o c a t a b l e : : kap0 (:) , kappa (:) , Pr (:) , Tr (:)

a l l o c a t e (kap0 (comp) , kappa (comp) , Pr (comp) ,Tr (comp))
i f (type==0) then

pre s s = va l
temp = T

e l s e
p r e s s = P
temp = val

end i f

! Set Parameters f o r PRSV EOS
! p i j s (1) = p11 , p i j s (2) = p22
params : do i =1,comp , 1

Pr (i) = pre s s /(Pc(i)) ; Tr (i) = temp/(Tc(i))
kap0 (i) = 0.378893 d0 + w(i)∗ (1 .4897153 d0 − &

w(i)∗ (0 .17131848 d0 − w(i)∗0 .0196544 d0))
kappa (i) = kap0 (i) + (kap1 (i) + kap2 (i)∗ (kap3 (i)− &

Tr(i)) ∗ (1 . 0 d0−s q r t (Tr (i)))) ∗ (1 . 0 d0+ &
sq r t (Tr (i))) ∗ (0 . 7 d0−Tr(i))

a l p h a i j s (i) = (1 . 0 d0 + kappa (i) ∗ (1 . 0 d0 − s q r t (Tr (i))))∗∗2
a i j s (i) = 0.457235 d0 ∗ ((R D∗Tc(i))∗∗2)/ (Pc(i))
b i j s (i) = 0.077796 d0 ∗ R D∗Tc(i)/ (Pc(i))

end do params

d e a l l o c a t e (kap0 , kappa , Pr , Tr)

end subrout ine prsvparams

subrout ine prsv (phase ,T,P, val , x , phi)
use nrtype ; use n ru t i l , only : n r e r r o r ; use g l oba l ; use s o l v e r ;
imp l i c i t none

! Program to c a l c u l a t e the p a r t i a l f u ga c i t y c o e f f i c i e n t
! us ing the Peng−Robinson−Stryjek−Vera Equation o f State .

i n t e g e r (I4B) , i n t en t (IN) : : phase
r e a l (DP) , i n t en t (IN) : : T,P, va l
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (OUT) : : phi
r e a l (DP) : : temp , press , Z , f l n=0
complex (DPC) , dimension (eo so rde r) : : r oo t s
complex (DPC) , dimension (eo so rde r+1) : : e o s c o e f f s
l o g i c a l : : p o l i s h =. t rue .
r e a l (DP) , dimension (7) : : term

174

i f (type==0) then
pre s s = va l
temp = T

e l s e
p r e s s = P
temp = val

end i f

! Use Laguerre ’ s Method with po l i s h i n g to determine the roo t s
! o f the PRSV comp r e s s i b i l i t y equat ion .
!
! eqn = Z∗∗3 − (1−Bmix)∗Z∗∗2 + (Amix−3∗Bmix∗∗2−2∗Bmix)∗Z −
! (Amix∗Bmix−Bmix∗∗2−Bmix∗∗3)
e o s c o e f f s (1) = −B∗(A−B∗ (1 . 0 d0+B))
e o s c o e f f s (2) = A−B∗ (2 . 0 d0 + 3 .0 d0∗B)
e o s c o e f f s (3) = B − 1 .0 d0
e o s c o e f f s (4) = 1 .0 d0
c a l l z r oo t s (e o s c o e f f s , roots , p o l i s h)
c a l l p i c k r e a l po s (phase , roots , Z)
! I f the convergence o f the roo t s f a i l e d ,
! e x i t t h i s i t e r a t i o n reasonab ly .
i f (f a i l e d==1)return

! De f i n i t i o n o f mixvals array f o r parameter p
! mixvals (1) = pmix
! mixvals (2) = d(np)/dn1 , mixvals (3) = d(np)/dn2
! mixvals (4) = 1/n∗ d(nˆ2 p)/dn1
! mixvals (5) = 1/n∗ d(nˆ2 p)/dn2
! mixvals (6) = 1/n∗ d(nˆ2 pˆ2)/dn1
! mixvals (7) = 1/n∗ d(nˆ2 pˆ2)/dn2
! NOTE: The d e r i v a t i v e s returned are mu l t i p l i e d by 1/n

! Def ine f l n as a repeated log term in the fug c o e f f to
! s imp l i f y phi e xp r e s s i on s
f l n = LOG(abs ((Z + B∗ (1 . 0 d0+sq r t (2 . 0 d0))) / (Z + &

B∗ (1 . 0 d0−s q r t (2 . 0 d0)))))

phi (1) = EXP(−LOG(abs (Z−B)) + bva l s (2) ∗ (B/(bva l s (1)∗ (Z−B))+ &
A/(4 . 0 d0∗B∗ bva l s (1)∗ s q r t (2 . 0 d0))∗ f l n + &
A∗(B−Z)/ (2 . 0 d0∗ bva l s (1)∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2)))− &
a a lphava l s (4)∗ (f l n / (2 . 0 d0∗ bva l s (1)∗R D∗temp∗ s q r t (2 . 0 d0)))+ &
bva l s (6) ∗ (A∗ f l n / (8 . 0 d0∗B∗ bva l s (1)∗∗2∗ s q r t (2 . 0 d0))− &
A∗(Z+B)/ (4 . 0 d0∗ bva l s (1)∗∗2∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2))))

phi (2) = EXP(−LOG(abs (Z−B)) + bva l s (3) ∗ (B/(bva l s (1)∗ (Z−B))+ &
A/(4 . 0 d0∗B∗ bva l s (1)∗ s q r t (2 . 0 d0))∗ f l n + &

175

A∗(B−Z)/ (2 . 0 d0∗ bva l s (1)∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2)))− &
a a lphava l s (5)∗ (f l n / (2 . 0 d0∗ bva l s (1)∗R D∗temp∗ s q r t (2 . 0 d0)))+ &
bva l s (7) ∗ (A∗ f l n / (8 . 0 d0∗B∗ bva l s (1)∗∗2∗ s q r t (2 . 0 d0))− &
A∗(Z+B)/ (4 . 0 d0∗ bva l s (1)∗∗2∗ (Z∗∗2+2.0d0∗B∗Z−B∗∗2))))

end subrout ine prsv

end MODULE eosmod

L.3 MIXING.F90

MODULE mixing

! This module conta in s the subrout ine s used to determine
! the mixture parameters .

CONTAINS

subrout ine mixrule (mixtype , x , mijs , mixvals)
use nrtype ; use g l oba l
imp l i c i t none

i n t e g e r (I4B) , i n t en t (IN) : : mixtype
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (IN) : : mi j s
r e a l (DP) , dimension (:) , i n t en t (OUT) : : mixvals

! Ca l l the s p e c i f i e d Mixing Rules where
! mi j s (1) = val11 , mi j s (2) = val22
! mi j s (3) = val12 , mi j s (4) = val21
! mi j s (5) = n∗ d(val12)/dn1 , n∗ mijs (6) = d(val21)/dn1
! mi j s (7) = n∗ d(val12)/dn2 , n∗ mijs (8) = d(val21)/dn2
i f (mixtype==0) then

c a l l l inmix (x , mijs , mixvals)
e l s e i f (mixtype==1) then

c a l l quadmix (x , mijs , mixvals)
end i f

end subrout ine mixrule

subrout ine l inmix (x , mijs , mixvals)
use nrtype ; use g l oba l ;
imp l i c i t none

! mi j s (1) = val11 , mi j s (2) = val22
! mi j s (3) = val12 , mi j s (4) = val21

176

! mi j s (5) = n∗ d(val12)/dn1 , mi j s (6) = n∗ d(val21)/dn1
! mi j s (7) = n∗ d(val12)/dn2 , mi j s (8) = n∗ d(val21)/dn2
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (IN) : : mi j s
r e a l (DP) , dimension (:) , i n t en t (OUT) : : mixvals

