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EXPERIMENTAL BEHAVIOR OF STEEL FIBER REINFORCED POLYMER 
RETROFIT MEASURES 

 

Patrick Lucien Minnaugh, M.S. 

University of Pittsburgh, 2006

 

Four 10” (254 mm) deep, 6” (152 mm) wide and 186” (4730 mm) long concrete beams 

having three #4 longitudinal steel reinforcing bars as primary flexural reinforcement, were 

retrofitted with steel fiber-reinforced polymer (SFRP). A commercially available 4.75 in. (121 

mm) wide, 0.048 in. (1.2 mm) thick unidirectional steel fiber reinforced strip system was used 

along with a commercially available adhesive system. One beam was tested monotonically under 

simply supported conditions to failure. Three identical beams were tested under midpoint cyclic 

loading until fatigue-induced failure or 2,000,000 cycles. Any beam that survived 2,000,000 

cycles was tested monotonically to failure. Results of the tests were compared to beams that were 

retrofitted with an equivalent amount of carbon fiber reinforced polymer (CFRP) as determined 

by the axial stiffness of the material. 

The monotonic test revealed that the SFRP specimen showed comparable behavior when 

compared to the CFRP companion specimens in terms of ultimate load and deflection, general 

yield load, and deflection ductility. The SFRP specimen was shown to compare poorly in terms 

of debonding strain. One fatigue specimen achieved 2,000,000 cycles and was subsequently 

tested monotonically to failure. The behavior of the SFRP system degraded only slightly in terms 

of each parameter considered; thus it was apparent that SFRP systems may perform well under 

fatigue conditions. Debonding strains for the SFRP were still shown to be very low, indicating 
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that the guidance for the mitigation of CFRP specimens may not be appropriate to apply directly 

to SFRP specimens. 

Two of the retrofit fatigue specimens failed due to fatigue-induced rupture of the internal 

reinforcement prior to achieving 2,000,000 cycles. Observations include stress range drift and 

degradation of secant stiffness with cycling. Reinforcing bar stresses at the final cycle were 

noted to increase significantly from the initial cycle. The SFRP was noted to increase the secant 

stiffness of the retrofit specimens and slow the rate of decay of stiffness when compared to the 

control fatigue specimen. When results were compared to the CFRP companion specimens, it 

was apparent that SFRP is an acceptable retrofit and is in some ways superior in terms of fatigue. 
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1.0  INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

Repair and retrofit of structures will be an increasingly important issue as infrastructure 

continues to age and deteriorate. More options are becoming available for those structures for 

which it is more economical to retrofit than to demolish. Fiber reinforced polymer (FRP) 

composite materials have come to the forefront as promising materials and systems for structural 

retrofit. 

Steel fiber reinforced polymer (SFRP) composite materials have recently been introduced 

as an alternative to glass and carbon fiber reinforced polymer (GFRP and CFRP) composite 

materials (Hardwire, 2002). There are many benefits to using SFRP over GFRP or CFRP. 

Significantly, the steel cords that make up SFRP have some inherent ductility. Also, when 

cementitious grout is used rather than epoxy as the bonding agent, the SFRG can exhibit 

excellent fire endurance properties (Casadei et al., 2005a). Similar to GFRP and CFRP, SFRP 

has the advantage of being relatively lightweight in comparison to steel plates, making it 

relatively easy to install. 
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1.2 OBJECTIVE 

The purpose of this thesis is to investigate and gather more information regarding the 

behavior of surface bonded steel fiber reinforced polymer (SFRP) retrofit methods for reinforced 

concrete members subject to monotonic and fatigue loading conditions. This study focuses on 

flexure/shear intermediate crack-induced debonding (FIC/SIC) of the bonded SFRP from the 

concrete substrate, also known as mid-span debonding. 

The results of this study will be compared with companion specimens having bonded 

CFRP retrofits tested previously by Reeve (2005) and Zorn (2006). These companion specimens 

were retrofitted with CFRP having an equivalent axial stiffness to the SFRP considered herein. 

The companion theses have already shown how the established consensus for mitigating 

debonding of CFRP systems is insufficient. This thesis represents a step toward considering 

SFRP in a manner similar to G/CFRP for structural retrofit. 

Many retrofit applications can be subject to transient or fatigue loads. Previous studies 

conducted by Harries (2005) have shown the deleterious effects of fatigue loading on the 

behavior of concrete specimens retrofitted with FRP, and specifically on the performance of the 

bond layer (FRP-adhesive-concrete). Deterioration has been seen in cases where the stress level 

in the CFRP was as low as 4% of its capacity (Harries and Aidoo, 2005). This effect is shown in 

Figure 1.1 where the ACS curve is a monotonically loaded specimen and the ACF curve is an 

identical CFRP-strengthened specimen that has been subject to 2 million cycles of fatigue 

loading at a level resulting in a CFRP stress of 0.04fu, where fu is the strength of the CFRP. The 

fatigue behavior of bonded SFRP may also be of concern. This study is believed to be the first to 

address fatigue-induced degradation of SFRP performance. 
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1.3 SCOPE OF REPORT 

This thesis presents the experimental results of the monotonic and fatigue performance of 

reinforced concrete beams strengthened with steel fiber reinforced polymer (SFRP) strips bonded 

with an epoxy resin. The outline of this thesis is as follows: 

• Chapter 1 presents a review of related research involving the use of SFRP as a retrofit 

material. 

• Chapter 2 presents a detailed explanation of the experimental program. The beam 

fabrication and SFRP application are described in this chapter. The method for testing 

each beam monotonically or in fatigue is outlined in this chapter. 

• Chapter 3 presents the results from the experimental program. 

• Chapter 4 presents a discussion of the results of the experimental program. A comparison 

with companion specimens retrofitted with carbon fiber reinforced polymer (CFRP) 

tested by Reeve (2005) and Zorn (2006) is also presented. 

• Chapter 5 presents a summary, conclusion, and recommended future research endeavors. 

1.4 LITERATURE REVIEW 

As current infrastructure ages, and load demand continues to increase, both rehabilitation 

(restoring to original capacity) and strengthening measures must be made. Fiber reinforced 

polymer (FRP) materials have been successfully used for rehabilitation and strengthening efforts 

for the past two decades. Recently, a new form of FRP: steel fiber reinforced polymer (SFRP), 

has been introduced as an alternative to more conventional carbon or glass fiber reinforced 
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polymers (C/GFRP). This literature review focuses on research investigating the use and 

performance of SFRP. The companion theses, Reeve (2005) and Zorn (2006) present reviews of 

issues affecting FRP bond to concrete and the fatigue performance of concrete beams retrofitted 

with FRP materials, respectively. The conclusions of these companion theses that consider the 

use of CFRP are summarized later in this chapter. 

1.4.1 Description of SFRP Material 

SFRP materials are composed of ultra high strength steel fibers embedded in a polymeric 

matrix. The fibers are of a very small diameter so that the steel can have the microstructure of 

pearlite. The result is a high tensile strength steel, up to eleven times stronger than typical steel 

plate (Hardwire, 2002). The fibers are similar to the steel cords used as reinforcement in 

automotive tires. 

Individual fibers are wrapped together into cords of different configurations and twist 

angles (Figure 1.2). The configuration and twist angle depend on the intended application. Fibers 

are wrapped at low twist angles when balanced compressive and tensile strengths are required. 

Often an additional fiber is wrapped around the straighter inner fibers at a higher twist angle to 

affect a better mechanical bond with the resin system. The low twist angle of the primary fibers 

results in a system in which there are more openings for the resin to penetrate. Fibers can be 

wrapped at high twist angles for optimum tensile strain and improved ductility (Hardwire, 2002). 

The cords can be coated in a variety of ways. Brass can be used when the main concern is 

aesthetics. An Adhesion Optimized (AO) Brass coating is used in the present applications. AO 

coating is a titanium-based priming system that can increase bond performance of epoxies up to 
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500% (Hardwire, 2002). Zinc can also be used as a coating when enhanced corrosion resistance 

or high surface reactivity is needed (Hardwire, 2002). 

Cords are subsequently arranged into continuous sheets (Figure 1.3) that are available in 

12 inch (305 mm) widths (Hardwire, 2002). The cords are held together using a scrim, or net, of 

polyester yarns (Figure 1.3(b)). The result is a fabric-like material that can be bent without any 

material degradation. 

1.4.1.1 Bonding Matrix 

The steel-cord sheets can be bonded using either an epoxy resin system or with 

cementitious grout. For the purpose of this review, SFRP refers to the product which is bonded 

with epoxy, and SFRG refers to product bonded with grout. It is believed (Casadei et al., 2005a) 

that the use of SFRG results in a higher fire rating, which has been a common criticism of retrofit 

schemes that use an epoxy system. Additionally, the construction industry is more familiar with 

using grout, so a designer may feel more confident that the SFRG retrofit will be installed 

properly. 

Casadei et al. (2005a) report that interfacial failure modes are more dependent on the 

bonding material used than on fiber type (steel or carbon). Their study showed that debonding 

occurred earlier when grout was used in comparison to using epoxy resin (Figure 1.4). Behavior 

was similar up to yielding of the internal steel, but at ultimate, the SFRP exhibited a mid-span 

deflection 23% larger than the SFRG. It was reported that strength increases were larger when 

epoxy was used rather than grout. These results can be largely attributed to the superior adhesion 

properties of epoxy over cementitious grout. 

Pecce et al. (2006) reported that beams retrofitted with SFRG showed a less stiff behavior 

under serviceability conditions than beams retrofitted with SFRP. When a low-density steel fiber 
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tape was used with grout, it gave a low tension-stiffening effect. When Pecce et al. compared 

code formulations for crack width and deflections with experimental values, they determined that 

the epoxy resin system showed a scatter that is generally comparable to that observed in 

unstrengthened beams. When grout was used, nonconservative results were found in comparing 

experimental and code-prescribed  values. 

Wobbe et al. (2004) reported similar results. A beam retrofitted with SFRP reached a 

maximum load of 22.5 kips (99 kN), while a beam retrofitted with an equivalent amount of 

SFRG reached only 21 kips (92.5 kN). This demonstrates the trend that strength increases are 

larger when using epoxy. This is, again, likely due to the improved bond behavior between the 

retrofit and original substrate concrete. Wobbe et al. did not, however, report any indication that 

strengthening with epoxy increases ductility. 

1.4.2 Mechanical Anchorage 

A successful method to anchor SFRP/G would have a great impact on mitigating 

observed problems with debonding. Prota et al. (2006) conducted tests on SFRG that used nail 

anchors for additional mechanical anchorage. It was shown that the nail anchors did not 

significantly affect performance or ductility. The SFRP/G failed in bearing at the nail locations 

due to the lack of a transverse link to distribute the local stress concentration at the anchor 

location. Similarly, Pecce and Manfredi (2005) report that when nails were distributed along a 

beam retrofitted with SFRG, there was no effect on cracking phenomenon. 
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1.4.3 Use of SFRP U-wraps 

Plate end delamination (PE) is a common failure mechanism for SFRP specimens (Figeys 

et al., 2005). A study performed by Kim et al. (2005) attempted to delay PE delamination 

through the use of SFRP U-wraps. A U-wrap is a strip of SFRP bent such that it is in the shape of 

a U and bonded transversely to the exact shape of the beam, “clamping” the longitudinally 

applied SFRP. It was concluded that transverse reinforcement like the U-wrap could delay the 

PE delamination failure. A specimen with the U-wrap was able to resist 15.47 kips (68.83 kN) of 

applied force, while equivalent specimens without the retrofit were only able to resist 13.32 kips 

(59.23 kN) and 13.44 kips (59.77 kN) respectively (Figure 1.5). Kim et al. conclude that U-

wraps could also be used to reduce shear deformations that are induced by diagonal cracking. An 

example of U-wraps being used on a large scale specimen is discussed later. 

1.4.4 Geometry of SFRP Retrofit 

 This section discusses the difference in performance of different cord types of 

SFRP and differences in applying the SFRP in layers. 

1.4.4.1 Different Cord Types 

 The study performed by Casadei et al. (2005a) compared the performance of 

beams retrofitted with SFRP having different cord types. The different types used were 3X2 cord 

and 12X cord (see Figure 1.2). Hardwire LLC reports that a 3X2 cord consists of three straight 

fibers wrapped by two fibers at a high twist angle, and for the purpose of this study, was 

arranged in a high-density tape. The 12X steel cord consists of two fibers twisted together in 
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twelve strands, with one wire twisting around to form a bundle. For this study, it was considered 

a medium-density tape. Both arrangements were reported to have increased the capacity of the 

beam. The stiffening effects, however, were very different. The 3X2 retrofit significantly 

stiffened the beam. It was reported that the wider the width of the SFRP tape, the stiffer the beam 

would become. The 12X retrofit was unable to provide any significant stiffening. The authors 

report that this is due to the macrostructure of the tape. This is an example of why it is important 

to choose the right type of SFRP material. 

1.4.4.2 Applying FRP Materials in Varying Widths and Layers 

Casadei et al. (2005a) also reported on the differences of applying SFRP materials in 

layers. It was reported that a specimen retrofitted with two layers of 5.9 in. (150 mm) wide 3X2 

SFRP material exhibited the same behavior as a specimen retrofitted with only one layer having 

the same width up to the point of general yield of the specimen (Figure 1.6). While the eventual 

increase in strength was 16% in comparison to using one layer of the same width, it should be 

noted that using one layer of 11.8 in. (300 mm) SFRP material increased strength (over the two 

layers at 5.9 in.) by 40% and stiffened the beam significantly more (Figure 1.6). This observation 

is generally consistent with FRP applications where single wide layers are more efficient than 

multiple less-wide layers. 

The same study also investigated 12X SFRG materials in layers. When one layer was 

used, it was reported that the 12X tape provided no significant stiffening effect to the beam 

regardless of the adhesive system used (epoxy or grout). It was reported that adding a second 

layer did stiffen the beam in comparison to using one layer. The authors concluded, however, 

that the 12X tape was ineffective at reducing crack widths and stiffening the flexural element.  
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It was reported by Pecce et al. (2006) that crack widths became smaller when the width 

of the SFRP/G was increased. Using multiple layers was less effective at decreasing the crack 

widths. 

Wobbe et al. (2004) reported that SFRP materials could be installed in multiple layers to 

improve ultimate strength. The beams in their study showed that using two layers of SFRP 

increased strength 17% in comparison to using one layer. It appears as though the flexural 

stiffness of the member was increased slightly, but the authors make no conclusions on this 

topic. 

In four point bending tests performed by Figeys et al. (2005), a different result was seen. 

This is due to the failure mechanism of plate end (PE) debonding, or delamination (Figure 1.7). 

The span of each of the beams in this study was 59.1 in. (1500 mm). The SFRP was cut such that 

there would be either 3.9 in. (100 mm) or 9.8 in. (250 mm) of unbonded length adjacent each 

support. For a specimen retrofitted with one layer of SFRP material, Figeys et al. predicted that 

delamination would occur at 17.3 kips (77 kN). The actual failure loads were 18.0 kips (80 kN) 

and 20.2 kips (90 kN), both in PE delamination. When a second layer of SFRP was added, the 

prediction was that delamination would occur at 16.2 kips (72 kN). The test results confirmed 

this trend, as the actual failure load at delamination was 16.9 kips (75 kN). This shows the 

importance of considering all potential failure mechanisms when using SFRP as a retrofit. The 

actual bending capacity of the specimen was predicted to increase as more layers of SFRP were 

added. However, adding more material causes the stress concentrations at the end of the external 

reinforcement to increase. As a result, the PE failure mechanism occurs at a lower load (Figeys et 

al., 2005). 
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1.4.5 SFRP vs. CFRP 

Casadei et al. (2005a) compared the use of SFRP to CFRP as a retrofit measure for 

concrete beams. They conclude that CFRP was more effective than SFRP in terms of ultimate 

strength. Due to its inherent ductility, however, SFRP performed better than CFRP in terms of 

achieving a higher ultimate deflection. It should be noted that the axial stiffnesses of the SFRP 

and CFRP retrofit measures were not equivalent in this study. Pecce et al. (2006) report that 

when the reinforcement percentage is the same and epoxy is used as the bonding agent, steel 

cords and carbon fibers give very similar results. 

