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OSTEOCLASTS ARE IMPORTANT FOR BONE ANGIOGENESIS 

Frank Cameron Cackowski, PhD 

University of Pittsburgh, 2009

 

 

Osteoclastogenesis and angiogenesis are correlated in bone during physiological and 

pathological processes including development, fracture healing, bone metastases and 

inflammatory bone disease.  However, it is unclear if and how these processes are linked.  This 

dissertation investigates a possible causative role for osteoclasts in bone angiogenesis.  First, 

changes in osteoclast formation and activity affected angiogenesis in a parallel fashion.  

Osteoclast inhibition decreased angiogenesis, while osteoclast stimulation increased 

angiogenesis in fetal mouse metatarsal explants.  Likewise, osteoclast stimulation also increased 

angiogenesis in mouse calvaria in vivo, thus showing that osteoclasts and angiogenesis are 

linked.  Further studies were conducted to determine the mechanism by which osteoclasts may 

increase angiogenesis.  Angiogenic factor expression by osteoclasts was analyzed by reverse-

trancriptase PCR and Q-PCR angiogenesis arrays of human bone marrow osteoclasts.  MMP-9 

was the most highly expressed osteoclast angiogenic factor at the mRNA level.  Because MMP-9 

is important for osteoclast and blood vessel invasion of the growth plate and fracture calluses, the 

role of MMP-9 in osteoclast stimulated angiogenesis was studied in depth.  Osteoclast 

stimulation with RANKL or PTHrP failed to stimulate angiogenesis in MMP-9-/- mouse calvaria 

or metatarsal explants.  Surprisingly, osteoclast stimulation was dramatically blunted in MMP-9-

/- calvaria or metatarsal explants.  However, the number of vessels per osteoclast was not 

different between WT and MMP-9-/- mice, indicating that osteoclasts lacking MMP-9 do not 

have an intrinsic angiogenic defect.  Further, bone marrow cultures from WT and MMP-9-/- mice 

formed similar numbers of osteoclasts, demonstrating that osteoclast differentiation or precursor 

number is not responsible for the inability of PTHrP or RANKL to increase osteoclastogenesis in 

MMP-9-/- mice.  These results suggest that MMP-9 is important for osteoclast-stimulated 

angiogenesis by affecting the number of osteoclasts at the angiogenic site due to its previously 
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reported effects on osteoclast migration.  These studies greatly increase our understanding of 

angiogenesis in bone and suggest an important role for osteoclasts in angiogenesis during bone 

development, fracture healing, bone metastasis, inflammatory bone diseases and the potential 

effects of osteoclast inhibitory agents on angiogenesis.                       
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1.0  INTRODUCTION 

1.1 DISSERTATION GOALS AND OBJECTIVES 

Angiogenesis is critical to normal bone development and physiology and disease processes 

involving bone, such as rheumatoid arthritis and bone metastases.  There are many situations 

where angiogenesis is correlated with osteoclastogenesis including endochondral ossification in 

development, myeloma and other bone metastases, rheumatoid arthritis and Paget’s disease of 

bone.[1-3]  Despite these observations, only two Medline-indexed studies have investigated in 

depth whether osteoclasts stimulate angiogenesis, and their results were conflicting.[4, 5]  

Therefore, the role that osteoclasts play in angiogenesis in normal physiology and inflammatory 

bone disease is unclear.  Because of the role that osteoclasts may play in these processes I have 

undertaken the required studies to test the hypothesis that; Osteoclasts stimulate angiogenesis 

in the bone microenvironment by secreting factors that directly or indirectly increase new 

vessel formation (Figure 1.1).    

A major goal of this dissertation was to select models that would most accurately 

determine if and how osteoclasts stimulate angiogenesis.  As has been suggested by Tanaka et al, 

osteoclasts may stimulate angiogenesis by secretion of an angiogenic factor such as osteopontin, 

which acts directly on endothelial cells (mechanism #1).  Other reasons suggesting that direct 

stimulation of angiogenesis by osteoclasts may occur include; their secretion of several 



angiogenic factors, and well known direct stimulation of angiogenesis by the closely related cell 

type, the macrophage.[6-9]  To model such a mechanism in vitro, I conducted experiments 

testing the capacity of purified osteoclast culture conditioned media to stimulate tube formation 

of endothelial cells.  Literature supporting this mechanism is discussed in sections 1.2.3.3 and 

1.3.2. 

Alternatively, osteoclasts may stimulate angiogenesis by more complicated mechanisms, 

including release of angiogenic factors from bone or marrow extra-cellular matrices (mechanism 

#2, literature discussed in section 1.2.3.2), or by induction of angiogenic factor secretion by cell 

types such as osteoblasts (mechanism #3, literature discussed in section 1.3.2).  There are several 

reasons that support such mechanisms.  Release of growth factors, especially TGF-β, from bone 

matrix by osteoclasts is well documented.[10, 11]  The matrix metalloproteinase MMP-9 is 

highly expressed by osteoclasts and is used by macrophages or tumor cells to stimulate 

angiogenesis by releasing VEGF from matrix.[12, 13]  Further, MMP-9-/- mice have delayed 

blood vessel invasion into the metaphyseal growth plate, which would be expected if osteoclasts 

stimulate angiogenesis by secreting MMP-9.[14]  Alternatively (mechanism #3), osteoblasts are 

well known to stimulate angiogenesis through secretion of VEGF, and osteoclast formation 

induces a coupled increase in osteoblast formation and activity.[15, 16]  Therefore, osteoclasts 

may stimulate angiogenesis through interactions with osteoblasts.  To model in vitro the possible 

ways that osteoclasts could stimulate angiogenesis, including these complex mechanisms, I used 

a bone organ culture system, the fetal mouse metatarsal angiogenesis assay, in which endothelial 

cell tubes grow out from explants of mouse metatarsals, rather than purified populations of 

various cell types.[17].  I then tested the relevance of the in vitro findings in vivo.  
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Figure 1.1.  Hypothesis 

Osteoclasts stimulate angiogenesis in the bone microenvironment by secreting factors that directly or 

indirectly increase vessel formation.  Osteoclasts may stimulate angiogenesis by (1) direct action of an angiogenic 

factor on vessels, (2) release of an angiogenic factor for calcified or non-calcified matrix and (3) induction of an 

angiogenic factor in second cell type such as an osteoblast or stromal cell.      
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1.2 BIOLOGY OF OSTEOCLASTS AND BONE ANGIOGENESIS 

 

1.2.1 Osteoclast Biology 

1.2.1.1 Osteoclast Differentiation 

After almost three decades of intensive study, the cellular origins of the osteoclast (OCL) are 

clear (Figure 1.2).  OCLs are derived from hematopoietic stem cells, which subsequently form 

common myeloid precursors and granulocyte-macrophage precursors (CFU-GM).[18, 19]  CFU-

GM can further differentiate into granulocyte precursors or macrophage / osteoclast / dendritic 

cell common precursors (MODP), which are also referred to as early OCL precursors.[20, 21]  

These cells are c-Fms+ (M-CSF receptor) and RANK-.  M-CSF induces the expression of RANK 

(RANKL receptor) in these cells, thus forming late OCL precursors (Although different authors 

refer to different cell types as early and late OCL precursors.[20])  Late OCL precursors form 

committed precursors, which than fuse to form mature OCLs in the presence of RANKL or 

macrophages in the absence of RANKL.[21]  In bone RANKL ligand signaling is regulated by 

the balance of RANKL and its decoy receptor, osteoprotegerin.[22]  The capability of early OCL 

precursors to form dendritic cells or osteoclasts was first shown by Miyamoto et al.[23]  In this 

study, M-CSF inhibited the formation of dendritic cells and promoted OCL differentiation from 

early OCL precursors by induction of c-fos, whereas GM-CSF was shown to promote dendritic 

cell differentiation from early OCL precursors by inhibiting expression of c-fos.  There remains 

some degree of plasticity among the cell types derived from early OCL precursors.  Rivollier et 

al showed that immature dendritic cells can transdifferentiate into functional OCL in the 

 4 



presence of M-CSF and RANKL.[24]  Conversely, several studies have found that differentiated 

macrophages can also transdifferentiate into OCLs.[25-27]          

 

Figure 1.2.  Osteoclast differentiation 

 

As described above, M-CSF and RANKL are central regulators of OCL differentiation.  

However, multiple factors can also regulate OCL differentiation, only some of which will be 

described here.  Many inflammatory cytokines, in particular TNF-α, stimulate OCL formation.  

TNF-α is a potent stimulator of OCL formation, primarily through induction of M-CSF and 

RANKL in bone marrow osteoblasts and stromal cells.[28]  TNF-α also acts directly on OCL 

precursors to induce OCL formation.  However, it is unclear if TNF-α coupled with M-CSF are 

sufficient to induce OCL formation, or whether sub-optimal doses of RANKL are also required.  

Several studies have found that TNF-α and M-CSF are sufficient to induce OCL formation from 
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precursors.[29-31]  However, in a study where the authors used highly purified cell populations 

to eliminate exposure of OCL precursors to paracrine-produced RANKL, sub-optimal doses of 

RANKL were required for TNF-α to stimulate osteoclastogenesis[32].  In agreement with this 

observation that TNF-α requires RANKL to stimulate osteoclastogenesis, transgenically 

expressed TNF-α was not able to rescue OCL formation in a RANK (RANKL receptor) null 

mouse.[33]  Although TNF-α by itself may or may not be sufficient to induce OCL 

differentiation in combination with M-CSF, the addition of other cytokines to M-CSF and TNF-α 

can induce OCL in a RANK independent manner.  Kim et al showed that TNF-α and M-CSF can 

induce OCL formation in cells from a RANK-/- mouse if the precursors are first incubated with 

M-CSF and TGF-β.   Even if TNF-α and M-CSF are sufficient to induce OCL formation, the 

OCLs that are formed do not resorb bone efficiently.  Addition of IL-1α was required for 

comparable resorption as RANKL derived OCLs.[29-31]   

The inflammatory cytokine IL-1 likewise stimulates OCL formation both indirectly and 

directly, although it was first believed that its effects were all indirect.  Induction of IL-1 is 

required for stimulation of RANKL expression in stromal cells by TNF-α, and is required for 

maximal OCL formation in whole bone marrow cultures stimulated by M-CSF and RANKL.[34, 

35]  IL-1 also can stimulate OCL formation by inducing production of PGE2 in osteoblasts.[36]  

IL-1 induces the fusion of fully differentiated committed precursors (pre-OCLs) and can 

stimulate OCL formation by acting directly on OCL precursors in the presence of permissive 

levels of RANKL.[34, 37]   

Like the inflammatory cytokines, LPS also stimulates OCL differentiation as well as 

survival.  These effects of LPS on survival are most primarily due to stimulation of osteoblasts 

through toll-like receptors to increase RANKL production.[38]  LPS stimulates OCL survival 
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through TLR4, but this was not due to production of the inflammatory cytokines TNF-α, IL-1β, 

and IL-6.[39]  This contrasts with the effects of LPS on bone marrow macrophages, where 

inflammatory cytokines are released in response to LPS.  These results suggest that the responses 

of OCLs and macrophages to LPS are different.       

The inflammatory cytokine IFN-γ also stimulates OCL formation, although not directly.  

The direct effect of IFN-γ upon OCL precursors is to inhibit OCL formation by inducing 

degradation of the RANK adaptor protein TRAF6.[40]  However, the net effect of IFN-γ in vivo 

is to increase OCL formation through activation of T cells which increase secretion of RANKL 

and TNF-α.[41]   

Like IFN-γ, TGF-β also has competing effects on OCL formation.  The direct action of 

TGF-β upon OCL precursors is to stimulate OCL formation.  Endogenous TGF-β is required for 

osteoclastogenesis stimulated by M-CSF and RANKL and addition of TGF-β increases 

osteoclastogenesis stimulated by TNF-α.[42, 43]  Further, TGF-β also blocks the direct 

inhibitory effect of IFN-γ upon OCL formation.[44]  However, TGF-β also acts to decrease OCL 

formation by increasing the ratio of osteoprotegrin (OPG – a RANKL decoy receptor) to 

RANKL produced by osteoblasts.  Both osteoblast OPG is increased and RANKL is decreased 

by TGF-β.[45, 46]   

Unlike inflammatory cytokines, which in general stimulate OCL differentiation, anti-

inflammatory (TH2) cytokines usually inhibit OCL formation.  In contrast to their effects on 

OCL, anti-inflammatory cytokines induce a pro-angiogenic state in macrophages.  IL-10 inhibits 

OCL formation, possibly by down-regulating NFATc1 in OCL precursors.[47]  IL-13 and IL-4 

also inhibit OCL formation, both by direct effects on OCL precursors and by increasing OPG 
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production by osteoblasts.  IL-4, like IL-10, likewise down-regulates NFATc1 in OCL 

precursors.[48]   

 

1.2.1.2 Osteoclast Activation and Resorption   

Once formed, OCLs must be exposed to the proper soluble and matrix bound signals to resorb 

bone.  To resorb bone, OCLs must be motile, adhere to bone, polarize their cytoplasm and isolate 

the section of bone to be resorbed (ruffled border) from the external environment so that their 

secreted proteases and acid are localized.  Thus, “activation” of OCL combines several distinct 

but related processes.[49]  Two organelles are required for a resorbing OCL; the ruffled 

membrane and the actin ring.  The ruffled membrane is the portion of the OCL membrane 

adjacent to bone.  It contains the machinery required for acidification of the resorption space and 

is formed by fusion of acidified vesicles with the bone-opposed surface.  The actin ring, also 

known as the “sealing zone”, is made up of polymerized actin and surrounds the resoption space.  

It is necessary but not sufficient for OCLs to resorb bone.[50]   

Interaction with the extra cellular matrix is central to the formation of a resorbing OCL.  

αvβ3 integrin is required for resorptive OCLs but not for OCL formation as illustrated by the β3 

knockout mouse.[51]  β3
-/- mice actually have more OCLs in vivo but are osteopetrotic (excess 

bone).  β3
-/-

  OCLs fail to undergo the cytoskeletal organization characteristic of resorbing OCLs; 

they fail to form actin rings when isolated from bone and form abnormal ruffled membranes in 

vivo.   

The mechanism by which αvβ3 ligation leads to OCL cytoskeletal reorganization and 

resorption is beginning to be delineated.  Src plays a central role in this process as shown by the 

suprising finding that the predominant phenotype of src-/- mice is osteopetrosis.[52]  Src-/- mice 
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have an almost identical phenotype to β3
-/- mice; increased OCL numbers, but lack of resorption 

pits and ruffled membranes are found in vivo.[53]  A study of the src family kinase syk, using 

either global syk-/- or mice lacking syk in hematopoietic cells provided a linear pathway for β3 

stimulation of OCL resorption.[54]  Syk-/- mice are osteopetrotic.  OCLs in syk hematopoietic 

chimeras are smaller than wt and not juxtaposed to bone.  The authors propose a pathway where 

αvβ3 ligation leads to Src recruitment and phosphorylation.  Src then associates with and 

phosphorylates syk, which requires the ITAM proteins Dap12 and FcRγ.  Phosphorylation of the 

guanine nucleotide exchange factor Vav3 required αvβ3 ligation and Syk kinase activity.  Vav3, 

as well as the GTPase Rac1, are required for a normal bone phenotype and OCL resorption and 

actin ring formation.[55]  M-CSF in addition to its role in stimulating OCL formation can 

cooperate with αvβ3 to induce OCL cytoskeletal organization.  High doses of M-CSF (100 ng / 

mL) can compensate for lack of αvβ3 in terms of stimulating OCL formation, but cannot restore 

resorptive ability. [56]          

RANKL, in addition to its central role in OCL differentiation, also stimulates OCL 

activation as shown in cultures of isolated rat OCLs.[57]  Likewise, the osteoclastogenic 

cytokine IL-1 also stimulates OCL cytoskeletal organization and activation.[37]  Both of these 

cytokines stimulate OCL activation through the adaptor molecule TRAF6, although the 

downstream intracellular signaling pathways are unclear.  The TNF receptor associated factor 6 

(TRAF6) binding domain of RANK is required for RANKL induced OCL activation.  A RANK 

mutant that could not bind TRAF6 or mediate RANKL stimulated OCL activation was 

compensated for by addition of IL-1β.[58]  IL-1 induced OCL activation occurs through a 

TRAF6 and c-Src containing complex, suggesting that it cross talks with integrin regulation of 

OCL activation.[59] 
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1.2.1.3 PTH and PTHrP in Bone Remodeling 

The key paracrine factors described above that regulate OCL formation are in turn primarily 

regulated at the whole animal level by endocrine factors including 1,25 dihydroxy vitamin D3 

and parathyroid hormone (PTH).  PTH acts to increase serum calcium by increasing OCL 

formation and activity and 1,25 dihydroxy vitamin D3 synthesis and thus results in increased 

intestinal calcium absorption, increased calcium retention in the kidney, and release of calcium 

from the skeleton by way of osteoclastic bone resorption.  PTH is a peptide hormone, which is 

comprised of 84 amino acids.  It is homologous to a great extent in the N-terminal 13 amino 

acids to parathyroid hormone related peptide (PTHrP).  Both molecules share a common receptor 

(PTHR1) that mediates most of their functions.[60]   

The physiological effects of PTH and PTHrP are complex, as they can affect both OCLs 

and osteoblasts.  Physiologic concentrations of PTH and PTHrP given continuously act in a 

catabolic fashion – to activate OCLs and degrade bone.  This OCL induction is primarily indirect 

– through increased RANKL and decreased osteoportegerin expression in osteoblasts.[61]  

Paradoxically, PTH or PTHrP increase bone mass when given intermittently.  This increase in 

bone mass is primarily due to decreased apoptosis of osteoblasts and reduced adipocytic 

differentiation of the common mesenchymal precursor.[62]    

In contrast to PTH, which functions primarily in adults to maintain calcium homeostasis, 

PTHrP has important roles in development, as was shown in mice lacking PTHrP or PTHR1.[63]  

PTHrP is thought to be most important in development due to its effects on chondrocytes.  

PTHrP-/- mice die post-natally, likely due to asphysxia because of the reduced size of their 

ribcage.[64]  They have shortened epiphyseal cartilages due to reduced chondrocyte 

proliferation, as was demonstrated by reduced thymidine uptake.  In addition, the architecture of 
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the chondrocyte columns is disrupted.[65]  The role of PTHrP in development is likely not 

completely due to signaling through PTHR1, as PTHR1-/- mice have three additional 

abnormalities not formed in the PTHrP-/-; increased osteoblast number, decreased trabecular 

bone formation in the primary spongiosa and delayed vessel invasion into the primary 

ossification center.[66]  The delay in vessel invasion was blunted in mice lacking both PTHrP 

and PTHR1.  The authors thus concluded that PTHrP delayed vessel invasion through a different 

receptor than the classic PTHR1.[66]   

In agreement with this observation, PTHrP has been reported to be anti-angiogenic.[67, 

68]  Full length PTHrP reduced angiogenesis in the chick chrioallantoic membrane and mouse 

matrigel plug angiogenesis assays.  Most of the activity required for PTHrP inhibition of 

endothelial cell migration or angiogenesis in the matrigel plug assay was located in the first 10 

amino acids of the molecule.  PTHrP’s effects on endothelial cell migration required PKA.  This 

is consistent with PTHR1 being responsible for the anti-angiogenic effects of PTHrP.  However, 

a requirement for PTHR1 in PTHrP inhibition of angiogenesis was not shown.  In contrast with 

these data, an earlier report found that PTHrP was pro-angiogenic.[69]  PTHrP knockdown was 

shown to inhibit angiogenesis induced by tumor cells around a diffusion chamber implant.  

PTHrP did not affect endothelial cell migration or survival, but increased capillary tube 

formation on a collagen matrix in a PKA dependent manner.  PTHrP also induces vasodilation 

through a mechanism requiring endothelial cells but not PKA.[70]  Therefore, a possible direct 

role of PTHrP in angiogenesis is unclear.             
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1.2.2 General Angiogenic Mechanisms 

1.2.2.1 Angiogenesis in Biology 

Angiogenesis is the development of new blood vessels from a pre-existing vascular network.  It 

occurs in the embryo after a primitive vascular network is laid down through vasculogenesis, is 

responsible for most post-natal blood vessel formation and is essential for the formation of a 

functional vascular network in the embryo.  Vasculogenesis by contrast is the formation of a 

vascular bed de novo through differentiation of precursors.[71]  The study of angiogenesis is 

primarily concerned with the growth of capillaries from other capillaries or small venules, which 

grow either by sprouting or by insertion of tissue pillars into vessels to form branches 

(intussusception).  Larger vessels grow by circumferential growth rather than by sprouting and 

branching.[72]  Angiogenesis occurs in a limited number of circumstances in normal adults 

including wound healing and the female reproductive organs but is upregulated in disease states 

such as cancer and rheumatoid arthritis.[73-76]  Because of this downregulation of angiogenesis 

in normal post-natal physiology, its inhibition is an attractive therapeutic approach.[76]  Indeed, 

the number of investigators involved in angiogenesis research has ballooned in recent decades.  

At this writing, there were over 42,000 PubMed citations on angiogenesis. 

1.2.2.2 Cellular Mechanisms of Angiogenesis 

A discussion of bone angiogenic mechanisms first requires an understanding of the cells 

involved in angiogenesis.  Much attention in angiogenesis is focused on the vessel lining cell, the 

endothelial cell, but other cell types also play important roles.  Most vessels are surrounded by 

cell types generally referred to as mural cells; pericytes on capillaries and vascular smooth 

muscle cells on larger vessels.[72]  Angiogenesis occurs by two principle microanatomic modes, 
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sprouting and intussusception.  For many years sprouting was for the most part synonymous with 

angiogenesis itself.[77]   

In sprouting angiogenesis, an endothelial cell selected to form a new sprout, called a tip 

cell, is identified.  The basement membrane is degraded and the tip cell migrates outward.  The 

tip cell is followed by stalk endothelial cells, which proliferate to lengthen the stalk.  The tip cell 

eventually encounters an appropriate tip cell from another sprout and thus forms a linkage.  The 

endothelial cells reorganize to form a lumen and blood flow begins.  Finally the vessel matures, 

with the stabilization of endothelial cell contacts, recruitment of mural cells and formation of a 

basement membrane.[72, 78] 

The other, less discussed and understood, mode of angiogenesis is intussusception.  In 

intussusception, pillars are inserted into capillaries to form new branches.  This allows additional 

complexity and better perfusion to an existing vascular bed.  Unlike sprouting, intussusception 

does not allow capillaries to extend into previously avascular areas.  This reorganization is 

accomplished in the continuous presence of blood flow, unlike sprouting angiogenesis.  

