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VARIABLE SCALE STATISTICS FOR CARDIAC SEGMENTATION AND

SHAPE ANALYSIS

Constantine Aaron Cois, PhD

University of Pittsburgh, 2007

A novel framework for medical image analysis, known as Shells and Spheres, has been de-

veloped by our research lab. This framework utilizes spherical operators of variable radius,

centered at each image pixel and sized to reach, but not cross, the nearest boundary. Sta-

tistical population tests are performed on the populations of pixels within adjacent spheres

to compare image regions across boundaries, delineating both independent image objects

and the boundaries between them. This research has focused on developing the Shells and

Spheres framework and applying it to the problem of segmentation of anatomical objects.

Furthermore, we have rigorously studied the framework and its applications to clinical seg-

mentation, validating and improving our n-dimensional segmentation algorithm. To this

end, we have enhanced the original Shells and Spheres segmentation algorithm by adding a

priori information, developing techniques for optimizing algorithm parameters, implement-

ing a software platform for experimentation, and performing validation experiments using

real 3D ovine cardiac MRI data. The system developed provides automated 3D segmenta-

tion given a priori information in the form of a trivial 2D manual training procedure, which

involves tracing a single 2D contour from which 3D algorithm parameters are then auto-

matically derived. We apply this system to segmentation of the Right Ventricular Outflow

Tract (RVOT) to aid in research toward the creation of a Tissue Engineered Pulmonary

Valve (TEPV). Experimental methods are presented for the development and validation

of the system, as well as a detailed description of the Shells and Spheres framework, our

segmentation algorithm, and the clinical significance of this work.
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1.0 INTRODUCTION

Medical images provide clinicians with a wide variety of in-situ structural and functional

data in a non-invasive manner, and have thus become an extremely powerful clinical tool.

The ability to visualize the shape and location of anatomical structures non-invasively is

invaluable in diagnosis, surgical planning, and post-treatment evaluation, as well as many

avenues of medical research. However, interpreting imaging data can be difficult, as delin-

eating specific anatomical structures and quantifying their geometric values requires highly

trained radiologists and technicians.

Decades of research have produced numerous computational systems capable of perform-

ing various analytical operations on medical images. Among the most desired medical image

analysis operations is image segmentation , defined as the delineation of anatomical objects

within images. Computational systems have been designed to segment structures within

medical images, with various levels of user interaction, or supervision . Designing effective

segmentation systems requires researchers to address complex technical challenges, adapting

cutting-edge methods from machine learning, computational shape modeling, mathematics

and statistics, and a host of other specialized fields to the problem of image segmentation.

This complexity stems from the intricate nature of analyzing medical images. Effective

human analysis of medical images, at the level necessary for clinical use, requires years of

training in anatomy, pathology, imaging, and other specialized topics on the part of radi-

ologists. Image analysis researchers aim to encode as much of this information as possible

into automated systems, reducing the amount of supervision required by human users and

focusing manual effort to the most difficult and subjective aspects of the problem.

1



Delving further into the fundamental utility of computerized image analysis systems re-

veals a daunting barrier to bringing even the most effective current systems into the clinical

world, where they may be used to directly improve patient care. Highly trained medical

professionals, with analysis and diagnosis skills expertly honed through years of study and

practice in the clinical environment, are understandably hesitant to spend valuable time

learning to operate new image analysis systems. It is widely believed that computerized

systems will not soon, if ever, be able to match the effectiveness of analysis that a radiologist

can provide. This belief among the medical community has been recognized and accepted

by many in the computerized image analysis research community, causing many systems to

be designed to aid, rather than replace, expert radiological analysis. [1] Even with systems

designed to aid radiologists, a barrier of clinical accessibility remains. This barrier exists

because these systems require levels of technical or algorithmic knowledge unacceptable to

the average clinician, whose expertise lies in a vastly different area. Thus, the potential

benefits of many automated and semi-automated image analysis systems are outweighed by

the amount of technical expertise necessary to effectively use them. Algorithm parameters

are a prime example of this accessibility barrier. Many techniques in image analysis require

detailed knowledge of high level mathematics, statistics, artificial intelligence, machine learn-

ing, computer science, or computer vision theory to understand and adjust parameters that

will allow them to perform optimally on a given medical image. As noted by Yushkevich et al.

in their 2004 technical report, “semiautomatic segmentation techniques rely on parameters

whose values often make sense only in the context of their mathematical formulation.” [2]

As a result, the clinical world relies mainly on humans to perform image segmentation, and

has yet to adopt many potentially beneficial automated analysis techniques. [3]

With these limiting factors in mind, we utilized our novel image analysis framework,

Shells and Spheres (S&S) , to design a computational medical image segmentation system

specifically to appeal to the clinician. This image segmentation system was designed to be

capable of automated 3D segmentation, following a simple manual initialization procedure

which specifically utilizes only areas of expertise native to clinicians: anatomy and pathology.

This design was made possible by the unique nature of our analysis framework.

2



The S&S framework is based on a construct called a sphere map , which is a set of spheres,

exactly one sphere centered at each image pixel, whose radii can be adjusted. Calculations

denoted as Variable-Scale Statistics (VSS) are performed on populations of pixels within

spheres, as well as populations of adjacent and overlapping spheres. The ultimate goal of

radius adjustment is to produce a sphere map in which each sphere is as large as possible

without crossing an object boundary, such that the spheres’ radii are equivalent to what is

commonly known as a distance map [4]. This process of properly setting the radii of each

sphere in a sphere map is known as sphere map optimization.

Certain spheres can be denoted as medial spheres, in that they reach more than one

boundary point. From a correctly optimized sphere map, a combination of the pixels within

medial spheres along the same medial manifold will yield a segmentation of the anatomical

object they belong to. Both boundary and medial information is embedded in the sphere

map, and can easily be extracted for geometric analysis or other purposes. Medial points

calculated with our algorithm are each inherently linked to a boundary point, defining surface

normals attached directly to the medial manifold. This form of output has proven especially

useful for shape modeling and analysis, which has led to our collaborative work with the Right

Ventricular Outflow Tract (RVOT), producing segmentations for the purpose of modeling

the vasculature surrounding the Pulmonary Valve (PV) .

The following sections of this chapter will present the goals and motivations of this work,

a brief description of the subsequent chapters, and definitions of the terms and notation used

in our research.

1.1 GOALS AND MOTIVATION

The research presented in this dissertation was designed to meet a number of goals, both

technical and clinical. Our research was motivated by the desire to create a novel, intu-

itive image analysis framework utilizing rotationally invariant localized collections of pixels

on which population statistics can be calculated. In addition, our work with clinical col-

laborators and the Insight Toolkit (ITK) lead us to take on the challenge of designing a
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system specifically for clinical use, removing direct manual parameter adjustment and gen-

erally minimizing supervision. As with the creation of any new technology, experimentation

and validation were fundamental aspects of our research, allowing us to verify the accuracy

of our automated segmentations, and thereby deliver them with confidence to collaborators

for mechanical modeling of the RVOT, towards the development of a Tissue Engineered

Pulmonary Valve (TEPV).

Many conventional segmentation techniques are designed around fixed-size sets of pixels,

or kernels. This allows analysis of local features, based on kernel size, most often used

in attempts to detect object boundaries in images. Such approaches ignore global image

information, and the detection of object boundaries can therefore be severely corrupted by

local noise, producing a strong fake signal in the small region represented by the kernel.

We have designed the Shells and Spheres (S&S) image analysis framework to model the

homogeneous regions within objects, rather than local boundary regions, to perform object

detection. We developed variable-radius spherical operators to function as our “kernels”,

allowing us to change the size of the region from which we sample, generally increasing the

number of pixels for use in our statistical calculations. Statistical comparison of adjacent

spherical regions from within different objects allows us to differentiate between objects,

thereby detecting boundaries.

By incorporating variable sized spheres, we are pursuing an approach similar to that

commonly known as scale space. [5, 6] The ability to adjust the radii of our spherical

operators allows us to explore various levels of scale space in our analysis, incorporating more

global image information than kernel-based approaches. However, unlike the common scale

space technique of gaussian blurring, our operators maintain sharp boundaries regardless

of their radius. This behavior, along with the ability to combine multiple spheres to form

complex shapes, allows our spherical operators to closely conform to complex object contours.

Further study and development of our novel framework, along with the development of

an associated algorithm to perform image segmentation, were primary goals of the research

presented. Initial algorithms required a number of parameters to be set, each with a great

impact on the accuracy of segmentations produced. Adjusting algorithm parameters manu-

ally required a great deal of specific algorithm knowledge, as well as specialized knowledge of
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the image to be segmented, since effective parameter settings varied greatly between different

images. A primary goal of our research efforts was to enhance our segmentation system by

removing the necessity for manual parameter instantiation, improving segmentation speed

and accuracy, and adopting a comfortable, robust user interface.

Because we believe that approaches to medical image segmentation based purely on image

data itself will not be effective, [1] we designed and added features to our initial segmentation

algorithm to incorporate expert a priori information, to automatically optimize algorithm

parameters, and to automatically produce a 3D segmentation after a manual initialization

procedure taking only a moment of the user’s time. A secondary goal, precipitated by the

addition of a priori information and considerations about clinical relevance, was to create a

clinically appealing automated segmentation system. As discussed in the previous section,

the foremost barrier to clinical adoption of automated segmentation software, aside from

concerns about its effectiveness, is the complexity of operation. As a result, hospitals still

rely primarily on humans to perform necessary segmentation procedures. [3] Although some

researchers have developed excellent, intuitive user interfaces for image segmentation, [2] we

hypothesize that to be truly viable in the clinical setting, a segmentation system must also

limit supervision to tasks familiar to the user. We present such a system in this dissertation,

requiring only moments of initialization from clinical users, in a form with which they are

familiar and comfortable.

Along with developing our automated segmentation system, we planned studies of the

algorithm and its performance, to facilitate improvements and an overall better understand-

ing of the behavior and features of Shells and Spheres. These included a study validating the

use of population statistics on our spherical sampling regions, experiments testing various

methods of automated algorithm parameter determination, and studies detailing Methods

of tuning those parameters using the newly added a priori information.

Fundamental goals of any novel algorithm research are experimentation and validation.

We have tested multiple variations of our segmentation system, validating their effectiveness

in terms of segmentation accuracy as compared to expert manual segmentations, and present-

ing additional pertinent measurements such as computational time. Validation data, in the

form of a database of 3D ovine MRI data sets, were collected and provided by collaborators
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at Children’s Hospital, Boston and the University of Pittsburgh. Manual 3D segmentations

of the Right Ventricular Outflow Tract (RVOT) in our data sets were produced by three

human operators for comparison to our automated segmentations.

Our final research goal was to provide accurate automated segmentations of the RVOT

to our collaborators, including Dr. Michael Sacks at the University of Pittsburgh and clinical

collaborators at Children’s Hospital, Boston. Their research focuses on the development of a

new Tissue Engineered Pulmonary Valve (TEPV) with growth and remodeling capabilities,

which would greatly increase the quality of life of young patients with congenital valve

defects. Recently, a TEPV was developed using autologous cells and biodegradable polymers

and implanted in growing lambs, functioning for up to 5 months. [7] While these results are

promising, supplementary research is required for further development of the technology.

Key research areas include the structure-strength relationships in the native Pulmonary

Valve (PV) and quantification of the 3D geometry of the vasculature structure surrounding

the PV, known as the Right Ventricular Outflow Tract (RVOT). Our segmentation system

produces useful output for geometric modeling, providing linked medial/boundary point

pairs, which may be used in novel ways to describe local geometric features such as medial

radius and boundary curvature. Ten ovine MRI data sets have been segmented by our

automated system, in addition to the manual segmentations produced for each data set by

three experts, for validation purposes. These data have been delivered to our collaborators,

and will be used for further study of the RVOT.
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1.2 DESCRIPTION OF CHAPTERS

This dissertation is organized as follows.

Following this introduction, sections containing definitions of common terms and a glos-

sary of notations are provided.

Chapter 2 presents background on Tissue Engineered Pulmonary Valves (TEPV) and the

mechanical modeling of the Right Ventricular Outflow Tract (RVOT) that will enable the

development of new TEPVs. Background is also provided on medical image segmentation,

the area into which the present work is being introduced.

In chapter 3, we introduce the theory and notation of the Shells and Spheres framework in

detail, including associated VSS. We present our n-dimensional S&S segmentation algorithm,

designed for segmenting cardiovascular structures. We also present a streamlined version of

S&S analysis, designed to perform analysis on a noiseless image. This process has become an

integral part of our real image segmentation system, used to calculate gold standard sphere

maps for binary masks, created manually for algorithm initialization and validation.

Chapter 4 presents a technique we have developed for automatically optimizing the pa-

rameters of our segmentation algorithm. These parameters, detailed in Chapter 3, are in-

terdependent, and thus cannot be optimized individually. Because testing a single set of

parameters on a 3D data set requires on average 1-5 hours of computational time, testing

multiple parameter settings on 3D data becomes untenable. A method of determining effec-

tive parameters for a 3D data set by optimizing parameters on a selected 2D slice is presented

and validated, yielding effective 3D segmentations. By tracing a single contour of the target

object in the selected 2D slice, the user initializes the algorithm parameter optimization pro-

cedure. In addition to being used to optimize algorithm parameters, information extracted

from this 2D tracing is used to calculate all additional values necessary for automated 3D

segmentation. This enhances our original algorithm by adding a priori information. With

clinical accessibility in mind, it takes advantage of a clinician’s expertise without requiring

algorithmic or technical expertise.
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Chapter 5 reports the results of testing and validation experiments for our segmentation

algorithm, the original parameter optimization technique, as well as multiple alternative pa-

rameter calculation techniques involving calculation of algorithm parameters directly from

the manual 2D initialization tracing. Validation is performed using expert manual segmen-

tations of our database of 3D ovine MRI data sets, performed by three individual subjects.

Finally, in Chapter 6 we discuss our conclusions from the research presented and propose

future work in development of the Shells and Spheres framework, segmentation algorithms

based on Shells and Spheres, and clinically accessible automated segmentation systems.
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2.0 BACKGROUND AND SIGNIFICANCE

2.1 TISSUE ENGINEERED PULMONARY VALVES

Surgical replacement of faulty heart valves has become a common medical procedure, be-

ing performed on over 70,000 of patients each year in the United States alone. [8] This

surgery can significantly increase the chances of survival and quality of life for patients with

valve disorders. A number of types of mechanical and tissue valve substitutes have been

developed and are currently available for implantation in patients. Congenital valve defects,

however, which are seen in over 20,000 children born each year, require exceedingly small

valve sizes that are not currently commercially available. Additionally, for pediatric appli-

cations, continual replacement of substitute valves is required as the patient grows, since

current replacement valves are incapable of growing along with the patient. Development of

replacement valves with the capacity for growth would greatly increase the quality of life and

decrease the risks associated with continual valve replacement surgeries for such pediatric

patients. Ideally, along with the capacity for growth, a perfect replacement valve would

be non-obstructive, non-thrombogenic living tissue lasting the lifetime of the patient and

providing ongoing remodeling and repair of cumulative injury.

Improving current valve bioprostheses has become a popular research goal in laborato-

ries around the world, but new technologies must be developed to meet the aforementioned

requirements of an ideal replacement valve. One promising replacement valve technology is

the Tissue Engineered Pulmonary Valve (TEPV), which offers replacement valves contain-

ing living cells, with the potential for growth and remodeling. Using autologous cells and

biodegradable polymers, a TEPV has been recently developed and implanted in growing

lambs. [7] These valves have functioned in the pulmonary circulation of the lambs for up to
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five months. Such promising initial results must be supplemented by further research into

the structure-strength relationships in the native pulmonary valve (PV) and quantification

of the actual 3D geometry of the right ventricular outflow tract (RVOT) resulting after valve

implantation. The next section will detail techniques used to model cardiovascular shapes,

allowing geometric quantification of structures such as the RVOT.

2.2 MEDICAL IMAGE SEGMENTATION

Medical images provide the means for clinicians to obtain a wide variety of in-situ structural

and functional data on which to base diagnoses in a non-invasive manner, and have thus

become an extremely powerful clinical tool. The ability to visualize the shape, location,

deformation, and other information pertaining to various anatomical structures is useful

in surgical planning, diagnosis, and post-treatment evaluation, as well as many avenues of

medical research. However, interpreting imaging data can be difficult, and delineating spe-

cific anatomical structures and quantifying specific geometric values usually requires highly

trained radiologists and technicians.

Segmentation, in particular, is a highly desirable procedure in medical image analy-

sis. Image segmentation is classically defined as the process of partitioning an image into

nonoverlapping regions, each of which is homogeneous with respect to some characteristic,

often intensity or texture. [9] Given Ω as the domain of an image, the goal of segmentation

is to determine K pixel sets Sk ⊂ Ω, defining the K segments that make up the image. Thus,

Ω =
K⋃

k=1

Sk (2.1)

where Sk∩Sj = φ for k 6= j. The process of segmenting a specific anatomical structure within

an image is a complex procedure, hampered by image noise, blurred boundaries, obfuscation

of structures due to scanner attenuation, limitations due to data resolution, and ultimately

by the subjectivity of the very definition of objects within medical images.
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To account for these sources of ambiguity, a number of techniques can be employed. One

technique is to allow sets Sk ⊂ Ω to be fuzzy sets. A fuzzy set is defined as a pair (A, m)

where A is a set and m : A → [0, 1]. For each x ∈ A, m(x) is the grade of membership

of x to set A. [10] This grade of membership does not represent a likelihood of x being a

member of set A. Rather, it represents how similar x is to an element that would belong

to set A. In this way, in terms of segmentation, a pixel x can share similarities with pixels

from a number of anatomical objects without being strictly defined as a part of any. A

second technique is to simply remove the constraint Sk ∩Sj = φ above, allowing segments to

overlap. In this formulation, a given pixel can belong to multiple image objects. It can be

said that such a pixel exhibits an equal likelihood of being a member of each object. This

method is advantageous in its ease of implementation, and is useful in defining likely object

boundaries in cases where segmentation overlap is minimal.

Despite the technical and theoretical challenges, the increasing size and number of med-

ical images used in modern clinical practice has necessitated the use of computational sys-

tems for image segmentation. Advances in imaging technology have drastically increased

the prevalence of 3-dimensional (3D) imaging data, replacing traditional 2-dimensional (2D)

images in many clinical procedures. Processing 3D data, instead of 2D slices, introduces

other problems such as anisotropy in resolution, when in-slice pixel resolution is greater

than between-slice spacing. In addition, the size of high resolution 3D data can severely tax

the memory capacity and speed of even high-performance computers, presenting another

challenge to researchers exploring image processing and segmentation.

Manual segmentation is still the most common clinical practice [3], though it is time-

consuming (especially for 3D images) and requires a great deal of anatomical knowledge and

clinical expertise on the part of the user. In addition to being slow and labor-intensive,

manual segmentation is prone to significant variation between users due to the subjectivity

of image interpretation. Automated and semi-automated methods for computational image

segmentation are active research topics, and include a wide range of approaches. [11,12,13,14,

15,16,17,18,19,20,21] The various approaches to image segmentation include statistical and

shape-based techniques, as well as hybrids of the two. Making use of statistical information

at varying scales to determine local shape features, our Shells and Spheres algorithm falls
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in the category of hybrid techniques. Different techniques require varying levels of training

information, defining the level of supervision, and user interaction, forming the range between

manual and automated methods. The majority of techniques, including Shells and Spheres,

are classified as semi-automated, though this classification comprises a wide range of user

interaction, requiring varying amounts of time, attention, and technical expertise from the

user.

Many conventional methods for image processing, including image segmentation, consider

a region of fixed size and shape, usually referred to as a kernel. Such approaches suffer a

tradeoff between detecting small-scale features in images and considering global information.