Direct shear tests performed by Figeys et al. (2005) revealed more comparisons between 

SFRP and CFRP. SFRP was bonded to concrete prisms, and direct shear tests were performed. 

Failure was always in the concrete. The conclusion was that elements bonded with SFRP seemed 

to be stronger and stiffer when compared to similar elements strengthened with CFRP. 

1.4.6 Field Applications of SFRP 

The following examples illustrate efforts made to validate the use of SFRP on large scale 

applications. 

1.4.6.1 SFRP Use on Double-Tee Prestressed Concrete Beams 

A study performed by Casadei et al. (2005b) investigates the use of SFRP materials as a 

retrofit measure for precast prestressed concrete double-tee beams. The beams were from a 

decommissioned parking garage in Bloomington, Indiana. A total of three beams were tested. 

Beam DT-C was the control beam, Beam DT-1 was a beam strengthened with one ply of SFRP, 
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and Beam DT-2U was strengthened with two plies of SFRP, which were then anchored at each 

end with U-wraps of SFRP. In this case, the U-wrap was actually two overlapping L-shaped 

wraps applied from opposing sides. The epoxy resin used for all applications in this study was 

SikaDur 330. The plies were of a medium density SFRP. 

Beam DT-C failed due to the lower reinforcing strand rupturing. The capacity of Beam 

DT-1 was 12% higher than that of Beam DT-C (Figure 1.8). The failure mechanism of Beam 

DT-1 was debonding of the SFRP that started at mid-span and progressed towards the supports, 

until complete detachment occurred (FIC or SIC). The capacity of Beam DT-U2 was 26% higher 

than that of Beam DT-C. The failure mechanism was the lower reinforcing strand rupturing, 

followed by SFRP rupturing at the location of the U-wraps. 

From the tests, Casadei et al. were able to conclude that SFRP is effective as a retrofit to 

improve flexural capacity of large scale double-tee prestressed concrete beams. Due to concrete 

still being attached to the SFRP laminate after debonding, it was concluded that the epoxy resin 

SikaDur 330 was capable of creating an adequate bond. The authors observed that the U-wraps 

were effective in preventing complete detachment of the SFRP. However, there was no beam 

tested with two plies of SFRP without any U-wraps, so it was not concluded that they achieved a 

higher flexural capacity. The authors also confirmed that SFRP is easy to install in the field. 

1.4.6.2 SFRP Use on Reinforced Concrete Bridge 

A project still being investigated by Lopez and Nanni (2005) involves the use of SFRP 

materials to strengthen one span of a three span bridge in Dallas County, MO. The span is 42.3 

feet (12.9 m) and the deck width is 23.6 ft (7.2 m). SFRP was placed on the soffit of both the 

girders and the deck to provide flexural reinforcement. SFRP was also applied in U-wraps for 

shear reinforcement on the girders. 
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The authors report that in-situ load tests reveal that the retrofit resulted in a marginal 

decrease in deflection (Figure 1.9). Therefore, the retrofitted system was slightly stiffer than the 

original structure. It was recommended that the load posting for the bridge could be removed, 

although it remains at this time. The authors are committed to continue to perform load tests on 

the bridge for another five years to study any degradation of performance. The results will also 

be used to calibrate design factors. This study shows the importance of field verification for the 

use of SFRP materials. 

1.4.6.3 SFRP Use in Restoration of Historic Theatre 

SFRP has been used in rehabilitation efforts at the Hippodrome Theatre in Baltimore. 

Gallagher (2005) points out that while work on the theatre was originally aesthetic in nature, it 

became apparent that concrete in the balcony had become badly deteriorated. The risers needed 

protection from cracking due to movement under loading. SFRP was placed in L-wraps on the 

risers to address the problem. Gallagher claims that it is the first commercial use of SFRP. It is 

evidence that SFRP can be an economical and successful alternative to typical rehabilitation 

efforts. 

1.4.7 SFRP Use in Blast Resistant Design 

SFRP materials show promise in protecting structural elements from blast loads. A study 

conducted by Lu et al. (2006) uses a displacement based design (DBD) methodology to test the 

blast-resistant capacity of reinforced concrete slabs (Figure 1.10). Performance of a control slab 

exposed to a blast load was compared to the performance of retrofitted slabs. The authors 

concluded that slabs should be retrofitted on both sides to protect sufficiently against realistic 
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blast loads. It was observed that slabs retrofitted on only one side were severely damaged, due 

largely to the effects of negative pressure following the initial positive pressure of the blast. It 

was also concluded that while retrofitting on both sides can resist appropriate threat levels, the 

shear capacity of the slab which was largely unaffected by the retrofit measures proved to be a 

weak link. 

According to Hardwire (2002), SFRP can also be used with wood products to protect 

against impact loading such as that from projectiles in a hurricane or tornado. The U.S. military 

has interest in using SFRP to armor vehicles and buildings against blasts and small arms fire. 

Hardwire claims that SFRP is an economical alternative to standard ballistic armor having equal 

performance. 

1.4.8 Conclusions from Reeve (2005) 

Reeve (2005) tested a number of beams that serves as companion specimens to the 

present work. The following are conclusions that were drawn from the work of Reeve. 

The concrete beams tested by Reeve are identical to the beams in the present work. The 

beams were retrofitted with different widths and geometries of CFRP. Each width and geometry 

was bonded with a high modulus and a low modulus adhesive. All tests were monotonic to 

failure. The unretrofit monotonic control specimen for the present work was also tested by 

Reeve. 

Reeve observed that general yield and maximum loads increase as the retrofit material 

area was increased. The rate of increased capacity, however, decreased as more retrofit material 

was used. It was observed that deflection capacity decreased as wider strips, and therefore more 

area of retrofit material, were used. 
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Reeve considered two cases where 2 in. (51 mm) of CFRP material was used. In one 

case, one strip of the full 2 in. (50.8 mm) width was used. In the other case, two strips of 1 in. 

(25.4 mm) each, separated by a 2 in. (51 mm) gap were used. The conclusion was that multiple 

thinner strips are preferable to fewer wider strips due to the observation that they resulted in a 

high load capacity as well as greater deflection capacity. These specimens, having 2 in. wide 

CFRP retrofits, are the ones that will serve as the companion specimens to those reported in this 

thesis. 

It was concluded that specimens with the low modulus adhesive had higher general yield 

and maximum loads. The deflections at general yield and at maximum load were also observed 

to be higher. The modulus of the adhesive used in the present work falls between that of the low 

and high modulus adhesives considered by Reeve, which themselves only varied by a factor of 

two. 

Reeve concluded that the ACI equation intended to mitigate debonding failure by limiting 

allowable strain in the FRP material (ACI 2002) is generally non-conservative. The strains were 

overestimated by a factor of two for the high modulus adhesive and somewhat less so for the low 

modulus adhesive. Reeve recommends that the best model to predict FIC/SIC debonding is that 

proposed by Teng et al. (2004). This model was appropriately conservative for the low modulus 

adhesive, but was still slightly non-conservative for the high modulus adhesive. Reeve 

recommends that the nature of the adhesive should be included in the calculations for limiting 

strain. 

Reeve was able to effectively mitigate end peel debonding by extending the CFRP to just 

short of the supports. The present work also extended the SFRP to just short of the supports. Key 

results from the specimens tested by Reeve are provided in Table A1 of Appendix A. 
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1.4.9 Conclusions from Zorn (2006) 

Zorn (2006) tested specimens that were identical to those tested by Reeve (2005). The 

retrofit schemes were also identical, using the same CFRP geometries and two adhesives. Zorn, 

however, tested specimens to fatigue failure, or 2,000,000 cycles, whichever came first. If the 

full 2,000,000 cycles were reached, a monotonic run-out test to failure was performed. 

It was concluded that stress range drift should be considered when designing a bonded 

retrofit that will perform in fatigue conditions. Stress ranges were seen to increase from 4% to 

16% from the second fatigue cycle to the final fatigue cycle (defined by failure or 2 million 

cycles). 

The secant stiffness of the beams generally degraded at a rate proportional to the fatigue 

life of the specimen. Degradation was essentially the same for all retrofit schemes and adhesive 

types. Zorn concluded that sound bond was maintained during fatigue cycling for all specimens. 

As the amount of CFRP increased, the stress range of the internal reinforcing bars 

decreased. This reduction in stress range resulted in an increase in fatigue life. It is concluded 

that the data from the fatigue tests fits within the expected scatter of fatigue data, as well as 

within the existing bonded retrofit database compiled by Zorn. 

Contrary to intuition, Zorn discovered that the performance of the lower modulus 

adhesive degraded at a greater rate than that of the higher modulus adhesive. Additionally, 

fatigue cycling of the low modulus adhesive had detrimental effects on the debonding strains. 

Debonding strains in the low modulus adhesive run-out specimens were much lower than their 

companion monotonic specimens reported by Reeve (2005). This degradation was not observed 

for the high modulus specimens. Zorn concludes that the adhesive type should be included in 

calculating the expected debonding strain under fatigue conditions.  
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The fatigue conditioned run-out specimens tested by Zorn displayed only marginal 

effects on parameters such as ductility, ultimate capacity, maximum deflection, and general yield 

in comparison to their monotonic companion specimens. Key results from the fatigue and 

monotonic run-out specimens tested by Zorn are provided in Tables A2 and A3 of Appendix A, 

respectively. 
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Figure 1.1 Example of fatigue conditioning deterioration of CFRP  
(Harries and Aidoo, 2005). 

 

 

Figure 1.2 Different arrangements of the steel wires. 
Top left shows 3x2 cord type, top right shows 12X cord type, and bottom shows 3SX cord type. 

(Hardwire, 2002) 
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 (a) Sheet of SFRP (b) Polyester scrim on back of SFRP 

Figure 1.3 SFRP sheets. 

 

Figure 1.4 Epoxy vs. grout, nail anchorage, and multiple layers.  
(Casadei et al, 2005a) 
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Figure 1.5 Load vs. deflection comparison for U-wrap specimen. 
(Kim et al. 2005) 

 

 

Figure 1.6 Differences in changing SFRP width vs. adding SFRP layer. 
(Casadei et al., 2005a) 
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Figure 1.7 Example of end peel debonding  
(Figeys et al., 2005). 

 

 

Figure 1.8 Use of SFRP on double T prestressed beams.  
(Casadei et al., 2005b) 
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Figure 1.9 Typical bridge span stiffening with use of SFRP. 
(Lopez and Nanni, 2005) 

 

 

Figure 1.10 Results of retrofitted slabs after blast.  
Top picture shows slab retrofitted on one side, bottom two pictures show slab retrofitted on both sides. 

 (Lu et al., 2006). 
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2.0  EXPERIMENTAL PROGRAM 

This chapter reports the details of the experimental program. Test setup and 

instrumentation details are also presented in Reeve (2005) and Zorn (2006) and repeated here for 

completeness and clarity. 

2.1 REINFORCED CONCRETE BEAM TEST SPECIMENS 

Twenty-four identical reinforced concrete beams were cast. Beams had a height of 10 in. 

(254 mm), a width of 6 in. (152 mm), and an overall length of 186 in. (4730 mm). The concrete 

had a measured 28-day compressive strength, fc’, equal to 3384 psi (23.3 MPa). Maximum 

coarse aggregate size was 1.5 in. (37 mm). Three #4 reinforcing bars were used as the primary 

longitudinal flexural reinforcement. This resulted in a reinforcing ratio of 1.0%. Two #3 bars 

were provided in the compression zone of the beam. The compression bars were necessary to 

ensure that the beams would not crack under their self weight when they were inverted for the 

application of the retrofit materials. The #4 bars had a measured yield strength of 62.2 ksi (429 

MPa) and a tensile strength of 96.8 ksi (667 MPa). Concrete and reinforcing steel material 

properties are reported in Table 2.1. Details of the concrete beam specimens are shown in Figure 

2.1. 
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Of the twenty-four beams, sixteen were retrofitted with carbon fiber reinforced polymer 

(CFRP) composite strips. Eight of those sixteen were tested monotonically to failure (as reported 

by Reeve, 2005). The other eight were tested under fatigue loading to failure or 2 million cycles 

(as reported by Zorn, 2006). The beams that remained intact after 2 million cycles of fatigue 

loading were referred to as “fatigue-conditioned” specimens and subsequently loaded 

monotonically to failure (Zorn, 2006). An additional two beams were used as unretrofitted 

control specimens, one tested monotonically (Reeve, 2005) and one tested in fatigue (Zorn, 

2006). Finally, four of the beams were retrofitted with steel fiber reinforced polymer (SFRP) 

strips; these are the focus of this thesis. 

All beams were allowed to cure in their forms for seven days before being stripped and 

stored in ambient laboratory conditions. The beams were allowed to cure in ambient conditions 

for more than 56 days before they were inverted for retrofit applications.  

2.2 RETROFIT MEASURES 

The four SFRP specimens had an identical retrofit measure. This can be seen in Figure 

2.2. The 3x2-23-12 SFRP retrofit material used was supplied by Hardwire LLC. The SFRP 

designation indicates that each strip is made of cords comprised of five individual wire fibers. 

Three of the fibers are straight, while two are wrapped around the three at a high twist angle. The 

fibers making up each cord were of high carbon steel with a micro-fine brass or AO-brass 

(Adhesion Optimized) coating (Hardwire, 2002). The strip used is comprised of 23 such cords 

per inch width (9 cords per cm width). Table 2.2 provides geometric and material properties of 
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the SFRP. Figure 2.3 shows a photograph of an individual cord and the entire 12 in. (305 mm) 

wide SFRP strip.  

The strip width of 4.75 in. (121 mm) was selected such that the axial stiffness of the 

resulting retrofit was essentially equivalent to comparable CFRP retrofits tested previously by 

Reeve (2005) and Zorn (2006). That is: 

SFRP

SFRPSFRPSFRPCFRPCFRPCFRP
binksiininksi

btEbtE
)048.0)(10952()0.2)(055.0)(22500( =

=
   (2.1) 

As shown in Table 2.2, the axial stiffness, EA, of 2 in. (51 mm) wide CFRP is 2475 kips  

(11009 kN) while that of 4.75 in. (121 mm) of SFRP is 2497 kips (11107 kN). 

Fox Industries epoxy adhesive FX-776 was used to bond the SFRP as recommended by 

Hardwire LLC. The manufacturer-reported material properties of the adhesive system is given in 

Table 2.3. 

The specimens prepared for this study were compared with equivalent specimens having 

CFRP retrofits tested previously by Reeve (2005) and Zorn (2006). The CFRP retrofit material 

used in these companion studies studies was Fyfe UC strips. Two adhesive systems were used in 

the companion work: Sikadur 23 (designated “L”) and Sikadur 30 (“H”). Manufacturer-reported 

material properties for the CFRP and adhesive systems are provided in Tables 2.2 and 2.3, 

respectively. Two comparable CFRP strip arrangements are considered: a single 2 in. (51 mm) 

wide strip located in the middle of the beam soffit (H2 and L2 specimens) and 2 – 1 in. (25 mm) 

wide strips having 2 in. (51 mm) clear space between them centered on the beam soffit (L2x1 

and H2x1 specimens). Each configuration was prepared using both the Sikadur 23 (L) and 

Sikadur 30 (H) adhesives. The arrangement of retrofit strips for all concrete specimens is shown 

in Figure 2.2. 
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2.3 APPLICATION OF SFRP TO THE TEST SPECIMENS 

The retrofitting process was not begun on any of the beams until the substrate concrete 

was at least 56 days old. This allowed the concrete to cure long enough to be able to be handled 

and inverted, as well as to dry out the surface region of the concrete where the retrofit material 

was to be applied. The strips were applied to the tension face (soffit) of all the beam specimens 

with the exception to the control specimens. Four beams were retrofitted with SFRP, while 

sixteen were retrofitted with CFRP. Only those beams with configurations discussed in Section 

2.2 and shown in Figure 2.2 are discussed in this thesis. 

