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Alison L. Groeger, Ph.D. 

University of Pittsburgh, 2009

 

Electrophilic lipids are emerging as critical mediators of anti-inflammatory signaling 

pathways, although many biologically relevant electrophiles may still remain unknown. Nitro 

derivatives (NO2-FA) and α,β-unsaturated carbonyl derivatives of unsaturated fatty acids are 

naturally occurring electrophilic products of redox reactions, and can modulate a variety of 

cellular signaling processes including the transcriptional activity of the peroxisome proliferator-

activated receptor-γ (PPARγ). PPARγ binds diverse ligands to regulate the expression of genes 

involved in metabolism and inflammation. Activators of PPARγ include anti-hyperglycemic 

drugs such as thiazolidinediones (TZDs) and intermediates of lipid metabolism and oxidation 

that bind PPARγ with very low affinity. Recently TZDs have raised concern after being linked 

with increased risk of peripheral edema, weight gain, and adverse cardiovascular events. In 

contrast, NO2-FA act as partial agonists of PPARγ at nM concentrations and covalently bind 

PPARγ via Michael addition. NO2-FA show selective PPARγ modulator characteristics by 

inducing coregulator protein interactions distinctively different from those induced by the TZD 

Rosiglitazone.  

In further exploring the electrophilic lipidome, a new subclass of electrophilic lipid has 

been revealed. Using a recently developed β-mercaptoethanol (BME) alkylation reaction, 

followed by HPLC-MS/MS-based screening, we report six novel electrophilic fatty acid 

derivatives (EFADs) specifically formed during macrophage activation (RAW264.7 and THP-1 
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cell lines and primary macrophages treated with IFNγ and LPS). The major EFADs are α,β-

unsaturated oxo-derivatives of ω-3 fatty acids as confirmed by cell culture and in vitro studies 

and by MS/MS structural analysis. The isomers of two major EFADs were identified as 13- and 

17-keto derivatives of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). Purified 

cyclooxygenase-2 (COX-2) product profiles and treatment of activated macrophages with COX-

2 inhibitors confirmed EFAD synthesis to be catalyzed by inducible COX-2, followed by 

hydroxy-dehydrogenase activity. EFAD production was increased 2.5 fold in activated 

macrophages treated with acetylsalicylic acid (ASA; aspirin). Internal standard-based 

quantification showed that EFADs are highly abundant electrophiles in activated macrophages, 

reaching intracellular concentrations as high as 350 nM. Importantly, EFADs form reversibly 

reactive covalent adducts with both proteins and small molecule thiols in activated macrophages, 

supporting a potential for post-translational protein modification-mediated cell signaling. 

Furthermore, synthetic isomers of EFAD-1 and -2 (17-oxo-DHA and 17-oxo-DPA, respectively) 

act as partial agonists of peroxisome proliferator activated receptorγ (PPARγ), activate Nrf2 

(nuclear factor-erythroid 2-related factor 2)-dependent gene expression, and inhibit pro-

inflammatory cytokine production and iNOS expression in IFNγ and LPS-activated RAW264.7 

cells and in primary macrophages. In conclusion, it has been demonstrated that upon activation 

macrophages generate omega-3 derived electrophilic signaling molecules at biologically relevant 

concentrations that act as autocrine mediators. 
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1.0  INTRODUCTION 

During pathological inflammation the oxidative environment and the enzymatic production of 

lipophilic signaling mediators (e.g. prostanoids and nitric oxide; •NO) both contribute to the 

generation of reactive electrophilic species (RES). Furthermore, RES are emerging as key 

mediators of inflammatory processes and new RES are still being discovered. Oxygenase 

enzymes (e.g. cyclooxygenases, COXs; and lipoxygenases, LOXs) contribute to the first step in 

generating prostanoids, lipoxins, and families of RES, including α,β-unsaturated keto derivatives 

of fatty acids. RES, such as nitroalkene derivatives of fatty acids (NO2-FA), are also formed 

independently of known enzymatic pathways or may be products of, pH-dependent NO2
--

mediated nitration. Regardless of their path of origin, many RES generated during inflammation 

are generally considered soft electrophiles1 that can react reversibly with nucleophilic 

biomolecules by Michael addition. This reversible reactivity gives RES potential signaling 

capabilities that may inform the cell of its redox status or external environment.  

Moderate exposure to oxidative and RES-instigated stress stimulates a cell to orchestrate 

the expression of cell survival proteins and thus better prepare for future insult. Conversely, 

acute and extreme oxidative and RES-induced stress trigger cell damage and often ends in 

senescence, apoptosis or necrosis. Cellular protective mechanisms for oxidative and RES-

induced stress include the activation of transcription factors, the repair of DNA damage, and 

increased levels of protective proteins such as antioxidant enzymes, glutathione (GSH), and heat 

 1 



shock proteins. Genes encoding many of these defenses contain an electrophile response 

element/antioxidant response element (EpRE/ARE). The transcription factor Nrf2 regulates the 

expression of EpRE/ARE-dependent genes and Nrf2 activity is determined by the state of its 

redox-sensitive inhibitor, Keap1 (kelch-like ECH-associated protein 1). Similarly, the nuclear 

receptor involved in the regulation of cell metabolism and prolferation/differentiation, PPARγ, is 

also sensitive to the cell’s redox status and RES levels. 

Herein, the roles of fatty acid-derived RES (i.e. NO2-FA and α,β-unsaturated carbonyl 

compounds) in inflammation are explored. Thus, the beginning of this work will address general 

inflammation as it is mediated by a mononuclear phagocytic cells (e.g. monocytes and 

macrophages), the formation and actions of RES and specifically NO2-FA, and the formation and 

signaling properties of oxidized fatty acids. The following chapters will focus on the PPARγ 

agonist activities of NO2-FA and on the discovery and characterization of new RES formed 

during inflammation. 

1.1 INFLAMMATION AND THE ROLE OF MONONUCLEAR PHAGOCYTES 

Inflammation and the supporting role played by mononuclear phagocytes are intimately involved 

in the pathogenesis of important clinical disorders including asthma, atherosclerosis, diabetes, 

rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. Under controlled 

conditions, acute inflammation is protective and beneficial by ridding the host of pathogens or 

toxins and by beginning the repair process by removing/destroying necrotic cells and tissues. 

Alternatively, poorly regulated chronic periods of inflammation, such as the disorders 

enumerated above, interfere with homeostasis and lead to tissue damage. Inflammation is 
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characterized by vascular changes including increased vessel permeability and modulation of 

blood flow, and by cellular events such as leukocyte adhesion, extravasation and phagocytosis. 

The cells and tissues involved in this process also produce chemical mediators including 

eicosanoids, resolvins, maresins, platelet activating factor (PAF), vasoactive amines, plasma 

proteases, complement, cytokines, •NO, and reactive oxygen species (ROS). During 

inflammation, ROS and reactive oxides of nitrogen are enzymatically produced at elevated levels 

and this can lead to nitration and oxidation of biomolecules such as lipids.  

1.1.1 Role of Macrophages in Inflammation 

Macrophages are responsible for phagocytizing foreign bodies and debris in inflamed 

tissue and for producing or responding to many of the chemical mediators involved in 

inflammation. Mononuclear phagocytes participate in inflammatory processes by assuming a 

specific polarization or functional program during their differentiation. The two major types of 

differentiation are classical activation (also known as M1 macrophage polarization) and 

alternative activation (the M2 series of macrophage polarization). Classical macrophage 

activation reflects a state of type I inflammation, characterized by Th1 responses, cell-mediated 

immunity, delayed-type hypersensitivity, killing of intracellular pathogens, tissue destruction, 

and tumor resistance. Furthermore, M1 polarized macrophages are effective sources of ROS, 

•NO and secondary oxides of nitrogen2. Macrophages are derived from the myeloid progenitor 

lineage and enter the circulation as monocytes. When circulating monocytes encounter a 

chemotactic signal, they enter the tissue by extravasation and further differentiate into 

macrophages specialized to respond specifically to the tissue and the inflammatory 

microenvironment. Classical activation of monocytes/macrophages is often induced by 
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interferon-γ (IFNγ) alone or in combination with cytokines (e.g. TNFα) or foreign stimuli such 

as lipopolysaccharides (LPS). M1 polarized macrophages generally express high levels of the 

proinflammatory cytokines including interleukin-12 (IL-12), IL-23, TNFα, IL-1β, and IL-6. In 

contrast, cytokines which suppress macrophage function such as IL-10 are expressed at low 

levels2,3.  

1.1.2 Second Messengers in Macrophages 

The chemical mediators that classically activate macrophages also induce the expression 

of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and NADPH oxidase 

(NOX) through multiple secondary messengers. STAT1 (signal transducer and activator of 

transcription-1) and NF-κB (nuclear factor κ-light-chain-enhancer of B cells) are two of the 

major regulators of the classical inflammatory response in macrophages. The binding of IFNγ to 

its receptor (IFNγR) activates JAK1 (Janus Kinase 1) and JAK2 to phosphorylate and activate 

STAT1. STAT1 in turn mediates the transcription of proinflammatory genes4,5.  

The binding of LPS to LPS-binding protein and CD-14 (cluster of differentiation 14) 

activates TLR4 (toll-like receptor-4) thus stimulating the activation of phosphatidylinositol 3-

kinase (PI3K) and phosphoinositide-dependent kinase (PDK). Activation of the PI3K pathway 

triggers the phosphorylation of NOX subunits (p47phox and p67phox), initiating the assembly of 

NOX, and the subsequent production of superoxide4. The activation of PI3K and PDK leads to 

the transcription of NFκB-dependent genes, such as iNOS and COX-2 (For more information on 

COX-2 see section 1.5).  
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1.2  BIOLOGIC ELECTROPHILES AS SIGNALING MEDIATORS 

The broad definition of an electrophile is a molecule having one or more electron-poor atoms, 

which can accept electrons from electron-rich donor molecules (nucleophiles). Thus cations (e.g. 

Hg2+, Cd2+, Zn2+), polarized neutral molecules, polarizable neutral molecules (e.g. Cl2 and Br2), 

oxidizing agents, and some Lewis acids would all be included in this definition. Biologically 

relevant electrophiles will be referred to as RES. RES are generated during tightly controlled 

metabolic processes or during dysregulated pathological processes as by-products of oxidation. 

Following generation, RES may contribute to pathogenesis by altering cellular functions directly 

via the modulation of signaling pathways or indirectly by covalently modifying cellular 

macromolecules and by depleting the cell of reductants6. Thus, when produced in excess, RES 

are associated with the development and progression of a number of diseases including cancer7-9, 

atherosclerosis10, neurodegeneration1, Alzheimer’s disease11, and chronic inflammation12. 

Alternatively at lower regulated levels, RES can induce protective effects against further insult 

by activating the expression of genes involved in xenobiotic detoxification and the antioxidant 

response (see section 1.2.7 for more details).  

1.2.1 Electrophilic Fatty Acids Defined 

In biology, RES are not only by-products of cellular-stresses, but are also crucial signaling 

mediators in organisms spanning the Eukaryote domain. In biologically relevant molecules, 

carbon atoms are often rendered electrophilic by conjugation to electron-withdrawing functional 

groups. Often, specific functional groups determine the reactivity of the electrophilic moiety13. 

Two prominent examples of these electron withdrawing groups are α,β-unsaturated carbonyls 
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and nitroalkenes, in which the β-carbon (if it is bound to at least one hydrogen atom) is 

electrophilic and hence susceptible to nucleophilic attack (Fig. 1). While RES can be derived 

from many sources, this work has focused on fatty acid-derived electrophilic products of 

oxidation, nitrosation and/or nitration reactions.  

 

Figure 1. The β-carbons of nitroalkenes and α,β-unsaturated carbonyls are electrophilic. 

 The chemical structures of a nitroalkene (left) and an α,β-unsaturated carbonyl (right) are represented 

above, in which “*” indicates an electrophilic β-carbon. 

 

At many levels, RES modulate cell survival mechanisms by chemically reacting with 

nucleophilic nucleic acids (see section 1.2.5 for more details), amino acid residues (cysteine, 

lysine, and histidine) on proteins and other small molecules14-16. For example, RES not only 

directly modulate protein function by reacting with sulfhydryl (-SH) groups on cysteine 

residues17,18, but can also lower pools of small molecule sulfhydryls or cellular reductants such 

as GSH19,20, thus indirectly interfering with basic homeostatic functions. Both RES and reactive 

oxygen species (ROS) alter the cellular redox state and share several other comparable features; 

both can be produced by either non-enzymatic or enzymatic processes (depending on the species 

in question). In both cases ROS and RES production and levels are metabolically controlled in 

healthy cells; low levels of these species induce the expression of cell survival genes, and in 

some cases prime the cell to survive periods of stress17,21. In contrast, under pathological 

conditions, RES and ROS are often produced in excess and accelerate cell damage by chemically 

modifying nucleophilic atoms in cellular molecules through uncatalyzed reactions13,22. 
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1.2.2 Mechanisms of Electrophile Reaction with Biomolecules: Michael Addition and 

Schiff Base Formation 

Michael reaction acceptors are molecules containing charged or polarized functional groups 

conjugated with alkenes or alkynes. The functional groups most commonly associated with 

Michael reaction acceptors in order of electron-withdrawing strength are as follows, starting with 

the most reactive: nitro groups (NO2), α,β-unsaturated carbonyl groups (i.e. aldehydes and 

ketones), and esters23. The reactivity of a Michael acceptor with nucleophiles is positively 

correlated with the strength of the electron-withdrawing group(s) involved (see Table 1 and Fig. 

2 for details). In terms of signaling, an interesting property of Michael acceptors is that the 

majority can react reversibly with sulfhydryl groups (thiol; R-SH)23. 

Table 1. Second-order rate constants for oxidants and RES reaction with the thiol of GSH. 

Reactions were performed at 37°C and pH7.424 
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Figure 2. Chemical structures of electrophilic lipid derivatives that react with the thiol of glutathione. 

 

One well-characterized type of Michael addition in biology is exemplified by the reaction 

of RES with thiols. This reaction is favored by deprotonation of the thiol to the more 

nucleophilic thiolate (R-S-) species. Deprotonation of the thiol is dependent on its pKa, i.e. the 

lower a pKa the greater the proportion of thiolate species. Thus, the pKa and the consequent 

abundance of the thiolate ion will determine a sulfhydryl’s rate of reaction with electrophiles. In 

the case of both free cysteines and those incorporated into proteins, the pKa is generally around 

8.525 indicating a low proportion of tholates and subsequently mild reactivity at physiologic pH. 

However, the pKa of cysteine thiols can be significantly lowered by proximity to basic amino 

acid residues such as lysine or arginine26. Protein structure can also affect the rate of a Michael 
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addition reaction in terms of sterically hindering the RES from association or dissociation with 

nucleophiles. 

RES also modify proteins by reacting via Michael addition with the imidizole nitrogen of 

histidine residues and the ε-amino nitrogen of lysine residues. Furthermore, carbonyl-containing 

RES can react with lysine residues or free N-terminal amino groups to form Schiff base products. 

In some cases, bifunctional electrophiles (e.g. 4-oxo-2-nonenal; 4-ONE) form Michael adducts 

with one amino acid residue and induce protein cross-linking by forming a Schiff base with the 

amines of lysine residues27,28. By nature the Michael addition reaction is reversible, whereas 

Schiff base products are more stable and much less prone to reversible reactivity. 

1.2.3  Sources and Metabolism of Reactive Electrophilic Species 

RES can be generated by non-enzymatic free radical-mediated reactions or by enzyme-catalyzed 

reactions. Non-enzymatic generation of RES occurs under oxidizing conditions in which ROS or 

lipid alkoxyl/peroxyl radicals initiate and propagate the oxidation of PUFA. Termination of these 

reactions yields hydroxy and hydroperoxy lipid derivatives as well as fragments of peroxidized 

lipids, which can include short chain conjugated carbonyl products. In contrast, enzyme-

catalyzed RES are products of more controlled conditions and can be generated both during 

periods of stress or normal metabolism. Under these circumstances, the production of many RES 

begins with oxygenases. Additionally, in mammalian systems, RES are consumed in the diet or 

are products of xenobiotic metabolism (see section 1.2.3.2).  
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1.2.3.1 Non-Enzymatic Generation of Reactive Electrophilic Species 

Many RES produced by enzymatic oxidation of fatty acids are also generated independently of 

enzymatic catalysis. Malondialdehyde (MDA) is one of the major non-enzymatic products of 

lipid oxidation reactions in both mammalian and plant systems. Due to tautomerization, MDA 

exists primarily in the enol form as an α,β-unsaturated aldehyde. In healthy plant leaves MDA is 

produced continuously (mostly from trienoic fatty acids), and though its levels are relatively high 

they are maintained despite rapid turn-over or sequestration by the cell (Fig. 3)13,29. In humans 

MDA is the product of lipid peroxidation and is generated under pathological oxidative 

conditions, such as in macrophage-derived foam cells of atherosclerotic lesions30. Other products 

of lipid peroxidation, 4-ONE and 4-hydroxy-2-nonenal (HNE), are electrophilic alkenals closely 

related to MDA13 and formed under similar oxidizing conditions31. Acrolein (2-propenal) another 

small molecule electrophile that has multiple origins, can be generated from a variety of organic 

molecules (e.g. carbohydrates, lipids, amino acids, and biodiesel) during oxidation or 

combustion32. Thus acrolein is present in cooked foods, air pollution, and especially cigarette 

smoke32. However not all electrophilic products of lipid oxidation are acyl chain fragments; an 

intact parent lipid may be oxidized to an electrophile itself. For example, cyclopentenone 

neuroprostanes are α,β-unsaturated keto products of DHA oxidation. These products are formed 

in vivo by non-enzymatic lipid peroxidation in which an endoperoxide intermediate of DHA is 

reduced, rearranged, and dehydrated to yield a cyclopentane ring containing an α,β-unsaturated 

carbonyl33. 
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1.2.3.2 Enzymatic Generation of Reactive Electrophilic Species by Oxygenases or from 

Xenobiotics and Dietary Sources  

Fatty acids (e.g. arachidonic acid; AA) and other lipophilic molecules are converted to hydroxyl 

species by oxygenases (e.g. COX and LOX enzymes) and can be further metabolized to RES by 

dehydrogenases34,35. Two of the well-characterized electrophilic fatty acid derivatives formed by 

these pathways are the α,β unsaturated keto electrophiles 15d-PGJ2 and oxoETEs (see section 

1.4.2 for more details). Drugs or other xenobiotics and their metabolites can also be converted to 

RES. For example, raloxifene, a selective estrogen receptor modulator, is metabolically 

converted to electrophilic quinoids, which can form adducts with nucleic acids, GSH, and 

proteins such as cytochrome p450 3A4 (CYP3A4)36,37. Additionally non-steroidal anti-

inflammatory drugs (NSAIDs) are metabolized, mainly by CYP3A4, to electrophilic quinoid 

intermediates, which covalently react with GSH and liver microsomal proteins38. 

 

Figure 3. Chemical structures of reactive electrophilic products of oxidation and electrophiles from 

dietary sources. 

 

RES can also be enzymatically formed in plants and subsequently consumed by animals. 

The increased production of RES in plants is concurrent with wounding, pathogenesis, and 
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environmental stress. While many RES are considered secondary metabolites, some act as 

volatile hormones that ultimately alter gene expression in response to various plant stresses13,39. 

In higher plants, two of the common RES, oxophytodienoic acid (the precursor to jasmonic acid) 

and (E)-2-hexenal, are produced by plant LOXs. Other phytochemicals with electrophilic or pro-

electrophilic capacity include members of the capsaicinoid, isothiocyanates, and triterpenoid 

families, as well as other secondary metabolites.  

Capsaicinoids are a family of secondary metabolites found in chili peppers that interact 

with mammalian capsaicin receptors (transient receptor potential vanilloid-1 receptor; TRPV1). 

The metabolism of capsaicinoids by CYP enzymes produces RES that can form covalent adducts 

with GSH40. Capsaicinoid activation of the TRPV1, a calcium channel expressed by sensory 

nerves, produces a burning sensation, hyperalgesia, erythemia, and irritation. Chronic exposure 

to capsaicinoids results in anti-inflammatory effects and long-term analgesia via desensitization 

of TRPV141.  

Isothiocyanates are another family of phytochemical RES that are generally produced by 

Brassica vegetables (e.g. broccoli, cabbage, radish, etc.). Members of this RES family signal 

through the Keap1/Nrf2 pathway and through transient receptor potential-A1 (TRPA1) ion 

channels, which are involved in the perception of stimuli including cold temperatures and 

pungent compounds. Allylisothiocyanate acts as one of the major components responsible for the 

pungent flavor of mustard seeds and horseradish42. Broccoli also produces isothiocyanates such 

as sulforaphane43. Finally, wasabi, while not in the same genius, is a member of the same family 

as Brassica plants and has three isothiocyanates contributing to its flavor: 6-methylthiohexyl 

isothiocyanate, 7-methylthioheptyl isothiocyanate and 8-methylthiooctyl isothiocyanate44. While 

not an isothiocyanate, cinnamaldehyde, found in the bark of cinnamon trees, contains an α,β-
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unsaturated aldehyde, giving it the ability to act as a Michael addition acceptor and a potent 

activator of TRPA1 as well42.  