These can be mutually-exclusive goals when using fixed-size sampling regions. In addition,

small kernels generally are highly sensitive to image noise, which cannot be distinguished from

object boundaries with limited local information. Other common approaches define dynamic

regions adjoining boundaries using deformable contours [14] or level sets [11, 22]. While

such methods exhibit robustness to the image noise that hampers kernel-based techniques,

sensitive manual interaction is required to place an initial surface model within the image and

to choose appropriate parameters. Additionally, standard deformable models have suffered

from poor convergence to concave boundaries. [9]

Our approach, instead, uses a set of spheres whose individual radii are optimized using

Variable-Scale Statistics (VSS) operators to achieve maximum discrimination between image

regions. We retain the advantage of kernel-based approaches in that we do not require an

initial model, but allow our sampling regions to change size, making use of both local and

global image information to gather more meaningful statistics. These features give our

method robustness towards local image noise without relying on a user-defined prior shape

model. Not only do our spheres provide highly representative populations for boundary

detection and region representation, but those spheres that touch at least two boundaries

are also medial, as classically defined by Blum [23], providing a basis for medial feature

extraction. Unlike Gaussian blurring, commonly used in multi-scale analysis [6, 24], Shells

and Spheres preserves sharp boundaries with increasing scale.
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A technique commonly used to expand 2D segmentation systems to 3D image seg-

mentation is to segment 2D slices and subsequently combine them to reconstruct a 3D

segmentation. [12, 13] This approach leads to problems due to plane motion and errors

in cases where the surface of a shape becomes approximately parallel to the direction of

slicing. To avoid these obstacles, many modern segmentation methods are inherently 3-

dimensional. [15,17,18,11,20] Our Shells and Spheres framework [25], was developed in this

spirit, taking advantage of the native symmetry in n-dimensions of hyperspherical operators,

which maintain rotational invariance with varying radius in the computation of VSS for sta-

tistical pixel population analysis. Spherical operators are preferred over Gaussian kernels for

their sharp boundaries, even at large scale. This approach to analysis and its applications

to image segmentation have been briefly explored in Cois’s MS thesis [25] by applying a pre-

liminary system to segmentation of the aortic arch in contrast-enhanced CT scans, yielding

promising results that motivated the present research.

2.2.1 Fuzzy-Connectedness

Saha, et al., have developed a popular approach to image segmentation known as fuzzy-

connectedness. This approach is based on creating paths between image pixels, which are

used to calculate an affinity value representing the likelihood that the pixels at either end

of the path are within the same image object. In some of their publications [16, 17, 21],

they describe a set of hyperballs centered at each image pixel, grown as large as possible

without crossing boundaries, used as a scale factor in their affinity equation. The goal of

growing spheres at each pixel to meet image boundaries is similar to that of our technique,

and thus warrants a detailed discussion. The method used for calculating the size of each

of these hyperballs differs significantly from our approach. The fuzzy-connectedness method

of deciding the proper scale of hyperballs (spheres) is fully detailed in [16]. The measure

used to determine scale is a value denoted FOk(c), which is the “fraction of the object” of

a hyperball Bk(c) of radius k centered at pixel c. The value of FOk(c) is calculated using

a user-defined homogeneity function W . This function is used to find the probability [0-1]

that two pixels are in the same homogeneous region, given the intensity values of these two
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pixels c and e, as in W (|f(c) − f(e)|). In the calculation of FOk(c), this function is used

to find the homogeneity measure between each pixel e in the outer shell of the hyperball, as

represented in set notation by the subtraction of a sphere one size smaller from the current

sphere Bk(c)−Bk−1(c), and the central pixel c. Using these values, the equation for FOk(c)

is given as

FOk(c) =

∑
e∈Bk(c)−Bk−1(c) W (|f(c)− f(e)|)

|Bk(c)−Bk−1(c)|
. (2.2)

The numerator can be recognized as the sum of the homogeneity likelihood values given by

W for each pixel e in the hyperball’s outer shell when compared to the central pixel c. The

denominator is a normalizing factor, representing the number of pixels contained in the outer

shell being considered.

Thus, in a noiseless image, a sphere with an outer shell completely within a uniform

intensity region would have an FOk(c) value of 1. A manual threshold ts, under which the

FOk(c) values of spheres must remain in order to continue growth, is required. Saha, et al.

present a variety of possible homogeneity functions, each of which perform differently on a

given image.

This method of scale calculation is not designed for extreme accuracy, as exact scale val-

ues at each pixel are not necessary for effective performance of the overall fuzzy-connectedness

algorithm. Instead, Saha et al. have designed a technique that is computationally swift and

relatively simple to implement. When considering the needs of our S&S system, namely, a

technique that calculates the radius of each sphere as accurately as possible, a number of

problems with the fuzzy-connectedness approach become readily apparent:

• Using only the outer shell greatly decreases the statistical population used, weakening

the measurement

• The individual measure of homogeneity is derived from the comparison of only two

pixels (c and e), rather than an entire population, easily falling prey to noise, tissue

inhomogeneity, partial-volume effects, etc

• The necessity of choosing the homogeneity function W adds a knowledge-dependent task,

requiring an experienced user
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• The approach is highly dependent on having either uniform noise, or a very complex

homogeneity function designed to account for a specifically known type of non-uniform

noise

In noisy images, especially those with uneven noise characteristics such as MRI, these

drawbacks become a major cause for concern. Using only the central pixel c as a basis

for homogeneity comparisons is problematic, especially if that pixel is afflicted with a large

amount of noise. Homogeneity functions must be chosen very carefully by a knowledgeable

user. The interior region of the ball is not considered in any way, meaning that the number of

pixels considered to make a decision is small, compared to the pixel population of the entire

hyperball. There are two ways of considering this approach. Since the population being

considered is small compared to the entire sphere, a few pixels outside the region should

have a more profound impact on the sum of the outer shell, and therefore on the sphere

growth decision, than the same few pixels would have had when averaged in to the pixel

population of the entire sphere. This can be seen as a positive feature. However, giving more

weight to a few pixels can also be detrimental, as a few noisy pixels may have a dramatic

impact on the homogeneity value calculated. Viewed in this light, it can be seen that the

smaller population is more susceptible to the negative effects of noise and other sources of

inhomogeneity. The approach of our Shells and Spheres framework is to use the largest

population possible to avoid this vulnerability.

2.3 CLINICAL IMAGE ANALYSIS

Medical imaging plays an ever more essential role in the clinical world, and automated seg-

mentation has become an increasingly important goal, as already discussed. Current auto-

mated segmentation systems are either largely unreliable or too operationally complex, with

the result that manual segmentation remains the standard practice. Some semi-automated

algorithms are used, but these must be tuned via manual parameter adjustment for each

individual image. The time and technical expertise required to manually set parameters

deters most target end-users, particularly clinicians, from adopting image analysis technol-
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ogy. Recent research has addressed this problem by creating software systems designed to

appeal to the clinician by simplifying the interface and adding useful feedback for parameter

initialization. [3] However, irrespective of interface, implementations of current automated

segmentation algorithms still require users to learn algorithm specifics to effectively set pa-

rameters. As described by Yushkevich et al., most techniques “rely on parameters whose

values often make sense only in the context of their mathematical formulation”. [2] This

formulation is often outside the professional realm of the clinical end-user, making it highly

unlikely that many will expend the time and energy necessary to master this new domain. A

viable solution to this problem is to provide a means of automatically calculating segmenta-

tion parameters that requires minimal user input, in a form that is within the clinical realm

of expertise.

We present such an approach in this dissertation. Using our novel automated segmenta-

tion framework, Shells and Spheres [25], which will be described in detail in the next chapter,

we can produce a reliable 3D segmentation while limiting user interaction to a simple 2D

manual tracing of a single contour at the onset of analysis. The system performs auto-

mated parameter optimization on the 2D slice and manual contour, deriving statistics and

seed points for a fully automated 3D segmentation without further user assistance. We will

present details of this system, along with results and validation, following the background

on the Shells and Spheres framework.
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3.0 THE SHELLS AND SPHERES FRAMEWORK

We present a framework for image analysis that can be used to calculate a distance map

directly from statistical analysis of the image data. We introduce the concept of a sphere map,

a set containing one sphere of adjustable radius centered at each pixel in a given source image.

Though our framework is inherently n-dimensional, we simplify our discussion by using the

term pixel to describe image data points in all dimensions, instead of other dimensionality-

specific terminology such as voxel. Likewise, we use the term sphere when describing our

regions, instead of circle or hypersphere. These spheres are rotationally invariant sets of pixels

that define regions within the source image on which statistical operations can be performed.

We present Variable-Scale Statistics (VSS) that can be computed on populations of pixels

within and between spheres as they evolve. The primary objective of algorithms utilizing

our framework is to make use of VSS operators to optimize the sphere map, i.e., to deduce

the proper radius of each sphere such that it reaches, but does not cross, the nearest object

boundary. The optimal spheres’ radii are thus equivalent to a distance map, indicating the

distance from the pixel at the center of each sphere to the nearest object boundary. Not only

do such spheres contain highly representative pixel populations for boundary detection, but

those spheres that touch at least two object boundaries are medial, as classically defined by

Blum [23], providing a basis for medial feature extraction. Figure 1 shows a sampling of 2D

medial spheres in a rectangle.

Unlike Gaussian blurring, a common technique for multi-scale analysis which increasingly

blurs boundaries to obtain image features at higher scales [5], Shells and Spheres preserves

sharp boundaries with increasing scale, i.e. sphere radius. The curved surfaces of spheres pro-

vide the ability to model complex object shapes by combining multiple overlapping spheres,

each touching at least one point on the object boundary, with their individually varying radii
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Figure 1: The Blum medial manifold (dotted line) of a rectangle, with selected medial spheres

shown.

allowing for simultaneous, rotationally invariant, multi-scale analysis tuned to individual lo-

cations in an image. Thus, segmentations produced using Shells and Spheres, as shown in

Figure 2, can accurately follow the complex boundary contours common in medical images.

The following sections will present the fundamental framework and basic operators of

Shells and Spheres. Using this framework, a wide variety of algorithms for sphere map

optimization are possible. One such algorithm designed for cardiac image segmentation will

be presented, with experiments and validation to follow in subsequent chapters.

3.1 FRAMEWORK

We begin by defining our notation. As previously stated, Shells and Spheres is inherently n-

dimensional. For brevity, we use the term sphere instead of circle or hypersphere, regardless

of image dimension. Figures are presented in 2D for ease of illustration.

3.1.1 Shells and Spheres

Since the framework of Shells and Spheres is used to gather statistics on dynamic populations

of pixels, we adopt a hybrid form of notation derived from standard set theory and statistics.
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Figure 2: A: 3D contrast-enhanced CT scan of the aortic arch (top left), and the same

scan with an overlaid 3D segmentation (bottom left) achieved using the Shells and Spheres

framework. B: Surface model of a Shells and Spheres segmentation of the right heart with

labeled Right Ventricle (RV) and Right Ventricular Outflow Tract (RVOT), shown from

three different perspectives.
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We denote vectors by lowercase bold-faced letters (x), scalars by lowercase italic letters (r),

and sets by uppercase letters (S). We use Z to denote the set of all integers, and Ω ⊂ Zn to

denote the set of all pixel locations in a sampled n-dimensional image.

Given an n-dimensional image with intensities f(x) for x ∈ Ω, we define a sphere map,

which assigns the radius r(x) to the sphere centered at each pixel x.

We define a sphere to be an n-dimensional neighborhood of pixels that lie within a radius

r of a center point. We use an integer value for r, such that a sphere of radius r centered at

a pixel x is given by

Sr(x) = {y : round(|y − x|) ≤ r, y ∈ Ω} . (3.1)

Note the shorthand notation for the subscript r, meaning r(x), the radius of the particular

sphere at x as given by the sphere map. In some instances, the reader will encounter an

example with a different subscript, such as S1(x), meaning a sphere of radius 1, irrespective

of r(x). By definition, x ∈ Sr(x) for all x, even when r(x) = 0, and hence Sr(x) is always

non-empty.

A shell is a set of all pixels whose distance to the center rounds to a given radius, defined

for radius r as

Hr(x) = {y : round(|y − x|) = r, y ∈ Ω} . (3.2)

Shells are non-overlapping such that for concentric shells,

Hp(x) ∩Hq(x) = ∅, p 6= q . (3.3)

Additionally, shells are space-filling, and thus a sphere of radius r may be formed from a

union of shells,

Sr(x) =
r⋃

k=0

Hk(x) . (3.4)

Figure 3 illustrates the distribution of pixels in a series of concentric shells surrounding a

central pixel in a 2D image. Each pixel is labeled with its integer radius from the central pixel

(labeled “x”). Fig. 4 shows an image containing two noiseless objects with pixel intensities

of 1 and 9 respectively. Note that pixels in this case are represented by their intensity.

The boundary between the image objects is identified by a straight dashed line. Pixel x

is surrounded by a concentric set of four shells H0(x), H1(x), H2(x), and H3(x), shown
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Figure 3: Each pixel is shown as a number indicating its integer distance from the central

pixel. If we denote the central pixel as x, then pixels labeled n are members of the set Hn(x).

For example, the pixels labeled “3” (shown in bold) comprise the set H3(x).

separated by dashed circles. Shell H3(x) is truncated by the edge of the image. The union

of all four shells is Sr(x), shown enclosed by a solid circle, also truncated by the edge of the

image, with a radius governed by the value of r(x) = 3 in the sphere map. Similarly, on the

other side of the boundary, pixel y with an intensity value of 9 has three shells whose union

Sr(y) has a radius r(y) = 2. Both Sr(x) and Sr(y) touch but do not cross the boundary,

and are therefore correctly optimized.

The correctly optimized sphere map of the image in Fig. 4 is shown in Fig. 5, with each

pixel represented by the radius of the sphere centered at that pixel. Note the linear increase

in sphere radius with distance from the boundary and the fact that the radius equals zero

adjacent to the boundary.

3.1.2 Variable Scale Statistics

We derive a number of statistics at each pixel x, calculated on the intensities of pixels within

spheres. Since these statistics depend on the radii of the spheres, we call them Variable Scale

Statistics (VSS). We denote as primary statistics those VSS at x calculated using only the
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Figure 4: Noiseless image with boundary between two objects. Correctly scaled spheres

Sr(x) with r(x) = 3 and Sr(y) with r(y) = 2 touch, but do not cross, the boundary.

Numbers indicate pixel intensity.

Figure 5: Correctly optimized sphere map of the image in Fig. 4. Numbers indicate the

integer radius of the sphere at each pixel. Pixels x and y are labeled as before.
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population of pixels within Sr(x). Higher-order secondary statistics are VSS derived from

multiple spheres.

3.1.2.1 Primary Statistics. The primary statistics at pixel x concern only the popu-

lation of pixels within the sphere Sr(x). Thus the mean at pixel x is the mean intensity of

all pixels within the population Sr(x), defined as

µ(x) =
1

|Sr(x)|
∑

y∈Sr(x)

f(y) , (3.5)

where |Sr(x)| is the number of pixels in Sr(x) and f(y) is the image intensity at y. The

variance at pixel x is defined as

σ2(x) =
1

|Sr(x)| − 1

∑
y∈Sr(x)

[f(y)− µ(x)]2 . (3.6)

where |Sr(x)| > 1. The standard deviation σ(x) is simply the square root of the variance.

The first-order moment of intensities within Sr(x) is given by

m(x) =
∑

y∈Sr(x)

(y − x)f(y) . (3.7)

Due to the finite extent of an image’s domain Ω, a sphere may be truncated by one or

more edges of the image (for example, S3(x) in Fig. 4). Unlike conventional kernels, which

usually require pixel values outside the image to be arbitrarily defined, our spherical sets

simply exclude such locations from all calculations. Thus, truncation will not adversely affect

µ(x) or σ(x). However, the first-order moment will suffer a bias due to asymmetrical pixel

distribution within the truncated sphere. We compensate for this by defining a measure

that shows no edge effect, which we call VSS gradient. Given the center of mass of pixel

locations in sphere Sr(x),

c(x) =
1

|Sr(x)|
∑

y∈Sr(x)

y , (3.8)

the VSS gradient at x is

∇f(x) =
1

|Sr(x)|
[m(x)− µ(x)(c(x)− x)] . (3.9)
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Figure 6: A:A synthetic noiseless image. B:A corresponding vertical gradient image, calcu-

lated using the VSS gradient. Note that there are no edge effects, such as those seen with

conventional gradient calculations.

The VSS gradient does not suffer from the usual edge effects of convolution kernels, as seen

in the vertical VSS gradient image shown in Figure 6.

Note that for non-truncated spheres c(x) = x and VSS gradient is equivalent to the

moment vector normalized to the number of pixels, m(x) / |Sr(x)|.

All of the above statistics can be computed incrementally as shells are added to, or

removed from, a given sphere, significantly reducing computational load during sphere map

optimization.

3.1.2.2 Secondary Statistics. We define secondary statistics as higher order VSS de-

rived by combining multiple spheres to form more complex neighborhoods. One such neigh-

borhood, S−1(x), is defined as

S−1(x) = {y : x ∈ Sr(y)} , (3.10)

the set of all pixels whose spheres contain x. The −1 superscript is used to impart the flavor

of an inverse function. Note that since it is always true that x ∈ Sr(x) it must likewise
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Figure 7: The S−1(x) set of spheres that contain pixel x, adjacent to the boundary between

two noiseless objects with respective intensities of 1 and 9.

always be true that x ∈ S−1(x).

Given an optimized sphere map, S−1(x) will consist entirely of pixels within the same

object as pixel x. Fig. 7 shows members of one such S−1(x) set, consisting of three pixels

(bold), whose spheres contain x. Notice that all three spheres touch but do not cross the

boundary, so this particular S−1(x) set is correctly optimized.

Secondary statistics are derived from populations of spheres such as S−1(x). Thus, the

mean of means at pixel x is defined as

µµ(x) =
1

|S−1(x)|
∑

y∈S−1(x)

µ(y) , (3.11)

or the mean of the mean intensities for all the spheres in S−1(x). In a noiseless image

containing distinct homogeneous regions, the µµ(x) yielded by a correct sphere map will be

identical to the original image.

Likewise, the standard deviation of the means is defined as

σµ(x) =

 1

|S−1(x)| − 1

∑
y∈S−1(x)

[µ(y)− µµ(x)]2

 1
2

. (3.12)

Note that the above definition of σµ(x) is given only for |S−1(x)| > 1. For noiseless images,
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Figure 8: Image with noise. Pixel x is deterred from extending its sphere across the boundary

because its mean is an outlier in the population S−1(y).

a correct sphere map will yield σµ(x) values of 0 for all pixels.

We compute a z-value to provide a measure of how well Sr(x) fits into the current S−1(y)

set,

zµ(x|y) =
|µ(x)− µµ(y)|

σµ(y)
. (3.13)

The justification is that in an optimized sphere map, if Sr(x) were to contain pixel y,

then µ(x) should fall well within the distribution of means for all spheres that already contain

y. This concept is illustrated in Fig. 8, which shows pixel x attempting to extend its sphere

across the boundary to include pixel y. We have included noise in the image to demonstrate

that a high z-value could be used to stop the growth of Sr(x) at the boundary, even in

the presence of noise. It should be noted that the utility of this statistic is dependent on a

reasonable initialization of the sphere map, such that the percentage of spheres not crossing

boundaries is high enough to lend statistical validity to µµ(y) and σµ(y).

3.1.2.3 Validation of Population Testing During initial development of the Shells

and Spheres framework and segmentation algorithm, we accepted a number of assumptions

about the statistical properties of our spherical sampling regions and of medical images.

Our current techniques are based on using statistical population testing between adjacent
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Figure 9: Left: 2D CT image of the Aortic Arch (AA) used in preliminary testing. Right:

2D AA image with manual tracing highlighted (pink).

regions to delineate boundaries and discern objects within images. The use of such population

testing relies on the assumption that the intensity distributions of the populations of pixels

within these regions are approximately Gaussian. We conducted a brief study to test this

assumption by validating the normality of our spherical operators at various sizes when

placed in various positions in a real image relative to object boundaries. Our hypothesis was

that the normality of our spheres would increase as they grew within relatively homogeneous

image objects, reaching a maximum just before crossing a boundary, and decrease rapidly

upon crossing.

Tests were conducted on selected spheres using a CT image of the aortic arch and an

expert manual tracing, shown in Figure 9. We will briefly study and explain the behavior

of the normality of the populations of pixels within spheres as they grow, to validate our

analysis techniques and facilitate a deeper understanding of the statistical properties of our

spheres.
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The mask created by our manual tracing was used to determine a ground truth sphere

map by applying a noiseless S&S algorithm, which will be described in detail in the next

section. For our experiments, we chose the set of all spheres with a gold standard radius

of 11. The average diameter of the aortic arch in our image is approximately 26 pixels,

thus the largest spheres within (medial spheres) have a radius of approximately 13 pixels.

This places our test spheres roughly two pixels off the medial manifold of our target object.

