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This study analyzed changes in high school teachers’ ability to identify and create 

questions that support mathematical understanding as they were participating in a 

professional development program focused on planning, teaching and reflecting on 

lessons featuring cognitively challenging tasks. The 35 participants were a subset of 

nearly 100 high school mathematics teachers from a large urban district participating in 

the professional development program. 

     Data related to questioning abilities was collected via a pre- and post-test that situated 

questioning within the practice of teaching Algebra.  To account for changes in teachers’ 

abilities related to questioning, demographic data describing the participants was 

collected. In addition, attendance sheets, agendas and materials from the professional 

development sessions and responses to two prompts at the conclusion of the program 

were collected 

Analysis of data related to questioning indicated that participants significantly 

increased their abilities to identify and create questions that promote understanding of 

mathematics, particularly questions that prompt students to explore mathematical ideas 
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and connections.  Asking this type of question has been linked to increased student 

achievement.  However, most teachers rarely, if ever, ask this type of question.   

An analysis of demographic data showed that the significant changes in teachers’ 

questioning abilities were not associated with years of teaching experience or the high 

school or sub-district at which the teacher taught.  In addition, analysis of data from the 

professional development program indicated that changes in teachers’ questioning 

abilities were not associated with any one of the four facilitators of the professional 

development sessions.   

Participants in the study, as well as teachers not participating in the study but 

participating in the professional development program, had a high attendance rate for the 

professional development sessions.  During these sessions, teachers had a variety of 

opportunities to learn about and discuss aspects of questioning, including solving and 

discussing challenging mathematics tasks; analyzing and discussing episodes of teaching 

Algebra; analyzing and generating questions for student work from Algebra classrooms; 

and analyzing and planning lessons related to the Algebra curriculum. 
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1. CHAPTER ONE:  THE RESEARCH PROBLEM 

 

1.1. INTRODUCTION 

For the past decade, the poor mathematics performance of students in the U. S. as 

compared to other students internationally has been a source of concern, both in the 

educational community and in the political arena. The way in which mathematics is 

taught in the U. S. has been cited as a major contributing factor to this level of 

performance.  When comparing mathematics instruction in the U.S. to that of other 

countries, Hiebert (1999, p. 12) noted, “Students learn what they have an opportunity to 

learn.”  Students’ opportunities to learn mathematics in the U. S. consist primarily of 

memorizing procedures, terms, and definitions without the opportunity to discover or 

engage in considering why mathematical processes work.  This form of instructional 

practice of mathematics teachers in the U.S. has remained quite consistent and 

predictable for nearly 100 years (Hiebert, 1999).  Many authors (Hiebert, 1999; Stigler & 

Hiebert, 1999; USDE, 2000; Ball, Lubienski, & Mewborn, 2001; NCES, 2003) have 

described the typical mathematics lesson in the United States as being some form of the 

teacher reviewing the previous day’s assignment, explaining or demonstrating new 

concepts or procedures, assigning practice problems to be worked on individually, and 

then assigning homework.  Little, if any, time is spent developing conceptual 

understanding, connecting mathematical ideas, or engaging students in discussing 
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mathematics.  Thus, it is not surprising that U.S. students struggle to solve problems that 

require an understanding beyond memorization of procedures as is illustrated on national 

and international mathematics assessments (e.g. NCES, 2003). 

The type of mathematics instruction that is lacking in many U. S. mathematics 

classrooms is also the type of instruction that has been associated with increased 

achievement in mathematics in other countries (Stigler & Hiebert, 1999).  Recent 

research suggests that good instructional practice in mathematics focuses on student 

learning and understanding by engaging all students in challenging mathematics (Borasi 

& Fonzi, 2004). Such practice involves selecting cognitively demanding tasks and 

implementing them in ways that do not take over the thinking for students (Hiebert et. al., 

1997; Stein, Smith, Henningsen & Silver, 2000; NCTM, 2000).   This type of 

instructional approach requires teachers to have a conceptual understanding of 

mathematical concepts, to possess the pedagogical knowledge of how mathematical 

understanding develops, and to know how students can best be supported in developing 

that mathematical understanding.  Having such knowledge is what Shulman (1986) 

referred to as “the missing paradigm” in instruction.   

Much research has been done, particularly at the elementary and middle school levels, 

on what pedagogical knowledge is needed for teaching mathematics, including the types 

of pedagogy that have been associated with students developing mathematical 

understanding and increasing their mathematical achievement (e.g. Yackel & Cobb, 

1996; Carpenter et al., 2000; Stein et al., 2000; Ball & Bass, 2005). In all of the studies, 

multiple factors were associated with deeper mathematical understanding or higher 

achievement. However, the type of task that the teacher selected determined what 
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students had the potential to learn. In addition, implementing cognitively demanding 

tasks well was related to asking questions that prompt students to reason, make 

connections, and justify their thinking and the thinking of others (Hiebert & Wearne, 

1993; Martino & Maher, 1999; Boaler & Brodie, 2004).   

In one particular study, Boaler and Staples (2005) found that high school students 

from one school, ‘Railside’, who were initially performing significantly lower in 

mathematics than students from two other high schools, were outperforming these same 

students after only two years.  One reason cited for the improved achievement was the 

mathematics curriculum, written by the teachers at Railside, that consisted of a variety of 

cognitively demanding tasks containing multiple points of access and requiring the use of 

and connections among multiple representations.  A second reason identified for the 

success of the Railside students was that “the teachers’ questions significantly shaped the 

course of implementation” (Boaler & Staples, 2005, p. 19).  Railside teachers consistently 

asked ‘follow up’ questions about the mathematics in the task on which students were 

working and asked students to justify their thinking and the thinking of others.  Students were 

also expected to discuss mathematics with and ask questions of other students.  Hence, 

engaging students in solving challenging tasks by asking them questions that require them to 

explore mathematics, explain or justify their thinking, and discuss mathematics with other 

students is one way to improve students’ learning opportunities in mathematics classrooms 

and ultimately impact student achievement.  

The study described herein focused on helping teachers improve their ability to ask 

questions that support students’ understanding of and engagement in high level 

mathematics tasks.  The following sections highlight the importance of selecting 
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challenging mathematics tasks for use in the classroom and the nature of teachers’ 

questions that support students’ high level engagement when solving challenging tasks. 

 

1.2. BACKGROUND 

1.2.1. Selecting challenging mathematical tasks  

High level mathematics tasks provide the greatest potential for improvement in students’ 

learning of mathematics.  Several studies report on the link between challenging tasks 

and increased student achievement (McCaffrey et al., 2001; NCES, 2003; Boaler & 

Staples, 2005).  For example, Stein and Lane (1996) reported on Quantitative 

Understanding:  Amplifying Student Achievement and Reasoning (QUASAR)1 project 

which focused on assisting middle school mathematics teachers in disadvantaged schools 

with the implementation of reform-type mathematics programs. Greater gains in student 

achievement were documented in the areas of problem solving, reasoning, and 

communication for middle school students’ whose teachers successfully implemented 

cognitively demanding mathematics tasks (Stein, Grover & Henningsen, 1996).  These 

tasks required students to engage in thinking and reasoning about mathematics concepts. 

Many of the tasks could be represented in multiple ways and could be solved using a 

variety of strategies.  

While selecting mathematics tasks that are cognitively demanding is a critical first 

step to mathematics instruction that promotes student understanding, implementing those 

tasks in ways that maintain the demands is the crucial second step.  

                                                 
1 QUASAR (Quantitative Understanding :  Amplifying  Student Achievement and Reasoning) was based at 
the Learning Research and Development Center at the University of Pittsburgh and was directed by Edward 
A. Silver. 
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1.2.2. Implementing challenging tasks through teacher questioning 

Enacting high level tasks at a level in which the cognitive demands are maintained is not 

an easy endeavor.  Teachers must choose mathematical tasks that are challenging and 

relevant to all students.  They must be able to reach all students while at the same time 

turning some of the authority over to the students.  And they must monitor students as 

they work but not take over the process of thinking for them (Lappan, 1997). 

While it is difficult for teachers to implement challenging mathematics tasks, 

researchers have identified a set of factors that come into play when high level tasks are 

implemented at a high level (Hiebert & Wearne, 1993; Henningsen & Stein, 1997; Weiss 

& Pasley, 2004; Boaler & Staples, 2005).  Among these factors is the ability of teachers 

to ask students to explain and justify their thinking and reasoning, to ask questions that 

target important mathematics and to ask students to discuss mathematics with each other.   

For example, Hiebert and Wearne (1993) observed six second grade classrooms with a 

focus on the mathematical tasks that were used and the classroom discourse occurring 

around those tasks.  In three of the classrooms, the vast majority of the tasks emphasized 

the use of written symbols and were to be solved by computation. The majority of the 

questions asked by the teachers in these classes were “recall” questions requiring students 

to recite facts, rules, or topics. In the other three classrooms, students solved fewer tasks 

but spent more time on the tasks they did solve.  These tasks allowed for the use of 

alternative representations and many were situated within a context.  Two of the three 

teachers in these classrooms asked fewer recall questions and more questions of other 

types such as: requiring students to describe the strategy they used or find a different 

strategy to solve the same problem; asking students to create a story to match a number 
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sentence or create a problem to fit a description; requiring students to explain why they 

used a particular procedure or why the procedure works; or asking students to analyze the 

nature of a problem or strategy.  The largest gains in achievement occurred in the two 

classrooms where teachers used a variety of mathematical tasks and asked questions that 

required students to explain their thinking, problem solving strategies and to make sense 

of mathematics procedures or problems. 

 In a five year longitudinal study of over 700 students in three high schools, Boaler 

and Staples (2005) reported that students in one high school who were initially 

performing significantly below the students in the other two schools at the beginning of 

9th grade, significantly outperformed those in the other two high schools on a test 

involving algebra and geometry at the end of the second year. The identified reasons for 

this increase in mathematics achievement included a curriculum consisting of cognitively 

demanding problems, an environment in which students worked collaboratively in 

heterogeneous groups and the variety of questions asked by teachers.  These question 

types included those that required students to explain and justify their thinking, that 

promoted discussion of mathematics, and that prompted students to make sense of and 

connections among mathematical concepts.  

When analyzing the questions asked by teachers, it was found that in two of the high 

schools, teachers used a traditional mathematics curriculum and presented new 

mathematical ideas by lecturing and having students work individually on short, close-

ended problems.  Over 95% of the questions asked by the teachers were procedural 

questions that required an immediate answer, the rehearsal of procedures, or the 

statement of fact (Boaler & Brodie, 2004).  At the third school (Railside), however, 
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teachers lectured only 4% of the time and students worked collaboratively in 

heterogeneous groups.  The teachers at Railside posed longer, conceptual problems and 

combined student presentations with effective teacher questioning.  Teachers at this 

school also asked procedural questions, but only 62% of the time.  More importantly, 

teachers asked a variety of other types of questions.  Three particular question types were 

highlighted as contributing to students’ opportunities to engage in and learn mathematics.   

These three types of questions: 1.) prompted students to explore mathematical 

relationships and connect mathematical ideas, 2.) probed for students’ understanding, and 

3.) generated discussion of mathematics among the students.  The researchers noted that 

the teachers’ ability to ask these particular types of questions was likely related to the 

curriculum the teachers designed and the types of mathematical tasks in the curriculum.  

The types of questions asked by teachers at Railside, and absent in the other two schools, 

were considered to be an important factor that contributed to the significant increase in 

student achievement at the school. 

In order to develop the capacity to ask questions that supports students’ work on 

challenging mathematical tasks, teachers must have opportunities to learn about these 

instructional practices.  One key vehicle that has the potential to provide such 

opportunities for in-service teachers is professional development. 

1.2.3. The significance of professional development at the high school level 

Adopting a practice of asking questions that support students’ engagement on cognitively 

demanding tasks is not a trivial matter for teachers. They need professional development 

opportunities that allow them to build their knowledge and skill in teaching mathematics 
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through experiences that make salient the complexity of enacting such a practice (Ball & 

Cohen, 1999; Smith, 2001). 

A special challenge in the effort to reform instructional practice in mathematics is the 

case of America’s high schools.  The political climate of high schools has been described 

as “an atmosphere of distrust, affront, and impatience, and an expectation that they will 

be judged by the performance of their graduates (National Association of Secondary 

Principals, 2004, p. xi).”  The success of professional development activities for high 

school teachers is dependent upon, among other things, “the ability to encourage the 

faculty to become collaborative learners in onsite professional development experiences” 

(Killion, 2002, p. 19).  In addition, since most high school teachers’ identities are 

determined by the subjects they teach, it is critical that professional development 

activities be grounded in the content background of the teacher (McLaughlin & Talbert, 

2001).    

In order to improve student achievement in mathematics, teachers must provide 

students with opportunities to engage in challenging mathematics and support their 

understanding by consistently asking questions that promote mathematical understanding.  

In turn, teachers must be provided with opportunities to build their knowledge and skills 

in these areas through professional development experiences grounded in the content and 

pedagogy of teaching mathematics. 
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1.3. PURPOSE OF THE STUDY 

The purpose of this study was to examine changes in high school mathematics teachers’ 

ability to identify and create questions that promote mathematical understanding as they 

participated in a professional development program focused on planning, teaching and 

reflecting on lessons that feature cognitively challenging tasks. Changes were determined 

in teachers’ ability to identify and create questions of the following types:  

•  probing – questions that prompt students to explain or justify their mathematical 

thinking and reasoning;  

•  generating discussion – questions that prompt students to discuss challenging 

mathematics; and  

•  exploring – questions that prompt students to explore the meaning of and 

relationships among mathematical concepts and ideas. 

Teachers participated in a set of professional development experiences in which they 

learned how to select challenging mathematics tasks and then implement those tasks at a 

level that maintained the challenges.  This implementation included asking questions that 

promote understanding of the mathematics in the task.  The professional development 

experiences included opportunities for teachers to:  1).  learn new instructional practices 

focused on selecting and implementing challenging tasks, including asking questions that 

promote understanding; 2) plan lessons around challenging tasks with school and district 

colleagues that incorporate the new instructional practices; 3) enact lessons with a focus 

on implementing the new practices; and  4) reflect on their implementation of lessons 

with others from their schools and districts who were also implementing the new 

practices. 
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1.4. RESEARCH QUESTIONS 

In order to determine if learning about particular question types during professional 

development experiences improved teachers’ ability to identify and create particular 

types of questions, the research questions for this study included: 

1.  To what extent can high school mathematics teachers identify different question 
types that promote understanding of mathematics prior to and after participation 
in a professional development program focused on improving instructional 
practice in mathematics?  In particular, to what extent can they identify probing, 
generating discussion, and exploring questions? 

 
2.  To what extent can high school mathematics teachers explain the reasons why 

different question types promote understanding of mathematics prior to and after 
participation in a professional development program focused on improving 
instructional practice in mathematics?  In particular, to what extent can they 
explain why probing, generating discussion, and exploring questions promote 
understanding? 

 
3. To what extent can high school teachers create questions that promote student 

understanding of mathematics prior to and after participation in a professional 
development program focused on improving instructional practice in 
mathematics? In particular, to what extent can they create probing, generating 
discussion, and exploring questions? 

 
4. To what extent do high school teachers focus on promoting understanding of 

mathematics when identifying the purposes of the questions they ask their 
students prior to and after participation in a professional development program 
focused on improving instructional practice in mathematics? 

 
5. What might account for changes in teachers’ ability to identify and create questions 

that promote understanding of mathematics and to explain why such questions 
promote understanding? 

 

The premise of this study was that providing teachers with opportunities to learn 

about question types would assist them in being able to: identify and create questions that 

prompt students to explain, justify, discuss and explore mathematical concepts in their 

classrooms; explain why particular question types promote mathematical understanding; 

and focus on mathematical understanding when identifying the purposes of their 
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questions.  It was hypothesized that these abilities would then transfer to the classroom 

and result in teachers asking a broader range of questions that ultimately provided their 

students with more opportunities to engage in rigorous mathematics.   

 

1.5. SIGNIFICANCE OF THE STUDY 

Although research has shown the relationship between maintaining the cognitive 

demands of tasks and student achievement and that questioning is a critical factor in 

maintaining the demands, no studies have focused explicitly on teachers’ ability to learn 

about particular types of questions that support students’ understanding of mathematics.  

Therefore, this study contributes to our understanding of the types of professional 

development experiences that are likely to impact teachers’ knowledge related to 

questions that promote students’ understanding of mathematics. 

The study also has the potential to provide a valuable tool to the mathematics 

education research community - one that measures teachers’ knowledge of questioning, a 

key instructional practice.  Although this tool would be but a first step in measuring 

teachers’ abilities related to particular types of questions that promote mathematical 

understanding, it could provide valuable insights into measuring an aspect of instruction 

on a large-scale without the challenge of classroom observations.  It could also be used to 

measure the effectiveness of professional development programs designed to assist 

teachers in improving specific aspects of their instructional practice. 

Finally, because much of the research on teaching mathematics has been conducted 

at the elementary and middle school levels, this study could also provide important 

insights into mathematics teaching at the high school level.  Though a direct correlation 
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between the professional development experiences and changes in teachers’ knowledge 

of questioning practices was not studied, information obtained from the professional 

development program that might be linked to changes in teachers’ knowledge could 

inform the field about the potential of professional development to change instructional 

practices at the high school level. Ultimately, the results from this study have the 

potential to provide the mathematics education community with information that could 

lead to better supporting students in learning high school mathematics.  If high school 

teachers can improve their ability to identify and create good questions and change their 

perspective regarding the purposes of their questions, they will be better able to support 

their students’ engagement in challenging tasks. Ideally, this could eventually lead to a 

diminishing of the high failure rates of students in high school mathematics, particularly 

in urban schools, resulting in more access to higher education, better career paths, and a 

more rewarding economic future. 

 

1.6. LIMITATIONS 

Although the goal of any professional development experience is to impact some aspect 

of the teachers’ practice, this study focused only on expanding teachers’ knowledge of 

questions that promote students’ understanding of mathematics.  Since teachers’ ability to 

transfer the learning about questions to implementation in the classroom was not 

analyzed, the extent to which the results can be generalized to the classroom level was 

limited.   

In addition, the investigator of this study was also one of four facilitators of the 

professional development program in which the teachers participated.  As a result, bias in 
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terms of teachers agreeing to participate in the study because they were in the 

investigators’ professional development sessions could be a limitation.  

  

1.7. OVERVIEW OF THIS DOCUMENT 

This document consists of five chapters.  Chapter 1 provided an introduction to the study, 

situating the study within existing research on reforming the teaching of mathematics, 

with a particular emphasis on questioning as a key instructional practice.  Chapter 2 

provides an in-depth review of the relevant literature pertaining to question types that 

have been associated with increased student achievement in mathematics and of the 

features of professional development that are necessary to engage high school teachers 

and impact their instructional practice.  Chapter 3 explains the methodology of the study, 

including a description of the tools used for collecting data, the structure of the 

professional development in which the teachers participated, the types of data that were 

collected for the study, and the ways and methods in which the data was analyzed.  

Chapter 4 is a discussion and summary of the results of the study.  Chapter 5 provides 

conclusions that can be drawn from the results of the study and discusses implications of 

the study for the teaching of mathematics, particularly at the high school level. 
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2. CHAPTER TWO:  A REVIEW OF THE LITERATURE 

 

2.1.   INTRODUCTION 

Improving the instructional practice of mathematics teachers is seen as a means for 

increasing student achievement in mathematics.  However, the vast majority of practicing 

mathematics teachers learned to teach under a paradigm of teaching that consisted of 

having students practice and memorize facts and procedures.  The type of mathematics 

instruction necessary for improving student learning and achievement entails “a 

comprehensive approach to mathematics instruction that is centered on teaching for 

understanding and enabling students to engage with meaningful problems and big ideas 

of mathematics” (Borasi & Fonzi, 2004, p. 9).  The assumptions underlying such an 

instructional approach are that students construct knowledge through their interaction 

with others in a particular context with a particular purpose; learning results by making 

sense of something that builds on prior knowledge; and the purpose of teaching is to 

facilitate the learning process by setting up problem solving situations in a rich learning 

environment and providing support as students try to solve the problems (Borasi & Fonzi, 

2004).   

Two key components of such an instructional approach that have a research base to 

support them are selecting challenging tasks in which students will engage and 

supporting students as they solve the task by asking questions that assist students’ 
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learning without taking over the thinking for them (NCTM, 1991; Stein et al., 1996; 

Hiebert et al., 1997; Lappan, 1997).   

In order to adopt a practice that incorporates these components, teachers need 

professional development experiences that allow them to build their knowledge and skill 

in teaching mathematics (Loucks-Horsly et. al, 1998).  Providing teachers with 

opportunities to engage in challenging mathematics themselves and to learn about and 

discuss issues related to teaching mathematics with others in the same role is crucial if 

any change in instruction is expected to occur (Grossman & Stodolsky, 1995; Stein, 

Smith & Silver, 1999). 

This chapter is comprised of two sections, each of which contains a review of 

literature related to this study.  The initial section of this chapter reviews literature that 

discusses two key characteristics of instructional practice in mathematics that have been 

identified as contributing to enhanced learning opportunities for students – selecting 

challenging mathematics tasks and implementing those tasks through asking a variety of 

questions in order to promote students’ understanding of mathematics.     The second 

section highlights features of effective professional development for teachers of 

mathematics, with a particular focus on those that have resulted in increased student 

achievement in mathematics and those that have been successful in changing 

instructional practice, particularly at the high school level.   
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2.2. KEY INSTRUCTIONAL PRACTICES IN MATHEMATICS 

 

The type of mathematics instruction that has been associated with increased achievement 

in mathematics is quite challenging to implement.  Teachers must choose mathematical 

tasks that are challenging and relevant to all students.  They must be able to reach all 

students while at the same time turning some of the authority over to the students.  And 

they must monitor students as they work but not take over the process of thinking for 

them (Lappan, 1997).  Researchers have identified features of lessons that result in such 

instruction and that have impacted student learning.  For example, after observing over 

350 mathematics and science lessons to determine their effectiveness, Weiss and Pasley 

(2004) identified characteristics of effective instruction that were common in these 

lessons.  These characteristics included: a focus on significant and worthwhile content 

that was taught using various strategies that engaged the students and connected to their 

prior knowledge;  a culture in which respect and rigor were evidenced by the teacher 

asking challenging questions and students freely contributing new ideas and questioning 

the ideas of others; active engagement of all students; and teacher questioning that not 

only monitored students’ understanding and encouraged deeper thinking, but also ensured  

that students made sense of the key concepts. 

Another research study conducted in six urban middle schools provides evidence of 

the impact of selecting and implementing worthwhile tasks on students’ learning.  The 

QUASAR Project was a reform project whose purpose was to foster and study how 

mathematics teachers implemented their mathematics programs at six, diverse and 

economically disadvantaged urban middle schools across the United States.  One of the 

most significant findings of the project was that student achievement in mathematics 
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increased significantly in the classrooms where teachers consistently selected cognitively 

challenging mathematics tasks and where the cognitive demands of the tasks were 

maintained when the tasks were implemented (Stein & Lane, 1996).  A variety of factors 

were identified that contributed to teachers being able to maintain the demands.  These 

factors, consistent with the characteristics identified by Weiss and Pasley (2004), 

included scaffolding student learning by asking questions that did not take over student 

thinking, consistently asking students to explain and justify their own thinking and 

reasoning and to explain the thinking and reasoning of others, and asking students to 

make sense of the mathematical ideas they were discussing (Henningsen & Stein, 1997). 

The results of the Weiss and Pasley (2004) and Stein et al. (1996) studies suggest that 

effective instruction in the mathematics classroom must begin by selecting appropriate 

tasks that assist students in achieving the intended mathematics.  Once the appropriate 

mathematics task has been selected to meet the goals of the lesson, the implementation of 

the lesson must take place so that the challenges of the task are maintained.  Teacher 

questioning was identified as a key practice that supports the maintenance.  The 

remainder of this section discusses research supporting the importance of task selection 

and teacher questioning when considering instructional practices in the mathematics 

classroom that impact student understanding.   

2.2.1. Selecting and implementing worthwhile mathematics tasks 

Choosing worthwhile tasks that provide opportunities for student exploration and the 

learning of important mathematical concepts is “a significant part of a teacher’s 

responsibility” (NCTM, 2000, p. 341).   In fact, Lappan (1997) states, “no decision that 
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teachers make has a greater impact on students’ opportunity to learn…than the selection, 

adaptation, or creation of the tasks with which the teacher engages the students” (p. 213).   

Common characteristics of these “worthwhile tasks” include having multiple entry 

points for students with different prior knowledge and experiences; being able to be 

approached in multiple ways using a variety of problems solving strategies; and 

providing opportunities to be represented in multiple ways, such as by symbols, tables, 

drawings, or graphs.  

Hiebert et. al. (1997) describe three features necessary to classify a mathematics task 

as worthwhile which are consistent with the characteristics described above:  1.) The task 

must be problematic. This means students must see the task as something interesting they 

want to learn about and make sense of, but the mathematics necessary to solve the task 

poses a challenge or is “problematic”; 2.) The task must build on students’ prior 

knowledge so that they have the knowledge and skills necessary to begin solving the task.  

The context of the problem must provide accessibility for all students; and 3.) The task 

must be grounded in important mathematical concepts that leave something of 

mathematical value with the student as a result of solving the problem.  In addition, 

teachers must select tasks, not in isolation from each other, but that are sequenced over 

time so that solving the tasks will “add up to something important” for the student.  

A major consideration in choosing worthwhile mathematical tasks in which students 

will engage is alignment with the teachers’ mathematical goals for the lesson.  This is 

influenced by the teacher’s knowledge of mathematics as well as what the teacher 

believes to be the students’ prior mathematical knowledge and experiences in 

mathematics (Simon, 1995, p. 138).  At the high school level in particular, teachers’ 
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beliefs of what students’ prior knowledge is and what they are capable of doing greatly 

impacts the choice of tasks they choose (McLaughlin & Talbert, 2001).  

Unfortunately, many high school teachers do not believe their students come to them 

with sufficient prior mathematical knowledge and experiences.  A longitudinal study of 

over 600 high school teachers in sixteen rural, suburban and urban districts in California 

and Michigan was conducted using iterative surveys and interviews. In discussing the 

results of the study, McLaughlin and Talbert (2001) reported that 65% of high school 

teachers felt their students were less prepared than students they had previously taught, 

and 73% believed students’ habits and attitudes limited their chances for academic 

success.  This resulted in teachers not giving certain students opportunities to engage in 

challenging tasks. The researchers were particularly concerned with mathematics 

teachers, who consistently viewed their content as sequential and constant and the 

instruction and the tasks that drive that instruction as being predetermined.  As a result, 

“mathematics represents a worst case in terms of teachers’ potential openness to 

rethinking traditional assumptions or developing new practices to engage nontraditional 

students in the discipline” (McLaughlin & Talbert, 2001, p. 57).   

Results from a large scale survey provide additional supporting evidence as to the 

lack of selection of high level mathematics tasks for all students.  In the “Status of High 

School Mathematics Teaching” report, Whittington (2002) analyzed survey responses on 

the 2000 National Survey of Science and Mathematics Education from a national 

probability sample that included 1300 high school mathematics teachers.  The report 

indicates that 85% of high school mathematics teachers reported placing heavy emphasis 

on their students’ learning mathematics concepts and over 70% reported emphasizing 
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problem solving and mathematical reasoning. However, high school mathematics 

teachers who taught classes to high school students who had not yet taken or passed 

algebra 1, emphasized computational skills at a higher percentage and used tasks that 

required reasoning and problem solving at a lower rate than teachers whose students had 

passed algebra 1 and were taking subsequent algebra or geometry courses. 

A growing body of evidence, however, challenges the traditional assumptions as to 

who can learn worthwhile mathematics. In the QUASAR study, a stratified random 

sample of 144 lessons was chosen from the 620 mathematics lessons that were observed 

in the four schools who had participated in the project for a full three-year period. Stein, 

Grover, and Henningsen (1996) categorized mathematical tasks that formed the core of 

those lessons as falling into one of 4 levels according to their cognitive demands – the 

types of thinking required as one engages in solving the tasks. The top two levels of 

tasks, considered to be cognitively demanding or having a “high level demand,” were of 

two types - procedures with connections to meaning and doing mathematics. Procedures 

with connections tasks focus students’ attention on the use of a particular procedure in 

order to develop a conceptual understanding of a mathematical concept.  Doing 

mathematics tasks require students to explore and develop an understanding of a 

mathematical concept in a non-algorithmic way.  In their analysis, Stein and her 

colleagues discovered that tasks considered to be cognitively demanding were the most 

difficult for teachers to implement.  However, student achievement, as measured on an 

assessment of problem solving, reasoning, and communication, was greatest in 

classrooms where teachers set up and implemented high level tasks in ways that 

maintained the cognitive demands of the task (Stein & Lane, 1996).  This study provides 
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evidence that selection of worthwhile mathematics tasks is a critical, but insufficient, 

component of providing students with opportunities to increase their achievement in 

mathematics.  Implementation of those tasks in ways that maintain the cognitive demands 

is the key to providing such opportunities. 