A family of electrophilic triterpenoids containing a side chain with two α,β-unsaturated 

carbonyl groups, avicins, are produced by an Australian desert tree, Acacia victoriae. Avicins 

activate the antioxidant response pathway and have been observed to suppress carcinogenesis45-

47. Synthetic electrophilic triterpenoid derivatives of oleanolic acid also display anti-

inflammatory, antioxidant, and anti-proliferative effects48-51.  

 

Figure 4. Chemical structures of electrophilic phytochemicals. 

1.2.3.3 Electrophile Metabolism: Glutathione and Glutathione S-Transferases  

GSH is a water-soluble tripeptide (glutamine-cysteine-glycine) that is an evolutionarily 

conserved molecule employed by plant, animal, fungal and some prokaryotic cells to combat 

endogenously or exogenously generated oxidative insult. GSH acts as a reducing agent, in 

conjunction with glutathione S-transferases (GSTs) and glutathione peroxidases (GPxs), to 
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detoxify a wide range of RES and peroxides. The thiol group on the cysteine residue in GSH has 

a pKa of 9.252, limiting spontaneous reaction with RES or ROS at physiologic pHs. However, the 

high concentration of GSH in cells (~1-8 mM in mammalian tissue53) and GST catalyzed 

reactions significantly increase reaction rates. In order to ensure homeostasis cells must maintain 

an optimal ratio of GSH (reduced form) to GSSG (oxidized form); the GSH:GSSG ratio 

establishes the reducing potential of the cell. The reduction of GSSG is catalyzed by GSH 

reductase and requires NADPH. When GSH levels are low, the rate of GSH synthesis is 

increased. RES or ROS will induce the uptake of cysteine (the limiting reagent in making GSH) 

and increase the expression of γ-glutamylcysteine synthetase (γ-GCS), the enzyme before the 

final step of GSH synthesis.  

The promoter regions of γ-GCS and GST genes contain EpREs that are regulated by the 

Keap1/Nrf2 pathway, among others. GSTs are part of the family of phase II detoxification 

enzymes and catalyze the adduction of GSH to endogenous and exogenous electrophilic 

compounds. Consequently, in the presence of GSTs the rate of reaction of a RES with the thiol 

of GSH is not as dependent on reactivities and concentrations as it would be with uncatalyzed 

reactions with other nucleophiles. Human GSTs have two super families: membrane-bound 

microsomal GSTs and cytosolic GSTs. Microsomal GSTs are involved in the metabolism of 

leukotrienes and prostaglandins. GPxs use GSH as electron donor to reduce peroxides and 

produce GSSG as an end product. GSH levels can also determine how a cell responds to 

signaling molecules; the GSH levels in antigen-presenting cells affects whether cells produce a 

Th1 or Th2 response 54.  
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1.2.4 Modification of Phospholipids and Nucleotides 

RES react with nucleophilic biomolecules including phospholipids, nucleotides, and amino acid 

residues in proteins. For example, rabbit lenses exposed to oxidative stress in vitro display time-

dependent cross-linking between MDA and the amino groups of phospholipids (e.g. 

phosphatidylserine and phosphatidylethanolamine)55. RES also react with DNA at low 

GSH:GSSG ratios, forming adducts with deoxyguanosine, deoxyadenosine, deoxycytidine8. 

Acrolein adducts deoxyguanosine by a Michael-type addition, thus yielding 1,N2-

propanodexoyguanosine in vitro56. Additionally, acrolein and crotonaldehyde form 1,N2-

propanodexoyguanosine diastereomers and effect base substitution, with G to T transversions 

being the most common. These adducts also cause, for example, a higher incidence of miscoding 

in human xeroderma pigmentosum A cells57,58 and have also been observed in the DNA of liver 

tissues from healthy humans and rodents59. Moreover, during increased oxidative stress, due to 

the constitutive expression of COX-2, ONE adducts to DNA (heptanone-etheno-2′-

deoxyguanosine) were detected in rat intestinal epithelial cells60. Finally, bis (2-chloroethyl) 

sulfide (also known as sulfur mustard or mustard gas), a lipophilic and particularly strong 

electrophile, forms covalent adducts with DNA (as well as RNA and protein residues) causing 

DNA damage and fragmentation. In mice and humans nucleic acid alkylation by bis (2-

chloroethyl) sulfide contributes to severe toxicity and necrosis of multiple tissues including the 

liver61.  
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1.2.5 Modification of Proteins and Protein Cross-Linking  

RES post-translationally modify proteins by adducting to cysteine, histidine, and lysine residues, 

thus modulating protein function, subcellular location, and turnover. A classic example of all 

three of these actions is the modulation of the Keap1/Nrf2 pathway by RES (see section 1.2.6.3). 

RES protein modifications can also interfere with cytoskeletal structure; in vitro actin 

polymerization can be disrupted by 15d-PGJ2 adduction to actin at Cys37462.  

RES-protein adducts modulate the activity and trafficking of other redox-sensitive 

proteins. OA-NO2 forms reversible adducts with glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) at the catalytic Cys-149 (as well as other residues), thus inhibiting GAPDH activity 

and increasing its affinity for lipophilic environments, such as membranes18. Biotinylated-15d-

PGJ2 forms adducts with thioredoxin-1 (Trx1) at Cys35 and Cys69 in vitro as determined by 

mass spectrometry63. The enzyme responsible for maintaining a population of reduced Trx, 

Thioredoxin reductase (TrxR), is crucial for the proper structure and function of several redox-

sensitive proteins, including p53. TrxR is especially susceptible to adduction by RES due to the 

low pKa (5.2) of a selenocysteine in its C-terminal sequence64. This selenocysteine residue, while 

not present in the TrxR active site, is necessary for catalytic activity65. In RKO and HCT 116 cell 

lines, adduction of PGA1 amidopentyl biotin (and other α,β-unsaturated carbonyl compounds 

such as HNE) to TrxR occurs concurrently with inhibition of p53 function7.  

RES that can undergo oxidation-reduction cycling (quinones) and bifunctional RES (e.g. 

HNE and ONE) readily generate intermolecular or intramolecular protein cross-links. Both the 

functional group and microenvironment determine the pKa of nucleophilic amino acid residues, 

with lower pKas will promote the possibility of adduct formation via nucleophilic attack. 

Structural motifs in proteins, such as cytochrome c, also determine the susceptibility and type of 
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adduct formation for amino acid residues66. For example, RES can cross-link solvent-exposed 

lysine residues in close proximity to each other, such as in the case of benzoquinone, which can 

adduct with proximal lysine residues (Lys25-Lys27 and Lys86-Lys87) on cytochrome c66. 

1.2.6 Electrophile Signaling 

The properties of RES confer inherent signaling capabilities. However, each RES may result in 

distinct signaling depending on reactivity and structure; sets of genes that are activated by one 

type of RES may overlap with some of those activated by another. As Farmer notes13, 

“transcriptome responses induced by treatment with one particular electrophile do not 

necessarily indicate that this RES is the bona fide regulator of the genes in question and indicates 

only that the genes are sensitive to RES.” The vast majority of RES can modulate transcription 

through the Keap1/Nrf2 pathway, which regulates the electrophile response element/antioxidant 

response element (EpRE/ARE). Related to this issue, the EpRE-independent pathways of RES 

signaling will also be addressed.  

1.2.6.1 Signaling Pathways Not Directly Related to the Electrophile Response Element 

RES modulate several cell signaling pathways, including the heat shock response, apoptotic 

pathways, kinase/phosphatase activities, and nuclear transcription factors. Heat shock proteins 

(Hsps) are one of the cellular targets of RES. HNE, generated during oxidative stress, covalently 

modifies cysteine residues on Hsp72 (Cys267) and Hsp90 (Cys572) as confirmed by LC-

MS/MS. In the case of Hsp72 (but not Hsp90), HNE adduction with Cys267 inhibited its ATPase 

activity67,68. HNE also disrupts the interaction between Hsp70-1 and heat shock factor 1 (HSF1) 

thus allowing HSF1 translocation to the nucleus and subsequent activation of transcription of 
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heat shock response genes69. RES can also induce the apoptotic pathway at higher 

concentrations. For example, HNE induces time- and concentration-dependent apoptosis via 

activation of the c-Jun N-terminal protein kinase (JNK) pathway. HNE activates JNK by first 

activating apoptosis signal-regulating kinase (ASK1), which phosphorylates stress-activated 

protein kinase (SEK1), an upstream kinase of JNK70. 

Kinase pathways such as the extracellular-signal regulated kinase-1/2 (Erk-1/2) pathway 

and the p38 mitogen-activated protein kinase (p38 MAPK) pathway are modulated by RES. 

HNE decreases Erk-1/2 phosphorylation and activity in primary rat hepatocytes by adducting to 

His178 on Erk-1/271. Additionally, HNE potently induces COX-2 gene expression in RAW264.7 

cells via activation of the p38 MAPK pathway and stabilization of COX-2 mRNA10. Finally, the 

protein serine/threonine phosphatase 2A (PP2A) shows decreased activity in HEK 293 cells upon 

alkylation of six cysteine residues by the biotin-labeled Michael addition acceptor, biotinamido-

4-[4′-(maleimidomethyl) cyclohexanecarboxyamido]butane72. 

RES also modulate the activities of nuclear receptors and transcription factors such as 

PPARγ and NF-κB, both of which are involved in the regulation of inflammation. PPARγ is 

activated by 15d-PGJ2, NO2-FA, and other RES (see section 1.3.2 for more details). Many RES 

inhibit NF-κB signaling at one or more points in the pathway. For example, in RAW264.7 

murine macrophages, A4-NP, a cyclopentenone neuroprostane, significantly reduces LPS-

induced iNOS expression and subsequent •NO production (as measured by nitrite levels in the 

media) via inhibition of NF-κB signaling73. The expression of COX-2 was also reduced though 

not to the same extent as iNOS, which was attributed to the regulation of COX-2 by several 

pathways in addition to NF-κB. In luciferase reporter assays A4-NP was found to inhibit NF-κB-

mediated transcription induced by LPS, as well as TNFα and IL-1β, all of which activate IKK 
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and NF-κB via different receptors and mechanisms73. Further probing into the NF-κB pathway 

identified adduction of A4-NP to Cys179 of Iκ-kinase (IKK) as the likely cause of inhibition; 

adduction to IKK prevents the phosphorylation and degradation of IκBα, an inhibitor of the NF-

κB p65 subunit that prevents translocation to the nucleus73. NO2-FA also inhibit LPS-stimulated 

NF-κB-mediated transcription in RAW264.7 cells transiently transfected with a NF-κB-

luciferase reporter construct. The use of biotinylated NO2-FA, immunoprecipitation, and mass 

spectrometry-based strategies further identified p65 as the covalently modified protein and the 

most likely point of NO2-FA inhibition of the NF-κB pathway74 

1.2.6.2 Electrophile Response Element Mediated Signaling 

The EpRE is a cis-acting element in the regulatory region of over 200 genes16 that assist in the 

response to oxidative or xenobiotic stresses. Some of the xenobiotic/drug metabolizing proteins 

and antioxidant proteins under EpRE regulation are GSTs, NAD(P)H-quinone oxidoreductases 1 

(NQO1), heme-oxygenase-1(HO-1), subunits of γ-GCS, glutamate-cysteine ligase (GCL), and 

thioredoxin6,75.  

The metabolism of xenobiotics has been described as a two-phase process. During phase 

I, compounds are modified with new functional groups by oxidation, reduction and/or hydrolysis 

reactions. During phase II, the products of phase I are conjugated to molecules such as GSH or 

glucuronic acid, producing metabolites that are more hydrophilic and more easily exported and 

excreted76. Inducers of the ARE/EpRE can be monofunctional or bifunctional. Bifunctional 

inducers up-regulate the activities of both phase I and phase II enzymes, while monofunctional 

inducers only up-regulate the activities of phase II enzymes. There are up to ten major chemical 

classes of monofunctional inducers and among these are Michael reaction acceptors (including 
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RES and divalent metal cations such as Hg2+, Cd2+, and Zn2+), hydroperoxides, phenolic 

antioxidants (BHA, BHT), 1,2-dithiole-3-thiones, and isothiocyanates. Monofunctional inducers 

typically activate phase II gene expression by reacting with sulfhydryl or disulfide groups, 

resulting in alkylation, oxidation, reduction, or thiol interchange. Thus Michael reaction 

acceptors (RES) are one subgroup of this inducer family6,23.  

1.2.6.3 The Role of Nuclear Factor-Erythroid 2-Related Factor 2 and Kelch-Like ECH 

Associated Protein 1 in Electrophile Response Signaling 

One of the major transcriptional regulators of EpRE-dependent genes is the transcription factor 

Nrf2 (a.k.a. chicken erythroid-derived CNC-homology factor; ECH). Nrf2 is a member of a “Cap 

‘n’ collar” (CNC) subfamily of basic-region leucine zipper proteins (bZIP) including NF-E2, 

Nrf1 and Nrf3. In order to bind to DNA, members of this subfamily, including Nrf2, 

heterodimerize with members of the Maf family (another family of bZIP transcription factors), as 

Maf recognition elements are often located near EpREs. Heterodimerization occurs via basic 

leucine repeat regions6,23. Nrf2 is turned over rapidly by the proteasome under basal conditions, 

but its half-life can be extended in the presence of RES. This is due to RES-induced disruption of 

binding between Nrf2 and its partner Keap1. Keap1 recruits Cul3 (an E3 ubiquitin ligase) to the 

Keap1/Nrf2 complex, allowing the ubiquitination of Nrf2. Keap1 directly binds Nrf2 at an ETGE 

tetrapeptide motif in the evolutionarily conserved N-terminal domain (the Neh2 domain) of Nrf2, 

thus targeting Nrf2 for proteasomal degradation77. By modifying Keap1, RES and ROS prevent 

the ubiquitination of Nrf2 and thus stabilize newly produced Nrf2, which can then activate 

EpRE-dependent genes78. 

Some of the major and most well studied sulfhydryl sensors in animal cells are located on 

Keap1. Keap1 is a dimeric metalloprotein with five major domains: 1) the N-terminal region, 2) 
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the BTB domain (a conserved protein-protein interaction domain), 3) the intervening region 

(IVR), 4) the double glycine repeat (Kelch domain) and 5) the C-terminal region. Keap1 binds 

the Neh2 domain of Nrf2 and actin through the Kelch domain77. Although the subcellular 

localization of Keap1 has not been definitively identified, based on immunocytochemical and 

immunoprecipitation studies Keap1 appears to localize near the nuclear periphery on the actin 

cytoskeleton and colocalizes with F-actin6,79. Murine Keap1 has twenty-five cysteines, nine of 

which are especially nucleophilic due to the presence of neighboring basic residues. These 

twenty-five cysteines are conserved in human Keap1. While twenty-three of these cysteine 

residues can react with RES, only six (Cys151, Cys257, Cys273, Cys288, Cys297 and Cys613) 

are most often reported to react with RES in cells16,23. Site-directed mutagenesis studies have 

demonstrated that Cys273 and Cys288 in the IVR of Keap1 (but not Cys257 or Cys613) are 

required for Keap1-mediated ubiquitination of Nrf2 and subsequent Nrf2 repression6,23,80. 

Additionally, Cys151 in the Keap1 BTB domain is required for inhibition of Keap1-dependent 

degradation of Nrf2 by sulforaphane and oxidative stress80. 

1.3 NITRATED FATTY ACIDS 

The oxidative and free radical microenvironment of inflammation promotes oxidation, 

nitrosation, and nitration reactions by nitric oxide (•NO)-derived reactive species. While oxidized 

PUFA and most eicosanoids are pro-inflammatory mediators, nitro (NO2) derivatives of 

unsaturated fatty acids (NO2-FA) have emerged as endogenous anti-inflammatory messengers. 

For example, nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) induce a 

broad spectrum of biochemical, cellular and in vivo anti-inflammatory responses74,81-86. 
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1.3.1 Biosynthesis and Detection of Nitrated Fatty Acids 

In addition to concentrating O2 and lipophilic nitrogen oxides (i.e. •NO and N2O3), the 

hydrophobic environment of biological membranes facilitates and accelerates nitration, 

oxidation, and nitrosation reactions. This “molecular lens” influences the reaction rates and 

product profiles of •NO-derived species not only by promoting their accumulation, but also by 

providing an aprotic interior and unfavorable conditions for their hydrolysis87. Thus, it is not 

surprising that nitrated lipids have been identified in vivo. In the presence of •NO and nitrite 

lipoxygenase-catalyzed oxidation of low-density lipoprotein (LDL) yields nitrogen-containing 

derivatives of oxidized lipids88,89. Free and esterified PUFA, such as arachidonate and linoleate, 

are especially predisposed to the formation of both reactive intermediates and bioactive products. 

•NO can react with peroxidizing lipid mixtures to terminate radical chain propagation reactions 

and yield nitrogen-containing lipid species (see Fig. 5)90. Nitrated fatty acid derivatives of oleic 

(OA-NO2), linoleic (LNO2), linolenic, arachidonic (AA-NO2) and eicosapentaenoic acids have 

been identified in mammals. Moreover, nitrated derivatives of unsaturated fatty acids are present 

in healthy human blood83,91, and nitrohydroxy derivatives of arachidonate and linoleate have 

been detected in bovine cardiac tissue and in healthy human plasma and lipoproteins, 

respectively83,92. 
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Figure 5. Multiple mechanisms can lead to the nitration of lipids. 

(A) Reactive intermediates from autoxidation of •NO and acidification of nitrite. Under aerobic conditions 

•NO can react rapidly with O2 to form •NO2. When the O2 concentration is significantly lower than atmospheric 

conditions, •NO2 and •NO can be in equilibrium with N2O3. In aqueous milieu, N2O3 can be in equilibrium with 

HNO2. Finally, HNO2 is in equilibrium with is conjugate base NO2
- (pKa=3.35). As all of these reactions are 

reversible, their order and equilibria depend on the source and site of production of NOX, the concentrations of 

various intermediates, and their reaction with other biomolecules. (B) Biologically relevant reactions forming NOX 

(in red) and potential NO2-FA products resulting from reaction of polyunsaturated fatty acids with NOX and reactive 

oxygen species. 

1.3.2 Biological Activity of Nitrated Fatty Acids 

Nitrated PUFA have unique chemical and signaling properties. LNO2, chlolesteryl nitrolinoleate, 

and nitrohydroxylinoleate potentiate vasorelaxation in a concentration-dependent manner via 
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•NO release92,93. Nitrohydroxyarachidonate has also been identified as an endogenous mediator 

of vascular relaxation by releasing •NO and activating soluble guanylate cyclase92. The decay of 

LNO2 also releases •NO, thus stimulating cGMP-dependent vessel relaxation94. In addition to 

serving as •NO donors, nitroalkene derivatives of PUFA can act as ligands for nuclear receptors 

responsible for regulating lipid metabolism and inflammation; LNO2 is a potent ligand for 

PPARγ (Ki ≈ 133 nM), and can activate the receptor within physiological concentration 

ranges81,85. The chemical properties of nitroalkenes greatly contribute to their ability to release 

•NO and act as unique ligands for nuclear receptors. •NO has been hypothesized to be released 

from nitroalkenes by a modified Nef reaction or by the isomerization of nitrite derivatives that 

undergo homolytic scission and/or transition metal-catalyzed reduction93,95. Additionally, LNO2 

has been shown to incorporate readily into the hydrophobic environment of biological 

membranes where it is stabilized by the aprotic environment95. NO2-FA can also form adducts 

with H2O via Michael addition to yield the corresponding nitrohydroxy-fatty acid81,95. This 

reaction explains the observation of coexisting nitroalkene and nitrohydroxy derivatives of fatty 

acids81. The same electrophilic carbon β to the nitro group in nitroalkenes (Fig. 1) that reacts 

with water also allows nitroalkenes to form adducts with nucleophilic amino acid residues in 

proteins (i.e., cysteine and histidine) via the Michael addition reaction. Nitroalkene-protein 

adducts have been identified in healthy human red cells and nitroalkenes inhibit the enzymatic 

activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at physiologically relevant 

concentrations by covalent adduction to Cys-14918. In terms of other nitroalkene-protein adducts, 

NO2-FA inhibit TNFα and LPS-induced macrophage activation by nitroalkylation of p6574, 

inactivate xanthine oxidoreductase96, and activate Keap1/Nrf2-dependent gene expression97.  
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1.3.3 Modulation of Peroxisome Proliferator Activated Receptor-γ 

In addition to serving as electrophilic signaling mediators, OA-NO2 and LNO2 bind to PPARγ, 

initially displaying a Ki (Ki LNO2≈ 133 nM) similar to the agonist Rosiglitazone as determined 

by competition binding analysis of radiolabeled Rosiglitazone displacement from PPARγ81,95. 

PPARγ is a nuclear receptor expressed in a variety of cells/tissues including brown and white 

adipose tissue, vascular smooth muscle, and macrophages. It regulates lipid metabolism and 

storage, glucose uptake, and cell proliferation/differentiation98-101. As such, PPARγ plays an 

important role in both the development and treatment of Type II diabetes and hypertension102,103. 