2.3.1 Concrete Surface Preparation 

The surface of the concrete to which the SFRP or CFRP is applied had to be prepared 

before any retrofit measures could begin. The beams were inverted so the soffit was facing 

upwards. The surface was prepared with an angle grinder that had a wire wheel attachment to 

remove all laitance and dirt from the soffit. Compressed air was used to remove concrete dust 

and dirt that had settled on the beam. This ensured that a sound bond would form between the 

concrete surface and the retrofit material. The final beam surface resembled ICRI Concrete 

Surface Profile 3 (ICRI, 1997). 

2.3.2 Preparation of the Retrofit Material 

The SFRP was precut into strips 172 in. (4369 mm) long and 4.75 in. (121 mm) widths. 

The lengths were such that they would extend to just short of the supports during testing. Cutting 
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the high strength SFRP is difficult; recommended shear types can be found at 

www.hardwirellc.com. The SFRP strips were stored such that they were protected from dust, 

dirt, and moisture. The CFRP specimens were cut to length using aviation shears and cut 

longitudinally with a straight razor as needed. The CFRP was stored such that it was protected 

from dust, dirt, and mechanical damage (Zorn, 2006). 

2.3.3 Application of the Retrofit Material 

With the beam inverted and the concrete surface prepared, the retrofit process could 

begin. The four beams retrofitted with SFRP used FX-776 epoxy. The two-part epoxy was mixed 

according to the manufacturer’s specification: 4 parts resin to 1 part hardener by weight. The 

epoxy was applied within the specified pot life of the epoxy system. Plastic spatulas and paint 

rollers were used to apply a layer of epoxy on the soffit of the beam. Once the entire surface had 

a layer of epoxy, an SFRP strip was laid down on top and centered on the width of the beam. 

Pressure was applied to the strips using fingertips and blocks of wood to remove any voids and 

allow the epoxy to seep through the porous mesh of steel cords. Once the strip was pressed down 

and impregnated sufficiently, a final layer of epoxy was applied to the top.  

It is noted that the SFRP has a glass fiber mesh on one side. This is intended to serve as a 

medium of keeping the epoxy from dripping in overhead applications. Contrary to the Hardwire 

recommendations, the SFRP was inadvertently installed with this mesh facing the concrete. 

Discussions with Hardwire revealed that the orientation of the mesh does not affect the behavior 

of the system. Indeed, it is proposed that by installing the mesh in the adhesive line, a more 

uniform adhesive thickness may be obtained as the mesh serves as a uniform spacer. A detailed 

description of the CFRP application can be found in Reeve (2005) and Zorn (2006). 
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2.4 SPECIMEN DESIGNATION 

The four test specimens retrofitted with SFRP were designated as follows: 

  PQR 

Where P indicates the retrofit measure used: 

  S = SFRP retrofit with FX-776 epoxy as described above 

Where Q stands for the applied load range: 

  4.00 = 4 kip (17.79 kN) fatigue load range 

  4.75 = 4.75 kip (21.13 kN) fatigue load range 

  5.5 = 5.5 kip (24.47 kN) fatigue load range 

  C = SFRP monotonically tested control specimen 

And R indicates the loading type: 

  Blank = Monotonic loading 

  F = Fatigue loading as described in Section 2.7 

Thus, for example, the S4F specimen indicates that the beam was retrofitted with SFRP 

using the FX-776 epoxy and was tested under fatigue loading having a 4 kip load range. 

 The designation for the CFRP specimens discussed in this work (tested by Reeve 

(2005) and Zorn (2006)) are as follows: 

  XYZ 

Where X stands for the epoxy system: 

 C = Unretrofit control beam 

 H = High-modulus epoxy (Sikadur 30) 

 L = Low-modulus epoxy (Sikadur 23) 

Where Y stands for the CFRP strip width and configuration: 
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 2 = 2 in. (51 mm) wide strip 

 2x1 = two 1 in. (25 mm) wide strips 

And Z indicates loading type: 

 Blank = Monotonic loading (tested by Reeve 2005) 

 F = Fatigue loading (tested by Zorn 2006) 

For example, the H2x1F specimen is a beam with two 1 in. strips adhered to the soffit of 

the beam using the high modulus adhesive (Sikadur 30) and tested under fatigue loading. It is 

noted that all fatigue loading cycles for the CFRP specimens ranged from 1 kip (4.45 kN) to 5 

kips (22.24 kN) resulting in a 4 kip (17.79 kN) range. 

2.5 TEST SETUP 

All beams were tested under mid-point bending. One SFRP specimen was tested under 

monotonically increasing load to failure, while the remaining three were tested under various 

fatigue loading conditions. An MTS hydraulic actuator with a capacity of 50 kips (222 kN) and a 

stroke of 4 in. (102 mm) was used to apply the load. The beams were supported over a clear span 

of 178.25 in. (4527 mm). At the supports, the beams rested on 3 x 6 x ½ in. (76 x 152 x 13 mm) 

neoprene pads having a durometer hardness of 65-75. The neoprene pads rested on top of 3/8 in. 

(9 mm) thick steel plates which subsequently rested on steel rollers resulting in simply supported 

reaction conditions. A similar neoprene pad was used at mid-span, where the load was applied. 

The neoprene pad was necessary to minimize local crushing of the concrete, as significant 

damage could result from a steel-to-concrete interface during cyclic loading. The test set-up is 

shown in Figure 2.4. 
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2.6 INSTRUMENTATION 

The beams had slightly different instrumentation depending on the type of loading. Each 

of the four beams were instrumented with four electrical resistance strain gages located on the 

middle #4 reinforcing bar. The gages were spaced at 12 in. (305 mm) center-to-center and were 

centered on mid-span. Therefore, two gages were 18 in. (457 mm) from mid-span, and two were 

6 in. (152 mm) away, one in each direction (Figure 2.5). The mid-span vertical deflection was 

measured with a draw wire transducer as shown in Figure 2.5. 

All specimens had electrical resistance strain gages on the external surface of the SFRP 

strips. The fatigue specimens had an additional four gages located in locations coincident with 

the gages on the internal #4 reinforcing bar. The monotonic specimen SC had a total of eight 

gages placed on the SFRP. Six were placed at a distance of 18 in. (457 mm) from mid-span, 

three on each side. The remaining two were placed at a distance of 6 in. (152 mm) away from 

mid-span, one on each side as shown in Figure 2.5. In this manner, the gage locations 

corresponded to the gages placed on the internal reinforcing bar. The locations with three strain 

gages transversely across the SFRP allowed investigation of the distribution of strain 

transversely across the SFRP width. 

The MTS hydraulic actuator was equipped with a 50 kip (222 kN) load cell. All 

instruments were connected to a Vishay System 5100 data acquisition system. The controller was 

an MTS FlexTest SE hydraulic servo-controller. Data was recorded at 2 samples per second for 

all monotonic tests and 50 samples per second for all recorded cycles of the fatigue tests. 

Essentially identical instrumentation schemes were used for the companion CFRP-retrofit 

specimens as described by Reeve (2005) and Zorn (2006) 
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2.7 TEST PROCEDURE 

All beams were tested in mid-point bending. They were simply supported over a 178.25 

in. (4527 mm) span. Of the four SFRP-retrofit beams, one specimen (SC) was tested under 

monotonically increasing load to failure. All monotonic tests (SC and those reported by Reeve 

(2005): C, L2, H2, L2x1 and H2x1) were performed under displacement control at a constant 

rate of 0.13 in./minute (3.4 mm/min).  

The remaining three SFRP-retrofit beams were tested under a cyclic loading condition to 

failure or two million cycles at a frequency not exceeding 1.7 Hz. All cyclic tests were conducted 

in load control. The three fatigue tests each had a unique stress range. Specimen S4F had an 

applied mid-span load that cycled from 1 kip (4.45 kN) to 5 kips (22.24 kN) in a sinusoidal wave 

form. Specimen S4.75F had an applied mid-span load cycled from 1 kip (4.45 kN) to 5.75 kips 

(25.58 kN). Specimen S5.5F had an applied mid-span load cycled from 1 kip (4.45 kN) to 6.5 

kips (28.91 kN). All CFRP-retrofit specimens reported (those reported by Zorn (2006): CF, L2F, 

H2F, L2x1F and H2x1F) were tested in a similar manner although the load was cycled from 1 

kip (4.45 kN) to 5 kips (22.24 kN) in all cases. Testing proceeded twenty-four hours a day, seven 

days a week, to ensure that tests would be completed in a reasonable amount of time. This also 

did not allow the beam to exhibit any damage recovery between cycling periods. The frequency 

was slowed to 1.2 Hz during cycles in which data was recorded (see below) to ensure that the 

quality of the data would remain high. 

The upper limit of the frequency was determined by quality of the sustained control of 

the loading. For Specimen S4F, the test could be run at 1.7 Hz and still accurately load the beam 

from 1 to 5 kips. For Specimens S4.75F and S5.5F, the frequency was reduced to 1.5 Hz. It was 

observed that higher frequencies would not accurately maintain the load at the required peaks 
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and valleys due to the greater absolute deflection required for each cycle. The upper limit for the 

frequency was only used when data was not being taken. Specimen S5.5F was unique in that the 

test needed to be slowed down at night to ensure that it would not cycle too often before the next 

data scan. It was run at a frequency of 0.5 Hz during the night to ensure that data could be taken 

at an appropriate interval the next morning. 

Due to the fact that each of the fatigue specimens was expected to have a different fatigue 

life, the interval at which data was recorded was different for each test. For Specimen S4F, the 

target was to take data at intervals not exceeding 100,000 cycles. For Specimens S4.75F and 

S5.5F, due to the expected reduced fatigue life, this target was similarly reduced to 50,000 and 

25,000 cycles respectively. Table 2.4 provides the actual cycle numbers (N) at which data was 

recorded for each specimen, including the companion CFRP specimens tested by Zorn (2006). 

The unretrofit control specimen CF was unintentionally loaded to failure at cycle 329,324 cycles 

due to an equipment malfunction. 

2.7.1 Selection of Fatigue Load Levels 

The fatigue loading scheme used was selected based on the measured reinforcing bar 

strains from the original monotonic control Specimen C reported by Reeve (2005) as well as 

from Specimen SC. The target reinforcing bar strain range for the study conducted by Zorn 

(2006) was 1200 με. This equates to a target stress range (S) of 34.8 ksi (240 MPa) in the 

reinforcing steel. The lower limit was chosen to be 1 kip (4.45 kN) to represent a constant dead 

load on the beam. After analyzing the data from Specimen C, it was determined that an upper 

limit of 5 kips (22.24 kN) was necessary to achieve the desired strain range. This stress range 

was chosen so that for the unretrofit control specimen, the fatigue life would be between N = 
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100,000 and N = 1,000,000. Specimen S4F used this same stress range so it may be directly 

compared to the specimens tested by Zorn (2006). Additionally, it was predicted that S4F would 

reach N = 2,000,000 cycles, and allow a run-out test to be performed to assess the effects of 

fatigue conditioning as described in Section 2.7.2. 

Using data from Specimen SC, as well as representative S-N relationships, stress ranges 

were chosen for the other two fatigue specimens. The target fatigue life for Specimen S4.75F 

was N = 1,000,000. This resulted in a target strain range of 1410 με, or a stress range of 40.9 ksi 

(282 MPa). The upper applied load was found to be 5.75 kips (25.58 kN) to achieve this stress 

range. The target fatigue life for Specimen S5.5F was N = 500,000. This resulted in target strain 

range of 1664 με, or a stress range of 48.2 ksi (333 MPa). The upper applied load was found to 

be 6.5 kips (28.91 kN) for Specimen S5.5F. The equations used as guidance in estimating the 

fatigue life of each specimen were those proposed by Mallet (1991), Tilly and Moss (1982), 

CEB/FIB (1990) and Helgason and Hanson (1974). The target and actual fatigue life of all of the 

SFRP specimens and selected specimens from Zorn (2006) are shown in Table 2.5. 

2.7.2 Fatigue Run-out Specimens 

Specimen S4F did not exhibit a fatigue-induced reinforcing bar rupture (FIRR) or other 

failure after two million cycles of fatigue loading. The fatigue loading was then stopped and the 

beam was subsequently loaded monotonically to failure. The procedure for the monotonic test is 

the same as that described for Specimen SC. Specimen S4F is thus classified as a fatigue-

conditioned specimen, and is comparable to the monotonic tests performed by Reeve (2005) and 

the fatigue-conditioned specimens reported by Zorn (2006). 
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2.8 SUMMARY OF COMPARABLE TESTS 

The SFRP tests reported here are comparable in a variety of ways to those reported by 

Reeve (2005) and Zorn (2006). As described in Section 2.2, the SFRP details were selected to 

result in essentially similar values of retrofit axial stiffness as described in Equation 2.1. Table 

2.6 provides a matrix of these comparables. 

All of the specimens listed in Table 2.6 have the same axial stiffness (Efrptfrpbfrp) 

regardless of retrofit scheme. Therefore, Table 2.6 displays which specimens underwent 

comparable testing procedures. 
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Table 2.1 Measured concrete and reinforcing steel material properties. 

Specimen 
28 Day 

Concrete 
Strength 

Age at Time 
of Beam 

Test 
Reinforcing Steel 

 psi (MPa) days ksi (MPa) 
CF 175 
S4F 312 
SC 327 

S5.5F 333 
S4.75F 

fc' = 3384 
(23.3) 

341 

E = 30000 (206842) 
fy = 62.2 (429) 
fu = 96.8 (667) 

 

Table 2.2 Manufacturer reported material properties of CFRP and SFRP. 

Property 
ASTM 

test 
method 

SFRP Strip CFRP Strip 

 cord architecture   3 straight surrounded 
by two twisted   

cord diameter, in. (mm)   0.035 (0.89)   
cord area, in2 (mm2)   0.00096 (0.62)   
cords per inch width (per cm width)   23 (9)   
tensile strength, ksi (MPa) D3039 164 (1132) 405 (2792) 
tensile modulus (E), ksi (MPa) D3039 10952 (75512) 22500 (155138) 
elongation at rupture D3039 0.014 0.018 
perpendicular strength, psi (MPa) D3039 not reported negligible 
strip thickness (t), in. (mm)   0.048 (1.2) 0.055 (1.4) 
strip width used in this study (b), in. (mm)   4.75 (121) 2 (51) 
axial stiffness (EA = Etb), kips (kN)   2497 (11107) 2475 (11009) 

 

Table 2.3 Manufacturer reported material properties of adhesive systems used. 

Property ASTM test 
method FX-776 Sikadur 23 Sikadur 30 

tensile strength, ksi (MPa) D638 4.5 (32) 2.0 (14) 3.6 (25) 
tensile modulus, ksi (MPa) D638 not reported 323 (2227) 650 (4482) 
elongation at rupture D638 0.025 0.063 0.01 
modulus or rupture, ksi (MPa) D790 not reported 4.8 (33) 6.8 (47) 
tangent modulus of elasticity, ksi (MPa) D790 575 (3964) 471 (3247) 1700 (11721) 
shear strength, ksi (MPa) D732 not reported 3.0 (21) 3.6 (25) 
bond strength, ksi (MPa) C882 not reported 2.6 (18) 3.2 (22) 
compressive strength, ksi (MPa) D695 not reported 5.2 (36) 8.6 (59) 
compressive modulus, ksi (MPa) D695 not reported 128 (883) 390 (2689) 
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Table 2.4 Cycle numbers (N) at which data was recorded. 