2.2.1.1. Teachers’ implementation of worthwhile tasks The impact of the selection and 

implementation of worthwhile tasks on student achievement has been noted in a large 

scale study on mathematics teaching and learning.  The Third International Mathematics 

and Science Study (TIMSS) 1999 Video Study (NCES, 2003) reported on the analysis of 

videotaped mathematics lessons, as well as results from teacher questionnaires.  The 

results suggest that in the two highest achieving countries in 8th grade mathematics, Japan 

and Hong Kong SAR, teachers emphasized learning new content through problem 

solving in their lessons, while U.S. teachers emphasized reviewing previous 

mathematical content.  In addition, 17% of tasks used by 8th grade teachers in the U.S. 

were at a high level, about the same rate as most high performing countries (except for 

Japan). However, in the U.S. none of the tasks were implemented in a way that 

maintained the cognitive demands during the lessons.  One implication of this result is 

that, in spite of the fact that 8th grade students in the U.S. scored higher on the assessment 

in 1999 than they did in 1995, they continued to score significantly lower than the other 

countries who participated in the study (NCES, 2003, p. 11).  These results also indicate 

that task selection alone does not ensure greater student achievement.  Maintaining the 

cognitive demands of the task throughout the lesson is a key factor that determines the 

student learning.  
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Another relevant finding from the TIMSS study (NCES, 2003) was that the 8th grade 

teachers in the U.S. reported consistently using the “current ideas” of teaching 

mathematics in their practice. Yet, the videotapes revealed that students in U.S. 

classrooms had limited opportunities to problem solve and use mathematical reasoning 

because teachers spent most of the time reviewing previously learned material. This 

raises the question as to what U.S. teachers view as the “current ideas” of teaching 

mathematics in terms of choosing and implementing worthwhile mathematics tasks. 

Results from the “Status of High School Mathematics Teaching” report (Whittington,  

2002) indicate that even though teachers reported placing heavy emphasis on their 

students’ learning mathematics concepts and reported they emphasized problem solving 

and mathematical reasoning, teachers predominantly lectured and had students take notes 

or complete text or worksheet problems.  In addition, over 70% of the lessons consisted 

of routine practice of algorithms and computations at least once a week.   This also raises 

questions about teachers’ conception of how to best implement challenging tasks with 

their students.   

There is evidence that teachers’ ability to successfully select and implement high 

level tasks with their students impacts student achievement.  For example, the QUASAR 

Project documented greater student achievement in the areas of problem solving, 

reasoning, and communication for middle school students whose teachers selected high 

level tasks and then maintained the cognitive demands of the tasks during implementation 

(Stein & Lane, 1996).  Researchers noted that three to five different factors typically 

contributed to teachers’ ability to maintain the challenges in the task as students were 

solving the task (Henningsen & Stein, 1997).  The five factors identified as having the 
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most influence included:  1.) using tasks that build on students’ prior knowledge; 2.) 

scaffolding student learning by “providing assistance that enables the student to complete 

the task alone, but that does not reduce the overall complexity or cognitive demands of 

the task (Henningsen & Stein, 1997, p. 527); 3.) allowing an appropriate amount of time 

for students to engage in solving the task;  4.) modeling high level performance; and 5.)  

consistently pressing students to explain and justify their thinking and reasoning.   

There is also evidence of high school mathematics teachers successfully 

implementing cognitively demanding tasks with their students which resulted in 

increased student achievement.  In the Boaler and Staples (2005) study of three high 

schools, over 600 hours of classroom observations, teacher and student questionnaires, 

teacher and student interviews, mathematical content tests and the state level assessment 

in mathematics were analyzed.  Students at two of the high schools were enrolled in a 

traditional sequence of mathematics courses (i.e. Algebra 1, Geometry, Algebra 2) that 

were taught in a traditional manner.   The majority of students’ time was spent 

individually watching and listening as their teachers presented or demonstrated new 

material.  Students then practiced the new materials by working individually on short, 

closed problems from their textbooks.   

Students at the third high school, Railside, an urban school with cultural and 

linguistic diversity, were taught a curriculum designed by their teachers.  The Railside 

students were initially performing significantly below the students in the other two 

schools as measured by a test of middle school mathematics given at the beginning of 

their first year at the high school.  By the end of the first year, there was no significant 

difference, however, between the performance of Railside students and the students from 
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the other two schools on the end of year algebra test.  At the end of their second year of 

high school, the Railside students significantly outperformed those in the other two high 

schools on a test that combined topics from algebra and geometry.  All three tests were 

designed by the research team and incorporated the types of questions that were 

indicative of both a traditional approach to teaching mathematics and the approach 

developed by the Railside teachers.  

Students at Railside also developed more positive attitudes about mathematics, took 

subsequent mathematics courses at a higher rate, and planned to pursue mathematics at 

the collegiate level in larger numbers.  Perhaps most importantly, achievement 

differences between whites and ethnic groups were reduced, and in some cases, 

eliminated.  Two of the reasons that researchers identified as contributing to this increase 

in mathematics achievement were the curriculum designed by the teachers and the way in 

which it was implemented.  The curriculum was taught to all students at Railside who 

were grouped heterogeneously.  Even though the developed curriculum followed the 

traditional sequence of courses (i.e. algebra, geometry, advanced algebra, etc.), it 

consisted of cognitively demanding problems that were worked on for longer periods of 

time in collaborative groups. Multiple points of entry into solving these challenging tasks 

was a key design feature and multiple representations were expected to be used by 

students, as were multiple strategies to solve the problems.  The implementation of the 

curriculum by the teachers consisted of, among other factors, the use of a strategy called 

“complex instruction” in which students are grouped heterogeneously and a variety of 

practices are used to promote group interactions.  These practices include: assigning roles 

to each group member that are interdependent and require collaboration among group 
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members; assigning competence by publicly praising something a student has said or 

done that is mathematically valuable; and creating multi-dimensional classrooms in 

which there are multiple ways to be successful. Among these ways to be successful are 

solving problems using different strategies, explaining ones’ thinking and the thinking of 

others, justifying solutions to problems, and asking questions of each other and of the 

teacher. 

Conclusion A first step in improving mathematics instruction is selecting worthwhile 

tasks in which students will engage.  However, implementing those tasks in ways that 

provide opportunities for students to develop and learn important mathematical concepts 

is a crucial, and difficult, second step of effective instruction. Several of the studies 

discussed in this section (e.g. QUASAR Project (1996), Boaler & Brodie (2004)) provide 

evidence that mathematics teachers are indeed capable of selecting challenging 

mathematics tasks for their classrooms and that effectively implementing such tasks pays 

off in terms of higher mathematics achievement for students.  However, the TIMSS 

Video Study, the QUASAR Project, the Whittington report, and the McLaughlin and 

Talbert study also point to the fact that large numbers of teachers have difficulty in 

implementing such tasks. In addition, Weiss, Pasley, Smith, Banilower, and Heck (2003), 

who observed more than 350 mathematics and science lessons in grades K-12 using a 

structured observation protocol around lesson design, implementation, content and 

culture, report that, even though the majority of lessons they analyzed included 

important, worthwhile content, only 20% of those lessons were implemented in ways that 

engaged the students purposefully in the content.   
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A key component of implementing challenging tasks that purposefully engage the 

student in mathematics is asking questions that promote understanding of mathematics.  

Research literature highlighting the significance of asking a variety of questions that 

support and promote students’ understanding and its impact on student understanding, as 

well as teachers’ predominant questioning practices will be discussed in the next section. 

2.2.2. Asking questions that support student understanding 

Orchestrating classroom discourse has been identified as “the biggest problem for 

teachers” in the mathematics classroom (Hiebert et. al, 1997, p. 29).  Classroom discourse 

consists of much more than just “discussing” or “communicating.”   Discourse can be 

described as the ways in which teachers and students make sense of mathematics by 

“representing, thinking, talking, agreeing and disagreeing” (NCTM, 1991, p. 36).  It 

establishes how the teacher and students will work on a mathematical task, the 

importance of thinking and reasoning during engagement in a task, and the expectation 

that justifying and explaining one’s thinking and reasoning is a valued norm.  Asking a 

variety of questions that prompt these behaviors is a complex endeavor. All students must 

be supported as they participate in solving the task and the participation must be 

orchestrated in ways that maintain the challenges of the task.  Teachers must decide when 

to share information to assist students’ learning and how much of that information is “too 

much” to share.  In short, the teacher’s role in discourse is deciding when to provide 

information, when to ask for clarification, when to push for a deeper understanding, when 

to promote discussion, and when to let a student struggle with a difficulty (NCTM, 1991, 

p. 35).  
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2.2.2.1. Teachers’ practice of asking questions Asking questions that prompt 

clarification, justification, meaning making, and discussion is a challenge for most 

mathematics teachers.  They have not, for the most part, learned mathematics by publicly 

discussing, explaining, and justifying their thinking and reasoning through the 

exploration of single, challenging tasks and they do not know how to model or facilitate 

such a lesson (Lappan, 1997).  In fact, research shows that most teachers engage in a 

three part discourse pattern in which the teacher initiates a conversation through asking 

questions that often require one word or simple answers, a student responds, and the 

teacher evaluates the response (Stodlosky, Ferguson, and Wimpelberg, 1981; Lemke, 

1990; Cazden, 2001).  This pattern, labeled IRE (initiate-respond-evaluate), occurs 

between the teacher and one student and usually results in students perceiving the 

curriculum being taught as a set of facts and believing that teacher questions have 

predetermined, correct answers. 

In their study of K-12 mathematics and science lessons, Weiss, Pasley, Smith, 

Banilower & Heck (2003) provide evidence of the predominance of the IRE pattern in 

mathematics and science classrooms.  In their observation and analysis of 350 lessons, 

they divided lesson quality into 5 levels, ranked from 1 through 5.  Level 1 consisted of 

lessons that exhibited ineffective instruction, such as passive learning by students or 

doing activities without a purpose.  Level 3 consisted of lessons that exhibited the 

beginning stages of effective instruction while level 5 consisted of lessons showing 

exemplary instruction.  In rating lesson quality, the researchers considered lesson design, 

lesson implementation which included teacher questioning, quality of content, and 

classroom culture.  Weiss and her colleagues report that only 16% of the lessons they 
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observed consisted of high level questioning - the types of questions that “encourage 

students to think more deeply” (Weiss et al., 2003, p. 7).  The predominant types of 

questions they observed included rapid series of questions that focused on a correct 

answer with no check for deeper understanding of the content, questions in which one 

student responded correctly with no follow up to determine if other students understood, 

or questions which the teacher answered herself.  Teacher questioning was determined to 

be one of the weakest elements of instruction in the lessons they observed and was one of 

the major reasons that even well-developed and well-planned lessons fell in their ratings.  

2.2.2.2. The impact of teacher questioning on student understanding For decades, 

Bloom’s taxonomy has been used by many educators to classify student thinking (Bloom, 

Englehart, Furst, Hill & Krathwhol, 1956, p. 78).  The taxonomy ranges from the lowest 

level of thinking, the knowledge level, that requires students to recite or remember facts, 

etc., to the highest levels of thinking, synthesizing and evaluating, that requires students 

to relate and connect different ideas, methods, etc. The assumption is made that higher 

order questions, those that ask students to synthesize or evaluate information, foster 

student thinking and contribute to better retention and problem solving skills, while the 

lowest level of questions, those that require recall or memorization, require little complex 

thinking and do not contribute to advancing students’ thinking.  Although this 

classification system suggests a way to consider the types of questions asked by teachers 

and the purposes they might serve, several more recent research studies that link student 

thinking and achievement to teacher questioning make salient the importance of teachers’ 

asking students questions that require deep and complex thinking in order for students to 

develop deep conceptual understanding of mathematics. 
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Hiebert and Wearne (1993) observed six second grade classrooms on a weekly basis 

during 12 weeks of instruction in mathematics with a focus on the mathematical tasks 

that were used and the classroom discourse occurring around those tasks.  All six teachers 

engaged students in the same mathematical topics in the same sequence but used different 

approaches to teach the topic.  The researchers analyzed the tasks according to the 

number and types of tasks and time spent solving them and the discourse according to 

how much time teachers and students talked and the kinds of questions asked pertaining 

to mathematics.  The questions were then grouped into four broad categories:  1. recall – 

requiring students to recite facts, rules, or topics; 2. describe strategies – requiring 

students to either describe the strategy they used or find a different strategy to solve the 

same problem; 3. generate problems – creating a story to match a number sentence or 

creating a problems to fit a description; and 4. examine underlying features – requiring 

students to explain why they used a particular procedure or why the procedure works or 

asking students to analyze the nature of a problem or strategy.   

In three of the classrooms, students solved more problems per lesson and spent less 

time on problems.  The vast majority of the problems required students to use written 

symbols and were solved by using computation. The teachers in these classrooms asked 

very few questions other than recall questions and only 10% of student responses were 

six words or longer.  In the other three classrooms, students solved fewer tasks per lesson 

but spent more time on the tasks they did solve. In addition, their tasks included more 

alternative representations and many of the tasks were situated within a context.  Two of 

the three teachers in these classrooms asked many more “nonrecall” questions that 
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required students to explain and describe their thinking.  Students in these two classrooms 

also had 25% to 35% of their responses being six words or longer.   

Perhaps the most important result of the study was the impact on students’ learning of 

mathematics.  Prior to the study, four of the classrooms had been identified as being 

lower in mathematics achievement than two of the other classrooms. The largest gain in 

achievement occurred in one of the initially lower achieving classrooms. The teacher in 

this classroom was one of the two who asked a variety of questions and used different 

types of tasks.  Students in this classroom ended the year with achievement levels nearly 

identical to the achievement levels in one of the higher achieving classrooms. In addition, 

the second initially higher achieving classroom also had significant gains in achievement 

and had a teacher who also asked a variety of questions and used a variety of tasks. 

 Martino and Maher (1999) also found a link between teachers’ questioning and 

student learning.  During a 10-year longitudinal study they conducted in three urban New 

Jersey school districts, they wanted to determine how children build ideas in 

mathematics.  During the 1992-1993 school year they analyzed video transcripts, student 

work, and observer notes from 151 students in third, fourth, and fifth grade classrooms 

with a focus on the effects of teacher questioning.  In their analysis of one of the 

classroom teachers, a strong relationship was discovered between the teacher’s 

monitoring of students’ problem solving methods and the teacher’s questioning that 

helped students learn to justify their solutions, make connections between problems, and 

understand the strategies of other students.  This resulted in students extending their own 

mathematical thinking and moving to deeper mathematical understanding. 
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In the Boaler and Brodie (2004) study of mathematics teaching and learning in three 

high schools, described in the previous section, the researchers coded questions asked by 

6 teachers, each of whom were observed teaching 6 lessons.  The types of questions 

asked were deemed to be an important indicator of the mathematics on which students 

and teachers worked and one of the factors that contributed to the significantly higher 

achievement of the students at Railside (Boaler & Staples, 2005).  

Through the analysis of the questions asked by teachers, categories of types of 

questions emerged (see Figure 2.1).   In the traditional mathematics classrooms of two of  

 
 
Question Type Description Examples 

1.  Gathering 
information, leading 
students through a 
method 

-Requires immediate answer 
-Rehearses known facts/procedures 
-Enables students to state facts/ 
procedures 

“What is the value of x in the 
equation?” 
“How would you plot that point?” 

2.  Inserting terminology -Once ideas are under discussion, 
enables correct mathematical language 
to be used to talk about them 

“What is this called?” 
“How would we write this 
correctly?” 

3.  Exploring 
mathematical meanings 
and/or relationships 

-Points to underlying mathematical 
relationships and meanings. 
-Makes links between mathematical 
ideas and representations. 

“Where is the ‘x’ on the diagram?” 
“What does probability mean?” 

4.  Probing, getting 
students to explain their 
thinking 

-Asks student to articulate, elaborate or 
clarify ideas 

“How did you get 10?” 
“Can you explain your idea?” 

5.  Generating discussion -Solicits contributions from other 
members of class. 

“Is there another opinion of that?” 
“What did you say, Justin?” 

6.  Linking and applying -Points to relationships among 
mathematical ideas and mathematics 
and other areas of study/life 

“In what other situations could you 
apply this?” 
“Where else have we used this?” 

7.  Extending thinking -Extends the situation under discussion 
to other situations where similar ideas 
may be used 

“Would this work with other 
numbers?” 

8.  Orienting and 
focusing 

-Helps students to focus on key 
elements or aspects of the situation in 
order to enable problem solving 

“What is the problem asking you to 
do?” 
“What is important about this?” 

9.  Establishing context -Talks about issues outside of math in 
order to enable links to be made with 
mathematics 

“What is the lottery?” 
“How old do you have to be to 
play the lottery?” 

            

         Figure 2.1:  Categories of question types, descriptions, and examples 
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the high schools, the teachers presented new mathematical methods through lectures and 

the students worked through short, closed problems. In particular, teachers in the 

traditional classrooms asked procedural questions more than 95% of the time.  Procedural 

questions (type 1 questions in Figure 2.1) were those that required students to give an 

immediate answer, rehearse procedures, or state facts.   

At Railside school, however, teachers lectured only 4% of the time and students 

worked collaboratively in heterogeneous groups.  The teachers posed longer, conceptual 

problems and combined student presentations with effective teacher questioning.  

Teachers at Railside also asked procedural questions, but only 62% of the time.  More 

importantly, it was noted that the Railside teachers asked a variety of other types of 

questions.  In particular, 32% of the time, teachers at Railside asked questions that were 

considered to be either exploring or probing (types 3 and 4, respectively, in Figure 2.1).  

Exploring questions required students to identify mathematical relationships and connect 

mathematical ideas and representations.  Probing questions required students to explain, 

justify, or clarify their thinking.  Railside teachers also asked questions that prompted 

students to discuss mathematics with each other (type 5 in Figure 2.1).  The researchers 

noted that the Railside teachers’ practice of asking these particular types of questions was 

likely connected to the curriculum they designed and the types of mathematical tasks in 

the curriculum.  The type of questioning used by teachers at Railside, which was absent 

in the other two schools, was considered to be an important factor that contributed to 

increased student achievement in mathematics at Railside. 
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Conclusion Although many teachers have difficulty implementing worthwhile 

mathematics tasks, asking particular types of questions around cognitively demanding 

mathematical content can lead to higher student learning and achievement. In particular, 

the Boaler and Brodie (2004) study makes a case for teacher questioning that goes 

beyond only procedural questions and includes exploring, probing and generating 

discussion questions as a key component in orchestrating effective discourse around high 

level tasks and in developing students’ mathematical understanding. 

Selecting a worthwhile mathematics task does not necessarily lead to teachers asking 

questions that support students’ understanding of mathematics.  In order to develop new 

knowledge about teaching that would support the implementation of worthwhile tasks 

through teacher questions, teachers must have opportunities to engage in activities that 

“are at the heart of a teachers’ daily work” (Smith, 2001, pg. 2).  These opportunities for 

in-service teachers occur primarily through professional development experiences.  The 

next section describes features of professional development programs that have been 

shown to increase student achievement by changing the instructional practices of teachers 

and which will inform the design of the program for teachers in this study. 

 

2.3. FEATURES OF EFFECTIVE PROFESSIONAL DEVELOPMENT 

Students’ opportunities to learn and understand mathematics are determined by the 

teachers who teach them.  Instructional practices that provide students with opportunities 

to learn challenging mathematics are not the norm for mathematics teachers in the U. S. 

(Stigler & Hiebert, 1999).  Therefore, teachers need multiple opportunities to learn about 

and try out new practices if they are expected to adopt them.  For in-service teachers, 
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professional development experiences have the potential to provide them with 

opportunities to learn about and try out these new practices. 

Although existing research supporting a professional development focus on teacher 

questioning as a means to change practice and increase student achievement is very 

limited, several research studies have documented and described features of effective 

professional development programs that are linked to increased student achievement in 

mathematics and changes in teachers’ instructional practice.  These features will be 

described in the next section.   

2.3.1. Professional development linked to increased achievement and changes in 
practice 
 
The ultimate purpose of any professional development program for mathematics teachers 

should be to assist teachers in providing the best possible learning experiences for 

students in order to advance students’ achievement in mathematics.  Though research that 

illustrates a connection between professional development and increased student 

achievement is limited (see Loucks-Horsley & Matsumoto, 1999; Huffman & Thomas, 

2003), it does exist.  Carpenter et al. (1989) and Fennema et al. (1996) cite evidence of 

professional development impacting student achievement in mathematics.  Their studies 

were conducted around the Cognitively Guided Instruction (CGI) program in which 

teachers learned about models of student thinking and applied these models to their own 

practice.   The professional development program engaged teachers in learning about 

how children develop mathematical thinking and then assisted the teachers in creating 

frameworks of children’s mathematical thinking by building on their existing content 

knowledge.  As the authors note, the teachers learned how students used concrete 

materials to solve problems and then engaged in activities around how those materials are 
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linked to more abstract and formal mathematical ideas.  Teachers also had opportunities 

to learn how errors made by children allowed them to determine what conceptions and 

misconceptions students might have.  And teachers became aware of how to assess their 

students’ thinking and the strategies used by the children.  For example, teachers 

analyzed videos of children solving problems and then connected what they saw to work 

produced by their own students.   

The professional development opportunities for teachers involved in the CGI program 

took a variety of formats.  Summer workshops focused on providing teachers with a 

research-base on children’s mathematical thinking.  When teachers were back at their 

schools, they then worked with colleagues within and across grade level in a variety of 

ways and had support from an experienced CGI teacher and a graduate student 

researcher. 

In the initial study, 20 first grade teachers participated in a four week CGI workshop 

and another 20 first grade teachers participated in two 2 hour problem solving workshops.  

All 40 teachers were observed during the following school year and interviewed at the 

end of the school year.  In addition, students were given a pre- and post-standardized 

mathematics test to determine their levels of achievement.  The results showed that the 

teachers who participated in the CGI program implemented problem solving, encouraged 

the use of a variety of strategies, listened to their students thinking, and knew more about 

how each student approached problem solving significantly more than the other teachers.  

In addition, the students of the CGI teachers exhibited high achievement, not only in 

problem solving, but also in knowledge of number facts (Fennema, et al., 1996).   
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In a subsequent study, twenty-one teachers at grades 1-3 participated in the CGI 

program over a four year period.  Based on data gathered via classroom observations and 

standardized tests, it was found that 90% of the teachers improved their level of 

instructional practice, in terms of the CGI model, over the four years.  In addition, all 

teachers involved in the CGI program demonstrated an increased level of student 

achievement in terms of problem solving and conceptual knowledge from the first year of 

involvement to the fourth year.  In a follow up study conducted fours year after the end of 

the CGI program, all of the teachers continued to implement principles of the program at 

some level and ten of the teachers continued to grow in their beliefs and practices around 

students’ mathematical thinking (Carpenter, Fennema, Franke, Levi, & Empson, 2000).  

At the high school level, a report from the National Staff Development Council 

(Killion, 2002) provides evidence of two cases of professional development programs 

that served to increase student achievement. The Houston Independent School 

District/Rice University School of Mathematics Project (RUSMP) provided intensive 

professional development for algebra teacher coordinators in all high schools in the 

Houston Independent School District.  The professional development provided 

opportunities for coordinators to examine each concept taught in Algebra I and expand 

their repertoire of instructional strategies in order to meet the needs of their students. In 

particular, there was an emphasis on providing student-centered learning experiences, a 

focus on conceptual learning, and the integration of concepts across grades.   Algebra 

coordinators met in weekly planning sessions with the Rice University partners to 

develop a blueprint, labeled a “Learning Plan,” for organizing instruction around each 

algebra concept.  The coordinators then returned to their schools and met with their own 
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algebra teachers to adapt and expand the Learning Plan to meet the needs of their own 

algebra students.  Over the 3 years of the project, the percent of students passing the end 

of course algebra exam increased from 23% to 43%.  In addition, the passing rates for 

African-American, Hispanic, and economically disadvantaged students were higher than 

the statewide rate, which was not the case prior to the project (Killion, 2002, p. 82).   

A second professional development project from the Rice University School of 

Mathematics Project that resulted in increased student achievement was a four week 

summer program in which Houston area mathematics teachers participated.  Teachers 

were placed into groups according to grade level and worked with “master teachers” who 

had collaborated with Rice University staff to design the curriculum for the program.  

The master teachers modeled effective instructional practices and authentic assessment 

techniques.  Teachers participated in cooperative learning groups, explorations and 

investigations of open-ended mathematics problems, and the use of technology and 

manipulatives.  They also learned to use the Learning Plan template to organize their 

daily instruction.  Ongoing support was provided to the teachers in their schools through 

the use of on-site leaders who had previously participated in the program. 

Independent evaluations of student achievement were conducted and gains in 

achievement for students whose teachers participated in the program were shown.  In 

addition, the Houston Independent School District noted higher student scores on the 

high school level state mathematics exam for students whose teachers participated in the 

program (Killion, 2002, p. 86).   

Survey results from another study provide supporting evidence that links professional 

development to student achievement. Cohen and Hill (2000), in their survey study of 
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teachers of grades 2–5 from 250 schools in California, noted that teachers who spent time 

in professional development activities centered around mathematics curriculum and 

instructional practices around the curriculum, were better able to implement those 

practices and had students who performed better on California’s state mathematics 

assessment.   

Conclusion Analyzing features of the professional development programs that were 

linked to increased student achievement across projects suggests that: 

1. All of the professional development programs engaged groups of teachers in the 

context of teaching and learning mathematics.   

2. The programs engaged teachers in working collaboratively with peers in a set of 

activities that were connected to each other and to the work of teaching.   

3. The professional development activities in which the teachers engaged were tied 

directly to the teachers’ day-to-day practice and involved both learning about 

mathematics and examining effective instructional practice.   

The next sections describe in more depth the importance of these features.  In 

addition, the significance of considering these features for professional development 

aimed at the high school level will be discussed. 

2.3.2. A focus on the teaching and learning of mathematics 

Teachers need opportunities to learn mathematics in the same ways they are expected to 

teach it.  According to Mewborn (2003), “just as one cannot expect students to learn 

something simply by being told that it is so, one cannot expect teachers to change their 

teaching practice simply because they have been told to do so”  (p. 49).  And most 

mathematics teachers have never engaged in mathematics in a way that enables them to 
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use instructional strategies that promote student learning of worthwhile and challenging 

mathematics (NCTM, 2000).  Since most teachers of mathematics have experienced 

mathematics algorithmically and procedurally, they have not had opportunities to develop 

the conceptual understanding of the algorithms or procedures they use.  And rarely have 

they ever approached mathematical concepts from different perspectives or 

representations.  If teachers are to be enabled to change the way they teach, “then 

teachers must have opportunities to talk, think, try out, and hone new practices” 

(McLaughlin & Oberman, 1996, p. 189). 

In the previous section, which linked effective professional development programs to 

increased student achievement, each of the programs was grounded within the content of 

mathematics.  For example, the CGI program engaged teachers in learning about 

elementary students’ thinking and problem solving in the area of numbers and operations.  

Likewise, the RUMSP program was focused on algebra concepts.  The focus on 

mathematics content, when providing teachers with professional development 

opportunities, is particularly significant with high school mathematics teachers. 

Implications for the high school level.  Grossman and Stodolsky (1995, p. 5) note that 

secondary teachers define themselves by the subject they teach.  “The nature of the parent 

discipline and features of the school subject, as well as teachers’ beliefs regarding the 

subject, help create a conceptual context within which teachers work” at the high school 

level.  In their study of 16 high schools, Grossman and Stodolsky (1995) discovered, 

through structured interviews and survey results, that each subject area at the high school 

level had its own subculture consisting of beliefs, norms, and accepted forms of practice.  

In mathematics, more than in any other content area, the culture supported a resistance to 
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heterogeneous grouping and relied on grouping students by previous achievement, 

mainly because of a belief in the sequential and defined nature of mathematics.  The 

researchers indicated that those responsible for professional development at the high 

school level must acknowledge and address these subcultures around content.  Otherwise, 

teachers will disengage from the professional development activities, because they will 

conclude it does not support or address the needs of their particular content area. 

Additional evidence supports the notion that “the most successful professional 

development activities are those that are extended over time and encourage the 

development of teachers’ learning communities” (Bransford et al., 1999, p. 195) The next 

section will describe programs that illustrate this notion. 

2.3.3. Conducted in collaborative learning communities 

Stein, Silver and Smith (1998) cite building a community of collaboration and reflection 

in one of the schools involved in the QUASAR project as contributing to teachers’ ability 

to sustain their growth and learning over a long period of time which resulted in 

improvement in their students’ learning.  Likewise, both the CGI and RUMSP 

professional development programs used learning communities within schools to support 

teachers in implementing elements of the program. Teachers who participated in the CGI 

Program attended the professional development sessions with colleagues from their own 

schools and received continued support when back at their schools through the use of 

mentors.  Teachers also assisted each other at the schools by serving as “sounding 

boards” for each other as they applied what they learned in their professional 

development sessions to their own classroom practice (Carpenter, et. al, 2000). In the two 

programs at Rice University (RUMSP), teachers involved in the project met in their 
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buildings on a weekly basis and collaboratively planned lessons and addressed other 

instructional issues such as assessment and pedagogy (Killion, 2002). Additional studies 

describe how collaborative learning communities assisted teachers in improving their 

instructional practice. 

Importance for the high school level.  McLaughlin and Talbert (2001), who studied 

16 high schools in Michigan and California, determined that most high school teachers 

worked in weak teaching communities.  However, they noted that strong teacher 

communities can have both positive and negative effects on teachers and their students.  

Two high school mathematics departments, with similar demographics including a 

majority of minority students, were considered to have a strong sense of community.  At 

one of the schools, the math department responded to the increasing diversity in their 

student population by tracking students and subjecting students to competency tests in 

order to advance to the next level.  When the district mandated a common pre-algebra 

course for all students, the teachers responded by failing a majority of students and then 

designing watered down algebra courses for the students in subsequent years.  At the 

other high school, the mathematics department had a strong belief that their students 

could succeed in algebra and beyond and collaboratively changed their practice to 

accommodate their diverse student population’s learning needs.  As a result, they had 

high numbers of students enrolling in classes beyond algebra. 

Structures for building professional learning communities are nearly nonexistent in 

U.S. high schools (Grossman, Weinburg & Woolworth, 2001).  The norms of American 

high schools are a school day in which teachers’ only interaction with other professionals 

is at lunch time, in the hall, or before and after the school day.  Nearly all teacher learning 
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opportunities occur outside of the school in one-shot workshops, generic inservice days, 

or summer or weekend sessions, leaving no opportunity to build a professional learning 

community and perpetuating the notion that teacher learning does not occur in the school.  