Specifically, a mutation (P467L or V290M) in helix 12 of the ligand binding domain (LBD) of 

human PPARγ is associated with severe insulin resistance and results in the onset of juvenile 

Type II diabetes and hypertension104. As a ligand-dependent transcription factor, the ligand 

binding domain (LBD) of PPARγ accommodates a wide variety of ligands ranging from 

endogenous lipids to synthetic anti-diabetic drugs such as the thiazolidinediones (TZDs)105. Most 

proposed “natural” PPARγ ligands are intermediates of lipid metabolism and oxidation that bind 

with low-affinity at concentrations orders of magnitude greater than those found physiological 

conditions. This suggests that while naturally occurring compounds may activate PPARγ in vitro, 

they are probably not responsible for PPARγ activation in vivo. Among these natural ligands are 

saturated and unsaturated free fatty acids (palmitic acid; Kd= 156 µM and linoleic acid; Kd= 1 

µM 106)107,108, prostaglandins (15-deoxy-prostaglandin-J2; 15-ΔPGJ2; Kd≈ 300 nM109,110), 

leukotrienes and other oxidized lipid derivatives (9- and 13 hydroxy-octadecadienoic acid; Kd= 

10-20 µM111 and epoxyeicosatrienoic acids; Kd= 1.1-1.8 µM112)107,111, and lysophosphatidic 

acid113. Synthetic TZD ligands, such as Rosiglitazone (Kd= 40 nM-70 nM)114,115, bind PPARγ 

avidly and have been shown to effectively increase insulin sensitivity via PPARγ signaling 
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pathways116-118. By activating PPARγ, TZDs restore insulin sensitivity to alleviate many of the 

symptoms associated with diabetes.  

1.4 OMEGA-3 FATTY ACID AND EICOSANOID SIGNALING  

Omega-3 PUFAs (ω-3-PUFAs) are a family of fatty acids in which the third carbon from the 

methyl end of the fatty acid is unsaturated. Because mammals lack the metabolic machinery to 

synthesize ω-3-PUFA, these fatty acids are considered vital dietary components and are also 

included in the category of essential fatty acids. Three of the most well characterized ω-3-PUFA 

are α-linolenic acid (ALA; 9,12,15-18:3), eicosapentaenoic acid (EPA; 5,8,11,14,17-20:5), and 

docosahexaenoic acid (DHA; 4,7,10,13,16,19-22:6). The salutary health effects of these ω-3-

PUFA have been attributed to multiple mechanisms. 

1.4.1 Benefits of Omega-3 Polyunsaturated Fatty Acids 

The major ω-3-PUFA EPA and DHA have been associated with numerous beneficial 

health effects in humans. In particular, brain and retina tissues are enriched with DHA in healthy 

individuals and DHA is considered necessary for the normal development and function of these 

tissues119,120. The consumption of DHA in the diet has been implicated in reducing 

neurocognitive decline121, improving insulin resistance in diabetics122, decreasing incidence of 

cardiovascular risks such as myocardial infarction123 (as determined by the GISSI trial), and 

reducing inflammation124. Moreover, ω-3-PUFA intake has been associated with decreased risk 

of aggressive prostate cancer via modulation of COX-2125. EPA and DHA are thought to have 
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anti-inflammatory effects by acting as competitive inhibitors of COX-generated arachidonic 

acid-derived pro-inflammatory prostanoids, and the subsequent production of ω-3 prostanoids 

with an ability to induce vasodilation and to inhibit platelet aggregation126. In terms of 

phagocytic immune cells, such as macrophages and neutrophils, the supplementation of DHA 

and EPA in the diet of healthy human volunteers was found to significantly increase phagocytic 

activity127. Additionally, the oxidized metabolites of ω-3-PUFA also exhibit beneficial biologic 

activities. 

1.4.2 Oxidation of Fatty Acids 

The oxidation of PUFA was reported as early as the 1900s while the knowledge of lipid 

oxidation dates back even further. The study of the free radical mediated oxidation of lipids is a 

well-established field (more than 60 years old), in which the autoxidation of DHA and the 

generation of 10 different positional isomers of hydroxy-DHA were described as early as the 

1980s128,129. Several recently emerging classes of lipid mediators can be formed by enzymatic 

(e.g. oxygenases) or non-enzymatic oxidative processes and have demonstrated robust anti-

inflammatory signaling activities. Among these are NO2-FAs, resolvins, neuroprotectins, 

maresins, neuroprostanes and lipoxins (LXs, Fig. 6). For example, oxygenases, i.e. COX and 

LOXs, are one of the first catalytic mediators in the generation of resolvins; the COX oxidation 

products of DHA and EPA can be converted to the D (RvD) and E (RvE) series of resolvins 

respectively130,131. Signaling lipids, such as prostanoids (i.e., PGs and thromboxanes, TXs), can 

mediate processes involved in the promotion or inhibition of inflammation132,133, while in 

contrast, lipids such as NO2-FAs, resolvins, neuroprotectins and neuroprostanes promote anti-

inflammatory signaling effects. Both NO2-FA74 and neuroprostanes73 suppress 
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lipopolysaccharide (LPS)-induced activation of the NF-κB pathway in macrophages via 

electrophilic activities. Additionally, RvE1 inhibits the production of proinflammatory cytokines 

in dendritic134 cells via G-protein coupled receptor (GPCR) interactions135. 

 

 

Figure 6. Chemical structures of oxidized lipids with anti-inflammatory signaling capabilities. 

 

1.4.3 Biological Activity of Oxidized Fatty Acids 

PGs, TXs, leukotrienes and hydroxy-eicosatetraenoic acids (HETEs) are subclasses of 

oxygenated PUFA collectively known as eicosanoids. Prostanoids are formed via the 
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cyclooxygenase pathway in which COXs catalyze the committed oxygenation step. In mammals, 

arachidonic acid (AA; 20:4, ω-6) is the major eicosanoid precursor and substrate for 

COX132,133,136,137. Four double bonds confer a proclivity to AA for reaction with O2 and are 

critical elements of both enzymatic and non-enzymatic oxygenation reactions138. AA is 

converted by COX to PGH2, which is the common substrate for a series of specific synthase 

enzymes that produce PGD2, PGE2, PGF2α, PGI2 and TXA2. Depending on the types of 

prostanoids and receptors present, these signaling lipids can mediate processes involved in the 

promotion or inhibition of inflammation including pain, fever, and regulation of vascular tone133. 

Classical PG signaling occurs via plasma membrane-derived GPCRs. Alternative PG signaling 

occurs via nuclear receptors (e.g., 15d-PGJ2)12,14. PGA2 activates PPARγ, inhibits IκB kinase 

activity, and is generally thought to down-regulate angiogenesis110,139,140. Certain PG derivatives 

of the COX-2 pathway activate signaling cascades involved in inflammation, pain and fever. 

These derivatives have been identified in tissues damaged by chronic inflammation. For 

example, PGE2 and PGI2 have been detected in synovial fluid from knee joints of arthritic 

patients, rat models of carrageenan-induced paw edema and inflammatory lesions. Both have 

been implicated in mediating nociceptive responses to hyperalgesic agents and in potentiating 

erythema 132,133,136.  

1.5 CYCLOOXYGENASE 

COXs (also known as Prostaglandin H synthases (PGHS)) catalyze the two major reactions that 

convert AA to PGH2. In the first reaction, the cyclooxygenase activity of COX catalyzes the bis-

oxygenation and cyclization of AA to yield the endoperoxide-containing prostaglandin G2 
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(PGG2). In the second reaction, a separate peroxidase (POX) active site on the enzyme reduces 

the hydroperoxyl group of PGG2 to a hydroxyl, thus forming PGH2. Various bioactive 

prostaglandin derivatives are subsequently produced by isomerases and oxidoreductases using 

PGH2 as a substrate 132,136,137,141. The genes coding for COX are highly conserved, having been 

identified in both vertebrate and invertebrate species132. The two major isozymes of COX, COX-

1 and COX-2, are active as homodimers and require a heme prosthetic group. Both isozymes 

consist of approximately 600 amino acids in all species, and within the same species COX-2 

possesses 60% amino acid identity with COX-1. The sequences and structures suggest that both 

enzymes localize to the lumen of the nuclear envelope and endoplasmic reticulum, and this 

subcellular localization is thought to play a role in transporting COX products to their receptors. 

COX-1 and COX-2 have been shown to traffic within the nucleus following a variety of stimuli, 

and localization of COX isozymes in lumen of the ER is supported by numerous 

immunocytochemical studies142-144. COX-2 localizes primarily to the nucleus, but it also 

localizes to caveolin-1-containing vesicles in bovine arterial endothelial cells treated with 

phorbol ester or human fibroblasts treated with either phorbol ester or IL-1145,146.  

1.5.1 Cyclooxygenase Structure 

The structures of COX-1 and COX-2 consist of four major domains: an amino-terminal signal 

peptide, a dimerization domain, a membrane binding domain, and a carboxy-terminal catalytic 

domain that comprises 80% of the protein (Fig. 7147). The amino-terminal hydrophobic signal 

peptide directs nascent COX polypeptides into the lumen of the ER where the signal sequence is 

cleaved. Once the nascent peptide is folded, COX enzymes dimerize via hydrophobic 

interactions, hydrogen bonding and salt bridges between the dimerization domains of each 
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monomer. The dimerization domain consists of approximately 50 amino acids adjacent to the 

amino terminus of the protein. Three disulfide bonds maintain the structure of the dimerization 

domain, while a fourth links the dimerization domain to the globular catalytic domain. A tandem 

series of four amphipathic helices immediately carboxy-terminal to the dimerization domain are 

responsible for the attachment of COX isozymes to the upper portion of the hydrophobic core of 

lipid bilayers132,141,147.  

 

Figure 7. Ribbon diagram of arachidonic acid bound to ovine cyclooxygenase-1.  

Figure also depicts the four major domains of COX-1 and a model of the COX-1 dimer147. From 

Malkowski, M.G., et al. The productive conformation of arachidonic acid bound to prostaglandin synthase. 

Science 289, 1933-1937 (2000). Reprinted with permission from AAAS. 
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1.5.2 Cyclooxygenase Catalytic Domain 

In addition to tethering COX to the membrane, the same four amphipathic helices of the 

membrane binding domain form the opening of a hydrophobic channel that constitutes the 

cyclooxygenase active site. One crucial structural difference between the COX-1 and the COX-2 

cyclooxygenase channel is the substitution of isoleucine 523 in COX-1 for a valine in COX-2 

(numbering uses ovine COX-1 as a reference). This substitution opens a hydrophobic out-

pocketing in COX-2 that can be utilized by some COX-2-selective NSAIDs. The enlarged 

cyclooxygenase active site in COX-2 may explain why COX-2 recognizes more bulky substrates 

and has different reactivities with lipid substrates than COX-1. COX-2 efficiently oxidizes 

endocannabinoids (e.g., anandamide (arachidonylethanolamide) and 2-arachidonylglycerol) as 

efficiently as the less bulky AA. Thus, COX-2 can produce endocannabinoid-derived 

endoperoxides, which can be utilized by downstream prostaglandin isomerases. COX-2 activity 

is further linked with endocannabinoid metabolism by the fact that the endocannabinoid 

analogue methanandamide up-regulates COX-2 expression 132,141. The catalytic domain of COX 

also possesses POX activity. An iron-histidine bond involving His388 (ovine COX-1) 

coordinates the heme group of the POX cleft. The orientation of heme-binding exposes a large 

portion of one face of the heme to the open cleft allowing interaction with PGG2 and other lipid 

peroxides132,141.  

1.5.3 Mechanism of Prostaglandin H2 Synthesis by Cyclooxygenases 

Over 50 hydrophobic interactions with 19 amino acid residues coordinate COX substrates 

(i.e., AA) for hydrogen abstraction and facilitate conversion to PGG2
148. Arg120 assists in 
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coordinating the substrate by binding the arachidonyl carboxylate147. Endogenous radicals are 

believed to be required to activate COX holoenzymes by inducing the formation of a tyrosyl 

radical at Tyr385. Oxidation of Tyr385 by the heme radical is believed to be responsible for 

generating the Tyr385 radical132,137,141. Following initial COX activation the Tyr385 radical is 

regenerated with each catalytic event (Fig. 8132, from Simmons, 2004).  

 

Figure 8. The molecular mechanism of prostaglandin G2 formation from arachidonic acid in the 

cyclooxygenase active site is dependent on Tyrosine 385 radical formation and regeneration.  

From Simmons D.L., et al. Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and 

Inhibition. Pharmacol Rev 56, 387-437 (2004). Reprinted with permission from ASPET. 
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Once the Tyr385 tyrosyl radical has been formed, it abstracts the hydrogen from the pro-

S-face of carbon 13 of AA producing an activated arachidonyl radical. Following hydrogen 

abstraction, the 11R-peroxyl radical is formed by the addition of O2. The 11R-peroxyl radical 

then attacks carbon-9, which forms the endoperoxide and induces the isomerization of the radical 

to carbon-8. Concomitant formation of the endoperoxide bridge between carbon-11 and carbon-9 

and rearrangement of the substrate induces ring closure between carbon-12 and carbon-8. This 

rearrangement produces a carbon-centered radical at carbon-15 allowing for the addition of a 

second molecule of O2. Finally, the 15S-peroxyl radical is aligned below Tyr385 and abstracts a 

hydrogen radical to regenerate the Tyr385 radical. Thus, the cyclooxygenase active site requires 

the heme of the POX active site for initial activation and only after activation can the 

cyclooxygenase site function independently of the POX site. This model suggests that the POX 

site can act independently of the cyclooxygenase active site, an event which is observed when 

the cyclooxygenase site is inhibited by NSAIDs. Two molecules of O2 are consumed during a 

controlled free radical chain reaction converting AA to PGG2 by the cyclooxygenase site149. 

PGG2 is then released from the cyclooxygenase site and travels to the POX site, which catalyzes 

a two-electron reduction of the 15S-hydroperoxyl group to an alcohol yielding PGH2 132,137,141. 

1.5.4 Cyclooxygenase Inhibition 

The COX cyclooxygenase channel accommodates a variety of compounds; some of 

which act as inhibitors (e.g. N-(Carboxyalkyl)maleimides), while others, such as 

arachidonylethanolamide, 2-arachidonylglycerol, and other arachidonate ester or amide 

derivatives, are oxidized as substrates by COX-2. When exposed to concentrations of AA that 

approach Vmax, COX isozymes have relatively short half-lives (<1-2 minutes). One popular 
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explanation for this event is the attachment to and subsequent inactivation of COX by 

arachidonyl peroxides and other reactive species (e.g., MDA) generated by COX activity. 

Furthermore, COX-2 possesses 13 cysteines that are accessible to post-translational 

modifications and one of these 13 (Cys526) is known to increase enzyme activity upon 

modification by •NO150. Interestingly, COX-2 activity is significantly decreased upon 

electrophilic maleimide modification of two COX-2 cysteine residues (Cys540 and Cys313) 

located on the catalytic domain outside of the active sites151,152. COX can also be inhibited by 

non-steroidal anti-inflammatory drugs (NSAIDs), which are a family of chemically distinct 

compounds representing one of the most important and most widely used groups of over-the-

counter and prescribed pharmaceuticals132,136. The general therapeutic benefits of NSAIDs 

include inhibition of swelling and/or pain at the site of inflammation, though individual NSAIDs 

may each have their own favorable side effects; for example, ASA in addition to its actions as an 

NSAIDs, protects against stroke and thrombosis, Alzheimer’s disease and some cancers 

independently of COX inhibition. ASA is the only NSAID in medical use that covalently 

modifies COX-1 and COX-2. NSAIDs other than ASA inhibit COX activity by competing with 

AA for binding the cyclooxygenase active site. Inhibition by some NSAIDs occurs almost 

instantaneously, while inhibition by other NSAIDs is time-dependent. Ibuprofen is one such 

NSAIDs that has a rapid on and off rate, readily binding to and dissociating from the 

cyclooxygenase active site. Time-dependent inhibition of COX by NSAIDs is characterized by 

the amount of time the compound remains in contact with the enzyme153; time-dependent 

NSAIDs (e.g., indomethacin and the COX-2 selective inhibitors celecoxib and rofecoxib) require 

seconds to minutes to bind the cyclooxygenase active site, and once bound may require hours to 

dissociate 132,154.  
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1.6 SIGNIFICANCE 

Inflammation is intimately involved in the pathogenesis of important clinical problems 

including atherosclerosis, diabetes, asthma, respiratory distress syndromes, carcinogenesis, and 

arthritis. NO2-FA display anti-inflammatory signaling properties and can be formed under acidic 

and oxidative conditions from reactions of various oxides of nitrogen. While nitrated derivatives 

of fatty acids have already been identified in healthy human blood, it remains unclear as to which 

specific structural features or isomers of nitrated fatty acids produce a particular cell signaling 

response. For example, mixtures of synthetic nitroalkene fatty acid derivatives activate PPARγ, 

but the specific regioisomers and mechanisms responsible for this activation are unknown.  

Furthermore, the field of RES formation and signaling is still developing. This work 

describes the discovery of mono-oxygenated ω-3-PUFA derivatives, termed electrophilic fatty 

acid derivatives (EFADs) that are produced by COX-2 during inflammatory conditions and are 

generated at increased rates with ASA-acetylation of COX-2. The most common way of treating 

inflammation is the use of NSAIDs. However, despite their wide use, some of the mechanisms 

by which NSAIDs work are not fully understood. NSAIDs have long been known to inhibit 

prostaglandin formation by COX-2 but recent literature suggests that ASA may also redirect 

COX-2 activity toward oxidation of long-chain fatty acids that help to reduce inflammation. 

Thus this class of newly discovered EFADs display a distinct capability to act as important 

endogenous mediators of the resolution of inflammation.  
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2.0  MATERIALS AND METHODS 

2.1.1 Materials 

Diclofenac, methyl arachidonyl fluorophosphonate, MK886, (±)-ibuprofen, 

indomethacin, NS-398, 15d-PGJ2, 4-HNE, 9-oxo-10E,12Z-octadecadienoic acid (9-oxoODE, 

a.k.a. 9-KODE), 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic-6,8,9,11,12,14,15-d7 acid (5-oxoETE-

d7), 12-oxo-5Z,8Z,10E,14Z-eicosatetraenoic acid (12-oxoETE), 15-oxo-11Z,13E-eicosadienoic 

acid (15-oxoEDE), 9-oxo-10E,12Z,15Z-octadecatrienoic acid (9-oxoOTrE), 17-oxo-

docosapentaenoic acid (17-oxoDPA), and 17-oxo-docosahexaenoic acid (17-OxoDHA) were 

purchased from Cayman Chemicals (Ann Arbor, MI). Ovine placental COX-2 (Cayman 60120) 

was also from Cayman Chemicals. DPA and DHA were from NuCheck Prep (Elysian, MN). 

Kdo2-lipid A was from Avanti Polar Lipids, Inc (Alabaster, AL) HPLC solvents were from 

Honeywell Burdick and Jackson (USA). Glutathione and glutathione S-transferase were 

purchased from Sigma-Aldrich.  

2.1.2 Cell Culture 

Murine monocyte/macrophage cells (RAW264.7) and human monocyte cells (THP-1) 

were obtained from ATCC (USA) and maintained at 37°C in 5% CO2 in DMEM + 10% FBS 

(RAW264.7) and RPMI + 10% FBS (THP-1) according to ATCC guidelines. L-cells were 

 37 



obtained from ATCC (CCL-1) and maintained at 37°C in 5% CO2 in DMEM supplemented with 

10% FBS, glutamine (2 mM), sodium pyruvate (1 mM), penicillin, streptomycin and non-

essential amino acids. 

2.1.3 Murine Studies 

Bone marrow derived macrophages were isolated from C57BL/6 mice according to the 

protocol developed by Davies 155. Briefly, femurs and tibiae were isolated from euthanized mice, 

severed at both ends by scissors, and their contents flushed with 10 ml of DMEM. Freshly 

isolated bone marrow cells were then differentiated to macrophages by MCSF produced by L-

cells and maintained in DMEM supplemented with 30% L-cell supernatant, 20% FBS, L-

glutamine (2 mM), sodium pyruvate (1 mM), penicillin, and streptomycin.  

 

2.1.4 In Vitro Competitive Binding Analysis of Peroxisome Proliferator Activated 

Receptor γ-Ligand Interactions 

Agonist binding to PPARγ was obtained by time-resolved-Förster resonance energy 

transfer (TR-FRET) analysis (LanthaScreen™ TR-FRET competitive binding assay, Invitrogen.; 

Madison, WI) according to the manufacturer’s procedure. Recombinant human PPARγ ligand 

binding domain (PPARγ-LBD) expressed as a GST-tagged fusion protein and purified from 

baculovirus-infected insect cells was used at a purity of > 85%. The GST-tagged PPARγ-LBD, 

terbium (Tb) labeled anti-GST antibody and Fluormone™ Pan-PPAR Green tracer were added to 

ligand in a black 384-well assay plate (Corning #3677) for final assay concentrations of 5 nM 
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PPARγ, 5 nM antibody and 5 nM tracer. After a 1 h incubation at RT, the Tb emission at 495 nm 

and the FRET signal at 520 nm were measured following excitation at 340 nm using a Tecan 

Ultra 384 microplate reader (Tecan Group Ltd., Maennedorf, Switzerland). 