These spheres were chosen because they contain a large enough pixel population to provide

accurate statistics (441 pixels) and are not likely to lie along the medial manifold of the

object, so they will cross one boundary at a time as they grow. This choice generalized our

experiment by removing the possibility of an amplifying effect on our normality signal when

a spheres cross two boundaries simultaneously. The normality of the population of pixels

within each sphere was calculated using the Shapiro-Wilks (SW) test for normality in SPSS

version 14.0 (SPSS, Inc., Chicago IL). [26]

Figure 10 shows the normality, measured as the p-value of the SW test, of two randomly

selected spheres in our image as they are grown from radius 5 to radius 15. The p-value

approaches 1 for perfect normality. Recall that the correct radius of these spheres is 11.

Radius 11 is in fact the peak normality of both of these spheres, though the drop in normality

after this radius, as an object boundary is crossed, is more pronounced in one than in the

other. Both spheres also generate a small increase in normality past the notable drop after

crossing an object boundary at radius 11. This short increase lasts until a second object

boundary, on the opposite side of the sphere, is crossed, at which time the normality drops

more dramatically.

To more accurately describe the signals seen in Figure 10, consider the fact that the

two spheres measured were both centered within the aortic arch in our image, which we will

refer to as object A. As a sphere centered in object A crosses an object boundary, a small

number of pixels from another object, which we will refer to as object B, are included in

its population, decreasing the normality of said population. As the sphere grows farther

past this boundary into object B without crossing a boundary at any other point along the

circumference of the sphere, the number of pixels added to the population from object A is

greater than the number of pixels added from object B. This uneven influx of pixels causes
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Figure 10: Plot of the normality, measured as the p-value of a SW test, of two randomly

selected spheres for radii 5-15.

the slight rebound in normality seen in the figure from radius 12 to 13, until the second

object boundary is crossed at radius 13, adjusting the ratio of pixels being added in favor of

object B. From this point on, the normality is continually decreasing.

For further study, we recorded Shapiro-Wilks normality data on all pixels in our test

image with a gold standard radius of 11, 585 pixels in total. The normality of each sphere

was calculated at each radius within the range of 5 to 15. It was hypothesized that the max-

imum normality of these spheres would occur at radius 11, the radius before they crossed the

object boundary to include pixels outside the AA. Figure 11 shows a histogram of the radius

of maximum normality of all spheres in our study. We see that the predominant radius of

maximum normality among these spheres is radius 13. Figure 12 shows a similar histogram,

but with the SW normality measurements normalized by the statistical significance of the

normality test. While the most common radius of maximum normality remains 13, mea-
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Figure 11: Histogram of the radius of maximum normality of all spheres with a gold standard

radius of 11 in our test image.

surements of maximal normality at lower radii are, in many cases, removed in favor of radii

closer to the gold standard radius because of the low statistical significance of their normal-

ity measurements. The lower statistical significance of measurements taken on spheres of

smaller radius is due to their smaller pixel populations.

The prevalence of radius 13, two sizes larger than the known correct radius, as the radius

of maximum normality for our spheres can be explained by the aforementioned fact that

upon initially crossing an object boundary, very few pixels outside of the object are included

in a sphere’s pixel population. In many cases, a sphere may be required to grow a few more

steps before the number of pixels included from outside the original object is large enough

to decrease the normality measurement.
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Figure 12: Histogram of the radius of maximum normality, normalized by statistical signifi-

cance of the normality measurement, of all spheres with a gold standard radius of 11 in our

test image.

To illustrate the behavior of the normality of our spheres as they grow, Figure 13 shows

the mean normality of all of our test spheres (the 585 spheres of gold standard radius 11)

over the previously given range of radii. This plot shows the trend of mean normality for

our spheres, verifying that for this data it increases as expected until reaching the radius

at which the object boundary is crossed, and then exhibits a decline as spheres grow past

the boundary. The normality measurements of above 0.95 until radius 14 show that our

assumption of normal populations of pixel within spheres, and thus our use of population

testing, is valid until a sphere has taken several steps past a boundary.

While this data indicates that normality measures are not accurate enough to indepen-

dently indicate the correct radius of a sphere, it also shows that the populations of pixels

within our spheres are predominantly maximally normal at scales close to their correct scale,
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Figure 13: Plot of the mean SW normality of all spheres at each radius, from 5 to 15, with

the maximum mean normality marked in red.

the common range of sizes at which population testing occurs in our algorithm (presented in

the next section). This finding helps to verify the statistical validity of our population tests

for region/boundary determination.
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Using the tools provided by the Shells and Spheres framework, an algorithm has been

developed for the purpose of optimizing a sphere map for, and segmenting objects within,

cardiac images. This algorithm is based on the use of the population statistics and population

testing described earlier in this chapter. A simpler algorithm has been developed to produce

an optimized sphere map for noiseless data, and has proven essential to our initialization

and error calculation techniques. The next section will present the noiseless sphere map

optimization algorithm, while the subsequent section will introduce our full algorithm for

real medical image segmentation.

3.2 NOISELESS SPHERE MAP OPTIMIZATION ALGORITHM

We have developed algorithms to optimize a sphere map, i.e. to set the correct radius of each

sphere S(x) in an image such that it reaches, but does not cross, the nearest boundary. The

first, and simplest, algorithm will be referred to as the Noiseless Algorithm. This algorithm

is specifically designed to optimize a sphere map for a noiseless image, a far simpler task than

optimizing a sphere map for a real image. The Noiseless Algorithm has become an integral

part of our research, utilized in the initialization phase of our Real Image Segmentation

Algorithm, presented in the next section, as well as in our validation and error visualization

techniques. It has also been used to determine the medial parameters of manually segmented

shapes for diagnosis (not described in this thesis. [27]
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Figure 14: A: An example noiseless image. B: The sphere map created by the Noiseless

Algorithm, represented as an intensity image where each pixel x has an intensity value

equivalent to the radius of its sphere S(x).

A noiseless image consists of a set of objects, each containing a set of pixels of uniform

intensity. Figure 14A shows an example of a synthetically generated noiseless image. Object

boundaries can easily be determined in such images by detecting any change in intensity

between pixels. Our Noiseless Algorithm functions simply by growing each sphere S(x) in

the image until it contains a pixel y in its next outer shell, y ∈ Hr+1(x), with a different

intensity value than that of pixel x. This process produces a sphere map containing the

correct radii of all spheres within the image, such as the one shown in Figure 14B.

In our research, this process has been used to produce gold standard sphere maps on

binary masks of image objects created by manual or automated segmentations, as seen

in Figure 15. This allows us to catalogue pixels by their correct radius, and to calculate

various image-defining statistics for analysis of algorithms. Furthermore, it creates a gold

standard sphere map within a manually segmented object against which the accuracy of a

sphere map created by our automated system can be compared. In this case, the Noiseless

Algorithm can be made even more computationally efficient by only growing spheres at pixels

within the target segmented object. This comparison provides a means of quantifying and

visualizing localized error in our automated segmentations, an extremely useful technique
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Figure 15: A: A 2D slice from one of our 3D ovine MRI data sets. B: The same 2D slice

with a manual tracing overlaid (pink). C: The manual tracing shown as a binary mask. D:

The gold standard sphere map produced by running the Noiseless Algorithm on the segment

mask, growing spheres only at pixels within the segment.

in understanding the performance of our system. This error visualization technique will be

presented in detail in Section 5.2.
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3.3 REAL IMAGE SEGMENTATION ALGORITHM

The Shells and Spheres framework presented thus far in this chapter provides a basic set

of versatile image analysis tools. A number of methods for the use of these tools in ana-

lyzing real images have been explored, and the remainder of this chapter will present one

effective multistage algorithm for optimization of a sphere map on real medical images. The

presentation of this algorithm provides not only a functional Shells and Spheres real image

segmentation system, but also insight into the advantages, limitations, and potential overall

utility of the Shells and Spheres framework.

The algorithm described takes the form of a six step process, with steps 1-4 optimizing the

sphere map, step 5 finding medial pixels, and step 6 producing a segmentation of the target

object. Step 1 uses VSS gradient to detect boundaries and creates an initial approximation

of the correct sphere map, from which acceptable statistical values can be obtained for use

in subsequent steps. Step 2 utilizes the pronounced discrepancy in pixel variance between

spheres that have incorrectly grown across boundaries and those that have not to reduce the

size of incorrect spheres, placing them correctly within their appropriate image objects. Step

3 introduces specialized boundary indicators, known as outposts , to the image via boundary

information extracted from population testing between spheres in adjacent image objects.

These outposts then influence the radii of nearby spheres, resizing them to adhere to a

consensus on boundary location. Step 4 revisits variance calculation using the current sphere

map, which is more accurate than the sphere map previously available. The new variance

measure is applied to spheres, encouraging them to fully grow within their respective image

objects, effectively smoothing the radius image and sharpening its “boundaries” (as defined

by all spheres that remain at the initial scale of 0, or a size of 1 pixel) simultaneously. Step

5 identifies medial pixels, i.e. those whose spheres touch at least two boundaries. Given

a seed point within the target object, step 6 locates the nearest medial pixel and connects

neighboring medial pixels, combining their corresponding spheres to produce a segmentation.

The following sections describe each step in detail.
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Figure 16: Our synthetic test image from Figure 14A with gaussian noise added.

3.3.1 Step 1: VSS Gradient-Based Radius Approximation

As previously illustrated, it is trivial to optimize the sphere map for a noiseless image by

growing spheres until a new intensity value is detected. When analyzing real images, however,

this approach will fail, because intensity variation due to noise may be indistinguishable

from an object boundary, especially within small spheres. For illustrative purposes, we will

consider the synthetic image from Figure 14A with gaussian noise added, shown in Figure

16.

Steps 2, 3, and 4 depend on there already existing a sphere map that is at least somewhat

accurate, because those steps make use of secondary VSS, based on collections of existing

spheres. For Step 1 to accomplish this, all spheres are first set to r(x) = 0 and are then

allowed to grow until a persistent increase in VSS gradient magnitude (Eqn. 3.9) is detected

over a range of sphere sizes. Unlike conventional gradient measured with a fixed-scale kernel,

the VSS gradient depends locally on r(x), and is based on the first-order moment of intensity

normalized by the number of pixels in the sphere. Thus the VSS gradient can be expected

to increase monotonically as a sphere grows past a boundary, since the first order moment
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favors the outer pixels. A persistent increase in VSS gradient for g consecutive steps is

sought, indicating that a boundary has been crossed. At this point r(x) is reset to the scale

just before the increase began. Empirically, it has been found that a value of g = 5 performs

well for both MRI and CT cardiac data to achieve a reasonable first approximation of the

optimized sphere map. Theoretically, the ideal value for g would change in proportion to the

amount of uniform image noise, as a higher level of noise would cause more obfuscation of

boundaries, impeding the detection of gradient. Note that any increase in gradient, regardless

of magnitude, will count as one of the g increases. In the same manner, even the slightest

decrease in gradient will break the chain of consecutive gradient increases being sought.

Noise can cause random small fluctuations in gradient when no actual gradient is present.

Because of the possibility of this anomaly occurring just before a growing sphere encounters

an actual gradient, it is not unlikely that a sphere’s position at the end of Step 1 will be

one or two steps short of the actual boundary. Since it is far more likely that noise could

overcome the influence of an actual boundary on the VSS gradient within a small population

of pixels (i.e. a small-scale sphere), it is equally likely that such an error would only occur

early in a sphere’s growth, again deviating the sphere’s end position from its ideal radius. A

less likely, but still possible, error is the case in which noise may cause enough of a decrease

in perceived gradient to cause a break in the chain of g consecutive gradient increases caused

by an actual boundary.

We found Step 1 to be effective at growing spheres past tissue inhomogeneity and noise.

However, spheres may not stop exactly on the boundary because of the aforementioned effect

of noise on the detection of gradient increase. Using VSS gradient to govern sphere growth

can also fail completely for a sphere that encounters two opposing boundaries simultaneously,

as their contributions to the gradient may cancel.

3.3.2 Step 2: Variance-Constrained Radius Reduction

After Step 1, three possible states exist for each sphere: The sphere can be too large, too

small, or the correct size (i.e. it touches the nearest boundary but does not cross it). The

most glaring error in the sphere map after Step 1 is the presence of large-scale spheres that
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Figure 17: A colored height map of the internal variance of all spheres from Fig. 16 after

algorithm Step 1, with the variance of each sphere assigned to its central pixel.

have incorrectly grown past boundaries. As previously mentioned, this type of error typically

occurs when a growing sphere contacts multiple boundaries at once, which in many cases

indicates that the sphere lies on the medial manifold. In such a case, the contributions to

the VSS gradient from multiple boundaries may cancel, allowing the sphere to grow much

larger than its correct radius. Such pixels, whose spheres cross object boundaries, have

variance values orders of magnitude higher than those that remain within a single object.

Figure 16 shows our synthetic image with added noise while Figure 17 shows a height map of

corresponding variance values for all spheres in the same image after Step 1. The flat “floor”

section of the height map is roughly the variance produced by the noise added to the image,

which has a value near 200. Spheres crossing boundaries, however, have a larger variance

σ2(x) (extending to a value of nearly 16000) than spheres that correctly remain within the

object boundaries, a fact which can be exploited. To correct this error in the sphere map,

all spheres with a variance above a certain threshold αs are shrunk by decrementing r(x)
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for each sphere Sr(x) until σ2(x) < αs. The threshold αs is set relative to µσ2 and σσ2 , the

mean and standard deviation, respectively, of the variance of all the spheres in the current

sphere map, as defined by

αs = µσ2 + βsσσ2 . (3.14)

The positive constant βs represents the number of standard deviations above the mean

permitted for a sphere’s variance without the sphere being required to shrink. This parameter

is not particularly sensitive, as the difference between spheres with erroneously high variance

and all others is approximately two orders of magnitude. For the example in this section, a

value of βs = 0.2 was used.

This global threshold for σ2(x) is not ideal, because it assumes a constant expected

variance throughout the image. This expectation is likely untrue, given factors such as

tissue inhomogeneity and nonuniform noise, and future work may explore locally normalized

thresholds. It should also be noted that σ2(x), and thus the threshold, depends on the

current sphere map, r(x), which is not yet fully optimized at this step. This deficiency is

addressed by returning to variance in Step 4, once a more accurate r(x) is available.

Reducing the radius of pixels with extremely high variance will correct a majority of

the spheres that have incorrectly grown past boundaries. The updated variance height map

after Step 2 is shown in Figure 18, which effectively illustrates the fact that the high variance

regions in the centers of objects have been eliminated.

3.3.3 Step 3: Outpost Selection and Exclusion

A primary use of VSS is to differentiate regions on opposite sides of an object boundary.

Following Step 2, many spheres are correctly sized and face each other across boundaries.

Likely boundary candidates can thus be identified for a given sphere by finding a pixel y

in its Hr+1(x) shell with a high value for zµ(x|y). As already discussed, and illustrated in

Figure 8, such a sphere will detect growth past a boundary by finding itself “unlike” the

S−1(y) population of spheres containing the pixel y just across the boundary. The sphere

at x is said to place a reflector at such a location, a metaphorical construct denoting a vote

by the sphere for the pixel y as a point across its nearest boundary. Note that we do not
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Figure 18: A colored height map of the internal variance of all spheres from Fig. 16 after

algorithm Step 2, with the variance of each sphere assigned to its central pixel.

vote for this pixel as a boundary itself, since boundaries may exist between pixels, as in

Figure 4. Instead, pixels on each side of a detected boundary are marked. Thus, referring

again to Fig. 8, Sr(x) could place a reflector at pixel y. The set of reflectors placed by a

given sphere Sr(x) is denoted K(x). In the present algorithm the constraint |K(x)| = 1 is

applied, limiting each sphere to placing only one reflector, for reasons discussed below. This

constraint leads to the definition of K(x) as

K(x) = {y : y = argmax
y∈Hr+1(x)

zµ(x|y)}. (3.15)

Thus there are no thresholds or other parameters required in determining the placement of a

sphere’s reflector. If a boundary exists just beyond the outer shell of Sr(x), it will be located

at the pixel y for which the highest zµ(x|y) is calculated. If multiple object boundaries exist
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Figure 19: Illustration of K−1(x) containing 7 pixels (bold), each of whose sphere would

place its reflector across the boundary at x.

just beyond the outer shell of Sr(x), the boundary producing the largest zµ(x|y) will be

marked with a reflector.

Each pixel may contain reflectors placed by a number of spheres. The set of spheres that

have placed reflectors at a pixel x is defined as

K−1(x) = {y : x ∈ K(y)}, (3.16)

invoking the same inverse notation used for S−1(x) in Eq. 3.10. Figure 19 shows a set of

spheres placing their reflectors across a boundary at pixel x.

|K−1(x)| is referred to as the reflector count, i.e. the number of reflectors that have been

placed at location x. For example, in Figure 19, the reflector count |K−1(x)| = 7.

A reflector placed by y at x has an inherent direction governed by the vector (y − x).

The vector sum of the directions of all of the reflectors at x is denoted the reflectance k(x),

defined by

k(x) =
1

|K−1(x)|
∑

y∈K−1(x)

y − x

|y − x|
. (3.17)

This measure provides the average orientation of the K−1(x) population, which describes

the direction normal to the boundary, pointing to the center of the region represented by

K−1(x). Since it was decided that each sphere will contribute exactly one reflector, reflector
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density and reflectance are normalized over the image. Therefore, reflector count can be used

to differentiate between significant collections of reflectors correctly placed at boundaries and

sparse distributions of reflectors incorrectly placed in the interior of objects. To denote pixels

containing a significant number of reflectors, the term outpost is adopted, since such pixels

serve as border markers, and in fact face each other across boundaries much the same way

that military outposts of opposing armies face each other across a battle line.

The set of all pixels in an image chosen to be outposts is denoted by P . In the present

algorithm this set is found in two steps. First, the set of primary outposts P ′ is established,

containing all pixels with zero radius and at least κ reflectors, i.e.

P ′ = {x : |K−1(x)| ≥ κ, r(x) = 0}. (3.18)

For all results presented in this dissertation, κ = 4. To increase the density of outposts along

the boundaries, a set of secondary outposts P ′′ is generated, containing all pixels with zero

radius that adjoin an outpost in P ′ and have at least λ reflectors, where λ < κ,

P ′′ = {x : |K−1(x)| ≥ λ, H1(x) ∩ P ′ 6= ∅, r(x) = 0}. (3.19)

For the results presented, λ = 2. By combining the sets of primary and secondary outposts,

the set of all outposts,

P = P ′ ∪ P ′′ (3.20)

is formed.

Each outpost y ∈ P has a reflectance k(y). A sphere at x can distinguish whether a

given outpost is on its side of the boundary, constituting a friendly outpost, or the other

side of the boundary, constituting an enemy outpost, based on the direction of the outpost’s

reflectance. The set of enemy outposts (those with reflectance facing x) within the sphere

of radius r(x), is defined as

Er(x) = {y : y ∈ P ∩ Sr(x),k(y) · (y − x) < 0}, (3.21)

where the sign of the dot product determines the direction of k(y) relative to x. The

exceedingly unlikely case of an outposts with k(y) = 0 can be considered a friendly outpost,

as it does not indicate a boundary facing the sphere.
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In governing the growth of a sphere, enemy outposts are to be avoided, while friendly

outposts can be included. More specifically, enemy outposts should stop the growth of

spheres, as they represent a different image region than the one in which the sphere resides,

while friendly outposts do not. Step 3 uses the number of enemy outposts to adjust the

sphere size as follows: If the pixel contains no enemy outposts in its next shell out, Sr+1(x),

the sphere grows until it does. That is

If |Er+1(x)| = 0, increase r(x) until |Er+1(x)| > 0.

If the number of enemy outposts included in the set Sr(x) is greater than γ, the radius is

decreased until this is no longer true, i.e.

If |Er(x)| > γ, reduce r(x) until |Er(x)| ≤ γ.

In the present implementation, γ = 2. This value prevents lone pixels that have been

improperly labeled as outposts from incorrectly causing spheres to shrink.

After Step 2, in which incorrectly large spheres have been adjusted to a more correct

size, the most pressing problem with the sphere map is the scattered effects of noise on r(x).

Step 3 focuses on spheres that have incorrectly stopped growth at image noise, instead of

growing to reach an actual boundary. Outposts provide a means for correcting these errors,

as well as for adjusting spheres that have grown slightly too large or remained too small

relative to their nearest boundary. The effect of these outpost-driven operations is that

significant densities of reflectors placed by correctly-sized spheres along boundaries are used

to govern the size of other spheres, sweeping incorrect reflectors from the within objects to

the boundaries (since a sphere’s reflector is redistributed when its radius is altered). With

spheres placing only one reflector each, some pixels along object boundaries may remain

unmarked, leading to a slightly sparse collection of outposts along boundaries. This state

will not adversely effect the evolution of our sphere map, due to another advantage of our

spherical operator design. Because most spheres are large relative to the spacing of outposts

along the boundary, their growth will be stopped and they will not “leak” or “bleed” across

boundaries, as conventional deformable contours are prone to do.
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Much of the sporadic noise in r(x) is removed by Step 3, continuing the work of Step 2

by correcting additional spheres that had been crossing object boundaries.

