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Dendritic cells (DC) are professional antigen presenting cells bridging the innate and adaptive 

immune systems by detecting pathogen- and- damage associated molecular pattern (PAMP, 

DAMP) molecules.  This triggers maturation and migration to regional lymph nodes where they 

stimulate T lymphocytes.  In tissues normally exposed to relatively high level of PAMP 

molecules, such as the liver, DC have a higher threshold to stimulation and therefore maintain an 

immature phenotype under conditions that would normally stimulate DC maturation. In these 

studies we tested the hypothesis that interleukin-6(IL-6)/Signal Transducer and Activation of 

Transcription-3(STAT3) activity increases the activation/maturation threshold of hepatic and 

bone marrow (BM) DC towards innate immune signals.   

Results show that liver nuclear STAT3 activity is significantly higher than other organs 

and is IL-6-dependent.  Hepatic DC in normal wild-type (IL-6+/+) mice are phenotypically and 

functionally less mature than DC from IL-6-deficient (IL-6-/-) or STAT3 inhibited IL-6+/+ mice, 

as determined by surface marker expression, pro-inflammatory cytokine secretion, and allogenic 

T-cell stimulation.  IL-6+/+ liver DC produce IL-6 in response to exposure to PAMPs, but resist 

maturation compared to IL-6-/- liver DC.  Conversely, exogenous IL-6 inhibits LPS-induced IL-

6-/- liver DC maturation. Oral antibiotic depletion of commensal gut bacteria in IL-6+/+ mice 

decreased portal blood endotoxin levels, lowered IL-6/STAT3 activity and significantly 

increased liver DC maturation.   
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BM derived IL-6+/+DC with elevated STAT3 activity are also significantly less mature 

than IL-6-/- BMDC.  Blocking STAT3 activity increases maturation in IL-6+/+ BMDC but not in 

IL-6-/- BMDC.  IL-6+/+ BMDC cultured in the presence of elevated IL-6 conditions further 

decreases maturation and can be reversed by IL-6 neutralization.  Compared to IL-6-/- BMDC, 

IL-6+/+ BMDC significantly resisted maturation in response to low concentrations of the PAMP 

molecules.  At higher concentrations of these same ligands stimulation of both IL-6+/+ and IL-6-/- 

BMDC induced maturation. 

In conclusion, elevated IL-6/STAT3 activity raises the threshold needed for DC to 

translate triggers of innate immunity into adaptive immune responses.  In the liver, gut-derived 

bacterial products stimulate hepatic IL-6/STAT3 signaling thereby inhibiting hepatic DC 

activation/maturation.  Manipulating gut bacteria or IL-6/STAT3 activity may therefore be an 

effective strategy to alter intra-hepatic immune responses. 
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1.0  INTRODUCTION 

The ability to translate triggers of innate immunity in peripheral organs and tissues into adaptive 

immune responses in lymphoid tissues is critical for the protection of organs and organisms from 

immunological threats.  The cells that perform this task are essential for preventing infection and 

limiting damage, but they also must be tightly regulated as to prevent inappropriate responses to 

innocuous stimuli that could cause unnecessary, persistent inflammation.  Dendritic cells (DC) 

are antigen-presenting effector cell stimulators that can also induce tolerance.  However, the 

mechanisms controlling DC maturation are unclear.  This dissertation will focus on the 

regulation of DC maturation by signaling through the cytokine IL-6, thereby setting a maturation 

threshold that must be overcome in order to generate an adaptive immune response.  

1.1 DENDRITIC CELLS 

 

Dendritic cells (DC) are the most potent, professional antigen presenting cells (APC) in the body 

bridging the innate and adaptive immune systems and also inducing tolerance (1-3).  DC arise 

from bone marrow (BM) derived hematopoietic precursor cells (4-8).  These DC precursors enter 

peripheral organs and lymphoid tissue from the circulation where they develop into immature 

migratory or resident lymphoid DC, respectively (9-11).  Additionally, monocytes can function 
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as DC precursors cells by extravasating into inflamed tissues and differentiating into DC (11-14).  

Immature DC are remarkable capturers of potential antigenic material in peripheral tissues and, 

as APC, mature DC can efficiently present antigen to T cells in the lymph nodes.  In fact, DC are 

10 to 100 times better T cell stimulators than other APC, including monocytes and B cells (15).  

At the same time, unstimulated, immature DC can induce tolerance in T cells (3, 16). 

1.1.1 Dendritic Cell Subsets 

DC can be divided into several subtypes (9, 17, 18).  The simplest groupings distinguish normal 

mouse DC in the steady state into pre-cursor DC (pre-DC) or conventional DC (cDC).  The 

steady state refers to the immune system of a normal, specific pathogen-free mouse kept in 

barrier conditions (9).  Pre-DC do not have DC function or morphology, but can develop into DC 

without cell division.  This typically occurs once a progenitor cell has left the bone marrow and 

entered the blood or peripheral tissues (9).  Examples of pre-DC include immature plasmacytoid 

DC (pDC) and monocytes.  cDC are functional DC, acting as sentinels in peripheral tissues and 

APC in the lymph nodes.  In the mouse several different subtypes of cDC exist, with almost all 

identified by expression of the αX integrin, CD11c (19). The additional expression of B220 and 

Gr1 identifies pDC from cDC (20).  An exception to this, however, are the liver lymphoid-

related DC expressing CD205 and B220 but not CD11c (21).  

In humans continually exposed to immunological insults, a steady state akin to that in 

mice might not be possible, and this might be why identifying human DC subsets to the extent 

that has been performed in mice has been difficult.  Only two human DC subtypes have been 

identified: myeloid DC expressing CD11c+CD14-CD1a+ and pDC with a cell surface profile of 

CD11c-BDCA2+CD123+ (17, 22).   
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Mouse cDC have been separated based on cell surface expression, location and function 

(9, 17).  Lymphoid tissue cDC can be distinguished based on the expression of CD8α and 

CD11b as lymphoid (CD8α+ CD11b-) and myeloid (CD8α- CD11b+) DC subsets (23-25).  CD4 

expression has also been used to distinguish subsets of mouse cDC (23).  The resident cDC in 

lymphoid organs typically remain there throughout their lifespan.  cDC in peripheral, non-

lymphoid, tissues are migratory cells.  They exist as immature DC in peripheral tissues and 

transit to the lymph nodes via the lymphatics upon maturation.  The cell surface expression 

profile of migratory DC in peripheral tissues mimics that of resident lymphoid tissue DC with 

both CD8α+ CD11b- lymphoid and CD8α- CD11b+ myeloid subsets identified (9).  However, the 

function of migratory DC is greatly influenced by their resident tissue microenvironment.  For 

instance, the function of DC from human skin have greater allostimulatory and reduced IL-10 

secretion than liver DC (26). 

pDC exist as pre-DC in the steady state and, upon activation, acquire the morphology and 

phenotype of mature DC, including stimulating T-cell proliferation and cytokine production, 

especially type-I interferons (20, 27).  pDC are activated predominantly upon detection of viral 

particles or bacterial and viral unmethylated cytidine phosphate guanosine (CpG) containing 

DNA or oligonucleotides via toll-like receptor (TLR) 7 and 9 ligation (28-30).  In contrast to 

mature pDC, immature pDC are poor stimulators of T-cell proliferation, rather they induce 

anergic T cells secreting the anti-inflammatory cytokine IL-10 (31).  Additionally, CpG 

stimulated pDC have been reported to stimulate the generation of IL-10 secreting CD4+CD25+ 

regulatory T cells (32).  

A final class of cDC arise from monocytes during inflammation and these DC are aptly 

referred to as inflammatory DC (9, 11-13, 18, 33).  These DC can be distinguished by the 
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expression of CD11b in the absence of CD8α and CD4 (11).  Inflammatory DC are typically not 

observed in the lymphoid tissues during the steady state, but do migrate to lymph nodes in the 

course of inflammation (11).  However, DC expressing CD11b have been identified in non-

lymphoid organs, including the livers of normal mice in the absence of inflammation (34).  

Lastly, the most common in vitro model of DC using BM cells cultured with GM-CSF and IL-4 

generate DC that closely resemble inflammatory DC (35). 

1.1.2 Dendritic Cells as Sentinels  

In peripheral tissues, immature DC serve the essential roles of sampling the tissue environment 

and detecting potential innate pathogenic antigen.  If “danger” is detected, DC translate this 

innate message to the cells of the adaptive immune system so an appropriate, specific immune 

response can be mounted.  This process is depicted in Figure 1 and detailed below. 
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Figure 1.  A simplified scheme for DC development and maturation.  DC precursors enter peripheral tissues 
becoming immature DC with elevated antigen capturing ability, anti-inflammatory cytokine (e.g. IL-10), and 
decreased T cells stimulation capacity.  Upon recognition of an innate stimulus, such as PAMPs, DAMPs, or 
pro-inflammatory cytokines, DC are induced to mature.  Following chemokine mediated migration to the 
lymph nodes, DC can generate an adaptive response stimulating T cells. 

 

 

 

1.1.2.1 Antigen Capture 

In tissues of peripheral organs, immature migratory DC are the most common DC type and act as 

sentinels for innate immune triggers.  This is accomplished by their ability to capture, engulf, and 

process endogenous and exogenous antigenic material.  Uptake of putative antigen occurs 

through several mechanisms including phagocytosis, macropinocytosis, and receptor mediated 

endocytosis using C-type lectin receptors (mannose receptor, DEC-205) and Fcγ receptors 

(CD64, CD32) (1).  The multiple mechanisms possessed by DC for capturing antigen ensures a 

broad sampling of the tissue microenvironment for potential antigenic material.   
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1.1.2.2 Detection of Innate Immunity Stimulators 

Immature DC are armed with multiple ways to identify and respond to stimulators of innate 

immunity.  These include detecting both exogenous pathogen associated molecular pattern 

(PAMP) molecules and endogenous damage associated molecular pattern (DAMP) molecules.  

Multiple types of immunostimulatory PAMP and DAMP molecules have been identified.  

Examples of PAMP molecules include bacterial and viral products such as bacterial cell wall 

components (lipopolysaccharide (LPS), peptidoglycans (PGN), pathogenic lipoproteins), 

Flagellin, fungal zymosan, bacterial and viral CpG containing DNA, and single and double 

stranded viral RNA (including polyinosinic–polycytidylic acid (poly I:C)).  

 DAMP molecules are endogenous molecules released from cells following disruption of 

the plasma membrane typically during necrotic cell damage.  They can also be the by-products of 

degraded extracellular molecules.  In normal circumstances, DAMP molecules are intracellular 

or extracellular molecules with physiological roles.  However, the ectopic expression of these 

molecules can be immunostimulatory.  Examples include the extracellular expression of high 

mobility group box-1 protein (HMGB-1), heat shock proteins, IL-1α, IL-18, uric acid, ATP and 

S100 proteins (36-38).  Additionally, degraded extracellular matrix including heparin sulfate and 

hyaluronan act as DAMP molecules (39).  Collectively, these endogenous or exogenous triggers 

of innate immunity and tissue injury have been termed “alarmins” (40).   

PAMP and DAMP molecules are detected by pattern recognition receptors (PPR).  These 

proteins are located either on the cell surface, in endosomes and lysosomes, or in the cytosol of 

DC (40).  A summary of PRR molecules and their ligands is summarized in Table 1.   
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Table 1.  Pattern recognition receptors (PRR) and their PAMP and DAMP ligands. 

PRRa 
Family 

Receptor Ligands PRR 
Family 

Receptor Ligands 

TLRb   RLRg   
 TLR1 Triacyl lipopeptides  RIG-I dsRNA 

ssRNA 
 TLR2 Lipoprotein/lipopeptides 

Peptidoglycan 
Lipoteichoic acid 
Atypical LPSc 

Zymosan 
Glycoinositolphospholipids 
Glycolipids 
Heat Shock Protein 70 
Hyaluronan 
HMGB-1d

 MDA dsRNA 
poly I:C 
 

 TLR3 dsRNA 
poly I:Ce

NLRh   

 TLR4 Lipopolysaccharide 
Heat shock protein 60 
Heat shock protein 70 
Lipoteichoic acid 
Fibronectin 
Hyaluronan 
HMGB-1 

 NOD1i Meso-
diaminopimelic acid 

 TLR5 Flagellin  NOD2 Muramyl dipeptide 
 TLR6 Diacyl lipopeptides 

Lipoteichoic acid 
Zymosan 

 NALP3j Muramyl dipeptide 
Bacterial RNA 
ATP 
Uric Acid 
 

 TLR7 ssRNA RAGEk   
 TLR8 ssRNA  RAGE HMGB-1 

S100 proteins 
 

 TLR9 Unmethylated CpGf DNA 
Chromatin IgG complex 

P2 
Receptors

  

 TLR10 Unknown  P2X ATP 
 TLR11 Uropathogenic bacteria 

 
 P2Y ATP 

a PRR: pattern recognition receptor; b TLR: toll-like receptor; c LPS: lipopolysaccharide; d HMGB-1: high mobility 
group box-1; e poly I:C: polyinosinic–polycytidylic acid; f CpG: cytidine phosphate guanosine; g RLR: RIG-I like 
receptor; h NLR: NOD-like receptors; i NOD: nucleotide oligomerization domain; j NALP3: NACHT domain-
,leucine-rich-repeat-, and PYD containing protein 3; k RAGE: receptor of advanced glycation end products.  The 
material in this table was complied from the references (38, 40-45). 
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The number of PRR families that bind PAMP or DAMP molecules has recently been 

expanded.  Historically, PAMP molecules were thought to be principally detected by the toll-like 

receptors (TLR) (41).  These evolutionarily conserved proteins were first identified in 

Drosophila as critical molecules for development and subsequently implicated in anti-fungal 

responses (46).  However, additional PRR molecules were found to participate in the recognition 

of PAMP and DAMP molecules including nucleotide oligomerization domain (NOD)-like 

receptors (NLR) (45), retinoid acid inducible protein-I (RIG-I) like receptors (RLR) (43, 44), the 

receptor of end stage glycation-products (RAGE) (40), and P2 Receptors (47).   

Different PRR recognize PAMP and DAMP molecules in specific intracellular 

compartments or extracellularly.  For instance, TLRs recognize PAMP or DAMP molecules 

either at the cell surface or in the lysosomal or endosomal compartments (42).  Alternatively, 

NLR and RLR proteins detect bacterial and viral pathogens, respectively, in the cytosol (42).  

Cell surface RAGE can detect a host of DAMP molecules and P2 receptors sense extracellular 

ATP.  These PRR provide an additional measure of detection for PAMP and DAMP molecules 

and may be responsible for producing an innate response in cells not expressing other PRR 

molecules.  Immature DC also can be activated by endogenously produced cytokines (IFNα/β, 

TNFα (48)) and signaling molecules (CD40 ligand (49)).  

Binding of PAMP and DAMP molecules to PRR initiates signaling through multiple 

intracellular signaling cascades.  Most PRR signaling culminates with the activation of the 

transcription factor NFκB, including TLR, NLR, RLR and RAGE. PRR-NFκB signaling is 

primarily responsible for transcription of pro-inflammatory genes (40-42, 50).  Additionally, the 

Interferon Response Factor (IRF)-3 and -7 are also activated upon viral RNA detection by TLRs 
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and RLRs and lead to the transcription of IFNα/β genes along with other cytokines (42).  

Detection of intracellular bacteria by NLR family members activates Caspase-1, in addition to 

NFκB, and this is responsible for the cleavage of pro-IL-1β into the active, mature IL-1β (45).   

The signal transduction after TLR ligand stimulation has been studied in depth.  Ligand 

binding to most TLR members recruits a complex containing MyD88 and interleukin-1 receptor 

associated kinase (IRAK)-4 allowing for the phosphorylation of IRAK-1 and the binding of 

tumor necrosis factor receptor associated factor (TRAF)-6 (41, 50).  TRAF-6 and phospho-

IRAK-1 can then leave the membrane TLR-MyD88 complex and associate with transforming 

growth factor β activated kinase (TAK)-1 and TAK1 binding protein-1 (TAB1) and TAB2.  This 

leads to the phosphorylation and subsequent ubiquitination of IκB allowing NFκB to translocate 

to the nucleus to stimulate gene transcription.  Additionally, TLR activation of TRAF-6 can also 

induce nuclear translocation of IRF-5 and the TAK1 stimulation of JNK and p38 MAP Kinase 

activation leading to pro-inflammatory cytokine production (41, 50). 

TLR signaling can be controlled by negative regulation of intracellular signaling and 

extracellular molecules.  Many of these molecules are present only after an initial PAMP 

stimulation and represent a negative feedback to prevent continued inflammation or induce 

endotoxin tolerance (51).  For instance, elevation of IRAK-M after LPS treatment can inhibit the 

dissociation of IRAK-1 from IRAK-4 thereby preventing downstream activation of TRAF-6 

during subsequent exposure to LPS (52, 53).  Additionally, a truncated alternative splice variant 

of MyD88, MyD88 short (MyD88s) is expressed after LPS exposure in monocytes and cannot 

bind to IRAK-4 (54).  Both ST2 and SIGIRR can bind to intracellular regions of TLRs and 

interfere with their inability to either recruit intracellular adaptor molecules or facilitate TLR 

signaling (55, 56).  Expression of these factors might be the basis for endotoxin tolerance. 
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1.1.3 Dendritic Cell Maturation 

DC undergo maturation upon stimulation by PAMP or DAMP molecules.  This is phenotypically 

characterized as reduced phagocytosis and increased chemokine mediated migration to lymph 

nodes where effector cell stimulation can occur.  DC migration is typically dependent on the 

increased expression of the chemokine receptor CCR7 which detects CCL19 and CCL21, two 

chemokines critical for migration to the lymph nodes (57, 58).  CCL21 is constitutively 

expressed by the lymphatic endothelial cells in peripheral tissues and the high endothelial 

venules in the lymph nodes, while CCL19 is produced by stromal cells in the T cell area of the 

lymph nodes (59-61).   

