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ABSTRACT 
 
 

The requirements of Hsp90 and Hsp70 cytoplasmic chaperone in the proper folding/degradation 

of an integral membrane protein remain poorly characterized, however it was previously 

demonstrated that the yeast Hsp70, Ssa1p, chaperone catalyzes the degradation of the misfolded 

human chloride channel, CFTR.  To better define the roles of these chaperones and partner co-

chaperones, I characterized the involvement of two Hsp70 co-chaperones, Ydj1p and Hlj1p, in 

the degradation of CFTR in the budding yeast S. cerevisiae.  Mutations in the genes encoding 

Ydj1p or Hlj1p alone did not affect CFTR degradation, but disruption of both co-chaperones 

stabilized CFTR. In contrast, the degradation of a soluble misfolded protein (CPY*) was 

unaffected in an hlj1∆ ydj1-151 double mutant.  Hlj1p stimulated the ATPase activity of Ssa1p 

and partially rescued the growth defect in a ydj1-151 strain, suggesting that Hlj1p and Ydj1p 

function redundantly during CFTR degradation. 

 

The contribution of Hsp90 to CFTR folding and degradation in mammalian cells has been 

examined, but disparate results have been obtained.  I therefore analyzed CFTR degradation in 

yeast using a temperature sensitive Hsp90 mutant (Hsp90G313N) and found that CFTR was 
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degraded faster in the mutant compared to the wildtype. Consistent with this result, highly 

enriched yeast Hsp90 prevented the aggregation of CFTR’s NBD1 domain. In contrast, the 

degradation of CPY* was unaffected in the Hsp90 mutant. Furthermore, I found no effect on 

CFTR degradation upon inactivation of the yeast Hsp90 co-chaperones Sba1p, Sti1p, or Sse1p. 

These results suggest that Hsp90, in the absence of co-chaperones, facilitates CFTR folding, 

possibly through its interaction with NBD1. 

 

Finally, I analyzed the effects of overexpressing two mammalian co-chaperones on CFTR 

biogenesis in yeast.  I observed reduced CFTR degradation upon overexpression of FKBP8 or 

Bag-3 but did not observe enhanced trafficking of CFTR to the plasma membrane. This result 

suggests that stabilization per se is not sufficient to promote CFTR exit from the ER. 
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1. Introduction 

 

There are 25,000 - 30,000 protein-encoding genes in the human genome (McPherson et al., 2001; 

Venter et al., 2001; Southan, 2004), but if alternative splicing and post-translational 

modifications are taken into consideration then the total complement of proteins in a “typical” 

human cell is much larger. The numbers of proteins that reside in or are transported through the 

secretory pathway, a major intracellular transport pathway, are estimated to range from 10-20% 

of the total proteins expressed in a human cell (Emanuelsson et al., 2000; Lander et al., 2001).  

To ensure that properly folded proteins are transported to their correct final intracellular or 

extracellular destinations, the cell possesses complex quality control mechanisms. Endoplasmic 

reticulum associated protein degradation (ERAD) is one quality control mechanism that 

functions early in the secretory pathway (see section, 1.2 ER Quality Control). An important 

group of proteins that modulate ERAD are cytoplasmic molecular chaperones (see section 1.3, 

Cytoplasmic Molecular Chaperones).  Only recently has the importance of ERAD become 

evident with the identification of a large number of secretory proteins that are substrates for 

ERAD and when mutated cause human disease (Plemper and Wolf, 1999).  One of these is the 

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).  Mutations in CFTR cause 

Cystic Fibrosis, one of the most common lethal diseases in Caucasians (Quinton, 1990)(see 

section 1.4, Cystic Fibrosis and CFTR). 
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1.1. Secretory Pathway 

 

 

1.1.1. Co-Translational and Post-Translational Translocation 

 

Before soluble or integral membrane proteins can be transported through the secretory pathway, 

they must first be targeted to the endoplasmic reticulum (ER).  Protein import into the ER can 

occur either during synthesis of a nascent polypeptide (co-translational translocation) or after its 

synthesis is complete (post-translational translocation). The majority of ER translocation in 

mammalian cells occurs co-translationally, while post-translational translocation is more 

common in yeast and bacteria (Walter and Johnson, 1994).  However, even in organisms where 

post-translational translocation is common, almost all membrane spanning proteins are inserted 

co-translationally (Valent et al., 1998).  What signals direct translating ribosomes to the surface 

of the ER during co-translational translocation?  Approximately 30 years ago Blobel and 

Doberstein observed that dog pancreatic microsomes stripped of polysomes could sequester 

newly synthesized immunglobin κ light chain, and the immature light chain was proteolytically 

processed only if microsomes were present during translation (Blobel and Dobberstein, 1975). 

Milstein and colleaguaes observed in a cell-free system that immunoglobin light chain 

synthesized from myeloma mRNA was larger then when the protein was synthesized in the 

presence of microsomes (Milstein et al., 1972).  These investigators hypothesized that the extra 

“piece” of the protein could be at the NH2-terminus and that it served as a “signal” to coordinate 

secretion.  Shortly thereafter signal sequences were identified in the amino-terminus of immature 
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secretory proteins (Schechter, 1973; Kemper et al., 1974).  Further work by the Blobel and 

Doberstein groups led to the identification of two protein complexes known as the signal 

recognition particle (SRP) and the docking protein (DP), that bind to and coordinate synthesis of 

pre-secretory nascent proteins (Walter and Blobel, 1981a; Meyer et al., 1982).  In mammalian 

cells, The SRP particle is a multi-protein complex composed of 6 proteins (SRP19, SRP54, 

SRP68/72, SRP9/14) and a 7S RNA that acts as a scaffold to organize the complex (Siegel and 

Walter, 1988a, 1988b). The DP, now called the SRP receptor (SR), is composed of two GTPase 

proteins (SRα, SRβ).  Today, all the major players in the co-translational translocation cycle 

have been identified (see Figure 1)(reviewed in Egea et al., 2005). 

 

The first step in co-translational translocation is the binding of SRP to the signal sequence as it 

emerges from the polypeptide exit tunnel of the ribosome.  The signal sequence is a short 

hydrophobic stretch of amino acids (7-15 amino acids) that is near the N-terminus for soluble 

secreted proteins but in membrane proteins can be internal (Goder and Spiess, 2001).  The 

SRP54 subunit binds to the emerging signal sequence, translation is arrested and the ribosome is 

targeted to the ER membrane (Walter and Blobel, 1981b). The Ribosome-SRP-nascent chain 

complex (RNC) binds to the SR via an interaction with SRα at the ER membrane. SRP54 and 

SRα bind GTP and act as reciporal GTPase activating proteins, causing hydrolysis of each 

other’s GTP and transfer of the RNC to the translocation channel (Song et al., 2000). The RNC 

engages the translocation channel (Plath et al., 1998) that initiates a tight association between the 

two complexes (Jungnickel and Rapoport, 1995; Belin et al., 1996; Rapiejko and Gilmore, 1997) 

and opens the luminal gate of the channel (Hamman et al., 1998), creating an aqueous pore from 

the ribosome exit site to the ER lumen (Crowley et al., 1993; Crowley et al., 1994).  Translation 
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resumes and the N-terminus of the growing polypeptide enters the lumen of the ER where signal 

peptidase cleaves the signal sequence (Landry and Gierasch, 1991; von Heijne, 1996).  The 

driving force behind translocation of the peptide is controversial and could be provided by the 

translating ribosome “pushing” the nascent chain through the pore (Gorlich and Rapoport, 1993).  

However, co-translational translocation into microsomes can be blocked by depletion or 

mutation of luminal proteins, suggesting that the luminal proteins also drive translocation 

(Nicchitta and Blobel, 1993; Brodsky et al., 1995).  

 

Yeast and bacteria perform both co- and post-translational translocation.  Post-translational 

translocation proceeds through an SRP-independent mechanism. The SRP-independent pathway 

was discovered because yeast cells deleted for either SRP or SR are viable (Felici et al., 1989; 

Amaya and Nakano, 1991; Hann and Walter, 1991)(Stirling and Hewitt, 1992; Brown et al., 

1994).  In mammalian cells post-translational translocation is strictly used by small proteins (< 

70 amino acids) and proteins that are anchored to membranes at their extreme COOH-terminus 

(Anderson et al., 1983; Kutay et al., 1993; Pfeffer, 1996; Adams and Cory, 1998).  The post-

translational translocation mechanism is not as well characterized as the co-translational 

translocation pathway, but cytoplasmic and luminal molecular chaperones are known to be 

required to keep the newly synthesized protein unfolded because the Sec61p translocon 

(diameter 20-60 Å) cannot accommodate a fully folded  protein  (Hamman et al., 1997).  

Furthermore, unlike co-translational translocation, there is no ribosome present and hence no 

energy or driving force exists to “push” the nascent polypeptide through the translocation pore.  

Instead, luminal molecular chaperones have been implicated in providing the energy necessary 

for translocation (Brodsky, 1998).  One current model (see Figure 2) for post-translational 
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translocation is that the newly synthesized polypeptide is bound by cytoplasmic molecular 

chaperones to prevent folding/aggregation. Next, it is targeted to the translocation channel by a 

mechanism that is not fully characterized.  At the channel, molecular chaperones on the cytosolic 

(Ssa1p, Ydj1p) and luminal (BiP, Sec63p) side of the channel aid in the translocation process 

(Brodsky et al., 1995; McClellan et al., 1998; McClellan and Brodsky, 2000).  Both translocation 

pathways use the same translocation channel (Sec61p) at the ER membrane.  

 

How is the permeability barrier of the ER maintained during translocation? The ER is a major 

storage compartment for calcium, a potent second messager in cells, and calcium leakage from 

the ER during translocation would cause havoc in the cell.  In mammalian and yeast cells the 

permeability barrier of the ER is maintained during co- and post-translational translocation by 

the luminal molecular chaperone BiP (Hamman et al., 1998). 

 

The translocation of membrane proteins is more complex then soluble proteins and occurs co-

translationally. The final topology of a membrane protein depends on the orientation, length and 

composition of the signal sequence and stop-transfer signal, or anchor sequences (Goder and 

Spiess, 2001).  The signal sequence targets the ribosome-nascent chain complex to the translocon 

and translation resumes, but when the stop-transfer signal (~20 hydrophobic residues) enters the 

channel translation stops and the signal is inserted into the ER membrane, hence acting as an 

anchor sequence. The alternation of start and stop sequences allows for the insertion of both bi-

topic and polytopic membrane proteins.  What determines the orientation of the membrane 

protein?  The best method to predict the orientation of the NH2 and COOH-termini of the 

transmembrane helix is by the “positive-inside” rule (von Heijne, 1986). The rule was discovered 
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first for bacterial proteins where it was observed that positive amino acids were found to be four 

times more abundant at cytoplasmic loops then periplasmic loops.  In eukaryotes, it is not the 

positive charge, but the charge difference between the flanking sequences of the hydrophobic 

core of the signal sequence or the transmembrane segments that correlates with the orientation 

for insertion at the ER membrane (Hartmann et al., 1989). Usually the more positively charged 

flanking sequence is cytoplasmic.  
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Figure 1: Model of Mammalian Co-Translational Translocation.  

For Simplicity only the SRP54 subunit of the SRP complex is shown and proteins involved in 

channel gating are not depicted: 1) SRP54 scans for signal sequences emerging from the 

ribosome; 2) SRP54 recognizes and binds the signal sequence, arresting translation; 3) The 

Ribosome-SRP nascent chain complex (RNC) is targeted to the Sec61 translocon; 4) The RNC 

binds to the SRP receptor; 5) SRP54 and SRα bind GTP; 6) SRP54 and SRα stimulate each 

other’s GTPase activity, causing transfer of the RNC to the translocation channel and SRP54 is 

released; and 7) GDP is released from SRP54 and the cycle can repeat. 
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Figure 1: Model of Mammalian Co-Translational Translocation 
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Figure 2:  Model of Yeast Post-Translational Translocation.  

1) The newly synthesized secretory precursor protein is released into the cytosol and is bound 

by molecular chaperones; 2) The secretory precursor-chaperone complex is targeted to the 

 Sec61p complex, and other ER resident proteins (Sec62p, Sec71p, Sec63p, Sec72p) are also 

required at this step; 3) The polypeptide is translocated through the Sec61p complex and the BiP 

molecular chaperone may pull the polypeptide into the ER.  BiP may also gate the Sec61p 

complex and is required to maintain the permeability barrier of the ER. 

 

9 



 

 

 

 

Figure 2: Model of Yeast Post-Translational Translocation
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1.1.2. Protein Transport from the Endoplasmic Reticulum to the Golgi 

 

After translocation, properly folded and matured proteins that are not ER residents are 

transported from the ER to the Golgi.  If the protein is not properly folded then it is targeted to 

the ERAD pathway (see section 1.2) for degradation.  Secreted proteins are moved through the 

secretory pathway by vesicle-mediated transport.  Distinct regions of the ER where vesicles form 

and bud off are termed ER exit sites (Orci et al., 1991; Kuge et al., 1994) (Hobman et al., 1998; 

Pagano et al., 1999).  At these exit sites, secreted proteins or “cargo” are concentrated into 

vesicles (Malkus et al., 2002).  The vesicles are formed by the ordered assembly of coat proteins 

and it is these coat proteins that cause deformation and budding off of the ER membrane 

(Gorelick and Shugrue, 2001)(see Figure 3).  Specifically, vesicles that bud from the ER 

membrane are covered with coat protein complex II (COPII).  The identities of these coat 

proteins and their roles in vesicle budding were determined by genetic screens (Novick and 

Schekman, 1983; Kaiser and Schekman, 1990)and by in vitro budding assays using purified coat 

proteins and lipososmes of a known composition (Barlowe et al., 1994).  

 

The process of vesicle formation at the ER membrane is conserved from yeast to mammals 

(Dunphy et al., 1986). I will describe the process of vesicle formation at the yeast ER membrane, 

keeping in mind that mammalian homologues exist for most of the proteins mentioned, 

(reviewed in Lee et al., 2004a).  First, the small ras-related protein Sar1p in its GDP bound form 

(Sar1p-GDP) is recruited to the ER membrane by the ER resident membrane protein Sec12p.  

Sar1p-GDP exchanges GDP for GTP through action of Sec12p, which is a guanine nucleotide 
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exchange factor (GEF).  The exchange of GDP for GTP leads to a conformational change in 

Sar1p, whereby the NH2-terminus of Sar1p is inserted into the membrane.  Sar1p-GTP then 

recruits the heterodimer coat protein Sec23p/Sec24p.  The Sec13p/Sec31p heterodimer then 

binds to Sec23p/Sec24p, and this process is repeated until a vesicle buds from the ER.  

Sec13p/Sec31p stimulates the GTPase activating protein (GAP) function of Sec23p; causing 

Sar1p to hydrolyze GTP. This hydrolysis event causes the release of the coat proteins and 

uncoating of the newly formed vesicle.  The uncoated vesicle then trafficks to its destination 

compartment, in this case the Golgi apparatus either directly, or by way of the ER-Golgi-

intermediate-compartment (ERGIC) (see Figure 4).  Only mammalian cells have an ERGIC and 

in yeast the vesicles fuse directly with the cis-Golgi.  Since proteins included in these COPII 

vesicles can be either soluble or membrane bound it is important to separate these cargo proteins 

from ER resident proteins.  There are two competing theories for how cargo proteins are 

incorporated into vesicles: the bulk flow model and the regulated cargo selection model.  In the 

bulk flow model, secreted proteins are trafficked to the plasma membrane by default but ER 

resident proteins contain a signal that allows for their retention in the ER.  This view of transport 

was reinforced by early studies performed in Chinese hamster ovary (CHO) cells using a 

glycoslated tri-peptide. The tri-peptide was secreted in a reasonable amount of time and 

possessed no “transport signal” (Wieland et al., 1987).  This model for ER-to-Golgi transport 

was the prevailing model until the mid 1990s when new data by Balch and colleagues gave 

evidence for a regulated model of transport (Balch et al., 1994).  These researchers examined the 

relative concentration of vesicular stomatitis virus glycoprotein (VSV-G) protein at exit sites of 

the ER by immuno-electron microscopy and found that VSV-G was sorted from ER resident 

proteins and enriched 5-10 fold in vesicles. 
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Figure 3: Assembly of Coat Proteins to form COP II Budded Vesicle.  

1) Sar1-GDP is recruited by Sec12p to the ER membrane and GDP is replaced by GTP, causing 

a conformational change in Sar1p and insertion of Sar1p’s NH2-terminus into the membrane; 2) 

Sar1p-GTP recruits coat proteins Sec23p/Sec24p; 3) Membrane protein cargo may bind to 

Sec23p/Sec24p; and Sec13p/Sec31p is recruited and deformation of the ER membrane begins. 
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Figure 3: Assembly of Coat Proteins to form COP II Budded Vesicles
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 This was the first direct evidence that regulated trafficking existed.  Since these intial studies 

other groups have documented the enrichment of cargo protein and the absence of ER resident 

proteins at ER exit sites in mammalian cells (Aridor et al., 1998).  Furthermore, Muniz and 

colleagues immunoisolated COPII vesicles and determined that the majority of cargo protein 

inside was of one type (Muniz et al., 2001).  Studies in yeast by Barlowe and colleagues led to 

the identification of Erv29p, a conserved transmembrane protein that is required for the 

packaging of a soluble protein, pro-α-factor, into COPII vesicles; lending more credence to the 

importance of regulated export from the ER (Belden and Barlowe, 2001b).  There are also 

packaging receptors for membrane proteins:  The ER membrane protein Shr3p facilitates the 

incorporation of the general amino acid permease (Gap1p) into vesicles through interactions with 

COPII components (Kuehn et al., 1996; Gilstring et al., 1999).   Since transport in the secretory 

pathway can be anterograde (ER-to-Golgi) or retrograde (Golgi-to-ER), it is the composition of 

the coat proteins and adaptor proteins that determine vesicle targeting.  While COPII-coated 

vesicles carry cargo proteins from the ER to the Golgi, it is COPI (coatomer complex) coated 

vesicles that are responsbile for retrograde transport (see Figure 4).  Any ER resident proteins 

that are accidentally packaged for transport to the Golgi are retrieved by COPI coated vesicles in 

a receptor-dependent manner. The major function for COPI is in the retrograde transport of cargo 

from the cis-Golgi back to the ER (Ostermann et al., 1993; Spang and Schekman, 1998; Lee et 

al., 2004a) but there is some evidence for COPI function in the transport of cargo between the 

Golgi stacks (Waters et al., 1991).   The assembly mechanism for COPI is similar as for COPII 

vesicles, the only differences are the identity of the small GTPase (ARF1) and the coat protein is 

a 7 subunit complex.  How is fidelity and directionality controlled between the ER and Golgi?  
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SNAREs and Rabs are two classes of proteins that aid in maintaining fidelity and directionality 

in the secretory pathway (see section 1.1.3).   

 

Most soluble ER resident proteins contain a COOH-terminal KDEL sequence (HDEL in yeast) 

which allows binding to the KDEL receptor in the Cis-Golgi and subsequent incorporation into 

COPI vesicles for retrieval (Pelham, 1991).  Membrane proteins that contain di-lysine (KKXX) 

or di-arginine sequences (RxR) can be retained in the ER or retrieved from the Golgi (Cosson 

and Letourneur, 1994; Teasdale and Jackson, 1996).  For some membrane substrates, such as 

KATP channels, these motifs are masked upon proper folding/assembly to ensure that only 

properly folded/assembled proteins are released (Hill and Stevens, 1994; Chang et al., 1999; 

Zerangue et al., 1999)(see ER quality control 1.2). 

 

As mentioned above, soluble and membrane proteins can be selected for incorporation into 

COPII vesicles.  What recognition or targeting sequence enhances incorporation into COPII 

vesicles?  Analysis of the COOH-terminus of membrane proteins led to the identification of 

transport or export signals that target their inclusion into COPII vesicles.  The VSV-G protein 

contains a di-acidic motif at its C-terminus (DxE) that interacts with Sar1p and Sec23p/Sec24p 

(Nishimura et al., 1999; Sevier et al., 2000).  A growing number of membrane proteins contain 

DxE or ExE motifs that are required for efficient packaging into COPII vesicles (Wang et al., 

2004) (Ma et al., 2001; Scott et al., 2001; Votsmeier and Gallwitz, 2001; Ma and Jan, 2002).  A 

second class of export motifs contain hydrophobic and aromatic amino acids at their COOH-

terminus, such as two phenylalanines (FF) which are present in the p23/24 family of proteins 

(Belden and Barlowe, 2001a; Nufer et al., 2002). The p23/24 proteins are ER transmembrane 
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proteins that bind to soluble secreted proteins and facilitate incorporation into COPII vesicles.  

The ER export signal may be on the secreted protein itself or in a receptor that binds to the 

protein.  Cargo receptors are not restricted to soluble proteins and specific receptors have been 

identified for transmembrane proteins (Powers and Barlowe, 1998, 2002). 

 

The current model for ER-to-Golgi transport is a combination of regulated export and bulk flow 

mechanisms (Pelham and Rothman, 2000).  The vast majority of membrane proteins (e.g. VSV-

G, Gap1p) are concentrated into COPII coated vesicles by means of export sequences. In contrast, 

many but not all soluble proteins are concentrated into vesicles through interaction with coat 

proteins, while a handful have been identified that use a cargo receptor (Belden and Barlowe, 

2001b; Otte and Barlowe, 2004).  The bulk flow mechanism or passive sampling of the ER 

luminal contents is a very inefficient mode of transport (Malkus et al., 2002), however it is used 

by specialized secretory cells to transport some soluble enzymes, such as amylase and 

chymotrypsinogen (Martinez-Menarguez et al., 1999).  
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Figure 4: ER to Golgi Vesicle Transport of Proteins in Mammalian Cells. 

COPII-coated vesicles bud from the ER and either directly fuse with the cis-Golgi or the vesicles 

fuse together to form the ER-Golgi-intermediate-compartment (ERGIC), before the ERGIC fuses 

with the cis-Golgi.  ER resident proteins (retrograde cargo) that are mistargeted to the Golgi are 

retrieved by COPI vesicles and returned to the ER by retrograde transport.  In addition to distinct 

coat proteins, there are also distinct sets of SNAREs (see section 1.1.3) that play a role in 

anterograde or retrograde transport between the two compartments. Note: plants and yeast do not 

contain an ERGIC, and COPII vesicles fuse directly with the cis-Golgi.  
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Figure 4: ER to Golgi Vesicle Transport of Proteins in Mammalian Cells  
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1.1.3. Transport of Proteins from the Golgi to the Plasma Membrane 

1.1.3.1. Fusion of ER Vesicles with the Cis-Golgi 
 

After a newly created vesicle is released from the ER, it must find and fuse with the correct 

target membrane, in this case the cis-Golgi. What machinary is involved in membrane fusion?  

Soluble NSF attachment protein receptor or “SNARE” proteins are implicated in membrane 

fusion reactions in all compartments of the eukaryotic cell.  Syntaxin was the first SNARE 

identified by researchers studying syntaptic vesicle docking in neuronal cells (Bennett et al., 

1992).  Since then over 100 SNARES have been identified in a diverse set of organisms (Jahn 

and Sudhof, 1999).  Rothman and Sollner proposed the SNARE hypothesis in 1993 (Sollner et 

al., 1993) to explain the role of SNAREs in membrane fusion.  The hypothseis stated that two 

types of SNAREs existed, one type on vesicles (v-SNAREs) and another type on target 

membranes (t-SNAREs).  In their model, v-SNAREs and t-SNAREs paired-up, causing 

membrane fusion and subsequent release of vesicle contents into the target membrane.  The 

hypothesis stated that specificity was determined by the unique pairing of v- and t-SNAREs and 

that only SNAREs are needed for membrane fusion, a conclusion that was based on in vitro 

experiments (Sollner et al., 1993).  However, this hypothesis was postulated when very little was 

known concerning the mechanism of action of SNAREs.  Today it is known that other proteins 

are required in addition to SNAREs for efficient membrane fusion in vivo.   The accepted model 

for SNARE mediated membrane fusion is depicted in Figure 5 (for review see (Chen and 
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Scheller, 2001)) and the mechanism can be divided into several steps which include targeting of 

vesicles, vesicle tethering and docking, and finally fusion.  

 

The most well characterized SNARE complex (SNAP-25-Syntaxin1-VAMP) complex has been 

crystallized (Sutton et al., 1998), and this has helped to decipher their mechanism of action.  All 

three proteins interact to form a four helix bundle during the docking phase. It is the formation or 

“zippering” of this four helix bundle (the “SNAREpin”) that proceeds in an NH2 to COOH-

terminal fashion that brings the vesicle and target membranes into close proximity, thus allowing 

the membranes to fuse. To break apart this highly stable SNAREpin complex requires energy 

from the ATPase NEM-sensitive factor (NSF).  NSF is a soluble ATPase protein that was 

identified before SNAREs as being important in membrane fusion (Malhotra et al., 1988).  Once 

this complex is dissociated, another round of membrane fusion can occur.  SNARE proteins exist 

on all membraneous compartments and their role in either anterograde or retrograde transport 

depends on the Rabs and effector proteins recruited to the membrane surface (Zerial and 

McBride, 2001). 

 

As mentioned earlier, Rabs regulate membrane fusion events and vesicle trafficking at the TGN 

and other compartments in the secretory pathway.  Rabs are monomeric GTPase proteins of the 

ras protein superfamily.  Rabs are found in all eukaryotes and there are more than 60 rabs in the 

human genome (Seabra et al., 2002).  Rabs are thought to function by recruiting effector proteins 

to the membrane surface during budding, transport and docking of vesicles and act as anchors to 

ensure a proper fit between SNAREs.  Rabs cycle between the cytosol and membrane surface by 

a GTP switch mechanism similar to Sar1p and ARF1 (Seabra et al., 2002).  Together, the 
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SNARE proteins in concert with Rabs and coat proteins are responsible for controlling the 

directionality and fidelity of vesicle transport between compartments in the secretory pathway.  

As noted above, vesicles can fuse directly with the cis-Golgi or they may fuse to each other 

forming the ER intermediate compartment (ERGIC) or vesicular tubular cluster (VTC).  It is this 

intermediate compartment that can fuse with the Golgi in mammalian cells. However, yeast 

appear to lack an ERGIC and therefore ER-derived vesicles are thought to fuse directly with the 

Golgi.  In any event, a secretory protein that is delivered to the cis-Golgi by SNARE-mediated 

membrane fusion undergoes sidechain modification of its N-linked glycans (attached in the ER) 

and in some cases proteolytic processing as it progresses through the cis-, medial, and trans-

compartments of the Golgi.  The transport of proteins between stacks is believed to be either by 

vesicular transport, or cisternal progression/maturation. Cisternal maturation is necessary for a 

subset of proteins that traverse the secretory pathway, such as pro-collagen, which forms 300 nm 

rigid rods in the ER and is thus to large to “fit” into classical 40-50 nm secretory vesicles 

(Bonfanti et al., 1998). 