Several researchers, however, have noted success in establishing learning 

communities in high school departments.  Stodolsky and Grossman (2000) reported that 

English and mathematics teachers who worked in collaborative high school departments 

with a common focus on student learning were better able to equitably engage their 

students in learning.  Gutierrez (2002) found similar results in her studies of successful 

urban high school mathematics departments.  Teachers in those departments used 

rigorous mathematics curricula for all students, discussed their lessons, and observed 

each other teaching their diverse learners.  The result was students who were more 

actively engaged in mathematics and who scored well on standardized tests.   

When teachers do not have opportunities to participate in continuous learning about 

their practice in the setting in which they work, and continue to work in isolation of 

others, any attempts to improve instruction are fatal (Elmore, 2002, p. 29). This makes 

salient the final, and perhaps most important, feature of professional development – 

situating professional development experience in the actual work of teaching. 

2.3.4. Situated in the day-to-day practice of teaching   

In order to develop knowledge about teaching, teachers must have opportunities to 

engage in activities that “are at the heart of a teacher’s daily work” (Smith, 2001, p. 2).  

Ball and Cohen (1999) promote the notion that if teachers participate in professional 

learning around inquiry into their own practice, their everyday work in the classroom 

would be the source for effective professional development and would result in increased 
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student learning.  They state that knowledge necessary for teaching is situated in the 

practice of teaching and must therefore be learned in the practice of teaching.  In fact, “to 

propose otherwise would be like expecting someone to learn to swim on a sidewalk” 

(Ball & Cohen, 1999, p. 12).  The professional development programs described 

previously that were linked to increased student achievement (i.e. CGI, QUASAR, and 

RUSMP) provide examples of what such professional development might entail.   

Fennema et al. (1996) report that teachers who participated in the CGI program 

engaged in activities directly tied to what they would be doing in their classrooms.  They 

viewed and analyzed videos of children solving problems, had their own students solve 

similar problems, and then shared the solutions with other participants in order to discuss 

what students understood mathematically.  Teachers became significantly more 

successful in understanding not only the types of problems their students could solve, but 

also in understanding the strategies their students used, the misconceptions and errors 

their students made, and a deeper understanding of what individual students in their 

classrooms were thinking.   

Many teachers who participated in the QUASAR project engaged in professional 

development activities directly related to their work around issues they identified (Brown 

& Smith, 1997).  When attending university courses as part of their professional 

development, the courses addressed specific issues identified by the teachers and were 

taught by someone familiar with the teachers and their goals. The courses often drew on 

mathematical tasks the teachers used in their classrooms so as to inform their own 

instruction.  Another major professional development activity in which the teachers 

participated was collaborating with their colleagues around activities that were “closely 
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tied to the teaching process itself and to teachers’ classroom practices” (Brown & Smith, 

1997, p. 139).  This often included planning and then reflecting on the implementation of 

lessons in their classrooms.   During the summer, many of the teachers had opportunities 

to reflect on the previous years’ instruction and then develop, refine, or review 

curriculum and other materials in order to provide better opportunities for their students 

to learn mathematics. 

Cohen and Hill (2000) also discovered in their survey of elementary teachers that 

professional development must be aligned with the day-to-day work of teachers, 

particularly in terms of the mathematics curriculum.   Professional development that had 

the greatest success in getting teachers to change their instructional practice and in 

improving student achievement was when the activities were aligned with the curriculum 

the teachers taught and which their students studied and in which student assessments 

were consistent with the curriculum.  They report, “workshops that offered teachers an 

opportunity to learn about student math curriculum are associated with teacher reports of 

more reform-oriented practice” (p. 309).  The majority of the workshops were either 

Marilyn Burns workshops or replacement unit workshops.  In contrast, special topics or 

issues workshops (e.g. cooperative learning, classroom management, use of 

manipulatives) that were not specifically tied to the curriculum did not result in changing 

teachers’ practice, either toward reform-oriented or toward traditional practice  The 

authors conclude that professional development for teachers, in which teachers have more 

concrete, topic specific learning opportunities, may be effective in changing their 

practice, “because the workshops offered teachers elements of a student curriculum, 
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which may have helped them to structure their teaching and support their practices when 

they left the workshop and returned to their classrooms” (p. 312.) 

Importance for the high school level.  Teachers involved in the RUMSP projects 

(Killion, 2002) made use of Learning Plans in their instruction to improve opportunities 

for their high school mathematics students.  In one of the projects, teachers would meet 

with coordinators who had developed basic outlines for teaching each algebraic concept 

in collaboration with Rice University and then collaboratively adapt, expand, and 

implement the Learning Plan for each concept to meet the needs of their own students.  

The Learning Plans included, not only the key mathematical concepts addressed, but also 

instructional strategies and assessment techniques for that particular concept.  In the 

second project, teachers attended a four week summer program in which master teachers, 

who collaborated with Rice University, modeled exemplary instruction and conducted 

authentic assessments which teachers then implemented during the school year in their 

own classrooms.  Support for the teachers at the school level was provided by leaders 

who had previously participated in the RUMSP program so that the implementation of 

the instructional practices modeled at the summer session could be supported and 

sustained. 

2.3.5. Conclusion   

Situating professional development in the day-to-day work of teaching is a key 

component of effective professional development and has been shown to be successful in 

assisting teachers to improve their instructional practice (Smith & Brown, 1994; Fennema 

et al., 1996; Killion, 2002).  In addition, materials that depict the day-to-day work of 

teaching such as mathematical tasks, records of teaching practice, and student work have 
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all been shown to be successful resources for teachers as they engage in professional 

development experiences (Cohen & Hill, 2000; Stein et al., 2000; Kazemi & Franke, 

2004).  Finally, providing opportunities for teachers to collaborate with others is a key 

feature of professional development that has shown promise in engaging high school 

teachers in experiences intended to change practice (Stodolsky & Grossman, 2000; 

McLaughlin & Talbert, 2001; Gutierrez, 2002). 

 

2.4. FRAMING THIS STUDY 

 

Two key instructional practices that have been linked to promoting student understanding 

of mathematics and increased student achievement are selecting challenging tasks for 

students and supporting students’ engagement in those tasks by prompting them to 

explore, explain and justify, and discuss mathematics.  This type of instructional practice 

is not the norm in the U.S.  Therefore, teachers need opportunities to learn about the 

importance of selecting challenging tasks for all students and then going beyond asking 

only procedural questions by asking a variety of other types of questions.    Research 

suggests that the learning opportunities for teachers could be provided by professional 

development experiences grounded in the content of mathematics, conducted in a 

collaborative learning community and situated in the day-to-day practice of teaching 

mathematics.  When working with teachers at the high school level, it is essential to 

consider these features relative to the context of teaching mathematics at the high school 

level.  
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This study involved determining the extent to which high school teachers learned to: 

identify and create questions that promote student understanding of challenging 

mathematics; explain why particular types of questions promote mathematical 

understanding; and focus on mathematical understanding when identifying their purpose 

of asking questions as they engage in professional development experiences.  These 

experiences were focused on: 1.)  learning about the importance of and then practicing 

the selection and enactment of challenging tasks for their algebra students, and 2.) 

learning how to distinguish between question types and their purposes, and 3.) creating 

questions that promote student understanding. The teachers participated with other 

teachers from their schools as well as with a mathematics coach from the school.  In 

addition to learning about the selection of challenging tasks and teacher questioning, 

teachers engaged in planning mathematics lessons which they then implemented in their 

own classrooms.  Embedded within the planning process was a focus on selecting 

challenging tasks and the importance of planning to ask particular types of questions that 

promote understanding of mathematics.  In the next chapter, the methodology for this 

study will be provided. 

 47 



 

 

 

3. CHAPTER THREE:  METHODOLOGY 

 

3.1. INTRODUCTION 

 

The purpose of this study was to examine changes in high school mathematics teachers’ 

ability to: identify and create questions that promote student understanding of 

mathematics; explain why particular types of questions promote mathematical 

understanding; and focus on mathematical understanding when identifying their purposes 

for asking questions as they participated in a professional development program.  The 

professional development program focused on planning, teaching and reflecting on 

lessons that featured cognitively demanding tasks.   In particular, the study aimed to 

examine teachers’ capacity to identify and create three types of questions that have been 

linked to promoting student understanding: 1.) probing; 2.) exploring mathematics; and    

3.) generating discussion. Towards that end, 35 high school mathematics teachers 

completed a pre- and post-test designed to capture the extent to which their abilities 

related to teacher questioning changed over time.  

The premise of this study was that providing teachers with ongoing opportunities to 

learn about questions of these three types and the ways such questions support students’ 

engagement with cognitively challenging mathematics and promote mathematical 

understanding would assist them in identifying and creating questions of these types. It 
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was also hypothesized that teachers would be less reliant on using only procedural 

questions.  Although this study did not follow teachers into the classroom, it was 

hypothesized that building teachers’ capacity to identify and create questions that 

promote student understanding of mathematics was necessary before the ability to ask 

such questions during instruction could occur. 

This study utilized a pre-post test design with a voluntary sample of high school 

mathematics teachers.  The pre-post test was used to determine changes in teachers’ 

ability to: identify and create questions of the 3 types identified that promote 

understanding of mathematics; explain why these particular types of questions promote 

mathematical understanding; and focus on mathematical understanding when identifying 

their purposes asking questions.  Data from the pre-post test was analyzed quantitatively 

to determine the extent to which the changes occurred and if any changes were 

significant.  Particular responses from participants on the pre- and post-test were then 

used to illustrate the nature of the responses and changes in responses.  Artifacts from the 

professional development sessions were analyzed quantitatively, when appropriate, and 

qualitatively to describe possible links between changes in teachers’ ability to identify 

and create questions of the 3 types and the professional development experiences in 

which they engaged.   

In this chapter, the methodology of the study is described including the context in 

which the professional development occurred, information about the participants, the data 

sources, and how the data was coded and analyzed.  In addition, information about the 

rationale for and design of the pre-post instrument is described. 
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3.2. CONTEXT 

 

This study was set in the context of a professional development project2 that focused on 

providing high school algebra teachers from a large urban school district with 

opportunities to learn about instructional practices in mathematics, reflect on their 

implementation of the practices, and ultimately reform their own practice.  The 

professional development in which teachers participated consisted of three components – 

large-group experiences, school-based study group experiences, and classroom based 

experiences. In the following sections, each of these three components -- and the 

potential opportunities they provided for teachers to learn about question types that 

promote student understanding of mathematics – is described. 

Large-group sessions.  The goal of the large-group professional development sessions 

was to provide opportunities for teachers to learn about effective instructional practices 

for teaching mathematics and to reflect with colleagues on issues related to planning for 

and implementing those practices. The large-group PD occurred in four sessions during 

the school year, each of which consisted of two days. The program involved 99 high 

school mathematics teachers from 17 high schools in two sub-districts within a large 

urban district.  Each large-group session was conducted simultaneously in four rooms 

organized by sub-district and high school. The 4 facilitators of the sessions (one in each 

room) remained with the same group of teachers throughout the program. The facilitators 

                                                 
2 The project was a joint effort between a large university in eastern U.S. and a large urban district with a 
focus on reforming mathematics instruction at the high school level.   
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included the investigator and 3 other experienced mathematics educators all of whom 

were knowledgeable about best practices for teaching algebra at the high school level as 

well as the research base around which the professional development experiences were 

designed.  The investigator and one of the other facilitators were responsible for the 

design of the experiences.  They received input and feedback on the design from the other 

two facilitators as well as from two additional mathematics educators at the university. 

The experiences in the large-group sessions focused on learning about best practices 

for teaching algebra, of which asking questions around cognitively demanding tasks was 

a key aspect.  Teachers were expected to implement the practices they learned in their 

own classrooms and then reflect on the successes and challenges they experienced at the 

next large-group session.  The professional development experiences, shown in Figure 

3.1, were designed drawing on two bodies of research -  the selection and implementation 

of cognitively demanding mathematical tasks (Stein, et al., 2000) and the relationship 

between questions asked during instruction and student understanding of mathematics 

(Boaler & Brodie, 2004).   

3.2.1. Selection and implementation of cognitively demanding mathematics tasks   

As noted in Chapter 2, choosing challenging mathematics tasks for students is a key 

component of effective mathematics instruction (NCTM, 1991; Lappan, 1997; Stein et 

al., 2000) and a prerequisite for asking questions that promote the understanding of 

mathematics.  Therefore, teachers had multiple opportunities to learn about the 

importance of choosing cognitively demanding tasks and ways in which lessons can be 

implemented to maintain the demands of the tasks.  
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Session 1 
Aug. 29-30, 2006 

Session 2 
Oct. 12-13, 2006 

Session 3 
Jan. 18-19, 2007 

Session 4 
Mar. 28-29, 2007 

 
 

Discuss 
challenges related to 
teaching mathematics 

 

 
Reflect on 

implementation 
of T-Shirt task 

Reflect on 
implementation 
of “Making the 

Team” task with a 
focus on questions 

asked during 
implementation 

Reflect on 
implementation 
of “Shapes of 

Quadratics” task with a 
focus on questions 

asked during 
implementation 

Engage in solving 
and discussing the  

“T-Shirt” task 

Engage in solving 
and discussing the 

“Making the Team” 
 task 

 

Engage in solving  
and discussing the 

“Shapes of 
Quadratics”  task 

Engage in solving  
and discussing the 

“Multiplying 
Binomials”  task 

Sort a set of tasks 
according to 

cognitive demands 
 

Read and discuss a 
vignette of a teacher 

implementing the 
“Making the Team” task 

with a focus on how 
understanding was 

supported or inhibited 
 

Discuss 
strategies for 

assisting English 
Language Learners in 

understanding  
mathematics 

Read and discuss a  
case of a teacher 
implementing the 

“Multiplying 
Binomials” task 

Discuss 
importance  
of  setting  

mathematical goals prior 
to planning a lesson 

 

Analyze a set of student 
work from the “Making 

the Team” task and create 
questions that assess and 

advance student 
understanding 

Read and discuss a 
vignette of a teacher 

implementing the 
“Shapes of 

Quadratics” task with 
a focus on types of 

questions asked 

Analyze a set of student 
work from the 
“Multiplying 

Binomials” task and 
create questions to 

promote mathematical 
understanding 

 
 

Analyze a vignette and 
identify potential student 
misconceptions or errors 
related to the T-Shirt task 

 

Analyze the “Making the 
Team” lesson;  

Plan a related lesson with  
a focus on assessing and 

advancing questions. 
 

Analyze the Boaler 
and Brodie 

framework of 
question types and 
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and advancing 

questions 

Analyze the 
“Multiplying 

Binomials” lesson;  
Plan a related lesson 

with a focus on asking a 
variety of questions 

Plan a lesson 
around a task related to 
the T-Shirt task with a 

focus on goals and 
addressing 

misconceptions and 
errors 

 Generate questions 
that promote 

understanding for a 
set of student work 
from the “Shapes of 

Quadratics” task 

 

  Analyze the Shapes 
of Quads. Lesson; 

Plan a related lesson 
with a focus on 

asking a variety of 
questions 

 

 

 

Figure 3.1:  Activities in the large-group professional development sessions 
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At each session, teachers engaged in solving and discussing an ‘adult version’ of a 

task they were asked to teach to their students as is noted in the rectangular shapes of 

Figure 3.1.  ‘Adult’ versions of the tasks were adaptations of the tasks teachers would be 

asked to teach to their algebra students.   These adaptations were made so that the tasks 

would be challenging for the teachers. For example, in Unit 3 (see Figure 3.2), teachers 

solved and discussed the “From Equations to Graphs” task (Appendix C.1.2), the adult 

version of the “Shapes of Quadratics” task (Appendix C.1.1).  The adult version of the 

task was created to challenge teachers’ knowledge about the effect of the coefficient, b, 

on the graph of a parabola.  The task used during a session aligned with the unit in the 

mathematics instructional guide for algebra in which teachers were currently working. 

 

 

 

 
Figure 3.2: Sample ‘high level task’ activity from Session 3 

 
 

A specific aspect of implementing lessons around cognitively demanding tasks was 

also addressed at each large-group session.  At the first session (column 1 of Figure 3.1), 

teachers discussed how anticipating student misconceptions and errors prior to teaching 
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the lesson could assist them in implementing high level tasks.  Subsequent large-group 

sessions encompassed a variety of experiences which aimed to address supporting 

students’ learning as they engage in solving challenging tasks.  

 For example, the two triangular shapes under Session 3 of Figure 3.1 indicate that 

teachers participated in two discussions – one concerning supporting English Learners as 

they engage in solving challenging mathematics tasks and the other concerning the 

Boaler and Brodie (2004) questioning framework and its impact on student achievement. 

Figure 3.3 shows the specific discussion activities in which teachers engaged during 

Session 3. 

 

 

What’s Ahead? 
 
1.  Introductions/Workshop Agenda and Objectives  
2.  Lecturette: The Role of Language in Learning  
     Mathematics  
3. Understanding Mathematics Vocabulary  
    Reflecting and analyzing: Unit 3: Shapes of  
    Quadratics 
4. Why is reading in math different from reading other   
    books?  
5. Lecturette: Connecting reading, writing and math  
6. Developing writing skills  
    Reflecting and analyzing: Unit 3: Shapes of  
    Quadratics 
7. Integrating Second Language Strategies into  
    Mathematical Tasks  
8. Putting it All Together: Sheltered English instruction  
9. Implementing Strategies 
10. Closing/Reflection 

 

Figure 3.3:  Sample ‘discussion’ activities from Session 3 

 
Activities in the circular shapes were designed to engage teachers in analyzing and 

discussing an aspect of implementing high level tasks.  These activities included reading 

vignettes (Session 2, Figure 3.1) or narrative cases (Sessions 3 and 4, Figure 3.1) of 

teachers implementing challenging tasks with their students and discussing various 
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factors, include teacher questioning, that supported or inhibited students’ understanding 

of mathematics.  For example, in Session 3, after having solved the “From Equations to 

Graphs” task, teachers read the case of a teacher implementing the “Shapes of 

Quadratics” task with his students (Appendix C.2) and discussed factors related to the 

teacher’s implementation that impacted students’ learning. Figure 3.4 shows the specific 

activity in which teachers engaged. 

 

 
 

Figure 3.4: Sample ‘factors related to implementation activity’ from Session 3 
 

The non-rectangular parallelogram shapes indicate activities that focused on 

analyzing student work samples and creating questions that support students’ 

mathematical understanding.  For example, in Session 2 of Figure 3.1, after having 

solved and discussed the “Multiplying Binomials” task (Appendix C.3), teachers were 

asked to generate questions that promote understanding for two scenarios that included 

student work (Appendix C.4) from the task.  Figure 3.5 shows the specific activity in 

Session 2 for which teachers generated questions supporting mathematical understanding.  
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Figure 3.5: Sample ‘analyzing and creating questions’ activity from Session 4 
 
 

At each session, teachers also analyzed a lesson plan based on a student version of the 

task in which they engaged. Teachers and their instructional coach then selected a 

challenging task that built on the concept addressed in the task for that unit and planned a 

lesson around that task.  The hexagon shapes indicate opportunities teachers had to 

analyze and plan lessons with their colleagues using high level tasks related to the student 

version of the task featured in the lesson plan they had previously analyzed.  The lessons 

planned by teachers focused on a particular aspect of instruction that was discussed 

during that session. For example, in Session 3 of Figure 3.1, teachers analyzed the 

“Shapes of Quadratics” lesson plan (Appendix C.5) and then planned a lesson around a 

task related to the “Shapes of Quadratics” task (Appendix C.6) with a focus on asking 

questions  that  assess  and  advance learning or are consistent with the Boaler and Brodie 

(2004) questioning framework. Figure 3.6 shows the specific activity in which teachers 

engaged related to analyzing the lesson plan in Session 3. 
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Figure 3.6: Sample ‘analyzing and planning lessons’ activities from Session 3 
 

Finally, teachers were asked to implement and reflect on the implementation of the 

lesson they had analyzed and on the lesson designed by their school team.  They also 

were asked to collect artifacts from one of the lessons.  The artifacts and reflections were 

then shared with colleagues from other schools at the next large-group session (diamond 

shapes in Figure 3.1).  For example, in Session 4, participants were asked to reflect on 

their implementation of the lesson they had planned related to the Shapes of Quadratics 

task.  Figure 3.7 shows the implementation task teachers were given at the end of Session 

3 which was the basis of the reflection in Session 4. 
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Figure 3.7: Sample ‘reflecting on implementation’ activity from Session 4 
 
 

3.2.2. The importance of teacher questioning    

Selecting a cognitively demanding task alone does not guarantee that the task will be 

implemented in a way that maintains the demands (Stein, et al., 2000). Teacher 

questioning has been identified as a key instructional practice that can either support 

teachers in maintaining the demands of a high level task or that can cause the demands of 

the task to decline (NCTM, 1991; Lappan, 1997; Boaler & Brodie, 2004).  Therefore, 

teachers need opportunities to learn about questioning.  The shaded shapes in Figure 3.1 

indicate when teachers in the professional development program had such opportunities. 

Beginning with the second session (column 2 of Figure 3.1) , teachers learned about 

questions that promote student understanding of mathematics by analyzing a vignette of 

teaching and discussing how the questions asked by the teacher supported or did not 

support students’ understanding of mathematics (see the circular shape in column 2 of 

Figure 3.1).  They also created questions to assess students’ knowledge and advance their 

understanding of mathematics by analyzing various examples of student work 
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representative of what students who engaged in the task were likely to produce (see the 

parallelogram shape in column 2 of Figure 3.1)  At subsequent sessions, teachers 

participated in a text discussion about the article describing the Boaler and Brodie study 

(the shaded triangular shape in column 3 of Figure 3.1 and Figure 3.3), continued to 

analyze narrative cases or vignettes in terms of teacher questioning and its impact on 

student understanding (the shaded circular shapes in columns 3 and 4 of Figure 3.1 and 

Figure 3.4), and used student work as a vehicle to practice creating particular types of 

questions (the shaded parallelogram shapes in columns 3 and 4 of Figure 3.1 and Figure 

3.5).  In the planning of their lessons with colleagues, (the shaded hexagonal shapes in 

columns 3 and 4 of Figure 3.1 and Figure 3.6), teachers were asked to consider and 

discuss the questions they might ask in order to promote student understanding of 

mathematics.  Teachers were also asked to reflect on their questioning during 

implementation of the lessons they had planned (diamond shapes in Figure 3.1 and Figure 

3.7) 

School-based study group experiences.  A second component of the professional 

development program was the school-based study group experiences which were 

expected to occur a minimum of 2 hours every month. Sessions were to focus on 

planning for and reflecting on the implementation of lessons designed collaboratively 

around cognitively demanding tasks, and on issues associated with implementation, 

including teacher questioning. The experiences in the school-based study group sessions 

were intended to complement the large-group session and were to be planned and 

facilitated by the school-based coach who, in addition to attending the large-group PD 
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sessions with their teachers, received 2 additional days of training and assistance in 

conjunction with each large-group PD session. 

Coach training sessions focused on supporting the coaches so that they were prepared 

to facilitate the school-based study group sessions with their teachers.  This support 

included discussing facilitation moves and coaching practices, which were embedded 

within authentic coaching experiences; providing appropriate materials for the coaches’ 

work; and assisting coaches in planning and reflecting on their study group sessions. 

Between every two large-group sessions, coaches were asked to facilitate the school-

based study group sessions with the teachers from their schools in which the lesson 

initially planned in the large-group session was to be discussed and finalized.  They were 

also asked to orchestrate discussions in which teachers reflected on the implementation of 

the lesson they analyzed during the large-group session and the lesson they planned with 

their colleagues.  These reflections were to include the analysis of student work from the 

teachers’ classrooms for evidence of student understanding, the questions asked by 

teachers as they implemented the lessons, and the impact of the questions on students’ 

understanding of mathematics (i.e. Did the questions support or inhibit understanding?). 

The occurrence of the school-based study group sessions was dependent on a number 

of factors, including: administrators providing time for the teachers to meet; the coaches 

facilitating the sessions; and the teachers’ willingness to attend the sessions if they do not 

occur during contractual time.  

Classroom based experiences.  The classroom based experiences were to focus on the 

individual implementation of and reflection on the mathematics lessons analyzed and 

planned in the large-group sessions.   
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At the conclusion of the first session, teachers were asked to implement and collect 

student work from the Custom T-Shirts lesson (session 1 in Figure 3.1).  At the second 

large-group session, teachers and their colleagues reflected on the lesson implementation 

by analyzing the student work from their own classrooms and identifying evidence of 

mathematical understanding (diamond shape in column 2 of Figure 3.1).  After the 

second large-group session, teachers were asked to implement the lesson in which they 

engaged at the large-group session, as well as the related lesson they planned with their 

colleagues.  Teachers were asked to collect artifacts from these lessons and to reflect on 

their implementation of these lessons by focusing on the particular instructional practices 

learned in the large-group sessions (diamond shapes in columns 3 and 4 of Figure 3.1).  

This included reflecting on the successes and challenges in: asking questions that assess 

and advance student understanding of mathematics; asking questions that support English 

learners in understanding mathematics; and asking questions that probe for mathematical 

understanding, prompt students to explore mathematical relationships and connections, 

and generate discussion of mathematics.  At both the school-based study group and large-

group sessions, teachers had opportunities to share their artifacts and reflections on the 

successes and challenges related to implementation with other teachers who taught the 

same lessons.  

Whether or not the classroom implementation occurred was dependent upon a 

number of factors, including the appropriateness of the lessons for teachers who were not 

on a traditional school schedule, teachers’ willingness to implement the lessons, and 

support received from administrators and the coach. 
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3.3. PARTICIPANTS 

 

A total of 99 high school mathematics teachers from 17 different high schools and two 

sub-districts within the large urban district participated in at least one day of the 

professional development program.  

Selection of teachers and participants The criteria for participation in the professional 

development program was jointly established by the University of Pittsburgh and the 

Central Secondary Mathematics Team of the large urban district.  The two partners also 

agreed on the selection of the two sub-districts from which the high schools and teachers 

would be selected.  The criteria which impacted aspects of this study included: 

• Principals from participating high schools would support the teachers and coaches 
involved in the program by providing time for them to meet between large-group 
sessions and by supporting attendance at the large-group sessions. 

 
• At least 3 teachers from the same high school who taught Algebra 1 would 

participate in the program. 
• Teachers from participating high schools would volunteer to participate in the 

professional development program. 
 
• Teachers volunteering to participate in the program would be certified to teach 

high school mathematics. 
 

Based on data gathered from 82 of the teachers who agreed to complete a survey from 

independent evaluators of the professional development program, 33 volunteered to take 

part in the program and 49 were told by their school administrators they were required or 

expected to participate.  Therefore, over half of the teachers attending the professional 

development program did not do so on a voluntary basis. On the day that the pre-test was 

given, 50 of 63 teachers who were in attendance that day, approximately 79% of the 
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attendees, agreed to take the pre-test.  On the final day of the PD program, 50 of the 57 

teachers in attendance, approximately 88% of the attendees, agreed to take the post-test.  

(Note:  Not taking the pre-test did not exclude teachers from taking the post-test.) 

Therefore, over ¾ of the teachers in attendance agreed to participate in the study at the 

beginning of the program and nearly 90% agreed to participate at the conclusion of the 

program.  Since this study used a pre-post test design, only the 35 teachers who took both 

the pre- and post-tests could comprise the sample for this study.  Hereafter, the 35 

teachers forming the sample will be described as ‘participants.’  The term, ‘teachers,’ will 

be used when discussing the 99 teachers who attended at least 1 day of the professional 

development program of whom the 35 participants were a subset. 

 Demographics of the participants and teachers Table 3.1 provides a summary of the 

available demographics describing the 35 participants as well as the 69 teachers in the PD 

program for whom demographic data was available.  It should be noted that the 35 

participants were a subset of the 69 teachers: 

 

Table 3.1: Demographics - participants in the study and teachers in the PD program 

 
 Participants (N = 35) Teachers (N = 69) 

Gender 57% male,  43% female 64% male,  36% female 
Teaching experience: 
     5 years or less 
     6-20 years 
     21 or more years 

 
57% 
31% 
12% 

 
69% 
23% 
8% 

Race: 
     Caucasian 
     African American 
     Hispanic 
     Asian 

 
51% 
14% 
25% 
 9% 

 
51% 
13% 
26% 
 9% 

Certified to teach H.S. 
mathematics 

94% (33 out of 35)* 88% (61 out of 69)* 

*1 of 2 participants and 6 of 8 teachers indicated they were in the 1st or 2nd year of teaching and enrolled in 
a certification program 
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When considering the typical mathematics teacher in the U.S., as reported in results 

from the National Survey of Science and Mathematics Education (Horizon Research, 

Inc., 2000) and The Condition of Education 2000 – 2006 (NCES, 2006), mathematics 

teachers at the high school level have the following characteristics: 

•   45% male, 55% female 
•   91% are white, 4% are Hispanic, and 1% are Asian 
•   28% have 5 or less years of teaching experience; 38% have 6-20 years of teaching 

experience; and 34% have more than 20 years of teaching experience. 
 

In comparing both the teachers and the participants to the national sample, one can 

see that there was a slightly higher proportion of males (57% and 64% respectively) and a 

much higher proportion of minority teachers (39% African American and Hispanic) than 

in the national sample (49% male, 4% African American).  The high percentage of 

African American and Hispanic teachers could be due to the fact that the urban district’s 

student population included a high percentage of Hispanics and African Americans.  The 

experience level of both the participants and teachers, over 50% having 5 or less years 

experience, was lower than the national average for which only 28% had 5 or less years 

experience.  This could be due to the high turnover rates of teachers at the high school 

level in urban districts.  When comparing the gender, race, and experience level of the 

‘participants’ and ‘teachers’ for this study, however, it appears that the participants were 

fairly representative of the teachers from the district participating in the professional 

development program. 

