
EFFECTIVE GROUPING FOR ENERGY AND

PERFORMANCE: CONSTRUCTION OF ADAPTIVE,

SUSTAINABLE, AND MAINTAINABLE DATA STORAGE

by

David S. Essary

BS, Computer Science, University of Pittsburgh, 2003

BS, Mathematics, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

David S. Essary

It was defended on

November 22, 2010

and approved by

Ahmed Amer, Computer Engineering, Santa Clara University

Daniel Mossé, Computer Science, University of Pittsburgh

Panos Chrysanthis, Computer Science, University of Pittsburgh

Kirk Pruhs, Computer Science, University of Pittsburgh

Dissertation Advisors: Ahmed Amer, Computer Engineering,Santa Clara University,

Daniel Mossé, Computer Science, University of Pittsburgh

ii

Copyright c© by David S. Essary

2011

iii

ABSTRACT

EFFECTIVE GROUPING FOR ENERGY AND PERFORMANCE: CONSTRUCTI ON

OF ADAPTIVE, SUSTAINABLE, AND MAINTAINABLE DATA STORAGE

David S. Essary, PhD

University of Pittsburgh, 2011

The performance gap between processors and storage systemshas been increasingly critical over

the years. Yet the performance disparity remains, and further, storage energy consumption is

rapidly becoming a new critical problem. While smarter caching and predictive techniques do

much to alleviate this disparity, the problem persists, anddata storage remains a growing contrib-

utor to latency and energy consumption.

Attempts have been made at data layout maintenance, or intelligent physical placement of

data, yet in practice, basic heuristics remain predominant. Problems that early studies sought

to solve via layout strategies were proven to be NP-Hard, anddata layout maintenance today

remains more art than science. With unknown potential and a domain inherently full of uncertainty,

layout maintenance persists as an area largely untapped by modern systems. But uncertainty in

workloads does not imply randomness; access patterns have exhibited repeatable, stable behavior.

Predictive information can be gathered, analyzed, and exploited to improve data layouts. Our

goal is a dynamic, robust, sustainable predictive engine, aimed at improving existing layouts by

replicating data at the storage device level.

We present a comprehensive discussion of the design and construction of such a predictive en-

gine, including workload evaluation, where we present and evaluate classical workloads as well as

our own highly detailed traces collected over an extended period. We demonstrate significant gains

through an initial static grouping mechanism, and compare against an optimal grouping method of

our own construction, and further show significant improvement over competing techniques. We

iv

also explore and illustrate the challenges faced when moving from static to dynamic (i.e. online)

grouping, and provide motivation and solutions for addressing these challenges. These challenges

include metadata storage, appropriate predictive collocation, online performance, and physical

placement. We reduced the metadata needed by several ordersof magnitude, reducing the required

volume from more than 14% of total storage down to less than1
2
%. We also demonstrate how our

collocation strategies outperform competing techniques.Finally, we present our complete model

and evaluate a prototype implementation against real hardware. This model was demonstrated to

be capable of reducing device-level accesses by up to 65%.

Keywords: computer systems, collocation, data management, file systems, grouping, metadata,

modeling and prediction, operating systems, performance,power, secondary storage.

v

TABLE OF CONTENTS

PREFACE . xvii

1.0 INTRODUCTION . 1

1.1 CONTRIBUTIONS . 4

2.0 RELATED WORK . 5

2.1 PREDICTION, PREFETCHING, AND CACHING. 5

2.2 I/O WORKLOAD SHAPING . 7

2.3 DATA LAYOUT MAINTENANCE AND FILE SYSTEMS 8

2.4 POWER. 10

3.0 PROBLEM DEFINITION . 12

4.0 EXPERIMENTAL METHODOLOGY . 15

4.1 CLASSIC TRACE SETS. 16

4.1.1 mozart . 16

4.1.2 hplajw. 16

4.2 NEWLY COLLECTED TRACE SETS . 17

4.2.1 ranin . 17

4.2.2 playlist . 17

5.0 OPTIMAL GROUPING . 21

5.1 MOTIVATION . 21

5.2 OPTIMAL GROUPING PROBLEM DEFINITION. 21

5.3 OPTIMAL BEHAVIOR OF DRNO . 22

5.4 DISCUSSION . 26

6.0 STATIC GROUPING . 28

vi

6.1 MOTIVATION . 29

6.2 GROUPING STRATEGIES. 30

6.2.1 Baseline Strategies. 30

6.2.2 Predictive Grouping. 31

6.3 EXPERIMENTAL SETUP AND DESIGN . 32

6.4 RESULTS. 35

6.4.1 Group Formation, Access Behavior and Transitions. 40

6.5 DISCUSSION . 48

6.5.1 Optimal Expansion, Estimated Distance. 48

6.5.2 Optimal Expansion, Estimated Storage Space. 51

7.0 DYNAMIC GROUPING AND METADATA . 55

7.1 MOTIVATION . 56

7.2 EXPERIMENTAL SETUP AND DESIGN . 57

7.3 DATA STRUCTURES . 58

7.3.1 Optimal Expansion Tree. 58

7.3.2 Dynamic Bitmap. 59

7.3.3 Dynamic Region. 60

7.3.4 SESH, or Space-Efficient Storage of Heredity. 62

7.4 TRACES . 65

7.5 CALCULATING METADATA REQUIREMENTS 69

7.6 RESULTS. 69

7.7 DISCUSSION AND POSSIBLE ENHANCEMENTS. 72

8.0 ROOT SELECTION . 79

8.1 MOTIVATION . 80

8.2 DATA STRUCTURES . 80

8.2.1 Highest Count . 81

8.2.2 Highest Distance. 81

8.2.3 LRU and LRU Hot List. 82

8.2.4 LRFU and LRFU Hot List. 83

8.2.5 LRDU and LRDU Hot List. 83

vii

8.3 EXPERIMENTAL SETUP AND DESIGN . 83

8.4 RESULTS. 88

8.5 DISCUSSION . 89

8.5.1 Conclusions. 96

9.0 SPORE - SPACE-EFFICIENT ONLINE REORGANIZER 98

9.1 MOTIVATION . 99

9.2 EXPERIMENTAL SETUP AND DESIGN . 103

9.2.1 Root Placement. 104

9.2.2 Reducing Update Overhead. 105

9.2.3 Reducing Priority Queue Size. 106

9.2.4 Group Scanning. 107

9.2.5 Traces. 109

9.2.6 System Configuration. 110

9.2.7 Competing Model - Hot Block Clustering. 110

9.3 RESULTS. 111

9.3.1 Reducing Transitions. 111

9.3.2 Reducing Seek Distance. 117

9.3.3 Accesses and Group Usage. 122

9.3.4 Updating and Storage System Overhead. 123

9.3.5 Throughput. 128

9.3.6 Comparison against Hot Block Clustering. 130

9.4 DISCUSSION . 130

9.4.1 Persistence of Predictions. 133

9.4.2 Robustness to Track Size. 133

9.4.3 Confidence Thresholds. 135

10.0 HARDWARE-BASED VALIDATION . 137

10.1 EXPERIMENTAL SETUP AND DESIGN. 138

10.1.1 System Configuration. 138

10.1.2 Traces. 140

10.1.3 Simulated Track Buffer. 142

viii

10.1.4 Avoiding Cache Interference. 142

10.1.5 Identifying Workload Boundaries. 142

10.1.6 Calculating Power. 144

10.1.7 Modeling System Energy and Latency. 145

10.2 RESULTS. 146

11.0 CONCLUSIONS AND FUTURE WORK . 153

11.1 FUTURE WORK: AUGMENTING SPORE 155

11.1.1 Increasing Throughput. 155

11.1.2 Location ofSESH. 156

11.1.3 Extensions to Write Strategies. 157

11.2 FUTRE WORK: TRACE GATHERING AND USAGE. 157

BIBLIOGRAPHY . 159

ix

LIST OF TABLES

1 Table of all system call counts fromranin trace. 18

2 System call sizes,ranin trace. 18

3 Table of all system call counts fromplaylist, shuffletrace. 19

4 System call sizes,playlist, shuffledtrace. 19

5 Table of all system call counts fromplaylist trace (no shuffle).. 19

6 System call sizes,playlist trace (no shuffle). 20

7 Power parameters for caviar2gb through repeated simulated annealing. 35

8 Energy and latency costs for Western Digital caviar2gb drive. 36

9 Number of groups formed and total transitions.. 44

10 List of all devices found in theranin trace set. 66

11 Comparison of total space of allranin traces. 67

12 Comparison of reduction by percentage and savings of allranin traces. 68

13 Summary of advantages of all root selection strategies.. 95

14 Predictability table of various traces.. 112

15 Subset of trace parameters for throughput ofSPORe. 128

16 Subset of mulit-run trace parameters for throughput ofSPORe. 129

17 Percentages of configurations whereSPOReoutperforms Hot Block Clustering.. . 132

18 SPORedistance, presumed vs. actual track sizes.. 135

19 SPORetransitions, presumed vs. actual track sizes.. 135

20 Trace and parameter set tested on prototype hardware.. 141

21 mozarthardware latency reduction results.. 149

22 mozarthardware energy reduction results.. 150

x

23 Reductions of system time and energy forSPORe. 152

xi

LIST OF FIGURES

1 Comparison of various block sizes for month lengthmozarttrace. 26

2 Predictive grouping example.. 28

3 Simple access tree.. 30

4 Mechanical movement and power consumption.. 34

5 Energy usage formozartday and week traces.. 37

6 Energy usage formozartmonth and year traces.. 38

7 Energy usage forhplajw trace.. 39

8 Access latency for themozartday and week traces.. 41

9 Access latency for themozartmonth and year traces.. 42

10 Access latency for thehplajw trace. 43

11 Total number of groups formed for themozarttrace. 46

12 Total transitions for themozarttrace. 47

13 Average accesses per transition formozartweek and month.. 49

14 Average of accesses per transition forhplajw trace. 50

15 Optimal Expansion Tree (OpExTree) example. 58

16 Dynamic BitmapandDynamic Regionexamples. 60

17 SESHfigure. 61

18 Heir apparent rate of occurrence. 63

19 EstimatedSESHsavings.. 64

20 Comparison of projected and reducedranin metadata. 70

21 Comparison of projected and reducedmozartmetadata. 71

22 SESHstorage requirements.. 73

xii

23 ranin reconstructed sequence size.. 75

24 ranin reconstructed sequence percentage.. 76

25 ranin working set size.. 77

26 ranin working set percentage.. 78

27 LRDU stability,mozart, 512 byte blocks.. 84

28 LRDU stability,mozart, 4 KB blocks. 85

29 LRDU stability,mozart, 8 KB blocks. 86

30 LRDU stability ofhplajw trace. 87

31 LRDU stability of full ranin trace, 512 byte blocks. 87

32 LRDU sorting stability,mozart, 512 byte blocks.. 90

33 LRDU sorting stability,mozart, 4 KB blocks. 91

34 LRDU sorting stability,mozart, 8 KB blocks. 92

35 LRDU sorting stability,hplajw. 93

36 LRDU sorting stability,ranin. 94

37 Hits vs. structure size, year trace, 512 byte blocks.. 97

38 Hits vs. structure size,hplajw trace. 97

39 Hard drive separated into ranges.. 99

40 Supergroup example.. 101

41 Four possibleOE MEgroupings of size 4.. 102

42 SPORefigure. 104

43 Inserting empty groups.. 109

44 SPORetransition reductions, 25% empty disk,mozart. 113

45 SPORetransition reductions, 75% empty disk,mozart. 114

46 SPORetransition reductions,hplajw. 115

47 SPORetransition reductions forranin traces. 116

48 SPORedistance reductions, 25% empty disk,mozart. 118

49 SPORedistance reductions, 75% empty disk,mozart. 119

50 SPORedistance reductions,hplajw. 120

51 SPORedistance reductions forranin traces.. 121

52 Windowed track distance ofmozartyear trace. 122

xiii

53 Average accesses per group use forSPORe, mozarttraces. 124

54 Average accesses per group use forSPORe, full hplajw trace. 125

55 Average accesses per group use forSPORe, full ranin trace. 125

56 Estimated impact of update reduction forSPORe, mozarttraces. 126

57 Estimated impact of update reduction forSPORe, hplajw trace. 127

58 Estimated impact of update reduction forSPORe, full ranin trace. 127

59 SPORecompared with on-disk caching (hot block clustering).. 131

60 Windowed comparison of vanilla and stoppedSPORefor mozart, year trace. 134

61 Prototype hardwareSPOReevaluation system.. 139

62 Identifying the beginning boundary of a workload replay.. 143

63 Comparison ofSPOReestimates and real-world disk measurements.. 146

64 Comparison ofSPORelatency estimates against measuredmozartyear trace. . . . 147

65 Comparison ofSPOReenergy estimates against measuredmozartyear trace. 148

66 System model results.. 151

xiv

LIST OF ALGORITHMS

1 DRNO(FT, max) . 23

2 OE ME(T, root, max) . 31

3 OE ME EXPAND(T, max pq, f, p) . 32

4 OE ED(T, root, max) . 51

5 OE ED EXPAND(T, max pq, f, c, root) . 52

6 OE ESS(T, root, max) . 53

7 OE ESS EXPAND(T, min pq, f, c) . 54

8 SUPERGROUPOE ME(T, R, max) . 105

9 OE ME PRIME(G, T, root, max) . 108

xv

LIST OF EQUATIONS

1 Distance metric . 24

2 Translation function. 24

3 Alternate translation function. 25

4 Revised distance function with included translation function 25

5 Power estimation function. 33

6 Calculating latency due to disk arm movement. 35

7 Energy estimation. 35

8 Sigmoid function . 48

9 Node id within a dynamic bitmap. 60

10 Array position within a dynamic bitmap. 60

11 Bit location within a dynamic bitmap. 60

12 Block distance by offending block. 82

13 Track distance by offending block. 82

14 Range id calculation. 104

15 Throughput calculation. 130

16 Running confidence. 136

17 Power calculation. 144

18 Energy calculation for a single voltage sample. 144

19 Energy calculation. 144

20 Expanded energy calculation. 144

21 System energy. 145

22 Processor utilization. 145

xvi

PREFACE

I will forever be in debt, and eternally grateful, to my committee, friends, and colleagues. Words

do not give proper praise, but here, in harsh brevity, I will have my tilt at the windmill nonetheless.

To he that is most deserving, let first praises fly. Dr. Ahmed Amer has, in every capacity,

exceeded all expectation and calling; for his counsel, I am abetter man, in science and in life. He

is my advisor, my guide, my teacher, my colleague, and my verygood friend. All students should

be so lucky. Patience, wisdom, guidance, support, and respect are his trademarks, along with an

impeccable sense of humor. He taught me that work, science, and joy are not mutually exclusive

terms. For this lesson, I am happy in my toil.

To Dr. Daniel Mossé, I am also particularly indebted. Firstas a teacher, then as an advisor,

and finally as department chair, his sage advice has been invaluable. With simple, direct words,

and a few reality checks, he has helped, with gentle nudges, keep a willful student on a disciplined

path. To Dr. Darrell Long, I would express my sincere gratitude for valuable lessons in elegance

and systems expertise. I am very fortunate to have known suchan authority of the storage system

community. I would also thank Dr. Kirk Pruhs, one of my first professors. Those early lessons went

further than I could have anticipated; they are among my firststeps towards higher understanding.

I would also thank Dr. Panos Chrysanthis, the very first person to welcome me to graduate study.

I’ve yet to meet a finer person, teacher, and colleague. For his conversations, his guidance, and his

wit, I shall always be grateful. To Dr. Alex Jones, with whom Iworked but briefly, I am genuinely

appreciative for early electrical engineering help and discussion.

I also wish to thank Dr. Milos Hauskrecht, as a fine teacher andexcellent scientist, for helping

to set in motion my admission into graduate study. And to the fine staff and excellent faculty of

the Department of Computer Science at the University of Pittsburgh, and to my friends and fellow

students, both past and present, thank you for the years of support. I will cherish our time together,

xvii

now and always.

In triumph, and in need, we look most often to those closest, our families. Without them, our

proudest moments could not be; for them, our dreams are realized. Proper thanks is, inevitably,

impossible. All the same, to Dad, Mom, Bill, Kevin, and Tom, for your unremitting support, thank

you.

Finally, and most eagerly, I wish to thank my wife, Sarah. Every day, in ways great and small,

she remains my greatest companion, and truest friend. She ismy champion, my shelter in the

storm, my light in the dark; she is my now, my always, and my everything. In this, I remain

blessed beyond worth.

xviii

This dissertation is dedicated to my father; my first teacher, my greatest role model, and my

hero. For pushing me when I lacked the strength and will to push myself, for putting trust in your

wayward son, and for moments of praise that mean more to me than could be put to words...

Thanks, Dad.

xix

1.0 INTRODUCTION

The disparity between the throughput of processors and underlying storage devices has presented a

challenge to systems designers since the inception of the modern CPU. Incremental achievements

over the past sixty years have greatly alleviated the strainof these devices. Yet the latency observed

by end-users due to the limitations of storage system hardware remains significant. Additionally,

data storage represents an ever-growing portion of energy consumption, and energy is an increas-

ingly critical problem. As energy becomes a more valuable resource, and storage demands grow

along with their corresponding energy footprint, every Joule becomes more precious. We address

the performance disparity and increasing energy costs of storage systems through the predictive

grouping of data based on the dynamic analysis of access workloads.

Recent trends indicate that latency and energy concerns of storage devices are not only jus-

tified, but will continue becoming more and more critical. In2002, approximately 5 exabytes of

data was generated and stored on magnetic media [85]. In 2007, that amount of data was gener-

ated every 6 and a half days [42]; today, it can take as little as two days [120]. In fact, the year

2007 marked the first time that the amount of data produced and/or replicated outpaced available

storage [42]. By 2011, it is estimated that nearly half of all data generated will have no permanent

storage location. Additionally, the energy cost of moving this information flood is becoming as-

tronomical. In 2006, a study by the EPA estimated that U.S. data centers and servers consumed 61

billion kilowatt-hours, at an estimated $4.5 billion [3]. A simple carbon footprint estimate, using

the CDIAC’s general estimate of 2.3 pounds of CO2 per kilowatt-hour [38], yields an estimated

140.3 billion pounds of CO2, more than a third the carbon footprint of all U.S. aircraft in 2003 [2].

Thankfully, the driving workloads that storage systems must satisfy are very often far from

random. They represent the needs of applications and systems users; their behavior may not be

deterministic, but it is rarely arbitrary. The resulting predictable nature of these workloads has

1

culminated some of the most important technological breakthroughs of the personal computer era.

Caching and memory management are among the earliest achievements. These strategies look to

the recent past as an approximation of the near future. More recently, prefetching strategies have

been explored in great detail, looking at prior events, bothrecent as well as venerable, in an effort

to glean established patterns with which to predict the future. And yet, the challenge of keeping

pace with processors persists.

To understand these challenges, it is essential to understand the nature of the latency delays

and the energy costs of data retrieval. Latency delays are oftwo general varieties; those that are

inevitable, and those that are avoidable, or at least maskable. The first flavor is best exemplified by

a streaming live video. Data is transferred, decoded, and consumed, never to be used again. Even

with optimized hardware and the best compression methods, there will be unavoidable delays.

However, with storage systems, this is far from the norm. Most often, data items are accessed

repeatedly within a relatively small window of time. Without this trend, caching would have

little effect; it is perhaps the most powerful trend that we can exploit. Yet caching alone is not

the silver bullet. Data must first beaccessedbefore it can bere-accessed; thus, we will pay an

initial cost to bring an item into the cache. Prefetch caching seeks to alleviate this initial cost

by masking the latency; a predictive request, generatedbefore the data is actually needed, can

bring data into the cache early, so that it is immediately available upon its actual request. But the

request must have sufficient lead-time, and must contend with other queued requests, in order to

have significant impact. This inexorably ties prefetching to the data path, and dictates a narrow

window of opportunity for action. Further, predictions must be very accurate, as mistakes can be

very costly. Many predicting methods require keeping extrametadata in the form of records of

accesses to improve their accuracy, but storing these required records can be quite costly.

On yet another front, predictions used for traditional prefetching of data must not only be

accurate, but must be timely. As such, predictive and prefetching caches have tended to go to

great lengths to increase the lead-time of the predictions they offer, desperate to make predictions

further into the future. This is a problem for any approach that attempts to act on a prediction by

immediate prefetching. Such techniques are caught in a catch-22, where they expend resources to

make longer-reaching accurate predictions. And yet the further ahead a prediction is attempted, the

more likely for it to be inaccurate. This problem is addressed by using prediction as the basis for

2

a grouping strategy, or a means by which the layout can be improved by dynamically collocating

data chunks on the fly at the device level. This allows prefetching to become implicit and removed

from the demand path of user data requests. When combined with a data layout strategy, such

groupings can potentially reduce latencies and energy consumption simultaneously.

Data layout strategies seek to make predictions more inherent by reducing the cost of accessing

items, assuming one must go all the way down to the device level to retrieve them. In this way, one

can cleverly arrange data so that items that will be needed orprefetched are easier to access. Early

strategies tried to use frequency-based positioning, but ignored the interdependence of data access.

Prediction models from prefetch caching can be applied, butonce again a common problem is the

required space for access metadata.

This common challenge, tracking predictive metadata, continues to be a daunting task, and is

exacerbated by increasing storage demands. On mobile devices, the problem is compounded by a

need to make the best use of available resources. Additionally, larger metadata translates to further

strain on the storage system for updates and retrieval, bothof which must be streamlined operations

in order to have little or maskable impact on observed latencies. These problems exist for strategies

operating at the file or object granularity, but can be crippling for block-level strategies. This reason

alone can be enough for developers to operate at the abstractbut more human-oriented file level,

rather than at the block level, which is more native to storage subsystems. However, it is desirable

to operate at the block level, as that results in a solution applicable for any storage system, not

just object stores. Of course, one could restrict the amountof metadata, but arbitrary limits will

often only benefit “hot” data, or those blocks within the current working set; arguably, this set

is less in need of pattern discovery due to the effectivenessof even basic caching schemes. This

inevitably precludes the opportunity to discover longer-term patterns across less intensely active

regions. Attempts to manage storage devices to reduce energy have typically been at the cost

of performance, however, successfully collocating data has the potential of realizing the ideal of

simultaneously reducing energy and latency.

3

1.1 CONTRIBUTIONS

This dissertation presents solutions to the problems facedby data layout strategies, and develops

a practical data collocation solution aimed at reducing energy and latency. We tackle the spatial

requirements of metadata that could be usedboth for predictive caching as well as layout man-

agement. In particular, we address the problem of tracking information at the block level, where

the state-space explosion of metadata has the highest burden. Further, we present applications of

predictive models to group related data chunks (for eventual collocation at the device level). We

explore the difficulties and challenges of moving from static grouping, such as a one-time defrag-

mentation, to dynamic grouping, where the system automatically maintains a layout strategy on

the fly. We also present preliminary bounding efforts on the possible benefits from these strategies.

The effectiveness of our methods is examined using workloadtrace sets, including established

traces used in prior and related work, as well as our own newerworkload trace sets. These traces

represent a variety of systems and configurations, allowingfor workloads indicative of newer soft-

ware and hardware while providing the ability to compare ourwork with prior and related efforts.

Our evaluations are done via simulation. This affords us theopportunity to test more parameters

and more workloads, supplying generalized results that arenot tied to any particular system con-

figuration. However, in order to validate these results, we include the design and analysis of our

prototype hardware test bed system using accurate power measurements on a prototype system

using a DAQ (Data AcQuisition) system to measure voltage forthe mechanical components of the

disk at 20,000 samples per second.

4

2.0 RELATED WORK

Placing related items within close proximity to one anotherhas been a traditional standard in stor-

age systems as a means of reducing latency. This data grouping goal can be addressed in a number

of ways, and as such, several related areas of research influence our work. Of particular impact are

studies on file access prediction, including access and workload modeling, prefetching, and metrics

used to evaluate and compare prediction and prefetching policies. Caching is perhaps the oldest

and certainly among the most successful and popular data placement strategies. We explore both

traditional and recent caching research. Additionally, weinclude background discussion on I/O

workload manipulation, as these represent some of the earliest device-level strategies for reducing

power and enhancing performance.

The most closely affiliated research areas to our own involvedata layout maintenance. A

number of file systems attempt some amount of replication andmigration of data, and are discussed

along with these layout maintenance strategies. Recently,power consumption goals have become

more imperative to designers. Therefore, we will conclude the chapter by considering recent and

classic strategies for reducing the overall power consumption of storage systems. As many of our

initial results are based on simulated systems, we detail a number of strategies used to model power

consumption and disk simulation.

2.1 PREDICTION, PREFETCHING, AND CACHING

A study on graph-based access predictors was first presentedby Griffioen and Appleton [49]. These

predictors were used to provide sufficient lead-time to render the prediction useful for prefetching

as well as managing access patterns spanning multiple applications. The use of the last succes-

5

sor model for file prediction, and more elaborate techniquesbased on pattern matching, were first

presented by Lei and Duchamp [77]. Similar work has been done researching a last successor pre-

dictor, finite multi-order context modeling (FMOC) models from branch prediction methods, and

a partitioned context model (PCM) [71]. While a last successor strategy predicted with surpris-

ing accuracy, there tends to be enough noise in an access stream to confuse it [6]. A more stable

predictor,Noah, is presented that removes this noise by predicting only if astability condition is

satisfied.

Previous work has also shown that comparing two different predictors is non-trivial. To aid in

this dilemma, three measures of prediction accuracy were developed; general accuracy and specific

accuracy [5,8] and effective-miss-ratio [124]. General and specific accuracy were used to compare

Noahwith last successor and first successor [8]. It is noted thatNoahsuffers from non-decreasing

general accuracy for high stability parameters. A new predictor, Recent Popularity, is shown to

solve this problem. It is also noted thatRecent Popularityadapts quicker with changing workloads

thanNoah [8]. To benefit from this robustness and adaptability, our techniques use variants on

Recent Popularityfor gathering data for prediction.

Further advancements in predictive caching has taken various forms and addressed various

problems. Advances in caching strategies include using multiple experts in cache management [10],

power aware storage cache management [129], and self-tuning cache replacement policies [87,88].