 

CF1 S4F S4.75F S5.5F L2F1 L2x1F1 H2F1 H2x1F1

1 1 1 1 1 1 1 1 

4 2-100 2-100 2-100 28 42 60 33 

41 105 101 138 30 68 208 201 

53 244 230 207 100 200 500 506 

80 505 525 501 203 514 1000 1003 

203 1006 1006 1005 503 1000 2002 2002 

503 5301 2001 2406 1000 2000 5002 5000 

1003 14002 3059 4222 2002 5002 10000 12345 

2004 18011 5016 5522 5000 20006 17536 22263 

5004 24003 8333 10817 9005 49921 48309 41728 

10003 31113 11756 13720 26175 93754 76518 74672 

23000 40805 15817 18604 53644 129884 105945 105084 

25003 50011 18652 24861 97371 186508 127367 134019 

50001 133118 22469 29423 139081 243456 174010 180804 

80630 152010 26318 53876 171802 286524 193373 221546 

100003 185409 37301 71800 198997 333084 244356 263148 

118835 207001 62465 82151 252293 387071 288365 330456 

150008 276506 82712 102700 306074 447695 309744 383080 

163210 316516 128309 112051 339047 472642 332931 408711 

175016 364889 137003 135612 394505 478203 363267 457917 

200003 438905 169000 152003 448168   384397 491206 

232341 506736 213413 175119 516204   456885 543094 

250005 579033 241815 198851 548306   499343 587368 

260560 607851 268710 217952 614758   530053 634543 

263864 639702 314700 238758 649379   584658 680704 

288703 712505 355265 262401 678344   634809 727082 

288795 787622 381800 286306 718318   683506 770932 

288869 870302 427305 305882 796748   725006 795840 

319910 924451 458106 307334 850088   769108 857770 

319940 1008831 474901 308007 932773   829105 888616 

319972 1075518 493453 308650 999057   870311 921602 

320754 1158550 527271   1104642   900472 956056 

  1226701 559805   1104779   929177 1010641 

  1307004 588205   1153058   981210 1046631 

  1380035 635753   1208866   1026397 1091782 

  1454009 656654   1233708   1064437 1150133 

  1515814 689671   1270711   1128006 1195622 

  1603210 740400   1313465   1191770 1249275 

  1662206 740803   1331586   1213229 1308834 

  1718115 742511   1370787   1244102 1339340 

  1780505 743210   1428332     1395821 

 1855904 745600   1480351     1440043 

  1929408 747000   1497354     1469580 

  1999510 750556   1513597     1522985 

 2000000 753050   1551888     1582672 
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Table 2.4 (continued) 
 

CF1 S4F S4.75F S5.5F L2F1 L2x1F1 H2F1 H2x1F1

    754950   1589683     1626337 

    757500   1613127     1682752 

    761500   1644243     1737853 

    764000   1698454     1774778 

    765900   1778638     1820072 

        1838827     1882516 

        1882825     1928895 

        1924840     1965616 

        2000000     1966273 

              1998684 

              2000000 
1Tests performed by Zorn (2006) 

 

Table 2.5 Stress range (S) and cycles to failure (N) observations and predictions. 

 
Target Fatigue Life 

(cycles) 
   

Initial ε 
range (με) Initial S (ksi) Observed 

N 

Target for CF <1,000,000 1200 34.8 NA 
CF1 <1,000,000 1203 34.9 >3293242

S4F >2,000,000 1195 34.7 2000000 
S4.75F 1,000,000 1410 40.9 689671 
S5.5F 500,000 1664 48.3 286306 
L2F1   1035 30.0 2000000 

L2x1F1   1036 30.0 447695 
H2F1   996 28.9 1128006 

H2x1F1   1101 31.9 2000000 
1Tests performed by Zorn (2006)    
2Specimen CF loaded to failure due to an equipment malfunction   

 

Table 2.6 Matrix of comparable specimens. 

 
Comparable Control specimen SFRP specimen(s) CFRP specimen(s) 

Monotonic loading C SC H2, L2, H2x1, L2x1 
Fatigue loading CF S4F H2F, L2F, H2x1F, L2x1F 

Fatigue-conditioning  S4F L2F, H2x1F 
Fatigue loading of SFRP S4F S4.75F and S5.5F  
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Figure 2.1 Test specimen details. 

 

Figure 2.2 Retrofit details. 
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Figure 2.3 SFRP sheet and cord. 
(Hardwire, 2002) 

 

 

Figure 2.4 Test set-up. 
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Figure 2.5 Instrumentation for specimens. 
(Specimen SC on bottom) 
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3.0  TEST RESULTS AND TYPICAL SPECIMEN BEHAVIOR 

This chapter reports the results of the test program and provides a discussion of the 

behavior of each test specimen. 

3.1 TEST RESULTS 

Figures 3.1 to 3.4 show the applied load versus midspan displacement for each SFRP 

Specimen plotted with the unretrofitted control specimen, Specimen C (reported by Reeve 

(2005)). The retrofit SFRP control, Specimen SC, is also repeated in each of these figures for 

comparison. For those specimens that underwent fatigue cycling, only intermittent fatigue cycles 

are shown as indicated in each Figure. For Specimen S4F, the final monotonic load cycle to 

failure is also shown. Figure 3.5 shows the damage accumulation, measured as the midspan 

deflection versus cycle number, of each test specimen. Figures 3.6 to 3.8 show the measured 

reinforcing bar and SFRP strains versus cycle number damage accumulation. In these figures, 

strains at each location are offset vertically by multiples of 2000 microstrain for clarity. Figure 

3.9 shows the applied load versus reinforcing bar and SFRP strain for the retrofit control, 

Specimen SC. Figures 3.9(b) and 3.9(c) show the longitudinal strains measured across the width 

of the SFRP, at locations 18 in. (450 mm) to the north and south of midspan, respectively. Figure 

3.10 shows the applied load versus reinforcing bar and SFRP strain for the runout portion of the 
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Specimen S4F test. Figures 3.11 to 3.18 are photographs of each test specimen as described 

further below. 

A summary of key results for the fatigue specimens is presented in Table 3.1. A summary 

of the key results for the monotonic test, as well as the S4F monotonic runout test, are presented 

in Table 3.2. These tables also show data from companion CFRP-retrofit specimens reported by 

Reeve (2005) and Zorn (2006) as described in Section 2.1. 

The following are descriptions for the data reported in Table 3.1. 

bf: width of S/CFRP strip 

b: width of concrete substrate, equal to 6 inches (152 mm) in all cases. 

age: age, in days, of the test specimen at time of testing with respect to date of cast. 

cracking load: applied load at midspan at initiation of concrete cracking, determined by 

analyzing the time history of the reinforcing bar strains for each specimen. 

The following parameters are reported for both N = 2 and N = Nf. Cycle N = 2 was used 

as this is the first cracked cycle. Cycle N = Nf represents the last instrumented fatigue cycle and 

is defined in each case. 

minimum applied load: the minimum midspan loading applied to the test specimen 

during one fatigue cycle (target = 1 kip (4.45 kN)). 

deflection at minimum applied load: deflection at midspan at the minimum applied 

loading. 

maximum reinforcing bar strain at minimum applied load: corresponding maximum 

reinforcing bar strain in the middle reinforcing bar at the minimum applied load. 

maximum FRP strain at minimum applied loading: corresponding maximum S/CFRP 

strain at the minimum applied loading. 
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maximum applied load: the maximum midspan loading applied to the test specimen 

during one fatigue cycle (target changes depending on the specimen as described in Section 2.7). 

deflection at maximum applied load: deflection at midspan at the maximum applied 

loading. 

maximum reinforcing bar strain at maximum applied load: corresponding maximum 

reinforcing bar strain in the middle reinforcing bar at the maximum applied load. 

maximum FRP strain at maximum applied load: corresponding maximum S/CFRP 

strain at the maximum applied loading. 

range of applied load: the difference of the maximum applied load and the minimum 

applied load. 

stress range in reinforcing bar: calculated by multiplying E = 29000 ksi (200 GPa) by 

the difference of the maximum and minimum reinforcing bar strains. 

stress range in CFRP: calculated by multiplying E = 22500 ksi (155 GPa) by the 

difference of the maximum and minimum CFRP strains. 

stress range in SFRP: calculated by multiplying E = 10952 ksi (75.5 GPa) by the 

difference of the maximum and minimum SFRP strains. 

secant stiffness: apparent stiffness calculated by dividing the difference of the maximum 

and minimum applied load by the difference of the corresponding midspan deflections. 

The following parameters are reported from any time during the fatigue cycling period; 

that is: N ≤ Nf. 

maximum observed strain in FRP: the greatest strain ever observed in the S/CFRP 

during the course of fatigue cycling. The strain in the reinforcing bar at the corresponding 

location, as well as the cycle number, are also reported. 
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initiation of S/CFRP debonding: the strain at which there is apparent debonding of the 

S/CFRP. 

The following are descriptions for the data presented in Table 3.2 for the monotonic run-

out tests. 

load at initial yield of reinforcing: the applied load at midspan when the middle tensile 

reinforcing bar experiences its yield strain of 2140 microstrain (see Table 2.1). 

load at general yield: the applied load at midspan when the specimen experienced 

general yield. This is defined as a significant change of load versus deflection with visible 

nonlinearity. In this case, there is a gradual degradation of stiffness. General yield was therefore 

determined from a bilinear idealization of the load-deflection curve An illustrative example of 

this determination can be found in Chapter 3 of Reeve (2005). 

deflection at general yield: midspan deflection when the specimen experienced general 

yield. 

strain in S/CFRP at general yield: maximum strain in S/CFRP at time of general yield. 

maximum load: maximum load experienced by the test specimen during monotonic 

testing. 

ultimate load: either the load corresponding to failure of the specimen, or the post-peak 

load corresponding to 80% of the maximum load, whichever is greatest. 

ductility: ratio of the midspan deflection at ultimate load to the midspan deflection at 

general yield. 

maximum S/CFRP strain: the greatest strain in the S/CFRP observed. The strain in the 

middle reinforcing bar at the corresponding location is also indicated. 

initiation of debonding: the S/CFRP strain at which debonding appears to occur. 
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All moments calculated in Tables 3.1 and 3.2 are midspan moments. They were 

calculated using the equation M = PL/4, where M is the moment, P is the applied midspan load, 

and L is the clear span (178.25 in (4527 mm)). 

3.2 SPECIMEN BEHAVIOR 

This section discusses the behavior of each specimen. 

3.2.1 Specimen SC 

Specimen SC was tested monotonically in displacement control to failure. Cracking 

occurred at 663 pounds (2.95 kN), which is comparable to the companion specimens tested by 

Reeve (2005) and Zorn (2006). The post-cracking stiffness was nearly identical to that of 

Specimen H2x1. Specimen SC exhibited a single large shear crack and accompanying 

longitudinal splitting at the level of the reinforcing steel as seen in Figure 3.11. Debonding 

initiated near the toe of the shear crack and propagated towards the nearest (south) support as 

shown in Figure 3.12. The SFRP did not debond completely, remaining bonded to the concrete 

near the south support. There was also significant concrete crushing at the point of load 

application. The ultimate capacity of Specimen SC was 10.65 kips (47.37 kN). Load versus 

midspan deflection can be seen in Figure 3.1. Load versus strain behaviors are shown in Figure 

3.9. 
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3.2.2 Specimen S4F 

Specimen S4F sustained 2,000,000 cycles of fatigue loading cycling from 1 kip (4.45 kN) 

to 5 kips (22.24 kN). The fatigue test was then stopped, and the specimen was tested 

monotonically to failure. This specimen may be considered to be “fatigue conditioned”. The 

initial stiffness of Specimen S4F was nearly identical to that of Specimen SC, as can be seen in 

Figure 3.2. Specimen S4F experienced little apparent damage throughout the fatigue 

conditioning. A “tap test” did not reveal any debonding following the 2,000,000 load cycles. 

Figure 3.2 shows how similar the load-deflection behavior of Specimen S4F was to that of 

Specimen SC to failure. Specimen S4F also exhibited a dominant shear crack with debonding 

initiating near the toe of the crack and propagating towards the nearest (south) support. 

Photographs in Figures 3.13 and 3.14 show this behavior. The ultimate capacity of Specimen 

S4F was 10.48 kips (46.62 kN). Load versus strain behaviors are shown in Figure 3.10. 

3.2.3 Specimen S4.75F 

Specimen S4.75F, cycled between applied loads of 1 kip (4.45 kN) and 5.75 kips (25.6 

kN), failed due to a fatigue-induced reinforcing bar rupture. The stiffness of Specimen S4.75F 

was nearly identical to that of Specimen SC, as can be seen in Figure 3.3. The rupture of the west 

reinforcing bar became apparent after cycle 689,671. Following this cycle, the stiffness of the 

beam changed significantly, and there was a clear increase in midspan deflection. A shear crack 

also formed after the rupture. The reinforcing bar rupture was located directly at the toe of the 

shear crack. Figure 3.15 shows the shear crack, as well as the location of the reinforcing bar 

rupture. A tap test was done to locate any debonding of the SFRP. Debonding was only found 
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after the rupture, right at the location of the rupture. Figure 3.16 shows the reinforcing bar 

rupture. It is believed that the observed debonding was the result of the energy release of the 

rupture. The failure mode of Specimen S4.75F was fatigue-induced reinforcing bar rupture. 

3.2.4 Specimen S5.5F 

Specimen S5.5F, cycled between applied loads of 1 kip (4.45 kN) and 6.5 kips (28.9 kN), 

failed due to a fatigue-induced reinforcing bar rupture. The stiffness of Specimen S5.5F was 

nearly identical to that of Specimen SC, as can be seen in Figure 3.4. The rupture of the west 

reinforcing bar became apparent after cycle 286,306. Following this cycle, the stiffness of the 

beam changed significantly, and there was a clear increase in midspan deflection. The width of 

the flexural cracks directly under the loading increased significantly. Also, horizontal cracks 

were visible at the level of the reinforcing steel as can be seen in Figure 3.17. The test was 

continued until cycle 308,650, at which time the beam failed due to a large shear crack. The 

ruptured reinforcing bar was then visible, and can be seen in Figure 3.18. The failure mode of 

Specimen S5.5F was fatigue-induced reinforcing bar rupture. 



 

 

Table 3.1 Summary of Fatigue Data. 