The certification of the participants and teachers was compared to data about urban 

school districts described in the Condition of Education 2003 (NCES, 2003).  The 

document reports that approximately 90% of America’s high school mathematics 

teachers are certified to teach mathematics.  In schools for which the majority of students 

 64 



are minorities and have high rates of poverty approximately 86% of the high school 

mathematics teachers are certified to teach mathematics.  (Note: The report also notes 

that the certification rates for mathematics teachers at the middle school level are much 

lower.  Nearly 23% are not certified.) The participants appear to be certified to teach 

mathematics at a higher rate than the national average while the teachers in the PD 

program appear similar to the national average.  However, a 2006 report of teachers’ 

credentials in the state and city in which the participants taught (Clark & Suckow, 2006) 

reported that, of the 2500 high school mathematics teacher in the district, less than 200, 

or 8%, were not certified to teach mathematics. Therefore, the certification level of the 

participants, although high, was not far from the reported rates for high school 

mathematics teachers in the district.  In addition, the high rate of certification could be 

due to the fact that criteria for selection into the professional development program 

included being certified to teach mathematics.  Thus, certification was an expected 

characteristic of the teachers participating in professional development program, and, 

ultimately, the subset of teachers who formed the sample for this study. 

 

3.4. DATA SOURCES 

 

The primary data source for this study was a pre- and post-test instrument (Appendix 

A) designed to assess teachers’ ability to identify and create questions of particular types 

and explain why certain question types promote mathematical understanding. Various 

artifacts from large-group and school-based study group sessions were also collected in 

order to determine if a link could be made between changes in teachers’ ability to identify 
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and create the particular question types and the professional development experiences in 

which they participated.  Table 3.2 indicates which data sources addressed each research 

question. The following sections describe in more detail, information related to the pre-

post instrument and the artifacts that were collected. 

 

Table 3.2: Research questions addressed by data sources 

 
Research Question Item Purpose of data source 
1. To what extent can high school mathematics 
teachers identify different question types that 
promote understanding of mathematics prior to and 
after participation in a professional development 
program focused on improving instructional 
practice in mathematics?  In particular, to what 
extent can they identify probing, generating 
discussion, and exploring questions? 

Pre- and Post-test: 
 
Part 3 

 

• Determine teachers’ 
ability to identify 
questions that promote 
understanding of 
mathematics 

2.  To what extent can high school mathematics 
teachers explain the reasons why different question 
types promote understanding of mathematics prior 
to and after participation in a professional 
development program focused on improving 
instructional practice in mathematics?  In particular, 
to what extent can they explain why probing, 
generating discussion, and exploring questions 
promote understanding? 

Pre- and post-test: 
 
Part 3 
 

 
 
• Determine teachers’ 

ability to explain why 
particular types of 
questions promote 
understanding 

3. To what extent can high school teachers create 
questions that promote student understanding of 
mathematics prior to and after participation in a 
professional development program focused on 
improving instructional practice in mathematics? In 
particular, to what extent can they create probing, 
generating discussion, and exploring questions? 

Pre- and post-test: 
 
Part 2 

 
 
• Determine teachers’ 

ability to create 
questions that promote 
understanding of 
mathematics 

4.  To what extent do high school teachers focus on 
promoting understanding of mathematics when 
identifying the purposes of the questions they ask 
their students prior to and after participation in a 
professional development program focused on 
improving instructional practice in mathematics? 

Pre- and post-test: 
 
Part 1 

  
• Determine teachers’ 

focus on student 
understanding when 
stating the purposes of 
questions they ask 

5.  What might account for changes in teachers’ 
ability to identify and create questions that promote 
understanding of mathematics and to explain why 
such questions promote understanding? 
 

Attendance sheets 
Agendas from PD 
sessions 
Teacher questionnaire 
Materials from PD 
sessions 
Responses to 2 prompts 

• Determine what might 
account for changes in 
ability to identify and 
create questions that 
promote understanding 
of mathematics 
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3.4.1. The pre-post test instrument 

The pre-test was given at the beginning of the second large-group session in October and 

the post-test was given at the end of the fourth and final large-group professional 

development session in March.  The following sections describe the importance of and 

difficulties associated with measuring mathematics instruction and give detailed 

descriptions of how the instrument was developed and a rationale for its design. 

3.4.1.1. The importance of and difficulties associated with measuring instruction 

Ideally, one could follow a large number of teachers into their classrooms prior to and 

after the professional development program and analyze the discourse from multiple 

lessons in order to determine if they can, in fact, learn about and create particular types of 

questions that promote understanding of mathematics and then adopt a practice of asking 

those questions when appropriate.  While extensive and numerous classroom 

observations may be the “gold standard” for measuring instruction, such a large-scale and 

detailed method that would provide valid and reliable results is a challenge, to say the 

least (Ball & Rowan, 2004).  Using valid sampling methods, establishing validity in the 

measurement instrument, determining reliability among raters, and, even determining 

what constitutes good mathematics instruction are some of the many factors that 

contribute to the challenge of measuring instruction in a way that can be linked to student 

understanding (Ball & Rowan, 2004).  Surveys and questionnaires, although much easier 

to design, utilize, and analyze, suffer from the inability to capture the complexities of 

what is actually occurring in the classroom and from the fact that self-report data is not 

necessarily consistent with real practice (Borko et al., 2003).  Another approach to 

measuring instruction, in-depth case studies, has allowed researchers to explore the 
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interactions occurring during instruction at an in-depth level.  However, the inability to 

generalize the results from a small number of classrooms and the prohibitive cost of 

conducting case studies in a larger number of classrooms are limitations that have yet to 

be resolved in making case studies a viable method of measuring instruction on a large 

scale (Borko et al., 2003). 

3.4.1.2. Alternatives to classroom observation. Alternative approaches to measuring 

classroom instruction have been evolving in recent years.  For example, Matsumura et al. 

(2006) have studied the potential of collecting and analyzing student work as a proxy for 

classroom observations in order to measure the quality of mathematics instruction.  

Results from their study indicate there was a “statistically and qualitatively consistent” 

correlation between using student work and observing mathematics instruction (p. 45) 

and that the next steps might be to determine and measure instructional behaviors that 

affect student achievement.  Borko et al.(2003) have studied collections of classroom 

artifacts for similar purposes and report that researchers had “a reasonable amount of 

agreement” in rating instructional practice based on the artifacts.  Their study indicates 

that analyzing classroom artifacts has the potential to answer the question, “What is it 

like to learn science/mathematics in your classroom?” (p. 38)  Finally, researchers in the 

University of Michigan’s project, Learning Mathematics for Teaching, have reported a 

high correlation between a multiple choice test whose items reflect actual tasks 

performed by teachers of mathematics and a videotape of teachers teaching mathematics 

(Hill, Schilling & Ball, 2004).   

Such alternative methodologies have become increasingly important as concerns 

about conducting large scale research in mathematics education, rather than studying 
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individual schools or teachers, have emerged.  However, implementing these alternatives 

to classroom observation has been a challenge and is a relatively new area of research in 

mathematics education (Borko, Stecher, Alonzo, Moncure & McClam, 2003; Hill, Ball, 

Bass & Schilling, 2006; Matsumara, Boston, Slater, Junker, Steele & Peterson, 2006). 

The pre- and post-test used in this study represents an effort to capture, without 

classroom observation, one aspect of instruction – teachers’ ability to pose questions of 

particular types. 

3.4.1.3. The design of the pre- and post-test instrument The purpose of the pre- and 

post-test was to determine any changes in teachers’ ability to identify and create 

questions of particular types and to explain the purposes these question types serve in 

promoting mathematical understanding as they participated in the professional 

development program.  The design of the instrument reflected an effort to situate it within 

the actual work of teaching mathematics. 

3.4.1.4. Rationale for the design Although questions can be identified and described 

according to the potential they have to promote student understanding, in order to 

establish whether or not a particular question serves that purpose, one must also analyze 

the context in which the question was asked and, if possible, how the student responded, 

and what the teacher did after the response (Gall, 1970; Hiebert & Wearne, 1993; Boaler 

& Brodie, 2004). Thus, such an analysis requires more than just taking notice of the 

question itself. One must also examine the context in which the question was asked.  

Therefore, the instrument for this study was designed based on artifacts of authentic 

classroom practices. 
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3.4.1.5. Components in the design of the instrument  The instrument was comprised of 

three types of items:  Part 1--an open-ended prompt about the purposes of asking 

questions of students; Part 2--scenarios and accompanying student work for which 

teachers are asked to create questions that promote student understanding of 

mathematics; and Part 3--a transcript of a teaching episode which includes a set of 

embedded questions for which teachers are asked to identify those questions that promote 

student understanding and to explain why a chosen question promotes student 

understanding.  

Part 1:  The open-ended prompt asked teachers to identify what they believed were 

the purposes of asking students questions.  The intent of the prompt was to determine the 

extent to which teachers perceived questioning as a vehicle for promoting student 

understanding of mathematics prior to and after the professional development program.  

The hypothesis was that the participants would not focus on student understanding as the 

primary purpose of questioning on the pre-test.  On the post-test, it was expected that 

participants would refer to promoting student understanding when listing the purposes at 

a higher rate than on the pre-test. 

Part 2:  Before beginning part 2 of the pre- and post-test, participants were asked to 

solve a mathematics task.  The second component of the test described 3 brief scenarios 

that might occur during the implementation of the mathematics task, including a teacher’s 

mathematical goals and samples of student work for each scenario.  Each scenario was 

based on authentic video footage and student work artifacts from four different 

classrooms in which the same task was taught to algebra students.  For each scenario, the 

participants were asked to create 5 questions that they would ask to promote student 
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understanding in terms of the mathematical goals of the lesson.  The hypothesis was that 

the majority of teachers would create more procedural questions and fewer exploring 

mathematics, probing, or generating discussion questions on the pre-test and more of the 

three question types highlighted in the professional development on the post-test.  In 

addition, it was hypothesized that the results of the Boaler & Brodie (2004) study would 

play out in the pre-test – few, if any, exploring mathematics questions would be created 

by the participants – and that more exploring mathematics questions would be created on 

the post-test. 

Part 3:  The third component of the instrument featured a transcript in which a teacher 

and her students are engaging in the task.  The transcript was constructed by analyzing 

authentic video footage, transcripts and student work artifacts from one of the four 

classrooms.  Participants were asked to read the transcript, select questions the teacher 

asked that promoted student understanding of mathematics, and explain why they thought 

the selected questions promoted understanding.  The questions featured in the transcript 

were intended to exemplify the three question types identified for this study – probing 

questions, exploring questions, and generating discussion questions. Procedural questions 

were also included in the transcript since they are the most common type of question 

asked by teachers.  It was hypothesized that in the pre-test, participants would choose to 

select fewer questions of the three types and more of the procedural type questions, and 

that the reverse would be true for the post-test.  It was also hypothesized that participants’ 

ability to identify reasons for choosing particular questions as promoting student 

understanding would increase and become more explicit on the post-test. 
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Because each scenario in part 2 and the transcript in part 3 were authentic and 

reflected what a teacher might encounter in a typical mathematics class, teachers should 

have had a sense of familiarity about each.  Therefore, the context around which a 

particular question was to be identified or created had the potential to be somewhat 

representative of the teacher’s own classroom allowing a connection to his/her own 

practice.   

It was hoped that this instrument could serve as a beginning point for determining 

teachers’ knowledge of particular question types and how that knowledge might change 

as they participated in a practice-based professional development program. 

3.4.1.6. Development of the instrument   An initial version of the pre- and post-test, 

developed by the investigator, went through several revisions based on feedback from 

four reviewers who are mathematics educators familiar with the Boaler and Brodie study.   

For example, the initial version of the test included a section in which questions were 

identified in a vignette of teaching and participants were asked why a particular question 

promoted student understanding of mathematics.  This section was eliminated when the 

investigator and reviewers agreed that the section would provide no additional 

information related to the research questions that would not already have been be 

provided in other parts of the test.  In addition, phrases in the transcript that were not in 

the form of a question and yet served the same purpose as asking a question (e.g. Explain 

what you mean, You said intersect because…) were reworded at the suggestion of the 

reviewers so that they did not cause confusion to the participants or that add unnecessary 

complexity to the coding.  Also, questions in the initial version of the transcript for which 

the reviewers and investigator did not agree as to the type of question or its purpose were 
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reworded or eliminated.  The final pilot version of the pre- and post-test reflects a version 

in which 3 of the reviewers agreed with the investigator as to how the types of question 

would be coded (i.e. procedural, probing, exploring, or generating discussion).   

3.4.1.7. Pilot of the instrument The final draft version of the pre-post test was piloted 

with 6 high school mathematics teachers, all of whom were certified to teach secondary 

mathematics.  Their experience ranged from 8 years to 30 years.  This pilot served to 

inform the investigator as to potential responses to the various items and to determine any 

issues related to coding the responses.  The pilot resulted in a revision to the prompt in 

part 1 of the pre- post-test which had initially asked teachers to list questions they would 

ask their students to promote understanding of mathematics and to state the purposes of 

asking questions of their students.  Because the prompt did not provide a context in which 

the questions would be asked, it was difficult for teachers to list actual questions.  

However, they were able to list a variety of purposes for asking questions.  Since the 

instrument includes a section in which participants are asked to create questions that 

promote understanding given particular scenarios, it was suggested by 2 of the reviewers 

and the investigator’s advisor that the prompt only ask participants to state the purposes 

of asking questions of their students. 

3.4.2. Artifacts from professional development sessions 

In addition to the pre-post test instrument, artifacts from the large-group professional 

development sessions were collected.  These consisted of: 

• Attendance sheets from large-group sessions 
• Agendas from large-group sessions  
• Materials from large-group sessions  
• Responses to two prompts at the conclusion of the program 
• A teacher questionnaire requesting demographic information from the participants 
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These artifacts were used to determine if an association could be made between 

teachers’ attendance at and participation in the professional development program and 

changes in their ability to identify and create questions that promote student 

understanding of mathematics.  Although a direct cause-effect relationship could not be 

determined with these data, it was hoped that they might provide insight into the potential 

for professional development experiences to change instructional practice at the high 

school level which could then be studied in more depth with a different design in 

subsequent studies.  It was hypothesized that greater changes would occur for teachers 

who attended the majority of the sessions. 

 

3.5. CODING AND ANALYZING THE DATA 

 

3.5.1. Coding and analyzing the pre- and post-test 

The pre- and post-test were coded and analyzed by the investigator of the study. A subset 

of the data (20%) was also coded by a knowledgeable rater, who underwent 5 hours of 

training.  The rater was not aware whether the data was from the pre- or the post-test.  

The next sections describe how each of the 3 parts of the test were coded and analyzed 

and report on the reliability. 

3.5.1.1. Part 1 – Responding to open-ended prompt   In part 1 of the test, participants 

were asked to identify the purposes of asking questions of their students. 

Coding Each of the responses given by participants was coded using a two point scale 

as is shown in Table 3.3. A score of ‘1’ was given if the stated purpose was consistent 

with the descriptions of ‘exploring’, ‘probing’ or ‘generating discussion’ questions as 
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described in the questioning framework (Appendix B) and a score of ‘0’ if the stated 

purpose was consistent with ‘procedural’, ‘non-mathematical’ or ‘other’ questions. 

 

Table 3.3:  Rubric for scoring responses to Part 1 of pre-post test 
 

Score Description 

1 
 

Purpose refers to asking students to: 
• explain or clarify their thinking 
• justify their solutions to problems 
•  identify mathematical relationships 
• link mathematical representations or ideas 
• explain the thinking and reasoning of others or to restate in their own words 
• contribute additional information to a discussion 
• agree or disagree and justify why 

0 Purpose refers to asking students to: 
• give yes or no or one-word answers 
• recall facts or memorized procedures 

Other purposes related to learning mathematics 
Purposes unrelated to learning mathematics 

 
 

Reliability On part 1 of the pre- and post-tests, the investigator and rater 

independently coded 40 responses from 14 participants.  The rater was not aware which 

responses were from the pre-test and which were from the post-test. Only 3 of the 40 

responses were scored differently by the raters..  In all 3 cases, the investigator coded the 

response as a ‘0’ while the rater coded it as a ‘1’.  The coders achieved 92.5% reliability 

in their coding on the pre- and post-test.   

Analysis Matched-pairs t-tests were conducted on the pre- and post-test data for 

participants’ average score (number of points received divided by the number of 

responses) to determine if there was a significant change from pre- to post in terms of 

explaining the purposes of questions as promoting student understanding of mathematics.  
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Because the hypothesis was that teachers would increase their ability to explain the 

purposes questions have in terms of promoting student understanding, a one-tailed test 

was conducted.  Excerpts from the responses teachers gave were then used to describe the 

nature of the changes in their ability to identify the purpose of questions in promoting 

student understanding of mathematics.   

The frequency of each score, 0 and 1, was also recorded for the pre- and post-tests. 

Matched pairs t-tests were also conducted on the percent of responses receiving each 

score to determine if there was a significant increase in responses receiving scores of ‘1’ 

and a significant decrease in responses receiving scores of ‘0’. 

3.5.1.2. Part 2 – Creating questions that promote student learning of mathematics  

In part 2 of the test, participants were asked to create 5 questions they would ask to 

promote student understanding of mathematics for each of 3 separate scenarios that 

included a piece or set of student work.  

Coding The questions created were coded using a rubric consisting of 6 categories 

that were adapted from the Boaler and Brodie framework (Appendix B).  The rubric used 

both the names and descriptions of three of the question types that were identified in the 

Boaler and Brodie study -- probing, exploring mathematics, and generating discussion.  

The fourth category, procedural questions (which Boaler and Brodie labeled ‘gathering 

information’ in their framework but also referred to as ‘procedural’ in their research) was 

included because of the prevalence of such questions in teachers’ practice.  Two 

additional categories were used to describe other types of questions – those that dealt 

with the teaching and learning of mathematics but did not fit into one of the 4 previously 
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described categories (labeled ‘other’) and those that were labeled ‘non-mathematical’ 

because they did not address the teaching and learning of mathematics.   

In several cases, two questions were bracketed together and counted as one question.  

Examples of when this occurred, as well as descriptions and examples of each of the 

question types are provided in the following paragraphs: 

Generating discussion questions:  Questions of this type, such as “How do you think 

the group made their graph?” and “Who can say more about the chart?”, would prompt 

students to participate in a discussion or to explain another student’s thinking.  These 

types of questions tend to be directed to the entire class or to groups of students rather 

than to individual students.  

Exploring mathematics questions: To be coded as an exploring question, the question 

needs to prompt students to explore mathematics beyond what was evident in the student 

work or to make connections to other representations or mathematical ideas, such as in 

the question “How can you see the cost per minute in the table?” for scenario A or 

scenario C.  In this response, students would need to think about the relationship between 

the number of minutes and cost in the table to determine the rate.  If, however, the same 

question was asked in both scenario A and scenario C, it would be coded as an exploring 

question in scenario A and a probing question in scenario C since the teacher would be 

probing for understanding when asking the question a second time.   

Probing questions:  Questions that would prompt students to explain their thinking or 

justify their answers were coded as ‘probing’ questions.  These questions, such as “How 

did you graph the lines?” for scenario B ask students to explain or justify something that 

is present or seen in the student work.   
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Coding two questions as one:  If a procedural question, such as “Where do the lines 

intersect?” was followed by another question, such as “How did you determine that?”, the 

two questions were bracketed together and counted as one probing question since the 

second question would not make sense without the first question. 

Procedural questions:  Procedural questions are those that require only one word 

answers or an explanation of a procedure.  “Looking at the equations, what is the slope of 

each line?” and “By how much do the minutes increase in the chart”? for scenario C were 

coded as procedural questions because they prompt the student to only provide a one 

word answer based on information that is already given in the student work. 

Other questions related to teaching or learning mathematics:  This category was 

created to capture questions created by the teachers that did not fit into the previous 4 

categories – e.g. “What other problems that we have solved does this problem remind you 

of?”, “What is the math term we use to talk about the rate at which the cost changes?” 

Although these questions deal with teaching or learning mathematics, they were not 

procedural, and yet, could not be coded as one of the 3 question types that promote 

student understanding as is defined in this study. In fact, the first question would be 

categorized as ‘Linking and Applying’ in the Boaler and Brodie framework.   The second 

would be an example of ‘Inserting Terminology.’  Because this study focused only on 

three particular question types which are consistent with the PD in which teachers 

participated, the ‘other’ category acknowledged that there are additional question types 

related to teaching and learning mathematics but that are not targeted in this study. 

Non-mathematical questions:  “Why is your chart vertical instead of horizontal?” and 

“Why is your line crooked?” would be coded as ‘non-mathematical’ because they 
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focused on aspects of the student work that were not related to the mathematics in the 

problem.  Knowing why a student chose to make a vertical, rather than horizontal, table 

would not require the student to explain anything mathematical, nor would asking why a 

particular line was not drawn ‘straight’ for this particular problem. 

Teachers received one point for each question they created that promoted 

understanding of mathematics (i.e. exploring mathematics, probing, and generating 

discussion). A total count of questions that promoted understanding was recorded as was 

the total number of questions created. Although teachers were asked to list 5 questions 

for each scenario, some teachers listed fewer.  Counts of each type of question were also 

recorded. 

Reliability On part 2 of the test, 75 responses from 14 participants were 

independently coded by the investigator and rater. The rater was not aware whether the 

responses were from the pre- or the post-test. The investigator and rater differed on their 

categorization of 7 of the responses, resulting in 91% reliability. The differences in 

coding did not follow a consistent pattern.  In 3 cases, the investigator coded a question 

as ‘probing’ while the rater coded it as ‘exploring’ and in 3 cases the reverse was true.  In 

one case the rater coded a question as ‘probing’ when the investigator coded it as 

‘procedural’. 

Analysis Several matched-pairs t-tests were conducted on the pre- and post-test 

results.  Two of the t-tests compared, from pre- to post, the percent of questions each 

teacher created that promote student understanding of mathematics (i.e. combined 

number of exploring, probing, and generating discussion questions) and the percent of 

questions that were procedural, other, or non-mathematical.  The average number of 
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questions each participant created that promoted student understanding of mathematics 

(i.e. total number of questions created that promote understanding divided by total 

number of questions created) on the pre- and post and the average number of questions 

that were procedural, other, or non-mathematical were also compared using matched-

pairs t-tests.  Since the hypothesis was that participants would increase their ability to 

create questions that promote understanding and decrease the number of procedural or 

others type questions from pre- to post, one-tailed tests were used.   

Additional t-tests compared from pre- to post the average number of each category of 

question each participant created and the percent of each question type created out of the 

total number of questions created.  The hypothesis was that creating questions that 

prompt students to explore mathematics would be foreign to most participants and that 

there would be an increase in their ability to create such questions from pre- to post.  It 

was also expected that there would be an increase in the number of probing and 

generating discussion questions and a decrease in the number of other types of questions.  

Thus, one-tailed tests were used. 

3.5.1.3. Part 3 – Identifying questions that promote student understanding and 
explaining why selected questions promote student understanding 
 
In the third part of the test, participants were given a transcript in which multiple question 

types were embedded.  They were asked to select the questions they thought would 

promote student understanding of mathematics and then explain why the selected 

question promoted understanding.  The responses were coded in terms of correctly 

selecting the questions and providing explanations.   
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Coding the identification of questions In terms of identifying the questions that 

promoted student understanding, there were 25 questions that the participants could have 

selected, 17 of which promoted student understanding of mathematics (i.e. generating 

discussion, probing, or exploring mathematics), 7 of which were procedural, and one 

which fell into the ‘other-mathematical’ category.  (Note:  Reviewers and the investigator 

reached 100 percent agreement on how a question would be identified.)  Of the 17 

questions that promoted understanding of mathematics, 4 were ‘generating discussion’ 

questions, 8 were ‘probing’ questions, and 7 were ‘exploring’ questions.  Two of the 

questions could have been either ‘probing’ or ‘generating discussion’.  For these 2 

questions, the explanation given by the participant as to why the question promoted 

understanding determined whether the question was coded as ‘probing’ or ‘generating 

discussion.’  For example, line 4 contains the question, “So someone who wasn’t in 

group 1, how do you think they used the table to find the solution?  Come up and show 

us.”  If a participant provided an explanation similar to, “Get more students to talk about 

the solution,” it was recorded as a ‘generating discussion’ question.  However, if a 

participant said, “Ask students to explain their thinking,” then the question was coded as 

a ‘probing’ question. 

For the 17 questions that promoted student understanding of mathematics, 

participants could select the question or fail to select the question.  For the 7 questions 

that were procedural, participants could either not select the question or incorrectly select 

such a question.  Thus, there were two possibilities for being correct (selecting questions 

that promoted understanding and not selecting questions that did not promote 
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understanding) and two possibilities for being incorrect (not selecting questions that 

promoted understanding and selecting questions that did not promote understanding.)   

The number of questions that were correctly selected as promoting student 

understanding was recorded as was the number of procedural questions that were 

incorrectly selected as promoting student understanding.  In addition, the number of each 

type of question that was correctly selected (i.e. exploring, probing, generating 

discussion) was also recorded. 

Analysis One-tailed, matched pairs t-tests were conducted on the pre- and post-test 

results to determine if the number of questions correctly selected increased and the 

number of questions incorrectly identified decreased from pre- to post.  In addition, one-

tailed matched pairs t-tests were conducted to determine if the number of exploring, 

probing, and generating discussion questions correctly selected increased. 

Coding the explanations A coding scheme that was based on the Boaler and Brodie 

framework, shown in Appendix B, was used to determine if an explanation provided was 

consistent with the descriptions of the three types of questions that promote 

understanding  of  mathematics as were  identified  for  this  study.   The coding  cheme, 

summarized in Table 3.4, provided for explanations to receive scores from 0 through 3 

and provided examples from the test that corresponded with each code.  

Reliability The investigator and rater independently coded 52 explanations from 14 

participants on the test.  The rater was not aware whether the explanations came from the 

pre- or the post-test.  The coders’ scores differed on 4 of the explanations resulting in 

over 92% agreement.  All 4 scores differed by only 1 point and in all cases the 

investigator coded the explanation 1 point lower than the rater. 
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Table 3.4: Rubric for coding explanations for Part 3 of pre-post test 

 
Code Explanation of Code Purpose of Question 

Exploring 
mathematical 
relationships 

Correctly selects the question 
AND provides an explanation 
that: 

• Require students to identify mathematical 
relationships 

• Require students to link mathematical representations 
• Require students to link mathematical ideas 

  Question Identified Explanation 
• E3 refers to exploring, 

connecting ideas or 
representations in a detailed 
way 

(Line 8)  How can we see the 
cost per minute in the table? 

Makes students think 
about how they got the 
entries in the chart and 
how the entries are 
related 

• E2 refers to exploring, 
connecting ideas or 
representations in a vague or 
surface level way 

(Line 14)  How do we see 
that cost per minute in the 
equations? 

Relationship between 
slope and cost per 
minute 

• E1 does not explicitly refer to 
promoting understanding   
 

(Line 50)  So, in terms of this 
problem, what does the y-
intercept mean?  What does it 
mean “they cross they-axis”? 

Analysis 

• E0 does not provide explanation   
Probing  Correctly selects the question 

AND provides an explanation 
that: 

• Require students to explain or clarify their thinking 
• Require students to justify their solutions to problems 

• Pr3 refers to probing for student 
understanding in a detailed 
way  

(Line 4) So someone who 
wasn’t in group 1, how do 
you think they used the 
table to find the solution?  

Analyze values in the table 
and justify why  (50,7) is 
the answer 

• Pr2 refers to probing for student 
understanding in a vague or 
surface level way 

(Line 44)  What do you 
mean, “where each line 
started and ended?” 

Justify reasoning 

• Pr1 does not refer to promoting 
understanding 

(Line 63) What do you 
mean by “intersect”? 

Vocabulary check 

• Pr0 does not provide explanation   
Generating 
Discussion 

Correctly selects the question 
as promoting understanding 
AND provides an explanation 
that: 

• Ask students to explain the thinking and reasoning of 
others or to restate in their own words 

• Ask students to contribute additional information to a 
discussion 

• Ask students to agree or disagree and justify why 
• G3 refers to student discussion, 

understanding others in a 
detailed way 

(Line 4)  So someone who 
wasn’t in group 1, how do 
you think they used the 
table to find the solution?  

Looking at someone else’s 
work and having to figure 
it out for themselves 

• G2 refers to student discussion, 
understanding others in a 
vague or surface level way 

(Line 42)  So I’d like 
someone who wasn’t in 
group 2 to explain, how do 
you think group 2 made 
their graph? 

Justify others’ thinking 

• G1 does not refer to promoting 
understanding 

(Line 22)  Can someone 
else add on to what Anita 
said? 

Make sure students are 
focused 

• G0 does not provide explanation   
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Analysis Of the questions correctly selected as promoting student understanding of 

mathematics, the total score received for explanations was recorded, as was the total 

score for each type of question.  Average scores were also determined, both for the score 

received for explanations of why a question promoted understanding (computed by 

dividing total score for explanations divided by number of questions correctly selected) 

and for scores received for explanations of each question type.  One-tailed, matched-pairs 

t-tests were conducted to determine if there was an increase in the total and average 

scores, both overall and for each question type. 