Work has also been done on augmenting caches with prefetching capabilities [70] and the effects

caches have when placed back to back [9]. Prefetching and predictive caching have also been

used as a means of overcoming latency in web proxies [31,73,93] as well as in object prefetching

for internet applications [82, 98]. Similar work on the aggregating cache [7] differs from related

work on predictive prefetching systems, but uses analogousstructures to Griffioen and Appleton’s

graph-based scheme [49]. The work on the aggregating cache allows the gathering of more ac-

cess information at the server, while decoupling client from the any critical timing issues related

to prefetching. This is accomplished via cooperative client and server-side modules, as with AFS

or Coda [65]. Kroeger and Long [71] compared the predictive performance of the last succes-

sor model, Griffioen and Appleton’s graph-based strategy, and new techniques based on context

modeling and data compression [72]. The earliest proposed use of data compression strategiesto

predict disk accesses was presented by Vitter and Krishnan [23, 67, 121]. The strategies studied

6

includedLZ compression [130], prediction by partial match (PPM), and first-order Markov predic-

tion (FOM). Shriveret al. [111] has provided analytical reasoning for the benefits of read-ahead

buffering and prefetching. Other recent work onASP[12] presents a study of a strip prefetching

scheme for striped disk arrays. The authors provide separate management of prefetched and regular

cache lines with a culling scheme using differential feedback similar to the adaptive marginal util-

ity used inSARC[44]. Such prefetching of data is not without costs, many of which are addressed

in ASP. Any prefetching strategy must have a reasonable lead-timein order to retrieve data before

it is actually requested. Additionally, any benefit from this prefetching, like spin-down techniques,

lie directly on the data path. Our strategy enables the decoupling of the strategy from the data path,

allowing us to disable device-level rearrangement while still benefitting from previous efforts to

properly cluster data.

Recent work has shown advances toward utilizing device-level knowledge of physical data

layout. Prediction for both caching purposes and prefetching purposes have begun emphasizing

spatial locality as having a higher utility than a random access; that is, of two blocks with identical

expected likelihood of occurrence, the block nearer the current location of the read head has higher

utility. DULO [60] presents a buffer cache management scheme that exploits both temporal and

spatial locality, whileDiskSeen[27] presents work utilizing similar table structures for use of

predictive prefetching.DiskSeenfetches at the device level, and is designed to be synergistic with

file-level prefetching strategies. More recent work onTaP [83] describes using a separate data

structure to store previous addresses in order to identify sequential data streams without having

to use precious cache space to do so. Our work seeks to decrease the expected distance between

consecutively requested blocks, and would be highly beneficial to such location- and stream-aware

strategies.

2.2 I/O WORKLOAD SHAPING

Traditional research to improve performance of hard disks by modifying I/O workloads include

scheduling strategies such asSSTF, SCAN[26], C-SCAN[106], andLOOK [90]. More recently,

approaches for decreasing the growing impact of rotationaldelay have been presented [57–59,

7

99,108]. These efforts are considered orthogonal to the work on prediction and data regrouping

presented in this dissertation.

The use of prediction as a means of workload shaping to reducepower consumption has been

proposed by Flinn and Satyanaryanan [37] and also Lorch and Smith [84]. These suggestions

focused on the ability of prefetching data to allow for increased idle-time periods, which in turn

would hopefully allow greater opportunities for disk spin-downs. Similarly, recent work by Weissel

et al. [123], and Papathanasiou and Scott [94, 95], attempts to actively modify the workload and

increase workload burstiness to increase opportunities for disk spin-down. Predictive methods such

as these are expected to benefit from metadata strategies we have developed, and are considered

orthogonal to our predictive work.

2.3 DATA LAYOUT MAINTENANCE AND FILE SYSTEMS

The desire to place related data together on disk is traditionally accepted as a wise storage-system

goal, and recent work indicates that its uses continue to present themselves [27,60,62]. For exam-

ple, work by Kandemiret al. [62] focuses on utilizing disk layout knowledge at compiler time for

data intensive applications, notably scientific applications.

Access patterns can be used to rearrange tracks on the disk [101], a problem known to be

NP-Hard [20], to improve on the organ-piping method [52], detailed and discussed in depth by

Wong [126]. Such patterns can also use be used to identify which files tomove to tertiary stor-

age [43]. Other forms of disk management include storing data that does not cross track bound-

aries [104] as well as how to extract that information and use it as stripe unit boundaries [105],

storing inodes by embedding them in their directory, and grouping together small files on disk to

be read as one [39]. It has been demonstrated that it is possible to separate inodes from data over

a distributed system [19].

Early data placement and predictive grouping studies attempted to use frequency of access

as an estimated likelihood in order to optimally place high-demand data. The optimum arrange-

ment of files on disk was originally a manual task, placing popular files near the center of the

disk cylinder. The necessary automation of this process hasbeen addressed by Staelin and Garcia-

8

Molina [113–115], whose work dealt with models that provided optimal placement of files where

accesses were independent. However, data accesses often involve dynamic relationships, where ac-

cess dependencies change over time. Berkeley’sFFS [86,112] includes attempts to cluster related

data and metadata into cylinder tracks on a disk. More recently, Li and Wang combinedFFS (or

UFS) andGFSmodules into a single file system,EEFS[80,81]. However, these approaches typi-

cally require disjoint sets as groups. Our approach makes nosuch constraints, allowing replication

between groups formed, although not within them. Such static optimizations are common among

modern file systems [24,86,119], while our work is toward dynamic solutions that have possible

static application. Similar replication was performed by Akyürek and Salem in 1995, where pop-

ular “hot” blocks were copied to a common disk area to improvedisk performance [4]. However,

this study was based only on the global popularity, or percentage of access, rather than inter-file re-

lationships. Dynamic groups [116] attempt to exploit inter-file relationships, but requiredexplicit

application hints to determine group membership. Examplesof efforts in automated grouping in-

cludeC-FFS[39] (collocatingFFS), which bases grouping on a directory-membership heuristic,

and Hummingbird [110] which utilizes the underlying structure of web files. In contrast, our model

does not require any knowledge of underlying data structure, as our grouping mechanism can es-

tablish relationships based on observed access behavior, as opposed to inference from file location

or content.

Recent work most closely related to our own would include phased-based on-disk caching [15]

and use of on-disk free space for file replication [56]. Efforts exploiting free space for reorganiza-

tion achieve impressive results only after repeating the same access patterns multiple times [56].

While reasonable, we believe the use of repeated runs to be confounding, as such repetition would

eliminate single-event occurrences, or the requests of blocks that will never be requested again,

as well as strengthening access noise. Efforts for dynamic persistent grouping must be adaptive

but resistant to this noise, yet these phenomena introducedby workload repetition would actually

reward strategies that refrain from doing so. On-disk caching also shows promise, but requires

multiple phases of extraction, analysis, planning, and execution [15], and has several drawbacks.

First, they incur high computational costs at various phases in the cycle. While these costs can be

alleviated to a point by using low priority operations, theymust be completed in a timely manner.

Second, the on-disk cache has a single location. Leaving this location may result in a large seek in

9

order to return to the designated cache area. Finally, with strategies that operate in distinct phases,

opportunistic updating becomes difficult or impossible. Indeed, it is entirely possible that all pre-

vious caching efforts need to be updated, and this updating occurs at once, rather than gradually.

Our work is directed toward dynamic, adaptive, gradual updating that is robust to swift changes in

workload behavior.

2.4 POWER

Greenawalt presented one of the earliest studies on modeling power, latency, and life expectancy

of hard disks using multiple power states in 1994 [48]. A more detailed approach was presented by

Zedlewskiet al. in 2003 [128] using an extension of theDiskSimsimulator [17,18,40,41] called

Dempsey. Zedlewski used simulated disk traces as well as a portion ofthe 1992cello trace [102]

as validation forDempsey, while Greenawalt used a Poisson distribution to model harddisk access

behavior.

The earliest suggested use of predictive techniques to dynamically adjust the spin-downs for

hard disks for power conservation was presented by Wilkes in1992 [125]. In 1994, Douglis, Kr-

ishnan, and Marsh demonstrated that perfect, non-invasivespin-downs were capable of decreasing

disk power consumption60%, while online algorithms achieved a 53% reduction over the manu-

facturer’s recommended five minute time-out [30]. Later work by Krishnanet al. analytically mod-

eled spin-down decisions as a rent-to-buy problem in 1995 [68,69]. Studies on how to capitalize on

these spin-downs by predicting when they should occur were presented by Goldinget al. [45,46]

and Dougliset al. [29,30]. The greatest power savings achievements to date that use these tech-

niques on an unaltered workload employed an adaptive machine learning algorithm [53, 54] that

used a variant on the weighted majority voting algorithms [122] called the “share” algorithm [55].

Similar work focuses on device-level management, similar to spin-down techniques, using various

dynamic power management decision engines on a large data set of traces [97]. Recent work on

thermal modeling of disk drives suggests that temperature,as well as power, is increasing in im-

portance for drives [50, 51, 64]. Other recent work on data centers uses fast transitions between

“active” and “idle” states to save energy on server idle periods [89]. Our work differs from these

10

efforts in that we seek to change the physical location of information on the hard disk rather than

adjust any spin-down timeouts or moving devices between levels of power consumption. Such a

strategy has the benefit of being taken off the data path completely in the event of high activity,

while previous efforts of restructuring are expected to continue to have a positive effect on system

performance. Furthermore, our techniques demonstrate an ability to reduce a workload’s footprint

or working set by reducing the percentage of raw storage volume retrieved or traversed unneces-

sarily. This makes these techniques useful to multi-machine systems at the system level, while

spin-down efforts only benefit such systems at the machine level.

Recent work by Narayananet al. seeks to accomplish further spin-down savings in enterprise

storage systems by temporarily off-loading pending write requests to available persistent storage

locations elsewhere in the storage system [92]. Other studies by Crk and Gniady [22] seeks to

predict upcoming transitions from a low-power state to a high-power state of storage devices, thus

reducing the observed latencies incurred from spinning up the disk. Joukov and Sipek [61] show

that constantly spinning the disk up and down decreases the life expectancy of the device. They

presentGreenFS, a file system that utilizes flash technology for providing hierarchical run-time

data protection that keeps disks spun down and limits the amount of spin-ups necessary.

The common thread in these works is the concentration on spin-downs or similaron-offswitch-

ing as the mechanism for reducing power consumption. The primary costs associated with these

strategies are the observed latency while waiting for the disk to re-enter the active state, or the

so-called “spin-up” time, as well as the corresponding power costs. In addition, all power conser-

vation attempts lie directly on the data path, and none are attempted while the disk is active. Recent

efforts on data compression show promise, but remain ungeneralizable, and tend to have limited

application [66]. Our approach seeks to employ reduced disk activity utilizing predictive grouping

while the disk remains active, and incurs no such latency or power penalties. Additionally, our

experiments utilize more detailed power measurements thanprior published research.

11

3.0 PROBLEM DEFINITION

As we have discussed, the general goal of placing related data items near one another on the disk

can be tackled in a number of ways; therefore, in this chapterwe will detail the precise problem

that our research seeks to solve. The first step is to understand that latency, in our terms, means not

only the amount of time observed for satisfying a single request for a particular item, but the total

observed time of the entire system. In particular, we note the existence of a number of unavoidable

costs foranysingle request; for instance, a device on a distributed system might have bandwidth

constraints and other communication overheads. A single device might have to wait for a channel

to become available. These costs are largely uncontrollable, and occur at the start of any request.

If we can reduce the number of total requests, we might thereby reduce these unavoidable costs.

As a reasonable real-world example, consider a track buffer, part of a standard modern computer.

Any request to the hard disk will read an entire track into thetrack buffer, which acts as a one-item

cache whose size is equivalent to the size of the disk track. Any future requests that occur within

the same track are read from the track buffer, thereby avoiding costly disk reads. Therefore, in our

example, the collocating group becomes the track, and latency reduction is achieved as a result of

reduced disk reads. Thus our first goal becomes reducing latency by reducing total requests; in

particular, we seek to accomplish this goal through collocating data chunks on disk.

A second goal of our research is also held in our analogy, thatof reducing power consumption.

Hard disks have been shown to consume up to 30% of total systempower, and remain a major

concern for reducing the lifetime cost of the system. By reducing the number of disk reads in our

analogy, we reduce the total disk seeks, which are among the most costly operations performed

by the disk. Since the disk head is mechanical, its operations cost much more than accessing

an electrical track buffer. If we collate highly correlateddata, we might reduce the workload

footprint, and the track buffer will presumably remain the source of requests granted for a long

12

period of time. This increases the workload’s “bursty” nature [14, 16, 91, 94, 95, 102], and aids

other strategies orthogonal to our own, such as spin-down time manipulation.

However, the ability to reduce a workload’s footprint has additional applications. In distributed

systems, a major cost of the system is not just the total number of devices, but energy costs of the

total number ofactivedevices in the system. Dynamically reducing a workload’s footprint could

potentially reduce the number of active devices, thereby greatly reducing the cost of the entire

system.

Thankfully, data accesses have been shown to exhibit high predictability, which we will exploit

in our collocation. The next question we must address is how to gather the appropriate metadata to

ensure accurate prediction. We would like our strategy to beapplicable dynamically, as workloads

can and do shift over time. Thus, the ability to rapidly adaptis also desirable. However, adjusting

to the workload prematurely before a trend has been established can be detrimental. Thus, a

certain robustness to noise in the signal is also highly desirable. Finally, we must ensure minimal

requirements for this volume of metadata. It does no good to greatly reduce workload accesses if

metadata accesses increase accordingly, nor does it behoove the system to completely fill system

memory with it. We therefore wish to limit the total amount ofsystem metadata used in our

predictions.

We therefore seek to accomplish the following.

1. Gather predictive metadata without taxing the underlying system.

2. Use this metadata to collocate related data at the device level.

3. Employ these collocated regions to reduce total device-level accesses, and thereby reduce sys-

tem latency and energy consumption.

Throughout our work, references toaccessesanddata accesses, as well asaccess patternsand

workload tracesare used to refer toblock-levelaccesses, rather than file-level, unless otherwise

noted. We do this for a number of reasons. First of all, assuming all data chunks are unit sized

reduces the calculation costs significantly. Additionally, our work strives to remain as generalizable

as possible, and refrain from imposing high-level abstractions upon workloads. Rather than using

file-level information toguessat how a workloadshouldbehave, we allow the access pattern to

emerge from observed events. Finally, since the vast majority of storage systems operate at the

13

block level, there is no additional translation necessary.As a result, unless noted, we consider

block, chunk, or file to be equivalent. We often refer to a file ID, or a file’s estimated probability;

these translate to a block ID and a block’s probability, for all intents and purposes.

14

4.0 EXPERIMENTAL METHODOLOGY

The merits of trace-driven simulation of system performance have long been understood [109].

The use of access traces is highly desirable for its realism,particularly so when compared to syn-

thetic functions and independent distributions. This is especially true when evaluating predictive

techniques, which must be judged on their ability to identify and exploit predictability in real-world

workloads, and not on their ability to coincidentally matcha synthetic or statistical generator. Ap-

plications for these traces are wide-ranging, including caching, prefetching, memory management,

data layout, hybrid (NVRAM) system evaluation, low-level system behavior analysis, system de-

sign and performance tuning.

Recently, it has been suggested that longer traces can be approximated by repeatedly using

the same smaller trace (or traces) [56]. While reasonable, this strategy introduces new pitfallsthat

traditional trace usage avoids. For instance, repeating a single trace will boost the access counts,

including access “noise”. While the overall percentage of noise would remain unchanged, thesame

noise would be recorded, making it more difficult for strategies to eliminate or ignore this system

static. Moreover, single-time events completely disappear, giving the illusion that the system need

not be concerned with an event that it might never witness again. Further, the access signal becomes

somewhat stagnant, with no new event ever arriving. The advantage of repeating a single trace is

that a learning or adaptive strategy is given ample time to gather necessary information. However,

we would argue that adaptive strategies should be able to cope with sparse information to remain

generalizable.

For these reasons, our work is inevitably linked with that oftrace gathering and analysis. We

have strived to use traces that represent multiple workloadcharacterizations, including established

sets that are well documented for ease of comparison and newer traces that we have collected

ourselves. These newly collected traces represent varied workloads and conditions.

15

4.1 CLASSIC TRACE SETS

The trace sets presented in this dissertation represent established workloads used in previous work

in related fields, such as caching [8] and file prediction [11,96,127], system benchmarking [118],

and workload characterization [100].

4.1.1 mozart

Themozartset consists of a workstation trace gathered using theDFSTracesystem [91], providing

information at the system-call level. This set represents the original access stream, prior to any

caching. These traces were converted into equivalent block-level traces with block sizes of 512,

4096 (4K), and 8192 (8K) bytes. There were four different original trace sizes; day length, week

length, month length, and year length. This set has the appeal of allowing the analysis of our

strategies over different definitive time periods as well asallowing us to convert easily to different

block sizes.

Except where noted, these traces had block IDs numbered according to order of initial access.

This numbering strategy implicitly includes a level of optimization in terms of accesses and space,

thereby providing a more ambitious baseline against which to compare our grouping strategies.

4.1.2 hplajw

The second set,hplajw, is a block-level workstation trace from a HP-UX system [102]. This trace

had a single user, John Wilkes, and was used primarily for email and paper editing. This trace set

represents disk-level accesses; the authors note that little activity was seen at this level, due to the

effectiveness of the UNIX buffer-cache.

This set has the advantage of natively being a block-level trace, and therefore does not require

conversion. However, there is only a single trace length, and lacks any information of original file-

system level access information, and therefore cannot be accurately converted to traces of differing

block sizes.

Much like ourmozarttrace set, unless otherwise noted, this workload had block IDs numbered

in order of appearance, allowing for higher quality baselines for our predictive grouping.

16

4.2 NEWLY COLLECTED TRACE SETS

As storage systems, operating systems, and file systems change, are revised, and evolve, so evolve

the demands placed upon them. Workload habits adapt and shift due to increased storage capacities

and higher bandwidths. New applications cause new behavior; new behavior yields new demands;

new demands dictate new design. As a result, more modern traces are constantly needed in order

to avoid outdated assumptions for updated systems. To this end, we have collected our own trace

sets, for several workload classifications, in order to verify assumptions made from established

trace study.

4.2.1 ranin

The custom trace setranin was collected on a Mac PowerBook G4 1.25 GHz processor with

512 MB of memory on a 5400 RPM Seagate Momentus hard drive with160 GB capacity. The

workstation was running OS X 10.4 with vanilla Darwin and XNUkernel and used the standard

fs usage command found on OS X. These traces were gathered in 2007 fromNovember to

December. The workload represents a typical graduate student workstation, namely the author’s,

used for day to day activities, including internet browsing, file editing, code compiling, and running

and testing experimental simulations, most of which were custom C++ programs. While there

were a few trace interruptions due to rebooting, including one major software update, inaccuracies

introduced we considered negligible due to their infrequency. Additionally, the ensuing shifts

in workload behavior represent realistic changes due to real-world activity. Cache activity was

gathered, but for the majority of our work, they were ignored; only device-level requests were

used. These requests were in the form of read and write data and metadata as well as page ins and

outs. Table1 details all the system calls collected through the entire trace, while Table2 details the

system call counts and byte information most pertinent to our research.

4.2.2 playlist

The custom trace setplaylist was gathered on two different Mac mini G4 workstations, eachwith

512 MB of memory and running Mac OS X 10.3.9 with vanilla Darwin and XNU kernel. We ran

17

Table 1: Table of all system call counts fromranin trace.

SYSTEM CALL COUNT % SYSTEM CALL COUNT % SYSTEM CALL COUNT %

CACHE HIT 60,000,000 30.4 fchdir 300,000 0.151 delete 5,270 0.00265

lstat 39,000,000 19.8 WrData 208,000 0.105 buffer 3,976 0.00200

read 31,000,000 15.8 chown 183,000 0.0922 map fd 3,235 0.00163

write 17,000,000 8.42 rename 175,000 0.0878 accessextended 2,989 0.00150

stat 11,000,000 5.57 fsync 154,000 0.0775 RdData 2,933 0.00148

open 7,500,000 3.78 unlink 146,000 0.0736 exchangedata 1,088 0.000548

pread 6,000,000 3.01 mmap 133,000 0.0668 PAGE OUT V 814 0.000410

getattrlist 4,500,000 2.27 mkdir 131,000 0.0659 fchmod extended 640 0.000322

close 4,300,000 2.18 statfs 124,000 0.0624 flistxattr 618 0.000311

lseek 2,500,000 1.25 getdirentriesat 120,000 0.0603 RdMeta[async] 507 0.000255

fstat 2,200,000 1.13 utimes 115,000 0.0578 symlink 396 0.000199

getdirentries 1,700,000 0.874 lchown 100,000 0.0503 fstat extended 348 0.000175

PAGE IN 1,500,000 0.733 execve 90,000 0.0454 getxattr 297 0.000149

WrMeta[async] 1,100,000 0.541 fsctl 68,000 0.0344 searchfs 211 0.000106

RdData[async] 1,100,000 0.531 listxattr 56,000 0.0284 writev 195 9.81e-05

fstatfs 775,000 0.390 fchmod 54,000 0.0273 WrMeta 189 9.51e-05

WrData[async] 691,000 0.348 sync 33,000 0.0166 pathconf 155 7.80e-05

RdMeta 667,000 0.335 setattrlist 26,000 0.0129 setxattr 146 7.35e-05

pwrite 526,000 0.265 stat extended 26,000 0.0128 fgetxattr 70 3.52e-05

PgIn[async] 484,000 0.244 fchown 22,000 0.0112 link 66 3.32e-05

chmod 421,000 0.212 rmdir 9,794 0.00493 fsetxattr 33 1.66e-05

access 409,000 0.206 readlink 9,145 0.00460 revoke 11 5.54e-06

PAGE OUT D 398,000 0.200 ftruncate 8,817 0.00444 removexattr 10 5.03e-06

PgOut[async] 394,000 0.198 PgOut 5,379 0.00271 chflags 4 2.01e-06

chdir 302,000 0.152 PgIn 5,337 0.00269 fremovexattr 1 5.03e-07

Table 2: Table of select system call counts and byte counts from ranin trace. Percentages reported

include only those calls present in this table.

SYSTEM CALL TOTAL BYTES BYTE % ACCESSES ACCESS% BYTES / ACCESS

CACHE HIT 231 GB 52.5 60,000,000 92.9 4096 B

RdData[async] 102 GB 23.2 1,060,000 1.62 101 KB

WrData[async] 59 GB 13.51 691,000 1.06 90 KB

RdMeta 14 GB 3.13 666,000 1.02 22 KB

WrMeta[async] 11 GB 2.47 1,070,000 1.65 11 KB

PgIn[async] 8.1 GB 1.84 484,000 0.744 18 KB

PgOut[async] 7.6 GB 1.73 394,000 0.605 20 KB

WrData 7.3 GB 1.65 208,000 0.320 37 KB

PgOut 55 MB 0.0123 5,379 0.00827 11 KB

PgIn 54 MB 0.0120 5,337 0.00820 10 KB

RdData 11 MB 0.00253 2,933 0.00450 4075 B

WrMeta 2.9 MB 0.000638 189 0.000291 16 KB

RdMeta[async] 1.2 MB 0.000262 507 0.000779 2442 B

18

Table 3: Table of all system call counts fromplaylist, shuffletrace.

SYSTEM CALL COUNT % SYSTEM CALL COUNT % SYSTEM CALL COUNT %

pread 5,080,000 40.5 setattrlist 1,416 0.0113 PAGE IN 25 0.000199

RdData[async] 4,740,000 37.8 exchangedata 1,416 0.0113 lstat 23 0.000183

CACHE HIT 1,480,000 11.8 delete 1,416 0.0113 stat 21 0.000167

getattrlist 784,000 6.25 read 813 0.00648 rename 20 0.000159

open 151,000 1.20 fstat 777 0.00619 chmod 20 0.000159

close 151,000 1.20 RdMeta 321 0.00256 PgIn[async] 9 7.17e-05

fsync 149,000 1.18 WrData 185 0.00147 getdirentries 8 6.38e-05

WrData[async] 2,144 0.0171 WrMeta[async] 56 0.000446

pwrite 2,124 0.0169 write 34 0.000271

Table 4: Table of select system call counts and byte counts fromplaylist, shuffledtrace. Percentages

reported include only those calls present in this table.

SYSTEM CALL TOTAL BYTES BYTE % ACCESSES ACCESS% BYTES / ACCESS

RdData[async] 290 GB 98.0 4,740,000 76.1 64 KB

CACHE HIT 5.7 GB 1.91 1,480,000 23.8 4096 B

WrData[async] 391 MB 0.129 2,144 0.0345 187 KB

RdMeta 2.4 MB 0.000792 321 0.00516 7838 B

WrData 543 KB 0.000175 185 0.00297 3006 B

WrMeta[async] 437 KB 0.000141 56 0.000900 7982 B

PgIn[async] 43 KB 1.37e-05 9 0.000145 4836 B

Table 5: Table of all system call counts fromplaylist trace (no shuffle).

SYSTEM CALL COUNT % SYSTEM CALL COUNT % SYSTEM CALL COUNT %

pread 5,120,000 37.6 setattrlist 2,544 0.0187 PgIn[async] 15 0.000110

RdData[async] 4,780,000 35.1 exchangedata 2,544 0.0187 write 14 0.000103

CACHE HIT 2,380,000 17.5 delete 2,544 0.0187 stat 14 0.000103

getattrlist 842,000 6.19 read 1,347 0.00990 rename 14 0.000103

open 156,000 1.15 fstat 1,330 0.00978 chmod 14 0.000103

close 156,000 1.15 RdMeta 386 0.00284 getdirentries 6 4.41e-05

fsync 152,000 1.12 WrData 179 0.00132 statfs 1 7.35e-06

WrData[async] 3,830 0.0282 PAGE IN 48 0.000353 pathconf 1 7.35e-06

pwrite 3,816 0.0281 lstat 22 0.000162

19

Table 6: Table of select system call counts and byte counts from playlist trace (no shuffle). Per-

centages reported include only those calls present in this table.