! D e f i n i t i o n o f mixvals array :
! mixvals (1) = pmix
! mixvals (2) = d(np)/dn1 , mixvals (3) = d(np)/dn2
! mixvals (4) = 1/n ∗ d(nˆ2 p)/dn1
! mixvals (5) = 1/n ∗ d(nˆ2 p)/dn2
! mixvals (6) = 1/n ∗ d(nˆ2 pˆ2)/dn1
! mixvals (7) = 1/n ∗ d(nˆ2 pˆ2)/dn2
mixvals (1) = x (1)∗mijs (1) + x (2)∗mijs (2)
mixvals (2) = mijs (1)
mixvals (3) = mijs (2)
mixvals (4) = mijs (1)∗ (x (1)+1.0 d0) + mijs (2)∗ x (2) ! ∗n
mixvals (5) = mijs (1)∗ x (1) + mijs (2)∗ (x (2)+1.0 d0) ! ∗n
mixvals (6) = 2 .0 d0∗x (1)∗mijs (1)∗∗2+ &

2.0 d0∗x (2)∗mijs (1)∗mijs (2) ! ∗n
mixvals (7) = 2 .0 d0∗x (1)∗mijs (1)∗mijs (2)+ &

2 .0 d0∗x (2)∗mijs (2)∗∗2 ! ∗n
end subrout ine l inmix

subrout ine quadmix (x , mijs , mixvals)
use nrtype ; use g l oba l ;
imp l i c i t none
! mi j s (1) = val11 , mi j s (2) = val22
! mi j s (3) = val12 , mi j s (4) = val21
! mi j s (5) = n∗ d(val12)/dn1 , mi j s (6) = n∗ d(val21)/dn1
! mi j s (7) = n∗ d(val12)/dn2 , mi j s (8) = n∗ d(val21)/dn2
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (IN) : : mi j s
r e a l (DP) , dimension (:) , i n t en t (OUT) : : mixvals

! D e f i n i t i o n o f mixvals array f o r parameter p
! mixvals (1) = pmix
! mixvals (2) = d(np)/dn1 , mixvals (3) = d(np)/dn2
! mixvals (4) = 1/n∗ d(nˆ2 p)/dn1
! mixvals (5) = 1/n∗ d(nˆ2 p)/dn2
! mixvals (6) = 1/n∗ d(nˆ2 pˆ2)/dn1
! mixvals (7) = 1/n∗ d(nˆ2 pˆ2)/dn2
mixvals (1) = x (1)∗∗2∗mijs (1)+x (1)∗ x (2)∗mijs (3)+ &

x (1)∗ x (2)∗mijs (4)+x (2)∗∗2∗mijs (2)

mixvals (2) = x (1)∗mijs (1) ∗ (2 . 0 d0−x(1))+ &

177

(x (2)∗∗2∗mijs (3)+x (1)∗ x (2)∗mijs (5))+ &
(x (2)∗∗2∗mijs (4)+x (1)∗ x (2)∗mijs (6))− &
x(2)∗∗2∗mijs (2)

mixvals (3) = x (2)∗mijs (2) ∗ (2 . 0 d0−x(2))+ &
(x (1)∗∗2∗mijs (3)+x (1)∗ x (2)∗mijs (7))+ &
(x (1)∗∗2∗mijs (4)+x (1)∗ x (2)∗mijs (8))− &
x(1)∗∗2∗mijs (1)

mixvals (4) = 2 .0 d0∗x (1)∗mijs (1)+x (2)∗mijs (3)+ &
x (1)∗ x (2)∗mijs (5)+x (2)∗mijs (4)+x (1)∗ x (2)∗mijs (6) !∗n

mixvals (5) = 2 .0 d0∗x (2)∗mijs (2)+x (1)∗mijs (3)+ &
x (1)∗ x (2)∗mijs (7)+x (1)∗mijs (4)+x (1)∗ x (2)∗mijs (8) !∗n

mixvals (6) = x (1)∗∗3∗ (4 . 0 d0−2.0d0∗x (1))∗ mijs (1)∗∗2− &
2.0 d0∗x (2)∗∗4∗mijs (2)∗∗2+4.0 d0∗x (1)∗ x (2)∗∗2∗ (1 . 0 d0− &
x (1))∗ mijs (1)∗mijs (2)+2.0 d0∗x (1)∗ x (2)∗∗2∗ (1 . 0 d0− &
x (1))∗ (mi j s (3)∗∗2+2.0 d0∗mijs (3)∗mijs (4)+mijs (4)∗∗2)+ &
x (1)∗∗2∗x (2)∗∗2∗ (2 . 0 d0∗mijs (3)∗mijs (5)+ &
2 .0 d0∗mijs (3)∗mijs (6) + 2 .0 d0∗mijs (4)∗mijs (5)+ &
2 .0 d0∗mijs (4)∗mijs (6))+2.0 d0∗mijs (1)∗ ((mi j s (3)+ &
mijs (4))∗ x (1)∗∗2∗x (2) ∗ (3 . 0 d0 − 2 .0 d0∗x (1)) + &
x (1)∗∗3∗x (2)∗ (mi j s (5) + mijs (6)))+ &
2 .0 d0∗mijs (2)∗ ((mi j s (3)+mijs (4))∗ x (2)∗∗3∗ (1 . 0 d0 − &
2.0 d0∗x(1))+x (1)∗ x (2)∗∗3∗ (mi j s (5) + mijs (6)))

mixvals (7) = x (2)∗∗3∗ (4 . 0 d0−2.0d0∗x (2))∗ mijs (2)∗∗2− &
2.0 d0∗x (1)∗∗4∗mijs (1)∗∗2 + 4 .0 d0∗x (1)∗∗2∗x (2) ∗ (1 . 0 d0− &
x (2))∗ mijs (1)∗mijs (2)+2.0 d0∗x (1)∗∗2∗x (2) ∗ (1 . 0 d0− &
x (2))∗ (mi j s (3)∗∗2+2.0 d0∗mijs (3)∗mijs (4)+mijs (4)∗∗2)+ &
x (1)∗∗2∗x (2)∗∗2∗ (2 . 0 d0∗mijs (3)∗mijs (7)+ &
2 .0 d0∗mijs (3)∗mijs (8) + 2 .0 d0∗mijs (4)∗mijs (7)+ &
2 .0 d0∗mijs (4)∗mijs (8))+2.0 d0∗mijs (1)∗ ((mi j s (3) + &
mijs (4))∗ x (1)∗∗3∗ (1 . 0 d0 − 2 .0 d0∗x (2)) + &
x (1)∗∗3∗x (2)∗ (mi j s (7) + mijs (8)))+&
2 .0 d0∗mijs (2)∗ ((mi j s (3) + mijs (4))∗ x (1)∗ x (2)∗∗2∗ (3 . 0 d0− &
2.0 d0∗x (2)) + x (1)∗ x (2)∗∗3∗ (mi j s (7) + mijs (8)))

end subrout ine quadmix

end MODULE mixing

L.4 COMBINING.F90

178

MODULE combining

! This module conta in s the subrout ine s used to s e l e c t the
! c o r r e c t combining ru l e and determine the parameters
! based on that ru l e .