22 



 

Figure 5: Model for SNARE-mediated Vesicle Fusion. 

1) An ER-derived vesicle attaches initially to its target membrane (in this case the Golgi) through 

interactions with a tethering complex, which could contain Rabs and effectors; 2) the v-SNARE 

makes contact with the Golgi SNARE (t-SNARE); 3) The loose association between v-SNAREs 

and t-SNAREs tightens to form a SNAREpin complex; 4) The SNAREpin “zippers-up”; 

bringing the two membranes in close contact for fusion to proceed.  
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Figure 5: Model for SNARE-mediated Vesicle Fusion 
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1.1.3.2. Protein Transport from the Trans-Golgi-Network to the Plasma Membrane 
 

After passage through the Golgi compartment secreted proteins enter the trans-Golgi network 

(TGN).  The TGN is a sorting-station that directs cargo to the plasma membrane, lysosome 

(vacuole in yeast), or endosomal compartments of the cell.  The vesicles that bud from the TGN 

are not coated with COPII or COPI coat proteins but are usually coated with a clathrin-coat that 

facilitates membrane deformation. 

 

Clathrin is a multiprotein complex composed of 3 heavy chains (180,000 Da) and 3 light chains 

(35,000 Da) that form a three-legged structure named the triskelion.  Multiple clathrin complexes 

assemble to form a basket-like structure composed of pentagons and hexagons.  In 1976 Barbara 

Pearse identified clathrin as the most abundant protein in plasma membrane coated pits (Pearse, 

1976).  Purified clathrin was able to form cages in vitro of a similar size to coated pits, but this 

occurred only under non-physiological conditions.  The search for clathrin co-factors that could 

facilitate the formation of clathrin cages under physiologic conditions led to the discovery of two 

adaptor complexes (AP1 & AP2) that colocalized with clathrin (Pfeffer et al., 1983; Virshup and 

Bennett, 1988).  Recently, two additional adaptor complexes (AP3, AP4) were identified 

bringing the total number of basic adaptor complexes to four (Dell'Angelica et al., 1997; 

Simpson et al., 1997) (Dell'Angelica et al., 1999; Hirst et al., 1999). 

 

Adaptor complexes are heterotetramic complexes composed of two large adaptins (AP1 = γ,β1, 

AP-2 = α,β2, AP-3 = δ,β3, AP-4 = ε,β4), a medium subunit (µ1-4) and a small subunit (σ1-4).  

The AP-1 adaptor is predominatly located on TGN and endosomal membranes, while AP-2 is 
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located at the plasma membrane (Robinson and Pearse, 1986; Robinson, 1987; Pearse, 1989).   

The two recently discovered adaptors AP-3 and AP-4 appear to be localized pre-dominantly to 

the endosome and TGN respectively (Simpson et al., 1996; Dell'Angelica et al., 1997; 

Dell'Angelica et al., 1998; Dell'Angelica et al., 1999).  Adaptors are localized to their respective 

compartments by various mechanisms and require interactions with different subunits. For 

example, the α subunit of AP-2 binds to poly-phosphoinositols located in the plasma membrane 

(Beck and Keen, 1991; Gaidarov et al., 1996; Gaidarov and Keen, 1999). The γ subunit of AP-1 

binds to ARF at the TGN (Traub et al., 1993) (Seaman et al., 1996).  Adaptors assist in 

recruiting clathrin to the surface of membranes and can bind cargo for incorporation into clathrin 

coated vesicles, thus providing a link between clathrin vesicle formation and cargo inclusion. 

 

Adaptors recognize and bind to cargo proteins based on a recurrent theme in vesicular transport: 

the presence of short amino acid sequences in the tails of the cargo proteins.  In ER-to-Golgi 

transport the sequences are called export sequences, while in trafficking to and from the TGN 

they are called sorting signals.  The first sorting signal identified that could bind to an adaptor 

was YXXΦ (X = any amino acid, Φ = bulky hydrophobic amino acid), which binds to the µ2 

subunit of AP2 (Ohno et al., 1995; Ohno et al., 1996; Ohno et al., 1998). Tyrosine-based sorting 

signals are the most well characterized of the sorting signals and are involved in the sorting of 

cargo at the TGN, endosome, lysosome and even in internalization from the plasma membrane. 

 

Proteins destined for the lysosome/endosome compartments are sorted away from proteins 

destined for the plasma membrane. Proteins trafficking through the TGN can be divided into 

three categories: 1) Proteins that are to be secreted or inserted into the plasma membrane 
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immediately (constitutive secretion); 2) Proteins that are incorporated into secretory vesicles for 

later release (regulated secretion); 3) Proteins targeted to the endosome/lysosome compartments 

(see Figure 6).  Immediate secretion or insertion into the plasma membrane is considered a 

default pathway (Traub and Kornfeld, 1997).  The complexities of regulated secretion in 

neuroendocrine cells go beyond the range of this introduction (reviewed in Jena, 2005).  Many 

plasma membrane proteins, including CFTR (see below), are inserted by constitutive secretion.  

The best studied example of protein trafficking in the TGN is the sorting of lysosomal hydrolases 

from the TGN to the lyosome by the mannose-6-phosphate receptor (MPR).  Newly synthesized 

hydrolases are co-translationlly translocated into the ER, core-glycosylated and transported to the 

Golgi.  In the Golgi, the core gylcans are modifed with the addition of 6-phosphomannosyl 

sugars.  The MPR binds to this modification on the hydrolase protein and incorporates it into 

clathrin coated vesicles.  The MPR contains an adaptor binding domain and an acidic di-leucine 

motif (binds to β subunit) that connects it to AP-1 (Mauxion et al., 1996). 

 

In yeast there are two pathways for sorting proteins to the vacuole, which is a degradative 

compartment analogous to the lysosome.  The two proteins that define these pathways are 

carboxypeptidase Y (CPY) and alkaline phosphatase (ALP) (see Figure 7).  CPY is delivered to 

the vacuole along the classical TGN-endosome-vacuole, or vacuolar protein sorting pathway 

(VPS) (Banta et al., 1988; Robinson et al., 1988). The CPY receptor Vps10p mediates transport 

of CPY to the pre-vacuolar compartment (precursor to vacuole).  This pathway is similar to the 

delivery of hydrolyases by MPR to the lysosome in mammalian cells.  In contrast, ALP is 

delivered directly from the TGN to the vacuole, and deletion of the yeast homologue of AP-3 

blocks transport of ALP but not CPY (Cowles et al., 1997a; Cowles et al., 1997b; Stepp et al., 
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1997).  In general, the correct sorting of proteins in the TGN to their other compartments is 

accomplished by the recognition of different sorting signals using coat protein/adaptor 

complexes. For example, clathrin/AP-1 coats direct sorting of proteins from the TGN to the 

lysosome/endosome compartments, while clathrin/AP-2 regulates endocytosis from the plasma 

membrane.   

 

Adaptors are recruited to membranes by small GTP-binding proteins, such as ARF in the case of 

AP-1.  In mouse cells deficient for the µ1A subunit of AP-1, the MPR is localized under steady-

state conditions to the endosome instead of the TGN, but delivery of lysosomal hydrolases is 

normal (Meyer et al., 2000). This experiment implicated AP-1’s involvement in retrograde 

transport of proteins from endosomes/lysosomes to the TGN. How could AP-1 be involved in 

anterograde and retrograde transport?  One answer is that there might be unique effectors of ARF 

and AP-1 to help explain the role of AP-1 in TGN sorting.  Indeed, γ-synergin was identified by 

yeast two hybrid analysis as binding to γ-adaptin, a subunit of AP-1 (Page et al., 1999).  Recently, 

the GGA (Golgi-localized, G-ear-containing, Adenosine diphosphate ribosylation factor-binding 

protein) adaptor proteins were identified by several groups based on homology to domains of 

ARF and AP-1 (Poussu et al., 2000) (Takatsu et al., 2000) (Boman et al., 2000; Dell'Angelica et 

al., 2000) (Hirst et al., 2000).  Yeast contain two homologues of GGAs and deletion of both 

genes leads to the missorting of carboxypeptidase Y (CPY) (Hirst et al., 2000).  Overexpression 

of GGAs causes mislocalization of MPR and the Golgi protein TGN38, implicating GGAs in 

TGN to endosome sorting (Boman et al., 2000).  There is very little information known about the 

effectors for retrograde transport from the endosome to the TGN in mammalian cells.  Recently, 

TIP47 and PACS-1 were identified as adaptors that play a role in retrograde transport in 
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mammalian cells.  TIP47 appears to only be involved in the retrieval of MPRs from the lysosome 

back to the TGN (Diaz and Pfeffer, 1998). 

 

In contrast, PACS-1 can bind to mutliple substrates, including furin, for retrieval from the 

endosome/lysosome back to the TGN (Wan et al., 1998) (Crump et al., 2001; Crump et al., 2003) 

(Blagoveshchenskaya et al., 2002; Kottgen et al., 2005).  PACS-1 acts as a connector between 

furin and AP-1.  In fact, PACS-1 (Phospho-Acidic Cluster Sorting protein) was identified in a 

yeast two hybrid screen using a mutant of the COOH-terminus of furin. PACS-1 specifically 

binds to the phosphorylated form of furin (Wan et al., 1998).  The demonstration that not only 

transport signals, but also the phosphorylation state of the COOH-terminal tail of the cargo 

protein, are important in trafficking adds a new layer of complexity to recognition by adaptor 

proteins. 
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Figure 6: Cargo Sorting Pathways from the Trans-Golgi Network (TGN) to the Plasma 

Membrane in mammalian cells. 

Clathrin/AP-1 and GGAs regulate protein trafficking from the TGN to EE. AP-2/Clathrin 

regulate endocytosis and exocyotsis at the PM.  Direct transport of proteins from the TGN to the 

Lysosome is regulated by AP-3.  AP-1/PACS-1 regulate retrograde transport from LE back to 

the TGN.  Dotted lines represent pathways that are not fully elucidated (see text for complete 

details).   

TGN =Trans Golgi Network, EE = Early Endosomes, LE = Late Endosome, Lys = Lysosome 

PM = Plasma Membrane   
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Figure 6: Cargo Sorting Pathways from the Trans-Golgi Network (TGN) to the Plasma 
Membrane 
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Figure 7: Golgi to Plasma Membrane Sorting Routes in Yeast. 

Homologues of mammalian adaptor complexes exist in yeast but are not depicted for clarity.  

The CPY and ALP pathways are highlighted because these are the two most well defined in 

yeast (see text for details).  Vps52/vps53/vps54 is a heterotrimeric protein complex that along 

with the retromer complex are required for protein sorting at the TGN (Conibear MBC 2000).  

Endosomes are not depicted but do exist and endocytosis and exocyotsis at the plasma membrane 

are dependent on clathrin in yeast. 

TGN = Trans Golgi Network PVC = Prevacuolar Compartment  Vac = Vacuole  PM = Plasma 

Membrane 
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Figure 7: Golgi to Plasma Membrane Sorting Routes in Yeast 
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1.1.4. Endocytosis from the Plasma Membrane 

 

The secretory pathway or biosynthetic pathway is the cellular highway for transport of proteins 

and lipids to the preiphery or outside of the cell.  However, a cell needs to bring proteins, lipids 

and nutrients from the outside to the inside of the cell.  The endocytic pathway in the cell is the 

return pathway for proteins and lipids to gain entry to the cellular interior ( reviewed in Conner 

and Schmid, 2003).  The two types of endocytosis are constitutive and receptor-mediated.  

Constitutive endocytosis includes pinocytosis or “cellular drinking” and phagocytosis or 

“cellular eating”. The vesicles for pinocytosis are smaller (150 nm or less) compared to 

phagocytosis (250 nm or greater).  Both processes occur constantly as the cell samples its 

extracellular space “looking” for nutrients and proteins for energy.  Clathrin-mediated 

endocytosis (CME), originally called receptor mediated endocytosis, involves the concentration 

of macromolecules through binding to receptors at the plasma membrane and subsequent 

internalization through clathrin coated pits. 

 

The CME process is similar to the packaging of lysosomal hydrolases in the TGN, although  

many plasma membrane receptors and channels are down-regulated from the plasma membrane 

by CME.  The four steps to CME are clustering, internalization, uncoating and fusion (Brodin et 

al., 2000).  The process begins with the recruitment of clathrin to the cytosolic side of the plasma 

membrane by AP-2.  The accumulation of clathrin on the membrane surface causes a high 

curvature deformation in the membrane called a clathrin coated pit (CCP).  Receptors that are 

activated, such as the epidermal growth factor receptor (EGFR), by ligand binding are recruited 

to the CCPs by AP-2 through their cytoplasmic tails.  Calthrin and AP-2 bind to adaptor proteins 
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unique for endocytosis (amphiphysin, epsin, Eps15).  The initial steps and machinery to form a 

CCP are similar to the budding of clathrin vesicles at the surface of the TGN.  The CCP is 

pinched off by the GTPase dynamin, but the exact mechanism of dynamin’s action in the 

scission of the vesicle is controversial (Hinshaw and Schmid, 1995; Sweitzer and Hinshaw, 1998) 

(Stowell et al., 1999).  Once the vesicle is pinched off, uncoating and fusion with an endosomal 

compartment can occur.  In the endosome a ligand may dissociate from its receptor and the 

receptor may recycle back to the plasma membrane; go to the lysosome for degradation; or 

traffic to another plasma membrane domain (transcytosis).  However, most receptors and plasma 

membrane proteins, such as transporters, are recycled back to the plasma membrane.  If a 

receptor-ligand complex is endocytosed, the receptor and ligand dissociate at a given pH; this 

determines into which compartment the ligand is sorted.  As the receptor progresses from early 

(sorting and recycling) to late endosomes the pH drops from ~6.5 to ~5 (Yamashiro et al., 1984; 

Mellman et al., 1986).  The well studied transferrin receptor, which carries iron into all dividing 

and hematopoeitic cells, and the Low Density Lipoportien (LDL) receptor are examples of 

receptors that are constantly recycled back to the plasma membrane (Maxfield and McGraw, 

2004).  In contrast, the Epidermal Growth factor Receptor (EGFR) bound to EGF is sent to the 

lyosome for degradation. This leads to a reduction in EGFR at the plasma membrane, a process 

termed receptor down-regulation (Smythe and Warren, 1991; Sorkin and Waters, 1993).   

 

Endocytic receptors that lack their COOH-terminal tails are poorly endocytosed (Adams and 

Cory, 1998) (Verrey et al., 1990; Huang et al., 1995).  This observation led to the discovery of 

an endocytic sorting motif (Davis et al., 1987).  The most extensively studied endocytic sorting 

motif is the tyrosine-based sorting motif Yxψφ (x = any amino acid, ψ = bulky hydrophilic, and 
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a φ = hydrophobic residue) of the transferrin receptor (Canfield et al., 1991), but there are other 

variations of this motif (Chen et al., 1990).  The motif in the transferin receptor is recognized by 

the µ2 subunit of AP-2, but it appears that receptors utilize different endocytic motifs and 

adaptor machinery (Warren et al., 1998).  For example, the adaptor protein disabled-2 (Dab2) 

recognizes the FxNPxY (x = any amino acid) motif in the LDL receptor-family and binds to AP-

2, thus connecting the receptor to the endocytic coat proteins (Morris and Cooper, 2001; Mishra 

et al., 2002).  Overall, different receptors do not appear to compete for sorting into the same 

CCPs, but use distinct motifs and adaptors for incorporation into these vesicles. 

 

1.2. ER Quality Control 

 

The first of many sorting events in the secretory pathway occurs in the ER, where secretory 

proteins are sorted away from ER resident proteins into COPII vesicles.  Properly folded 

secretory proteins must also be sorted away from misfolded or incompletely assembled proteins, 

which are dangerous byproducts of protein folding in the ER that could disrupt normal cellular 

function.  The process of conformation-dependent sorting of newly synthesized proteins in the 

ER was given the name ER quality control (Hurtley and Helenius, 1989; Ellgaard et al., 1999).  

The mechanisms by which aberrant proteins are identified and retained in the ER are complex 

and overlapping.  Moreover, three main chaperone systems operate in the ER lumen to aid in the 

folding of proteins or retention of misfolded/unassembled proteins until they can be refolded or 

degraded and these systems are discussed in the following section. 
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1.2.1.  Folding of a Secretory Protein 

 

During translocation most proteins undergo N-linked glycosylation on asparagine residues within 

the consensus sequence Asn-X-Ser/Thr.  The Glc3Man9GlcNAc2 (Glc = glucose, Man = 

mannose, GlcNac = N-acetyl glucosamine) glycan is transferred from dolichol to the protein by 

oligosaccharyl transferase on the luminal side of the ER.  Multiple chaperone systems exist to 

correctly fold proteins in the ER lumen.  A chaperone is a protein that prevents protein 

aggregation and catalyzes the folding of that protein (for a detailed explanation see section 1.3). 

The best described chaperone-mediated retention/folding pathway is for glycoproteins in 

mammalian cells. 

 

First, as a glycoprotein folds, the two outermost glucoses of the Glc3Man9-glycan 

(Glc3Man9GlcNAc2) are trimmed off by glucosidase I and II.  The calcium-binding lectins 

calnexin/calreticulin bind to monoglucosylated proteins (Hammond et al., 1994; Peterson et al., 

1995) and the oxidoreductase ERp57 forms transient mixed disulfide bonds with any cysteine 

residues in the glycoprotein (Molinari and Helenius, 1999) to catalyze proper disulfide bond 

formation.  On cleavage of the final glucose, the glycoprotein is released from the 

lectin/oxidoreductase complex and if the protein has reached its native conformation it exits the 

ER.  If the protein is still misfolded then the “folding sensor” UDP-glucose glucosyltransferase 

(UGGT) binds to the glycoprotein and reglucosylates the protein to generate the Glc1Man9 

glycan, thus causing calnexin/calrecticulin to re-bind the protein.  The cycle of binding and 
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release can be repeated multiple times in an attempt to fold the glycoprotein (see Figure 8), 

(reviewed in Ellgaard et al., 1999).  If the protein cannot be folded, then an enzyme called 

mannosidase I cleaves mannose to generate either a Glc1Man8 or Man8 containing glycan.  

Another lectin, called EDEM (ER Degrading Enhancing Mannosidase-like protein), has been 

proposed to target the glycoprotein for degradation (Molinari et al., 2003; Oda et al., 2003).  

Yeast do not contain a calnexin/calrecticulin cycle, but do contain an EDEM homologue, called 

Mnl1p or Htm1p, that facilitates the proteolysis of misfolded glycoproteins (Jakob et al., 2001; 

Nakatsukasa et al., 2001).   

 

Second, proper disulfide bond formation is critical for the folding and activity of secretory 

proteins (Rietsch and Beckwith, 1998) and a chaperone system exists to catalyze the correct 

formation of disulfide bonds in the ER lumen (reviewed in Fewell et al., 2001).  Proteins unable 

to form the correct disulfide bonds may aggregate in the ER, which can lead to disease (Plemper 

and Wolf, 1999).   

 

And finally, the luminal chaperone BiP, an Hsp70 chaperone, which is essential for protein 

translocation can bind to exposed hydrophobic patches on newly synthesized proteins in the ER 

lumen and help catalyze protein folding through a binding/release cycle that requires ATP 

hydrolysis (see section 1.3).  It is the cooperation of these three main chaperone systems that 

ultimately catalyze the folding of newly synthesized proteins in the ER lumen.  If the proteins are 

misfolded/unassembled then these systems retain the protein in the ER lumen until they can 

attain their native state.  Prolonged retention of the misfolded/unassembled protein can lead to 
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aggregation or targeting of the aberrant protein to the cytosol where it is degraded by the 26S 

proteasome. 
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Figure 8: Timing Mechanism for Glycoprotein Quality Control. 

Misfolded polypeptide (brown line) enters the lumen of the ER and the terminal two glucoses of 

its NH2-linked glycans are trimmed by Glucosidase I and II.  The mono-glucosylated polypeptide 

can bind to calnexin (CXN) or calreticulin (CRT). When the substrate polypeptide is released 

from CXN/CRT after a round of folding then the remaining glucose is trimmed off by 

Glucosidase II and the native protein can exit the ER.  But, if the polypeptide is still misfolded 

then it becomes a substrate for UDP-glucose:glycoprotein glucosyltransferase (UGGT), which 

attaches a single glucose back onto to the NH2-glycan to force re-association with CXN/CRT.  

After several rounds of association with CXN/CRT, if the protein remains misfolded then it 

becomes a substrate of α1,2-mannosidase-I, which cleaves off the Mann9 moiety to yield a 

Mann8 glycan. This allows the ER degradation enhancing α1,2-mannosidase-like (EDEM) 

protein to bind and target the misfolded protein for degradation. 

Man = mannose, Glc = glucose,  GlcNac =  N-acetylglucosamine 
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Figure 8: Timing Mechanism for Glycoprotein Quality Control in the ER 
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1.2.2. Ubiquitin-Proteasome Degradation Pathway 

 

For much of the early 20th century it was believed that only dietary proteins were degraded to 

provide energy for the body, while proteins in the body were viewed as relatively stable.  This 

notion was challenged by the protein labeling studies of Scheonheimer (Ratner et al., 1987).  The 

identification of a compartment in the cell, called the lysosome, which is dedicated to protein 

degradation gave birth to the idea that proteins are continually being synthesized and degraded.  

Mounting experimental evidence from the 1950s through the 1970s suggested that some cellular 

proteins were not degraded by the lysosome and that a second unidentified proteolytic system 

must exist in the cell.  Rabinovitz and Fisher demonstrated that aberrant hemoglobin that 

contained amino acid analogues was efficiently degraded in rabbit reticulocytes, which do not 

contain lysosomes, and this was the first evidence for a non-lysosomal proteolytic pathway 

(Rabinovitz and Fisher, 1964).  Biochemical fractionation of rabbit reticulocyte lysate by 

Ciechanover and Hershko led to the identification of a ~8.5 kDa heat stable protein, later 

identified as ubiquitin, which modifies proteins targeted to the non-lysosomal pathway (Hershko 

et al., 1979; Ciechanover et al., 1980).  The rabbit recticulocyte lysate assay proved to be a 

powerful cell-free system to study proteolysis and was used by several groups to identify the 

enzymes and protease involved in non-lysosomal protein degradation (Ciechanover et al., 1982; 

Hershko et al., 1983; Tanaka et al., 1983; Waxman et al., 1987). 

 

The core components of the ubiquitin-proteasome pathway include three enzymes (E1, E2, E3), 

and the cytosolic 26S proteasome (see Figure 9).  Ubiquitin is conjugated to a primary amine 

usually lysine on a target proteins through its COOH-terminal glycine residue (Gly76) in a 
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process that requires E1, E2 and E3 enzymes.  First, ubiquitin is actviated through thioester bond 

formation with E1.  Next, the E1 enzyme transfers the ubiquitin to the E2 enzyme by a 

transthiolation reaction.  The ubiquitin is then transferred to the E3 ubiquitin ligase enzyme and 

finally the E3 conjugates the ubiquitin to the ε-amino group of lysine of a target protein.  Some 

E3s do not directly receive ubiquitin but instead facilitate its transfer from E2 to the target 

protein.  This process can be repeated with each subsequent ubiquitin being attached to K48 of 

the previously added ubiquitin moiety to generate a ubiquitin chain on the substrate protein 

(Glickman and Ciechanover, 2002).  A minimum of four ubiquitins or a tetra-ubiquitin tag is 

required to target proteins to the proteasome for degradation (Thrower et al., 2000).  Most but 

not all proteins targeted to the proteasome for degradation contain poly-ubiquitin chains (Verma 

and Deshaies, 2000).  In most organisms there is one E1, several E2s and a large number of E3s 

(Wong et al., 2003).  It is believed that the combination of E2/E3 pairs provide substrate 

specificity for the tagging of proteins for destruction. Once tagged, the protein is sent to the 

proteasome for degradation. 

 

The proteasome is an ~1.5 Mda multicatalytic protease composed of a 19S regulatory cap 

(Glickman et al., 1998a; Glickman et al., 1998b)and a 20S core (Pickart and Cohen, 2004).  The 

19S cap contains subunits that bind to poly-ubiquitin tags (Lam et al., 2002; Walters et al., 2002) 

(Elsasser et al., 2002) and function to gate or control which polypeptides enter the catalytic core. 

The cap also contains six AAA-ATPase subunits that are thought to unfold substrates and feed 

them into the 20S core.  The catalytic core is composed of four stacked rings and each ring is 

composed of seven distinct subunits to give the general structural arrangement of α1-7β1-7β1-7α1-7.  

The core possesses three distinct protease activities.  The 20S core may have one or both ends 
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bound by a 19S cap complex.  The proteasome is known to reside in the cytosol and in the 

nucleus and is attached to the ER/nuclear membrane (Enenkel et al., 1998).  

 

1.2.3.  ER Associated protein Degradation (ERAD) 

 

ER Associated protein Degradation (ERAD)  is the process by which misfolded proteins are 

retro-translocated/dislocated from the ER compartment and targeted to the cytosolic proteasome 

for degradation.  For a long time it was believed that ERAD was mediated by ER resident 

proteases.  This belief was upheld by the observations that in a permeabilized cell system the 

degradation of ER, misfolded proteins was independent of cytosol (Stafford and Bonifacino, 

1991).  Second, the isolation of an apparent protease (ER-60) that preferentially associated and 

degraded misfolded lysozyme versus wildtype enzyme reinforced the belief of an ER resident 

protease (Otsu et al., 1995).  However, there was a high probability that the ER membranes used 

in the semi-permeabilized system were contaminated with cytosolic factors (McGee et al., 1996), 

and it was later discovered that ER-60 is a molecular chaperone required for ERAD (Oliver et al., 

1997).  In contrast, studies by several groups demonstrated that drugs that inhibited the 

proteasome, or in vivo studies using proteasome mutants led to the stabilization of ERAD 

substrates (Jensen et al., 1995; Ward et al., 1995; Hiller et al., 1996; Oda et al., 1996).  It is now 

known that cytosolic and ER luminal proteins are degraded by the cytosolic 26S proteasome. 
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Figure 9: Ubiquitin-Proteasome Pathway.  