Effector cell stimulation by mature DC is facilitated by increased cell surface expression 

of molecules used in antigen presentation, co-stimulation and cell-cell adhesion.  The major 

histocompatibility complex (MHC) class I and II molecules present antigen engulfed by DC 

while in the immature state.  Upon DC maturation, intracellular MHC class II molecules are 

rapidly expressed on the cell surface.  This allows phagocytosized extracellular antigen to be 

presented to CD4+ T cells.  MHC class I molecules primarily present endogenous cytosolic 

proteins to CD8+ T cells.  However, DC are among the few cell types able to cross-present 

exogenous antigen engulfed by the cells on MHC class I molecules (62-65).  Antigen in the 

endosomes or phagosomes can be released into the cytosol for proteosomal processing and 

subsequent expression on MHC class I complexes.  Antigen loading onto MHC class I 

complexes can occur in the endoplasmic reticulum (ER) or in phagosomes which have fused 

with the ER and contain the machinery necessary for antigen loading on MHC class I complexes 

(62-65).  Thus, DC can also stimulate CD8+ T cells with both endogenous and extracellular 

antigens.   
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Mature DC also express adhesion molecules that help maintain interaction with T cells 

and co-stimulatory molecules that reinforce the MHC-TCR stimulation.  The most notable co-

stimulatory molecules come from the B-7 family of proteins and include CD80 and CD86 (66-

68).  These cell surface proteins can interact with CD28 molecules on T cells, providing an 

activating signal to T cells.  However, CD80 and CD86 can also bind to CTLA-4, when 

expressed on T cells thereby competing with CD28 for B-7 protein binding and, more 

importantly, providing a negative signal inhibiting T cell activation (69, 70).  DC also express 

CD40 that can produce a reinforcing stimulus to DC upon binding with the CD40 ligand on T 

cells.  DC maturation stimulates pro-inflammatory cytokine secretion, including IL-2, IL-12, IL-

4, IFNα, IFNβ, IFNγ, TNFα and IL-1β, which provide growth factors for T cells along with the 

ability to influence T cell polarization (1, 2).   

Mature DC can, therefore, provide three essential signals during the activation of T cells 

(71).  Signal 1 provides the antigen specific MHC–T cell receptor stimulation, while Signal 2 is 

the co-stimulatory CD80 or CD86 interaction with CD28.  Finally, cytokine secretion by DC 

influences the T cell polarization is termed Signal 3.  This enables DC to stimulate antigen 

specific adaptive immune responses in lymphoid organs.  

1.1.4 Tolerogenic Dendritic Cells 

Unstimulated DC from peripheral tissues can induce tolerance (3, 16).  Innocuous endogenous 

proteins and apoptotic cells are taken up and presented as potential antigen in lymph nodes by 

immature DC (72).  However, immature DC are poor APC and do not stimulate T cell 

proliferation, rather they induce T cell anergy and deletion (73, 74).  This is consistent with the 

contribution of DC to the elimination of self-reactive T cells in the thymus during negative 
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selection process of central tolerance (16, 75).  Tolerogenic DC also influence immune responses 

by secreting anti-inflammatory cytokines, such as IL-10 and TGFβ and expressing molecules 

such as indoleamine 2,3-dioxygenase (IDO) or programmed death ligand 1 (PD-L1) (76).  

Additionally, DC within the tumor microenvironment are unresponsive and tolerant to the tumor 

cells (77, 78).  Increased STAT3 activity in the tumor or in the DC has been shown to contribute 

to this immune unresponsiveness (79-82).  Tolerogenic DC are also considered potential cellular 

therapeutics to inhibit immune recognition or inflammation in autoimmunity and transplantation 

(76). 

Maintaining DC tolerance and thereby preventing inappropriate DC maturation in 

response to PAMP molecules and/or innocuous antigen is an essential role in barrier tissues.  

Recent evidence suggests that factors secreted by the tissue microenvironment play an important 

role in preventing APC activation (83).  For instance, in the lung, TGFβ secreted by alveolar 

epithelial cells provides an immunosuppressive environment for lung macrophages, even though 

there is continual exposure to airborne PAMP molecules (84).  Similar cytokine suppression of 

DC occurs at other barrier tissues such as the intestine with IL-10 (85, 86) and the skin with 

TGFβ (87).  Both of these cytokines are well known inhibitors of DC maturation (88-90).  Thus, 

by preventing the maturation of DC, cytokines or other factors in the tissue microenvironment 

might elevate the threshold needed for DC to respond to PAMP molecules. 

1.1.5 Liver Dendritic Cells 

The phenotype of liver DC differs from that of DC in other peripheral organs, and these 

differences might allow these cells to contribute to hepatic tolerance.  Considering the potential 

tolerogenic abilities of DC, it is reasonable to speculate that hepatic DC might also contribute to 
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the overall tolerogenic nature of the liver.  The density of DC in liver tissue is lower compared to 

DC in other peripheral organs (91).  However, due to the comparative larger size of the liver, the 

absolute number of liver DC is greater than other organs (91).  Numerically, approximately 1-

1.2x106 DC can be isolated from a single normal mouse liver (92, 93) and this represents about 

1% of the total liver cells or approximately 20% of the total CD45+ cells (94).  In contrast, the 

percentage of CD45+ cells that are DC in mouse pancreas, heart or kidney is greater than 50% 

(91).  Thus, the total number of DC in the liver is higher compared to other organs, but on a per 

volume of tissue basis, the density of liver DC is less than other organs (91).  The number of 

hepatic DC can be augmented by hematopoietic growth factor treatment, especially Flt-3 ligand 

(95) or GM-CSF (96). Intrahepatic DC can be localized to the portal tracts and subcapsular 

lymphatics, regions that contain the draining lymph ducts, but liver DC are only infrequently 

observed in the sinusoids (97).  

Liver DC have been separated based on expression of CD8α, CD4, CD11b, NK1.1 and 

B220 (21, 92, 93, 98, 99).  Liver DC expressing CD11c and B220 secreted IFN after CpG 

stimulation and likely represent the plasmacytoid DC (pDC) population (92, 93, 99).  The mouse 

liver pDC population is approximately 5-fold higher than in the spleen (96, 99, 100).  Studies 

have categorized mouse conventional DC into myeloid (CD8α-CD11b+), lymphoid-related 

(CD8α+CD11b-) subtypes, in addition to pDC (101).   Additionally, Lu et al have described a 

unique B220+ CD11c- CD205+ DC subtype identified from cultures of hepatic NPC with IL-3 

and anti-CD40 antibody (21).  In human livers, DC have been identified based on CD11c+ 

(myeloid DC) and CD123+ (plasmacytoid DC) expression, BDCA1 (myeloid) and BDCA2 

(plasmacytoid) expression, as CD83+ expressing cells with dendritic morphology, CD1a 

expression and MHC class II expression (26, 102-104).  
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Liver DC are less potent T cell stimulators as compared to splenic DC (99, 105) or skin 

DC (26) and this may contribute to the overall tolerogenic properties of the liver.  Liver DC 

remain able to respond to PAMP molecules, including LPS, CpG oligonucleotides and polyI:C,  

by stimulating T cell division and cytokine secretion (IFNα, IFNγ, IL-12, IL-6, TNFα) (92, 100, 

106).  However, these responses are significantly reduced compared to similarly treated splenic 

DC.  The diminished responses of liver DC to PAMP molecules might be due to a decreased 

sensitivity to TLR stimuli.  Indeed, the expression of the TLR4 gene, whose protein recognizes 

LPS, is reduced in liver DC compared to splenic derived DC (105).  However, no differences in 

TLR 9 expression were observed between spleen and liver DC (106).  Other intracellular 

regulators of TLR signaling, such as IRAK-M, might contribute to the reduced response of liver 

DC compared to spleen DC (34).  Interestingly, liver and spleen DC respond equally when 

stimulated with anti-CD40 antibody (105).  This suggests that liver DC are capable of maturation 

in response to some stimuli but not others. 

Liver DC also have tolerogenic properties that are apparent, in vivo.  Reducing the 

number of hematopoietic cell numbers, including DC in rat liver allografts by irradiation of the 

graft leads to rejection (107).    Moreover, pancreatic islet allograft survival in mice is prolonged 

when donor liver derived DC are injected into mice 7 days before transplantation (108).  

Subcutaneous injection of allogeneic liver DC were capable of migrating to regional lymph 

nodes, but stimulated IL-10 and IL-4 production in mononuclear cells (109).  However, when 

BMDC were injected they induced IFNγ secreting cells (109).  This suggests that liver DC might 

preferentially induce Th2 cytokines.  In contrast to the studies where liver DC prolonged allograft 

survival, augmenting the number of donor hepatic DC in liver grafts by treating mice with Flt-3 

ligand resulted in acute rejection of the liver allografts (110).   
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Hepatic DC have also been implicated in human liver diseases, including viral hepatitis B 

and C, primary biliary cirrhosis, and liver allograft rejection (111-115).  In non-viral hepatitis 

diseases, little is known regarding DC function.  In HCV and HBV, where DC have been studied 

in greater detail, peripheral blood DC are less responsive than in patients without disease (111-

113).  However, a recent study by Lai et al showed that intrahepatic DC from HCV infected 

patients had greater stimulatory capacity and reduced IL-10 secretion compared to DC from non-

infected, inflamed livers (102).  Additionally, this study showed a reduced number of pDC in 

infected livers, consistent with observations of pDC in the blood of HCV patients (102, 116, 

117).  The differences in myeloid DC maturation between these studies may be a consequence of 

where the DC are sampled from, with peripheral blood DC being phenotypically different from 

intrahepatic DC.  Lastly, transfecting mouse DC with HBV antigen reduced the allostimulatory 

capacity of DC (118-120).  However, HCV core or NS3 antigen can stimulate immune responses 

and pro-inflammatory cytokines (121-123).  

1.2 THE LIVER 

The liver is an organ with diverse functions that include metabolism, digestion, secretion of 

synthesized proteins, detoxification and excretion of metabolized xenobiotics, and 

immunological features.  Hepatocytes, the main parenchymal cells in the liver are responsible for 

most of these liver functions.  However, other cell populations facilitate hepatocyte functions.  

For instance, the highly fenestrated liver sinusoidal endothelial cells allow for hepatic blood rich 

in nutrients, xenobiotics and potential antigenic material contact with the hepatocytes.  Biliary 

epithelial cells provide a barrier duct system isolating bile that contains cholesterol, metabolized 
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xenobiotics and toxins from the parenchymal cells where it can be damaging.  Kupffer cells, the 

resident macrophage of the liver lining the sinusoids, assist in clearing macromolecules and 

PAMP molecules.  The liver also contains a variety of immune cells that contribute to the 

immune function in the liver.  

The functions of the liver are mainly the consequence of the anatomic location of the 

liver, being downstream of the gut venous blood flow.  Thus, the venous system draining the 

intestines flows into the liver via the portal vein and comprises over 70% of the blood that 

perfuses the liver.  The remaining blood supply is from the hepatic artery that primarily perfuses 

the biliary tree and mixes with the portal blood at the entrance to the sinusoids.  Gut derived 

portal blood is rich in intestinal absorbed nutrients, xenobiotics, potential antigens and 

commensal bacterial PAMP molecules including LPS and CpG oligonucleotides.  Therefore, an 

essential job of the liver is to filter toxic or immunostimulatory molecules from the portal blood 

prior to entering the general systemic circulation where it could potentially stimulate unwanted 

immunological responses.  

1.2.1 Liver Immunology 

The immune liver has distinct properties from other non-lymphoid peripheral organs (124-126).  

This affords the liver not only protection from potential antigenic material in the portal blood but 

also confers a state of immune privilege.  For instance, liver allografts are spontaneously 

accepted across complete MHC mismatch in many species (127-130).  Additionally, 

transplantation of non-liver organs are protected from immune attack when preceded by a liver 

transplant from the same donor (131).  Furthermore, human liver allograft recipients require less 

immunosuppression and have fewer rejection episodes than recipients of other organs (132).  
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The liver also contributes to the generation of oral tolerance (133-140).  Diversion of 

portal vein blood flow into the vena cava bypassing the liver, eliminates oral tolerance upon 

secondary challenge (139).  Additionally, the direct infusion of antigen into the portal vein also 

generates systemic tolerance (141-145) while intravenous delivery does not (146, 147).  This 

includes the ability to extend survival of skin, heart, kidney and small intestine grafts when 

recipients are given intraportal injections of donor cells (148-150).  This implicates the liver and 

the hepatic immune system in generating systemic tolerance to antigens or allografts.  

The hepatic tolerance might also have negative effects in that the liver is a permissive site 

for the perpetuation of pathogens.  Infection with hepatotropic viruses such as hepatitis B and C 

can become chronic in some patients, however the viruses are resolved in others (151, 152).  In 

contrast, hepatitis A viral infection is typically cleared in most patients (153).  Liver plasmodium 

infection initiates an immune response but the infection is not cleared during malaria (154).   

1.2.2 Cellular composition of the normal liver 

The immunological properties of the liver are the result of a diverse and unique population of 

hepatic cells, most of which have immunological capacity.  The cells of the liver can be divided 

into two populations, parenchymal and non-parenchymal cells.  The liver parenchymal cell, the 

hepatocyte, accounts for approximately 70% of hepatic cells and is the main liver functional cell.  

The non-parenchymal cells are a heterogeneous population including liver sinusoidal endothelial 

cells (LSEC), Kupffer cells (KC), dendritic cells (DC), biliary epithelial cells (BEC), stellate 

cells and multiple lymphocytes.  The percentage of each cell type in the normal liver is shown in 

Figure 2 and the immunological role of each is discussed in detail below. 
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Figure 2.  The percentage distribution of cells in the normal liver.  A) Hepatocytes (70%) and non-
parenchymal cells (30%).  B) The separation of liver non-parenchymal cells.  50% of NPC are endothelial 
cells, 25% lymphocytes, 20% Kupffer cells, 5% biliary epithelial cells, 1% dendritic cells and less than 1% 
stellate cells.  C) The composition of hepatic lymphocytes.  37% are T cells, 31% NK T cells, 26% NK cells 
and 6% B cells.  D) The percentage of αβ T cells (85%) and γδ T cells (15%) in the liver. Percentages 
compiled from references (124-126). 
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1.2.2.1

1.2.2.2

 Hepatocytes 

The liver parenchymal cell, the hepatocyte, is the main functional cell in the liver and also has 

several known immunological characteristics.  Mouse hepatocytes can express both MHC class I 

and II molecules, with the latter induced by IFNγ along with the co-stimulatory molecules, CD80 

and CD86 (155-158).  This suggests that hepatocytes might be able to act as APC.  Indeed, naïve 

CD8+ T-cells can be activated in the liver by hepatocytes, but this activation leads to apoptosis 

(159-161).   The activation and subsequent apoptosis of CD8+ T cells by hepatocytes has led to 

the theory that the liver is a site for elimination of CD8+ T cells (162).  Hepatocyte microvilli can 

protrude into the sinusoidal lumen through the LSEC fenestrations and this might allow 

hepatocytes to interact with lymphocytes in the sinusoids (163).  

A key role of hepatocytes in the innate immune response is the synthesis and release of 

acute phase response proteins.  These include the increased secretion of C-reactive protein 

(CRP), serum amyloid A protein, α2-macroglobulin, fibrinogen, haptoglobin, α1-antitrypsin, α1-

antichymotrypsin, α1-cysteine proteinase, and complement components C3 and C9, along with 

decreased albumin secretion (164-167).  Hepatocytes secrete acute phase proteins in response to 

stress-related cytokines such as interleukin (IL)-6 (IL-6), IL-1 and Tumor Necrosis Factor 

(TNF)-α (168).  Thus, hepatocytes contribute to the systemic innate immune reaction against 

inflammation.   

 Liver sinusoidal endothelial cells 

The hepatic sinusoids are lined with unique, highly fenestrated liver sinusoidal endothelial cells 

(LSEC).  These represent the largest fraction (approximately 50%) of non-parenchymal cells in 

the liver.  The fenestrations facilitate the interaction of the blood and hepatocytes along with 
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permitting the passage of lymphocytes into the space of Disse.  Accordingly, LSEC express 

molecules allowing the adhesion of lymphocytes, including ICAM-1 (CD54), VCAM-1 (CD106) 

and VAP-1 (169-171).  Additionally, the narrow space of the hepatic sinusoids and reduced 

blood flow help facilitate LSEC-lymphocyte interaction (172). 

 LSEC also have a great capacity to take up antigen via phagocytosis and receptor 

mediated endocytosis (173, 174).  Additionally, LSEC also have constitutive, albeit low level, 

expression of MHC class II complexes along with the co-stimulatory molecules CD40, CD80 

and CD86 (175, 176).  These molecules are upregulated during liver damage and ischemia 

reperfusion injury (177, 178).  Moreover, LSEC MHC class I complexes can also express 

exogenous antigen through cross-presentation mechanisms (179), but instead of activation, this 

leads to CD8+ T cell tolerance (180).  Similar to other liver APC, LSEC MHC class II 

stimulation of CD4+ T cells results in cells being polarized towards a regulatory T cell phenotype 

that produces IL-10 and IL-4 (176).  Thus, LSEC can be considered an intrahepatic resident APC 

contributing to the tolerogenic immune liver. 

1.2.2.3 Kupffer cells 

The largest pool of macrophages in the body are the liver Kupffer cells (125).  These cells are 

primarily located in the periportal hepatic sinusoids but are also observed within the space of 

Disse.  Kupffer cells are active phagocytes clearing material from the portal blood, including 

antigen, apoptotic cells and bacteria (181, 182).  In the normal liver, portal blood bacterial 

endotoxin stimulates Kupffer cells to produce IL-6 (183, 184).  In vitro, supraphysiological 

concentrations of exogenous LPS also stimulates Kupffer cell production of IL-10 and TNFα 

(185).  Depleting Kupffer cells can suppress the generation of systemic tolerance to antigen 
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injected into the portal vein (186).  Kupffer cells, therefore, might contribute to the tolerogenic 

properties of the liver. 