3.3.4 Step 4: Variance-Constrained Scale Growth

At this point in the analysis, our sphere map has achieved a configuration generally repre-

sentative of the shapes within the image, but it still retains adverse effects from noise and

sub-optimal boundary detection. Although Step 3 results in a reasonably accurate r(x),

some spheres still may not reach boundaries, due to pixels incorrectly labeled as outposts.

These false outposts will stop spheres in the interior of image objects, leading to potential

errors in segmentation. Since the issue at hand is spheres stopping their growth short of the

nearest boundary, an added measure to force spheres to grow maximally within their image

objects is required. To facilitate this growth variance is used a second time, calculated in

the same manner as in Step 2, but used to force growth, rather than limit it.

The global variance threshold for growth, αg, similar to the threshold described in

Section 3.3.4, is calculated as

αg = µσ2 + βgσσ2 . (3.22)

This threshold is used to smooth the boundaries in the radius image by forcing spheres to

grow up to the actual boundary using the current, more accurate variance representative of

the intensity variance of objects within the image. Spheres are grown as large as possible

without their internal variance exceeding threshold αg. Note that there are two differences

between the αs threshold used in Step 2 and this αg threshold. First, it is defined by a

new parameter βg, which may or may not equal βs from Equation 3.3.2. Second, this

threshold uses global values based on the current improved state of the sphere map, which

has changed since Step 2. Due to further optimization of the sphere radii, αg represents

a more appropriate variance threshold than it did in Step 2, allowing Step 4 to perform

more sensitive region-approximating operations. Invoking the variance threshold, the value

of r(x) is incremented for all spheres while their internal variance σ2(x) < αg. This creates

a radius image defining spheres which more accurately match the contours of the objects in

the image.
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The effects of this final measure are pivotal, smoothing the sphere map r(x) by fixing

incorrectly stopped spheres. In addition to smoothing the r(x) image, Step 4 also sharpens

and accurately characterizes the boundaries by ensuring that spheres grow to reach them.

We now have the optimized set of radius values for use in the segmentation routine to be

described in the following section. At this point the sphere map is considered optimized.

3.3.5 Step 5: Medial Pixel Identification

Given the optimized sphere map r(x), the next goal is to extract medial pixels. To facilitate

this, a dense set of boundary pixels B is first defined as those pixels from the sphere map

with radius 0 or 1,

B = {x : r(x) ≤ 1}. (3.23)

The sets S−1(b) for all boundary pixels b ∈ B can be used to find pixels on the medial

manifold, whose spheres touch two boundaries while still lying completely within the object.

Recall that the S−1(b) set for pixel b contains all spheres in the sphere map that themselves

contain pixel b (Eqn. 3.10). Given a correct sphere map, this set will necessarily contain at

least one sphere that touches both the boundary that pixel b borders as well as an opposing

boundary across the object region (and also across the sphere) from pixel b. Figure 20(left)

shows such a medial pixel (labeled “m”) on the medial manifold of an object of intensity 1,

between two regions of intensity 9.

To find such medial pixels within S−1(b), we first define an orientation s(b) roughly

orthogonal to the boundary as the vector sum of the normalized offsets relative to b for

pixels within S−1(b) as

s(b) =
1

|S−1(b)|
∑

y∈S−1(b)

y − b

|y − b|
. (3.24)

For each boundary pixel b ∈ B, the pixel m ∈ S−1(b) furthest from the boundary along

s(b) is identified as a medial pixel, as depicted in Fig. 20 (left). The set of all medial pixels

M is thus

M = {m : m = argmax
y∈S−1(b)

((y − b) · s(b)),b ∈ B}. (3.25)
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Figure 20: Left: Diagram of an object with intensity 1 between two regions of intensity 9,

showing set S−1(b) of pixels (bold) whose spheres contain pixel b. This set produces an s(b)

vector (see text) along which the furthest bold pixel m is the center of a medial sphere (circle

in bold) touching both boundaries (dashed lines). Right: Image of a 2D slice through a CT

scan of the aorta with contrast showing an actual S−1(b) set (purple/grey), the resulting

s(b) vector, and the medial manifold (dashed curve) on which the furthest sphere along s(b)

must lie.

Figure 20(right) shows an actual S−1(b) set for a pixel b on the boundary of the aorta in

a CT scan with contrast.

Selecting a single pixel from each S−1(b) set overlooks a potentially large number of

additional medial pixels on the outer edge of each set, especially for concave boundary

points such as those in Figure 20, but no reliable method has yet been found for extracting

only medial pixels from an S−1(b) set. This is in part due to the high variation in shape

of S−1(b) sets, which is a product of the local variability of the image objects in question.

A standard distance from the boundary for each medial pixel cannot be assumed, as this

distance is dependent upon the local thickness of the object and the relative orientation of

its boundaries. One can, however, be certain that each S−1(b) set contains a minimum of

one medial pixel, as the center of the largest sphere in the direction roughly orthogonal to

the boundary is necessarily a medial pixel. The set M derived taking advantage of this fact

is a sparse but reliable set of pixels on the various medial manifolds within the image.
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3.3.6 Step 6: Medial Flood-Fill Segmentation

To segment a particular object, a seed pixel p ∈ M on that object’s medial manifold is

needed. To find it, a sample pixel is manually selected by the user, and a search is conducted

for the closest medial pixel by iterating through successive shells moving radially outward

from the selected pixel. The first medial pixel encountered is accepted as p. A flood fill

operator is then used to find a connected subset C ⊆ M containing medial pixels that are

connected to p. Pixels belonging in C are found iteratively using a series of sets Ci starting

with C0, a set containing just the seed pixel p. At each subsequent step i+1, the set Ci+1 is

created by adding medial pixels within a radius φ of pixels already in set Ci. More precisely,

Ci is defined inductively as

C0 = {p} (3.26)

Ci+1 = {x : x ∈ M, Sφ(x) ∩ Ci 6= ∅}. (3.27)

For the results presented, scale φ was dynamically set to φ(x) = r(x)/2, as this causes

the algorithm to search half-way from the medial manifold to the boundary for new medial

pixels to include, therefore staying within the designated object. When a final step f adds

no new pixels, such that

Cf = Cf−1, (3.28)

the flood-fill is complete, as the set of connected medial pixels within the object is the current

pixel collection, or

C = Cf . (3.29)

The union of the set of spheres centered at these medial pixels effectively segments the object

by including all of the pixels designated as within the object. These spheres, centered on

the medial manifold, extend to all points on the boundary.
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3.4 DISCUSSION

The Shells and Spheres framework for image analysis and the associated n-dimensional

segmentation algorithm introduced represent a novel system designed to facilitate image

segmentation via variable-scale region detection. Our minimally supervised segmentation

algorithm focuses on local statistical measures using our spherical operators to overcome the

effects of scanner noise, partial-volume effects, and tissue inhomogeneity, which hinder many

statistical segmentation approaches from performing well, especially on MRI data. See [28]

for a review of segmentation techniques for MRI data that is especially relevant to our own

experiments, which we will describe in the following chapters. By performing statistical

comparisons on adjacent spheres across boundaries, we restrain our comparisons to local

regions, effectively assuming that the mean tissue intensities of objects within the image are

spatially varied as a means of surmounting these obstacles. [9]

A properly optimized sphere map, with each sphere grown to a radius appropriate to

its position relative to object boundaries within the image, can be thought of as a manifold

cut through conventional scale space. The magnitude of each point along this manifold is

defined by the corresponding value of the distance map of the image. The population statis-

tics used on spheres are variable-scale in the sense that they remain valid and statistically

representative of the sphere, and thus the variably-sized local regions around a given pixel,

as the sphere moves through scale space by changing size. This approach facilitates simul-

taneous medial manifold detection along with segmentation because the medial manifold, as

described by Blum, is defined by the centers of spheres grown as large as possible within

an object. [23] Perhaps most importantly, unlike Gaussian blurring, commonly used in con-

ventional multi-scale analysis [24,6], Shells and Spheres operators preserve sharp boundaries

with increasing scale.

The Shells and Spheres framework as presented thus far provokes a number of concerns.

Computation time and memory are obvious limitations to the use of the Shells and Spheres

framework, given the size of 3D medical images and the fact that spheres are maintained at

each image pixel. Our current computational needs, which will be discussed in subsequent

sections, are met by a quad opteron system with 32GB of RAM. However, we submit that
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by Moore’s Law [29] and current trends in computational innovation, the processing power

and memory of standard computers will soon enable processing of large 3D images on stan-

dard desktop systems. Potential shortcomings of our system beyond computational concerns

include the fact that our initial algorithm requires a number of parameters to be set man-

ually, producing sub-optimal results due to our inability to determine ideal parameters for

a given image. The next chapter will introduce a novel method of parameter optimization,

made computationally tenable by utilizing a representative 2D image to produce effective

parameters for segmentation of a 3D data set. We will explore this algorithm parameter

optimization technique in detail, and then present results and validation using 3D ovine

cardiac MRI data used in research for quantitative shape analysis of the Right Ventricular

Outflow Tract (RVOT).
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4.0 ALGORITHM PARAMETER OPTIMIZATION

While initial studies applied our algorithm to segmentation problems with promising re-

sults, algorithm parameters were manually derived for the data tested, limiting the systems

general accuracy, versatility, and clinical appeal. For example, when the parameters used

to successfully segment the aortic arch in [25] were applied to the RVOT data used in the

validation studies described below, the automated segmentation failed completely because

the parameters were dependent on imaging modality and target structure. Additionally,

user interaction was required at multiple points in the segmentation procedure, both to set

algorithm parameters at the onset of analysis, and to seed the medial flood-fill which pro-

duces a segmentation after the sphere map had been optimized. We will show that a greater

degree of automation can be instituted into our algorithm using a new approach to simple

manual initialization. We also propose that this approach may be applied to improve other

established automated segmentation algorithms.

The time and technical expertise required to manually set parameters deters most end-

users, particularly clinicians, from adopting image analysis technology. Recent research has

addressed this problem by creating software systems designed to appeal to the clinician by

simplifying the interface and adding useful feedback for parameter initialization. [3] However,

users may still be required to learn algorithm specifics to set parameters, which may be

daunting or unacceptably time-consuming. A viable solution to this problem is to provide

a means of automatically optimizing segmentation parameters that requires minimal user

input, in a form that is acceptable to the clinical professional. Since a single segmentation

procedure may require hours of computational time for 3D images, iterative optimization
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involving the computation of 3D segmentations is untenable. Additionally, limiting user

interaction to the onset of analysis is preferable, also because of the time required for each

3D segmentation.

We have developed a technique to automatically optimize parameters for our segmenta-

tion algorithm, given a gold standard segmentation. In order to further realize a clinically

appealing segmentation system as described above, we implemented a minimally-interactive

approach to initialize the optimization procedure. The next section will present the opti-

mization technique in detail, followed by a description of the initialization method developed

to allow our system to automatically calculate optimization parameters from an intuitive,

clinically accessible user initialization process.

4.1 2D OPTIMIZATION FOR 3D SEGMENTATION

To improve segmentation accuracy and adapt our algorithm to new data sets, two key

algorithm parameters, βs and βg, need to be optimized. These parameters control variance

thresholds regulating sphere shrinkage and growth, respectively, as described in Section 3.3.

Other parameters that have significantly less impact on the resulting segmentation were left

at the default values given in Chapter 3. Those values were found to be effective on all data

sets tested, spanning multiple images, modalities, and target structures.

The parameters βs and βg, used to calculate the variance thresholds in steps 2 and

4, can be optimized to maximize the resulting agreement, defined by the Dice Similarity

Coefficient (DSC) [30], between the automated segmentation and a gold standard manual

segmentation. The DSC, briefly, is the ratio of twice the number of intersecting pixels

between the two objects and the the combined number of pixels within both objects. This

coefficient is always between 0 and 1, with a value of 0 resulting from no intersection and 1

resulting from complete overlap. We denote as D the coefficient measured given particular

values for βs and βg,

D = DSC(βs, βg). (4.1)
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To prove the efficacy of the DSC as our means of comparing segmentations, relative to

other measures such as volumetric overlap or average symmetric surface distance [31], we

present a small comparison study. Figure 21 shows normalized values for each of these three

segmentation accuracy measures produced by comparing ninety automated segmentations

to gold standard manual segmentations. The graph illustrates the roughly proportional

relationship between all three measures, with the DSC values falling between the other two

measurements. Hence, the DSC is equivalent to these other common means of measuring

segmentation accuracy.

Figure 21: A graph showing the normalized DSC, Average Symmetric Surface Distance, and

Percent Volumetric Overlap for ninety automated segmentations compared to manual gold

standards.

A brute-force optimization approach, testing every combination of parameter values

within given ranges at a given increment, was applied to deduce the optimal parameter
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values for a given data set. The optimal parameter values are defined by the maximal DSC,

as

Dmax = argmax
βs∈βsi:βsf ,βg∈βgi:βgf

(DSC(βs, βg)). (4.2)

The value of βs is discretely sampled at intervals of j over a range βsi : βsf , where

βsi indicates βs initial and βsf indicates βs final. Similarly, βg was sampled over a range

of βgi : βgf . This brute-force data gathering approach produces a DSC space as seen in

Figure 22. In this example, the maximal DSC value of 0.96 on the upper ridge of the curve,

as indicated by an arrow, corresponds to the parameter values βs = 2.1 and βg = 0.7.

Figure 22: Example DSC curve produced by a 2D parameter optimization with βs ∈ 0.0 : 6.0,

βg ∈ 0.0 : 1.9, i = 0.1. The optimal DSC value 0.96, produced by the parameter set (βs = 2.1,

βg = 0.7), is indicated with an arrow.

Though effective at producing parameters that result in accurate segmentations, this

optimization technique can be computationally time-consuming. The 2D image used to

produce the optimization in Figure 22 was an MRI image of 256x256 pixel resolution. A

segmentation of this single 2D image via our Shells and Spheres system took about 1 minute.

The curve shown represents 61 values of βs and 20 values of βg, with each combination of
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parameter values producing a different segmentation. Thus, it required 1,220 analyses to

create, or 20.3 hours of computation. Luckily, we can reduce computation time by applying

dynamic programming [32] techniques, separating our algorithm steps and recalculating

them only as necessary. For example, the parameters we are optimizing have no bearing

on algorithm Step 1, a particularly time-consuming step. Thus, rather than computing this

step for each set of parameters, 1220 times in the example above, we need only compute

this step once on a given image and save the resulting sphere map. Likewise, iterations over

the range of βg values corresponding to the same value of βs require only computation of

algorithm steps 4-6, providing that the sphere map resulting from Step 3 has been saved.

These dynamic programming solutions have reduced the time of brute force optimization

on 2D images to under 30 minutes in most cases. However, recall that a single 3D segmen-

tation can take a number of hours to complete. Because of this, even with our dynamic

programming solution, any optimization that requires repeated testing of parameters by

performing a 3D segmentation is unacceptable because of the computational time required

for each 3D analysis.

To address this computational concern of achieving effective parameter optimization

for 3D data, more efficient optimization procedures from numerical methods or artificial

intelligence were considered to reduce the time required for optimization. However, many

of these are incompatible with our parameters, due to the fact our algorithm parameters

are dependent on the state of the sphere map at each step of analysis, and thus represent a

highly non-linear system. Instead, we hypothesized that parameters calculated in the proven

brute-force manner on a representative 2D slice selected from a 3D data set would yield

optimal parameters similar to those that would be calculated from a full 3D optimization,

in a fraction of the time. Additionally, optimizing on a 2D slice requires only a 2D manual

tracing as a gold standard, rather than a time-consuming manual 3D segmentation.

4.1.1 Preliminary Experimental Validation

To test the effectiveness of our novel parameter optimization technique on 3D analysis and

segmentation, a preliminary study was performed on one of our 3D ovine cardiac MRI scans.
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The data set can be seen in the upper row of Figure 26.

(a) (b)

Figure 23: (a) 2D slice of MR cardiac data and (b) manual segmentation (red or dark) used

for parameter optimization in the 3D segmentation study.

A 2D slice, shown in Figure 23, was manually selected and a target object traced by

an expert user. The slice and its 2D contour were used to perform a parameter optimiza-

tion, searching the space of algorithm parameters βs and βg to yield the segmentation most

similar to the manually traced contour, producing the DSC data space shown in Figure 24.

The slice, and the selected object within it (the aortic arch), were chosen because the thin

boundaries between adjoining larger objects simulated conditions for the 3D segmentation

of the right ventricle adjoining other cardiac structures. The impact of the slice chosen on

the optimization, and ultimately on the segmentation, is explored further in a later section

of this dissertation.

The 2D optimization yielded optimal parameter values of βs = 1.9 and βg = −0.2 for

segmenting the 2D slice, which produced a DSC of 0.97 similarity to the 2D manual tracing.

This set of parameters determined on a 2D slice, when applied to segmentation of the full

3D data set, enabled our Shells and Spheres algorithm to produce the 3D segmentation of

the right heart shown anatomically labeled in multiple orientations in Figure 25 and overlaid

on the input MRI data in Figure 26.
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Figure 24: DSC curve produced by a 2D parameter optimization with βs ∈ 1.0 : 3.5,

βg ∈ −0.5 : 1.0, i = 0.1. The optimal DSC, 0.97, is indicated with an arrow at values

βs = 1.9, βg = −0.2)

To determine the accuracy of the resulting 3D segmentation, a validation study was

conducted, comparing it to three manual 3D segmentations performed by expert users. These

segmentations were performed by manually tracing the 3D data set, slice by slice, through

the entire right heart. Each manual segmentation was produced by a different user. Table 1

shows the DSC values for our optimized automated 3D segmentation when compared to the

expert manual segmentations, as well as the DSC values for the manual segmentations when

compared to each other. It can be seen that our automated system produced a segmentation

with agreement values between 0.83 and 0.86 to manual segmentations. It should be noted

that a DSC of 0.70 is considered satisfactory spatial overlap in the literature [33, 34, 35],

although the definition of sufficient accuracy is, of course, specific to the application. While

the manual segmentations produced slightly higher agreement to each other than to the

automated segmentation, variation between the manual segmentation was due, at least in

part, to the difficulty defining the extent of the “right heart” along the continuum of the

circulatory system. Subject 3, who showed greater similarity to the automated segmentation

57



Figure 25: Surface model of the automated segmentation of the right heart with the RV and

RVOT labeled, shown from three different perspectives.

than the other subjects, elected to include less of the branching vasculature connected to

the main cardiac structures, which led to slightly greater agreement with the automated

segmentation and less agreement with the other manual segmentations. Despite the variation

in manual segmentations, our algorithm still produced highly reliable segmentation results,

indicating promise for our technique of calculating 3D segmentation parameters using 2D

image and tracing data.

We now turn our focus to exploring the optimization procedure more deeply. Though

effective, the optimization procedure itself requires input parameters, including optimization

ranges and seed points, and thus segmentation could not immediately follow optimization

without user interaction in our present implementation. The next section will present the

steps taken to automate the optimization procedure, reducing the user input for the entire

segmentation process to a single 2D manual tracing from the selected 2D slice at the onset

of analysis.
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Figure 26: Top row: The MR data set with one plane moved incrementally backwards

through the RV. Bottom row: Images corresponding to those above, with the segmentation

surface model overlaid on the source data.

Table 1: Table of DSC values comparing segmentations produced by 3 independent subjects

and our Shells and Spheres (S&S) algorithm.

Subject 1 Subject 2 Subject 3

S&S 0.83 0.84 0.86

Subject 1 * 0.91 0.88

Subject 2 * * 0.89
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4.1.2 Automating Parameter Optimization

A fundamental concept in this research was to design a system to take full advantage of the

expected user’s specific knowledge, requiring no information from the user that does not come

directly from professional expertise. With the addition of our parameter optimization scheme

a necessary a priori input to the system was introduced, consisting of a 2D manual tracing

on a selected slice from the particular 3D data set to be analyzed. The two components

of this input are slice selection, and 2D manual anatomical tracing, both of which fall well

within the realm of expertise of our target user: a clinical professional. From this simple

initial input, information can be extracted that will provide all parameter values necessary

for algorithm parameter optimization and subsequent 3D segmentation.