Ubiquitin is linked to and activated by the E1 enzyme in a step requiring ATP.  The activated 

ubiquitin is transefered to an E2 enzyme and the E2 enzyme associates with an E3 enzyme.  The 

E2/E3 pair function to poly-ubiquitinate the target protein.  The ubiquitinated protein is targeted 

to the proteasome, de-ubiquitinated and degraded in a process requiring ATP. 
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Figure 9: Ubiquitin-Proteasome Pathway 
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The process of ERAD can be broken down into several discrete steps: 1) identification of 

misfolded/unassembled proteins by molecular chaperones; 2) retro-translocation/dislocation of 

the protein from the ER membrane; 3) deglucosylation and poly-ubiquitination of the protein (if 

necessary); 4) degradation by the proteasome.  The main function of ERAD is to dispose of 

misfolded or aberrant proteins in the ER, but some wildtype enzymes in the cell are degraded by 

ERAD as a mechanism to control their activity (Hampton and Rine, 1994; Hampton et al., 1996). 

 

Molecular chaperones function at all stages of ERAD.  Many molecular chaperones bind to 

hydrophobic-rich patches in unfolded proteins to prevent aggregation and catalyze the folding of 

the protein substrate.  Molecular chaperones were originally identified as proteins that were over-

expressed when cells were subjected to heat stress, hence molecular chaperones were originally 

called heat shock proteins (Ellgaard et al., 1976), (McKenzie et al., 1975).  Today it is known 

that molecular chaperone expression is induced by a wide variety of cellular stresses and not just 

heat stress.  There are multiple classes of molecular chaperones and they are named based on 

their molecular weights (e.g. Hsp70, Heat Shock Protein of MW ~70,000).  Molecular 

chaperones are highly conserved from single cell bacteria to metazoan eukaryotes and can be 

found in almost every compartment of the cell. 

 

The three main classes of molecular chaperones that are involved in folding or degrading 

soluble/membrane proteins in the ER are Hsp40, Hsp70, and Hsp90 (See Table 1).  Co-factors 

called co-chaperones can shift the chaperone activity from folding to degradation if the substrate 

protein cannot be correctly folded (see section 1.3 for more details).  Over the past ten years, 
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genetic and biochemical studies in yeast and mammalian cells have begun to elucidate the roles 

of chaperones and accessory factors in the ERAD of aberrant proteins. 

 

1.2.3.1. Chaperone Requirements for ERAD of a Soluble Protein 
 

Studies conducted in yeast have demonstrated that calnexin (McCracken and Brodsky, 1996), 

BiP (Plemper et al., 1997; Brodsky et al., 1999) and peptidyl-proyl isomerase (PDI) (Gillece et 

al., 1999; Norgaard et al., 2001) are required for the efficient degradation of some soluble ERAD 

substrates.  Interestingly, the substrate used in the PDI studies lacked cysteines, suggesting that 

PDI possesses a chaperone activity separate from its function in catalyzing disulfide bond 

formation. Furthermore, a mutant form of pro-α-factor that is not glycosylated requires calnexin 

for degradation suggesting that calnexin has a lectin independent chaperone function.  Export of 

the misfolded soluble protein from the ER requires the Sec61p translocon (Pilon et al., 1997) 

(Plemper et al., 1997; Zhou and Schekman, 1999) even though the retro-translocation or 

dislocation of a misfolded soluble protein is mechanistically different from translocation (Zhou 

and Schekman, 1999) (Brodsky et al., 1999).  In both cases the substrate protein must be kept in 

a soluble state to allow transport, but the co-chaperone requirements for BiP, an Hsp70, are 

different depending upon its action during translocation, or retro-translocation.  For example, the 

BiP co-chaperone Sec63p (see Figure 2) is required for the translocation of proteins into the ER 

but is dispensible for ERAD (Pilon et al., 1997; Plemper et al., 1997; Nishikawa et al., 2001).  In 

contrast, the BiP co-chaperones Scj1p and Jem1p are required for the ERAD of pro-α−factor and 

a mutant form of a vacuolar enzyme (CPY*) but not for translocation (Nishikawa et al., 2001).  

It is not entirely clear how misfolded soluble proteins are targeted to the translocon for retro-
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translocation, since no signal sequence has been identified to direct proteins to the pore as is the 

case for translocation.  Results from Romisch and colleagues suggest that PDI can target at least 

one soluble substrate to BiP positioned at the translocon (Gillece et al., 1999).  BiP may then 

deliver substrates to the translocon, but it is not clear how it performs this function (Schmitz et 

al., 1995; Brodsky et al., 1999; Skowronek et al., 1998). 
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Table 1: Molecular Chaperones & Co-factors 

 
Yeast Mammals Class Location Function 
Cne1p Calnexin lectin ER Glycoprotein 

Folding 
----- Calreticulin lectin ER Glycoprotein 

Folding 
BiP BiP Hsp70 ER Translocatio/retro-

translocation 
Protein folding 

Ssa1p Hsc/Hsp70 Hsp70 Cytosol Protein 
folding/degradation 

Ydj1p Hdj2 Hsp40/ J-protein ER/Cytosol Protein 
folding/degradation 

Hlj1p ----- Hsp40/ J-protein ER Protein 
folding/degradation 

----- CSP1 Hsp40/ J-protein Cytosol Protein folding/ 
Exocytosis 

Fes1p HspBP1 Nucleotide 
Exchange 
Factor (NEF) 

Cytosol Stimulate ADP 
release from Hsp70 

----- Bag-3 Nucleotide 
Exchange 
Factor (NEF) 

ER/Cytosol Stimulate ADP 
Release from Hsp70

----- CHIP E3 Ligase Cytosol Protein degradation 
Hsc/Hsp82 Hsp90 Hsp90 Cytosol Protein 

folding/degradation 
Sba1p p23 Hsp90  

co-chaperone 
Cytosol Protein folding 

Sti1p HOP Hsp90 
co-chaperone 

Cytosol Protein folding 

Sse1p Hsp110 Hsp90 
co-chaperone 

Cytosol Protein folding 

Aha1p Aha1 Hsp90 
co-chaperone 

Cytosol Protein folding 

 

50 



 

 

Since BiP (luminal Hsp70) plays an important role in the ERAD of misfolded soluble proteins, 

are cytosolic Hsp70 chaperones are involved in the ERAD of soluble proteins?  Most likely not, 

since the major cyotosolic Hsp70 in yeast, Ssa1p, is dispensible for the degradation of CPY*, 

pro-α-factor and the Z-variant of the human protein α1-anitrypsin inhibitor (A1PiZ) (Brodsky et 

al., 1999; Huyer et al., 2004).  Though it is not entirely clear why, some misfolded soluble 

proteins are stabilized in yeast mutants that block ER to Golgi transport, suggesting that 

trafficking to the Golgi is a pre-requisite for efficient ERAD of soluble proteins (Caldwell et al., 

2001; Vashist et al., 2001).  In fact, a pool of UGGT enzyme may be located in the Golgi (Roth 

et al., 1994) (see section 1.2.1).  Together, these results suggest that ER luminal chaperones are 

required, but cytosolic chaperones are dispensable for the degradation of soluble misfolded 

proteins in the ER and degradation is dependent on a functional Sec61p translocon. 

 

1.2.3.2. Chaperone Requirements for ERAD of a Membrane Protein 
 

The chaperone requirements for the ERAD of a membrane protein are distinct compared to the 

requirements for soluble proteins.  BiP is not required for the efficient degradation of a mutant 

form of the yeast ABC transporter Ste6p (Ste6p*), a mutant form of the yeast multidrug 

transporter Pdr5p (Pdr5p*), the human chloride channel CFTR, or a subunit of the vacuolar 

ATPase Vph1p, even though Ssa1p (the yeast cytosolic Hsp70) is required for the efficient 

degradation of these transmembrane proteins (Plemper et al., 1998; Hill and Cooper, 2000; 

Zhang et al., 2001; Huyer et al., 2004).  Furthermore, the Sec61p translocon is not required for 

the ERAD of Ste6p* (Huyer et al., 2004).  However, yeast contain two other putative translocons 

that could be involved in retro-translocation, so it can not be completely ruled out that retro-
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translocation is dispensible for Ste6p* degradation (Finke et al., 1996; Walter et al., 2001; Hitt 

and Wolf, 2004).  Some membrane proteins are stabilized in sec61 mutant yeast, providing 

support that retro-translocation through Sec61p could be required for the ERAD of certain 

membrane proteins (Plemper et al., 1998; Zhou and Schekman, 1999; Huyer et al., 2004).  

Additionally, some membrane-bound ERAD substrates can be co-immunoprecipitated with 

Sec61p (Bebok et al., 1998) (de Virgilio et al., 1998) .  Overall it appears that cytosolic 

chaperones are required for ERAD of most membrane proteins, while luminal chaperones are 

required for the ERAD of luminal substrates. 

  

1.2.3.3. Additional Factors Required for ERAD  
   

What is the driving force that dislocates soluble or membrane protein from the ER compartment? 

There is evidence that some membrane proteins can be extracted from the ER membrane directly 

by the proteasome (Mayer et al., 1998; Walter et al., 2001). The Sec61p translocon is required 

for retro-translocation of soluble proteins; therefore it is possible that the extraction machinery 

associates with Sec61p.  In fact, Romisch and colleagues recently published data suggesting that 

the Sec61p translocon may be a receptor for the proteasome at the ER (Kalies et al., 2005).  In 

addition, the proteasome is sufficient for the dislocation of a non-ubiquitinated soluble protein 

from microsomes in vitro (Lee et al., 2004c).  Alternatively, the multiprotein complex Cdc48p-

Ufd1p-Npl4p (Bays and Hampton, 2002) has been shown to catalyze the retro-translocation of 

soluble and membrane proteins from the ER.  Mutations in subunits of these complex result in 

the accumulation of poly-ubiquitinated subtrates at the ER membrane suggesting that this 
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complex acts after ubquitination to target substrates to the proteasome for degradation (Ye et al., 

2001). 

 

Several genetic screens in yeast have been performed that have led to the identification of 

additional factors that target substrates to the proteasome for degradation.  Wolf and colleagues 

identified three DER genes (Degradation in the ER) in a screen looking for mutants that 

stabilized CPY* (Knop et al., 1996).  Der2p encodes an E2 ubiquitin conjugating (Ubc) enzyme 

called Ubc7p, and Der3p encodes an E3 ubiquitin ligase.  Hampton and colleagues (Hampton et 

al., 1996)used a genetic screen to look for mutants that stabilized the yeast HMG-CoA-

Reductase, an enzyme whose activity is regulated by ERAD, and identified the HRD genes 

(HmgCoA Reductase Degradation), three of which are involved in ERAD (Knop et al., 1996; 

Gardner et al., 2000; Bays et al., 2001).  Hrd1p is the same E3 ligase as identified in Wolf’s 

screen (Der3p) and it associates with Hrd3p to form an ER membrane spanning complex that 

preferentially ubiquitinates misfolded proteins (Bays et al., 2001).  Hrd2p is a component of the 

19s cap of the 26s proteasome.  Finally, a genetic screen performed in yeast uncovered mutants 

that accumulate A1PiZ and identified seven complementation groups that could represent novel 

ERAD components (McCracken et al., 1996). 

 

Evidence from early studies suggested that the HRD/DER genes and the ER-associated ubiquitin 

conjugating enzymes Ubc6p/Ubc7p form a central ERAD machine that mediates the degradation 

of a diverse set of soluble and membrane proteins (Hampton et al., 1996; Bordallo et al., 1998; 

Plemper et al., 1998; Plemper et al., 1999), but  subsequent studies have demonstrated a diverse 

requirement for the HRD/DER genes in the degradation of membrane proteins (Wilhovsky et al., 
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2000; Huyer et al., 2004).  Some membrane proteins require the E3 ligase Hrd1p (Bays et al., 

2001) while others require the action of the E3 ligase Doa10p (Swanson et al., 2001).  The 

current thinking is that ubiquitin E3 ligases may interact with different ERAD substrates, 

consistent with distinctions within the ERAD pathway. 

 

Recent studies using chimeric soluble and membrane proteins have begun to identify several 

novel ERAD checkpoints.  Ng and colleagues created a series of chimeric proteins that had 

misfolded domains either on the luminal or cytosolic side of the ER in order to determine which 

ERAD machinery was required for their degradation.  Their results suggested that it is not 

whether the substrate is soluble or membrane-bound that controls the ERAD requirements.   

Instead, the site of the lesion in the protein determines the requirements and dependence on ER-

to-Golgi trafficking.  They therefore proposed the existence of the ERAD-L (Luminal) and 

ERAD-C (cytosolic) pathways (Vashist and Ng, 2004).  The proposed ERAD-L pathway detects 

misfolded luminal domains, while ERAD-C detects misfolded cytosolic domains.  Finally, they 

made a chimeric protein with lesions on both sides of the ER membrane and discovered that the 

protein behaved similarly to an ERAD-C substrate. This result supports the idea that the ERAD-

C checkpoint precedes the ERAD-L checkpoint.  Similarly, Wolf and colleagues studied the 

ERAD requirements for several chimeric proteins that were anchored to the ER membrane and 

contained misfolded luminal domains.  In opposition to Ng and colleagues, however they found 

that their substrates behaved like ERAD-C substrates and not ERAD-L as would have been 

predicted (Taxis et al., 2003).  Thus, the exact signals that target the specific ERAD machinery 

to ERAD substrates is still not clear, but what is clear is that substrates cannot be merely defined 

as soluble luminal or membrane anchored substrates as previously thought. 
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1.3. Cytoplasmic Molecular Chaperones 

 

Anfinsen discovered over 30 years ago that the amino acid sequence contained all the 

information necessary to dictate the correct tertiary structure of a protein in vitro (Anfinsen, 

1973).  However, Afinsen’s experiments were performed in vitro with dilute solutions of a small 

globular protein (ribonuclease A) and these conditions are completely opposite to the highly 

crowded environment inside a cell where protein concentrations are at least 300 mg/ml 

(Zimmerman and Trach, 1991).   Most newly synthesized proteins inside a cell would fail to fold 

efficiently in this crowded environment without the assistance of other cellular machinary. 

Specifically, molecular chaperones aid in protein folding and prevent protein misfolding inside 

the cell.  Three major classes of molecular chaperones in the cytosol include Hsp70, Hsp40 and 

Hsp90 (See Table 1).  The Hsp70 and Hsp40 classes of molecular chaperones can bind to 

hydrophobic patches on unfolded or misfolded proteins to prevent aggregation and catalyze 

refolding.  In contrast, the Hsp90 class of molecular chaperones can bind to polypeptides but 

shows no preference for hydrophobic patches (Joachimiak, 1997).  Furthermore, if the native 

state of the protein cannot be reached, then the molecular chaperones can target the protein for 

degradation. 

 

1.3.1. Hsp70  

 

The Hsp70 class of molecular chaperones participate in a wide variety of processes that include 

folding newly synthesized proteins, prevention of protein aggregation, refolding of misfolded 
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proteins, translocation of proteins across organellar membranes， and dissociation of protein 

complexes. （See Table 1） 

 

Hsp70 is composed of a ~45 kDa N-terminal ATPase domain, a ~15 kDa peptide binding 

domain and a ~10 kDa COOH-terminal lid domain.  Like other chaperone classes, there is a 

stress inducible form of Hsp70 and a constitutively expressed form of Hsc70.  Their functions 

are genetically and biochemically interchangeable and the only difference seems to be in their 

level and mechanism of expression.  Hsp70 is expressed at low levels under normal 

physiological conditions and its expression is induced to high levels during times of stress.  

Conversely, Hsc70 expression is not stress inducible, but its levels are constant.  Hsp70 binds to 

short hydrophobic stretches of amino acids normally buried in the native conformation of the 

protein, and assists in protein folding through a cycle of substrate binding and release that is 

regulated by ATP hydrolysis (Mayer and Bukau, 2005).  In the ATP-bound state, Hsp70 binds 

with low affinity to its susbtrates due to a fast peptide off-rate.  In the ADP-bound state, Hsp70 

binds with high affinity to its substrates due to a slow peptide off-rate.  The ATPase activity of 

Hsp70 is inherently weak (3x10-4 to 1.6x10-2 s-1) (Zylicz et al., 1983; McCarty et al., 1995; 

Bukau, 1999), and this rate is too slow to promote substrate binding and drive productive folding.  

Therefore, Hsp40 co-chaperones are required to stimulate the ATPase of Hsp70 and drive 

substrate binding (see section 1.3.2) (see Figure 10).  In addition, while all Hsp70 family 

members require ATP hydrolysis for chaperone activity, there are clearly differences in the rates 

of ATP hydrolysis and ADP dissociation rates.  These differences in kinetic rate constants 

between Hsp70s can be partly explained by the subtle differences in an exposed loop and the 
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absence or presence of salt bridges in the cleft of their ATPase domains (Mayer and Bukau, 

2005). 

 

The x-ray crystal structure for several Hsp70 ATPase domains have been solved, including 

bovine Hsp70 (Flaherty et al., 1990), and reveals that the ATPase domain is composed of two 

globular subdomains with a deep cleft that is formed at the interface of the subdomains.  The 

nucleotide is bound at the bottom of the deep cleft, in complex with one Mg2+ and two K+ ions, 

by four binding loops (two each for β and γ phosphate) and a hydrophobic pocket for the 

adenosine ring.  A crystal structure of the central peptide binding domain of a bacterial Hsp70 

(DnaK) complexed with peptide was also solved (Zhu et al., 1996).  This structure revealed that 

the peptide-binding domain is composed of β-sheets that form a cleft that can accommodate an 

~7 residue peptide.  The COOH-terminal domain is α-helical and forms a lid over the peptide-

binding domain. 

 

Due to the high concentrations of cytoplasmic ATP, ADP release becomes rate-limiting for 

substrate release for the bacterial Hsp70 (DnaK).  The cleft in the ATPase domain of DnaK must 

be opened in order to release the ADP and allow binding of a new ATP molecule, and for this 

Hsp70 co-chaperones called nucleotide exchange factors (see section 1.3.3) promote the release 

of ADP.  The first nucleotide exchange factor identified was the bacterial protein GrpE, which 

enhances the release of ADP from DnaK (bacterial Hsp70).  GrpE and DnaJ working together 

can stimulate the ATPase activity of DnaK by up to 5000-fold (Karzai and McMacken, 1996).  

In fact, the binding of the nucleotide exchange factor to Hsp70 causes a conformational change 

that opens the nucleotide cleft and facilitates ADP release (Harrison et al., 1997).  The absence 
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of a GrpE-like homologue and significant spontaneous release of ADP from mammalian Hsp70 

led to the assumption that nucleotide exchange factors were not present in the eukaryotic cytosol.  

However, several groups identified Bcl-2 athanogene 1 (BAG-1) as a nucleotide exchange factor 

for mammalian Hsc70 that accelerates the ATPase activity by enhancing ADP release (Hohfeld 

and Jentsch, 1997; Packham et al., 1997; Takayama et al., 1997; Zeiner et al., 1997; Takayama 

et al., 1998).  Interestingly, a negative regulator of Hsc70 was discovered by Hartl and 

colleagues called Hsc70 interacting protein (HIP).  HIP stabilizes the ADP bound form of Hsc70 

and is important for Hsc70 cooperation with other chaperone systems, such as Hsp90 

(Ziegelhoffer et al., 1996; Frydman and Hohfeld, 1997).  Together, the concerted action of 

Hsp40, nucleotide exchange factors, and these other co-chaperones modulate the ATPase cycle 

of Hsp70 and facilitate peptide capture, or release. 
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Figure 10: ATPase Cycle of Hsp70. 

In the ATP bound state Hsp70 binds peptide weakly and the COOH-terminal lid domain is open. 

Upon stimulation by Hsp40, ATP is hydrolyzed and the COOH-terminal lid closes, locking the 

peptide onto Hsp70 to favor tight binding.  A nucleotide exchange factor (NEF) releases ADP to 

allow ATP to bind to Hsp70.  Upon ATP binding the COOH-terminal lid on Hsp70 opens and 

the peptide is released.
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Figure 10: ATPase Cycle of Hsp70 
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1.3.1.1. Regulators of Hsp70 Function 
 
 

HSP40 CHAPERONES 
 

The founding member of this class of chaperones is the E. coli DnaJ protein, which stimulates 

DnaK in the E. coli cytosol.  This canonical Hsp40 contains the ~70 residue NH2-terminal J-

domain, an adjacent glycine/phenylalanine rich domain (G/F), a cysteine rich zinc finger domain 

and a COOH-terminal domain.  It is the J-domain that contacts and stimulates the ATPase 

domain of Hsp70.  The J-domain is composed of four α-helices (I,II,III,IV) that form a finger-

like projection (Szyperski et al., 1994; Hill et al., 1995; Qian et al., 1996).  Helices II and III are 

anti-parallel amphipatic helices that are tightly packed (Szyperski et al., 1994; Qian et al., 1996).  

A loop connecting helices II and III contains the invariant tripeptide HPD which is required for 

stimulation of Hsp70 ATPase activity (Greene et al., 1998).  The G/F domain is a flexible linker 

that connects the J-domain to the rest of the protein.  A second function of some Hsp40 

chaperones is to present substrates to Hsp70.  The zinc finger domain, which is part of the larger 

central peptide-binding domain, can bind to polypeptides and is required for some Hsp40 

chaperones to present or transfer substrates to Hsp70 (Banecki et al., 1996; Szabo et al., 1996).  

In fact, the zinc finger domain of DnaJ can prevent the in vitro aggregation of denatured 

rhodanese, but the entire full-length DnaJ protein is required for refolding (Banecki et al., 1996).  

The function of the COOH-terminal domain is less well characterized and is thought to function 

in substrate binding (Szabo et al., 1994; Banecki et al., 1996; Fan et al., 2005).   
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A large number of J-domain containing proteins have been identified in multiple organisms.    

Cheetham and Caplan developed a nomenclature to organize the many J-domain containing 

proteins (J-proteins) based on their similarity to DnaJ (see Table 1).  Class I proteins contain an 

NH2-terminal J-domain, G/F domain and a zinc finger domain.  Class II Hsp40, contain an NH2-

terminal J-domain, an enlarged G/F domain, but lack a zinc finger domain. Class III proteins 

only contain a J-domain and the J-domain can be located anywhere in the protein.  It is known 

that the G/F domain is required for the formation of a Hsp70-peptide-DnaJ ternary complex 

(Wall et al., 1995) but the J-domain alone can stimulate a preformed Hsp70-peptide complex, 

suggesting that the G/F domain interacts with DnaK and that peptide binding mimics this 

interaction.  Since class III J-proteins do not contain the G/F domain, they may not be able to 

present substrates to Hsp70.  However, this may not be true for all class III J-proteins because 

cysteine-string protein (CSP) can stimulate Hsp70 in a substrate independent manner similar to 

type I J-proteins (Braun et al., 1996; Chamberlain and Burgoyne, 1997).  More detailed anaylsis 

of class III proteins will be required to clearly define their substrate specificity and ability to bind 

to unfolded polypeptides. 

 

Not all J-proteins stimulate Hsp70s and there appears to be partner specificity that seems to 

dictate Hsp70-Hsp40 interaction.  For example, in yeast the cytosolic Hsp40 Ydj1p stimulates 

the ATPase activity of the cytosolic yeast Hsp70 (Ssa1p) up to 10-fold but weakly stimulates 

(≤2-fold) the ER luminal Hsp70 (Kar2p) (McClellan et al., 1998).  The converse is also true: 

The ER luminal Hsp40 (Sec63p) weakly stimulates (1.6-fold) Ssa1p (McClellan et al., 1998).  

There is also some selectivity between Hsp70 and potential Hsp40 partners in the cytosol.  For 

example, the yeast Hsp70 chaperone Ssz1p interacts exclusively with Zuo1p (Hsp40) on 
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translating ribosomes (Walsh et al., 2004b).  In contrast, the yeast Hsp70 chaperone Ssa1p 

interacts with Sis1p on translating ribosomes, Swa2p to assist in clathrin coat disassembly, and 

Ydj1p/Hlj1p to facilitate the ERAD of membrane proteins (Horton et al., 2001; Lemmon, 2001; 

Youker et al., 2004).  It is not completely understood how the specifity between Hsp70/Hsp40 

pairs are mediated within compartments (e.g., the cytosol and ER), especially since Ssa1p can 

interact with all three classes of J-proteins.  The specificty of interaction between different 

Hsp70-Hsp40 proteins has been proposed to be partly conferred by residues on the surface of the 

J-domain (Schlenstedt et al., 1995; Pellecchia et al., 1996).  In fact, Genevaux and colleagues 

identified a set of new mutations in DnaJ that abolish J-domain function and all the mutations 

mapped to a small solvent exposed region in helix II and III (Genevaux et al., 2002).  

Furthermore, mutations engineered into the J-domain of Hdj1 in an Hdj1/DnaJ chimeric protein 

also abolished function suggesting an evolutionarily conserved surface that interacts with Hsp70 

proteins (Genevaux et al., 2002). 

 

Hsp40 stimulation is abolished if the conserved last four COOH-terminal amino acids (EEVD) 

of Hsp70 are deleted (Freeman et al., 1995). This result indicates that Hsp40 interacts with at 

least two domains in Hsp70 in order to stimulate its activity.  The protein surfaces that dictate 

specificity between Hsp40 and Hsp70 remain to be fully elucidated, but whichever surfaces 

mediate Hsp70/Hsp40 specificity it is clearly a complex multivalent interaction. 
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BAG PROTEINS AND NUCLEOTIDE EXCHANGE FACTORS 

 
 
The BAG (Bcl-2 –associated athanogene) family of proteins are conserved from yeast to humans 

and affect diverse cellular processes that include cell differentiation, migration, division and even 

apoptosis.  The founding family member BAG-1, also known as RAP46/HAP46, was identified 

in a screen for Bcl-2 binding proteins (Takayama et al., 1995).  The human BAG-1 gene 

generates four isoforms by alternative translation initiation (BAG-1S, BAG-1, BAG-1M, BAG-

1L) (Packham et al., 1997; Takayama et al., 1998; Yang et al., 1998),(Zeiner and Gehring, 1995). 