SYSTEM CALL TOTAL BYTES BYTE % ACCESSES ACCESS% BYTES / ACCESS

RdData[async] 292 GB 96.76 4,780,000 66.7 64 KB

CACHE HIT 9.1 GB 3.01 2,380,000 33.2 4096 B

WrData[async] 703 MB 0.227 3,830 0.0535 188 KB

RdMeta 2.7 MB 0.000876 386 0.00539 7357 B

WrData 90 KB 2.83e-05 179 0.00250 512 B

PgIn[async] 72 KB 2.28e-05 15 0.000209 4915 B

a playlist of 148 songs (mp3 files), with a runtime of approximately 14.8 hours, on each machine.

Traces were gathered from August 31, 2008 to March 23, 2009, resulting in play counts over 300.

All disk activity due to the music software was isolated and recorded using built-in tracing facilities

of Mac OS X. One trace gathered information on a sequential playlist, while the other playlist

was shuffled. These traces, denoted asplaylist andplaylist, shuffled, represent one extreme of

predictability, an estimated upper bound on how predictable a realistic workload could be. Table3

and4 detail system calls collected through theplaylist, shuffledtrace, while Table5 and6 detail

theplaylist trace.

20

5.0 OPTIMAL GROUPING

In order to construct a solution to both latency and power agendas detailed in Chapter3, we begin

by first exploring how an optimal solution might be constructed. To do so, we must formally define

precisely the problem of data grouping and what it means for astrategy to be optimal. We will

show that relaxing our initial definition of this problem results in a problem easily solvable with

a greedy approach. Further, we provide proofs of our greedy algorithm’s optimality in terms of

group transitions, disk distance, and power consumption due to mechanical movement of the disk

arm.

5.1 MOTIVATION

Our strategy for optimally grouping data chunks utilizes a future-aware algorithm. Using such an

oracle-based strategy in practice is impossible; our view of future requests is imperfect. However,

this strategy serves as an illuminating bound on the impact of predictive grouping strategies and

serves to illustrate what trends we might expect or strive toward.

5.2 OPTIMAL GROUPING PROBLEM DEFINITION

The problem definition for optimal data grouping is as follows.

Input : A sequence of requests for stored itemsFT = {(f0, s0), (f1, s1), ...}, where ordered

pairs(fi, si) represent file ID (fi) and file size (si), Cmax, a maximum size of a group in bytes, and

D, a maximum size of the disk in bytes.

21

Output : A list of groups, allowing for replication between them, such that the total number

of groups traversed (i.e. the total number of switches or transitions between groups)is minimized,

satisfying the following constraints.

1. Every file must be in at least one group (no loss of data)

2. No group uses more disk space thanCmax (all groups fit into a track)

3. No more than⌊D/Cmax⌋ groups are used (we do not use more space than is available on the

disk)

If no solution exists, we output 0 (or “no solution”).

This problem definition provides the general formulation that we address throughout the re-

mainder of this dissertation. But optimally reducing tracktransitions is difficult. However, should

we relax the problem, the solution becomes quite simple. Therelaxed problem we chose to solve

is identical to the general problem with the exception that we remove the disk size constraint,D.

In effect, we allowD to be arbitrarily large. Supposing we know the future exactly, and have a disk

of arbitrarily large capacity, a simple greedy algorithm can produce a static grouping scheme that

is optimal in the number of transitions. We call this optimalalgorithmDrNO (Data replication:

Naı̈ve Optimal) [32,33]. The pseudocode is given in Algorithm1.

5.3 OPTIMAL BEHAVIOR OF DRNO

The general strategy behind our optimal algorithm is try to make the current group as big as pos-

sible and throw it away as soon as we are done with it. Since we do not care about the total disk

space usedin solving this optimal grouping problem, i.e. how many groups are used in the process,

we are able to extract the greatest benefit from each group.

Theorem 5.3.1DrNO provides an optimal solution for minimizing the numberof transitions.

Proof The proof of optimality that we construct is an indirect proof. We assume that algorithm

DrNO is not optimal and reach a contradiction.

First, we note that both the second and the third constraintshold for our algorithm. The third

is guaranteed because as soon as a file does not fit within the current group, we form a completely

22

ALGORITHM 1 DRNO(FT, max) - an optimal, oracle-based greedy algorithm for solving the

relaxed version of the optimal grouping problem.

Input: a sequence of requests for stored items,FT ; a maximum size of a group in bytes,max,

equivalent toCmax from the general grouping problem in Section5.2

Output: a listL of n groupsG1...Gn

for all f in FT do

if SIZEOF(f) > max then

PRINT “No solution”

return NIL

end if

if SIZEOF(G)+ SIZEOF(f) ≤ max then

ADDTOGROUP(G, f)

else

ADDTOGROUPL IST(L, G)

G← NIL

end if

end for

return L

new group. The second constraint is guaranteed since every file in the trace is placed into a group

that can contain it (unless a file’s size exceedsCmax, in which case we immediately exit out of the

program). Therefore, our algorithm finds a solution if one exists.

To prove optimality, we compare our algorithm’s behavior tothat of an optimal solution’s

behavior. Note that an optimal solution exists. Among all optimal solutions, we consider the one

whose behavior most closely resemblesDrNO. Call this solutionOPT .

We define “most closely resembles” to mean the following. Consider the positions inFT that

an algorithm inserts a group switch. (InDrNO, this is just before a new group is formed.) We say

that a solution behaves most likeDrNO if it has the most number of consecutive group switches in

the same positions asDrNO, beginning at the first file inFT .

23

DefineX as the first group switch inOPT that differs fromDrNO. In other words, at position

X, OPT has hadm group switches andDrNO has hadn group switches, wheren 6= m.

Note that it must be the case thatn ≤ m. SinceDrNO greedily fills its groups until no more

files can fit, it can not be the case thatDrNO has a group switch beforeOPT . We now defineY

as the next position inFT thatDrNO has a group switch afterX. Call the last place inFT where

DrNO andOPT had a group switch at the same placeZ.

Call k the number of groups thatOPT has. We construct a solutionO′ from OPT that more

closely resemblesDrNO and remains optimal, thus reaching our contradiction. ConstructO′ in the

following way. Add thek+1st group, which contains all the files inFT from positionZ to position

Y −1, toOPT . This does not violate the second condition, nor the third condition, since these files

can fit into a group (sinceDrNO put them all in a group), and no files are removed from any groups.

Use thek+1st group to put a group switch at locationY and remove all other group switches from

Z to Y . Thus,O′ hass group switches, wheres ≤ m, andO′ more closely resemblesDrNO than

OPT . But OPT was the optimal solution thatmostclosely resemblesDrNO. Thus, we reach a

contradiction, and we are done.

This optimal grouping scheme does not just minimize transitions. If the groups created by our

optimal grouper are laid out linearly on the disk, we obtain an optimal solution for minimizing

distance, or the number of groups that we must traverse throughout theentire workload. This

distance is defined as

dist =
n

∑

i=1

dist(G(i), G(i + 1)) (1)

wheren is the total number of transitions anddist(G(i), G(i + 1)) denotes the distance between

the current group at the time of theith transition and the target groupG(i+1) that will be switched

to. This is of particular interest because of its applicability to hard disks. Our constructed groups

can easily be interpreted as tracks on the disk. While we denote G(i) as the group used until the

ith transition, we will denoteGj as thejth group or track on the disk. In other words,G(i+1) will

beneeded afterG(i) in the workload, while trackGj+1 is located aftertrackGj on the disk.

In order to translate from a requested groupG(i) to a location on disk,Gj , we use a transfor-

mation functionT such that

j = T (G(i)) (2)

24

Alternatively, this relationship can be described as

Gj = GT (G(i)) (3)

Using this definition, we can redefine our distance metric, replacingdist(G(i), G(i + 1)) by using

our transformation functionT .

dist =

n
∑

i=1

|T (G(i))− T (G(i + 1))| (4)

While it is easy to see that our algorithm, combined with a linear layout strategy of groups in order

of creation, produces unit size distances, this definition will become useful when we discuss other

grouping methods.

Since the number of transitions is minimized byDrNO, and all transitions result in a distance

of 1, it follows directly that the distance is also minimizedby DrNO.

Corollary 5.3.2 Assuming a linear layout of groups in order of creation, algorithm DrNO provides

an optimal solution for minimizing distance.

Once again, this result has particular applicability for hard disks. Our distance metric from

Equation (4) translates directly into track distance. This is especially appealing since power and

latency penalties due to mechanical components of the hard disk depend upon the number of times

we seek a new track and the track distance of each seek. Minimizing the distance via a minimized

number of seeks, each of which is unit sized, results in minimized power and latency costs due

to these mechanical components. Thus, our algorithmDrNO with a linear layout of groups in

the form of disk tracks is also optimal for minimizing power and latency due to the mechanical

components of the disk arm.

25

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

N
u
m

b
er

 o
f

T
ra

n
si

ti
o
n
s

Group Size (kilobytes)

mozart - Group Size vs Total Transitions (Block Size 4 Kb)

day
week

month
year

(a) mozart trace, 4K block size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

N
u
m

b
er

 o
f

T
ra

n
si

ti
o
n
s

Group Size (kilobytes)

mozart - Group Size vs Total Transitions (Block Size 8 Kb)

day
week

month
year

(b) mozart trace, 8K block size

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

N
u
m

b
er

 o
f

T
ra

n
si

ti
o
n
s

Group Size (kilobytes)

mozart - Group Size vs Total Transitions (Block Size 16 Kb)

day
week

month
year

(c) mozart trace, 16K block size

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000

N
u
m

b
er

 o
f

T
ra

n
si

ti
o
n
s

Group Size (kilobytes)

mozart - Group Size vs Total Transitions (Block Size 32 Kb)

day
week

month
year

(d) mozart trace, 32K block size

Figure 1: Comparison of various block sizes for month lengthmozarttrace.

5.4 DISCUSSION

Perhaps the most interesting trend exhibited byDrNO is the number of group transitions against

the size of each group. For every case tested, we see roughly linear, generally decreasing relation-

ship on a log-scaled graph, making the actual relationship (approximately) inversely proportional

between group size and transitions. This suggests inherentdiminishing returns for our grouping

problem.

In more practical predictive grouping, this behavior of diminishing returns is expected to per-

26

petuate, and become more critical. Without a perfect oracleupon which to draw, predictions must

be made based upon heuristics. Thus, very valuable blocks will, presumably, be chosen first. As

the group size increases, blocks’ “values” will decrease, granting less and less benefit per block.

In this way, the choice of a grouping scheme becomes somewhatless crucial for small blocks;

one reasonable grouping scheme should closely approximateanother. However, when group sizes

become very large, and grouping schemes form drastically groups, the choice of scheme becomes

much more critical. While larger group sizes will allow for better performance, we should antici-

pate a need to reduce the number of predictive groups necessary. Figure1shows a brief comparison

of mozarttraces for varying block and group sizes.

Interestingly, our algorithm exhibits a counter-intuitive result in the amount of necessary space

for predictive groups. When forming predictive groups using replication, one would assume in-

creasing the group size would result in a larger overall footprint for predictive groups. This is

not the case forDrNO; the total number of groups needed decreases faster than thegroup size

increases. This result is also shown in Figure1, since the number ofgroupsnecessary is identical

to the number oftransitionsnecessary. (Actually, the number of groups is equal to the number

of transitions plus one.) While intriguing, this behavior is not to be expected in more practical

methods, as we will see in Chapter6, where we will compare practical methods toDrNO to see

how close those methods can come to optimal behavior. Resisting diminishing returns will also

become increasing crucial for designing a dynamic groupingengine, in Chapter9.

27

6.0 STATIC GROUPING

As we have stated, predictive grouping is the identificationof relationships between data, based

on predictions of future access patterns, with the aim of grouping together the most related data

items. If a workload exhibits repetitive or otherwise predictable access patterns, then predictive

Block Access Pattern: 1,5,9,2,6,1,3,7,11

1 2 3 4 Group A:

Group Access Pattern

Prior to Remapping: A,B,C,A,B,A,B,C

5 6 7 8 Group B:

9 10 11 12 Group C:

Used block
Free block

Group Access Pattern with

Remapping and Replication: A,B,C

Remap with

Replication

1 5 9 2 Group A:

6 1 3 7 Group B:

11 4 8 10 Group C:

Figure 2: Predictive grouping example. The grouping on the left is a sequential layout, including

some free blocks. The grouping on the right is one possible remapping that allows for replication

between groups.

28

grouping can be used to reduce the number of power-state transitions, reduce the number of active

nodes in a multi-device system, and even reduce the mechanical activity within a single device.

Predictive grouping can thereby improve performance and energy efficiency in storage systems,

while simultaneously reducing access latencies. See Figure 2 for examples of group remapping

with replication.

Successful strategies result in fewer transitions among groups; our working analogy of disk

tracks demonstrates this eloquently. Intuitively, fewer transitions among groups translates to fewer

disk seeks and smaller overall latency and power. A secondary result is an increase in access

burstiness, allowing for orthogonal strategies such as disk spin-down additional opportunity of

application. To this end, we must examine the effectivenessof several prediction strategies, each

allowing for replicationacrossgroups, but not within them.

6.1 MOTIVATION

Our optimal grouping strategy in Chapter5 utilizes an oracle-based strategy, allowing for perfect

future prediction. Obviously, such a strategy is impractical in practice; no perfect predictor exists.

However, the use of past events to predict the future has beenestablished as a solid strategy capable

of adaptability, high accuracy, and resilience to signal noise [6, 8, 23, 77, 111, 121]. Scores of

applicable policies abound, from graph-based modeling [49] to multi-order context prediction [71].

Even simple strategies such as last successor have been shown to have surprising effectiveness for

predictive purposes [77]. Ergo, we tackle our first question. What strategy are we to choose?

A number of factors influence this critical decision. Prediction accuracy is, of course, a high

priority. Speed, or asymptotic behavior, is certainly a significant concern. Robustness in the face of

signal noise, seemingly random behavior of the workload, ishighly desirable, but we must remain

adaptable. Small storage requirements are also critical; it does little good to require great amounts

of metadata stored for small workload footprints. With these factors in mind, our first decision

was to explore the use of first-order successor information (i.e. based on a context depth of size

one). This metadata strategy has far reduced storage requirements than multi-order strategies and

has been shown to have applications for predictive caching,exhibiting adaptability, resilience to

29

A

B

E

C D

F G H

I J

0.050.6 0.35

0.40.6 0.65 0.35

0.40.6

Figure 3: Simple access tree, where nodes denote blocks and directed edges are weighted with

estimated likelihood of occurrence.

signal noise, and high prediction accuracy [8].

6.2 GROUPING STRATEGIES

6.2.1 Baseline Strategies

We present two baseline static grouping schemes used in thisproject. The first method,NoRep, or

no replication, lays the data out linearly on the disk according to ID, maximizing density. To use

this grouping scheme, on a transition we seek the only group that contains the offending file (the

file that caused the transition). This method proves useful for reducing the distance of a transition

compared to other replicating strategies, but is expected to have many transitions.

The second method,maximal replication, or MaxRep, groups blocks linearly, with each group

Gi beginning at blockBi and ending at blockBi+groupSize. This scheme maximizes replication of

blocks. To use this scheme, on a transition we seek the group that begins with the offending block.

30

Such a scheme might prove useful in reducing transitions over NoRep, but may suffer from greater

track distances.
ALGORITHM 2 OE ME(T, root, max) - a balanced approach for forming a predictive group.

Input: set of first-order successor trees,T ; a root ID,root; a maximum group size,max

Output: a set of IDs,G, representing the predictive group

ENQUEUE(max pq, root, 1)

while ISNOTEMPTY(max pq) and SIZEOF(G) < max do

p← TOPPRIORITY(max pq)

f ← DEQUEUE(max pq)

if SIZEOF(G)+ SIZEOF(f) ≤ max then

ADDTOGROUP(G, f)

max pq ← OE ME EXPAND(T, max pq, f, p)

end if

end while

return G

6.2.2 Predictive Grouping

For the predictive grouping methods, we need to maintain successor information for each ID.

However, tracking successor paths of arbitrary length has high metadata overheads. Instead, we use

first order successor information, tracking immediate successors, drastically reducing the spatial

requirements to a practical amount. We then use this simple information to build larger groups of

related files based on access trees. A simple access tree is given in Figure3.

Using this first order successor information, there are two strategies we can adopt. The first

strategy is a breadth-first expansion (BFS), cautiously capturing all of a block’s successors before

moving on to further descendants. Adopting aBFSstrategy for the tree in Figure3, we would add

(in order)A, B, D, C, E, F , G, H, etc. The second strategy is an aggressive depth-first expansion

(DFS), seeking to obtain as many successors along a single “most likely” path, hoping to maximize

the use of that successor path at high risk of missing other paths. Adopting aDFSstrategy for the

tree in Figure3, we would addA, B, E, I, etc.

31

ALGORITHM 3 OE ME EXPAND(T, max pq, f, p) - expands the maximum priority queue used

in Algorithm 2. Note that P(T, f, s) denotes a function used to calculate the estimated probability

of child s of f ’s access tree withinT .

Input: set of first-order successor trees,T ; a maximum priority queue,max pq; a file or block

ID, f ; an estimated probability,p

Output: max pq

for all s such thats is a child off in T do

p← p× P(T, f, s)

ENQUEUE(max pq, s, p)

end for

return max pq

A third strategy, which we callOE ME, or Optimal Expansion, Maximized Expectation, uses

both of these simpler strategies by performing an automatically balanced expansion. This strategy

is similar to the balanced approach used in recent access predictors [7, 74] and has previously

shown pattern modeling qualities [23]. It is also similar to A* searching and Huffman encoding.

See Russell and Norvig [103] for comprehensive discussion on A* search and Sedgewick [107]

for details on Huffman encoding. The tree in Figure3, under our new strategy, would addA

(prob= 1.0), B (prob= 0.6), E (prob= 0.6×0.6 = 0.36), D (prob= 0.35), F (prob= 0.6×

0.4 = 0.24), etc.

The general algorithm for grouping using these methods is given in Algorithm2. The crucial

point is within the Expand subroutine, in Algorithm3, where we use the global estimated likelihood

of the filef multiplied by the local estimated likelihood of childs of f .

6.3 EXPERIMENTAL SETUP AND DESIGN

We evaluated our performance through simulation on severaldifferent trace sets. The first set,

mozart, consists of a typical workstation file system trace gathered using theDFSTracesys-

32

tem [91]. The file system workloads were converted to their equivalent 4KB block-level read

workloads. The second set,hplajw, is a block-level workstation trace [102]. These workloads

were chosen because they are not drawn from synthetic functions or independent distributions,

but rather represent real-world traces that exhibit the realistic predictability and patterns of a data

access workload resulting from user, program and operatingsystem behavior. In addition, they are

lengthy traces obtained over extended periods of time, allowing us to evaluate the effectiveness of

grouping as a layout mechanism. We find themozarttrace particularly useful since we are able to

evaluate the effectiveness of our strategies at varying time spans, up to a year-long period. We have

found our balanced approach to be more robust than other methods in terms of effectiveness over

extended periods of time. Thehplajw workload, a block-level workstation trace, shows results

very similar to those from themozarttraces, in spite of their different origins, both traces were

evaluated in terms of block-level layout.

In order to obtain accurate energy estimates, we used average power measurements from a va-

riety of hard-drives [21]. We selected these measurements for our estimates becausethey represent

detailed, isolated power measurements of a disk arm rather than aggregate measurements of total

energy over time. Detailed energy usage was gathered using IDE hard-drives ranging from 2 GB

to 80 GB. The energy consumed was evaluated using benchmarksand simultaneous measurement

of energy consumed over the separate 12 and 5 Volt power lines. Separate power lines provided

the advantage of isolating the energy usage of drive mechanics (12 V line) from drive electronics

(5 V line). The voltage drop was measured across 0.01Ω resistors in series with each of the two

lines.

We used a DAQ system collecting 20,000 samples per second foreach benchmark experiment.

These samples were used to calculate the average power usageof the drive based on the percentage

of the disk that was traversed during each seek. See Figure4(a) for an illustration. The ability to

isolate drive motor power sources, combined with high frequency sampling, allowed us to isolate

the contribution of the disk arm movement to the disk’s overall energy usage.

We used these average power measurements to estimate power using log functions. We used a

generic log function of the form

power = a× log(perc + b) + c (5)

33

Track distance
Disk rotation

Disk arm movement

(a) Disk Mechanical Movement

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

P
o
w

er

Track distance percentage

Power usage per track distance percentage

PuRPLe
estimate

(b) Disk Power Consumption

Figure 4: Reducing disk power consumption by reducing arm movements.

Note thatperc here represents the percentage of the disk that was traversed, a bounded quantity

ranging from 0 to 100. A repeated simulated annealing process was used to adjust the weightsa, b,

andc such that the average squared distance was minimized. This strategy was adopted to obtain

functions that were much closer to data than available through simple function estimators. The

power estimation function, shown in Figure4(b), has an average squared distance of 0.002604.

The calculated parameters for this drive are provided in Table 7.

The energy used by each of the trace workloads, and the latency incurred, was evaluated

through simulation based on the above drive performance parameters. Our simulations were con-

ducted as follows: First, we read through the appropriate trace, gathering first successor informa-

tion. We then read the trace again, calculating track distances, estimating latencies and energy

consumption. During this second run through the workload, we evaluated energy consumption

and latencies for the different grouping algorithms and their resulting layouts. We also record the

number of groups formed by the different algorithms, the total transitions between these groups,

and the number of requests satisfied before each group transition. The following equation was used

for calculating the time of a disk arm movement due to transitions.

34

Table 7: Power parameters for caviar2gb through repeated simulated annealing.

Drive a b c

caviar2gb 0.331219 1.036054 1.729115

time = avgSeekT ime×

√

trackDist

avgTrackDist
(6)

We used a minimum seek time of 0.001 seconds and an average seek time of 0.008 seconds for the

results presented below.

Total energy consumed was estimated by multiplying the power consumption by the latency.

Note that since we are using an average power figure, we can usesimple multiplication and need

not integrate.

energy = power × time (7)

Tracks were laid out in the order they were requested, imposing no structure to the tracks

themselves. This is in accordance with the expected behavior of the different algorithms being

dynamically applied to a workload. The exceptions are the two baseline algorithms for which

tracks were laid out in linear order for consistency, as theydo not offer a clear sequence of group

creation.

6.4 RESULTS

Table8 shows a comparison of strategies based on the energy and latency penalties of the disk

arm movement. These numbers are for themozartyear trace, a group size of 2048 blocks, and

the performance and measured energy characteristics of a Western Digital caviar2gb disk. As we

can see from the table,DrNO is by far the most effective strategy, requiring less than 5 Joules of

energy and less than 8 seconds to process the entire trace. This is an impossible result to achieve

35

Table 8: Comparison of strategies based on the energy and latency costs associated with the disk

arm. These numbers are for themozartyear trace, group size 2048, based on a Western Digital

caviar2gb disk.

Strategy Energy (J) Time (sec)

DrNO 4.31 7.54

OE ME 194.63 389.53

DFS 555.31 1153.90

BFS 790.05 1608.94

MaxRep 4533.75 13072.22

NoRep 968.56 1694.98

in practice, due toDrNO’s ability to perfectly know the future and to use an unlimited degree of

replication and space for its groups, but it does illustratethe dramatic potential of grouping re-

ductions for data reads. To further clarify it is important to point out that these results are for all

block read requests generated, and do not include write requests. This means that our approach

is being applied to a subset of the workload, read requests, but this is the very subset that cannot

be addressed by dynamic relocation of data to the current position of the disk-head (as is done in

logging or copy-on-write techniques). While writes allow us to physically write the data to a new

location and update metadata to indicate this new location,reads must be satisfied from wherever

the data is available, and predictive grouping attempts to avoid having physically remote requests.

While DrNO is an unattainable ideal, it does demonstrate how effectivepredictive grouping with

replication may be. Our algorithm,OE ME, is far from reaching this infeasible ideal but is nonethe-

less more than a four-fold improvement over the non-replicating baseline (NoRep) for both energy

and latency. The improvement over the aggressively replicating strategy (MaxRep) is even more

impressive, at almost twenty times, illustrating the dangers of unrestrained replication.

In Table8 we show the performance of our predictive grouping approachcompared for a sin-

gle group size and workload. A better view of these results and their meaning can be seen when

36

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

E
n
er

g
y
 (

J)

Group Size (# blocks)

Group Size vs Energy Usage (day)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(a) Day-long trace

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

E
n
er

g
y
 (

J)

Group Size (# blocks)

Group Size vs Energy Usage (week)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(b) Week-long trace

Figure 5: Energy usage due to disk arm movement for themozartday and week length traces. Note

that the sudden drop off for the last group size in the day length trace indicates the point at which

all the unique files fit within a single group.

37

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

E
n
er

g
y
 (

J)

Group Size (# blocks)

Group Size vs Energy Usage (month)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(a) Month-long trace

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

E
n
er

g
y
 (

J)

Group Size (# blocks)

Group Size vs Energy Usage (year)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(b) Year-long trace

Figure 6: Energy usage due to disk arm movement for themozartmonth and year length traces.

38

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

E
n
er

g
y
 (

J)

Group Size (# blocks)

Group Size vs Energy Usage (hplajw)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

Figure 7: Energy usage due to disk arm movement for thehplajw trace.

considering different workloads, durations, and group sizes. Figures5 and6 show the energy con-

sumption from themozarttrace set, evaluated for four different durations and for different group

sizes. This is the energy cost that would be incurred by the different grouping algorithms, based

on the power consumption function estimated from the caviar2gb drive. Improved performance is

indicated by a reduction of this cost, as we aim to reduce overall energy consumption.

These results demonstrate that there are massive savings potentials, over 99%, achievable by

our optimal grouper,DrNO. Our balanced expansion algorithm,OE ME, demonstrates up to 70%

reduction over the closest competing strategy for non-trivial group sizes. This balanced expansion

also demonstrates robustness to both group size as well as trace length not exhibited by the com-

peting strategies. As the group size increases forDrNO, we see a continuing decrease in energy

consumed. This is not surprising given the optimal nature ofthe grouping performed, adding more

space to individual groups results in the maximum possible reduction in inter-group travel (and the

equivalent mechanical activity). For small group sizes thedistinction between the strategies is not

39

pronounced, but as group sizes grow the difference in the content of these groups becomes more

pronounced, and the performance impact of better predictive grouping becomes more pronounced.