To perform parameter optimization, we require a range of values for each parameter over

which we will test algorithm performance. Determination of this range by the user adds

a pre-processing task to the analysis, and necessitates an understanding of the statistical

properties of the image and of expected algorithm performance. Though the user no longer

selects segmentation algorithm parameters, selection of the optimization range itself requires

a level of algorithmic expertise outside the realm of professional expertise of most users.

Additionally, seed points for segmentation must be provided subsequent to analysis, requiring

the user to return to the system after analysis to provide additional interaction. While

anatomical seed points are not outside the realm of a clinician’s expertise, added time and

responsibility is a deterrent to the adoption of any new system. Leaving these tasks to

the user adds interaction time, combining with the added complexity of expert supervision

to result in a less attractive system from a clinical standpoint. The following sections will

describe how effective optimization ranges and seed points can be extracted from our 2D

a priori data, allowing our system to function autonomously after our simple initialization

procedure.

4.1.2.1 Determining Optimization Ranges Though the technique for parameter op-

timization introduced and tested in the previous section removes the burden of manual

parameter selection from the user and yields accurate 3D segmentations, parameters of the
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Table 2: Parameters necessary to perform algorithm parameter optimization, along with

descriptions.

Parameter Description

βsi The minimum value in the range of βs to be tested, corresponding

to a variance threshold value of αsi for a given image and sphere

map state.

βsf The maximum value in the range of βs to be tested, corresponding

to a variance threshold value of αsf for a given image and sphere

map state.

βgi The minimum value in the range of βg to be tested, corresponding

to a variance threshold value of αgi for a given image and sphere

map state.

βgf The maximum value in the range of βg to be tested, corresponding

to a variance threshold value of αgf for a given image and sphere

map state.

j The increment by which parameter values are sampled through the

given range.

optimization procedure itself must still be manually instantiated. Initializing a 2D optimiza-

tion requires the parameters displayed in Table 2, originally introduced in Section 4.1.

While these values, defining the range of βs and βg over which optimization will be per-

formed, may be familiar to a user with numerical optimization experience, their ideal values

are dependent on a number of esoteric factors. The ideal optimization range is dependent

on the image in question and its statistical properties. Recall that βs and βg are variables

indicating the number of standard deviations from the mean in equations 3.3.2 and 3.3.4,

resulting in variance thresholds αs and αg. The calculation of these thresholds is dependent

on the global mean variance of all spheres in the sphere map at its current state, which is its
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state after algorithm Step 2 (Subsection 3.3.2) in the case of αs, and after algorithm Step

4 (Subsection 3.3.4) in the case of αg. Since the global mean variance for a given sphere

map configuration cannot be calculated until the algorithm is in progress, the possible values

of the threshold produced cannot be calculated before run-time. Optimal threshold values,

and therefore effective optimization ranges, have been observed to be highly varied between

source images. These facts make determination of the an effective range over which to per-

form parameter optimization a challenging problem. For the segmentation validation study

presented later in this dissertation, tests performed by experienced users allowed optimiza-

tion ranges to be determined experimentally, relying on educated assessments of initial range

settings based on user expertise.

To fulfill our goal of a fully automated system, we must determine all values necessary for

parameter optimization and segmentation from our 2D manual tracing. Here we propose our

technique for calculating effective search ranges for parameter optimization. These ranges are

effective, though further innovation to determine more concise search ranges would further

reduce parameter optimization time. Recall the behavior of parameter optimization over the

parameters βs and βg. The βg parameter forms a ridge in the DSC search space produced

through brute-force parameter optimization. A parameter value quickly becomes ineffective

as it moves away from this optimal ridge. This behavior is to be expected, since the algorithm

step using βg is the last in sphere map optimization, which was designed to fine-tune sphere

radii to meet boundaries and is followed by no corrective steps. In contrast, in all cases

studied, effective values of βs exist over a large range of data, provided the value of βg lies on

the aforementioned optimal ridge. This is also consistent with expectations, as βs represents

some value within a wide range of variance values between the variance of a sphere remaining

in its image object and one that has crossed multiple boundaries. Mistakes in the algorithm

step utilizing this parameter may also be corrected at a later stage in the algorithm.

Given the theoretical and observed behavior of these parameters, calculation of an effec-

tive range [βgi : βgf ] is the more pressing concern. We begin by modeling the statistics of

our spheres using the given 2D initialization tracing. Essentially, βg is meant to provide a

variance threshold αg that represents the variance of spheres at their correct radius. Being a

global value, αg cannot be correct for all spheres, but will be optimized to a value performing
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effectively for the largest number of spheres in the target object. We can approximate an

effective value of αg by finding the mean of the variance values of correctly sized spheres

within our traced 2D object. We obtain correctly sized spheres within our target object by

applying the Noiseless Sphere Map Optimization Algorithm to the mask created by the 2D

tracing provided by the user. This streamlined algorithm, described in Section 3.2, grows

spheres at each pixel within the contour, stopping each sphere’s growth at the radius before

encountering a pixel outside the contour. We limit the spheres to those with a radius greater

than 3, creating a set R of spheres within our target object such that

R = {x : r(x) > 3}. (4.3)

The lower bound on radius ensures that the spheres contain enough pixels to be a statistically

valid sample population. We calculate ρ to be the mean of the internal variance values of

spheres within R,

ρ =
1

|R|
∑
x∈R

[σ2(x)]. (4.4)

We then find the standard deviation of the variance values of spheres in R as

σ(ρ) =
1

|R| − 1

∑
x∈R

[(σ2(x)− ρ)2]
1
2 . (4.5)

Using this standard deviation, we calculate an optimization range [αgi : αgf ] such that

αgi = ρ− σ(ρ) (4.6)

and

αgf = ρ + σ(ρ). (4.7)
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Corresponding values of βgi and βgf can be determined during run-time, calculating the

values of βg that cause αg to equal αgi and αgf . We compared αgi and αgf values calculated

by this technique using an axial initialization slice to the optimal values determined with

user-defined ranges from our segmentation studies, and observed that the [αgi : αgf ] range

calculated included the optimal values of αg for all data sets.

An effective range for optimization of βs is more difficult to approximate, because the

only definitive trend in the calculated optimal threshold values of αs that has been observed

is that they are always higher than corresponding values of αg. We propose an approach

similar to the one used to calculate an effective range for αg, altered to reflect the theoretical

properties of αs. Since optimal values of αs have been observed to fall significantly above

(usually at least 3 times larger) the corresponding value of αg, we conclude that an effective

optimization range should be based on the heightened variance of spheres after they cross

boundaries. To this end, we grew spheres in our axial initialization tracings larger than their

correct radius while monitoring their variance values. We focused our test on medial spheres

because they are the spheres directly responsible for segmentation, as explained in Chapter

3. We used the set M from Section 3.3.5, which in this case included the medial spheres

from our 2D tracing. We recorded the mean variance ν of all spheres in M for each radius

increment δ above their correct radius value. For example, δ = 1 indicates that the medial

spheres were grown 1 radius larger than their correct value. We calculated ν as

ν(δ) =
1

|M |
∑
x∈M

[σ2(x)]. (4.8)

We compared the recorded values of ν to the optimal αs threshold values calculated in

our validation studies using manually determined optimization ranges. Table 3 shows the

range of eight values of δ tested and the percentage of data sets for which the optimal value

of αs is less than ν(δ).

From these data, we postulate that an optimization range of [ν(1) : ν(5)] would produce

optimal parameters for most data sets, and effective parameters for the remainder. Thus,

values of βsi and βsf can be determined during run-time given αsi = ν(1) and αsf = ν(5).
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Table 3: Percentage of data sets observing the optimal value of αs as the value of δ is

increased.

δ % Data Sets

1 0%

2 20%

3 60%

4 70%

5 90%

6 90%

7 90%

8 100%

The increment value j should be leveraged against the size of the optimization ranges

to keep the time of optimization reasonable. For the present purposes, we empirically set

j to be 0.1. Further development of more sophisticated methods of determining parameter

optimization ranges promises a significant decrease in optimization time by intelligent range

determination and adjustment of this parameter.

4.1.2.2 Seed Point Extraction Our segmentation system is initialized by the user

selecting a 2D slice from the 3D volume. That 2D slice is within the anatomical object to

be segmented, so the manual tracing produced is of that particular object. Figure 27 shows

an example 2D slice extracted from one of our RVOT data sets, containing a cross-section

of the RVOT.

A manual tracing of the RVOT produced by an expert on the initialization slice can

be seen on the left of Figure 28. Extracting a medial seed point for 3D segmentation from

this tracing will save the user an interactive step, streamlining our segmentation system.

We begin by determining a medial point in the 2D RVOT. This can be accomplished by
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Figure 27: Example 2D slice extracted from a 3D MRI data set. This slice, along with a

manual 2D tracing of the RVOT within it, is used to optimize parameters and provide seed

points for a 3D segmentation of the RVOT in the full volume.

running our Noiseless Sphere Map Optimization Algorithm on the 2D binary segmentation

mask produced by the user. We can determine the medial manifold of the 2D object in the

manner described in section 3.3.5, but since we require only a single medial point, we can

simply select the largest sphere grown within the object, which will necessarily be centered

on the 2D medial manifold. An example of such a sphere can be seen on the right side of

Figure 28, highlighted in green.

Because the traced object in the 2D slice is the same object we desire to segment in 3D,

the coordinates a medial point in the 2D object, along with the index of the slice from the

3D volume, will provide a seed point within the desired 3D object. Though a medial point

in the 2D object will not necessarily fall on the medial manifold of the 3D object, it will be

closer to the medial manifold of the target 3D object than it will be to the medial manifold of

any other object in the image. Because of this, we can apply a simple radial search outward

from this point in the 3D data set to find a medial seed point for 3D segmentation, confident

that the first medial point encountered will fall on the target 3D medial manifold.
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Figure 28: Left: Example 2D slice with manual tracing (red) overlaid. Right: Example 2D

slice with manual tracing (red) and medial sphere used to extract seed point (green) overlaid.

4.2 2D SLICE SELECTION

The first supervision step taken by the user in our segmentation process is to select a 2D

slice from the 3D image, containing the anatomical object to be segmented. This 2D slice,

which we will refer to as the initialization slice, will be used to initialize our parameter

optimization process. This 2D slice of the target object provides a sample population of

pixels and boundary areas from the 3D target object, allowing the calculation of the necessary

values described in previous sections of this chapter. In the pilot study presented in Section

4.1, the 2D slice used for initialization was arbitrarily selected. We hypothesize that the

choice of initialization slice will have a significant impact on the automated 3D segmentation

produced. To test this hypothesis, an experiment was designed using our ovine MRI data, ten

sets in total, spanning multiple subjects. Here we present this study, which was designed to

facilitate a deeper understanding of the impact of slice selection on parameter optimization,

and ultimately on 3D segmentation accuracy.
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Figure 29: An example of the three slice orientations used for initialization in the study

presented. The RVOT (red, outlined) has been manually traced in each slice.

Because individual slices may each contain different aspects of the full 3D object, as

well as its neighboring objects, it is likely that there will be corresponding differences in

parameters calculated when using different initialization slices. In an effort to quantify these

differences, we performed a study to test the impact of the initialization slice selected on the

algorithm parameters calculated, and on the resulting 3D segmentation.

For the purpose of this study, rather than selecting a 2D slice directly, our expert user

was instructed to select a reproducible point within the target 3D object: the center of

the pulmonic artery as seen in the particular sagittal slice in which the left coronary artery

leaves the aorta. This point was contained by three unique slices in the standard views:

axial, sagittal, and coronal. (Note: the meaning of these standard orientations differs from

humans to sheep) Figure 29 shows the three 2D slices produced by our chosen point on a

particular RVOT data set. The user was asked to trace the target object, the RVOT, in

each of these 2D slices. Each tracing was then used as input for the algorithm parameter

optimization scheme described in Section 4.1, customizing three sets of parameters for 3D

segmentation of each data set.
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The goal of the study was to determine which of the standard views centered around

the given point within the target object (axial, sagittal, or coronal) produced the best 3D

segmentations when used as our initialization slice and how much variation results from

different slices. ITK-SNAP was used for slice selection and manual tracing. [36]

4.2.1 Experimental Setup

We used ten ovine cardiac MRI data sets, with the Right Ventricular Outflow Tract (RVOT)

as the target object for segmentation. Three orthogonal slice orientations were chosen for

this study, to provide different anatomical views. In each 3D data set the user chose a

reproducible point in the RVOT, through which the slices were made (See Fig. 29). The

point chosen for slice selection was the center of the pulmonic artery as seen in the particular

sagittal slice in which the left coronary artery leaves the aorta. Since the ovine subjects

were all scanned in a standard orientation relative to the magnet, the anatomy generally

corresponded along the cardinal slices. An expert user traced the RVOT in each of these

slices, providing a 2D segmentation denoted as T (d, s), where d ∈ {1 : 10} is the data set

and s ∈ {axial, sagittal, coronal} is the slice orientation. Using these tracings as ground

truth, we performed parameter optimization on each 2D slice, minimizing the error produced

by 2D segmentation using our Shells and Spheres algorithm. This process yielded three sets

of potential 3D algorithm parameters for each data set, one for each slice orientation. A

given set of parameters optimized for a given slice orientation s from 3D image d is defined

as

θd,s = [βs, βg]. (4.9)

Thus, the set of all parameters calculated for the study is

Θ = {θd,s : d ∈ {1 : 10}, s ∈ {axial, sagittal, coronal}}. (4.10)

Automated 3D segmentations using the parameters derived from each of the three slices were

performed, denoted as A(θd,s, d), where d is both the 3D image from which the optimization

slice is taken and the 3D image on which segmentation is performed, and s is the slice

orientation used. Three trained users produced 3D manual segmentations of the RVOT,
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denoted M(u, d), where u ∈ {1 : 3} is the user, by tracing a stack of slices for each of the

ten data sets. We determine the accuracy of the automated segmentations by computing

the similarity of the 2D automated segmentations to the corresponding 2D manual tracings

DSC(As(θd,s, d), T (d, s)) (4.11)

where the slice through A(θd,s, d) corresponding to T (d, s), denoted As(θd,s, d), is used for

comparison, and by computing the similarity of the 3D automated segmentations to the

corresponding 3D manual segmentations collected,

DSC(A(θd,s, d), M(u, d)), (4.12)

for each of our three expert users.

4.2.2 Validation

To determine if one particular slice orientation was best suited for initializing the parame-

ters for 3D segmentation, we analyzed the similarity of the automated segmentations to the

ground truth manual segmentations for all data sets. We performed a brute force parameter

optimization on each data set, using each of the three initialization slice orientations. Figure

30 shows the mean agreement to the 2D initialization tracing achieved, indicating how well

the system was able to match the training data. We then performed automated 3D segmen-

tations on each data set using the parameter values calculated through these optimizations,

and compared these segmentations to our expert 3D segmentations. Results of this compar-

ison are given in Fig. 31, showing the mean agreement of the automated 3D segmentations

produced using each of the three initialization slices.
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Figure 30: A bar graph showing the mean agreement to the 2D initialization tracing achieved

using each of the three slice orientations for parameter optimization, indicating how well the

system was able to match the training data. Error bars indicate the standard error of the

mean.

Though the sagittal slice orientation produced automated 2D segmentations that most

accurately matched the 2D manual tracings, the axial slice orientation produced parameters

that yielded the most accurate automated 3D segmentations.

Figure 32 shows the 3D segmentation accuracy, for all data sets, for each slice orienta-

tion in boxplot form. Boxes are bounded by the first and third quartiles of the set of DSC

values. This visualization gives a better sense of the variation in accuracy over all data sets

for each initialization slice orientation. We can clearly see that the axial initialization slice

produced the highest median DSC with the smallest inter-quartile range (IQR) surrounding

it, indicating a reliable and accurate set of automated segmentations. Further emphasiz-

ing the reliability of this axial slice orientation as an initialization slice, the minimum and

maximum recorded DSC values fall in a tight range, with the minimum DSC being 0.78.
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Figure 31: The mean agreement of 3D automated segmentations to our expert 3D segmen-

tations produced using the optimal parameter values calculated by brute force parameter

optimization. Error bars indicate the standard error of the mean.)

As a DSC value of 0.70 has been accepted as satisfactory spatial overlap [33, 35, 34], this is

an acceptable minimum value. The other two slice orientations each present a much larger

IQR, which extends much lower in the range of DSC value, and significantly lower minimum

recorded DSC values. These results indicate that the other two slice orientations are notably

less reliable for the production of automated 3D segmentations of the RVOT, and, in one

case for the coronal slice, provided a segmentation that did not overlap whatsoever with the

true anatomy.
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Figure 32: A box plot of the 3D segmentation accuracy yielded by each of the initialization

slice orientations over all data sets. Inter-quartile range (IQR) is bounded by the first and

third quartiles, and the range from minimum to maximum recorded DSC value is indicated

by the vertical lines, with the minimum and maximum values themselves indicated by pink

and blue squares, respectively.

We expect that the high 2D agreement to manual tracings of the sagittal slice orientation

can be attributed to the trivial nature of tracing the contour of the RVOT in this slice. The

area traced is small, has smooth contours with relatively constant curvature, and provides

little internal tissue inhomogeneity, as it is a cross-section of the pulmonary artery (PA). The

axial slice orientation, however, showed superior performance in 3D segmentation, despite its

lesser DSC mean value in 2D, because the RVOT region in the axial slice was most represen-

tative of the challenges of the full 3D segmentation. Metaphorically speaking, the axial slice

orientation received a lower grade in a harder course, better preparing it for the challenges
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to come. The coronal slice, on the other hand, was an exceedingly difficult segmentation

challenge. This view of the RVOT generally included an uncharacteristically high degree of

tissue inhomogeneity, as well as subjective cardiac walls and structures along the external

edge of the target region. These cardiac walls also consisted of intensity values closer to that

of the RVOT than other surrounding areas, resulting in variance thresholds not conducive

to the majority of RVOT boundaries. The axial slice orientation, however, contained homo-

geneous intensity regions representative of the 3D RVOT and complex boundaries allowing

effective training for the challenges of the 3D RVOT.

Our results yielded strong performance when using the axial slice for initialization on

all data sets, producing a mean DSC of 0.867 +/- 0.046 when compared to expert manual

segmentations. We can conclude that parameters calculated using this slice orientation

perform notably better than the other two slice orientations tested, with a higher degree of

reliability. We conclude from this study that slice selection has a powerful impact on the 3D

segmentation produced, with widely different levels of segmentation accuracy resulting when

various slice orientations are used for initialization. A more thorough search of possible 2D

slices for initialization would likely yield even more effective algorithm parameters, and such

a study could greatly enhance our understanding of the impact of the initialization slice on

the parameters calculated, uncovering key features in the 2D initialization slices correlated

with particular aspects of 3D segmentation performance.

4.3 ALTERNATIVE PARAMETER CALCULATION TECHNIQUES

Calculating algorithm parameters with our brute-force optimization method proved effective,

but is computationally time-consuming when applied to 3D data, hence our 2D optimization

approach for 3D data described in the previous chapter. In addition, we have explored alter-

native methods for determining algorithm parameters that reduce computation times. First,

it was hypothesized that our algorithm parameters, which are actually variance thresholds

(Eqn. 3.3.2 and Eqn. 3.3.4), could be calculated directly from the sample population of

object pixels defined by the 2D initialization tracing. This type of method would require
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no optimization at all, removing a large percentage of our total computation time. It was

also hypothesized that, given the apparent insensitivity of parameter βs as compared to βg,

the same value could be used for both parameters without compromising the accuracy of

3D segmentation. The following sections present four alternative methods for parameter

calculation, designed to test hypotheses and reduce the computation time of our parameter

optimization process.

4.3.1 Alternative Method A

The first method of reducing computation time was designed to retain some level of optimiza-

tion of algorithm parameters, to keep segmentation accuracy high. To accomplish this, we

proposed to optimize one of the two variance thresholds, while calculating the other directly

from the initialization data. This reduced our optimization from a 2-dimensional problem

to a 1-dimensional problem, exponentially reducing the computation time. Referring to an

example graph of our parameter optimization space, reproduced from Section 4.1, in Figure

33, we see that the optimal DSC ridge runs along the axis of the βs parameter.

Figure 33: An example of optimization parameter space.
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This trend implies that the parameter βs, and thus, variance threshold αs, is relatively

insensitive, since it can be varied across a wide range of values and still fall on the optimal

ridge. This behavior indicates that αs is an ideal candidate for calculation from the initial-

ization data, while the more sensitive αg value, corresponding to the sensitive βg parameter

shown in Figure 33, should still be optimized as before to preserve effective segmentation.