 As APC, Kupffer cells stimulate CD4+ T cell proliferation, but this response is less than 

generated by spleen or bone marrow-derived macrophages (185, 187).  During liver injury, 

Kupffer cell production of pro-inflammatory cytokines (IL-12, IL-1β, TNFα) and reactive 

oxygen species participates in the activation of innate immune responses and likely contributes 

to the progression of fibrosis during chronic liver diseases (165, 188). 

1.2.2.4 Biliary epithelial cells 

The biliary epithelial cells (BEC) create the duct system in the liver transporting bile from the 

hepatocytes into the intestines.  This provides a critical barrier protecting the hepatic parenchyma 

from the toxins, xenobiotics, digestive components and PAMP molecules in bile.  In the normal 

liver, BEC are immunologically quiescent, but do provide an innate ductal barrier (189).  

However, similar to the hepatocytes, inflammatory cytokines, such as IFNγ can induce 

expression of immunologically relevant molecules in BEC.  These include the expression of 

MHC class I and II molecules (190), co-stimulatory molecules including CD40, CD80 and CD86 

(191, 192), lymphocyte adhesion molecules such as LFA-3, VLA and ICAM-1 (193, 194), and 

other molecules such as Fas and Fas Ligand (189, 191, 195) and heat shock proteins (196-198).   

BEC are also a frequent immunological target in the liver, as observed in primary biliary 

cirrhosis (199), acute and chronic allograft rejection (200), biliary atresia (201), and graft versus 

host disease (202).  The susceptibility of BEC is not surprising considering their ability to 

express inflammatory proteins during inflammation and their close proximity with liver DC (34).  
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1.2.2.5

1.2.2.6

 Hepatic stellate cells 

Hepatic stellate cells, also known as Ito cells, are located within the hepatic space of Disse and 

are known for their storage of vitamin A and ability to differentiate into extracellular matrix 

secreting fibroblasts upon activation (203).  These cells represent a small percentage of the total 

liver cells (Figure 2), however others have reported the percentage of stellate cells to be as high 

as 5-8% of the total liver cells (204).  The discrepancies between studies might lie with the 

ability of these cells to divide in pathological situations upon activation (204).   

Conflicting evidence has been reported describing the immune stimulating ability of 

stellate cells.  In vitro, activated, but not quiescent stellate cells, can produce cytokines, express 

cell surface MHC class II complexes and co-stimulatory molecules, and could suppress T cell 

proliferation via up regulation of PD-L1 and expression of ICAM-1 (205, 206).  In vivo, islets 

transplanted with activated stellate cells reduced infiltrating lymphocytes and extended graft 

survival (207).  However, another study demonstrated that stellate cells are functional APC fully 

capable of stimulating CD4, CD8 and NK T cells by antigen expression on MHC class I and II 

complexes and CD1 (208).  Considering the important contribution of activated stellate cells to 

the pathogenesis of liver disease, the findings of immunological functions of stellate cells might 

have significant impact on liver pathobiology.  However, further investigation is needed to 

reconcile the true role of stellate cells in liver immunology. 

 Lymphocytes 

The composition of liver lymphocytes differs significantly than the lymphocyte population in the 

blood.  The liver is especially rich in non-traditional lymphocytes, such as natural killer cells 

(NK cells; CD3-CD56+), natural killer T cell (NKT cells; CD3+CD56+) and CD3+ T cells 

expressing the γδ T cell receptor (TCR) (γδ T cells).  The increased population of NK and NK T 
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cells provides the liver with a high level of innate protection.  The percentage of conventional αβ 

TCR CD3+ T cells in the liver is lower than in the general circulation (37% versus 75%). 

Additionally, the CD4:CD8 T cell ratio is shifted toward more CD8+ T cells in the liver, while 

CD4+ T cells are more prevalent in the blood (209).  There is also an increase in the percentage 

of T cells not expressing either CD4 or CD8 (double negative) or expressing both CD4 and CD8 

(double positive) (209, 210).  The percentage of B cells in the liver is similar to the blood. 

Most of the CD8+ T cells in the liver have an activated phenotype expressing CD25 and 

CD69 (211).  This is likely the result of the ability of the liver to harbor activated or apoptotic 

CD8+ T cells (212, 213).  CD8+ T cells can be activated in the liver leading to an abbreviated life 

span and deficient effector function (214).  However, CD8+ T cells activated in the lymph nodes 

are fully functional and can respond to antigen on hepatocytes (214).  Thus the site of activation, 

intrahepatic versus the lymph nodes, can influence CD8+ T cell activity.  Majority of the CD4+ T 

cells in the liver are polarized towards a T-helper 1 (Th1) phenotype producing IFNγ and TNFα 

with only about 5% Th2 CD4+ T cells (215). 

1.3 INTERLEUKIN-6  

1.3.1 Interleukin-6 (IL-6) 

IL-6 is a member of a pleiotropic cytokine family also including leukemia inhibitory factor 

(LIF), oncostatin-M (OSM), cardiotropin-1 (CT-1), ciliary neurotrophic factor (CNTF), 

cardiotropin-like cytokine (CLC), interleukin-11 (IL-11) and interleukin-27 (IL-27) (216, 217).  

All of these cytokines signal through a common signal transducing receptor subunit, gp130.  
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Kishimoto initially identified the protein that would later come to be named IL-6 as a B 

cell differentiation factor (BCDF).  It was given the name B cell stimulatory factor 2 (BSF-2) in 

accordance with the B cell nomenclature at that time (216, 218, 219).  Molecular analysis of 

genes and proteins with functions similar to IL-6/BSF-2 identified several proteins identical to 

IL-6/BSF-2.  These included 26 kDa protein (220), interferon β2 (IFNβ2) (221), 

myeloma/plasmacytoma growth factor (222), hepatocyte stimulating factor (223, 224), 

macrophage granulocyte inducing factor 2 (225), and cytotoxic T-cell differentiation factor 

(226).  The broad functions implicated by the names of these factors shows the wide range of 

functions now ascribed to IL-6.  

The human IL-6 gene is found on chromosome 7 at location 7p21 and contains 5 exons in 

both mouse and human.  Similarities in the gene sequences between species ranges from 74-59% 

depending on the exon (227).  The IL-6 mRNA encodes an 184 amino acid protein (228) with 

42% homology to mouse IL-6 (227).  The 5’ regulatory region of the IL-6 gene contains several 

putative sequences controlling IL-6 expression, suggesting that many signaling pathways and 

transcription factors can influence the IL-6 expression.  Motifs identified include a cAMP 

responsive element (CRE), a c-fos enhancer element, two AP-1 binding sites, a CCAAT box and 

glucocorticoid responsive elements (227, 229).  

1.3.2 IL-6 signaling 

IL-6 binds to an exclusive, ligand-specific receptor, IL-6 receptor α (gp80), which forms a 

heterodimer with gp130 upon ligand binding.  gp80 exists in both a membrane bound and soluble 

form produced by either proteolysis from the cell membrane or by expression of an alternatively 

spliced mRNA variant of gp80 (230, 231).  The presence of soluble gp80 allows for almost all 
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cells to be sensitive to IL-6 signaling as the gp130 subunit is expressed on nearly all cell types 

(232, 233). 

IL-6-gp80 binding to gp130 rapidly recruits and activates the Janus Kinase (JAK) at the 

membrane proximal proline rich box 1 and box 2 motifs of gp130 (234, 235).  A diagram of IL-

6-gp80-gp130 signaling is shown in Figure 3.  The recruitment of JAK to the IL-6-gp80-gp130 

complex can activate either the Ras-Raf-MEK1-ERK1/2-MAP kinase pathway (236) or the 

signal transducer and activator of transcription-3 (STAT-3) pathway (237).  A negative 

reciprocal regulation between these pathways usually results in predominance of one signaling 

pathway over the other (233, 238).  Activation of Akt by IL-6 has also been observed in a cell 

specific manner (233).  SHP2 phosphorylation by JAK leads to the formation of a SHP2-Gab-

PI3K complex which can activate Akt (239).  IL-6 activation of Akt may contribute to the anti-

apoptotic properties of this cytokine (240, 241). 

IL-6-gp130 stimulation of STAT3 requires phosphorylation of the distal tyrosine residues 

on gp130 by JAK (233, 242).  These tyrosine residues are part of the pYXXQ STAT3 binding 

motif (242).  Alternatively, JAK phosphorylation of the tyrosine reside 759 on gp130 allows 

docking of the SHP2 and formation of a SHP2-Grb2-SOS complex, which through a GTPase 

activity, activates Ras and subsequently the Raf-MEK1-ERK1/2-MAP Kinase pathway (242).   

The outcome of IL-6-gp130 signaling is highly dependent on the cell type and 

environmental conditions resulting in mitosis (243-247), migration (248, 249), anti-apoptosis 

and/or cell survival (250-255), growth arrest (256), acute phase response (253, 257, 258), 

suppression of innate immunity (79, 259, 260) and differentiation (247, 256, 259, 261-264).   

Typically, signaling through STAT3 induces the acute phase response, differentiation, anti-

apoptosis, survival, migration, suppression of innate immunity and growth arrest.  In contrast to 
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the multiple functions attributed to STAT3 signaling, Ras-Raf-MEK1-ERK1/2 activation 

typically leads to mitogenesis.  As mentioned above, IL-6 activation of Akt also has anti-

apoptotic functions (240, 241). 

Finally, several mechanisms regulate IL-6-gp130 signaling, most of which act by 

terminating or preventing STAT3 activation.  The protein tyrosine phosphatase SHP2, which is 

recruited to the gp130 at Tyr759 has an inhibitory effect on JAK/STAT3 signaling (265).  This is 

especially interesting since SHP2 also serves as an adaptor protein facilitating IL-6-gp130- Ras-

Raf-MEK1-ERK1/2 and Akt signaling (233, 239) and likely contributes to the negative 

reciprocal regulation of the two arms of IL-6-gp130 signal transduction (233, 238).  The Protein 

Inhibitor of Activated STAT-3 (PIAS3) can interact with phosphorylated STAT3 and prevent 

DNA binding to target genes (266).  Another inhibitor, the Suppressor of Cytokine Signaling-3 

(SOCS-3) binds to gp130 at Try-759, the same binding site as SHP2.  This prevents STAT3 

activity by inhibiting the phosphorylation of gp130 and STAT3 by JAK, or by inhibiting JAK 

phosphorylation, itself (267, 268).  SOCS-3 functions as a negative feedback loop for IL-

6/STAT3 signaling, as STAT3 induces expression of SOCS-3 after IL-6 stimulation (267). 
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Figure 3.  The IL-6/gp80/gp130 signaling cascade.  Binding of IL-6 to the gp80 and subsequently gp130 
produces a hexameric complex.  The Janus Kinase (JAK) is recruited and phosphorylates tyrosine residues 
on gp130.  JAK activity can activate STAT3 activation, SHP2-Ras-Raf-MEK-ERK1/2 or SHP2-PI3K-Akt 
signaling.  Recreated from references (233, 240).   
 
 
 
 
 
 

1.3.3 Functions of IL-6 

The large number of factors identical to IL-6 reflects this cytokine’s wide range of functions, 

including several roles in the immune system.  IL-6 produced by CD4+ helper T cells induces B 

cell differentiation into antibody secreting plasma cells, but does not influence B cell 

proliferation (228).  Several in vivo studies also show that IL-6 augments antibody production.  
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Mice treated with recombinant IL-6 have an elevated antibody response to sheep red blood cells 

compared to controls not receiving IL-6 (269).  Furthermore, the antibody response to vesicular 

stomatitis virus was almost completely inhibited in IL-6-/- mice (164). Transgenic C57Bl/6J mice 

over expressing IL-6 displayed polyclonal hypergammaglobulinemia associated with 

plasmacytosis (270).  In the Balb/c mouse strain, transgenic over expression of IL-6 further 

progressed into monoclonal plasmacytoma with a t(12:15) chromosomal translocation (271).  

However, in vitro proliferation of B cells was unchanged by neutralizing anti-IL-6 treatment 

(269). 

IL-6 also contributes to T cell biology.  IL-6 can induce IL-2 secretion (272) and the 

expression of the IL-2 receptor on T cells (273).  Cytotoxic T cell differentiation in mouse and 

human thymocytes was induced by IL-6 in conjunction with IL-2 and IFNγ (274, 275).  CD4+ T-

cells can be polarized towards T helper (Th)-2 phenotype by IL-6 along with endogenous IL-4 

(276).  Alternatively, induction of suppressor of cytokine signaling-1 (SOCS-1) by IL-6 inhibits 

Th1 differentiation (276).  Recent evidence has shown that the suppressive ability of regulatory 

T cells (Treg) is diminished with IL-6 treatment (277).  Moreover, the development of Treg cells 

by TGFβ is inhibited in the presence of IL-6 (278).  Rather, IL-6 and TGFβ drive the generation 

of IL-17 producing CD4+ T-cells (Th-17) (278, 279).  These T cells have been implicated in the 

progression of autoimmunity and microbial infections (280, 281). 

IL-6 also contributes to hematopoietic cell differentiation.  The formation of multi-potent 

hematopoietic progenitors is dependent on IL-6 and IL-3 (282, 283) with IL-6 stimulating the 

entry of hematopoietic stem cells into the cell cycle (284).  IL-6 is also able to induce myeloid 

leukemia cells to differentiate into macrophages (285).  Additionally, IL-6 increased the 

differentiation of bone marrow cells into megakaryocyte in the presence of IL-3 (282).  In the 
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same study, IL-6 had a more broad hematopoietic influence on bone marrow cells from 5-

fluoruracil treated mice, with significantly increased granulocyte-macrophage, granulocyte-

macrophage-megakaryocyte and megakaryocyte colonies in cultures treated with IL-6 and IL-3 

versus IL-3 alone (282).  Mice over expressing human IL-6 also generated more megakaryocytes 

in their bone marrow (270). 

IL-6 has several well-known roles in the liver. Most notably, IL-6 (including reports 

generated when IL-6 was known as hepatocyte stimulating factor) is a potent stimulator of acute 

phase proteins (APP) by hepatocytes during the acute phase response to inflammation (164, 223, 

224).  IL-6 produced at the site of injury or infection stimulates hepatocytes production of C-

reactive protein (CRP), serum amyloid A protein, α2-macroglobulin, fibrinogen, haptoglobin α1-

antitrypsin, α1-antichymotrypsin, α1-cysteine proteinase, and complement component C3 and 

C9, while inhibiting serum albumin levels (164-166, 286).  

In the normal liver, IL-6 is chiefly produced by Kupffer cells (183, 184, 287) and is the 

primary cytokine responsible for the activation of  hepatic STAT3 (249, 288).  Following insult 

or injury other hepatic cell types can also produce IL-6, including biliary epithelial cells, 

dendritic cells, stellate cells and myofibroblasts (289-293).  Proliferation of various liver cell 

types are also stimulated or augmented by IL-6. Hepatocyte proliferation after partial 

hepatectomy is reduced in IL-6-deficient mice leading to a delay in the restoration of liver mass 

compared to wild-type mice (294).  In vitro, IL-6 is a mitogen (244-246) and motogen (248, 249) 

for biliary epithelial cells and contributes to the barrier function of the bile ducts, in vivo (248, 

249, 288).  

Elevated systemic IL-6 is a hallmark of sepsis in addition to other cytokines including 

TNFα, IFNγ and IL-1β (295).  It is the association with these other cytokines during 
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inflammation that has caused IL-6 to be categorized a “pro-inflammatory” cytokine.  If this is 

true, then in the absence of IL-6, inflammation should be less.  However, evidence shows that 

IL-6-/- mice have exaggerated inflammatory responses compared to IL-6+/+ mice.  In mouse 

models of sepsis IL-6-/- mice have elevated TNFα and IFNγ cytokine production (296), a 

deficient fever response (297) and increased mortality (298) compared to IL-6+/+ mice.  This 

suggests that IL-6 may be acting in an anti-inflammatory role (296, 299).  Indeed, IL-6 activation 

of STAT3 has been shown to inhibit the activation of macrophages and dendritic cells (259, 300-

302).  Thus, IL-6 likely possesses both pro- and anti-inflammatory properties depending on 

which arm of the immune system, innate or adaptive, it influences. 

IL-6 is elevated in several diseases including autoimmune diseases such as rheumatoid 

arthritis, systemic juvenile idiopathic arthritis, osteoporosis, psoriasis, primary biliary cirrhosis, 

and Sjogren’s syndrome (303-306).  This is not surprising considering the elevated production of 

antibodies during autoimmunity and the ability of IL-6 to stimulate B cell differentiation into 

plasma cells.  IL-6 is also a growth factor in tumors, including multiple myeloma (307), renal 

carcinoma (308) and cholangiocarcinoma (243, 244, 309-311).  Other cell types can also use IL-

6 as a mitogen, including mesangial cells (312, 313) and biliary epithelial cells (244-246). 

 

 

 

 

 30 



2.0  HYPOTHESIS AND AIMS 

The underlying hypothesis tested in this dissertation is that IL-6 activation of STAT3 inhibits the 

maturation and function of dendritic cells.  Because of the elevated IL-6/STAT3 signaling in the 

liver, the inhibition of hepatic DC by IL-6 is expected to be especially prevalent in liver DC.  It 

is predicted that the physiological mechanisms stimulating IL-6 in normal liver, primarily 

commensal gut derived bacterial PAMP, are essential for the inhibition of liver DC maturation.  

Moreover, elevated IL-6/STAT3 signaling could raise the threshold needed to stimulate DC 

maturation to PAMP molecules.  
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3.0  MATERIALS AND METHODS 

3.1 ANIMALS 

C57/BL6J IL-6-/-, C57/BL6J and Balb/c mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME).  All animal experiments were performed under the guidelines of the University of 

Pittsburgh IACUC protocol #0701830.   

3.1.1 Inhibition of STAT3  

STAT3 was inhibited by treating mice for 3 days with 1μg/g body weight JSI-124 (EMD 

Biosciences, San Diego, CA).   