OE MEdoes not follow the continuous improvement ofDrNO, showing a leveling off of energy

gains as group sizes increase. Nonetheless, these decreasing returns are much better than those

of the competing strategies, suggesting thatOE ME, while offering impressive energy gains, can

be further improved upon. Such improvement would require better knowledge of the future, or a

different method of group construction.OE ME is optimal in terms of group formation based on

successor predictions, and can directly use any improved predictors that are developed. Improving

the grouping mechanism would require a more complex algorithm that uses more than successor

predictions, with the added complexity and metadata overheads that this implies.

The trends in Figures5 and6 were more pronounced as trace durations grew and were similar

to the trends shown for thehplajw block trace shown in Figure7. As the duration of a trace

grows, predictive grouping has a greater chance to impact future performance. WhileDrNO has

full knowledge of the future, there is no warm-up or trainingperiod for ourOE ME algorithm,

and so extended durations offer more time to learn and adapt to the workload’s access patterns. It

is interesting to note that aggressive replication can be detrimental to performance (as we see for

theMaxRepresults). In spite of using the same successor predictions as OE ME, the enthusiastic

construction of groups for every context results in increased energy consumption for larger group

sizes.

Figures8, 9, and10show the latencies experienced for themozarttraces and thehplajw trace.

In these figures we see a mirroring of the results for energy, once again we have over 99% re-

duction for the optimal grouping, whileOE MEshows 70% reduction for larger group sizes. The

correspondence of energy and latency results is expected, since the energy results are specifically

for the mechanical movement in a disk drive, which are the primary component of access latency.

6.4.1 Group Formation, Access Behavior and Transitions

Fewer unique groups formed means a reduced usage of total storage space, as well as decreased

likelihood of physical movement between these fixed-size groups covering large distances. The

number of transitions is the number of times a workload resulted in a request for a group other

40

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

T
im

e
(s

ec
o
n
d
s)

Group Size (# blocks)

Group Size vs Service Time (day)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(a) Day-long trace

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

T
im

e
(s

ec
o
n
d
s)

Group Size (# blocks)

Group Size vs Service Time (week)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(b) Week-long trace

Figure 8: Total time delay (access latency) due to disk arm movement for themozartday and week

length traces. Note that the sudden drop off for the last group size in the shortest trace indicates

the point at which all the unique files fit within a single group.

41

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000

T
im

e
(s

ec
o
n
d
s)

Group Size (# blocks)

Group Size vs Service Time (month)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(a) Month-long trace

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

T
im

e
(s

ec
o
n
d
s)

Group Size (# blocks)

Group Size vs Service Time (year)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

(b) Year-long trace

Figure 9: Total time delay (access latency) due to disk arm movement for themozartmonth and

year length traces.

42

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

T
im

e
(s

ec
o
n
d
s)

Group Size (# blocks)

Group Size vs Service Time (hplajw)

MaxRep
DFS
BFS

NoRep
OE ME

DrNO

Figure 10: Total time delay (access latency) due to disk arm movement for thehplajw trace.

than that of the last request, reducing this number means a direct reduction in device activity.

If groups are used as the unit of data retrieval, as in the caseof the aggregating cache [7], then

transitions correspond to the total number of read requeststhat a server will need to satisfy. In the

case of data layout on a disk, if a group size corresponds to a track buffer size then the number of

transitions equates to the number of disk requests that require physical activity. Applied directly

to a disk’s data layout, reduced transitions result in reduced mechanical activity.

Table9 shows a comparison of strategies based on the number of groups formed and the num-

ber of transitions. As with Table8 these numbers are for themozartyear trace, and a group size of

2048 blocks. It is interesting to note the behavior of the baseline algorithms. The maximum repli-

cation strategy forms a very large number of groups, and results in a large number of transitions

(more than eight times the number for ourOE MEalgorithm, six times the competing strategies,

and fifty times the optimal limit). This behavior is consistent with the poor energy and latency

behavior of this strategy for large group sizes and long trace durations.

43

Table 9: Number of groups formed and total transitions. These numbers are for themozartyear

trace, group size 2048.

Strategy Groups Formed Transitions

DrNO 4311 4310

OE ME 21916 143505

DFS 31318 368472

BFS 34147 554660

NoRep 136 20685059

MaxRep 277710 20546301

What is also interesting, and even more illuminating, is thebehavior of the first baseline al-

gorithm. Theno replication(NoRep) strategy forms a very small number of groups, 136 groups

compared to the optimal algorithm’s 4311 groups. This is an excellent result in terms of space

usage, and is to be expected since there is no replication of data. But without replication we see a

number of group transitions that is even worse than the aggressive replication strategy. The ques-

tion this table raises is how this baseline strategy can offer better energy and latency results than

MaxRepin spite of this slight increase in total group transitions.The answer lies in the small

number of groups formed, and a subtle optimization in data layout. While tempting to describe

NoRepas a baseline equivalent to the static layout of data on a diskwithout optimization, a more

accurate description would be that it is a static, yet optimized, layout of data. The block layout

for NoRepwas based on the initial request order for the data. This means that for each test work-

load, blocks were placed based on the order in which they appeared in the workload. This avoided

penalizing the baseline algorithm for any artificially poorlayout choices, such as the dislocation

of metadata and its associated metadata. This inherent optimization accounts for the better than

expected energy and latency performance of theNoRepbaseline strategy, and the small storage

footprint accounts for its tolerance of slightly higher transition rates than the maximum replication

strategy.

44

In Figure11 we see the number of groups formed for the competing probabilistic approaches.

Our predictive grouping algorithm can be seen to produce thefewest groups, a trend that increases

with lengthier workloads. This suggests that our algorithmavoids constructing superfluous groups,

but we need to consider the number of transitions between groups.

Our results confirm that of all probabilistic approaches, our balanced expansion (OE ME) has

fewer groups formed and fewer transitions for non-trivial group sizes (shown in Figure12). These

results are consistent across all workloads. As the group size increases, it becomes increasingly

important to strike a balance between replicating a block and simply moving it to another group.

Too much replication will result in groups that contain too little variety and a large number of

groups, thereby increasing the amount of movement between groups. Not replicating data suffi-

ciently between groups will also result in unnecessary movement between groups due to blocks

that are accessed with high overall frequency.

For lengthier workloads (mozartmonth and year, as well ashplajw), the maximal replication

baseline strategy (MaxRep) shows diminishing returns more rapidly than other strategies. This

supports our assertion that, while aggressive replicationcan be beneficial, it must be done intelli-

gently. We see little or no improvement in number of transitions over theno replicationstrategy

(NoRep). This confirms our suspicion that maximal replication is a poor grouping strategy, effec-

tive only for the collocation of small numbers of blocks. This maximum replication strategy is

effectively building a group for every predicted sequence of length equal to the group size, and as

the group size increases the number of such groups becomes excessive. This raises the question of

the relative worth of different groups. A group that is useful will be accessed frequently, and most

of its contents will be used. This brings us to the metric ofaccesses-per-transition.

In Figures13and14we see the average number of requests satisfied before a grouptransition is

required. As group sizes increase, these requests are expected to decrease, with the rate of decrease

being indicative of how effective the grouping strategy hasbeen at building useful groups. With

fewer groups, and a tendency to build more effective groups,the energy and latency performance

of our predictive grouping algorithm is further explained.Fewer groups implies a reduction in

overall distance traveled by the arm mechanism, while fewertransitions indicated a reduction in

the number of inter-group “trips” that had to be made. With Figures13 and14 we see how these

results correspond to more effective work (requests satisfied) before requiring a move to a new

45

 100

 1000

 10000

 100000

 1 10 100 1000 10000

G
ro

u
p
s

Group Size (# blocks)

Group Size vs Total Groups (week)

OE ME
BFS
DFS

(a) Week-long trace

 1000

 10000

 100000

 1 10 100 1000 10000

G
ro

u
p
s

Group Size (# blocks)

Group Size vs Total Groups (month)

OE ME
BFS
DFS

(b) Month-long trace

Figure 11: Total number of groups formed for themozarttrace.

46

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

T
ra

n
si

ti
o
n
s

Group Size (# blocks)

Group Size vs Transitions (week)

NoRep
MaxRep

BFS
DFS

OE ME
DrNO

(a) Week-long trace

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

T
ra

n
si

ti
o
n
s

Group Size (# blocks)

Group Size vs Transitions (month)

NoRep
MaxRep

BFS
DFS

OE ME
DrNO

(b) Month-long trace

Figure 12: Total transitions for themozarttrace.

47

group.

6.5 DISCUSSION

Throughout the majority of our work, ourOptimal Expansion, Maximized Expectationalgorithm

forms the core of our prediction and grouping strategy. As wehave discussed, this strategy employs

a balanced approach to tree expansion using only the estimated likelihood of successor occurrence.

No other information is used; data chunks, assumed to be blocks, are treated as unit sized pieces,

and no consideration is given to how far two blocks are from one another. For the sake of discussion

as well as completeness, we briefly present here two strategies, one that utilizes distance from the

root, and another that utilizes variable file sizes.

6.5.1 Optimal Expansion, Estimated Distance

In future chapters, we will discuss a number of ways to reduce“track distance”, as well as tran-

sitions. It is worth noting that such distance concerns are not addressed in ourOE MEalgorithm.

An early test we performed was to compareOE MEwith a variant that included a distance metric.

This algorithm,Optimal Expansion, Estimated Distance, or OE ED, is given in Algorithm4, with

its queue expansion function given in Algorithm5.

The key decision in this algorithm was the use of a sigmoid function in the priority queue. We

use the following equation as this sigmoid function.

1

1 + e−
d−2E

E

(8)

Since distance has no known maximum without prior knowledgeof a system, we need some way

to bound an unbounded quantity. Further, once we establish the need for a “very long” seek, it

is somewhat pedantic to discern between such very large distances; one “very long” seek is near

the equivalent to another. Similarly, items that are “very near” our current location should not be

harshly penalized for small differences in distance.

48

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

A
cc

es
se

s
p
er

 T
ra

n
si

ti
o
n

Group Size (# blocks)

Group Size vs Avg Access per Trans (week)

DrNO
OE ME

DFS
BFS

MaxRep
NoRep

(a) Week-long mozart trace

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

A
cc

es
se

s
p
er

 T
ra

n
si

ti
o
n

Group Size (# blocks)

Group Size vs Avg Access per Trans (month)

DrNO
OE ME

DFS
BFS

MaxRep
NoRep

(b) Month-long mozart trace

Figure 13: Average accesses per transition formozartweek and month length traces.

49

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

A
cc

es
se

s
p
er

 T
ra

n
si

ti
o
n

Group Size (# blocks)

Group Size vs Avg Access per Trans (hplajw)

DrNO
OE ME

DFS
BFS

MaxRep
NoRep

(a) hplajw trace

Figure 14: Average of accesses per transition forhplajw trace.

Our preliminary tests showed a noticeable sensitivity to the sigmoid function used. In partic-

ular, the algorithm seems to be sensitive to the constantE. With proper selection of this constant,

OE EDhad similar performance toOE ME, suffering only minimally in the number of transitions.

Incorporated in a dynamic setting,OE ED is expected to match or outperformOE ME in

terms ofdistance, but not intransitionsbetween groups, although the difference between them is

expected to be negligible, even with a proper selection of sigmoid function. As a result,OE ME

was chosen overOE ED for several reasons. First, there is no sensitivity to a constant, making

OE ME more generalizable. Second,OE ED has a more complicated floating point calculation

within the expansion function, which exists within the loop. Since our goal is a dynamic variant

of prediction, we need to be concerned with reducing the computational overhead. Without visible

improvements to both transitions as well as distance, the faster, more elegant computationOE ME

was favored.

50

ALGORITHM 4 OE ED(T, root, max) - a balanced approach for forming a predictive group

using a distance metric. The sigmoid function is given in Equation (8).

Input: set of first-order successor trees,T ; a root ID,root; a maximum group size,max

Output: a set of IDs,G, representing the predictive group

ENQUEUE(max pq, root, 1)

while ISNOTEMPTY(max pq) and SIZEOF(G) < max do

p← TOPPRIORITY(max pq)

f ← DEQUEUE(max pq)

d← ABSVAL(root − f)

c← p/ SIGMOID (d, E)

if SIZEOF(G)+ SIZEOF(f) ≤ max then

ADDTOGROUP(G, f)

max pq ← OE ED EXPAND(T, max pq, f, c, root)

end if

end while

return G

6.5.2 Optimal Expansion, Estimated Storage Space

We mentioned in Chapter3 that we restrict the bulk of our work for block-level prediction. How-

ever, it may be of interest to discuss the possibility of extending our work to the file level. The

algorithmOptimal Expansion, Estimated Storage Space, or OE ESS, was developed for this rea-

son. At first glance, this algorithm, given in Algorithm6, looks almost identical to the algorithm

for Optimal Expansion, Maximized Expectationfrom Algorithm2. However, there are several key

differences. First, the priority queue forOE ESSis aminqueue, not amaxqueue as inOE MEand

OE ED. Second, the priority queue must be able to store three pieces of data, not just two. Each

node in the queue stores the file ID and the priority, just as inOE ME. But in OE ESS, the priority

is not equal to the estimated expectation. Rather, the priority isthe product of thecomplementof

the file occurring and the file’s size.

51

ALGORITHM 5 OE ED EXPAND(T, max pq, f, c, root) - expands the maximum priority queue

used in Algorithm4. Note that P(T, f, s) denotes a function used to calculate the estimated prob-

ability of child s of f ’s access tree withinT . The sigmoid function is given in Equation (8).

Input: set of first-order successor trees,T ; a maximum priority queue,max pq; a file or block

ID, f ; an estimated probability,c; a root ID,root

Output: max pq

for all s such thats is a child off in T do

c← c× P(T, f, s)

d← ABSVAL(root − f)

p← c× SIGMOID (d, E)

ENQUEUE(max pq, s, p)

end for

return max pq

If all file sizes are equivalent, this algorithm is functionally equivalent toOE ME. However,

there are significant calculation costs involved, as well asincreased memory usage. As we men-

tioned, one main goal of our work is to remain as generalizable as possible, hence this strategy was

not explored beyond the algorithm development, as we focus on block prediction rather than file

prediction.

52

ALGORITHM 6 OE ESS(T, root, max) - a balanced approach for forming a predictive group

using variable size files. Note that the priority queue function ENQUEUE(min pq, f, c, p) stores ID

f and confidence, or probability,c, while using the priorityp for ordering within the queue. The

function TOPPROBABILITY (min pq) returns the confidencec of the top node in the queue, not the

priority. This is a key distinction;OE MEmakes no distinction between confidence and priority.

The function DEQUEUE(min pq) simply returns the file IDf from the top node.

Input: set of first-order successor trees,T ; a root ID,root; a maximum group size,max

Output: a set of IDs,G, representing the predictive group

ENQUEUE(min pq, root, 1, 0)

while ISNOTEMPTY(min pq) and SIZEOF(G) < max do

c← TOPPROBABILITY (min pq)

f ← DEQUEUE(min pq)

if SIZEOF(G)+ SIZEOF(f) ≤ max then

ADDTOGROUP(G, f)

min pq ← OE ESS EXPAND(T, min pq, f, c)

end if

end while

return G

53

ALGORITHM 7 OE ESS EXPAND(T, min pq, f, c) - expands the maximum priority queue

used in Algorithm6. Note that P(T, f, s) denotes a function used to calculate the estimated

probability of child s of f ’s access tree withinT . Also note that the priority queue function

ENQUEUE(min pq, f, c, p) stores IDf and confidence, or probability,c, while using the priorityp

for ordering within the queue.

Input: set of first-order successor trees,T ; a minimum priority queue,min pq; a file or block ID,

f ; an estimated probability, or confidence,c

Output: min pq

for all s such thats is a child off in T do

c← c× P(T, f, s)

p← (1− c)× SIZEOF(f)

ENQUEUE(min pq, s, c, p)

end for

return min pq

54

7.0 DYNAMIC GROUPING AND METADATA

Having studied the effects of static grouping strategies, the next step is to develop a dynamic

grouper. This transition from static to dynamic boasts a number of benefits, but presents new

challenges. We have already established the need for reducing the size of predictive metadata

required by the storage system grouper; this was one of our driving motivations for choosing

a first-order successor strategy. But the problem is compounded in dynamic grouping; indeed,

managing metadata in general is becoming increasingly challenging [78,79]. With static grouping,

we apply the grouping algorithms on a system in a fixed state, and so can be done offline, or

in applications where we do not wish to update our grouping decisions in response to workload

changes. With dynamic grouping we aim to perform grouping decisions based on an ongoing

workload, in an online manner, updating grouping decisionswhere necessary, yet continuously

collecting and updating metadata. With such goals, it is essential for dynamic grouping to be

highly optimized in terms of memory usage, disk space, and CPU cycles required. Every piece

of a dynamic grouper must be compact, fast, and, in the case ofmetadata, easily retrievable. This

necessitates the revisiting of our metadata problem.

In this chapter, we will detail several new data structures used for tracking our first-order suc-

cessor metadata. These structures allow us to reduce the necessary volume of data by several orders

of magnitude. Our goal is to have an efficient method of tracking this information regardless of

block size. We will continue to refine our grouping strategies in following chapters. Static grouping

strategies discussed in Chapter6 organized groups as they were created, and choseroots, or block

IDs upon which to begin predictive grouping, based on what block or chunk was requested next.

Dynamic grouping requires knowledge of what block is likelyto be requested. These challenges

and our solution strategies are discussed in Chapter8. In Chapter9, we will tie these solutions

together by describing our dynamic regrouper,SPORe, and detail how each previous solution is

55

applied.

7.1 MOTIVATION

Optimizing storage system performance in the face of varying workloads requires the accurate

tracking and exploitation of patterns in data access behavior. Such information is useful for a

broad range of applications, including caching, placement, workload shaping, data collocation

and migration. Unfortunately, tracking access behavior and predicting future access behavior can

result in large metadata demands. This is true when dealing with data at the granularity of files

and objects, but quickly becomes unmanageable when attempting to monitor block-level access

behavior in large storage systems. An explosion in metadatavolume is doubly problematic when

we consider that retrieving and updating such metadata can suddenly become an additional burden

upon the storage subsystem. On the other hand, arbitrarily limiting the volume of metadata being

maintained will only allow for optimizations to data withina current hotspot, the currently active

working set, which is arguably less in need of pattern discovery and placement optimization (due

to the effectiveness of even basic caching schemes on such subsets). This inevitably precludes the

opportunity to discover longer-term patterns across less intensely active regions.

To improve the accuracy of placement and collocation decisions, and improve the overall per-

formance of predictive analysis of data access patterns, wewish to maintain as much metadata as

possible, but only if it is useful. Our previous work on predictive data grouping [34] (see Chap-

ter6) demonstrates one such strategy that stores a number of direct block successors for each data

access. Our strategy shows promise in the area of data grouping, and is similar to previously ex-

plored strategies in prefetching and prefetch-caching strategies adopted by Kroegeret al. at the

file level [71]. We present a study of how it is feasible to reduce the metadata requirements of our

strategy in the face of block-level I/O workloads. The structures used in our work are reminiscent

of the limited-length queue of access successors in theRecent Popularitystrategy [8], also used

in EEFS[80, 81]. Such single-successor strategies are better chosen for their efficiency benefits

over multicontext modeling, yet still require huge amountsof storage. Minimally, we would need

to track the root block’s ID, which could simply be a translated location within an array, and the

56

queue of accesses, each of which is a block ID. Thus, the totalstorage space would be the number

of successors stored,s, times the total number of blocks,t. For modern systems, this metadata

volume is too large. For a 4 TB disk array, assuming a block size of 4 KB, this would mean storing

information for 1 billion blocks. Assuming a 64-bit address, this system would require 8 GB of

spacejust for storing a single successor. We address the issue of metadata volume requirements

in SESH[35,36] by observing that most blocks share two properties.

1. They only have a single successor.

2. The only successor they have is the next sequential block.

Using this information, we are able to drastically reduce the total size needed for our predictive

information while incurring little overhead. Further, ourstrategy scales better in the number of

successors tracked.

7.2 EXPERIMENTAL SETUP AND DESIGN

Our goal is to develop space-efficient structures for tracking metadata, specifically for predictive

information. Ideally, these structures would incur littleto no overhead while maintaining undimin-

ished usefulness. Further, we seek to define, in a general case, what the expected benefits of these

structures would be. Finally, we endeavor to verify our expectations by testing working implemen-

tations against realistic workloads in order to determine how effective our data pattern exploitation

techniques would be at reducing metadata volumes in real systems.

We have developed a novel mechanism for reducing the metadata storage requirements for

predictive block-based metadata. Our approach was found toreduce such capacity requirements

by more than 98%. We discuss this strategy by describing the structures we have developed as well

as an estimated reduction formula. We then describe the different trace sets used to evaluate our

current implementations. Finally, we detail our metadata volume calculations.

57

1

2 3 10

0.250.50 0.125

12

0.125

(a) Visualization of OpExTree struc-
ture

root 1

successors

counts

2 3 10 12

4 2 1 1

(b) OpExTree implementation

Figure 15: Optimal Expansion Tree (OpExTree) example.

7.3 DATA STRUCTURES

Several new data structures were designed for as componentsof ourSESHstructure. TheOptimal

Expansion Tree, or OpExTree, is the base structure used in our previous efforts (see Chapter6) for

tracking metadata for predictive data grouping. TheDynamic Bitmapis a functional equivalent to

a normal bitmap, but with the advantage of being dynamicallyallocated and able to spontaneously

grow or shrink. TheDynamic Regionis used to map a fixed number of bits to some ID. Finally, the

SESHstructure is the combination of the above structures used todecrease the size of the necessary

metadata. Following is a brief discussion of each structure.

7.3.1 Optimal Expansion Tree

Our standard metadata storage structure consists of a root ID, or the element’s block number, and an

array of immediate successors, or children. The structure is based on theRecent Popularitystrategy

from earlier work on predictive caching and prefetching [8], and was chosen for its robustness to

signal noise and speed of adaptation to changing workloads.

Children are in the form of block numbers that occurred directly after the root ID. While our

structure allows this array to be unbounded, we limit the number of children. Additionally, we

track how often each child occurred.

Upon seeing a new event’s successor, we add it to the tree by

58

1. Updating the appropriate count, or

2. Adding a new child to the successor array and setting the appropriate count to 1.

In the case of a bounded structure, once we reach the maximum number of children to track, we

update the structure by choosing the lowest occurring successor and removing it from the structure.

The new successor is then placed into the array and its count is set to 1. See Figures15(a)and

15(b)for an example.

An alternate structure design replaces the successor arraywith a queue of children, in order

of occurrence, representing an access history. Upon reaching the maximum capacity, a dequeue is

performed before adding the new event. In this case, the counts are calculated by iterating through

the queue. While this method will typically adjust to workload shifts easier, in practice we find the

event counting to be a severe bottleneck.

A third alternate structure contains a queue as well as an array and counts. The queue is used

in the same way as above, but dequeued items have their countsdeducted, and are removed once

their count reaches zero. In practice, we have found that ourstandard use of only an array very

closely approximates this method, and the queue was removedfrom the standard version.

7.3.2 Dynamic Bitmap

TheDynamic Bitmap(see Figure16(a)) structure consists of a count of total number of entries and

a hash table of nodes. Each node consists of a simple integer array that represents a region of the

functional bitmap. Three operations are possible on any location: Set, Unset, andCheck. Each

Set, Unset, or Check of any particular location is hashed andthe appropriate node, if existent, is

fetched. On a Set, the appropriate integer within the node’sarray is adjusted to update the map. If

the node does not exist, it is created. Similarly, on an Unset, the appropriate integer is adjusted.

If the Unset results in an empty node, equivalent to an array of all zeroes, the node is destroyed.

On a Check, if the node does not exist, zero is returned. Otherwise, the appropriate bit within the

existent array is returned.

As an example, assume we have a node consisting of 512 8-byte long long integers, and we

are attempting a Check operation. The total number of entries in each node is equal to the number

of bits; in this case, 32768, and each entry in the array, as an8-byte integer, contains 64 bits.

59

id 0

array 0 ... 511...16

10110010 11110000 01011010 11010010 11001010 00001010 00000010 00011111

(a) Dynamic Bitmap, key 1055

id 0

array 0 ... 511...49

10110010 11110000 01011010 11010010 11001010 00001010 00000010 00011111

(b) Dynamic Region, key 1055

Figure 16:Dynamic BitmapandDynamic Regionexamples.

Given below are calculations of the node ID (Equation (9)), the array position within the node

(Equation (10)), and the bit location within the 8-byte integer (Equation(11)). Note that all are

integer division operations.

id = key/total node size (9)

ary loc = key/single location size (10)

bit loc = key%single location size (11)

In our example,id = 1055/32768 = 0, ary loc = 1055/64 = 16, andbit loc = 1055%64 = 31.

In this case, we calculate our ID of 0, hash on that ID to retrieve the node, if it exists. Assuming

existence, we calculate the array location of 16, retrieve the 8-byte integer, calculate the bit location

of 31, and perform a bit shift and bit mask to retrieve the value. Thus, the overhead of a single

Check operation is a three integer division operations, a hash table retrieval, an array retrieval, a

bit shift, and a bit mask, all of which are very efficient.

7.3.3 Dynamic Region

TheDynamic Regionstructure is very similar to a bitmap. Instead of each bit being used to rep-

resent some property of some event, a number of bits are used.This is achieved by utilizing a

Dynamic Bitmap, and for each event ID, we increment some region on the map. For our purposes,

60

SESH Control

Node 0
0000 1101 1101 1111 ...

Node 1
1101 0000 1101 1111 ...

Node 5
0100 1101 1101 0011 ...

Node N
0101 1101 1001 1101 ...

Expansion Tree Hash

.

.

.

DynamicRegion Hash

.

.

.

On Failed
DynamicRegion Check

!

" # !$

$%"&

$%&$ $%!"&

!"

$%!"&

!

" #

$%&'

$%'$

(

$%&'

Figure 17:SESHfigure.

61

we required only that each region denote a count, or integer.All analogous operations follow easily

from theDynamic Bitmapstructure. The only change needed is that we must multiply the key by

the number of bits stored for each region. Using our example from earlier, assuming 3 bits per re-

gion,id = 1055× 3/32768 = 0, ary loc = 1055× 3/64 = 49, andbit loc = 1055× 3%64 = 29.