CONTAINS

subrout ine combine (combtype , x , c i j s)
use nrtype ; use g l oba l
imp l i c i t none

i n t e g e r (I4B) , i n t en t (IN) : : combtype
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (OUT) : : c i j s

! Ca l l the s p e c i f i e d Combining Rules
! where c i j s (1) = c11 , (2) = 22 , (3) = 12 , (4) = 21
! (5) = d(c12)/dn1 ∗n , (6) d(c21)/dn1 ∗n
! (7) = d(c12)/dn2 ∗n , (8) d(c21)/dn2 ∗n
i f (combtype==0) then

c a l l arthcomb (c i j s)
e l s e i f (combtype==1) then

c a l l convcomb (c i j s)
e l s e i f (combtype==2) then

c a l l margcomb(x , c i j s)
e l s e i f (combtype==3) then

c a l l vanlaarcomb (x , c i j s)
end i f

end subrout ine combine

subrout ine arthcomb (c i j s)
use nrtype ; use g l oba l ;
imp l i c i t none
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : c i j s

! 12 and 21
c i j s (3) = (1 . 0 d0 − k12) ∗ 0 .5 d0 ∗ (c i j s (1) + c i j s (2))
c i j s (4) = (1 . 0 d0 − k21) ∗ 0 .5 d0 ∗ (c i j s (1) + c i j s (2))
! n1 d e r i v a t i v e s o f 12 and 21
c i j s (5) = 0 .0 d0
c i j s (6) = 0 .0 d0
! n2 d e r i v a t i v e s o f 12 and 21
c i j s (7) = 0 .0 d0
c i j s (8) = 0 .0 d0

end subrout ine arthcomb

179

subrout ine convcomb (c i j s)
use nrtype ; use g l oba l ;
imp l i c i t none
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : c i j s

! 12 and 21
c i j s (3) = sq r t (c i j s (1)∗ c i j s (2)) ∗ (1 . 0 d0 − k12)
c i j s (4) = sq r t (c i j s (1)∗ c i j s (2)) ∗ (1 . 0 d0 − k21)
! n1 d e r i v a t i v e s o f 12 and 21
c i j s (5) = 0 .0 d0
c i j s (6) = 0 .0 d0
! n2 d e r i v a t i v e s o f 12 and 21
c i j s (7) = 0 .0 d0
c i j s (8) = 0 .0 d0

end subrout ine convcomb

subrout ine margcomb(x , c i j s)
use nrtype ; use g l oba l ;
imp l i c i t none
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : c i j s

! 12 and 21
c i j s (3) = sq r t (c i j s (1)∗ c i j s (2)) ∗ (1 . 0 d0 − x (1)∗ k12 − x (2)∗ k21)
c i j s (4) = c i j s (3)
! n1 d e r i v a t i v e s o f 12 and 21
c i j s (5) = sq r t (c i j s (1)∗ c i j s (2)) ∗ x (2) ∗ (k21 − k12) ! /n
c i j s (6) = c i j s (5)
! n2 d e r i v a t i v e s o f 12 and 21
c i j s (7) = sq r t (c i j s (1)∗ c i j s (2)) ∗ x (1) ∗ (k12 − k21) ! /n
c i j s (8) = c i j s (7)

end subrout ine margcomb

subrout ine vanlaarcomb (x , c i j s)
use nrtype ; use g l oba l ;
imp l i c i t none
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , dimension (:) , i n t en t (INOUT) : : c i j s

! 12 and 21
c i j s (3) = sq r t (c i j s (1)∗ c i j s (2)) ∗ (1 . 0 d0 − &

(k12∗k21 /(x (1)∗ k12 + x (2)∗ k21)))
c i j s (4) = c i j s (3)

180

! n1 d e r i v a t i v e s o f 12 and 21
c i j s (5) = sq r t (c i j s (1)∗ c i j s (2))∗ k12∗k21 /((x (1)∗ k12+ &

x (2)∗ k21)∗∗2)∗x (2)∗ (k12−k21) ! / n
c i j s (6) = c i j s (5)
! n2 d e r i v a t i v e s o f 12 and 21
c i j s (7) = sq r t (c i j s (1)∗ c i j s (2))∗ k12∗k21 /((x (1)∗ k12+ &

x (2)∗ k21)∗∗2)∗x (1)∗ (k21−k12) ! / n
c i j s (8) = c i j s (7)

end subrout ine vanlaarcomb

end MODULE combining

L.5 CONVFAIL.F90

MODULE conv f a i l

! This module conta in s subrout ine s that w i l l dea l with i s s u e s
! r e l a t e d to d ive rgence encountered in the v l e c a l c s module .

CONTAINS

subrout ine noconv (x , l c l a d j , va l)
use nrtype ; use g l oba l ;
imp l i c i t none
! This module i s c a l l e d when there are convergence problems in
! v l e c a l c s . This can r e f e r to an inner or outer loop i s s u e or even
! the lack o f convergence to s p e c i f i c root va lue s . The subrout ine
! should manually ad jus t the i t e r a t i o n step s i z e i f the inner loop
! i s f a i l i n g , or take a l a r g e i t e r a t i o n step i f the outer loop i s
! f a i l i n g . I f the root convergence i s the problem , the i t e r a t i o n
! s tep should be cons ide r ed i n v a l i d f o r the g iven k12 , k21
! parameters and the i t e r a t i o n step should be terminated .
! This should a l s o occur a f t e r mu l t ip l e attempts
! at ad ju s t i ng f o r inner and outer loop d ive rgence .
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , i n t en t (INOUT) : : l c l a d j , va l
i f (case==0) then

! The v l e c a l c u l a t i o n i s not converging , reduce s t e p s i z e .
! Or i f l c l a d j<conv , t ry tak ing l a r g e jumps .
i f (abs (l c l a d j)<conv) then

c a l l r e s e t a d j (l c l a d j)
c a l l valjump (x , l c l a d j , va l)

e l s e
c a l l r eds tep (l c l a d j)

end i f
e l s e i f (case==1) then

181

! Divergence i s occur ing in the outer loop , take a l a r g e jump
! Reset ad jus t whenever t h i s occurs .
c a l l r e s e t a d j (l c l a d j)
c a l l valjump (x , l c l a d j , va l)

e l s e i f (case==2) then
! Divergence i s occur ing in the r oo t f i nde r , terminate .
c a l l t e rm i t e r (l c l a d j , x , va l)

e l s e i f (case==3) then
! Reset the s t e p s i z e f o r a new s e t o f i t e r a t i o n s
c a l l r e s e t a d j (l c l a d j)

e l s e i f (case==4) then
! Terminate the cur rent i t e r a t i o n as i t i s not converg ing .
c a l l t e rm i t e r (l c l a d j , x , va l)

e l s e i f (case==5) then
! Non−convergence i s be ing caused by the inner loop stepp ing
! past the optimal po int . Reduce the s t e p s i z e as many times
! as i s nece s sa ry here .
c a l l r eds tep (l c l a d j)

end i f
end subrout ine noconv

subrout ine valjump (x , l c l a d j , va l)
! This subrout ine should take a big jump up or down from the
! cur rent va lue va l .
use nrtype ; use g l oba l ;
imp l i c i t none
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , i n t en t (INOUT) : : l c l a d j , va l
i f (jump==0) then

va l = bubblevalue
jump=1

e l s e i f (jump==1) then
va l = va l /2 .0 d0
jump=2

e l s e i f (jump==2) then
va l = va l ∗ 4 .0 d0
jump=3

e l s e i f (jump==3) then
case =1; c a l l t e rm i t e r (l c l a d j , x , va l)

end i f
end subrout ine valjump

subrout ine reds tep (l c l a d j)
use nrtype ; use g l oba l ;
imp l i c i t none
! This subrout ine w i l l be used to reduce the l o c a l ad jus t s t e p s i z e
r e a l (DP) , i n t en t (INOUT) : : l c l a d j