3.1.2 Depletion of gut bacteria 

Commensal gut bacteria were depleted by feeding mice for 5 days with 250mg/kg Neomycin 

Sulfate, 9mg/kg Polymyxin B and 50mg/kg Metronidazole by gavage.  Two days after the final 

antibiotic treatment, animals were sacrificed. Control-treated mice received water only by 

gavage. Portal blood endotoxin was quantified by Limulus Amebocyte Lysate Endochrome 

(Charles River, Charleston, SC). 
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3.2 CELL ISOLATION 

3.2.1 Liver NPC isolation and DC selection 

Liver DC were isolated from liver non-parenchymal cells.  Under isoflurane anesthesia, the 

abdominal cavity was entered through a mid-line incision.  The vena cava was cannulated with a 

22-gauge catheter and perfused with 30 ml of ice-cold Hanks buffered saline solution (HBSS) 

(Invitrogen, Carlsbad, CA) over a 3 min period to remove any blood leukocytes.  The portal vein 

was dissected to allow drainage of the perfusate.  Subsequently, livers were flushed with 2 ml of 

1mg/ml collagenase B (Roche Applied Science, Indianapolis, IN) in HBSS.  Livers were excised 

and stored on ice until needed. 

 The liver capsule was removed by gentle scraping with a scissor and the liver was minced 

in 10 ml of 1mg/ml collagenase solution and incubated at 37˚C for 20 min.  The digest was then 

passed through a 100μm nylon mesh and washed with RPMI-5 (RPMI-1640 supplemented with 

5% fetal bovine serum, L-glutamine, non-essential amino acids, sodium pyruvate and penicillin-

streptomycin-fungizone).  Hepatocytes were pelleted by centrifugation at 50 x g and the non-

parenchymal cells in the residual supernatant were pelleted at 300 x g.  The cell pellet was 

resuspended in 0.4 ml RPMI-5 for every 0.1 ml cell pellet volume.  This suspension was further 

mixed with 0.7 ml 30% (w/v) Histodenz (Sigma-Aldrich, St Louis, MO) in PBS, the gradient 

was overlaid with 3 ml ice-cold PBS and centrifuged at 2800 RPM for 20 min.  The NPC 

fraction containing DC was collected from the interface and washed in RPMI-5. After blocking 

for Fc receptors (CD16/CD32), NPC were incubated with magnetic bead conjugated antibodies 

against CD11c (Miltenyli, Auburn, CA), washed in MACS buffer (PBS supplemented with 

 33 



bovine serum albumin and EDTA) and CD11c+ DC positively selected on a magnetic column.  

Three to six livers were pooled for each experiment. 

3.2.2 Splenocyte isolation and DC selection 

Splenic DC were prepared from spleens injected with a 1 mg / ml collagenase solution, minced, 

and passed through a 70μm cell strainer.  Cells were collected by centrifugation at 1200 RPM.  

Red blood cells were removed by lysis with 0.14M NH4Cl in 0.02M Tris-HCl (pH 7.4).  CD11c+ 

DC were selected by magnetic bead conjugated CD11c antibodies, similar to the selection of 

liver DC. 

3.2.3 Liver and bone marrow derived DC cultures 

Liver derived DC were generated under the influence of GM-CSF as previously reported (314).  

Liver NPC were isolated by Percoll gradient and cultured in 24 well plates at 2x105 cells per mL 

in complete RPMI (RPMI supplemented with 5% FBS, L-glutamine, non-essential amino acids, 

sodium pyruvate and antibiotics (all from Invitrogen, Carlsbad, CA) (cRPMI)) supplemented 

with 1000U granulocyte-macrophage colony stimulating factor (GM-CSF; Invitrogen) per mL 

media.  The non-adherent DC were greater than 90% CD11c+ by flow cytometry (data not 

shown).   

Bone marrow derived DC (BMDC) were prepared from bone marrow isolated from 

femur and tibia according to the methods of Inaba et al (315).  Cells were cultured in cRPMI 

with 1000U/ml GM-CSF and 10ng/ml IL-4 (Peprotech, Rocky Hill, NJ).  Media was replaced 
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every other day by replacing one-half of the media with fresh media.   Non-adherent DC were 

used on day 6 for all experiments, except where noted.   

DC were stimulated to induce maturation by incubation with CpG ODN 1826(Invivogen, 

San Diego, CA), lipopolysaccharide (LPS, Sigma-Aldrich) and polyI:C (Sigma).  For some 

experiments cells were treated with 50ng/ml mutein IL-6 (Imclone, New York, NY).  In some 

experiments, day 6 BMDC were collected, washed with cRPMI, and resuspended in media 

containing one-half fresh media and one-half media collected from day 6 cultures supplemented 

with GM-CSF and IL-4 (Conditioned Media).  Additionally, DC IL-6 was neutralized by the 

addition of anti-IL-6 antibody (R&D Systems) for 48 hours.  

To block STAT3 activity or ERK1/2 activity, DC were treated with JSI-124 or PD98059 

(EMD Biosciences, San Diego, CA), respectively, for 48 hours.  DC maturation was induced by 

treatment with LPS (Sigma-Aldrich, St Louis, MO), polyI:C (Sigma) or CpG ODN 1826 

(Invivogen, San Diego, CA) for 48 hours. 

3.2.4 Mixed lymphocyte culture 

Freshly isolated liver DC, spleen DC and BMDC were analyzed for T-cell stimulatory capacity 

by mixed-lymphocyte reaction (MLR).  Nylon wool purified T-cells from Balb/cJ mice were 

used as allogeneic responders.  As a control, syngeneic T-cells from C57Bl/6J mice were used as 

responders.   5x104 T-cells were incubated with γ-irradiated (2000 Rad) liver or spleen DC in 

triplicate for 3 days.  1μCi 3H thymidine was added in the final 18 hours and thymidine 

incorporation analyzed. 
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3.3 PROTEIN ANALYSIS 

3.3.1 Flow cytometry 

Analysis of cell surface proteins was performed by flow cytometry.  After isolation, 2x105 cells 

were washed in FACS buffer consisting of PBS supplemented with 1% bovine serum albumin 

and 0.25% NaN3.  Fc receptors were then blocked with 1μg of antibody against CD16/CD32 and 

1% goat serum in FACS buffer for 10 minutes on ice.  Expression of cell surface antigens were 

assayed using the monoclonal antibodies listed in Table 1.  Following three washes in FACS 

buffer, streptavidin conjugated with phycoerythrin-Cy5 fluorochrome was added for 30 minutes 

on ice.  After an additional three washes, cells were fixed in 1% paraformaldehyde in PBS and 

stored at 4˚C until analysis was performed using either a Coulter XL flow cytometer or BD 

Biosciences LSR II flow cytometer.  Results were analyzed on Coulter EPICS software. 

3.3.2 Protein Isolation from Cells and Tissue 

Dendritic cell and liver, lung, intestine, heart and spleen protein was isolated using either RIPA 

buffer for whole cell lysates or by fractionation of nuclear and cytosolic fractions.   

RIPA buffer consisted of 1% Triton X-100, 1% deoxycholic acid, 0.1% sodium dodecyl 

sulfate, 158mM NaCl and 10mM Tris-HCl (pH 7.5) and was supplemented with the following 

protease inhibitors: 1mM PMSF, 1μM leupeptin, 20μg/ml aprotinin and 1mM sodium 

orthovanadate. 

Nuclear and cytosolic fractions were isolated by treating cells or tissue with a hypotonic 

solution of 10mM HEPES (pH 7.5), 1.5mM MgCl2, 10mM KCl and 0.1% Triton X-100 
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supplemented with the following protease inhibitors: 1mM PMSF, 1μM leupeptin, 20μg/ml 

aprotinin and 1mM sodium orthovanadate on ice for 10 minutes.  After centrifugation for 5 

minutes at 7000 RPM at 4˚C, the supernatant was collected and saved as the cytosolic protein 

fraction.  The residual pellet was resuspended in 20mM HEPES (pH 7.5), 1.5mM MgCl2, 

420mM NaCl, 0.2mM EDTA, 20% glycerol and 0.1% Triton X-100 supplemented with the 

following protease inhibitors: 1mM PMSF, 1μM leupeptin, 20μg/ml aprotinin and 1mM sodium 

orthovanadate and kept on ice for 30 minutes with periodic vortex mixing.  After centrifugation 

at 13,000 RPM for 15 minutes at 4˚C, the supernatant was collected and saved as the nuclear 

protein fraction. 

All protein was quantified using the BCA Protein Assay Kit (Pierce, Rockford, IL) with 

BSA standards.   

3.3.3 Western Blotting 

Fifty-micrograms of nuclear or total protein was separated by electrophoresis on a sodium 

dodecyl sulfate polyacrylamide gel.  Protein was transferred to nitrocellulose membranes in a 

Tris-Glycine buffer.  Verification of transfer was visualized by Ponceau S staining of membranes 

and Comassie Blue staining of the gel.  Membranes were blocked in either 5% non-fat dried milk 

in tris-buffered saline with 0.05% tween-20 (TBST) for 1 hour and probed overnight at 4˚C with 

specific antibodies diluted 5% non-fat dried milk in TBST listed in Table 2.  After washing three 

times in TBST, membranes were probed with either anti-goat, anti-rabbit, or anti-mouse IgG 

conjugated with horseradish peroxidase for 1 hour at room temperature.  Following three TBST 

washes, signals were detected by Enhanced Chemilumenescence (Pierce) and exposed to 
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autoradiography film.  Individual bands were quantified using the ImageJ software from the 

National Institute of Health. 

3.3.4 STAT3 DNA Binding Assay 

STAT3 activity was measured using a TransFactor STAT3 DNA binding assay (Clonetech).  

Fifty-micrograms of nuclear protein was incubated with STAT3 consensus DNA sequences and 

subsequently probed with an antibody specific for STAT3.  The STAT3-DNA-antibody complex 

was detected by horseradish peroxidase conjugated secondary antibody.      

3.3.5 Cytokine quantification 

Cell culture supernatants were analyzed by ProteoPlex Murine Cytokine Array (EMD 

Biosciences) according to the manufacturer’s protocol.  Additionally, mouse IL-6 was quantified 

by ELISA (Invitrogen).  
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Table 2. Antibodies used in these studies. 

 

 Antibody Conjugate Source Application 
Anti-CD11c Biotinylated/ 

AlexaFluor488 
BD Biosciences FC/IF 

Anti-B220 FITC BD Biosciences FC 
Anti-CD80 PE BD Biosciences FC 
Anti-CD86 PE/Unconjugated BD Biosciences FC 

 

 

 

 
Anti-IA/IE 
(MHC class II) 

PE / 
AlexaFluor488 

BD Biosciences 
 

FC/IF  

 
Anti-CD8α Alexa647 eBiosciences FC 

 Anti-CD11b Pacific Blue eBiosciences FC 
Anti-CCR7 FITC eBiosciences FC  
Anti-IL-10 Unconjugated BD Biosciences WB  
Anti- TGFβ Unconjugated Santa Cruz WB  
Anti-TLR4 Unconjugated eBiosciences WB 

 Anti-TLR9 Unconjugated eBiosciences WB 
 Anti-phosphoSTAT3 

(Tyr705) 
Unconjugated Cell Signaling WB 

 
Anti-STAT3 Unconjugated Cell Signaling WB  
Anti-IL-6 Unconjugated R&D Systems WB 

 Anti-β-actin Unconjugated Sigma-Aldrich WB 
 Streptavidin-TRITC  Jackson 

Immunologicals 
IF 

 
Streptavidin-PE-Cy5  BD Biosciences FC  
Streptavidin-PE-Cy7  BD Biosciences FC 

 

FC: flow cytometry; IF: immunofluorescence; WB: Western blot.  

 

 

 

 

 

 

 

 

 39 



3.3.6 Immunofluorescent Staining 

Liver DC were localized by immunofluorescent staining on snap frozen liver tissue embedded in 

optimal cutting temperature (OCT) solution.  Five micron liver sections were fixed for 20 

minutes in 96% ethanol at room temperature and air-dried.  Endogenous biotin was blocked 

using an avidin-biotin blocking kit (Vector).  Additional blocking was performed with 10% 

donkey serum for 10 minutes.  Tissue was probed with antibodies specific for CD11c, CD86, and 

MHC class II (IA/IE) overnight.  For antibodies conjugated with biotin or unconjugated, tissues 

were subsequently incubated with streptavidin conjugated FITC or Texas Red, or Texas Red 

conjugated donkey anti-rat IgG for 1 hour at room temperature.  Nuclei were stained with 

Hoescht dye for 1 minute.  Tissues were overlaid with gelvatol anti-fade solution and cover 

slipped.   

 Immunofluorescent staining was examined using a Nikon Eclipse Fluorescent 

microscope.  Images were captured using a Spot RT Slider CCD camera and Spot 4.1 software 

(Diagnostic Instruments, Sterling Heights, MI).  Additional modification of images was 

performed using Adobe Photoshop CS.   

3.4 GENE EXPRESSION ANALYSIS 

3.4.1 RNA isolation and reverse transcription 

Total RNA was isolated using Trizol reagent (Invitrogen) according to the manufacturer’s 

protocol.  RNA was quantified by spectrophotometry for absorbance at 260 nm.  RNA quality 
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was determined by the ratio of absorbance at 260nm and 280nm, with a ratio above 1.7 

considered acceptable.  Additionally, RNA was visualized by agarose gel electrophoresis. 

One microgram of total RNA was treated with DNase to remove any contaminating DNA 

and subsequently subjected to reverse transcription using the Superscript III reverse transcriptase 

enzyme and random hexamer primers.  Complementary DNA (cDNA) was diluted 10-fold and 

stored at -20˚C. 

3.4.2 Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR)   

Messenger RNA transcripts were quantified by SYBR green real-time RT-PCR. Eight 

microliters of cDNA was amplified with the Power SYBR Green Master Mix and 250nm 

forward and reverse gene specific primers in a total volume of 20μL.  Amplification and 

detection was performed on an Applied Biosystem 7500Fast Sequence Detection System.  Gene 

expression was analyzed using Applied Biosystems Sequence Detection Software version 1.3.1 

using the ΔΔCt method.  Gene expression was expressed as the ratio of the target gene to the 

housekeeping gene GAPDH. 
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Table 3.  Primers used for quantitative RT-PCR in this study (listed 5’-3’). 
 
 

Gene  Forward Reverse 
IL-10  CCA AGC CTT ATC GGA AAT GA TTT TCA CAG GGG AGA AAT CG 
TGFβ  AAA CGG AAG CGC ATC GAA GGG ACT GGC GAG CCT TAG TT 
TLR4  GCT TTC ACC TCT GCC TTC AC AGC CTT CCT GGA TGA TGT TG 
TLR9  ACT TCG TCC ACC TGT CCA AC TCA TGT GGC AAG AGA AGT GC 
IRAK-M  TGA GCA ACG GGA CGC TT GAT TCG AAC GTG CCA GGA A 
GAPDH  TGG CAA AGT GGA GAT TGT TGC C AAG ATG GTG ATG GGC TTC CCG 

 
 
 
 

3.5 STATISTICAL ANALYSIS 

Statistical comparison of groups with a normal distribution was performed by t-test and ANOVA 

using SPSSv.11 software (SPSS Inc, Chicago, Il).  Non-parametric analysis was performed using 

a Mann-Whitney-U test.  A p-value of 0.05 was considered significant. 
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4.1 ABSTRACT 

Intra-organ dendritic cells (DC) monitor the environment and translate triggers of innate 

immunity into adaptive immune responses.  Liver-based DC are continually exposed, via gut-

derived portal venous blood, to potential antigens and bacterial products that can trigger innate 

immunity.  But somehow the liver avoids a state of perpetual inflammation and protects central 

immune organs from over-stimulation.  

In this study we tested the hypothesis that hepatic interleukin-6 (IL-6) / Signal 

Transducer and Activation of Transcription 3 (STAT3) activity increases the 

activation/maturation threshold of hepatic DC towards innate immune signals.  Results show that 

liver nuclear STAT3 activity is significantly higher than other organs and IL-6-dependent.  

Hepatic DC in normal wild-type (IL-6+/+) mice are phenotypically and functionally less mature 

than DC from IL-6-deficient (IL-6-/-) or STAT3 inhibited IL-6+/+ mice, as determined by surface 

marker expression, pro-inflammatory cytokine secretion, and allogenic T-cell stimulation.  IL-

6+/+ liver DC produce IL-6 in response to exposure to lipopolysaccharide (LPS) and cytidine 

phosphate guanosine (CpG) oligonucleotides, but are resistant to maturation compared to IL-6-/- 

liver DC.  Conversely, exogenous IL-6 inhibits LPS-induced IL-6-/- liver DC maturation.  IL-

6/STAT3 signaling influenced liver DC expression of TLR9 and IRAK-M.  Depletion of gut 

commensal bacteria in IL-6+/+ mice with oral antibiotics decreased portal blood endotoxin levels, 

lowered expression of IL-6 and phospho-STAT3 and significantly increased liver DC 

maturation.  Conclusion: Gut-derived bacterial products, by stimulating hepatic IL-6/STAT3 

signaling, inhibit hepatic DC activation/maturation and thereby elevate the threshold needed for 

translating triggers of innate immunity into adaptive immune responses.  Manipulating gut 

bacteria may therefore be an effective strategy to alter intra-hepatic immune responses.  
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4.2 INTRODUCTION 

Intra-organ dendritic cells (DC) develop from bone marrow precursors and are potentially the 

most potent antigen presenting cells.  In normal solid organs, resident DC are maintained in a 

relatively immature state.  They sample the microenvironment for pathogen associated molecular 

pattern (PAMP) danger signals via pattern recognition receptors (PRR) and phagocytotic 

sampling of potential antigens. Detection of PAMPs induces DC maturation that is marked by 

reduced phagocytosis, increased co-stimulatory and MHC class II molecule expression, and 

chemokine-mediated migration to the lymph nodes where they stimulate naïve T-lymphocytes.  

Through this process DC translate innate immune signals into adaptive immune responses.     