The BAG-1 proteins differ in the length of their NH2-terminal regions and all contain a 

ubiquitin-like domain (UBL).  Additional human BAG family members (BAG-2, BAG-3, BAG-

4, BAG-5) were disocvered by Reed and colleagues (Takayama et al., 1999), and there are now a 

total of seven Bag proteins in humans (not counting isoforms), one in S. cerevisiae, two in S. 

pombe, two in C. elegans, and one each in Drosophila, Xenopus, and A. thaliana (Takayama and 

Reed, 2001).  All family members possess a BAG domain at the COOH-terminus that binds to 

the ATPase domain of Hsc70 and stimulates nucleotide release.  Family members possess a wide 

variety of domains, in addition to the BAG domain, that include UBL (ubiquitin-like) domains 

(BAG-1, BAG-6), a nuclear localization domain (BAG-1L), a WW protein interaction domain 

(BAG-3).  These additional domains facilitate interaction with target proteins and/or target BAG 

proteins to different locations in the cell.  For example, BAG-1 can target Hsc70 chaperone to 

the proteasome through its UBL domain (Luders et al., 2000).  It is thought that BAG-1, through 

its nucleotide exchange activity, then facilitates substrate unloading and transfer from Hsp70 to 

the proteasome for degradation.  Because the binding sites are non-overlapping, Hsp70 is able to 

interact with both Hsp40 and BAG-1 (Demand et al., 1998).    Hence, BAG-1 can turn the Hsp70 
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chaperone from a protein folding to a protein degrading machine (Luders et al., 2000; Demand et 

al., 2001; Hohfeld et al., 2001).   

 

Consistent with its binding to Bcl-2, cells overexpressing BAG-1 are more resistant to apoptotic 

inducing stimuli (Takayama et al., 1995).  It has been suggested that BAG-1 in conjunction with 

Hsp70 can cause conformational changes in Bcl-2 to regulate apoptotic pathways (Takayama et 

al., 1997).  In addition, the serine/threonine kinase Raf-1 competes with Hsp70 for binding to 

BAG-1.  During times of cellular stress Hsp70 levels increase and there is a shift from BAG-

1/Raf-1 to BAG-1/Hsp70 complex formation.  This reduction in BAG-1/Raf-1 complex levels 

leads to depressed Raf-1 signalling and inhibition of cell growth.  Morimoto and colleagues 

hypothesize that this mode of competition represents a molecular switch to control cell growth 

(Song et al., 2001).   

 

The mechanism by which BAG-1 stimulates ADP release from Hsp70 is quite different from 

GrpE stimulation of DnaK.  In the presence of inorganic phosphate BAG-1 can stimulate release 

of ADP from Hsc/Hsp70 by up to 100-fold, and in the absence of inorganic phosphate by 600-

fold (Gassler et al., 2001).  In contrast, GrpE activity is not inhibited by inorganic phosphate.  

Unlike GrpE, BAG-1 cannot stimulate the release of ATP from Hsc/Hsp70 and the mechanism 

of BAG-1 binding to Hsc/Hsp70 is different compared to the nucleotide exchange factor HspBP1 

(see below) (Shomura et al., 2005).  These observations suggest that BAG-1 and GrpE stimulate 

release of nucleotides by different mechanisms. 
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Recently, additional nucleotide exchange factors have been identified in mammalian cells and 

yeast.  The yeast proteins Sls1p and Lhs1p are nucleotide exchange factors for the ER luminal 

Hsp70, BiP.  Deletion of both exchange factors is lethal in yeast, highlighting the importance of 

nucleotide exchange for the BiP ATPase cycle (Kabani et al., 2000; Tyson and Stirling, 2000).  

Hendershot and colleagues idenitfied BiP-associated-protein (BAP) in a yeast two hybrid screen 

and demonstrated that it too is a nucleotide exchange factor for mammalian BiP and exhibits 

some homology to Sls1p (Chung et al., 2002).  The yeast cytosolic exchange factor Fes1p and its 

mammalian homologue Hsp70-binding-protein 1 (HspBP1) are also homologous to Sls1p/BAP 

and can stimulate the nucleotide release from cytosolic Hsp70 but not luminal Hsp70 (Kabani et 

al., 2002a). Interestingly, both HspBP1 and Fes1p inhibit Hsp40 dependent stimulation of Hsp70, 

suggesting they may be negative regulators of Hsp70s (Kabani et al., 2002b).  In fact, BAG 

proteins can act as both positive and negative regulators of Hsp70 dependent refolding in vitro, 

depending on protein and phosphate concentration and the Hsp40 co-chaperone used in the assay 

(Zeiner et al., 1997; Takayama et al., 1999; Thress et al., 2001; Gassler et al., 2001).  The 

importance of the nucelotide exchange activity of BAG proteins in vivo is still controversal.  

 

CHIP 
 

 
CHIP (C-terminal Hsc70 interacting Protein) was identified in a yeast two-hybrid screen for 

human TPR containing proteins (Ballinger et al., 1999).  Tetratricopeptide repeat (TPR) domain 

is a protein-protein interaction motif and is composed of incompletely-conserved 34 amino acid 

repeats. CHIP contains three TPR domains at its NH2-terminus and also contains a COOH-

terminus U-box domain, which binds ubiquitin (Hatakeyama et al., 2001).  Many co-factors bind 

to Hsp70 and/or Hsp90 through the use of TPR domains.    
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The combination of TPR and U-box domains in one protein strongly suggest that CHIP couples 

chaperone complexes to the ubiquitin-proteasome machinary.  CHIP can bind to Hsp70 through 

its TPR domain and bind to E2 enzymes of the Ubc4/5 family, thus targeting Hsp70 substrates 

for degradation by the proteasome (Demand et al., 2001; Jiang et al., 2001; Murata et al., 2001; 

Pringa et al., 2001).  CHIP also prevents premature release of Hsp70 substrates before 

ubiquitination by blocking the ATPase cycle of the chaperone (Ballinger et al., 1999; Connell et 

al., 2001).  In mammalian cells, overexpression of CHIP leads to the enhanced degradation of a 

growing number of chaperone substrates that include the glucocorticoid receptor, CFTR and p53 

(Meacham et al., 2001; Galigniana et al., 2004; Esser et al., 2005).  CHIP-induced degradation 

requires both a functional U-box domain and a TPR domain. In fact, mutation of the U-box 

domain leds to a dominant-negative effect in vivo (Connell et al., 2001).  In vitro ubiquitination 

of heat denatured firefly luciferase by CHIP and Ubc5p requires either Hsp70 or Hsp90 (Murata 

et al., 2001) and the ligase activity exhibited by CHIP in vitro is specific because native 

luciferase is not ubiquitinated.  CHIP also has the ability to ubiquitinate some substrates in vitro 

in the absence of Hsp70/Hsp90 (Demand et al., 2001) and perhaps by direct interaction with the 

substrate (He et al., 2004).  Since both CHIP and BAG-1 are involved in targeting chaperone-

substrate complexes to the proteasome, it is plausible to hypothesize that both proteins may 

interact with each other.  In, support of this hypothesis, heteromeric complexes of BAG-

1/Hsp70/CHIP have been isolated from mammalian cells (Demand et al., 2001). Furthermore, 

BAG-1 and CHIP can interact in vitro (Demand et al., 2001).  This result is not surprising 

considering that BAG-1 binds to the NH2-terminus and CHIP binds to the COOH-terminus of 

Hsp70.  The CHIP-induced degradation of the glucocorticoid receptor can be stimulated by 
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BAG-1, providing further evidence for the cooperation of these two proteins in the sorting of 

chaperone substrates to the proteasome (Demand et al., 2001).  However, BAG-1 is dispensable 

for CHIP-induced degradation of some proteins in vitro (Xu et al., 2002).  It remains to be seen 

whether BAG-1 is an essential component for the CHIP ubiquitin ligase in vivo and it should be 

noted that yeast lack a CHIP homologue. 

 

Interestingly, HspBP1 binds to the ATPase domain of Hsp70 and enhances the association of 

CHIP with the chaperone.  The E3 ligase activity of CHIP is inhibited when it is bound in a 

ternary complex with Hsp70 and HspBP1.  Consequently, overexpression of HspBP1 prevents 

the CHIP-induced degradation of CFTR and promotes maturation in mammalian cells (Alberti et 

al., 2004).  HspBP1 also inhibited CHIP-mediated ubiquitination of CFTR in vtiro.  These results 

suggest that CHIP may be able to modulate the activity of Hsp70 without targeting the chaperone 

to the proteasome.  Recently, several groups have reported that overexpression of CHIP aids in 

the maturation or activation of the androgen receptor (Cardozo et al., 2003), endothelial nitric 

oxide synthase (Jiang et al., 2003) and the heat shock transcription factor (Dai et al., 2003).  

These results suggest that HspBP1 may regulate a novel function of CHIP that is independent of 

its role in proteasome degradation. 

 

CHIP not only ubiquitinates substrates bound by chaperones but can directly ubiquitinate 

chaperones and chaperone co-factors.  CHIP ubiquitinates both Hsc/Hsp70 and BAG-1 (Jiang et 

al., 2001; Alberti et al., 2002).  Curiously, ubiquitination of BAG-1 by CHIP leads to association 

with the proteasome but not its degradation.  Furthermore, Hsc/Hsp70 and BAG-1 are not 

degraded upon ubiquitination by CHIP.  One explanation for this apparent paradox is that the 
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linkages between ubiquitin moeities made by CHIP are at the non-canoncial Lys27 instead of the 

typical Lys48 that target substrates for degradation.  Hohfeld and colleagues proposed that these 

ubiquitin signals on BAG-1 and Hsc/Hsp70 allow for multiple and possibly stronger association 

with the proteasome (Esser et al., 2004), perhaps via contact with any one of a number of 

potential ubiquitin receptors in the 19S cap of the proteasome (Deveraux et al., 1994; Young et 

al., 1998; Hiyama et al., 1999; Lam et al., 2002). 

 

The emerging picture now is that Hsp70 and other chaperone complexes function as either 

protein folding or protein degradation machines depending on the co-factors with which they 

associate.  The co-factors or co-chaperones seem to function as either pro-folding or pro-

degrading factors.  For example, Hsp70 co-factors HiP (Hsc70 Interacting Protein) and Hsp70-

Hsp90 organizing protein (HOP) promote protein folding (Pratt and Welsh, 1994; Smith et al., 

1995; Pratt and Toft, 2003).  In contrast, BAG-1 and CHIP promote degradation, converting 

Hsp70 from a protein folding to protein degrading machine (Esser et al., 2004).  Interestingly, 

the pro-folding and pro-degrading co-factors appear to compete for the same binding sites on 

Hsp70.  Both CHIP and HOP use TPR domains to bind to the COOH-terminal EEVD motif on 

HSP70 (Connell et al., 2001), and similar competition occurs at the NH2-terminus ATPase 

domain of Hsp70 where BAG-1 and HIP compete for binding (Hohfeld and Jentsch, 1997; 

Takayama et al., 1999).  Thus, the cellular levels of the co-factor may set the balance between 

protein folding or degradation.  The cellular levels of BAG-1 and CHIP are low compared to HIP 

or HOP, and thus under normal conditions the cell appears to shift the balance in favor of protein 

folding.  Elucidating the mechanisms that regulate the expression levels of these co-factors will 

provide insight into how the cell decides to fold or degrade a protein. 
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1.3.2. Hsp90 

 

Hsp70 chaperones are considered to function broadly in protein folding and up to 20% of all 

bacterial proteins require the Hsp70-Hsp40 chaperone system for efficient maturation (Bukau et 

al., 2000; Hartl and Hayer-Hartl, 2002).  In contrast, the folding activity of the Hsp90 class of 

molecular chaperones was considered to be limited to a much smaller subset of signaling 

proteins (e.g. steroid hormone receptors and tyrosine kinases).  However, the identification of 

ansamycin antibiotics as specific inhibitors of Hsp90 has led to the identification of a growing 

list (> 100) of proteins that require Hsp90 for their maturation (reviewed in Pratt and Toft, 2003).  

Indeed, Hsp90 is now known to play a role in the maturation of a plethora of proteins, including 

ion channels such as CFTR (Loo et al., 1998; Ficker et al., 2003). 

 

Hsp90 is a higly conserved molecular chaperone that is found in all organisms from prokaryotes 

to metazoan eukaryotes.  Hsp90 is also an abundant cytosolic protein, making up 1-2% of total 

protein in non-stressed cells (Buchner, 1996; Caplan, 1999; Young et al., 2001).  The Hsp90s of 

different species are named based on their molecular weights.  In humans Hsp90 is called 

Hsp90α and Hsp90β (major and minor form), in S. cerevisiae Hsc82 and Hsp82, in Drosophila 

Hsp83, in mice Hsp84 and Hsp86, and in E. coli HtpG (see Table 1).  Humans also have an ER 

Hsp90 called Grp94 which is important for the loading of peptides onto MHC I proteins 

(Melnick et al., 1994).  Hsp90s from all species possess the same basic structural elements with a 

highly conserved 25 kDa NH2-terminal ATPase domain, a 35 kDa middle domain, and a 12 kDa 

COOH-terminal domain.  Hsp90 exists as a homodimer in the cytosol and dimerization is 
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mediated by the last 190 amino acids of the COOH-terminal domain (Nemoto et al., 1995).  

Hsp90 has a weak but measureble ATPase activity of 0.02 min-1 which is ~15 fold lower than 

unstimulated BiP and ~250 fold lower than GroEL monomer (Todd et al., 1993; Scheibel et al., 

1998).  Binding and hydrolysis of ATP by Hsp90 is absolutely required for Hsp90’s biological 

activity (Panaretou et al., 1998; Obermann et al., 1998). 

 

The structure of the ATPase domain of Hsp90 is radically different from that in Hsp70.  Hsp90 is 

a member of the dimeric GHKL family of ATPase proteins that is characterized as having a split 

ATPase domain in which the NH2-terminal halves of the homodimer must associate for ATPase 

hydrolysis to occur (Dutta and Inouye, 2000; Meyer et al., 2003).  A crystal structure of the NH2-

terminal domain of Hsp90 with ADP or the anasamycin antibiotic geldanamycin (GA) has been 

solved.  Nucleotide binds to the pocket in an unusual kinked conformation which is mimicked by 

GA (Roe et al., 1999).  Furthermore, the ribose ring of the nucleotide is buried in the binding 

pocket with the phosphates facing out and the γ-phosphate completely exposed to solvent.  A 

mechanism for the hydrolysis of ATP has been proposed based on the crystal structure of the 

NH2-terminal and middle domains of Hsp90 in conjunction with biochemical experiments with 

Hsp90 mutants (Prodromou et al., 2000; Weikl et al., 2000; Meyer et al., 2003).  In the absence 

of ATP the NH2-terminal domains of the dimer are relaxed and do not associate.  Upon ATP 

binding a lid in the NH2-terminal domain closes around the nucleotide, exposing a hydrophobic 

patch and the two NH2-terminal domains associate through their newly exposed patches.  

Hydrophobic patches on the closed lid then associate with the middle domain, which provides 

catalytic residues to the active site.  This closing of the NH2-terminal and middle domains traps 

the substrate between the two Hsp90 monomers. 
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Is the ATPase activity of Hsp90 regulated?  Indeed, there are a group of co-chaperones that assist 

in modulating the ATPase activity of Hsp90 like Hsp70.  Hch1p (high copy Hsp90 suppressor 1) 

and Aha1p were identified as activators of Hsp90 that could stimulate the ATPase activity up to 

12-fold (Nathan et al., 1999; Panaretou et al., 2002).  In an aha1 deletion strain v-Src activity is 

reduced, suggesting that Aha1p is required for the activation of an Hsp90 client protein 

(Panaretou et al., 2002).  Interestingly, Aha1p binds to the middle domain of Hsp90 and can bind 

to Hsp90-HOP or Hsp90-p23 hetero-complexes (Panaretou et al., 2002; Lotz et al., 2003), 

suggesting a mode of regulation distinct from other Hsp90 co-chaperones (see Hsp90 cycle 

below).  CHIP was also determined to be able to bind to the MEEVD of Hsp90 and shift Hsp90 

from a protein folding to a protein degrading machine (Ballinger et al., 1999). 

 

The first protein identified as a substrate of Hsp90 was the tyrosine kinase pp60v-src (Brugge et al., 

1981; Oppermann et al., 1981), but the mechanism of Hsp90 action has been best studied in the 

maturation of steroid hormone receptors (SHRs).  Early results from sedimentation experiments 

confirmed that SHRs are part of a large heteromeric complex (Wilson et al., 1977; Pratt and Toft, 

1997), and Hsp90 was isolated in complex with SHRs by co-immunoprecipitation (Ziemiecki et 

al., 1986; Sanchez et al., 1987).  In addition, the binding of Hsp90 was required for receptor 

binding to the hormone (Denis and Gustafsson, 1989b, 1989a) (Ohara-Nemoto et al., 1990).  

Purified Hsp90 and SHR alone could not form the 9S complex observed by sedimentation 

analysis, nor could it bind hormone (Scherrer et al., 1990), unless the proteins were incubated 

with rabbit reticulolysate.  These results suggested that additional factors were required for SHR 

maturation (Denis and Gustafsson, 1989b).  The additional proteins were identified as Hsp70, 

72 



 

HOP and p23 (Kost et al., 1989; Smith et al., 1990).  Hsp70, HOP, and Hsp90 were sufficient in 

an in vitro assembly reaction to promote steroid binding to the SHR, (Dittmar and Pratt, 1997) 

but p23 was required for efficient binding (Dittmar et al., 1997).   

 

It is now known that five proteins are required to re-capitulate the maturation of a SHR and the 

order of action has been determined from in vitro assembly reactions (Dittmar et al., 1998) 

(Kosano et al., 1998).  The five proteins are Hsp90, Hsp70, Hsp40, p23, and an immunophilin.  

The proposed Hsp90 cycle for SHR maturation is as follows (see Figure 11)(reviewed in Pratt 

and Toft, 2003).  In Step 1, Hsp70 stimulated by Hsp40 hydrolyzes ATP and binds to the SHR.  

In Step 2, HOP binds to the Hsp70/Hsp40/SHR complex and delivers it to Hsp90.  The first TPR 

domain of HOP binds to the last eight amino acids of Hsp70 (GPTIEEVD) and the middle TPR 

domain binds to the MEEVD of Hsp90, thus linking the two chaperone machines (Smith et al., 

1993; Johnson et al., 1998).  The specificity of binding is maintained by hydrophobic 

interactions with the divergent NH2-terminal of the EEVD sequences (Scheufler et al., 2000).  In 

Step 3, HOP binds to the ATPase domain of Hsp90 and inhibits its ATPase activity, thus 

allowing substrate transfer from Hsp70 to Hsp90.  In Step 4, p23 and an immunophilin bind to 

the COOH-terminus of Hsp90, causing dissociation of Hsp70/Hsp40/HOP and binding of ATP 

to Hsp90.  The binding of ATP causes a conformation change in the NH2-terminal and middle 

domains (as described above) and results in tight binding of the substrate.  Finally in Step 5, ATP 

hydrolysis causes a conformational change in Hsp90 that opens the steroid hormone binding cleft.  

Upon steroid binding, Hsp90 and complex members shuttle the SHR to the nucleus where the 

transcriptional activation of hormone-sensitive genes is induced. 
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Figure 11: Proposed Chaperoning Cycle for Hsp90 Substrates (simplified). 

(see text for in depth explanation) 
 
The immature client protein (orange hexagon) is transferred from the Hsp70 machinery to the 

Hsp90 dimer (blue) by way of the bridging co-chaperone, HOP; 2) the co-chaperones p23 

(yellow trapezoid), and ATP bind to stabilize the client-Hsp90 interaction, then an immunophilin 

(purple polygon) binds; 3) ATP binding causes dimerization of the NH2-terminal and middle 

domains of Hsp90; 4) ATP hydrolysis causes conformational changes in the client protein and 

opening of the Hsp90 NH2-terminal for release of the mature client (orange circle) 
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Figure 11: Proposed Chaperoning Cycle for Hsp90 Substrates (simplified) 
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1.4. Cytsic Fibrosis and the Cystic Fibrosis Transmembrane Conductance Regulator 
(CFTR) 

 

 

1.4.1. Cystic Fibrosis 

 

Cystic Fibrosis (CF) is the most common lethal autosomal recessive disease in Caucasians of 

Northern European descent.  CF is caused by mutations in the gene encoding the Cystic Fibrosis 

Transmembrane conductance Regulator (CFTR) (Riordan et al., 1989).  Over 1000 disease-

causing mutations have been identified in the CFTR gene but ~70% contain a deletion of 

phenylalanine at position 508 (∆F508), and > 90% of patients have at least one ∆F508 allele 

(www.genet.sickkids.on.ca/cftr)(Riordan et al., 1989; Davis et al., 1996; Mickle and Cutting, 

1998).  Mutations that result in CFTR loss-of-function can be divided into four classes: I) defects 

in protein translation II) defects in protein folding/processing (as exemplified by ∆F508); III) 

defects in ion conduction and IV) defects in channel gating (Cheng et al., 1990; Welsh and Smith, 

1993; Rosenstein and Zeitlin, 1998; Kopito, 1999).  The disease affects 1 in 3,500 live births in 

the USA and approximately 1 in 25 Caucasians of Northern European descent are carriers for the 

disease.  Some, research suggests that carriers have a higher protection from cholera then non-

carriers (Gabriel et al., 1994; Wiuf, 2001) due to the presence of half as many CFTR channels in 

the intestine, which results in less water loss (see below),  providing one explanation for the 

prevelance of carriers. 
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CFTR is a cAMP-dependent chloride channel (Anderson et al., 1991; Drumm et al., 1991) 

(Tabcharani et al., 1991; Bear et al., 1992) that is expressed in the epithelial cells of many tissues, 

including the lungs, pancreas, intestines and kidneys (Kartner et al., 1992; Sarkadi et al., 1992; 

Zeitlin et al., 1992; Kalin et al., 1999; Farinha et al., 2004).  CFTR function is required for 

proper ion and water homeostasis across epithelial tissues (reviewed in Field and Semrad, 1993).  

CF affects a multitude of organ systems including the pancreas, sweat glands, respiratory 

airways, reproductive tract and salivary glands.  Due to the numerous exocrine systems affected, 

CF has been classified as a polyexocrinopathy disease (Davis and di Sant'Agnese, 1980). Many 

CF patients experience pancreatic insufficiency and chronic obstruction of their airways due to 

thickened mucous.  Most morbidity and mortality in CF is the result of a progressive decline in 

pulmonary function due to a cruel cycle of airway obstruction, infection and inflammation.   

 

1.4.2. CFTR Protein Structure 

 

CFTR is a 1,480 residue polytopic membrane protein of the ATP-binding cassette (ABC) 

transporter superfamily.  CFTR is composed of two nucleotide binding domains (NBD1, NBD2), 

two 6 helix membrane spanning domains (TMD1, TMD2), and a regulatory domain (R-domain).  

These domains are structurally arranged as NH2-TMD1-NBD1-R-domain-TMD2-NBD2-COOH 

(see Figure 12).  There are two N-linked glycosylation sites on the loop connecting 

transmembrane spanning 7 and 8.  It is important to note that 77% of the protein is 

cytoplasmically disposed, 19% is composed of transmembrane domains and 4% is composed of 

extracellular loops, especially when folding of CFTR is considered (see section 1.4.3).  Residues 
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in transmembrane 1, 3, and 6 that line the aqueous pore (Cheung and Akabas, 1996, 1997) 

(Akabas, 2000) were identified by Akabas and colleagues who introduced cysteines into 

transmembrane segments of wildtype CFTR and performed cross-linking studies with 

methanethiosulfonate.  Other studies indicate residues in transmembrane 6 are particularly 

important for the conductance and anion selectivity of the pore (Tabcharani et al., 1993; Cheung 

and Akabas, 1996; Smith et al., 2001).  Studies by Riordan and colleagues using photo-affinity 

labeling with 8-azidio-ATP indicated that NBD1 is a site for stable binding of ATP, while ATP 

is hydrolzyed rapidly by NBD2 (Aleksandrov et al., 2002). 
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Figure 12: Domain Structure of CFTR. 

MSD1 = Membrane Spanning Domain 1 (composed of six helices) 

NBD1 = Nucleotide Binding Domain 1 

R = Regulatory Domain 

MSD2 = Membrane Spanning Domain 2 (composed of six helices) 

NBD2 = Nucleotide Binding Domain 2 

Blue callouts on loop between helix seven and eight represent sites of glycosylation 

Pink arrow points to NBD1 domain where the phenylalanine at position 508 (F508) resides  
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Figure 12: Domain Structure of CFTR 
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 It is generally believed that ATP hydrolysis is coupled to the transport of solutes for many ABC 

transporters. However, opening of the CFTR channel can occur upon binding of non-

hydrolyzable ATP analogues or ATP without divalent cations being present (Aleksandrov et al., 

2000).  These results suggest that ATP hydrolysis is not required for channel opening.  In 

opposition to these results, work by several groups suggest that opening and closing of the pore 

is linked to ATP hydrolysis (Carson et al., 1995; Gunderson and Kopito, 1995).  Crystal 

structures of many NBDs indicate that ABC transporters have a core subdomain or “head” that 

binds ATP and a α-helical “tail” that contains the signature sequence LSGGQ.  Furthermore,  

structures of dimeric NBDs from several transporters reveal a homodimer head-to-tail 

arrangement containing two ATP molecules (Hopfner et al., 2000),(Smith et al., 2002) (Locher 

et al., 2002; Chen et al., 2003).  The composite ATP binding sites are composed of the head of 

one monomer and the tail of the other.  Experiments using prokaryotic NBD domains 

demonstrate that ATP binding causes dimerization, while hydrolysis causes dissociation 

(Hopfner et al., 2000; Moody et al., 2002; Smith et al., 2002).  Based on these biochemical and 

structural observations, CFTR gating (opening and closing) can be thought of in terms of cycles 

of dimerization.  Recent work by Gadsby and colleagues provided direct measurements of the 

ATP-driven tight dimerization and opening of the CFTR channel (Vergani et al., 2005).  Their 

results strongly suggest that ATP hydrolysis at the NBD2-based site (Walker A of NBD2, 

signature sequence of NBD1) and channel opening are tightly coupled.  Before ATP hydrolysis 

can open the channel, the CFTR R-domain must be phosphorylated by PKA and PKC (Riordan 

et al., 1989; Gadsby and Nairn, 1999) (Lohmann et al., 1997).  Multiple consensus sites for 
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phosphorylation are present and the greater the number of phosphorylated sites; the increase in 

the probability that the channel will remain open (Hwang et al., 1993; Gadsby and Nairn, 1999). 

 

Recently, the crystal structure of residues 389-673 of the murine NBD1 (mNBD1) was solved 

using a pan-genomic approach (Lewis et al., 2004).  The domain organization consists of an F1-

like core ATP binding domain that is similar to the structures of  several bacterial ABC 

transporters but contain additional regulatory sections, such as an extension in the β-subdomain` 

that contains a flexible loop (see Figure 13).  Interestingly, there is no structural change upon 

binding to nucleotide or nucleotide derivatives; most likely the conformational changes are not 

evident because the changes are “transmitted” to other domains that are only evident in the 

context of the whole protein.  Surprisingly, the F508 residue is on the surface of the domain and 

is thought to interact with the cytosolic tail of a transmembrane helix. Furthermore, the main 

chain contacts for F508 are not critical for structural stability and deletion of the residue can be 

accommodated. From the crystal structure, it has been suggested that F508 does not disrupt 

packing of NBD1 but is important in domain/domain interactions during the folding of CFTR. 