Proliferation of endothelial cells, while involved is somewhat less important than in sprouting 

angiogenesis.[77, 78]   

Bone marrow endothelial cell precursors make important contributions to blood vessel 

growth, though they may not act through truly angiogenic mechanisms.  Technically speaking, 

vascular growth by endothelial precursor cells is vasculogenesis and not angiogenesis because it 

involves differentiation from precursors rather than sprouting or intussusception from existing 

capillary beds.  In addition, this growth is usually circumferential rather than sprouting or 

intussusceptive.[72]  As an illustration that bone marrow endothelial cell precursors contribute to 

vasculogenesis rather than angiogenesis, bone marrow endothelial precursor cells were shown to 
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form blood island structures reminiscent of the blood islands formed during vasculogenesis in 

the embryo.[79]  However, there has been some evidence that endothelial precursor cells can be 

incorporated into capillaries, which suggests they contribute to sprouting angiogenesis as 

well.[80, 81]     

1.2.2.3 Key Regulators of Angiogenesis 

The most well known and perhaps most important family of angiogenic stimulatory molecules 

are the vascular endothelial growth factors (VEGFs).  This large family is the product of five 

different genes in mammals (VEGFA (or simply VEGF), VEGFB, VEGFC, FIGF ( VEGFD), and 

PGF (PlGF) ), many of which have splice isoforms.[82, 83]  Each VEGF form exerts its effects 

on blood vessel angiogenesis or lymphangiogenesis through binding to one or more of the VEGF 

receptor tyrosine kinases VEGFR1 (flt-1), R2 (flk-1 / KDR) and R3 (flt-4).[83]  VEGFR2 is 

principally involved in blood vessel angiogenesis, while VEGFR3 is principally involved in 

lymphangiogenesis.  The contribution of VEGFR1 to angiogenesis is more complex.  VEGFR1, 

but not its kinase domain, is required for embryonic angiogenesis.  VEGFR1-/- embryos die with 

disorganized vessels, which suggests that VEGFR1 acts as a decoy for VEGF-A during 

development.  However, the kinase domain of VEGFR1 is required for post-natal 

angiogenesis.[84, 85] 

VEGF-A (or simply VEGF) is alternatively spliced to yield as many as six isoforms, 

which add another layer of complexity to angiogenic regulation.[82, 86]  The longer forms bind 

heparan sulfate proteoglycans, while the shortest form – VEGF121 (or VEGF120 in mice) is freely 

diffusible.  The various VEGF isoforms have different biological functions.  The matrix bound 

forms are required for proper vessel structure.  In a mouse expressing VEGF120 (VEGF120/120)but 

none of the other VEGF isoforms, there are fewer, but more dilated vessels.  The defect was due 
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to branch formation rather than proliferation.[87]   A similar phenotype of the VEGF120/120 mouse 

with fewer but larger vessels was observed in bone.  Endochondral ossification is delayed in a 

phenotype resembling that of the MMP9-/- mouse (discussed below) [88].  In addition to 

molecular genetic regulation, shorter forms of VEGF can be generated by MMPs rather than by 

alternative splicing, with similar biological effects.[89] 

The angiopoietin family makes essential but complex contributions to angiogenesis.  The 

family consists of three ligands; Ang-1 and Ang-2 in most species, as well as Ang-3 in mouse 

and Ang-4 in human.[90]  The angiopoietins exert their biological functions by binding to the 

Tie2 tyrosine kinase receptor.  Ang-1 acts as an agonist, while Ang-2 acts as a receptor 

antagonist.[91, 92]  Although they are orthologs, Ang-3 and Ang-4 have opposite effects on 

Tie2, with Ang-3 acting as an antagonist and Ang-4 acting as an agonist.[90]  Stimulation of 

Tie2 induces maturation of vessels, including endothelial cell stabilization and mural cell 

recruitment.  This was first illustrated in a knockout of the Ang-1 gene, where knockout vessels 

had less spread endothelial cells and lacked mural cells.[93]  Ang-1-/- mice are embryonic lethal 

and die due to cardiovascular abnormalities.  Surprisingly, Ang-2-/- mice are born alive but die by 

two weeks of age of lymphatic abnormalities.  Post-natal blood vessel angiogenesis is also 

inhibited in Ang-2-/- mice.[94]  These and other observations have led to the following classic 

model of the role of angiopoietins in post-natal angiogenesis:  Ang-2 is required for initiation of 

angiogenesis by loosening endothelial and mural cell attachements.  In the presence of VEGF, 

Ang-2 leads to angiogenesis, whereas in its absence Ang-2 leads to vessel regression.  Ang-1 is 

required for vessel maturation.[95]            

Another family of molecules with affects on both endothelial and mural cells are the 

TGF-βs.  The TGF-β superfamily includes not only the 3 TGF-β forms, but also bone 
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morphogenetic proteins, activins, and inhibins.  Furthermore, the TGF-β family members exert 

their influences through binding to three different classes of receptors; type I receptors Alk1 and 

Alk5, the type II receptor TGFβRII, and the type III receptor endoglin, which influences the 

interaction of type I and type II receptors.  Perhaps not-surprisingly given the many molecules 

involved, the effects of TGF-β on angiogenesis are complex, with many cell and tissue 

dependent effects.[96]   

 Because deletion of TGF-β signaling components such as Alk-1 results in lethality from 

vasculogenic defects at approximately E10.5, TGF-β is obviously important for vessel formation 

or function.[97]  Vessels in TGF-β signaling component knockout mice are hyperdilated and 

have abnormal mural cell recruitment, suggesting that TGF-β is involved in vessel maturation.  

Consistent with a role in vessel stabilization, TGF-β increases endothelial cell expression of 

proteins important for interaction with the basement membrane.[98]  

 However, the effect of TGF-β signaling on other endothelial cell functions is not as clear.  

TGF- β signals through heterodimerization of type I and type II receptors.  Studies using 

constitutively active type I receptors in endothelial cells have yielded conflicting results.  Studies 

using different sources of endothelial cells are in agreement that constitutively active Alk-5 

inhibits endothelial cell proliferation, sprouting or migration.[99-102]  However, while most 

studies have found that Alk-1 activation also inhibits endothelial cells, one study using mouse 

embryonic endothelial cells, found that constitutively active Alk-1 stimulated endothelial cell 

migration.[102]  TGF-β’s effects on angiogenesis are likely to vary depending on cellular or 

tissue context.  Such inhibitory effects of TGF-β upon endothelial migration are consistent with 

it playing a role in the maturation phase of angiogenesis, as was first observed in mice lacking 

TGF- β signaling components.     
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1.2.3 Normal Bone Angiogenesis 

1.2.3.1 Vascular Structure of Adult Bone 

OCLs are in close proximity to capillaries and are thus in a good position to signal to blood 

vessels.  The vasculature of adult long bones has a complex structure with extensive 

anastamoses.  Arterial blood supply is derived from six sources; proximal and distal epiphyseal 

arteries, proximal and distal metaphyseal arteries, diaphyseal nutrient arteries and periosteal 

arteries.  Venous drainage is paired with the corresponding arteries including the central venous 

sinus which is drained by the nutrient vein[103].  Bone marrow sinusoidal vessels are part of the 

reticuloendothelial system and have structures very different than bone marrow arterial or 

capillary vessels, or most vessels in the body.  The surface phenotype of bone marrow sinusoidal 

endothelial endothelial cells is also different than most endothelial cells, with reduced or absent 

CD31 expression.[104]   

The microanatomy of capillaries is characterized by their close association with bone 

cells.  Cortical bone is organized into Haversian systems where bone is concentrically organized 

around a neurovascular bundle which is lined by osteoblasts and osteoprogenitors.  Blood vessels 

are closely associated with resorption of cortical bone.  OCLs form a resorption cavity or cutting 

cone, into which a capillary then invades.[105]  Likewise, capillaries are also closely associated 

with bone cells in trabecular bone.  Long ago, Burkhardt et al showed that capillaries are closely 

associated with the cells lining trabeculae and observed that microvessel density in bone is 

associated with increased remodeling.[106]  More recently the existence of a microstructure in 

trabecular bone termed a bone remodeling compartment (BRC), has been proposed. (Figure 

1.3)[107]  In this model, the OCLs and osteoblasts involved in bone remodeling are enclosed in a 

dome of osteoblast-like cells that are in close association with a capillary.  The interior of the 
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BRC may or may not be in continuity with the circulation.  Another model proposed for the 

relationship of osteoblasts, OCLs and capillaries is the “basic multicellular unit” (BMU) (Figure 

1.4).  In the BMU model, in both trabecular and cortical bone, osteoblasts and OCLs are located 

in close proximity to a blood vessel, except that the lining layer of osteoblast-like cells is not 

present.[16]  Therefore, in both cortical and trabecular bone, osteoclasts are closely opposed to 

vessels and have the potential to regulate blood vessel formation by paracrine mechanisms. 

 

 

Figure 1.3.  Bone remodeling compartment model 

Illustration of the bone remodeling compartment model of bone resorption.  Bone at bottom, marrow space 

at top of image.  OBL; osteoblasts.  Adapted from Hauge et al.[107] 
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Figure 1.4.  Basic multicellular unit model 

Illustration of the basic multicellular unit (BMU) model of bone resorption in cortical bone.[16]  Note that 

the endothelial cell lined vascular sinus is closely opposed to both osteoblasts and osteoclasts.     

 

1.2.3.2 Regulation of Bone Angiogenesis by Osteoblasts and Stroma 

Most cells in bone have a regulatory role in angiogenesis, many through production of 

angiogenic factors.  I discuss here the mechanisms used by osteoblasts to stimulate angiogenesis, 

because of the possibility that OCLs stimulate angiogenesis through interaction with osteoblasts 

or stroma, and that the angiogenic factors acting directly on endothelial cells may be non OCL-

derived.  OCLs may stimulate angiogenesis through induction of angiogenic factor secretion in 

osteoblasts, such as the ability of TGF-β, which can be released from matrix by OCLs, to 

stimulate osteoblast VEGF expression.[108, 109]  Alternatively, OCLs may stimulate 

angiogenesis by way of osteoblasts by increasing osteoblast formation.  Except in a small 

number of pathologies, OCL and osteoblast formation are coupled.  Increased OCL formation or 
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activity leads to increased osteoblastic formation, and possible effects on angiogenesis.[16]  To 

provide a summary of angiogenesis regulation in bone, several of the angiogenic factors 

expressed by bone cells are listed in Table 1.1.   

Most osteoinductive factors, many of which are derived from endothelial cells, are 

capable of inducing the production of VEGF by osteoblasts.[110]  For example, BMP-2  

stimulates angiogenesis by inducing osteoblast VEGF production.[111]  BMP-2 also stimulates 

production of the VEGF family member PlGF in mesenchymal stem cells.[112]  Likewise, IGF-

1 and prostaglandins also upregulate osteoblast VEGF expression.[113, 114]  The endothelial 

derived osteogenic molecule angiotensin-II has also been shown to up-regulate osteoblast 

VEGF.[115] Endothelin-1, although it is an endothelial cell derived osteogenic factor, has been 

reported to down-regulate osteoprogenitor VEGF expression in vitro in a fetal rat calvarial 

culture model.[116]  However, this discrepancy may have occurred because the cells were not 

mature osteoblasts.  Consistent with this hypothesis, the inhibitory effect of endothelin-1 was 

less pronounced after longer culture periods.   

Like many other cell types, osteoblasts increase production of angiogenic factors in 

response to hypoxia.  Hypoxia upregulates production of VEGF and causes nuclear accumulation 

of HIF-1α in an osteoblast derived cell line.  In vitro angiogenesis stimulated by these cells was 

reduced by antibodies to bFGF and VEGF.[117]  Wang et al showed that osteoblast derived 

VEGF induced by HIF-1α and HIF-2α contributed to developmental angiogenesis and bone 

formation in mice.[15]  HIF isoforms may also play a role in osteoblasts’ contribution to 

angiogenesis stimulated by other processes.  For example, HIF-1α was reported to be important 

in shock wave stimulated osteoblast VEGF expression.[118]  
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Table 1.1.  Expression of pro- angiogenic factors by bone cells 

Cell Molecule Reference 
Osteoclast VEGF (mouse) 

VEGF (neonatal 
human) 

IL-8 
Osteopontin 

bFGF 
PDGF 
HGF 

Angiopoietin-1 
Angiopoietin-2 

[119] 
[120] 
[121] 
[122] 
[6] 
[6] 

[123] 
[120] 
[120] 

Bone marrow stromal 
cells 

VEGF 
b-FGF 

[124] 
[125] 

Osteoblasts OPN 
VEGF 

Angiopoietin-1 
Angiopoietin-2 

IL-8 
PDGF 
HGF 
bFGF 

[122] 
[119] 
[120] 
[120] 
[126] 
[127] 
[128] 
[129] 

 

 

Table 1.2.  Regulation of osteoblast angiogenic factor production 

Regulator Direction of 
regulation 

Angiogenic 
factor induced 

Reference 

BMP-2 
IGF-1 

Prostaglandins 
HIF-1α, HIF-

2α 
Shock waves 

PDGF-BB 
TGF-β 

↑ 
↑ 
↑ 
↑ 
↑ 
↑ 
↑ 

VEGF [111] 
[113] 
[114] 
[15] 
[118] 
[130] 
[108] 

bFGF ↑ HGF [128] 
TNF-α and 

IFN-γ 
↓ Angiopoietin-

1 
[131] 
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Osteoblasts may also stimulate angiogenesis by various other mechanisms.  Following 

are examples from the literature.  RANKL, which is primarily derived from osteoblasts, can 

increase angiogenesis as well as vascular permeability in vitro and in vivo in matrigel plug and 

chick chrioallantoic membrane in vivo models.[132, 133]  VEGF was reported to increase the 

expression of RANK by endothelial cells and their angiogenic response to RANKL.[134]  

However, this series of papers used high (μg/mL) RANKL concentrations, thereby calling into 

question the physiological relevance of RANKL stimulated angiogenesis.  In contrast, other 

investigators reported that RANKL inhibits angiogenesis in vitro.[135]  In addition, studies 

reported that the osteoblast derived RANKL decoy receptor osteoprotegerin stimulated 

angiogenesis through endothelial cell apoptosis induced by TRAIL.[135, 136]  Therefore, a 

possiblility of direct effects for the osteoblast derived regulatory molecules RANKL and 

osteoprotegerin remains unresolved. 

Additional possible mechanisms used by osteoblasts to stimulate angiogenesis include the 

following.  PDGF-BB was shown to induce VEGF production in neonatal rat calvarial 

osteoblasts.[130]  bFGF induced HGF expression in fetal rat calvariae derived osteoblasts, which 

was lessened by cortisol.[128]  TGF-β upregulated VEGF expression in an osteoblastic cell line 

involving signaling through p38 and Erk 1/2 MAP kinases.[108]  Co-stimulation of human 

osteoblasts with TNF-α and IFN-γ resulted in downregulation of angiopoietin-1 expression, 

mediated in part through nitric oxide signaling.[131] 

1.2.3.3 Evidence For and Against Osteoclast-Stimulated Angiogenesis 

There are several papers reporting that angiogenesis is closely associated with OCL formation 

and activity, and that endothelial cells stimulate osteoclastogenesis.  Angiogenesis is closely 

 22 



associated with increased OCL formation in multiple myeloma and other cancers, as well as 

inflammatory conditions such as rheumatoid arthritis.[2, 137]  Addition of bFGF or inhibition of 

NO production increases angiogenesis, OCL number and resorption on a bone chip implanted in 

the chick chorioallantoic membrane model.[138, 139]  Endothelial cells can stimulate OCL 

formation by several mechanisms including increased RANKL expression, and stimulate OCL 

formation in co-cultures by a RANKL dependent mechanism.[140]  Endothelial cells may also 

regulate the recruitment of OCL precursors to remodeling sites from the vascular compartment.  

Kindle et al showed that CD14+ cell adherence to and migration through endothelial cells, as 

well as subsequent OCL formation was increased by IL-1 and TNF-α.[141] 

Observations from patients with Gorham-Stout syndrome also support an association 

between osteoclastogenesis and angiogenesis.  Gorham-Stout syndrome is characterized by 

massive osteolysis and blood and lymphatic vessel infiltration.  Its pathogenesis is very poorly 

understood, but osteoclasts are believed to play a role in the resorption based on reports of 

successes using bisphosphonates for treatment and the ability of serum from a Gorham-Stout 

patient to induce osteoclastogenesis.[142, 143]  Cells isolated from Gorham –Stout patients, that 

showed some characteristics of OCL precursors, stimulated angiogenesis in the mouse matrigel 

plug assay.[144]  These cells expressed TRAP and αvβ3 integrin and adhered to osteopontin.  

Their production of VEGF and IL-8 was upregulated by TNF-α.  However, they were incapable 

of forming mature OCLs when stimulated with M-CSF, RANKL, or TNF-α. 

One study of Paget’s disease of bone suggested that OCLs stimulate angiogenesis.  

Paget’s disease is characterized by large, hyper-multinucleated and highly activated OCLs and 

elevated but disorganized bone remodeling.  Vascularity of Paget’s disease lesions was reduced 

after clodronate treatment, which inhibited OCL formation and activity.[3]  Furthermore, Paget’s 
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disease is also associated with high output congestive heart failure, which is consistent with 

tremendously increased bone vascularity.[145]      

However, there are few papers directly studying whether OCLs can stimulate 

angiogenesis.  Most prominent of these is Tanaka et al.[5]  The authors reported that conditioned 

media from human OCL cultures stimulated angiogenesis in vitro and that co-culture of OCLs 

with myeloma cells produces more in vitro angiogenesis than either OCLs or myeloma cells 

alone.  Further, they reported that neutralizing antibodies to osteopontin abrogated the OCL 

derived angiogenic activity and neutralizing antibodies to VEGF abrogated the myeloma cell 

derived angiogenic activity.  In addition, co-cultures of OCL and myeloma cells stimulated 

HUVEC migration and survival, and that osteopontin and VEGF caused release of a soluble 

osteoclastogenic factor by HUVECs.  However, since the authors did not purify the OCLs in 

their cultures, a significant contribution from macrophages or T-cells cannot be ruled out.  

Secondly, the neutralizing antibody approach may over emphasize the importance of any one 

factor and identify required factors in the mix of pro and anti-angiogenic factors, rather than 

identify the one most important factor.  For example using the same angiogenesis assay and a 

neutralizing antibody approach, other authors have identified either angiopoietin-1 or 

osteopontin as the most important angiogenic factor secreted by myeloma cells.[146, 147]  In 

addition, endothelial cells express osteopontin and therefore neutralizing antibodies to 

osteopontin could act on endothelial cells directly.[122]  In parallel, with these studies, VEGF-C 

expressed by osteoclast precursors stimulated lymphangiogenesis in an mouse arthritis 

model.[148]    

In contrast to the report of Tanaka et al, there are two published papers that asked 

whether OCLs were required for angiogenesis and found that they were not.[4, 149]  Deckers et 
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al studied blood vessel invasion into caudal vertebrae of neonatal mice in which OCL formation 

or activity was abolished by treatment with the bisphosphonate clodronate or using osteopetrotic 

mice (op/op or c-fos-/-) that lacked OCLs.  Blood vessels were able to invade the vertebrae under 

all three osteoclast-free conditions.  Similarly, in another study in osteopetrotic mice, vessels 

were able to invade the (non-mineralized) epiphyses of mouse tibiae.[149]  The results of these 

two papers are not definitive because the data were not quantitative, so small differences may 

have been missed.  In addition, different bone anatomic locations may respond differently to 

OCL pro-angiogenic effects.  As discussed in more depth below, in the paper characterizing the 

knockout mouse for the highly expressed OCL proteinase MMP-9, ossification and angiogenesis 

were delayed in growth plates of long bones.  Importantly, there was no defect in epiphyses or 

bones formed by  intramembraneous ossification.[14]  These authors also reported (data not 

shown) that there was delayed vessel invasion into the long bones from op/op and c-fos-/- 

osteopetrotic mice.  The results of 3 key papers addressing whether OCLs play a role in 

angiogenesis are summarized in Table 1.3.   

 

Table 1.3.  Key osteoclast and angiogenesis literature   

First Author Are OCLs angiogenic ??? Key Findings 
Tanaka[5] Yes OCL conditioned media stimulated 

angiogenesis in vitro due to osteopontin.  
Synergistic with myeloma cell-derived 
VEGF 

Deckers[4] No OCLs not required for vessel 
invasion of mouse tail vertebrae in vivo. 

Sugiura[149] No OCLs not required for vessel 
invasion of epiphyses in vivo. 

 

Several papers have analyzed OCL gene expression profiles using genomics and 

proteomics approaches and provided data supporting a role for OCLs in stimulating 
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angiogenesis.  Kiesel et al used microarrays to analyze gene expression of mouse bone marrow 

cultures at various timepoints of OCL differentiation induced with RANKL and M-CSF.[150]  

They made theoretical predictions as well as verified two processes experimentally.  They 

observed increased expression of angiogenic factors at 24 and 48 hours after induction of OCL 

differentiation, including members of the semaphorin family, VEGF-A and VEGF-C.  Like 

Tanaka et al, they showed that conditioned media from bone marrow cultures containing OCLs 

stimulated HUVEC tube formation on matrigel more than control media or conditioned media 

from cultures treated with M-CSF alone.   