The frequency of each score, from 0 through 3, was also recorded for the pre- and 

post-tests. These frequencies were recorded both overall for explanations in part 3 and for 

explanations of each question type in part 3.  One-tailed two-proportion z-tests were 

conducted on the percent of responses receiving each score from 0 through 3 to determine 

if there were significant increases in responses receiving scores of ‘2’ and ‘3’ and 

significant decreases in responses receiving scores of ‘0’ and ‘1’. 
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3.5.1.4. Total score on pre- post-test A total score on both the pre- and post-test was 

computed so that any changes in teachers questioning abilities from pre- to post could be 

determined and analyzed. The total score was calculated by adding the percent of 

purposes stated in part 1 that focused on student understanding, the percent of questions 

created for each scenario in part 2 that promoted student understanding, the average score 

received for explanations in part 3 and the proportion of questions correctly selected in 

part 3.   A ‘difference’ score was also calculated by subtracting the pre-test total from the 

post-test total. 

Analysis Matched-pairs t-tests on the total pre-test and post-test scores were 

conducted to determine if there was a significant increase in participants’ abilities related 

to questioning.  

3.5.2. Artifacts from PD sessions 

In order to determine a possible association between the professional development 

program and teachers’ increased abilities related to questioning, written documents (e.g. 

attendance sheets; agendas and materials) from the large-group professional development 

sessions were collected. 

3.5.2.1. Attendance sheets.  Attendance sheets from each large-group session were 

collected so that participants’ attendance could be calculated. 

Coding For each participant in the study, the total number of days of large-group 

sessions they attended was recorded based on the attendance sheets from each session.  In 

addition, the number of days they attended sessions in which an aspect of questioning 

was discussed (i.e. days 3, 4, 5, 6, 7 and 8 of sessions 2, 3 and 4) was recorded. 

 85 



Analysis The intent was to compute a Pearson correlation coefficient to determine if 

there was a relationship between attendance at the large-group sessions and changes in 

teachers’ questioning abilities.  It was hypothesized that participants who significantly 

increased their abilities related to questioning would also have participated in most, if not 

all, of the sessions.  However, almost all participants in the study attended the majority of 

sessions making the correlation unreliable in predicting a relationship between attendance 

and changes in questioning. 

It was also intended that attendance at school-based study group sessions would be 

calculated. Because coaches were not consistent in submitting attendance sheets and 

agendas from their school-based study group sessions, the data that was collected was not 

reliable.  For example, some coaches submitted attendance sheets for all study group 

sessions held at their schools (even those unrelated to the professional development 

program and those conducted on school time) while others only submitted attendance 

sheets for sessions not held on school time or for sessions that specifically were related to 

the PD project.  It was not possible to determine the content of these sessions since they 

were not accompanied by agendas, reports, etc.  In addition, several coaches did not 

submit any attendance sheets even though they verbally reported on the sessions they 

conducted. Because these data sources were unreliable but it was hypothesized that the 

school-base study group sessions might contribute to changes in teachers’ abilities related 

to questioning, an ANOVA was conducted to compare the school at which the participant 

taught and the  pre-test, post-test, and difference between pre- and post-test total scores 

for participants at each school. 
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3.5.2.2. Materials from professional development sessions.  Materials from the large-

group sessions were used to describe specific opportunities teachers had to learn about 

aspects of questioning.  These materials included: 1. agendas from the sessions that 

indicated when teachers had opportunities to learn or discuss an aspect of questioning;     

2. examples of activities in which teachers learned about different aspects of teacher 

questioning; and 3. written responses to two prompts at the conclusion of the program. 

Analysis The agendas and materials from the professional development sessions were 

used to identify the opportunities participants had to learn about an aspect of teacher 

questioning and to describe the nature of the opportunities. Occurrences on the pre-post 

test of participants using language pertaining to questioning that was discussed in the 

large-group sessions (e.g. assessing, advancing, exploring, probing, etc.) were recorded 

and compared to determine changes from pre- to post.   In addition, responses to the two 

written prompts were tallied to determine if an aspect of questioning was mentioned as 

something participants had learned about and/or planned to continue to work on in their 

practice .  These analyses were used to provide a potential link between changes in 

teachers’ questioning abilities and the professional development experiences. 

3.5.2.3. Teacher questionnaire.  The cover page of the pre- and post-test asked the 

participants to provide names, high schools, number of years’ experience, and 

certification status.  Each participant was assigned a number which was recorded and 

then noted on the pre- and post-test before the cover page containing the information was 

removed. 

Analysis A Pearson correlation was computed to determine if there was a relationship 

between the number of years of teaching experience of participants and the level of 
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change in questioning abilities.  ANOVA tests were conducted to determine if the level 

of change in questioning abilities was different depending on the school at which the 

participants taught or the local sub-district in which the teacher taught. Since participants 

were grouped by high school for the professional development sessions, it was possible to 

disaggregate the pre-post test data according to the facilitator who lead the sessions.  An 

ANOVA was calculated to determine if the changes in participants’ questioning abilities 

differed by the facilitator of the professional development sessions. 

3.5.3. Conclusion 

After the data was coded and analyzed, the results were used to provide answers to each 

of the research questions.  The synthesis of these results will be described in chapter 4 in 

order to draw conclusions and identify implications the results might have for 

mathematics education. 
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4,  CHAPTER FOUR:     RESULTS

 

4.1  INTRODUCTION 

 

The purpose of this study was to examine changes in high school mathematics 

teachers’ abilities to identify and create questions that promote understanding of 

mathematics as they participated in a professional development program focused on 

planning, teaching and reflecting on lessons that feature cognitively demanding tasks.  In 

particular, the study aimed to examine teachers’ abilities to identify and create three types 

of questions that are critical to promoting student understanding of mathematics: 1) 

probing; 2) exploring mathematics; and 3) generating discussion (Hiebert & Wearne, 

1993; Martino & Maher, 1999;  Boaler & Brodie, 2004).    

The results of the study will be discussed in this chapter and situated within the 

research on the importance of asking particular types of questions when engaging 

students in solving challenging mathematics tasks (Boaler & Brodie, 2004) and the role 

practice-based professional development might play in assisting teachers in learning 

about and them implementing new instructional practices (Ball & Cohen, 1999; Smith, 

2001). 
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The first section will present the results for the first four research questions which are 

related to teacher questioning.  The second section will present the results related to the 

fifth research question pertaining to practice-based professional development. 

 

4.2. TEACHERS’ ABILITIES RELATED TO QUESTIONING 

 

This section will report the results related to research questions 1, 2, 3 and 4: 

1. To what extent can high school mathematics teachers identify different question 
types that promote understanding of mathematics prior to and after participation 
in a professional development program focused on improving instructional 
practice in mathematics?  In particular, to what extent can they identify probing, 
generating discussion, and exploring questions? 

 
2. To what extent can high school mathematics teachers explain the reasons why 

different question types promote understanding of mathematics prior to and after 
participation in a professional development program focused on improving 
instructional practice in mathematics?  In particular, to what extent can they 
explain why probing, generating discussion, and exploring questions promote 
understanding? 

 
3. To what extent can high school teachers create questions that promote student 

understanding of mathematics prior to and after participation in a professional 
development program focused on improving instructional practice in 
mathematics? In particular, to what extent can they create probing, generating 
discussion, and exploring questions? 

 
4. To what extent do high school teachers focus on promoting understanding of 

mathematics when identifying the purposes of the questions they ask their 
students prior to and after participation in a professional development program 
focused on improving instructional practice in mathematics? 

 
 

The purpose of the first four research questions was to determine teachers’ growth in 

abilities to identify and create questions that promote understanding of mathematics. To 

that end, a pre- and post-test was administered to teachers prior to and after their 
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participation in a professional development program that focused on teacher questioning 

as an important instructional practice. 

4.2.1. Identifying questions that promote understanding of mathematics 

To determine changes in teachers’ ability to identify questions that promote 

understanding of mathematics, Part 3 of the pre- and post- test (Appendix A) was 

analyzed.  Part 3 consisted of a transcript from a mathematics lesson in which a teacher 

asked her students a variety of types of questions.  Participants were asked to select the 

questions asked by the teacher that promoted understanding of mathematics (i.e. probing, 

exploring, and generating discussion questions).  Table 4.1 summarizes the results from a 

matched pairs t-test on the pre- and post-test data, indicating the mean number of 

promoting understanding questions correctly selected, as well as the mean number of 

procedural questions which were incorrectly selected.  The table also includes the range 

of scores for each category. 

 

Table 4.1:  Number of questions selected on Part 3 of the pre-post test 
 

* Statistically significant increase from pre- to post-test.  

 N 
 
 
Significance 
Level Æ 

Number of Promoting Understanding 
Questions Correctly Selected 

(Maximum score = 17) 
 

       p < .001*             (Range) 

Number of Procedural 
Questions Incorrectly 

Selected 
(Maximum Score = 7) 
p = .400           (Range) 

Pre-test 35         8.03                      (0-16) 1.63                    (0-6) 
Post-test 35         11.34                    (3-17) 1.54                    (0-6) 

 Question 
Type  Æ 
Significance 
Level Æ 

Probing 
(Max.=8) 
p = .000* 
       (Range) 

Exploring 
(Max.=7) 
p = .013* 
       (Range) 

Gen.Dis. 
(Max.=4) 
p = .15 
       (Range) 

Pre-test 35 3.03    (0-8) 3.89    (0-7) 1.17   (0-4) 
Post-test 35 4.97    (0-8) 5.06    (1-7) 1.40   (0-4) 

 

Note:  Two questions could be classified as both ‘probing’ and ‘generating discussion.’  The question type 
was determined by the explanation given by the participant. 
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As can be seen in Table 4.1, there was a significant increase (p < .001) from pre to 

post in the number of questions selected that promoted understanding of mathematics 

(from 8.03 to 11.34). There was a decrease, though not significant, in the number of 

procedural questions incorrectly selected (from 1.63 to 1.54).  The fact that this decrease 

was not significant could be due to the fact that there were not as many procedural 

questions that could have been selected as there were questions that promoted 

understanding (i.e. 7 procedural questions vs. 17 questions that promote understanding).  

The results suggest that teachers grew in their ability to identify questions that promote 

understanding of mathematics from pre- to post. When further analyzing the promoting 

understanding questions by type, there were also significant increases in the number of 

probing questions selected (from 3.03 to 4.97; p < .001) and the number of exploring 

questions selected (from 3.89 to 5.06; p = .013).  There was virtually no change in the 

number of generating discussion questions selected.  This was not surprising since there 

were only 4 possible opportunities to select generating discussion questions, two of 

which could also have been coded as ‘probing’.  These results suggest that participants 

improved their ability to identify probing and exploring questions as those that promote 

understanding of mathematics. 

4.2.2. Explaining why certain question types promote understanding of mathematics 

In part 3 of the pre- and post-test, participants were asked to select the questions asked by 

the teacher in the transcript that promoted understanding and to explain why the question 

they selected promoted understanding.  This section presents the analysis of participants’ 

explanations. 
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Each response that correctly identified a question that promoted understanding of 

mathematics received a score from 0, indicating no explanation given for a correctly 

selected question, to 3, indicating an explicit reference to promoting understanding of 

mathematics.  Table 4.2 provides a summary of the results, indicating the percent of 

responses receiving each score from 0 to 3.  Figure 4.1 displays the same information in a 

stacked bar graph so that the total make-up of the responses and how they changed from 

pre- to post-test can be observed. 

   

Table 4.2:  Percent of explanations receiving each score for Part 3 of pre-post test 
 

 N 
Significance 
Level Æ 

3 
 

p < .001* 

2 
 

p < .001* 

1 
 

p < .001** 

0 
 

p < .001** 
Pre-test 35 6% 56% 19% 19% 
Post-test 35 15% 73% 10% 2% 
* Statistically significant increase from pre- to post 
** Statistically significant decrease from pre- to post 
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Figure 4.1:  Percent of explanations receiving each score for Part 3 of pre-post test 
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As can be observed in Table 4.2 and Figure 4.1, there were significant increases from 

pre- to post in the percent of responses receiving scores of 2 and 3 and significant 

decreases in the percent of responses receiving scores of 0 or 1.   

The total number of points received by each participant for their explanations was 

also computed. The maximum score a participant could receive was 51 (17 ‘correctly 

selected’ questions x 3 point maximum for each explanation). The average score was then 

calculated by dividing the total points awarded for explanations by the number of 

questions correctly underlined.  Results from two matched-pairs t-tests, one on the total 

points and one on the average score, are shown in Table 4.3 as are the range of values for 

each. 

 

Table 4.3:  Total points & average score for explanations on Part 3 of pre-post test 
 
 N 

 
Significance 
Level Æ 

Total points 
(Maximum = 51) 
 
p  .001*            (Range) 

Average 
(Maximum = 3) 
 
p < .001*          (Range) 

Pre-test 35 12.57                 (0-29) 1.55                  (0-2.67) 
Post-test 35 22.83                 (1-43) 1.98                  (.25-2.80) 
* Statistically significant increase from pre- to post-test 
 
 

There was a significant increase (p < .001) in both the total points and average score 

participants received when explaining why particular question types promote 

understanding of mathematics.  These results indicate that participants improved their 

ability to explain why particular types of questions promote understanding of 

mathematics from pre to post. 

The hypothesis was that, prior to their participation in the professional development 

program, participants would be less aware of various question types, particularly 
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exploring type questions, since they were asked rarely, if ever, in the Boaler and Brodie 

(2004) study.  A further analysis, shown in Table 4.4, summarizes the results by question 

type for both the pre- and post-test.  The table shows the percent of each question type 

awarded each score from 0 through 3, as well as the percent of total possible questions of 

each type that could have been selected.  For example, in the pre-test, 114 exploring 

questions were selected by the 35 participants.  However, there was a potential of 245 

exploring questions that could have been selected if all 35 participants had selected all 7 

exploring questions.  Also, of the 114 exploring questions that were selected by the 35 

participants on the pre-test, 10% had explanations receiving scores of 3, 49% had 

explanations receiving scores of 2, 22% received scores of ‘1’, and 20% received scores 

of ‘0’. 

The table also adds to the results obtained for research question 1 in that participants 

significantly increased their ability to select exploring, probing, and generating discussion 

questions. For example, only 47% of the possible exploring questions were selected on 

the pre-test while 72% were selected on the post-test.  Similarly, 33% of the probing 

questions and 24% of the generating discussion questions were selected on the pre-test 

while 62% of the probing and 35% of the generating discussion questions were selected 

on the post-test.  The table also indicates that participants significantly increased their 

ability to explain why such questions promote understanding of mathematics.  The 

percent of explanations receiving scores of ‘2’ and ‘3’ increased from 56% and 6% 

respectively on the pre-test to 73% and 15% on the post-test..  Furthermore, the percent 

of explanations receiving scores of ‘1’ and ‘0’ decreased from 19% each on the pre-test 

to 10% and 2% respectively on the post-test. In addition, the largest increase in scores of 
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‘2’ and ‘3’ and the largest decrease for scores of ‘0’ and ‘1’ occurred for explanations of 

selected exploring questions.  

 

Table 4.4: No. of explanations by score and question type on Part 3 of pre-post test 
 

 Score Exploring Probing Gen. Disc. Total 
3 
 

10 (9%)         3 (3%)         2 (6%)     15 (6%) 

2 
 

56 (49%) 

 
58% 

57 (62%) 65% 67% 20(61%) 133 (56%) 

1 
 

25 (22%)       15 (16%)     5 (15%)   45 (19%)  

Pre-test 

0 
 

23 (20%) 42% 17 (19%) 35% 33% 6 (18%) 46 (19%) 

Total questions 
correctly selected 

 114 92 33 239 

Total possible  35*7=245 35*8=280 35*4=140 665 
Percent of total 
selected 

 47% 33% 24% 36% 

      
3 35 (20%)*   

(p < .001)     
14 (8%)       12(25%)* 

(p=.01)  
61 (15%)* 
(p < .001) 

2 129 (73%)* 
(p < .001)  

93% 83% 90% 129(75%)* 290(73%)* 32(65%) 
(p = .02) (p < .001) 

1 9 (5%)**        
(p < .001) 

27(15%)      3 (6%)     39(10%)** 
(p < .001) 

Post-test 

0 4 (2%)**  
(p < .001) 

   
7% 17% 10% 2(4%)** 9 (2%)** 3(2%)** 

(p<.001) (p=.02) (p< .001) 
Total questions 
correctly selected 

 177 173 49 399 

Total possible  35*7=245 35*8=280 35*4=140 665 
Percent of total 
selected 

 72%* 
(p < .001) 

62%* 
(p < .001) 

35%* 
(p = .02) 

60%* 
(p <.001) 

* Significant increase from pre- to post  
** Significant decrease from pre- to post  

 
 
 

Matched-pairs t-tests were also used to analyze changes in the total and average 

points by question type for Part 3.  Table 4.5 shows the results for both number of points 

received for explanations and average explanation score received.  (The maximum 

number of points possible for each question type was calculated by multiplying the 

number of questions of that particular type by a maximum score of 3.)  The average was 
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calculated by taking the total number of points received for each question type divided by 

the number of that question type that were selected.  The range of values for each 

category is also included. 

 

Table 4.5: Total and average number of points for explanations by question type on 
Part 3 of pre-post test 
 
 N 

 
Significance 
Level Æ 

Total Exploring 
(Maximum = 21) 
 
p < .001*(Range) 

Total Probing 
(Maximum = 24) 
 
p < .001*   (Range) 

Total Generating 
Discussion 
(Maximum = 12) 
p = .007* (Range) 

Pre-test 35 6.06        (0-18) 4.60           (0-15) 1.91         (0-8) 
Post-test 35 10.57      (1-20) 9.26           (0-18) 3.00         (0-8) 
  

Significance 
Level Æ 

Avg. Exp. Pts. 
(Maximum = 3) 
p < .001*   (Range) 

Avg. Probing Pts. 
(Maximum = 3) 
p < .08         (Range) 

Avg. Gen. Dis. Pts. 
(Maximum = 3) 
p = .006*     (Range) 

Pre-test 35 1.58           (0-2.67) 1.61               (0-2.5) 1.62               (0-3) 
Post-test 35 2.05           (.5-2.83) 1.83              (0-2.67) 2.21               (0-3) 
* Statistically significant increase from pre- to post-test. 

 

The results indicate that there were significant increases in the total number of points 

participants received for explanations associated with probing questions (p < .001), 

exploring questions (p < .001) and generating discussion questions (p = .007) and in the 

average number of points received for exploring question explanations (p < .001) and 

generating discussion question explanations (p = .006).  There was an increase, though 

not significant, in the average number of points received for probing questions.  This 

could be due to the fact that participants identified more questions that promote 

understanding on the post-test than on the pre-test resulting in higher point totals for all 

question types.  However, participants had slightly higher scores for explanations of 

probing questions on the pre-test (65% of the scores were ‘2’s or ‘3’s) than exploring 

questions (58% were 2’s or 3’s) while the percent of explanations for probing questions 

receiving scores of 2 and 3 on the post-test was relatively lower than for exploring 
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questions (83% vs. 93%).  Hence, there was a greater increase in the percent of 

explanations receiving scores of ‘2’ or ‘3’ for exploring questions. 

Table 4.6 provides sample responses from participants on both the pre- and post-tests 

to illustrate the nature of how their explanations changed.  These particular responses 

were chosen because the participants provided explanations for the same line numbers on 

both the pre- and post-test thus making the contrast in the nature of their explanations 

more obvious. 

 

Table 4.6: Sample participant explanations and scores on Part 3 of pre-post test 
 
Participant Pre-test response(s) Post-test response(s) 
 Line no.              Response Score Response Score 
6 4 Make sure students focus 1 Make certain all students can 

analyze the table 1 group made 
3 

6 60 Don’t miss the important 
part of the problem 

1 Advancing question 2 

7 23 Analysis 1 Stressing an understanding of 
how slope is represented in a 
table 

3 

7 65 Analysis 1 Meaning of the point and 
intersection 

2 

49 6 A got cheaper after 50 
minutes 

1 Assessing, asking student to 
explain 

2 

49 8 Student could reduce the 
interval of minutes 

1 Advancing,  further analyze the 
problem 

2 

50 18 Translate into precise 
language 

1 Probing to see if they understand 
the meaning of that number in 
terms of the problem 

3 

50 44 To learn what a graph is 1 Check for understanding, ask 
them to explain the concept 

2 

 
 
 

These examples show that participants moved from a focus on the mathematics in a 

general or non-specific way to a focus on students’ understanding of the mathematics.  

For example, line 23 of the transcript contained the exploring question, “What does the 

coefficient mean for this problem?  Why is it important?”  On the pre-test, participant 7 

used the word, ‘analysis’, as an explanation.  This was considered to be a vague reference 
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to mathematics with no focus on understanding resulting in a score of ‘1’.  On the post-

test, however, the same participant focused on understanding and the meaning of 

mathematics by giving the following explanation which received a score of ‘3’:   

‘Stressing an understanding of how slope is represented in a table.’   Likewise, on the 

pre-test, participant 49 focused on the correct answer to the question with no mention of 

student understanding on the explanation for the probing question on line 6:  ‘What do 

you mean, “A got cheaper”?  The participant wrote A got cheaper after 50 minutes which 

received a score of ‘1’.  However, on the post test, the same participant made a reference 

to students’ understanding of mathematics in providing an explanation for the question on 

line 6 that stated, ‘Assessing.  Asking student to explain,’ resulting in a score of 2.  

Participant 50’s pre- and post-test responses to the probing question on line 18,  ‘Jose, 

what do you mean, “it’s the point “O” 4 and the point “10”, provide another example of 

how participants changed their explanations.  On the pre-test, the participant responded 

that ‘Translate into precise language’ was the reason why the question promoted 

understanding.  This response received a score of ‘1’.  On the post-test, however, 

participant 50 provided a response that had an explicit focus on understanding the 

mathematics being discussed, ‘Probing to see if they understand the meaning of that 

number in terms of the problem,’ and received a score of 3.   

The analysis of part 3 of the instrument indicates that participants improved their 

ability to identify questions that promote understanding and explain why particular 

question types promote understanding of mathematics. Of particular interest is the fact 

that this increased ability appeared to be greatest in the area which has been shown to be 
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problematic for teachers in terms of their questioning – questions that promote exploring 

mathematical ideas. 

4.2.3. Creating questions that promote understanding of mathematics 
 
To determine teachers’ ability to create questions that promote understanding of 

mathematics (i.e. probing, exploring, and generating discussion questions), participants 

were asked to create 5 questions they would ask students to promote understanding of 

mathematics for each of three scenarios depicting student work and a brief description of  

the teachers’ mathematical goals.  Each question created was coded according to the type 

of question:  probing, exploring, generating discussion (the 3 types identified for this 

study that promote understanding of mathematics), procedural, other mathematical, and 

non-mathematical questions.  No participants created ‘generating discussion’ questions 

for this part of the pre-post test.  This could be due to the fact that the nature of the 

information provided in Part 2 was such that asking ‘generating discussion’ questions 

would not have been appropriate or particularly helpful in promoting understanding. 

Table 4.7 displays the number of questions of various types created by participants from 

pre- to post as well as the range in the numbers of questions created. 

As is shown in Table 4.7, there was a significant increase in participants’ ability to 

create questions that promote understanding of mathematics (p < .001) and a significant 

decrease (p = .008) in other types of questions created by participants.  When analyzing 

the data by particular question type, there was a significant increase in the number of  

exploring questions created (p < .001) and a significant decrease in the number of 

procedural questions created (p < .001).  There was also an increase, although not 

significant, in participants’ ability to create probing questions.  This could be due to the 
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fact that participants initially were able to create probing questions at over twice the rate 

they created exploring questions (pre-test mean of 4.83 for probing; pre-test mean of 2.31 

for exploring).   

 

Table 4.7:  Summary of types of questions created on Part 2 of pre-post test 
 
 N 

 
 

Significance 
Level Æ 

Number of promoting 
 understanding questions 

(Note: No participants created 
Generating Discussion questions) 

(Maximum = 15) 
p < .001*          (Range) 

Number of procedural, other, 
non-mathematical questions 

(Maximum = 15) 
 

p = .008**        (Range) 

Pre-test 35                  7.14              (0-15) 4.71             (0-11) 
Post-test 35 9.26              (1-16)            3.54             (0-9) 
 Significance 

Level Æ 
Probing 

p = .17 (Range) 
Exploring 

p<.001* (Range) 
Procedural 

p < .001**    (Range) 
Pre-test 35    4.83         (0-9) 2.31        (0-7) 4.17        (0-11) 
Post-test 35  5.34         (1-10) 3.91        (0-9) 2.49         (0-9)  
  

Significance 
Level Æ 

Percent  
Probing 
p = .41 

Percent Exploring 
p < .001* 

Percent 
Procedural 
p < .001** 

Pre-test 35 .41 .19 .34 
Post-test 35 .42 .30 .19 
*Statistically significant increase from pre- to post. 
**Statistically significant decrease from pre- to post. 
 

A final analysis of the data was conducted to determine how the percent of types of 

questions created might have changed.  This was done because participants did not create 

the same number of questions (i.e. some created more than 15, some less than 15) and 

because questions were often bracketed together for coding reasons and counted as 1 

question as was noted in chapter 3.  

Matched-pairs t-test were conducted and showed there was no change in the percent 

of questions created that were probing questions (41% on the pre-test, 42% on the post-

test).  However, there was a significant increase in the percent of questions created that 
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were exploring questions (from 19% to 30%) and a significant decrease in the percent of 

questions created that were procedural questions (from 34% to 19%). 

 These results indicate that participants improved their ability to create them in a 

context related to teaching mathematics.  These results also indicate that participants 

were less dependent upon procedural type questions.  Table 4.8 provides samples of 

questions generated by several participants in order to illustrate how their ability to create 

questions of particular types changed. 

 

Table 4.8:  Sample questions created on Part 2 of the pre-post test 
 
Participant Pre-test response(s) Post-test response(s) 
No. Part Response Code Response Code 
5 A - What is the starting point in 

each column? 
- What is in the first column? 

Proc. 
 
Proc. 

- Explain the meaning of the numbers 
in the first row.  How would these be 
represented on a graph? 
- What do the numbers in columns A 
and B represent? 

Explore 
 
 
Probe 

11 A - How much do the minutes 
change from one row to the 
next? 

Proc. - What relationship is there between 
the number of minutes and the amount 
charged by the companies as you 
change the minutes? 
- What difference would there be in 
the table if there was no monthly fee? 

Explore 
 
 
 
Explore 

12 B - Where did each line start? 
- Use rise/run to find the slope 
for each line. 

Proc. 
Proc. 

- What are the y-intercepts for each 
line and what do they  
represent for this problem? 
- Why does one line start at a lower 
point but then rises higher than the 
other line? 

Probe 
 
 
Explore 

38 B - Which line goes up faster? 
- Where does each line cross 0 
minutes? 

Proc. 
Proc. 

- Why is one line rising faster than the 
other? 
- What does each line represent in 
terms of this problem? 

Explore 
 
Explore 

30 C - For every 5 minutes, how 
much does the cost increase? 
- Is the steepness of the line 
the same as the cost per 
minute? 

Proc. 
 
Proc. 

- In the table, what do the increments 
mean? 
- How can I see the cost per minute 
for each company in the table and in 
the graph? 

Probe 
 
Explore 

41 C - In the equation, which 
number is the slope? 
- Show the rise/run for each 
line and find the slope. 

Proc. 
 
Proc. 

- What do the coefficients in the 
equation represent for this problem? 
- How do the coefficients in the 
equations affect the graphs? 

Probe 
 
Explore 
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These particular responses, which were representative of the all responses, were 

chosen because the question asked in the pre-test addressed the same particular 

mathematics concept as the question asked in the post-test, providing an opportunity to 

compare the type of question posed.  It appears that participants initially focused on 

questions requiring one-word answers or the use of a known procedure.  In the post-test, 

however, the questions were more focused on assessing or deepening student’s 

mathematical knowledge.  For example, participant 11’s question on the pre-test dealt 

with looking at the given table and simply subtracting 2 given values to determine the 

change.  On the post-test, this same participant focused on the relationship between the 

entries in the table and pushed students to go beyond the information given in the table.   

Likewise, on the pre-test, participant 41 asked students to find the slope in a given 

equation and a given graph.  On the post-test, the participant asked students to interpret 

the meaning of slope and explain how it affects a graph. 

The results from part 2 of the instrument provide evidence that participants grew in 

their ability to create questions that promote understanding of mathematics and decreased 

their use of procedural questions.  In addition, participants’ growth seemed to be greatest 

in terms of creating exploring questions, which, though not typically asked by teachers, 

have been shown to be important in improving student achievement in mathematics. 

4.2.4. Focusing on understanding when stating the purpose of asking questions 

In Part 1 of the pre- and post-test, participants were asked the following question: 

“Teachers ask hundreds of questions of their students every day.  What are the purposes 

of the questions you ask your students?”  They could respond with as few or as many 

responses as they chose.  Each response received a score of either 0 if it did not refer to 
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student understanding of mathematics or 1 if the stated purpose referred to student 

understanding of mathematics.  Table 4.9 provides a summary of the results, indicating 

the percent of responses receiving each score and the average score for Part 1. The 

average score for each participant was computed by dividing the total number of points 

received for responses by the total number of responses listed.  Figure 4.2 displays the 

same information in a stacked bar graph so that the total make-up of the responses and 

how they changed from pre- to post-test can be observed.   

In observing Table 4.9 and Figure 4.2, it can be seen that there was a significant 

increase in responses receiving a score of 1 (from .58 to .86) and a significant decrease in 

responses receiving a score of 0 (from .42 to .16).  This suggests that participants’ focus 

on promoting understanding when identifying the purposes of their questions improved 

from pre- to post. 

In analyzing the average score per response received by the participants, a matched-

pairs t-test showed there was a significant increase (p < .001), from .64 to .89, in the 

average score participants received.  This indicates that participants improved their ability 

to explain that the purposes of the questions they ask their students are to promote an 

understanding of mathematics.   