 

There is still debate over whether the active form of CFTR is a monomer or dimer in vivo.  Initial 

co-immunoprecipitation studies suggested that CFTR was a monomer (Marshall et al., 1994).  

However, measurements of CFTR particles from freeze-facture micrographs suggested that 

CFTR is a dimer (Eskandari et al., 1998).  Ramjeesingh and colleagues purified CFTR from SF9 

insect cells and found that two species of CFTR migrated on electrophoretic gels, one 

corresponding to a monomer and the other to a dimer (Ramjeesingh et al., 2001).  Furthermore, 

both the monomer and dimer possessed ATPase activity and exhibited channel properties 
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(Ramjeesingh et al., 2001).  Naren and colleagues used chemical cross-linking and velocity 

gradient centrifugation, and observed dimers as the predominant species (Li et al., 2004).  

Recently, it has been shown that co-expression of N-terminal pieces of CFTR with full length 

∆F508 mutant rescues the maturation defect, providing support that CFTR forms dimers in vivo 

(Owsianik et al., 2003; Clarke et al., 2004; Cormet-Boyaka et al., 2004).  It is clear that both 

monomers and dimers can form active channels, and one recent study demonstrated that CFTR 

can exist as a dimer at the plasma membrane (Ramjeesingh et al., 2003).  Whether the active 

form of CFTR at the plasma membrane is a monomer or dimer is still an unresolved issue.
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Figure 13: Structural fold of murine NBD1 (adapted from figure 3 Lewis et al., 2004). 

Top: Stereo diagram of Cα backbone of ABC NBD1 structures superimposed onto murine 

NBD1. TAP1 (red line), HisP (yellow line), MJ0796 (green line), murine NBD1 (blue line).  

Note the overall structural similarity.  The superposition is based on least-squares alignment of 

F1-type core and antiparallel β-subdomains. 

Bottom: Worm diagram of murine NBD1 structure illustrating sites of phosphorylation (purple = 

Ser422, Ser659, Ser660, Ser670) and CF-causing muations (sidechains in yellow = Ala455, 

Gly480, Ile506, Ile507, Ser549, Gly551, Ala559, Arg560, Tyr569, Asp648, Phe508 (green), di-

acidic code residues Asp565 & Asp567 in gold). Gold = F1-type core domain, Cyan = α-

subdomain, green = β-subdomain, grey = unique to murine NBD1 (extra regulatory sections). 

Regulatory helix shown as red ribbon. The right structure is turned 80°toward the viewer 

compared to the left structure.  ATP is depicted as a ball-stick molecule. Red dotted line not 

resolved in crystal structure. 
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Figure 13: Structural Fold of Murine NBD1 
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1.4.3. The CFTR Folding Pathway 

 

The first step in CFTR biogenesis is its co-translational insertion into the ER membrane.  The 

first transmembrane helix (TM1) of CFTR contains two charged residues (E92, K95) which are 

required for chloride channel activity but cause TM1 to have weak signal sequence activity.  Due 

to the weak signal sequence identity, TM1 inefficiently inserts into the ER membrane (Lu et al., 

1998).  However, redundant signal sequence information in TM2 acts as a backup in case TM1 

insertion fails.  Thus, there are two alternative co-translational translocation pathways to ensure 

proper NH2-terminal assembly in the membrane (Xiong et al., 1997). 

 

After proper assembly of the NH2-terminal domain, the cytosolic NBD1 domain emerges from 

the ribosome and the chaperones Hsc70/Hdj2 bind to the domain to stabilize it and help it fold 

(Meacham et al., 1999).  These chaperones dissociate from the NBD1 domain upon synthesis of 

the R-domain, suggesting that the R-domain stabilizes NBD1 (See Figure 14).  Interestingly, 

about twice the Hsc70/Hdj2 associates with ∆F508 than wildtype CFTR, suggesting that the 

mutant needs more help to fold.  In fact, the mutant does not attain a native conformation and 

cannot traffic past the ER.  Other chaperones that bind CFTR include the luminal chaperone 

calnexin (Yang et al., 1993; Pind et al., 1994), which likely associates with the two N-linked 

glycans on a loop between TM7-8; the immature core glycosylated CFTR is known as band B 

(~130-150 kDa).  In contrast, the soluble luminal chaperones BiP and Grp94 do not bind to the 

newly synthesized CFTR molecule (Yang et al., 1993; Pind et al., 1994).  However, the cysteine 

string protein (CSP), which contains a J-domain, is localized to the ER membrane, interacts with 
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Hsc70 (Zhang et al., 2002a), and binds to several cytosolic domains of CFTR.  Indeed, CSP also 

plays a role in the maturation of CFTR (Zhang et al., 2002a). 

 

Once CFTR is synthesized and folded correctly, the di-acidic motif (563YKDAD567) in NBD1 is 

recognized by the COPII machinery and CFTR is incorporated into COPII vesicles for export to 

the cis-Golgi (Yoo et al., 2002; Wang et al., 2004).  Mutation of the di-acidic motif in wildtype 

CFTR blocks export of the protein (Wang et al., 2004).  In the Golgi, the N-linked glycans are 

modified, producing mature CFTR (band C, ~175 kDa).  Although wildtype CFTR can be 

detected in post-ER compartments of the secretory pathway (Bradbury, 1999) it is present at ~2 

fold lower levels compared to the ER (Bannykh et al., 2000).  In contrast to several other 

soluble/membrane bound proteins (Balch et al., 1994; Aridor et al., 1998; Martinez-Menarguez 

et al., 1999), CFTR surprisingly does not co-localize with syntaxin-5 or p58, two markers 

commonly used to assess the selective concentration and export of proteins from the ER 

(Dascher et al., 1994; Rowe et al., 1998).  Furthermore, dominant negative mutants in Arf1 

(component of COPI), syntaxin-5 or Rab1a/Rab2 did not affect maturation of CFTR. Thus, 

CFTR trafficking from the ER to Golgi may occur by a non-conventional route (Yoo et al., 2002) 

in some cell types. 
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Figure 14: Proposed domain interactions during CFTR maturation (adapted from Figure 2 Cyr, 

2005). 

The bracketed CFTR represents ER-localized CFTRDF508 that is conformationally blocked 

because NBD1 cannot productively interact with membrane spanning domain 1 (MSD1). Global 

changes in CFTR conformation are depicted by different shapes of the domains. 

Yellow upright hexagon = NBD1∆F508, yellow star = misfolded NBD2, purple circle = 

misfolded MSD1 and MSD2, yellow sideways hexagon = properly folded NBD1 and NBD2, 

purple rectangles = properly folded MSD1 and MSD2, blue oval = R-domain, green circles = (ub) 

ubiquitin, orange circle = ATP 
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Figure 14: Proposed Domain Interactions during CFTR Maturation 
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Overexpression of syntaxin-13 blocked the maturation of CFTR, suggesting that recycling 

through a late Golgi/endosomal compartment may be important for the maturation of CFTR 

(Yoo et al., 2002).  The half-life (t1/2) of wildtype CFTR at the cell surface is ~16 hrs and a sub-

apical population of CFTR has been detected in cell lines endogenously or exogenously 

expressing CFTR (Lukacs et al., 1992; Biwersi and Verkman, 1994; Demolombe et al., 1994; 

Webster et al., 1994).  This pool of CFTR colocalizes with Rab4, which is known to reside in 

recycling endosomes (Webster et al., 1994).  Furthermore, the internalization of CFTR from the 

plasma membrane is constitutive and occurs through clathrin-coated vesicles (Bradbury et al., 

1994; Lukacs et al., 1997; Bradbury et al., 1999).  CFTR contains multiple endocytic motifs, 

including a Tyr1424-based motif that links CFTR to AP-2 (Weixel and Bradbury, 2000; Hu et al., 

2001) and thus clathrin.    The level of CFTR that is present in the apical plasma membrane is 

not determined strictly by endocytosis but also by the rate of recycling from early endosomes 

back to the cell surface (Sharma et al., 2004).  Recently, Riordan and colleagues identified 

several distinct endocytic trafficking routes that CFTR can traverse and that are regulated by 

unique Rab proteins and are dependent on the folding status of the protein (Gentzsch et al., 2004).  

COOH-terminal truncations of CFTR, which cause CF, do not impair the biogenesis of CFTR 

but divert the endocytosed mutant protein from early endosomes to the lysosome through 

enhanced protein mono-ubiquitination (Haardt et al., 1999; Benharouga et al., 2001; Sharma et 

al., 2004).  Thus, misfolded CFTR is recognized by a quality control mechanism both at 

proximal and distal regions of the secretory pathway. 
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1.4.4. The CFTR Degradation Pathway 

 

The biogenesis of the ∆F508 mutant of CFTR (CFTR∆F508) is inefficient, with close to 100% of 

the protein becoming trapped in the ER and targeted for degradation by the ubiquitin-proteasome 

system.  Suprisingly, even the wildtype CFTR protein folds slowly and 60-75% is targeted for 

degradation (Ward and Kopito, 1994; Jensen et al., 1995).  The non-native biogenic 

intermediates of CFTR and CFTR∆F508 that are targeted for degradation appear to attain similar 

conformations (Zhang et al., 1998).  F508 is located on the surface of NBD1 (Lewis et al., 2004) 

& see Figure 13) and therefore it has been proposed that the CFTR∆F508 protein is a late-stage 

off-pathway intermediate (Qu and Thomas, 1996; Lewis et al., 2004).  Recent structural studies 

support this hypothesis, and confirm that the ∆F508 disrupts inter-domain packing between 

NBD1, MSD1, and NBD2 (Du et al., 2005a; Thibodeau et al., 2005).  The NBD1 domain of 

CFTR∆F508 is prone to aggregation (Qu and Thomas, 1996) and a fraction of the CFTR∆F508 

intermediates are present in detergent-insoluble aggregates (Ward et al., 1995).   

 

Because the ER quality control pathway and ERAD are conserved from yeast to humans (Fewell 

et al., 2001; Ellgaard and Helenius, 2003), studies in yeast have been used to indicate that 

molecular chaperones and the ubiquitin-proteasome pathway are important for the degradation of 

CFTR.  The yeast cytosolic Hsp70 (Ssa1p) is required for the efficient degradation of CFTR 

(Zhang et al., 2001).  In addition, the Hsp70 co-chaperones Ydj1p and Hlj1p function 

redundantly during the ERAD of CFTR (Youker et al., 2004) (see section 2).  Degradation of 

CFTR is dependent on the ubiquitin conjugating enzymes Ubc6p and Ubc7p and degradation is 
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blocked in a proteasome mutant (Zhang et al., 2001).  It is not clear if the ubiquitin ligase 

Der3p/Hrd1p is involved in CFTR degradation because of conflicting results (Kiser et al., 2001; 

Zhang et al., 2001).  However, mammalian homologues of Ubc6p, Ubc7p and Der3p/Hrd1p have 

been identified and these also appear to play a role in the ERAD of mammalian membrane 

proteins, such as the alpha subunit of the T-cell receptor and CFTR (Fang et al., 2001; Tiwari 

and Weissman, 2001; Lenk et al., 2002). Although, there is no stabilization of CFTR in yeast 

individually mutated for the E3 ligases hrd1∆ or doa10∆, there is a slight reduction in 

degradation in a hrd1∆ doa10∆ double mutant, suggesting compensatory roles for these ligases 

(Gnann et al., 2004). The Cdc48p-Ufd1p-Npl4p complex is also required for the degradation of 

CFTR in yeast (Gnann et al., 2004) and presumably is involved in extracting the protein from the 

ER membrane (Ye et al., 2004) or simply in maintaining its solubility (Rape et al., 2001).  Wolf 

and colleagues showed that CFTR degradation is slightly reduced in yeast cells mutated for the 

luminal lectin Htm1p/Mnl1p (Gnann et al., 2004).  Furthermore, the mammalian EDEM protein 

could rescue the defect in degradation of CFTR in a ∆htm1 yeast strain suggesting that these two 

lectins are functional homologues, thus providing a link between glycoprotein quality control 

and CFTR degradation.  But these results are puzzling because there is no effect on CFTR 

degradation in a cne1∆ yeast strain and yeast do not have a calnexin quality control cycle.  Fu 

and Sztul observed stabilization and accumulation of CFTR into distinct subdomains of the ER 

upon disruption of Sar1p (component of COPII coat) function, suggesting that Sar1p is required 

for sorting/targeting of CFTR to the proteasome (Fu and Sztul, 2003).  However, Balch and 

colleagues demonstrated that Sar1p plays no role in the targeting of mutant or wildtype CFTR to 

the proteasome (Wang et al., 2004).  The exact role of Sar1p in the degradation of CFTR is still 

controversial.  
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Overexpression of the E3 ligase CHIP in mammalian cells accelerates degradation of immature 

CFTR (Meacham et al., 2001).  Recently, Cyr and colleagues were able to reconstitute the in 

vitro ubiquitination of a fragment of CFTR∆F508 (GST-NBD1-R) that was dependent on the 

activities of Hsc70, Hdj2, UbcH5a and CHIP (Younger et al., 2004). Ubc6p or Ubc7p could not 

substitute for UbcH5a, suggesting that CHIP recognizes a specific E2.  Inactivation of CHIP led 

to the accumulation of non-aggregated CFTR∆F508 in vivo that could be rescued and trafficked 

to the cell surface (Younger et al., 2004).  These results demonstrate that off-pathway non-native 

CFTR∆F508 is not a dead-end product.   
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1.4.5. Chemical and Pharmacological Rescue of CFTR∆F508 

 

In heterologous expression systems a small amount of CFTR∆F508 can traffic to the plasma 

membrane and function as a cAMP-responsive chloride channel but with reduced activity 

(Dalemans et al., 1991; Drumm et al., 1991). Incubation of mammalian cells and Xenopus 

oocytes at low temperature (20-30oC) increase CFTR∆F508 trafficking to the plasma membrane  

(Denning et al., 1992) , suggesting that if the folding/degradation pathways are slowed down by 

reduction in temperature (kinetic effect), then the mutant CFTR can adopt a mature conformation. 

It has also long been known that low molecular weight polyols, e.g. glycerol, can stabilize 

protein conformation, enhance the assembly of oligomeric subunits and accelerate in vitro 

protein refolding (Gekko and Timasheff, 1981; Shelanski et al., 1973; Sawano et al., 1992); 

sugars and amino acids such as betaine and taurine similarly protect proteins from denaturation 

(Back et al., 1979; Taylor et al., 1995).  These small organic compounds are referred to as 

chemical chaperones.  Chemical chaperones are thought to stabilize protein conformations 

through unfavorable interactions with the peptide backbone, causing preferential hydration of the 

peptide and shifting of the equilibrium in favor of protein folding (Lee and Timasheff, 1981; 

Arakawa et al., 1990; Bolen and Baskakov, 2001).  Not surprisingly, treatment of mammalian 

cells expressing CFTR∆F508 with glycerol, TMAO, or deuterated water enhance trafficking and 

result in a 5-8 fold increase in cAMP-stimulated Cl- currents (Brown et al., 1996; Adams and 

Cory, 1998).  Guggino and colleagues demonstrated that lower, more physiologically revelant 

concentrations (10 mM) of chemical chaperones (myoinositol, taurine, betaine)  alone or in 

combination could rescue the folding defect of CFTR∆F508 (Zhang et al., 2003).  Treatment of 
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mice expressing CFTR∆F508 with TMAO partially restored chloride conductance based on 

rectal potential difference measurements (Fischer et al., 2001).  Unfortunately chemical 

chaperones are not specific and relatively high concentrations are required to elicit an effect 

which would be difficult to obtain in CF patients.  A more effective and safer alternative would 

be the use of pharmacological chaperones.  Pharmacological chaperones are small molecules that 

bind specifically to the protein of interest in order to stabilize the native conformation and 

promote release from the ER (Morello et al., 2000; Bernier et al., 2004).  To date, 

pharmacological chaperones for CFTR have not been identified conclusively. 

 

In contrast to chemical chaperones, other small molecules have been reported to rescue the 

CFTR∆F508 trafficking defect.  For example, 4-phenylbutyrate, an ammonia scavenger used to 

treat patients with urea cycle disorders, enhances the trafficking of CFTR∆F508 by regulating 

gene expression of molecular chaperones, including Hsp70 (Choo-Kang and Zeitlin, 2001; 

Rubenstein et al., 1997; Rubenstein and Lyons, 2001; Wright et al., 2004).  Recently, the ER 

calcium pump inhibitors thapsigargin (Egan et al., 2002) and curcumin (Egan et al., 2004) were 

reported to rescue the trafficking defect of CFTR∆F508 by disrupting chaperone interactions or 

possibly by acting as pharmacological chaperones, but subsequent studies by several groups have 

refuted these claims (Loo et al., 2004; Song et al., 2004; Mall and Kunzelmann, 2005).  In one 

case, curcumin did not aid in the maturation of mutant CFTR but instead stimulated channel 

activity at the plasma membrane (Berger et al., 2005).  Rescued CFTR∆F508 displays reduced 

activity at the plasma membrane and the rescued mutant protein must also be stimulated.  To this 

end, Verkman and colleagues have identified several classes of small molecules that activate or 

inhibit the channel activity of CFTR using cell-based high throughput screens (Becq et al., 1999; 
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Ma et al., 2002; Yang et al., 2003).  Therefore, it is apparent now that a cocktail of drugs will be 

required to rescue the trafficking defect and activate CFTR∆F508 if treatment of CF is to be 

successful (Dormer et al., 2001). 

 

 

 

1.5. Yeast as a Model System 

 

It is difficult to rapidly and specifically block molecular chaperone functions in mammalian cell 

culture systems.  Many studies performed in mammalian cells employ the use of small molecule 

inhibitors or RNA interference (RNAi) to lower the activity of molecular chaperones.  Even 

“specific” molecular chaperone inhibitors such as geldanamycin (GA) can exert pleiotropic 

effects on cells (Lawson et al., 1998).  Recent experiments have revealed that target recognition 

is more degenerative then previously thought, casting doubt on the specificity of RNAi action 

(Du et al., 2005b).  In contrast, in yeast the function of molecular chaperones can easily be 

abrogated through simple one-step gene replacement (Longtine et al., 1998) or through the use of 

readily available temperature sensitive alleles (www.yeastgenome.org).  Furthermore, the 

trafficking and degradation pathways are conserved between yeast and humans.  The well 

established genetic and biochemical tools available in yeast, make it an excellent model system 

to study the trafficking and degradation of proteins.   
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1.6. Thesis Overview  

 

Mutated proteins that are unstable or fold slowly can accumulate in the ER, aggregate, and/or 

induce apoptosis (Thomas et al., 1995; Kaufman, 1999).  However, eukaryotic cells have 

evolved the ability to identify and degrade these aberrant proteins by a pathway termed ER 

associated protein degradation (ERAD).  After their identification ERAD substrates are “retro-

translocated” (or “dislocated”) to the cytosol, ubiquitinated and targeted to the 26S proteasome 

for degradation (Ellgaard et al., 1999; Romisch, 1999; Tsai et al., 2002; McCracken and Brodsky, 

2003).  How ERAD substrates are selected is not completely clear, but a family of proteins, 

known as molecular chaperones are involved in this process. Previous work indicated unique 

chaperone requirements for the degradation of soluble and integral membrane proteins in yeast 

(reviewed in Fewell et al., 2001).  In this work, I describe the function of two classes of 

molecular chaperones (Hsp40, Hsp90) in the ERAD of CFTR in the budding yeast, S. cerevisiae.  

Furthermore, I describe the effects of overexpressing two mammalian co-chaperones (FKBP8, 

BAG3) on the degradation of CFTR in yeast. 
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2. Distinct Roles for the Hsp40 and Hsp90 Molecular Chaperones during CFTR 
Degradation in Yeast 

 

 

2.1. Introduction 

 

To date, it has been difficult to ascertain whether the interactions between specific chaperones 

and CFTR result from their attempts to fold the protein and/or to target it for degradation. This 

fact is highlighted by conflicting studies when the Hsp90 chaperone is disabled and CFTR 

biogenesis is measured. When CFTR biogenesis was examined in BHK and CHO cells treated 

with the Hsp90 inhibitor geldanamycin (GA), enhanced CFTR degradation was observed (Loo et 

al., 1998). However, extended GA treatment may exert pleiotropic effects, including activation 

of heat shock factor (Zou et al., 1998) and up-regulation of ER chaperones (Lawson et al., 1998). 

In contrast, CFTR was stabilized when GA was added to a reaction containing dog pancreas 

microsomes into which CFTR was inserted after in vitro transcription/translation (Fuller and 

Cuthbert, 2000). In neither study was the effect of Hsp90 co-chaperones on CFTR degradation 

investigated.   

 

To better define the roles of molecular chaperones, especially Hsp90, on CFTR biogenesis, and 

more generally to elucidate how membrane proteins are targeted for ERAD, I expressed CFTR in 

the budding yeast S. cerevisiae.  In this chapter, I show that the two ER-associated Hsp40 

chaperones, Ydj1p and Hlj1p, function redundantly to facilitate the degradation of CFTR.  Hsp90 

aids in the folding of CFTR, in agreement with the data of Loo et al., and the Hsp90 co-

chaperones Sti1p, Sba1p, Sse1p do not function in the folding/degradation of CFTR in yeast.  
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Finally, I show that defects in Hsp90 and the Ydj1p/Hlj1p chaperones have no impact on the 

degradation of the soluble ERAD substrate, CPY*.  These results further delineate the unique 

chaperone requirements for membrane and soluble proteins. 

 

 

2.2. Materials and Methods 

 

2.2.1. Yeast Strains and Growth Conditions 

 

S. cerevisiae strains used are: the temperature sensitive hsp82 strain G313N (MATa, ade2-1, 

leu2-3,112, his3-11,15, trp1-1, ura3-1, can1-100, hsc82::LEU2, hsp82::LEU2, pTGPD-Hsp82-

G313N) and isogenic wild type p82a (MATa, ade2-1, leu2-3,112, his3-11,15, trp1-1, ura3-1, 

can1-100, hsc82::LEU2, hsp82::LEU2, pTGPD-HSP82), a kind gift from Dr. Avrom Caplan 

(Mount Sinai Medical Center) (Nathan and Lindquist, 1995); sti1∆ (MATa, his3, leu2, met15, 

ura3, sti1::KAN), sba1∆ (MATa, his3, leu2, met15, ura3, sba1::KAN), and the isogenic wild type 

(MATa, his3, leu2, met15, ura3) (Invitrogen, Carlsbad, CA); ACY17b (MATα, ade2, his3, leu2, 

ura3, trp1, can1-100, ydj1-2::HIS3, ydj1-151::LEU2) (Caplan et al., 1992), E0020 (MATα, ura3, 

leu2, his3, trp1, sse1::HIS3) and the W3031b wild type (MATα, ade2, his3, leu2, ura3, trp1, 

can1-100) (Shirayama et al., 1993); hlj1∆ (MATa, ade2, his3, leu2, ura3, trp1, ∆hlj1::HIS3), 

hlj1∆ ydj1-151 (MATα, ade2, his3, leu2, ura3, trp1, can1-100, ydj1-2::HIS3, ydj1-151::LEU2, 

hlj1::TRP1), and the isogenic wild type (MATa, ade2, his3, leu2, ura3, trp1), sti1∆ sse1∆ (MATa, 

GAL2, his2-11, leu2-3, 112, lys1, lys2, trp1∆1, ura3-5, sti1::HIS3, sse1::KAN) (Liu et al., 1999) 
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and the isogenic wildtype STI1 SSE1 (MATa, GAL2, his2-11, leu2-3, 112, lys1, lys2, trp1∆1, 

ura3-52) (Nicolet and Craig, 1989). 

 

Yeast strains were grown at 26°C unless indicated otherwise and standard methods for growth, 

preparation of media, and transformation of yeast cultures were used (Adams, 1997).  The hlj1∆ 

ydj1-151 and the hlj1∆ mutant strain were constructed by Peter Walsh in Trevor Lithgow’s 

Laboratory using PCR based gene disruption as described previously (Longtine et al., 1998, 

Beilharz, 2003 #38).  