However, other investigators using different cellular systems and genomic or proteomic 

techniques have not seen the same profile of angiogenic factors expressed by OCLs.  RANTES 

was increased in human peripheral blood derived OCLs at the mRNA level, and mouse marrow 

derived OCLs at the protein level.[151, 152]  TNF-α was likewise upregulated in human 

peripheral blood derived OCL and RAW264.7 (mouse cell line) derived OCLs both at the 

message level.[151, 153]  Other possible angiogenic factors were also upregulated during OCL 

differentiation including; urokinase plasminogen activator receptor [153], IGF-1 and PDGF-A 

[152], and osteopontin and MIP-1α..[154]  However, three other genomic or proteomic studies 

did not report upregulation of any angiogenic factors in OCLs.[155-157].  Therefore in several 

studies examining OCL gene expression with genomic and proteomic approaches, increased 

angiogenic factor gene expression during OCL differentiation has not been consistently detected.     

1.2.3.4 Bone Angiogenesis During Development 

The close spatial and temporal association between OCLs and capillaries in bone development 

and fracture healing suggests communication between OCLs and vessels, and OCL regulation of 

angiogenesis.  Physiologic bone angiogenesis occurs primarily during development and fracture 
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healing.  In endochondral ossification, cartilage is converted into bone and angiogenesis is 

required for the ossification process.[158]  In endochondral ossification, an avascular cartilage 

model (anlagen) of the final bone is first formed.  The chondrocytes then begin to hypertrophy 

and ossify in the two eventual centers of ossification; midshaft (primary) and epiphysis 

(secondary).  The marrow cavity is then formed by the concurrent invasion by osteoclasts (or 

chondroclasts) and blood vessels.[159]  This blood vessel invasion is essential for bone 

development and has been proposed to be the source of osteoblasts.[160]  Angiogenic factors are 

required for OCL entry into the anlagen.  A key finding for the mechanistic studies of this 

dissertation is;  MMP-9 was shown to be required for both blood vessel and OCL entry 

into the primary ossification center.[161]  Furthermore, the study reporting the phenotype of 

the MMP-9-/- mouse reported in their discussion section that osteopetrotic (op/op and c-fos-/-) 

mice had delayed developmental vessel invasion into the primary ossification center.[14]     

In agreement with the MMP-9 data, other investigators directly implicated VEGF or 

hypoxia pathways in bone development.  VEGF has been proposed to be the primary factor 

regulating this vessel ingrowth because systemic neutralization of VEGF inhibited vessel 

ingrowth into epiphyses in a mouse model.[162]  Hypoxia upregulates VEGF production by 

chondrocytes and requires HIF-1α for its effect.[163]   Osteoblasts have also been shown to be 

important in stimulating developmental bone angiogenesis.  The HIF pathway is important with 

contributions from both HIF-1α as well as other HIF-α forms.[15]  Angiogenic factors are also 

required for OCL entry into the anlagen.  Thus, bone development, angiogenesis and OCL 

invasion are closely linked. 
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1.2.3.5 Angiogenesis During Fracture Healing 

Fracture healing shares many features with developmental angiogenesis, so not surprisingly 

angiogenesis is also important to its progression.  A soft cartilaginous callus is first formed from 

a hematoma, a process analogous to the cartilage model of bone formed during development.  

The cartilage of the soft callus is then converted to woven bone primarily by way of 

endochondral ossification, where the cartilage hypertrophies and then is resorbed by OCLs.  

Finally, as in development, the woven bone is remodeled to its final form.[110]   

Because long bone fracture healing is analogous to development, it should not be 

surprising that the molecular regulation of the two processes is similar.  Notably, MMP-9 is also 

important for healing of long bone non-stabilized fractures, and this defect can be rescued by 

recombinant VEGF.[164]  As in the studies of MMP-9 in development, vessels and OCLs failed 

to or had delayed invasion of the hypertrophic cartiliage callus.  This led to enlarged calluses and 

non-unions.  However, it is unclear if the MMP-9 important for these observations was OCL 

derived because MMP-9 is also expressed by many macrophages and granulocytes in fractures.    

In agreement with the studies of MMP-9 in fracture healing, neutralization of VEGF inhibits 

fracture healing in mouse models.[165]   

Likewise, others have suggested that OCLs may stimulate angiogenesis in fracture 

healing due to heparanase mediated release of VEGF.  However, this study is purely 

descriptive.[1]  VEGF was previously known to bind heparan and be released by heparanase.  

These authors observed OCL expression of heparanase both during endochondral ossification 

and in formation of woven bone.  They also observed that OCLs were located between vessels 

and hypertrophic chondrocytes.  Thus, OCLs are in the correct anatomical position to stimulate 

angiogenesis.  However, no experiments were performed that showed OCL release of matrix 
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VEGF was important for angiogenesis, and no additional studies have been reported that support 

this hypothesis. 

In support of the hypothesis of this dissertation, lack of OCL or OCL inhibition with 

bisphosphonates impairs fracture healing.  RANK-/- mice have increased non-unions of non-

stabilized long bone fractures.  Even more importantly, they have reduced numbers of vessels in 

the fracture calluses.[166]  Likewise, OCL inhibition with bisphosphonates delays fracture 

healing.  Bisphosphonates were studied in a different fracture model than was used for RANK-/- 

or MMP-9-/- mice; stabilized rather than un-stabilized fractures.  Stabilized fracture models heal 

without a cartilage intermediate and are more analogous to membranous rather than 

endochondral ossification.  Perhaps due to this model difference, bisphosphonates did not cause 

non-unions, but delayed remodeling of the woven bone callus.[167, 168]     

In addition, in a study relevant to the work by Tanaka et al, osteopontin, which is 

expressed by OCLs and osteoblasts in bone calluses,[169, 170] has also been implicated in 

stimulating angiogenesis during fracture healing.  Studies in osteopontin-/- mice have shown that 

these mice had decreased early stage angiogenesis and bone strength in healing calluses.[171]   

1.2.4 Pathological Bone Angiogenesis 

1.2.4.1 Angiogenesis in Bone Metastases 

Angiogenesis has long been known to be important for formation of bone metastases in solid 

tumors.  More recently angiogenesis has also been shown to be important for hematological 

tumor growth, including myeloma bone lesions where bone angiogenesis is clinically important.   

Myeloma is a malignancy of plasma cells in which the malignant clone produces a 

monoclonal immunoglobulin and induces bone lesions.[172]  It is thought to develop from 
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MGUS (monoclonal gammopathy of uncertain significance), a condition requiring no treatment 

in which a monoclonal immunoglobulin is detectable but the patients have no end organ damage. 

[172]  The switch from a non-angiogenic to a pro-angiogenic phenotype in the bone marrow is 

thought to be important in the transition from MGUS to multiple myeloma.[173]  Regulation of 

angiogenesis in myeloma results from signals from the myeloma cells superimposed on the 

normal angiogenesis regulatory mechanisms.  Investigators have proposed paracrine loops 

between myeloma cells and bone marrow stromal cells to explain the enhanced angiogenesis in 

myeloma.[2]  VEGF, bFGF and TGF-β derived from myeloma cells upregulate bone marrow 

stromal cell production of IL-6.[174-176]    Adhesion of myeloma and bone marrow stromal 

cells likewise upregulated stromal cell IL-6.[176]  IL-6 then increases production of VEGF by 

myeloma cells thus forming a loop.[174]   

VEGF is a key angiogenic factor in myeloma in vivo, as illustrated by the ability of a 

VEGF inhibitor to block myeloma growth and angiogenesis and increase survival in a mouse 

model of myeloma.[177]  However, the mechanisms responsible for the transition from a non-

angiogenic phenotype in MGUS to a pro-angiogenic phenotype in myeloma are less clear.  

Asosingh et al reported that a switch from CD45+ myeloma cells, which do not express VEGF, to 

CD45- myeloma cells, which do express VEGF, correlated with the angiogenic switch in a 

mouse model of myeloma.[178]  Lack of CD45 expression was also correlated with progression 

from MGUS to myeloma and increased angiogenesis.[179]  However, in another study the 

expression of VEGF, bFGF and their receptors did not differ between plasma cells from MGUS 

patients and myeloma patients, suggesting that other factors are responsible for the angiogenic 

switch.[180]  The same paper also found that plasma cells from MGUS patients contained an 
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angiogenesis inhibitory activity.[180]  A multitude of other factors have been proposed to 

contribute to myeloma angiogenesis including angiopoietin-1 and osteopontin.[146, 147]     

1.2.4.2 Antiangiogenic Effects of Bisphosphonates 

:  An understanding of angiogenesis in bone metastases requires an understanding of the 

drugs most commonly used to treat them, nitrogen containing bisphosphonates (N-BPs), which 

have anti-tumor and anti-angiogenic effects.  These drugs reduce the incidence and severity of 

skeletal complications, relieve metastatic bone pain, and improve patients’ quality of life.[181]  

N-BPs are also effective in myeloma bone disease.[182]  A major effect of N-BPs is to inhibit 

bone resorption through effects on the OCL.  In vitro studies have suggested many possible 

mechanisms for the anti-resorptive effects of N-BPs, but the bulk of evidence is pointing towards 

disruption of the OCL cytoskeleton due to inhibition of farnesyl diphosphate synthase and 

resulting effects on prenylation of small GTPases in OCLs as the primary mechanism for the 

effects of N-BPs in vivo.[183, 184]  Note, as discussed earlier, GTPases are involved in M-CSF 

and integrin induced OCL cytoskeletal organization.[50]  The N-BPs alendronate and risedronate 

inhibited OCL resorption at ten fold lower concentrations than were required to induce apoptosis.  

Further, apoptosis inhibitors failed to inhibit resorption, thus arguing against a role for OCL 

apoptosis in N-BP inhibition of resorption.[185] 

Due to the core structure of N-BPs, which is analogous to pyrophosphate, they are 

deposited in bone matrix, where they are released as the osteoclast resorbs bone and secretes 

acid.  Thus, OCLs are likely exposed to higher concentrations of bisphosphonates in vivo than 

other cell types.  Therefore, the cell specificity of bisphosphonates may be determined more by 

pharmacokinetics than by their molecular target.  It has been estimated that OCLs are exposed to 

N-BP concentrations between 0.1 and 1 mM when resorbing bone.[186]  Treatment of rabbits 

 31 



with the N-BP risedronate inhibited the prenylation of Rab proteins in OCLs but not in other 

bone marrow cells, thus supporting the OCL as the target of N-BPs.[187]  In a study using 

fluorescently labeled N-BPs in vivo, uptake was observed primarily in OCLs, with some uptake 

in a subpopulation of bone marrow cells and osteocytes.[188]  Alternatively, cell culture 

experiments have suggested that cells close in proximity to OCLs can be exposed to high 

concentrations of N-BPs through transcytosis from OCLs.[189]  

Bisphosphonates also have anti-tumor and anti-angiogenic effects.  The mechanisms of 

these effects are under investigation.  The N-BP zoledronic acid reduced angiogenesis and tumor 

burden in the 5T2 mouse myeloma model.[190]  Zoledronate, alendronate and neridronate 

inhibited angiogenesis in vitro at concentrations ranging from 10 to 50 μM.[191-193]  These 

concentrations are higher than the maximum serum zoledronic acid level achieved after infusion, 

so it unclear if a direct effect of zoledronate on endothelial cells can explain the anti-angiogenic 

effects of zoledronic acid.[194]  There is one report of bisphosphonates inhibiting angiogenesis 

in vivo in a non-neoplastic situation outside of bone tissue – testosterone stimulated 

revascularization of the rat prostate after castration.[3]  Bisphosphonates were shown to 

transiently accumulate in the prostate, so as with bone, their tissue specificity is likely regulated 

by pharmacokinetics.      

N-BPs have been associated with a complication called osteonecrosis of the jaw (ONJ) 

with a reported cumulative incidence for cancer patients treated with intravenous N-BPs ranging 

between 1 and 11%.[195]  The incidence in osteoporosis patients treated with bisphosphonates is 

many orders of magnitude lower.  In ONJ, a section of the maxilla or mandible necroses and 

becomes exposed to the oral cavity.  ONJ is painful and interferes with functioning.  It is usually 

self-limited but can be have a prolonged course in a minority of patients.  The mechanism by 
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which bisphosphonates may cause ONJ is unknown.  A recent report from a phase III trial of the 

RANKL monoclonal antibody (denosumab) found a comparable number of cases of ONJ in 

patients treated with zoledronate and denosumab (Amgen website, August 3, 2009).  This 

suggests that OCL inhibition in general, rather than specific properties of bisphosphonates, may 

cause ONJ.  Bisphosphonate suppression of bone remodeling is one of the most popular 

hypotheses for ONJ pathogenesis.[196]  Decreased angiogenesis due to bisphonates may also 

play a role in ONJ.  Recently, ONJ was reported in patients treated with the anti-VEGF antibody 

bevacizumab.[197]  Furthermore, a small retrospective study found more cases of ONJ in cancer 

patients treated with bisphosphonates and bevacizumab than bisphosphonates alone.[198].  ONJ 

is also linked to dental extraction or other dental surgery, and is associated with actinomyces 

infection.  Because of their ability to inhibit remodeling of the callus of fixed fractures in long 

bones, bisphosphonates may also contribute to ONJ due to affects on bone healing after dental 

trauma, such as extraction.[167, 168]  The conclusions of this dissertation offer potential insight 

into the pathogenesis of ONJ.       

1.3 POTENTIAL MOLECULAR MECHANISMS OF OSTEOCLAST –

STIMULATED ANGIOGENESIS 

Macrophages, which share a close lineage relationship with osteoclasts, are well established as 

pro-angiogenic cells.  Angiogenic factors produced by macrophages the regulation of their 

production provide a template for studies of the potential mechanisms utilized by OCLs to 

induce angiogenesis.  In addition, production of several angiogenic factors has been previously 

reported in osteoclasts.[6] 
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1.3.1 Macrophages and Angiogenesis 

1.3.1.1 Macrophage Angiogenic Factors 

Macrophages express a wide array of angiogenic factors including ;VEGF, FGF-1, FGF-

2, PDGF, TNF-α, angiopoietin 1, leptin, IL-6 and IL-8 .[199] [200]  Human peripheral blood 

macrophages promoted endothelial cell proliferation through FGF-1, FGF-2 and PDGF.[7]  

VEGF was the primary angiogenic factor produced by hypoxic mouse peritoneal macrophages 

and RAW 264.7 cells in the mouse corneal angiogenesis assay.[8]  Neutralizing antibodies to 

TNF-α inhibited mouse peritoneal macrophage induced angiogenesis in the chick chorioallantoic 

membrane, rat cornea and BCE capillary tube formation assays.[9]  Furthermore, treatment of 

human peripheral blood macrophage conditioned media with antibodies to IL-8 or TNF-α or IL-8 

antisense equally reduced rat corneal angiogenesis.[201]  Because several different factors are 

required for macrophage stimulated angiogenesis, it is not improbable that several different 

osteoclast derived factors acting directly on endothelial cells will be required for OCLs to 

stimulate angiogenesis.  Further the angiogenic phenotype of macrophages is greatly affected by 

their microenvironment.  For example, conditioned media from activated macrophages 

stimulates angiogenesis, whereas conditioned media from resting macrophages inhibits 

endothelial cell proliferation.[202]  Therefore, it will be important to determine the role 

activation of OCLs plays in OCL-stimulated angiogenesis.   

In addition to these direct mechanisms, macrophages may stimulate angiogenesis 

indirectly; by inducing angiogenic factor secretion by another cell type or by activating a latent 

angiogenic factor.  As an example of such an indirect mechanism, MMP-9 produced by 

macrophages was shown to be important for cervical cancer angiogenesis. The authors 
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hypothesized that MMP-9 exerted its pro-angiogenic effect through release of matrix bound 

VEGF and the resultant increased VEGFR2 binding.[13]   

1.3.1.2 Tumor Associated Macrophages 

Although macrophages might be expected to help the host eradicate tumors, the opposite 

occurs in most cases.[203]  In greater than 80% of clinical studies, increased tumor associated 

macrophage (TAM) density is associated with a poor prognosis. In contrast, less than 10% of 

studies show association of TAMs with an improved prognosis.[204]  It has been proposed that 

TH2 type or anti-inflammatory cytokines such as IL-4, IL-10, TGF-β and IL-13 in the tumor 

microenvironment induce macrophages into an alternatively activated state, termed M2 

macrophages, which lack anti-tumor activity.[205, 206]  One of the major ways in which 

macrophages can stimulate tumor growth is through their angiogenic stimulatory capacity.  For 

example, macrophages were associated with increased microvessel density in human breast 

tumor samples, and their production of MMP-9 was required for angiogenesis in a mouse 

cervical cancer model.[13]   

Even though TAM’s are a good illustration of the angiogenic potential of cells of the 

monocytic lineage (such as osteoclasts), it seems unlikely that angiogenesis induced by TAM’s 

and osteoclasts will be regulated by identical mechanisms.  For example, IL-4, IL-10 and IL-13, 

which play a role in the induction of the tumor enhancing phenotype of tumor associated 

macrophages, inhibit osteoclast formation in most experimental systems.[47, 48]  However, an 

examination of how inflammatory cytokines and ischemic condtions, which do not inhibit 

osteoclast formation, and also regulate macrophage angiogenic factor production, should be 

useful in predicting ways that osteoclast-induced angiogenesis may be regulated. 
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1.3.1.3 Regulation of Macrophage Stimulated Angiogenesis By Ischemia   

It has been over 25 years since macrophages were first shown to secrete soluble angiogenic 

factors in response to hypoxia.[207]  Since then, there has been a flurry of activity investigating 

which angiogenic factors are induced by hypoxia in macrophages and the signaling mechanisms 

that control their production.  Early on, lactate, which is associated with ischemic conditions due 

to anaerobic metabolism, was shown to increase the angiogenic stimulatory capacity of 

macrophages.[208]  Macrophages accumulate in diseased tissues in poorly vascularized sites, 

thus illustrating their role in the response to ischemia.[199]  Principle among the transcription 

factors shown to play a role in macrophage production of angiogenic factors is the HIF family of 

transcription factors.[209]  Most data suggest that HIF-2α is more important than HIF-1α for the 

induction of angiogenic genes in macrophages exposed to hypoxia.  Hypoxia induced HIF-2α 

protein to a much greater extent than HIF-1α protein in human monocyte derived 

macrophages.[210]  Using an angiogenic factor cDNA array, White et al showed that 

overexpression of HIF-2α was much more effective than HIF-1α overexpression at increasing the 

transcription of pro-angiogenic genes in response to hypoxia.[200] 

1.3.1.4 Regulation of Macrophage-Stimulated Angiogenesis by Inflammatory Cytokines 

and Bacterial Products   

Macrophages are unlikely to be exposed to ischemia in the absence of biological factors.  In 

addition to the effects of anti-inflammatory cytokines on tumor associated macrophages, 

inflammatory cytokines have also been shown to upregulate production of macrophage 

angiogenic factors.  IFN-γ and LPS, well known macrophage activators, can induce angiogenic 

factor production in macrophages and increase their production of angiogenic factors in response 

to hypoxia.[199]  The expression of some angiogenic factors stimulated by LPS involves platelet 
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activating factor (PAF) induction of NF-κB.  PAF inhibitors and p65 (NF-κB subunit) antisense 

block NF-κB DNA binding, angiogenic factor production, and mouse matrigel plug angiogenesis 

induced by mouse peritoneal macrophages treated with LPS.  Likewise in human monocytes, 

PAF antagonists or NF-κB inhibitors reduced LPS-stimulated endothelial cell sprout formation 

from microcarrier beads as well as monocyte production of VEGF, bFGF, TNF-α, IL-1α and IL-

8.[211]  LPS also stimulated VEGF release from murine macrophages by signaling through 

TLR4 and synergergizes with adenosing receptor A2A.[212]  TLRs 2, 7 and 9 also synergize with 

adenosine A2A receptors.[213]  M-CSF likewise stimulates secretion of VEGF in monocyte-

derived macrophages, possibly through HIF-1α, as HIF-1α protein and DNA binding is increased 

by M-CSF treatment.[214]  TGF-β, although usually classified as an anti-inflammatory cytokine, 

has also been shown to induce macrophage angiogenic factor production.  TGF- β1 was required 

for head and neck cancer cell induction of VEGF and IL-8 in macrophages.[215]  

Overexpression of smad 3/4 or HIF-1α increased the induction of VEGF in mouse 

macrophages.[216]   

1.3.2 Possible Osteoclast-Derived Angiogenic Factors 

1.3.2.1 Osteopontin 

Osteopontin (OPN) is released by myeloma cells [147] and osteoclasts [5] and was 

proposed to mediate OCL-stimulated angiogenesis.  Experiments with OPN-/- mice demonstrated 

reduced angiogenesis in fracture healing experiments as well as reduced angiogenesis and 

osteoclastogenesis when bone chips were implanted subcutaneously in mice.[171, 217]  OPN is 

expressed by OCLs, osteoblasts and endothelial cells and is a very abundant protein in bone that 

comprises 2% of the non-collagenous protein.[122, 218]   
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Osteopontin was proposed to stimulate angiogenesis by signaling through integrins on 

endothelial cells, principally αvβ3.  Osteopontin prevents endothelial cell apoptosis through 

binding to αvβ3 and inducing NF-κB activation through a pathway that requires ras and src 

.[219]  Osteopontin’s prevention of endothelial cell apoptosis was further shown to involve 

stimulation of osteoprotegrin expression, which prevents TRAIL mediated endothelial cell 

apoptosis.[220]  Osteopontin also stimulates adhesion and migration of endothelial cells.[221, 

222]  Osteopontin and VEGF cooperatively stimulate endothelial cell migration.  Pretreatment of 

endothelial cells with VEGF increases cell migration in response to osteopontin and induces 

endothelial cell expression of osteopontin and αvβ3.  VEGF also increases thrombin cleavage of 

osteopontin in vivo.  Thrombin cleaved osteopontin stimulates endothelial cell migration better 

than full length osteopontin in vitro.[222]  Osteopontin also has effects on OCLs and other cell 

types.   

Osteopontin-/- mice were originally reported to have no changes in bone density, but to 

have increased OCL formation in vitro.[223]  However, later studies have found a subtle increase 

in bone mass and increased OCL numbers in vivo as well as decreased OCL motility and 

resorption in vitro.[224]  Thus, OPN seems to be required for the function of OCLs rather than 

their formation.  This reduced functionality of OPN-/- OCLs was recently illustrated by the 

reduced size of their resorption space.[225]  In addition to reducing the functionality of OCLs, 

OPN is required for the induction of bone loss in some pathological conditions.  Osteopontin-/-

mice lose less bone mass relative to controls with ovariectomy or PTH treatment.[226, 227]  

Furthermore, the increase in OCL number in response to PTH was blunted in OPN-/- mice.  