182

l c l a d j = l c l a d j / 2 .0 d0
i f (VERBOSE) then

i f (INNER) pr in t ∗ , ’ ad jus t dec r ea se to : ’ , l c l a d j
end i f

end subrout ine reds tep

subrout ine r e s e t a d j (l c l a d j)
use nrtype ; use g l oba l ;
imp l i c i t none
! This subrout ine w i l l r e s e t the l o c a l ad jus t s t e p s i z e to the
! g l oba l ad jus t va lue .
r e a l (DP) , i n t en t (INOUT) : : l c l a d j
l c l a d j = ad jus t

end subrout ine r e s e t a d j

subrout ine t e rm i t e r (l c l a d j , x , va l)
use nrtype ; use g l oba l ;
imp l i c i t none
! This subrout ine w i l l terminate the cur rent i t e r a t i o n , s e t t i n g
! va lue s to a l e r t that t h i s i t e r a t i o n f a i l e d and sav ing the k i j
! data to a f i l e to keep track o f which combinat ions f a i l e d .
r e a l (DP) , i n t en t (IN) : : l c l a d j
r e a l (DP) , dimension (:) , i n t en t (IN) : : x
r e a l (DP) , i n t en t (OUT) : : va l

i f (case==0) then
! Divergence i s occur ing in the inner loop .
i f (VERBOSE) then

pr in t ∗ , ’ Inner loop did not converge with ad jus t : ’ , l c l a d j
p r i n t ∗ , ’ Terminating i t e r a t i o n . ’

e nd i f
open (260 , f i l e =”inne r l oop ” , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
wr i t e (260 , fmt=∗)k12 , k21 , x (1)∗ k12+x (2)∗ k21
c l o s e (260)

e l s e i f (case==1) then
! Divergence i s occur ing in the outer loop .
i f (VERBOSE) then

pr in t ∗ , ’ Outer loop convergence f a i l u r e . ’
p r i n t ∗ , ’ Terminating i t e r a t i o n . ’

e nd i f
open (270 , f i l e =”oute r l oop ” , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
wr i t e (270 , fmt=∗)k12 , k21 , x (1)∗ k12+x (2)∗ k21
c l o s e (270)
jump=0

e l s e i f (case==2) then

183

! Divergence i s occur ing in the r o o t f i n d e r
i f (VERBOSE) then

pr in t ∗ , ’ Root f i n d e r convergence f a i l u r e . ’
p r i n t ∗ , ’ Terminating i t e r a t i o n . ’

e nd i f
open (280 , f i l e =”root ” , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
wr i t e (280 , fmt=∗)k12 , k21 , x (1)∗ k12+x (2)∗ k21
c l o s e (280)

e l s e i f (case==4) then
! Divergence i s occur ing because phi i s d i v e rg ing .
i f (VERBOSE) then

pr in t ∗ , ’ Fugacity C o e f f i c i e n t s are d iverg ing ’
p r i n t ∗ , ’ Terminating i t e r a t i o n . ’

e nd i f
open (290 , f i l e =”fuga c i t y ” , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
wr i t e (290 , fmt=∗)k12 , k21 , x (1)∗ k12+x (2)∗ k21
c l o s e (290)

end i f

! Set g l oba l f a i l e d to 1 to a l e r t v l e c a l c s . f 90 that t h i s i s the
! t e rminat ion o f a i t e r a t i o n .
f a i l e d=1

! Store the k i j va lue s that caused t h i s to f a i l .
i f (VLEDEV) then

open (140 , f i l e =’ k i j c o n v f a i l ’ , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
wr i t e (140 , fmt=∗)k12 , k21
c l o s e (140)

end i f
end subrout ine t e rm i t e r

end MODULE conv f a i l

L.6 KIJMOD.F90

MODULE kijmod
! This module conta in s the subrout ine s nece s sa ry to setup
! the k i j va lue s used f o r VLE c a l c u l a t i o n s .

CONTAINS

subrout ine s e t k i j (method , r u l e s t r , t s t r , p s t r)
use nrtype ; use g l oba l ;
imp l i c i t none

! Set k i j va lue s from the k i j p a i r s f i l e which was c r e a t i n g

184

! us ing VLEDEV by f i nd i n g the min dev i a t i on over a wide
! range o f k i j va lue s .

i n t e g e r (I4B) , i n t en t (IN) : : method
charac t e r (l en =20) , i n t en t (IN) : : r u l e s t r
cha rac t e r (l en =3) , i n t en t (IN) : : t s t r
cha rac t e r (l en =6) , i n t en t (IN) : : p s t r
cha rac t e r (l en =20) , dimension (:) , a l l o c a t a b l e : : r u l e a r r , s t r a r r
i n t e g e r (I4B) : : i , s u c c e s s =0,maxnumvars
r e a l (DP) , dimension (:) , a l l o c a t a b l e : : k12arr , k21arr , coe f1 , co e f 2

! Set maxnumvars based on the l ength o f k i j p a i r s and f i t s
maxnumvars = 30

! method=0 when mixru le s (1)=0 and k i j va lue s have no e f f e c t
i f (method==0)then

k12=0.0d0 ; k21=0.0d0
suc c e s s=1

! method=1 when f i l e f i t s should be used to s e t k i j data
e l s e i f (method==1)then

a l l o c a t e (r u l e a r r (maxnumvars) , s t r a r r (maxnumvars) ,&
coe f 1 (maxnumvars) , co e f 2 (maxnumvars))

! Read in the f i t s from the f i l e ’ f i t s ’
open (12 , f i l e =’ f i t s ’ , s t a tu s=’old ’ , a c c e s s=’ s equent i a l ’)
do i =1,maxnumvars

read (12 , fmt=∗) r u l e a r r (i) , s t r a r r (i) , c o e f 1 (i) , c o e f 2 (i)
enddo
c l o s e (12)

! Ca l cu la t e k i j va lue s us ing the f i t s based on the ru l e
! combination cu r r en t l y being used .
do i =1,maxnumvars

i f (r u l e a r r (i)==r u l e s t r) then
i f (type==0)then

i f (s t r a r r (i)==t s t r) then
k12 = −0.1d0
k21 = coe f1 (i)∗ k12+coe f2 (i)
s u c c e s s = 1

end i f
e l s e

i f (s t r a r r (i)==pst r) then
k12 = −0.1d0
k21 = coe f1 (i)∗ k12+coe f2 (i)
s u c c e s s = 1

end i f
e nd i f

185

end i f
enddo
d e a l l o c a t e (ru l e a r r , s t r a r r , coe f1 , coe f 2)

! method=2 when s p e c i f i c k i j p a i r s are in the k i j p a i r s f i l e .
e l s e

a l l o c a t e (r u l e a r r (maxnumvars) , s t r a r r (maxnumvars) ,&
k12arr (maxnumvars) , k21arr (maxnumvars))

! Read in the va lue s from ’ k i j p a i r s ’
open (11 , f i l e =’ k i j p a i r s ’ , s t a tu s=’old ’ , a c c e s s=’ s equent i a l ’)
do i =1,maxnumvars

read (11 , fmt=∗) r u l e a r r (i) , s t r a r r (i) , k12arr (i) , k21arr (i)
enddo
c l o s e (11)

! Set the c o r r e c t k i j v a l u e s based on the ru l e combination .
do i =1,maxnumvars

i f (r u l e a r r (i)==r u l e s t r) then
i f (type==0)then

i f (s t r a r r (i)==t s t r) then
k12 = k12arr (i) ; k21 = k21arr (i)
s u c c e s s = 1

end i f
e l s e

i f (s t r a r r (i)==pst r) then
k12 = k12arr (i) ; k21 = k21arr (i)
s u c c e s s = 1

end i f
e nd i f

e nd i f
enddo
d e a l l o c a t e (ru l e a r r , s t r a r r , k12arr , k21arr)

end i f

i f (s u c c e s s==0)then
pr in t ∗ , ’ Error : k i j va lue s not s e t ! Terminating . ’
stop

end i f

end subrout ine s e t k i j

subrout ine s e tk12a r r (k12arr)
use nrtype ; use g l oba l
imp l i c i t none
! Set the k12 array based on s p e c i f i e d length ,

186

! s t e p s i z e , and k12 value
r e a l (DP) , dimension (:) , i n t en t (OUT) : : k12arr
i n t e g e r (I4B) : : k12pos=0, i=0
k12pos = (k12len /2) + 1
k12arr (k12pos)=k12
i f (k12len /=0) then

do i=k12pos , k12len , 1
k12arr (i +1) = k12arr (i) + k12change

enddo
do i=k12pos ,2 ,−1

k12arr (i −1) = k12arr (i) − k12change
enddo

end i f
end subrout ine s e tk12a r r

subrout ine s e tk21a r r (k21arr)
use nrtype ; use g l oba l
imp l i c i t none
! Set the k21 array based on s p e c i f i e d length ,
! s t e p s i z e , and k21 value
r e a l (DP) , dimension (:) , i n t en t (OUT) : : k21arr
i n t e g e r (I4B) : : k21pos=0, i=0
k21pos = (k21len /2) + 1
k21arr (k21pos)=k21
i f (k21len /=0) then

do i=k21pos , k21len , 1
k21arr (i +1) = k21arr (i) + k21change

enddo
do i=k21pos ,2 ,−1

k21arr (i −1) = k21arr (i) − k21change
enddo

end i f
end subrout ine s e tk21a r r

end MODULE kijmod

L.7 RULES.F90

MODULE ru l e s

! This module conta in s any subrout ine s that have to do
! with s e t t i n g or vary ing the equat ion o f s ta te , the mixing
! ru l e s , and the combining r u l e s .