 

Table 4.9: Percent of responses receiving each score and average score for Part 1 on 
pre- post test 
 N 

Significance 
Level Æ 

Score of 1 
 
p < .001* 

Score of 0 
 
p< .001** 

Avg. score 
(Max.=1) 
p< .001* 

Pre-test 35 .58 .42 .64 
Post-test 35 .86 .14 .89 
* Statistically significant increase from pre- to post 
** Statistically significant decrease from pre- to post 
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Figure 4.2: Percent of responses receiving each score for Part 1 on pre-post test 
 

Table 4.10 presents examples of responses from particular participants to illustrate the 

ways in which their explanations changed from pre- to post.  The responses are typical of 

all responses on Part 1 of the test. 

In analyzing the participants’ responses to Part 1 on both the pre- and post-test, it 

appears that teachers initially tended to focus on what they, as teachers, were doing. For 

example, over 40% of the responses on the pre-test made no mention of student 

understanding of mathematics (i.e. responses received a score of ‘0’).  Specifically, 

responses tended to focus on students’ prior skills or knowledge (e.g. responses from 

participants 7, 19, and 43 in column 2 of Table 4.10) or on getting students to the correct 

solution or main point of the lesson (e.g. response from participants 38 in column 2 of 

Table 4.10).   
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Table 4.10:  Sample responses and scores on Part 1 of pre-post test 
 
Participant Pre-test response(s) Post-test response(s) 
 Response Score Response Score 
7 -Check their prior skills 

-Check their readiness 
-Check students’ understanding 
of new material 

0 
0 
1 
Avg.= 
.33 

- To assess students’ prior 
knowledge 
- For scaffolding, each new 
question is based on the 
conclusion from the previous 
question 
- Elaborating questions, or 
questions which allow students to 
explore the concept and apply it 

1 
 
1 
 
 
 
1 
Avg.= 
1.00 

19 - Check prior knowledge in case 
I need to reteach pre-requisite 
concepts 
-Reinforce concepts taught 

0 
 
 
0 
Avg.= 
.00 

- To assess student understanding 
of the lesson taught 
- To scaffold their thinking 
- To advance their thinking 

1 
 
1 
1 
Avg.= 
1.00 

 38 -Guide them to the right answer 
-Challenge them to make 
connections 

0 
1 
Avg.= 
.50 

- To guide them and push their 
thinking to higher levels 

1 
Avg.= 
1.00 

42 -To assess learners’ 
understanding 

- To know learners’ prior 
knowledge 

1 
0 
Avg.= 
.50 

- To assess their understanding. 
By knowing what they understand 
or don’t understand I can plan a 
better lesson 

1 
 
Avg.= 
1.00 

43 - To stress main points, point to 
specific things I think are 
important 

0 
 
Avg.= 
.00 

- To probe thought and advance 
student understanding.  Students 
have a concept of what is going 
on but that thought needs to be 
directed and guided, like refining 
gold.  Each question should allow 
the student to question his own 
thoughts and lead him to a deeper 
level of understanding.  If you just 
keep giving statements, students 
will forget them. You need to 
allow them an opportunity to 
voice their understanding. 

1 
 
 
 
 
 
 
 
 
 
 
Avg.= 
1.00 

 
Although over 50% of the responses on the pre-test did mention student 

understanding (i.e. received a score of ‘1’), they did so in a vague way such as the 

responses from participants 7, 38 and 42 which referred to ‘assessing understanding’ or 

‘making connections.”   

On the post-test, however, only 14% of the responses received a score of ‘0’ and 86% 

of the responses made some reference to students’ understanding of mathematics.  In 
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addition, participants’ responses made much more explicit reference to students’ 

understanding of mathematics on the post-test.  Participants often referred to student 

understanding and then expanded on a response to describe the ways in which the 

purpose of the question impacted students.  Fox example, participant 7 listed 

‘scaffolding’ and ‘elaborating questions’ as the purposes and went on to describe what 

was meant by those terms.  The same participant stated brief, vague phrases on the pre-

test such as ‘check their prior skills’ and ‘check their readiness.’  Similarly, participant 42 

referred to assessing students’ understanding on both the pre- and post-test, but went on 

to explain that the assessment of understanding would inform his planning of lessons on 

the post-test. 

In conclusion, participants in this study not only increased their ability to identify and 

create questions that promote understanding of mathematics and explain why certain 

questions promote understanding.  It appears they also increased their focus on promoting 

student understanding when asked to state their purpose(s) of asking questions. 

4.2.5. Summary of research questions 1, 2, 3 and 4 

Results from the pre- and post-test instrument indicate that teachers significantly 

increased their abilities related to questions that promote understanding of mathematics.  

In particular, teachers grew in their ability to: identify exploring and probing questions as 

those that promote understanding, create exploring questions and explain why exploring 

questions promote understanding of mathematics, and focus on understanding of 

mathematics when identifying their purposes for asking questions.  In addition, teachers 

significantly decreased the use of procedural questions when asked to create questions 

that promote mathematical understanding.   
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A key question raised by these results is what may have accounted for the significant 

changes.  Some might argue that the experience of teaching between the pre- and post- 

tests in and of itself might cause teachers to increase their abilities to ask particular types 

of questions that promote understanding of mathematics. While this might be true for 

novice teachers, decades of research have documented that experienced teachers teach 

mathematics much in the same way they learned mathematics, which is also the same 

way it has been taught for nearly 100 years (Stigler & Hiebert, 1999; NCES, 2003; 

Weiss, et al., 2004) and that changes in instruction, though possible, are difficult to 

accomplish, particularly at the high school level (McLaughlin & Talbert, 2001; 

Stodlosky, S. & Grossman, P., 2000).  However, particular types of professional 

development experiences that focus on the content taught by the teachers, that provide 

opportunities for collaboration, and that are situated within the day-to-day practice of 

teaching have shown evidence of impacting the instructional practices of mathematics 

teachers (Carpenter, et al., 2000; Stein, et al., 2000; Killion, 2002).  In the next section, 

possible links between teachers’ changes related to questioning and the professional 

development opportunities they experienced, as well as other potential factors, will be 

made. 

 

4.3. POSSIBLE LINKS TO PROFESSIONAL DEVELOPMENT 

 

As was reported in section 4.2, high school mathematics teachers who participated in this 

study significantly increased their abilities related to questioning.  Because particular 

question types used by teachers during instruction have been linked to increased student 
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achievement in mathematics (Boaler & Brodie, 2004; Martino & Maher, 1999; Hiebert & 

Wearne, 1993), an important question to consider becomes how and why these teachers 

were able to improve their abilities in this area.   This section will report the results as 

they are related to research question 5: 

5.    What might account for changes in teachers’ ability to identify and create questions that promote 
understanding of mathematics and to explain why such questions promote understanding? 

 
Since the significant changes occurred while teachers were participating in a 

professional development program, aspects of the program were explored to determine if 

a link could be made between the PD experiences and the changes in questioning 

abilities.   

Research has shown that professional development programs that resulted in changes 

in instructional practices have key features in common (Smith & Brown, 1994; Fennema 

et al., 1996; Killion, 2002; McLaughlin & Talbert, 2001):  they are focused on the 

content which the teachers teach, they are conducted in collaborative learning 

communities, and the activities are situated within the day-to-day work of teaching.  The 

professional development program in which teachers in this study were engaged 

incorporated these features.  Therefore, several data sources were analyzed to determine 

what might account for changes in teachers’ ability to identify and create questions of 

particular types.  The results of the analysis of each data type will be discussed in the 

following sections. 

4.3.1. Attendance at large-group professional development sessions 

Prior to the beginning of the professional development program, it was hypothesized that 

attendance at the large-group professional development sessions might account for 

increases in teachers’ abilities to identify and create questions that promote 
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understanding. Although attendance at a professional development session does not 

guarantee participation in the activities of the session, attendance might be used as a first 

step in determining participation since most teachers volunteered for the program and 

were not required to attend.  

Attendance at the 4 large-group sessions, each of which involved 2 days, was 

inconsistent.  Table 4.11 displays the attendance data for all teachers in the four, 2-day 

large-group sessions. 

 

Table 4.11  Attendance at large-group sessions by all teachers 
 

Description Number 
Total number of teachers attending at least one day of any 
session 

99 

Total number of teachers attending at least one day in each of 
the four sessions 

42 

Total number of teachers attending all 8 days 31 
Total number of teachers attending 1 or 2 days of first session 94 
Total number of teachers attending 1 or 2 days of second 
session 

83 

Total number of teachers attending 1 or 2 days of third session 72 
Total number of teachers attending 1 or 2 days of fourth session 60 

 

 
Attrition and other factors affecting attendance A total of 99 teachers from 17 

different high schools attended at least 1 day of the professional development program.  

Over the 7 month course of the program, 2 of the high schools, accounting for 7 teachers, 

withdrew from the program.  For one high school, the Central Mathematics Team of the 

district requested the 3 teachers withdraw from the program after the third session since 

they had not volunteered for the program, they would attend only portions of the 

professional development sessions, and they were often considered to be disruptive or 
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disrespectful to the facilitator as well as to other teachers.  For the second high school, 

after the third session, the 4 teachers decided they were not benefiting from the program 

and chose to no longer participate.   

Ten additional teachers withdrew from the program for unknown reasons, although it 

was known that at the change of the semester, several of these teachers schedules 

changed and they were no longer teaching Algebra 1. In two more cases, teachers became 

coaches during the course of the program and thus were not counted as ‘teachers’ after 

that time.   

Nine teachers (not included in the above situations) from two high schools missed the 

first day of the first session because they had not been notified by their schools that they 

would be participating in the professional development program and 3 teachers from 3 

different high schools (not already counted in the above situations) did not begin 

participating until the second session.  At least 10 teachers from 4 high schools, who have 

not been accounted for in the previous situations, missed both days of the third session 

because they were on an alternate calendar and the third session occurred during their 3 

month break.  Finally, 4 teachers from one of the high schools (not already counted in the 

above numbers) were required to be at their schools rather than attend the final session 

because of a state audit of the school in terms of making Adequate Yearly Progress under 

the No Child Left Behind Act. 

Since this study consisted of a pre-post test design, changes in abilities related to 

identifying and creating particular types of questions could only be determined for those 

who took both the pre- and post-test.  This was the set of 35 “participants’ forming the 

sample whose attendance ranged from 5 to 8 days as can be seen in Table 4.12.  Specific 
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attendance data for 86 of the 99 ‘teachers’ (of whom the 35 participants were a subset) 

was available and is also noted in the table. 

 

Table 4.12: Attendance over 8 days (4 sessions) for participants in study 
 

Number of 
days 

attended 

Number of 
participants 

Number of 
teachers 

Less than 5 0 (0%) 15*  (10%)1
 

5 2 (6%) 11** (10%)1
 

6 7 (20%) 21*** (23%)1
 

7 4 (11%) 8 (12%) 
8 22 (63%) 31 (45%) 

*8 of the 15 teachers either dropped out of the program, started the program at Unit 2 or 3, or were required 
by their administrators to be at their schools rather than attend the last session 
**4 of the 11 teachers either dropped out of the program, started the program at Unit 2 or 3, or were 
required by their administrators to be at their schools rather than attend the last session 
***5 of the 21 teachers either dropped out of the program, started the program at Unit 2 or 3, or were 
required by their administrators to be at their schools rather than attend the last session 
1 Percents were computed by eliminating teachers who either dropped out of the program, started the 
program at Unit 2 or 3, or were required by their administrators to be at their schools rather than attend the 
last session 
 
 

Nearly two thirds of the 35 participants in the study attended all 8 days of the 4 large-

group sessions and over 90% of them attended at least three-fourths of the days of the 

sessions.  Of the 69 teachers who could have attended all 8 days (i.e. started the program 

with unit 1; did not withdraw from the program; or were not required to attend school 

rather than the final PD session), 81% attended at least ¾ of the days. It appears that the 

participants in the study had a higher attendance rate than the group as a whole.   

However, the group as a whole had a relatively high attendance rate during the 

program when accounting for factors such as when teachers started the program and 

whether or not they continued in the program. In addition, to be considered a ‘participant’ 

for the study, teachers would have had to attend both the 1st and 4th sessions which could 

account for the higher attendance rate of the participants. Therefore, participants were 
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fairly representative of the teachers who participated in the program in terms of 

attendance. 

Attendance was also calculated for the sessions in which questioning was explicitly 

discussed (all but the first session.)  Table 4.13 displays this data. 

 

Table 4.13:  Attendance over 6 days at sessions 2, 3, 4 
 

Number of days 
attended 

Number of 
participants 

Number of 
teachers 

Less than 3 0 12* (9%)1
 

3 1 (2%) 9**(4%)1
 

4 8(23%) 22***(24%)1
 

5 2 (6%) 6 (9%) 
6 24 (69%) 37 (54%) 

*6 of the 12 had either dropped from the program or were required to be at their schools during the last 
session 
** 6 of the 9 had either begun the program with unit 3, dropped from the program or were required to be at 
their schools during the last session 
***5 of the 22 teachers dropped from the program or were required to be at their schools during the last 
session 
1 Percents were computed by eliminating teachers who either dropped out of the program, started the 
program at Unit 2 or 3, or were required by their administrators to be at their schools rather than attend the 
last session 
 

 

Almost all (98%) of the participants and 87% of the teachers attended at least two-

thirds of the sessions in which questioning was addressed..  Of the 8 participants and 22 

teachers who missed two days, 7 of those participants and 10 of the teachers missed 

because they were on an alternative scheduling track and their 3 month ‘summer 

vacation’ occurred during the third session.  When they returned to school, their school-

based coaches provided opportunities for them at the school site to learn about what they 

had missed in the 2-day large-group session.  There was no documentation available to 
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discern whether or not any of the participants took advantage of these opportunities or the 

quality of those opportunities.  

Because nearly all participants attended 4, 5, or 6 days of the 3 sessions in which 

questioning was addressed, a correlation between attendance at the sessions and changes 

from pre- to post could not be determined. One conclusion that might be drawn from 

these data, however, is that participants in the study attended the majority of the large-

group professional development sessions (nearly 98% of these participants attended at 

least 2/3 of the days) and that they significantly changed their abilities related to teacher 

questioning.  In addition, since 88% of the teachers in the professional development 

program attended at least 2/3 of the large-group sessions, the participants seemed to be 

fairly representative of the teachers in the program although participants’ rate was 

somewhat higher.  Again, this could be due to the fact that they had to be in attendance 

on the last day of the program in order to take the post-test. 

Although a direct association could not be established between attendance at the 

professional development sessions and increases in various abilities related to 

questioning, it appears that attending the sessions had some impact on the participants.  

However, since the abilities increased differentially, other factors may have accounted for 

some of the increases.  Therefore, other available data sources were analyzed. 

4.3.2. Other possible factors  

To determine if factors other than attendance at the large-group sessions could be 

connected to the changes in questioning abilities, statistical tests were computed on 

appropriate available data.   
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Teaching experience One potential link to changes in teachers’ questioning abilities 

for which data was available was the number of years of teaching experience.  A Pearson 

correlation was computed to determine if there was a correlation between teaching 

experience (in years) and changes in questioning abilities.  The correlation coefficient of 

.265 was not significant (p = .07).  This indicated that there was not a significant 

association between years of teaching and changes in teachers’ questioning abilities.  

Because the significance level was close to being significant at the .05 level, however, 

further analyses were conducted on the pre-test average and the post-test average.  An 

interesting finding occurred when analyzing the correlations for these averages.  The 

Pearson correlation coefficient of -.143 was determined for the correlation between years 

of teaching and the post-test average and was not significant (p = .210).  However, a 

Pearson correlation coefficient of -.352 was significant (p = .022) for the correlation 

between years of teaching and the pre-test average.  Because the coefficient was negative, 

this indicated that on the pre-test, teachers with less experience actually performed better 

than experienced teachers.  Because there were not significant correlations between years 

of teaching and the post-test average or the difference between the pre- and post-test 

averages, it appears that experienced teachers narrowed the performance gap related to 

questioning between newer and experienced teachers.  Therefore, it appears that 

experienced teachers may have benefited from the learning experiences provided in the 

large-group sessions and grew in their abilities related to questioning. 

Connections to the school at which teachers taught   Another potential link to changes 

in teachers’ questioning abilities could have been other PD opportunities in which the 

teachers participated.  Since data on other professional development opportunities 
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individual participants might have experienced was not collected, an ANOVA comparing 

the pre- and post-test scores by school was conducted to determine if changes in teachers’ 

questioning abilities differed according to the schools at which they taught.  The results 

are shown in Table 4.14.  

 

Table 4.14:  Average pre-, post-test & difference between pre-post scores by school 
 
School N Pre-test avg.     (4.28) 

p = .841            
Post-test avg.     (5.70) 
p = .07          

Diff. avg.       (1.45) 
p = .999      

1 4 2.34 4.34 1.83 
2 6 4.41 5.86 1.46 
3 1 4.82 6.45 1.62 
4 6 4.67 5.88 1.21 
5 3 3.49 5.61 2.12 
6 4 5.25 6.61 1.35 
7 3 4.38 6.10 1.72 
8 2 3.65 4.85 1.21 
9 1 4.45 5.87 1.42 
10 2 4.30 5.85 1.54 
11 1 5.35 5.89 .55 
12 2 4.50 5.70 .70 
 

 
None of these averages proved to be significantly different by school.  Because 3 of 

the schools had only 1 participant, the ANOVA was recalculated without these 3 schools.  

Again, the averages were not significant by school.  This indicates that there appeared to 

be no association between changes in teachers’ questioning abilities and the high school 

at which the teacher taught.  These results suggest that, while there may have been 

differences in coaching support provided between sessions, this support did not appear to 

be associated with changes in teachers’ ability to identify and create and create questions 

that promote understanding. 

An additional analysis was done to account for district level professional 

development opportunities in which teachers may have participated.  The results of an 
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ANOVA calculated on the pre-test average, the post-test average, and the difference 

between the pre- and post-test averages are displayed in Table 4.15. 

 

Table 4.15:  Average pre-test, post-test and difference scores by local district 
 

District Pre-test avg. 
p = .712         

Post-test avg. 
p = .222 

Difference avg. 
p =. 796 

2   (N=14) 4.41          5.93 1.52 
3   (N=21) 4.20            5.54 1.38 

 

There were no differences by district between any of the scores indicating that 

changes in teachers’ questioning abilities were not related to the local district in which 

they taught.   

Bias due to one facilitator also being the investigator Because a number of the 

participants experienced professional development with the investigator of this study, it 

was possible this influenced their decision to volunteer to be a participant in the study. To 

determine if the rate of participation of teachers in the investigator’s room differed from 

the rate of participation of teachers in the other facilitators’ rooms, 2-proportion z-tests 

were conducted between the investigator’s rate of participation and each of the other 

facilitator’s rates of participation. The rate was determined by calculating the percent of 

teachers who were in the room at the time the test was given who took the test. The 

results, shown in Table 4.16, indicate that the participation rates for teachers in the other 

rooms did not differ significantly from the participation rate in the investigator’s room. 
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Table 4.16:  Rate of participation of teachers by facilitator 
 

Facilitator Pre-test 
participation 

Pre-test rate Post-test 
participation 

Post-test rate 

11
 15 out of 20 . 75 17 out of 19 .89 

2 6 out of 13 .46     (p=.10) 7 out of 9 .78      (p=.86) 
3 14 out of 14 1.00   (p=.85) 15 out of 15 1.00    (p=.94) 
4 15 out of 16 .94     (p=.83) 11 out of 14 .79      (p=.85) 

1investigator of this study  
 

 

Differences among the facilitators of the large-group sessions To determine if 

changes in teachers’ questioning abilities differed according to the facilitator who 

conducted the large-group sessions, an ANOVA was conducted on pre-test, post-test, and 

difference between pre- and post-test total scores for the 4 distinct groups.  Table 4.17 

shows the results of the test. 

 

Table 4.17:  Average pre-, post-, and difference between pre- and post-test by 
facilitator 

Facilitator N 
Significance 

level Æ 

Pre-test total 
 

p = .762 

Post-test total 
 

p = .186 

Difference 
between pre-post

p = .843 
1 11 4.46 6.13 1.66 
2 3 4.21 5.20 .98 
3 11 3.83 5.34 1.59 
4 10 4.56 5.74 1.44 

 
 

As can be observed in the table, there were no significant differences in participants’ 

scores according to the facilitator who conducted their sessions.  Therefore, it appears 

that the facilitators did not account for differences in changes in participants’ abilities 

related to questioning. 
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In conclusion, changes in teachers’ ability to identify and create questions that 

promote understanding of mathematics did not appear to be influenced by participants’ 

level of teaching experience, the high school in which they taught or the local sub-district 

containing the high school.  In addition, bias toward the investigator or differences 

among the facilitators who conducted the large-group sessions did not appear to impact 

the changes.  Therefore, based on available data, the only factor that appeared to be 

common for all participants was their attendance at the large-group PD sessions. 

4.3.3. Features of the professional development program 

If attendance at the large-group professional development sessions might account for 

changes in teachers’ abilities related to questioning, then the content of those sessions 

should be examined to determine potential opportunities teachers had to learn about and 

discuss questions of particular types.  Table 4.18 summarizes these opportunities, noting 

in which session (out of 4) each opportunity occurred and the approximate amount of 

time spent in the session on the activity. (Note:  Each session consisted of 2 day of 

professional development.) 

As can be seen in Table 4.18, participants had numerous and varied opportunities to 

learn about and discuss particular questions types.  These opportunities occurred 

primarily through the analysis of student work; the discussion of vignettes or scenarios of 

teaching, the analysis and planning of lessons, and reflecting on practice.   During these 

activities, facilitators discussed the following with participants: ‘assessing questions’, 

‘advancing questions’, ‘probing questions’, ‘generating discussion questions’, ‘exploring 

mathematical relationships questions’ and ‘scaffolding’ student learning through 

questioning.  
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Table 4.18: Opportunities to learn about and discuss particular question types 
 
Session Activity Description of activity Time spent  
2 
(days  
1 and 2) 

Supporting 
Students’ 
Learning 
through 
Questioning 

Given a set of student work from the “Making the Team” task: 
-practice writing questions that assess students’ understanding 
and advance their learning toward the mathematical goals.  
-discuss characteristics of assessing questions and 
characteristics of advancing questions 

 
 
2 hours 

2 
(days    
1 and 2) 

Analyzing a 
Lesson 
 
Planning a 
Lesson 

Analyze the “Making the Team” lesson plan in terms of 
assessing and advancing questions. 
Given a task related to the “Making the Team” task: 
-plan a lesson with a focus on asking assessing and advancing 
questions. 
- implement the lesson, collect student work, and note the 
questions asked of students.* 

 
 
3 hours 
 
 

3 
(days  
3 and 4) 

Reflecting 
on Practice 

Reflect on implementation of the lesson in terms of assessing 
and advancing questions. 

 
1.5 hours 

3 
(days  
3 and 4) 

Supporting 
Students’ 
Learning 
through 
Questioning 

Read and discuss a vignette of the “Shapes of Quadratics” task 
with a focus on types of questions asked. 
Analyze and discuss the Boaler and Brodie framework. 
Generate a set of probing and exploring questions given a set of 
student work from “Shapes of Quadratics” 

 
 
3 hours 

3 
(days  
3 and 4) 

Analyzing a 
Lesson 
 
Planning a 
lesson 

Analyze the “Shapes of Quadratrics” lesson plan in terms of 
probing and exploring questions. 
Given a task related to the “Shapes of Quadratics” task:  
-plan a lesson with a focus on asking probing, exploring 
mathematical relationships, and generating discussion questions 
to move students towards the mathematical goals. 
-implement the lesson, collect student work, and note the 
questions asked of students.* 

 
 
2.5 Hours 
 
 
 

4 Reflecting 
on Practice 

Reflect on implementation of the lesson in terms of probing, 
exploring mathematical relationships, and generating discussion 
questions. 

 
1.5 hours 

4 Scaffolding 
Student 
Learning 
through 
Questioning 

Compare and discuss the Boaler and Brodie questioning 
framework and the Assessing and Advancing Questions 
framework. 
Given two scenarios and student work from the “Multiplying 
Binomials” task, choose one of the frameworks and generate 
questions that would scaffold students’ learning. 
Discuss the various questions generated and identify the 
purposes each question would serve in terms of scaffolding 
student learning 

 
 
 
 
2 hours 

4 Analyzing a 
Lesson 
 
Planning a 
Lesson 

Analyze the “Multiplying Binomials” lesson plan in terms of 
appropriate questions. 
Given a task related to the “Multiplying Binomials: 
-plan, a lesson with a focus on asking appropriate questions to 
move students towards the mathematical goals. 
-implement the lesson, collect student work, and note the 
questions asked of students.* 

 
2.5 hours 

*Data was not collected to determine if this occurred. 
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In session 2, after having engaged in the Making the Team task, teachers were given 

three samples of student work from the task.  They were asked to create ‘assessing’ and 

‘advancing’ questions for the work after a brief discussion of the definitions of each.  At 

the end of Session 2, teachers were asked to plan, in their school groups, a lesson related 

to the Making the Team lesson and to consider the ‘assessing’ and ‘advancing’ questions 

they would ask their students 

In session 3, after having solved and discussed solution paths to the From Equations 

to Graphs task (Appendix C.1.2), teachers read a vignette of a teacher implementing the 

same lesson with his students (Appendix C.2).  As they read the vignette, they identified 

‘good’ questions and discussed characteristics of the questions.  They then read the 

Boaler and Brodie article (Boaler & Brodie, 2004) concerning the questioning framework 

and compared the framework to the identified characteristics.  The focus of the discussion 

was on ‘probing’, ‘exploring’ and ‘generating discussion’ questions and the purpose they 

served.  Also during session 3, teachers analyzed part of a lesson plan for the Shapes of 

Quadratics lesson (Appendix C.5) in terms of the embedded questions, their relationship 

to the Boaler and Brodie question types 3, 4, and 5 (i.e. ‘exploring’, ‘probing’, and 

‘generating discussion), and ways in which they might add value to students’ learning.  

Teachers then generated the three types of questions for the remainder of the lesson plan. 

In session 4, in addition to solving and discussing the Multiplying Binomials task 

(Appendix C.3) and reading and discussing the case of a teacher implementing the task 

(Stein et al., 2000), teachers discussed the meaning of ‘scaffolding’ and compared the 

“Assessing & Advancing” and “Boaler & Brodie” frameworks for questioning.  They 

were then given several scenarios in which students were in the process of solving the 
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Multiplying Binomials task (Appendix C.4) and asked to generate questions that would 

scaffold the students’ learning.  Later in the session, they were asked to develop a lesson 

related to the Multiplying Binomials lessons and to focus on the questions they would ask 

during the discussion of the lesson  

Evidence of learning about various types of questions from these opportunities can be 

seen in responses to Parts 1 and 3 of the pre- and post-test in terms of language used by 

participants who took both the pre- and post-tests.  In Part 1, where participants were 

asked to state the purposes of the questions they ask their students, only 13 of the 35 

participants used any of the above terminology in their responses on the pre-test. Of those 

13 participants, 11 used the word ‘assess’ or ‘assessment’.  Only 3 participants used any 

of the other terms – 1 used the word ‘probe’, 1 used ‘explore’ and 1 used ‘scaffold’). In 

contrast, 25 of the 35 participants used one or more of the terms on part 1 of the post-test.  

A form of the word ‘assess’ (i.e. ‘assessing’, ‘assessing questions’, ‘assessment’) was 

again the most predominantly used word with 18 participants choosing this term.  

However, other terminology discussed during the large-group sessions was also used 

more extensively on the post-test, including: 12 participants using the word ‘advance’ or 

‘advancing’; 4 used a form of ‘probing’; 1 used ‘exploring’ and 4 used the term 

‘scaffolding.’  Similar results occurred for part 3 of the test with a form of the word 

‘assess’ being the most predominantly used word on the pre-test while use of forms of the 

words ‘advance’, ‘probe’, ‘explore’ and ‘scaffold’ having increased frequencies on the 

post-test.  A summary of the number of participants using forms of each word is provided 

in Table 4.19. 
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Table 4.19: No. of participants using the term in parts 1 and 3 of pre- and post-test 
 
Term Pre-test Post-test 
 Part 1 Part 3 Part 1 Part 3 
Assess, assessing, etc. 11 8 18 15 
Advance, advancing 0 0 12 12 
Probe, probing 1 3 2 6 
Explore, exploring 1 0 2 5 
Scaffold 1 0 4 3 
 

 
One might argue that being able to use the language of these particular question types 

indicates only a surface level appropriation of the vocabulary that does not necessarily 

indicate understanding the meaning or purpose of these questions.  However further 

analysis shows that on the post-test, participants not only used the language of these 

question types more frequently, but went on to further describe what they meant by the 

language.  On the pre-test, a total of only 3 of the 13 participants who used one of the 

words related to questioning, expanded on their use of the word ‘assess’ on parts 1 and 3.  

No participants expanded on the meaning of any of the other words related to 

questioning.  On the post-test, however, 16 of the 25 participants who used the language 

around questioning, went on to further explain what they mean by the particular word.  

For example, on part 1 of the post-test, one of participant 54’s purposes for asking 

questions was listed as ‘to advance them, to go to a deeper understanding of the 

concepts.”  Likewise, one of participant 5’s responses was, ‘I incorporate advancing 

questions to stimulate my students’ thinking process, to make connections to the problem, 

and to go beyond the problem.”  Participant 7 wrote, “For scaffolding. Each new question 

is based on the conclusion made for the previous question in terms of the concept we are 

considering,” and “Questions which allow students to further explore the concept and 
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apply it.”  A final example on part 1 of the post-test comes from participant 43 who 

wrote, “To probe thought and advance student understanding.  Allowing them an 

opportunity to voice their understanding and giving them a chance to voice out what is on 

their mind helps them retain the understanding.”  Similar responses occurred on part 3 of 

the post-test.  Participant 14’s explanation for an exploring question she selected 

pertaining to the point of intersection said, “advancing students’ understanding about real 

life applications and linear systems.”  A response to another exploring question, selected 

by participant 52, included the explanation, “advancing question – points to the 

underlying mathematical relationship.”   And participant 9 wrote, “scaffolding question 

into the meaning of a system of equations,” in response to an exploring question selected.  