SI Units (kips, inches)  CFRP SFRP 

Beam ID:   CF L2F L2X1F H2F H2X1F S4F S4.75F S5.5F 

bf/b:   na 0.333 0.333 0.333 0.333 0.792 0.792 0.792 

adhesive type:   na 23 23 30 30 FX FX FX 

age at start of fatigue test: days 175 191 231 217 238 312 341 333 

cracking load: kips 0.68 0.68 0.69 0.67 0.69 0.69 0.66 0.69 
cracking moment: kip-in 30.2 30.3 30.7 30.0 30.8 30.8 29.5 30.8 

at N = 2                   

minimum applied load kips 1.01 1.03 1.02 1.03 1.04 1.03 1.04 1.01 

minimum applied moment kip-in 44.9 45.8 45.8 46.1 46.3 46.2 46.6 45.2 

deflection at minimum applied load in 0.29 0.26 0.29 0.29 0.27 0.27 0.29 0.30 

maximum reinforcing bar strain at minimum applied load ue 747 633 622 610 633 520 601 663 
maximum FRP strain at minimum applied load ue na 663 640 787 806 683 659 608 

maximum applied load kips 4.98 5.00 5.00 5.00 5.00 4.97 5.72 6.44 

maximum applied moment kip-in 222 223 223 223 223 222 256 288 

deflection at maximum applied load in 0.78 0.67 0.74 0.75 0.70 0.66 0.79 0.89 

maximum reinforcing bar strain at maximum applied load ue 1950 1668 1658 1606 1734 1465 1790 2094 
maximum FRP strain at maximum applied load ue na 1758 1778 1997 2089 1783 1952 2151 

range of applied load kips 3.98 3.98 3.98 3.97 3.96 3.94 4.68 5.43 

range of applied moment kip-in 178 178 178 177 177 176 209 243 

stress range in rebar ksi 34.9 30.0 30.0 28.9 31.9 27.4 34.5 41.5 
stress range in FRP ksi na 24.6 25.6 27.2 28.9 12.0 14.2 16.9 

apparent stiffness between minimum and maximum load kip/in 7.92 9.36 8.72 8.38 9.19 10.15 9.28 9.21 

last recorded cycle before failure (Nf)   na 2000000 447695 1128006 2000000 2000000 689671 286306 

at N = Nf, or N = 2000000                   

minimum applied load kips na 1.00 1.02 1.01 1.00 1.01 1.01 1.01 

  47



Table 3.1 (continued) 
 

  CF L2F L2x1F H2F H2x1F S4F S4.75F S5.5F 

minimum applied moment kip-in na 45 45 45 45 45 45 45 

deflection at minimum applied load (relative to zero load) in na 0.27 0.32 0.36 0.33 0.30 0.36 0.29 

maximum reinforcing bar strain at minimum applied load ue na 607 641 598 628 513 578 660 

maximum FRP strain at minimum applied load ue na 638 611 832 837 753 994 641 

                    

maximum applied load kips na 5.00 5.00 5.00 5.00 5.00 5.74 6.50 

maximum applied moment kip-in na 223 223 223 223 223 256 290 

deflection at maximum applied load (relative to zero load) in na 0.79 0.81 0.87 0.84 0.77 0.92 0.94 

maximum reinforcing bar strain at maximum applied load ue na 1809 1790 1684 1881 1570 1870 2235 

maximum FRP strain at maximum applied load ue na 1864 1819 2158 2279 2053 2114 2294 

                    

range of applied load kips na 4.00 3.98 3.99 4.00 3.99 4.73 5.48 

range of applied moment kip-in na 179 178 178 179 178 211 245 

stress range in rebar ksi na 34.9 33.3 31.5 36.3 30.7 37.5 45.7 

stress range in FRP ksi na 27.6 27.2 29.8 32.4 14.2 12.3 18.1 

                    

apparent stiffness between minimum and maximum load kip/in na 7.69 8.07 7.86 7.58 8.64 8.39 8.38 

any N                   

maximum observed strain in FRP ue na 1873 1819 2158 2285 2047 2117 2294 

corresponding (same location) rebar strain ue na 1809 1658 1684 1526 1566 1870 2018 

cycle number   na 1698454 447695 1128006 1820072 1855904 268710 286306 
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SI Units (kips, inches)   CFRP SFRP 

Beam ID: C L2 L2x1 H2 H2x1 L2F H2x1F SC S4F 

bf/b: 0 0.333 0.333 0.333 0.333 0.333 0.333 0.792 0.792 

adhesive type: na 23 23 30 30 23 30 FX FX 

age at start of fatigue test: 144 157 161 163 165 191 238 327 312 

cracking load: <0.66 0.66 0.63 0.64 0.64 0.68 0.69 0.66 0.69 

cracking moment: <29.5 29 28 29 29 30 31 30 31 

load at initial yield of reinforcing(2140): 5.91 6.78 5.99 6.38 6.63 6.15 5.85 7.59 7.13 

moment at initial yield of reinforcing: 264.05 303 267 285 296 275 261 339 318 

deflection at initial yield of reinforcing: 0.980 1.000 0.842 0.948 0.893 0.92 0.94 1.03 1.02 

load at general yield: 6.96 8.61 9.08 8.80 9.20 8.88 9.49 9.6 8.84 

moment at general yield: 310.8 384 405 393 411 397 424 429 395 

deflection at general yield: 1.180 1.320 1.350 1.360 1.300 1.29 1.39 1.36 1.21 

maximum load: 6.98 9.96 10.23 9.79 10.15 10.23 10.19 10.65 10.48 

maximum moment: 311.7 445 457 437 453 457 455 476 468 

deflection at max load: 1.423 2.061 2.352 1.878 1.974 2.30 1.89 2.13 1.97 

least deflection from max to 80% max: 3.077 2.239 2.549 2.176 2.210 2.65 2.02 2.36 2.23 

displacement ductility: 2.61 1.70 1.89 1.60 1.70 2.06 1.45 1.74 1.84 

maximum observed strain in FRP: na 6688 7878 6200 6863 7444 6970 7053 6974 

corresponding rebar strain: 15932 13167 6620 14812 6004 3238 13039 13877 13113 

maximum strain in FRP at time of max load: na 6518 7872 6112 6853 7322 6875 6953 6551 

corresponding rebar strain: 2759 13124 6624 14663 6034 4171 13664 13645 12878 

strain in FRP at apparent initiation of debonding: na 6688 7878 3550 3200 4301 3909 2978 3173 

corresponding rebar strain: na >15000 >15000 2680 2790 2898 2767 2679 2478 

max strain in FRP at time of general yield deflec: na 3445 4681 3892 4253 3391 4318 3347 3291 

corresponding rebar strain: na 3868 11877 7674 13085 7485 2727 2894 2688 

  

Table 3.2 Summary of Monotonic Data. 
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Figure 3.1 Test Specimens SC and C. 
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Figure 3.2 Specimens S4F, SC, and C. 
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Figure 3.3 Specimens S4.75F, SC, and C. 
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Figure 3.4 Specimens S5.5F, SC, and C. 

  51



0.6

0.7

0.8

0.9

1

1.1

1.2

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000

N, cycles

M
ax

im
um

 M
id

sp
an

 D
ef

le
ct

io
n,

 in
.

S4F

S4.75F

S5.5F

 

Figure 3.5 Midspan deflection accumulation curves. 
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Figure 3.6 Strain accumulation curves for Specimen S4F (shifted vertically 2000 με). 
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Figure 3.7 Strain accumulation curves for Specimen S4.75F (shifted vertically 2000 με). 
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Figure 3.8 Strain accumulation curves for Specimen S5.5F (shifted vertically 2000 με).
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Figure 3.9(a) Load-strain behavior for Specimen SC (shifted horizontally). 
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Figure 3.9(b) Test Specimen SC – North strain gages (9), (10), and (5). 
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Figure 3.9(c) Test Specimen SC – South strain gages (8), (11), and (12). 
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Figure 3.10 Load-strain behavior for Specimen S4F (shifted horizontally). 
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Figure 3.11 Shear crack of Specimen SC (east side). 

 

Figure 3.12 Debonding at toe of shear crack, Specimen SC (west side). 
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Figure 3.13 Shear crack on Specimen S4F (west side). 

 

Figure 3.14 Debonding at toe of shear crack, Specimen S4F (west side). 
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Shear Crack

Location of Reinforcing Bar Rupture

Figure 3.15 Specimen S4.75F after reinforcing bar rupture (west side). 

 

Reinforcing Bar Rupture 

Figure 3.16 Fatigue-induced reinforcing bar rupture, Specimen S4.75F. 
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Crack at Reinforcing 
Bar Level 

Figure 3.17 Specimen S5.5F after reinforcing bar rupture (west side). 

 

Figure 3.18 Fatigue-induced reinforcing bar rupture, Specimen S5.5F. 
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4.0  DISCUSSION OF EXPERIMENTAL RESULTS 

This chapter reports interpretations of the experimental data reported in Chapter 3. The 

focus of this interpretation is to provide a comparison of SFRP with more conventionally used 

CFRP materials for retrofit of concrete beams in flexure. 

4.1 COMPARISON OF MONOTONIC TEST SPECIMENS 

Test specimen designation is outlined in Section 2.4. Figure 4.1 shows the load deflection 

plot for Specimen SC along with companion Specimens C, L2, L2x1, H2, and H2x1 reported by 

Reeve (2005). This plot allows a direct comparison of performance of an uncracked reinforced 

concrete beam retrofitted with SFRP to those retrofitted with an equivalent amount of CFRP 

(with respect to axial stiffness). A summary of key results for the monotonic tests is given in 

Table 3.2 and a summary of the ratios of these values to those of the control specimen is given in 

Table 4.1. Definitions for all key results are given in Section 3.1. 

The cracking load for Specimen SC was nearly identical to that of the companion 

specimens tested by Reeve (2005). The load at general yield was slightly higher for Specimen 

SC when compared to the companion CFRP retrofits. The deflections were essentially the same. 

Specimen SC was able to achieve a slightly higher maximum load than the companion 

specimens. 
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Reeve concluded that the 2x1 specimens were nominally stronger and stiffer than the 

single 2 inch (50 mm) retrofits at general yield, indicating that multiple thinner strips may be 

preferable to fewer wider strips. This effect may explain why Specimen SC was slightly stronger 

and stiffer than the companion specimens, since the SFRP material is comprised of discrete thin 

cords rather than a more homogeneous continuum. Such an arrangement may allow a more 

uniform redistribution of stress in the transverse direction and minimize the stress raisor known 

to occur at the edges of bonded plates (Timoshenko and Goodier 1987, as reported by 

Quattlebaum 2003). The increased stiffness may also be a reflection of the SFRP system having 

an axial stiffness marginally larger than that of the CFRP specimen. 

Normalized comparisons of Specimen SC with the companion specimens tested by Reeve 

(2005) and Zorn (2006) can be seen in Figures 4.2 through 4.5. These figures plot the ratio of the 

test specimen performance to that of the control Specimen C versus the equivalent flexural 

reinforcement ratio (ρequivalent) of the test specimen. The equivalent flexural reinforcement ratio is 

defined as follows: 

ρequivalent 
s

ffs

E
E

bh
A

bh
A

+=            (4.1) 

where bh = gross area of concrete section 

 Af = cross sectional area of SFRP or CFRP; Af = tfbf 

 As = cross sectional area of existing internal tension steel reinforcement 

 Ef = modulus of SFRP or CFRP (see Table 2.2) 

 Es = modulus of steel reinforcement, taken as 29000 ksi (200 GPa) 

For all specimens in this study, the first term in Equation 4.1 (As/bh) is equal to 1%. 

The SFRP specimens, and corresponding companion specimens, have an equivalent 

reinforcement ratio of 0.0114. Reeve and Zorn also tested CFRP retrofitted specimens with ratios 

  63



of 0.0107 and 0.0128. While these specimens are not used for comparison purposes with the 

SFRP specimens, they are included in the figures to illustrate the trends observed for the CFRP 

specimens. Figure 4.6 shows the FRP strain at the initiation of debonding for all specimens 

discussed. 

Each of Figures 4.2 – 4.6 shows how Specimen SC is generally comparable to the CFRP 

companion specimens. In each case, other than debonding strain (Figure 4.6), Specimen SC 

performed marginally better than the companion specimens that used the high modulus adhesive 

(H-series specimens). As shown in Table 2.3, the FX-776 epoxy used for the SFRP specimens 

has properties that lie between the extremes of the low (L) and high modulus (H) adhesives used 

in the companion studies, although having properties closer to those of the high modulus 

adhesive. While Specimen SC performed slightly better than all companion specimens in terms 

of general yield load and maximum load, it was outperformed significantly by some companion 

specimens having low modulus adhesive (L-series) in terms of deflection and ductility. This 

reinforces the conclusion that adhesive stiffness has a significant contribution to the performance 

of a retrofit scheme (Reeve 2005). 

Figure 4.6 shows how the debonding strain for Specimen SC was comparably lower than 

that observed for the CFRP specimens. This lower debonding strain is believed to result from the 

combination of a stiff adhesive and thinner adhesive bondline. Predicted debonding behavior is 

investigated later in this chapter. 
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4.2 COMPARISON OF FATIGUE TEST SPECIMENS 

The fatigue behavior of the SFRP specimens is reported in this section. A comparison of 

the run-out portions of the tests is reported in section 4.3. 

S-N data (S is stress range in the internal reinforcing steel and N is cycles to failure) from 

this study is plotted in Figures 4.7 and 4.8. Also shown in these figures are representative S-N 

relationships recommended for reinforcing steel tested in air (Moss 1980) and tested in flexural 

beams (CEB 1990). Run-out specimens are noted with arrows indicating that their fatigue life 

was not reached at the number of cycles (N) shown. All other specimens shown experienced 

fatigue-induced reinforcing bar rupture (FIRR). The control fatigue specimen, CF, was 

inadvertently loaded to failure during a power outage (Zorn, 2006) and is represented with an 

open circle and an arrow signifying that the actual fatigue life would have been somewhat 

greater than the 329,324 cycles reported. 

The behavior of the three fatigue specimens having SFRP are predicted by the 

recommended relationship for reinforcing steel tested in flexural beams (CEB 1990) relatively 

well. Additionally, the SFRP specimens have an improved fatigue resistance as compared to the 

CFRP specimens – that is for a given stress range, S, the fatigue life, N, for the SFRP specimens 

is greater, or conversely, the SFRP specimens may withstand a greater S for a given fatigue life, 

N. Figure 4.8 includes data from a number of researchers. As can be seen the SFRP data 

generally falls near the lower boundary of the clustered data indicating a generally superior 

fatigue performance. 

Figure 4.9 compares the stress range in the internal reinforcing steel at N=2 for different 

reinforcing ratios. All stresses are normalized by dividing by the stress range in the reinforcing 

steel observed for Specimen C. Specimen C was used for normalization since Specimen CF did 
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not experience applied loads large enough to be able to compare its performance to that of 

S4.75F and S5.5F. Figure 4.9 shows how the SFRP is equally as effective as the CFRP in 

reducing the stress range in the reinforcing steel. When the applied load was increased (S4F to 

S4.75F to S5.5F), the reduction in reinforcing bar stress range is diminished only nominally. All 

of the SFRP and CFRP data fell with a relatively small scatter in this performance measure.  

4.2.1 Stress Range “Drift” 

For the purpose of this study, as in the study performed by Zorn (2006), the stress range 

used for the S-N plot was taken from the second cycle, N=2. Typically, the first cycle, N=1, 

should be used; however, in this study, the first cycle was used to crack the beam, so it is 

expected to have a different response. Due to accumulated fatigue-induced damage, the stress 

range in the reinforcing steel was predicted to increase throughout the cycling process. Reasons 

for this increasing stress range, referred to as the “stress range drift” include:  1) the softening of 

the concrete under repeated compressive loads (Heffernan, 1997); and 2) the deterioration of the 

SFRP-to-concrete bond with cycling resulting a redistribution of stress to the internal reinforcing 

steel (Harries et al., 2007). 

In the SFRP specimens reported in this study, the reinforcing steel stress increases 

between 9% and 12% from N=2 to N=Nf as reported in Table 4.2. The steel stress increases are 

comparable to those of the companion CFRP specimens. Of the SFRP specimens that had a 

fatigue-induced rebar rupture (FIRR), the stress increases were 9% and 10%. Of the comparable 

CFRP specimens that exhibited FIRR, the stress increase was 9% and 11%. The run-out 

specimens had stress range increases that were higher, ranging from 12% to 16%. In this case, 

the additional cycles result in greater degradation despite a lower rate of stress range increase 
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(Table 4.2). The rate of stress range increase and thus the final stress range increase for the SFRP 

run-out Specimen S4F was lower than comparable values for the CFRP run-out Specimens L2F 

and H2x1F (Table 4.2). 

Figure 4.7 demonstrates the effect of using N=Nf for the value of S on the S-N curve. The 

result is an upwards shift of each point (increased S, as discussed above). This shift is generally 

proportional to the fatigue life and is unaffected by other parameters investigated (Zorn, 2006). 