CONTAINS

187

subrout ine va ry ru l e s (numeos , nummix , numcomb , numvars , r u l e s a r r)
use nrtype ; use g l oba l ;
imp l i c i t none

! This subrout ine w i l l c r e a t e an array c a l l e d r u l e s a r r that
! w i l l conta in a l l the p o s s i b l e v a r i a t i o n s o f EOS, mixing
! and combining r u l e s that can be used to s o l v e the VLE.

i n t e g e r (I4B) , i n t en t (IN) : : numeos , nummix , numcomb , numvars
i n t e g e r (I4B) , dimension (: , :) , i n t en t (OUT) : : r u l e s a r r
i n t e g e r (I4B) : : i =1,n=0,o=0,q=0, r=0, s=0

do whi le (i<=numvars)
n=0;o=0;q=0; r=0; s=0
do whi le (n < numeos)

eq = n
o = 0
do whi le (o < numcomb)

comrules (1) = o
q=0
do whi le (q < 1)

! Force only the a r i thmet i c combining ru l e f o r
! the b parameter
comrules (2)=q
r=0
do whi le (r < nummix)

mixru le s (1)= r
s=0
do whi le (s < 1)

! Force only l i n e a r mixing r u l e s f o r
! b parameter .
mixru le s (2)= s
r u l e s a r r (i , 1) = eq
r u l e s a r r (i , 2) = comrules (1)
r u l e s a r r (i , 3) = comrules (2)
r u l e s a r r (i , 4) = mixru le s (1)
r u l e s a r r (i , 5) = mixru le s (2)
i=i+1
s=s+1

enddo
r=r+1

enddo
q=q+1

enddo
o=o+1

enddo

188

n=n+1
enddo

end do
end subrout ine va ry ru l e s

end MODULE ru l e s

L.8 DEVCALC.F90

MODULE devca l c

! This module conta in s the subrout ine s that w i l l be used
! to c a l c u l a t e the dev i a t i on s and percent d ev i a t i on s between
! c a l c u l a t ed va lue s and exper imenta l data po in t s .

CONTAINS

subrout ine bubdev (T,P, zval , bubval , va l idpt , avedev , aveperdev)
use nrtype ; use g l oba l ;
imp l i c i t none

! This subrout ine i s used by vlemain to c a l c u l a t e the
! d ev i a t i on s between exper imenta l and ca l c u l a t ed e r r o r s
! f o r the bubble po int rou t in e .

r e a l (DP) , INTENT(IN) : : T,P
r e a l (DP) , i n t en t (IN) : : zval , bubval
i n t e g e r (I4B) , i n t en t (OUT) : : va l i dp t
r e a l (DP) , i n t en t (OUT) : : avedev , aveperdev
i n t e g e r (I4B) : : j , po in t s=0
r e a l (DP) , a l l o c a t a b l e : : d i f f (:) , perdev (:)

a l l o c a t e (d i f f (l i n e s) , perdev (l i n e s))
d i f f (:)=0 . 0 d0 ; perdev (:) = 0 .0 d0
po in t s = 0 ; va l i dp t = 0

! Open a f i l e to s t o r e the c a l c u l a t ed data .
open (150 , f i l e =’ va l idb . dat ’ , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)

! I f P−x was c a l c u l a t ed :
i f (type == 0) then

! Go through the exper imenta l data ar rays and check f o r
! l i n e s o f matching T and x 1 .
do j =1, l i n e s

i f (abs (texp (j) − T) < conv) then
! Compare the zva l passed in to the x1 va lues

189

! in the exper imenta l data f o r bubble po int p r e s su r e s
i f (abs (zval−xexp (j))<conv) then

d i f f (j) = abs (bubval /1000.0 d0 − pexp (j))
po in t s = po in t s+in t (npexp (j))
perdev (j) = d i f f (j)/ pexp (j)∗100 .0 d0
va l i dp t=1
wr i t e (150 , fmt=∗) texp (j) , xexp (j) , yexp (j) ,&

pexp (j) , d i f f (j) , perdev (j)
end i f

e nd i f
end do

! I f T−x was c a l c u l a t ed :
e l s e

do j =1, l i n e s
i f (abs (pexp (j) − P/1000.0 d0) < conv) then

i f (abs (zval−xexp (j))<conv) then
d i f f (j) = abs (bubval−texp (j))
po in t s = po in t s+in t (npexp (j))
perdev (j) = d i f f (j)/ texp (j)∗100 .0 d0
va l i dp t=1
wr i t e (150 , fmt=∗)pexp (j) , xexp (j) , yexp (j) ,&

texp (j) , d i f f (j) , perdev (j)
end i f

e nd i f
enddo

end i f

i f (va l i dp t==1)then
! Ca l cu la t e the average dev i a t i on and average percent dev i a t i on
avedev = sum(d i f f)/ po in t s
aveperdev = sum(perdev)/ po in t s

end i f
c l o s e (150)
d e a l l o c a t e (d i f f , perdev)

end subrout ine bubdev

subrout ine dewdev (T,P, zval , dewval , va l idpt , avedev , aveperdev)
use nrtype ; use g l oba l ;
imp l i c i t none
! This subrout ine i s used by vlemain to c a l c u l a t e the
! d ev i a t i on s between exper imenta l and ca l c u l a t ed e r r o r s
! f o r the dew point rou t in e .
r e a l (DP) , INTENT(IN) : : T,P
r e a l (DP) , i n t en t (IN) : : zval , dewval
i n t e g e r (I4B) , i n t en t (OUT) : : va l i dp t
r e a l (DP) , i n t en t (OUT) : : avedev , aveperdev

190

i n t e g e r (I4B) : : j , po in t s=0
r e a l (DP) , a l l o c a t a b l e : : d i f f (:) , perdev (:)

a l l o c a t e (d i f f (l i n e s) , perdev (l i n e s))
d i f f (:)=0 . 0 d0 ; perdev (:) = 0 .0 d0
po in t s = 0 ; va l i dp t = 0

open (150 , f i l e =’ va l idd . dat ’ , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)

i f (type == 0) then
do j =1, l i n e s

i f (abs (texp (j) − T) < conv) then
! Compare the zva l passed in to the y1 va lues
! in the exper imenta l data f o r dew point p r e s su r e s
i f (abs (zval−yexp (j))<conv) then

d i f f (j) = abs (dewval /1000.0 d0 − pexp (j))
po in t s = po in t s+in t (npexp (j))
perdev (j) = d i f f (j)/ pexp (j)∗100 .0 d0
va l i dp t=1
wr i t e (150 , fmt=∗) texp (j) , xexp (j) , yexp (j) ,&

pexp (j) , d i f f (j) , perdev (j)
end i f

e nd i f
end do

e l s e
do j =1, l i n e s

i f (abs (pexp (j) − P/1000.0 d0) < conv) then
i f (abs (zval−yexp (j))<conv) then

d i f f (j) = abs (dewval−texp (j))
po in t s = po in t s+in t (npexp (j))
perdev (j) = d i f f (j)/ texp (j)∗100 .0 d0
va l i dp t=1
wr i t e (150 , fmt=∗)pexp (j) , xexp (j) , yexp (j) ,&

texp (j) , d i f f (j) , perdev (j)
end i f

e nd i f
enddo

end i f

i f (va l i dp t==1)then
avedev = sum(d i f f)/ po in t s
aveperdev = sum(perdev)/ po in t s

end i f
c l o s e (150)
d e a l l o c a t e (d i f f , perdev)

end subrout ine dewdev

191

subrout ine dev (j , bubval , dev ia t ion , perdev)
use nrtype ; use g l oba l ;
imp l i c i t none