2.1.5 In Vitro Peroxisome Proliferator Activated Receptorγ-Coactivator Recruitment 

Studies 

Coregulator peptide binding to PPARγ (in the prescence of OA, Rosiglitazone, or OA-

NO2 as ligands) was determined by time-resolved-Förster resonance energy transfer (TR-FRET) 

analysis (LanthaScreen™ TR-FRET PPARγ receptor coactivator assay, Invitrogen; Madison, 

WI) according to the manufacturer’s procedure. In brief, the GST tagged PPARγ ligand binding 

domain (PPARγ-LBD), terbium (Tb) labeled anti-GST antibody and fluorescein labeled peptide 

were added to ligand in a black 384-well assay plate (Corning #3677) for final assay 

concentrations of 5 nM PPARγ, 5 nM antibody and 125 nM peptide. For fold-change 

experiments, CBP-1, PGC-1α, TRAP/DRIP-2, NCoR ID2 and SMRT ID2 peptides (Invitrogen) 

were used at final assay concentrations of 500 nM. After a 2 h incubation at RT, the Tb emission 

at 495 nm and the FRET signal at 520 nm were measured following excitation at 340 nm using a 

TECAN Ultra 384 microplate reader (Tecan Group Ltd., Maennedorf, Switzerland). 

2.1.6 Activation of Cells 

Monocytes were activated with pro-inflammatory compounds using the following methods 

unless otherwise indicated. RAW 264.7 cells were seeded, incubated overnight, and treated at 

approximately 80% confluence. Activation was initiated by exposure to IFNγ (200 U/ml) and the 
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synthetic endotoxin Kdo2 (0.5 µg/ml) (see Appendix B Fig. 46 for structure) as described 

previously156-158. This method of activation reproduced the rate of nitrate/nitrite accumulation in 

the media as reported previously157 (Appendix B Fig. 45). Non-activated controls were treated 

with vehicle (DMSO) alone. During activation, cells were maintained in an activation medium 

(SMEM) of Minimum Essential Eagle Medium (Cellgro, 17-305) + 2% FBS supplemented with 

L-glutamine (584 mg/L), Na-pyruvate (110 mg/L) and Hepes (3.57 g/L, pH 7.4). For inhibition 

studies, potential inhibitors were added to the medium at the time of activation. Cells were 

harvested 20 h post activation (unless otherwise indicated) in 50 mM phosphate buffer (pH 7.4) 

and snap frozen in liquid N2 or finely crushed dry ice. For inhibitor experiments, MTT assays 

were used to confirm that the concentrations used were not toxic to the cells (Appendix B Fig. 

47). THP-1 cells were first differentiated with PMA (50 ng/ml) for 16 h, activated with IFNγ 

(200 U/ml) and Kdo2 (0.5 µg/ml) in RPMI + 2% FBS and harvested 40 h after differentiation. 

DMSO was used as vehicle control for THP-1 cells. BMDMs were activated with PMA (50 

ng/ml), IFNγ (200 U/ml) and (0.5 µg/ml) and were harvested 24 h post activation. 

2.1.7 Alkylation Reaction of Electrophiles with β-mercaptoethanol 

Upon thawing, lysates were exposed to BME (500 mM) (± internal standard, 5-oxoETE-

d7 (1.25 ng/ml)) and incubated at 37°C for 1 h in 50 mM phosphate buffer (pH= 7.4) as 

previously described 159. Protein was precipitated with acetonitrile (4 x reaction volume) and the 

supernatant containing BME-adducted electrophilic lipids was analyzed by reversed-phase high 

performance liquid chromatography electrospray ionization tandem mass spectrometry (RP-

HPLC-ESI-MS/MS). BME-alkylation reactions to determine free and adducted EFADs. 

RAW264.7 cells were activated with Kdo2 and IFNγ, harvested and the cell lysates split in two. 
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The first lysates fraction was reacted directly with BME (500 mM), followed by protein 

precipitation with acetonitrile to yield the total EFAD content in the cell lysates. In the second 

group of cell lysates, the protein was precipitated first with acetonitrile and the supernatant was 

reacted with BME to yield the subpopulation of EFADs that were free or adducted to small 

molecules.  

2.1.8 High Performance Liquid Chromatography and Mass Spectrometry 

The analysis and quantification of BME-adducted molecules were performed using a hybrid 

triple quadrupole-linear ion trap mass spectrometer (4000 Q trap, Applied Biosystems/MDS 

Sciex) in the neutral loss (NL) scan mode, multiple reaction monitoring (MRM) scan mode, and 

the enhanced product ion analysis (EPI) mode. BME adducts were detected by monitoring for 

molecules that undergo a M-/[M - BME]- transition. The declustering potentials were -90 and -50 

V for free fatty acids and BME-adducts, respectively. The collision energies were -30 and -17 V 

for free fatty acids and BME adducts, respectively. Zero grade air was used as source gas, and N2 

was used in the collision chamber. Data were acquired and analyzed using Analyst 1.4.2 software 

(Applied Biosystems, Framingham, MA). 

2.1.8.1 High Performance Liquid Chromatography for Rapid Separation and 

Quantification  

Samples were separated by reversed-phase HPLC using a 20 x 2 mm C18 Mercury MS column 

(3 µm, Phenomenex). BME adducts were separated and eluted from the column using a gradient 

solvent system consisting of mobile phase A (water containing 0.1% formic acid) and mobile 

phase B (acetonitrile containing 0.1% formic acid) at 750 µl/min under the following conditions: 
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hold at 35% B for 0.5 min, then 35-90 % B for 4 min, then 90-100 (0.1 min; hold for 1.4 min); 

and 100-35% B (0.1 min; hold for 1.9 min).  

2.1.8.2 High Performance Liquid Chromatography for Resolution of Isomers 

Samples were separated by reversed-phase HPLC using a 150 x 2.00 mm C18 Luna column (3 

µm, Phenomenex). A flow rate of 250 µl/min was used under the following conditions: hold at 

35% B for 3 min, then 35-90 % B for 23 min, then 90-100 (0.1 min; hold for 5.9 min); and 100-

35% B (0.1 min; hold for 7.9 min).  

2.1.9 Mass Spectrometry Standardization and Quantification of Electrophile-β-

mercaptoethanol Adducts 

EFADs were quantified using an external standard of synthetic 17-oxoDPA and 17-

oxoDHA and by comparing peak area ratios between analytes and a 5-oxoETE-d7 internal 

standard. 

2.1.10 Cyclooxygenase-2 Reactions 

PUFA were exposed to purified COX-2 and products were detected by reverse-phase 

HPLC-MS/MS as previously described131,160,161. Briefly, ovine placental COX-2 was 

preincubated in Tris/heme/phenol (THP) buffer ± ASA to reconstitute the enzyme with heme and 

to give the ASA time to interact with the enzyme (THP buffer, consisting of Tris•Cl (100 mM, 

pH 8.1), hematin (1 μM), and phenol (1 μM) was freshly prepared before each reaction). The 

reaction was initiated by addition of the fatty acids. Each reaction was carried out at 37°C with 
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gentle shaking. The final concentrations of each reagent were as follows: COX-2 (20 U/ml), 

DPA (or DHA; 10 µM), and ± ASA (2 mM). Reactions were terminated by addition of ice-cold 

acetonitrile (9 x reaction volume) and COX-2 protein was removed by centrifugation. Samples of 

each reaction were taken at the indicated times and the formation of the hydroxy-precursors of 

EFAD-2 and EFAD-1 were monitored by RP-HPLC-MS/MS in selected reaction monitoring 

(MRM) mode following the loss of CO2 (transitions for EFAD-2 and EFAD-1 hydroxy-

precursors were m/z 345/301 and m/z 343/299 respectively). 

2.1.11 Luche Reaction 

The Luche reaction was used to reduce putative keto groups to their corresponding 

alcohol. Samples were added to 1 ml of 200 mM CeCl3 and NaBH4 was added in excess (~200 

mM final). Samples were incubated for 1 h with shaking at RT. The reaction was terminated by 

the addition of a few drops of glacial acetic acid and the lipids were extracted by the method of 

Bligh and Dyer162. Samples were dried and reconstituted in methanol at 1 or 2x the original 

sample volume. 

2.1.12 Peroxisome Proliferator Activated Receptor-γ Reporter Assay 

The PPAR gamma-UAS-bla 293H cells (Invitrogen, Madison, WI) used in the PPARγ reporter 

cell-based assay contained a PPARγ ligand-binding domain/GAL4 DNA-binding domain 

chimera stably integrated into a parental cell line previously engineered with a beta lactamase 

reporter gene under control of a UAS response element. PPAR gamma-UAS-bla 293H cells were 

plated in black-walled clear bottom, Poly-D-Lysine coated 384-well plates at a density of 30,000 
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cells per well in assay medium (Phenol red-free DMEM with 0.1% charcoal-stripped FBS 

(Invitrogen)). Cells were then treated with serial dilutions of the indicated ligands and incubated 

37°C (95% air 5% CO2) for 16 h. Following the incubation, LiveBLAzerTM-FRET B/G Loading 

solution (Invitrogen) was added to the cells and they were incubated at room temperature for 2 h. 

Fluorescence intensity at 460 nm and 530 nm emission following excitation at 406 nm was 

measured using a Molecular Devices SpectraMax M2e plate reader (Molecular Devices, 

Sunnyvale, CA). After subtraction of fluorescence background from cell-free wells, the ratio of 

fluorescence intensity at 460 nm versus 530 nm (designated as 460 nm/530 nm) was calculated.  

 

2.1.13 Mass spectrometry of 17-Oxodocosapentaenoic acid alkylation of Glyceraldehyde-3-

Phosphate Dehydrogenase.  

GAPDH (1.25 mg/ml) was reacted for 2 h at ambient temperature with 100 µM EFAD-2. 

Samples were then reduced using 10 mM TCEP and free cysteines alkylated with 20 mM 

iodoacetamide (IAM). The native and EFAD-2 modified proteins were digested with sequencing 

grade trypsin in 50 mM phosphate buffer pH 7.4, at 37 °C overnight using an enzyme:substrate 

ratio of 1:50 (w/w) and subjected to nanoLC/ESI MS/MS, using a Thermo-Fisher LTQ for 

analysis. A reversed-phase trap column (Waters Symmetry C18-20 mm-180 µm ID and 5 µm 

particle size) was loaded with 1 µl of digested sample at a 5 µl /min flow rate for 3 min in 1 % 

mobile phase B (acetonitrile + 0.1 % Formic acid). Peptides were resolved using a Waters 

BEH130 column (C18-100 mm-75 µm ID and 1.7 µm particle size) at 40 °C with a linear 

gradient of solvent B (1–40% in 59 min) at a flow rate of 0.5 µl/min followed by a linear 

gradient of mobile phase B (60–80% in 20 min). Electrospray voltage was 1.4 kV, and ion 
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transfer capillary temperature was 200 °C. Peptides were detected in the positive ion mode using 

a mass range of 100–2000. Instrument and source parameters were optimized by tuning for GS-

EFAD-2 adducts. Mass tolerance was set to 1 Da and the sequence of rabbit GAPDH was 

obtained from the National Center for Biotechnology Information. Peptide identification was 

performed using Bioworks 3.0 with variable modifications set as methionine +/- oxidation (16 

Da), cysteine +/- IAM or +/- EFAD-2. 

2.1.14 Statistics 

Data are expressed as mean ± SD and were evaluated by a one-way analysis of variance, post-

hoc Tukey’s test for multiple pairwise comparisons. Significance was determined as p<0.01 

unless otherwise indicated. 
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3.0  NITRO-FATTY ACID MODULATION OF PEROXISOME PROLIFERATOR-

ACTIVATED RECEPTOR GAMMA 

3.1 INTRODUCTION 

The rapidly expanding global burden of type II diabetes mellitus (DM) and the 

concomitant increased risk for cardiovascular disease (CVD)163,164 has motivated better 

understanding of relevant cell signaling pathways and potential therapeutic strategies. One major 

characteristic of metabolic syndrome and DM is insulin resistance, leading to hyperglycemia and 

dyslipidemia. Following initial clinical use of TZDs as anti-hyperglycemic agents to treat DM in 

the late 1990s, the nuclear receptor PPARγ was discovered as their molecular target. This 

receptor is expressed primarily in adipose tissue, muscle and macrophages, where it regulates 

glucose uptake, lipid metabolism/storage and cell proliferation/differentiation98,100,165. Thus, 

PPARγ ligands and downstream signaling events play a pivotal role in both the development and 

treatment of DM102,166. This is underscored by the observation that mutations in the C-terminal 

helix 12 of the ligand binding domain (LBD) of PPARγ (e.g., P467L or V290M) are linked with 

severe insulin resistance and the onset of juvenile DM104. 

The oxidizing inflammatory milieu contributing to the pathogenesis of obesity, diabetes 

and CVD also promotes diverse biomolecule oxidation, nitrosation, and nitration reactions by O2 

and •NO-derived species. While oxidized fatty acids typically propagate pro-inflammatory 
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conditions, the recently detected NO2-FA appear to act as anti-inflammatory mediators. 

Nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) have been detected in 

healthy human blood and murine cardiac tissue, and mediate anti-inflammatory signaling 

responses in vitro 169,170. Furthermore, the levels of free/unesterified OA-NO2 are around 0.6-3 

nM in human plasma167,168, and OA-NO2 is produced at increased rates during inflammatory and 

metabolic stress. The signaling actions of NO2-FA are primarily ascribed to the electrophilic 

olefinic carbon situated β to the electron-withdrawing NO2 substituent, facilitating kinetically 

rapid and reversible Michael addition with nucleophilic amino acids (i.e. Cys and His)24. NO2-

FA adduction of proteins and glutathione (GSH) has been identified clinically, and NO2-FA 

adduction of critical Cys residues in vitro, mediates the inhibition of macrophage activation via 

NFκB74,171, inactivates xanthine oxidoreductase96 and activates Phase 2 gene expression97. In 

addition to serving as electrophilic signaling mediators, OA-NO2 and LNO2 bind to PPARγ, 

displaying a Kd (Kd LNO2≈ 133 nM) similar to that of Rosiglitazone (Kd= 40 nM-70 nM116,172) as 

determined by competition binding analysis of radiolabeled Rosiglitazone displacement from 

PPARγ 81,95. While OA-NO2 and LNO2 transactivate PPARγ as potently as Rosiglitazone in 

luciferase-based assay systems, NO2-FA-induced differentiation of pre-adipocytes to adipocytes 

and subsequent triglyceride accumulation was diminished when compared to Rosiglitazone 81,95. 

These results suggest that NO2-FA act as partial rather than full agonists of PPARγ and that a 

more complex ligand-receptor interaction than originally described is occurring81,95.  

The large, relatively non-selective ligand binding pocket of PPARγ binds eicosanoids and 

oxidized fatty acid derivatives at μM concentrations173, conferring to this receptor an ability to 

sense and transduce signals generated by the oxidizing inflammatory milieu that can also form 

NO2-FA. Most proposed “natural’ PPARγ ligands are intermediates of lipid metabolism and 
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oxidation that bind with low-affinity at concentrations orders of magnitude greater than 

physiological conditions. Among these natural ligands are saturated and unsaturated free fatty 

acids, prostaglandins, leukotrienes and other oxidized lipid derivatives, and lysophosphatidic 

acid. Synthetic TZD ligands, such as Rosiglitazone, bind PPARγ avidly and have been shown to 

effectively increase insulin sensitivity via PPARγ signaling pathways116. By activating PPARγ, 

TZDs restore insulin sensitivity to alleviate many of the symptoms associated with diabetes. 

Unfortunately, full activation of PPARγ by TZDs also results in undesirable side effects such as 

weight gain, edema, and increased adverse cardiovascular events174,175. Consequently there has 

been significant motivation to identify PPARγ agonists with an activation profile that differs 

from that of TZDs. 

The indication that NO2-FA act as partial PPARγ agonists led to the investigation of the 

mechanisms linking PPARγ binding of NO2-FA to physiological outcomes. Thus the impact of 

NO2-FA association with PPARγ and the subsequent influences on coregulator interactions were 

characterized. It was observed that NO2-FA covalently adducted to PPARγ, induced coregulator 

interactions distinct from those of Rosiglitazone. 

3.2 RESULTS 

3.2.1 The Reducing Environment Determines the EC50 of Nitrated Fatty Acid Binding to 

Peroxisome Proliferator Activated Receptor-γ 

The binding affinity of NO2-FA for PPARγ and their electrophilic reactivity suggested 

that NO2-FA may covalently modify nucleophilic amino acid residues in the LBD. Thus, the 
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impact of PPARγ adduction by NO2-FA was assessed utilizing TR-FRET to quantify competitive 

PPARγ-LBD ligand displacement. In this assay, a Pan-PPAR Green tracer is incubated with 

GST-tagged PPARγ-LBD, and labeled with anti-GST antibody covalently bound to terbium. 

When the tracer is bound to the PPARγ-LBD, energy is transferred from the terbium fluorophore 

to the tracer fluorophore following excitation at 340 nm, resulting in an observed TR-FRET 

signal at 520 nm (green channel). When the tracer is not bound or displaced by another ligand, 

the terbium emits a fluorescent signal at 495 nm (blue channel) following excitation at 340 nm. 

Initially, it was important to determine the optimal concentrations of dithiothreitol (DTT) for the 

assay, as the potential reaction of the NO2-FA with DTT could significantly lower the actual 

concentration of NO2-FA available to the LBD. Revealing insight came from the use of DTT in 

this analysis, as DTT is required to maintain Cys285 thiol reduction and receptor activity. 

PPARγ-LBD (0.5 nM) was incubated for 1 h with fluorescent ligand and the ligand of interest. 

Lowering DTT concentration decreased the fold change between maximum Rosiglitazone 

concentrations and no treatment (Fig. 9), and revealed that DTT also reacts with added NO2-FA, 

resulting in a right-shift of the EC50 value with increasing DTT concentration (Fig. 10).  
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Figure 9. Peroxisome proliferator activated receptor-γ ligand activity of Rosiglitazone and the effect 

of dithiothreitol. 

Ligand binding curves for Rosiglitazone (Rosi; 0.17-10,000 nM) at varying concentrations of DTT. Curve 

fitting equations and EC50s were determined by XLfit4 and are displayed in inset.  

 

Figure 10. Peroxisome proliferator activated receptor-γ ligand activity of nitroalkene derivatives of 

oleic acid and the effect of dithiothreitol. 

Ligand binding curves for OA-NO2 (0.17-10,000 nM) at varying concentrations of DTT. Curve fitting 

equations and EC50s were determined by XLfit4 and are displayed in inset.  
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Thus, measuring EC50 values for ligands at varying DTT concentrations allowed extrapolation of 

an EC50 value for OA-NO2 of <1 nM in the absence of DTT (Fig. 11). These data suggest that 

the unlike Rosiglitazone, the EC50 value of OA-NO2 is dependent on the redox environment and 

that under oxidizing conditions OA-NO2 can be a more potent ligand. 

 

Figure 11. The concentration of dithiothreitol affects the EC50 for nitroalkene derivatives of oleic 

acid. 

EC50 values were plotted against DTT concentration (12.5-5,000 µM) to determine the EC50 of OA-NO2 in 

the absence of reducing agent. Linear fitting equations are as follows: OA-NO2: Y= 0.91x - 0.65, r2= 0.99 and 

Rosiglitazone: Y= -0.14x +2.43, r2= -0.801.  

 

For comparing various ligands, 125 µM DTT was uniformly used, with the expectation that 

actual EC50 values (in the absence of DTT) for electrophilic FA can be >10-fold less than 

observed (OA-NO2 and LNO2, 13 nM and 36 nM, Rosiglitazone, 31 nM respectively, Fig. 12).  
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Figure 12. Nitroalkene derivatives of oleic acid have EC50 values that rival those of Rosiglitazone. 

Ligand binding curves for linoleate (LA), oleate (OA), LNO2, OA-NO2 and Rosiglitazone (Rosi) with 

concentrations ranging from 0.17-10,000 nM and containing 125 μM DTT. Curve fitting equations and EC50s were 

determined by XLfit4 and are displayed in inset.  

 

The EC50 of native oleic acid and linoleic acid were 1900 nM and 870 nM, respectively. These 

data indicate the potent and unique nature of PPARγ binding by NO2-FA. The ligand binding 

curves for additional nitrated fatty acid derivatives were also determined by this method 

(Appendix A Fig. 43 and 44). While TZDs bind and activate PPARγ through both hydrophobic 

and hydrogen bonding interactions176, electrophilic NO2-FA bind and activate PPARγ by not 

only hydrophobic and hydrogen bonding interactions, but also by covalent reaction with the 

nucleophilic LBD Cys285.  

Adduction of OA-NO2 with the LBD was also tested by monitoring competitive binding 

of ligands over time. In the absence of excess DTT, the covalent nature of NO2-FA binding to 

the LBD should result in a left-shift of the EC50 over time as more and more of the receptor is 

adducted. In this experiment, GST-purified PPARγ-LBD (0.5 nM) was incubated with 

fluorescent ligand and the ligand of interest, and the terbium emission and FRET signals were 

measured at various times during incubation (3, 10, 20, and 60 min). The results of this 
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experiment show a lowering in EC50 values over time for OA-NO2 indicating that the 

dissociation rate of OA-NO2 from PPARγ is much lower than those of Rosiglitazone or 

nitrostearic acid (Table 2 and Fig. 13). This significant time-dependent reduction in NO2-FA 

EC50s as compared to ligands that lack electrophilic reactivities (i.e. Rosiglitazone, oleic acid and 

nitro-stearic acid, a nitroalkane) affirmed the covalent interaction of OA-N2 with PPARγ.  