Figure 4.10 shows the same S-N data for SFRP specimens and CFRP specimens as 

shown in Figure 4.7 only with the data sorted by the different epoxy systems used. No clear 

trends are present although the SFRP data appears more uniform and thus representable by a 

traditional S-N relationship (such as that of CEB 1990). More data points are needed to 

investigate if different adhesive systems result in different degradations in performance. Figure 

4.10 does show, however, that Specimen S4F (the run-out SFRP specimen) reduced the stress in 

the steel more than any of the comparable CFRP specimens that were subjected to the same 

loading. This is a further indication that SFRP is able to outperform CFRP in fatigue. 

4.2.2 Secant Stiffness 

Another measure of the degradation of a specimen due to fatigue cycling is the secant 

stiffness. This is defined as the slope of the load-deflection relationship obtained during cycling. 

This slope is calculated as the difference of the maximum and minimum loads during each cycle 

divided by the corresponding difference in deflection. Table 4.2 demonstrates how the 

degradation is relatively consistent for all of the SFRP specimens. Specimen S4F had a final 

stiffness that was 85% that of the cracked secant stiffness determined at N=2. Specimens S4.75F 
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and S5.5F each degraded to 90% and 91%, respectively. This behavior generally corresponds to 

that reported for the CFRP specimens. 

Figure 4.11 plots the cycle number versus secant stiffness for the three fatigue SFRP 

specimens. This figure demonstrates how the degradation of the stiffness is relatively consistent 

and similar for all three specimens, despite the large differences in applied loading. Figure 4.12 

compares the secant stiffness degradation of the SFRP specimens to that of the companion CFRP 

specimens. The degradation is similar in all cases. This reaffirms Zorn’s conclusion that adhesive 

properties do not have a large effect on the degradation of beam stiffness behavior. Also, the 

figure demonstrates how SFRP is a reasonable alternative to CFRP in this respect. It should be 

noted that Specimen S4F is the most important specimen for comparison, as it was the only one 

that had the same applied loading as the CFRP specimens. 

4.3 COMPARISON OF FATIGUE RUN-OUT SPECIMENS 

The following section reports on the fatigue run-out Specimen S4F. It also compares its 

performance to that of the monotonic Specimen SC and those specimens tested by Reeve and the 

run-out specimens tested by Zorn.   

Specimen S4F was a fatigue run-out specimen. That is, it sustained 2,000,000 cycles of 

fatigue loading and was subsequently loaded monotonically to failure, as described in section 

2.7.2. The companion specimens that were run-out specimens from Zorn were Specimens L2F 

and H2x1F. These specimens are considered “fatigue conditioned.” 
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4.3.1 Effect of Fatigue Cycling on Debonding Strain 

Figure 4.6 compares the strain at the initiation of debonding for each monotonic test with 

the corresponding run-out companion specimen. This figure shows how the fatigue conditioning 

had little effect on the debonding strain for the SFRP specimens. This is an indication that the 

relatively stiff FX-776 is an acceptable epoxy system for SFRP when fatigue loading is a 

concern. These results reinforce the findings of Zorn, where the softer (low modulus) adhesive 

specimens showed a significant decrease in debonding strains, and the stiffer (high modulus) 

adhesive specimens remained apparently unaffected by fatigue conditioning. Regardless of 

terminology, it should be noted that all of the adhesives used are classified as stiff structural 

adhesives. The L-series, low modulus adhesive is simply softer by comparison. 

4.3.2 Effect of Fatigue Cycling on Other Parameters 

Figures 4.2 through 4.5 also show how Specimen S4F compared to Specimen SC. In 

every case, Specimen SC performed marginally better than its fatigue conditioned partner. 

However, none of the parameters reported appeared to be significantly degraded following the 

2,000,000 cycles of fatigue conditioning. 

Figure 4.2 and Figure 4.3 show the observed general yield and maximum load versus 

reinforcement ratio, respectively. While the general yield decreased more for Specimen S4F 

when compared to the CFRP run-outs, it still fell into the comparable scatter. While Specimen 

S4F had a slightly lower ultimate capacity than Specimen SC, it still was higher than all of the 

comparable CFRP specimens and fell within the expected variability associated with testing 
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concrete specimens. Again, this is further confirmation that SFRP is a reasonable alternative to 

CFRP. 

Figure 4.4 plots the deflection at ultimate load versus reinforcement ratio, while Figure 

4.5 plots the ductility deflection. In both cases, the fatigue conditioning had a slight degrading 

effect on the behavior of the SFRP specimens. Nonetheless, the scatter of data still fit well within 

the comparable CFRP specimens. The data actually seems to fit right between the data points for 

the lower modulus adhesive and the higher modulus adhesive. This is important, because the 

stiffness of the FX-776 used with the SFRP was between the values for the L and H adhesives 

used by Reeve and Zorn. This is a further reflection of the conclusion that softer adhesives 

exhibit marginally improved displacement ductility over stiffer adhesives. 

Figure 4.13 plots load versus displacement for Specimen S4F. Also shown are Specimen 

SC and the companion run-out Specimens L2F and H2x1F. The figure shows how Specimen S4F 

had a permanent set before the final monotonic load cycle reflecting the permanent deformation 

associated with accumulated fatigue damage. This behavior is reflected in all fatigue specimens. 

Specimen S4F was slightly stiffer than Specimen L2F. When compared to Specimen SC, 

Specimen S4F showed only marginal reductions in performance 

4.4 PREDICTED DEBONDING BEHAVIOR 

Reeve (2005) analyzed the current recommended models for determining the critical 

strain at which debonding is likely, εfub. This value is used in design as a limiting value for FRP 

strain (and thus stress) above which debonding is assumed to control behavior. Since debonding 

is a brittle failure mode, in design, the FRP strain is kept below εfub.  Figure 4.14 shows the 
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current ACI (2002) equation for maximum allowable strain, a model shown to have good 

agreement with experimental data recommended by Teng et al. (2004), and a model 

recommended by the ACI Task Group on Bond (2006) for adoption into the forthcoming version 

of ACI 440.2R (currently ACI, 2002). 

ACI 440.2R (ACI, 2002) provides the following equation for the maximum allowable 

FRP strain to mitigate debonding: 

εfub = кmεfu             (4-1) 

Where εfu is the design rupture strain of the FRP and кm is as follows: 
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Where n = number of FRP plies 

 Ef = FRP modulus of elasticity 

tf = FRP thickness 

The ACI equation is a function only of the stiffness of the FRP material and its thickness 

and neglects other factors observed to affect debonding behavior including substrate concrete 

material and adhesive properties. 

Teng et al. (2004) recommend the following equation to mitigate debonding: 
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Where 
b

b
b

b
k ff

b +−= 12           (4-5) 

The Teng equation includes parameters such as number of layers of FRP, concrete 

strength, and the bf/b ratio. This equation is plotted twice in Figure 4.14, as the comparable 

CFRP specimens had a bf/b ratio of 0.333, and the SFRP specimens had a bf/b ratio of 0.792. 

Teng recommends that a value of α = 1.1 (SI units) should be used. The value of kL is taken as 

unity based on the assumption that the available bond length exceeds that which is required to 

fully develop the FRP – a condition easily satisfied in beam applications. 

Also plotted is an equation recommended by the ACI Task Group on Bond (2006). This 

equation is based on the Teng equation but consolidates all empirical factors into a single value 

of α. The Task Group (2006) determined that including a kb factor did not affect the predictive 

capability of the equation. Additionally, as a design equation, clauses are recommended that 

ensure the kL must be taken as unity.  

ff

c
fub tnE

f '
αε =             (4-6) 

Where the value of α = 0.42 in SI units (fc’ in MPa) and α = 0.083 in US units (fc’ in psi). 

This equation falls just above the Teng equation for bf/b of 0.792 plotted in Figure 4.14. 

It can be seen that the ACI (2002) equation is generally non-conservative for the material 

systems considered while the proposed Task Group (2006) is reasonable for the CFRP material 

reported. 

The SFRP debonding behavior appears to be a non-conservative outlier when shown in 

this manner. In all other respects, the SFRP is comparable to its equivalent CFRP companion 
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specimens. It is proposed that the nEftf term in Equations 4.2, 4.4 and 4.6, while appropriate for 

the relatively homogeneous FRP materials must be modified for use with SFRP.  This 

modification should reflect an equivalent behavior between the materials. 

SFRP relies on a larger width, bf, to achieve a retrofit with an equivalent axial stiffness 

compared to CFRP. Therefore, SFRP has a Eftf stiffness that is comparably lower. However, this 

Eftf value is comparable to GFRP applications. The difference is that SFRP has a higher modulus 

while being thinner than GFRP. This suggests that only using the properties of Ef and tf are not 

enough to model debonding behavior. 

An acceptable solution for this study may be to take advantage of how the SFRP system 

has an equal stiffness compared to the CFRP system in terms of area, Eftfbf. For instance, if one 

were to divide the axial stiffness of the SFRP by the width of the comparable CFRP, the resulting 

larger normalized Eftf value will be a better indication for limiting strain in the SFRP. The 

limitation of this method is that it only works for this specific application in this specific manner. 

It gives no guidance as to whether the SFRP should be normalized to an equivalent stiffness of 

CFRP, GFRP, or high modulus CFRPs. 

  73



 

Table 4.1 Analysis of key results summary for monotonic and runout specimens. 

Specimen: SC S4F L2F H2x1F L2 L2x1 H2 H2x1
ratio of general yield load to 

Specimen C general yield load: 1.38 1.27 1.28 1.36 1.24 1.30 1.26 1.32 

ratio of maximum load to 
Specimen C maximum load: 1.53 1.50 1.47 1.46 1.43 1.47 1.40 1.45 

ratio of max load deflection to 
Specimen C max load deflection: 1.50 1.38 1.62 1.33 1.45 1.65 1.32 1.39 

ratio of ductility deflection to 
Specimen C ductility deflection: 0.77 0.72 0.86 0.66 0.73 0.83 0.71 0.72 

 

Table 4.2 Measures of fatigue behavior. 

  

Fatigue 
Life 

ratio of final 
(Nf) to initial 
(N = 2) stress 

range 

average rate 
of change of 
stress range 
with cycling 

ratio of final 
(Nf) to initial 

(N = 2) 
secant 

stiffness 

average rate of 
change of 

stiffness with 
cycling  

      
ksi/100k 
cycles    

kip/in/100k 
cycles 

S4F >2,000,000 1.12 0.16 0.85 -0.08 
S4.75F 689,671 1.09 0.43 0.90 -0.13 
S5.5F 286,306 1.10 1.46 0.91 -0.29 
L2F >2,000,000 1.16 0.24 0.82 -0.08 

L2x1F 447,695 1.11 0.73 0.92 -0.15 
H2F 1,128,006 1.09 0.23 0.94 -0.05 

H2x1F >2,000,000 1.14 0.22 0.82 -0.08 
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Figure 4.1 Load vs. deflection for monotonic tests. 
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Figure 4.2 SFRP vs. CFRP, general yield load. 
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Figure 4.3 SFRP vs. CFRP, maximum load capacity. 
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Figure 4.4 SFRP vs. CFRP, deflection at maximum load. 

  76



0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.00 1.05 1.10 1.15 1.20 1.25 1.30

N
or

m
al

iz
ed

 D
uc

til
ity

 D
ef

le
ct

io
n 

ra
tio

L
H
LF
HF
SC
SF

ρ equivalent 

L2F

L2

H2X1F
H2X1

 

Figure 4.5 SFRP vs. CFRP, ductility deflection. 
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Figure 4.6 SFRP vs. CFRP, strain at apparent initiation of debonding. 
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Figure 4.7 S-N data determined at N=2 and N=Nf for SFRP and CFRP. 
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Figure 4.8 S-N data for SFRP specimens with database compiled by Zorn (2006). 
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Figure 4.9 SFRP vs. CFRP, effect on fatigue stress range at N = 2. 
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Figure 4.10 S-N data comparing different adhesives. 
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Figure 4.11 Stiffness degradation with fatigue cycling for SFRP specimens. 
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Figure 4.12 SFRP vs. CFRP, stiffness degradation with fatigue cycling. 
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Figure 4.13 Load vs. deflection for all runout specimens. 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 500 1000 1500 2000 2500

Eftf, k/in

ε f
ub

, m
ic

ro
st

ra
in

CFRP

SFRP

CFRP Runout

SFRP Runout

Teng et al. with bf/b = 0.792

Teng et al. with bf/b = 0.333

ACI 440.2R

ACI Task Group

 

Figure 4.14 Strain vs. Eftf. 
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5.0  SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This chapter reports and discusses conclusions of the experimental program. A summary 

of the test procedure and continuing needs for future work is also presented. 

5.1 SUMMARY OF TEST PROGRAM 

Four test specimens were tested, each 10 in. (254 mm) deep, 6 in. (152 mm) wide, and 

186 in. (4730 mm) long. All four specimens were retrofitted with the same amount and type of 

steel fiber reinforced polymer (SFRP). The width of SFRP used was such that it had the same 

axial stiffness as companion specimens retrofitted with 2 in. (51 mm) wide carbon fiber 

reinforced polymer (CFRP) strips. Unretrofit control specimens were also tested. All reinforced 

concrete beams had three #4 longitudinal steel reinforcing bars as the primary flexural 

reinforcement resulting in a steel reinforcement ratio of 1.0%. 

The SFRP, supplied by Hardwire, LLC, was precut to a width of 4.75 in. (121 mm) and a 

length of 172 in. (4369 mm). The cord type was 3x2-23-12, which has 23 cords per inch. Each 

cord is made of 5 individual high strength wires. The adhesive used to bond the SFRP to the 

concrete substrate was FX-776, a high modulus epoxy-based structural adhesive recommended 

by Hardwire.  
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The beam specimens were supported over a simply supported clear span of 178.5 in. 

(4537 mm) and tested under mid-point bending. Specimen SC was tested monotonically to 

failure in displacement control and can be compared to the companion monotonic specimens 

(L2, L2x1, H2 and H2x1) and the unretrofit Specimen C, all tested by Reeve (2005). Specimens 

S4F, S4.75F, and S5.5F were tested under cyclic loading until failure (S4.5F and S5.5F) or 

2,000,000 cycles (S4F). The cyclic load used was a sinusoidal wave with a frequency of not 

more than 1.7 Hz. The range of the applied midspan load for Specimen S4F was 1 kip (4.45 kN) 

to 5 kips (22.24 kN); for Specimen S4.75F: 1 kip (4.45 kN) to 5.75 kips (25.58 kN); and for 

Specimen S5.5F: 1 kip (4.45 kN) to 6.5 kips (28.91 kN). Specimen S4F sustained 2,000,000 load 

cycles without failure; at this point the fatigue test was terminated and a monotonic test to failure 

was performed. The SFRP fatigue specimens can be compared to the companion fatigue 

specimens (L2F, L2x1F, H2F and H2x1F) and the unretrofit Specimen CF, all tested by Zorn 

(2006). 

5.2 CONCLUSIONS 

The primary objective of this work is to assess the applicability of well-established 

design guidance for GFRP and CFRP (ACI 2002) for SFRP. Thus the following conclusions are 

provided in this context. 

Both monotonic specimens, SC and run-out S4F, exhibited intermediate crack induced 

debonding behavior. Debonding was the primary mode of failure for these two specimens. 

Specimens S4.75F and S5.5F both failed during fatigue cycling at Nf = 689671 and Nf = 286306, 
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respectively. The failure mode for these specimens was fatigue-induced reinforcing steel rupture. 

The following conclusions have been drawn from this work: 

1. On the basis equivalent axial stiffnesses (that is the product Eftfbf), the SFRP retrofits 

behaved comparably to the companion CFRP retrofits in terms of general yield, maximum 

load, deflection at maximum load, and deflection ductility. Thus the behavior of SFRP and 

its design is similar that of CFRP. 

2. With respect to Conclusion 1, the manufacturer reported effective material properties for 

SFRP are suitable for use in design. 