Implantation of breast cancer cells induced more bone loss in OPN-/- mice compared to wt, 

showing that OPN is not required for increased bone loss in all circumstances.[228]   
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1.3.2.2 IL-8 and Other CXC Chemokines 

Different members of the CXC chemokine family can either stimulate or inhibit 

angiogenesis.  CXC chemokines that have the sequence; glutamate, leucine, arginine 

immediately N-terminal to the first cysteine residue (ELR+) are pro-angiogenic.[229]  The pro-

angiogenic effects of ELR+ CXC chemokines are thought to be due to signaling through 

CXCR2.[230]  CXC chemokines that lack the ELR motif are anti-angiogenic, and exert these 

effects primarily through isoforms of CXCR3.[231-234]  ELR+ CXC chemokines are secreted by 

several different cell types in bone marrow.  Osteoclasts were reported to produce IL-8, but not 

ENA-78 (CXCL5), GRO-α (CXCL1), GRO-β (CXCL2), GRO-γ (CXCL3) PBP, CTAP-III, β-

TG or NAP-2 (CXCL7).[121]  In addition to CXCR2, IL-8 also stimulates angiogenesis through 

CXCR1.  The relative contribution of CXCR1 and CXCR2 to IL-8 induced angiogenesis varies 

depending on the experimental system used, although it has been hypothesized that CXCR2 is 

more important.[235]  CXCR2 blockade abolished angiogenesis induced by pancreatic cancer 

cells.[236]  Blockade of CXCR1 or CXCR2 alone inhibited migration of human glioblastoma 

endothelial cells, and the combination almost completely inhibited their migration, which was 

due to autocrine IL-8.[237]  IL-8 stimulates angiogenesis through stimulation of endothelial cell 

proliferation, apoptosis and production of MMPs.[238]  These effects can also be mediated 

through endothelial cell autocrine IL-8.[239]   

Like osteopontin, IL-8 production is increased by inflammatory mediators including IL-1, 

IL-6, TNF-α, and LPS, as well as reactive oxygen species and hypoxia.[235, 240, 241]  IL-8 

expression is regulated both transcriptionally and at the level of mRNA stability by pathways 

involving JNK, IKK and p38 kinases.  The IL-8 promoter has at least 3 transcription factor 

binding sites; AP-1, NF-κB, and C-EBP/NF-IL-6.[235]  Initial studies on hypoxic regulation of 
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IL-8 expression did not detect a hypoxia –responsive element in the IL-8 promoter and found 

that IL-8 hypoxic upregulation was primarily due to AP-1.[241]  More recently, studies have 

shown that the IL-8 promoter does contain a site that can serve as a hypoxia-responsive element 

and that HIF-1α contributes to IL-8 regulation.[242]  IL-8 promotes OCL formation both by 

direct effects on the OCL and through upregulation of RANKL in stromal cells.[243, 244]    

1.3.2.3 MMP-9 

OCLs may also stimulate angiogenesis by release of proteinases, which can stimulated 

angiogenesis in many ways including; basement membrane degradation, less pericyte 

attachement, increased integrin signaling, or release of angiogenic stimulators (or inhibitors) 

from matrix.[245]  Such an enzymatic mechanism for osteoclast-stimulated angiogenesis may be 

more feasible than osteoclast-secreted angiogenic factors acting directly on endothelial cells, 

because OCLs are rare cells in bone.  Thus, proteinases could multiply the pro-angiogenic effects 

of OCLs.  An obvious candidate for this mechanism of action is MMP-9.  A possible role for 

OCL-derived MMP-9 in angiogenesis in development or fracture healing was briefly described 

earlier.  MMP-9 is a matrix proteinase, classically known to degrade denatured collagen 

(gelatin), but which also has other substrate specificities.[245]  Early studies showed that 

osteoclasts express high levels of MMP-9.  It was originally thought that MMP-9 was 

specifically expressed by osteoclasts or committed osteoclast precursors in bone.[246, 247]  

However, MMP-9 can also be expressed by other cell types such as hypertrophic chrondrocytes 

or osteoblasts during development, or macrophages and neutrophils expecially during fracture 

healing.[164, 248, 249]   

Observations of MMP-9-/- mice suggested that osteoclasts may play a role in 

angiogenesis.[14]  Yet, this possibility has remained unexplored.  MMP-9-/- mice are viable but 
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show a bone phenotype consisting of delayed endochondral ossification and delayed blood vessel 

invasion into the metaphyseal growth plate center.  In this same report, the authors reported that 

op/op and c-fos-/- osteopetrotic mice showed a milder growth plate defect than the MMP-9-/- mice 

but did not show the data.  The initial study of the MMP-9-/- mouse found a similar pattern of 

expression of MMP-9 and the OCL marker TRAP in growth plates, but some cells at the 

chondro-osseous expressed MMP-9 but not TRAP or the endothelial cell marker CD31.[14]  A 

later study failed to show a defect in endochondral ossification in the same osteopetrotic (c-fos-/- 

and op/op) mice as well as in clodronate treated mice.[4]  However, this report examined mouse 

tail vertebrae, rather than the growth plate of long bones that were examined in studies of MMP-

9-/- mice.  Differences in the relative importance of the OCL to angiogenesis at various 

angiogenic sites may exist.  In agreement with this, the MMP-9-/- mouse has no ossification or 

vessel invasion defect in the epiphyses of long bones.   

Several investigations have reported that MMP-9 stimulates angiogenesis through 

activation or release of growth factors.  MMP-9 was first implicated as the angiogenic switch in 

a mouse pancreatic cancer model in which MMP-9 released matrix (heparan) associated VEGF 

and increased VEGF receptor occupancy.  The MMP-9 expressing cells in this study were not 

tumor cells but rather appeared to be infiltrating immune cells.[12]  Likewise, infiltrating 

zoledronate-sensitive macrophages were implicated in cervical cancer angiogenesis by way of 

VEGF release.[13]  MMP-9 release of matrix bound VEGF was suggested to be important for 

angiogenesis in the long bone growth plate.[161]  MMP-9 can also to act upon other pro and 

anti-angiogenic factors.  MMP-9 increases the activity of the pro-angiogenic molecule IL-8 on 

neutrophil activation, although angiogenesis was not examined.[250]  Furthermore, the pro-

angiogenic molecule GRO-α as well as the angiogenesis inhibitor PF-4 were degraded and 
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inactivated by MMP-9.[250]  In addition, MMP-9 activates TGF-β, which stimulates 

angiogenesis under most circumstances.[251, 252]  Osteoclasts have long been hypothesized to 

release TGF- β from bone matrix.  MMP-9 and MMP-2 can activate TGF- β through cleavage of 

latent TGF- β binding protein – 1.[11]  Thus, OCL-derived MMP-9 may increase the activity of 

TGF-β released from bone matrix by OCLs.    

MMP-9 affects OCL migration, which may be important for their ability to stimulate 

angiogenesis.  As discussed earlier, MMP-9 release of matrix bound VEGF is important for OCL 

and vessel invasion into the primary ossification center.[161]  In this study, resorption of E17 

metatarsal explants but not more mature bones was inhibited by lack of MMP-9.  This result was 

explanined by the MMP-9-/- migratory defect rather than by an effect on solubilization of 

calcified matrix.  At this stage, OCLs must invade from the periosteum in order to resorb 

calcified matrix.  In agreement with these data, an in vitro study found that lack of MMP-9 

inhibited OCL migration trough matrigel to underlying bone slices, and resulted in reduced 

resorption of due to the migratory effects.[253]  Furthermore, MMP-9 is important for migration 

of macrophage cell lines capable of forming OCLs.[254, 255]  Because of this importance for 

migration, OCL-derived MMP-9 may stimulate angiogenesis indirectly, by increasing the 

number of OCL at the angiogenic site.  Therefore, osteoclast-derived MMP-9 may stimulate 

angiogenesis by at least three different mechanisms; activation of VEGF or TGF-β, or 

affecting OCL recruitment to the angiogenic site.   

1.3.2.4 Other Proteinases 

In addition to MMP-9, several families of proteinases; MMPs, ADAMs and serine 

proteinases are involved in angiogenesis, many of which are expressed by OCLs (Reviewed in 

[256]).  Many of the well studied angiogenic MMPs are expressed by OCLs, including MMP-9, 
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MMP-7, MMP-2 and MT1-MMP.[248, 257]  Of note, MT1-MMP (MMP-14)-/- mice have a 

similar, but more severe, phenotype than MMP-9-/- mice, including defective endochondral 

ossification and vessel invasion, and inhibition of both axial and craniofacial skeletal 

growth.[258]   A recent report showed that MMP-7 was predominantly expressed by OCLs and 

important for growth of breast cancer bone metastases.[257]  However, angiogenesis was not 

analyzed in this report. MMP-7 may stimulate angiogenesis by several possible mechanisms, 

including stimulating endothelial cell migration or releasing EGF or VEGF from matrix.[245, 

259, 260]  

The ADAM family of proteinases is similar in structure to the MMPs and also affect 

angiogenesis by similar general mechanisms.  Many ADAMs, including ADAMs 8, 9, 10, 15, 17 

and 28, are expressed by OCLs.[261]  ADAM-17 (TACE) is especially well studied in 

angiogenesis due to it’s ability to release membrane bound TNF-α.[256]  Of the serine 

proteinases, plasmin and its regulators u-PA, t-PA and PAIs are of primary importance to 

angiogenesis.  Plasmin is best known for fibrinolysis, but also affects angiogenesis by activating 

other proteinases.[256]  Activation of proteinases relevant to angiogenesis involves complex 

pathways with much cross talk between various kinds of proteinases.  A well known cascade of 

proteinase activation controls the activity of MT1-MMP (MMP-14), MMP-2, MMP-13 and 

MMP-9.  MT1-MMP is activated by the serine proteinases furin and PC6.[262]  It in turn 

activates pro-MMP-2 and pro-MMP-13.[263, 264]  MMP-2 activity can be inhibited by β1 and 

αvβ3 integrin ligation.[265]  Both MMP-2 and MMP-13 are capable of activating MMP-9.[266, 

267]    
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1.3.2.5 TGF-β 

A particularly well-studied molecule that may be released by OCLs from calcified bone 

matrix, resulting in angiogenesis stimulation, is TGF-β.  Bone matrix is a rich source of growth 

factors and contains factors such as PDGF, aFGF, bFGF and TGF-β.[268, 269]  TGF-β has 

received an enormous amount of attention in the past two decades, as the key component in the 

“vicious cycle” hypothesis in which metastatic tumor cells stimulate OCLs, that release TGF-β 

from bone matrix to further stimulate tumor growth.[109]  OCL-released TGF-β may act on 

vessels directly, primarily on pericytes and mural cells as described above.[96]  Alternatively, 

TGF-β may stimulate angiogenesis through induced angiogenic factor expression in other cells.  

TGF-β as well as bone morphogenetic proteins have been shown to induce VEGF expression in 

osteoblasts.[108, 111]  The role of osteoblastic VEGF in angiogenesis in bone is well 

demonstrated.[15]         

Although the concept of osteoclastic release of TGF-β from calcified matrix has become 

dogma in bone biology and inspired promising experimental treatment approaches, the 

biochemical evidence that TGF-β comes directly from calcified matrix is limited.[10, 11, 270]  

Regardless of the exact source, TGF- β is associated with increased osteoclastogenesis and has 

important roles for bone biology.[109] 

 

The literature review above provides the necessary background information and rationale 

for the following studies.  Although some have described situations where angiogenesis does not 

require OCLs, we have identified models where OCLs do play a role, and are the first to show 

that OCLs are important for angiogenesis in vivo.  We are confident that future studies will 

describe additional ways in which OCLs contribute to angiogenesis.  The data in this dissertation 
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firstly demonstrates that OCLs can play a role in angiogenesis and then show that MMP-9 affects 

OCL-stimulated angiogenesis primarily through allowing OCLs to migrate to the angiogenic site.  

These studies allowed us to develop the following model of OCL-stimulated angiogenesis 

angiogenesis (Figure 1.5). 

 

 

Figure 1.5.  Model of osteoclast-stimulated angiogenesis 

 45 



2.0  OSTEOCLASTS CONTRIBUTE TO ANGIOGENESIS 

2.1 SUMMARY 

Osteoclastogenesis is correlated with angiogenesis in biological processes such as development, 

fracture healing and inflammatory and malignant bone diseases.  However it is unclear if OCLs 

play a causal role in angiogenesis.  Other investigators previous or concurrent with these studies 

reported conflicting data on a requirement for OCLs in angiogenesis.  To determine if OCLs are 

important for angiogenesis, we examined their contribution to the process in three model 

systems.  Firstly, we examined the ability of conditioned media from human bone marrow OCLs 

to stimulate angiogenesis in the HUVEC / fibroblast co-culture angiogenesis assay.  To 

determine if OCLs stimulated angiogenesis in a bone microenvironment in vitro, we employed 

the fetal mouse metatarsal angiogenesis assay.  This assay employs bone explants from fetal 

mice, which contain bone cell types including OCLs, osteoblasts, chondrocytes, fibroblasts and 

endothelial cells, to permit testing OCL modulators for their effects on angiogenesis.  We 

examined the effect on OCL-stimulated angiogenesis in vivo after 5 day RANKL or PTHrP (1-

34) treatment of mice by histological evaluation of fixed frozen sections stained for the OCL 

marker TRAP and immunohistochemical staining of vessels (CD31) in calvaria.  Human bone 

marrow OCL conditioned media stimulated in vitro angiogenesis at a comparable level to other 

bone marrow cell types known to stimulate angiogenesis.  OCL inhibition with osteoprotegerin 
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decreased angiogenesis and OCL formation and activity in parallel in metatarsal explants.  

Conversely, continuous PTHrP (1-34) increased both area covered by endothelial cells and 

osteoclastic resorption (CTX) in metatarsal explants.  This ability of PTHrP to stimulate 

metatarsal angiogenesis disappeared with osteoprotegerin treatment, and PTHrP did not induce 

angiogenesis in metatarsals from OCL deficient op/op mice, thus showing that the angiogenic 

effect of PTHrP requires OCLs.  Furthermore, in vivo studies demonstrated that OCL stimulation 

with 5 days of RANKL or PTHrP treatment increased vessel density in mouse calvaria.  Total 

CD31+ vessel area was dramatically increased between the bone tables in PTHrP compared to 

vehicle treated animals, with most of the effect due to vessel number.  RANKL increased vessel 

density and area in the outer table of calvaria in vivo.  Thus, by demonstrating OCL stimulation 

of angiogenesis in two in vitro models 

 

2.2 INTRODUCTION 

Both osteoclastogenesis and angiogenesis are enhanced in pathological conditions, such 

as multiple myeloma, bone metastases and rheumatoid arthritis, which are associated with locally 

increased inflammatory cytokines.[2, 137]  Osteoclasts (OCLs) and blood vessels are closely 

associated, with a vessel present at every bone remodeling compartment.[107]  However, few 

studies have examined if and how OCLs may play a role in angiogenesis.  OCL conditioned 

media has been reported to be angiogenic in vitro and this angiogenic activity was attributed to 

secretion of osteopontin by OCLs, which was increased when OCLs were co-cultured with 

multiple myeloma cells.[5, 150]  However, other investigators reported that OCLs were not 
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required for angiogenesis.  Further, osteopetrotic (lacking OCLs) genotypes (op/op or c-fos -/-) or 

clodronate treatment of wild type mice did not inhibit developmental vessel invasion into mouse 

caudal vertebrae.[4]  Likewise, op/op mice have normal levels of vessel invasion in their 

epiphyses.[149]  Therefore, we chose to investigate whether OCLs are important for 

angiogenesis    

2.3 MATERIALS AND METHODS 

Materials:  Monoclonal rat anti-mouse CD31 was purchased from BD-Pharmingen (#550274).  

Vector Laboratories supplied biotinylated rabbit anti-rat (mouse adsorbed) and SA-HRP.  The 

RatLaps C-terminal type I collagen telopeptide (CTX) assay was obtained from Nordic 

Biosciences / Immunodiagnostic Systems, and the CryoJane sectioning aid and adhesive slides 

from Instrumedics – Leica.  Human in vitro angiogenesis assays were purchased from TCS 

Cellworks.  rh OPG-Fc, rh RANKL and rh M-CSF were from R&D Systems.  Recombinant 

mouse RANKL-GST was generously provided by Dr. F. Patrick Ross (Washington Univ, St. 

Louis).  h PTHrP (1-34) was purchased from American Peptide.  The 23c6 monoclonal antibody, 

which identifies αvβ3 integrin, cell culture supernatant was provided by Dr. Michael Horton, 

University College, London, UK.  The BCA protein assay was from Pierce.  ImmunoHistoMount 

aqueous mounting media and other chemicals or supplies were purchased from Santa Cruz, 

Sigma-Aldrich, Fisher Scientific, Electron Microscopy Sciences or Gibco.  C57BL/6 mice were 

from Harlan.  
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Human OCL culture and analysis of angiogenic activity of conditioned media in 

vitro:  After obtaining informed consent, bone marrow aspirates were collected in heparinized 

syringes from normal donors.  These studies were approved by the University of Pittsburgh 

Institutional Review Board.  Marrow mononuclear cells were separated by density sedimentation 

on ficoll-hypaque.  107 cells were incubated overnight in 10% FCS αMEM in 10 cm culture 

dishes.  Non-adherent cells were removed by gentle washing.  Adherent cells were cultured in 

Dexter-type cultures for 21 days in 10% FCS IMDM with twice weekly media changes to obtain 

marrow stromal cells.[272]  For osteoclast or macrophage culture, non-adherent cells were 

diluted to 106 / mL in α-MEM with 20% horse serum, 10 ng/mL rh M-CSF with or without 50 

ng/mL rh RANKL and seeded at 30 mL per T-75 flask.  Cultures were maintained for 3 weeks 

with twice weekly changes of half the media volume containing a full complement of cytokines, 

as previously described.[19]  Osteoclast cultures were trypsinized for 5 minutes at 37°C to 

remove contaminating cell types, then rested for 24 hours, followed by RNA or conditioned 

media collection.  Serum free conditioned media was collected by washing the cultures three 

times with α-MEM, adding back 7.5 mL of α-MEM per flask and then incubating the cells for 24 

hours at 37oC.  Cultures were fixed and stained for αvβ3 integrin with the 23c6 monoclonal 

antibody that identifies OCLs and Vector ABC-AP kit.  Conditioned media or control media was 

concentrated 10 fold on Amicon 3 KD cut-off concentration columns that were pre-blocked with 

1% BSA, then diluted back so that at final concentration CM from 30,000 OCLs per ml was 

added to the TCS Cellworks in vitro angiogenesis assay.  Co-cultures of human umbilical vein 

endothelial cells (HUVECs) and fibroblasts was performed per manufacturer’s protocol.[273]  

CM was diluted 1:2 to provided assay media.  After 11 days, cultures were stained for CD31.  
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Cultures were photographed with an Olympus multimode dissecting microscope and quantified 

for total CD31+ area with ImageJ and for angiogenic tube formation with Metamorph software.         

 

Fetal Mouse Metatarsal Angiogenesis Assay:  The assay was conducted as originally 

described with minor modifications.[17]  Briefly, embryos were harvested from CB6 F1 x CD-1 

(outbred), C57BL/6 WT or C57BL/6 MMP-9-/- pregnant female mice that were sacrificed with 

an excess of isofluorane anesthesia at 17.5 dpc.  The middle three metatarsals were dissected 

from each hind leg and cultured in 24 well plates containing 10% fetal calf serum α–mimimal 

essential media with the indicated treatments for 15 days.  At least 10 bones were used per 

group.  Media volume was maintained at 150 μl for the first three days and 250 μl subsequently. 

Media was replaced every three days and spent media was stored at -80oC for measurement of 

CTX (RatLapsTM, Nordic Biosciences).  Media from freeze-thawed bones was used as a blank 

for CTX measurements.  Explants were then stained for CD31 as follows:  Bones were fixed for 

15 minutes with zinc macrodex formalin, washed twice with PBS and blocked overnight at 4oC 

in PBS containing 2% rabbit serum, 0.1% triton X-100, 0.05% tween-20, 1% BSA, 0.1% gelatin 

and 0.05% sodium azide.  All PBS buffers were at pH 7.2.  The primary antibody was applied at 

a dilution of 1:50 in PBS plus 1% BSA and 0.1% gelatin.  Secondary antibody and SA-HRP 

(Vector Laboratories) were applied in PBS at 1:100 or 1:250 dilution respectively, and explants 

were stained with AEC-HRP substrate.  Images were acquired with an Olympus Multimode 

dissecting microscope and were quantified either with the MetamorphTM angiogenesis tube 

formation application for tube area, length and branches, or with ImageJ for total CD31+ area 

and corrected for the area of bones stained with control IgG in place of primary antibody.     
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TRAP activity was extracted from metatarsal explants that were fixed and stained for 

CD31 and stored dry.  Bones were rehydrated in water, removed and homogenized with a 2 mL 

ground glass homogenizer in 120 μl NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 50 mM tris 

pH 8), then rotated at 4oC overnight and cleared by centrifugation.  To assay TRAP activity, 35 

μl of homogenate was added to 200 μl TRAP substrate (50 mM sodium acetate pH 5, 25 mM 

sodium tartrate, 0.4 mM MnCl2, 0.4% N,N,-dimethylformamide, 0.2 mg/mL fast red violet, 0.5 

mg/mL napthol AS-MX phosphate), then incubated 3 hours at 37oC and the absorbance read at 

540 nm.  Results were corrected for total protein, which was assayed by adding 25 μl 

homogenate to 250 μl BCA assay reagent, incubating 2 hrs at 37oC and reading the absorbance at 

562 nm.                   