Portal blood accounts for seventy-five percent of total hepatic blood flow and it is rich in 

nutrients, hormones, potential antigens and bacterial products including stimulators of innate 

immunity (316). The liver filters portal blood of potentially immunogenic materials before it 

enters the general circulation and thereby protects the central immune organs from over-

stimulation.  Resident sinusoidal macrophages (Kupffer cells) and specialized liver sinusoidal 

endothelial cells (LSEC) clear macromolecules (126).  Hepatic DC are less responsive to 

endotoxin exposure and have reduced T-cell stimulatory capacity compared to DC from other 

organs (105, 314, 317).   

Potential mechanisms of liver DC resistance to maturation include lower expression of 

the LPS-binding TLR4 compared to splenic DC (105). The liver might also influence DC 

maturation by producing cytokines that inhibit DC maturation.  For example, in vitro, LSEC and 

Kupffer cells secrete anti-inflammatory cytokines including TGFβ (318) and IL-10 (185).  In 

vivo, liver non-parenchymal cells, including Kupffer cells constituently secrete interleukin-6 (IL-

6) (184, 319).  But the influence of these cytokines on liver DC has not been directly tested.    
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IL-6/gp130 signaling is one of the most potent activators of signal transducer and 

activator of transcription factors-3 (STAT3) (320) and this signaling pathway contributes 

importantly to hepatic pathophysiology (321).  IL-6 can also inhibit DC maturation and function 

through activation of STAT3 (79, 80, 259, 300, 302) but the effect of gp130/STAT3 signaling on 

liver DC has not been investigated.  The microenvironment of tumors with elevated STAT3 

activity suppresses DC responsiveness resulting in immune ignorance (79, 81).  This suggests 

that DC in normal tissues with higher endogenous STAT3 activity, like the liver, might be less 

responsive to maturational stimuli. 

To test this hypothesis, hepatic DC maturation and function were studied in IL-6 wild 

type (IL-6+/+) and IL-6 deficient (IL-6-/-) and STAT3 inhibited IL-6+/+ mice.  We show that 

hepatic STAT3 signaling is dependent significantly on IL-6 and is significantly higher than 

STAT3 signaling in other organs.  Liver DC from IL-6-/- and STAT3 inhibited IL-6+/+ are 

phenotypically and functionally more mature than hepatic DC from IL-6+/+ mice.  DC maturation 

in response to bacterial components is also significantly reduced IL-6+/+ liver DC.  Conversely, 

IL-6 treatment of IL-6-/- hepatic DC can inhibit their maturation.  Antibiotic-treatment reduced 

portal blood endotoxin and hepatic phopho-STAT3 in IL-6+/+ mice resulting in elevated liver DC 

maturation marker expression. These results implicate gut commensal bacteria and liver IL-

6/STAT3 signaling as important mechanisms that raise the threshold for hepatic DC maturation 

and migration signals.      
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4.3 RESULTS 

4.3.1 Constitutive IL-6/STAT3 signaling is higher in the normal liver than in other organs 

Baseline hepatic STAT3 activity is dependent on IL-6 and contributes to liver patho-physiology 

(321).  Since there are no comparisons of IL-6/nuclear STAT3 DNA binding activity among 

liver and other solid organs, we conducted such an analysis in normal IL-6+/+ and IL-6-/- mice.  In 

normal IL-6+/+ mice, liver STAT3 activity was significantly greater than STAT3 activity in 

spleen, lung, intestine and heart (Figure 4). 

The IL-6 status also influenced STAT3 activity in all other organs being significantly 

higher in IL-6+/+ than IL-6-/- mouse lung, intestine, and liver.  The absolute level and difference, 

however, in STAT3 activity between IL-6+/+ and IL-6-/- mice was most dramatic in the liver.  

Treatment of IL-6+/+ mice with JSI-124, a chemical inhibitor of STAT3 (80), for 3 days 

significantly reduced  STAT3 activity in liver (Figure 5). 
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Figure 4.  STAT3 DNA binding activity is significantly higher in liver compared to lung, spleen, intestine and 
heart. Additionally, STAT3 activity is elevated in all organs from IL-6+/+ mice compared to IL-6-/- mice, 
reaching statistical significance in the liver, lung and intestine.  The mean STAT3 DNA binding activity ± 
standard deviation from 5 individual mice is presented for each organ.  HepG2 cells treated with IL-6 are 
used as a positive control (Pos. Control) and were also hybridized in the presence of competitive 
oligonucleotide sequences (Pos. Plus Competitor) or mutant STAT3 binding sequences (Pos. Plus Mutant 
Seq).  Lysis buffer alone was used as a negative control (Neg. Control). # P<0.05 versus all other organs 
tested.  X p<0.01 vs all other organs tested except IL-6+/+ spleen.  * P<0.05 versus IL-6-/-.   

 
 

 

 
 
 
Figure 5.  IL-6+/+ mice treated with the STAT3 inhibitor JSI-124 have decreased expression of activated 
phospho-STAT3. Normal IL-6+/+ mice were treated for 3 days with 1μg/g body weight of JSI-124 (STAT3 
Inhibited) or vehicle control and sacrificed 24 hours following the last injection.  Liver nuclear lysates were 
analyzed by Western blot for phospho-STAT3 (p-Tyr705) and total STAT3. 
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4.3.2 Liver DC are more mature in IL-6-/- than IL-6+/+mice 

Elevated IL-6/STAT3 signaling inhibits DC maturation (79, 80, 259, 300, 302), whether the 

STAT3 activity is in the tissue microenvironment or in the DC themselves. Therefore, we tested 

the hypothesis that IL-6/STAT3 signaling might be responsible for reduced maturation of hepatic 

DC observed in normal liver by comparing IL-6+/+ and IL-6-/- mice.  Maturation was assessed, in 

situ, by immunofluorescence staining and by flow cytometry of freshly isolated hepatic DC.  

As shown before by many groups, dendritic-shaped cells expressing CD11c, CD86, and 

MHC class II by immunofluorescence localized primarily to the portal tracts (Figure 6A).  Many 

fewer DC were also present around the central veins and in the subcapsular regions (data not 

shown).  In IL-6+/+ liver, CD11c+ DC co-expressed significantly less CD86 than IL-6-/- or STAT3 

inhibited IL-6+/+ liver DC (Figure 6).  MHC class II co-expression in CD11c+ DC was elevated in 

IL-6-/- and STAT3 inhibited IL-6+/+ livers compared to IL-6+/+ livers, but did not reach statistical 

significance (Figure 6). 
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Figure 6.  Localization of CD11c+ DC and co-expression of CD86 or MHC class II protein by 
immunofluorescence in IL-6+/+, IL-6-/- or STAT3 inhibited IL-6+/+ livers. A) CD11c+ liver DC (Green) are 
predominantly located in the portal tracts with DC also observed around the central veins and in the 
subcapsular lymphatics (not shown).  Liver CD11c+ DC from IL-6-/- or STAT3 inhibited IL-6+/+ mice co-
expressed CD86 (Left Panels, Red) significantly more frequently than IL-6+/+ mice.  No significant differences 
were observed in MHC class II (Right Panels, Red) expression. Nuclei were stained with Hoechst dye (Blue).  
Original magnifications: 200x main image, 1000x inset.  B) Quantification of the number of CD11c+ DC 
expressing either CD86 (top) or MHC class II (bottom).  Expression of CD86 or MHC class II was examined 
in DC from at least 10 portal tracts in 4 mice per group.   N.S.: Not Significant.  

 
 
 
 
 
 
 
Flow cytometric studies on freshly isolated CD11c+ DC from IL-6+/+ and IL-6-/- liver 

confirmed that IL-6+/+ liver DC were less mature than IL-6-/- and STAT3 inhibited IL-6+/+ hepatic 

DC.  Analysis of co-stimulatory molecule expression in CD11c+ DC confirmed that IL-6+/+ liver 

DC had reduced maturation markers expression, CD80 and CD86, and CCR7 than liver DC from 
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IL-6-/- mice (Figure 7A-B).  MHC class II was also elevated in IL-6-/- liver DC, but not 

significantly so.  Reduced expression of CCR7 in IL-6+/+ liver DC, the chemokine receptor 

facilitating CCL19 and CCL21-mediated migration in mature DC (300), suggested that IL-

6/STAT3 signaling might inhibit migration of liver DC to the lymph nodes. 

Liver CD11c+ DC subtypes, based on expression of CD11b and CD8α (myeloid versus 

lymphoid) and plasmacytoid (CD11c+B220+), were also examined in IL-6+/+ and IL-6-/- mice.  

This analysis showed that most liver DC were CD11b+ CD8α- (myeloid) with minor populations 

of CD11b- CD8α+(lymphoid) and CD11b-CD8α- (Figure 8A-B).  The predominant liver DC 

subtype (CD11b+CD8α-; myeloid) showed the largest difference in maturation marker 

expression (CD80, CD86 and MHC class II) between IL-6+/+ and IL-6-/- liver DC, but differences 

were detected across all subtypes examined (Figure 8C-E).  Liver DC isolated from IL-6-/- mice 

also showed a significantly higher percentage of CD11c+B220+ plasmacytoid DC compared to 

IL-6+/+ liver DC and maturation marker expression was significantly higher in IL-6-/- 

plasmacytoid liver DC (Figure 9). 
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Figure 7.  Expression of the maturation markers CD80, CD86, MHC class II and CCR7 in freshly isolated 
liver and spleen CD11c+ DC by flow cytometry. A) Histograms are gated on CD11c+ populations.  DC isolated 
from IL-6+/+ (closed black histogram) liver showed lower expression of all maturation markers compared to 
IL-6-/-  (open black-line histogram) or STAT3 inhibited IL-6+/+ (closed gray histogram) liver DC.  In 
comparison, splenic DC isolated from IL-6+/+ (closed black histogram), IL-6-/- (open black-line histogram) and 
STAT3 inhibited IL-6+/+ (closed gray histogram) mice showed minimal differences.  Isotype controls are 
shown in the open grey-line histograms.  The results are representative of 3 individual experiments.  B) The 
percentage of liver and spleen DC expressing CD80, CD86, MHC class II and CCR7.  Each bar represents the 
mean ± standard deviation of three separate experiments.  
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Figure 8.   An examination of myeloid and lymphoid subtypes in IL-6+/+ and IL-6-/- liver DC.  A) A 
representative dot-plot gated on CD11c showing CD11b and CD8α expression in liver DC.  Three populations 
were observed: CD11b+CD8α- (myeloid DC), CD11b-CD8α+ (lymphoid DC) and a population of CD11b-

CD8α- liver DC.  Representative histograms showing CD86 expression in each subtype is also presented. 
Open black histogram: IL-6+/+ liver DC; Closed gray histogram: IL-6-/- liver DC; Open gray histogram: 
Isotype control.  B) No significant differences were observed between IL-6+/+ and IL-6-/- liver DC subtype 
based on CD11b and CD8α expression.  The results are the mean±standard deviation of three independent 
experiments. (C-E) Quantification of maturation marker expression in each subtype. Expression of CD80 (C), 
CD86 (D) and MHC class II (E) in liver CD11c+ DC subtype populations.  Maturation marker expression 
predominantly occurred in the CD11b+ CD8α- population.   Each bar is the mean±standard deviation of three 
independent experiments. * P<0.05 versus IL-6+/+. 
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Figure 9.  Plasmacytoid liver DC subpopulations in IL-6+/+ and IL-6-/- liver DC.  A) A representative dot-plot 
of CD11c and B220 expression in liver DC. The CD11c+B220+ population circled represents the plasmacytoid 
liver DC subtype.  A representative histogram showing CD86 expression in a population of liver DC gated on 
CD11c+B220+.  Open black histogram: IL-6+/+ liver DC; Closed gray histogram: IL-6-/- liver DC; Open 
gray histogram: Isotype control.  B) IL-6+/+ liver DC had significantly less CD11c+B220+ plasmacytoid DC 
than IL-6-/- liver DC.  The results are the mean±standard deviation of three independent experiments. C-E) 
Significantly more IL-6-/- plasmacytoid liver DC expressed CD80 (C), CD86 (D) and MHC class II (E) 
compared to IL-6+/+ plasmacytoid liver DC, though under 10% of cells expressed maturation markers. 
 
 
 
 
 

IL-6/STAT3 signaling had a more pronounced effect on DC maturation marker 

expression in the liver than in the spleen DC.  This is because STAT3 activity is significantly 

higher in liver than in spleen and the difference in STAT3 activity in the spleen between IL-6+/+ 

and IL-6-/- mice is not significant (Figure 4).   Consequently, splenic DC showed minimal, non-

significant differences in CD80, CD86 and MHC class II expression between IL-6+/+ and IL-6-/- 
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mice (Figure 7A and C).  CCR7 expression was marginally increased in IL-6-/- and STAT3 

inhibited IL-6+/+ DC compared to IL-6+/+ splenic DC. 

4.3.3  IL-6/STAT3 signaling impairs liver DC function 

DC initiate adaptive immune responses by directly stimulating T-cell activation, in the liver or in 

regional lymph nodes after migration.  DC also indirectly influence T-cell activation through 

secretion of pro- and anti-inflammatory cytokines.  We examined, therefore, liver DC cytokine 

secretion and T-cell stimulation to gauge their functional characteristics. Cytokine secretion was 

measured in isolated liver DC cultured in the presence of GM-CSF.  IL-6-/- and STAT3 inhibited 

IL-6+/+ liver DC showed significantly more secretion of the pro-inflammatory cytokines IL-1α 

and TNFα (Figure 10C and D).  Conversely, IL-6+/+ liver DC secreted significantly more IL-10 

than did IL-6-/- and STAT3 inhibited IL-6+/+ liver DC (Figure 10A).  Even though STAT3-

inhibited IL-6+/+ liver DC are more mature than untreated IL-6+/+ liver DC (Figure 7), we 

observed no significant difference in the amount IL-6 secreted (Figure 10B).  No detectable IL-4, 

IL-12 or IFNγ was observed (data not shown), consistent with previous reports of cytokine 

production from liver DC kept in the presence of GM-CSF (96).   
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Figure 10.  Cytokine secretion by IL-6+/+, IL-6-/- and STAT3 inhibited IL-6+/+ isolated liver DC. Production of 
(A) IL-10, (B) IL-6, (C) TNFα and (D) IL-1α protein was quantified in the media of isolated liver DC cultured 
for 48 hours in the presence of GM-CSF by the Murine Cytokine ProteoPlex Assay.  IL-6+/+ liver DC 
produced significantly greater amounts of the anti-inflammatory IL-10, while IL-6-/- and STAT3 inhibited IL-
6+/+ liver DC secreted higher amounts of the pro-inflammatory TNFα and IL-1α.  IL-6 was equally produced 
by both IL-6+/+ and STAT3 inhibited IL-6+/+ liver DC.  No IL-6 was detected in IL-6-/- liver DC, as expected.  
N.D.: Not detectable. 

 
 
 
 
 
The ability of DC to stimulate T-cell activation was measured in an allogeneic MLR 

using CD11c+ liver DC isolated from IL-6+/+, IL-6-/- or STAT3 inhibited IL-6+/+ mice as 

stimulators and allogeneic splenic T-cells as responders.  For all ratios of stimulator to 

responders tested, IL-6+/+ liver DC showed significantly reduced T-cell stimulation compared to 

IL-6-/- or STAT3 inhibited IL-6+/+ liver DC (Figure 11A).  IL-6/STAT3 status had little effect 

when syngeneic T-cells were used as responders (data not shown).   
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As a comparison, splenic DC were also used as stimulators (Figure 11B) and they were 

better T-cell stimulators than liver DC, as expected.  But IL-6+/+ splenic DC remained less potent 

T-cell stimulators than IL-6-/- or STAT3 inhibited IL-6+/+ splenic DC.  

 

 

 

 

 
Figure 11.  Increased allogenic T-cell stimulation by IL-6-/- and/or STAT3 inhibited IL-6+/+ liver DC.  Fifty-
thousand Balb/cJ nylon wool purified splenic T-cells were stimulated with reducing numbers of γ-irradiated 
IL-6+/+, IL-6-/- or STAT3 inhibited IL-6+/+ liver (A) or splenic (B) DC from C57Bl/6J mice in a mixed 
lymphocyte reaction (MLR).  Overall, splenic DC (B) were more potent stimulators of T-cell proliferation 
(measured by 3H thymidine incorporation as counts per minute (CPM)) than liver DC (A), as evidenced by 
differences in the CPM.  * P<0.05 versus IL-6+/+.  # P<0.05 versus IL-6-/-. 
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4.3.4 IL-6 status does not influence other anti-inflammatory cytokines   

The above data suggest that the IL-6/STAT3 activity-rich milieu of the liver inhibits liver DC 

maturation.  Other cytokines, however, including IL-10 and TGFβ, contribute to liver 

pathophysiology and are known to prevent DC maturation (322).  We considered the possibility 

that the suppressive effect of IL-6 on DC maturation might be mediated through these cytokines 

and therefore measured their hepatic expression.  No significant differences in whole liver IL-10 

(Figure 12A-B) or TGFβ (Figure 12C-D) mRNA or protein expression were detected between 

IL-6+/+ and IL-6-/- mice.  It is likely, therefore, that among these cytokines, IL-6 plays a major 

role inhibiting hepatic DC maturation in the normal liver.  

4.3.5 Increased threshold to TLR stimulation in IL-6+/+ liver DC 

Because IL-6/STAT3 signaling significantly contributes to the physiological inhibition of hepatic 

DC maturation, we next determined whether the IL-6 status affects the sensitivity of liver DC 

maturation to exogenous maturation stimuli.  Since the liver is continually bathed in bacterial 

components, we stimulated liver DC with the bacterial derived TLR agonists LPS and CpG 

oligonucleotides.   