Table 2. Ligands that bind peroxisome proliferator activated receptor γ covalently display decreasing 

EC50 values over time.  

Table indicates ligand binding curves for OA-NO2, 9-OA-NO2, 9-nitro-stearic acid, 12-nitro-stearic acid, 

Rosiglitazone, GW9662 (a ligand that binds PPARγ covalently), and oleic acid with concentrations ranging from 

0.17-10,000 nM and containing 125 μM DTT. Curve fitting equations and EC50s were determined by XLfit4. 
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Figure 13. Scheme of covalent ligand binding in TR-FRET-based PPARγ competitive binding assay. 

Binding of a fluorescent tracer ligand to the ligand binding domain labeled with a terbium-linked anti-GST 

antibody gives a TR-FRET signal. When the tracer is reversibly out-competed by the ligand of interest, a loss in TR-

FRET signal is observed (top). On the other hand, if the ligand binds the receptor covalently, the tracer will have 

less of an opportunity to bind as time goes on and there will be a decrease in the EC50 value. 

 

3.2.2 Binding of Nitroalkene Derivatives of Oleic Acid to PPARγ Results in a Unique Set 

of Interactions with Coregulators Compared to Rosiglitazone  

The specific ligand and cell type combine to define the available coregulator pool that 

interacts with PPARγ. Hundreds of coregulator proteins have been identified that are either 
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protein-modifying enzymes or scaffolds for transcriptional machinery that promote 

(coactivators) or prevent (corepressors) transcription. Rosiglitazone recruits and displaces a 

specific pattern of coregulators upon PPARγ binding to effect the biologic response 

characteristic of full PPARγ agonists. In contrast, binding of partial agonists induces a modified 

coregulator-PPARγ interaction pattern that differentially transactivates target genes177. While 

specific downstream PPARγ signaling has been described for individual coregulatory proteins, a 

definitive linkage between the integrated actions of multiple coregulators and physiological 

outcome is missing.  

Herein, TR-FRET-based analysis of >20 coregulator peptides indicates that PPARγ 

binding by NO2-FA induces a significantly altered pattern of interactions compared to 

Rosiglitazone (not shown). This assay was chosen based on the ability to rapidly screen a wide 

variety of coregulator peptides and NO2-FA derivatives, thus identifying promising coregulators 

and ligands for follow-up in cell culture and in vivo experiments. Additionally this assay detects 

potential transient coregulator peptide-LBD interactions that may not be as easy to detect in cells 

or in vivo. However, it is also important to consider that while the peptides used in this assay 

consist of primary sequences determined to be critical for interaction with the PPARγ-LBD, they 

lack the tertiary structure that may contribute to interaction with or function of the ligand-bound 

PPARγ and other transcription factors. These data are represented in Fig. 14 by the coregulator 

peptide binding patterns for peptides derived from the following coregulators: CREB-binding 

protein, motif 1 (CBP-1), thyroid hormone receptor-actived protein 220, also known as VDR-

interacting protein, motif 2 (TRAP220/DRIP-2) PPARγ coactivator 1α (PGC-1α) and nuclear 

corepressor proteins, interacting domain 2 (NCoR ID2) and the silencing mediator of retinoid 

and thyroid hormone receptors interacting domain 2 (SMRTI D2) (Fig. 14).  
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Figure 14. Nitroalkene derivatives of oleic acid are partial peroxisome proliferator activated 

receptor-γ agonists. 

Fold change in TR-FRET ratios (ligand/no ligand) was determined for the ligands Rosiglitazone (5 µM), 

OA (20 µM), and OA-NO2 (5 µM) and for indicated coregulator peptides (500 nM). Ligand concentrations were 

utilized that induced maximum receptor occupancy as reflected by fluorescent reporter-ligand displacement. 

Statistics were calculated by a one-way ANOVA (post-hoc Tukey). 

 

In contrast to Rosiglitazone, which strongly recruits the coactivator peptides of CBP-1, 

TRAP220/DRIP-2 and PGC-1α and strongly displaces the corepressors NCoR ID2 and SMRT 

ID2, OA-NO2 induces a weaker recruitment and displacement of coregulator peptides, 

supporting a partial PPARγ agonist activity (Fig. 14 and Table 3).  

Table 3. Comparison of Rosiglitazone and nitroalkene modulation of coregulator interaction with 

peroxisome proliferator activated receptor-γ.  

Fold change in TR-FRET ratios (ligand/no ligand) was determined for the ligands Rosiglitazone (2 µM) 

and OA-NO2 (2 µM) and for indicated coregulator peptides (62.5 nM).  
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This unique pattern of PPARγ-coregulator interaction with OA-NO2 is also exemplified by the 

ligand concentration-dependent displacement of SMRTID2 and the lower extent of SMRTID2 

displacement that is induced by OA-NO2 compared with Rosiglitazone (Fig. 15). 
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Figure 15. Ligand titration curves for PPARγ coactivator 1α and silencing mediator of retinoid and 

thyroid hormone receptors interacting domain 2 coregulator peptides indicate that nitroalkene derivatives of 

oleic acid are partial agonists of peroxisome proliferator activated receptor-γ.  

TR-FRET ratios for the coregulator SMRT ID2 peptide and the ligands Rosiglitazone, OA, and OA- NO2. 

Curve fitting equations were determined by XL-fit. 

 

This modified interaction with coregulators is further confirmed by the partial agonism 

observed for NO2-FA in a cell-based beta lactamase reporter assay (Fig. 16). In this assay 293H 

cells contained a PPARγ ligand-binding domain/GAL4 DNA-binding domain chimera and a beta 

lactamase reporter gene under control of a UAS response element. Cells were plated and treated 

with serial dilutions of the indicated ligands. Following a 16 h incubation, a fluorescent substrate 

containing two fluoroprobes (coumarin and fluorescein) linked by a beta lactam ring was added 

to the cells. Without beta lactamase activity the substrate will remain whole and the excitation of 

coumarin at 406 nm will result in the transfer fluorescence resonance energy to fluorescein, 

which will then fluoresce at 530 nm. In cells that express beta lactamase activity, the substrate is 

cleaved and coumarin fluoresces at 460 following excitation at 406 nm. The TR-FRET emission 
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ratio (460 nm/530 nm) is then used to determine the extent of beta lactamase expression (460 nm 

signal) with normalization (530 nM signal) for well-to-well variation of cell number and 

substrate loading.  

 

Figure 16. Beta-lactamase reporter assays indicate nitroalkene derivatives of oleic acid are partial 

agonists of peroxisome proliferator activated receptor-γ 

Rosiglitazone, OA, and OA-NO2 concentrations ranged from 0.5-10,000 nM. Curve fitting equations were 

determined by XLfit4. 

 

Oleic acid was used as a negative control for receptor activation and Rosiglitazone was 

used as a positive control. The efficacy of NO2-FA for receptor activation is considerably lower 

than for Rosiglitazone, with potency remaining in the high nM range. Thus, PPARγ agonism by 

electrophilic NO2-FA manifests unique binding kinetics and induces conformational influences 

on PPARγ that results in self-specific patterns of coregulator recruitment. These properties 

suggest that NO2-FA might induce physiologic responses that differ from Rosiglitazone173,176-178. 
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3.3 CONCLUSIONS 

PPARγ activation by full agonists such as Rosiglitazone induces the expression of 

proteins that regulate cell differentiation, lipid trafficking, glucose metabolism and inflammation, 

thus increasing insulin responsiveness and decreasing blood glucose. However, full PPARγ 

agonists also stimulate adipocyte differentiation in vitro and induce weight gain in vivo, leading 

to the search for selective modulators that activate a subset of PPARγ regulated genes with 

reduced side-effects166,179. Electrophilic NO2-FA derivatives, products of the oxidizing and 

nitrating conditions promoted by inflammation, bind to and react avidly with the redox-sensitive 

LBD Cys285 of PPARγ. This NO2-FA adduction may also serve to protect the oxidation-

sensitive Cys285 of the LBD from inflammatory-derived reactive species. While OA-NO2 and 

Rosiglitazone both bind PPARγ with high affinity, distinctively different patterns of coregulatory 

protein recruitment and release are induced. This crucial aspect of ligand-specific receptor 

conformation and subsequent patterns of transcriptional complex assembly, receptor-DNA 

binding and gene expression lends a second level of specificity to PPARγ signaling and defines 

how a particular ligand influences downstream events such as adipocyte differentiation, lipid 

metabolism, renal fluid regulation and cellular bioenergetics180-183. NO2-FA induce multiple 

salutary anti-inflammatory actions and thus, in addition to serving as partial PPARγ agonists, can 

attenuate other adverse consequences of obesity and diabetes164. Overall, NO2-FA are redox-

derived signaling mediators that link inflammatory reactions with metabolic regulation. 
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4.0  COX-2-DEPENDENT GENERATION OF ELECTROPHILIC α,β-

UNSATURATED DERIVATIVES OF OMEGA-3 FATTY ACIDS IN ACTIVATED 

MACROPHAGES 

4.1 INTRODUCTION 

The major ω-3-PUFA EPA and DHA have been associated with numerous beneficial health 

effects in humans. In particular, brain and retina tissues are enriched with DHA in healthy 

individuals and DHA is necessary for the normal development and function of these tissues119,120. 

The dietery consumption of DHA has been implicated in reducing neurocognitive decline121, 

improving insulin resistance in diabetics122, decreasing incidence of cardiovascular events such 

as myocardial infarction123, and reducing inflammation124. EPA and DHA are thought to have 

anti-inflammatory effects by competitive inhibition of arachidonic acid-derived prostanoid 

synthesis, and subsequent production of ω-3 prostanoids with the ability to induce vasodilation, 

inhibit platelet aggregation126 and promote a series of anti-inflammatory events whose 

mechanisms remain to be elucidated. 

Several emerging classes of anti-inflammatory lipid mediators have been recently 

reported. Among these are nitroalkene derivatives of fatty acids NO2-FAs, 15d-PGJ2, and 

neuroprostanes which are formed during non-enzymatic oxidative events and suppress 

lipopolysaccharide (LPS)-induced activation of the NF-κB pathway in macrophages via 
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electrophilic activities73,74. A second group of such lipid derivatives include the enzymatically-

derived resolvins, neuroprotectins, maresins, and lipoxins (LXs). The enzymes cyclooxygenase-2 

(COX-2) and lipoxygenase (LO) are involved in these biosynthetic processes, and are currently 

emerging as key enzymes in not only the prompt activation of inflammatory events but also their 

finely orchestrated resolution184. Although structurally related to pro-inflammatory prostanoids, 

these hydroxylated lipid derivatives promote resolution of inflammation by suppressing NF-κB 

activation, modulating cytokine expression, activating GPCRs135 and generally promoting 

cytoprotective responses185. 

The formation of multiple subclasses of lipid signaling mediators is dependent on 

leukotrine synthase, LOX, cytochrome p450 oxidases (e.g. the CYP2C subfamily186-188, 

CYP2J2189, CYP4F3B190 and CYP4F8191) and in particular cyclooxygenase (COX) 

enzymes192,193. Prostanoids are formed via cyclooxygenase catalysis wherein AA is the major 

eicosanoid precursor. AA (and other PUFA) can be converted by COXs to PGH2, which is the 

common substrate for a series of specific synthase enzymes that produce a variety of 

prostanoids132,133,136,137. Depending on the types of prostanoids and receptors present, these 

signaling lipids can mediate processes involved in the promotion or inhibition of inflammation 

through GPCR signaling or alternative pathways133. Alternative paths of PG-dependent signaling 

events occur via alterations in nuclear receptor and transcription factor actions (e.g. 15d-PGJ2 

and PGA2 activate PPARγ and inhibit the NFκB pathway)110,139,140. In addition, oxygenases, i.e. 

COX and LOs, initiate the multi-step generation of resolvins, a process that is enhanced by ASA-

acetylated COX-2130,131.  

Some of the lipid mediators mentioned above (e.g. 15d-PGJ2, neuroprostanes, and NO2-

FA) are RES. RES are molecules characterized by having an electron-withdrawing functional 
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group that renders the β-carbon electron-poor and reactive towards electron-rich donor 

molecules (nucleophiles). The strength of the electron-withdrawing group will determine the 

reactivity of the electrophile13. Two prominent examples of these electron withdrawing groups 

are α,β-unsaturated carbonyls and nitroalkenes, in which the β-carbon (if it is bound to at least 

one hydrogen atom) is the site of nucleophilic attack. The resonance structures of electrophiles 

such as the aforementioned allow them to react reversibly with many nucleophiles via Michael 

addition (or in the case of nitroalkenes a modified Michael addition reaction).  

At many levels, reversibly-reacting RES can modulate cell survival mechanisms by 

reacting with nucleophilic nucleic acids, amino acid residues (cysteine, lysine, and histidine) of 

proteins and other small molecules. For example, RES not only modulate protein function by 

reacting with nucleophilic residues, but can also decrease reserves of cellular reductants such as 

GSH. By covalently modifying proteins, RES can initiate cell signaling events and modulate 

enzymatic activity and subcellular localization. RES production and levels are tightly controlled 

in healthy cells with low levels of these species inducing the expression of cell survival genes, in 

some cases preparing the cells to survive periods of stress. In contrast, under pathological 

conditions, RES are often produced in excess and accelerate cell damage13. Recently, RES have 

been tested as potential agents in the prevention or treatment of various diseases such as 

neurodegeneration, cancer, and other pathologies presenting a significant inflammatory 

component. Electrophilic cyclopentenone PG derivatives (e.g. neurite outgrowth-promoting 

prostaglandin metabolites) display protective effects during cerebral ischemia/reperfusion, which 

have been attributed to their accumulation in neurons and subsequent activation of the 

Keap1/Nrf2 pathway194. Other RES (e.g. avicins46, bis(2-hydroxybenzylidene)acetone195, and 

isothiocyanates196) are potential chemopreventative agents, due to their ability to induce 
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apoptosis of precancerous cells and tumor cells. Additionally, 15d-PGJ2 demonstrates a 

protective role in animal models of acute lung injury197. 

The present study reports the discovery of six electrophilic fatty acid derivatives called 

EFADs which are produced by activated macrophages via a COX-2-dependent mechanism. 

These six EFADs are present at 65 nM to 350 nM concentrations in RAW264.7 and THP-1 cell 

lines and in primary murine macrophages following activation by LPS and IFNγ. EFADs 1-3 

have been characterized as α,β-unsaturated oxo-derivatives of the ω-3 fatty acids DHA, 

docosapentaenoic acid (DPA), and docosatetraenoic acid (DTA) respectively. Specific 13-keto 

and 17-keto positional isomers have been identified for EFADs 1 and 2, and were also 

synthesized in vitro. Notably, EFADs formed adducts with proteins and GSH in activated 

RAW264.7 cells. The 17-oxo synthetic homologues of EFAD-1 and EFAD-2 (17-oxoDHA and 

17-oxoDPA) activated PPARγ and the Keap-1/Nrf2 pathway and inhibited iNOS and cytokine 

expression in activated macrophages. Thus these species may contribute to the beneficial effects 

of ω-3 fatty acids and ASA on human health. 

4.2 RESULTS  

4.2.1 Electrophilic Fatty Acid Derivatives are Produced by Activated Macrophages.  

The previously reported robust, unbiased method for the detection of reversibly-reacting RES in 

vivo employs a BME-driven alkylation reaction with RES (Fig. 17) coupled with reverse phase-

high pressure liquid chromatography tandem mass spectrometry (RP-HPLC-MS/MS)159.  
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Figure 17. Reactive electrophilic species that react reversibly with biomolecules (e.g. cysteine residues 

on proteins) can be transferred to β-mercaptoethanol. 

By applying this method to the detection of reversibly-reacting RES formed during inflammatory 

events, it was hypothesized that previously undescribed or poorly characterized species that 

could be overlooked in traditional LC-MS-based methods of detection would be more readily 

identified by this new approach. The alkylation reaction with BME standardizes the MS/MS 

conditions for various adducted RES, conferring similar ionization and fragmentation properties 

to a range of RES, each with their own particular MS/MS characteristics. Accordingly, 

reversibly-reacting RES that might normally be free or adducted to protein or GSH, species that 

fragment poorly during MS/MS, species that might be in concentrations at or below the limits of 

detection, and species whose formation is not predictable based on current knowledge could be 

identified by this method. The formation of RES was initially screened by following the neutral 

loss of BME (78 amu) by RP-HPLC-MS/MS (data not shown). This resulted in the detection of 

six major RES species formed during activation of RAW 264.7 cells by PMA, LPS, and IFNγ 

(Fig. 18).  
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Figure 18. Electrophilic fatty acid derivatives are produced during RAW264.7 cell activation. 

RAW 264.7 cells were activated with PMA (3.24 µM), LPS (0.5 µg/ml), and IFNγ (200 U/ml) and 

harvested 20 h post activation. (a) MRM scans following the neutral loss of 78 were used to detect electrophilic fatty 

acid BME adducts isolated from activated and non-activated RAW 264.7 cell lysates. 

 

Subsequently, MS/MS experiments were performed to confirm the neutral loss of BME from 

each of the six EFADS. The MS/MS spectrum for BME-adducted EFAD-2 (m/z 421 [M-H]) 

displayed characteristic fragment ions at m/z 403 ([M-H]-H2O), 377 ([M-H]-CO2), 343 ([M-H]-

BME), 325 ([M-H]-BME-H2O), and 299 ([M-H]-BME- CO2) (Fig. 19). The MS/Ms spectra for 

all other EFADs showed the same characteristic losses and similar intensity ratios (data not 

shown). 
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Figure 19. Electrophilic fatty acid derivative-2 adducts to β-mercaptoethanol and displays the 

neutral loss of β-mercaptoethanol, water, and carbon dioxide upon MS/MS fragmentation. 

A characteristic BME-electrophile adduct fragmentation pattern showing the major neutral loss of 78 amu 

(corresponding to the loss of BME) is represented by the enhanced product ion analysis of EFAD-2. 

 

The same electrophilic species were detected in PMA, Kdo2 and IFNγ-activated THP-1 cells, a 

human monocyte/macrophage cell line and were confirmed by MRM transition co-elution with 

the species identified in RAW264.7 cells (Fig. 20 and Appendix B Fig. 52). Although their 

relative abundance differed between the two cell lines, MS/MS spectra showed the same 

characteristic losses and similar intensity ratios (data not shown).  
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Figure 20. THP-1 cells activated with PMA, Kdo2 and IFNγ produce electrophilic fatty acid 

derivatives. 

THP-1 cells were differentiated with PMA (86 nM) for 16 h, activated with Kdo2 Lipid A (0.5 µg/ml) and 

IFNγ (200 U/ml), and EFAD-2 levels were detected 8 h post activation. 

 

Although the discovery of six EFADs is being reported, the rest of this work will focus mainly 

on EFAD-2 (as well as EFAD-1) due to its high abundance in activated cells and the biological 

relevance and beneficial health effects of its precursors. 

In order to build on experiments in which accurate detection of EFAD levels was 

required for comparison purposes, it was important to identify which mass spectrometric method 

would be best for quantification of these electrophilic species. The robustness of the BME 

method for the detection and quantification of electrophilic lipids was further tested by 

comparing the mass spectrometric responses of different electrophilic fatty acids containing α,β-

unsaturated moieties using the BME method, selected ion monitoring (SIM) and multiple ion 

monitoring (MRM) mode following the loss of CO2 (Fig. 21). The standard deviation for the 

overall responses obtained for the different fatty acid at each concentration tested ranged from 

40% to 50% for BME, 60-83% for MRM and 15-35% for SIM analysis.  
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Figure 21. BME adducts with α,β-unsaturated keto-derivatives yield the most reliable concentration 

curves for quantification by MS/MS.  

The compounds 9-oxoODE, 12-oxoETE, 15-oxoEDE and 9-oxoOTrE were reacted with BME for 2 h and 

concentration curve was prepared by serial dilution (5-oxoETE-d7 was used as an internal standard). Each 
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compound was quantified by MRM following the neutral loss of BME and their peak areas were plotted against 

their concentrations with normalization to the internal standard (a). Serial dilutions of the free compounds were 

performed to make concentration curves and each compound was quantified by MRM following the loss of -CO2 (b) 

or by a scan for the parent ion (c). 

 

The BME method was clearly superior in terms of signal intensity, background levels and 

linearity. For prediction purposes and for the initial quantification of unknown species in 

biological samples, the BME method was chosen as the one giving overall exceptional 

performances especially when applied to biological samples in which SIM and MRM analyses 

rendered very poor results because of high background levels. (Fig. 21). Thus, the use of the 

BME method and standard curves of 17-oxoDHA, allowed the estimation of intracellular EFAD 

concentrations ranging form 65 to 350 nM (Table 4).  
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Table 4. Summary of data on electrophilic fatty acid derivatives 1-6. 
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4.2.2 Electrophilic Fatty Acid Derivative Production is Time Dependent Following 

Macrophage Activation with Lipopolysaccharide and Interferon-γ.  