 

Histology and Immunohistochemistry:  Histological analyses were performed in fixed-

frozen decalcified tissues from mice.  Bones were fixed overnight in 2% paraformaldehyde, 

decalcified for 4 days in 10% EDTA pH 7.4, imbedded in 30% sucrose in PBS overnight and 

snap frozen in OCT by immersion in LN2 cooled isopentane.  Seven μm sections were cut on a 

cryostat equipped with a CryoJane tape-transfer system.  Slides were stored frozen until use, and 

then thawed and washed 3 times in PBS.  For immunohistochemistry, slides were peroxidase 

quenched in 0.3% H2O2 in MeOH, washed 3x for 5 minutes in PBST (0.05% Tween-20), then 

blocked for 30 minutes in 5% serum from the same species from which the secondary antibody 

was derived.  Primary antibodies were applied overnight at 4oC in PBS at the following dilutions; 

anti-CD31 (1:100), anti-MMP-9 (1:4000), followed by washes in PBST, and then biotinylated 

secondary antibodies (anti-rat 1:100, anti-rabbit 1:2500 dilutions), SA-HRP (1:250 dilution) and 

DAB peroxidase substrate were added.  TRAP histochemistry was performed with a substrate 
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solution containing 50 mM sodium acetate pH 5, 25 mM sodium tartrate, 0.4 mM MnCl2, 0.4% 

N,N,-dimethylformamide, 0.2 mg/mL fast red violet, 0.5 mg/mL napthol AS-BI phosphate as 

described previously.[274]  Slides were coverslipped in aqueous mounting media. 

 

In vivo studies:  Six (2 male and 4 female) C57BL/6 7 week old mice per group were 

injected with m-RANKL-GST (1 mg/kg in 50 - 65 μl PBS) subcutaneously over the calvaria 

daily for 5 days under light isoflurane anesthesia.  Similarly, for studies involving PTHrP, six 5 

week old male C57BL/6 were treated with 2 μg h PTHrP (1-34) in 100 μl 1% BSA-PBS pH 5.2 

systemically by subcutaneous injection 4 times a day for 5 days.[51, 275]  Control mice were 

injected with vehicle.  After 5 days, blood was collected by retro-orbital puncture and mice were 

sacrificed.  Calvaria were sectioned in a coronal orientation anterior to the junction of the sagittal 

and coronal sutures, and stained for CD31, TRAP or MMP-9.  All quantitative histological 

analyses were performed by a blinded observer.  For PTHrP treated mice, CD31+ vessels were 

quantified in the inner table adjacent to the midline of 10x objective images by selecting the 

DAB signal with a hue saturation intensity filter (Fovea Pro software, Reindeer Graphics) 

selected to limit to true signal from 45 to 90° area running within Adobe Photoshop 7.  For 

PTHrP treated mice between bone tables (parasagittal spaces), or RANKL treated mice in the 

outer table, CD31+ vessels were quantified by counting vessel numbers and using a grid map 

projected with ImagePro software to determine total area covered by vessels (including lumens).  

Average vessel size was calculated from total area and vessel density.  OCLs were quantified in 

PTHrP treated bones by calculating TRAP+ area as for DAB using Fovea Pro as above selecting 

between 45-89°.  OCLs were quantified in RANKL treated calvaria calculating the TRAP+ 

(resorptive) surface of the sub-periosteal surface of the calvarial outer table by grid map 
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counting, as well as TRAP+ area.  All animal protocols were approved by the IACUC of VA 

Pittsburgh Healthcare System, University of Pittsburgh, or Virginia Commonwealth University. 

 

Statistical Analyses:  The unpaired Student’s t-tests or one way ANOVA with LSD 

procedure were used for analyzing 2 or multiple groups respectively.  To analyze correlation, the 

Pearson correlation coefficient was calculated by linear regression, and the 1 sample F-test for a 

correlation coefficient was used to test for significance.  Two-tailed analyses were performed 

with SPSS software.  Significance was set at α = 0.05.      

2.4 RESULTS 

2.4.1 OCL Conditioned Media Stimulates Angiogenesis in vitro to a Similar Extent as 

Other Bone Marrow Angiogenic Cell Types 

We developed a model system where the angiogenic activity of OCL conditioned media (CM) 

could be assayed with co-cultures of HUVECs and fibroblasts.  Several initial dose finding 

studies determined that OCL CM had to be concentrated to observe an effect.  As shown in 

Figure 2.1 (A), the angiogenic effect of OCL CM was dose responsive but plateaued.  Based on 

these dose response studies, we concentrated CM adequately so that the media in the 

angiogenesis assay contained the secretions of 30,000 OCLs per ml.  Because of the need to 

concentrate conditioned media and because of interfering effects of serum used in OCL cultures, 

CM was collected under serum free conditions.   
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 To compare the angiogenic capacity of OCLs to other bone marrow cell types 

known to stimulate angiogenesis, we compared the activity of OCL, macrophage or bone 

marrow stromal cell conditioned media collected from equivalent numbers of cells.  The 

angiogenic capacity of OCLs was similar to these other cell types (Figure 2.1 B).  
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Figure 2.1.  Osteoclast conditioned media stimulates angiogenesis in vitro. 

(A)  OCL CM stimulates angiogenesis in the HUVEC / fibroblast co-culture angiogenesis assay.  Serum 

free conditioned media was collected from human BM OCL cultures and concentrated 5.6 fold, then diluted out to 

yield the working concentrations of products of indicated number of OCL / ml assay media.    (B)  OCL CM 

stimulates angiogenesis by comparable amounts to other angiogenic bone marrow cell types on a per-cell basis.  

Conditoned media was concentrated so that products of 30,000 OCL per ml and products of equivalent total cell 

numbers for each cell type were added to the HUVEC / fibroblast co-culture angiogenesis assay.      
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2.4.2 OCL inhibition decreases angiogenesis in metatarsal explants 

After having shown that OCL CM is angiogenic, we wanted to determine if OCLs can stimulate 

angiogenesis under more physiological circumstances.  To determine if OCLs also contribute to 

angiogenesis in a more physiologic model for bone than purified cell cultures, we determined the 

effects of modulating OCL number and activity on angiogenesis in the fetal mouse metatarsal 

assay.  In this assay, metatarsals from E17.5 mice are cultured in vitro in the presence or absence 

of cytokines or hormones.  At this developmental stage, the primary ossification center is formed 

but not yet invaded by OCL precursors, which are in the periosteum.  Endothelial cells form 

tubes in a mixed cellular outgrowth during culture.[17]  This assay has been used to analyze the 

effects of osteoblast specific gene knockouts on angiogenesis.[15]  As shown in Figure 2.2 A, 

inhibition of OCL formation with osteoprotegerin (OPG) reduced angiogenesis in a dose-

dependent manner, as measured by staining endothelial cells with CD31 and quantitative image 

analysis of angiogenic tube formation.  To verify that OPG inhibited OCL formation and 

activity, we measured type I collagen (bone collagen) C-terminal telopeptide (CTX) levels in the 

conditioned media (CM) or activity of TRAP (OCL marker) extracted from the bone explants 

treated with OPG (Figure 2.2 B).  There was a parallel decrease in angiogenesis, CTX 

concentration, and TRAP activity.  To verify that OPG was not toxic to endothelial cells, we 

treated the HUVEC / fibroblast co-culture angiogenesis assay, which does not contain OCLs, 

with equivalent doses of OPG and observed a slight increase in angiogenesis (2.2 D). rather than 

any decrease due to possible toxitity.  Direct stimulatory effects of OPG on endothelial cell have  

been previously observed.[135]  Therefore, the metatarsal studies may have slightly 

underestimated the importance for OCLs to angiogenesis. 
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Figure 2.2.  Osteoclast inhibition with osteoprotegerin decreases angiogenesis in fetal metatarsal 

explants.   

(A) Metatarsal explants stained for endothelial cells (Red, CD31).  17.5 ED outbred fetal mouse metatarsals 

were cultured with indicated treatments for 15 days before fixation:  (i) control, (ii) 333 ng/mL, (iii) 1 μg/mL, (iv) 3 

μ/mL rh OPG-Fc.  Arrow: area of osteoclastic resorption which is prominent in the control bones and decreases with 

increasing OPG. (B) Quantitation of angiogenic outgrowth and OCL number and activity in metatarsal explants.  (i) 

Number of branches and other angiogenesis tube formation parameters quantified at end of the assay period (15 

days).  (ii) CTX (RatLaps) assayed from metatarsal explant conditioned media collected from days 7 to 9 of culture.  

(iii) TRAP activity extracted by homogenization of bones after 15 days of culture and assayed by color development 

using a TRAP substrate.  Mean ± SEM.  *:  p < 0.05.  Images aquired as whole mounts in water with an Olympus 

IX71 microscope with a UPlanFLN objective, NA of 0.13 and a Spot RTKE camera with Spot Advanced software.  

Original magnification x 4.  (C) Correlation of OCL activity and angiogenesis.  The TRAP activity extracted from 

bone explants and angiogenesis (branch points) was correlated for all samples treated with varying concentrations of 

OPG-Fc, and analyzed by linear regression.  r: Pearson correlation coefficient, p: significance by 1 sample F-test for 

linear regression.  (D)  Lack of anti-angiogenic effect in the OCL free HUVEC / fibroblast co-culture angiogenesis 

assay.   The assay was treated with the indicated concentrations of rh OPG-Fc and quantified with Metamorph 

software for angiogenic tube formation.  Mean ± SEM.  *:  p < 0.05.    
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2.4.3 Osteoclast Stimulation Increases Angiogenesis in Metatarsal Explants 

Having shown that OCL inhibition in metatarsal explants decreased angiogenesis, we next 

investigated if angiogenesis was increased by OCL stimulation.  As shown in Figure 2.3 A, 

stimulation of OCL formation with PTHrP, which stimulates osteoclastogenesis primarily 

through increased RANKL expression on osteoblasts, increased the area of CD31+ endothelial 

cells in metatarsal explant cultures.  Because PTHrP can have direct effects on osteoblast 

differentiation or survival, we also treated the explants with OPG to determine if the angiogenic 

effect of PTHrP required OCLs.  PTHrP failed to stimulate angiogenesis in the presence of OPG 

(Figure 2.3 A (iv)).  OCL stimulation and inhibition did not simply have opposite effects on 

explant angiogenesis, but rather had differing effects on the morphology of the endothelial cell 

outgrowth.  As shown in figure 2.3 B (i), PTHrP increased CD31+ area 1.5 fold due to increased 

density of endothelial cells adjacent to the bone.  However, parameters of endothelial tube 

formation, such as number of branch points, which were inhibited by OPG, were not increased 

by PTHrP treatment (Figure 2.3 B (ii)).  The reasons for these contrasting effects on endothelial 

morphology are under investigation.     
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Figure 2.3.  Osteoclast stimulation increases angiogenesis in fetal metatarsal explants 

(A)  PTHrP stimulates angiogenic outgrowth from metatarsal explants by a mechanism requiring 

osteoclasts.  Whole mount fetal metatarsal explants from outbred mice cultured for 15 days with vehicles (i), 3 

μg/mL rh OPG-Fc (ii), 100 nM h PTHrP (1-34) (iii) or OPG + PTHrP (iv), fixed and stained for CD31 (Red).  

Images aquired as whole mounts in water with an Olympus IX71 microscope with a Plan N 2x objective, NA of 

0.06 and a Spot RTKE camera with Spot Advanced software.  Original magnification x 2.  (B)  Quantification of 

angiogenic response to PTHrP and OPG.  Angiogenesis was quantified by measurements of total CD31+ area (i) or 

angiogenic tube formation (branches) (ii).  Mean ± SEM.  *:  p < 0.05.  Similar results were seen in 2 experiments.  

Results represent one representative experiment of 2 performed. 

 

 

2.4.4 OCL Stimulation with PTHrP or RANKL Increases Angiogenesis in vivo in Mouse 

Calvaria   

We next determined if OCL stimulation increased angiogenesis in mice treated with PTHrP.  

Therefore, mice were treated with PTHrP every 6 hours subcutaneously for 5 days and then 

analyzed for OCLs and vessels histologically.  This protocol has been used previously to 

dramatically induce OCL formation in calvaria and by frequent dosing is designed to minimize 

possible osteoblastic (anabolic) effects of PTHrP.[275]  OCLs and blood vessels, labeled for the 

endothelial cell marker CD31, were dramatically increased between the bone tables in calvaria 

following PTHrP treatment (Figure 2.4A).  OCL stimulation with PTHrP was less dramatic in 

femorae.  The pattern of vessels in the metaphysis adjacent to the growth plate was changed, but 

there were no significant differences in vessel area (Figure 2.4B).  The dramatic increase in total 

CD31+ vessel area normalized to tissue area was primarily due to increased vessel number rather 

average size of each vessel (Figure 2.4C).  Average vessel size was not significantly increased 
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(data not shown).  Cells of the reticuloendothelial system, such as those found in sinusoids of the 

bone marrow or liver do not express CD31.[104]  Thus, these data reflect changes in endothelial 

cells of capillaries and arterioles rather than the venous sinusoids.  PTHrP treatment was also 

characterized by an anabolic response within the calvarial inner table and associated tissue, 

resembling the response seen in hyperparathyroidism termed “osteitis fibrosa cystica.”  The 

thickness of the inner table was increased 4 fold with PTHrP treatment (Figure 2.4D).  CD31+ 

vessels in the inner table increased in proportion with tissue area in PTHrP treated bones.  Thus 

CD31+ vessels in the inner table were not increased when normalized for tissue area (data not 

shown).  As an illustration of the osteoclastic response to PTHrP, OCLs, as measured by TRAP+ 

area within the whole section, were increased with PTHrP treatment (Figure 2.4E).  
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Figure 2.4.  PTHrP stimulates angiogenesis in vivo 

(A)  Stimulation of OCL activity by PTHrP increases angiogenesis in mouse calvaria in vivo.  Coronal 

sections of calvaria from mice treated with h PTHrP (1-34) every 6 hours for 5 days, labeled for CD31 (brown) and 

TRAP (red), and lightly counterstained with hematoxylin.  Prominent CD31+ vessels are indicated by arrows.  The 

inner table thickness is indicated by a 2 headed arrow.   (B) Effects of PTHrP on vessels at femoral growth plate.  

Images are oriented with the growth plate at the top and metaphysis at the bottom.  Sections are labeled for CD31 

(brown) and counterstained (methyl green)  (C)  PTHrP increases CD31+ vessel density between calvarial bone 

tables.  Total vessel area and vessel density quantified by grid map counting by a blinded observer of the para-

sagittal areas of CD31 stained calvarial sections.  (D)  PTHrP increases thickness of inner table. Total tissue area of 

the inner table was quantified by image analysis by a blinded observer.  (E)  PTHrP induces OCL formation in 

calvaria.  Total TRAP+ area as a percentage of tissue area was quantified by image analysis by a blinded observer.  

Mean ± SEM.  *:  p < 0.05 compared to vehicle.  Results represent one representative experiment of 2 performed.    

 

 

Because PTHrP can affect osteoblasts and other cells in addition to OCLs, we next 

studied the effect of RANKL on angiogenesis since RANKL does not affect osteoblasts, 

(reviewed in[63]).  We stimulated OCLs by supra-calvarial injection of RANKL to determine if 

OCL stimulation increased angiogenesis.  We observed dramatic bone resorption and OCL 

formation in the outer table with RANKL treatment (Figure 2.5 A).  The resorbed area was 

replaced by non-calcified tissue resembling osteitis fibrosa and containing dense vessel invasion.  

Both vessel area and vessel size were increased by OCL stimulation (Figure 2.5 B).  As 

expected, RANKL increased OCL formation as measured by TRAP+ area and resorptive surface 

(Figure 2.5 C). 
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Figure 2.5.  RANKL stimulates angiogenesis in vivo 

(A)  Supra-calvarial RANKL increases angiogenesis and OCL formation in calvaria of mice.  Images of the 

outer table of calvarial sections stained for TRAP (red) and CD31 (brown) and lightly counterstained with 

hematoxylin.  Arrow: CD31+ vessel in remodeling bone.  Green two headed arrow indicates the thickness of 

RANKL induced bone remodeling.  Outer surface is at the top of the image.  Auto contrast and auto color 

adjustment was performed with Adobe Photoshop software.  (B)  Quantification of RANKL induced vessel response 

by calculation of CD31+ vessel density or area in the outer table of 10x objective images taken at the calvarial 

midline.  (C)  Total percent TRAP+ area or the calvarial outer table or resorptive surface of the outer table sub-

periosteal surface.  Mean ± SEM.  *:  p < 0.05 

  

2.5 CONCLUSIONS 

In these studies we demonstrated that OCLs stimulated angiogenesis in vitro, in bone explants 

and in vivo in calvaria.  We showed that OCL conditioned media is angiogenic, and of 

comparable activity to other bone marrow cell types known to stimulate angiogenesis.  We show 

that stimulating or blocking OCL formation and activity in bone organ cultures results in parallel 

changes in angiogenesis, and stimulating osteoclastogenesis in vivo increases angiogenesis.  

Prior to our studies, the role of OCLs in angiogenesis was unclear.  Prior to, or concurrent with 

our studies, other groups have reported angiogenic activity of OCL CM but have not 

demonstrated an in vivo role of OCLs in angiogenesis.[5, 150]   

The limited literature looking at a possible role for OCL stimulated angiogenesis in vivo 

is contradictory.  Vu et al reported in their discussion section that osteopetrotic (c-fos -/- and 

op/op) mice have delayed blood vessel invasion into the primary ossification center and growth 
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plate in vivo.[14]   However, other investigators found that OCLs do not play a role in 

angiogenesis and reported that lack of OCLs did not affect blood vessel invasion into the 

epiphyses of tibiae or mouse tail vertebrae.[4, 149]  These results suggest that OCLs are likely to 

be less important for angiogenesis in vertebrae and long bone epiphyses.  Differences in the role 

of other bone cell types on angiogenesis at different bone anatomic sites have been reported, and 

thus the contribution of OCLs to angiogenesis may differ at different anatomic sites.  For 

example, osteoblast contributions to angiogenesis are more important in long bones than 

calvaria.[15]  

The studies in this chapter show an important role for the OCL in angiogenesis 

stimulation.  We showed that OCL conditioned media has angiogenic activity in vitro.  This data 

demonstrates that OCLs secrete a factor(s) which can act directly on endothelial cells.  The 

studies in this chapter do not show whether such a direct effect of OCLs on angiogenesis is their 

primary mechanism for angiogenesis stimulation in vivo.  More complex mechanisms may be at 

play.  OCL-stimulated angiogenesis may result from release of angiogenic factors from matrix.  

Alternatively, a linked osteoblastic response may also be required for OCL-stimulated 

angiogenesis.  In support of a coupled proliferative response of osteoblasts or other cells playing 

a role in OCL-stimulated angiogenesis, OCL stimulation by PTHrP or RANKL in vivo was 

indeed accompanied by osteoblastic and “osteitis fibrosa” responses.  Since osteoblast derived 

VEGF is clearly important for angiogenesis, osteoblasts and OCLs may cooperate to stimulate 

angiogenesis in bone.  

Because PTHrP can also induce proliferation of osteoblasts as well as OCLs, we can not 

rule out that osteoblastic effects of PTHrP may have contributed to its angiogenic effects in 

vivo.[63]  However, because RANKL, which has no osteoblastic effects, also simulated 
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angiogenesis, we are confident in reporting that OCLs stimulate angiogenesis in vivo.  We 

showed in the metatarsal system that any possible angiogenic effects of PTHrP due to its direct 

effects on osteoblasts require OCLs, because the angiogenic effects or PTHrP were blocked by 

the OCL inhibitor osteoprotegerin (OPG).  We attempted to perform the analogous experiment in 

vivo but were unable to obtain sufficient quantities of OPG that was active in mice.        

It is possible that OPG, which we used to modulate OCL activity, may also affect 

endothelial cells.  Several studies have reported possible direct stimulatory effects of OPG on 

endothelial cells, suggesting that we may have underestimated the contribution of OCLs to 

angiogenesis in our experiments using OPG.[67-69]  Further, OPG can stimulate angiogenesis or 

endothelial cell survival in cell culture or aortic ring explants.[135, 220]  In agreement with these 

findings, when equivalent concentrations of OPG to those used to inhibit metatarsal angiogenesis 

were tested in the HUVEC / fibroblast co-culture angiogenesis assay, which lacks OCLs, we 

observed a slight stimulation rather than any inhibition of angiogenesis in the HUVEC cultures.  

It is unclear if PTHrP can directly inhibit or stimulate endothelial cells.  Two studies reported 

PTHrP inhibited and one reported PTHrP stimulated endothelial cells.[67-69]  Like PTHrP, it is 

unclear if RANKL has  possible direct effects on endothelial cells.[132, 135]   

In the studies described in the following chapter, we investigated the mechanisms 

required for OCLs to stimulate angiogenesis and found that MMP-9 is required for OCL 

stimulated angiogenesis in metatarsal explants and in vivo.    
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3.0  OSTEOCLAST-STIMULATED ANGIOGENESIS REQUIRES MMP-9 

3.1 SUMMARY 

The studies in this chapter investigate the molecular mechanisms underlying OCL-

stimulated angiogenesis.  We first reviewed the literature and studied the expression of 

angiogenic factors by OCLs to determine which molecules may be used by OCLs to stimulate 

angiogenesis.  Three factors we investigated, IL-8, MCP-1 and osteopontin, were not important 

for OCL-stimulated angiogenesis in the HUVEC / fibroblast in vitro angiogenesis assay.  Most 

of the studies in this chapter investigate whether MMP-9 is important for OCL stimulated 

angiogenesis.  MMP-9 was a logical choice for the mediator of OCL-stimulated angiogenesis for 

several reasons.  It is expressed highly by OCLs and was expressed by OCLs almost 100 fold 

higher than any other angiogenic factor on the SA Biosciences human angiogenesis Q-PCR 

array.  Importantly, it is primarily expressed by OCLs in bone.  It is known to stimulate 

angiogenesis by release of matrix bound VEGF.  We studied the role of MMP-9 in OCL-

stimulated angiogenesis using all three of the model systems described in chapter 2.  Lack of 

MMP-9 reduced OCL stimulated angiogenesis in metatarsal explants as shown by loss of the 

pro-angiogenic response to PTHrP.  Likewise, lack of MMP-9 also reduced OCL-stimulated 

angiogenesis in calvaria in vivo as shown by a blunted angiogenic response to RANKL.  