See Figure16(b) for clarification and comparison to theDynamic Bitmapstructure’s analogous

operation.

The computational overhead for theDynamic Regionis expected to be almost identical to

theDynamic Bitmap. Assuming that the region size is smaller than the number of bits in an array

location, there are only two cases where significant differences occur. First, a single array operation

may access two array locations, requiring an additional array position calculation and retrieval and

additional bit location calculation. The other case involves node overlap, requiring and additional

hash retrieval and array retrieval. Thus, in the worst case,we require two node ID calculations and

hash retrievals, two array location calculations and retrievals, andn bit shifts and masks, where

n is the number of bits in each region. Note that all of these operations are expected to be very

efficient, and that the numbern is expected to be quite small, usually 3 to 5.

7.3.4 SESH, or Space-Efficient Storage of Heredity

During our work on prediction and data regrouping (Chapter6), we noted that many blocks have

only a single successor. Most commonly, this successor happens to be the next block. TheSESH

data structure utilizes this observation by removing suchOpExTreesfrom the successor table,

typically a hash table, and utilizing aDynamic Regionto represent the tree. Some region being

non-zero within theDynamic Regionstructure represents a tree having only a single successor,

which happens to be the block directly after the root block inquestion. We call the successors

stored within the regionheir apparents. These heir apparents occur the vast majority of the time

(see Figure18, and each reduces the amount of metadata required from (minimally) several bytes

to only a few bits (on average). Thus, we have most of our metadata, that of all heir apparents,

contained within aDynamic Region, with the small remainder held within a successor table storing

Optimal Expansion trees. See Figure17 for clarification. As a realistic example, tracking eight

successors (64-bit addresses, or 8 bytes) on a 256 GB hard drive with a block size of 512 bytes

62

Figure 18: Rate of occurrence of heir apparents for various traces.

would require 32 GB of metadata.

8× 8× (256 GB/512) = 32 GB

However, each heir apparent would only require, on average,3 bits. Given below is a estimated

calculation for the reduced size, in bits,r, based on the number of blocks,b, the percentage of

blocks that only contain heir apparents,p, and the number of successors tracked for each block,n.

r = b× (log(n)× p + (1− p)× (64 + (64× n)))

Note that this assumes 64-bit block numbers and ignores internal fragmentation within ourDy-

namic Bitmapstructure. One note of interest presented by this formula isthat whenp is very high,

the resulting sizer becomes very scalable with respect to the number of successors,n. Since most

blocks will be stored in theDynamic Region, increasingn results in alog(n) increase in the space

necessary to store it. The larger structures increase linear to n. Even though these structures are

63

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

 0 5 10 15 20 25 30 35 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0

 2e+11

 4e+11

 6e+11

 8e+11

 1e+12

 1.2e+12

Size (bytes)

Estimated SESH Savings (256GB, 512 Block)

non-reduced size reduced size

of Successors

Percentage

Size (bytes)

Figure 19: Estimated calculation of metadata storage spacesavings on a 256 GB hard drive with a

block size of 512 bytes.

expected to represent only a small percentage of all items tracked, theyare expected to dominate

the space used fairly quickly. Figure19 show a 3D plot of a 256 GB hard drive and the metadata

required for storing information for all blocks, both before and after reduction, against the number

of children tracked and the percentage of blocks that contain heir apparents.

The computational overhead of ourSESHobject’s operations is expected to be quite small. The

worst-case overhead is the sum of the worst-case overhead ofa failedDynamic Regionoperation

and a hash retrieval of anOpExTreestructure. However, mostSESHoperations will be a single

Dynamic Regionoperation, as most blocks are expected to be heir apparents.

64

7.4 TRACES

In order to test the reductions ofSESH, we used four different workload sets. Themozartset

consists of a workstation trace gathered using theDFSTracesystem [91]. These traces were con-

verted into equivalent block-level traces with block sizesof 512, 4096 (4K), and 8192 (8K) bytes.

There were four different original trace sizes; day length,week length, month length, and year

length. This set has the appeal of allowing the analysis of our strategies over different definitive

time periods as well as allowing us to convert easily to different block sizes.

The second set,hplajw, is a block-level workstation trace [102]. This set has the advantage of

natively begin a block-level trace, and therefore does not require conversion. However, there is only

a single trace length, and lacks any information of originalfile-system level access information,

and therefore cannot be converted to traces of differing block sizes.

The third set,ranin, is a trace set we gathered using the standardfs usage command found

on Mac OS X. The traces were gathered in 2007 from November to December on a Mac Power-

Book G4 running Mac OS X 10.4. The workload represents a typical graduate student workstation,

and was used for internet browsing, file editing, code compiling, and running and testing experi-

ments (predominantly C++ programs). While there were a few trace interruptions due to rebooting,

including one major software update, the inaccuracies introduced would be negligible. Addition-

ally, the software update had no impact on thefs usage command itself, and any system-level

workload shifts due to this update would represent realistic workload shifts experienced by users

updating their operating system. Cache activity was gathered, but for these traces they were ig-

nored; only device-level requests were used. These requests were in the form of read and write

data and metadata as well as page ins and outs.

The final set,playlist, is a trace set gathered using the samefs usage command. This set was

gathered on two different Mac mini G4 workstations, each with 512 MB of memory and running

Mac OS X 10.3.9. A playlist of 148 songs, with a runtime of approximately 14.8 hours, was run

on each machine. Traces were gathered from August 31, 2008 toMarch 23, 2009, resulting in play

counts over 300. All disk activity due to the mp3 software wasisolated and recorded. One trace

gathered information on a sequential playlist, while the other playlist was shuffled. These traces

represent one extreme of predictability, an estimated upper bound on how predictable a realistic

65

workload could be.

Similar to themozarttraces, ourranin andplaylist workloads include information about how

large an access was requested, and therefore could easily beconverted to equivalent block-level

workloads. Perhaps the most interesting block size is 512 bytes, which is the natively preferred

block size of the hard drives, both for the PowerBook and the Mac minis. However, we included

runs on 4K and 8K block sizes for consistency.

Since thefs usage command collects information onall devices, these traces do require a

bit of attention to what raw device is being accessed. Some devices, such as/dev/NOTFOUND,

were pruned. All devices that seem viable were included in the test run and mapped to a single

device. This mapping was done by giving a 200 GB range to each device. Table10 summarizes

the devices found in theranin traces and how often each occurred, as well as noting which ofthese

were ignored.

Table 10: List of all devices found in theranin trace set.

Device Occurrence Count Included?

/dev/disk0s3 3700000 Yes

/dev/NOTFOUND 570000 No

/dev/disk2s1 190000 Yes

/dev/disk2 73000 Yes

/dev/disk2s0 11000 Yes

/dev/disk1s1 950 Yes

All of these traces consist of data gathered from actual systems, and as such contain real-

world predictability due to user, program, and system behavior, rather than being drawn from a

distribution or synthetic function.

66

Table 11: Comparison of total space of allranin traces.

BLOCK SIZE

TRACE (BYTES) # BLOCKS PROJECTED REDUCED

day 512 33,000,000 3.2 GB 37 MB

week 512 74,000,000 7.2 GB 77 MB

two week 512 99,000,000 9.6 GB 108 MB

full 512 120,000,000 11.6 GB 140 MB

day 4096 4,260,000 417 MB 41 MB

week 4096 12,000,000 1.1 GB 92 MB

two week 4096 16,400,000 1.6 GB 132 MB

full 4096 22,900,000 2.2 GB 180 MB

day 8192 2,150,000 207 MB 41 MB

week 8192 6,270,000 604 MB 91 MB

two week 8192 8,590,000 823 MB 131 MB

full 8192 12,200,000 1.1 GB 176 MB

67

Table 12: Comparison of reduction by percentage and savingsof all ranin traces.

BLOCK SIZE REDUCTION

TRACE (BYTES) SAVINGS (%)

day 512 3.2 GB 98.9

week 512 7.1 GB 99.0

two week 512 9.4 GB 98.9

full 512 11.5 GB 98.8

day 4096 376 MB 90.2

week 4096 1.1 GB 92.2

two week 4096 1.4 GB 91.7

full 4096 2.0 GB 91.9

day 8192 167 MB 80.4

week 8192 513 MB 84.9

two week 8192 692 MB 84.1

full 8192 990 MB 84.9

68

7.5 CALCULATING METADATA REQUIREMENTS

Each workload was split into ten sequential segments of approximately equal access counts. The

trace was then run through our simulator. Each run consistedof the first segment, followed by

running the first and second segments together, and so on until the entire trace was run. At the end

of each segment run, the total metadata space used was recorded.

Each segment’s metadata requirement consisted of the calculation of total space used by our

SESHstructure. This includes any and all extra metadata we used for sake of statistics gathering,

though these extra object fields are negligible. In calculating these metadata requirements, we

count all nodes of allDynamic Bitmapsused in ourDynamic Regions, rather than estimating a

number of bits per heir apparent as in Figure19. In order to calculate the projected size of metadata

using a hash table ofOpExTrees, we multiply the number of heir apparents by the total size ofthe

same number of single-childOpExTreesand add the appropriate hash table metadata needed to

track the extra trees.

7.6 RESULTS

Our results show that almost all traces of non-trivial size show a drastic decrease in necessary

metadata. For most workloads, we can reduce this storage space to only a small percentage of the

original space, typically between 1 and 3 percent for smaller block sizes. Table11summarizes the

sizes recorded at the very end of theranin workloads, while Table12 summarizes the reductions

and savings. Figure20(a)illustrates the difference between the projected metadatarequirements

and the reduced space on theranin traces with 512 byte blocks, while Figure20(b)shows the re-

duced size in terms of projected volume’s percentage. Figures21(a)and21(b)show the respective

results for themozarttraces, again with 512 byte blocks. Thehplajw trace showed results similar

to these 512 byte block traces, with reductions falling between 91% and 97%. The interesting

difference is that thehplajw trace does better early on, then quickly falls to 91% reduction before

flattening out. Theplaylist traces showed reductions similar to theranin workloads, exceeding

98% reductions for small (512 byte) blocks.

69

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
M

et
ad

at
a

Segment #

ranin Traces, Block Size 512

day, reduced
week, reduced

two week, reduced
month, reduced

day, projected
week, projected

two week, projected
month, projected

(a) total space

 0

 2 %

 4 %

 6 %

 8 %

 10 %

 12 %

 1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
o

f
P

ro
je

ct
ed

 S
p

ac
e

Segment #

ranin Traces, Block Size 512

day week two week month

(b) space reduction

Figure 20: Comparison of total projected metadata storage versus reduced storage for allranin

traces with 512 byte blocks.

70

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8 9 10

T
o
ta

l
M

et
ad

at
a

Segment #

mozart Traces, Block Size 512

week, reduced
month, reduced

year, reduced

week, projected
month, projected

year, projected

(a) total space

 0

 2 %

 4 %

 6 %

 8 %

 10 %

 12 %

 1 2 3 4 5 6 7 8 9 10

P
er

ce
n

ta
g

e
o

f
P

ro
je

ct
ed

 S
p

ac
e

Segment #

mozart Traces, Block Size 512

week month year

(b) space reduction

Figure 21: Comparison of total projected metadata storage versus reduced storage for various

mozarttraces with 512 byte blocks.

71

Figure22 shows the amount of space thatSESHrequires for a representative selection of our

traces, as a percentage of the total storage volume. Note that the total amount of space across all

traces and block sizes is less than half a percent. Also notice that the actual space required bySESH

is higher than our estimate. However, this is not unexpected, as our implementations ofOpExTrees

keeps additional information than what is accounted for in our estimate.

As expected, larger traces have more consistent requirements for metadata storage. Smaller

data sets would not adequately capture the larger picture, and would have new blocks introduced

quite frequently, while larger sets would add only the occasional new block.

An interesting result is that total required storage space,after reductions, is reasonably consis-

tent across block sizes, varying only by about 20%, while thetotal number of blocks increases by a

factor of 10 to 15, depending on block size. For instance, thefull ranin trace, at roughly a month in

length, requires about 150 to 189 MB, depending on block size, while the total number of blocks

increases from about 12 million (for 8 KB blocks) to 119 million (for 512 byte blocks). It is also

interesting that forreducedsizes, it is the middle block size (4096 bytes) that requiresthe most

space. As expected, the smallest block size has a much higherreduction rate, as it would exhibit a

far greater amount of predictability, while the largest block size has far fewer blocks to track.

7.7 DISCUSSION AND POSSIBLE ENHANCEMENTS

The application of storage prediction greatly depends uponthe efficient management of supporting

metadata. We have described a novel method for greatly reducing such a volume of first-order

successor information. Our introduced structure,SESH, in addition to requiring minimal, fast

operations for its implementation, dramatically reduces the memory demands of the metadata, two

key complementary features allowing highly optimized and efficient metadata tracking.

An interesting augmentation to ourSESHstructure follows directly from the observation that

theDynamic Regionstructure, used to track successor trees with only the next sequential block ID

as a successor, is actually more potent than presented. We are able to use these successor trees

to look up candidates for the next block ID, but to look up candidates forpreviousblock IDs,

we have to perform an exhaustive search, looking at each block ID’s children for a match. At

72

Percentage Storage Space Required by SESH

ra
ni
n
 (f
ul
l,
8K
B
 b
lo
ck
s)

ra
ni
n
 (f
ul
l,
4K
B
 b
lo
ck
s)

ra
ni
n
 (f
ul
l,
51
2
B
 b
lo
ck
s)

ra
ni
n
 (t
w
o
w
ee
k,
 5
12
 B
 b
lo
ck
s)

ra
ni
n
 (w
ee
k,
 5
12
 B
 b
lo
ck
s)

ra
ni
n
 (d
ay
, 5
12
 B
 b
lo
ck
s)

m
oz
ar
t
(y
ea
r,
51
2
B
 b
lo
ck
s)

m
oz
ar
t
(m
on
th
, 5
12
 B
 b
lo
ck
s)

m
oz
ar
t
(w
ee
k,
 5
12
 B
 b
lo
ck
s)

Figure 22: Percentage of total storage volume thatSESHrequires, compared to the estimate.

first glance, a request for the previous block ID seems superfluous; that request has already been

satisfied. However, several interesting applications arise from extending that request. Knowing

all previous block IDs for the lastn accesses is the very definition of a working set, a set that

caching techniques attempt to replicate. Further, knowingnot only what the working set is, but

the exactsequencecreated it has appealing application as well. Any static attempt to regroup data

on the storage device, easily exemplified by defragmentation, would negate dynamic attempts to

replicate predicted blocks. However, knowing the sequenceof requests leading up to the time

of defragmentation, if large enough, would allow for replication opportunity with the new data

73

grouping. The system could “replay” the sequence, make its decisions on where and what to

replicate, and carry out those replications, all as part of the defragmenting process.

These applications rely on the ability to recreate large sets and sequences. OurSESHstructure

can easily be modified to allow such recreations. Since most blocks are only ever succeeded by

the next sequential block ID, it follows that most blocks areonly everprecededby theprevious

sequential block ID. Thus, our heir apparents may be modifiedto contain only these block pairs.

We call these objectsapparent pairs. Tracking these pairs follows directly from our originalSESH

design. However, the obvious question that follows is what to do with the block pairs that do not fit

this new criterion. We resolve this by keeping our old successor table, storing all block successor

information not found in the apparent pairs, and adding an ancestor table, storing Optimal Expan-

sion trees that store a block’s predecessors. Thus, to get the successor candidate list for blockb

we check the apparent pairs forb’s entry being non-zero. Upon failure, we retrieve the Optimal

Expansion tree from the successor list. To get the ancestor candidate list for the same block, we

check apparent pairs forb−1, and upon a failure, retrieve the expansion tree from the ancestor list.

The addition of our ancestor table, coupled with the new restriction on our apparent pairs

structure, effectively doubles the amount of necessary metadata, but allows for straightforward

recreations of our working set and sequence. We begin by checking the predecessor candidates

for the last requested block ID,p. If p − 1 is in apparent pairs, thenp − 1 has to have preceded

p the last timep occurred. However, the value returned from the request to apparent pairs,n is

the total number of known times thatp − 1 precededp. Thus, we need to track how many times

in the reconstructed sequence we have encountered each block. If p is not in apparent pairs, we

check the Optimal Expansion tree from the ancestor table. Recall from Section7.3that an alternate

version of our Optimal Expansion tree included a successor queue, rather than an array. This queue

contains the lastn successors of the block. Thus, the last item, at thebackof the queue, was most

recent successor for the block, and is added to the reconstructed sequence. Note that we need to

track how many times each block occurs in our sequence, just like for those blocks that exist in

our apparent pairs. Working this way, we can “unravel” the sequence, up to the point where we

encounter a blockb with n total predecessors (not necessarily unique), where we haveencountered

blockb in the reconstructed sequencen times previously. This gives us the maximum size working

sequence, and reconstructing the working set from this sequence is trivial.

74

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 0 5 10 15 20 25 30 35 40 45

se
q

u
en

ce
 l

en
g

th
 (

b
y

te
s)

access # (millions)

Working Sequence Reconstruction

2 children
4 children

8 children
16 children

32 children

Figure 23: Total size, in bytes, of the reconstructed sequence for theranin day trace by access #

(block size 512 bytes).

Our initial trials on this strategy indicated that there were many instances in the workload

where the maximum size of the reconstructed set and sequencedropped off very suddenly, but

we could often reconstruct large chunks of both set and sequence perfectly. Figure23 shows the

total number of bytes we were able to reconstruct for the sequence of theranin day trace (512 byte

blocks), based on the number of children tracked, while Figure24shows the percentage of the total

encountered volume. Figures25and26show the byte and percentage figures for the reconstructed

set.

These initial results show a great deal of promise for reconstructed set and sequence applica-

tion, but due to time constraints, we chose to continue our focus on dynamic regrouping. However,

75

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45

%
 o

f
to

ta
l

se
q

u
en

ce

access # (millions)

Working Sequence Reconstruction

2 children
4 children

8 children
16 children

32 children

Figure 24: Total size, as a percentage of the total volume, ofthe reconstructed sequence for the

ranin day trace by access # (block size 512 bytes).

it should be noted that, for the remainder of our research, weactually utilized this augmented

structure, including the queue version of our Optimal Expansion tree, in the interest of facilitating

future integration of these reconstructing strategies.

76

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 0 5 10 15 20 25 30 35 40 45

w
o

rk
in

g
 s

et
 s

iz
e

(b
y

te
s)

access # (millions)

Working Set Reconstruction

2 children
4 children

8 children
16 children

32 children

Figure 25: Total size, in bytes, of the reconstructed working set for theranin day trace by access #

(block size 512 bytes).

77

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35 40 45

%
 o

f
to

ta
l

u
se

d
 b

lo
ck

s

access # (millions)

Working Set Reconstruction

2 children
4 children

8 children
16 children

32 children

Figure 26: Total size, as a percentage of the total volume, ofthe reconstructed working set for the

ranin day trace by access # (block size 512 bytes).

78

8.0 ROOT SELECTION

In this chapter we describe our strategy for choosing which blocks constitute good selections as

predictive group roots, or starting points for prediction.We have presented grouping strategies for

identifying what data needs to be collocated, and have enhanced these strategies to be effective in

an online manner, as well as reducing their metadata overheads to allow their efficient application

at the block level. While these techniques identify good choices for collocation, a practical decision

needs to be made about which items to collocate first, a ranking of starting points for groups, what

we call the “root selection” for the groups.

As we have previously mentioned, disk layout maintenance allows for the decoupling of strat-

egy from the data path. As a result, we would be able to shut down regrouping efforts, presumably

during heavy workload periods, while still benefiting from earlier efforts. However, such decou-

pling introduces new challenges. In caching, as well as other strategies lying directly on the data

path, we are typically given a block address, and decide whatactions may be taken. Notice that we

aregivena starting point for our scenario because we are operating onthe data path. Such is not

the case in disk layout maintenance; we mustfind such a starting point to act upon.

Finding these starting points, or roots, is non-trivial. Many strategies that immediately present

themselves may easily fail. For instance, we may choose a block that occurs very often. However,

if that block is very well placed, a predictive group might yield little benefit, if any at all. But if

we choose a block that is very poorly placed, but does not occur very often, we may never have

opportunity to use the predictive track.

79

8.1 MOTIVATION

There are several distance metrics that can be used to estimate the “cost” of a disk access. The most

straightforward method isblock distance. This metric is simply the distance between the previous

block address requested and the current block address. A similar metric istrack distance, defined

in Equation (4). A third metric is a simplification of track distance, whichcounts only the number

of transitions caused by an offending block.

Additionally, there are several properties that would be highly desirable among structures used

to track any set of potential roots. The most obvious is some way to sort potential roots so that

events that have higher potential benefit might be chosen first. Secondly, it must be adaptive.

Extrapolating from caching and memory management strategies, we can guess that global infor-

mation is important, but should be skewed towards more recent trends. Thus, our distance metrics

should be tempered with an aging strategy.

Most likely, we will need to set a maximum size for this information. The easiest way to do so

is to treat the structure like a cache; once it reaches a certain maximum capacity, items are evicted

to make way for newer items. Thus, it is desirable to have a high number of “hits” in our structure.

Just like a cache hit, this occurs when we encounter an objectin our workload that is contained

within the structure. However, in our case, we have an additional concern. Usually in caching

strategies, the most crucial statistic to maximize is the number of hits. In layout management, we

not only want to maximize the number of hits, but we want to minimize the number of requisite

updates. It does no good to have a predictive group used if we the cost of updating outweighs the

benefit of its use. Thus, it is desirable to have a strategy that, while not static, exhibits stability.

This stability would allow us to make choices about roots with a higher confidence that they will

remain good choices.

8.2 DATA STRUCTURES

We have observed that finding roots, upon which predictive groups can be formed, is crucial to our

predictive disk layout strategy. But how does one design a structure for capturing what constitutes

80

a good root? How are we to capture distance, as well as recency? How can we obtain adaptable,

but stable, predictive roots?

The first mechanism one might consider is a strictLRU structure. This presents an easily

sortable structure that captures recency well. However, itdoes not capture frequency. A Least

Recently Frequently Used mechanism [75], or LRFU, that contains simple aging, is a reasonable

alternative. But such aging techniques very quickly becomeprohibitively expensive with large

data sets due to large priority queues. In order to obtain thebenefits of a strictLRFU structure

without paying high computational costs, we used a hot list structure, similar to the frequency

tracker used by Deng [25], first detailed as the SegmentedLRU strategy (SLRU) by Karedlaet

al. [63]. These strategies use a dualLRU structure, one as a recency list, and one as a hot list that

items are promoted to out of the recency list. Our structure utilizes a fixed-sizeLRU recency list,

or “filter”, and anLRFU hot list of the same size. Our attempt to balance between recency and

frequency is also similar to efforts made in ARC [87], where two distinct lists are merged, biasing

towards the list that would, in pure form, provide better performance. We further expand on the

baseLRFUscheme by using a distance metric as the score addition to theLRFUstructure. We call

this altered strategy Least Recently Distantly Used (LRDU).

In order to test ourLRU, LRFU, andLRDUstructures, we tested “pure” strategies against each

other and against their hot list counterparts, as well as against two “best case” strategies. Following

is a brief discussion of each structure and strategy tested.

8.2.1 Highest Count

Thehighest countstructure, orhighest countarray, is simply an array of ordered pairs,(b, c), con-

taining each event’s block ID,b, and a count,c, of how many times in the workload the event

occurred. For ranking purposes, this array was kept sorted by count. While computationally unre-

alistic to implement in a real system, this structure provides a reasonable target for our structures.

8.2.2 Highest Distance

While tracking how often an event occurs might be a reasonable strategy, tracking the block dis-

tance or track distance caused by each event would prove morebeneficial. For our purposes, if

81

block A is followed by blockB, then the distance|A − B| is said to be caused byB, since the

storage device must move fromA to B. Another way to clarify this is to observe thatA has been

satisfied, and thus has already “caused” its associated cost, while B is an outstanding request.

Thus, we can define distance of each event, similar to Equations (1) and (4), whereB is preceded

by A.

dist(B) = |A− B| (12)

A similar design using track distance for blockA in trackα to blockB in trackβ would have block

B’s distance as follows.

dist(B) = |α− β| (13)

This equation has the additional benefit of reduced risk of overflow errors, since track distances

are much smaller than block distances. Additionally, thereis little to no overhead incurred, since

we need to calculate the respective tracks for determining whether a transition has occurred.

Using this definition of distance, we kept an array of orderedpairs, (b, d), containing each

event’s block ID,b, and the distance caused by that event,d. Similar to ourhighest countarray,

ourhighest distancearray was sorted by distance for ranking purposes.

8.2.3 LRU and LRU Hot List

We utilized a structure nearly identical to Deng’s frequency tracker [25], containing anLRU“filter”

or “recent list”, as well as anLRU “hot list” of the same size. Upon an event’s request, we check

the filter as well as the hot list. If the item is absent from both, it is added to the filter. If the item

exists in the filter, it is promoted to the first rank within thehot list. If the item is in the hot list, it

is moved to the first rank. Once the hot list is full, upon an event’s promotion, the lowest item is

popped off and demoted to the filter’s first rank.

An important clarification for the hot list structures is that the entire structure’ssizeis deter-

mined by the sum of the size of its parts, with each part, both filter and hot list, having equal

size. Ahit is defined as a requested item being in thehot list; an item’s existence within the filter

constitutes a miss. A miss is also generated if an object is not present in either the hot list or the

filter.

82

8.2.4 LRFU and LRFU Hot List

OurLRFUstructures utilize an aging scheme that closely resembles theNFU strategy detailed and

discussed by Tanenbaum [117]. Upon an event’s request, we check the structure to see if the event

exists. If it does not, an ordered pair(e, s) is added to the structure, wheree is the event’s unique

ID and s is the default “new addition score”. If the item already exists within the structure, the

score is updated with a default “event addition” score that is slightly smaller than the new addition

score. If the structure exceeds the maximum number of ordered pairs, the item with the lowest

score is removed.

Each request for an item generates a structure “clock tick”.Upon reaching a pre-determined

maximum number of ticks, all scores are halved by bit shifting.

This baseLRFU structure is then used for anLRFU Hot List, similar to theLRU Hot list

detailed in Section8.2.3. The strategy for this hot list structure follows directly from theLRUbased

example, with anLRUfilter and anLRFUhot list. This strategy is expected to be significantly faster

than a straightLRFU structure due to the expensiveLRFUportion being half the size.