The formation of EFADs under different inflammatory conditions was confirmed by 

treating the cells with a variety of stimuli. Thus, macrophages were activated with various 

combinations of LPS, IFNγ, PMA, fMLP, and Kdo2-lipid A (Kdo2) (Fig. 22 and Appendix B 

Fig. 53).  

 

Figure 22. Lipopolysaccharide and Interferon-γ initiate Electrophilic Fatty Acid Derivative-2 

formation in RAW264.7 cells. 

RAW264.7 cells were activated with the indicated compounds and EFAD-2 levels were quantified 20 h 

post activation. Compound concentrations are as follows: LPS (0.5 µg/ml), Kdo2 Lipid A (0.5 µg/ml), IFNγ (200 

U/ml), PMA (3.24 µM), and fMLP (1 µM). Data are expressed as mean + S.D. (n=4), where * = significantly 

different (p<0.01) from “PMA + IFNγ + LPS,” and # = a significant difference (p<0.01) between LPS and “Kdo2 + 

IFNγ” (one-way ANOVA, post-hoc Tukey’s test). 
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Kdo2, a synthetic endotoxin198, was used to avoid the contribution of potential LPS 

preparation contaminants to EFAD formation. Since the combination of Kdo2 and IFNγ behaved 

nearly identically to LPS, it was used for all of the following experiments. This further 

confirmed that no components or contaminants in the LPS itself were acting as precursors of 

EFADs. Additionally, a time course analysis showed that EFAD formation was time dependent, 

starting 4-6 h post RAW264.7 cell activation and reaching a peak at approximately 10 h. EFAD 

levels remained stable for up to 24 h (Fig. 23 and Appendix B Fig. 54).  

 

Figure 23. Electrophilic Fatty Acid Derivative-2 is detected 4-6 hours after RAW264.7 cell activation. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and EFAD-2 levels 

were quantified at indicated times post activation.  
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4.2.3 Electrophilic Fatty Acid Derivatives are α,β-unsaturated keto-derivatives of fatty 

acids.  

Accurate mass TOF data (at an accuracy below 10 ppm), elution profile, and loss of CO2 upon 

fragmentation suggested EFAD-2 to be a mono-oxygenated derivative of a 22-carbon fatty acid 

with a total of five double bonds. The MS/MS spectrum for BME-adducted EFAD-2 (m/z 421 

[M-H]-) displayed characteristic fragment ions at m/z 403 ([M-H-H2O]), 377 ([M-H-CO2]), 343 

([M-H-BME]), 325 ([M-H-BME-H2O]), and 299 ([M-H-BME- CO2]) (Fig. 19), consistent with 

the fragmentation pattern of BME adducts previously reported159. Similarly, EFAD-1 and -3 

were identified as mono-oxygenated derivatives of a 22-carbon fatty acid with a total of six and 

four double bonds, respectively. To elucidate the precursors in vivo, fatty acid media 

supplementation studies were performed. PUFA of the ω-3 and ω-6 series were used for 

supplementation, and PUFA of different chain lengths and degrees of saturation were chosen 

based on availability of large pure quantities. Oleic acid (18:1 ω-9) was used as a mono-

unsaturated control for fatty acid supplementation, as the ω-9 series is not elongated and 

desaturated to the same degree as fatty acids of the ω-3 and ω-6 series. The formation of EFAD-

2 was significantly increased in activated RAW264.7 cells supplemented with 18:3 ω-3 (α-

linolenic acid) and 20:5 ω-3 (EPA) while formation was slightly decreased when the relevant ω-

6 species were provided (Fig. 24).  
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Figure 24. Electrophilic fatty acid derivative-2 is a product of docosapentaenoic acid oxidation. 

RAW264.7 cells were grown for 3 days in DMEM and 10% FBS supplemented with 32 μM of the 

indicated fatty acid. On the third day cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and 

EFAD-2 levels were quantified 21 h post activation. 

 

These results indicated that EFAD-2 was derived from ω-3 PUFAs exclusively. The 

supplementation of 22:6 ω-3 (DHA) did not increase EFAD-2 levels. This was consistent with 

the fact that while mammalian cells can desaturate and elongate shorter chain PUFAs, they 

generally do not resaturate such PUFA as DHA. The formation of EFAD-1 in activated 

RAW264.7 cells was increased only by the supplementation of 22:6 ω-3 (Fig. 25).  
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Figure 25. Electrophilic fatty acid derivative-1 is derived from docosahexaenoic acid. 

RAW264.7 cells were grown for 3 days in DMEM and 10% FBS supplemented with 32 μM of the 

indicated fatty acid. On the third day cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and 

EFAD-1 levels were quantified 21 h post activation. 

 

EFAD-3 was increased by both ω-3 and ω-6 fatty acid supplementation, indicating that its 

precursor could be either ω-3 or ω-6 DTA (Fig. 26, see Appendix B Fig. 49-51 for results for 

EFADs 4-6).  
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Figure 26. Electrophilic fatty acid derivative-3 is derived from both the ω-6 and ω-3 series of fatty 

acids. 

RAW264.7 cells were grown for 3 days in DMEM and 10% FBS supplemented with 32 μM of the 

indicated fatty acid. On the third day cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and 

EFAD-3 levels were quantified 21 h post activation. 

 

Overall, this study showed that EFAD-1, EFAD-2, and a percentage of EFAD-3 were derivatives 

of ω-3 fatty acids DHA, DPA and DTA while EFAD-4 to -6 were synthesized from ω-6 and ω-9 

fatty acids (Table 4).  

In order to confirm that the electrophilic functional group of EFADs was an α,β-

unsaturated carbonyl and to exclude the presence of other electrophilic groups (i.e. epoxy group), 

the Luche reaction was performed (Fig. 27-29). This reaction uses NaBH4 (in the presence of 

CeCl3) to selectively reduce carbonyl groups (but not epoxy or carboxylic acid groups) to the 

allylic alcohol without loss of regioselectivity (Fig. 27)199.  
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Figure 27. Diagram of NaBH4 reduction of an α,β-unsaturated keto group to an alcohol group. 

 

Lipid extracts from IFNγ and LPS-activated RAW264.7 cell lysates were fractionated 

using HPLC. The fraction containing EFAD-2 (detected by MRM scan for the loss of CO2: m/z 

343/299) was reduced with NaBH4, resulting in a significantly decreased MRM signal for 

EFAD-2 and the appearance of a previously absent peak at the transition 345/327 (reduced 

product of EFAD-2, Fig. 28).  

 

Figure 28. Electrophilic fatty acid derivative-2 can be reduced to the corresponding hydroxy species 

by NaBH4. 

(Left panel) MRM scans monitoring for the m/z transition of 343.2/299.2 (keto-DPA losing CO2) in RAW 

264.7 cell lysates purified for EFAD-2 and treated with or without NaBH4. (Right panel) MRM scans monitoring for 

 78 



the m/z transition of 345.2/327.2 (hydroxyl-DPA or keto-DTA losing H2O) in RAW 264.7 cell lysates purified for 

EFAD-2 and treated with or without NaBH4. 

 

The reduced (hydroxy) product of EFAD-2 treated with NaBH4 was also detected by 

MRM following the transition for the loss of CO2 or H2O; the MRM transition for loss of water 

(m/z 345/327) (Fig. 28). The m/z value of 345 is also the value for parent ion of EFAD-3 (two 

mass units greater than EFAD-2), thus the transition m/z 345/327 gives a signal in the EFAD-2 

enriched fraction that is diminished following NaBH4 reduction. Upon treatment with NaBH4 the 

MRM transition m/z 345/327 also displays the appearance of a new signal eluting 2 min before 

the signal for EFAD-3, suggesting the formation of reduced EFAD-2.  

Due to the enhanced fragmentation typical of hydroxy groups during MS/MS, products of 

the Luche reaction yielded relevant information about the location of the original carbonyl group. 

In the case of EFAD-2 there is a predominance of reduced carbonyl (hydroxyl) groups located at 

the 13th or 17th position (Fig. 34 and 35). The MS/MS spectrum of the parent ion m/z 345.2 

typically displays the following fragment ions m/z 327 ([M-H]-H2O) and 283 ([M-H]-H2O-CO2). 

Diagnostic ions for 13-hydroxy-DPA (m/z 223, 205 (223-H2O), and 195) were observed in the 

EFAD-2 enriched fraction reduced with NaBH4 (Fig. 29).  
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Figure 29. Electrophilic fatty acid derivative-2 reduced by NaBH4 displays a fragmentation pattern 

indicating a hydroxy group at carbon 13. 

EFAD-2 was purified from activated RAW 264.7 cells and reduced with NaBH4 to produce the 

corresponding hydroxy-derivative, thus providing specific MS/MS fragmentation surrounding the hydroxy group. 

 

The findings of the Luche reaction experiments and the fatty acid supplementation 

studies finally revealed that EFAD-2 corresponded to 13-oxoDPA, that EFAD-3 was an oxo-

derivative of DTA, and that EFAD-5 was an oxo-derivative of 20:3 ω-6 (Table 4).  

4.2.4 Cyclooxygenase-2 is Responsible for Electrophilic Fatty Acid Derivative Production.  

In the process of identifying EFADs as α,β-unsaturated keto-derivatives of PUFA, a 

series of experiments were performed to determine the mechanisms of their synthesis. First 

EFAD-2 levels were quantified in RAW264.7 cells activated with Kdo2 and IFNγ following 

treatment with a variety of inhibitors (Fig. 230, Appendix B Fig. 55 and Table 4).  
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Figure 30. Electrophilic fatty acid derivative-2 formation in RAW264.7 cells is inhibited by genistein, 

ETYA, and MAFP. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) in the presence of 

indicated inhibitors and EFAD-2 levels were quantified 20 h post activation. (a) Inhibitor concentrations were as 

follows: VC (vehicle control), genistein (25 µM), MAFP (25 µM), MK886 (500 nM), ETYA (25 µM) and OKA (50 

nM). Data are expressed as mean + S.D. (n=4), where * = significantly different (p<0.01) from “Kdo2 + IFNγ” (one-

way ANOVA, post-hoc Tukey’s test). 

 

Both Genistein and methyl arachidonyl fluorophosphonate (MAFP) inhibited EFAD-2 

production by over 50%. Genistein (25 µM) was chosen as a general tyrosine kinase inhibitor to 

inhibit LPS and IFNγ signal transduction. MAFP, a selective irreversible inhibitor of both 

calcium-dependent and calcium-independent cytosolic phospholipase A2 (cPLA2 and iPLA2), 

was employed to determine if EFAD precursors were released from complex lipids upon 

RAW264.7 cell activation. To determine if 5-lipoxygenase (5-LOX) was involved in EFAD 

formation, MK886 (500 nM) was used to prevent FLAP activation of 5-LOX. MK886 had no 

significant effect on EFAD-2 formation. Eicosatetraynoic acid (ETYA; 5 μM), a nonspecific 
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inhibitor of COX and LOX enzymes, strongly inhibited EFAD formation. Finally, the general 

phosphatase inhibitor, okadaic acid (OKA; 50 nM), caused a slight increase in EFAD formation, 

which was probably due to the enhancement of signal transduction downstream of LPS and 

IFNγ. 

In order to determine whether the inhibitory effects of ETYA on EFAD formation were 

due specifically to the inhibition of COX, EFAD-2 levels were quantified in RAW264.7 cells 

that were activated with Kdo2 and IFNγ, and treated with COX inhibitors (Fig. 31, Appendix B 

Fig. 56 and Table 4).  

 

Figure 31. Electrophilic fatty acid derivative-2 formation is dependent on cyclooxygenase-2 activity. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) in the presence of 

indicated inhibitors and EFAD-2 levels were quantified 20 h post activation. COX inhibitor concentrations were as 

follows: VC (vehicle control) aspirin (200 µM), indomethacin (25 µM), ibuprofen (100 µM), diclofenac (1 µM) and 

NS-398 (4 µM). Data are expressed as mean + S.D. (n=4), where * = significantly different (p<0.01) from “Kdo2 + 

IFNγ” (one-way ANOVA, post-hoc Tukey’s test). 
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COX inhibitors were used at concentrations that were at least 5 times their IC50 values, 

based on previous literature (for a summary see Gierse et al.)161. Indomethacin (25 µM) and 

diclofenac (1 µM) were found to completely abolish EFAD formation, while ibuprofen (100 µM) 

was found to inhibit EFAD formation by more than 80%. Moreover, the selective COX-2 

inhibitor, NS-398 (4 µM), a close structural relative of Nimesulide, also abolished EFAD 

formation. Finally, ASA (200 µM) significantly increased EFAD formation by 2.5 fold. This was 

consistent with previous reports showing that ASA acetylation of COX-2 Ser530 favors the 

formation of hydroxy or hydroperoxy derivatives of ω-3 PUFA131. 

The provocative results yielded by the use of COX inhibitors, supported the involvement 

of COX-2 in EFAD-2 synthesis and motivated the development of an in vitro model of 

enzymatic EFADs synthesis (Fig. 32 and Appendix B Fig. 58).  
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Figure 32. Ovine cyclooxygenase-2 catalyzes the formation of hydroxyl-containing precursors of 

Electrophilic fatty acid derivative-2 from docosapentaenoic acid in vitro. 

The hydroxyl-precursors of EFAD-2 were synthesized in vitro using purified ovine COX-2 ± aspirin and 

DPA. The hydroxyl precursors were analyzed (by EPI) and quantified (by following their MRM transitions) at the 

indicated time points during the reaction by HPLC-ESI-MS/MS. 

 

Purified ovine COX-2 generated the EFAD-2 precursor, hydroxy-DPA (similarly, the 

EFAD-1 precursor, hydroxy-DHA, was produced from DHA). Similarly, the EFAD-1 precursor, 

hydroxy-DHA (OH-DHA), was produced from DHA by COX-2 (Appendix B Fig 61). ASA 

increased the rate and extent of formation of hydroxy-DPA and also shifted the population of 

hydroxy-isomers produced from 13-hydroxy-DPA to 17-hydroxy-DPA (Fig. 33 and Fig. 34 and 

35).  
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Figure 33. Cyclooxygenase-2 produces hydroxy-docosapentaenoic acid in vitro that co-elutes with 

reduced electrophilic fatty acid derivative-2 purified from activated RAW264.7 cells.  

The hydroxyl-precursors of EFAD-2 were synthesized in vitro using purified ovine COX-2 ± aspirin and 

DPA. The hydroxyl precursors were analyzed (by EPI) and quantified (by following their MRM transitions) at the 

indicated time points during the reaction by HPLC-ESI-MS/MS. 

 

The fragmentation pattern of COX-derived 13-OH-DPA showed the characteristic m/z 

195 and 223 ions, corresponding to the hydroxyl group induced fragmentation already observed 

in RAW264.7 cell extracts upon NaBH4 reduction (Fig. 29 and Fig. 34). In contrast, when COX-

2 was treated with ASA, characteristic ions corresponding to the hydroxyl group at the 17th 

position were detected (Fig. 35).  
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Figure 34. Hydroxy-docosapentaenoic acid produced by incubation of cyclooxygenase-2 and 

docosapentaenoic acid displays a MS/MS fragmentation pattern indicating a hydroxy group at carbon 13. 

DPA was incubated with purified ovine COX-2 in vitro and the resulting fragmentation patterns of 

hydroxy-DPA were analyzed by MS/MS. 

 

Preincubation of COX-2 with ASA produced 17-hydroxy-DPA, which gave the 

following diagnostic ions: (m/z 275, 247, and 203 (247-CO2). The fragmentation patterns of 

biological EFADs were confirmed using standards synthesized with purified COX-2.  

 

Figure 35. Hydroxy-docosapentaenoic acid produced by incubation of cyclooxygenase-2 with 

docosapentaenoic acid and acetylsalicylic acid displays a MS/MS fragmentation pattern indicating a hydroxy 

group at carbon 17. 
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DPA was incubated with purified ovine COX-2 in vitro with aspirin and the resulting fragmentation 

patterns of hydroxy-DPA were analyzed by MS/MS. 

 

In activated, ASA-treated RAW264.7 cells this shift resulted in the production of 17-oxo-

isomers. Finally, 17-oxoDPA and 17-oxoDHA were synthesized as standards and found to co-

elute with EFAD-2 produced in activated RAW264.7 cells (Fig. 36).  

 

Figure 36. Adducts of β-mercaptoethanol and electrophilic fatty acid derivative-2 produced by 

activated RAW264.7 cells treated with aspirin co-elute with BME-17-Keto-DPA adduct standards. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) ± aspirin and 

compared to a 17-keto-DPA standard. The elution profile of EFAD-2 was monitored by MRM scans following the 

m/z transition of 421.2/343.2 (the BME adduct of EFAD-2 losing BME). 

 

Since COX-2 alone was unable to produce the oxo-group typical of EFADs, a hydroxy-

dehydrogenase reaction was necessary in order to complete EFAD biosynthesis in the cells. 
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Lysates from activated or non-activated RAW264.7 cells were incubated with the EFAD-2 

precursors DPA and OH-DPA. When activated and non-activated cells were incubated with OH-

DPA in presence of NAD+ there was a time-dependent production of EFAD-2, suggesting that 

the cells have a constitutively expressed hydroxy-dehydrogenase activity (Fig. 37, included with 

the permission of Chiara Cipollina).  

 

Figure 37. RAW264.7 cells possess an inducible oxygenase activity and a constitutive hydroxy-

dehydrogenase activity 

RAW264.7 cells were activated with Kdo2 (0.5 μg/ml) and IFNγ (200 U/ml) or treated with vehicle control 

and their lysates were collected 20 h post activation. Hydroxy-DPA, DPA, or vehicle was added to the cell lysates 

and the production of keto-DPA or hydroxy-DPA was monitored over time. 

 

Alternatively, only activated cells displayed a time-dependent production of hydroxy-

DPA and EFAD-2 when incubated with DPA. Thus only the metabolism of activated cells was 

able to convert DPA into oxo-DPA, consistent with the requirement of COX-2 for this 

conversion. The hydroxy-dehydrogenase activity responsible for the conversion of OH-DPA to 

its oxo-derivative appeared to be constitutively expressed. Control experiments also confirmed 

that hydroxy-fatty acid derivatives were not being converted to or formed from the 

corresponding oxo-derivative during the BME-alkylation with cell lysates (Appendix B Fig. 48) 
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4.2.5 Electrophilic Fatty Acid Derivatives are Produced by Primary Macrophages 

Isolated from Mouse Bone Marrow.  

Since RAW 264.7 cells (and potentially other macrophage cell lines) may experience differences 

in AA metabolism200, it was important to demonstrate that the formation of EFADs occurred in 

primary cell lines as well. Thus, C57BL/6 murine primary hematopoietic stem cells were 

differentiated to macrophages, activated with Kdo2 and IFNγ and analyzed for the formation of 

EFADs. Five out of the six EFAD species (EFAD-1, 2, -3, -5 and -6) were observed which co-

eluted with those produced by RAW264.7 cells and with the available standards. Cell lysates 

were subsequently reacted with BME and lipids were extracted and detected using the same 

methods as those for the RAW264.7 cells (Fig. 38 and Appendix B Fig. 57).  
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Figure 38. Electrophilic fatty acid derivative-2 is formed in activated primary murine macrophages. 

Bone marrow derived macrophages were activated with PMA (3.24 µM), Kdo2 (0.5 µg/ml), and IFNγ (200 

U/ml) and EFADs were detected 10 h post activation. 

 

Similar to what was observed in RAW264.7 cells, when activated bone marrow-derived 

macrophage (BMDM) cells were treated with ASA the extent of EFAD formation was increased 

about two to three fold and in the case of EFAD-1 and -2, the isomeric composition shifted from 

13-oxo to 17-oxo species. 
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4.2.6 Electrophilic Fatty Acid Derivatives Adduct to Proteins and GSH.  

Many electrophiles (e.g. HNE201, 15d-PGJ2
17, and NO2-FA18) form adducts with 

nucleophilic amino acid residues in the cell202. In order to confirm EFADs electrophilic nature in 

the intracellular environment it was important to determine the occurrence and extent of 

adduction to proteins and small molecule sulfhydryls. Several approaches were used to 

demonstrate the occurrence of these reactions in activated cells using well-characterized proteins 

as reporters. First, total EFAD content was quantified and compared with the pool of free EFADs 

(including EFADs adducted to small molecules such as glutathione, Fig. 39). The difference 

between the two groups gave the percentage of EFADs adducted to proteins (~50%).  

 

Figure 39. Electrophilic fatty acid derivative-2 adducts to proteins in activated RAW264.7 cells. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and harvested 21 h 

post activation. Cell lysates were then split into two groups: 1) treated directly with BME (500 mM) followed by 

protein precipitation with acetonitrile and 2) protein precipitation with acetonitrile followed by treatment with BME 

(500 mM). BME reaction proceeded for 2h and EFAD-2 levels were quantified by RP-HPLC-MS/MS. 

 

 91 



Subsequently, the expected difference in reaction kinetics of BME with free and adducted 

EFADs was used to further confirm the distribution of intracellular EFADs, between free and 

adduct form. Reaction rates of BME with free electrophiles were measured and were found to be 

fast, with a pseudo first order reaction rate constant calculated to be between 3x10-3 and 5 x10-3 

sec-1 for the different α,β-oxo-unsaturated fatty acids tested (15d-PGJ2, EFAD-1, EFAD-2 and 

oxoETE, data not shown). In contrast, reactions with adducted electrophiles are slower, and 

depend on the koff reaction rate of the Cys-EFAD and His-EFAD adducts. The time-dependent 

characteristic of these reactions was used to further confirm the adducted populations present in 

the cell lysates (Fig. 40).  