Interestingly, PTHrP or RANKL stimulated osteoclasts less in MMP-9-/- than WT metatarsal 
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explants and calvaria in vivo.  However, the number of vessels per OCL was not reduced by lack 

of MMP-9 in vivo and lack of MMP-9 did not decrease OCL formation from bone marrow cells  

in vitro.  A neutralizing antibody to MMP-9 did not block the pro-angiogenic activity of MMP-9 

conditioned media.  From these data we concluded that MMP-9 is required for OCL-stimulated 

angiogenesis primarily due to its known effects on OCL migration.                

3.2 INTRODUCTION 

A search of the literature showed that OCLs secrete many different angiogenic factors, 

which can act directly on endothelial cells, including VEGF, IL-8, osteopontin, bFGF, PDGF, 

Angiopoietin-1 and Angiopoietin-2.[6, 119-123]  Furthermore, during the course of our studies, 

Tanaka et al reported that OCLs stimulate angiogenesis in vitro due to secretion of 

osteopontin.[5]  All of these molecules would be expected to stimulate angiogenesis by acting 

directly on endothelial cells.   

 However, there are many ways in which OCLs could stimulate angiogenesis more 

indirectly.  They could release angiogenic factors from calcified or non-calcified matrix.  For 

example, osteoclastic resorption is theorized to release active TGF-β from bone matrix.[10]  This 

observation has led to a large body of literature on the “viscious cycle” of cancer bone 

metastasis.[109]  Secondly, increased OCL number and activity could lead to proliferation or 

increased angiogenic factor expression in another cell type which would then secrete the direct 

stimulators of angiogenesis.  For example, in most physiological situations, increases in OCL 

number are coupled to increased osteoblastogenesis.  The ability of osteoblasts to stimulate 

angiogenesis is well known.[15]       
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Early studies in MMP-9-/- mice suggested that OCLs may stimulate angiogenesis by 

secretion of MMP-9, but the hypothesis has not been further pursued.  MMP-9-/- mice display 

delayed endochondral ossification and vessel invasion into the primary ossification center, 

accompanied by lengthened growth plates.  However, this phenotype resolves, and adults have 

normal appearing bones, which are slightly shorter than in WT animals.[14]  These investigators 

soon delineated the mechanism for the effects of MMP-9 on OCL invasion and reported that 

MMP-9 release of matrix bound VEGF is important for OCL recruitment to the long bone 

growth plate.  MMP-9 decreased resorption in E17 mouse metatarsal explants, but not in more 

mature bones.  These effects were due to the effects of MMP-9 on invasion or migration rather 

than matrix solubilization.[161]  Likewise, others reported MMP-9 is important for OCL or OCL 

precursor migration in vitro.[253-255]  Similarly, MMP-9 delays OCL and vessel invasion into 

long bone fracture calluses.[164]  In bone, MMP-9 is predominantly expressed by OCLs and 

committed OCL precursors, but can be expressed by other cell types such as osteoblasts and 

hypertrophic chondrocytes during development, and macrophages and neutrophils during 

fracture repair.[14, 164, 248, 276]  Therefore, OCLs are likely responsible for most of the effects 

of MMP-9 in bone.   

Several studies have reported that MMP-9 stimulates angiogenesis through activation or 

release of growth factors.  MMP-9 was first implicated as the angiogenic switch in a mouse 

pancreatic cancer model in which MMP-9 released matrix (heparan) associated VEGF and 

increased VEGF signaling.[12]  Likewise, MMP-9 expression and resultant VEGF activation by 

macrophages was required for angiogenesis in a cervical cancer model.[13]      

 We studied the mechanisms of OCL-stimulated angiogenesis by first studying 

OCL expression of angiogenic factors, then testing likely candidates for their importance to OCL 
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mediated angiogenesis.  We found that MMP-9 is important for OCL stimulated angiogenesis in 

metatarsal explants and in vivo primarily due to its effect on OCL migration.   

3.3 MATERIALS AND METHODS 

Materials:  Primary antibodies: Polyclonal rabbit anti-mouse MMP-9 was purchased from 

Abcam (#ab38898).  The 11b5 mouse monoclonal IgM anti-VEGF-A in complex with VEGFR-1 

or R-2 antibody was obtained from East Coast Bio (#CD302).  Secondary antibodies:  Vector 

Laboratories supplied biotinylated goat anti-rabbit secondary antibodies and SA-HRP.  Jackson 

ImmunoResearch supplied biotinylated goat anti-mouse IgM μ chain and goat movalent Fab 

anti-mouse μ chain (for blocking endogenous IgM).  Mouse anti-human MMP-9 neutralizing 

antibody clone # 6-6B (cat # IM09L) was provided by Calbiochem.  Recombinant human 

osteopontin rh IL-8, rh MCP-1, rh VEGF165, mouse monoclonal anti human IL-8 neutralizing 

antibody (clone #6217)  and “Quantikine” ELISA assays for human osteopontin, MCP-1 and IL-

8  were from R&D Systems.  RNA Bee (phenol chloroform) RNA purification reagent was from 

Tel-Test.  cDNA synthesis and PCR reagents (Superscript II reverse transcriptase, oligo dT, first 

strand buffer, DTT, Taq DNA polymerase, PCR buffer, dNTPs, and MgCl2) were from 

Invitrogen.  Human angiogenesis quantitative real-time PCR array and RT2 cDNA synthesis kit 

were from SA Biosciences.  RNeasy RNA purification kit was from Qiagen.  MMP-9-/- mice 

were generated as described and backcrossed to C57BL/6 mice for 10 generations.[14]  Timed 

pregnant C57BL/6 mice were from The Jackson Laboratory.       
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Analysis of Human OCL angiogenic factor expression by reverse transcriptase 

PCR:  Human bone marrow OCLs were cultured as described in chapter 2.  Total RNA was 

purified using RNA Bee (phenol chloroform extraction).  1 μg total RNA was reverse transcribed 

using Superscript II reverse transcriptase.  PCR was performed on a Applied Biosystems 

GeneAmp 2700 thermocycler with the following program: initial incubation for 5 minutes at 

95°C followed by 35 to 40 cycles of denaturing at 95°C for 1 minute, indicated annealing 

temperature for 1 minute, and extension at 72°C for 1 minute followed by a final extension for 

10 minutes at 72°C.  Products were visualized on 2% agarose gels stained by soaking in 1 μg/ml 

ethidium bromide in TAE buffer.  PCR for β-actin was performed to verify successful cDNA 

synthesis and confirm negative results.   

 

Table 3.1.  Primers used for analysis of human OCL angiogenic factor expression by reverse 

transcriptase PCR 

Gene Sequence Size 
(bp) 

Annealing 
Temperature 

VEGFA Sense           5’  gaaaccatgaactttctgc 
Antisense    5’  cgcctcggcttgtca 

470, 
602, 674 (3 
splice 
isoforms) 

50°C 

FGF2 Sense           5’  agcggctgtactgcaaaaac 
Antisense    5’  cccaggtcctgttttggat 

338 57°C 
 

ANGPT1 Sense          5’  aaatggaaggaaaacacaaggaa 
Antisense    5’  atctgcacagtctctaaatggt 

263 58°C 

ANGPT2 Sense           5’  ggatctggggagagaggaac 
Antisense    5’  ctctgcaccgagtcatcgta 

535 60°C 

ANGPT4 Sense           5’  cccagatgccagagaccttt 
Antisense    5’  cacctgctcacctgccatta 

368 60°C 

IL8 Sense           5’  cgatgtcagtgcataaagaca 
Antisense    5’  tgaattctcagccctcttcaaaaa 

201 57°C 
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Human OCL culture angiogenic factor array analysis:  For comparison of the profile 

of angiogenic factors expressed in human OCL or macrophage culture, OCLs were cultured as 

described in chapter 2 with the following modifications:  non-adherent cells were diluted to 2 x 

106 / ml in α-MEM with 20% horse serum, 10 ng/ml rh M-CSF with or without 50 ng/ml rh 

RANKL and seeded 0.4 ml per well of 48 well plates.  Cultures were maintained for 17 days 

with twice weekly changes of half the media volume containing a full complement of cytokines, 

as previously described.[19]  Expression of angiogenic factors was determined in OCL (RANKL 

+ M-CSF treated) vs control cultures cultured with M-CSF only using the SA biosciences real 

time Q-PCR human angiogenic factor array.  For replicates of the profile of angiogenic factors 

expressed in human purified OCLs, cultures were performed as described in chapter 2.   

RNA (primarily mRNA) was purified with Qiagen RNeasy kit and reverse transcribed 

with the SA biosciences RT2 first strand kit.  Real time PCR was performed on a BioRad I-

Cycler with provided primers and SYBR green.  Ct values were calculated by the default settings 

of the I-Cycler software.  Genomic DNA controls were negative.  Data was analyzed by the 

ΔΔCt method compared to the average Ct value of the 4 or 5 housekeeping genes.  Expression of 

each gene relative to housekeeping genes was calculated as 2-ΔCt.  Genes that had Ct values of 

higher than 35 cycles were considered not expressed and not analyzed.  The following genes 

were included on the array:  
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Table 3.2.  Genes analyzed on the SA Biosciences human angiogenesis array. 

Group Gene Symbol Description Aliases 
ANGPT1 Angiopoietin-1  
ANGPT2 Angiopoietin-2  
TYMP Thymidine phosphorylase ECGF1, PDECGF1 
ANPEP Alanyl aminopeptidase APN, CD13 

 
EREG Epiregulin  
FGF1 Fibroblast growth factor 1  
FGF2 Fibroblast growth factor 2 Basic FGF 
FIGF c-fos induced growth factor VEGF-D 
FLT1 Fms-like tyrosine kinase 1 VEGF-R1 
JAG1 Jagged 1  
KDR Kinase insert domain receptor Flk-1, VEGF-R2 
LAMA5 Laminin alpha 5  
NRP1 Neuropilin-1  
NRP2 Neuropilin-2  
PGF Placental growth factor PlGF, PLGF-2 
PLXDC1 Plexin domain containing 1  
STAB1 Stabilin-1  
VEGFA Vascular endothelial growth 

factor 
VEGF, VPF 

VEGFC Vascular endothelial growth 
factor C 

 

S1PR1 Sphingosine-1-phosphate 
receptor-1 

EDG-1 

EFNA-1 Ephrin-A1  
EFNA-3 Ephrin-A3  
EFNB2 Ephrin-B2  
EPHB4 EPH receptor B4 Ephrin receptor 

EphB4 
EGF Epidermal growth factor  
FGFR3 Fibroblast growth factor 

receptor 3 
 

HGF Hepatocyte growth factor  
IGF1 Insulin like growth factor 1  
PDGFA Platlet derived growth factor, 

alpha polypeptide 
PDGF A-chain 

TEK TEK tyrpsine kinase, 
endothelial 

Tie-2 

TGFA Transforming growth factor 
alpha 

 

TGFB1 Transforming growth factor 
beta 1 

TGF-β1 

Growth factors and 
receptors 

TGFB2 Transforming growth factor  
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beta 2  
TGFBR1 Transforming growth factor 

beta, receptor 1 
 

ANGPTL3 Angiopoietin-like 3 ANGPT5 
BAI1 Brain specific angiogenesis 

inhibitor-1 
 

COL4A3 Collagen type 4, alpha 3 Tumstatin 
CDH5 Cadherin 5, type 2 VE-Cadherin 
COL18A1 Collagen, type XVIII, alpha 1 Endostatin 
ENG Endoglin  
ITGAV Alpha v integrin  
ITGB3 Beta 3 integrin  
THBS1 Thrombospondin-1  

Adhesion 
Molecules 

THBS2 Thrombospondin-2  
ANGPTL4 Angiopoietin-like 4 ANGPTL2/ARP4 

PECAM1 

Platelet/endothelial cell 
adhesion molecule (CD31 
antigen) CD31 

PF4 Platelet factor 4 CXCL4/SCYB4 
PROK2 Prokineticin 2 BV8/KAL4 
   
Gene Symbol Description Aliases 

SERPINF1 

Serpin peptidase inhibitor, 
clade F (alpha-2 antiplasmin, 
pigment epithelium derived 
factor), member 1 PEDF 

TNFAIP2 
Tumor necrosis factor, alpha-
induced protein 2 B94 

HPSE Heparanase HPA/HPR1 

LECT1 
Leukocyte cell derived 
chemotaxin 1 BRICD3/CHM-I 

LEP Leptin OB/OBS 
MMP2 Matrix metallopeptidase 2  Gelatinase A 
MMP9 Matrix metallopeptidase 9  Gelatinase B 

PLAU 
Plasminogen activator, 
urokinase uPA 

PLG Plasminogen  

TIMP1 
TIMP metallopeptidase 
inhibitor 1  

TIMP2 
TIMP metallopeptidase 
inhibitor 2  

Proteinases, 
Proteinase 
Inhibitors and 
other Matrix 
proteins 
 
 
 
 
Proteinases, 
Proteinase 
Inhibitors and 
other Matrix 
proteins 
(continued) 

TIMP3 
TIMP metallopeptidase 
inhibitor 3   

Cytokines and 
Chemokines CCL11 

Chemokine (C-C motif) ligand 
11 SCYA11 
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CCL2 
Chemokine (C-C motif) ligand 
2 GDCF-2/GDCF-2  

CXCL1 
Chemokine (C-X-C motif) 
ligand 1  GRO1/GROa 

CXCL10 
Chemokine (C-X-C motif) 
ligand 10 C7/IFI10 

CXCL3 
Chemokine (C-X-C motif) 
ligand 3 CINC-2b/GRO3 

CXCL5 
Chemokine (C-X-C motif) 
ligand 5 ENA-78/SCYB5 

CXCL6 

Chemokine (C-X-C motif) 
ligand 6 (granulocyte 
chemotactic protein 2) CKA-3/GCP-2 

CXCL9 
Chemokine (C-X-C motif) 
ligand 9 CMK/Humig 

IFNA1 Interferon, alpha 1 IFL/IFN 
IFNB1 Interferon, beta 1, fibroblast IFB/IFF 
IFNG Interferon, gamma IFG/IFI 
IL6 Interleukin 6 BSF2/HGF 
IL8 Interleukin 8 3-10C/AMCF-I 
MDK Midkine MK/NEGF2 

 

TNF Tumor necrosis factor  DIF/TNF-alpha 

HAND2 
Heart and neural crest 
derivatives expressed 2 DHAND2/Hed 

SPHK1 Sphingosine kinase 1 SPHK 
AKT1 V-akt  AKT/PKB 

HIF1A 
Hypoxia-inducible factor 1, 
alpha subunit  HIF-1alpha 

ID1 Inhibitor of DNA binding 1 ID 

ID3 Inhibitor of DNA binding 3 HEIR-1 
NOTCH4 Notch homolog 4 (Drosophila) INT3/NOTCH3 

Transcription 
factors and others 

PTGS1 
Prostaglandin-endoperoxide 
synthase 1  COX1/COX3 

B2M Beta-2-microglobulin B2M 

HPRT1 
Hypoxanthine 
phosphoribosyltransferase 1  HGPRT/HPRT 

RPL13A Ribosomal protein L13a RPL13A 

GAPDH 
Glyceraldehyde-3-phosphate 
dehydrogenase G3PD/GAPD 

Housekeeping 
Genes 

ACTB Actin, beta PS1TP5BP1 
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Fetal Mouse Metatarsal Angiogenesis Assay:  General assay procedures are described 

in chapter 2.  Images of CD31 stained explants were acquired with an Olympus Multimode 

dissecting microscope and were quantified either with ImageJ for total CD31+ area and corrected 

for the area of bones stained with control IgG in place of primary antibody.  For comparing the 

angiogenic and osteoclastic response of MMP-9 -/- vs. wt metatarsals treated with PTHrP, 7 

litters of C57BL/6 and 6 litters of C57BL/6 MMP-9 -/- were treated with 100 nM PTHrP or 

solvent separately.  The mean fold increase in CD31+ area with PTHrP treatment was calculated 

for each litter.  The effect of PTHrP treatment on each genotype was compared by calculating the 

mean increases (fold control) per litter.  This analysis was necessitated by the large variability in 

angiogenesis that was seen among litters in solvent treated explants.   

 

Histology and Immunohistochemistry:  Labeling of CD31 and TRAP in fixed frozen 

sections was performed as described in chapter 2.  For 11b5 labeling, blocking was accomplished 

with 10% goat serum, 1% horse serum (HS) PBS, followed by PBST washes x2. Blocking of 

endogenous IgM was accomplished with Fab anti-μ 0.1 mg/mL in PBS, followed by primary 

antibody (culture supernatant 1:10 in 1% HS-PBS), 1% HS-PBS washes x5, goat anti-μ in 1% 

HS-PBS, PBS washes x5 and SA-HRP and substrate as above.   

 

In vivo studies:  MMP-9-/- C57BL/6 mice were injected with m RANKL-GST along side 

the WT mice described in chapter 2.  Data from WT mice is reported again in this chapter and 

compared to MMP-/- mice.    
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In vitro angiogenesis assay:  Human OCL conditioned media was collected and the TCS 

CellWorks in vitro angiogenesis assay was performed as in chapter 2.  For MMP-9 

neutralization, neutralizing antibody clone # 6-6B or moue IgG control were diluted to a final 

concentration of 3 μg/mL and pre-incubated for 1 hour at 37oC.  This concentration is 3 fold 

higher than the concentration reported to inhibit MMP-9 activity in bioassays.[277]        

 

Statistical Analyses:  The unpaired Student’s t-test or one way ANOVA with LSD 

procedure were used for analyzing 2 or multiple groups respectively.  The ratio t-test (paired t-

test on logarithms of vehicle vs treated samples) was used for analysis fold control data.  Two-

tailed analyses were performed with SPSS software.  Significance was set at α = 0.05.    

3.4 RESULTS   

3.4.1     Analysis of OCL Angiogenic Factor Expression
 
 
 

 

We  analyzed  gene  expression  of   angiogenic  factors   in  human   OCL  cultures  by  reverse 

transcriptase PCR and the SA Biosciences quantitative real time PCR human angiogenesis array.

We took a candidate factor  approach in the reverse transcriptase PCR  studies.  The results of

these studies are  shown  in Figure 3.1.   Purified human OCL  cultures expresses angiopoietin-1,                                          

angiopoietin-4, and FGF-2, but did not express VEGF or angiopoietin-2. 
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Figure 3.1.  Analysis of osteoclast angiogenic factor expression by reverse transcriptase PCR 

RNA collected from human bone marrow OCL cultures or control cell types was analyzed by reverse 

transcriptase PCR 

 

To analyze angiogenic factor gene expression of human OCLs on a wider scale, we used 

the SA Biosciences human angiogenesis real Q-PCR array.  To determine the angiogenic factors 

expressed by OCLs, the level of angiogenic factor expression in two independent purified human 

OCL cultures was analyzed.  The 15 most highly expressed angiogenic factors in both cultures 

are reported in table 3.3.  The following genes were in the top 15 in both groups.:  MMP-9, 

TIMP1, TIMP2, MCP-1, ANPEP, HIF1-α, αv integrin, NRP1, NRP2 and IL-8.   

 

Table 3.3.  15 most highly expressed angiogenic factors (or inhibitors) in 2 purified human OCL 

cultures.  

Expression is reported relative to the 4 housekeeping genes: HPRT1, RPL13A, GAPDH and 

ACTB.   

Culture # 1 Culture # 2 
Gene Relative Expression Gene Relative Expression 
MMP9 19.69831 MMP9 15.45498 
TIMP2 0.870551 TIMP1 1.931873 
ANPEP 0.659754 CCL2 (MCP-1) 0.68302 
CCL2 (MCP-1) 0.466516 TIMP2 0.392292 
HIF-1a 0.435275 IL-8 0.34151 
alphaV integrin 0.307786 ANPEP 0.31864 
Endoglin 0.267943 AlphaV integrin 0.31864 
TIMP1 0.217638 CXCL9 (MIG) 0.241484 
uPA 0.176777 TNF-a 0.129408 
TGFB1 0.164938 HIF-1a 0.098073 
NRP1 0.143587 NRP2 0.056328 
NRP2 0.076947 NRP1 0.03983 
IL-8 0.058315 CXCL10 0.03983 
CXCL5 (ENA-78) 0.044194 Beta3 Integrin 0.03983 
ECGF1 0.044194 CXCL1 (GRO-alpha) 0.037163 
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Alternatively, to analyze angiogenic factors induced by OCL differentiation, we 

compared angiogenic factor expression in human bone marrow non-adherent cell OCL cultures 

(cultured with RANKL and M-CSF) compared with cells cultured with M-CSF alone containing 

mostly macrophages.  Genes upregulated at least 4 fold in OCL relative to control cultures are 

reported in Table 3.4.  Expression of angiopoietin-2 was not observed by conventional reverse 

transcriptase PCR but was detected on the array at a very low level.    

 

Table 3.4.  Angiogenic Factors Upregulated by OCL differentiation 

* Expression of angiogenic factors relative to 5 housekeeping genes: B2M, HPRT1, RPL13A, GAPDH and 

ACTB in OCLs cultured from human bone marrow adherent cells treated with RANKL and M-CSF was assayed 

with the SA Biosciences human angiogenesis Q-PCR array. 

† The fold expression in human bone marrow OCL cutltures relative to human bone marrow adherent cells 

cultured with M-CSF only was calculated normalized to housekeeping genes.  Only factors upregulated at least 4 

fold are reported.    

 

Angiogenic factor OCL expression 
relative to 5 housekeeping 

genes* 

Fold upregulation 
compared to M-CSF treated 

cultures† 
MMP-9 47 7.1 
ANPEP (APN, CD13) 0.48 4.1 
β3 integrin 0.069 28.2 
MMP-2 0.069 7.1 
Neuropilin-2 0.060 5.7 
Sphingosine Kinase 1 0.020 11 
CXCL5 (ENA-78) 0.012 8.1 
Notch-4 0.0061 5.0 
COL18A1 (endostatin) 0.0026 8.1 
Angiopoietin-2 0.00020 4.1 
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As shown in Table 3.3 and 3.4, MMP-9 was much more highly expressed in OCLs than 

the other genes analyzed.  MMP-9 was the most highly expressed pro-angiogenic factor by 

human OCLs at the mRNA level and was expressed approximately an order of magnitude more 

highly than all other angiogenic factors examined. It was also upregulated over 7 fold compared 

to control cultures of primarily macrophages treated only with M-CSF. 