8.2.5 LRDU and LRDU Hot List

Our LRDU strategy is exactly ourLRFU structure with the default “new addition” and “event ad-

dition” scores replaced with the event’s most recent track distance, as calculated by Equation (13).

The hot list version follows directly from theLRFU version in Section8.2.4, with anLRU filter

and aLRDU hot list.

8.3 EXPERIMENTAL SETUP AND DESIGN

For this project, we used a selection of traces detailed in Chapter4 to test our prototype structures.

In particular, themozart, hplajw, ranin, andplaylistsets were used. In order to determine sensitiv-

ity to structure size, we ran each trace with a variety of sizes, ranging from 256 to 16384, doubling

the size at each step. Preliminary tests of themozarttrace, where we also varied the block sizes

of each workload. Themozarttests verified insensitivity to block size, detailed in the next section.

83

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - year 512

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

(a) year

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - month 512

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

(b) month

Figure 27:LRDU stability ofmozart, month and year traces, with 512 byte blocks.

84

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - year 4K

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

(a) year

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - month 4K

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

(b) month

Figure 28:LRDU stability ofmozart, month and year traces, with 4 KB blocks.

85

 10

 100

 1000

 10000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - year 8K

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

(a) year

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - month 8K

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

(b) month

Figure 29:LRDU stability ofmozart, month and year traces, with 8 KB blocks.

86

 1

 10

 100

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - hplajw whole

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

Figure 30:LRDU stability ofhplajw trace.

 1

 10

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

h
it

s
p
er

 h
it

-r
o
o
t

roots tracked

Hits per hit-root vs. # of Roots - ranin full 512

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

Figure 31:LRDU stability of full ranin trace, 512 byte blocks.

87

As a result, all other workloads were kept in their “natural”block sizes; 512 bytes for theranin

andplaylist traces, and 8 KB for thehplajw trace.

In order to eliminate the bulk of blocks throughout the workload, we employ the use oftrack

distance. Any block that causes a track transition is considered for addition to each structure.

The most tempting statistic of interest to gather for these experiments is the number of hits

within each structure. However, as we mentioned in Section8.1, this is not our only concern. We

must choose roots that exhibit high stability in order to reduce the number of necessary updates at

the storage system level. Thus, we need to track how many hitsoccurandhow many unique root

IDs caused a hit. Ideally, this hit-per-hit-root statistic(hit per unique potential root that has caused

a hit) should be high, showing high stability.

We also mentioned that an ideal structure would exhibit another form of stability, easy sortabil-

ity, with higher priority items possessing a higher estimated savings potential. In order to estimate

this “sorting stability”, we track the total track distancecaused by each block, using Equation (13)

throughout the entire trace. At the very end of the trace, we iterate through each structure and

check the global track distance caused by each ID at each rank. For simplicity, we restrict our

graphs to the top 250 items in each structure. These items represent the highest priority offered

by each structure. Structure with sorting stability shouldhave a cumulative distribution graph that

closely matches that of our Highest Distance metric, perhaps even above the Highest Count met-

ric, while strategies with low sorting stability will have acumulative distribution graph well below

these metrics.

8.4 RESULTS

Our results show that for both hits per hit-root as well as sorting stability, ourLRDU hot list

closely matches or outperforms other feasible strategies.In particular, we see that thisLRDU hot

list strategy is a close second to theLRFUhot list in terms of hits per hit-root, even outperforming

it for larger structure sizes on theranin traces in Figure31. In almost all cases, in fact, similar

strategies tend to perform more and more alike as we increasethe structure sizes. This behavior is

expected; the better strategies choose better roots when resources are scarce. As available resources

88

become abundant, eviction decisions begin to matter less and less. Thus, as the structure sizes

increase, all three hot list strategies perform more and more alike, while all three “pure” strategies

remain dominated by the hot lists, but perform more and more like each other. We also note, as we

mentioned previously, that these trends hold across block sizes, as well as across trace lengths and

workloads.

For block comparisons, consider Figures27(a), 28(a), and29(a)for themozartyear traces and

Figures27(b), 28(b), and29(b) for mozartmonth traces. Note that Figure27 displays results for

512 byte blocks, Figure28for 4 KB blocks, and Figure29for 8 KB blocks. For further comparison

across workloads, see Figure30 for thehplajw trace and Figure31 for the full ranin trace with its

native block size of 512 bytes.

Our sorting stability results in Figures32, 33, 34, 35, and36 show that ourLRDU andLRDU

hot list structure consistently outperforms other feasible strategies. Indeed, in some cases, we

even outperform thehighest countstrategy, a computationally infeasible policy, as can be seen in

Figures35(a)and36(a). In fact, Figure35(a)shows ourLRDUstrategies very closely approximate

thehighest distance. We also note that, for all cases, each hot list version either closely matches

or outperforms its “pure” counterpart. Again, these trendsare consistent across block sizes, trace

lengths, and workloads.

We also note that, for sorting stability, as the structure size increases, the hot list strategies and

the “pure” strategies tend to perform more and more alike. For comparison, Figures32(a), 33(a),

34(a), 35(a), and36(a)all have a structure size of 16384, while Figures32(b), 33(b), 34(b), 35(b),

and36(b)all have a structure size of 512. Table13summarizes these results for all six of the tested

strategies.

8.5 DISCUSSION

Now that we have established that both ourLRDU hot list andLRFU hot list represent good can-

didates for root selection, we are faced with a choice. Whichof these strategies are we to adopt?

In order to address this, we must consider two factors:

1. Do we prefer hits per hit-root to sorting stability?

89

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - year 512

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(a) Structure size 16384

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - year 512

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(b) Structure size 512

Figure 32:LRDU sorting stability ofmozart, year trace, with 512 byte blocks.

90

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - year 4K

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(a) Structure size 16384

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - year 4K

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(b) Structure size 512

Figure 33:LRDU sorting stability ofmozart, year trace, with 4 KB blocks.

91

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - year 8K

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(a) Structure size 16384

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - year 8K

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(b) Structure size 512

Figure 34:LRDU sorting stability ofmozart, year trace, with 8 KB blocks.

92

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - hplajw whole

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(a) Structure size 16384

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - hplajw whole

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(b) Structure size 512

Figure 35:LRDU sorting stability ofhplajw trace.

93

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - ranin full 512

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(a) Structure size 16384

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 0 50 100 150 200 250

o
ff

en
d
er

 d
is

ta
n
ce

structure rank

Offender Distance by Structure Rank - ranin full 512

best count
best dist

LRU

LRU Hotlist
LRDU

LRDU Hotlist

LRFU
LRFU Hotlist

(b) Structure size 512

Figure 36:LRDU sorting stability of fullranin trace, with 512 byte blocks.

94

Table 13: Summary of advantages of all root selection strategies.

Strategy Remains efficient with High Hit to High Sorting

larger structure size Hit-root ratio Stability

LRU !
LRFU !
LRDU !
LRUhot list ! !
LRFUhot list ! ! !
LRDUhot list ! ! !

2. How big do we anticipate our structures to be?

The answer to the first question is straightforward; we prefer hits per hit-root. If the structures

are anticipated to be small, we should choose ourLRFU hot list. However, if we anticipate our

structures being quite large, then both strategies will tend to have the same or very similar ratio of

hits to hit-roots, while the sorting stability for theLRDU hot list would improve faster than that of

theLRFU hot list. Thus, we must answer only this question; do we anticipate the structure sizes

to be quite large? In general, the larger the structure, the more hits we can anticipate. Figures37

and38 show that, for all hot list structures, this appears to hold true. It is interesting to note that

both pureLRFU and pureLRDU seem to suffer from Belady’s anomaly, while the other strategies

do not. Thus, if we are to increase the total potential of a strategy, we may wish to increase the

structure size, and we would prefer theLRDU hot list to theLRFU hot list.

Alternatively, we can consider the choice between anLRDU and anLRFU hot list by consid-

ering our original intent from Section8.1. We wish to have a stable set of potential predictive roots

that have a high probability of occurring within the workload and have a large potential benefit.

Stability, we have mentioned, corresponds to our hit per hit-root ratio. Potential benefit can be con-

sidered in one of several ways. First, we can consider the distance potentially saved by each hit.

Thus, larger distances correspond to larger potential savings. This implies that ourLRDU strategy

95

should be chosen because of its consideration towards distance. But there is another consideration

as well. Assuming we have a predictive group already made, when will we switch to it? While

we address this question in detail in Chapter9, it is worthwhile to briefly answer here. In general,

if we are forced to switch to a different group, we prefer a group that is closer to one that is far

away, all other things being equal. Thus, if we give preference to roots that cause large seeks, we

are more likely to use those roots when we are faced with this choice, and again, we should choose

ourLRDU hot list over ourLRFU hot list, regardless of structure size.

8.5.1 Conclusions

We have examined a number of candidate solutions, includingseveral new and novel strategies, for

tracking group roots, a necessary task for an online grouping engine utilizing first-order successor

information. The best candidates, aLRFU hot list andLRDU hot list, both exhibit desirable qual-

ities. Both are easily sortable, efficient even for large structure sizes, and both exhibit high hit to

hit-root ratios. In fact, in some cases, these strategies even outperform competing but computation-

ally infeasible methods. Of these two, ourLRDU hot list is preferred due to higher expected value

of distant roots overfrequentroots, leading to higher potential use of groups within a distance-

aware engine.

96

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

#
 h

it
s

roots tracked

Hits vs. # of Roots - year 512

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

Figure 37: Hits vs. structure size formozartyear trace, with 512 byte blocks

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

#
 h

it
s

roots tracked

Hits vs. # of Roots - hplajw whole

LRU
LRU Hotlist

LRFU
LRFU Hotlist

LRDU
LRDU Hotlist

Figure 38: Hits vs. structure size forhplajw trace

97

9.0 SPORE - SPACE-EFFICIENT ONLINE REORGANIZER

Having studied various prospective collocation methods, and having addressed metadata storage

solutions as well as root tracking strategies, we now present the construction of our dynamic group-

ing engine. We have previously described strategies for grouping and collocating data, as well as

further enhancements to provide effective online application. We have further detailed mecha-

nisms of metadata reduction to greatly reduce predictive information overhead, and have provided

methods of identifying practical starting points for groupformation, called roots.

Our comprehensive predictive grouping engine,SPORe, orSPace-efficient Online Reorganizer,

uses our optimal expansion strategy,OE ME, from Chapter6. We also incorporate ourSESH

structure for tracking metadata; in practice, we use the augmented structure that tracks predecessor

information as well as successor information, in hopes of future augmentations using ancestor

history. As a result, the Optimal Expansion tree structure we chose to use is the queued variant

detailed in Section7.3. OurLRDUhot list from Section8.2.5is used to monitor potential roots for

predictions.

New challenges arise as we attempt to unify these solutions into a complete grouping policy.

The rest of this chapter focuses on these new challenges and new optimizations. While Chap-

ters7 and8 discuss isolated solutions to individual problems relatedto dynamic grouping, new

challenges are introduced and addressed when combining them as parts of a single online predic-

tive grouping engine. Consequently, we seek to offer the reader a greater understanding of the

challenges within the context of a dynamic grouping engine,rather than generalizing outside such

context as in previous chapters.

98

1 2 3

Figure 39: Hard disk drive, separated into three ranges, each consisting of four tracks.

9.1 MOTIVATION

As we have already established, a dynamic grouper must operate effectively in the face of many

constraints. In general, we need to be able to do the following:

1. Form a predictive group from some root or roots.

2. Gather the necessary metadata for predicting.

3. Choose roots for our predictive groups.

4. Decide where these predictive groups will reside on the physical storage device.

5. Choose when to write out and when to update these predictive groups.

6. When necessary, decide which group, predictive or not, toswitch to.

Our constraints while achieving these goals are:

1. Avoid excessive strain on the CPU.

2. Eliminate unnecessary updates to reduce the burden on thestorage system.

3. Avoid excessive metadata volume size.

99

Most of these goals and constraints we have already addressed. We have demonstrated that

accurate predictive groups can be formed with ourOptimal Expansion, Maximized Expectation

(Section6.2) strategy, given some root (goal1). Further, this strategy shows higher accuracy and

better resilience to diminishing returns than competitivestrategies. Satisfying this goal allows us

to adapt to previously observed behavior in order to predictfuture events. With such a prediction

strategy, it becomes necessary to track this previously observed behavior (goal2) without taxing

the storage subsystem with metadata retrievals and updates(constraint3). We have addressed this

issue withSESH, and it has allowed us to compact this potent first-order successor information

from 14% down to less than 1% the total volume of the storage system.

Predicting from some root allows us adaptability, but necessitates a starting position, the root

itself, in order to proceed (goal3). Our proposed solution, anLRDUhot list structure (Section8.2),

easily lends itself to the task by providing roots that will be easier to transition to, given a group

transition is necessary, as well as providing roots with a high savings potential.

Having formed a predictive group, we must decide where it will reside on the storage system; it

must exists somewhere in order for that group to be availablefor future use (goal4). One generally

accepted rule of thumb in systems research is that disk accesses are precious, a costly commodity,

while disk space is, by comparison, expendable [47]. This observation, along with early work by

Akyürek and Salem on adaptive block placement [4], suggests a preference to copying, rather than

shuffling or migrating, a suggestion followed by recent workfor data layout [15, 56]. Thus, we

seek to utilize empty disk space in order to store predictivegroups. Further, we would like to both

manipulate and utilize these predictive groups opportunistically (goals5 and6).

From a high level, the objective is easy to describe. We wish to have a predictive group close

by when needed; when we write out the group, it should be closeby, and contain blocks that

are normally located very far away but have high estimated likelihood of occurrence from the

current position of the disk head. We accomplish this by having not only a singleLRDU hot list

structure, but multiple structures, each for a portion, orrange, of the disk, as shown in Figure39.

This strategy has several benefits. Decisions become local;we view roots as “good roots for this

section”. This allows us to reduce the size of theLRDU hot list structure, which allows for faster

updates and retrievals (constraints1 and3) while enabling more adaptable behavior. In addition,

the task of locating a suitable position for the predictive group is simplified; we need to find a

100

Group 1 (Root: A)
A, B, C, G, D, E, F, I

A

B

F G H

I J

0.6 0.4

0.20.5
0.9 0.1

0.40.6

E

0.3

Group 2 (Root: K)

K, L, M, F, N, C, G, I

K

F

I

L

J M N

0.2 0.8

0.40.6
0.8 0.2

C

G H

0.9 0.1

1.0

Supergroup (Roots: A and K)

A, B, C, G, D, E, F, I, K, L, M, N, ?, ?, ?, ?

Figure 40: Example of asupergroup, with provided expansion trees, rooted atA andK. Group 1

and Group 2 have their members in order of addition to the group. Notice that, after merging the

two smaller groups, there are four additional objects that can be added to thesupergroup, due to

the overlap between Group 1 and Group 2 ofC, F , G andI.

nearby free physical location, or a group that has not yet been used by the system. This is easily

accomplished by a free-list bitmap to track unusedgroups, rather than blocks.

Once we have a predictive group written out, we would like to keep it as up-to-date as possible.

Stale blocks are of limited use. Recall, however, that disk operations are precious; we do not want

to overburden the storage system with an inordinate number of updates (constraint2). We can

accomplish this via several strategies. First, recall fromour work on static grouping (Chapter6)

that larger group sizes yield better savings potential, butexperience diminishing returns. The

expected benefit is roughly inversely proportional to the group size. For these larger groups, we

may be able to combat this by allowing several smaller groupsto overlap, creating onesupergroup

from several smaller ones. Consider a simple motivating example; two groups with 8 objects may

have an overlap. When merged into one group, we are able to fit more than 8 objects per group

without exceeding a total of 16 objects. Figure40 clarifies this example.

Usingsupergroupsin this way yields several benefits. Fewer total groups are necessary, since

we have more than one root used per group; fewer total groups would yield fewer necessary up-

101

A

B E

0.5 0.5

1.0

C

1.0

D

1.0

G

1.0

Possible Groups of size 4

A, B, C, D

A, B, E, C

A, B, E, F

A, E, F, G

Figure 41: Example of four possibleOE MEgroupings of size 4 from the given expansion tree.

dates. In addition, we may be able to have a higher group size per root due to overlap, as in our

example. In fact, we can even try to consciously exploit this. In our example, the formedsu-

pergroupwas the merge of Group 1 and Group 2. Suppose we know that Group1 has a higher

potential. Presumably, bothA andK were obtained from ourLRDU hot list structure. IfA was

reported to have higher potential, we may wish to bias thesupergrouptowardsA. This can be done

by forming the group forK first, up to half the totalsupergroupsize, then fill the remainder with

A’s group. Any overlap between the groups would allow additional objects that followA to be

added, biasing the group towardsA without penalizingK ’s group.

Our example in Figure40also illustrates another possible improvement. In our example, notice

that objectN has only a single successor,C. Indeed, our prior work onSESHexploits such cases;

they are expected to occur the vast majority of the time. In these cases, performing priority queue

operations is somewhat superfluous; if there is room forC after addingN , we may simply add it

and expand the priority queue withC ’s successors. Indeed, it may even be beneficial to avoid using

the priority queue in this case. The first issue to consider iscomputational cost. These operations

we have observed as the most demanding for theOE MEalgorithm for large groups; reducing them

could greatly improve time complexity (constraint1). Second, it is expected for block accesses to

occur sequentially more often than not. Continually going to the priority queue can, in the case

of equal priorities, have unexpected results, depending onparticular implementation. Consider

102

another example, Figure41. Notice that it is not clear which of the four groupings will actually

occur, though we would clearly prefer either the first or the last, since these groups contain intact

sequences.

9.2 EXPERIMENTAL SETUP AND DESIGN

Our dynamic grouper,SPORe, is composed of four objects; a controller, a scribe, a root monitor,

and a cartographer, shown in Figure42. The data request stream, which normally would have

gone directly to the storage system, is redirected through theSPORecontrol. This is a high-level

decision engine, used to generate requests to the other three primary objects. The scribe is a

SESHobject implemented with a maximum of 8 children. This object, detailed in Chapter7, is

responsible for monitoring first-order successor information for all unique block IDs encountered

as well as providing this information upon request.

The root monitor is a collection ofLRDU hot list objects from Chapter8. Each hot list is

responsible for tracking potential roots for a single rangeon the disk. These ranges are further

detailed in Section9.2.1. Since we reduce the number of roots that need tracked by eachstructure,

we are able to reduce the structure size required of each hot list in order to maximize stability.

In addition, small structures allowed for very fast updatesand retrievals. The default structure

size we used was the group size divided by 256. This number waschosen based on preliminary

exploration; however, further research is needed to confirminsensitivity to this parameter that we

observed.

The cartographer object was responsible for several tasks.Most importantly, it is responsible

for making the final requests to the underlying storage system. These requests could be untouched

requests from the data stream or redirected requests to predictive groups. The cartographer is also

responsible for generating write operations for initializing and updating these predictive groups.

103

Data Request Stream

Cartographer

Root Monitor Scribe

SPORe Control

Storage

Device

Figure 42:SPORefigure.

9.2.1 Root Placement

One function our cartographer object serves is to keep trackof physical device layout. We do this

by first marking each group that is to be accessed without translation. We call these accessesraw

accesses, and refer to these groups asraw groups. Groups are divided intorangeson the device,

with the translation from any particular group ID to its corresponding range ID calculated by a

simple integer division, provided in Equation (14).

range id =
group id

range size
(14)

Each range is allotted anLRDU hot list for tracking prospective roots for predictive grouping.

These hot lists are contained within the root monitor object, and provide localized views of what

roots have the highest cost to access from some particular range. In order to place these groups, we

first scan the range that we are predicting for. If there is an unused group within the range (a group

not yet marked as raw), we perform our prediction there. If not, we begin scanning the device

104

outward from the range in question for an unused group. If we reach some maximum distance

from the range,r max, and have not yet found an empty group, we cease the scan and mark the

range as unpredictable. In practice, we haver max set to the average raw track distance, or the

average track distance that would be traveled without any predictive grouping. This allows us to

avoid unnecessary scans for the range; in the future, we can simply check to see if the range is

unpredictablebeforescanning.

9.2.2 Reducing Update Overhead

ALGORITHM 8 SUPERGROUPOE ME(T, R, max) - a variant ofOE ME, given in Algorithm2,

that forms a group from several roots. Note that we call OEME Prime (Algorithm9).

Input: set of first-order successor trees,T ; an array of root IDs,R, arranged in increasing order

of estimated potential; a maximum group size,max

Output: a set of IDs,G, representing the predictivesupergroup

p max← max/SIZEOF(R)

s← p max

for i = 0 to SIZEOF(R)− 1 do

G← OE ME Prime(G, T, R[i], s)

s← p max

end for

G← OE ME Prime(G, T, R[SIZEOF(R)], max)

return G

We are able to reduce the overhead of updates performed bySPORein three ways. First, in

order to cut down on the number of necessary predictive groups, and thereby reducing the number

of necessary updates, we use predictivesupergroups. Rather than form groups using a single root,

as we did in our work on static grouping, we use multiple roots. Our modified algorithm, given in

Algorithm 8, goes through an ordered array of roots, each with increasing potential, predicting on

each successive root in turn while allowing overlap betweenthe groups.

We are also able to reduce the total number of updates by aborting updates that have very lim-

ited use. While we hope to keep predictive groups fresh, there is little gain to be expected from

105

updating an entire group if only a few blocks are to be replaced. In such cases, where the majority

of blocks remain unchanged, we should consider the group “fresh enough”, and avoid updating it

at this time. We are able to accomplish this task by performing a group difference between a pre-

viously written predictive group and its updated version, as yet unwritten. Computationally, this

group difference is equivalent to performing a set difference. If the overlap between the groups

exceeds some threshold,t, we perform the update. If not, we consider the old version sufficiently

fresh, and abort the update. In practice, we used an overlap threshold of 0.75. This number was

chosen based on preliminary exploration; however, furtherresearch is needed to confirm insensi-

tivity to this parameter that we observed.

The last way to reduce the overhead of updates is by opportunistically using blocks that exist

in memory. As we are forming a predictive group, we check eachblock for existence in memory.

The block is added to the group only if it is readily available, without causing an additional device

access for retrieval, as shown in Algorithm9. For our simulations, this requires a memory model.

In practice, we initially modeled a strictLRU memory object, varying the size from 512 MB to 2

GB. In all cases, we found only a small percentage of rejections due to a block not in memory;

usually, this rejection rate was between one and three percent. We consider this rate to be small

enough to warrant removing the memory object model from our final version ofSPORe.

This decision to remove the memory object was made for two reasons. In practice, memory

management is much more sophisticated than simpleLRU. Accurately capturing the behavior of

modern systems’ memory management we consider beyond the scope of our research. Second, it is

our goal to have generalized results. Modeling memory wouldrequire multiple settings, including

size, speed, and policy choices. With a rejection rate that is much smaller than our overlap thresh-

old, especially from a simple strategy, such asLRU, indicates that memory management would

have minimal impact.

9.2.3 Reducing Priority Queue Size

During our work on static grouping, we noticed that one of thelargest demands on resources, both

memory and CPU cycles, was the priority queue operations. Inorder to substantially reduce the

cost of these operations, as well as to promote intact sequential sequences within our predictive

106

groups, we employ a priority queue “short circuit”. Whenever we decide that a block should exist

within a predictive group,regardlesswhether the block is in memory, we immediately check the

block’s number of successors. If only a single successor exists, we attempt to add this successor,

and repeat the process until more than one successor is found. This optimization is shown in

Algorithm 9.

9.2.4 Group Scanning

Once we have written a predictive group out to the disk, we would ultimately like to maximize

the use of the group for several reasons. First, and perhaps most obviously, the aim of predictive

grouping is to form areas on the disk that require fewer transitions and shorter disk head movement

than the sequentially organized areas of the disk. In addition, frequent visits to predictive groups

grants us low-cost opportunities for attempting updates. Until now, the only discussed method

of entering a predictive group has been by a request for a rootwithin the group. We are able to

dramatically increase the number of uses of predictive groups by relaxing this constraint.

To this end, we use two simple methods. First, upon a request for a block not contained within

the current group, we immediately check the current range’spredictive group. If the block is

contained within this target group, we transition there. Ifit is not, we scan each predictive track

between the current head location and the target raw track. The nearest predictive group containing

the block, assuming such a group is found, becomes the targetgroup, and the disk head is redirected

to this closer group.

This strategy intuitively results in higher usage of predictive groups, but weakens each use. Ar-

guably, these groups’ greatest strength is the amount of transition reduction. Entering the group on

a block that is not a root, or at least near a root, is expected to reduce the number of accesses within

the group. We claim that our grouping strategy is powerful enough to withstand this weakening,

and is expected to continue to outperform raw accesses in this regard. The benefits of increased

predictive group usage are therefore expected to greatly outweigh the risks of entering on a block

far down in the priority queue.

107

ALGORITHM 9 OE ME PRIME(G, T, root, max) - a balanced approach for forming a predic-

tive group, using a group that may or may not already have members. Note that we use the same

expansion function, OEME Expand (Algorithm3), asOE ME(Algorithm 2).

Input: an existing groupG; a set of first-order successor trees,T ; a root ID,root; a maximum

group size,max

Output: a set of IDs,G, representing the predictive group

ENQUEUE(max pq, root, 1)

while ISNOTEMPTY(max pq) and SIZEOF(G) < max do

p← TOPPRIORITY(max pq)

f ← DEQUEUE(max pq)

if SIZEOF(G)+ SIZEOF(f) ≤ max then

if f is in memorythen

ADDTOGROUP(G, f)

end if

while SIZEOF(G) < max and f has only one successordo

f ← SUCCESSOR(f)

if SIZEOF(G)+ SIZEOF(f) ≤ max and f is in memorythen

ADDTOGROUP(G, f)

end if

end while

max pq ← OE ME EXPAND(T, max pq, f, p)

end if

end while

return G

108

0...(n-1) n...(2n-1) 2n...(3n-1) 3n...(4n-1) 4n...(5n-1) 5n...(6n-1) 6n...(7n-1)

0...(n-1) n...(2n-1) 2n...(3n-1) empty 4n...(5n-1) 5n...(6n-1) 6n...(7n-1) empty 8n...(9n-1)

remapped

1 group higher

remapped

1 group higher

remapped

1 group higher

remapped

2 groups higherunchanged unchanged unchanged

Figure 43: Inserting empty groups; in this case, we insert one empty group per four groups, simu-

lating a device that is 25% empty.