 

Figure 40. The free population of electrophilic fatty acid derivative-2 reacts with β-mercaptoethanol 

in the first 5 minutes of the reaction, while the thiol-adducted population takes up 45 minutes to transfer to β-

mercaptoethanol.  

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and harvested 21 h 

post activation. Cell lysates were also monitored for reaction with BME (500 mM) over time. 
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Fast kinetics with free EFADs and a slower component reaction rate for the displacement 

of EFADs from adducted proteins were observed. Approximately 50% of the EFADs reacted 

with BME within the first 5 min, suggesting that protein-adducted EFADs accounted for the 

remaining ~50% of total EFADs reacted with BME after 45 min. To more specifically test the 

binding of EFADs to nucleophilic residues in proteins, we tested whether GAPDH was alkylated 

by EFADs. This enzyme is a well-characterized target for electrophiles and becomes easily 

inactivated by nitrosylation, oxidation or nucleophilic addition. As expected and based on its 

electrophilic properties, the EFAD-2 synthetic standard (17-oxo-isoform) readily formed adducts 

with Cys244, Cys149, His163 and His328 residues of GAPDH in vitro (Appendix B Fig. 63-

66).  

Additionally, glutathione adducts of oxo-DHA and oxo-DPA were found both in cell 

lysates and media of activated RAW264.7 cells, and compared to standards synthesized by 

reacting GSH and 17-oxo standards in the presence of GST (Fig. 39, included with the 

permission of Chiara Cipollina, and Appendix B Fig. 59).  
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Figure 41. Intracellular and extracellular Glutathione-oxo-docosapentaenoic adducts (m/z 634.4) 

were detected following activation of RAW264.7 cells.  

(a) Chemical structure and fragmentation pattern of GS-13-oxo-DPA. (b) Chromatographic profiles and 

mass spectra of 13- and 17-oxo-DPA derived from synthesized standards (upper panels), cell medium (middle 
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panel) and cell pellet (lower panel). Differences due to recovery efficiency were taken into account by correcting the 

signals levels using the internal standard GS-5-oxo-ETE-d7. Fragments 345.3 and 523.3 were selected and 

monitored as the ones giving the best signal to noise ratio in samples derived from cell media and cell pellets, 

respectively. Fragment 634.4 derived from loss of H2O from the parent ion 652.4; m/z 523.3 and m/z 420.3 

corresponded to fragments y2 and c1 typical of peptide fragmentation while 345.3 and 308.2 derived from the lipid 

and the glutathione molecule. m/z 505.3 and m/z 327.2 derived from loss of H2O from 523.3 and 345.3, 

respectively. K/I, cells treated with Kdo2-Lipid A and IFNγ; K/I + Asa, cells treated with Kdo2-Lipid A, IFNγ and 

aspirin; NT, non treated cells. 

 

The fragmentation patterns observed for EFAD-1 and -2 correspond to those obtained 

with the synthetic standards. Addition of ASA induced an increase in GS-adduct formation, 

consistent with the concomitant increase in EFADs synthesis. GS-adducts were also found in the 

extracellular media, with the exception ASA-treated samples, in which extracellular detection 

was unexpectedly reduced. 

4.2.7 Electrophilic Fatty acid Derivatives Activate Cyto-protective and Anti-

inflammatory Pathways.  

Typically, RES promote the activation of the Nrf2-dependent anti-oxidant response pathway via 

thiol-dependent modification of the Nrf2 inhibitor Keap1. This allows nuclear translocation of 

the transcription factor Nrf2 and the expression of its target genes17. Consistent with their 

electrophilic nature, 17-oxo-DHA and 17-oxo-DPA promoted dose-dependent Nrf2 nuclear 

accumulation and expression of the cytoprotective enzymes heme oxygenase 1 (HO-1) and 

NAD(P)H:quinone oxidoreductase 1 (NQO-1) at micromolar concentrations (Appendix B Fig. 

60, included with the permission of Chiara Cipollina).  
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Besides activating Nrf2-dependent anti-oxidant responses, 17-oxo-DHA and 17-oxo-

DPA may play a role in modulating the inflammatory response generated by Kdo2 and IFNγ 

treatment. Thus iNOS and COX-2 expression and activities were assessed. EFAD-1 and -2 

strongly and dose-dependently repressed iNOS induction and subsequent accumulation of nitrate 

and nitrite in the cell media (Appendix B Fig. 61, included with the permission of Chiara 

Cipollina). In particular, although the expression of the enzyme seemed to be unaffected when 

cells were treated with 10 μM concentrations, a clear reduction of nitrite production was still 

observed. Notably, Cox-2 induction was not affected by EFADs. Among the analyzed cytokines, 

IL-6, MCP-1 and IL-10 showed the strongest dose-dependent repression following EFAD 

treatment, with MCP-1 and IL-10 being more affected compared to IL-6 (Appendix B Fig. 62, 

included with the permission of Chiara Cipollina).  

Similar results were observed in bone marrow derived macrophages (data not shown). 

The expression of iNOS and the analyzed pro-inflammatory cytokines is dependent on the 

activity of NF-kB and Stat-1. Electrophilic lipids can repress the activation of these 

transcriptional factors either by direct adduction to the NF-kB subunit p65 and to the inhibitor 

IκBα or via indirect mechanisms. Therefore, we assessed the effect of EFADs on p65 nuclear 

translocation and DNA binding and on Stat-1 phosphorylation. No significant inhibition was 

observed (data not shown).  

4.2.8 EFADs Act as Peroxisome Proliferator Activated Receptor-γ Ligands.  

Oxo fatty acids, such as 15d-PGJ2
203, 5-oxoEPA, 6-oxoOTE, and the synthetic 4-

oxoDHA173, covalently bind and activate the peroxisome proliferator-activated receptorγ 
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(PPARγ). Thus PPARγ beta-lactamase reporter assays were performed to determine the ability of 

17-oxoDPA and 17-oxoDHA to activate PPARγ (Fig. 42). The standards for EFADs 1 and 2 (17-

oxoDPA and 17-oxoDHA) displayed slightly greater EC50s (~40 nM) than 15-dPGJ2 (~25 nM) 

and EC50s that were orders of magnitude lower than those for 17-hydroxyDPA (>10 μM) or their 

corresponding native fatty acids (DHA and DPA). 

 

Figure 42. The 17-oxo-standards for electrophilic fatty acid derivatives -1 and -2 are agonists of 

peroxisome proliferator activated receptor-γ. 

PPARγ beta-lactamase reporter assays were performed for Rosiglitazone, 17-oxoDPA, 17-oxoDHA, 15d-

PGJ2, DPA, and DHA with concentrations ranging from 0.5-10,000 nM. 
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4.3 CONCLUSIONS 

Despite current knowledge regarding a wide range of lipid signaling mediators, the 

question as posed by Harkewicz et al. 204 still remains: “are biologically significant eicosanoids 

[or other fatty acid-derived metabolites] being overlooked?” Herein we address this question by 

focusing the search for lipid metabolites on those with reversible electrophilic activity and 

consequently a potential for regulated signaling capabilities. The methods used in this study 

detected six novel EFADs, as well as oxoETE (data not shown), that were produced following 

the activation of macrophages with IFNγ and the endotoxin Kdo2 lipid A. To our knowledge, 5 

of these species have not been described before as metabolic products of mammalian cells 

(however, EFAD-5 may be oxoETrE). Interestingly, 15d-PGJ2 formation was monitored and not 

observed in this study; the levels of 15d-PGJ2 may have been too low for detection. 

In taking the search for lipid mediators a step further, the Lipid Metabolites and Pathway 

Strategy consortium (Lipid MAPS; http://www.lipidmaps.org), has been publishing information 

focused on the lipid section of the metabolome and “global changes in lipid metabolites” (i.e. 

lipidomics) since 2005. While the methods used to date have identified new lipid metabolites and 

yielded valuable data on the signaling properties of these metabolites, some of the approaches 

utilized could be modified to overcome limitations and thus the potential to overlook lipids with 

unique reactivities or unconventional means of signal transduction Other studies use methods 

that have focused exclusively on RES; by using MS/MS to detect and study RES-GSH adducts, 

it is possible to appreciate the in vivo signature left by various RES and to obtain structural 

information on RES of interest by using MS3 19. However, there are also limitations in using this 

method. For example, RES generated in lipid bilayers may not have the opportunity to interact 

with GSH, but may still modify membrane associated proteins13. This concept has already been 
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used to characterize enzyme-generated RES produced by the hypersensitive response in tobacco 

leaves 205. 

The recently developed alternative to analyzing only RES-GSH adducts, utilizes an 

electrophile-alkylation reaction with BME to identify RES that can reversibly adduct to cellular 

thiols (or other nucleophiles)159. Thus, the oxidized lipid species reported in this study were 

initially discovered exclusively based on their chemical properties: negatively charged small 

hydrophobic molecules with reversible electrophilic activity. The BME method used herein 

increased MS/MS sensitivity for RES and standardized the behavior of a variety of RES during 

MS/MS analysis. For example, oxo-fatty acid derivatives do not fragment as well as the 

corresponding hydroxy-derivatives, rendering structural identification more difficult. 

Accordingly, one reason that the species described in this work have not been reported before 

may be that the typical method of lipid metabolite identification yields largely the expected or 

the most abundant species; unanticipated lipid species that might be produced and signal at lower 

concentrations would be relegated to the background of more prominent species in this method. 

The present work reports previously uncharacterized electrophilic fatty acids, which were 

primarily derived by oxygenation of ω-3 PUFAs. In particular, EFAD-1 to -3 corresponded to 

oxoDHA, oxoDPA and oxoDTA (with different isomers being formed depending on the 

presence of ASA). EFAD-4 to -6 were derived from ω-6 and ω-9 PUFAs. However, the low 

levels and the presence of several isomers did not allow a detailed structural characterization of 

these latter species. Subsequent investigation revealed inducible COX-2 was required for EFAD 

biosynthesis, although additional mechanisms of formation cannot be excluded yet. 

While the formation of hydroxy-ETA206 and hydroxy-DHA131 by COX-2 has been 

described previously, further oxidation to the corresponding oxo species has only been observed 
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for hydroxy-ETA35. Moreover, despite the knowledge on 5-oxoETE and KODE, there is a lack 

of research on similar 22-carbon species. The oxidation of hydroxyl groups on bioactive lipids 

has been generally viewed as a step in metabolic inactivation, but such a reaction may instead 

confer novel beneficial biologic activity. The data of this report indicate a bifurcation at the point 

where hydroxy-derivatives of ω-3 PUFAs could be further oxidized by LOXs to resolvins and 

neuroprotectins. Furthermore, these monohydroxy-PUFA derivatives are also converted to the 

corresponding carbonyl species generating bioactive electrophilic lipids.  

Although COX-2 was identified as one of the major enzymes responsible for EFAD 

formation in macrophages, this does not preclude the possibility that other oxygenases or 

mechanisms are involved in EFAD formation. The autoxidation of DHA and the resulting 10 

positional isomers of hydroxy-DHA were identified early in the 1980s129. Since then the 

enzymatic oxidation of PUFA, such as DHA, EPA and ETE, has been described to occur via 

several pathways and to result in anti-inflammatory or pro-resolution mediators in addition to 

pro-inflammatory PGs. LOXs, (i.e. 5-LOX and in some cases 12-LOX and 15-LOX) can initiate 

or supplement the oxidation of PUFA. In particular 5-LOXs have been implicated in the 

production of lipoxins207, leukotrienes207, and 5-oxoETE208 from ETA as well as in the 

production of resolvins209 from EPA, and DHA. Cytochrome p450 (CYP) monooxygenases can 

also catalyze the NADPH-dependent oxidation of PUFA; CYP4F8 catalyzes hydroxylation of 

both AA and DPA (22:5n-6) mainly at the ω-3 position191. 

Hydroxy-PUFA derivatives, formed by the reactions mentioned above, can be further 

oxidized to the corresponding oxo-derivatives. Several hydroxy-dehydrogenase enzymes have 

already been described that could be involved in this second oxidation step of EFAD formation. 

For example, the enzyme 15-hydroxyprostaglandin dehydrogenase is a candidate for this reaction 
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since it has been reported to catalyze the formation of 15-oxoETE and the oxidation of RvD1 and 

RvE1 at position -17210-212. The LTB4 12-hydroxy dehydrogenase/prostaglandin reductase 

(LTB412-HD/PGR) can catalyze the NADP+-dependent oxidation of hydroxy-eicosanoids to the 

corresponding α,β-unsaturated keto derivative34. In the case of 5-oxoETE formation, the 5-

lipoxygenase product 5-hydroxyeicosatetraenoic acid is further oxidized by 5-hydroxyeicosanoid 

dehydrogenase (5-HEDH) to 5-oxoETE35. As HEDH can catalyze the reaction of 5-HETE to 5-

oxoETE in both the forward and reverse direction, the formation of 5-oxoETE is favored by a 

high NADP+:NADPH ratio (this condition is often symptomatic of cells under oxidative stress). 

It is interesting to note that while HEDH activity is present in myeloid cells, it is most 

significantly induced following differentiation to macrophages using PMA35. All these reports 

strongly suggest that dehydrogenase enzymes with homology to those described above are 

involved in EFAD formation. 

The adduction of EFADs to proteins and to GSH is not only the next step in their 

metabolism, it also demonstrates the role they play as potential modulators of protein function 

and as electrophilic signal transducers. RES adduction to proteins, such as the covalent 

modification of GAPDH by NO2-FA, can alter the protein’s activity or subcellular location18. 

RES can also modulate gene expression by covalently binding to transcriptional regulators, as 

exemplified by NO2FA adduction to the p65 subunit of NFκB, thus preventing DNA binding74. 

In other cases, RES form covalent adducts with proteins that associate with transcription factors 

(e.g. 15d-PGJ2 adduction to the Nrf2 inhibitor Keap117). Moreover, RES participate in signaling 

by forming covalent adducts with GSH; the GSH adduct of 5-oxoETE acts as a potent 

chemotactic factor for neutrophils and eosinophils213. Approximately 50% of the EFADs 

recovered from activated RAW264.7 cell lysate were adducted to protein, but this value does not 
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include EFADs that were bound to small molecules such as GSH or EFADs that were 

irreversibly bound to proteins. Consequently both intracellular and extracellular (secreted) GS-

EFAD-2 (and GS-EFAD-1) adducts were identified by RP-HPLC-MS/MS. While both GS-13-

oxoDPA and GS-17-oxoDPA adducts were detected intracellularly for RAW264.7 cells, only the 

GS-13-oxoDPA adduct was detected extracellularly. This observation may be due to several 

possibilities: treatment of RAW264.7 cells with ASA may affect the secretory pathway, GS-17-

oxoDPA may not be secreted as efficiently as GS-13-oxoDPA, or GS-17-oxoDPA may be 

further metabolized more rapidly than GS-13-oxoDPA once secreted.  

In addition to GSH and GAPDH-adduct formation, the modulation of several signaling 

pathways by EFADs confirmed their role as endogenously produced anti-inflammatory signaling 

mediators. In view of their electrophilic reactivity, EFADs were initially tested for their ability to 

participate in some of the signaling pathways that other RES generally modulate. The 17-oxo 

standards of EFADs-1 and -2 (i.e. 17-oxoDHA and 17-oxoDPA) promoted the nuclear 

accumulation of Nrf2 as well as the expression of two major Nrf2 target genes, HO-1 and NQO-

1, thus assisting in the response to oxidative or xenobiotic stress. The 17-oxo standards also 

acted as agonists of PPARγ, suggesting that EFADs may exert some anti-inflammatory effects 

through PPARγ activation. This was consistent with previous observations that activation of 

PPARγ by low concentrations of the synthetic ligand Rosiglitazone, inhibits the expression of a 

small set of IFNγ and LPS-dependent genes in primary mouse macrophages214. Additionally, 17-

oxoDPA and 17-oxoDHA inhibited IFNγ and LPS-induced cytokine production in a dose-

dependent manner in RAW264.7 cells. Further evidence concerning the anti-inflammatory 

signaling properties of EFADs was the dose-dependent inhibition of iNOS expression and 

activity by 17-oxoDPA and 17-oxoDHA following macrophage activation with IFNγ and Kdo2. 
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Surprisingly, EFAD-1 and -2 did not affect NF-κB DNA binding activity, p65 nuclear 

translocation, nor STAT-1 phosphorylation suggesting that the inhibition of cytokine and iNOS 

expression was independent of these signaling pathways (data not shown). Additionally, COX-2 

induction in response to Kdo2 and IFNγ was not affected. Overall these findings suggest that 

EFADs may exert their anti-inflammatory actions via pathways other than NF-κB and STAT-1. 

The activation of PPARγ may be a possibility, especially since the activation of PPARγ 

differentially inhibits iNOS and COX-2 and generates a pattern of cytokine expression similar to 

what we have observed without affecting NF-κB activation214. Additional evidence supporting a 

role for EFADs as signaling mediators was the observation that 17-oxoDPA and 17-oxoDHA 

covalently bind Cys and His residues in GAPDH, giving a similar pattern to that previously 

observed for NO2-FA18. Finally, preliminary data indicate that EFAD-1 and -2 may promote a 

cytoprotective response via the activation of the heat shock response, possibly by inducing 

activation of the transcription factor Hsf1 and the subsequent transcription of target genes, such 

as Hsp70 and Hsp4069,215. This would represent a further mechanism through which EFADs may 

exert their beneficial actions. Overall, while recognized signaling pathways that are modulated 

by electrophiles were tested, it is probable that EFADs each have their own unique signaling 

profiles and receptors. Further investigation is currently underway to elucidate these profiles. 

The study of fatty acids modified by oxidative processes is a well-established field that 

includes several families of classic (e.g. PGs, TXs, and hydroperoxy and hydroxy fatty acid 

products of auto-oxidation) and relatively new lipids (e.g. resolvins, lipoxins, oxoETEs, 

neuroprostanes and NO2-FA). Many of these lipids act as signaling molecules that assist in 

mediating essential homeostatic or pathological processes. Others are currently considered 

inactive metabolites of lipid mediators or by-products of oxidative stress. Initially, oxidized 
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PUFA derivatives were considered to be simply degradation products of an oxidizing 

environment or pro-inflammatory signaling mediators. This view has changed significantly in the 

past 20 years as new species of and roles for oxidized PUFA emerged. Numerous studies have 

associated the consumption of ω-3 PUFA with reduced risk of heart disease123, colon cancer and 

neurocognitive disorders121. DHA and EPA have been the particular focus of these studies, but 

the mechanisms by which they exert their anti-inflammatory effects in various diseases are still 

unclear. It is becoming more apparent that some of the protective actions of ω-3 PUFA are 

mediated by their oxidized derivatives formed during periods of oxidative stress or during the 

resolution phase of inflammation131,216.  

Overall, the EFADs described in this study are bioactive lipids derived from omega-3 

fatty acids and are produced via COX-2 catalysis, which is enhanced by ASA. The emerging 

beneficial roles of COX-2 and omega-3 fatty acids in resolution of inflammation and their crucial 

role in cardiovascular homeostasis indicate that COX-2-derived EFADs may contribute to 

mediating these actions. The ASA-dependent enhancement of EFAD biosynthesis further 

strengthens this hypothesis suggesting that the protective and anti-inflammatory effects of 

EFADs observed in cellular models may participate in transducing some of the beneficial actions 

of omega-3 fatty acids, COX-2, and ASA in human health. 
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5.0  DISCUSSION 

Fatty acid-derived RES, formed by oxidative, inflammatory, and detoxification events, proceed 

to mediate aspects involved in the progression or resolution of these events. Many diseases with 

an inflammatory component have been observed to have significantly increased RES levels. For 

example, cyclopentenone neuroprostanes are found in frontal cortex brain tissue samples from 

Alzheimer’s Disease patients at ~3 times normal levels of age-matched controls73. Furthermore, 

increased levels of oxoETEs are detected in the lungs of patients with severe pulmonary 

hypertension217. Even the formation of NO2-FA has been shown to be increased in mitochondria 

during ischemia reperfusion218. Thus, all three of these electrophilic lipid derivatives display 

potent anti-inflammatory effects that may be involved in the modulation of if not protection from 

the inflammatory events that form them. Both NO2-FA and EFADs were found to activate the 

transcription of PPARγ-dependent genes in the mid nM range, as determined by a PPARγ 

reporter assay in HEK293H cells, suggesting a role in macrophage differentiation and cytokine 

expression. However, many points of interest remain in terms of how these hydrophobic and 

reactive species are transported through hydrophilic and thiol rich environments and how they 

may be related to other lipid-derived signaling mediators.  
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5.1 POTENTIAL MECHANISMS OF TRANSPORT OF ELECTROPHILIC FATTY 

ACID DERIVATIVES 

Both NO2-FA and EFADs activate PPARγ and modulate the activities of other transcription 

factors such as Nrf2 in cell culture, but the routes of transport for these hydrophobic and reactive 

molecules remain unidentified. Carrier proteins must be involved in the transport of these 

compounds through the aqueous extracellular medium and the nucleophilic environment of the 

cytoplasm. It is likely that serum albumin is one of the carrier proteins involved in the 

extracellular transport of electrophilic lipids. Human serum albumin (HSA) constitutes 

approximately 50% of all human serum proteins and has been extensively studied. HSA is 

primarily involved in the transport of free fatty acids but it also plays important roles in 

maintaining the colloid osmotic pressure of the blood, metal cation transport, binding and 

transporting acidic drugs including the salicylates and ibuprofen, and to a lesser degree binding 

hormones such as estrogen and thyroid hormones219. Several of the hydrophobic binding sites of 

HSA accommodate a wide variety of fatty acid ligands and 1 mol of HSA typically binds from 2 

to 7 mol fatty acids depending on fatty acid chain length and degree of saturation220-222. 