3.4.2 MMP-9 is Required for OCL Stimulation of Angiogenesis in Metatarsal Explants 

Because MMP-9 can be pro-angiogenic, is expressed highly by OCLs, and its null allele delays 

blood vessel invasion of the growth plate, we next determined if OCLs stimulate angiogenesis in 

part by secretion of MMP-9.   

We tested the capacity of PTHrP to stimulate angiogenesis in metatarsal explants from 

MMP-9-/- or WT C57BL/6 mice by treating metatarsals from 7 WT and 6 MMP-9-/- C57BL/6 

litters of mouse embryos with 100 nM PTHrP (1-34) or vehicle and comparing the ability of 

PTHrP to stimulate angiogenesis as measured by CD31+ area.  Because of the large variability in 

the level of basal angiogenesis and resorption among litters, angiogenesis and OCL activity data 

were analyzed in terms of fold control for each litter.  As indicated by the positive (ratio greater 

than unity) effects of PTHrP vs. vehicle, PTHrP increased angiogenesis in WT but not in MMP-

9-/- metatarsal explants, and the angiogenic effects differed between the genotypes (Figure 3.2A, 

3.2B).   
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Figure 3.2.  MMP-9 is required for OCL-stimulated angiogenesis in metatarsal explants. 

PTHrP-induced metatarsal angiogenesis is blunted in MMP-9-/- explants.  Sample 2x original magnification 

images of WT or MMP-9 -/- C57BL/6 metatarsal explants treated with vehicle or 100 nM PTHrP as indicated and 

stained for CD31.  Images acquired as in figure 2.  (B)  Angiogenic response to PTHrP is significantly less in MMP-

9-/- than in WT metatarsal explants.  Metatarsals from 7 WT and 6 MMP-9-/- litters of each genotype were treated 

with 100 nM PTHrP or vehicle.  The mean increase in CD31+ area per litter for all litters ± SEM is reported.  *:  p < 

0.05. for difference in treatment response between genotypes.  PTHrP significantly stimulated angiogenesis in WT 
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but not in MMP-9-/- metatarsals, as determined by the ratio t-test comparing vehicle and PTHrP treated means for 

each litter.   

3.4.3 MMP-9 is Required for OCL Stimulation of Angiogenesis in vivo 

We stimulated OCL formation in both WT and MMP-9-/- C57BL/6 mice by supra-calvarial 

injection of RANKL to determine if OCLs increased angiogenesis by a mechanism requiring 

MMP-9.  RANKL treatment induced dramatic changes in bone resorption and OCL formation in 

the outer table (Figure 3.3A).  The resorbed area was replaced by non-calcified tissue resembling 

active periosteum and contained newly formed vessels not previously present in calcified tissue.  

Angiogenesis was induced by RANKL only in WT but not MMP-9-/- calvaria as measured by 

CD31+ vessel density or total CD31+ vessel area within the outer table of calvaria (Figure 3.3B).  

Angiogenesis in WT calvaria treated with RANKL was significantly different from RANKL 

treated MMP-9-/- calvaria when angiogenesis was quantified by vessel density, and nearly 

significant when angiogenesis was quantified by total vessel area.  As with calvaria treated with 

PTHrP no significant differences in vessel size were detected (data not shown).  MMP-9 was 

primarily expressed by OCLs, thus suggesting the MMP-9 important for OCL-stimulated 

angiogenesis is derived from OCLs themselves (Figure 3.3A).   Surprisingly, the 

osteoclastogenic response to RANKL was blunted in MMP-9-/- calvaria (Figure 3.3A).  This 

suggests that MMP-9 affects OCL-stimulated angiogenesis by decreasing the number of OCLs at 

the angiogenic site and will be analyzed in more detail in the next section.       
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Figure 3.3.  Osteoclasts stimulate angiogenesis in WT but not MMP-9-/-  mice 

(A)  Supra-calvarial RANKL increases angiogenesis and MMP-9 expressing OCL formation to a greater 

extent in calvaria of wild type than MMP-9-/- mice.  Serial sections of the outer table of calvaria stained for TRAP 

(red) and CD31 (brown) or MMP-9 (brown) and lightly counterstained with hematoxylin.  Images are WT or MMP-

9 KO injected supracalvarially with vehicle or m RANKL-GST as indicated.  Arrows: CD31+ vessels in remodeling 
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bone.  Outer surface is at the top of the image.  (B)  Quantification of RANKL induced vessel response by 

calculation of CD31+ vessel density or area in the outer table of 10x objective images taken at the calvarial midline.   

3.4.4 MMP-9 Stimulates Bone Angiogenesis Primarily through Autocrine Effects on OCL 

Migration 

To further analyze the source of the MMP-9 responsible for the pro-angiogenic response of 

RANKL treatment in calvaria, I then determined the cell types expressing MMP-9 in the marrow 

spaces of mouse calvaria by singly or double labeling TRAP and MMP-9.  MMP-9 expression 

was almost completely restricted to OCLs.  Immunohistochemical analysis of mouse calvaria 

showed that MMP-9 was almost completely co-localized with the OCL marker TRAP (Figure 

3.4).  Only very rare MMP-9 positive, TRAP negative mononuclear marrow cells were detected.     
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Figure 3.4.  MMP-9 is predominantly expressed by osteoclasts in mouse calvaria. 

Coronal sections of mouse calvaria stained for TRAP (red) or MMP-9 (brown) as indicated.  Images 

acquired with a Nikon Eclipse E800 microscope with a Plan Apo objective (oil), NA of 1.4 and an Olympus 

America SN CG603057-H camera with Magnifire software.  Original magnification x 60.   

 

In the experiments comparing the angiogenic effects of OCL stimulation in explants or in 

vivo (Figure 3.2 and 3.3), I also analyzed the osteoclastic responses to determine if lack of MMP-

9 affected OCL formation or recruitment.  Osteoclast stimulation induced by PTHrP or RANKL 

was blunted in MMP-/- mice.  Type I collagen C-terminal telopeptide (CTX), were measured in 

the conditioned media collected from days 1-3 and 4-6 of culture from all WT and MMP-9-/- 
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PTHrP and vehicle treated explants.  PTHrP significantly stimulated bone resorption in WT 

explants at both time points.  However, PTHrP did not significantly stimulate resorption at 3 or 6 

days in MMP-9-/- explants (Figure 3.5).  Other investigators similarly reported lack of MMP-9 

decreased OCL resorption in E17 metatarsal explants due to OCL migration or invasion 

defects.[161, 253] 

 

 

Figure 3.5.  PTHrP increases bone resorption in WT but not in MMP-9-/- metatarsal explants.   

CTX assayed from conditioned media collected from days 1-3 or 4-6 of culture of all 7 WT and 6 KO 

litters.  *:  p < 0.05. for treatment response compared to vehicle. 

 

In parallel to our findings in metatarsal explants treated with PTHrP, OCL formation was 

stimulated by RANKL in WT but less so in MMP-9-/- animals in the calvarial outer table (Figure 

3.6A).  Resorption surface or TRAP+ area was significantly less in RANKL treated MMP-9-/- 

than RANKL treated WT calvaria.  The OCL stimulation with RANKL among MMP-9-/- mice 

was dramatically blunted compared to WT animals and possibly absent.  However, we were not 

able to find any reports in the literature that MMP-9 affects OCL differentiation directly.  

Therefore, to determine if the decrease in OCL numbers in RANKL treated MMP-9-/- mice 
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results from decreased OCL differentiation or precursor number, we assayed OCL differentiation 

in vitro and found that WT and MMP-9-/- mice formed similar numbers of OCLs (Figure 3.6B).  

To examine the relative angiogenic capacity of MMP-9-/- OCLs on a per cell basis, we calculated 

vessel number per OCL, which did not differ between genotypes (Figure 3.6C).  Thus, MMP-9 is 

not of primary importance for OCLs to stimulate angiogenesis per se, but affects OCL numbers 

at the angiogenic site.  Thus, MMP-9 most likely affects OCL-stimulated angiogenesis primarily 

by affecting their migration to the angiogenic site.  
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Figure 3.6.  Lack of MMP-9 decreases RANKL-stimulated osteoclastogenesis in vivo but not in vitro.  

(A)  Total percent TRAP+ area of the calvarial outer table or resorptive surface of the outer table sub-

periosteal surface.  (B)  In vitro Osteoclast formation from bone marrow from WT and MMP-9-/- C57BL/6 mice was 

quantified by counting TRAP+ multi-nucleated cells.  (C)  Vessels per OCL was calculated by dividing vessel 

density by TRAP+ area for each RANKL treated animal.  Mean ± SEM.  *:  p < 0.05.   
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Because MMP-9 is known to stimulate angiogenesis by VEGF release from matrix in 

other tissues, we determined if VEGF signaling was increased with OCL stimulation in vivo.  

Increased VEGF signaling induced by proteases such as MMP-9 can be analyzed using 

monoclonal antibodies which recognize VEGF only in complex with its receptors.  Therefore we 

determined the number of VEGF / receptor complex positive vessels using the 11b5 monoclonal 

antibody, which recognizes VEGF in complex with VEGF-R1 or R2.[278]  Labeling with this 

antibody, we found that PTHrP non-significantly increased 11b5+ vessel density (Figure 3.7B).  

The labeling of 11b5+ vessels was less clearly defined than CD31+ vessels, suggesting that other 

cell types in addition to endothelial cells, such as pericytes, are also labeled (Figure 3.7A).  A 

minority of the vessels were 11b5+, as illustrated by the observation that the 11b5+ vessel density 

was only about 20% of the CD31+ vessel density (Figure 3.7A and comparing Figures 3.7B and 

2.4C).  In some highly angiogenic states linked to MMP-9, greater than 90% of vessels are 

VEGF / receptor complex positive.[13]  Furthermore, we were unable to detect 11b5+ vessels 

induced in angiogenic areas of the calvaria outer table from animals treated with RANKL (same 

areas as illustrated in Figure 3.3).  Therefore, these data suggest that increased VEGF signaling 

due to release from matrix may contribute to OCL induced angiogenesis, but other mechanisms 

are likely to be involved.   

 91 



 

Figure 3.7.  PTHrP may increase VEGF signaling in vivo.   

VEGF / receptor complex positive vessels in PTHrP treated calvaria.  (A) Para-sagittal marrow spaces in 

vehicle or PTHrP treated calvaria. Sections stained for VEGF / receptor complexes with the 11b5 monoclonal 

antibody (brown), TRAP (red) and counterstained with hematoxylin.  Arrows: 11b5+ vessels.  Arrowheads: 11b5 

negative vessels.  Original magnification x 60 (B)  Number of 11b5+ vessels per mm2 of para-sagittal marrow area.  

Mean ± SEM.   
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3.4.5 MMP-9, MCP-1, IL-8 or Osteopontin Are Not Required for Angiogenic Activity of 

OCL Conditioned Media 

To further verify the mechanism used by OCL to stimulate angiogenesis, we examined the 

angiogenic activity of candidate angiogenic factors secreted by OCL using the HUVEC / 

fibroblast in vitro angiogenesis assay.  These experiments suggested that none of these factors 

are important on their own for angiogenic action of OCLs directly upon endothelial cells. 

We examined possible direct angiogenic activity of OCL-derived MMP-9 with a 

neutralizing antibody to MMP-9 in vitro, using an antibody concentration 3 fold higher than 

previously reported to neutralize MMP-9 activity.[277]  Neutralization of MMP-9 activity did 

not affect angiogenesis in the basal state. When stimulated by OCL conditioned media MMP-9 

inhibition surprisingly had a slight stimulatory effect on angiogenesis (Figure 3.8).  Thus, OCL-

derived MMP-9 is unlikely to stimulate endothelial cells directly.   
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Figure 3.8.  MMP-9 inhibition does not decrease the angiogenic activity of osteoclast conditioned 

media in vitro.  

Concentrated OCL conditioned media or control media was combined with angiogenesis assay media and 

pre-incubated with 3 μg/ml neutralizing anti-MMP-9 or control IgG for 1 hour at 37°C, then used to stimulate the 

HUVEC / fibroblast angiogenesis assay.  The assay was stained for CD31 and angiogenic tube formation was 

quantified with Metamorph software.    
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Because Tanaka et al reported that osteopontin is important for the angiogenic activity of 

OCLs in the HUVEC / fibroblast in vitro angiogenesis assay, we tested the angiogenic activity of 

recombinant osteopontin in the same assay.[5]  However, we were not able to replicate their 

results that 1 μg/ml rh osteopontin stimulated angiogenesis (Figure 3.9).  In our system, the 

working concentration of osteopontin derived from OCL conditioned media is also 

approximately 1 μg/ml as measured by ELISA (data not shown). 
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Figure 3.9.  Recombinant osteopontin does not stimulate angiogenesis in vitro.  

2 μg / ml rh VEGF or indicated concentrations of rh osteopontine were added to the HUVEC / fibroblast 

angiogenesis assay.  Mean ± SEM *:  p < 0.05 from media control. 

 

In the human OCL angiogenesis arrays, IL-8 and MCP-1 were the most highly expressed 

non-proteinase angiogenic factors.  Therefore, I also investigated if they were important for the 

angiogenic activity of OCL conditioned media.  I first performed ELISA experiments to 

determine the concentrations of MCP-1 and IL-8 secreted by OCLs.  IL-8 was low ng / ml and 

MCP-1 was at high pg / ml at the working concentrations in OCL CM used for in vitro 

angiogenesis assays (data not shown). 

To determine if IL-8 was required for the pro-angiogenic activity of human OCL 

conditioned media, I first performed an IL-8 dose response curve in the presence or absence of 

IL-8 neutralizing antibody.  I chose a concentration range that was obtainable using human OCL 
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conditioned media.  I did not observe any stimulatory effect at rh IL-8 concentrations up to 9 

ng/ml (Figure 3.10A).  Curiously, 1 ng/ml IL-8 slightly inhibited angiogenesis.  This suggests 

that human OCLs probably do not secrete enough IL-8 under these conditions to explain their 

stimulation of the assay.  In a separate experiment, no stimulation was seen with 100 ng / ml IL-8 

(data not shown).     

Similarly, I also neutralized IL-8 in OCL conditioned media added to the human in vitro 

angiogenesis assay (Figure 3.10B).  As was suggested by the IL-8 dose response curve, IL-8 

neutralization had no effect on the capacity of OCL conditioned media to stimulate angiogenesis.  

However, IL-8 neutralization did reduce the stimulation of the assay by recombinant VEGF.  

This observation may be due to inhibition of endothelial cell autocrine IL-8.[239]  Thus, IL-8 

does not appear to be an important factor in OCL stimulation of angiogenesis.   
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Figure 3.10.  IL-8 is not responsible for the angiogenic activity of osteoclast conditioned media.   

(A)  rh VEGF165 (2 ng/mL) or rh IL-8 was added to the HUVEC / fibroblast in vitro angiogenesis assay 

after a 30 minute pre-incubation at the indicated concentrations with mouse IgG or mouse anti-human IL-8 at 0.5 

μg/mL.  Number of branch points were quantified.  (B)  rh VEGF165 (2 ng/mL) or CM from purified human OCLs 

was added to the human endothelial cell / fibroblast in vitro angiogenesis assay after a 30 minute pre-incubation at 

the indicated concentrations with mouse IgG or mouse anti-human IL-8 at 1 μg/mL.  Mean  ± SEM. * p < 0.05 by 

ANOVA. 

 

We also tested whether MCP-1 might be an important OCL derived angiogenic factor 

because it was also highly expressed on the human OCL quantitative PCR array.  However, 

doses of MCP-1, including doses higher than could be obtained from OCL CM, failed to 

stimulate the human in vitro angiogenesis assay (Figure 3.11) 

 Thus, it seems unlikely that IL-8, MCP-1 or osteopontin at least by themselves are 

the key angiogenic factor in human OCL conditioned media.      
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Figure 3.11.  Recombinant MCP-1 does not stimulate angiogenesis in vitro.  

rh MCP-1 added to human  fibroblast / HUVEC co-culture angiogenesis assay at doses indicated.  Mean ± 

SEM     

3.5 CONCLUSIONS 

In studies to examine the mechanism(s) responsible for OCL stimulation of angiogenesis 

we determined that MMP-9 plays an important role in OCL stimulation of angiogenesis, as well 

as bone remodeling, with both the angiogenic and bone resorptive effects of PTHrP being absent 

in MMP-9-/- metatarsal explants.  Similarly, the pro-angiogenic and bone resorptive effects of 

RANKL were reduced in MMP-9-/- calvaria in vivo.  The reduced angiogenesis seen in MMP-9-/- 

explants or mice treated with PTHrP or RANKL most probably reflects the decreased OCL 

numbers and activity in MMP-9-/- mice at the site where angiogenesis occurs, compared to WT 

controls.  The number of vessels per OCL was not different between genotypes, suggesting that 

OCLs lacking MMP-9 do not have an intrinsic angiogenic deficit once they have formed and 
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migrated to the proper location.  Similarly, PTHrP stimulated both angiogenesis and resorption 

in wild type bone explants, but did not stimulate either angiogenesis or resorption in explants 

lacking MMP-9.   

The observed reductions in stimulated OCL formation or function in MMP-9 mice-/- are 

most likely due to reduced OCL migration rather than direct effects of MMP-9 on OCL 

differentiation or matrix solubilization.  Explants from E17 MMP-9-/- mouse metatarsals but not 

more mature bones show a lower level of basal resorption but not OCL number, compared to 

wild type due to delayed OCL invasion of the primary ossification center (growth plate) rather 

than a requirement for MMP-9 in biochemical matrix solubilization.[161]  Likewise, MMP-9 is 

required for migration of OCL or OCL precursor cell lines in vitro.[253-255]  MMP-9-/- and WT 

mice did not display different levels of OCL formation in vitro, showing that the decreased 

resorption or OCL numbers in explants or in vivo was not due to defective differentiation or 

decreased precursor numbers.  Because of our observations that MMP-9 is important for both 

bone resorption and angiogenesis under conditions of increased osteoclastogenesis, it may be 

possible clinically to inhibit both bone destruction and angiogenesis with a MMP-9 inhibitor.  

These findings are summarized in Firure 3.12.    
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Figure 3.12.  MMP-9 is important for osteoclast stimulated angiogenesis due to its effects on 

osteoclast migration. 

 

MMP-9 is predominantly expressed by OCLs in bone and is expressed at high levels, 

suggesting that the MMP-9 required for OCL stimulation of angiogenesis is secreted by OCLs 

themselves.  I speculated in the introductory chapter that OCLs may stimulate angiogenesis 

through MMP-9 or other proteinase mediated released of VEGF from extracellular matrix.  This 

molecular action of MMP-9 occurs in bone and is important for OCL recruitment into the 

primary ossification center.[161]  Further, MMP-9-/- mice have delayed vessel invasion into the 

primary ossification center.[14]  We investigated the possibility that OCLs stimulate 

angiogenesis by VEGF release by examining the level of VEGF in complex with its receptors in 

vivo with an antibody that specifically recognizes these complexes.  Our data that a minority of 

vessels in PTHrP-treated mice, and no vessels in RANKL-treated mice were positive for VEGF / 
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receptor complexes suggests that OCLs stimulate angiogenesis primarily by other processes.  

The molecule(s) that act on vessels directly as a result of OCL stimulation in vivo remain 

unclear.      

I investigated how OCLs may stimulate angiogenesis by secretion of an angiogenic 

factor, that acts directly on endothelial cells by analyzing the angiogenic factors important for 

angiogenic activity of OCL conditioned media.  I did not find that any of the OCL-derived 

angiogenic factors were important on their own for direct stimulation of endothelial cells.  

Tanaka et al have reported OCLs stimulate angiogenesis in cell culture, and attributed the 

activity of their conditioned media to osteopontin.[5]  They showed that rh osteopontin 

stimulated in vitro angiogenesis, which was neutralized by an antibody to αvβ3 integrin, and that 

a neutralizing antibody to osteopontin neutralized the angiogenic activity of OCL conditioned 

media.  However, in contrast to these results, I was unable to detect any pro-angiogenic effects of 

rh-osteopontin at doses up to 3 fold the reported dose.  The basis for these differences is 

unknown.  These investigators did not determine if OCL-secreted osteopontin contributed to 

angiogenesis in vivo.  Likewise I found that MMP-9 inhibition did not decrease the angiogenic 

activity of OCL conditioned media.  Therefore, OCL-derived MMP-9 is unlikely to stimulate 

angiogenesis by direct action on endothelial cells.  Similarly, recombinant IL-8 did not stimulate 

in vitro angiogenesis at doses attainable by OCL conditioned media, and an IL-8 neutralizing 

antibody did not inhibit the angiogenic activity of OCL conditioned media.  Likewise, 

recombinant MCP-1 did not stimulate in vitro angiogenesis at doses attainable by OCL 

conditioned media.  Therefore, IL-8 and MCP-1 are also unlikely to be responsible for the 

angiogenic activity of OCL conditioned media.      
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Because I found that MMP-9 is required for OCL stimulated angiogenesis predominantly 

due to its effects on OCL migration, it is likely that there are additional factors produced as a 

result of increased osteoclastogenesis that are important for vessel stimulation.  Three possible 

sources of these factors are diagrammed in Figure 3.13.   Most simply, OCLs may stimulate 

angiogenesis through direct secretion of an angiogenic factor (mechanism #1).  However, more 

complex mechanisms may also occur.  OCLs may stimulate angiogenesis by release of one of the 

many angiogenic factors stored in extracellular matrix (mechanism #2)  Alternatively, OCLs 

may require a linked osteoblastic response to stimulate angiogenesis or may stimulate expression 

of an angiogenic factor in osteoblasts or other cells (mechanism #3).  Since osteoblast-derived 

VEGF is clearly important for angiogenesis, osteoblasts and OCLs may cooperate to stimulate 

angiogenesis through OCL stimulation of osteoblastic production of VEGF.   