Liver DC were prepared from hepatic non-parenchymal cells cultured with GM-CSF and 

compared to similarly prepared BMDC (314).  Consistent with previous reports (314), 

unstimulated liver DC expressed less CD86 compared to BMDC (Figure 13A).  Both IL-6-/- liver 

DC and BMDC cultures expressed more CD86 than IL-6+/+liver DC and BMDC cultures.  The 

maturation of liver IL-6-/- DC was less than IL-6-/- BMDC possibly reflecting the elevated basal 

STAT3 in the IL-6-/- liver (Figure 4).   
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Following stimulation with 100ng/ml LPS or 1μM CpG, liver DC and BMDC CD86 

expression increased, but was significantly less in IL-6+/+ liver DC (Figure 13A-C).  Almost all 

IL-6-/- liver DC express CD86 after LPS and CpG stimulation, while a significant population of 

IL-6+/+ liver DC resisted maturation.  Interestingly, IL-6-/- liver DC were dramatically more 

sensitive to stimulation with CpG than IL-6+/+ liver DC (Figure 13A-B).  A similar trend was 

also apparent between IL-6+/+ and IL-6-/- BMDC after CpG treatment though the differences 

were not as striking as in liver DC (Figure 13A,C). 

We speculated that elevated IL-6 secretion might account for the reduced maturation of 

IL-6+/+ liver DC to CpG stimulation.  Measurement of IL-6 protein revealed that CpG treated IL-

6+/+ liver DC secreted nearly 3-fold more IL-6 protein than control treated cells (Figure 13D).  In 

contrast, while LPS treated IL-6+/+ liver DC secreted significantly more IL-6 than control treated 

cells, this response was significantly less than CpG treated liver DC.  This shows that IL-6+/+ 

liver DC in fact are responsive to CpG treatment as evident by increased IL-6 secretion, and this, 

in turn, prevents liver DC maturation.   

The ability of IL-6 to prevent liver DC maturation was confirmed by treating IL-6-/- liver-

derived DC with exogenous IL-6 prior to LPS exposure.  IL-6-/- liver DC exposed to IL-6 for 24 

hours had a slight effect on CD86 expression compared to untreated cells (Figure 13E).  

However, IL-6 pre-treatment of IL-6-/- liver DC inhibited LPS induced CD86 expression 

compared to DC treated with LPS alone (Figure 13E).  Collectively, these results show that 

either endogenous or exogenous IL-6 can prevent DC maturation by TLR stimulation. 
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Figure 12.  IL-6 status does not influence normal liver IL-10 and TGFβ expression.  Livers from IL-6+/+ and 
IL-6-/- mice mRNA and protein were analyzed by quantitative real-time RT-PCR and by western blot, 
respectively, for IL-10 mRNA (A) and protein (B) and TGFβ mRNA (C) and protein (D).  Relative gene 
expression is reported as the ratio of the target gene to GAPDH.  IL-10 protein migrates as an 18kDa band, 
while TGF-β protein migrates as a 25kDa and 12.5kDa in a denaturing gel. Recombinant IL-10 (rIL-10) and 
TGF-β (rTGF-β) were used as positive controls. β-actin expression was used as a loading control.  Individual 
protein bands were quantified by densitometry and the relative expression presented graphically as the ratio 
of the protein to β-actin graphically below each blot. 
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Figure 13.  IL-6 reduces the sensitivity of liver DC to stimulation with bacterial TLR agonists.  A) Liver 
derived (LDC) and bone marrow derived (BMDC) DC from IL-6+/+ (closed black histograms) and IL-6-/- 
(open black-line histograms) mice were cultured for 48 hours in the presence of the bacterial TLR agonist 
LPS (100ng/ml) or CpG oligonucleotides (1μM).  CD86 expression was analyzed by flow cytometry and gated 
on CD11c+ DC.  The percent of CD11c +CD86+ cells for each strain are listed on each histogram.   Overall, 
liver DC were more resistant to stimulation by TLR agonists than BMDC, but the absence of IL-6 resulted in 
an increase in CD86 expression.  Isotype controls are shown as closed grey histograms.  B-C) A quantification 
of CD86 expression in CD11c+ liver DC (B) or BMDC (C).  Each bar represents the mean±standard deviation 
of three independent experiments. N.S.: Not Significant.  D) IL-6 protein secretion by IL-6+/+ liver DC after 
exposure to 100ng/ml LPS or 1μM CpG oligonucleotides for 48 hours.  While IL-6 secretion was significantly 
higher after TLR stimulation compared to controls, CpG treatment was more potent in inducing IL-6 
production.   E) CD11c+ IL-6-/- liver-derived DC were treated for 24 hours in the presence or absence of 
50ng/ml IL-6 followed by 48 hours with or without LPS (100ng/ml).  DC maturation was assayed by flow 
cytometry for CD11c and CD86.  The percentages of CD11c+CD86+ DC are reported in each graph.  Pre-
treatment of IL-6-/- liver DC with IL-6 also reduced the mean fluorescent intensity of CD86 (data not shown). 
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We also investigated whether the IL-6 status influenced the expression of LPS and CpG 

recognizing TLR4 and -9.  No significant differences were seen in TLR4 and -9 mRNA between 

IL-6+/+ and IL-6-/- liver DC (Figure 14A-B).  And while TLR4 protein expression was equal, 

TLR9 protein expression was significantly lower in IL-6+/+ compared to IL-6-/- liver DC (Figure 

14C-D).  Thus, the reduced TLR9 protein expression in IL-6+/+ liver DC may also contribute to 

the reduced maturation. 

Following LPS and/or CpG exposure, TLR signaling is negatively regulated by 

interleukin-1 receptor associated kinase-M (IRAK-M) (52).  Because of the continual hepatic 

exposure to endotoxin and the blunted maturation response of IL-6+/+ liver DC to LPS and CpG, 

we investigated whether IL-6 influences IRAK-M expression in liver DC.  IL-6+/+ liver DC 

(Figure 14E) and whole liver tissue (Figure 14F) expressed significantly more IRAK-M mRNA 

compared to IL-6-/- liver DC and liver tissue.  However, expression of IRAK-M protein revealed 

an opposite trend: IL-6-/- liver and liver DC had equal or greater IRAK-M expression (data not 

shown).  The discrepancy between mRNA and protein results suggests a complex post-

translational regulation of IRAK-M, which we are currently investigating.  
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Figure 14.  Analysis of TLR4 (A) and TLR9 (B) mRNA and protein (C-D) in freshly isolated IL-6+/+ and IL-6-

/- liver DC.  Gene expression was measured by real-time quantitative RT-PCR and relative gene expression is 
reported as the ratio of the target gene to GAPDH (A, B).  (C) Expression of TLR4 and -9 protein was 
determined by Western blotting (C) and analyzed by densitometry (D). TLR4 and -9 protein expression were 
normalized to β-actin expression.  Mouse spleen lysate is used as a positive control. (E-F) A negative regulator 
of TLR signaling, IRAK-M, is elevated in IL-6+/+ liver and freshly isolated liver DC compared to IL-6-/-.  
IRAK-M mRNA was analyzed by quantitative real-time RT-PCR in freshly isolated liver DC (E) and whole 
liver tissue (F).  
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4.3.6 Gut-derived commensal bacterial endotoxin inhibits liver DC maturation 

If gut-derived bacterial PAMPs are responsible for the IL-6/STAT3 signaling mediated 

immaturity of liver DC, depletion of commensal bacteria by oral antibiotics should increase DC 

maturation in IL-6+/+ livers.  IL-6+/+ and IL-6-/- mice were fed antibiotics or control water by 

gavage for 5 days.  Antibiotic treatment significantly reduced the endotoxin levels in the portal 

blood (Figure 15A) resulting in a significant decrease in liver tissue IL-6 protein (Figure 15B) 

and nuclear phospho-STAT3 (Figure 15C) expression in IL-6+/+ liver tissue compared to control-

treated control mice.  Control-treated IL-6-/- liver tissue expressed little phosphorylated nuclear 

STAT3, as expected.  Antibiotic-treated IL-6-/- mice, however, showed a significant increase in 

baseline phosphorylated STAT3 to levels comparable to those seen antibiotic-treated IL-6+/+ 

liver.  Preliminary observations suggest that an alternative compensation mechanism may be 

operative in the IL-6-/- mice, because after antibiotic treatment, they also showed increased 

glycogen storage, which was absent in all other treatment groups (data not shown). 

The decreased portal blood endotoxin, hepatic IL-6 protein, and activated STAT3 in 

antibiotic-treated IL-6+/+ mice resulted in a significant increase in CD80, CD86 and MHC class 

II expression compared to control-treated IL-6+/+ liver DC (Figure 15D).  No differences were 

observed in antibiotic- or control-treated IL-6-/- liver DC, even though STAT3 was elevated in 

antibiotic-treated IL-6-/- liver.  Antibiotic-treatment did not alter the distribution or maturation in 

the CD11c+ liver DC subtype populations (data not shown).  These data show gut-derived 

bacterial products stimulate STAT3 in an IL-6-dependent manner thereby inhibiting liver DC 

maturation. 
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Figure 15.  Oral antibiotic-treatment increases IL-6+/+ liver DC maturation.  A) IL-6+/+ and IL-6-/- mice 
treated with oral antibiotics by gavage had a significant reduction in the concentration of portal blood 
endotoxin compared to control mice fed water by gavage.  * P<0.05 versus control-treated mice.  B) 
Expression of IL-6 protein was measured in liver tissue from control- or antibiotic-treated IL-6+/+ mice by 
Western blot.  Livers from antibiotic-treated IL-6+/+ mice had significantly lower expression of IL-6 than 
control-treated mice.   C) Antibiotic-treated IL-6+/+liver tissue expressed significantly less phospho-STAT3 
than control-treated IL-6+/+ livers.  IL-6-/- livers from antibiotic-treated mice expressed elevated phospho-
STAT3, though this was still lower than antibiotic-treated IL-6+/+ liver. Lysate from SG231 cells was used as a 
positive control.  D) The reduced portal blood endotoxin, IL-6 protein and phospho-STAT3 in antibiotic-
treated IL-6+/+ mice resulted in an increase in IL-6+/+ liver DC expression of CD80, CD86 and MHC class II 
compared to control-treated IL-6+/+ mice.  Histograms are gated on CD11c+ liver DC. No significant 
differences in liver DC maturation were observed between antibiotic- or control-treated IL-6-/- mice, even 
though antibiotic-treated IL-6-/- mice had increased phospho-STAT3.  Graphs show the mean±standard 
deviation from 3 separate experiments.  * P<0.05 versus control-treated IL-6+/+ liver DC. 
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4.4 DISCUSSION 

In this study we show that, under normal physiological circumstances, constitutive hepatic IL-

6/STAT3 signaling stimulated by commensal gut bacteria contributes significantly toward 

maintenance of hepatic DC in a relatively immature state compared to DC from other organs.  

Since the liver is continually bathed in bacterial components and potential antigens a mechanism 

preventing liver DC maturation in response to these stimuli would be beneficial.  Ironically, 

these studies show that the bacteria themselves, through endotoxin and CpGs, contribute 

significantly to hepatic DC hypo-responsiveness.  The interdependence between gut bacteria and 

liver DC raises threshold needed for PAMP molecules to stimulate liver DC 

activation/maturation and, thereby, translate innate signaling into adaptive immunity.   

IL-6 is generally considered to be a pro-inflammatory cytokine because it is elevated 

along with other pro-inflammatory cytokines, including TNFα, IL-1 and IFNγ, during early 

stages of inflammatory responses (296).  IL-6 also inhibits the suppressive ability of regulatory 

T-cells (277); stimulates B-cell proliferation and generation of plasma cells (320); and in 

conjunction with TGFβ, drives polarization of CD4+ T-cells to a Th17 lineage, which have been 

linked to autoimmunity (278).  Transgenic mice over-expressing IL-6 are also more prone to 

develop plasmacytosis and exhibit autoimmune characteristics (323). 

In contrast, several lines of evidence suggest that IL-6 might also be considered as an 

anti-inflammatory cytokine.  For example, IL-6/STAT3 signaling inhibits macrophage and DC 

maturation (79-81, 259, 300, 302).  And IL-6-/- mice treated with an intraperitoneal injection of 

E.coli and/or LPS have increased mortality (298), a deficient fever response (297), and a 
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significantly increased TNFα and IFNγ cytokine response (296) compared to IL-6+/+ mice.  

Additionally, granulomas formed after intravenous Rhodococcus aurantiacus injection were 

larger and associated with significant elevations of pro-inflammatory cytokines in IL-6-/- mice 

compared to IL-6+/+ controls (324).  Collectively, these studies suggest that IL-6 can both 

facilitate activation of adaptive cellular immunity while suppressing innate immune 

responsiveness by acting in a spatio-temporal manner on each arm of the immune response. In 

this role, IL-6 appears to be involved in setting the threshold for communication between the two 

arms of the immune system. 

IL-6 is a potent activator of hepatic STAT3 activity (325) and widely-recognized as a 

participant in various aspects of hepatic pathophysiology, including liver regeneration (294), 

induction of the acute phase response (320), sepsis (295), and biliary tract barrier function and 

wound repair (321).  The current results show that baseline STAT3 activity in the liver is 

significantly higher than in the spleen, intestine, lung, and heart.  Although hepatic STAT3 

activity is significantly lower in IL-6-/- compared to IL-6+/+ mouse livers, liver STAT3 levels in 

IL-6-/- mice are still significantly higher than all other organs from both IL-6-/- and IL-6+/+ mice.  

Cytokines responsible for maintenance of STAT3 activity in IL-6-/- liver are currently unknown. 

Previous studies showed that liver DC are more immature than DC from other solid 

organs (317), but aside from reduced TLR4 expression (105), the underlying mechanisms 

responsible for this immaturity are not fully understood.  Diverse subtypes of liver DC, including 

potentially hyporesponsive populations, may also contribute to the overall liver DC phenotype 

(92, 96).  Our results, however, show that hepatic IL-6 contributes significantly to liver DC 

immaturity and hyporesponsiveness in all subtypes analyzed.  
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It has been speculated that anti-inflammatory cytokines such as TGFβ and IL-10 are 

important suppressors of hepatic DC maturation (322).  We found, however, no differences in 

whole liver TGFβ and IL-10 mRNA or protein expression, suggesting that the anti-inflammatory 

effects of IL-6 were not due to elevated expression of these cytokines. This is also consistent 

with reports showing that IL-10 did not compensate for the absence of IL-6 during LPS mediated 

inflammation (296).   Hepatic IL-6, therefore, is likely an important component of maintaining 

phenotypic immaturity in liver DC under physiologic conditions. 

We show that IL-6 protein is detectable in IL-6+/+ liver tissue and is likely produced and 

utilized within the liver itself.  Mouse blood sampled from the portal vein and inferior vena cava 

had similar IL-6 protein levels (data not shown).  IL-6 mRNA is also readily detectable from 

freshly isolated liver mononuclear cells and micro-dissected Kupffer cells and is significantly 

higher than in monocytes from the spleen or Peyer’s patches (184, 319).  Bacterial LPS and CpG 

induce IL-6 expression in Kupffer cells (326) and liver DC (92).  Antibiotic-treated IL-6+/+ mice 

with significantly reduced portal blood endotoxin have decreased hepatic IL-6 expression 

compared to control-treated mice (Figure 15).  This is consistent with data showing lower IL-6 

mRNA in livers from gnotobiotic mice compared to specific-pathogen free mice possessing 

normal gut flora (287).   

Lower portal blood endotoxin and hepatic IL-6 in antibiotic-treated IL-6+/+ mice resulted 

in a significant reduction of phospho-STAT3 expression and liver DC that were more mature 

than control-treated IL-6+/+ liver DC.  Antibiotic-treated IL-6-/- mouse liver DC maturation did 

not differ from controls.  Our results can be melded into a simple, yet elegant, physiological 

model where elevated portal venous blood commensal gut bacterial products stimulate hepatic 

IL-6/STAT3 activity, which in turn, inhibits liver DC maturation (Figure 16).  Elevated liver IL-
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6/STAT3 likely raises the threshold needed by multitude of potential portal venous blood 

antigens and bacterial products to stimulate systemic adaptive immunity.   

 

 

 

 

 
 
Figure 16.  IL-6/STAT3 signaling stimulated by gut-derived bacterial products inhibits liver DC maturation 
and function. This model provides an explanation for the reduced maturation and function of liver DC 
compared to DC in other peripheral organs.  1) Bacterial PAMPs from commensal gut bacteria, including 
endotoxin/LPS and CpG oligonucleotides are elevated in the portal blood.  This, in turn, stimulates 
intrahepatic production of IL-6 (2) and by binding to gp80 and signaling through gp130 activates liver 
STAT3 (3).  As a result of elevated hepatic IL-6/STAT3 signaling liver DC have a higher threshold to 
maturation inducing stimuli (4).        
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In vitro, stimulation of IL-6+/+ liver DC with either LPS or CpG resulted in dramatically 

less CD86 expression compared to IL-6-/- liver DC.  In contrast, similar treatment of IL-6+/+ 

BMDC resulted in significantly more maturation than hepatic DC.  And while IL-6+/+ liver DC 

resisted CpG induced maturation marker expression, CpG-treatment did stimulate DC to produce 

significantly more IL-6 compared to controls or LPS (Figure 10D). Thus, liver DC do respond to 

CpG stimulation with elevated IL-6 secretion, possibly through a TLR9-independent pathway, 

and this maintains DC in a relatively immature state. 

It will be important to determine qualitatively or quantitatively whether different 

molecular mechanisms are needed counteract the inhibitory influence of IL-6/STAT3 signaling 

on DC maturation.  This will help to better understand how immune responses are initiated in the 

liver or after DC have migrated to regional lymph nodes.  IL-6/STAT3 appears to upregulate 

intracellular negative regulators of TLR signaling, including IRAK-M.  After initial TLR agonist 

stimulation, IRAK-M inhibits TLR signaling by preventing formation of IRAK-1/TRAF6 

complexes leading to an endotoxin tolerant state (52).  Our results show that IRAK-M mRNA 

levels were significantly higher in IL-6+/+ liver DC and liver tissue compared to IL-6-/- liver 

tissue.  But, IRAK-M protein expression revealed an opposite trend.  Since IL-6/STAT3 

signaling has not been previously shown to influence the expression of IRAK-M we are currently 

investigating molecular mechanisms responsible for these observations. 