We will refer to this parameter calculation method as Alternative Method A (AM-A).

The variance threshold αs is used to shrink spheres that have grown past boundaries by

limiting their variance to an acceptable value. This acceptable value is, ideally, the variance

value of the sphere at its correct radius. The large range of acceptable βs values seen in

Figure 33 exists because of the swift, extreme increase in the variance measured within a

sphere after it has crossed a boundary. This increase is large enough that a sizeable range of

variance values exist between the variance of a sphere at its correct scale and the variance of a

sphere after it has crossed an object boundary, encompassing all of the variance values along

the optimal ridge. Given this knowledge, we can calculate αs in AM-A from our manual

2D initialization tracing by finding a sample correct 2D sphere and measuring its internal

variance. We chose the largest sphere within the a priori tracing, which will likely give the

best representation of the pixel population within the object.

4.3.2 Alternative Method B

Further reducing computational load, we consider removing optimization processes alto-

gether, instead calculating both variance thresholds directly from the initialization data.

Both of the threshold values to be determined are loosely based on the internal pixel vari-

ance of the target image object. A study of the parameters resulting from the original

algorithm parameter optimization method presented in Section 4.1 shows that the optimal

αs is much higher than the optimal αg in all tests performed. This phenomenon is illustrated

in Table 4, which shows the optimal values of αs and αg resulting from the βs and βg values

calculated as in Section 4.1 (segmentation results using these values will be presented in the

next chapter).
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Table 4: Optimal threshold values αs and αg for each data set, calculated using full parameter

optimization method.

Data Set αs αg

1 41304.9 8210.8

2 29039.5 10728.7

3 17293.1 4284.1

4 24184.0 5542.5

5 34641.6 6988.4

6 121456.0 11811.8

7 88003.4 7863.3

8 28837.3 8694.1

9 43491.8 8485.5

10 37624.8 8828.3

The likely explanation of this observed trend is that after algorithm Step 2, spheres

grown slightly past an object boundary are less detrimental to the remainder of the sphere

map optimization process than spheres that are too small. This is because spheres that

are too small place reflectors within the target object, potentially blocking numerous other

spheres from reaching the object boundary. On the other hand, spheres that are too large

place reflectors outside the object boundary. Reflectors placed by these spheres will be

“facing” the wrong way to directly impact spheres within the object they reside in, and will

be corrected by the larger population of correct outposts.
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Taking the information from this analytical study of optimal thresholds, a method of

calculating both algorithm thresholds directly from the initialization data was created. The

candidate variance values for use from the initialization data are:

• Variance of all pixels within the 2D target object, or Internal Variance (IV)

• Variance of pixels within the largest sphere in the 2D target object, or Largest Sphere

Variance (LSV).

Of these values, the IV of a particular initialization slice is experimentally seen to be con-

sistently larger than the LSV. Given the observed trend of optimal αs being larger than αg,

we assigned the calculated algorithm parameters for Alternative Method B (AM-B) as

αs = IV,

αg = LSV.

4.3.3 Alternative Method C

Recall again the wide range of acceptable values for the variance threshold αs. In devising

Alternative Method C (AM-C), we entertained the possibility that the wide range of effective

values for this parameter removes the need for independence from the second threshold

parameter, αg. Using the same value for both parameters allows us another means of reducing

our problem to a 1-dimensional optimization, saving computation time while maintaining a

search for ideal values.

To test this technique, AM-C was designed to make use of a single value for both thresh-

olds, optimized by searching the 1-dimensional space of possible parameter values.

4.3.4 Alternative Method D

A final algorithm parameter calculation method, Alternative Method D (AM-D), retains

the theory of using a single value for both variance thresholds, but minimizes computational

time by calculating this value directly from the 2D initialization slice and tracing. We again

consider the candidate variance values presented in Section 4.3.2. The candidate value closest
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to the optimized value of αg, the parameter with the smallest acceptable range of the two,

was the internal pixel variance of the largest sphere found in the 2D initialization tracing,

LSV. AM-D assigns this value to both thresholds. Alternative Methods A-D will be tested

in Chapter 5.
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4.4 DISCUSSION

We have presented our novel approach to algorithm parameter optimization, using a 2D

slice to optimize parameters for 3D segmentation. Preliminary tests have illustrated the

effectiveness of this technique. Also presented is a means of initializing the parameter op-

timization system that requires only a single 2D tracing of the target anatomical object in

the 2D initialization slice, yielding a system that is intuitive and accessible to clinical users.

We have studied the choice of initialization slice, proving its impact on the automated 3D

segmentation eventually produced.

In addition to the brute-force parameter optimization method presented, we have pre-

sented four alternative methods for calculating algorithm parameters, along with their the-

oretical justifications, that greatly reduce the computational time necessary to determine

segmentation algorithm parameters.

The next chapter will present validation studies of our S&S segmentation system, using

both standard and alternative methods of parameter calculation. Automated segmentations

will be performed on our database of 3D ovine cardiac MRI data sets, using all variations of

our segmentation system, with computation times recorded. Segmentation accuracy will be

assessed through comparison to multiple expert segmentations.
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5.0 VALIDATION RESULTS

Though the Shells and Spheres framework has been theoretically defined and our segmenta-

tion algorithm presented, our previous studies performed limited, primarily qualitative, val-

idation. Through a collaboration with Dr. Michael Sacks and Children’s Hospital, Boston,

we obtained ten ovine cardiac 3D MRI data sets. These data sets encompass seven differ-

ent scans involving four animals, and thus include anatomical variation between subjects.

This chapter will present validation studies performed using these data, designed to quantify

the performance of our segmentation algorithm. Studies were conducted using the various

methods of algorithm parameter calculation presented in the previous chapter.

Segmentation accuracy was determined by comparing automated segmentations to our

database of expert manual segmentations of the RVOT, which will be presented in the next

section. Subsequent sections will present our novel method of error visualization designed

to show localized errors in sphere map optimization, and validation studies comparing our

segmentation algorithm to a widely used segmentation technique, level sets, using software

designed for clinical use.

5.1 3D MANUAL SEGMENTATIONS

In order to quantitatively assess the accuracy of our segmentation algorithm, a database of

gold standard expert manual segmentations was created. Three expert users produced 3D

segmentations of the RVOT in our 10 ovine MRI data sets. Segmentations were created with

ITK-SNAP by merging slice-by-slice manual traces through the 3D volume.
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Figure 34: An example axial bounding plane, taken from Data Set 1. A: Bounding plane

slice. B: Subsequent slice, moving outside our defined RVOT, where the RV merges with the

RA. (See text)

Since the RVOT is an arbitrarily defined cardiac region, bounding planes were established

based on anatomical landmarks to encompass the region of interest. These bounding planes

were defined as standard views, easily reproducible in any cardiac imaging data set. Note

that orientations in ovine data are not the same as those for human data. We are defining

our standard views according to metadata in our dicom images, though they differ from the

human cardiac standard views. The axial bounding plane was defined as the last axial plane,

traveling through the Right Ventricle (RV) away from the RVOT, where the RV is a distinct

structure before merging with the Right Atrium (RA). Figure 34A shows an example of the

axial bounding plane, taken from Data Set 1. This slice is the last slice considered to be

within the RVOT in the axial sequence moving away from the RVOT. Figure 34B shows the

next slice in the 3D volume, moving away from the RVOT. The anatomical landmark used

to determine the bounding plane can be seen, as the RV begins to merge with the RA.
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Figure 35: An example sagittal bounding plane, taken from Data Set 1. A: Bounding plane

slice. B: Subsequent slice, moving outside our defined RVOT, where the PA branches.

The sagittal bounding plane was defined as the last sagittal slice, moving downstream

in terms of blood flow through the Pulmonary Artery (PA), in which the PA is a single,

separate shape before the branch point just beneath the Aortic Arch (AA) . The point at

which the PA branches can be seen in Figure 35B. This slice is the next slice downstream from

our bounding plane shown in Figure 35A, where the PA is still an independent structure.

A surface rendering of one of our bounded segmentations of the RVOT can be seen

in Figure 36, with the bounding planes labeled. Since these bounding planes allow our

segmentation to extend from the RV to the branch point of the PV, our segmentations

necessarily capture the loosely-defined region of the RVOT for subsequent modeling and

analysis. Manual segmentation of each 3D RVOT required 1-2 hours of time from each

user. Similar manual segmentation times have been reported by other investigators for

segmentation of cardiovascular structures. [37, 38]

The two bounding planes described above are sufficient to define the extent of the RVOT.

Before comparing automated segmentations to this gold standard database, it was first

necessary to determine the inter-rater reliability, or level of observed agreement, of the

expert users who provided the manual 3D segmentations. We model inter-rater reliability
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Figure 36: A surface rendering of a bounded RVOT segmentation, with the axial and sagittal

bounding planes labeled.

in our study as the mean DSC of the
(

n
2

)
combinations of manual segmentations for each

data set. In the case of this study n = 3, because we have three experts producing manual

segmentations. Figure 37 shows the inter-rater reliability for each of our MRI data sets.
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Figure 37: Bar graph of the Inter-rater reliability for our expert manual segmentations,

calculated as the mean DSC between manual segmentations for each data set.

The mean inter-rater reliability across all data sets was 0.925, indicating an average

agreement of 0.925 between our experts when segmenting the RVOT in the set of images

presented in this study. In the rest of this chapter, we will show agreement between various

automated segmentations of the RVOT in our data. For quantitative comparison to our

expert segmentations, we will introduce the automated segmentation into the set of expert

manual segmentations for a particular data set, and recalculate inter-rater reliability as the

mean DSC of the
(
4
2

)
combinations of segmentations including this new segmentation. The

error, or amount by which this reliability measure increases or decreases with the addition of

the automated segmentation, is a measure of the performance of the automated system as a

segmentation expert. This technique helps to clarify the meaning of the automated accuracy

results by giving a measure of the behavior of our automated segmentation system in the

context of other expert segmentations.
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5.1.1 Standard 2D Parameter Optimization Technique

The first study performed was a 3D segmentation study using the brute force parameter

optimization methods presented in Chapter 4. This study was done in conjunction with the

initialization slice selection study presented in Section 4.2, and the 3D automated segmen-

tation accuracy presented for each data set was achieved using the 2D initialization slice

exhibiting the best 3D performance of those tested.

2D slices were selected from each of our 3D data sets as described in 4.1. Optimization of

the βs and βg parameters of our segmentation algorithm was performed on each 2D slice, as

described in Chapter 4, searching for optimal parameter settings throughout the parameter

space as shown in Figure 38. The calculated optimal parameters were then applied to their

respective 3D data sets, with results shown in Figure 39. Shown is the mean DSC value

for each automated segmentation, representing the average agreement of a given automated

segmentation to the three expert manual segmentations for the same data set. Over all data

sets, compared to all expert segmentations, our S&S segmentation algorithm produced a

mean segmentation accuracy of 0.87 +/- 0.0498.

Figure 38: Example DSC curve produced by a 2D parameter optimization The optimal DSC

value 0.96 found during this optimization procedure is indicated with an arrow.

However, these values are less meaningful than they may appear, because the expert

manual segmentations exhibit disagreement between themselves that is not accounted for.

As described in the previous section, a set consisting of the S&S automated segmentation
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Figure 39: Bar graph of mean DSC of S&S automated 3D segmentations created using brute

force 2D parameter optimization with the axial initialization slice, when compared to our

three expert manual segmentations, for each of our MRI data sets.

and the three expert manual segmentations can be created, and the inter-rater reliability

of this set can be calculated to provide more insight into the accuracy of the automated

system. This new inter-rater reliability, as well as the original inter-rater reliability of the

set of expert manual segmentations alone, can be seen in Figure 40. These data allows

us to compare the inter-rater reliability of our set of segmentations both with and without

the addition of our automated segmentation, showing the degree to which the automated

segmentation appears to be as accurate as an additional expert.

For added clarity, Figure 41 shows the change in inter-rater reliability produced by the

addition of the automated 3D segmentation for each data set. It can be seen that in most

cases the error was small, falling below 0.075 DSC for all data sets, although qualitative
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Figure 40: Bar graph showing the inter-rater reliability of sets containing only the expert

manual segmentations (yellow) and the expert manual segmentations along with the auto-

mated S&S segmentation (blue) for comparison.

judgement based on this measure must be made with caution. For example, it will decrease

as the number of observers increases. The two data sets with the highest error, data sets

8 and 9, were both from the same MRI study, a study that produced particularly poor

automated segmentation accuracy due to lower quality images. The mean error over all

ten data sets was 0.027 DSC. Though not flawless, the automated segmentations produced

were effective, and in some cases (data sets 3 and 7) nearly indistinguishable from expert

manual segmentations, given that their addition to the set of segmentations produced a

nearly identical inter-rater reliability.
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Figure 41: Bar graph showing the difference between the inter-rater reliability measurements

of the set of expert manual segmentations with and without the addition of the automated

S&S segmentation.

We now turn our attention to the computational time of automated 3D segmentations.

Manual segmentations of 3D objects in medical images is a time-consuming process, and

it is expected that an automated segmentation system must produce 3D segmentations

in comparable or faster times to be appealing in the clinical setting. The fundamental

measure of time in a clinical imaging setting is the amount of time from image acquisition to

diagnosis, which is aided by segmentations produced. The time to produce a segmentation,

with either automated or manual methods, may directly delay a clinician’s ability to make

a diagnosis. Thus, while computers are a more numerous resource than experts in medical

segmentation, allowing many automated segmentations to be performed simultaneously, we

focus our discussion on the total time to produce a single automated 3D segmentation.
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Figure 42: Bar graph of the average (blue) and minimum (maroon) times of 3D segmentation,

including parameter optimization for each data set. Average and minimum values are in the

context of the three initialization slices tested.

We present computational time data for our automated S&S system in producing 3D

segmentations of the RVOT in Figure 42. Shown is the mean time, averaged over the three

2D initialization slice tested, and minimum time of the initialization slices for each data

set. Interestingly, it has been observed that the most accurate segmentation of the three

initialization slices generally required the least computational time. This correlation exists

because the most effective algorithm parameters limit sphere growth to the correct radius,

while less optimal algorithm parameters allow spheres to grow larger than they should, taking

excess computational time to iterate through the extra shells.
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Figure 43: Bar graph of the average time, split into parameter optimization (dark) and

algorithm run time (light) for each data set.

Figure 43 presents the average computation time for each data set, separated to show the

time required for algorithm parameter optimization (using the brute-force technique) and

the additional time required to optimize a sphere map for the image using the automated

S&S system. The time spent in parameter optimization is shown by the darker region of each

time bar, while the time to produce a 3D segmentation using those parameters is represented

by the lighter region of each bar. The data shows that parameter optimization time is a

small fraction of the total time to produce a 3D segmentation, taking less than 30 minutes

in most cases. It can also be seen that, aside from the atypically large computation time

for data set 2, all of our data sets required between two and four hours of computation.

This time is roughly twice as long as the time observed for a human to produce a manual

3D segmentation of similar anatomical objects, both in our studies and in others. [37, 38]
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However, the amount of human interaction time required by our S&S system is under 10

minutes. It should also be noted that a single analysis with our automated system produces

a sphere map for the entire image, including all anatomical objects within. Given a properly

optimized sphere map, the segmentation flood-fill at the end of our algorithm, detailed in

Section 3.3.6, rarely requires more than 1-2 minutes. This time is negligible compared to

the time required for sphere map optimization, which consumes the great majority of the

overall computational work for 3D segmentation. Thus, a single S&S analysis, given proper

algorithm parameters, can be said to produce segmentations for all objects within an image

in a similar time frame to that required to produce one manual 3D segmentation.

5.1.2 Alternative Parameter Calculation Techniques

Quantitative analysis was also performed on 3D segmentations produced using the alternative

methods of parameter calculation presented in Section 4.3. As in that section, the alternative

methods will be referred to here as AM-A, AM-B, AM-C, and AM-D. Each alternative

method was used to produce a 3D segmentation on all MRI data sets, with the same three

initialization slices used in the validation study in the previous section. Analysis times

were also recorded, for comparison to the computational time necessary for the brute-force

parameter optimization method.

Alternative Method A (AM-A) utilized separate variance thresholds, with αs calcu-

lated from the 2D initialization tracing and αg determined via optimization through the

1-dimensional search space of potential variance values. Segmentation accuracy using AM-A

with our S&S algorithm to produce 3D segmentations of our ovine data sets using each of

the three candidate 2D initialization slices can be seen in Figure 44. When compared to

the accuracy of 3D segmentations produced with the 2D brute-force parameter optimization

technique presented in the previous section, it can be seen that AM-A produced less accurate

results, with much more variation in performance between data sets. We again found heavy

dependance on the slice orientation used for initialization, but found the sagittal slice to be

preferable when using AM-A. If we consider a DSC of < 0.7 to be a failure, the sagittal slice

slice yielded only one failed segmentation, while the axial and coronal slices yielded three

92



Figure 44: Bar graph of mean 3D DSC for all MRI data sets using parameter calculation

method AM-A, using each of the three 2D initialization slices.

and eight failures, respectively. While our brute-force optimization method, using the axial

slice for initialization, produced DSC values above 0.78 consistently, AM-A was unable to

produce consistent segmentation accuracy, regardless of initialization slice. The best perfor-

mance of AM-A, offered by using a sagittal initialization slice, produced an average DSC of

0.75 +/- 0.13 on all data sets, with a minimum DSC of 0.38 on data set 1.
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Figure 45: Bar graph of mean 3D DSC for all MRI data sets using parameter calculation

method AM-B, using each of the three 2D initialization slices.

Figure 45 shows 3D segmentation performance using for AM-B in the same format.

The results from AM-B are more promising, with the axial initialization slice consistently

producing a DSC of at least 0.7 on all data sets. Other initialization slices produced incon-

sistent results, however, making overall performance of this parameter calculation method

questionable. The average DSC recorded using AM-B with an axial initialization slice was

0.78 +/- 0.06, over all data sets. In fact, AM-B yielded the most accurate, reliable results

of all the alternative parameter calculation methods tested, though still falling short of the

segmentation accuracy produced by brute-force parameter optimization.

Figure 46 reports 3D segmentation performance when using AM-C. This parameter cal-

culation method showed the highest level of reliability when using the sagittal initialization

slice, producing a DSC >= 0.70 for all but one data set. The overall mean DSC produced

using AM-C with a sagittal initialization slice was 0.76 +/- 0.14.
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Figure 46: Bar graph of mean 3D DSC for all MRI data sets using parameter calculation

method AM-C, using each of the three 2D initialization slices.

AM-D yielded segmentation accuracy nearly identical to AM-B, as can be seen in Figure

47. As with AM-B, using the axial initialization slice produced the most consistent and

accurate performance over all data sets, with DSC values to expert segmentations ranging

from 0.69 to 0.86. The overall mean DSC recorded using AM-D with an axial initialization

slice was 0.77 +/- 0.06, slightly below that of AM-B.
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Figure 47: Bar graph of mean 3D DSC for all MRI data sets using parameter calculation

method AM-D, using each of the three 2D initialization slices.

A summary comparison of all parameter calculation methods, including our standard

brute-force technique, is shown in Figure 48. The box plot shows the area, measured in

units of DSC, between the first and third quartiles. The median DSC value is marked with

a triangle. The minimum and maximum 3D DSC values calculated are also shown by lines

extending vertically above and below the boxes. Values below the standard outlier range of

1.5 ∗ IQR, where IQR is the Inter-Quartile Range, have not been removed from the graph

in order to give a more exact representation of all data collected.

96



Figure 48: Box plot of the 3D segmentation accuracy, measured by DSC, for each of the

parameter calculation methods. Data includes automated 3D segmentations of all ten MRI

data sets, using each of the three initialization slices, compared to each of the three expert

manual segmentations. Q1 and Q3 represent the first and third quartiles of the DSC data,

respectively.

We observe that our brute-force parameter optimization method not only has the highest

IQR, in terms of DSC, but also the smallest IQR of all parameter calculation techniques.

This is convincing evidence that the original brute-force algorithm parameter optimization

technique produces more accurate and reliable segmentations than the other methods tested.

Furthermore, as shown in Figure ??, judicial selection of the slice used for parameter opti-

mization eliminates the failures that produced the brute-force optimization outliers seen in

Figure 48.
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Figure 49: Box plot of the computation time of 3D segmentation, measured in minutes, for

each of the parameter calculation methods. Data includes automated 3D segmentations of

all ten MRI data sets, using each of the three initialization slices, compared to each of the

three expert manual segmentations. Q1 and Q3 represent the first and third quartiles of the

time data, respectively.