! This subrout ine i s used by the v ledev program to c a l c u l a t e
! d ev i a t i on and percent dev i a t i on .

i n t e g e r (I4B) , i n t en t (IN) : : j
r e a l (DP) , i n t en t (IN) : : bubval
r e a l (DP) , i n t en t (OUT) : : dev ia t ion , perdev

open (150 , f i l e =’ va l i d . dat ’ , s t a tu s=’unknown ’ , p o s i t i o n=’append ’)
i f (type == 0) then

dev i a t i on = abs (bubval /1000.0 d0 − pexp (j))
perdev = dev i a t i on /pexp (j)∗100 .0 d0
wr i t e (150 , fmt=∗) texp (j) , xexp (j) , pexp (j) , dev ia t ion , perdev

e l s e
dev i a t i on = abs (bubval−texp (j))
perdev = dev i a t i on / texp (j)∗100 .0 d0
wr i t e (150 , fmt=∗)pexp (j) , xexp (j) , texp (j) , dev ia t ion , perdev

end i f
c l o s e (150)

end subrout ine dev

end MODULE devca l c

192

BIBLIOGRAPHY

[1] P. Wankat, Equilibrium Staged Separations, Elsevier Science Publishing (1988).

[2] M & M Metals: Heat Sinks - Custom Fabricated Aluminum Extrusions - Precision
Machining, www.mmmetals.com (2009).

[3] L. Schaefer, Single Pressure Absorption Heat Pump Analysis, Ph.D. Thesis, Georgia
Institute of Technology (2000).

[4] E. Pawlikowski, J. Newman, J. Prausnitz, Phase Equilibriums for Aqueous Solutions of
Ammonia and Carbon Dioxide, Industrial and Engineering Chemistry Process Design
and Development, Vol. 21 pp. 764–770 (1982).

[5] R. Weir, T. Loos, Measurement of the Thermodynamic Properties of Multiple Phases,
Gulf Professional Publishing (2005).

[6] P. Richet, The Physical Basis of Thermodynamics with Applications to Chemistry,
Kluwer Academic Plenum Publishers (2001).

[7] E. Weisstein, Eric Weisstein’s World of Physics, www.scienceworld.wolfram.com (2010).

[8] S. Walas, Phase Equilibria in Chemical Engineering, Butterworth Publishers (1985).

[9] Y. Wei, R. Sadus, Equations of State for the Calculation of Fluid-Phase Equilibria,
Thermodynamics, Vol. 46 pp. 169–196 (2000).

[10] M. Thiesen, Investigations of the Equation of State, Annalen der Physik und Chemie,
Vol. 24 pp. 467–492 (1885).

[11] H. Kamerlingh-Onnes, Expression of the Equation of State of Gases and Liquids by
Means of Series, Communications from the Physical Laboratory at the University of
Leiden, Vol. 71 (1901).

[12] M. Assael, J. Trusler, T. Tsolakis, Thermophysical Properties of Fluids, Imperial College
Press (1996).

193

[13] S. Ornstein, Application of the Statistical Mechanics of Gibbs on Molecular-Theoretical
Problems, Communications from the Physical Laboratory at the University of Leiden
(1908).

[14] J. Prausnitz, R. Lichtenthaler, E. Azevedo, Molecular Thermodynamics of Fluid-Phase
Equilibria, Prentice Hall (1986).

[15] T. Hill, An Introduction to Statistical Thermodynamics, Dover Publications (1986).

[16] G. Ikonomou, M. Donohue, Thermodynamics of Hydrogen-Bonded Molecules: The As-
sociated Perturbed Anisotropic Chain Theory, American Institute of Chemical Engineers
Journal, Vol. 32 p. 1716 (1986).

[17] G. Ikonomou, M. Donohue, Extension of the Associated Perturbed Anisotropic Chain
Theory to Mixtures and More Than One Associating Component, Fluid Phase Equilibria,
Vol. 39 p. 129 (1988).

[18] I. Economou, M. Donohue, Chemical, Quasi-Chemical and Perturbation Theories for
Associating Fluids, American Institute of Chemical Engineers Journal, Vol. 37 p. 1875
(1991).

[19] I. Economou, M. Donohue, Equation of State with Multiple Associating Sites for Water
and Water-Hydrogen Mixtures, Industrial and Engineering Chemistry Research, Vol. 31
p. 2388 (1992).

[20] P. Vilmalchand, M. Donohue, Thermodynamics of Quadropolar Molecules: The
Perturbed-Anisotropic-Chain Theory, Industrial and Engineering Chemistry Fundamen-
tals, Vol. 24 p. 246 (1985).

[21] P. Vilmalchand, I. Celmins, M. Donohue, VLE Calculations for Mixtures Containing
Multipolar Compounds Using the Perturbed Anisotropic Chain Theory, American Insti-
tute of Chemical Engineers Journal, Vol. 32 p. 1735 (1986).

[22] I. Economou, C. Peters, J. de Swaan Arons, Water-Salt Phase Equlibria at Elevated
Temperatures and Pressures: Model Development and Mixture Predictions, Journal of
Physical Chemistry, Vol. 99 p. 6182 (1995).

[23] W. Chapman, G. Jackson, K. Gubbins, Phase Equilibria of Associating Fluids: Chain
Molecules with Multiple Bonding Sites, Molecular Physics, Vol. 65 p. 1057 (1988).

[24] W. Chapman, K. Gubbins, G. Jackson, M. Radosz, New Reference Equation of State for
Associating Liquids, Industrial and Engineering Chemistry Research, Vol. 29 p. 1709
(1990).

[25] S. Huang, M. Radosz, Equation of State for Small, Large, Polydisperse, and Associating
Molecules, Industrial and Engineering Chemistry Research, Vol. 29 p. 2284 (1990).

194

[26] M. Abbott, H. Van Ness, Schaum’s Outline: Theory and Problems of Thermodynamics,
McGraw Hill Inc. (1989).

[27] M. Trebble, P. Bishnoi, Development of a New Four-Parameter Cubic Equation of State,
Fluid Phase Equilibria, Vol. 35 pp. 1–18 (1987).

[28] P. Salim, M. Trebble, A Modified Trebble-Bishnoi Equation of State: Thermodynamic
Consistency Revisited, Fluid Phase Equilibria, Vol. 65 pp. 59–71 (1991).

[29] I. Polishuk, J. Wisniak, H. Segura, A Novel Approach for Defining Parameters in a
Four-Parameter Equation of State, Chemical Engineering Science, Vol. 55 pp. 5705–
5720 (2000).

[30] J. Hu, R. Wang, S. Mao, Some Useful Expressions for Deriving Component Fugacity
Coefficients from Mixture Fugacity Coefficients, Fluid Phase Equilibria, Vol. 268 pp.
7–13 (2008).

[31] E. M. Hendriks, Reduction theorem for phase equilibrium problems, Industrial & Engi-
neering Chemistry Research, Vol. 27 (9) pp. 1728–1732, URL http://pubs.acs.org/

doi/abs/10.1021/ie00081a027 (1988).