9.2.5 Traces

We tested our prototype predictive engineSPOReon three workload sets representing three differ-

ent environments. The first set used was themozartworkload traces from Section4.1.1, gathered

using theDFSTrace[91] system, and represent a pre-cache access stream. This set consists of four

trace lengths, namely day, week, month, and year length. To test sensitivity to varying block size,

these traces were converted to 512 byte, 4 KB, and 8 KB block traces.

In order to provide empty space for predictive grouping, we altered this workload by placing

empty groups within the trace. We provide results for both a 25% empty disk as well as a 75%

empty disk. Distance results provided are based on the original, compact workloads without empty

groups. Figure43 demonstrates this insertion strategy.

The second set,hplajw from Section4.1.2, represents a native block-level trace gathered from

an HP-UX system [102] at the disk level (i.e. filtered through the UNIX buffer-cache). This set

was not converted into other block sizes, due to lack of file-system level information in the trace.

Similar to themozarttrace set, we inserted empty tracks to simulate a 25% empty and 75% empty

disk, with reported distances based on the original, compact trace without any empty groups.

Finally, we used our own trace set,ranin, detailed in Section4.2.1. This trace set represents

more modern disk access patterns, taken from a graduate student laptop workstation, namely the

author’s. For our work, cache-level information was, unless otherwise noted, ignored; only device

level information was used. Much like themozarttrace set, this set was converted into different

109

block sizes to test for block size sensitivity.

These workloads were used without any warm up period ora priori information stored; all

predictive information was captured on the fly. As a result, we can expect shorter traces to show

little improvement, as the system requires time to gather and act upon observed workload patterns.

9.2.6 System Configuration

We conducted all of our experiments on a MacBook running OS X 10.5.8 with a 2.4 GHz Intel

Core 2 Duo processor. This workstation contained 2 GB of 667 MHz DDR2 SDRAM, 3 MB of

L2 cache, and an 800 MHz system bus. The test hard drive was an internal 5400 RPM Hitachi

Travelstar 2.5 inch SATA drive with 160 GB capacity and an 8 MBcache. A vanilla version of

Darwin 9.8.0 with a standard XNU kernel was used.

All programs were implemented in C or C++ compiled with the default versions of the GNU

projectgcc andg++ compilers. To ensure correct program behavior, no optimization flags were

used during project compiling.

9.2.7 Competing Model - Hot Block Clustering

In order to provide a strong competitive comparison forSPORe, we implemented our own version

of an on-disk caching scheme based on hot blocks [4], varying over how often blocks were moved,

the size of a group (or track) in blocks, and the number of tracks reserved for on-disk caching.

Additionally, to further strengthen this hot block clustering scheme, rather than use the numerical

“middle” of the disk, we calculated the average block location throughout each trace, and cen-

tered the disk caching at this average location. This provides an impractical but very beneficial

optimization.

This scheme was run over all block sizes (512 byte, 4 KB, and 8 KB) on themozartweek,

month, and year length traces as well as theranin day, week, two week, and full length traces. The

caching interval was varied between every 8192 accesses, 65536 accesses, and 524288 accesses.

Group sizes used were 1024, 2048, 4096, and 8192 blocks. Reserved caching spaces (region sizes)

used were 1, 2, 3, 4, 8, 16, 32, 64, and 128 groups.

We also used two organization techniques for how blocks werelaid out within the hot block

110

clustering region. The first technique used organ-piping [52] as originally suggested for this on-

disk caching strategy [4]. The second technique was to arrange the blocks by ID. Due tothe highly

sequential nature of the traces used, organ-piping performed very poorly for any region size greater

than 1 group. As a result, in all cases tested, the sequentiallayout strategy outperformed organ-

piping. For a region size consisting of a single group, the results were always identical to the

sequential layout. For these reasons, only the sequential layout technique was compared against

SPORe, providing a stronger competitive comparison.

These caching schemes were implemented in C++ compiled withthe default versions of the

GNU projectgcc andg++ compilers. To ensure correct program behavior, no optimization flags

were used during project compiling.

9.3 RESULTS

We divide our results into five general categories: transition reductions, distance reductions, aver-

age number of accesses per use, write reductions, and estimated throughput ofSPORe. The most

crucial of these we expect to be transition reductions, or the number of times that the disk must

seek to a new location. Of course, given that a transition is necessary, we would prefer a smaller

seek distance in order to satisfy the request. The average accesses per use shows the strength of our

predictive groups against that of the “raw”, sequential groups already present on the disk. We also

present the effect of our write reduction strategy, presenting both the number of writes attempted

and the number of writes performed. Finally, we present the estimated throughput ofSPORe.

In order to minimize effects of strategies not directly related to data grouping, we assume, in

all experiments, a never-idle disk. This avoids power and latency effects associated with other,

largely orthogonal power-saving techniques, such as spin-down techniques.

9.3.1 Reducing Transitions

Our results show transition reductions for almost allmozartworkloads longer than the day trace

for all parameters tested. Figures44 and45 show transition reductions for the week, month, and

111

Table 14: Comparison of estimated predictability of various workloads.

BLOCK SIZE TOTAL UNIQUE

TRACE (BYTES) ACCESSES % SEQUENTIAL BLOCKS % UNIQUE

mozart, day 512 91,000 94.3 11,000 11.9

mozart, week 512 1,760,000 96.3 191,000 10.8

mozart, month 512 7,730,000 98.0 444,000 5.74

mozart, year 512 299,000,000 99.5 2,070,000 0.691

hplajw 8192 2,360,000 92.9 198,000 8.39

ranin, day 512 43,700,000 99.6 33,300,000 76.1

ranin, week 512 125,000,000 99.6 74,200,000 59.2

ranin, two week 512 181,000,000 99.6 98,700,000 54.5

ranin, full 512 260,000,000 99.5 120,000,000 46.2

year length traces for the 25% and 75% empty devices, respectively. Similar results for thehplajw

workload are provided in Figure46. These results include both group switches as well as updates

for predictive groups.

Of these 72 tested parameter permutations, only 8 showed no improvement, and only one of

which showed any degradation. All of these cases had larger block sizes (4 KB or 8 KB) and larger

group sizes (4096 objects or 8192 objects). Only the week length trace with 8 KB blocks and 4096

objects per group, with 25% empty disk, and 4 groups per rangeshowed a decline, registering a 1

additional transition and 1 update from 1126 raw transitions, an increase of 0.1776%.

These results indicate several trends. First of all, we notethat changing block size, while

holding the number of blocks per group constant, increases group size in bytes. This parameter,

group sizein bytes, is the most crucial parameter observed; beyond its influence in this way, block

size is observed to have little effect, especially for larger workloads.

Trace length trends show that increasing group size in bytestends to have smaller effect, while

larger workloads show an increase in performance. One possible explanation is that the deep pre-

112

 0

 10

 20

 30

 40

 50

 60

 70

 1e+06 1e+07 1e+08

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size(bytes)

mozart Transition Reduction
Range size=4, 25% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(a) Four groups per range

 0

 10

 20

 30

 40

 50

 60

 70

 1e+06 1e+07 1e+08

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size(bytes)

mozart Transition Reduction
Range size=8, 25% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(b) Eight groups per range

Figure 44:SPORetransition reductions for 25% empty disk,mozarttraces. Included are the week,

month, and year length traces, with block sizes of 512 bytes,4 KB, and 8 KB.

113

 0

 10

 20

 30

 40

 50

 60

 70

 1e+06 1e+07 1e+08

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size(bytes)

mozart Transition Reduction
Range size=4, 75% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(a) Four groups per range

 0

 10

 20

 30

 40

 50

 60

 70

 1e+06 1e+07 1e+08

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size(bytes)

mozart Transition Reduction
Range size=8, 75% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(b) Eight groups per range

Figure 45:SPORetransition reductions for 75% empty disk,mozarttraces Included are the week,

month, and year length traces, with block sizes of 512 bytes,4 KB, and 8 KB.

114

 0

 5

 10

 15

 20

 25

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size (bytes)

hplajw Transition Reduction

4 groups per range, 25% empty disk
8 groups per range, 25% empty disk
4 groups per range, 75% empty disk
8 groups per range, 75% empty disk

Figure 46:SPORetransition reductions forhplajw trace.

dictions necessary for larger group sizes require longer periods of time to develop. Additionally,

longer workloads will have predictive groups available formost of the trace, while shorter work-

loads need to actively write predictive groups, yet have little time in which to use them. Finally, as

group sizes increase, the total volume of shorter traces approaches that of a single group.

Our ownranin trace set represents a test of robustness for our predictiveengine. While more

sequential than either themozart, the ranin trace set exhibits less predictability due to a large

number of blocks that occur only once in the entire trace. Table 14 shows a comparison of the

mozarttraces with 512 byte blocks, along withhplajw, a natural 8 KB block trace, against ourranin

traces. As expected, over time, the percentage of accesses that occur on an item not previously

observed drops. Yet the shortestmozartworkload has a ratio of unique blocks to accesses almost

four times smaller than the largestranin trace. Our fullranin trace, over a month long, has almost

half the accesses as unique blocks. Such an environment is a true test of a predictive engine’s

sustainability. Even under these difficult conditions,SPORenot only does not suffer, but shows

115

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1e+06 1e+07 1e+08

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size(bytes)

ranin Transition Reduction
Range size=4

day, 512
day, 4K
day, 8K

week, 512

week, 4K
week, 8K

two week, 512
two week, 4K

two week, 8K
full, 512
full, 4K
full, 8K

(a) Four groups per range

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 1e+06 1e+07 1e+08

tr
an

si
ti

o
n
 r

ed
u
ct

io
n
 (

%
)

group size(bytes)

ranin Transition Reduction
Range size=8

day, 512
day, 4K
day, 8K

week, 512

week, 4K
week, 8K

two week, 512
two week, 4K

two week, 8K
full, 512
full, 4K
full, 8K

(b) Eight groups per range

Figure 47:SPORetransition reductions forranin traces. Included are the week, two week, and

full-length traces, with block sizes of 512 bytes, 4 KB, and 8KB.

116

transition improvements, usually between 0.5% and 1.5%, asshown in Figure47.

9.3.2 Reducing Seek Distance

Distance reduction is among the earliest data layout strategies studied. While we expect transitions

to play a larger role in modern disk drives, a generally applicable strategy should reduce distance

as well.SPOReresults indicate that distance reductions are more difficult to generalize. For suffi-

ciently large traces, using limited disk space (25%), distance reductions actually outpace transition

reductions. However, it takes time to learn and act upon observed patterns. For shortermozart

traces, we typically show an increase in distance. This is largely due to the empty tracks inserted

in order to allow replication. For instance, inserting one empty track for every 3 raw tracks corre-

sponds to a 25% empty disk, but results in an expected 33% increase in track distance. As a result,

SPOReneeds to exhibit approximately 33% reduction in distance inorder to break even with the

original, unexpanded trace. Figure48 shows the reductions for themozartweek, month, and year

length traces on a 25% empty disk, while Figure50(a)shows the reductions for thehplajw trace

for a 25% empty disk. In order to better visualize the impact of our strategy on a single trace, we

summed track distance within windows of 2 million accesses on themozartyear trace. Figure52

shows thatSPORehas a dramatic impact after 50 million accesses, or less than20% of the total

length of the trace.

The problem of additional distance due to empty track insertion is compounded when using

a 75% empty disk, resulting in an expected 300% increase in track distance. In this case, even

cutting the distance in half using the expanded trace would result in doubling the distance of the

original, unexpanded trace. Only the year lengthmozarttrace supplies sufficient time forSPORe

to exhibit a benefit under these conditions, as shown in Figure49.

Once again, even in the face of high uncertainty, our ownranin traces show reductions. The

only trace not to do so was the day trace, for 8192 blocks per group (all block sizes). Figure51

shows our distance reductions for these traces.

117

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1e+06 1e+07 1e+08

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size(bytes)

mozart Distance Reduction
Range size=4, 25% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(a) Four groups per range

-40

-20

 0

 20

 40

 60

 80

 1e+06 1e+07 1e+08

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size(bytes)

mozart Distance Reduction
Range size=8, 25% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(b) Eight groups per range

Figure 48:SPORedistance reductions for 25% empty disk,mozarttraces. Included are the week,

month, and year length traces, with block sizes of 512 bytes,4 KB, and 8 KB. Distance reductions

are based on ungrouped, compact trace with no empty groups.

118

-300

-250

-200

-150

-100

-50

 0

 50

 100

 1e+06 1e+07 1e+08

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size(bytes)

mozart Distance Reduction
Range size=4, 75% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(a) Four groups per range

-300

-250

-200

-150

-100

-50

 0

 50

 100

 1e+06 1e+07 1e+08

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size(bytes)

mozart Distance Reduction
Range size=8, 75% empty disk

week, 512
week, 4K
week, 8K

month, 512
month, 4K
month, 8K

year, 512
year, 4K
year, 8K

(b) Eight groups per range

Figure 49:SPORedistance reductions for 75% empty disk,mozarttraces Included are the week,

month, and year length traces, with block sizes of 512 bytes,4 KB, and 8 KB. Distance reductions

are based on ungrouped, compact trace with no empty groups.

119

-4

-2

 0

 2

 4

 6

 8

 10

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size (bytes)

hplajw Distance Reduction

4 groups per range, 25% empty disk
8 groups per range, 25% empty disk

(a) 25% empty disk

-200

-190

-180

-170

-160

-150

-140

-130

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size (bytes)

hplajw Distance Reduction

4 groups per range, 75% empty disk
8 groups per range, 75% empty disk

(b) 75% empty disk

Figure 50:SPORedistance reductions forhplajw traces, with 25% and 75% empty disk. Distance

reductions are based on ungrouped, compact trace with no empty groups. Note that the 75% empty

disk has increased distance for all group sizes.

120

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1e+06 1e+07 1e+08

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size(bytes)

ranin Distance Reduction
Range size=4

day, 512
day, 4K
day, 8K

week, 512

week, 4K
week, 8K

two week, 512
two week, 4K

two week, 8K
full, 512
full, 4K
full, 8K

(a) Four groups per range

 0

 1

 2

 3

 4

 5

 6

 7

 1e+06 1e+07 1e+08

d
is

ta
n
ce

 r
ed

u
ct

io
n
 (

%
)

group size(bytes)

ranin Distance Reduction
Range size=8

day, 512
day, 4K
day, 8K

week, 512

week, 4K
week, 8K

two week, 512
two week, 4K

two week, 8K
full, 512
full, 4K
full, 8K

(b) Eight groups per range

Figure 51: SPORedistance reductions forranin traces. Included are the week, two week, and

full-length traces, with block sizes of 512 bytes, 4 KB, and 8KB.

121

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

tr
ac

k
 d

is
ta

n
ce

access #

year, 512 byte block, 1024 group size, 2M window size

raw, unexpanded expanded and regrouped

Figure 52: Windowed track distance ofmozartyear trace, 512 byte blocks, 1024 objects per group.

We used a window size of 2 million accesses. Notice that we seea dramatic decrease in distance

after less than 20% of the trace.

9.3.3 Accesses and Group Usage

In order to show the effect of our predictive groups, we tracked usage counts throughout our re-

grouping simulation, both for “raw” groups as well as predictive groups. These counts were used

to calculate the average number of accesses per use of each group type. This is similar to the aver-

age accesses per transition (Figures13 and14) from Section6.4.1. The slight difference is that a

transitionoccurs when the disk head moves, including writes. Auseoccurs only when a track is

read. This provides us with a metric with less ambiguity thantransitions.

Figure 53 shows indicative comparisons of themozartmonth and year traces with varying

group sizes, while Figure54 shows thehplajw trace. These results compare the predictive groups

formed inSPOReto both the untouched, original groups, both within the original trace as well

as withinSPORe. In almost all cases, our predictive groups show much higheraverage accesses

122

per use than sequential tracks. Interestingly, for smallergroup sizes, we also see an increase in

sequential group performance as well. We project that this is due to a very simple expectation.

Groups that are poorly formed are likely to have very low accesses per use; hence, these groups are

likely to cause a transition. These transitions are likely absorbed by our predictive groups, allowing

well-formed sequential groups to be predominantly used.

Additionally, we note that our predictive groups tend to be entered predominantly by scanning,

as we discussed in Section9.2.4. This causes a predictive group to commonly be entered on an

object that the group has not been optimized for (i.e. a non-root). Even in the face of this limitation,

our predictive grouping scheme is powerful enough to maintain high accuracy and usage.

Figure55 shows the indicative impact ofSPOReon our ownranin trace set. In the face of

high uncertainty in the workload, coupled with common sub-optimized entrance via scanning, our

predictive groups tend to have much lower accesses per transition, yet commonly manage to allow

for better sequential group usage.

9.3.4 Updating and Storage System Overhead

Our results also show a dramatic decrease in necessary writes by using our group difference strat-

egy, with typical reductions of about 80%. We show this result by tracking how many updates were

attempted as well as how many were committed to the disk. Ultimately, we would like to show the

impact of this reduction on the total number of transitions.We estimate this by adding the updates

that werenot committed. This is a reasonable estimate because most differences between group

versions are expected to be deep predictions with little overall chance of occurrence; hence, they

are not expected to have great impact on the system performance.

Figure56shows indicative results for update reductions for themozartyear and month traces,

while Figure57exhibits indicative results for thehplajw trace and Figure58for our own full ranin

trace. We note that, in most cases, a reduction in updates is necessary to show a net gain in the

number of transitions.

123

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1e+06 1e+07 1e+08

av
er

ag
e

ac
ce

ss
es

 p
er

 u
se

group size (bytes)

Average Accesses Per Use
 mozart year

 Range size=4, 25% empty disk

raw (orig), 512
sequential, 512
predictive, 512

raw (orig), 4K
sequential, 4K
predictive, 4K

raw (orig), 8K
sequential, 8K
predictive, 8K

(a) year trace

 0

 50

 100

 150

 200

 250

 1e+06 1e+07 1e+08

av
er

ag
e

ac
ce

ss
es

 p
er

 u
se

group size (bytes)

Average Accesses Per Use
 mozart month

 Range size=4, 25% empty disk

raw (orig), 512
sequential, 512
predictive, 512

raw (orig), 4K
sequential, 4K
predictive, 4K

raw (orig), 8K
sequential, 8K
predictive, 8K

(b) month trace

Figure 53: Average accesses per group use forSPORe, mozarttraces.

124

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

av
er

ag
e

ac
ce

ss
es

 p
er

 u
se

group size (bytes)

Average Accesses Per Use
 hplajw

KEY
 (type, % empty disk, groups per range)

predictive, 25%, 8
predictive, 25%, 4
predictive, 75%, 8
predictive, 75%, 4

raw (orig), 25%, 8
raw (orig), 25%, 4
raw (orig), 75%, 8
raw (orig), 75%, 4

sequential, 25%, 8
sequential, 25%, 4
sequential, 75%, 8
sequential, 75%, 4

Figure 54: Average accesses per group use forSPORe, full hplajw trace.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1e+06 1e+07 1e+08

av
er

ag
e

ac
ce

ss
es

 p
er

 u
se

group size (bytes)

Average Accesses Per Use
 ranin full

 Range size=4

raw (orig),, 512
sequential, 512
predictive, 512

raw (orig),, 4K
sequential, 4K
predictive, 4K

raw (orig),, 8K
sequential, 8K
predictive, 8K

Figure 55: Average accesses per group use forSPORe, full ranin trace.

125

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

tr
an

si
ti

o
n
s

group size (bytes)

Update Reduction
mozart year, 512 byte blocks

 Range size=4, 25% empty disk

SPORe raw SPORe unreduced

(a) year trace

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

tr
an

si
ti

o
n
s

group size (bytes)

Update Reduction
mozart month, 512 byte blocks
 Range size=4, 25% empty disk

SPORe raw SPORe unreduced

(b) month trace

Figure 56: Estimated impact of update reduction forSPORe, mozarttraces.

126

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

tr
an

si
ti

o
n
s

group size

Update Reduction
 hplajw

 Range size=4, 25% empty disk

SPORe raw SPORe unreduced

Figure 57: Estimated impact of update reduction forSPORe, hplajw trace.

 600000

 650000

 700000

 750000

 800000

 850000

 900000

 950000

 1e+06

 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

tr
an

si
ti

o
n
s

group size (bytes)

Update Reduction
 ranin full, 512 byte blocks

 Range size=4

SPORe raw SPORe unreduced

Figure 58: Estimated impact of update reduction forSPORe, full ranin trace.

127

Table 15: Subset of trace parameters for throughput ofSPORe. Due to the observed limited impact

of range size and disk free space, all traces used the same parameters. In particular, we used a

range size of 4 and, formozartandhplajw, 25% empty disks.

BLOCK SIZE GROUP SIZE THROUGHPUT

TRACE (BYTES) (BLOCKS) GROUP SIZE (BLOCKS / SEC)
mozart, year 512 1024 512 KB 133,000
mozart, year 512 2048 1 MB 113,000
mozart, year 512 4096 2 MB 86,000
mozart, year 512 8192 4 MB 62,000
mozart, year 4096 1024 4 MB 82,000
mozart, year 4096 2048 8 MB 65,000
mozart, year 4096 4096 16 MB 36,000
mozart, year 4096 8192 32 MB 19,000
mozart, year 8192 1024 8 MB 56,000
mozart, year 8192 2048 16 MB 41,000
mozart, year 8192 4096 32 MB 24,000
mozart, year 8192 8192 64 MB 12,000
ranin, full 512 1024 512 KB 145,000
ranin, full 512 2048 1 MB 151,000
ranin, full 512 4096 2 MB 149,000
ranin, full 512 8192 4 MB 132,000
ranin, full 4096 1024 4 MB 83,000
ranin, full 4096 2048 8 MB 66,000
ranin, full 4096 4096 16 MB 57,000
ranin, full 4096 8192 32 MB 44,000
ranin, full 8192 1024 8 MB 52,000
ranin, full 8192 2048 16 MB 46,000
ranin, full 8192 4096 32 MB 34,000
ranin, full 8192 8192 64 MB 25,000

9.3.5 Throughput

Estimating the computational overhead of a predictive engine is non-trivial and greatly depends

on a number of factors, including hardware, specific operating system and file system version

number, and characteristics of the workload. Additionally, the specific workload contributes to the

exact behavior of the system. Idle periods within the workload play a significant role, especially

when estimating CPU overhead of a system. Personal computers can sit unused for hours at a

128

time, and recent work indicates that servers and data centers typically experience about 20-30%

utilization [13,16,89]. Our own 5400 RPM Hitachi Travelstar 2.5 inch SATA drive hasa reported

peak transfer rate of 665 Mb/s [1], or about 79.27 MB/s, yet only 123.79 GB was read during

our entireranin workload, averaging 3.25 GB of data per day. This translatesto an aggregate

demanded transfer rate less than 0.005% of the drive’s maximum.

Table 16: Subset of multi-run trace parameters for throughput of SPORe. Due to the observed

limited impact of range size and disk free space, all traces used the same parameters. In particular,

we used a range size of 4 and, formozartand hplajw, 25% empty disks. The reported mean

throughput is in blocks per second, with 99% confidence interval expressed as a percentage of the

mean.

BLOCK SIZE GROUP SIZE MEAN THROUGHPUT CONFIDENCE

TRACE (BYTES) (BLOCKS) (BLOCKS / SEC) INTERVAL (%)
mozart, month 512 1024 103,000 95.5–104.5
mozart, month 4096 1024 34,000 96.9–103.1
mozart, month 8192 1024 20,000 96.5–103.5
mozart, month 512 8192 38,000 99.8–100.2
mozart, month 4096 8192 10,000 99.8–100.2
mozart, month 8192 8192 21,000 99.8–100.2
hplajw 8192 1024 23,000 99.6–100.4
hplajw 8192 8192 4,000 99.5–100.5
ranin, day 512 1024 137,000 99.9–100.1
ranin, day 4096 1024 128,000 99.8–100.2
ranin, day 8192 1024 87,000 99.8–100.2
ranin, day 512 8192 173,000 99.8–100.2
ranin, day 4096 8192 161,000 99.9–100.1
ranin, day 8192 8192 153,000 99.9–100.1

In order to exhibit generalizable results, we present the throughput demonstrated bySPORe, in

terms of blocks per second, on our test bed system. Each test reported throughout this chapter was

timed using the standardtime command found on Mac OS X. These times included all programs

used in our script test bed, including decompressing the trace files; however, the overhead of these

additional scripted commands we consider minimal. A subsetof these results for longer traces

(mozartyear trace andranin full trace) are provided in Table15. In addition, we tested a subset

of traces and parameters on multiple runs in order to establish confidence intervals. The set of

129

workloads and parameters timed in this way is provided in Table 16, along with mean throughput

and corresponding 99% confidence intervals. We chose only traces that lasted longer than 25

seconds in order to help ensure consistency. Each trace in this multi-run subset was timed 30 times

using the standardtime command found on Mac OS X.

In order to calculate throughput, we divided the total number of block accesses in the trace by

the total CPU time, which is calculated as the sum of the reported user and system time, shown in

Equation (15).

throughput =
total block accesses

user time + system time
(15)

The 99% confidence interval was then calculated using the student’st-distribution.

9.3.6 Comparison against Hot Block Clustering

We compared our implementation of on-disk caching toSPORein terms of transitions as well as

distance (see Figure59). In particular, we compared againstSPORewith a range size of 4 and,

for the mozarttraces, a 25% empty disk. We found thatSPOReoutperformed on-disk caching

in terms of both transitions and distance for 93.7% ofmozartconfigurations and 98.7% ofranin

configurations. On average,SPOReshowed a 26.6% reduction in transitions and a 56.9% reduction

in distance over on-disk caching formozart traces, and a 9.9% reduction in transitions and 7.4%

reduction in distance for theranin traces. Table17shows these results separated by trace and block

size.