Lastly, the influence of gut bacteria and IL-6/STAT3 signaling on DC allo-stimulation 

might help explain why long-surviving stable liver allografts recipients can be more readily 

weaned from immunosuppression (132), and why septic allograft recipients that have elevated 

serum IL-6 (298) can be withdrawn from all immunosuppression with a low risk of rejection 
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(327).  This study also raises the question whether manipulation of gut bacteria can be exploited 

therapeutically to either augment or inhibit intra-hepatic immune responses. 

4.5 SIGNIFICANCE 

It is known that the liver tolerates the continual perfusion with antigen and PAMP rich portal 

blood.  However, the underlying mechanisms maintaining this tolerance are unclear.  There has 

been much focus trying to identify the cellular mechanisms preventing the immune activation of 

hepatic cells in response to the portal blood PAMPs.  Many studies cite Kupffer cell production 

of IL-10 after LPS stimulation as a cytokine contributor to liver immune quiescence (185).  

However, the amount of LPS used in this study, 1μg/mL, is well above that observed during any 

pathological event, even bacterial sepsis.  On the other hand, IL-6 is physiologically produced by 

liver Kupffer cells in response to commensal gut bacteria endotoxin and IL-6 potently stimulates 

liver STAT3 activity.  Considering the reports from the tumor immunology field showing that 

elevated tumor STAT3 activity confers immune unresponsiveness to neoplastic cells, the 

elevated STAT3 activity in the normal liver might be a similar mechanism to prevent immune 

activation by gut derived PAMP molecules. 

 Gut derived PAMP molecules are the principal stimulators of IL-6 in the liver.  Using 

antibiotics to reduce portal blood endotoxin in mice, we show that gut derived PAMP molecule 

stimulation of IL-6/STAT3 signaling significantly inhibits liver DC function and maturation.  It 

therefore is reasonable to consider commensal gut bacterial PAMP molecules as a kind of 

immunosuppressive agent for normal liver DC.  Studies using functional models of liver 

immunology should further demonstrate whether manipulation of gut bacteria is a useful 
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therapeutic tool to alter inflammation in the liver.  This could be beneficial in stimulating the 

immune clearance of chronic hepatitis B and C infections.  Additionally, identifying bacterial 

strains that might further stimulate liver IL-6/STAT3 activity might be used in generating or 

maintaining liver allograft tolerance.     
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5.1 ABSTRACT 

Professional antigen presenting dendritic cells (DC) bridge the innate and adaptive immune 

systems by detecting pathogen associated molecular pattern (PAMP) molecules, which trigger 

DC maturation and migration to regional lymph nodes where they stimulate T lymphocytes.  DC 

in tissues normally exposed to relatively high levels of PAMP molecules have a higher threshold 

to stimulation than DC at other sites.  For example, gut commensal bacteria-dependent 

constitutive IL-6/STAT3 signaling inhibits DC maturation in normal liver.  In this study we 

tested the hypothesis that IL-6 raises the threshold needed for PAMP molecules to induce DC 

maturation via upregulation of STAT3 activity.  Results show that IL-6 wild-type (IL-6+/+) bone 

marrow derived DC are significantly less mature than IL-6-deficient (IL-6-/-) DC because of 

elevated STAT3 activity, which in turn, is significantly influenced via negative reciprocal 

regulation with MAP Kinase activity.  Inhibition of normally high STAT3 activity inhibits DC 

maturation in IL-6+/+ but has no effect in IL-6-/- DC, which normally show little or no 

constitutive STAT3 activity.  A concentration response curve showed that, compared to IL-6-/- 

DC, IL-6+/+ DC significantly resisted maturation in response to low concentrations of LPS, CpG 

oligonucleotides and polyI:C.  Except for CpG oligonucleotides, however, higher concentrations 

of these same ligands stimulated maturation of both IL-6+/+ and IL-6-/- DC.  Conditioned media 

experiments further substantiated that microenvironmental IL-6 levels and STAT3 signaling 

controlled basal DC maturation, DC response to PAMP molecules, and macrophage 

proliferation/survival.   Thus, environmental IL-6 levels and subsequent gp130/STAT3 signaling 

significantly influence how DC respond to potential pathogens. 
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5.2 INTRODUCTION 

Dendritic cells (DC) are bone marrow-derived professional antigen presenting cells that bridge 

innate and adaptive immunity and are involved in tolerance induction/maintenance (1-3).  DC 

maturation and function are influenced by exposure to pathogen associated molecular pattern 

(PAMP) molecules recognized by pattern recognition receptors (PRR) such as the toll-like 

receptors (TLR) and other endogenous ligands (328). DC in tissues continually exposed to 

PAMP molecules, however, are usually resistant to maturational stimuli (83).  For example, in 

the liver we have shown that perfusion with endotoxin-rich portal blood stimulates hepatic 

interleukin-6 (IL-6) production and constitutive signaling through signal transducer and activator 

of transcription 3 (STAT3), which in turn, inhibits liver DC maturation (34).   

IL-6 is a member of a cytokine family that signals through a common signaling receptor, 

gp130.  Each ligand of the gp130 family activates primarily either the Jak-STAT3 or the Ras-

Raf-Erk1/2 MAP Kinase pathways.  And negative reciprocal regulation between these pathways 

usually results in predominance of one over the other (233, 238).  IL-6/gp130 signaling is 

mediated primarily through the STAT3 pathway and IL-6-/- mice phenotype resembles mice with 

conditional deficiencies of STAT3 (329).  Blocking STAT3 activity in wild type mice typically 

results in stronger signaling through the Ras-Raf-Erk1/2 MAP kinase pathway because of release 

of reciprocal negative regulation, which is known to exist between these pathways (233, 238).   

IL-6 has generally been considered a pro-inflammatory cytokine based largely on its 

elevation, along with other pro-inflammatory cytokines such as TNFα and IFNγ, during systemic 

inflammation or injury (296).  IL-6 also promotes effector cell activation, B-cell proliferation 

and differentiation to plasma cells, and inhibition of regulatory T-cell function.  In conjunction 
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with TGFβ, IL-6 also drives the differentiation of IL-17 producing CD4+ T-cells (277, 278, 330, 

331).   

Conversely, IL-6 is elevated during sepsis and is associated with a global 

immunosuppression, including decreased sensitivity of DC to further PAMP stimulation, reduced 

ability of DC to induce T-cell proliferation, and increased secretion of anti-inflammatory 

cytokines (295, 332).  In general, DC derived from IL-6 deficient (IL-6-/-) mice are also more 

mature than wild-type (IL-6+/+) DC (259, 300, 302), except for one study that showed somewhat 

contradictory results (333).  IL-6 also prevents the exaggerated expression of pro-inflammatory 

TNFα and IFNγ in IL-6-/- mice following endotoxin exposure (298).  In the liver, IL-6/STAT3 

signaling stimulated by commensal gut-bacterial products inhibits hepatic DC maturation and 

function (34).  Collectively, these studies suggest that under some circumstances, IL-6 can exert 

an anti-inflammatory influence (299).   

In this study, we tested the hypothesis that IL-6 signaling activation of STAT3 raises the 

threshold of maturation for DC in response to PAMPs.  Using IL-6+/+ and IL-6-/- bone marrow 

(BM) derived DC we show that predominant IL-6 signaling though STAT3 inhibits DC 

maturation in response to low concentrations of TLR agonists, but DC maturation does occur 

when immature DC are exposed to higher concentrations of TLR agonists, except for CpGs.  

Additionally, DC cultured in the presence of elevated IL-6 resist maturation in response to 

PAMP stimulation.  This suggests that the IL-6/STAT3 signaling by DC elevates the threshold 

needed for PAMP induced maturation.  
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5.3 RESULTS 

5.3.1 Increased STAT3 activity in IL-6+/+ DC inhibits maturation.  

IL-6 signaling through gp130 can stimulate both JAK-STAT3 and Ras-Raf-MEK1-ERK1/2 

MAP Kinase pathways, although the STAT3 pathway usually predominates (233).  The activity, 

however, of IL-6/gp130: STAT3 or ERK1/2 signaling in DC has not been investigated.  Since a 

negative reciprocal relationship exists between each arm of IL-6-gp130 signaling (238), we 

analyzed the relative contribution of each pathway and used specific chemical inhibitors in IL-

6+/+ and IL-6-/- DC to assess the influence of each pathway on DC maturation.  DC were 

examined at day 6 in culture when IL-6 secreted into the culture medium is maximal (Figure 

17A).  Under baseline culture conditions, STAT3 DNA binding activity and phosphorylated 

STAT3 expression was significantly higher in IL-6+/+ compared to IL-6-/- DC (Figure 17B and 

F), as expected.  Conversely, expression of phosphorylated ERK1/2 was significantly lower in 

IL-6+/+ DC compared to IL-6-/- DC (Figure 17C).  These results show that in the basal state IL-

6+/+ DC shows constitutive STAT3 activity, whereas basal ERK1/2 activity is higher in IL-6-/- 

DC probably due to an absence of reciprocal negative regulation of STAT3 activity.   

The differences in STAT3 and ERK1/2 signaling in IL-6+/+ and IL-6-/- DC were 

associated with altered DC maturation as measured by cell surface expression of CD80, CD86, 

CCR7, and MHC class II.  IL-6+/+ DC with elevated STAT3 activity expressed significantly less 

CD80, CD86, CCR7, and MHC class II indicating a immature phenotype relative to IL-6-/- DC 

(Figure 17D).  In comparison, the predominant gp130-ERK1/2 signaling in IL-6-/- DC resulted in 

comparatively greater DC maturation (Figure 17D).  The influence of gp130 signaling on DC 

maturation was further substantiated by inhibiting DC STAT3 or MEK1-ERK1/2 with their 
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respective chemical inhibitors, JSI-124 and PD98059.  CD86 expression was used to measure 

maturation.  Blocking the higher STAT3 activity in IL-6+/+ DC with JSI-124 significantly 

increased CD86 expression compared to vehicle treated controls (Figure 17E) while PD98059 

inhibition of ERK1/2 had little effect on maturation (Figure 17E).  In contrast, JSI-124 treatment 

did not significantly alter maturation of IL-6-/- DC (Figure 17E), which have significantly lower 

STAT3 activity than IL-6+/+ DC under baseline conditions (Figure 17A).  Blocking MEK1-

ERK1/2 signaling in IL-6-/- DC, however, resulted in decreased CD86 expression compared to 

vehicle controls (Figure 17E).   

Western blot analysis confirmed the efficacy of the chemical inhibition of STAT3 and 

MEK1-ERK1/2   signaling.  JSI-124 treatment effectively reduced STAT3 phosphorylation in 

IL-6+/+ DC (Figure 17F-G).  Similarly, blocking MEK1-ERK1/2 activation in IL-6-/- DC with 

PD98059 not only reduced phospho-ERK1/2 expression (Figure 17F-G) but also elevated 

STAT3 activity (Figure 17F and H).   These results are consistent with the observations that DC 

maturation is inhibited in mice with mutations in gp130 resulting in signaling through STAT3 

compared to gp130 mutants with predominant Ras-Raf-MEK1-ERK1/2 signaling(259, 302). 
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Figure 17.  IL-6/STAT3 signaling inhibits DC maturation.  A) IL-6 is secreted into the culture medium of 
bone marrow cells cultured in with GM-CSF and IL-4.  IL-6 is detectable by day 2 and peaks at day 6. After 
day 6, the titers of IL-6 decrease in conjunction with decreased cell viability.  B) STAT3 DNA binding activity 
at day 6 in IL-6+/+ DC was significantly higher than in IL-6-/- DC.  As controls, HepG2 treated with IL-6 were 
assayed in the presence or absence of a competitor oligonucleotide sequence or a mutant oligonucleotide 
sequence.  C) Expression of phosphorylated ERK1/2 by Western blot was significantly higher in IL-6-/- DC 
compared to IL-6+/+ DC.  Quantification of band intensities by densitometry analysis is shown below the blot.  
β-actin was used to ensure equal protein loading.  D) IL-6+/+ DC consistently have reduced expression of the 
maturation markers CD80, CD86, MHC class II and CCR7 as determined by flow cytometry compared to 
IL-6-/- DC.  Histograms are gated on CD11c+ DC populations.  E) IL-6+/+ and IL-6-/- DC were treated for 48 
hours either with the STAT3 inhibitor JSI-124, MEK1-ERK1/2 inhibitor PD98059 or vehicle control.  DC 
were collected and analyzed for CD86 expression by flow cytometry.  Histograms are gated on the CD11c+ 
DC population.  F) Western blot analysis of phosphorylated STAT3, phosphorylated ERK1/2, total STAT3 
and β actin in IL-6+/+ and IL-6-/- DC treated with either JSI-124, PD98059 or vehicle controls. Lysates from 
the SG231 cell line was used as a positive control.  G) Relative density quantification of pSTAT3 Western 
blot.  H) Relative density quantification of pERK1/2 Western blot. 
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5.3.2 IL-6 Alters the Functional Capabilities of Myeloid DC 

Compared to functionally mature DC, immature DC show an increased phagocytic activity and 

reduced ability to stimulate T-cell proliferation (1-3).  If IL-6 also influences DC function, in 

addition to surface marker expression, we would expect these functional endpoints to differ 

between IL-6+/+ and IL-6-/- DC.  Particle engulfment, as a measure of DC phagocytosis, was 

assessed by uptake of phycoerythritan (PE)-labeled 0.04μm beads.  Receptor-mediated 

endocytosis, as a measure of DC phagocytosis, was assessed by FITC-Dextran uptake. The 

percentage and mean fluorescent intensity was measured by flow cytometry in CD11c+ DC at 

time points up to 60 minutes.  Consistent with the immature cell surface molecule phenotype, IL-

6+/+ DC showed significantly greater uptake of FITC-Dextran (Figure 18A, B) and PE-labeled 

0.04um beads (Figure 18C, D) compared to more mature IL-6-/- DC.  Both strains of DC had 

minimal uptake of FITC-Dextran when kept at 4˚C confirming that the uptake occurring at room 

temperature was an active process (Figure 18A). 

We next compared the ability of IL-6+/+ and IL-6-/- DC to stimulate T-cell proliferation in 

an allogeneic mixed lymphocyte reaction.  Decreasing numbers of γ-irradiated C57Bl/6J IL-6+/+ 

and IL-6-/- DC were incubated with 2x105 nylon wool purified splenic Balb/c T-cells for 96 

hours.  For the last 18 hours, the media was supplemented with 1μCi of [3H]thymidine to 

measure DNA synthesis.  As expected, IL-6-/- DC are significantly more effective stimulators of 

T-cell proliferation compared to IL-6+/+ DC (Figure 18E).  No significant T-cell proliferation was 

observed when syngeneic T-cells were used as responders (data not shown).  Collectively, these 

data show that IL-6 signaling contributes to the functional phenotype of immature DC with 

increased phagocytosis and reduced T-cell stimulatory ability. 
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Figure 18.  IL-6-/- DC are functionally more mature than IL-6+/+ DC.  A-B) Phagocytosis was measured by 
examining the amount of FITC-Dextran (A-B) or 40um PE-microspheres (C-D) engulfed by CD11c+ DC over 
a 60-minute period.  The percentage of FITC (A) or PE (C) positive CD11c+ DC and the mean FITC (B) and 
PE (D) fluorescent intensity were quantified by flow cytometry.  The more mature IL-6-/- DC had reduced 
phagocytosis compared to IL-6+/+ DC. * P<0.01, ** P<0.05 versus IL-6-/- DC.  E) IL-6-/- DC are significantly 
more potent stimulators of T-cell proliferation than IL-6+/+ DC.  Decreasing numbers of C57/Bl/6J IL-6+/+ and 
IL-6-/- DC were incubated with nylon wool purified balb/c T-cells in an allogeneic mixed lymphocyte reaction. 
* P<0.05 versus IL-6+/+ DC. 
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5.3.3 IL-6 signaling decreases the sensitivity to TLR ligands 

Our previous analysis of liver DC suggested that IL-6/STAT3 signaling might increase the 

threshold needed for TLR agonist stimulation to trigger DC maturation (34).  We tested, 

therefore, the response of IL-6+/+ and IL-6-/- DC to stimulation with relatively low and high 

concentration of LPS (TLR4), CpG oligonucleotide (TLR9) and polyI:C (TLR7).  DC maturation 

was assessed by flow cytometric CD86 expression 48 hours after TLR ligand stimulation.  

Unstimulated IL-6+/+ DC expressed significantly less CD86 compared to IL-6-/- DC, as expected 

(Figure 19).  Following stimulation with 0.1ng/ml LPS, 0.1μM CpG oligonucleotides or 1μg/ml 

polyI:C, almost all IL-6-/- DC expressed CD86 while a significant percentage of IL-6+/+ DC 

resisted maturation.  However, when higher concentrations of the TLR agonists were used 

(100ng/ml LPS, 5μM CpG or 10μg/ml polyI:C) CD86 expression was observed in nearly all IL-

6+/+ and IL-6-/- DC.  A notable exception was that IL-6+/+ DC treated with 5μM CpG still showed 

a significant population of DC that resisted maturation (Figure 19).  This response was similar to 

that of CpG-stimulated IL-6+/+ liver DC where the resistance to maturation was associated with 

significantly higher IL-6 production (34).  Also, even though the percentage of IL-6+/+ DC 

expressing CD86 was significantly increased, the mean fluorescent intensity of CD86 expression 

was significantly lower compared to IL-6-/- DC for all ligands tested.  Thus, IL-6 elevates the 

threshold for DC maturation after TLR stimulation. 
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Figure 19. IL-6+/+ have an increased threshold toward PAMP molecules than IL-6-/- DC.  A) Flow cytometry 
analysis for CD86 in day 6 CD11c+ DC stimulated for 48 hours with LPS, CpG or polyI:C.  Histograms are 
gated on the CD11c+ population. While nearly all IL-6-/- DC stimulated with lower concentrations of LPS 
(0.1ng/ml), CpG oligonucleotides (0.1μM) or polyI:C (1μg/ml) expressed CD86, a significant percentage of IL-
6+/+ DC resisted maturation.  At higher concentrations of LPS (100ng/ml), CpG oligonucleotides (5μM) or 
polyI:C (10μg/ml), IL-6+/+ DC responded with an increase in CD86 expression.   B-C) Quantification of the 
mean percentage of CD86+CD11c+ DC (B) and the mean CD86 fluorescent intensity (C) from 3 individual 
experiments.  * P<0.05 versus IL-6+/+ DC. 