[32] E. M. Hendriks, A. R. D. van Bergen, Application of a reduction method
to phase equilibria calculations, Fluid Phase Equilibria, Vol. 74 pp. 17 –
34, URL http://www.sciencedirect.com/science/article/B6TG2-43PSB3P-6V/2/

324ad134dc84e81e16d5b469a32e5645 (1992).

[33] D. V. Nichita, C. F. Leibovici, An analytical consistent pseudo-component delumping
procedure for equations of state with non-zero binary interaction parameters, Fluid Phase
Equilibria, Vol. 245 (1) pp. 71 – 82, URL http://www.sciencedirect.com/science/

article/B6TG2-4JTR93T-1/2/8f1638f248ead0a9b8986591c086eab5, proceedings of
the Seventeenth European Conference on Thermophysical Properties (2006).

[34] J. Elliott, C. Lira, Introductory Chemical Engineering Thermodynamics, Prentice Hall
(1999).

[35] H. Orbey, S. Sandler, Modeling Vapor-Liquid Equilibria, Cambridge University Press
(1998).

[36] J. Thomas, Carnegie Mellon University Nanoscale Transport Phenomena Wiki,
www.ntpl.me.cmu.edu (2007).

[37] D. Chrisman, J. Leach, Intermolecular Parameters and Combining Rules for the Square
Well Potential, Industrial and Engineering Chemistry Fundamentals, Vol. 12 pp. 423–
431 (1973).

[38] J. Maxwell, On the Dynamical Evidence of the Molecular Constitution of Bodies, Journal
of the Chemical Society, Vol. 28 pp. 493–508 (1875).

195

http://pubs.acs.org/doi/abs/10.1021/ie00081a027
http://pubs.acs.org/doi/abs/10.1021/ie00081a027
http://www.sciencedirect.com/science/article/B6TG2-43PSB3P-6V/2/324ad134dc84e81e16d5b469a32e5645
http://www.sciencedirect.com/science/article/B6TG2-43PSB3P-6V/2/324ad134dc84e81e16d5b469a32e5645
http://www.sciencedirect.com/science/article/B6TG2-4JTR93T-1/2/8f1638f248ead0a9b8986591c086eab5
http://www.sciencedirect.com/science/article/B6TG2-4JTR93T-1/2/8f1638f248ead0a9b8986591c086eab5

[39] E. Guggenheim, Thermodynamics - An Advanced Treatment for Chemists and Physi-
cists, Elsevier Science Publishers (1986).

[40] J. Tester, M. Modell, Thermodynamics and Its Applications, Prentice Hall (1997).

[41] S. Sandler, Chemical and Engineering Thermodynamics, John Wiley & Sons (1989).

[42] R. Stryjek, J. Vera, PRSV: An Improved Peng-Robinson Equation of State for Pure
Compounds and Mixtures, The Canadian Journal of Chemical Engineering, Vol. 64 pp.
323–333 (1986).

[43] R. Stryjek, J. Vera, PRSV2: A Cubic Equation of State for Accurate Vapor-Liquid
Equilibria Calculations, The Canadian Journal of Chemical Engineering, Vol. 64 pp.
820–827 (1986).

[44] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI - The Complete
Reference: Volume 1, The MPI Core, The MIT Press (1998).

[45] Numerical Recipes in FORTRAN, 2nd Edition (1992).

[46] P. Coutsikos, N. Kalospiros, D. Tassios, Capabilities and Limitations of the Wong-
Sandler Mixing Rules, Fluid Phase Equilibria, Vol. 108 pp. 69–78 (1998).

[47] J. Gmehling, U. Onken, W. Arlt, Vapor Liquid Equilibrium Data Collection: Aqueous
Organic Systems, Supplement 1, Dechema (1996).

[48] J. Gmehling, U. Onken, W. Arlt, Vapor Liquid Equilibrium Data Collection: Aqueous
Organic Systems, Dechema (1996).

[49] G. Soave, Equilibrium Constants from a Modified Redlich-Kwong Equation of State,
Chemical Engineering Science, Vol. 27 pp. 1197–1203 (1972).

[50] C. Torres-Marchal, A. Cantalino, R. Brito, Prediction of Vapor-Liquid Equilibria (VLE)
from Dilute Systems Data Using the SRK Equation of State: Industrial Applications,
Fluid Phase Equilibria, Vol. 52 pp. 111–117 (1989).

[51] V. Harismiadis, N. Koutras, D. Tassios, A. Panagiotopoulos, How good is conformal
solutions theory for phase equilibrium predictions?Gibbs ensemble simulations of binary
Lennard-Jones mixtures, Fluid Phase Equilibria, Vol. 65 pp. 1–18 (1991).

[52] Pittsburgh Supercomputing Center, www.psc.edu/machines/hp/c3000/warhol.php.

196

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Modifications to the Attractive Term of the van der Waals Equation
	2. Effect of adj Value on Runtime and Convergence
	3. Effect of perturb Value on Runtime and Convergence
	4. Effect of conv Value on Runtime and Convergence
	5. Effect of maxiters Value on Runtime and Convergence
	6. Numeric indicators for different equations
	7. Summary of the experimental VLE data used in this study.
	8. Optimal kij parameters: T = 323.65K
	9. Errors associated with binary interaction parameter choice
	10. Average errors using optimal binary interaction pairs from different temperatures.
	11. Maximum percent deviations for each equation set
	12. Simple combining rule linear fits