3. The exception to Conclusions 1 and 2 is that the guidance provided for the mitigation of 

debonding of GFRP or CFRP was not apparently appropriate to apply directly to SFRP using 

effective material properties. This is discussed further in the following section.  

4. The SFRP specimens performed better than comparable CFRP specimens in terms of fatigue 

performance. At equal internal steel stress ranges, SFRP specimens achieved a longer fatigue 

life. At equal applied load ranges, Specimen S4F affected a greater reduction of stress in the 

internal reinforcing steel than any of the CFRP companion specimens. This is believed to 

indicate superior bond performance at the stress ranges considered. The superior performance 

is hypothesized to result from the improved mechanical bond resulting from the twisted wires 

embedded within the epoxy system. 

5. Two million cycles of applied load (fatigue conditioning) had only marginal effects on the 

performance of Specimen S4F. General yield, maximum load, deflection at maximum load, 

and ductility were all shown to only degrade very slightly from Specimen SC to S4F. The 

SFRP strain at the initation of debonding of Specimen S4F was observed to be slightly higher 

than Specimen SC, indicating the fatigue cycling had little effect on this performance 
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parameter. This reinforces Conclusion 4 and indicates that SFRP is desirable in service load 

level fatigue environments. 

6. The degradation of secant stiffness with fatigue loading was essentially the same for all 

SFRP specimens up to the point of fatigue failure. The degradation was also comparable to 

that of the CFRP specimens tested by Zorn (2006). This also is an indication of sound bond 

being maintained during fatigue cycling. 

7. Stress range drift in the internal steel reinforcement should be considered when designing a 

bonded SFRP (or G/CFRP) retrofit that will have to perform in a fatigue environment. 

Provided debonding is mitigated, fatigue life is shown (in this study and others) to be 

governed by fatigue-induced reinforcing steel rupture. Stress ranges in the primary internal 

steel reinforcement were observed to increase from 9% to 12% as the fatigue loading 

progressed from N = 2 to N=Nf. 

8. The data from the fatigue tests presented fit generally within the expected scatter of fatigue 

data and corresponds quite well with the equation recommended by CEB (1990) for the S-N 

behavior of reinforcing bars embedded in concrete. 

9. Conclusions 4 through 8 are believed to reflect the fact that a wider width of SFRP material 

is needed to affect a retrofit equivalent to a CFRP retrofit (considering the discrete CFRP 

strip and SFRP sheet products presently available). The wider width results in decreased 

interfacial stresses and thus improved fatigue behavior with no evidence of debonding for the 

relatively high stress ranges tested in this program. 

10. It is believed that a thinner and more uniform adhesive bondline was obtained with the SFRP 

system (resulting because the adhesive may be displaced through the relatively open SFRP 
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material). This may account for the marginally improved global beam behavior and the 

apparent earlier onset of debonding. 

11. The FX-776 adhesive appeared to perform well with the SFRP. No evidence of 

incompatibility or adhesive or cohesive failure in the SFRP system was observed. 

12. Similar to all bonded FRP applications, locating the termination of the SFRP close to the 

supports at each end of the beam successfully mitigated end peel debonding. 

13. With the exception of debonding mitigation (discussed in following section), the design 

guidance provided by ACI 440.2R (2002) appears to be applicable to the SFRP material 

tested.  

5.2.1 Debonding of SFRP 

Based on both the current (ACI 2002) and proposed (ACI Task Group 2006) 

recommendations for FRP strain to mitigate debonding, the SFRP tested performed poorly; 

exhibiting debonding failures at strains substantially below the limits recommended to mitigate 

debonding.  

Current and proposed recommendations include FRP properties in their limit calculations 

as the product of FRP modulus, Ef and thickness, tf. Using SFRP effective properties, Eftf is 

relatively small. Indeed, SFRP values of Eftf are comparable to those calculated for GFRP 

applications. GFRP differs from SFRP in that GFRP has a relatively low modulus and is 

relatively thicker in order to make up the value of Eftf. SFRP properties, on the other hand are 

reversed; SFRP is relatively thin and has a higher modulus. The observed difference in behavior 

between SFRP and G/CFRP suggests that the interaction between modulus and thickness is not 

sufficient to model debonding behavior. The empirically derived equations for limiting strain 
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may simply be an artifact of the fact they were generally developed using only two material 

systems, GFRP and CFRP. Additionally, most GFRP systems have very similar properties (as do 

most CFRP systems) and thus little parametric variance is considered. 

It is noted that in this present study, considering the product of SFRP modulus and area, 

Eftfbf and normalizing by the width of the CFRP application (for which the limiting strain 

equations were developed) yields an improved, and believed to be appropriate, calculation for 

limiting strain. 

5.3 RECOMMENDATIONS 

This work has shown that the current and proposed ACI recommendations for calculating 

critical strain is non-conservative when using SFRP. Some recommendations for future study 

include: 

1. Currently, equations for determining FRP stress/strain limits to mitigate debonding are 

functions of Ef and tf. SFRP has a relatively high Ef and low tf with respect to GFRP 

materials although the materials have similar Eftf values. This may be the reason SFRP 

debonding strains were apparently low in relation to established empirical equations. Future 

research should be done on FRP systems having a greater variance of material properties and 

geometries to investigate this behavior. 

2. SFRP is still relatively untested compared with GFRP or CFRP; additional testing over a 

range of parameters should be conducted to establish more definitive relationships than are 

possible in the limited study reported here.  
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3. The debonding strains reported in this work are lower bound values. This is because the 

debonding is only assessed at discrete points (the gages) and therefore the debonding strain 

during propagation rather than at initiation is recorded. Based on fracture toughness (and 

analogous to friction), it takes greater energy to initiate debonding than to propagate it. 

Because the gages are discretely located, their recorded strains reflect propagation rather than 

initiation. Future work needs to be performed that can capture the actual initiation phase of 

debonding and study how the debonding propagates. 

This study has shown how SFRP is a comparable alternative to CFRP in all ways except in 

predicting debonding failure. Improved methods and equations for predicting debonding are 

necessary since SFRP retrofits will have a greater width, bf, which is not included in any current 

debonding equations.  
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APPENDIX A 

KEY RESULTS FROM REEVE (2005) AND ZORN (2006)



Table A.1 Summary of Key Results from Reeve (2005). 

  
  C L1 L2 L2X1 L4 H1 H2 H2X1 H4 

bf/b   0 0.17 0.33 0.33 0.67 0.17 0.33 0.33 0.67 

adhesive type   na SikaDur 23 (L) SikaDur 30 (H) 

age at start of test days 144 154 157 161 228 162 163 165 170 

cracking load kips <0.66 0.62 0.66 0.63 0.75 0.55 0.64 0.64 0.65 

cracking moment kip-in <30 28 29 28 33 25 29 29 29 

load at initial yield of reinforcing kips 5.91 6.05 6.78 5.99 7.31 6.16 6.38 6.63 8.44 

moment at initial yield of reinforcing kip-in 264 270 303 267 326 275 285 296 377 

deflection at initial yield of reinforcing in 0.98 1.07 1.00 0.84 1.46 0.98 0.95 0.89 1.08 

load at general yield kips 6.96 8.12 8.61 9.08 10.68 7.94 8.80 9.20 10.44 

moment at general yield kip-in 311 363 384 405 477 355 393 411 466 

deflection at general yield in 1.18 1.35 1.32 1.35 1.49 1.32 1.36 1.30 1.40 

maximum load kips 6.98 8.96 9.96 10.23 11.65 8.47 9.79 10.15 11.07 

maximum moment kip-in 312 400 445 457 520 378 437 453 494 

deflection at max load in 1.42 2.45 2.06 2.35 2.34 2.16 1.88 1.97 1.72 

deflection at ultimate load (80% max) in 3.08 3.34 2.24 2.55 2.84 2.41 2.18 2.21 1.86 

displacement ductility   2.61 2.48 1.70 1.89 1.91 1.82 1.60 1.70 1.33 

maximum observed strain in FRP εμ na 8370 6688 7878 6595 6466 6200 6863 4813 

corresponding rebar strain εμ 15932 n.r. 13167 6620 15337 12414 14812 6004 9952 

maximum strain in FRP at time of max load εμ na 8218 6518 7872 6462 6160 6112 6853 4787 

corresponding rebar strain εμ 2759 11559 13124 6624 14422 12446 14663 6034 9947 

strain in FRP at initiation of debonding εμ na 5300 6688 7878 4540 2900 3550 3200 2850 

corresponding rebar strain εμ na 2600 n.r. n.r. 2990 2300 2680 2790 2500 
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Table A.2 Summary of Key Results from fatigue tests of Zorn (2006). 

  CF L1F L2F L2X1F L4F H1F H2F H2X1F H4F 

bf/b  na 0.167 0.333 0.333 0.667 0.167 0.333 0.333 0.667 

adhesive type  na SikaDur 23 (L) SikaDur 30 (H) 

age at start of fatigue test days 175 184 191 231 274 210 217 238 253 

cracking load kips 0.68 0.66 0.68 0.69 0.67 0.67 0.67 0.69 0.73 

cracking moment kip-in 30 29 30 31 30 30 30 31 32 

N = 2           

minimum applied load kips 1.01 1.04 1.03 1.02 1.04 1.02 1.03 1.04 1.01 

minimum applied moment kip-in 45 46 46 46 46 45 46 46 45 

deflection at minimum applied load in 0.29 0.27 0.26 0.29 0.22 0.32 0.29 0.27 0.21 

maximum rebar strain at minimum applied load με 747 717 633 622 523 700 610 633 474 

maximum FRP strain at minimum applied load με na 647 663 640 548 815 787 806 506 

maximum applied load kips 4.98 5.00 5.00 5.00 5.00 4.99 5.00 5.00 5.00 

maximum applied moment kip-in 222 223 223 223 223 223 223 223 223 

deflection at maximum applied load in 0.78 0.76 0.67 0.74 0.59 0.81 0.75 0.70 0.62 

maximum rebar strain at maximum applied load με 1950 1954 1668 1658 1393 1895 1606 1734 1351 

maximum FRP strain at maximum applied load με na 1869 1758 1778 1479 2127 1997 2089 1428 

range of applied load kips 3.98 3.96 3.98 3.98 3.96 3.98 3.97 3.96 3.99 

range of applied moment kip-in 178 177 178 178 177 178 177 177 178 

stress range in rebar ksi 34.9 35.9 30.0 30.0 25.2 34.7 28.9 31.9 25.4 

stress range in FRP ksi na 27.5 24.6 25.6 20.9 29.5 27.2 28.9 20.7 

secant stiffness kip/in 7.92 7.85 9.36 8.72 10.59 8.09 8.38 9.19 9.53 

last recorded cycle before failure (Nf)  na 400892 2000000 447695 2000000 424422 1128006 2000000 2000000 

failure mode during fatigue cycling   FIRR1 run-out FIRR1 run-out FIRR1 FIRR1 run-out run-out 
 
           

N = Nf, or N = 2000000           

minimum applied load kips na 1.12 1.00 1.02 1.00 1.02 1.01 1.00 1.00 

minimum applied moment kip-in na 50 45 45 45 46 45 45 45 
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Table A.2 (continued) 

  CF L1F L2F L2x1F L4F H1F H2F H2x1F H4F 

deflection at minimum applied load in na 0.36 0.27 0.32 0.29 0.42 0.36 0.33 0.30 

maximum rebar strain at minimum applied load με na 679 607 641 508 714 598 628 527 

maximum FRP strain at minimum applied load με na 659 638 611 518 912 832 837 556 

maximum applied load kips na 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 

maximum applied moment kip-in na 223 223 223 223 223 223 223 223 

deflection at maximum applied load in na 0.88 0.79 0.81 0.74 0.95 0.87 0.84 0.77 

maximum rebar strain at maximum applied load με na 1832 1809 1790 1511 1962 1684 1881 1505 

maximum FRP strain at maximum applied load με na 1980 1864 1819 1545 2327 2158 2279 1638 

range of applied load kips na 3.88 4.00 3.98 4.00 3.98 3.99 4.00 4.00 

range of applied moment kip-in na 173 179 178 179 178 178 179 179 

stress range in rebar ksi na 33.4 34.9 33.3 29.1 36.2 31.5 36.3 28.4 

stress range in FRP ksi na 29.7 27.6 27.2 23.1 31.8 29.8 32.4 24.3 

secant stiffness kip/in na 7.29 7.69 8.07 8.64 7.43 7.86 7.58 8.37 

a   ny N           

maximum observed strain in FRP με na 1988 1873 1819 1545 2327 2158 2285 1638 

corresponding rebar strain με na 17923 1809 1658 15112 19622 1684 1526 1263 

cycle number  na 342629 1698454 447695 2000000 424422 1128006 1820072 2000000 

strain in FRP at initiation of debonding με na n.o. n.o. n.o. n.o. n.o. n.o. n.o. 1565 

corresponding rebar strain με na n.o. n.o. n.o. n.o. n.o. n.o. n.o. 1552 

cycle number  na n.o. n.o. n.o. n.o. n.o. n.o. n.o. 118213 
1 FIRR = fatigue-induced reinforcing bar rupture 
2strain gage #2 was lost so gage #3 was reported 
3strain gage #3 was lost so gage #2 was reported 
n.o. = not observed 
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 L2F L4F H2x1F H4F 
bf/b  0.333 0.667 0.333 0.667 

adhesive type  SikaDur 23 (L) SikaDur 30 (H) 
age at start of fatigue test days 191 274 238 253 

cracking load kips 0.68 0.67 0.69 0.73 
cracking moment kip-in 30 30 31 32 

load at initial yield of reinforcing kips 6.15 7.51 5.85 7.61 
moment at initial yield of reinforcing kip-in 275 335 261 340 

deflection at initial yield of reinforcing in 0.92 1.03 0.94 1.06 
load at general yield kips 8.88 10.66 9.49 11.43 

moment at general yield kip-in 397 476 424 510 
deflection at general yield in 1.29 1.42 1.39 1.59 

maximum load kips 10.23 11.54 10.19 12.10 
maximum moment kip-in 457 515 455 540 

deflection at max load in 2.30 1.97 1.89 1.98 
deflection at ultimate load (80% max) in 2.65 2.38 2.02 2.07 

displacement ductility  2.06 1.68 1.45 1.30 
maximum observed strain in FRP με 7444 5807 6970 5860 

corresponding rebar strain με 3238 9916 13039 10885 
maximum strain in FRP at time of max load με 7322 5180 6875 5860 

corresponding rebar strain με 4171 9897 13664 10885 
strain in FRP at initiation of debonding με 4301 3854 3909 3260 

corresponding rebar strain με 2898 2706 2767 2767 

Table A.3 Summary of Key Results from run-out monotonic tests of Zorn (2006). 

  93

 



REFERENCES 

American Concrete Institute (ACI) Committee 440 (2002). ACI 440.2R-02 Guide for the Design 
and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. 
45pp. 
 
American Concrete Institute (ACI) Committee 440 Task Group on Bond of Externally Bonded 
FRP (2006). Current Recommendations and Guidelines for Mitigating Debonding Failures in 
Adhesively Bonded, Externally Applied FRP Applications. (K. Harries, chair) Committee Report. 
 
Barton, B., Wobbe, E., Dharani, L.R., Silva, P., Birman, V., Nanni, A., Alkhrdaji, T., Thomas, J., 
and Tunis, G. (2005). “Characterization of reinforced concrete beams strengthened by steel 
reinforced polymer and grout (SRP and SRG) composites.” Materials Science and Engineering 
A, Vol. 412, No. 1, pp 129-136. 
 
Casadei, P., Nanni, A., Alkhrdaji, T., and Thomas, J. (2005). “Performance of Double-T 
Prestressed Concrete Beams Strengthened with Steel Reinforced Polymer.” ACI Special 
Publication, Volume SP-230-44, pp 763-778. 
 