 

2.2.2. ERAD Assays 

 

Yeast strains expressing HA-CFTR were grown to logarithmic phase (OD600 = 0.4 – 0.8) at 26°C 

in synthetic complete medium lacking uracil, but supplemented with glucose to a final 

concentration of 2% (SC–ura) and protein synthesis was stopped by the addition of 

cycloheximide to a final concentration of 50 µg/ml.  Cells were shifted to 37°C and 2.0 - 2.5 

ODs of cells were removed at the indicated time-points.  The cells were washed and total protein 

was precipitated (Zhang et al., 2002b).  Proteins were resolved on either 10 or 12.5% SDS-

polyacrylamide gels, transferred to nitrocellulose, probed with mouse monoclonal anti-HA 

antibody (12CA5, Roche Molecular Biochemicals, Indianapolis, IN) and polyclonal anti-Sec61p 

(Stirling et al., 1992) and the signals were quantified using 125I-secondary antibody and 

phosphorImage analysis (Fuji Medical Systems, Stamford, CT). The degradation of a mis-folded, 

HA-tagged form of carboxypeptidase Y (HA-CPY*) was measured by 35S-metabolic 

labeling/pulse-chase analysis as described (Zhang et al., 2001).  
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2.2.3. Protein Purifications 

 

The following proteins were purified as described: Ssa1p (McClellan and Brodsky, 2000), Ydj1p 

(Cyr et al., 1992), NBD1 (G404 – L644) of CFTR (Qu and Thomas, 1996) and Sba1p (Fang et 

al., 1998). Yeast Hsc90 (Hsc82p) was purified using a modified protocol provided by Dr. David 

Toft (Mayo Clinic, Rochester, MN) from yeast strain ECUpep4 (Jakob et al., 1995) with 

deletions in the chromosomal HSC82 and HSP82 genes, and that encodes HSC82 on a 2µm 

plasmid.  ECUpep4 cells were grown to logarithmic phase (OD600 = 0.8 - 1.0) in YPD (1% yeast 

extract, 2% peptone and 2% dextrose) at 26°C, the cells were harvested, and the cell pellets were 

frozen in liquid nitrogen.  The cell pellets were thawed, resuspended in 3-5 volumes of buffer 1 

(20 mM Tris-HCl pH=7.5, 4 mM EDTA, 1 mM DTT) supplemented with protease inhibitors (1 

mM PMSF, 1 µg/ml leupeptin, 0.5 µg/ml pepstatin A) and subjected to glass bead lysis by 

vigorous agitation on a Vortex mixer set on the highest setting six times for 30 s with 30 s 

incubations on ice between each lysis.  Unbroken cells were pelleted by centrifugation at ~2800 

x g for 10 min at 4°C and cell membranes were pelleted from the resulting supernatant by 

centrifugation at ~48,000 x g for 40 min at 4°C.  The cleared lysate (~35 ml) was applied to a 30 

ml DE52 column equilibrated in buffer 1 (flow rate 0.5-1.0 ml/min) at 4°C.  The column was 

washed with 2 column volumes of buffer 1 and with 2 volumes of buffer 1 containing 50 mM 

KCl. Bound protein was eluted with a 30 x 30 ml gradient of buffer 1 to buffer 1 containing 1 M 

KCl, 2 ml fractions were collected and peak Hsc82p-containing fractions, as assessed by SDS-

PAGE and Coomassie Brilliant blue staining, were pooled and dialyzed against 4 L of buffer 2 

(20 mM Tris-HCl pH=7.5, 50 mM KCl, 1 mM EDTA, 1 mM DTT, 10% glycerol) overnight at 
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4°C.  The dialysate (~10 ml) was loaded onto a ~5 ml high performance Q-Sepharose column 

equilibrated in buffer 2 and the column was washed with 6 column volumes of buffer 2 and 6 

volumes of buffer 2 containing 50 mM KCl (flow rate ~1.0 ml/min) at 4°C.  Bound protein was 

eluted with a 15 x 15 ml gradient of buffer 2 to buffer 2 containing 1 M KCl and 1 ml fractions 

were collected.  Peak Hsc82p-containing fractions were pooled, diluted to ~1.5 mg/ml of protein 

and dialyzed against 4 L of buffer 3 (20 mM Tris-HCl pH=7.5, 50 mM KCl, 0.1 mM EDTA, 1 

mM DTT, 10% glyercol) for ~ 29 h at 4°C, with fresh buffer used after ~26 h.  The final protein 

concentration was determined using the BioRad protein assay kit (BioRad Laboratories, Hercules, 

CA) with BSA as the standard, and the final purity of Hsc82p was determined to be ~80%.  

Protein aliquots were snap frozen in liquid nitrogen and stored at – 80°C.   

 

GST-Hlj1p-6His-tagged (containing J-domain) was expressed in M15 E. coli and a 100 ml 

culture was grown in LB + KAN (25 µg/ml) to an OD600 ~2.4.  A total of 10 ml of the culture 

was diluted into 1 l of LB + KAN (25 µg/ml) and grown to OD600 ~ 0.2 at 37°C, and then 

expression was induced by the addition of IPTG to a final concentration of 0.2 mM.  Cells were 

incubated for ~7 h at 37°C until an OD600 of ~0.8 was reached, and were harvested and frozen at 

–80°C.  The cells were thawed and resuspended in 10 ml of Buffer 88 (20 mM Hepes pH=6.8, 

150 mM KOAc, 5 mM MgOAc, 250 mM sorbitol) containing 0.1% TritonX-100 and 1mM 

EDTA, and protease inhibitors (1 mM PMSF, 1 µg/ml leupeptin, 0.5 µg/ml pepstatin A), and 

were broken using a sonic dismembrator (Fisher Scientific, Pittsburgh, PA).  The lysate was 

cleared by centrifugation at 10,000 rpm for 10 min at 4°C in an SS34 rotor (Sorvall, Newton, Ct), 

and the lysate was added to a 1 ml, ~50% slurry of gluthanione-agarose beads (Sigma, St. Louis, 

MO) and incubated for ~2 h with rotation at 4°C.  The gluthanione beads were washed (10 min, 
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4°C) with 25 ml of Buffer 88 supplemented with 0.1% TritonX-100, 1mM EDTA, and protease 

inhibitors, followed by a second wash with the same buffer supplemented with 1 M KCl, and 

finally washed with Buffer 88 plus 0.1% TritonX-100. The bound Hlj1p was eluted by two 1 ml 

washes of 50 mM Tris, pH 8/5 mM reduced gluthanione. Protein concentration was assessed as 

described above.  Only the GST-Hlj1p-6his fusion protein was evident on a Coomassie Brilliant 

Blue-stained SDS-PAGE gel. 

 

2.2.4. Biochemical Assays 

 

Sba1p pull-down assays using purified hexahistidine-tagged Sba1 and Ni-NTA resin were 

performed essentially as described (Fang et al., 1998).  Ssa1p-ATP complex formation and 

single-turnover ATPase assays were performed as published by incubating pre-formed Ssa1p-

α32P- ATP complex with the indicated protein (Hlj1p-J domain-GST chimera, Ydj1p, and GST) 

at a final concentration of 0.2 µM (Sullivan et al., 2000).  

 

For luciferase aggregation assays, firefly luciferase (Sigma, St. Louis, MO) at an initial 

concentration of ~0.65 µM was pre-incubated in the presence or absence of ~20 µM purified 

Hsc82p in 150 µl of refolding buffer (10 mM MOPS/KOH pH=7.2, 50 mM KCl, 3 mM MgCl2, 

3 mM ATP, 2 mM DTT) for 20 min at 25°C before 500 µl of refolding buffer was added at 45°C 

to yield a final concentration of 0.15 µM for luciferase and 2.4 µM for Hsc82p.  Aggregation 

was measured by light scattering at a wavelength of 320 nm at 45°C in a 14DS UV-VIS-IR 

spectrophotometer (AVIV, Lakewood, NJ). 
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The ability of Hsc82p to prevent the aggregation of NBD1 was investigated as described 

(Strickland et al., 1997).  Our NBD1 construct spans amino acids G404 to L644 (from helix H1b 

to helix H9), and includes the F1-type core ATP-binding subdomain (Lewis et al., 2004).  This 

permits the measurement of early folding intermediates (Strickland et al., 1997).  The assay was 

performed using the purified hexahistidine-tagged NBD1 diluted ~100-fold out of 6 M 

guanidine-HCl buffer, 20 mM Hepes, pH 7.5, and into 650 µl of refolding buffer (100 mM Tris-

HCl pH=7.4, 0.385 M L-Arginine, 10 mM DTT, 200 mM KCl, 20 mM MgCl2) to a final 

concentration of 2 µM.  Protein aggregation was measured over time at a wavelength of 400 nm 

at 37°C in a 14DS UV-VIS-IR spectrophotometer (AVIV, Lakewood, NJ) in the absence or 

presence of the indicated concentrations of Hsc82p and other indicated reagents.  Results of 

aggregation experiments were plotted as the relative amount of aggregation, normalized to the 

NBD1 control at 10 min, versus time, and fitted to a single exponential using KaleidaGraph 

software version 3.0.4 (Abelbeck software, Reading, PA) to determine initial rates.  Macbecin 

I/II was kindly provided by the Drug Synthesis & Chemistry Branch in the Developmental 

Therapeutics Program, Division of Cancer Treatment and Diagnosis, at the National Cancer 

Institute. 
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2.3. Results 

 

 

2.3.1. Hsp40 Co-chaperones Function Redundantly during CFTR, but not CPY* 

Degradation 

 

We previously reported that a cytoplasmic Hsp70 in yeast, Ssa1p, facilitates CFTR degradation 

(Zhang et al., 2001), and in mammalian cells Hsc70 cooperates with Hdj2, an Hsp40 homologue, 

during CFTR biogenesis (Meacham et al., 1999).  Ydj1p is the yeast Hdj2p homologue, is 

tethered to the ER membrane via a farnesyl moiety, and interacts with Ssa1p based on genetic 

and biochemical studies (Caplan et al., 1992; Cyr et al., 1992; Becker et al., 1996).  However, 

CFTR degradation was unaffected in yeast containing a temperature-sensitive allele of YDJ1 

(Zhang et al., 2001), suggesting either that there are inherent differences between CFTR 

biogenesis in yeast and mammals, or that more than one functionally redundant Hsp40 in yeast 

cooperates with Ssa1p to facilitate CFTR degradation. 

 

There are >20 J-domain containing proteins in yeast and at least 14 of these reside in the 

cytoplasm (Costanzo et al., 2001; Walsh et al., 2004a). Recently, an Hsp40 homologue, Hlj1p, 

was revealed in a search for tail-anchored membrane proteins (Beilharz et al., 2003).  The NH2-

terminal domain of Hlj1p is 58% identical to the J-domain of Ydj1p (Figure 15) and the Hlj1p J 

domain was predicted to reside in the cytosol (Beilharz et al., 2003).  A GFP-tagged form of 

Hlj1p co-localizes with the tail-anchored SNARE Slt1p (Burri and Lithgow, 2004) and Sec12p, 

an integral ER membrane protein required for COPII-mediated vesicle budding (Barlowe, 
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2003)(Youker et al., 2004).  Hlj1p is localized to both the nuclear and peripheral ER and the 

punctate peripheral staining pattern is reminiscent of Sec63p, a component of the translocon 

(Voeltz et al., 2002; Prinz et al., 2000).  Additional localization and biochemical studies are 

needed to determine if indeed Hlj1p interacts with the translocon.  Trypsin digestion of isolated 

ER microsomes showed that Hlj1p is accessible to exogenous trypsin (Youker et al., 2004).  

Furthermore, Hlj1p associated with ER microsomes is resistant to sodium carbonate extraction 

(Youker et al., 2004) 1 .  Together, these results indicate that Hlj1p is tethered to the ER 

membrane via a COOH-terminal anchor and, like Ydj1p, contains a cytoplasmically-oriented J 

domain. 

 

To test whether Hlj1p is involved in CFTR degradation, I expressed an HA-epitope-tagged form 

of CFTR under the control of a constitutive promoter in an hlj1 deletion mutant and in an 

isogenic wild type yeast strain and performed cycloheximide chase analyses (see materials and 

methods in section 2.2).  I found that the rates of CFTR degradation were identical (Fig. 16).  

Consistent with previous results (Zhang et al., 2001), I also found that CFTR degradation was 

unaffected in the ydj1-151 strain compared to an isogenic wild type (Fig. 17).  However, in a 

double mutant, hlj1∆ ydj1-151, CFTR degradation was slowed relative to the wild type strain 

(Fig. 18).  This effect on CFTR degradation was strongest when using fresh transformants that 

were less then 3 weeks old and was not seen in transformants streaked from frozen stocks.  The 

degradation of Ste6p*, a mis-folded yeast ABC transporter and ERAD substrate, is also 

attenuated in a hlj1∆  ydj1-151 double mutant (Huyer et al., 2004).  These data suggest that 

                                                 
1 The Hlj1p trypsin digestion and  localization data was obtained by the work of Peter Walsh, a student in our collaborator’s lab 
(Dr. Trevor Lithgow at the University of Melbourne)  

106 



 

Ydj1p and Hlj1p function redundantly to facilitate the degradation of CFTR and at least one 

other integral membrane ERAD substrate. 

 

Unique chaperone requirements for the ERAD of soluble versus integral membrane proteins 

have been observed (Fewell et al., 2001).  To examine this distinction further, we measured the 

degradation of CPY*, a soluble ERAD substrate (Hiller et al., 1996), in the hlj1∆ ydj1-151 

double mutant and in the isogenic wild type strains by pulse-chase analysis (see materials and 

methods section 2.2).  We found nearly identical rates of degradation in the two strains (Figure 

19), indicating that Ydj1p and Hlj1p are dispensable for the degradation of CPY*. 

 

Based on the localization of Hlj1p to the ER membrane, we predicted that the effect of 

Ydj1p/Hlj1p during CFTR degradation is through their interaction with Ssa1p, the Hsp70 that in 

turn catalyzes CFTR degradation in yeast (Zhang et al., 2001).  The functional interaction 

between J domain-containing proteins and their cognate Hsp70’s is best examined by 

measurements of Hsp70 ATP hydrolysis in the presence and absence of an Hsp40/J- domain-

containing protein. For example, a GST fusion protein containing the J-domain of Sec63p, a 

membrane protein whose J-domain faces the ER lumen, stimulates BiP’s ATPase activity in vitro 

(Corsi and Schekman, 1997).  To examine whether Hlj1p interacts functionally with Ssa1p, I 

purified a GST-tagged fusion protein that contains the Hlj1p J-domain (Figure 20), and incubated 

the purified protein with pre-formed α32P-ATP-Ssa1p complex.  Hlj1p stimulated Ssa1p in this 

single-turnover ATPase assay to a similar extent as equimolar amounts of Ydj1p (Figure 21), 

indicating that both Hlj1p and Ydj1p interact with the yeast cytoplasmic Hsp70.  Further 

evidence to support this proposition is shown in Figure 22 in which the abilities of full-length 
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Hlj1p (“GFP-Hlj1p”) and a form of Hlj1p lacking the transmembrane domain (“GFP-

Hlj1p∆TMD”) to suppress a slow-growth phenotype of ydj1-151 mutant cells were examined.  

We observed a suppression of the growth defect of the ydj1-151 mutant upon Hlj1p over-

expression, suggesting that Hlj1p partially supplants Ydj1p function.  We also noted in this 

experiment that the soluble Hlj1p derivative is somewhat more effective at improving the growth 

of the mutant strain than full-length Hlj1p, suggesting that over-expression of the membrane 

anchor might be somewhat toxic; consistent with this hypothesis, we have observed toxicity 

derived from the over-expression of other stable, wild type ER membrane proteins in yeast (our 

unpublished observations).  In any event, protein expression was confirmed by assessing GFP 

fluorescence of each fusion protein (see Figure 23). 
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Figure 15: Alignment of Hlj1p and Ydj1p J-domains. 

The sequences of the J-domains are depicted and asterisks denote regions corresponding to the 

four predicted alpha-helices. Amino acids shaded in red are identical between Hlj1p and Ydj1p 

and the functionally essential HPD motif is bold-faced 

J = J-domain, G/F = glycine/phenylalanine-rich region, G = glycine-rich region, TM = 

transmembrane domain. 
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Figure 15: Alignment of the Hlj1p and Ydj1p J-Domains 
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Figure 16: CFTR Degradation is Similar in Wildtype and an hlj1∆ Mutant Yeast Strain. 

Wild type and mutant yeast strains expressing CFTR were subjected to cycloheximide chase 

analysis as described in Materials and Methods (section 2.2). The relative amount of CFTR 

remaining in wild type (open circles) and hlj1∆ (closed circles) yeast strains versus time was 

plotted and the amount of CFTR at time zero was set to 1.0.  The data represent the means of 

three independent experiments +/-SEM. 
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Figure 16: CFTR Degradation is Similar in Wildtype and an hlj1∆ Mutant Yeast Strain 
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Figure 17: CFTR Degradation is Identical in a Wildtype and an ydj1-151 Mutant Yeast Strain. 

Wild type and mutant yeast strains expressing CFTR were subjected to a cycloheximide chase 

analysis as described in Materials and Methods (section 2.2).  The relative amount of CFTR 

remaining in wild type (open circles) and ydj1-151 (closed circles) yeast strains versus time was 

plotted and the amount of CFTR at time zero was set to 1.0. The data represent the means of 

three independent experiments +/-SEM. 

113 



 

 

 

 

Figure 17: CFTR Degradation is Identical in a Wildtype and an ydj1-151 Mutant Yeast 
Strain 

114 



 

 

Figure 18: CFTR Degradation is Attenuated in an hlj1∆ ydj1-151 Mutant Yeast Strain. 

Wild type and mutant yeast strains expressing CFTR were subjected to cycloheximide chase 

analysis as described in Materials and Methods (section 2.2). The relative amount of CFTR in 

wild type (open circles) and hlj1∆ ydj1-151 (closed circles) yeast strains versus time was plotted 

and the amount of CFTR at time zero was set to 1.0.  The data represent the means of three 

independent experiments +/-SEM.  Two-tailed P-values were < 0.05 except where indicated: * = 

0.0655, ** = 0.116. 
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Figure 18: CFTR Degradation is Attenuated in an hlj1∆ ydj1-151 Mutant Yeast Strain 

116 



 

 

Figure 19: CPY* Degradation is Unaffected in an hlj1∆ ydj1-151 Mutant Yeast Strain. 

CPY* degradation was assessed by pulse-chase analysis as described in the materials and 

methods (section 2.2) in wild type (open circles) and the hlj1∆ ydj1-151 mutant (closed circles) 

yeast. Data represent the means of three independent experiments +/- SEM. 
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Figure 19: CPY* Degradation is Unaffected in an hlj1∆ ydj1-151 Mutant Yeast Strain 
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Figure 20: Purification of GST-Hlj1-6his. 

GST-Hlj1-6his was purified from E. coli, (see Materials and Methods, section 2.2). Coomassie 

Brilliant blue stained gel of fractions collected from gluthanione resin.  

M = molecular weight markers 

L = lysate 

F = flow through 

E = Elution 
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Figure 20: Purification of Gst-Hlj1-6his 
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Figure 21: Hlj1p Stimulates the ATPase Activity of Ssa1p.  

The ATPase activity of Ssa1p is enhanced by purified Ydj1p and by a fusion protein containing 

the Hlj1p J domain.  Incubations were established to pre-form a α32P-ATP-Ssa1p complex 

(Fewell et al., 2004), which was then incubated at 30°C for the indicated times with equimolar 

amounts of the Hlj1p J domain fusion protein (closed circles), Ydj1p (open circles), GST (closed 

triangles), or buffer (open triangles), and the extent of ATP hydrolysis was assessed as described 

in the Materials and Methods (section 2.2). 
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Figure 21: Hlj1p Stimulates the ATPase Activity of Ssa1p 
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Figure 22: Overexpression of GFP-Hlj1p or GFP-Hlj1p∆TMD Partially Rescues the Growth 

Defect at 30°C of the ydj1-151 Yeast Strain.  

Wild type and ydj1-151 yeast either lacking or containing a MET17-driven GFP-Hlj1p or GFP-

Hlj1p∆TMD expression construct were grown overnight and serial dilutions were plated on 

selective media containing 500 µM methionine at 30°C for 2 days.  
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Figure 22: Overexpression of Hlj1p Partially Rescues the Growth Defect of the ydj1-151 Yeast 
Strain 
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Figure 23: Fluorescence Microscopy of Cells Expressing GFP-Hlj1p or GFP-Hlj1p-∆TMD. 

 
Wildtype yeast cells transformed with A) GFP-Hlj1p or B) GFP-Hlj1p-∆TMD expression 

vectors were grown on selective media containing 500 µM methionine for 3 days at 30°C.  Cells 

were scraped off the plate, resuspended in water and observed under an Olympus Bx60 

fluorescence microscope with an excitation λ= 450-480 nm and an emission λ = 515 nm LP 

(Long Pass). 
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Figure 23: Fluorescence Microscopy of Cells Expressing GFP-Hlj1p or GFP-Hlj1p-∆TMD 
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2.3.2. Mutations in Hsp90 Enhance CFTR Degradation but Have no Effect on CPY* 

Turn-over 

 

The role of the Hsp90 molecular chaperone during CFTR maturation in mammals is 

controversial (Loo et al., 1998; Fuller and Cuthbert, 2000).  To better define the action of Hsp90 

during CFTR biogenesis, I expressed CFTR in yeast deleted for the genes encoding the 

constitutive (HSC82) and heat-inducible (HSP82) Hsp90s.  Yeast Hsp82 and Hsc82p are ~97% 

identical at the amino acid level and are functionally interchangeable, but at least one homologue 

must be expressed to maintain viability (Borkovich et al., 1989).  Therefore, the wild type strain 

for this experiment contains a plasmid-borne copy of HSP82, and the mutant strain contains a 

temperature-sensitive allele, hsp82ts (G313N).  The mutant protein is extremely unstable when 

cells are shifted to the non-permissive temperature of 37°C and is rapidly degraded (Bohen and 

Yamamoto, 1993; Fliss et al., 2000).  This results in the equivalent of a null phenotype 

immediately after temperature shift.  After cells were grown at a permissive temperature, CFTR 

degradation in these strains was monitored at 37°C by cycloheximide chase analysis.  As shown 

in Figure 24, the rate of CFTR degradation was significantly higher in the mutant strain.  Similar 

results were obtained when CFTR degradation was examined in the G170D hsp82 mutant (Data 

not shown), which also rapidly loses activity at the non-permissive temperature (Nathan and 

Lindquist, 1995).  Because only the immature, unfolded form of CFTR is an ERAD substrate 

(Gelman et al., 2002) these data suggest that Hsp90 is important to maintain the stability of 

CFTR. 
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Hsp90 associates with several co-chaperones to form a macromolecular complex required for the 

folding and activation of select client proteins (Caplan, 1999; Richter and Buchner, 2001; Young 

et al., 2001).  Although the role of Hsp90 in mammalian cells can be assessed using ansamycin 

antibiotics, such as GA (see above), examining the functions of Hsp90 co-chaperones is more 

challenging.  In yeast, mutations in Hsp90 co-chaperones are readily available.  We therefore 

examined the roles of three well-defined Hsp90 co-chaperones (Sti1p, Sba1p, Sse1p) on CFTR 

stability in yeast. Sti1p is the yeast Hop homologue, and both Hsp70 and Hsp90 can dock onto 

the TPR domains of Sti1p (Johnson et al., 1998). Sba1p is the p23 homologue that stabilizes 

Hsp90 substrate binding (Fang et al., 1998).  Sse1p is a yeast Hsp110 homologue that resides in 

the Hsp90 complex (Liu et al., 1999; Goeckeler et al., 2002).  Deletion of the genes encoding 

each of these factors compromises Hsp90 complex-mediated processes in yeast (Chang et al., 

1997; Fang et al., 1998; Liu et al., 1999; Cox and Miller, 2002).  When CFTR degradation was 

examined in isogenic wild type strains and in sti1∆, sba1∆, or sse1∆ yeast we detected no 

statistically significant differences in the rates of CFTR degradation in the mutants compared to 

wild type yeast (Fig. 25, Fig. 26). Furthermore, CFTR degradation was unaltered in a sti1∆ sse1∆ 

double mutant (Fig. 27) that has a severe growth defect at 37°C (Liu et al., 1999), indicating that 

the accelerated degradation observed in the hsp82 mutant (see Figure 24, above) was not simply 

the result of shifting temperature-sensitive cells to the non-permissive temperature.  Together, 

these results demonstrate that Hsp90, but not the Hsp90 complexes tested, participates in CFTR 

biogenesis in yeast.  Moreover, the action of Hsp90 during CFTR Biogenesis is not via an 

indirect effect on cellular signaling pathways because the same signaling pathways are 

compromised in strains mutated for the co-chaperones (Bohen et al., 1998; Lee et al., 2004b).  
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Figure 24: CFTR Degradation is Accelerated in an Hsp90 Mutant Yeast Strain. 

Yeast strains expressing CFTR were subjected to a cycloheximide chase and immunoblot 

analysis as described in Materials and Methods (section 2.2). (A) The degradation of CFTR in 

wild type (open circles) and hsp82 (closed circles) strains are plotted as the relative amount of 

CFTR remaining versus time.  The amount of CFTR at time zero was set to 1.0.  Data represent 

the mean of four independent experiments +/-SEM. Two-tailed P-values were < 0.05 except 

where indicated: * = 0.147, ** = 0.111, *** = 0.332.  Bottom: representative western blot. 

Sec61p is an integral protein of the ER and serves as a loading control. 
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Figure 24: CFTR Degradation is Accelerated in an Hsp90 Mutant Yeast Strain 
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Figure 25: CFTR Degradation is Unaffected in sti1∆ and sba1∆ Mutant Strains. 

The degradation of CFTR in wild type (open circles), sti1∆ (closed circles) and sba1∆ (open 

triangles) yeast strains are plotted as the relative amount of CFTR remaining over time.  Data 

represent the mean of 3-4 independent experiments +/-SEM. 
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  Figure 25: CFTR Degradation is Unaffected in sti1∆ and sba1∆ Strains 
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Figure 26: CFTR Degradation is Unaffected in the sse1∆ Strain. 

CFTR degradation in wild type (open circles) and sse1∆ (closed circles) yeast strains are plotted 

as the relative amount of CFTR versus time. The amount of CFTR at time zero is set to 1.0. Data 

represent the mean of five independent experiments +/-SEM. 
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  Figure 26: CFTR Degradation is Unaffected in the sse1∆ Strain 
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Figure 27: CFTR Degradation is Unaffected in an sti1∆ sse1∆ Double Mutant Strain. 

CFTR degradation in wildtype (open circles) and sti1∆ sse1∆ (closed circles) yeast strains is 

plotted as the relative amount of CFTR over time. Data represent the mean of two independent 

experiments +/-STD. 
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 Figure 27: CFTR Degradation is Unaffected in an sti∆ sse1∆ Double Mutant Strain 
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As discussed above, distinct chaperone requirements for the degradation of soluble and 

membrane proteins have been noted, and this distinction was supported further by the data 

presented in Figs. 18 and 19.  Therefore, I examined CPY* degradation in the hsp82 mutant and 

in the isogenic wild type strain but found that there was no statistically significant difference in 

the rate or extent of degradation (Fig. 28).  I conclude that the ERAD of CPY* is Hsp90-

independent. 
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Figure 28: CPY* Degradation is Unaffected in an hsp82 Mutant Yeast Strain. 

CPY* degradation was assessed by pulse-chase analysis as described in the materials and 

methods (section 2.2) in wild type (open circles) and Hsp90 mutant (closed circles) yeast.  Data 

represent the means of three independent experiments +/- SEM. 
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Figure 28: CPY* Degradation is Unaffected in an Hsp90 Mutant Yeast Strain 
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2.3.3. Yeast Hsp90 Prevents the Aggregation of the First Nucleotide Binding Domain 

(NBD1) of CFTR 

  

The data presented in Figure 24 suggest that Hsp90 helps protect CFTR from degradation, and 

might therefore be important to maintain CFTR in its folded conformation, or a non-ERAD 

compatable form.  In general, a loss of structural integrity can be accompanied by protein 

aggregation, and it is well-known that the first NBD1 in CFTR is aggregation-prone. Moreover, 

the low efficiency or slow rate of NBD1 folding directly determines the efficacy of CFTR 

maturation, and maintaining NBD1 solubility prevents the formation of off-pathway aggregates 

(Qu and Thomas, 1996; Strickland et al., 1997; Zhang et al., 1998).  To test directly whether 

yeast Hsp90 maintains NBD1 solubility I purified Hsc82p (see Materials and Methods section 

2.2) (Figure 29).  First, to confirm that the purified protein was active, I examined the purified 

chaperone’s ability to suppress the aggregation of firefly luciferase because mammalian Hsp90 

was previously shown to slow the aggregation of this substrate (Wiech et al., 1992).  Luciferase 

aggregation was suppressed by ~65% when a 16:1 molar ratio of Hsc82p to luciferase was used 

(Figure 30), consistent with previous data (Minami et al., 2001).  Next, I examined whether 

Hsc82p associated with the Sba1p co-chaperone, as previously published (Fang et al., 1998). 