My findings that MMP-9 affects both angiogenesis and OCLs suggests 

osteoclastogenesis and angiogenesis are linked in some situations.  Linkage between OCLs and 

vessels occurs most likely in situations where OCL invasion is required such as fetal long bones 

before invasion of the growth plate, long bone fracture healing or our observed remodeling of 

calvaria induced by RANKL.  OCLs most likely invade from the periosteum in these situations.  

Such linkage between osteoblasts and angiogenesis occurs during development of long 

bones.[15]  Linkage between OCLs and vessel formation could result from endothelial cell 

stimulation of OCL formation.  Endothelial cells can increase OCL formation by several 

mechanisms including increased RANKL expression on their surface, thereby stimulating OCL 

formation when co-cultured with OCL precursors.[140]  Endothelial cells may also regulate the 

recruitment of OCL precursors to remodeling sites from the vascular compartment.[141]   
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Figure 3.13.  Possible sources of direct acting angiogenic factors. 

 

In summary I have shown that OCLs contribute to angiogenesis in vitro and in vivo by a 

mechanism requiring MMP-9.  MMP-9 is important for OCL resorption and formation, likely 

due to its previously reported effects on OCL invasion or migration rather than differentiation or 

matrix solubilization.  OCL-stimulated angiogenesis is deserving of further study to more 

precisely define the molecular mechanism(s) involved and to identify the physiological and 

pathological settings in which OCL-stimulated angiogenesis plays a role.     

 104 



4.0  GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

4.1 GENERAL CONCLUSIONS 

4.1.1 The Osteoclast Is an Angiogenic Cell in Bone 

I have shown in this dissertation that osteoclasts are important for bone angiogenesis in a 

bone organ culture system and an in vivo model.  Prior to these studies, a possible role for the 

osteoclast in angiogenesis was unclear, with no published reports that osteoclasts were involved 

in angiogenesis in vivo.  There were reports that osteoclast conditioned media stimulated 

angiogenesis in vitro published during the course of my studies.[5, 150].  However, two studies 

specifically reported that osteoclasts were not important for angiogenesis in vivo.[4, 149]  

Integrating our results with those in the literature suggests that osteoclasts are important for 

angiogenesis at some, but not all, anatomic sites.   

The studies reporting that osteoclasts were not important for angiogenesis in vivo used 

bisphosphonates and / or osteopetrotic (lacking osteoclasts) mice to abolish osteoclast activity, 

and analyzed developmental angiogenesis in mouse tail vertebrae or in the epiphysis of the 

tibia.[4, 149]  I did not observe any increase in angiogenesis with osteoclast stimulation with 

PTHrP in femorae, but did find a different pattern of vessels in the metaphysis adjacent to the 

growth plate.  I have not analyzed vertebrae for an angiogenic response to PTHrP treatment.  In 
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my in vivo studies using RANKL, I did not analyze sites other than the calvaria because the 

RANKL was injected locally.  In the discussion section of the paper reporting the phenotype of 

MMP-9-/- mice, the authors reported that the phenotype of osteopetrotic mice (lacking 

osteoclastes c-fos-/- and op/op) mirrored the phenotype of MMP-9-/- mice; lengthened growth 

plate and delayed vessel invasion on the metaphyseal side of the growth plate.  Of note, these 

investigators did not observe any angiogenic defects in epiphyses of MMP-9-/- or osteopetrotic 

mice.  Thus it is likely that the relationship of osteoclasts to angiogenesis is different in 

epiphyses and metaphyses.  Therefore, it must be determined at each bone site of interest if 

osteoclasts do or do not contribute to angiogenesis.   

Of note, in both the organ culture system and calvaria stimulated with RANKL, 

osteoclast-stimulated angiogenesis was accompanied by a large amount of tissue modeling or 

remodeling.  During the time course of the metatarsal cultures, osteoclasts invade the primary 

ossification center.  With supra-calvarial RANKL treatment, the angiogenesis occurred in areas 

where calcified tissue was replaced by non-calcified tissues resembling active periosteum.  This 

process is reminiscent of endochondral ossification, where osteoclasts and vessels invade from 

the periosteum.  Thus, physiological processes accompanied by changes in tissue composition 

are likely candidates for an important role of osteoclasts in angiogenesis. 

If osteoclasts do primarily stimulate angiogenesis in situations of tissue modeling or 

remodeling, they are likely to stimulate angiogenesis by complex mechanisms involving several 

cell types.  As discussed in Chapter 3, osteoclasts and osteoblasts may co-operate to stimulate 

angiogenesis, and angiogenesis and osteoclastogenesis may be linked in some situations due to 

endothelial cell stimulation of osteoclastogenesis.      
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4.1.2 MMP-9 Is Required for Osteoclast-Stimulated Angiogenesis 

Because MMP-9 is primarily expressed by osteoclasts in bone and is important for 

angiogenesis in fracture healing and endochondral ossification, I determined if MMP-9 was 

important for osteoclast-stimulated angiogenesis.[14, 164]  My results were similar in both 

experimental systems.  MMP-9 blunted both the pro-angiogenic effects and osteoclastogenic 

effect of osteoclast stimulatory agents in metatarsal explants treated with PTHrP and calvaria 

treated with RANKL.  The importance of osteoclastic MMP-9 for angiogenesis resulted 

primarily from its capacity to stimulate osteoclast migration, a capacity which was reported prior 

to my studies.[12, 253]  The number of vessels per osteoclast did not differ between genotypes.  

This suggests that lack of MMP-9 did not reduce angiogenesis in our studies because of an 

angiogenic defect intrinsic to the osteoclast, but because of a reduced number of osteoclasts at 

the angiogenic site.  Likewise, osteoclast differentiation in vitro was not inhibited by lack of 

MMP-9.  Thus, MMP-9 likely decreased the number of osteoclasts at the angiogenic site due to 

decreased migration rather than precursor number or differentiation.  In MMM-9-/- calvaria, there 

was a small increase in osteoclastogenesis but no increase in angiogenesis.  Therefore, future 

studies need to determine if an intrinsic, albeit minor, angiogenic defect of MMP-9-/- osteoclasts 

is present.  However, I cannot make this conclusion from the current data.     

4.2 FUTURE DIRECTIONS 

The studies presented in this dissertation are extremely novel and should fundamentally 

change the way that angiogenesis in bone is understood.  Thus, they open up many new avenues 
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for research.  Firstly, studies should be performed to extend the findings presented here.  In 

particular, studies are required to definitively show if the MMP-9 required for osteoclast-

stimulated angiogenesis is derived from osteoclasts themselves.  Also, a more definitive 

examination of the anatomic sites where osteoclasts are important for angiogenesis is required.  

Secondly, it is very important that the mechanisms used by osteoclasts to stimulate angiogenesis 

are worked out in more depth.  I have shown that MMP-9 is required for osteoclast-stimulated 

angiogenesis, but the molecule(s) which directly acts on endothelial cells has yet to be 

determined.  Lastly, because angiogenesis in bone is important to many disease processes, 

further studies based on this work may uncover novel therapeutic approaches, increase our 

understanding of pathophysiology or explain the effects of anti-osteoclast therapeutics.  Each of 

the sub-headings below could comprise a publication-sized unit.  Many of these studies could be 

performed using the experimental techniques established in this dissertation.   

4.2.1 Extension of Findings 

An important series of studies suggested by our observations that osteoclasts stimulate 

angiogenesis by a MMP-9 dependent mechanism would be to specifically knock out MMP-9 in 

the OCL and perform similar studies as were performed in Chapter 3.  These types of 

experiments would permit the determination if the lack of osteoclastic MMP-9 blunts the pro-

angiogenic effects of PTHrP on metatarsal explants or RANKL on calavaria.  We and others 

have shown that MMP-9 is primarily expressed by OCLs in bone.  Therefore, it is likely that the 

MMP-9 required for OCL-stimulated angiogenesis is secreted by OCLs themselves.  An OCL 

specific MMP-9 knockout would resolve this question.  Our laboratory created a mouse line 

expressing Cre-recombinase controlled by the TRAP promoter, which is expressed in OCL and 
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committed OCL precursors.  However, to our knowledge, no one has created a floxed MMP-9 

line, likely due to the viability of MMP-9-/- animals.  Therefore, to create an OCL-specific MMP-

9-/- mouse, the gene must be floxed and bred to the existing TRAP-Cre mouse line.  An OCL 

specific MMP-9-/- mouse may also benefit the study of additional anatomic sites where OCLs 

may be involved in angiogenesis.  In this dissertation, I examined OCL-stimulated angiogenesis 

in detail in calvaria, and to a limited extent in long bones, but not in vertebrae.        

Before the creation of an OCL-specific MMP-9 knockout, useful studies can be 

performed to further explore how OCLs play a role in angiogenesis.  We intended to further 

confirm that PTHrP stimulated angiogenesis in vivo because of its OCL stimulatory effects, by 

blocking osteoclastogenesis with osteoprotegerin (OPG) or RANK-Fc in PTHrP and vehicle 

treated animals. This will allow us to determine if PTHrP is able to stimulate angiogenesis in 

vivo in the absence of OCLs.  However, we were unable to acquire sufficient quantities of 

osteoprotegerin or RANK-Fc that was active in our in vivo system.  Commercially available 

OPG-Fc from R&D systems had minimal activity.  The only formulations of OPG-Fc or RANK-

Fc reported to be active in vivo were developed by Amgen.[279]  Unfortunately, Amgen declined 

to provide us with these reagents.  Similarly, PTHrP treatment of MMP-9-/- and wild type mice 

would show if MMP-9 is required for angiogenesis stimulated by PTHrP.  These studies are 

ongoing.  

In preliminary studies not presented here, an OCL-specific (TRAP promoter driven) 

transgenic mouse for the matrix proteinase ADAM8 had increased calvarial vessel density, but 

these studies are not yet confirmed.  These studies would support an angiogenic role for OCLs 

and suggest a role for ADAM-8 in OCL-stimulated angiogenesis.     
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To perform the studies described in this section, it will be necessary to secure a reliable 

source of RANKL that is active in vivo.  The mouse-RANKL-GST used in vivo in these studies 

was generously provided by Dr. F. Patrick Ross.  Dr. Ross may not be able to provide any 

additional RANKL.  We did not observe any OCL stimulation with a dose of 2 μg per mouse per 

day in a volume of 200 μl of rh RANKL from R&D Systems.  A dose of 2 μg (R&D Systems) or 

6 μg (Peprotech) of mouse RANKL per day for 3 days injected over the femur was used to 

locally stimulate osteoclastogenesis at that site.[280]  Therefore it is likely that some commercial 

formulations of RANKL will be active in our system.  Alternatively, a purification protocol for 

m RANKL-GST will have to be adopted.      

4.2.2 Further Mechanistic Studies 

Further dissection of the mechanisms responsible for osteoclast-stimulated angiogenesis 

is needed.  Is OCL secretion of osteopontin or a yet unidentified angiogenic factor that directly 

acts on vessels important for OCL-Stimulated angiogenesis in vivo?  Tanaka et al reported that 

osteopontin is required for the angiogenic activity of OCL conditioned media [5], but I was not 

able to replicate some of their findings.  Osteopontin may not be important for OCL-stimulated 

angiogenesis in vivo because it is a very abundant protein (2% of non collagenous protein) and is 

primarily produced by osteoblasts rather than OCLs.[221]  A possible role for osteopontin in 

OCL-stimulated angiogenesis in vivo or in organ culture could be tested by stimulating OCLs in 

mice or in metatarsals in wild type and osteopontin-/- mice and determining if lack of osteopontin 

blunted the pro-angiogenic effects.           

Alternatively, are there intermediary cell types that respond to OCL and in turn produce 

angiogenic factors, and which cells are these?  Osteoblastic production of VEGF is a reasonable 
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candidate for possible OCL-stimulated angiogenesis due to an intermediary cell type.  Osteoblast 

VEGF is well-known to be involved in angiogenesis in bone.[15]  OCLs may stimulate 

expression of an angiogenic factor such as VEGF in osteoblasts, or may increase angiogenesis 

induced by osteoblasts due to coupled bone formation.  I investigated a possible requirement for 

VEGF in OCL-stimulated angiogenesis by determining if metatarsal angiogenesis stimulated by 

PTHrP was blocked by a VEGF neutralizing antibody.  However, the VEGF neutralizing 

antibody greatly diminished the basal level of angiogenesis in the assay, making the results 

uninterpretable (data not shown).  However, a similar approach may be used in organ culture or 

in vivo with an existing line of mice specifically lacking HIF-1α in osteoblasts and thus having 

greatly reduced osteoblastic VEGF expression.  If osteoblastic VEGF is important for OCL-

stimulated angiogenesis, angiogenesis stimulated by PTHrP or RANKL should be blunted in 

studies employing these mice.   

Are angiogenic factors released from matrix important for the angiogenic potential of OCLs?  

Our studies suggest that OCL release of matrix bound VEGF is not primarily responsible for 

their ability to stimulate angiogenesis.  However, other factors, notable TGF-β, may be released 

by OCLs to stimulate angiogenesis.  TGF-β may stimulate angiogenesis directly or by induction 

of VEGF in osteoblasts.[216]  TGF-β is likely to come from calcified bone matrix.[10, 270]  

Therefore, the src-/- mouse, in which OCLs form but do not resorb bone may be used to study a 

possible role for calcified matrix resorption and TGF-β.[53]  These studies will have to be 

interpreted in light of possible effects of lack or src upon endothelial cells.        
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4.2.3 Role of Osteoclast-Stimulated Angiogenesis in Myeloma and Tumor Metastases 

Much of the current research into bone metastases has been influenced by the “vicious 

cycle” hypothesis.  In this model, tumor cells increase OCL formation by secreting factors such 

as IL-6.  The resultant increased numbers of OCLs increase tumor growth due to release of 

factors such as TGF-β from matrix.[109]  The increased numbers of OCLs induced by the tumor 

could increase angiogenesis.  However, increased angiogenesis could also result from the 

increased tumor burden.  Therefore, it is very challenging to directly study the contribution of 

OCL-stimulated angiogenesis to bone metastases.  The discovery of the importance of MMP-9 

for OCL-simulated angiogenesis may allow the more direct study OCL-stimulated angiogenesis 

in bone metastases.  Because MMP-9 is predominantly expressed by OCLs, the use of a host 

mouse lacking MMP-9 may allow the study of OCL-stimulated angiogenesis.  However, two 

studies suggest that this line of research may not yield dramatic results.  Host derived MMP-9 

has been reported to be important for angiogenesis (but not tumor burden) in a prostate xenograft 

model of bone metastasis.[281]  Similarly, a recent report found that host derived MMP-7, but 

not MMP-9 was important to increase tumor burden in a model of breast cancer bone metastases, 

but the authors did not study angiogenesis.[257]  Therefore, we will need to carefully consider 

the results of these studies before investing resources in the study of MMP-9 in bone metastases.  

If we decide to undertake these studies, we have techniques and models readily available.  OCLs 

may not need to migrate to stimulate angiogenesis in tumors, so MMP-9 may be less important 

for OCL-stimulated angiogenesis in this setting. 

If a OCL-specific MMP-9-/- mouse line is not created, we could study the effects of lack 

of host MMP-9 in two bone metastasis models: B16 melanoma ingrafted in genotype matched 

C57BL/6 or C57BL/6 MMP-9 -/-mice, and 5TGM multiple myeloma ingrafted in in RAG-1-/-, 
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MMP-9 -/- or RAG-1-/-, MMP-9+/+ mice.  Important parameters include angiogenesis, tumor 

burden and bone resorption.  We will be able to rapidly begin studies in the B16 model because 

the cells are of the same genetic background as the MMP-9-/- mice, which we have available, and 

concurrently establish a colony of RAG-1-/-, MMP-9-/- mice.  Myeloma metastasis will be 

established by two methods, intratibial, and supracalvarial injection, both of which have been 

used successfully in our laboratory.  We chose to examine the calvarial site in addition to the 

more commonly examined long bones, because of our data showing the importance of OCLs and 

MMP-9 to angiogenesis in calvaria.  In addition to its clinical relevance, myeloma is an 

interesting model to use to examine the contribution of OCL MMP-9 to angiogenesis because of 

the osteoblast suppression caused by myeloma cells.  In our previous studies, it has been difficult 

to determine if osteoblasts were also required for OCLs to stimulate angiogenesis.                     

4.2.4 Role of OCL-Stimulated Angiogenesis in Fracture Repair 

Osteoclasts are important for fracture healing as shown by delayed fracture healing or 

non-unions in osteopetrotic (ia/ia) rats or RANK-/- mice.[166, 282]  Furthermore, consistent with 

our findings, non-stabilized tibial fractures have less vessel density in RANK-/- than WT 

mice.[166]  Likewise, MMP-9-/- mice have increased numbers of non-unions and less vessel 

invasion of non-stabilized tibial fractures.  However, the source of MMP-9 at this site is 

especially uncertain due to MMP-9 expression by inflammatory cells.[164]  Thus, the literature 

suggests that osteoclast-derived MMP-9 is important for angiogenesis in fracture healing, and 

fracture healing in general.  The distinction between stabilized and non-stabilized fractures is 

important because non-stabilized fractures heal by way of a cartiliage intermediate, which is 

 113 



invaded by vessels and OCLs in a similar fashion as the primary ossification center during 

development, and in the fetal metatarsal assay employed in this dissertation.   

If an OCL-specific MMP-9-/- mouse is created, it will be used in a tibial non-stabilized 

fracture model to determine if OCL-derived MMP-9 is important for angiogenesis and long bone 

fracture healing.  However, angiogenesis in membranous (flat) rather than long bone fractures is 

poorly understood.  Our results that RANKL stimulated angiogenesis is blunted in MMP-9-/- 

mice also suggests that OCL-derived MMP-9 is important for angiogenesis and fracture healing 

of membranous bone.  To test this hypothesis, we will examine angiogenesis and healing of the 

calvarial defect model in global or OCL specific MMP-9-/- mice.[283]  If OPG-Fc or RANK-Fc 

is available, we will also inhibit osteoclastogenesis, and determine if OCLs themselves are 

important for angiogenesis and fracture healing in membranous bone.          

4.2.5 Role of OCL –Stimulated Angiogenesis  in Bisphosphonate Treated Mice 

An understanding of OCL-stimulated angiogenesis is of great importance to 

understanding the mechanism of action of bisphosphonates.  Bisphosphonates are anti-resorptive 

agents first used for osteoporosis.  They have shown great efficacy in bone metastases, and 

inhibit tumor growth and angiogenesis in bone.[190]  Micro-molar concentrations of 

bisphosphonates inhibit endothelial cells in vitro.[191]  However, it is unclear if this mechanism 

of action of bishphonates is realistic in vivo because OCLs are exposed to much higher levels of 

the drugs than endothelial cells.[189]  Therefore, my findings that OCLs are important for bone 

angiogenesis, may help to explain why bisphosphonates are angiogenic in vivo.  Moreover, 

bisphosphonates have also been found to inhibit tumor angiogenesis stimulated by macrophage 
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derived MMP-9 in other tissues.[13, 284]  Therefore, bisphosphonates may inhibit OCL-

stimulated angiogenesis by inhibiting their migration as well as their survival or resorption.  

The in vivo models and techniques established in this dissertation could be used to 

determine if the anti-angiogenic effects of bisphosphonates are due to their effects on OCLs.  In 

vitro experiments with bisphosphonates are difficult to interpret, as the cell types affected by the 

drugs may be very different due to the pharmacokinetics and deposition of the drugs in bone 

matrix.  I found that zoledronate inhibits metatarsal angiogenesis and osteoclastogenesis in 

parallel at micro-molar concentrations.  However, it was difficult to determine if this was due to 

toxicity or specific effects on OCLs and endothelial cells (data not shown).  To address this 

question, if bisphosphonates block the angiogenic effects of PTHrP or RANKL in vivo, this 

would suggest that their anti-angiogenic effects are due at least in part to OCL inhibition.  

Interpretation of this study would require that bisphosphonates had no effect on vessels among 

the animals treated with the vehicle for PTHrP or RANKL.  Furthermore, to determine if 

bisphosphonates may inhibit OCL-stimulated angiogenesis by inhibiting OCL expression of 

MMP-9, their effects on OCL MMP-9 expression could be determined in vitro.  They should 

also be able to inhibit OCL-induced angiogenesis in vivo at the same doses required to inhibit 

MMP-9 expression.   

Bisphosphonates are associated with osteonecrosis of the jaw (ONJ), especially in cancer 

patients.  However, the mechanism by which they may cause ONJ is unknown.  A recent report 

from a phase III trial of the RANKL monoclonal antibody denosumab found a comparable 

number of cases of ONJ in denosumab and zoledronate treated groups (Amgen website, August 

3, 2009).  This suggests that OCL inhibition in general, rather than specific properties of 

bisphosphonates, may cause ONJ.  Bisphosphonate suppression of bone remodeling is one of the 
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most popular hypotheses for ONJ pathogenesis.[196]  Decreased angiogenesis due to 

bisphonates may also play role in ONJ.  Recently, ONJ was reported patients treated with the 

anti-VEGF antibody bevacizumab.[197]  Furthermore, a small retrospective study found more 

cases of ONJ in cancer patients treated with bisphosphonates and bevacizumab than 

bisphosphonates alone.[198]  ONJ is also linked to dental extraction or other surgery.  Because 

of their ability to inhibit remodeling of the callus of fixed fractures in long bones, 

bisphosphonates may also contribute to ONJ due to affects on healing of dental trauma, such as 

extraction.[167, 168]       

One could use the rat root socket healing after extraction model to study the possible 

importance of angiogenesis stimulated by OCLs and MMP-9 to pathogenesis of ONJ.  This 

model is beginning to be used as an approximation of ONJ pathogenesis.  Inhibition of OCLs or 

MMP-9 may inhibit both healing and angiogenesis in this model.  A specific MMP-9 

neutralizing antibody has been used in vivo, However, this may prove cost prohibitive.[285]  

Small molecules that are less specific for MMP-9 are available for in vivo use.[286]  If sufficient 

quantities of in vivo active OPG-Fc or RANK-Fc are available, the role of osteoclasts in root 

socket angiogenesis and healing could also be studied.   

In summary, osteoclasts stimulate angiogenesis and MMP-9 is important for this process.  

Future studies are needed to confirm and extend our findings in normal and pathological 

conditions associated with increased osteoclast number and activity.                   
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