Casadei, P., Nanni, A., and Ibell, T. (2005). “Development and Validation of Steel Reinforced 
Polymer (SRP) for Strengthening of Transporation Infrastructures.” University of Missouri-Rolla 
Center for Infrastructure Engineering Studies, UTC R94, 64pp. 
 
Comité Euro-International du Beton (1990). CEB/FIB Model Code 1990. Thomas Telford, 
London. 437pp. 
 
Figeys, W., Schueremans, L., Brosens, K., and Van Gemert, D. (2005). “Strengthening of 
Concrete Structures using Steel Wire Reinforced Polymer.” ACI Special Publication, Volume 
SP-230-43, pp 743-762. 
 
Fox Industries Engineered Products (2002). Technical Product Data Sheet. 
http://www.foxind.com/datasheet.asp?sheet=231, accessed December 1, 2005. 
 
Fyfe Company LLC (2005). Technical Product Data Sheet. 
http://www.fyfeco.com/products/misc.html, accessed December 1, 2005. 
 
Gallagher, Brian (2005). “Restoring Our Heritage”, Revitalization Magazine, May 2005, pp 11-
13. 

  94

http://www.foxind.com/datasheet.asp?sheet=231
http://www.fyfeco.com/products/misc.html


 
Hardwire. (2002). “What is Hardwire?”, www.hardwirellc.com, Pocomoke City, Maryland. 
 
Harries, K.A. and J. Aidoo (2005). “Deterioration of FRP-to-Concrete Bond Under Fatigue 
Loading.” International Symposium on Bond Behaviour of FRP in Structures, Hong Kong, 
International Institute for FRP in Construction, 2005. 
 
Harries, K.A., Zorn, A., Aidoo, J. and Quattlebaum, J., (2007). Deterioration of FRP-to-Concrete 
Bond Under Fatigue Loading. Advances in Structural Engineering Special Issue on Bond 
Behaviour of FRP in structures (in press). 

 
Harries, K.A., Zorn, A., and Reeve, B. (2006). “Effect of Adhesive Modulus on the Monotonic 
and Fatigue Behavior of Externally Bonded CFRP Strips”, Proceedings of the Third 
International Conference on FRP Composites in Civil Engineering (CICE 2006), December 13-
15 2006, Miami, Florida, USA, paper #26. 

 
Heffernan, P.J. (1997). Fatigue Behaviour of Reinforced Concrete Beams Strengthened with 
CFRP Laminates, Ph.D. Dissertation, Department of Civil Engineering, Royal Military College 
of Canada, Kingston, Ontario. 
 
Helgason, T. and Hanson, J.M. (1974). “Investigation of Design Factors Affecting Strength of 
Reinforcing Bars-Statistical Analysis”, Abeles Symposium on Fatigue of Concrete, SP-41 ACI, 
pp 107-138. 
 
Huang, X., Birman, V., Nanni, A., and Tunis, G. (2005). “Properties and Potential for 
Application of Steel Reinforced Polymer and Steel Reinforced Grout Composites.” Composites 
Part B: Engineering, Volume 36, Issue 1, pp 73-82. 
 
International Concrete Repair Institute (1997). Concrete Surface Profile Chips. ICRI, Sterling, 
VA. 
 
Kim, Y.J., Fam, A., Kong, A., and El-Hacha, R. (2005). “Flexural Strengthening of RC Beams 
Using Steel Reinforced Polymer (SRP) Composites.” ACI Special Publication, Volume SP-230-
93, pp 1647-1664. 
 
Lopez, A., and Nanni, A. (2005). “Strengthening of a Reinforced Concrete Bridge with 
Externally Bonded Steel Reinforced Polymer”, FRP International, Volume 2, Issue 3, pp 15-18. 
 
Lu, B., Silva, P., Nanni, A., and Baird, J. (2005). “Retrofit for Blast-Resistant RC Slabs with 
Composite Materials.” ACI Special Publication, Volume SP-230-76, pp 1345-1360. 
 
Mallet, G. (1991). Fatigue of Reinforced Concrete. Transportation and Road Research 
Laboratory (TRRL) State of the Art Review / 2, London, U.K. 
 

  95

http://www.hardwirellc.com/


Matana, M., Galecki, G., Maerz, N., Nanni, A. (2005). “Concrete Substrate Preparation and 
Characterization Prior to Adhesion of Externally Bonded Reinforcement.” International 
Symposium on Bond Behaviour of FRP in Structures, Hong Kong, pp 133-139. 
 
Matana, M., Nanni, A., Dharani, L., Silva, P., and Tunis, G. (2005). “Bond Performance of Steel 
Reinforced Polymer and Steel Reinforced Grout.” International Symposium on Bond Behaviour 
of FRP in Structures, Hong Kong, pp 125-132. 
 
Moss, D.S. (1980). “Axial Fatigue of High Yielding Reinforcing Bars in Air,” Transport and 
Road Research Laboratory, Report SR622. 
 
Oehlers, D.J. (2005). “Generic Debonding Mechanisms in FRP Plated Beams and Slabs”, 
Proceedings of the International Symposium on Bond Behavior of FRP in Structures, December 
7-9, 2005, Hong Kong, pp 561-566. 
 
Pecce, M., Ceroni, F., Prota, A., and Manfredi, G. (2006). “Response Prediction of RC Beams 
Externally Bonded with Steel-Reinforced Polymers.” ASCE Journal of Composites for 
Construction, Vol. 10, No. 3, pp 195-203. 
 
Prota, Al, Tan, K., Nanni, A., Pecce, M., and Manfredi, G. (2006). “Performance of RC Shallow 
Beams Externally Bonded with Steel Reinforced Polymer.” ACI Structural Journal, Vol. 103, 
No. 2, pp 163-170. 
 
Quattlebaum, J.B. (2003). Comparison of Three CFRP Flexural Retrofit Systems under 
Monotonic and Fatigue Loads, MS Thesis, University of South Carolina Department of Civil 
and Environmental Engineering, Columbia, SC. 
 
Reeve, B.Z. (2005). Effect of Adhesive Stiffness and CFRP Geometry on the Behavior of 
Externally Bonded CFRP Retrofit Measures Subject to Monotonic Loads. MS Thesis, University 
of Pittsburgh Department of Civil and Environmental Engineering, December 2005. 
 
Sika Corporation (2005). Technical Product Data Sheet. 
http://www.sikaconstruction.com/con/con-prod-name.htm#con-prod-Sikadur23LoModGel, 
accessed December 1, 2005. 
 
Steel-Belted Reinforcement Product Meets Blast-Resistance Need. (2004). Journal of Failure 
Analysis and Prevention, Vol. 4, No. 6. 
 
Teng, J.G., Smith, S.T., Yao, J. and Chen, J.F. (2001). “Intermediate Crack Induced Debonding 
in RC Beams and Slabs,” Construction and Building Materials, Vol. 17, No. 6-7, pp 447-462. 
 
Teng, J.G., Lu, X.Z., Ye, L.P. and Jiang, J.J. (2004). “Recent Research on Intermediate Crack 
Induced Debonding in FRP Strengthened Beams.” Proceedings of the 4th International 
Conference on Advanced Composite Materials for Bridges and Structures, Calgary 2004. 
 

  96

http://www.sikaconstruction.com/con/con-prod-name.htm#con-prod-Sikadur23LoModGel


Tilly, G.P., and Moss, D.S. (1982). “Long Endurance Fatigue of Steel Reinforcement”, IABSE 
Reports, International Association for Bridge and Structural Engineering, 37, Zurich, 
Switzerland, pp 229-238. 

 
Timoshenko, S.P and Goodier, J.N. (1987 reissue) Theory of Elasticity, 3rd edition. 

 
Wobbe, E., Silva, P., Barton, B.L., Dharani, L.R., Birman, V., Nanni, A., Alkhrdaji, T., Thomas, 
J., and Tunis, G. (2004). “Flexural Capacity of RC beams externally bonded with SRP and SRP”, 
Proceedings of the Society for the Advancement of Materials and Process Engineering, 
Symposium, Long Beach, CA. 
 
Zorn, A. (2006). Effect of Adhesive Stiffness and CFRP Geometry on Behavior of Externally 
Bonded CFRP Retrofit Measures Subject to Fatigue Loads. MS Thesis, University of Pittsburgh 
Department of Civil and Environmental Engineering, March 2006. 
 

  97


	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Chapter 2 Tables
	Table 2.1 Measured concrete and reinforcing steel material properties.
	Table 2.2 Manufacturer reported material properties of CFRP and SFRP.
	Table 2.3 Manufacturer reported material properties of adhesive systems used.
	Table 2.4 Cycle numbers (N) at which data was recorded.
	Table 2.5 Stress range (S) and cycles to failure (N) observations and predictions.
	Table 2.6 Matrix of comparable specimens.

	Chapter 3 Tables
	Table 3.1 Summary of Fatigue Data.
	Table 3.2 Summary of Monotonic Data.

	Chapter 4 Tables
	Table 4.1 Analysis of key results summary for monotonic and runout specimens.
	Table 4.2 Measures of fatigue behavior.

	Appendix Tables
	Table A.1 Summary of Key Results from Reeve (2005).
	Table A.2 Summary of Key Results from fatigue tests of Zorn (2006).
	Table A.3 Summary of Key Results from run-out monotonic tests of Zorn (2006).


	LIST OF FIGURES
	Chapter 1 Figures
	Figure 1.1 Example of fatigue conditioning deterioration of CFRP
	Figure 1.2 Different arrangements of the steel wires.
	Figure 1.3 SFRP sheets.
	Figure 1.4 Epoxy vs. grout, nail anchorage, and multiple layers. 
	Figure 1.5 Load vs. deflection comparison for U-wrap specimen.
	Figure 1.6 Differences in changing SFRP width vs. adding SFRP layer.
	Figure 1.7 Example of end peel debonding 
	Figure 1.8 Use of SFRP on double T prestressed beams. 
	Figure 1.9 Typical bridge span stiffening with use of SFRP.
	Figure 1.10 Results of retrofitted slabs after blast. 

	Chapter 2 Figures
	Figure 2.1 Test specimen details.
	Figure 2.2 Retrofit details.
	Figure 2.3 SFRP sheet and cord.
	Figure 2.4 Test set-up.
	Figure 2.5 Instrumentation for specimens.

	Chapter 3 Figures
	Figure 3.1 Test Specimens SC and C.
	Figure 3.2 Specimens S4F, SC, and C.
	Figure 3.3 Specimens S4.75F, SC, and C.
	Figure 3.4 Specimens S5.5F, SC, and C.
	Figure 3.5 Midspan deflection accumulation curves.
	Figure 3.6 Strain accumulation curves for Specimen S4F (shifted vertically 2000 με).
	Figure 3.7 Strain accumulation curves for Specimen S4.75F (shifted vertically 2000 με).
	Figure 3.8 Strain accumulation curves for Specimen S5.5F (shifted vertically 2000 με). 
	Figure 3.9(a) Load-strain behavior for Specimen SC (shifted horizontally).
	Figure 3.9(b) Test Specimen SC – North strain gages (9), (10), and (5).
	Figure 3.9(c) Test Specimen SC – South strain gages (8), (11), and (12).
	Figure 3.10 Load-strain behavior for Specimen S4F (shifted horizontally).
	Figure 3.11 Shear crack of Specimen SC (east side).
	Figure 3.12 Debonding at toe of shear crack, Specimen SC (west side).
	Figure 3.13 Shear crack on Specimen S4F (west side).
	Figure 3.14 Debonding at toe of shear crack, Specimen S4F (west side).
	Figure 3.15 Specimen S4.75F after reinforcing bar rupture (west side).
	Figure 3.16 Fatigue-induced reinforcing bar rupture, Specimen S4.75F.
	Figure 3.17 Specimen S5.5F after reinforcing bar rupture (west side).
	Figure 3.18 Fatigue-induced reinforcing bar rupture, Specimen S5.5F.

	Chapter 4 Figures
	Figure 4.1 Load vs. deflection for monotonic tests.
	Figure 4.2 SFRP vs. CFRP, general yield load.
	Figure 4.3 SFRP vs. CFRP, maximum load capacity.
	Figure 4.4 SFRP vs. CFRP, deflection at maximum load.
	Figure 4.5 SFRP vs. CFRP, ductility deflection.
	Figure 4.6 SFRP vs. CFRP, strain at apparent initiation of debonding.
	Figure 4.7 S-N data determined at N=2 and N=Nf for SFRP and CFRP.
	Figure 4.8 S-N data for SFRP specimens with database compiled by Zorn (2006).
	Figure 4.9 SFRP vs. CFRP, effect on fatigue stress range at N = 2.
	Figure 4.10 S-N data comparing different adhesives.
	Figure 4.11 Stiffness degradation with fatigue cycling for SFRP specimens.
	Figure 4.12 SFRP vs. CFRP, stiffness degradation with fatigue cycling.
	Figure 4.13 Load vs. deflection for all runout specimens.
	Figure 4.14 Strain vs. Eftf.


	NOMENCLATURE
	ACKNOWLEDGMENTS
	1.0  INTRODUCTION AND LITERATURE REVIEW
	1.1 INTRODUCTION
	1.2 OBJECTIVE
	1.3 SCOPE OF REPORT
	1.4 LITERATURE REVIEW
	1.4.1 Description of SFRP Material
	1.4.1.1 Bonding Matrix

	1.4.2 Mechanical Anchorage
	1.4.3 Use of SFRP U-wraps
	1.4.4 Geometry of SFRP Retrofit
	1.4.4.1 Different Cord Types
	1.4.4.2 Applying FRP Materials in Varying Widths and Layers

	1.4.5 SFRP vs. CFRP
	1.4.6 Field Applications of SFRP
	1.4.6.1 SFRP Use on Double-Tee Prestressed Concrete Beams
	1.4.6.2 SFRP Use on Reinforced Concrete Bridge
	1.4.6.3 SFRP Use in Restoration of Historic Theatre

	1.4.7 SFRP Use in Blast Resistant Design
	1.4.8 Conclusions from Reeve (2005)
	1.4.9 Conclusions from Zorn (2006)


	2.0  EXPERIMENTAL PROGRAM
	2.1 REINFORCED CONCRETE BEAM TEST SPECIMENS
	2.2 RETROFIT MEASURES
	2.3 APPLICATION OF SFRP TO THE TEST SPECIMENS
	2.3.1 Concrete Surface Preparation
	2.3.2 Preparation of the Retrofit Material
	2.3.3 Application of the Retrofit Material

	2.4 SPECIMEN DESIGNATION
	2.5 TEST SETUP
	2.6 INSTRUMENTATION
	2.7 TEST PROCEDURE
	2.7.1 Selection of Fatigue Load Levels
	2.7.2 Fatigue Run-out Specimens

	2.8 SUMMARY OF COMPARABLE TESTS

	3.0  TEST RESULTS AND TYPICAL SPECIMEN BEHAVIOR
	3.1 TEST RESULTS
	3.2 SPECIMEN BEHAVIOR
	3.2.1 Specimen SC
	3.2.2 Specimen S4F
	3.2.3 Specimen S4.75F
	3.2.4 Specimen S5.5F


	4.0  DISCUSSION OF EXPERIMENTAL RESULTS
	4.1 COMPARISON OF MONOTONIC TEST SPECIMENS
	4.2 COMPARISON OF FATIGUE TEST SPECIMENS
	4.2.1 Stress Range “Drift”
	4.2.2 Secant Stiffness

	4.3 COMPARISON OF FATIGUE RUN-OUT SPECIMENS
	4.3.1 Effect of Fatigue Cycling on Debonding Strain
	4.3.2 Effect of Fatigue Cycling on Other Parameters

	4.4 PREDICTED DEBONDING BEHAVIOR

	5.0  SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
	5.1 SUMMARY OF TEST PROGRAM
	5.2 CONCLUSIONS
	5.2.1 Debonding of SFRP

	5.3 RECOMMENDATIONS

	APPENDIX A
	REFERENCES