Proficient interaction between Hsc82p and Sba1p was observed by pull-down assay, and 

importantly the degree of association decreased ~6-fold in the presence of Macbecin II (Figure 

31), an ansamycin antibiotic that inhibits yeast Hsp90 function both in vivo and in vitro (Bohen, 

1998; Fang et al., 1998; Donze and Picard, 1999; Liu et al., 1999).  Finally, I assessed Hsc82p 

prevention of NBD1 aggregation at a 5:1 molar ratio and found that aggregation was suppressed 
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by ~60% (Figure 32), indicating that yeast Hsp90 maintains NBD1 in solution.  BSA at a 2:1 

molar ratio partially suppressed NBD1 aggregation, but there was ~24 fold less aggregated 

NBD1 protein after 60 minutes in the Hsp90 reaction compared to the BSA control ( 2.4% versus 

58%; Data not shown), the reactions were performed using slightly different reaction conditions 

(buffer lacked KCl and MgCl2).  The ability of yeast Hsp90 to maintain NBD1 in solution was 

reduced somewhat if Macbecin was added to a final concentration of 50 µM (Data not shown).  

This partial effect may be due to the fact that Hsp90 contains two polypeptide binding sites, only 

one of which is sensitive to ansamycin antibiotics (Young et al., 1997; Scheibel et al., 1998).  

These data are also consistent with previous work in which a partial effect of ansamycin 

antibiotics on Hsp90-dependent activities was noted (Minami et al., 2001).  In any event, these 

results suggest that Hsp90 stabilizes CFTR by binding NBD1. 

 

In summary, I have identified a novel redundancy of function for Hsp40 chaperones in the 

degradation of CFTR in yeast.  Disruption or mutation of the genes encoding Ydj1p or Hlj1p 

alone has no effect on the degradation rate of CFTR, but inactivation of both chaperones leads to 

a marked stabilization of CFTR.  Furthermore, degradation of the soluble ERAD substrate CPY* 

is unaltered in an hlj1∆  ydj1-151 double mutant, suggesting that the two Hsp40 chaperones act 

specifically on membrane proteins.  Thus, I have further defined the ERAD requirements for 

membrane versus soluble proteins.  I have confirmed that yeast Hsp90 aids in the 

stabilization/folding of CFTR, but the Hsp90 co-chaperones Sba1p, Sti1p, and Sse1p do not, 

suggesting that Hsp90 but not the Hsp90 complex is important in the biogenesis of CFTR.  

Finally, Hsp90 can prevent the aggregation of NBD1 in vitro, suggesting one mechanism for its 

action during CFTR folding (also see Chapter 4: Discussion).   
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Figure 29: Purification of Hsc82p. 

Hsc82p (Yeast Hsp90) was purified from ECUpep4 cells as described in the Materials and 

Methods (section 2.2). Coomassie Brilliant Blue stained gel of fractions from the Q-sepharose 

column.  

MWM = molecular weight markers 

F.T. = flow through 
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Figure 29: Purification of Hsc82p 
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Figure 30: Yeast Hsp90 Suppresses the Aggregation of Firefly Luciferase. 

Luciferase was pre-incubated at a ~30:1 molar ratio of Hsc82p:Luciferase (red line) or in the 

presence of Hsc82p dialysis buffer (black line) for 20 minutes at 25ºC and then diluted ~4 fold 

into refolding buffer containing ATP at 45°C, resulting in a 16:1 final molar ratio of chaperone to 

substrate. Luciferase aggregation was measured by light scattering at 320 nm and 45ºC.  Data at 

10 sec intervals were recorded and line tracings are presented. For details see, materials and 

methods (section 2.2). 
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Figure 30: Yeast Hsp90 Suppresses the Aggregation of Firefly Luciferase 
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Figure 31: Yeast Hsp90 Binds the Sba1p/p23 Co-chaperone.  

Hexa-histidine tagged Sba1p was pre-bound to nickel-linked resin and then incubated in either 

the absence (lane 1) or presence (lanes 2-4) of highly enriched Hsc82p.  Bound protein was 

eluted, resolved by SDS-PAGE and visualized by silver staining.  The reaction shown in lane 2 

lacks pre-bound Sba1p and the reaction shown in lane 4 was supplemented with Macbecin II to a 

final concentration of 50 µM. Asterisk denotes contaminants in the Sba1p protein preparation. 
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Figure 31: Yeast Hsp90 Binds the Sba1p/p23 Co-chaperone 
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Figure 32: Yeast Hsp90 Suppresses the Aggregation of NBD1 Early-Folding Intermediates. 

CFTR-NBD1 was diluted out of denaturant into refolding buffer containing ATP at 37°C in the 

absence (closed circles) or presence of Hsp90 at a 2.5:1 (closed triangles) and 5:1 (open circles) 

molar ratio, and light scattering was measured as described in the materials and methods (section 

2.2).  Data at 50 sec intervals are shown. 
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Figure 32: Yeast Hsp90 Suppresses the Aggregation of NBD1 Early-Folding Intermediates 
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3. The Mammalian Co-chaperones Bag-3 and FKBP8 Affect CFTR Degradation in S. 
cerevisiae 

 

 

3.1. Introduction 

 

In yeast, 100% of wildtype CFTR is retained in the ER (Figure 33; Sullivan et al., 2003) and 

degraded by the proteasome compared to ~80% in mammalian cell lines.  There are several 

mechanisms to account for this phenomenon:  First, the ER-to-Golgi transport machinery in 

yeast may not “recognize” CFTR, which is a human protein.  Second, CFTR is a slowly-folding 

protein and may not fold in time to be recognized by the yeast’s ER-to-Golgi transport 

machinery.  Third, additional factors may be needed for efficient transport of CFTR out of the 

ER that are only found in humans. Recently, the Balch laboratory has identified CFTR-

interacting proteins in mammalian cells by performing mass spectroscopy on CFTR-containing 

complexes (W. Balch, personal communication).  They have determined that several of these 

proteins are Hsp70 or Hsp90 co-chaperones that when overexpressed in mammalian cells 

partially stabilize and aid in CFTR trafficking.  Two co-chaperones that exhibited the greatest 

effect on CFTR biogenesis in mammalian cells were Bag3 and FKBP8. 

 

Bag3 is a member of the Bag family of co-chaperones that are negative regulators of Hsc/Hsp70 

(see section 1.3.1.1) (Takayama et al., 1999).  Bag-3/CAIR-1 (CAI stresses cells-1) is a 75 kDa 

protein that binds to phospholipase-C-γ and Hsc/Hsp70 in a ternary complex that is regulated by 

epidermal growth factor (EGF) and CAI (inhibitor of calcium influx) (Doong et al., 2000).  

Based on these observations, Bag3 has been proposed to act as a signaling protein that connects 
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Hsc/Hsp70 with the EGFR signaling pathway.  Bag3 can also bind to the anti-apoptotic factor 

Bcl-2 and prevent Fas-induced and Bax-mediated apoptosis (Lee et al., 1999), suggesting a role 

in regulating apoptotic pathways (Lee et al., 1999) (Romano et al., 2003; Bonelli et al., 2004).   
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Figure 33: CFTR Resides in the ER in Yeast. 

Extracts from CFTR expressing wildtype cells were subjected to sucrose gradient centrifugation 

(see Materials and Methods, section 3.2).  The gradient was fractionated and the migrations of 

CFTR, Sec61p (ER membrane protein), BiP (ER lumen chaperone) and Pma1p (Plasma 

membrane ATPase) were determined by immunoblot analysis. Fraction 1 represents the top of 

the gradient (adapted from (Sullivan et al., 2003)).  The majority of CFTR is present in fractions 

2-5 which corresponds to 25-38% sucrose (w/v).  Pma1p is present in fractions 11-13 which 

corresponds to 58-65% sucrose (w/v).  Note, CFTR is absent from fractions containing the 

plasma membrane ATPase Pma1p. 

 

152 



 

 

 

 

 

Figure 33: CFTR Resides in the ER in Yeast 
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A second CFTR-interacting protein identified by the Balch laboratory is FKBP8 that also binds 

to Bcl-2 and inhibit apoptosis (Shirane and Nakayama, 2003). FKBP8 is a member of the 

immunophilin class of proteins, which are the molecular targets of the immunosuppressive drugs 

FK506 and cyclosporin A (CsA).  FK506 binds to FK506 binding proteins (FKBPs) and CsA 

binds to cyclophilins (CyPs).  The FK506-FKBP or CsA-CyPs complex binds and inhibits the 

calcium-regulated phosphatase calcineurin, thus blocking a critical step in T-cell activation and 

in suppressing the immune response (Friedman and Weissman, 1991; Liu et al., 1991; Clipstone 

and Crabtree, 1992; O'Keefe et al., 1992).  FKBP8/FKBP38 (FKBP of 38 kDa) contains an 

FKBP-like domain, a leucine zipper repeat, three TPR domains, and a COOH-terminal 

transmembrane domain (Lam et al., 1995).  FKBP8 has the highest similarity to a subfamily of 

immunophilins that include FKBP52 and CyP40 (Lam et al., 1995; Shirane and Nakayama, 

2003).  FKBP52 also contains a TPR motif, binds to Hsp90 and is required for proper trafficking 

of the glucocorticoid receptor to the nucleus (Galigniana et al., 2001).  In general, FKBPs 

possess peptidyl-prolyl cis/trans-isomerase (PPIase) activities that catalyze conversion of proline 

from the cis- to the trans-isomer, a rate-determining step in protein folding. However, FKBP8 

lacks several conserved amino acids that are required for binding of FK506 and PPIase activity, 

suggesting that it lacks those activities (Lam et al., 1995).  In fact, FKBP8 inhibits calcineurin by 

a FK506-independent mechanism, and as stated above targets Bcl-2 and Bcl-XL to the 

mitochondria to prevent apoptosis.  Recently, a longer form of FKBP8 has been identified in 

adult mouse brain (Nielsen et al., 2004). Mouse has two isoforms, 44 kDa and 46 kDa, and 

humans possess one, 45 kDa.  Previous studies used the NH2-terminal-truncated 38 kDa human 

FKBP8 protein to determine PPIase activity (Lam et al., 1995).  Identification of the full length 

154 



 

45 kDa human isoform requires that these previous studies be re-visited, in order to confirm the 

lack of PPIase activity.  

 

The Brodsky lab has entered into collaboration with the Balch lab to determine if Bag3 or 

FKBP8 affect CFTR stability/maturation in yeast.  In this chapter, I show that overexpression of 

either Bag3 or FKBP8 slows the degradation of CFTR, but does not appear to affect CFTR 

trafficking in yeast. 

 

 

3.2. Materials and Methods 

 

3.2.1. Yeast Strains, Plasmids, and Molecular Methods 

 

Yeast strain RSY620 (Mat a, ade2-1, trp1-1, leu2-3,112, ura3-1, his3-11,15, PEP4::TRP1) was 

grown at 26°C unless indicated otherwise and standard methods for growth, preparation of media, 

and transformation of yeast cultures were used (Adams, 1997).  RSY620 cells expressing HA-

epitope-tagged CFTR were transformed with pCu-415-CUP1-FKBP8, pCu-425-CUP1-FKBP8, 

or pCu-425-CUP1-Bag-3 and were grown to early logarithmic phase (OD600 ~ 0.20) in 

synthetic complete medium lacking uracil and leucine, but supplemented with glucose to a final 

concentration of 2% (SC –ura –leu).  These plasmids contained the indicated genes and their 

expression was regulated by the CUP1 promoter (Labbe and Thiele, 1999). Cells were incubated 

with 1mM copper sulfate for 4 hr to induce expression of FKBP8 or Bag-3, and cycloheximide 

was added to a final concentration of 50 or 100 µg/ml. A total of 2-2.5 ODs of cells were 
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removed (t=0), the culture was shifted to 37°C, and aliquots were removed at the indicated 

timepoints.  The cells were washed and TCA precipitated as described (Zhang et al., 2002b).  

Proteins were resolved on 10% SDS-polyacrylamide gels, transferrd to nitrocellulose, and 

probed with mouse monoclonal anti-HA antibody (12CA5, Roche Molecular Biochemicals, 

Indianapolis, IN), polyclonal anti-Bag-3 (1:500 dilution) (ab5898, Abcam, Cambridge, MA), 

polyclonal FKBP8 (1:5000 dilution)(W. Balch, Scripps Research Institute), polyclonal anti-

Sec61p (Stirling 1992), polyclonal anti-Hsp90 (A. Caplan, Mount Sinai School of Medicine), 

and Polyclonal anti-Ssa1p was prepared by immunizing rabbits against an ~27 kDa C-terminal 

fragment of Ssa1p (J. L. Brodsky, unpublished results).  Blots for Bag-3 were blocked in TBST 

supplemented with 2% donkey serum instead of 2% milk to reduce background.  Signals were 

visualized using horseradish peroxidase-conjugated secondary antiserum and the results were 

quantified using the Kodak 440CF Image Station and the associated Kodak 1D (V. 3.6) software 

(Rochester, NY).  

 

3.2.2. Subcellular Fractionation of Membranes 

 

Membranes from CFTR-expressing cells were separated using a protocol adapted from the 

Hollenberg and Kaiser laboratories (Kolling and Hollenberg, 1994) (Roberg et al., 1997).   

Briefly, 100 ml of CFTR-expressing cells (OD600= 0.5-1.0) were harvested, and washed with 1 

volume of cold 10 mM NaN3, and then with 1 volume of cold STED10 buffer (10% sucrose, 10 

mM Tris-HCl (pH = 7.6), 1 mM EDTA, 1 mM DTT) before they were resuspended in 0.5 ml 

STED10 + protease inhibitors (1 µg/ml leupeptin, 0.5 µg/ml pepstatin A, and 1 mM 

phenylmethylsuflonylfluoride).  Glass beads were added to the meniscus and the cells were 
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vortexed for 2 min at the highest setting.  An additional 0.5 ml of STED10 buffer was added, 

unbroken cells were pelleted, and 300 µl of crude lysate was loaded onto an 11 ml 30-70% 

sucrose gradient prepared by layering STED70, STED60, STED50, STED40, and STED30 

buffers sequentially.  Membranes were separated by centrifugation for ~ 18 hr at 100,000 g.  A 

total of 700 µl fractions were collected starting at the top of the gradient.  Total protein was 

TCA-precipitated from each fraction; proteins were resolved on 6% or 10% SDS-polyacrylamide 

gels, transferred to nitrocellulose, probed with mouse monoclonal anti-HA antibody (12CA5, 

Roche Molecular Biochemicals, Indianapolis, IN), polyclonal anti-Sec61p (Stirling et al., 1992), 

polyclonal anti-Pma1p (C. Slayman, Yale University), or polyclonal anti-Gas1p (T. Doering, 

Washington University School of Medicine).  For FKBP8 and Bag-3 experiments cells were 

grown to early-log phase, ande were incubated with 1 mM CuSO4 for 4 hr before the cells were 

harvested and membranes were resolved on sucrose gradients. 

 

 

3.3. Results 

 

3.3.1. CFTR Degradation is Reduced in Yeast Expressing FKBP8 

 

Mutant forms of CFTR that escape ERAD are degraded by the lysosome in the late secretory 

pathway in mammalian cells (see section 1.4.4).  To increase the likelihood of detecting CFTR 

that has trafficked out of the ER in yeast due to expression of FKBP8 or Bag-3, cells deleted for 

the gene encoding the vacuolar protease carboxypeptidase Y (Pep4) were chosen for all 

subsequent experiments. Yeast cells (pep4∆) expressing CFTR were grown to early-log phase 
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and CuSO4 was added to the medium to induce FKBP8 expression from a low-copy (pCu-415-

CUP1-FKBP8), or high-copy (pCu-425-CUP1-FKBP8) copper inducible plasmid and a 

timecourse was performed (see Materials and Methods, section 3.2).  For cells containing the 

high-copy plasmid, FKBP8 protein could be detected even at 1 hr of induction (Figure 34).  

FKBP8 protein could not be detected by western blotting after 4 hr of induction for yeast 

containing the low-copy plasmid (Figure 34).  Therefore, the high-copy plasmid was used for 

subsequent cycloheximide chase and subcellular fractionation experiments (see Materials and 

Methods, section 3.2).  Yeast cells expressing FKBP8 from the high-copy plasmid exhibited no 

growth defects compared to the empty vector control (Figure 35), thus expression of FKBP8 is 

not toxic to yeast.  In agreement with studies conducted in mammalin cells (W. Balch, personal 

communication), the rate of CFTR degradation was diminished upon overexpression of FKBP8 

compared to control cells (Figure 36), suggesting that this mammalian immunophilin may aid in 

the folding/maturation of CFTR.  The effect of FKBP8 on CFTR degradation was most 

prominent using fresh transformants that were never older then ~2.5 weeks.  The levels of Hsp90 

and Hsp70 chaperones were similar in FKBP8 expressing cells compared to control cells, 

suggesting that the effect on CFTR degradation is not simply due to altered cytosolic chaperone 

levels (Figure 37).  Extracts made from the same colonies used for cycloheximide chase 

experiments were fractionated on sucrose gradients to determine if stabilized CFTR could traffic 

beyond the ER compartment upon FKBP8 expression (see Materials and Methods, section 3.2).  

The majority of CFTR was present in early fractions (1-7), which are typically enriched for ER 

membranes (Figure 33), and significant amounts of CFTR were not detected in denser plasma 

membrane enriched fractions (>10) that typically contain the mature form of Gas1p, a plasma 

membrane marker (Figure 38).  A small quantity of CFTR could be detected in fraction 10 for 
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both FKBP8 and control gradients, however this is most likely due to ER-membrane 

contamination of Golgi/plasma membranes, evident by the presence of the immature ER-form of 

Gas1p.  Additional experiments will be required to confirm if this population of CFTR resides in 

a post-ER compartment.  Nevertheless, these results suggest that FKBP8 stabilization of CFTR 

in yeast is not sufficient to allow efficient export of CFTR from the ER. 
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Figure 34: Induction of FKBP8 Expression in Yeast. 

pep4∆ cells expressing CFTR and containing pCu-415-CUP1, pCu-415-CUP1-FKBP8, pCu-

425-CUP1, or pCu-425-CUP1-FKBP8 were grown to mid-log phase (OD600 = 0.3-0.5) and 

CuSO4 was added to a final concentration of 1mM. A total 2ml of cells were removed at 1, 2, or 

4 hr and total protein was TCA precipitated, resolved on a 10% gel, transferred to nitrocellulose 

and probed for the presence of CFTR, FKBP8 or Sec61p (blot not shown) (see Materials and 

Methods, section 3.2).  Two representative colonies of pCu-415-CUP1-FKBP8 and pCu-425-

CUP1-FKBP8 are shown. 
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Figure 34: Induction of FKBP8 Expression in Yeast  
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Figure 35: Yeast Expressing FKBP8 Exhibit Normal Growth. 

 
pep4∆ cells expressing HA-epitope-tagged CFTR and containing one of the following plasmids 

(see below) were grown to an OD600 = 0.3-0.5, serial dilutions were performed, and cells were 

plated on selective medium with/without 20 µM CuSO4.  Cells were grown at 26°C or 30°C for 

4.5 days. 

1 & 2) pCu-415-CUP1-FKBP8 

3 & 4) pCu-425-CUP1-FKBP8 

5) pCu-415-CUP1-Empty 

6) pCu-425-CUP1-Empty 
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Figure 35: Yeast Expressing FKBP8 Exhibit Normal Growth 

 
 
 
 

163 



 

 

Figure 36: CFTR Degradation is Reduced in Yeast Expressing FKBP8. 

 
pep4∆ yeast expressing CFTR and pCu-CUP1-425 or pCu-425-CUP1-FKBP8 were incubated 

for 4 hr with 1 mM CuSO4 and subjected to cyloheximide chase analysis as described in 

Materials and Methods (section 3.2).  The degradation of CFTR in the absence (closed black 

circles) or presence of FKBP8 (open pink circles) are plotted as the relative amount of CFTR 

remaining versus time.  The amount of CFTR at time zero was set to 1.0. Data represent the 

means of 5 (FKBP8, except 90 min timepoint N=4) or 3 (Empty vector) independent 

experiments +/- SEM. Two-tailed P-values are < 0.05, except were indicated: * = 0.15, ** = 0.14. 

Bottom: representative western blot. Sec61p serves as a loading control. 

.  
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Figure 37: Hsp90 and Hsp70 Chaperone Levels are Normal in Yeast Cells Expressing FKBP8. 

 
Duplicate samples (1-2 independent colonies) of TCA-precipitated protein from timepoint zero 

of the FKBP8 cycloheximide chase was resolved on a 10% SDS-polyacrlyamide gel, 

transeferred to nitrocellulose, and probed with anti-Hsp90 antibody, anti-Hsp70 antibody, or 

anti-Sec61p antibody (see Materials and Methods section, 3.2).  Proteins were visualized using 

horseradish-peroxidase conjugated secondary anti-serum and the data were scanned using the 

Kodak 440CF Image Station and quantified using Kodak 1D (version 3.6) software (Rochester, 

NY). The Hsp90 and Hsp70 signals were normalized to Sec61p to calculate the relative amount 

of chaperone. Top: Representative immunoblot. Bottom: Bar graph of normalized chaperone 

levels. Data represent the mean +/- range. 
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Figure 37: Hsp90 and Hsp70 Chaperone Levels are Normal in Yeast Expressing FKBP8 
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Figure 38: Subcellular Fractionation of Yeast Cells Expressing FKBP8. 

 
Extracts from CFTR-expressing pep4∆ cells containing pCu-425-CUP1 or pCu-425-CUP1-

FKBP8 were subjected to sucrose gradient centrifugation.  The gradient was fractionated and the 

migration of CFTR and Gas1p were determined by immunoblotting analysis (see Materials and 

Methods section 3.2). Fraction 1 represents the top of the gradient: m = mature GPI form of 

Gas1p that resides in the Golgi/Plasma membrane (~125 kDa); i = immature form that resides in 

the ER (~105 kDa). 

Bracket = Position of the plasma membrane marker Pma1p in the gradient, which corresponds to 

58-65% sucrose (w/v) or fractions 11-13.  

 

168 



 

 

 

 
 

Figure 38: Subcellular Fractionation of Yeast Expressing FKBP8 
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3.3.2. CFTR Degradation is Reduced in Yeast Expressing Bag-3 

 

To test whether Bag-3 affects the degradation rate of CFTR, I transformed CFTR-expressing 

yeast cells with a Bag-3 high copy number plasmid under the control of a copper inducible 

promoter, or with an empty vector.  Bag-3 expression was induced and cycloheximide chase 

analyses were performed (see Materials and Methods, section 3.2).  Expression of Bag-3 

diminshed the rate of CFTR degradation compared to control cells (Figure 39).  The levels of the 

cytoplasmic chaperones Hsp90 and Hsp70 did not change upon expression of Bag-3 (Figure 40), 

suggesting that CFTR stabilization is not due simply to changes in cellular chaperone 

concentrations.  Next, the contribution of Bag-3 on CFTR trafficking was determined by 

subcellular fractionation of CFTR containing cells expressing Bag-3 (see Materials and Methods, 

section 3.2).  Expression of Bag-3 did not grossly alter the distribution of CFTR and the bulk of 

CFTR resided in earlier (ER) fractions (1-7) (Figure 41).  However, there was some CFTR 

present in later fractions (11-13), which could be due to the greater amount of CFTR present in 

the membranes compared to control membranes.  Additional experiments will be required to 

confirm if this population of CFTR actually is in a post-ER compartment (see Discussion 

Chapter 4). 

 

In summary, I have shown that expression of FKBP8 or Bag-3 reduces CFTR degradation, but 

does not appear to significantly facilitate the trafficking of CFTR to the plasma membrane in 

yeast.  This reaffirms that stabilization is not sufficient for ER export of CFTR (Zhang et al., 

2001).  The concentration of Hsp90 and Hsp70 chaperones are not changed upon expression of 

either mammalian protein, suggesting that the reduced CFTR degradation observed is not due to 
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alteration of cytoplasmic chaperone levels, but could be through modulation of Hsp70 or Hsp90 

activity (see Discussion Chapter 4).  
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Figure 39: CFTR Degradation is Reduced in Yeast Expressing Bag-3. 

pep4∆ yeast expressing CFTR and containing pCu-CUP1-425 or pCu-425-CUP1-Bag-3 were 

incubated for 4 hr with 1 mM CuSO4 and subjected to a cyloheximide chase analysis as 

described in the Materials and Methods (section 3.2).  The degradation of CFTR in the absence 

(closed black circles) or presence of Bag-3 (open pink circles) are plotted as the relative amount 

of CFTR remaining versus time.  The amount of CFTR at time zero was set to 1.0. Data 

represent the means of 3 independent experiments (Bag-3) +/- SEM or 2 independent 

experiments +/- STD (Empty-vector). Two-tailed P-values are < 0.05, except were indicated: * = 

P-value < 0.10. Bottom: representative western blot. Sec61p serves as a loading control. 
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Figure 39: CFTR Degradation is Reduced in Yeast Expressing Bag-3 
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Figure 40: Hsp90 and Hsp70 Levels are not Significantly Altered in Bag-3-Expressing Yeast. 

Duplicate samples (1-2 independent colonies) of TCA-precipitated protein from timepoint zero 

of the Bag-3 cycloheximide chase was resolved on a 10% SDS-polyacrlyamide gel, transeferred 

to nitrocellulose, and probed with anti-Hsp90 antibody, anti-Hsp70 antibody, or anti-Sec61p 

antibody (see Materials and Methods section, 3.2).  Proteins were visualized using horseradish-

peroxidase conjugated secondary anti-serum and the data were scanned using the Kodak 440CF 

Image Station and quantified using Kodak 1D (version 3.6) software (Rochester, NY). The 

Hsp90 and Hsp70 signals were normalized to Sec61p to calculate the relative amount of 

chaperone. Top: Representative immunoblot. Bottom: Bar graph of normalized chaperone levels. 

Data represent the mean +/- range. 
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Figure 40: Hsp90 and Hsp70 Levels are not Significantly Altered in Bag-3-Expressing Yeast 
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Figure 41: Subcellular Fractionation of Yeast Expressing Bag-3. 