 
 
 
 
 
 
 
 
 

 83 



 
 
 
 

5.3.4 Autocrine and Paracrine IL-6 signaling decreases the sensitivity to TLR ligands 

Since TLR ligands trigger IL-6 production in DC and macrophages (28), we reasoned that 

secretion of IL-6 into the medium of DC cultures would influence DC maturation.  In support of 

this contention, we observed that when TLR agonists were directly added to DC cultures at day 

6, when IL-6 concentrations were highest, DC were more resistant to maturation than if day 6 

DC were stimulated in fresh medium (data not shown).  To test whether elevated IL-6 at the time 

of stimulation inhibited DC maturation we cultured IL-6+/+ DC in either unconditioned, fresh 

medium containing minimal IL-6 or in conditioned medium, consisting of one-half IL-6 rich 

medium from day 6 DC cultures (Figure 17A) and one-half fresh medium.  Similar cultures were 

prepared using DC and conditioned medium from IL-6-/- DC and all cultures were equally 

supplemented with GM-CSF and IL-4.  IL-6+/+ DC cultured in conditioned medium for 48 hours 

had significantly higher concentrations of IL-6 protein compared to IL-6+/+ DC cultured in fresh 

medium (Figure 20A).  This resulted in significantly higher STAT3 DNA binding activity in IL-

6+/+ DC kept in conditioned compared to IL-6+/+ cultured in fresh medium (Figure 20B).  STAT3 

activity in IL-6-/- DC cultured in conditioned medium was significantly higher than IL-6-/- kept in 

fresh medium, though this was still significantly less than IL-6+/+ DC kept in either conditioned 

or unconditioned media (Figure 20B).  Thus, the higher IL-6 levels and STAT3 activity should 

prevent DC maturation. 

Indeed, higher IL-6/STAT3 activity in IL-6+/+ DC cultured in conditioned media led to a 

significantly lower expression of CD86 compared to IL-6+/+ DC kept in fresh medium having 
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lower IL-6/STAT3 activity (Figure 20C-D).  No significant differences in CD86 expression were 

observed when IL-6-/- DC were cultured in either fresh or conditioned medium from day 6 IL-6-/- 

cultures (Figure 20C-D).  Furthermore, treating DC cultures with a neutralizing IL-6 antibody 

increased CD86 and MHC class II expression in IL-6+/+ DC cultured in conditioned medium and 

to a lesser extent in fresh medium (Figure 20E-F).  

Because IL-6+/+ DC cultured in the immunosuppressive conditioned media were more immature, 

we postulated that IL-6+/+ DC cultured in conditioned medium would be more resistant to 

exogenous stimulation by LPS, a representative TLR agonists.  IL-6+/+ and IL-6-/- DC were 

cultured in either conditioned or fresh media, prepared as above, in the presence or absence of 

either 0.1ng/ml or 100ng/ml LPS.  DC maturation was examined by flow cytometry 48 hours 

later.  When IL-6+/+ DC cultured in conditioned medium were stimulated with 0.1ng/ml LPS, 

CD86 expression was significantly less compared to IL-6+/+ DC cultured in fresh medium.  

However, the elevated IL-6/STAT3 activity in IL-6+/+ DC cultured in conditioned medium was 

unable to prevent maturation following stimulation with higher concentrations of LPS (Figure 

20C-D).  IL-6-/- DC kept in either conditioned or fresh media had a strong maturation response to 

either low or high concentrations of LPS.  Thus, when DC are cultured in a microenvironment 

with elevated IL-6, higher DC STAT3 activity elevates the threshold to stimulation with LPS, 

though DC are still capable of responding to higher concentrations of PAMPs. 
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Figure 20. DC cultured in the presence of elevated IL-6 elevates the threshold for stimulation after LPS 
treatment. A) Culture medium from IL-6+/+ DC kept in conditioned medium from day 6 IL-6+/+ DC cultures 
for 48 hours had significantly higher IL-6 protein concentrations compared to IL-6+/+ DC cultured in fresh 
medium. B) IL-6+/+ DC kept in conditioned medium for 48 hours also had significantly higher STAT3 DNA 
binding activity than IL-6+/+ DC cultured in fresh medium.  A similar trend was seen in IL-6-/- DC, however, 
STAT3 activity was significantly less than IL-6+/+ DC.  C) Flow cytometry for CD11c and CD86 in IL-6+/+ and 
IL-6-/- DC cultured in conditioned or unconditioned media supplemented with low (0.1ng/ml) or high 
(100ng/ml) concentrations of LPS.  The results of 3 independent experiments are quantified in (D).  Each bar 
represents the mean ± standard deviation. * P<0.05 versus all other groups.  E-F) Treatment of IL-6+/+ DC 
cultured in either conditioned or fresh medium with neutralizing IL-6 antibody resulted in increased 
expression of CD86 (E) or MHC class II (F) above that of goat IgG control treated DC.  * P<0.05  ** P<0.01 
versus fresh media. 
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5.3.5 IL-6 production in BM cell cultures enhances the number of macrophages but not 

dendritic cells. 

Since paracrine and autocrine IL-6 signaling contributed to the maturational immaturity of 

myeloid DC we next determined whether it also influenced the generation of DC from bone 

marrow progenitors.  Generation and maturation of myeloid DC derived from IL-6+/+ and IL-6-/- 

bone marrow precursors was studied in the presence of GM-CSF and IL-4 after 6 days in culture 

when IL-6 secretion into the culture media peaks (Figure 17A).  Neither the absolute number 

(Figure 21A) nor the percentage (Figure 21B) of CD11c+ DC in the non-adherent cell fraction 

was significantly different between IL-6+/+ and IL-6-/- BM cultures at day 6 or at any other time-

point (data not shown).  This is in contrast to a report by Bleier et al (333), who found a 

significant increase in the number of IL-6-/- DC compared to IL-6+/+ BMDC.  The discrepancy in 

results might be due to differences in culture methods between this study (333) and ours.  We 

did, however, observe a significant increase in the number of adherent cells from IL-6+/+ BM 

cultures compared to IL-6-/- BM cultures (Figure 21C and D).  Analysis of these cells by flow 

cytometry showed that over 75% of cells in both strains expressed the macrophage marker F4/80 

(Figure 21E).  
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Figure 21. IL-6 influences the number of macrophages, but not the number of non-adherent DC in bone 
marrow cell cultures.  IL-6 in the culture medium did not influence the number (A) or percentage of (B) DC.    
The number of non-adherent IL-6+/+ and IL-6-/- DC were counted at day 6 in culture and analyzed by flow 
cytometry for CD11c.  C) While no difference was observed in the number of non-adherent cells, IL-6+/+ BM 
cultures yield significantly more adherent cells than IL-6-/- cultures.  D) Hematoxylin and eosin staining of 
adherent macrophages at day 6 in culture revealed a dramatic difference between the number of IL-6+/+ and 
IL-6-/- cells.  E) Flow cytometric analysis of the adherent cell population for expression of F4/80 showed that 
over 75% of both IL-6+/+ and IL-6-/- adherent cells were macrophages. 

 

 

 

 

5.4 DISCUSSION 

IL-6 signaling activates either STAT3 or Ras-Raf-MEK1-ERK1/2 pathway, and negative 

reciprocal regulation controls signaling through the other pathway so only one arm is dominant 

(238).  Comparing IL-6+/+ and IL-6-/- DC revealed that STAT3 activity was significantly higher 

in IL-6+/+ DC while phosphorylated ERK1/2 expression was significantly greater in IL-6-/- DC.  
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The elevated IL-6/STAT3 signaling in IL-6+/+ DC resulted in a reduced cell surface expression of 

phenotypic maturation markers (CD80, CD86, MHC class II and CCCR7), reduced allogeneic T-

cell stimulatory ability and increased phagocytosis compared to IL-6-/- DC.  This is in agreement 

with other studies showing that IL-6 and STAT3 activity can inhibit DC maturation (79, 80, 259, 

300, 302).  Chemical inhibition of STAT3 activity was able to induce IL-6+/+ DC maturation, 

while inhibitors of MEK1-ERK1/2 had little effect.  The opposite effect was observed in IL-6-/- 

DC; inhibition of STAT3 activity did not significantly alter maturation, but blocking MEK1-

ERK1/2 decreased maturation compared to vehicle-treated controls and was associated with an 

increase in phosphorylated STAT3.  Thus, STAT3 appears to be critical in controlling DC 

maturation.   

Our data supports the contention that IL-6 can act as an anti-inflammatory cytokine 

(299).  By elevating the threshold needed for stimuli, such as LPS, IL-6/STAT3 signaling can 

prevent DC maturation. When DC were stimulated with lower concentrations of PAMP 

molecules, IL-6+/+ significantly resisted maturation while almost the entire IL-6-/- DC population 

expressed CD86.  However, nearly all IL-6+/+ and IL-6-/- DC matured after exposure to higher 

concentrations of TLR agonists, except CpGs.  The inability of high concentrations of CpGs to 

induce maturation in IL-6+/+ bone marrow DC is similar to our observation in IL-6+/+ liver DC.  

Rather than inducing maturation, liver DC respond to CpG stimulation by secreting large 

amounts of IL-6 thereby inhibiting maturation (34).   

IL-6 is elevated during sepsis and is associated with decreased functional DC maturation 

and resistance to further maturation by additional PAMP stimulation (298, 332).  This is similar 

to our observation that IL-6+/+ DC cultured in conditioned medium with elevated IL-6 and 

STAT3 activity have reduced maturation when stimulated with LPS.  Elevated IL-6/STAT3 
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signaling in conditioned medium kept IL-6+/+ DC resistant to maturation when stimulated with 

low concentrations of LPS, whereas IL-6+/+ DC cultured in fresh medium had lower IL-6/STAT3 

signaling and matured when exposed to low concentrations of LPS.  Two lines of evidence show 

that IL-6 importantly contributes to DC immaturity and resistance to maturational stimuli: 1) IL-

6-/- DC cultured in conditioned media from IL-6-/- DC had similar maturation to IL-6-/- DC kept 

in fresh media; and 2) neutralizing IL-6 antibody added to the IL-6+/+ conditioned media restored 

responsiveness to maturational stimuli.  Thus, this culture system, in vitro, effectively mimics a 

tumor or normal liver microenvironment where elevated STAT3 signaling inhibits DC 

maturation (79); the same is probably true for sepsis and normal ageing, which are associated 

with significantly increased circulating IL-6 levels (295, 298, 334). 

The thresholding events leading to, or preventing, DC maturation is not unlike those 

governing neuron activation.  The final summation of multiple stimulatory and inhibitory 

influences results in activation or inhibition of an action potential (335).  DC activation is 

probably regulated in a similar manner.  Their large surface area exposes DC to multiple PAMP 

stimuli and inhibitory mediators.  We have shown that high basal STAT3 activity elevates the 

threshold needed for several PAMPs to trigger DC maturation.  Alternatively, as higher 

concentrations of TLR agonists exceed this threshold, DC maturation can proceed, although the 

special case for CpGs needs to be investigated further. 

The underlying molecular mechanisms preventing DC maturation with elevated IL-

6/STAT3 signaling are not well understood.  DC maturation in response to TLR agonist 

stimulation is dependent on NFκB activation (336).  The addition of IL-6 to DC treated with LPS 

has been shown to reduce nuclear translocation of NFκB (300).  Activated STAT3 and NFκB 

can compete for DNA binding when their respective binding sequences overlap or are within 
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close proximity of each other, as is the case in the α2 macroglobulin promoter (337).  It is 

unknown if NFκB and STAT3 DNA binding consensus sequences overlap in genes necessary for 

DC maturation.  However, diminished phosphorylated STAT3 in LPS-treated IL-10-/- DC allows 

for an increased recruitment of the NFκB c-Rel subunit to the IL-12 promoter, a cytokine 

typically expressed by mature DC (338).  This supports a mechanism where elevated STAT3 

DNA binding prevents NFκB DNA binding and subsequent DC maturation thereby raising the 

threshold needed for maturation.  It could be predicted that once a stoichiometric ratio of NFκB 

exceeds activated STAT3, DC maturation would occur.  

In addition to the direct role of IL-6 on DC maturation, we also observed a significant 

increase in the number of F4/80+ macrophages generated from IL-6+/+ BM compared to IL-6-/- 

BM cultures. This is consistent with studies showing IL-6 facilitates the generation of 

macrophages through increasing the M-CSF receptor (301, 339).  In contrast with a previous 

study(333), we observed no difference in the  absolute number and percentage of IL-6+/+ and IL-

6-/- DC in the non-adherent cell fraction.  Both macrophages and DC are antigen presenting cells, 

but DC are generally considered to be more mobile and more potent stimulators of adaptive 

immune responses than macrophages.  Conceivably, an IL-6-mediated increase in the 

differentiation of myeloid precursors into macrophages rather than DC might influence the 

overall immune status of the organ.  

5.5 SIGNIFICANCE 

This study builds upon our work in the liver showing that IL-6/STAT3 signaling inhibits hepatic 

DC maturation (34).  Our results show that if the level of IL-6/STAT3 signaling is increased, DC 
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have a reduced basal maturation, and more importantly, resist maturation after stimulation with 

lower concentrations of PAMP molecules.  Lowering IL-6/STAT3 by using IL-6-/- DC or 

reducing IL-6 from the media reduced the threshold towards PAMP stimulation.   

Our data can be presented as a simplified model where DC mature in response to lower 

concentrations of PAMP and DAMP molecules when IL-6/STAT3 signaling is lower (Figure 

22).  However, when IL-6/STAT3 signaling is elevated, like that normally occurring in the liver, 

DC have a higher threshold to maturation by PAMPs or DAMPs.  This permits DC to resist 

potentially inappropriate maturation to PAMP or DAMP molecules normally present in the tissue 

microenvironment, as occurs in the liver, lung, skin and intestines.  However, when pathogens or 

damage exceeds a threshold, DC can mature and stimulate an adaptive immune response.  

Defining the precise molecular mechanisms of how IL-6/STAT3 signaling inhibits DC 

maturation or developing methods to inhibit or stimulate IL-6/STAT3 activity could be useful in 

the modification of immune reactions.    
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Figure 22.  IL-6/STAT3 signaling elevates the threshold toward PAMP and DAMP molecules.  During 
conditions of low IL-6/STAT3 signaling, DC are more sensitive to low concentrations of PAMP or DAMP 
molecules the threshold for maturation is low.  However, when IL-6/STAT3 signaling is high, the threshold to 
DC maturation is elevated and therefore increased concentrations of PAMP to DAMP molecules are 
necessary to activate DC.   
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6.0  FUTURE DIRECTIONS  

Our discovery that commensal gut bacteria products stimulate hepatic IL-6/STAT3 activity and 

thereby inhibits liver DC maturation and function has great implications for controlling hepatic 

immunity.  As the most potent antigen presenting cell, liver DC have the ability to stimulate 

immune responses.  Knowing that IL-6/STAT3 activity prevents liver DC maturation potentially 

allows altering this signaling pathway to manipulate hepatic immune recognition.  For instance, 

ineffective immune clearance of hepatitis B or C viruses leads to chronic liver disease and 

cirrhosis.  Decreasing hepatic IL-6/STAT3 activity, possibly by decreasing commensal gut 

bacteria might be effective in increasing hepatic DC maturation and generating intrahepatic 

immune responses against hepatitis B or C.  Alternatively, therapy with neutralizing IL-6 

antibody, which is currently in clinical trials for rheumatoid arthritis, might also be effective to 

lower hepatic IL-6/STAT3 activity and thus increase liver DC maturation and function.   

The growth of tumors in the liver, especially metastases of primary tumors from other 

organs likely also benefits from the tolerant hepatic immune environment.  Constitutively active 

STAT3 in tumors has been shown to be immunosuppressive resulting in a reduced immune 

recognition of the tumor cells.  As IL-6 dependent STAT3 is also elevated in the liver compared 

to other organs, it is possible, therefore, that by decreasing hepatic IL-6/STAT3 activity, liver 

DC maturation can be stimulated allowing the immune system to mount an attack against the 

infection or malignant cells.  
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While reducing IL-6/STAT3 activity might be an appealing strategy to stimulate hepatic 

immune activity, elevating hepatic IL-6/STAT3 signaling in liver allograft recipients may be 

beneficial in preventing rejection.  Approximately 15-20% of stable liver allograft recipients can 

be withdrawn from all immunosuppression without rejection.  It is intriguing to speculate that the 

hepatic STAT3 activity in patients able to be weaned from immunosuppression might be higher 

compared with those unable to tolerate immunosuppression weaning.  This could result in 

reduced liver DC maturation and the persistence of immature, tolerogenic donor liver DC in the 

graft.  Testing of this hypothesis is currently underway.  

Finally, we have shown that reducing gut bacteria can effectively increase DC 

maturation.  While the different bacterial strains populating the gut are known, little information 

exists about how different bacterial species contribute to stimulating hepatic IL-6/STAT3 

activity.  This includes differences between gram-negative versus gram-positive strains, the 

potency of LPS among bacterial strains, and if some bacteria differ in the presence or amount of 

immunostimulatory CpG containing DNA sequences.  Should some bacterial strains be more 

effective in stimulating hepatic IL-6/STAT3, this might correlate with decreased DC maturation 

and a more immunosuppressive hepatic microenvironment.  Thus, modifying liver immune 

responses might be as simple as implementing dietary changes or introducing probiotic-

containing foods.   
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