	LIST OF FIGURES
	1. A typical chemical plant layout
	2. Diagram of a heat pipe
	3. An example of a single-effect absorption refrigeration cycle
	4. A typical static equilibrium cell used for experimental VLE calculations
	5. Pressure vs. composition of a Water-EtOH mixture
	6. Temperature vs. composition of a Water-EtOH mixture
	7. Equation of state genealogy chart
	8. The square-well molecular potential function.
	9. Critical isotherm of a pure substance
	10. The Lennard-Jones potential function
	11. Isotherms calculated using the reduced form of the VDW equation of state
	12. A mechanical system depicting equilibrium stability
	13. An example VLE data set showing individual bubble points
	14. A flow chart describing the iterative VLE procedure
	15. VLE results: T = 323.65 K, CR = 0, EOS varying
	(a). EOS = 0 (RKS)
	(b). EOS = 1 (PR)
	(c). EOS = 2 (PRSV)
	16. VLE results: T = 323.65 K, EOS = 0 (RKS), CR varying
	(a). CR = 0 (A)
	(b). CR = 1 (C)
	(c). CR = 2 (M)
	(d). CR = 3 (VL)
	17. VLE results: T = 323.65 K, EOS = 1 (PR), CR varying
	(a). CR = 0 (A)
	(b). CR = 1 (C)
	(c). CR = 2 (M)
	(d). CR = 3 (VL)
	18. VLE results: T = 323.65 K, EOS = 2 (PRSV), CR varying
	(a). CR = 0 (A)
	(b). CR = 1 (C)
	(c). CR = 2 (M)
	(d). CR = 3 (VL)
	19. VLE results: Multiple temperatures, varying equations
	(a). Equation Set = 01010
	(b). Equation Set = 03010
	(c). Equation Set = 11010
	(d). Equation Set = 13010
	(e). Equation Set = 21010
	(f). Equation Set = 23010
	20. VLE results: perturbed binary interaction parameters
	(a). Equation Set = 00010
	(b). Equation Set = 02010
	(c). Equation Set = 10010
	(d). Equation Set = 12010
	(e). Equation Set = 21010
	(f). Equation Set = 23010
	21. A skeleton of the code used to determine errors for binary interaction pairs
	22. The 3D surface of average percent deviation with a simple combining rule
	23. The 3D surface of average percent deviation with a complex combining rule
	24. The partial surface of average percent deviation with a simple combining rule
	25. The partial surface of average percent deviation with a complex combining rule
	26. The 2D map of average percent deviation with a simple combining rule
	27. The 2D map of average percent deviation with a complex combining rule
	28. The partial map of average percent deviation with a simple combining rule
	29. The partial map of average percent deviation with a complex combining rule
	30. The number of kij pairs that produce results below an average percent deviation.
	(a). EQ = 0
	(b). EQ = 1
	(c). EQ = 2
	31. Optimal binary interaction parameter pairs
	(a). Equation Set = 00010
	(b). Equation Set = 03010
	32. Effect of temperature on the optimal kij pairs.
	(a). Equation Set = 00010
	(b). Equation Set = 03010
	33. Average maximum percent deviations for each equation set
	34. Volume Calculations: perturbed binary interaction parameters
	(a). Equation Set = 00010
	(b). Equation Set = 23010
	35. VLE results: P = 101325 Pa, CR = 0, EOS varying
	(a). EOS = 0 (RKS)
	(b). EOS = 1 (PR)
	(c). EOS = 2 (PRSV)
	36. VLE results: P = 101325 Pa, EOS = 0 (RKS), CR varying
	(a). CR = 0 (A)
	(b). CR = 1 (C)
	(c). CR = 2 (M)
	(d). CR = 3 (VL)
	37. VLE results: P = 101325 Pa, EOS = 1 (PR), CR varying
	(a). CR = 0 (A)
	(b). CR = 1 (C)
	(c). CR = 2 (M)
	(d). CR = 3 (VL)
	38. VLE results: P = 101325 Pa, EOS = 2 (PRSV), CR varying
	(a). CR = 0 (A)
	(b). CR = 1 (C)
	(c). CR = 2 (M)
	(d). CR = 3 (VL)
	(a). Equation Set = 00000
	(b). Equation Set = 00010
	39. VLE results: Multiple temperatures, EOS = 0 (RKS)
	(c). Equation Set = 01010
	(d). Equation Set = 02010
	(e). Equation Set = 03010
	40. VLE results: Multiple temperatures, EOS = 1 (PR)
	(a). Equation Set = 10000
	(b). Equation Set = 10010
	(c). Equation Set = 11010
	(d). Equation Set = 12010
	(e). Equation Set = 13010
	41. VLE results: Multiple temperatures, EOS = 2 (PRSV)
	(a). Equation Set = 20000
	(b). Equation Set = 20010
	(c). Equation Set = 21010
	(d). Equation Set = 22010
	(e). Equation Set = 23010
	42. VLE results: perturbed binary interaction parameters, EOS = 0
	(a). Equation Set = 00010
	(b). Equation Set = 01010
	(c). Equation Set = 02010
	(d). Equation Set = 03010
	43. VLE results: perturbed binary interaction parameters, EOS = 1
	(a). Equation Set = 10010
	(b). Equation Set = 11010
	(c). Equation Set = 12010
	(d). Equation Set = 13010
	44. VLE results: perturbed binary interaction parameters, EOS = 2
	(a). Equation Set = 20010
	(b). Equation Set = 21010
	(c). Equation Set = 22010
	(d). Equation Set = 23010
	(a). Full Surface
	(b). Partial Surface
	45. Average percent deviation: T = 323.65 K, Equation set 00010
	(c). Full Map
	(d). Partial Map
	46. Average percent deviation: T = 323.65 K, Equation set 01010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	47. Average percent deviation: T = 323.65 K, Equation set 02010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	48. Average percent deviation: T = 323.65 K, Equation set 03010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	49. Average percent deviation: T = 323.65 K, Equation set 10010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	50. Average percent deviation: T = 323.65 K, Equation set 13010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	51. Average percent deviation: T = 323.65 K, Equation set 20010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	52. Average percent deviation: T = 323.65 K, Equation set 23010
	(a). Full Surface
	(b). Partial Surface
	(c). Full Map
	(d). Partial Map
	53. Effect of temperature on the optimal kij pairs using EOS = 0.
	(a). Equation Set: 00010
	(b). Equation Set: 01010
	53. Effect of temperature on the optimal kij pairs using EOS = 0.
	(c). Equation Set: 02010
	(d). Equation Set: 03010
	54. Effect of temperature on the optimal kij pairs using EOS = 1.
	(a). Equation Set: 10010
	(b). Equation Set: 11010
	(c). Equation Set: 12010
	(d). Equation Set: 13010
	55. Effect of temperature on the optimal kij pairs using EOS = 2.
	(a). Equation Set: 20010
	(b). Equation Set: 21010
	(c). Equation Set: 22010
	(d). Equation Set: 23010

	1.0 INTRODUCTION AND BACKGROUND
	1.1 Introduction
	1.2 Dew Point and Bubble Point Data
	1.3 Fugacity
	1.4 Equations of State
	1.4.1 Theoretical
	1.4.2 Empirical

	2.0 APPLICATION OF EQUATIONS TO MIXTURES
	2.1 Mixing Rules
	2.2 Combining Rules

	3.0 MATHEMATICAL DERIVATIONS
	3.1 Redlich-Kwong-Soave Equation of State
	3.2 Peng-Robinson Equation of State
	3.3 Peng-Robinson-Stryjek-Vera Equation of State

	4.0 NUMERICAL SIMULATIONS
	4.1 Computational Methodology for the Vapor-Liquid Equilibrium Calculations
	4.2 Modifications For Dew Point Calculations
	4.3 Performance Improvements
	4.3.1 Iterations Update Methods

	4.4 Numerical Issues
	4.4.1 Complications
	4.4.2 The Effect of Parameters on Convergence

	5.0 RESULTS AND DISCUSSION
	5.1 The Effect of Equation Combinations on Standard VLE Studies
	5.2 Perturbation of the Binary Interaction Parameters
	5.3 A Quantitative Explanation of Limited Experimental Data
	5.4 Analysis of a Binary Interaction Parameter Mesh
	5.5 Analysis of the Optimized Binary Interaction Parameters
	5.6 Effect of Temperature on the Optimal Binary Interaction Parameters

	6.0 CONCLUSIONS
	APPENDIX A. DERIVATIVES OF MIXING RULE TERMS
	 A.1 Linear
	 A.2 Quadratic

	APPENDIX B. DERIVATIVES OF COMBINING RULE TERMS
	 B.1 Arithmetic
	 B.2 Geometric
	 B.3 Margules
	 B.4 van Laar

	APPENDIX C. SYSTEMS USED FOR COMPUTATIONS
	APPENDIX D. FIXED PRESSURE T-X PLOTS FOR VARIOUS EQUATION COMBINATIONS
	APPENDIX E. MULTIPLE TEMPERATURE P-X PLOTS FOR VARIOUS EQUATION COMBINATIONS
	APPENDIX F. PERTURBATION OF THE BINARY INTERACTION PARAMETER
	APPENDIX G. COMPLETE ANALYSIS OF THE BINARY INTERACTION PARAMETERS
	APPENDIX H. EFFECT OF TEMPERATURE ON THE OPTIMAL BINARY INTERACTION PARAMETERS
	APPENDIX I. CODE FOR MAIN VLE CALCULATIONS
	 I.1 vlemain.f90
	 I.2 vlesolve.f90

	APPENDIX J. CODE FOR BINARY INTERACTION PARAMETER PERTURBATIONS
	 J.1 kijperturb.f90

	APPENDIX K. CODE FOR FULL ANALYSIS OF BINARY INTERACTION PARAMETERS
	 K.1 vledev.f90
	 K.2 vledev.f90

	APPENDIX L. MODULES USED BY MULTIPLE PROGRAMS
	 L.1 vlecalcs.f90
	 L.2 eosmod.f90
	 L.3 mixing.f90
	 L.4 combining.f90
	 L.5 convfail.f90
	 L.6 kijmod.f90
	 L.7 rules.f90
	 L.8 devcalc.f90

	BIBLIOGRAPHY