 
Extracts from CFTR-expressing pep4∆ cells containing pCu-425-CUP1 or pCu-425-CUP1-Bag-

3 were subjected to sucrose gradient centrifugation.  The gradient was fractionated and the 

migration of CFTR and Gas1p were determined by immunoblot analysis (see Materials and 

Methods, section 3.2).  Fraction 1 represents the top of the gradient: m = mature GPI form of 

Gas1p that resides in the Golgi/Plasma membrane (~125 kDa); i = immature form that resides in 

the ER (~105 kDa). 

Bracket = Position of the plasma membrane marker Pma1p in the gradient, which corresponds to 

58-65% sucrose (w/v) or fractions 11-13.  
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Figure 41: Subcellular Fractionation of Yeast Expressing Bag-3 
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4. Discussion 

 

 My analysis of CFTR biogenesis in yeast has uncovered several novel aspects of 

molecular chaperone function and of the ERAD pathway for integral membrane proteins. First, I 

have identified the Hsp40 homologues in yeast, Ydj1p and Hlj1p, that facilitate CFTR 

degradation and that act most likely in conjunction with an Hsp70, Ssa1p.  These results suggest 

that Hlj1p and Ydj1p function redundantly.  Both chaperones enhance Ssa1p ATPase activity 

and the extent of CFTR stabilization in the hlj1 ydj1 mutant strain (Figure 18) is similar to that 

observed in the ssa1 mutant (Zhang et al., 2001). 

 

It is important to note that the experimental technique employed (i.e. cycloheximide chase 

analysis) to determine the extent of CFTR degradation in wildtype and mutant yeast does not 

define the conformational state of the protein.  Stabilization in this context refers simply to 

increased levels of CFTR remaining in the mutant cells compared to wildtype.  The stabilization 

or accumulation of CFTR in the hlj1 ydj1 mutant strain could arise because of favorable 

conformational changes, aggregation, and/or uncoupling of CFTR from the ubiquitin-proteasome 

degradation pathway.  Additional experiments such as limited proteolysis, protein solubility 

measurements, or biophysical techniques would need to be employed to ascertain the 

conformational state of “stabilized” CFTR in the ssa1 and hlj1 ydj1 mutant strains. 

 

These data are reminiscent of the reported functional redundancy and interactions between BiP 

and two redundant ER luminal Hsp40 chaperones, Scj1p and Jem1p, during the ERAD of soluble 

proteins (Nishikawa et al., 2001).  The functional redundancy displayed by Ydj1p and Hlj1p is 
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not limited to CFTR turn-over because yeast mutated for the genes encoding these co-chaperones 

also exhibit slowed degradation of Ste6p* (Huyer et al., 2004), another integral membrane 

ERAD substrate in yeast.  Other recent studies have also hinted at a role for Hlj1p in protein 

quality control.  For example, hlj1∆ mutants grew poorly when they expressed a Huntingtin 

fragment (HD53Q) (Willingham et al., 2003) and the degradation of a synthetic, integral 

membrane ERAD substrate was mildly suppressed in an hlj1∆ strain (Taxis et al., 2003).  The 

functional overlap of YDJ1 and HLJ1 reported here might explain the weak phenotype observed 

in the hlj1∆ single mutant.  

 

Second, I suggest that the yeast Hsp90 chaperone, Hsp82, is required to maintain the folded state 

of CFTR because hsp82 mutant yeast degrade CFTR faster than isogenic wild type yeast, and 

because highly enriched Hsp82p prevents the aggregation of NBD1, a domain whose folding is 

critical and possibly rate-limiting during CFTR maturation (Qu and Thomas, 1996; Qu et al., 

1997; Zhang et al., 1998).  A significant prevention of aggregation was achieved at an 

Hsp82:NBD1 molar ratio of 5:1, an amount that is not unreasonable given the high concentration 

(1-3%) of cellular Hsp90 (Buchner, 1996).  The more rapid degradation of CFTR in Hsp90 

mutant yeast is not due to the well-characterized impact of the Hsp90 complex on cellular 

signaling pathways because no effect on CFTR degradation was observed in yeast mutated for 

Hsp90 co-chaperones either individually (Sti1p, Sba1p, Sse1p) or in combination (Sti1p/Sse1p).  

I therefore conclude that CFTR is one of several cellular proteins that require Hsp90 for efficient 

folding, a list that includes p53, Src and steroid hormone receptors (Richter and Buchner, 2001).  

In contrast, it is important to note that Hsp90 facilitates the ERAD of Apolipoprotein B 

(Gusarova et al., 2001) and an insulin receptor mutant (Imamura et al., 1998).  These data 
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indicate that some substrates utilize Hsp90 for protection, whereas other substrates engage 

Hsp90 en route to degradation.  In some cases, Hsp90 is involved in both events, acting first to 

promote folding, and then if folding cannot proceed, targeting the substrate to the proteasome 

(Schneider et al., 1996).  A role for Hsp90 in degradation is also supported by connections 

between Hsp90 and the ubiquitin-proteasome machinery: For example, Hsp90 binds to the 19S 

cap of the yeast proteasome (Verma et al., 2000), and in mammals Hsp90 function is linked to 

the E3 ubiquitin ligase CHIP (Connell et al., 2001). 

 

Third, I found that Hsp90 co-chaperones do not impact CFTR biogenesis in yeast. To our 

knowledge, this is the first investigation of the relative contributions of Hsp90 versus Hsp90 

complex members in membrane protein biogenesis. In contrast, a recent study demonstrated that 

deletion of individual Hsp90 co-chaperones had differential effects on the activity of the yeast 

MAP kinase, Ste11p (Lee et al., 2004b), suggesting that interactions between client proteins and 

Hsp90/Hsp90 co-chaperones are likely to be complex.  In addition, McClellan and colleagues 

have identified distinct chaperone-mediated folding and degradation pathways for the von 

Hippel-lindau tumor suppressor protein (McClellan et al., 2005).  In the best-characterized 

example, an Hsp90 folding pathway has been proposed based on in-depth studies of the 

progesterone and estrogen receptor folding pathways.  Two distinct Hsp90 complexes are 

evident in this pathway: an early complex containing Hop (Sti1p), Hsp40 and Hsp70, and a 

mature complex containing p23 (Sba1p) and cyclophilins.  The transition from the early to the 

late complex involves conformational changes in Hsp90 upon ATP binding and hydrolysis, and 

upon p23 binding (Smith, 1998; Pratt and Toft, 2003)(section 1.3.2).  It is unknown, however, 

whether other Hsp90 sub-complexes exist and how additional Hsp90 co-chaperones impact this 
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pathway.  I therefore cannot rule out the possibility that a novel Hsp90 sub-complex might be 

important for CFTR biogenesis in yeast. 

 

I also cannot rule-out the possibility that Hsp90 co-chaperones might be required for CFTR 

biogenesis in mammals.  Formally, the ability of GA to induce more rapid degradation of CFTR 

in mammalian cells (Loo et al., 1998) might have occurred through direct inhibition of Hsp90 

function or through an effect on Hsp90 complex maturation.  In fact, it was noted in the 

published study that p23 associates with CFTR.  Until individual Hsp90 co-chaperones can be 

disabled in mammalian cells, this issue cannot be resolved. 

 

Fourth, my data further define the unique chaperone requirements for the degradation of soluble 

and integral membrane proteins in the ER.  Ssa1p impacts the ERAD of integral membrane 

substrates (Hill and Cooper, 2000; Zhang et al., 2001) and the Ydj1p/Hlj1p pair (this study) acts 

similarly.  Precisely how these chaperones facilitate membrane protein turn-over is not 

completely clear.  In mammals the Hsp70-Hsp40 complex is directly linked to the ubiquitin-

proteasome degradation machinery through its association with CHIP (Meacham et al., 2001).  

An Hsp70 co-chaperone, BAG-1, might augment Hsp70-catalyzed degradation by transferring 

substrates from Hsp70 to the proteasome; BAG-1 is an Hsp70 nucleotide exchange factor that 

promotes substrate release, contains a ubiquitin-like element, and binds to the proteasome 

(Hohfeld, 1998).  Therefore, the effect of Bag-3 over-expression on CFTR degradation in yeast 

(Chapter 3 and see below) might have resulted from its impact as a dominant negative.  In yeast 

the cytoplasmic Hsp70-Hsp40 chaperone complex (Ssa1p-Ydj1p/Hlj1p) might similarly link the 
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selection of integral membrane ERAD substrates to one or more of the E3 ligases that play a role 

in ERAD (Bays et al., 2001; Deak and Wolf, 2001; Swanson et al., 2001). 

 

Fifth, expression of the mammalian co-chaperones FKBP8 or Bag-3 attenuates the degradation, 

but apparently not the trafficking of CFTR in yeast.  FKBP8 and Bag-3 may interact directly 

with CFTR, or they may indirectly affect CFTR folding by modulating the activities of Hsp90 

and Hsp70.  There is evidence to support both a direct or indirect mechanism of action, and these 

are not mutually exclusive.  For example, the immunophilin FKBP52, which is in the same 

subfamily as FKBP8, can bind to non-native proteins and suppress the aggregation in vitro of 

several soluble proteins (Bose et al., 1996; Pirkl and Buchner, 2001).  Furthermore, the 

chaperone activity of FKBP52 is independent of its PPIase activity because the drug rapamycin 

does not disrupt chaperone activity (Bose et al., 1996).  The regions of FKBP52 that bind 

substrate and Hsp90 are distinct (Pirkl and Buchner, 2001).  All three immunophilins display 

different degrees of chaperone activity and appear to compete for binding to Hsp90, which is 

based on affinities between the immunophilin’s TPR domain and the EEVD at Hsp90’s COOH-

terminus (Pirkl and Buchner, 2001).  In fact, in mammalian cells all three of the large 

immunophilins—FKBP52, FKBP51, or cylophilin 40—can form a ternary complex with Hsp90 

and a client substrate depending on the identity of the protein (Nair et al., 1997; Barent et al., 

1998).  These data suggest that immunophilins have the capability to bind directly to unfolded 

substrates and deliver them to Hsp90 for folding.  However, FKBP8 might indirectly act on the 

CFTR degradation pathway because it might bind with greater affinity to Hsp90 than the 

endogenous large immunophilins in yeast, Cpr6 and Cpr7.  To test this hypothesis, co-

immunoprecipitation experiments could be performed to determine if FKBP8 binds to CFTR 
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and/or Hsp90, and the effect of deleting CPR6 and/or CPR7 on CFTR degradation in yeast could 

be examined.  In addition, in vitro NBD1 aggregation assays in the absence or presence of 

purified FKBP8 could be performed to determine if FKBP8 has endogenous chaperone activity. 

 

As stated above, Bag-3 suppresses Bad- and Bax-mediated apoptosis, but recently Bag-3 has also 

been implicated in modulating chaperone function and the cellular stress response. The 

overexpression of Bag-3 in human breast cancer cells partially protects Hsp70/Hsp90 client 

proteins (i.e., Akt, Raf-1, Cdk4 and EGFR) from GA-mediated degradation (Doong et al., 2000).  

Deletion of the Bag domain of Bag-3 abrogates protection, suggesting that binding to Hsc/Hsp70 

is required to mediate the effect.  Interestingly, polyubiquitinated forms of the client proteins 

accumulate upon overexpression of Bag-3 similar to when cells are incubated with proteasome 

inhibitors, suggesting that Bag-3 inhibits Hsc/Hsp70 at a step after client-protein ubiquitination 

(Doong et al., 2000).  Furthermore, Bag-3 localizes to the ER in mammalian cells that are 

stressed due to high temperature or to an increase in heavy metal concentrations (Pagliuca et al., 

2003).  Expression of Bag-3 in yeast may disrupt delivery of polyubiquitnated CFTR to the 

proteasome by stimulating substrate-release from Hsp70, thus slowing the rate of degradation.  

This seems unlikely given that no high molecular weight CFTR species (i.e. ubiquitinated 

material) could be observed in immunoblots of resolved proteins from cycloheximide chase 

samples (data not shown).  Nevertheless, it would be interesting to determine if Bag-3 localizes 

to the ER in yeast cells and if a greater amount of poly-ubiquitnated CFTR can be co-

immunoprecipitated with anti-ubiquitin antibodies from Bag-3-expressing cells compared to 

control cells. 

 

183 



 

 

Finally, neither FKBP8 nor Bag-3 could enhance the export of CFTR from the ER in yeast; 

however, there are several additional CFTR-interacting proteins in mammalian cells that are 

known to regulate its trafficking, such as the SNAREs.  Thus, one reason for the ER export 

defect in yeast could be the lack of a requisite CFTR-modulating SNARE that also facilitates 

membrane fusion between the donor ER vesicle and the target Golgi membrane. Specifically, the 

SNARE proteins syntaxin-8 and syntaxin-1A have been shown to regulate the activity and 

trafficking of CFTR in mammalian cells (Naren et al., 1997; Cormet-Boyaka et al., 2002) (Peters 

et al., 1999; Bilan et al., 2004).  To address this hypothesis, I have tried with little success to 

express the human syntaxin 1A in yeast to determine its effect on CFTR trafficking (data not 

shown). 

 

Besides the SNAREs, other proteins might be lacking in yeast but that are required for the ER-

to-Golgi trafficking of CFTR.  For example, the 14-3-3 family of are acidic proteins are ~ 30 

kDa and are expressed ubiquitiously throughout the eukaryotic kingdom (Aitken et al., 1992).  

The 14-3-3β isoform is known to bind to di-basic retrieval sequences in the COOH-terminal tails 

of membrane proteins and block the binding of beta-COP, thus disrupting Golgi-to-ER retrieval 

and allowing the release of membrane proteins from the ER (O'Kelly et al., 2002).  Notably, 

CFTR is known to harbor multiple retrieval signals through its sequence (Chang et al., 1999).  

The interaction between the 14-3-3β protein and its substrate depends on the phosphorylation 

state at the COOH or NH2-terminus of the protein (O'Kelly et al., 2002; Yuan et al., 2003). 

Therefore, it would be interesting to express 14-3-3β in yeast cells to determine its effect on 

CFTR trafficking, although this experiment might be difficult to interpret if phosphorylation is 
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absent.  PACS proteins must also be phosphorylated at the COOH-terminus to interact with 

membrane protein substrates, but instead of enhancing trafficking out of the ER (PACS-2) or 

Golgi (PACS-1) they keep the protein localized to that compartment (Crump et al., 2001; Crump 

et al., 2003; Kottgen et al., 2005). Yeast lack PACS homologs, and so expressing these factors in 

CFTR-containing yeast might also be informative if the phosphorylation event can take place in 

yeast. 

 

The Balch laboratory recently identified five co-chaperones (FKBP8, Bag-3, HOP, p23, 

Cyclophilin B) that reduce CFTR degradation and enhance trafficking of the protein when over-

expressed in mammalian cells (W. Balch, personal communication).  I tested the effects of 

expressing FKBP8 and Bag-3 on CFTR biogenesis in yeast (Chapter 3), but the effects of the 

remaining three mammalian proteins on CFTR degradation/maturation in yeast remain to be 

elucidated.  I am especially interested in the effect of over-expression of p23 and HOP because I 

observed no effect on the degradation of CFTR in yeast disrupted for Sba1p (p23) or Sti1p (HOP) 

function (Figure 25). 
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Analysis of CFTR-∆S489 Mutant  
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Introduction 
 

Yeast contain 31 ABC transporters (Bauer et al., 1999), including several that are structurally 

similar to CFTR. One such transporter is encoded by the gene YOR1.  Yor1p is a plasma 

membrane ABC transporter in yeast that confers oligomycin resistance.  Deletion of 

phenylalanine at position 670 (∆F670), analogous to the disease-causing ∆F508 mutation in 

CFTR, causes Yor1p to be retained in the ER and display a degradation half-life similar to CFTR 

(Katzmann et al., 1999).  Interestingly, the spacing between functional motifs (Walker A and 

LSGGQ motif) in the NBD1 of Yor1p is shorter by one amino acid compared to CFTR.  

Katzmann et al. inserted an alanine at position 652 to change this spacing difference and 

observed that Yor1p containing the additional amino acid was now trapped in the ER and also 

degraded rapidly (Katzmann et al., 1999).  I propose that the deletion of the “additional” amino 

acid will facilitate CFTR trafficking to the plasma membrane in yeast.  

 

To test this hypothesis, I have deleted serine 489 in CFTR (CFTR-∆S489) to match the spacing 

of the amino acids found in Yor1p, which as indicated above, trafficks to the plasma membrane.  

I have found that the CFTR-∆S489 mutant protein has the same stability as wildtype CFTR and 

the majority of CFTR-∆S489 is retained in the ER.  
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Materials and Methods 

 

Yeast Strains and Growth Conditions 

 
Yeast strains RSY620 (Mat a, ade2-1, trp1-1, leu2-3,112, ura3-1, his3-11,15, PEP4::TRP1) or 

W3031b (Mat α, ade2, his3, leu2, ura3, trp1, can1-100) were grown at 26°C unless indicated 

otherwise and standard methods for growth, preparation of media, and transformation of yeast 

cultures were used (Adams, 1997). 

 

Construction of CFTR Mutant 

 

Serine 489 of CFTR was deleted (CFTR-∆S489) using the Strategene Quickchange XL 

mutagenesis kit (Strategene,) with plasmid PSM1152 (Zhang et al., 2002b) and the primers,  

(forward- GCACAGTGGAAGAATTTTCTGTTCTCAGTTTTCCTGG, 

Reverse- CCAGGAAAACTGAGAACAGAAAATTCTTCCACTGTGC) according to the 

manufacturers instructions.  The CFTR DNA was sequenced to verify the deletion of S489. 

 

Cycloheximide Chase Assay and Subcellular Fractionation 

 

Yeast strains expressing HA-CFTR or HA-CFTR-∆S489 were grown to mid-logarithmic phase  

at 26°C in synthetic complete medium lacking uracil, but supplemented with glucose to a final 

concentration of 2% (SC –ura) and a cycloheximide chase was performed as described in 

Materials and Methods (section 2.2).  Membranes from an 100 ml culture of logarithmically 
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growing yeast cells expressing HA-CFTR or HA-CFTR-∆S489 were resolved on a 30-70% 

sucrose gradient as described in the Materials and Methods (section 3.2.2).  A total of 700 µl 

fractions were collected starting at the top of the gradient, total protein was TCA-precipitated and 

resolved on 6% or 10% gels.  Immunoblots were probed for CFTR, Sec61p and Gas1p (see 

Materials and Methods, section 3.2.2). 

 

EndoH Digestion 

 

Fractions from the CFTR-∆S489 sucrose gradient were treated with endogylcosidase H (EndoH) 

to determine if the mutant protein trafficked to the Golgi compartment. A total of 15 µl of TCA-

precipitated protein from sucrose gradient fraction 7 (ER membranes), or fraction 11 

(Golgi/plasma membrane) were mixed with 50 µl of 0.1 M sodium citrate pH=5, 3 µl of PMSF 

(100mM), 22 µl of ddH2O, and 2 µl of water or EndoH (0.005 U/µl).  Samples were incubated 

for 24 hr at 37°C.  Next, total protein was TCA-percipitated, resuspended in 15 µl of sample 

buffer, resolved on 6% polyacrylamide gels (mini, or large), and transferred to nitrocellulose.  

Blots were probed with anti-HA antibody to determine the size of CFTR-∆S489.  

 

 

Results 

  

First, I performed cycloheximide chase experiments to determine the stability of CFTR-∆S489 

comapred to wildtype.  There was no significant difference in the degradation rate of the mutant 

compared to wildtype CFTR (Figure 42).  This result suggests that the conformation of the 
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CFTR-∆S489 protein is not drastically less-stable compared to wildtype.  Second, I performed 

subcellular fractionation on sucrose gradients to determine if the CFTR-∆S489 protein exits the 

ER and trafficks to the plasma membrane.  There was no significant change in the distribution of 

CFTR-∆S489 compared to wildtype CFTR in the pep4∆ strain (Figure 43 A & B).  Results were 

similar for both proteins in the wildtype yeast strain W3031b (Data not shown).  There appeared 

to be a small population of the mutant protein in fraction 11 that migrated more slowly compared 

to wildtype (Figure 44 A) and was in a denser “Golgi/plasma membrane” fraction.  This could 

represent mutant CFTR that has trafficked to an post-ER compartment, or simply could be ER 

membrane contamination of Golgi/plasma membrane fractions.  I incubated mutant CFTR 

protein from ER-membranes (fraction 7), or Golgi/plasma membranes (fraction 11) with 

endoglycosidase H (EndoH) to determine if the apparent shift in the mutant CFTR was due to 

modifications of its two NH2-linked glycans.  I could detect no shift in the migration of the 

mutant protein, from either fraction 11, or fraction 7 (Figure 44 B, and Data not shown).  EndoH 

removes NH2-linked glycans at their Asn attachment, therefore there should be a shift in the 

wildtype and mutant CFTR that resides in the earlier ER fractions, representing the conversion 

from core-glycosylated to non-glycosylated protein.  There are several possibilities why I did not 

detect a shift in mobility, which are addressed in the following discussion (see Appendex  

Discussion).  It appears that the change in mobility for the mutant CFTR is not due to glycan 

processing in the Golgi.  Together, these results suggest that CFTR-∆S489 is not more stable 

than wildtype, and the majority of the mutant protein remains in the ER.  

190 



 

 

Discussion 

 

 The Riordan laboratory has demonstrated that CFTR is indeed glycosylated and a shift in 

mobility can be detected, that corresponds to the removal of two NH2-linked glycans (Kiser et al., 

2001).  However, no shift in either the ER form of the wildtype, or the mutant could be detected 

on EndoH treatment.  Although, the EndoH enzyme is active because a shift in mobility of the 

gylcosylated protein apolipoprotein B (kind gift from Stacy Waksmonski) could be detected 

(Data not shown).  These results suggested that the linkages between the glycans and CFTR were 

not accessible for cleavage, or that CFTR is not gylcosylated in yeast as it is in mammalian cells. 

 

Immunofluorescence was employed to try to resolve these ambiguities.  Wildtype CFTR 

appeared as perinuclear punctuate dots (2-3) that co-localized with the ER marker BiP. CFTR-

∆S489 also gave a similar staining pattern, except there were a couple extra punctuate structures 

(4-5) compared to wildtype, and a small portion of the protein did not appear to colocalize with 

BiP (Data not shown).  My current hypothesis is that a small population of CFTR-∆S489 may 

localize to a denser sub-domain of the ER where BiP is excluded.  ER membranes (5-7), or 

plasma membrane (13-14) could be subjected to immuno-electron microscopy to definitely prove 

if a subpopulation of the mutant CFTR resides at the plasma membrane.  This technique was 

employed previously by the Brodsky lab to confirm that wildtype CFTR was not present at the 

plasma membrane in yeast (Sullivan et al., 2002).  A second method to determine if a fraction of 

CFTR-∆S489 exits the ER would be to monitor the co-localization of GFP-CFTR-∆S489 (GFP 

attached to the NH2-terminus of CFTR does not disrupt folding (Moyer et al., 2002)) with the 
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vital dye FM464, which stains the plasma membrane and endosomal membranes.  Nevertheless, 

the majority of the mutant CFTR appears to be retained in the ER similar to wildtype, suggesting 

there are fundamental differences in the folding of YOR1p and CFTR. 
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Figure 42: The Degradation of CFTR and CFTR-∆S489 are Similar in Yeast. 

Cultures of pep4∆ yeast expressing wildtype CFTR, or CFTR-∆S489 were grown to mid-

logarthimic phase and subject to cycloheximide chase analysis as described in Materials and 

Methods (Appendex A).  The degradation of wildtype CFTR (closed black circles) or CFTR-

∆S489 (open pink circles) are plotted as the relative amount of CFTR remaining versus time. The 

amount of CFTR at time zero was set to 1.0.  Data represent the means of 3 independent 

experiments +/- SEM. 
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Figure 42: The Degradation of CFTR and CFTR-∆S489 are Similar in Yeast 
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Figure 43: Subcellular Fractionation of Yeast Expressing wildtype CFTR or CFTR-∆S489. 

Extracts from CFTR, or CFTR-∆S489 expressing cells were subjected to sucrose gradient 

centrifugation.  The gradient was fractionated and the migration of CFTR, Sec61p and Gas1p 

were determined by immunoblotting analysis (see Materials and Methods, section 3.2).  Fraction 

1 represents the top of the gradient: m = mature GPI form of Gas1p that resides in the 

Golgi/plasma membrane (~125 kDa); i = immature form that resides in the ER (~105 kDa). 

 

A) Top: representative immunoblots for CFTR (blue diamond), Sec61p (pink square) and Gas1p 

(orange triangle). Bottom: Quantification of protein bands in each lane graphed as the 

fraction of total protein in all lanes. X axis = gradient fraction #1, Y = fraction of total 

protein.  

B) Top: representative immunoblots for CFTR-∆S489 (blue diamond), Sec61p (pink square) 

and Gas1p (orange triangle).  Bottom: Quantification of protein bands in each lane graphed 

as the fraction of total protein in all lanes. X axis = gradient fraction #1, Y = fraction of total 

protein.  

 

Bracket = Position of the plasma membrane marker Pma1p in the gradient, which corresponds to 

58-65% sucrose (w/v) or fractions 12-14.  

Blacks lines on immunoblots indicate fractions were resolved on two different gels. 
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Figure 43: Subcellular Fractionation of Yeast Expressing wildtype or CFTR-∆S489 
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Figure 44: A Small Population of CFTR-∆S489 Migrates at a Higher Molecular Weight 

Compared to Wildtype. 

A) Membrane fractions from CFTR, or CFTR-∆S489 expressing cells were resolved on 6% 

polyacrylamide gels, transferred to nitrocellulose and probed with anti-HA antibody to detect 

CFTR. Note, * = the higher migrating CFTR band seen in mutant but not wildtype. 

B) Protein from fraction 11 of CFTR-∆S489 was incubated in the absence (-), or presence (+) of 

EndoH.  Protein was resolved on 6% polyacrylamide gel, transferred to nitrocellulose, and 

probed with anti-HA antibody (see Materials and Methods, Appendex A).  Note, No change 

in the migration of CFTR-S489∆ in presence of EndoH.  Similar results were obtained for 

wildtype CFTR fractions 7 and 11 (data not shown). 

 

Bracket = Position of the plasma membrane marker Pma1p in the gradient, which corresponds to 

58-65% sucrose (w/v) or fractions 12-14.  
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Figure 44: A Small Population of CFTR-∆S489 Migrates at a Higher Molecular Weight 
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