For probing questions selected, participant 22 wrote, “probing to check for understanding 

to see if they realize this is the point of intersection” as an explanation while participant 

11 responded, “assessing to see if the student knows the relationship between the 

intercept and the solution.”  These responses seem to suggest that participants not only 

appropriately used the language about questioning that was discussed in the large-group 

sessions on post-test, but also were able to explain the language within the context of 

teacher questioning. 

4.3.4. Reflections from participants  

The final data source analyzed to determine what features of the professional 

development program might account for changes in teachers’ ability to identify and 

create questions that promote understanding of mathematics and explain why such 

questions promote understanding were reflections to two prompts from teachers at the 

conclusion of program.  All responses were submitted anonymously so that teachers 
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would be more likely to respond and to respond honestly.  Therefore, responses could not 

be connected to particular participants.  Of the 53 teachers who attended the second day 

of the final session, 42 completed the reflections.  Since the 35 participants in the study 

had to have been present at the end of the session in order to take the post-test and 42 of 

53 teachers completed reflections at the end of the 4th session, between 24 and 35 

participants in the study had to have completed the reflection and the majority of the 

reflections would have had to come from the participants in the study.  

The two prompts on the reflection sheet asked participants to talk about how their 

participation in the professional development project impacted their teaching and what 

they would continue to work on in their practice.  Following are summaries of each 

prompt (note:  Some participants listed multiple responses.  All responses were 

tabulated): 

In what ways has your participation in [the professional development project] 

impacted your teaching this year?  Out of the 42 participants who responded to the 

prompt, the highest number of responses dealt with an aspect of teacher questioning.  

There were 18 references to questioning, 11 references to planning lessons, and 10 

responses related in a general way to an aspect (other than questioning or planning 

lessons) of teaching mathematics.  Some of the responses regarding questioning include: 

• My participation…made me aware of the questions I ask my students. 
 
• Not giving the answers right away, using different types of questions.  Different 

types of questions have different purposes. 
 

• I have focused more on the types of questions I ask the students.  I don’t answer 
the questions right away, but instead ask them questions so they can discover the 
answer. 
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• I believe tasks that are more open-ended help to create the necessity to practice 
questioning techniques.  “Drill and kill” tasks are less effective in helping me 
develop and strengthen my questioning skills. 

 
• I have a stronger focus on questioning and more patience in the classroom for 

letting the learning take the time it needs. 
 

• I think more about my questioning so that it allows students to arrive at the 
solution.  I have seen what takes rigor out of a lesson. 

 

What are you going to continue to work on?  Once again, a focus on questioning was 

the most prevalent response.  Fifteen participants noted an aspect of questioning in their 

responses.  This was followed by 12 references to planning/use of cognitively demanding 

tasks, and 9 responses dealing with the use of technology.  Some of the responses that 

referred to questioning included: 

• Work on my own questioning and train my students to ask meaningful questions of 
each other. 

 
• Apply techniques like scaffolding and appropriate questioning to help students 

obtain the goals of the lesson. 
 

• I want to improve on asking questions that allow for deeper student 
understanding. 

 
• I will be doing more tasks that require group work, continue asking probing 

questions during my teaching, and model how to approach and solve problems in 
different ways. 

 
• I would work on my questions and let the students come up with their own 

conclusions. 
 

Although these results cannot be directly connected to the participants who took both 

the pre- and post test, they do suggest that the components of the professional 

development which focused on aspects of questioning were salient to participants and 

appeared to influence their thinking about questioning.  

 126 



4.3.5. Summary of research question 5 

The 35 participants in this study were high school mathematics teachers from 12 high 

schools in two local sub-districts of a large urban district.  Their teaching experience 

ranged from 1 to 22 years and the majority of them were certified to teach mathematics.   

In analyzing the changes in participants’ ability to identify and create questions that 

promote understanding of mathematics and explain why such questions promote 

understanding, no correlation could be found between level of teaching experience, local 

district or high school at which teachers taught and the changes in these abilities.  The 

only common factor among the 35 participants appeared to be that they attended the 

majority of large-group professional development sessions.  Although a direct association 

could not be made between the features of the professional development program and the 

significant changes in teachers’ ability to identify and create particular types of questions, 

the number of professional development sessions that were attended, the content of those 

sessions, and the final reflections at the end of the program appear to suggest that an 

explicit focus on teacher questioning during the professional development program may 

account for those changes.  In addition, since participants used terminology on the post-

test which was not used on the pre-test but that was introduced, discussed and revisited 

during the last 6 days of the large-group sessions, it is likely the professional 

development program was connected to the changes. 

    In the next chapter, the results will be discussed and implications from this study will 

be given. 
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5.  CHAPTER FIVE: DISCUSSION OF RESULTS AND IMPLICATIONS 

 

The purpose of this study was to examine changes in high school mathematics teachers’ 

ability to identify and create questions that promote student understanding of 

mathematics and explain why such questions promote understanding as they participated 

in a practice-based professional development program.  This chapter will discuss possible 

explanations for the results of the study, the significance of the findings, and possible 

limitations that should be considered. The chapter concludes with potential contributions 

of these results for mathematics educators and for further research in mathematics 

education. 

 

5.1. DISCUSSION OF RESULTS 

 

The 35 participants in this study were all high school mathematics teachers from a large 

urban district.  They represented 12 of the 17 high schools from two local districts 

participating in a four-session professional development program that took place over a 7 

month period. In addition, 33 of the 35 participants were certified to teach mathematics. 

The make-up of this group was quite diverse.  Teaching experience ranged from first year 

teachers to veteran teachers who had taught mathematics for 22 years and there was a 

mixture of ethnic groups represented, including Caucasian, African American, Hispanic, 

and Asian teachers, as well as a balance of males and females.  The participants appeared 
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to be representative of the teachers in the professional development program and, based 

on available data, fairly representative of high school mathematics teachers in the urban 

district.  

The 12 high schools included schools in more affluent areas of the city as well as 

schools in low-socio economic areas.  Students in these schools were also quite diverse 

with some schools having high concentrations of Hispanic students, others having a 

majority of African American students, and a few having a majority of white students.  In 

some schools, students were performing well on the state assessment test while others 

were under corrective action due to poor student performance.  In some of the high 

schools, teachers received a great deal of support from their principal and school-based 

coach to implement what they learned in the professional development program.  In other 

schools teachers received some support, while in some schools the teachers received 

almost no support for their participation in the program.  Finally, soon after the 

professional development program began, the district took on an additional initiative 

meant to complement the professional development program, but which often competed 

for the limited time teachers had to meet with each other to discuss their practice.  In fact, 

in most cases, administrative support was given to the other initiative at the expense of 

the time teachers were supposed to have been given for the professional development 

program.  In spite of these conditions, the teachers grew in their abilities related to 

questions that promote understanding of mathematics and growth was not limited to 

teachers in particular schools or local districts. 

In light of research concerning the instructional practices of high school teachers and 

their willingness to engage in learning new practices (Grossman & Stodlosky, 1995; 
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McLaughlin & Talbert, 2001; Whittington, 2002), the results from this study are 

somewhat surprising.  In addition to learning about aspects of questioning that promote 

understanding of mathematics, the largest growth participants showed was in the area of 

questioning that research has shown is often lacking or absent in the classroom – 

questions that prompt students to explore mathematical ideas and connections.  The 

significant growth participants showed in learning about questioning and possible 

explanations for the growth will be discussed in the following sections. 

5.1.1. Results related to teacher questioning 

The analysis of the data indicated that the high school mathematics teachers in this study 

grew in five areas related to questioning.  In the sections that follow, explanations of the 

results, the significance of the results, and possible limitations of the results will be 

discussed.  

5.1.1.1. Explanations of results related to questions.  This section discusses 

explanations of the results for each of the areas. 

1. Participants significantly increased their ability to identify questions that promote 

the understanding of mathematics, particularly questions that probe for understanding and 

prompt student to explore mathematical relationships and connections.  Participants also 

increased their ability to identify generating discussion questions but the increase was not 

significant.  This could have due to the fact that there were fewer of this question type 

that could have been selected (4 as opposed to 7 and 8 of the other two types) and 2 of the 

generating discussion questions could have also been coded as probing questions. 

2. Participants significantly increased their ability to explain why particular question 

types promote the understanding of mathematics, particularly questions that prompt 
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students to explore mathematical relationships and connections and generating discussion 

questions. There was also an increase in participants explaining why probing questions 

promote understanding but not at a significant level.  A possible reason for this result was 

that participants’ explanations related to probing questions on the pre-test had higher 

scores than the exploring or generating discussion questions; 

3. Participants significantly increased their ability to create questions that promote 

understanding of mathematics, particularly questions that prompt students to explore 

mathematical relationships and connections.  Participants also increased their ability to 

create probing questions, though not significantly.  This was probably due to the fact that 

participants created more probing questions on the pre-test than exploring questions.  

Participants did not create any generating discussion questions on either the pre- or post-

test.  This could have been because of the nature of the information around which 

questions were to be created.  Brief scenarios and samples of student work were given for 

which participants were to create questions that promote understanding.  Generating 

discussion questions may not have been particularly useful in promoting understanding in 

the context of the scenarios since they are most often used in whole-group discussions. 

4. Participants significantly increased their ability to focus on promoting 

understanding when stating the purposes of  their questions; and 

5.  Participants significantly decreased their use of procedural questions when asked 

to create questions that promotes the understanding of mathematics.  Although procedural 

questions are a necessary aspect of mathematics instruction, asking only procedural 

questions results in students having little, if any, opportunity to explore, explain and 

discuss mathematics. 
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5.1.1.2. Significance of results related to questioning.  Why might the above findings 

be important or relevant? Research has shown that teachers typically do not ask the types 

of questions that appeared to be learned by the participants in the study.  Teachers tend to 

ask students questions requiring one word answers to which individual students respond.  

The teacher then evaluates the response as being correct or incorrect (Stodlosky, 

Ferguson & Wimpelberg, 1981; Lemke, 1990; Cazden, 2001).  Observations of over 300 

mathematics and science lessons showed that only 16% of the lessons consisted of high 

level questioning - the types of questions that “encourage students to think more deeply” 

(Weiss et al., 2003, p. 7).  The predominant types of questions asked by teachers included 

those that focused on a correct answer in which one student responded or questions which 

the teacher answered herself.  Teacher questioning was determined to be one of the 

weakest elements of instruction in the observed lessons.   

Research has also identified the types of questions that have been linked to increased 

student achievement in mathematics (Hiebert & Wearne, 1993; Martino & Maher, 1999; 

Boaler & Staples, 2005).  These question types - that probe for understanding, that 

promote discussion of mathematics and that prompt students to explore mathematical 

concepts – are seldom if ever asked in most mathematics classrooms.  Yet, when teachers 

did ask these types of questions, along with procedural and other types of questions, 

students at the high school level were shown to significantly increase their achievement 

in mathematics.  Not only did participants in this study learn about these types of 

questions, they had the largest gains in identifying and creating exploring mathematics 

questions.  Exploring questions were the question type least observed in the study of 
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teaching and learning high school mathematics and yet were considered key to increases 

in student achievement (Boaler & Brodie, 2004).   

5.1.1.3. Possible limitations of the results related to questioning. When considering 

the results of this study in light of existing research related to teacher questioning, several 

questions emerge that point to possible limitations of the study: 

1. Although participants increased their ability to identify and create questions that 

promote understanding of mathematics, to explain the purposes of various questions, and 

to explain why particular questions promote understanding, how do we know that this 

knowledge was not just a surface level appropriation of the language used in the 

professional development experiences?  Analysis of the language used by participants on 

the pre- and post-tests indicated terms related to teacher questioning that were discussed 

in the professional development sessions were used by only a few participants on the pre-

test. Most of these instances consisted of using a form of the word ‘assess’ to describe 

their purposes for asking questions or to explain why questions they selected promote 

understanding of mathematics.  On the post-test, however, the majority of participants 

also appropriately used some form of the other terms (i.e. probe, explore, scaffold, 

advance) and used them with more frequency.  In addition to using the terms, on the post-

test participants also tended to expand on the term in the context for which it was being 

used.  For example, in explaining their purposes for asking questions of their students, 

many participants used a form of the word ‘advance’ in a phrase that indicated deepening 

students’ understanding or pushing students to go further in their thinking.  Similar 

occurrences were noted for participants’ explanations of why questions they selected 

 133 



promote mathematical understanding. Thus it appears that participants gained more than 

a surface level understanding of questions that promote understanding. 

2. Another question emerging from the results of the study concerns the role of the 

mathematics task relative to teachers’ questioning abilities.  Research has shown that 

selecting high level tasks for use in the classroom is a critical first step in promoting 

mathematical understanding (Stein & Lane, 1996; NCES, 2003; Boaler & Staples, 2005).  

As a result, the professional development program in which teachers participated focused 

specifically on selecting and implementing challenging mathematics tasks.  In addition, 

the pre- and post-test instrument used to measure the changes in teachers’ questioning 

abilities situated their ability to identify and create questions in the context of students 

solving and discussing a high level algebra task.  However, what teachers in this study 

learned in terms of the relationship between selecting a challenging task and asking 

questions that promote mathematical understanding cannot be generalized to classroom 

practice.  For example, Silver & Smith (1996, p. 25) noted that teachers who participated 

in the QUASAR project experienced challenges in centering discourse on appropriate 

tasks.  The researchers provided an example of a teacher who understood the importance 

of asking students to explain and justify their thinking and proceeded to do so with his 

seventh grade students.  However, the task around which the teacher asked the questions 

was a low level mathematics task which resulted in students explaining how to apply a 

particular procedure.  The authors note that, while teachers may be aware of the 

importance of selecting worthwhile mathematics tasks as well as the importance of 

asking students to explain and justify their thinking, “teachers face additional challenges 
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as they seek to center … discourse on worthwhile tasks that engage students in thinking 

and reasoning about important mathematical ideas” (Silver & Smith, 1996, p. 24).  

In terms of the current study, the extent to which teachers made a connection between 

asking questions that promote mathematical understanding and the fact that such 

questions are most effective when asked around challenging mathematics tasks is unclear 

and deserves further exploration. 

3. A final question related to teachers’ growth in questioning abilities concerns their 

ability to translate these abilities into their instructional practice.  Even though 

participants increased their abilities related to identifying and creating questions that 

promote understanding of mathematics, we are left wondering what impact this learning 

had on teachers’ instructional practice.   Since teachers were not observed in their 

classrooms prior to and after their participation in the professional development program, 

there is no direct evidence as to whether their learning about questions that promote 

understanding of mathematics transferred to the classroom.  However, recent research has 

shown that focusing on a particular aspect of instructional practice in professional 

development can lead to changes in teachers’ knowledge, as well as impact their 

classroom practice (Boston, 2006).  For example, a study was conducted with 18 

mathematics teachers who participated in 6 professional development sessions over a 9 

month period.  These sessions focused on selecting and implementing high level 

mathematics tasks.  Results showed that teachers significantly improved their knowledge 

in terms of identifying and describing the characteristics of tasks that provide students 

with opportunities for learning mathematics (i.e. high level tasks).  In addition, the 

teachers in the study selected high level tasks for use in their classrooms more frequently 

 135 



and were able to maintain the high level cognitive demands during the implementation of 

the tasks at a higher rate than a contrast group of teachers who did not participate in the 

professional development program (Boston, 2006).  Thus participation in a professional 

development program that targeted a particular aspect of instructional practice in 

mathematics not only resulted in greater knowledge of the practice, but also impacted 

teachers’ transfer of this practice to their own teaching. 

There is no guarantee, however, that what teachers in this study learned about 

questioning in the professional development program was appropriated into teachers’ 

instructional practice.  While reflections at the conclusion of the professional 

development program indicate that participants were, at a minimum, making connections 

between the PD experiences in which they learned about questioning and their 

instructional practice, the ability to generalize these results to teachers’ classroom 

practice is a major limitation of the study. 

 In spite of the above limitations, however, the fact that teachers did learn about a key 

instructional practice that promotes understanding of mathematics is an important 

finding.  Perhaps even more important is that fact that the participants were high school 

mathematics teachers Potential reasons that account for this growth in knowledge will be 

explored in the next section. 

5.1.2. Accounting for changes in teachers’ questioning abilities 

To determine what might have accounted for changes in teachers’ abilities related to 

questioning, statistical analyses were done to determine if the professional development 

program, as well as additional factors, may have contributed to the changes. The 
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following sections provide explanations for the results and discuss the significance as 

well as limitations pertaining to the results.   

5.1.2.1. Explanation of results related to the professional development and other 

factors. Analyses to associate the additional factors – teaching experience of participants, 

high school at which participants taught, and local districts containing the high schools – 

with the changes in teachers’ abilities related to questioning were conducted.  None of 

these associations proved to be significant in terms of identifying which teachers had the 

greatest or least changes related to questioning. Teachers at all levels of experience had 

significant changes from pre- to post- in their questioning abilities.  Also, it was initially 

hypothesized that school-based study group sessions might account for potential changes 

in teachers’ questioning abilities since the sessions were intended to complement the 

large-group PD sessions.  Since data collected from the schools proved to be unreliable, 

changes in teachers’ questioning abilities were compared according to the high school at 

which teachers taught in an attempt to capture the effect of any potential learning that 

may have occurred at particular schools.  This comparison also showed no significant 

association.  To account for potential PD opportunities provided by the local district, the 

changes in teachers’ questioning abilities were also compared by local district.  Again, no 

significant association was found.  Finally, an analysis of changes in teachers’ 

questioning abilities was disaggregated according to each the four facilitators.  There 

were no differences found among the four indicating that the changes could not be 

associated with the facilitator conducting the professional development sessions.  

Therefore, it seems reasonable that the professional development program contributed to 

the changes in teachers’ questioning abilities.   
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The 35 participants attended the majority of the sessions in which an aspect of teacher 

questioning was discussed and showed evidence on the post-test and the final reflections 

that they had learned about teacher questioning.  They were also using language 

consistent with what was discussed at the professional development sessions at a much 

higher rate on the post-test.  In addition, the language used went beyond a surface level 

use of the words since participants often explained what they meant by the word in the 

context in which it was used. 

In terms of making a connection between changes in teachers’ questioning abilities 

and the professional development program, one should note that the 4 large-group 

sessions were designed to incorporate features of a practice-based professional 

development program (Smith, 2001; Ball & Cohen, 1999). And such programs have been 

linked to changes in teachers’ instructional practice (Smith & Brown, 1994; Carpenter, et 

al, 2000; Killion, 2002.)  Specific features of the professional development program 

discussed in this study include: 

1.  The content of the sessions consisted of the same content teachers were teaching in 

their classrooms and was designed to align with the curriculum they were using.  For 

example, every unit of the professional development program consisted of engaging in a 

mathematics task that was aligned with the upcoming unit in the district’s mathematics 

instructional guide.  Teachers then analyzed and discussed a lesson plan they would be 

teaching to their students that included a version of the same task.  

2. The activities in every session were situated within the day-to-day teaching 

mathematics.  For example, teachers planned mathematics lessons they would be 

teaching, reflected on lessons they had already taught, and analyzed and discussed 
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episodes of other teachers implementing mathematics lessons.  They also examined 

student work and engaged in generating a variety of questions they would ask students. 

3.  Participants were part of collaborative school teams that worked together during 

the sessions and were intended to work together at the school site.  In all 8 sessions, 

teachers worked the majority of the time with their school team.  All teachers on a school 

team were teaching the same content, in this case, Algebra 1.  This allowed them to have 

focused discussions relevant to their particular situations. 

5.1.2.2. Significance of the results. Although a direct correlation could not be made 

between the significant changes in teachers’ questioning abilities and the professional 

development program, the results appear to support the notion that the practice-based 

professional development experiences can contribute to teachers’ knowledge growth and 

abilities.  In addition, since all participants in the study were high school mathematics 

teachers, this study contributes to the small, but growing, research base around the impact 

of professional development on the knowledge of high school mathematics teachers.  In 

particular, the study suggests that high school mathematics teachers can learn new 

practices related to teaching mathematics if the professional development experiences in 

which they participate provides them with opportunities that are: grounded in their 

content area; conducted with colleagues from their own schools with whom they can 

collaborate; and situated within their day-to-day practice of teaching mathematics. 

5.1.2.3. Possible limitations of the results related to the professional development 

program and other factors.  Several limitations of this study related to the professional 

development program and other factors.  One potential limitation was the fact that the 

investigator of this study was also one of the four facilitators of the professional 

 139 



development program.  Therefore, it was possible that teachers in the investigator’s 

sessions felt an obligation to volunteer for the study.  However, statistical tests showed 

that the participation rate for teachers in the investigator’s room was not different from 

the participation rate of the other facilitators.  In fact, the investigator’s rate of 

participation was neither the highest nor the lowest for all facilitators. 

A second, perhaps more important, limitation to consider concerns the sample for this 

study.  How representative were the participants in this study of the group of teachers 

who participated in the professional development program, of the high school 

mathematics teachers in the district, and of high school mathematics teachers in general? 

Although teachers were supposed to have volunteered to participate in the professional 

development program, survey data from an independent evaluator showed that over half 

of the teachers did not do so.  In spite of this, however, over ¾ of the teachers would have 

participated in the study since 79% of the 63 teachers present when the pre-test was given 

took the pre-test and nearly 90% of the 57 teachers present when the post-test was given 

took the post-test.  Therefore, the participants volunteering for the study did not do so at a 

much higher rate.  In addition, the demographic information showed that the participants 

were quite similar to the teachers who took part in the program.  Therefore it appears that 

the participants in this study were representative of the teachers who took part in the 

professional development program.  Though both the participants and teachers were 

different along many dimensions when compared to a national sample of high school 

mathematics teachers, they were similar to teachers in their own district.  Since available 

data did not allow for further comparison, the ability to generalize these results to high 

school mathematics at large is another limitation of the study. 
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Despite the acknowledged limitations associated with interpreting the results of this 

study, the findings also have the potential to contribute to the research base related to the 

teaching and learning of mathematics. 

  

5.2. CONTRIBUTIONS OF THIS STUDY  

 

The results reported from this study have several implications for the mathematics 

education community.  These include possible contributions concerning the professional 

development of mathematics teachers and student achievement in mathematics, 

particularly at the high school level, and implications for measuring knowledge of 

instructional practice.  Each of these will be described in the following sections. 

5.2.1. Contributions related to professional development  

This study suggests that teachers grew in their knowledge of questioning as they 

participated in a professional development program in which they had multiple 

opportunities to learn about teacher questioning. Even though teachers were not followed 

into the classroom to see if they had appropriated the new learning into their own 

practice, being able to identify and create questions that promote understanding of 

mathematics should be seen as a first step in changing teachers’ instructional practice.  

The fact that the participants in the study were high school mathematics teachers also 

suggests that the experiences in the professional development sessions contributed to 

high school teachers learning a new instructional practice. Therefore, this study could add 

to the limited research base concerning changing instructional practice at the high school 

level. 
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Important follow-up research could also build on this study and follow teachers into 

their classrooms to observe the types and purposes of questions asked during instruction 

and to determine if this changes over time as teachers participate in professional 

development focused on this aspect of instruction.  The Boaler and Brodie (2004) 

questioning framework could serve as a tool for categorizing the questions asked by 

teachers.  In addition, the methodology used in their study could be used, or adapted, to 

collect and code data from classroom observations.  This would allow for a comparison 

between their sample of teachers and a comparison sample of teachers prior to and after 

their participation in professional development focused on questioning. 

  Additional components of future research studies could examine the opportunities 

teachers have to learn about aspects of teacher questioning during professional 

development and their level of participation in the professional development sessions.  

This would allow direct connections to be made between changes in teachers’ knowledge 

and abilities related to questioning and the professional development in which they 

engaged. The current study did not document the ways in which teachers participated in 

the professional development sessions or the ways in which the sessions were facilitated.  

Although attendance data was gathered, attendance does not necessarily imply active 

participation.  And even though teachers were asked to bring artifacts of practice, such as 

student work, written reflections, and lists of questions they asked, to each 2 day session 

and the artifacts were reflected upon and discussed at each session, the artifacts were not 

collected or documented.  The fact that a participant did or did not share an artifact and 

the quality of the artifact shared could have implications related to changes in teachers’ 
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knowledge and could possibly be used to predict whether or not instructional practice 

will change.   

In addition, it could be beneficial to analyze video of professional development 

sessions, particularly the components that explicitly focus on questions that promote 

mathematical understanding to determine if changes in knowledge and abilities related to 

questioning could be connected to the level at which the participants engaged in the 

professional development or to particular ways in which the sessions were facilitated.  

For example, in the study conducted by Boston (2006), the professional development 

sessions were videotaped and artifacts (e.g. task solutions, charts generated during 

discussions, reflections) created during the sessions and during classroom implementation 

were collected.  These two data sources provided a record of the potential opportunities 

teachers had to learn during the PD sessions and the ways and level at which they 

participated in the sessions or incorporated new learning into their practice.   This 

allowed for an analysis of the impact of the professional development on changes in 

teachers’ knowledge and practice to be made. 

5.2.2. Contributions related to student achievement in mathematics  

Although this study focused on teacher questioning, the premise is that improving 

teachers’ ability to ask questions that promote mathematical understanding will result in 

better learning opportunities for students and, ultimately, increased student achievement 

in mathematics.  This study showed that teachers can learn to identify and create the 

types of questions that are associated with increased student achievement in mathematics 

which is key to promoting mathematical understanding.  Additional research studies that 

attempt to link professional development experiences to changes in teachers’ knowledge 
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and practice, as described in the previous section, could also provide for a measure of 

gains in student achievement. In particular, a study linking professional development, 

changes in teacher knowledge and practice of questioning, and student achievement at the 

high school level could be invaluable in expanding a very limited research base, most of 

which has  been conducted at the elementary level.   

5.2.3. Contributions to the measurement of instructional practice 

A final implication from this study concerns the measurement of the instructional 

practices of mathematics teachers.  A pre- and post-test instrument was used for this 

study and appears to have been successful in measuring changes in teachers’ ability to 

identify and create questions that promote understanding of mathematics and explain why 

such questions promote understanding.  Thus, the instrument could contribute to a small, 

but growing effort to measure teachers’ knowledge related to teaching mathematics and 

to eventually use these measures to predict a teacher’s instructional practices.  For 

example, researchers at the University of Michigan (Ball, Hill & Bass, 2005) have 

designed paper and pencil measures to determine elementary teachers’ ability to assess 

student work, represent mathematical ideas and explain the meaning of rules or 

procedures for particular areas of mathematics such as number and operations.  They are 

currently focused on measuring how this knowledge is used in actual classrooms and on 

correlating the results with their paper and pencil measures of teachers’ knowledge.  The 

limited results that are currently available show evidence that such a correlation may 

exist.  If such measures of teachers’ knowledge for teaching can eventually be used to 

approximate the instructional practices of teachers, the instrument used in this current 

study has the potential to provide invaluable information to teachers, mathematics 
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education researchers and professional developers relative to teacher questioning – a key 

practice for teaching mathematics that has been shown to impact student achievement. 

 

5.3. CONCLUSION 

 

This study examined changes in high school teachers’ ability to identify and create 

questions that promote understanding of mathematics and explain why such questions 

promote understanding as they participated in a professional development program.  

Results suggest that teachers significantly increased their ability to identify and create 

questions that promote understanding of mathematics, particular exploring questions, 

which have been associated with increases in student achievement.  Although a 

correlation between attendance and participation in the professional development 

program could not be established, it appears that the activities in the program, which 

provided ongoing opportunities to learn about teacher questioning in the context of 

teaching mathematics and in collaboration with colleagues, may account for these 

significant changes.  In addition, since the participants in the study were high school 

mathematics teachers, the results are promising in terms of assisting teachers at this level 

to learn new instructional practices through professional development experiences. 

This study can contribute to the limited, but ongoing research base being developed 

around professional development for high school mathematics teachers, mathematics 

teachers’ instructional practice at the high school level and the measurement of teacher 

knowledge and instruction.  This study also has the potential to further inform the 

mathematics education field as to the type of professional development that can impact 
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teachers’ knowledge for teaching mathematics in an effort to provide all students, 

especially high school students, with opportunities to learn challenging mathematics. 
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 APPENDIX A 
Pre- and Post-Test 

 
IDENTIFYING AND CREATING QUESTIONS  

THAT PROMOTE STUDENT UNDERSTANDING OF MATHEMATICS 
 

NOTE:  Names will not be used to report results of this test.  Names will only be 
used by me to match the pre- and post-tests for individuals.  Each person’s name 
will be assigned a number and then the cover page will be removed.   The names 
and associated numbers will not be shared with any other person.   
 
Name_______________________ School_____________________ Local District___   
 
Number of years teaching mathematics____   
 
Do you hold a credential to teach secondary mathematics (9-12) in the state of  
California? ___Y      ___N 
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Part 1 
 
Teachers ask hundreds of questions of their students every day.  What are 
the purposes of the questions you ask your students?  
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Parts 2-3 
The following task was used by a teacher in an actual Algebra 1 classroom.  Please solve 
the task and then complete the remaining parts of the test: 
 

Calling Plans 
 

Long-distance Company A charges a base rate of $5 per month, plus 4 cents per minute 
that you are on the phone.  Long-distance Company B charges a base rate of only $2 per 
month, but they   charge you 10 cents per minute used. 
 
How much time per month would you have to talk on the phone before subscribing to 
Company A would save you money?
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Part 2   Students have worked in groups to solve the problem and have created posters 
that have been posted in the front of the room.  Suppose you are conducting a whole 
group discussion of the solution to the task. 
 