We next consider the anticipated increase in computational time when using the brute-

force parameter optimization technique, as the alternate parameter calculation methods were

designed to reduce the computational time of parameter determination. Figure 49 shows a

box plot of time data collected for each of the parameter calculation techniques. Surpris-

ingly, the brute-force optimization technique had comparable, or better, computational time

performance relative to the alternative parameter calculation methods. The brute-force pa-

rameter optimization method shows a much lower maximum time (630 minutes, as opposed

to 1333-1836 minutes for the other methods), while maintaining the second lowest median
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time, the smallest IQR, and the lowest third quartile marker value. This behavior is likely

to be because the alternative parameter calculation methods produce sub-optimal algorithm

parameters, leading to excess calculation as spheres are grown larger than necessary.

We have shown that the brute-force parameter optimization method has time perfor-

mance comparable to or better than any of the other parameter calculation methods devised,

with less variability in computational time. More importantly, 3D segmentations produced

using the brute-force method significantly surpassed those produced using other methods

in terms of accuracy and reliability. We can conclude that brute-force algorithm parameter

optimization remains the most effective technique for use with our S&S segmentation algo-

rithm. We believe this result is because, given proper selection of a 2D initialization slice,

brute-force optimization is the most reliable method of producing effective parameters.
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5.2 ERROR VISUALIZATION

Validation data has been presented thus far in the form of the Dice Similarity Coefficient

(DSC), a measure of overall agreement between segmentations, comparing our automated

segmentations to expert manual segmentations. While this measure, as with most measures

of segmentation accuracy, provides information on how accurate the segmentation was over-

all, it gives no insight into the local causes of any inaccuracy in the segmentation. Thus, a

segmentation algorithm that produces a segmentation exactly one pixel beyond the bound-

ary of an object on all sides and a segmentation algorithm that fails utterly on one corner

of an object but is completely accurate elsewhere may produce the same DSC. Obviously,

cases such as these would require different steps to be taken to correct the problem, due to

their differing natures of failure. When assessing the accuracy of a segmentation algorithm,

information about local error is at least as important as global information. In the two

hypothetical case presented, knowledge of local error would tell us that the second algorithm

failed only in a specific part of the object, and thus the failure can be attributed to the

algorithm’s response to some local feature of the object. In the case of the first algorithm,

local error will be seen to be even throughout the object, and can be attributed to some

general behavior of the algorithm along the entire object boundary.

To facilitate effective analysis of error in our Shells and Spheres segmentation algorithm,

we require a method of assessing localized errors in the segmentation, preferably tied to an

intuitive method of visualizing that error. To keep our error analysis as closely linked as

possible to our algorithm itself, allowing knowledge of the nature of errors to be intuitively

applied to algorithmic solutions, we looked to the unique nature of the sphere map itself. The

most useful information in determining the cause of failure in a Shells and Spheres algorithm

is which spheres are incorrect, and to what extent they are too large or small. Visualizing

hundreds, or thousands, in some cases, of incorrectly grown spheres simultaneously would

yield an output too complex and confusing for visual analysis. Conversely, visualizing only

a few faulty spheres at a time would not give a global sense of the segmentation and its

weak/strong points.
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An effective compromise in visualization was reached, utilizing a display of only the

central pixels of spheres, with each pixel’s color corresponding to its sphere’s error from

its ideal radius. Given a gold standard manual segmentation, the Noiseless Sphere Map

Optimization algorithm can be run on the binary mask, growing spheres centered at each

pixel within the segment until it reaches the manually-defined boundary to produce a Gold-

Standard Sphere Map (GSM). An automated S&S algorithm, applied to the same data set,

produces an Automated Sphere Map (ASM). Since a sphere map can be represented simply

as an image with a radius value at each pixel, these two images can be subtracted to obtain

an Error Sphere Map (ESM), as

ESM = ASM −GSM. (5.1)

The resulting ESM may have both positive and negative radius values, corresponding to

the difference in radius (in the positive or negative direction), between each sphere in the

ASM and its corresponding sphere in the GSM. For instance, a sphere grown two pixels too

large in automated analysis would produce a value of 2 at its central pixel in the ESM, while

a sphere that fell one pixel short of reaching the boundary in automated analysis would

produce a corresponding value of -1 in the ESM. Of course, a correct sphere would have a

corresponding value of 0 in the ESM.

Visualization of the ESM was performed in ITK-SNAP, which allowed us to not only

show the semi-transparent pixels overlaid on the real image data, but also a 3D surface

rendering of the ESM. We display this surface rendering intuitively as a heat map, with colors

along a range of yellow to red showing increasing sphere growth past object boundaries, and

colors in a range from light blue to purple indicating early sphere stoppage before object

boundaries. Figure 50 shows an ESM for one of our RVOT data sets visualized in ITK-SNAP.

The bottom-left quadrant displays the surface rendering, while the other three screens show

axial, sagittal, and coronal views of the data set, with semi-transparent error colors overlaid.
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Figure 50: Screenshot of ITK-SNAP displaying an Error Sphere Map (ESM) overlaid on the

original image data. The object segmented was an RVOT, bounded at pre-determined cutoff

planes. the lower left quadrant displays a surface rendering of the ESM.

While this visualization gives the user a sense of the proportion of spheres with incorrect

radii relative to the gold standard through the proportion of color appearing within the target

object, so much data displayed concurrently in a visual environment may be overwhelming.

In Figure 50 we can clearly see the RVOT, bounded by our pre-determined arbitrary bound-

ing planes, outlined in the surface rendering window. Since spheres agreeing completely with

the gold standard would produce no surface, this rendering gives the sense that a large pro-

portion of spheres in our automatically generated sphere map were wrong. However, in this

form the visualization fails to give a sense of the overall error. Since our segmentation is ul-

timately achieved by a flood-fill through neighboring medial spheres, segmentation accuracy

will only be directly affected by spheres at the center of the object. Furthermore, the amount
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of segmentation error is not simply proportional to the magnitude of the difference in radius

of the automated sphere from the gold standard sphere. The segmentation error, measured

in the number of pixels incorrectly included or excluded from the segmentation, will likely

increase rapidly, depending on the shape of the object boundary, as a medial sphere’s radius

gets farther away from its ideal value. For example, a medial sphere growing one radius too

large will cross an object boundary on either side by one pixel, causing a small handful of

pixels (the exact number of dependent on the radius of the sphere) to be included in the

segmentation that should not be. Were this sphere to grow another radius past the object

boundary, the number of pixels outside the object boundary included in the sphere will more

than double, assuming the local curvature of the object boundary is not extreme.
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Figure 51: A: Surface rendering of the ESM of an RVOT. B: The same RVOT ESM, with

spheres within 1 radius of the gold standard removed. C: The same RVOT ESM, with spheres

within 2 radii of the gold standard removed. D: The same RVOT ESM, with spheres within

3 radii of the gold standard removed.
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Figure 51 shows the surface rendering from Figure 50 in four states, successively removing

spheres based on their magnitude of error. While Figure 51A shows all spheres in the ESM

surface map, Figure 51B shows the surface after removing all spheres within one radius of

the gold standard value from the visualization. This drastically reduces the colored area

in the surface rendering, proving that a majority of incorrect spheres were +/- 1 from the

correct radius value, thusly generating little error in the segmentation produced. Figure 51C

and Figure 51D go on to remove spheres with radii off by +/- 2 and +/- 3, respectively,

from the gold standard, giving a sense of the distribution of magnitude of error among all

incorrect spheres. We see that a sphere with a magnitude of error greater than 3 was an

exceedingly rare occurrence in this segmentation, indicating that the surface distance of our

automated segmentation will rarely, if ever, exceed three pixels. We also see that the majority

of high magnitude error was concentrated in the end of the RVOT leading to the RV. This

information, which could be critical to creating corrective measures, could not have been

detected using traditional segmentation error metric, such as those previously presented.
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5.3 VALIDATION AGAINST OTHER TECHNIQUES

We have validated the use of our S&S segmentation system on cardiac MRI images by

calculating agreement to a set of expert manual segmentations. To further argue for our

system as contributing to the field of medical image segmentation, we now compare the

S&S segmentation system to another commonly used computational segmentation technique,

using a software tool created specifically for clinical use. ITK-SNAP was developed by

Yushkevich et al. [36] and published in 2005 to be an inexpensive, clinically accessible software

package offering cutting-edge semiautomated segmentation techniques in a polished, intuitive

interface for clinical users, a vision which we share. One of the semiautomated segmentation

algorithms implemented in ITK-SNAP is the geodesic active contour method designed by

Castelles et al. [39, 40] This algorithm defines an evolving snake, which is guided by a pre-

processed feature image of edges. The snake evolution in ITK-SNAP is implemented using

a level set method [41, 11, 22], which is a recent standard for curve and surface evolution.

Details on the theory and implementation of this active contour level set method can be

found in [36].

5.3.1 Supervision

We begin our comparison with a discussion of the extent and nature of the supervision

required by each algorithm. As previously presented, our S&S segmentation system required

the user to perform two initialization steps at the onset of analysis:

• Select a particular slice from the 3D image containing the target object.

• Perform a 2D tracing of the target object on the chosen slice.

All algorithm parameters are then automatically calculated and optimized by the system,

using the 2D tracing provided. No further user supervision/interaction is required, during

or after the segmentation process. The requisite operations of target identification and 2D

tracing require minimal user time and effort, and utilize only the anatomical knowledge

inherent to a clinical professional.
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Now we examine the active contour technique, which requires a very different means of

supervision. A feature image is calculated from the input image in a preprocessing step.

This feature image g(I), where I is the input image, is a specialized gradient magnitude

image calculated using three manually determined parameters:

• σ, the scale of gaussian blurring applied to the input image I before the gradient mag-

nitude image is calculated

• κ, an edge contrast factor

• λ, an edge mapping exponent

Once the feature image g(I) is calculated the user must position “bubbles”, or spherical

seed regions, within the object to be segmented and specify their size. The user can place

and adjust the size of as many bubbles as desired, though in our study we limited the number

of bubbles to one, to ensure that we embedded no additional 3D spatial information into

the active contour than is made available to the S&S algorithm. Once the bubble is placed

and properly sized, three algorithm parameters must be manually adjusted to control the

evolution of the contour by defining the front propagation equation. These parameters are:

• α, the balloon force term

• β, the curvature force term

• γ, the advection force term

An alternate experimental equation including three additional parameters is available

in the software, but was not used in our study. Finally, the user must initiate evolution of

the contour and supervise its growth, deciding how many evolutionary iterations the snake

should perform before the segmentation is complete. Including the number of iterations for

snake evolution, and the radius of the seed bubble, this active contour method requires the

user to set eight parameters throughout its operation, a process which must be continually

monitored from start to finish. While the ITK-SNAP software has been designed to provide

visual feedback for the parameters governing the feature image g(I), the user still must be

knowledgeable of the ways in which various aspects of g(I) may effect the evolution of the

contour. The user must also have knowledge of the nature of level set contour evolution to
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accurately predict the effect of parameters α, β, and γ. Such knowledge is outside the realm

of expertise of the clinical professional, drawing on high-level mathematics, optimization,

image analysis, and machine learning.

5.3.2 Experimental Methods

For comparison to our S&S segmentation system, the implementation of geodesic active

contours in ITK-SNAP was used to segment the RVOT in each of the ovine MRI data sets

from our previous validation study. Parameters were determined via manual experimental

testing, using the preview functionality of ITK-SNAP. Figure 52 shows an example feature

image g(I) from one of our MRI data sets, its parameters manually adjusted, with the RVOT

labeled.

Figure 52: An example feature image g(I) created via manual parameter adjustment using

ITK-SNAP. The RVOT is labeled. (red)

The single seed bubble was manually placed in the center of the RVOT near the pul-

monary valve, as determined by manual inspection. Bubble placement can be seen in Figure

53, where a bubble shown in green has been placed in the RVOT of a grayscale slice from

the same data set used to create the feature image in Figure 52.
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Figure 53: A slice of the grayscale MRI image used to create the feature image in Figure 52,

with the seed bubble (green) for the active contour placed in the RVOT.

The user supervised the evolution of the contour, manually overseeing the number of

iterations used to produce the final 3D segmentation. The next section will present the

results of performing this active contour segmentation on each of our ovine MRI data sets,

and a comparison to the segmentations produced by our Shells and Spheres algorithm.

5.3.3 Results

Segmentations of the RVOT in our 3D ovine MRI data sets were produced using the geodesic

active contour method implemented in ITK-SNAP. As before, the DSC is used to show

agreement to the manual 3D segmentations of the RVOT produced by our three experts.

Results of this comparison can be seen in Figure 54, alongside the agreement data previously

presented for our S&S segmentation method.

This graph shows the mean segmentation agreement to all expert segmentations over all

ten ovine MRI data sets for the active contour method and our S&S method. The error

bars were determined by the Standard Error of the Mean (SEM). Figure 55 shows the mean

agreement value for each individual data set for both segmentation methods.
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Figure 54: Bar graph showing the mean 3D segmentation agreement to all expert segmen-

tations over all data sets for both the active contour method (blue) and our S&S method

(maroon). Error bars show the standard error of the mean (SEM).

We can see that the S&S segmentation system performed slightly better than the active

contour method, but the high degree of overlap of the respective SEM values indicates roughly

equivalent performance. An independent-samples t-test showed that the two means were

not significantly different (p-value = 0.741). We conclude that S&S can match this current

clinical state of the art automated segmentation method, with significantly less supervision,

as described. Furthermore, the minimal supervision required by the S&S algorithm is at the

onset of analysis, unlike the constant supervision necessary for the active contour method.

Additionally, our system is designed to require only skills and expertise inherent to the

clinical professional, rather than expecting a medical professional to gain algorithmic or

mathematical expertise to effectively perform automated 3D segmentations.
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Figure 55: Bar graph showing the individual 3D segmentation agreement to expert segmen-

tations for each data set for both the active contour method (blue) and our S&S method

(maroon).

Intensity thresholding coupled with a flood-fill from a manually placed seed point was

also explored as a common technique for comparison to our segmentation system, but the

prevalence of partial-volume effects and tissue inhomogeneity in MRI images [9] made this

method incapable of segmenting the RVOT in our data sets, due to “bleeding” of the flood-

fill regardless of threshold parameters. Without a high degree of manual post-processing,

this method produced a failed segmentation (DSC < 0.70 for all expert segmentations) on

each of our MRI data sets. A discussion of the accuracy and reliability of this method is

thus irrelevant, as it is merely a reflection of the skill of the user performing the necessary

post-processing of the segmentation.
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6.0 CONCLUSIONS AND FUTURE WORK

Our research has produced a validated, clinically accessible automated segmentation system

requiring minimal supervision. We have developed unique methods of training a 3D system

with sparse 2D data, automatically optimizing algorithm parameters. Our system produces

n-dimensional segmentations complete with linked medial and boundary point sets. Our

approach has been validated on a database of ten 3D ovine cardiac MRI data sets, through

comparison to manual segmentations produced by three expert users. We have also developed

a method of displaying local error unique to S&S. We have reported insights acquired through

our experience in designing a clinically accessible automated image analysis system, our

validation studies, and through the use of our segmentation system to produce segmentations

for mechanical modeling of the RVOT. We present our conclusions in the following sections.

The final section of this chapter will propose future work to be done on this research, outlining

the author’s theories on improvements to the segmentation system presented, new studies

to be performed, potential novel algorithm designs using the Shells and Spheres framework,

and expected fruitful directions for future research in clinical image segmentation.

6.1 CLINICALLY ACCESSIBLE SYSTEMS

The importance of specifically designing automated medical image analysis systems to be

accessible to the clinical user cannot be overstated. There are numerous issues to consider

when attempting to bring new technology into clinical practice, regardless of its potential

to improve patient care, including cost of purchase and implementation, system reliability,

acceptance by the clinical community, and necessary training time. Researchers have con-
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cluded that initialization of systems is a pivotal research area, and have noted the difficult

tradeoff between manual interaction and performance. [28, 9] We addressed these concerns

by designing our Shells and Spheres segmentation system specifically for the clinical user,

addressing each of the above challenges to introducing new technology into clinical practice.

The costs of implementing a new system include training personnel in its use, and such

costs will be driven down by introducing systems that are intuitive and easily used by

clinical professionals. A system that is comfortable to its users will produce more reliable

results, by minimizing user errors and maximizing the likelihood that users will utilize the

system effectively and appropriately. A system that makes use of an interface intuitive to

the clinician and requires no input other than anatomical tracing will find easier acceptance

among clinical professionals than those requiring more complex user interaction. It will also

minimize training time for new users. Research shows that limiting supervision to the onset

of analysis is preferable in automated segmentation systems, minimizing time and effort put

forth by users and leaving them free to pursue other tasks unhindered while the system

proceeds with the automated segmentation. [28]

Our S&S segmentation system follows the precepts set forth by Yushkevich et al., who cite

a “lack of inexpensive user-friendly tools implementing semi-automatic [image segmentation]

methods”. [36] We have adopted the interface of ITK-SNAP, which is both intuitive and

robust, offering many of the user-interactive features required by our system in a well-

polished, open source package. This interface enabled us to simplify the supervised portion

of our segmentation procedure, allowing our users to easily select a 2D slice from a 3D data

set and trace a simple 2D contour around the target anatomical object. All necessary data

for tuning our 3D segmentation algorithm is derived from this action, with no technical

expertise required from the user beyond recognition of the target anatomy.

Our segmentation framework and algorithm have been implemented using the open-

source Insight Toolkit (ITK) [42], ensuring that our segmentation system will remain acces-

sible and inexpensive.
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6.2 VALIDATION OF THE SHELLS AND SPHERES FRAMEWORK FOR

IMAGE SEGMENTATION

We have presented validation studies of our Shells and Spheres framework for image anal-

ysis, and the associated n-dimensional segmentation algorithm. Inter-rater reliability was

calculated as the mean combinatorial Dice Similarity Coefficient (DSC) between the three

expert manual segmentations for each 3D data set. These inter-rater reliability values were

compared to the mean DSC of an automated S&S 3D segmentation to the three expert seg-

mentations, and the difference between mean automated DSC and inter-rater reliability was

reported. In 80% of our data sets the difference was below 0.1 DSC, and stayed below 0.14

DSC in the remaining 20%. The mean difference over all data sets was 0.05 DSC, indicating

that our S&S segmentation system is nearly equivalent to manual segmentation.

Studies were conducted to determine the impact of the 2D slice used for initialization of

our segmentation system, using a brute-force parameter optimization method. Of the three

slice orientations tested, one orientation was notably superior to the other two, producing

an average 3D segmentation accuracy 5% higher than other orientations. This orientation

also yielded much lower variance in accuracy between data sets, proving it to also be the

most reliable of those tested.

Additional methods of calculating algorithm parameters from given initialization infor-

mation were explored, to test the necessity of the dual-parameter brute-force optimization

technique. These were designed to relieve some of the computational burden of the brute-

force optimization approach, by directly calculating one or both of the parameters from a

priori data in a fraction of the time. Results indicated that the brute-force optimization

method not only out-performed alternative methods in terms of accuracy, yielding a median

accuracy at least 10% higher than any other method tested, but showed no increase in overall

computational time over alternative methods. The total 3D segmentation time, including

parameter calculation, when using the brute-force optimization system was comparable to

the lowest time of the alternative methods, with significantly lower time variance between

data sets. This surprising result emphasizes the effectiveness of the algorithm parameters cal-

culated by the brute-force method, as the increased efficiency of our algorithm using these
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parameters offset the added time of computation necessary for brute-force optimization.

From these results, we can conclude that further work improving computational efficiency

of the segmentation algorithm would have a greater impact on the total time required than

speeding up the initial parameter optimization.

Our studies have validated the effectiveness of the Shells and Spheres framework and our

particular segmentation algorithm for producing automated 3D segmentations with minimal

user interaction and a training set of only a single 2D image slice. We have demonstrated the

superiority of brute-force algorithm parameter optimization over other parameter calculation

methods. We have also shown the large impact of the 2D slice chosen for initialization and

training of our segmentation algorithm on 3D segmentation accuracy and reliability, and

have identified an initialization slice that produces reliable results on all volumes in our 3D

cardiac data library.