Additionally, the binding to albumin allows transport of hydrophobic molecules through aqueous 

milieus and promotes the transfer of the molecule into cellular membranes, as is the case with 

cannabinergic compounds223. 

An additional feature of HSA that makes it a strong candidate for the transport of 

electrophilic lipids is that it contains a thiol that is capable of reacting with electrophiles. The 

reduced form of HSA (mercaptoalbumin) possesses a free thiol Cys34, which has a pKa of 5.0. 

This value is considerably lower than the pKa of GSH (9.2) and facilitates reaction with 

electrophiles224. Accordingly, Cys34 of HSA has been documented to form adducts with 
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endogenous thiols, electrophiles such as HNE225 and thiol reactive drugs including bucillamine 

derivatives, which are anti-rheumatic drugs224. Thus the abundance of serum albumin in the 

blood and the presence of a reactive cysteine support a role for the transport of NO2-FA and 

EFADs in cell culture and in vivo. It is important to note that if an electrophilic lipid has formed 

a covalent adduct to Cys34 of HSA, the dissociation rate may be especially slow. However, 

electrophilic lipids may still be released from HSA upon conformational changes induced by 

interaction with lipid membranes or target proteins. 

Another carrier protein that could be involved in the transport of NO2-FA and EFADs is 

adipocyte fatty acid binding protein (A-FABP, aP2). Fatty acid binding proteins (FABPs) are 

members of a family of intracellular lipid binding proteins including cellular retinoic acid 

binding proteins (CRABPs) and nine isotypes of FABPs226. All intracellular lipid binding 

proteins have similar three-dimensional folds with the entrance to a β-barrel ligand-binding 

pocket surrounded by two α -helices222. While significantly different in structure from albumin, 

FABPs can also bind a wide variety of fatty acid ligands and are thought to be involved in fatty 

acid transport to nuclear receptors and possibly sequestration within the cell. In particular, A-

FABP is expressed in adipocytes and macrophages, and it is significantly up-regulated upon 

treatment of U937 cells with PMA, which differentiates these monocyte-like human histiocytic 

lymphoma cells into a macrophage-like phenotype227. Interestingly, the ligand binding site of A-

FABP contains a reactive free thiol on Cys117228. As Cys117 is located near lysine residues in a 

ligand binding pocket that is lined equally with hydrophobic and polar/charged amino acid 

residues, the pKa of Cys117 should be low enough to react with electrophilic lipids; the pKa of 

cysteine thiols can be lowered by proximity of positively charged groups of basic amino acid 
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residues, including histidine, lysine, and arginine)222,229. The reactivity of Cys117 of A-FABP 

suggests that adduction with electrophilic ligands is possible.  

A-FABP has been shown to be responsible for the delivery of fatty acid ligands 

selectively to PPARγ226. When A-FABP is over-expressed, PPARγ transcriptional activity 

increased in the absence of ligand and increased most significantly in the presence of linoleic 

acid, 15d-PGJ2, or Troglitazone. Furthermore, coprecipitation experiments identify that A-FABP 

interacts primarily with PPARγ227. Finally, kinetic analysis indicates that A-FABP facilitates 

ligand binding to PPARγ by delivering and channeling its ligand directly to the PPARγ ligand 

binding domain. Thus it is expected that NO2-FA and EFADs are delivered to PPARγ by A-

FABP and that other intracellular lipid binding proteins are involved in delivering these 

electrophilic lipids to other receptors. 

5.2 ELECTROPHILIC FATTY ACID DERIVATIVES COMPARED TO OTHER 

LIPID SIGNALING MEDIATORS 

The EFADs reported herein are chemically related to oxoETEs and other α,β-unsaturated 

carbonyl compounds, though in terms of origin they are also closely related to prostanoids and 

resolvins formed by COX-2. These relationships may indicate the actions and mechanisms of 

EFADs in modulating cell signaling and inflammation.  
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5.2.1 Electrophilic Fatty Acid Derivatives and Resolvins Share the Same Origin But Have 

Different Destinies 

In exploring a path of formation for D series resolvins, Serhan et al. observed that the in vivo 

addition of ASA (500 μg) and DHA to TNFα-induced murine air pouch exudates abolished 

prostanoid production, while at the same time increasing the formation of a series of 17R-

hydroxy-DHA compounds131. The di- and tri-hydroxy-docosanoids of this series are members of 

the resolvin family. Human recombinant COX-2 was also reported to produce primarily 13-

hydroxy-DHA and to convert to the production of 17R-hydroxy-DHA upon pre-incubation with 

ASA. The COX-2 change in regioselectivity for DHA was also confirmed in this study during 

the identification of EFAD formation. Moreover, during EFAD synthesis the position of the 

oxygen is maintained during the conversion of the hydroxy to the carbonyl group. The authors 

also observed that COX inhibitors other than ASA, including indomethacin, acetaminophen, and 

NS-398 (a COX-2 selective inhibitor) reduced the formation of 13-hydroxy-DHA in vitro and 

completely inhibited the formation of 17-hydroxy-DHA. Again this finding is consistent with the 

inhibitor studies used to elucidate the path of biosynthesis for the EFADs.  

In terms of signaling, 13- or 17R-hydroxy-DHA dose-dependently inhibited (with an 

apparent IC50 of approximately 50 pM) IL-1β transcription in microglial cells stimulated with 

TNFα131. Unlike other oxidized products of EPA and AA, Serhan et al. found that the 

monohydroxy-DHA isomers did not decrease polymorphonuclear neutrophilic leukocytes (PMN) 

transmigration in vitro. However, monohydroxy-DHA derivatives significantly reduced PMN 

recruitment in zymosan-induced peritonitis and a dermal air pouch model of inflammation in 

mice. The authors claim that these effects are due to the conversion of monohydroxy-DHA to di- 
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and tri-hydroxy-DHA products by human and murine leukocytes. Based on the path of EFAD 

synthesis demonstrated in this work, it is very possible that the anti-inflammatory actions of 

monohydroxy-DHA described above are due at least in part to the conversion of monohydroxy-

DHA to EFAD-1.  

5.2.2 Electrophilic Fatty Acid Derivatives and Other Reactive Electrophilic Species 

EFADs are softer electrophiles compared to NO2-FA. As α,β-unsaturated oxo-derivatives of 

fatty acids, the rate of EFAD reaction with GSH should be similar to that of 15d-PGJ2 and PGA2, 

which both have a second-order rate constant ~0.7 M-1s-1 for reaction with GSH24. In contrast 

NO2-FA react much more rapidly with GSH; the second-order rate constant for OA-NO2 reaction 

with GSH is ~183 M-1s-124. In the case of GSH, the reaction rates for both electrophiles may not 

represent what is observed in vivo because catalysis by GSTs would essentially equalize the 

abilities of RES with different reactivities to form adducts with GSH. However, these reaction 

rates are important to consider in terms of overall reactivity with nucleophilic biomolecules such 

as cysteine residues of proteins. Ultimately, the reaction rate of a particular RES would 

determine its ability to effect signaling or cell damage by the formation of adducts with cellular 

nucleophiles. 

As RES that are more similar to EFAD-1, cyclopentenone neuroprostanes (A4/J4-NPs) are 

derived from DHA oxidation and possess an electrophilic α,β-unsaturated keto group. However, 

unlike EFAD-1, A4/J4-NPs are formed by non-enzymatic lipid peroxidation in which an 

endoperoxide intermediate of DHA may go through a series of reduction, rearrangement, and 

dehydration reactions to produce a cyclopentane ring with various functional groups33,73,230. The 

synthetic 14-A4-NP demonstrates anti-inflammatory properties in RAW264.7 macrophages that 
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are attributed to its electrophilic reactivity with Cys179 of IKKβ; the mutation of Cys179 

reduced A4-NP inhibition of NF-κB-mediated transcription73. While EFADs 1 and 2 were not 

observed to inhibit NF-κB p65 subunit nuclear translocation or NF-κB DNA binding, they 

significantly inhibited iNOS expression and •NO production. Similarly, the inhibition of iNOS 

expression by A4-NP was demonstrated to be dependent on its electrophilic moiety; the 

formation of GSH adducts or the reduction of the keto group with NaBH4 both significantly 

diminished the ability of A4-NP to inhibit LPS-induced •NO production (as measured by nitrite 

levels in the media)73. Despite its ability to activate PPARγ, the anti-inflammatory effects of A4-

NP appear to be PPARγ-independent. However, it is important to note that this conclusion was 

only based on the inability of PPARγ antagonists (GW9662 and T0070907) to reverse A4-NP-

mediated inhibition of LPS-induced nitrite production73. If this conclusion is true, the similarities 

of EFADs with cyclopentenone neuroprostanes may indicate that their effects are also PPARγ-

independent in RAW264.7 cells. 
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6.0  CONCLUSIONS 

The electrophilic fatty acid derivatives discovered and characterized in this work (i.e. NO2-FA 

and EFADs) are naturally-occurring electrophilic products of redox reactions, and can modulate 

a variety of cellular signaling processes including the transcriptional activity of the peroxisome 

proliferator-activated receptor-γ (PPARγ). NO2-FA act as partial agonists of PPARγ at nM 

concentrations and covalently bind PPARγ via Michael addition with an LBD thiol. Similarly, 

EFADs activated PPARγ-dependent gene transcription at nM concentrations. Furthermore, NO2-

FA displayed selective and partial PPARγ modulator characteristics by inducing coregulator 

protein interactions to different extents than those induced by the TZD Rosiglitazone.  

A newly discovered ω-3 PUFA-derived class of RES is formed upon macrophage 

activation by IFNγ and LPS (RAW264.7 and THP-1 cell lines and primary macrophages). Two 

major EFADs were identified as 13- and 17-keto derivatives of docosapentaenoic acid (DPA) 

and docosahexaenoic acid (DHA). Purified cyclooxygenase-2 (COX-2) product profiles and 

treatment of activated macrophages with COX-2 inhibitors revealed that EFAD synthesis was 

first catalyzed by inducible COX-2 (yielding a hydroxy-PUFA derivative), followed by a yet-to-

be-identified dehydrogenase catalyzing oxidation of the hydroxy- to the oxo-derivative. EFAD 

production was increased 2.5 fold in ASA-treated activated macrophages. Quantitative analysis 

indicated that EFADs are highly abundant electrophiles in activated macrophages, reaching 

intracellular concentrations as high as 350 nM. Importantly, EFADs form reversible covalent 
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adducts with both proteins and small molecule thiols in activated macrophages, supporting a 

capability for post-translational protein modification-mediated cell signaling. It was confirmed 

that synthetic isomers of EFAD-1 and -2 (17-oxoDHA and 17-oxoDPA respectively) adduct 

GSH in vivo, as well as GAPDH in vitro. Furthermore, these synthetic isomers activated the 

Keap1/Nrf2 pathway and inhibited cytokine production and iNOS expression in activated 

macrophages. In aggregate, the inducible COX-2-dependent formation of ω-3-derived EFADs, 

their enhanced production with ASA-acetylation of COX-2, and their electrophilic signaling 

capabilities suggest that these species are acting as autocrine signaling modulators of 

inflammation in vivo. 
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APPENDIX A 

ADDITIONAL DATA FOR CHAPTER 3  

 

Figure 43. Peroxisome proliferator activated receptor γ competitive binding assay for nitroalkene 

derivatives of oleic acid and linoleic acid. 
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Ligand binding curves with ligand concentrations ranging from 0.17-10,000 nM and containing 125 μM 

DTT. Curve fitting equations and EC50s were determined by XLfit4 and are displayed in inset.  

 

 

Figure 44. Peroxisome proliferator activated receptor γ competitive binding assay for nitroalkene 

derivatives of fatty acids. 

Ligand binding curves with liand concentrations ranging from 0.17-10,000 nM and containing 125 μM 

DTT. Curve fitting equations and EC50s were determined by XLfit4 and are displayed in inset.  
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APPENDIX B 

ADDITIONAL DATA FOR CHAPTER 4 

B.1 CONTROL EXPERIMENTS 

 

Figure 45. Activation of RAW264.7 cells with IFNγ and LPS gives the expected induction and rate of 

NO production as measured by the Griess reaction. 
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Figure 46. Structure of Kdo2-lipid A. 

Kdo2-lipid A (di[3-deoxy-D-manno-octulosonic acid]-lipid A) is a commercially available synthetic 

endotoxin198,231,232.  

 

 

Figure 47. MTT assay to determine cell viability with various compounds. 
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Figure 48. There is no significant enzymatic conversion or formation of 12-hydroxy-eicosapentaenoic 

acid during reaction with BME. 

Activated RAW264.7 cell lysates were split in two groups and one group was boiled for 10 min to 

eliminate enzymatic activity. Both groups of lysates and a series of blanks (50 mM phosphate buffer, pH7.4) were 

then spiked with 12-HEPE (500 ng/ml) and 5-oxoETE-d7 internal standard (5 ng/ml) and BME (500 mM) and 

reacted for 1 h at 37°C. 12-HEPE was quantified by MRM following the loss of CO2. Data are expressed as mean + 

S.D. (n=5), where * = significantly different (p<0.05) from “no cells” control (one-way ANOVA, post-hoc Tukey’s 

test). 

B.2 ADDITIONAL DATA FOR ELECTROPHILIC FATTY ACID DERIVATIVES 1-6 
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Figure 49. Electrophilic fatty acid derivative-4 is derived from the ω-6 series of fatty acids. 

RAW264.7 cells were grown for 3 days in DMEM and 10% FBS supplemented with 32 μM of the 

indicated fatty acid. On the third day cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and 

EFAD-4 levels were quantified 21 h post activation. 

 

Figure 50. Electrophilic fatty acid derivative-5 is derived from the ω-6 series of fatty acids.  

RAW264.7 cells were grown for 3 days in DMEM and 10% FBS supplemented with 32 μM of the 

indicated fatty acid. On the third day cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and 

EFAD-5 levels were quantified 21 h post activation. 
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Figure 51. Electrophilic fatty acid derivative-6 is derived from the ω-9 series of fatty acids.  

RAW264.7 cells were grown for 3 days in DMEM and 10% FBS supplemented with 32 μM of the 

indicated fatty acid. On the third day cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and 

EFAD-6 levels were quantified 21 h post activation. 
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Figure 52. Electrophilic fatty acid derivatives produced by THP-1 cells coelute with those produced 

by RAW264.7 cells. 

THP-1 cells were differentiated with PMA (86 nM) for 16 h, activated with Kdo2 (0.5 μg/ml) and IFNγ 

(200 U/ml), and EFAD levels were detected 8 h post activation. MRM scans following the neutral loss of 78 were 

used to detect EFAD-BME adducts. 
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Figure 53. EFAD production is induced by Type 1 macrophage polarization of RAW264.7 cells. 

RAW264.7 cells were activated with the indicated compounds and EFAD levels were quantified 20 h post 

activation. Compound concentrations are as follows: LPS (0.5 µg/ml), Kdo2 Lipid A (0.5 µg/ml), IFNγ (200 U/ml), 

PMA (3.24 µM), and fMLP (1 µM). Data are expressed as mean + S.D. (n=4), where * = significantly different 

(p<0.01) from “PMA + IFNγ + LPS,” and # = a significant difference (p<0.01) between LPS and “Kdo2 + IFNγ” 

(one-way ANOVA, post-hoc Tukey’s test). 

 122 



 

 

Figure 54. EFAD levels generally peak 8-10 h post activation and remain relatively stable up to 20 h. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) and EFAD levels 

were quantified at indicated times post activation. 
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Figure 55. EFAD formation is dependent on PLA2 and COX enzymes. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) in the presence of 

indicated inhibitors and EFAD-2 levels were quantified 21 h post activation. Inhibitor concentrations were as 

follows: genistein (25 µM), MAFP (25 µM), MK886 (500 nM), ETYA (25 µM) and OKA (50 nM) (a-e). Data are 

expressed as mean + S.D. (n=4), where * = significantly different (p<0.01) from “Kdo2 + IFNγ” (one-way ANOVA, 

post-hoc Tukey’s test). 
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Figure 56. EFAD formation requires COX-2. 

RAW264.7 cells were activated with Kdo2 Lipid A (0.5 µg/ml) and IFNγ (200 U/ml) in the presence of 

indicated COX inhibitors and EFAD-2 levels were quantified 21 h post activation. COX inhibitor concentrations 

were as follows: aspirin (200 µM), indomethacin (25 µM), ibuprofen (100 µM), diclofenac (1 µM) and NS-398 (4 

µM) (a-e). Data are expressed as mean + S.D. (n=4), where * = significantly different (p<0.01) from “Kdo2 + IFNγ” 

(one-way ANOVA, post-hoc Tukey’s test). 
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Figure 57. Electrophilic fatty acid derivatives produced by bone marrow-derived macrophages 

coelute with those produced by RAW264.7 cells. 

BMDMs were activated with PMA (50 ng/ml), IFNγ (200 U/ml) and (0.5 µg/ml) and were harvested 24 h 

post activation. MRM scans following the neutral loss of 78 were used to detect EFAD-BME adducts. 
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Figure 58. COX-2 can form the precursor of EFAD-1 from DHA. 

The hydroxyl-precursors of EFAD-1 were synthesized in vitro using purified ovine COX-2 ± aspirin and 

DHA. The hydroxyl precursors were analyzed (by EPI) and quantified (by following their MRM transitions) at the 

indicated time points during the reaction by HPLC-ESI-MS/MS. 

 

Figure 59. EFAD-2 GSH adducts were initially detected in the cell pellets of activated RAW264.7 

cells. 
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Figure 60. The 17-oxo standards activate the transcription of Nrf2-dependent genes. 

RAW264.7 cells were treated with increasing concentration of 17-oxo-DHA and 17-oxo-DPA. (a) Cells 

were harvested 1h after treatment and Nrf2 levels were quantified in nuclear extracts. (b) Cells were harvested 18h 

after treatment and HO-1 and NQO-1 levels were measured by western blot. 

 

Figure 61. The 17-oxo standards inhibit inducible nitric oxide synthase expression and subsequent 

nitrite accumulation in the media. 

RAW264.7 cells were treated with increasing concentration of 17-oxo-DHA and 17-oxo-DPA for 6h and 

Kdo2 Lipid A + IFNγ were added. Samples were collected at 12h. Nitrite levels were measured in the cell media and 

normalized by the total protein content; iNOS and Cox-2 levels were measured in total cell lysates. 
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Figure 62. The 17-oxo standards inhibit cytokine production in activated RAW264.7 cells.  

RAW264.7 cells were treated with increasing concentration of 17-oxo-DHA and 17-oxo-DPA for 6h and 

Kdo2 Lipid A + IFNγ were added. Samples were collected at 12h. IL-6, MCP-1 and IL-10 levels were measured in 

the cell media and normalized by the total protein content. 
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Figure 63. Mass spectrometric analysis of in vitro reaction of glyceraldehyde-3-phosphate 

dehydrogenase with 17-oxodocosapentaenoic acid; alkylation at cysteine 244.  

Four residues were detected and confirmed as being targets for EFAD-2 (17-oxoDPA) in treated rabbit 

GAPDH. Upper panels show EFAD-2 modified peptides and lower panels show spectra from corresponding native 

peptide. 
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Figure 64. Mass spectrometric analysis of in vitro reaction of glyceraldehyde-3-phosphate 

dehydrogenase with 17-oxodocosapentaenoic acid; alkylation at histidine 163.  

Four residues were detected and confirmed as being targets for EFAD-2 (17-oxoDPA) in treated rabbit 

GAPDH. Upper panels show EFAD-2 modified peptides and lower panels show spectra from corresponding native 

peptide. 
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Figure 65. Mass spectrometric analysis of in vitro reaction of glyceraldehyde-3-phosphate 

dehydrogenase with 17-oxodocosapentaenoic acid; alkylation at cysteine 149.  

Four residues were detected and confirmed as being targets for EFAD-2 (17-oxoDPA) in treated rabbit 

GAPDH. Upper panels show EFAD-2 modified peptides and lower panels show spectra from corresponding native 

peptide. 
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Figure 66. Mass spectrometric analysis of in vitro reaction of glyceraldehyde-3-phosphate 

dehydrogenase with 17-oxodocosapentaenoic acid; alkylation at histidine 328.  

Four residues were detected and confirmed as being targets for EFAD-2 (17-oxoDPA) in treated rabbit 

GAPDH. Upper panels show EFAD-2 modified peptides and lower panels show spectra from corresponding native 

peptide. 
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