A  One of your mathematical goals is for  
students to understand the slope and  
y-intercept in terms of the different plans.   
Group A has posted the table to the right in  
front of the class. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
B   One of your mathematical goals is for  
students to understand the slope and  
y-intercept in terms of the different plans.   
Group B has posted the graph to the right  
in front of the class. 

 
 

 
 
 
 
 
 
 
 
 
 
 

List 5 questions would you ask to promote  
students’ understanding of mathematics: 
 

List 5 questions would you ask to promote  
students’ understanding of mathematics: 
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C      One of your goals is for students to understand the meaning of slope and y-

intercept in different representations.  The following solutions have been posted 
on the board. 

 

 

 

 

 

 

 

 

List 5 questions you would ask to promote students’ understanding of mathematics: 
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Part 3 

Read the following transcript of a teacher discussing the Calling Plans task with her 
students.  Select (underline) the questions that you think promote students’ understanding 
of mathematics.  Then explain why you think the question promotes understanding. The 
teacher’s mathematical goals were to develop and strengthen students’ understanding of 
the meaning of slope and y-intercept. 
 
(T:  teacher) 
 
Beginning of the discussion Why does this question promote 

understanding of mathematics? 
1 T: Who thinks they got the correct table? 

(Group 1 raises their hands.) 
 
 
 

 

2 T: Could you please post your table in front  
of the room? 
(Group 1 posts the following table☺ 

 

    

3 T: What did you get for the answer? 
(A member of group 1 points to the row 
showing “51  7.04    7.10”) 

 

4 T: So someone who wasn’t in group 1, how 
do you think they used the table to find 
the solution?  Come up and show us. 
(Joe goes to the front of the room and 
points to chart.) 

 

5 Joe: Well, they went by 10’s to find their 
answer. And they kept going until they 
got both numbers to be the same and 
then went 1 more. And that’s when A 
got cheaper. 

 

M     A        B       
0    5.00     2.00 
10   5.40    3.00 
20  5.80     4.00 
30  6.20     5.00 
40  6.60     6.00 
50  7.00     7.00 
51  7.04     7.10 
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6 T: What do you mean, “A got cheaper”?  
 
 

7 Joe: Company A and B cost the same at 50 
minutes and Company A got cheaper at 
51 minutes. 

 

8 T: OK. So I’m wondering.  The problem 
said Company A charged 4 cents per 
minute and Company B charge 10 cents 
per minute. How can we see the cost per 
minute in the table? 

 

 
Later in the discussion Why does this question promote  

understanding of mathematics? 
 
11 T: So, what did you get for the equations for 

Company A and Company B?   
 

12 
Maria 

C = .04 m + 5 and C = .10 m + 2. 
 

 

13  T: Who else got the same equations? 
 
(Many students raise their hands.) 

 

14 T: OK.  Good.  Now, we talked about the 
cost per minute in the table. How do we 
see that cost per minute in the equations? 
(Several students respond at once.) 

 

15 
Jose: 

Like, it’s the point “O” 4 and the point 
“10”. 

 

16 
Anita: 

It’s the coefficient.  

17 
Joe: 

Yeah, but you have to add on the monthly 
fee. 

 

18 T: OK, wait a minute.  Jose, what do you 
mean, “it’s the point “O” 4 and the point 
“10”? 

 

19 
Jose: 

The cost per minute… like for Company 
A it’s 4 cents per minute and there’s a .04 
in front of m. 
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20 T: OK, and Anita, you said ‘the coefficient.’ 
What’s a coefficient? 
 
 

 

21 
Anita: 

It’s the number in front of x.  

22 T: Can someone else add on to what Anita 
said?  (No one responds.) 
 

 

23 T: What does the coefficient mean for this 
problem?  Why is it important? 
 

 

 
Occurs after the above discussion Why does this question promote 

understanding of mathematics? 
41 T: Group 2, where is your graph? 

(Group 2 responds that their graph is  
under the table they constructed.  
Their graph is shown below.) 

 

 

 

 

42 T: Oh, OK……  So I’d like someone who 
wasn’t in group 2 to explain, how do 
you think group 2 made their graph? 
 

 

43 Jon: I think they knew where each line 
started and ended. 

 

44 T: What do you mean, “where each line 
started and ended?” 
 
 

 

45 Jon: Like, Company A started at 2 and 
Company B started at 5. 
 

 

46 
Marci: 

And they both ended at 50…Well, they 
didn’t really end at 50. That’s where 
they both cost the same. 

 

47 T: So let’s start with what Jon said, what 
do you mean “they started at…”? 
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48 Jon: Well, it’s the y-intercept.. 
 

 

49 
Tony: 

It’s where they cross the y-axis.  

50 T: So, in terms of this problem, what does 
the y-intercept mean?  What does it 
mean “they cross they-axis”? 
 

 

51 
Deshay 

It’s how much you have to pay just to 
have that plan. 
 

 

52  T: Someone else, want to add on?  
 
 

53 Joe: It’s what each plan costs at 0 minutes. 
 

 

54 
Marci: 

The y-intercept means when x is 0, 
that’s how much y is.  So for this 
problem when we have 0 minutes, 
Company A costs $5 and B costs $2.  
 

 

55 T: OK.  We also looked at a table and an 
equation before.  How could I tell what 
the y-intercept is in a table? 
 

 

 LATER IN THE DISCUSSION 
 

 

60 T:  I want to come back to something 
Marci said about where the two plans 
cost the same.  Marci, can you tell us 
what you were thinking about that?  
Come up and show us. 

 

61 
Marci: 

(Marci points to the point of 
intersection) Well, I said the two plans 
cost the same at 50 minutes and you 
can see that right here. 

 

62 
Tony: 

 
It’s where they intersect. 
 

 

63 T: What do you mean by “intersect”? 
 

 
 
 

64 
Tony: 

It’s where the two lines cross each 
other, they both go through the same 
point. 
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65 T: So what does that mean when two lines 
go through the same point? What does 
that tell me? 
 

 

66:  
Joe 

It means both lines have a point, an x 
and a y, that’s the same for both of 
them. 
 

 

67  T: What is that point for this problem? 
Tami, what is the intersection point for 
this problem. 
 

 

68 
Tami: 

It’s 50, 7.  

69 T: So what does that tell me in terms of 
this problem?  What does “50, 7” 
mean? 
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 APPENDIX B 
Questions that Promote Student Understanding of Mathematics 

Question Type Purpose Examples 
Probing • Require students to explain or 

clarify their thinking 
 
• Require students to justify their 
solutions to problems 

 
 

• “How did you get that 
answer?” 

• “Why did you use that scale for 
your graph?” 

• “Why did you use that formula 
to solve the problem?” 

• “Explain to me how you got 
that expression.” 

Exploring 
mathematical 
relationships and 
connections 

• Require students to identify 
mathematical relationships 
• Require students to link 
mathematical representations 
• Require students to link 
mathematical ideas 

 

• “What does ‘n’ represent in 
terms of the diagram?” 

• “How does the ‘x’ in your 
table related to the ‘x’ in your 
graph?” 

• “Will your expression work for 
any “function? Why?” 

• “What is staying the same in 
your equation?  Why is it 
staying the same?” 

Generating discussion • Ask students to explain the 
thinking and reasoning of others or 
to restate in their own words 
• Ask students to contribute 
additional information to a 
discussion 
• Ask students to agree or 
disagree and justify why 

• “Explain to me what John was 
saying.” 

• “What else did you notice 
about the graph of the 
parabola?” 

• “Who agrees with what Sue 
said?  Why do you agree?” 

 
 

Other common types of questions 
Procedural • Require yes or no answers 

• Require the recall of facts or 
memorized procedures 

 

• “What is the square root of 
4?” 

•  “What is the distance between 
the two points?” 

Other mathematical • Relate to teaching or learning 
mathematics but are not 
procedural, probing, 
exploring, or generating 
discussion 

• “What is a coefficient?” 
• “How could you use this in the 

real world?” 

Non-mathematical • Does not relate to teaching or 
learning mathematics 

• “Why didn’t you use graph 
paper?” 

• “Who did their homework?” 
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 APPENDIX C.1.1 
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APPENDIX C.1.2 
 

From Equations to Graphs: Quadratics                  
 
Part 1: Using a graphing calculator, explore graphs of equations 
of the form y = x2 + bx.  How does “b” affect the location of the 
graphs on the coordinate plane? 
 
Identify as many relationships as you can. Be prepared to discuss 
your findings and provide support for your claims. 
 
Part 2: Using a graphing calculator, explore graphs of equations 
of the form y = x2 + bx + c. What effect do “b” and “c” together 
have on the location of the graph? 
 
Be prepared to discuss your findings and provide support for your 

claims.  
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APPENDIX C.2 
 “Shapes of Quadratics” Vignette 

 
The Case of Mark Veracruz 

The Context 
Mark Veracruz, a 19 year teaching veteran, started teaching mathematics at Dunbar High School 
8 years ago when Dunbar adopted a reform mathematics curriculum.   Although Mark felt he had 
strong mathematical content knowledge, he initially experienced some anxiety because the new 
curriculum required him to use more challenging task and to develop not only students’ 
procedural fluency but their conceptual understanding.  Since the curriculum adoption, Mark and 
his colleagues have met regularly to discuss implementation issues such as how to support 
students as they struggle with more open ended tasks without telling them what to do, what 
approaches students might use in solving particular problems and what errors might come up, 
and how to help students communicate their thinking and reasoning.         
 
Mark’s ninth and tenth grade algebra students have recently completed a unit in which they 
explored how changes in the parameters (i.e., m and b in y =mx + b) effected the graph of a 
linear function.  using the TI-83 graphing calculator.  Yesterday, Mark started a unit on quadratic 
functions by having students graph and informally discussed properties of y = x2 without using 
their calculators.   Today Mark planned to have his students use their calculators to explore the 
effects that coefficients and constants have on a quadratic function of the form y = ax2 + c.  He 
wanted students to begin to understand not only how, but why “a” causes the graph to become 
either wider or more narrow, why a negative value for ‘a’ causes the graph to be reflected, and 
why “c” causes the graph to move upward or downward.  Mark also wanted his students to better 
articulate their mathematical thinking and reasoning so he planned to ask them questions that 
would help them explain what they were doing and why it made sense.  . 
 
The Lesson Set-Up 
When students entered the classroom, they proceeded to their pre-assigned groups where copies 
of the task and a graphing calculator had been placed at each desk.  Mark began the lesson by 
having students discuss what they had learned about the graph of y = x2 from their previous 
exploration.  They talked about the fact that the graph was a parabola and was symmetric to the 
y-axis, that it opened up, and that it had a vertex at the origin. He then asked the students to 
enter “y=x2” into their calculators and explained that they would be exploring and comparing 
different forms of this equation. They read the task and briefly discussed what they would be 
doing in Part 1 of the first Investigation. 
 
The Exploration 
Mark explained to the class that they would have 10 minutes to work individually on the task after 
which time they could discuss their initial results with their group and continue to work on the 
task.. As students worked on the task, Mark walked around the classroom first making sure that 
everyone was getting started without any difficulty and then monitoring the progress of each 
group.   
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Group 1:  Mark stopped at Group 1 as students were discussing their results for y = ax2.  Charles 
was commenting that the graphs of the parabolas kept getting skinnier.  Mark asked, “What do 
you mean by ‘skinnier’?”  Charles explained that when he made ‘a’ larger, the parabola became 
more narrow.  Mark asked others in the group, “What do you think?  Did you get the same results 
as Charles?”  Audrey replied, “Yeah, and I also noticed that the parabola always opens up.”  
Shala added, “Yep, that’s what I found, too.  Let’s go on to the next one.”   “Whoa, wait a minute,” 
Mark commented as he was looking at the group’s recording sheet.  “I have a couple of 
questions.  Let’s look at the values you used for ‘a’.”    
Mark continued, “Hmm, you all agreed that the 
parabola became more narrow as ‘a’ became 
larger.  So I’m wondering, what’s the smallest ‘a’ 
value you could use?”  Charles commented that he 
started with 2 since y = x2 has       

Form Value 
of a 

Value 
of c 

Equation 
graphed 

1) y = ax2
  0  

 2 0 y = 2x2
an ‘a’ value of 1.  Mark then decided to ask 
Roman, a student in the group who had been 
quiet, what he thought. Roman responded, “Well, I 
guess ‘a’ could be a negative number.”  Shala 
stated that they should start with -2 and  

 

 5 0 y = 5x2

see what happened.”  Mark replied, “OK.  What do 
you think will happen to the graph when you use 
negative values for ‘a’?”  Several of the students 
said the graph would get wider while one thought the graph would move down.  Mark told them to 
test their ideas and said, “Are there other values of ‘a’ you could try also?  How do you think you 
could make the parabola wider?” as he moved on to the next group.  

 

 3 0 y = 3x2
 

 10 0 y = 10x2
 

Part 1. From Equations to Graphs: Investigate the shape of quadratic functions. 
Investigation 1: For each of the forms of quadratic functions below, you will explore the shape of 
the graph and its location on the coordinate plane, and how they are related to the graph of the 
basic function y = x2. 
1)     y = ax2                 2)     y = x2 + c               3)       y = ax2 + c 
For each of the three forms: 
Use your graphing calculator to graph different functions of the form.  Substitute different 
values for a and/or c. Use a variety of values including ones that are greater than 1, between 0 and 
1, positive and negative.  
Divide the workload among members of your group. Graph a set of equations on the same screen by 
entering them in the calculator’s “Y=” list. Keep y = x2 as the first equation in the list. Use the 
standard viewing window. 

As a group, use your graphs to answer these questions: 
1)   How are the graphs similar to, and different from, the graph of the basic function y = x2? 
2) How are these graphs, similar to, and different from, each other? 
3) How do changes in the values of a and c affect the shape of the graph and its location in the 

coordinate plane?  
Check your conclusions. Create another function of the same form and predict what the graph will 
look like before graphing it on your calculator. Be prepared to discuss your results with the class. 
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Group 2:  Mark noticed that group 2 had completed the chart shown below: 
Mark asked Nadia, “What does your group mean by ‘skinnier’ and ‘flipped over’?”  Nadia 
explained that ‘flipped over’ 
meant that the vertex stayed the 
same but the rest of the graph 
was like looking in a mirror.  
Darnell demonstrated with his 
hands that the graph became 
more narrow and Josh added, 
“you know, like squished 
together.”  Mark said, “OK.  
Let’s talk about the ‘flipped over’ 
thing first.  Nadia said it’s like 
looking in a mirror.  Does 
anyone know the math term we 
use to describe that?“  Students 
did not respond so Mark told them it was called a ‘reflection’.  Nadia said, “Cool, like my reflection 
in a mirror!”  Mark chuckled, “Right, it’s like looking in a mirror. So when does the parabola get 
reflected?  Look at your chart.  What do you think causes the parabola to be reflected? Kayla, 
what do you think?”  Kayla responded, “It seems like it flips over, I mean gets reflected when ‘a’ 
was negative.”  Mark asked, “What do the rest of you think about Kayla’s conjecture?”  Students 
were nodding in agreement so Mark said, “OK, it seems like you’re agreeing. So maybe we 
should test the conjecture to see if it works.  But before you do that, I have another question.  
Josh said, and Darnell showed us, that the graphs were ‘squished together.’ Were they all 
‘squished together’ or ‘more narrow’ by the same amount?” The students replied that they all 
looked about the same.  “So what do you think the graph of y = 10x2 would look like,” Mark 
inquired.  Most of the students commented that it would look pretty much the same as the others.  
However, Belinda said that didn’t make sense, “How can they all look the same when the front 
number is different?” Mark replied, “Belinda is making an interesting point.  If the coefficient – 
remember, the number multiplied by the variable – changes, why wouldn’t the graph change?  So 
you guys have two things to think about – testing Kayla’s conjecture about what happens when ‘a’ 
is negative and then answering Belinda’s question about the coefficient.  I’m also wondering if it is 
possible to make the parabola wider than y = x2?” 

Form Value 
of a 

Value 
of c 

Equation 
graphed 

Effect on 
shape of graph 

1) y = ax2
  0   

 2 0 y = 2x2
 Skinnier 

 -5 0 y = -2x2
 Skinnier and 

flipped over 

 -3 0 y = -3x2
 Skinnier and 

flipped over 

 1.5 0 y = 1.5x2
 Skinnier 

 
Mark continued circulating around the room and stopped to ask each group questions about their 
graphs.  He often had to prompt students to try positive and negative values for ‘a’ and to test 
values between -1 and 1.  He made notes to himself as he visited each group to remind himself to 
address this during the whole group discussion.   
 
Even though all students had not completed question 3 of the investigation (equations of the form 
y = ax2 + c), Mark noticed that students could easily see and describe the effect ‘c’ had on the 
graph of the parabola.  So, since all of the groups had at least tried out and discussed several 
examples of y = ax2 + c, Mark decided it was time to pull the class together for a discussion. 
 
The Discussion 
 It had become a norm in his class, after many struggles and much persistence, for students to 
share and discuss their work publicly.  When errors were made, Mark referred to them as 
“learning opportunities” and stressed that they often learned more about mathematics by 
discussing the errors.  In fact, Mark modeled this by encouraging his students to point out 
“learning opportunities” he might provide during a lesson.   
 
Also, prior to the discussion, Mark had asked students from several groups to enter their 
equations into the overhead graphing calculator.  This would save time during the discussion 
since students would only need to highlight the equal sign and press the “graph” key to display a 
graph of the equation they were discussing.  Mark also made certain that the equal sign for “y=x2” 
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was highlighted and selected a heavier line for the graph so that it could be distinguished from the 
other graphs. 
 
Mark began the whole group discussion by asking Hilary and Tamika to share and explain their 
group’s graphs (shown below).  Hilary explained that they graphed y = 2x2, y = -3x2, y = 4x2 and         
y = -10x2 and found that the larger they made ‘a’, the more narrow the parabola became.  Tamika 
 
 
 
 
 
 
          y = 2x2                   y = -3x2     y = 4x2      y = -10x2 
 
added that when they had ‘a’ values that were negative, the parabola was flipped.  Mark asked if 
the negative coefficient affected how narrow the graph would be. Students responded that the 
negative only caused the graph to be “flipped.”  Mark took the opportunity to point out that since 
the negative sign did not affect the width of the graph, it would be appropriate to note that as |a| 
got larger, the graph got more narrow. 
 
 Mark then asked the class, “Do you agree with Hilary’s group?” to which the majority of the 
students nodded.  “Does anyone notice anything else about their graph?”, Mark inquired.  “Tyler, 
what do you notice?” Mark asked. Tyler stated, “Well, we found the same thing about ‘a’ but I just 
noticed that all of the graphs have the same vertex.  The vertex didn’t change even though the 
shape did.”  Mark stated, “Hmm, what do the rest of you think about what Tyler said? “  Carlos 
said he noticed that, too.  Veronica added, “We didn’t notice that at first but in all of our graphs 
the vertex stayed the same, too.”  Mark pondered, “I wonder why the vertex didn’t change when 
you were graphing y = ax2?”  He gave the students a few minutes to think about and discuss this 
in their groups and then asked if anyone thought they could explain.  Renee commented, “I think 
it’s because you’re multiplying” as Jorge added “It’s because of order of operations.”  Mark asked 
them to explain.  “Let’s start with Renee.  What do you mean about multiplying?”  Renee said, 
“Well, I think it’s because no matter what ‘a’ is, you’re multiplying it times 0 so you still get 0.”  
Jorge added, “Yeah, I guess I was thinking of the same thing.  The vertex is at (0,0) so you would 
first take 0 squared and then times ‘a’ so it’s still 0.”   
 
Mark then refocused the discussion on a point that had been made by Tamika. “I want to come 
back to what Tamika said about the fact that when ‘a’ was negative, the parabola was flipped or 
reflected.  Did any other groups arrive at that conclusion?  Why do you think that occurred?”, he 
continued.  The students discussed that they thought it had something to do with what Renee and 
Jorge discussed earlier.  Mark asked them to give examples of what they meant.  Nadia raised 
her hand and explained, “I looked at our table (shown below) and when I substituted  

Form Value 
of a 

Value 
of c 

Equation 
graphed 

Effect on shape of 
graph 

Points on the graph (column 
added by student) 

1) y = ax2
  0    

  2 0 y = 2x2
 Skinnier (0, 0) (1, 2)  (2, 8) 

 -2 0 y = -2x2

the same values in for x when ‘a’ was positive and ‘a’ was negative,  the y-values were opposites 
– except for 0.”  “So how would that relate to the graph?,” Mark asked.  The class discussed the 
relationship between the graphs, the equations, and the coordinates by noting that, because of 
the order of operations, the x-value would first be squared and then multiplied by the coefficient.  
So for any given x-value, it would first be squared and then multiplied by 2 for the equation y = 
2x2.  But it would be squared and then multiplied by -2 for the equation y = -2x2.  This would mean 

 Skinnier and flipped 
over 

(0, 0) (1, -2)  (2, -8) 
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that for the same x-value, the corresponding y-values would be opposites for each equation.  On 
the graph, for the same x-coordinate, the corresponding y-coordinates would be the same 
distances above and below the x-axis.  But, because the product of 0 and any number is 0, the 
vertex would not change. 
 
When Mark was satisfied that students understood why a negative value for ‘a’ resulted in a 
reflection, he decided to focus the discussion on how ‘a’ affected the width of the parabola. “So 
we’ve looked at parabolas that are more narrow than y = x2.  How would we make a parabola 
wider and why does it work that way?”, Mark asked.  “Gina and Carlos, can you come up and 
show us your graphs?”  Gina and Carlos showed their graphs of y = 2x2, y = ½ x2, y = -¼ x2 and y 
= -3x2 (shown below.)  “We think that when ‘a’ is a fraction, the graph gets wider,” they explained.   
 
 
 
 
 
 
 

 

              y = 2x2                    y = ½ x2                                y = -¼ x2                        y = -3x2 
 
“See, when ‘a’ is ½ and -¼ the parabola gets wider.”  Mark asked the class, “Do you agree with 
Gina and Carlos?”  Students were nodding so Mark continued, “So they said when ‘a’ is a fraction 
the parabola gets wider.  Is that always true?”   Tyler remarked that they also used a value of 1/3 
for ‘a’ and that the parabola got wider so he thought it was probably always true.  “Anyone else 
want to comment?”, Mark asked.  Since no one volunteered to respond, Mark continued.  
“Something is confusing me.  You agreed with Hilary and Tamika that as the |a| value got larger, 
the graph got more narrow and you agreed with Gina and Carlos that when ‘a’ is a fraction, the 
graph gets wider.  What would happen if ‘a’ had a value of, say 2 ½?  Would the graph be more 
narrow or wider than the graph of y = x2?”  Many students answered that the graph would be 
more narrow and Mark asked them to explain their thinking.  “Because 2 ½ is more than 2 and we 
know the parabola gets more narrow the larger ‘a’ is,” Shala answered.  “But ‘a’ is a fraction,” 
Mark responded.  “I thought you said the graph got wider when ‘a’ was a fraction.”  Many students 
responded that they meant fractions that were less than 1.  “What about -3 ¼ ?” Mark inquired.  
“It’s less than 1.”  “You know what we mean,” the students shouted.  “You’re always making us 
say things so ‘mathy’!”  Mark laughed to himself and continued with the discussion, prompting the 
students to use precise language and notation when answering questions.  He made certain 
students discussed the fact that values of ‘a’ between -1 and 1 resulted in a parabola wider than y 
= x2 and that values of ‘a’ greater than 1 or less than -1 resulted in more narrow parabolas.  He 
also asked students to represent the relationship symbolically (i.e. If   -1 < a < 1, the parabola is 
wider and if a > 1 or a < -1, the parabola is more narrow.)                          
 
Mark had hoped to also have students discuss WHY ‘a’ affected the graph of a parabola the way 
it did but time was running out.  Since there were only a few minutes left in the class period, Mark 
asked the students to begin the discussion in their small groups and told them they would 
continue the discussion tomorrow.  He also asked the students to think about the equations of the 
form y = x2 + c and y = ax2 + c that they had graphed and to be prepared to discuss their 
conclusions about the effects of ‘c’ and of both ‘a’ and ‘c’ on the graph of a parabola tomorrow. 
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APPENDIX C.3 

 
Multiplying Binomials Task 

 
 
 Use algebra tiles to show these 

multiplications and make a sketch of your 
model.  Write the product. Complete 
problems 6, 1, 4, and 3 (in this order). 
  

1.  2x (x – 1)          4. (x – 3) ( x + 3)  
 
2. (x + 1) (x + 2)         5. (2x + 2) (2x – 2)  
 
3. (x – 2) (3x + 3)    6. (x + 3) (x + 3) 
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APPENDIX C.4 
 

 
“Multiplying Binomials” Scenario 1 

 

Prior to the lesson, the teacher had engaged the students in 
multiplying whole numbers using an area model and using algebra 
tiles to model multiplication of a constant and binomial.  
 
The teacher set up the task by having students discuss what they 
had learned about modeling the multiplication of whole numbers and 
the multiplication of a constant and binomial.  They also discussed 
the relationship between factors and products when multiplying. 
 
Students have been introduced to the Multiplying Binomial task, 
including the expectation that they model each product with the 
algebra tiles, show pictorially how the product was determined, and 
then transform the area representation into a symbolic 
representation.   
 
Students are now working in their groups.  The group with Ben, 
Carla, Damon, and Erica had used their tiles to model 2x(x – 1) (see 
diagram below.)  They were having difficulty making sense of the 
model and determining the product.   
 
What questions would you ask the group to scaffold their 
understanding without taking over their thinking? 
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 “Multiplying Binomials” Scenario 2 

 

 
 

In the same classroom, Felicia, Gary, Hope, and Jamal  are working 
on  modeling (2x + 2)(2x – 2).  They are arguing over the model they 
produced (see below). 
 
Jamal states that the product is 4x2 + 4x + 4 according to their 
diagram. But Felicia is arguing that the model cannot be correct 
because her sister taught her a quicker way to do the multiplication.  
She proceeds to explain to her group how to use the FOIL method.  
So Hope suggests that it would be quicker to use the FOIL method on 
all of the problems and then just show the final answer using the tiles. 
 
 
What questions would you ask the group to scaffold their 
understanding without taking over their thinking? 
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APPENDIX C.5 
 

Shapes of Quadratics Lesson Plan 
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APPENDIX C.6 
 

Tasks related to Shapes of Quadratics 
 

Introduction to Graphing Quadratics 
 

1. Graph the following equations using the same coordinate axis without 
using a graphing calculator.  You might find it helpful to first create a 
table of values.  Be sure to include both positive and negative values for x 
in your table.  

a. y = x  
 

b. y = x2   
 

2. Explain why the points on the graph y = x2 should not be connected 
with a ruler.   

 
 
 

 
 
3. Compare the two graphs and equations.   List the similarities and 
differences that you observe. 

 
 
 
 
 
 

4. What is the minimum (lowest) value of the graph of y = x2?  Why does 
the graph of y = x2 have a minimum value?  

 
 
 
 
 
 

5. What is the line of symmetry of the graph of y = x2?  Why does the 
graph have a line of symmetry?  
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Analyzing Graphs of Linear Equations on a Graphing Calculator 

 
Note:  All calculator buttons will be bold and surrounded by brackets [    ].   
 

THE TASK CALCULATOR 
INSTRUCTIONS 

1.  Graph the following equation into your calculator.   
                                           y = x 
 

Press [Y=] [X,T,θ,n] [GRAPH] 
 

Your calculator should display 
the following graph. 

 
 
 
 
 
 
  If not, press [ZOOM] [6] 

2.  Graph the next three equations in the same viewing 
window.  Then match each equation with its 
corresponding graph. 
 
a)  y = x   b) y = x – 4  c) y = x + 
5 
 
Write Y1, Y2 and Y3 on the graphs below that 
correspond to the equations. 

 
Explain in words how 
you matched each 
equation with its 
graph.  Use the terms 
slope and y-intercept 
in your explanation.  
 

 
 
 
 

Press [Y=] and enter the first 
equation. Press the blue down 
arrow to enter the second 
equation.  Repeat for the third 
equation. 
For y = x – 4, press the 
following buttons.   
 [X,T,θ,n] [-] [4]   
 
**Common mistake:  [-] is for 
subtraction. And [ (-) ] is a 
negative sign.**   
 
Before you press graph, your 
calculator screen should match 
the window below. 
If your screen matches the 
window below, press 
[GRAPH]. 
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3.  Graph the next three equations in the same viewing window.  
Match each equation with its graph.   
 
a) y = 2x + 3   b) y =  (1/3) x + 3 c) y = -3x + 3 
 
 

 
 

 
 
 
 
 
 
 

Explain in words how you matched each equation with its graph.  
Use the terms slope and y-intercept in your explanation.  

 
 
 
 
 

 
**Remember to use 
the  [ (-) ] button 
located next to the 
enter key at the 
bottom of the 
calculator to enter -3 
for the third equation.  
Also use the division 
button [÷] for the 
fraction bar ( / ) in 
the second equation. 
**    

 

4.  Without using your calculator, match each graph with its corresponding equation.  
Then use your calculator to check your predictions.  Correct your responses if necessary. 
 
i) y = -5x    ii) y = -4x + 5    iii) y = 1/5 x + 2    iv) y = 1/5 x – 1    v) y = 2x  
 
a)    b)                c)  

   
 
 
 
 
 

 
5.  y = mx + b is the slope-intercept form of a linear equation.  Describe what “m” and 
“b” in the equation tell you about how graphs of this form will compare to the graph of  
y = x.  

6.  What do you think a graph of y = mx + b look like if “m” is zero?    
 
Check your prediction with your graphing calculator.  What equation did you graph?    

y =                                       .      
 
What do you notice? 
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