6.3 USING SEGMENTATIONS OF THE RIGHT VENTRICULAR

OUTFLOW TRACT FOR MECHANICAL MODELING

We have delivered 3D segmentations produced by our automated system to collaborators to

be used for mechanical modeling of the RVOT. In addition to automated segmentations of

the RVOT from each of the ovine MRI data sets, we have also delivered the expert manual

segmentations collected as part of our validation process. Segmentations were post-processed

to create deliverables in the form of point clouds, containing linked pairs of boundary and

medial points for each RVOT.
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6.4 FUTURE WORK

Development of the Shells and Spheres framework and associated image analysis algorithms

is an ongoing effort, with many avenues of further research to be pursued. This section will

discuss the next steps in research envisioned by the author, proposing improvements to the

existing algorithm, approaches for new algorithm design, and further studies to be conducted

on the framework.

6.4.1 Algorithm Improvements

Our current image segmentation algorithm, presented in this dissertation, has a number

of distinct limitations that should be addressed in future releases. In addition, the S&S

framework itself may be improved by the addition of new statistical measures and features

that may be useful for segmentation, or other automated image analysis tasks. In this

section we will cover both levels of enhancement to our work. Our discussion will be loosely

structured to follow the segmentation algorithm through its sequential steps, bringing to

light shortcomings, enhancements, and directions for further research as appropriate.

Of the six steps taken by our 3D segmentation algorithm, the first step (VSS Gradient-

Based Radius Approximation, Section 3.3.1) uses the greatest percentage of computational

time. In many cases, it has been observed that this step requires as much computation

time as the other five steps combined. This first step merely provides a rough estimate

of the correct radius of our spherical operators, initializing the sphere map to a state in

which an acceptable percentage of spheres contain a statistically significant sample of pixels

from within their respective image objects. As such, the current iterative process of testing

statistics at each step of sphere growth for all pixels is excessive, as only a percentage of

spheres much be initialized for the algorithm to proceed effectively. Additionally, initialized

spheres need not necessarily be set to the exactly correct radius. The complete impact of

these initialized spheres on algorithm performance is complex, but as spheres will be further

adjusted by subsequent steps, it is likely that a reasonable approximation of a percentage

of correct sphere sizes is all that is necessary. Spheres whose radii were considered reliable
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could be used to set neighboring spheres, if a reasonable confidence estimate could be devised.

We envision a system that selects a percentage of “seed” pixels to initialize, applies with a

confidence test to weed out uncertain spheres, and subsequently assigns initial values to the

remaining pixels via a specialized interpolation method. The seed pixels may be selected

using a static mask or by a monte carlo method. If a monte carlo method is used, it may

be advantageous to weight the selection to include a greater percentage of pixels that are

statistically likely to be within the target anatomical object, using the 2D tracing provided

by the user as a statistical gold standard. Pixels within the target object are hypothesized to

have a more dramatic impact on the eventual segmentation, and should be given heightened

consideration. Furthermore, potential other novel methods of initializing the radius of our

spherical operators may be envisioned, with the hope of providing a highly efficient means

of radius estimation. A redesign of this first step to reduce computational complexity would

greatly improve the speed of the algorithm, and sacrifice little or no segmentation accuracy

if the efficacy of the initial radius estimation does not decrease.

In addition to its application to algorithm Step 1, we propose further exploration of the

concept of using a subset of pixels, rather than the entire image, for analysis. This concept

can be applied not only to sphere map initialization, but to the entire algorithm. The 3D

segmentation ultimately produced is directly calculated from the set of spheres determined

to be medial to the target object. Though other spheres in the image may greatly influence

the evolution of these medial spheres and are necessary to label them as “medial”, the full

population of non-medial spheres may not be necessary for effective sphere map optimization

and segmentation. Maintaining throughout the algorithm those spheres selected by a monte

carlo pixel selection method, weighted as proposed above to include a greater proportion of

pixels likely to be within the target object, may drastically reduce computation time without

adversely effecting segmentation results.

Moving on to other stages of the algorithm, we propose enhancements to the selection

of outposts in algorithm step 3 (Section 3.3.3). Currently, secondary outposts are defined as

pixels of radius 0 with an appropriate reflector count, directly adjacent to a primary outpost.

An unintended effect of this operation is a blurring of object boundaries, by potentially

labeling secondary outposts in all directions from a primary outpost, rather than exclusively
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along the object boundary. This problem could be resolved by fitting the optimal plane (line

in 2D) of the object boundary at a given outpost, and allowing this outpost to place its

secondary outposts only near this plane. Recall that, by definition, each outpost must be

included in the outer shell of a number of spheres. The tangent planes (or lines) of a those

spheres could be used in the above fitting. Adding this constraint to outpost calculation

could sharpen boundaries and reduce the number of secondary outposts incorrectly placed

within image objects, reducing the necessity for correctional actions such as algorithm step

4 (Section 3.3.4).
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Another approach to enhancing the accuracy of outpost placement in our segmentation

algorithm is to develop a statistical model of “boundary” pixels, which can be used to filter

out outposts that are not likely to represent a true object boundary. All of our research

thus far has used our spherical operators to model homogeneous regions, attempting to

prevent spheres from crossing object boundaries. We hypothesize that sampling possibly

non-spherical regions around potential outposts instead would allow us to verify their validity

as object boundary pixels by comparing their local population statistics to those observed

around known boundary pixels from the a priori initialization tracing. This preventative

procedure may reduce the number of spurious outposts placed within homogeneous regions

due to noise and tissue inhomogeneity.

A final improvement to our Shells and Spheres segmentation system envisioned by the

author takes the form of an advancement of the output. Our algorithm optimizes a sphere

map for the entire image, producing properly sized spheres within all image objects. Once

a seed point is given, calculation of a segmentation of the object indicated is a swift, sim-

ple procedure. An iterative procedure could be developed which would automatically run

segmentation flood-fill operations on all medial pixels successively, excluding those already

within a segmentation to remove redundancy. This would produce a set of fuzzy segmenta-

tions of all objects in the image. Once medial/boundary point pairs were calculated, an atlas

of known anatomical shape representations could be used to automatically label anatomical

objects through the use of an appropriate shape matching procedure. Our system pro-

duces well-defined shapes, with robust boundary and medial information. Thus, matching

these shapes to those contained in an atlas could be a relatively simple procedure. Shape

matching, in far more complex circumstances, has been thoroughly investigated by other

researchers. [43, 44,45,46,47]

6.4.2 Further Research Studies

Beyond the algorithm improvements highlighted in the previous section, we propose a number

of studies to improve our segmentation algorithm. We first propose exploration of various

intelligent search schemes from the fields of artificial intelligence and computational opti-
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mization that could replace the brute force approach to parameter optimization employed in

our current system. This research is given low priority, due to the small percentage of total

computation time attributed to parameter optimization. Improvements to the computation

time of the segmentation algorithm will have a far greater effect in reducing the total time

of segmentation at present. Additionally, we envision a study continuing our research into

effective 2D slices to be used for our a priori manual initialization. Our research thus far has

only tested three slice orientations around a specific anatomical point, and proven that the

2D slice used for initialization has a dramatic impact on the algorithm parameters calculated,

and thus, on the 3D segmentation produced. A rigorous study, testing an exhaustive set of

potential 2D initialization slices through a particular anatomical object in a given imag-

ing modality would hopefully locate an even better 2D slice for initialization. Similar tests

should be conducted for each particular anatomical target and imagine modality to which

the algorithm is applied. The resulting information could be incorporated into an atlas of

optimal 2D slices, which could be used to automatically select the optimal 2D initialization

slice from a given 3D volume by finding the slice most closely matching that in the atlas.

6.4.3 Design of a New Segmentation Algorithm

Throughout our research we have maintained that our current segmentation algorithm is

merely one of many potential algorithms that could make use of the Shells and Spheres

framework. The current algorithm has evolved to improve both speed and accuracy through

years of development, incorporating a variety of algorithm features and functions. Both the

manual initialization procedure and 2D tracing prior were added to the system subsequent

to its initial development. Because of this, we note that the algorithm, which was not

originally designed to take advantage of a priori information of any kind, is not ideally

suited to capitalize on all aspects of the given a priori data. The knowledge and experience

gained through the development of our current algorithm will be invaluable in the design of

a new segmentation algorithm, which is a high priority future research endeavor.
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There are numerous directions that may be explored in the development of a new S&S

segmentation algorithm. First, the reliance of our initial algorithm on global variance thresh-

olds has proven to be a limitation, hampering the degree to which it can adequately account

for intensity gradients within otherwise homogeneous regions or the optimization of a sphere

map for multiple objects of different variance in the same image. Future algorithms should

be designed with this complication in mind, striving to add local considerations for sphere

growth. Conversely, we predict that further development of processes to increase the level of

communication between spheres in the same object will allow us to maintain accuracy while

reducing blanket measures such as global thresholds.

A brief study was presented in this dissertation exploring the validity of the normal as-

sumption in our spherical sampling regions (Section 3.1.2.3). A secondary product of this

study is information on the behavior of standard normality measures when applied to our

spheres as they evolve. This small-scale study showed that the normality measures tested

did, indeed, peak as spheres grew past object boundaries, implying that these measures have

the potential to be used to detect boundaries. Using normality instead of VSS gradient to

signal a sphere crossing a boundary would alleviate the errors caused by VSS gradients being

canceled out when a sphere (usually a medial sphere) crosses multiple symmetric boundaries

simultaneously, as well as potentially increase the accuracy of boundary detection and lessen

the burden on subsequent steps. Normality measures may also be more robust in the face of

image noise, and an approach using the peak in a signal would remove the “number of consis-

tent observations” parameter inherent to our current VSS gradient initialization approach.

Unfortunately, the peaks of the normality measures are consistently “late”, appearing only

after the sphere had grown a number of radii past the boundary. This effect is seen because

as a sphere grows past a boundary, it includes a small number of pixels from a new object

population, while also adding more pixels from its own object population. A number of steps

past this boundary are necessary for the new object pixels to “catch up”, gaining enough

statistical clout to decrease the normality measure.

To alter an evolving sphere’s normality signal to produce a peak at the proper point, i.e.

the radius at which the sphere first crosses an object boundary, the set of new pixels from the

population on the other side of the boundary need to be given more weight in the normality
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Figure 56: A truncated wedge (light) extending from the surface of a sphere (dark) to the

center.

measurement. To accomplish this, the set of pixels sampled from within the sphere needs

to be reduced, without reducing the number of pixels samples from across the boundary.

One potential technique is to divide the outer shell of the sphere into multiple local regions,

while maintaining the connection of pixels within these new sets internally to the core of

the sphere. This approach to shape division, known as truncated wedges, was put forth by

George Stetten in his dissertation. [48] Figure 56 shows a truncated wedge within a sphere.

Using this approach, the surface area of the wedge containing the point of a sphere crossing

an object boundary would contain only pixels from the new population. The set of pixels

from the current population would contain only pixels within the wedge, a much smaller set

than that of the entire sphere. Performing normality measures on the set of pixels within a

truncated wedge would thus increase the proportion of pixels from across the boundary in

the set on which normality is measured, and could cause the normality measure to detect

a decrease in normality earlier, producing a peak in the signal at the correct point in a

sphere’s evolution. If normality measures can be made to reliably detect spheres crossing

boundaries, a new algorithm developed incorporating this technique would remove many of

the limitations of the current algorithm.
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Among the many possible ways of performing image segmentation is to formulate the

problem as a classification problem. A final proposed algorithm utilizing the S&S framework

is such a classification algorithm. We consider the possibility of classifying spheres as “cor-

rect” or “incorrect”, based on a large set of spherical population features. Consider the space

of all spheres in an image at all possible radii. A properly optimized sphere map, with each

sphere sized to correctly reach the nearest boundary, represents a manifold in this space.

Points along this manifold represent spheres that should be classified as “correct”, while

points outside the manifold should be classified as “incorrect”. A large set of features could

be explored to obtain an effective set for accurate classification. The classification itself is

a two-class problem, lending itself to k-means or linear regression approaches, assuming an

effective feature set. Though the ultimate difficulty in such approaches is finding a feature

set that produces data clusters that can be discriminated, this reformulation of segmentation

as a classification problem in the context of S&S reduces the number of classes to a known

value of two, removing a great deal of complexity from other classification approaches to

segmentation.
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APPENDIX A

LIST OF NOTATION (TERMS)

TERM DESCRIPTION PAGE

Shells and Spheres A framework for n-dimensional, variable-scale statistical im-

age analysis, applied here to medial image segmentation . .

iv

a priori A term referring to prior knowledge of an actual population,

rather than current estimated knowledge . . . . . . . . . . . . . . . . .

iv

Image Segmentation The process of delineating separate objects within an image 1

Supervision The amount of training data required by an automated or

semiautomated software system . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Sphere Map A collection of spherical sampling regions, one centered at

each image pixel, of variable radius . . . . . . . . . . . . . . . . . . . . . .

3

Variable-Scale Statistics Statistics computed between two image operators, designed

to be applied to operators of varying independent scales . .

3

Distance Map A representation of an image, indicating the distance from

each pixel to the nearest object boundary. Also known as a

distance transform or distance field . . . . . . . . . . . . . . . . . . . . . .

3

Medial Spheres Spheres centered along the medial manifold of an image ob-

ject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

Medial Manifold Defined by Blum as “that locus of the centers of all circles

completely enclosed by the boundary contour that touch the

contour in more than one location.” [23] . . . . . . . . . . . . . . . . .

3
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Kernel A fixed-size sampling region, representing a local set of pix-

els when applied to a particular location in an image; Used

to calculate local statistical values in an image . . . . . . . . . . .

4

Scale Space The one dimensional space created by representing an image

as a family of increasingly smoothed images . . . . . . . . . . . . .

4

Fuzzy Set A set defined as a pair (A, m) where A is a set and m : A →

[0, 1]. For each x ∈ A, m(x) is the grade of membership of

x to set A, representing the similarity of x to members of

set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

Grade of Membership m(x) of fuzzy set (A, m), within [0, 1] representing the sim-

ilarity of x to members of set A . . . . . . . . . . . . . . . . . . . . . . . . . .

11

Fuzzy-Connectedness A semiautomated hybrid image segmentation technique, in-

vented by Saha and Udupa et al. at the University of Penn-

sylvania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

VSS gradient A specialized statistical value based on the first-order mo-

ment of intensities within a sphere, corrected by a center of

mass value to remove edge effects . . . . . . . . . . . . . . . . . . . . . . . .

23

Outpost A boundary representation construct in the S&S segmenta-

tion algorithm representing a point alongside a boundary,

designed to stop spheres from crossing into a new image

object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

Friendly Outpost An outpost on the same side of a boundary as a given pixel

x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Enemy Outpost An outpost on the opposite side of a boundary as a given

pixel x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Initialization Slice The particular 2D slice used to calculate algorithm param-

eters for a given 3D segmentation . . . . . . . . . . . . . . . . . . . . . . . .

67
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APPENDIX B

LIST OF NOTATION (ACRONYMS)

ACRONYM DESCRIPTION PAGE

3D Three-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

MRI Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

2D Two-dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

RVOT Right Ventricular Outflow Tract . . . . . . . . . . . . . . . . . . . . . . . . . iv

TEPV Tissue Engineered Pulmonary Valve . . . . . . . . . . . . . . . . . . . . . iv

S&S Shells and Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

VSS Variable-Scale Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

PV Pulmonary Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ITK Insight Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CT Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IQR Inter-Quartile Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

PA Pulmonary Artery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

AM-A Alternate Method A for calculating algorithm parameters 76

IV Variance of all pixels within the 2D target object . . . . . . . . . 78

LSV Variance of pixels within the largest sphere in the 2D target

object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78

AM-B Alternate Method B for calculating algorithm parameters 78

AM-C Alternate Method C for calculating algorithm parameters 78

AM-D Alternate Method D for calculating algorithm parameters 78

AA Aortic Arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

GSM Gold-Standard Sphere Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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ASM Automated Sphere Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

SEM Standard Error of the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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APPENDIX C

LIST OF NOTATION (VARIABLES)

VARIABLE DESCRIPTION PAGE

Ω The domain of an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

r(x) The radius of a sphere centered at pixel x . . . . . . . . . . . . . . . . 20

Sr(x) A sphere of radius r centered at image pixel x . . . . . . . . . . . 20

Hr(x) A shell, or a set of all pixels whose distance to a central

pixel x rounds to a given radius r . . . . . . . . . . . . . . . . . . . . . . . .

20

µ(x) The mean of the intensities of the set of pixels within the

sphere centered at pixel x at its current radius . . . . . . . . . . .

23

σ2(x) The variance of the intensities of the set of pixels within the

sphere centered at pixel x at its current radius . . . . . . . . . . .

23

σ(x) The standard deviation of the intensities of the set of pixels

within the sphere centered at pixel x at its current radius

23

m(x) The first-order moment of intensities of the set of pixels

within the sphere centered at pixel x at its current radius

23

c(x) The center of mass of the set of pixels within the sphere

centered at pixel x at its current radius . . . . . . . . . . . . . . . . . .

23

∇f(x) The VSS gradient of the set of pixels within the sphere cen-

tered at pixel x at its current radius . . . . . . . . . . . . . . . . . . . . .

24

S−1(x) The set of spheres containing pixel x . . . . . . . . . . . . . . . . . . . . . 24

µµ(x) The mean of the mean intensities for all the spheres in

S−1(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25
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σµ(x) The standard deviation of the mean intensities for all the

spheres in S−1(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

zµ(x|y) The z-value, representing the likelihood of S(x) belonging

to the set S−1(y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

g A parameter representing the number of successive increases

of VSS gradient required to deduce a true boundary in al-

gorithm Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

αs A variance threshold used in Algorithm Step 2 . . . . . . . . . . . 39

βs A parameter governing αs, representing the number of stan-

dard deviations away from the mean variance of all spheres

in the image that the threshold is set . . . . . . . . . . . . . . . . . . . .

40

K(x) The set of reflectors placed by a given sphere x . . . . . . . . . . 41

K−1(x) The set of spheres that have placed a reflector at pixel x . 42

k(x) The reflectance at pixel x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

P The set of all outposts in an image . . . . . . . . . . . . . . . . . . . . . . . 43

P ′ The set of all primary outposts in an image . . . . . . . . . . . . . . 43

κ The number of reflectors a pixel must contain to be labeled

a primary outpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

P ′′ The set of all secondary outposts in an image . . . . . . . . . . . . 43

λ The number of reflectors a pixel must contain to be labeled

a secondary outpost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Er(x) The set of enemy outposts (those with reflectance facing x)

within the sphere of radius r(x) . . . . . . . . . . . . . . . . . . . . . . . . . .

43

γ The number of outposts a sphere is allowed to contain after

Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

αg A variance threshold used in Algorithm Step 4 . . . . . . . . . . . 45

βg A parameter governing αg, representing the number of stan-

dard deviations away from the mean variance of all spheres

in the image that the threshold is set . . . . . . . . . . . . . . . . . . . .

45
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B A dense set of boundary pixels, defined as all pixels of radius

0 or 1 in S&S algorithm Step 5 . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

s(b) An orientation vector extending from pixel b, estimating the

direction orthogonal to the boundary . . . . . . . . . . . . . . . . . . . .

46

M The set of all medial pixels in an image . . . . . . . . . . . . . . . . . . 46

C A set of connected medial pixels defining an object segmen-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

DSC(βs, βg) The similarity, as measured using the DSC, of an automated

segmentation performed using parameters βs and βg to a

corresponding gold standard segmentation . . . . . . . . . . . . . . .

53

D The DSC similarity measured at a given point during the

parameter optimization process . . . . . . . . . . . . . . . . . . . . . . . . . .

53

Dmax The maximum DSC produced during parameter optimiza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

j The increment by which parameters are adjusted in a brute

force parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54

βsi The initial value of βs in a range of parameter values over

which brute force parameter optimization is performed . . .

54

βsf The final value of βs in a range of parameter values over

which brute force parameter optimization is performed . . .

54

βgi The initial value of βg in a range of parameter values over

which brute force parameter optimization is performed . . .

54

βgf The initial value of βg in a range of parameter values over

which brute force parameter optimization is performed . . .

54

R A set of spheres within a gold standard sphere map used

to calculate the range of parameter values over which to

optimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

ρ The mean of the internal variance values of spheres within

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63
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σ(ρ) The standard deviation of the variance values of spheres in

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

αgi The threshold value corresponding to a given value of βgi 63

αgf The threshold value corresponding to a given value of βgf 63

ν(δ) The mean variance of all spheres in M for each radius in-

crement δ above than their correct radius value . . . . . . . . . .

64

αsi The threshold value corresponding to a given value of βsi . 64

αsf The threshold value corresponding to a given value of βsf 64
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