9.4 DISCUSSION

Recall our original goals and motivations for a dynamic datagrouper. We sought an engine, dy-

namic and adaptive, that was robust, sustainable, and resilient, aimed at predictions that are not

only accurate, but alsopersistent, unlikely to change quickly, and avoid “knee-jerk” reactions that

become stale before they can be used. In an effort to improve upon the basic goal of prefetching

(i.e. satisfying requests before they are made) we have intended to decouple the satisfying strategy

from the data path by employing predictions that are expected to endure. These predictions, by

130

(a) Percentage of configurations where SPORe outperforms on-disk caching

-60

-40

-20

 0

 20

 40

 60

 80

 100

R
e
d
u
c
t
i
o
n

%

Minimum, Maximum, and Average Reductions of
Transitions and Distance over Hot Block Clustering

mozart

transitions

mozart

distance

ranin

transitions

ranin

distance

Minimum, Maximum, and Average Reductions of SPORe

Transitions and Distance over Hot Block Clustering

R
e
d
u
c
ti
o
n
 %

(b) Average, max, and min improvements of SPORe over on-disk caching

Figure 59:SPORecompared with on-disk caching (hot block clustering).

131

Table 17: Percentages of configurations whereSPOReoutperforms Hot Block Clustering, broken

down by trace and block size.

BLOCK SIZE PERCENTAGE AVERAGE TRANSITION PERCENTAGE AVERAGE DISTANCE

TRACE (BYTES) (FOR TRANSITIONS) REDUCTION (FOR DISTANCE) REDUCTION

mozart, week 512 95.4 28.7 100 60.1
mozart, week 4096 92.6 23.4 98.1 64.5
mozart, week 8192 84.3 20.9 100 72.3

mozart, month 512 100 26.7 100 44.8
mozart, month 4096 100 21.6 100 60.7
mozart, month 8192 100 18.0 100 66.4

mozart, year 512 77.8 3.6 86.1 15.8
mozart, year 4096 100 27.4 100 54.4
mozart, year 8192 100 26.1 100 60.3

ranin, day 512 100 18.5 100 8.5
ranin, day 4096 100 6.3 100 3.4
ranin, day 8192 100 4.5 87.0 -11.9

ranin, week 512 100 18.7 100 10.5
ranin, week 4096 100 7.0 100 8.4
ranin, week 8192 100 5.3 100 8.0

ranin, two week 512 100 17.5 100 9.3
ranin, two week 4096 100 6.5 100 8.6
ranin, two week 8192 100 4.8 100 9.1

ranin, full 512 100 17.1 100 6.4
ranin, full 4096 100 7.1 100 6.8
ranin, full 8192 100 5.7 97.2 4.5

the nature of their expected persistence, lend themselves to persistent replicationon the storage

system, rather than the transient replication of caching and memory management.

Such persistent replication maintains the essence of prefetching implicitly without requiring

immediate action. This provides several improvements overprefetch caching. First, replication

done in the past has value. Caching, by its nature, is transient and short-lived. Work that is done

at the caching level is expected to be short lived, and predictions made long before the current

moment of execution is unlikely to have survived until now. Such is not the case with persistent

predictions, which allow for future uses of the same set of collocated, replicated data. As a result,

the system builds upon itself, improving over time. Additionally, it allows for serendipitous use.

Where prefetch caching must be usefulnow, persistent replication allows for extended utilitylater,

even when we may not have expected it. Arguably, this engineered serendipity is the greatest

strength of data layout management.

132

9.4.1 Persistence of Predictions

In order to verify that our predictions continue to be useful, we altered ourSPOReengine to dis-

continue prediction after a predetermined number of accesses. In practice, the decision to disable

replication should be made dynamically, and potentially for a variety of reasons. For instance, in

the case of high activity, low predictability, or observingthe underlying hardware as idle. For ver-

ifying the intuition that persistent predictions remain valuable, however, requires manual control.

In order to verify predictive groups’ persistent value, we ran themozartyear trace with a block

size of 512 bytes, group size of 1024, and a range size of 4 on the simulated 25% empty disk trace.

This workload and configuration showed approximately 50% reduction in distance and about 11%

reduction in transitions. Figure60(a)shows the windowed average accesses per use for this run

withouthalting predictions. Figure60(b)shows the same run with the same parameter set, halting

predictions after 50 million accesses. At the end of this workload, after acting upon only one sixth

of the entire trace, we observed a 25% reduction in distance and a 3.3% reduction in transitions.

Of particular note is the behavior of the sequential groups in Figure60(b). Notice that almost

immediately after ceasing prediction, our predictive group behavior stabilizes well below that of

both the raw groups as well as the sequential groups withinSPORe. However, the behavior of

sequential groups significantly improves. This supports our earlier observation that our predictive

groups tend to absorb the “difficult” locations within the workload, leaving well-formed sequential

groups as they are, and continues to do so long after we cease to actively predict and update groups.

9.4.2 Robustness to Track Size

The motivating hardware example used throughout our work has been equatinggroupswith disk

tracks. We contend that knowing this track size, while certainly useful and feasible [104], is not

strictly necessary. In order to test this, we ran themozartmonth trace with 512 byte blocks and

simulated 25% empty disk with multiple parameter settings,changing the actual track size and

the presumed track size, or the group size used bySPORe. Note that, sinceSPOReuses only

groups that are completely empty for predicting, when the actual size of tracks is smaller than the

presumed, no prediction takes place, since no empty tracks are found. We calculated the transition

reduction as well as the distance reduction, both in terms ofactual track size, shown in Tables19

133

 0

 100

 200

 300

 400

 500

 600

 700

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

av
er

ag
e

w
in

d
o
w

ed
 a

cc
es

se
s

p
er

 u
se

access #

Windowed Average Accesses (window size 2.5M)
 mozart, year trace

predictive sequential raw (orig)

(a) windowed average accesses per use

 0

 100

 200

 300

 400

 500

 600

 700

 0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

av
er

ag
e

w
in

d
o
w

ed
 a

cc
es

se
s

p
er

 u
se

access #

Windowed Average Accesses (window size 2.5M)
 mozart, year trace, stopped at 50M accesses

predictive sequential raw (orig)

(b) windowed average accesses per use, stopped at 50M accesses

Figure 60: Windowed comparison of vanilla and stoppedSPORefor mozart, year trace. Block size

is 512 bytes, group size is 1024, range size is 4, disk is simulated 25% empty. Window size is 2.5

million accesses. Trace stopped prediction at 50 million accesses.

134

Table 18: Comparison of reduced distance percentages for presumed vs. actual track sizes for

SPOReonmozartmonth trace, 512 byte blocks.

Presumed

Actual 1024 2048 4096 8192

1024 67.7 - - -

2048 66.8 64.9 - -

4096 67.2 63.7 61.7 -

8192 69.6 65.1 63.2 59.7

Table 19: Comparison of reduced transition percentages forpresumed vs. actual track sizes for

SPOReonmozartmonth trace, 512 byte blocks.

Presumed

Actual 1024 2048 4096 8192

1024 94.0 - - -

2048 96.5 90.9 - -

4096 95.2 91.3 86.3 -

8192 95.7 91.2 86.2 83.8

and18, respectively. These results indicate that, as long asSPORe’s group size is at least as big as

the actual track size, we can expect similar benefit.

9.4.3 Confidence Thresholds

Workloads change, shift, and expand; it is inevitable. Thisbehavior is the very essence of what

makes automated adaptability so powerful. Just as we expectstorage system demand to be “bursty”

in nature [14, 16, 91, 94, 95, 102], so do we expect changes to occur in bursts. One undesirable

135

scenario that we seek to avoid is predicting (and committingto the device) groups that use new,

immature information. Such “knee-jerk” predictions may beof limited use; it would be better if

we were able to wait until our predicting engine was operating with a higher confidence to perform

predictions.

To accomplish this, we attempted the use of a confidence threshold. At each block request, we

predict the most likely expected block, given the previous request. This request actually generates

two return values, the predicted block, and the confidence ofthat prediction. This confidence

is exactly the sameP (T, f, s) used in our expansion functions. We keep a running prediction

confidence,r, using the following equation.

r = α× r + (1− α)× P (T, f, s) (16)

Notice that this equation isnota global average confidence. Rather, it is an approximation of such

an average, but with a strong bias towards recent predictions, with lower values ofα corresponding

to stronger bias. In practice, we used the value0.99 for α. Using this running confidence, we are

able to avoid attempting to predict, and therefore avoid poor device-level predictive updates, when

we become skeptical of our predictive engine. In practice, this strategy was actually outweighed by

our other update reduction strategies. Our initial tests indicated that reducing this threshold to zero

actually improved performance; thus, our final results do not include use of a running confidence.

136

10.0 HARDWARE-BASED VALIDATION

Much of our work revolves aroundgeneralizable application. Adaptable, dynamic systems are

more generalizable by their very nature; their ability to change and adapt allows them to tailor

themselves to differing workloads and patterns. Operatingat the block level within a system,

without knowledge of requesting processes or file names, affords more generalizable strategies to

be applied. Even robustness can be viewed as a particular kind on generalizability to withstand

adversarial workloads.

Keeping in this spirit of extensive application, our results have largely been gathered via sim-

ulation. In particular, the two most common results we present aretransitionsanddistance. These

are generally accepted as the two metrics most closely associated with latency and energy costs

of a storage system’s underlying mechanical hardware. By presenting simultaneous reductions on

these two metrics, we provide a means by which many hardware system configurations can be

evaluated by approximation. The only knowledge required todo so is an estimating function of

system performance based on transition count and distance.

In order to validate our results, we present in this chapter the design and analysis of a prototype

hardware system configuration. We have continued to use the hard drive as a motivating hardware

example, and have stressed the number of transitions as the expected primary indicator of hardware

performance. We test these examples and verify our conjectures in our prototype system by timing

a selected subset of the workloads and parameter settings from our SPOReexperiments while

simultaneously sampling the isolated power consumption oftest drive mechanical components.

137

10.1 EXPERIMENTAL SETUP AND DESIGN

We obtained our results from Chapter9 via simulation in order to present generalizable conclu-

sions while minimizing ties to any particular hardware configuration. These results are based on

assumptions about storage system behavior. In particular,we assume the most likely indicator

of system energy cost and latency to be the number of group transitions; the second most likely

indicator we assume to be track distance. While these metrics are generally accepted as accurate

indicators, they are onlyestimates, rather than empirical measurements of real systems.

In order to accurately validate these metrics, a high sampling rate is required. Some disk arm

actuators are capable of moving the physical arm from on sizeof the disk to the other within

milliseconds; we will need to sample at a rate fast enough to capture these very rapid changes.

Additionally, we need to minimize interference of existingenergy and latency reduction tech-

niques, including caching and disk spin-down strategies. Keeping the disk busy should ensure that

no spin-down occurs, but avoiding the cache can be more difficult. Complicating this issue is our

recurring motivating hardware example of disk tracks. The original motivation was that a track

buffer would be accessed more frequently for well-organized groups, leading to fewer device-level

accesses. But this buffer is a cache; steps taken to avoid caches altogether would avoid the buffer

as well. Thus, we need to provide some mechanism for modelingtrack buffer behavior.

10.1.1 System Configuration

All of our experiments were conducted using two test machines, an external hard drive enclosure,

and a DAQ. Two test machines were used in order to prevent the recording of voltage drops from

interfering with the data request stream going to the test drive. The workload replay system used

the same MacBook test machine from ourSPOReexperiments, running OS X 10.5.8 with the

same Darwin and XNU versions, 2.4 GHz Intel Core 2 Duo processor, 2 GB of 667 MHz DDR2

SDRAM, 3 MB of L2 cache, and an 800 MHz system bus. The internalhard drive containing the

trace set was the same 5400 RPM Hitachi Travelstar 2.5 inch SATA drive with 160 GB capacity

and an 8 MB cache. The voltage measurement workstation was a PowerBook running Mac OS X

10.3.9 with vanilla Darwin and XNU kernel, 867 MHz G4 processor, 640 MB of 333 MHz DDR

138

orkload Replay
System

Voltage Measurement
Workstation

Test

Drive

Data
Acquisition

Internal

Power Supply

5 Volts

0.01 Ohm
12 Volts

Data Acquisition
Leads

Network

Data Request
Stream

Firewire 400

Test Drive
Enclosure

Figure 61: Prototype hardwareSPOReevaluation system.

SDRAM, 256 KB of L2 cache, and a 133 MHZ system bus. The internal hard drive used to store

the voltage histories was a 4200 RPM Fujitsu Mobile MHS 2.5 inch ATA-100 drive with a capacity

of 60 GB and a 2 MB cache.

There were three IDE (PATA) drives used to measure latency and energy costs. We used a

320 GB Hitachi Deskstar 7200 RPM with 8 MB cache, a 250 GB Samsung SpinPoint 5400 RPM

with a 2 MB cache, and a Western Digital 320 GB Caviar Blue 7200RPM with an 8 MB cache.

The test drives were placed into an external drive enclosureand connected to the driving system

via Firewire 400. The Data Acquisition (DAQ) unit used was a National Instruments cRIO-9215

with a National Instruments USB-9161 USB Carrier.

In order to accurately measure power of the test drives, we isolated the mechanical components

of the drive. All of our test drives were selected to have separate 5 Volt and 12 Volt lines on the

139

internal IDE power supply. The power consumption of the mechanical components of the drive

was measured by sampling the voltage drop across a 0.01Ω resistor in series with the 12 Volt

line. These samples were taken at 20,000 samples per second using a DAQ system [21]. Figure61

diagrams our prototype system.

Following trace replication suggestions by Gray and Shenoy[118], all experiment runs were

scripted in order to reduce timing errors. Typical experiments would prep a trace replay script,

theSPOReengine, simulated track buffer (described in Section10.1.3), and replay driver on the

workload replay system (detailed in Section10.1.4), then issue a command viassh over the lo-

cal wireless network to the voltage measurement workstation. This required a slight alteration

to our SPOReengine to allow a flag to output the necessary I/O operations rather than gather

statisticsabout those operations. The voltage measurement workstation would then prepare the

DAQ software with appropriate settings, issue ansshcommand to the workload replay system to

begin replaying the trace, and immediately begin recordingvoltages. While the voltage measure-

ment workstation was responsible for recording voltage drops, the workload replay system was

responsible for recording the length of time the workload took to replay using the standardtime

command on Mac OS X. For timing reasons, we would kill anyssh command that lasted longer

than 20 seconds and restart the experiment.

As with ourSPOReproject, all programs were implemented in C or C++ compiled with the

default versions of the GNU projectgcc andg++ compilers. To ensure correct program behavior,

no optimization flags were used during project compiling.

10.1.2 Traces

We selected a subset ofmozart workloads and parameters from our previousSPOReexperi-

ment simulations for validation. For hardware testing, again following suggestions by Gray and

Shenoy [118], we selected only traces that had sufficient run time to reach a stable state. The

shortest trace and parameter set we ran was themozartmonth trace with simulated 8 KB blocks

and 8192 blocks per group. This trace had an average run time more than six minutes. A complete

list of workload parameters is given in Table20.

Most trace sets were run 3 times in order to calculate an average and 99% confidence interval.

140

Table 20: Trace and parameter set tested on prototype hardware. The drives tested are a 320 GB

Hitachi Deskstar (HIT), a 250 GB Samsung SpinPoint (SAM), and a 320 GB Western Digital

Caviar Blue (WD).

BLOCK SIZE GROUP SIZE DRIVES

TRACE (BYTES) (# BLOCKS) # RUNS TESTED

mozart, year 512 1024 3 WD

mozart, year 4096 1024 3 WD

mozart, year 8192 1024 3 WD

mozart, year 512 8192 3 WD

mozart, year 4096 8192 3 WD

mozart, year 8192 8192 3 WD

mozart, month 512 1024 3 WD

mozart, month 4096 1024 3 WD

mozart, month 8192 1024 3 WD

mozart, month 512 8192 3 WD

mozart, month 4096 8192 3 WD

mozart, month 8192 8192 30 HIT, SAM, WD

141

In order to establish that the variance for energy and latency is expected to be low, we ran the

shortest, and therefore most variable, trace and parameterset 30 times. This trace and parameter

set was test on all three test drives, while all other experiments were tested on the Western Digital

Caviar Blue test drive.

10.1.3 Simulated Track Buffer

In order to replicate tracks of various sizes, we implemented a simulated track buffer to sit on the

data request stream betweenSPOReand device driver. This simulated track buffer accepted a track

size used to determine when a new track was necessary (due to atransition). Every new track was

read in its entirety at the time of the first request. While this track size is unlikely to coincide with

the test drive’s actual track sizes, it is a reasonable approximation, validated by our original tests

on SPORe’s robustness to track size. Additionally, any track boundary crossed during the read of

the simulated track would be sequential in nature, causing minimal latency or power cost.

10.1.4 Avoiding Cache Interference

To avoid interference with existing caching schemes, all requests bySPORewere filtered through

our simulated track buffer before being issued by a custom replay driver program. Upon receiving

a block request, our replay driver would request the entire group containing the request, simulating

a track request. These track requests were issued to the raw device; typically, the device path

used was/dev/rdisk2, although each time a test drive was connected, this path wasverified

manually. By issuing raw device-level requests, we avoid going to caches or main memory, forcing

the physical underlying device to satisfy the request.

10.1.5 Identifying Workload Boundaries

While scripted experiments reduce the variation of resultsby removing human error, not all net-

work commands take equal time to complete. In particular, wenoticed during initial experiment

development that mostssh commands took between 3 and 7 seconds. Additionally, due to the

DAQ software’s necessity to fill data arrays, it was necessary to allow additional time for all perti-

nent voltage history information to be written to the disk. Halting the recorder immediately after

142

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

er
ro

r
ra

te

time

Workload Boundary Identification

measured average trace start

Figure 62: Identifying the beginning boundary of a workloadreplay by DAQ error rate. In partic-

ular, this is the first sixty seconds of the voltage history for one experiment on the Samsung test

drive,mozartmonth trace, 8 KB blocks, and 8192 blocks per group.

the workload trace replayer finished would result in missingthe very end of the trace. We there-

fore allowed the recorder to continue operation well after the workload replay had completed. This

poses an interesting question: how do we separate the correct piece of the voltage history in or-

der to calculate energy demands? In order to accomplish this, we looked at the error rate of the

recorder. A resistor of any size should never have a negativevoltage drop, yet they exist through-

out the voltage history. While we ignore these in our energy calculation, they can be useful in

identifying a more precise beginning and end to our workload.

When a drive is idle, there is very little power on the supply line to the mechanical components.

Intuitively, this increases the likelihood that the DAQ will read an erroneous negative value, since

voltages closer to zero are more difficult to detect. We can promote an idle device by specifically

waiting for several minutes between experiments. We can then identify a precipitous drop in error

143

rate in order to identify an accurate beginning of the workload. To calculate this error rate, we used

a window of0.03125 seconds (1
32

of a second).

To find the “start” of a trace, we first find the last positionH between 0 and 60 seconds that

has error rate higher than0.5. We then find the lowest pointL betweenH and 60 seconds, with the

restriction that the error rate at pointL be less than0.05. If no such point exists, we return the first

pointL′ with error rate less than0.25. Figure62shows a typical drop and consequential workload

boundary identification around 4 seconds. In some cases, thetest drive had not gone to sleep in

time. In these cases, we simply use the very beginning of the voltage history as the beginning of

our workload. With workload replays lasting several minutes, and a maximum wait of 20 seconds

for ssh commands, we consider the error introduced in this way to be marginal.

Since we know when the workload began, and we have timed how long the workload took to

complete, we can easily identify the end. This piece of the voltage history was extracted and used

in our power calculations.

10.1.6 Calculating Power

In order to closely approximate the energy cost of the mechanical components of our test drives,

we used Equation (17) and18. We denotep as power,e as energy,v as the voltage drop measured

and recorded in the voltage history, andr as the resistance of the small resistor (0.01Ω) in series

with the device on the 12 Volt line.

p(v) =
v

r
× (12− v) (17)

e(v) = p(v)×
1

20000
(18)

Total energy,E, was calculated as a sum of eache(v) from the voltage history between the identi-

fied workload boundaries.

E =

n
∑

i=1

e(vi) =

n
∑

i=1

p(vi)×
1

20000
=

n
∑

i=1

vi × (12− vi)

20000× ri

(19)

Replacingri with 0.01Ω in Equation (19) yields the following.

E =

n
∑

i=1

vi × (12− vi)

20000× 0.01
=

1

200

n
∑

i=1

vi × (12− vi) (20)

144

10.1.7 Modeling System Energy and Latency

In order to estimate the system-wide impact ofSPORe, we used a straightforward system model

with three components: a processor, main memory, and the underlying storage device. For the

processor, we considered both processor speed and maximum wattage as parameters, as well as

a base percentage of processor usage. This percentage represents how CPU-bound a workload

might be. For main memory, we considered total wattage as a function of wattage per gigabyte and

number of gigabytes. The storage device parameters we used were identically those gathered by

our hardware prototype, simulating three different hard drives.

Total system time was calculated by using the mean time for each storage device for each

workload. For example, if the mean run time for some workloadwas sixty seconds for the Hitachi

test drive, we used a system run time of sixty seconds.

Total system energy was calculated using Equation21.

Esys = Pcpu × u2
cpu × tsys + PRAM × tsys + Edrive (21)

The valuePcpu is the peak power of the processor,ucpu is the utilization of the processor expressed

as a percentage.PRAM is the power of main memory, or the product of wattage per gigabyte and

the number of gigabytes in the system.Edrive was the amount of energy calculated for the trace.

To calculateucpu, we used Equation22.

ucpu =
tcpu ×

Fcpu

Fbase

treal

+ ubase (22)

The valuetcpu is the measured amount of time each workload spent in the CPU (the sum of system

time and user time from thetime command).Fcpu is the processor speed in GHz, andFbase is

the speed of the processor used in our experiments (2.4 GHz).The valuetreal is the amount of

time each workload took to complete (real time from thetime command), andubase is the base

utilization percentage. Ifucpu was found to be greater than 1 (greater than 100% CPU utilization),

the valuetsys was adjusted accordingly. Thus, if we calculateucpu to be 1.1, we added an additional

10% totsys.

We tested multiple configurations, varying processor wattage between 25 and 35 W, processor

speeds of 2.4 GHz and 3.3 GHz, memory power per gigabyte between 2.334 W [28] and 9.555 W

[76], main memory size of 2 and 4 GB, and base utilization of 5% and95%.

145

0%

1%

2%

3%

4%

5%

Time Energy

Transition Estimate HIT SAM WD

Percentage Reduction of Time and
Energy - mozart month (30x runs)

Time Energy

Transition Estimate HIT SAM WD

Figure 63: Comparison ofSPOReestimates and real-world disk measurements.

10.2 RESULTS

Our results are very encouraging in that they indicate a strong correlation between transitions, la-

tency, and energy costs. Figure63 shows a comparison between ourSPORereduction estimates

using the number of transitions and the mean of our actual measured reductions for all three test

drives. These tests were performed on themozartmonth length trace with 8 KB blocks and 8192

blocks per groups, and were performed thirty times each, in order to form tighter confidence inter-

vals in Tables21and22. Figure64shows the latency results for themozartyear length trace, with

a group size of 1024 blocks shown in Figure64(a)and a group size of 8192 blocks in Figure64(b).

Figure65 shows the comparable energy results. These tests were performed three times each on

the Western Digital (WD) test drive.

146

(a) 1024 blocks per group

(b) 8192 blocks per group

Figure 64: Comparison ofSPORelatency estimates against measuredmozartyear trace.

147

(a) 1024 blocks per group

(b) 8192 blocks per group

Figure 65: Comparison ofSPOReenergy estimates against measuredmozartyear trace.

148

Our results support our intuition that transition reduction closely approximates latency and

energy reductions. In particular, we see that themozartyear length traces were very closely ap-

proximated, especially for larger block sizes.

Table 21:mozarthardware latency reduction results.

BLOCK SIZE GROUP SIZE RAW SPORe 99% CI

TRACE (BYTES) (# BLOCKS) DISK Runs T ime (S) T ime (S) (% OF RAW T ime)

month 8192 8192 HIT 30 389 384 0.96 – 1.55

month 8192 8192 SAM 30 489 482 1.16 – 1.90

month 8192 8192 WD 30 401 394 1.57 – 2.09

month 8192 1024 WD 3 809 621 23.04 – 23.28

month 4096 8192 WD 3 463 398 13.45 – 14.37

month 4096 1024 WD 3 851 668 21.21 – 21.84

month 512 8192 WD 3 868 729 15.46 – 16.69

month 512 1024 WD 3 1180 1090 7.45 – 7.73

year 8192 8192 WD 3 9270 3450 62.32 – 63.28

year 8192 1024 WD 3 14700 5630 61.41 – 62.08

year 4096 8192 WD 3 10500 3850 63.19 – 63.67

year 4096 1024 WD 3 17300 7440 56.65 – 57.27

year 512 8192 WD 3 17800 9760 44.93 – 45.31

year 512 1024 WD 3 24100 22000 8.05 – 8.93

Table21 summarizes the results for latency measurements, while Table 22 summarizes the

energy costs. These tables show the mean raw and reduced times for each trace, as well as the

99% confidence interval of the difference between the means.These confidence intervals are

expressed as a percentage of the raw trace measurements. Forexample, the latency reduction for

themozartyear trace with 8 KB blocks and 8192 blocks per group exhibited, with 99% confidence,

between 62.3% and 63.3% reductions on the Western Digital (WD) test drive, as shown in Table21.

The same test shows, with 99% confidence, a 51.8% to 70.7% reduction in energy, as shown

in Table22. Each of these tested cases, even those with small test set sizes, show statistically

significant differences between the raw trace set and the reduced trace set for both energy and

latency reductions.

Interestingly, our latency reduction confidence intervalsappear significantly tighter than energy

reduction confidence intervals. However, for larger test set sizes as well as larger trace sizes, the

energy reduction confidence intervals remain reasonably small.

149

Table 22:mozarthardware energy reduction results.

BLOCK SIZE GROUP SIZE RAW SPORe 99% CI

TRACE (BYTES) (# BLOCKS) DISK Runs Energy (J) Energy (J) (% OF RAW Energy)

month 8192 8192 HIT 30 1550 1520 0.85 – 2.42

month 8192 8192 SAM 30 1200 1160 2.41 – 3.93

month 8192 8192 WD 30 982 954 1.59 – 3.99

month 8192 1024 WD 3 2030 1610 12.52 – 29.20

month 4096 8192 WD 3 1140 1010 5.00 – 18.03

month 4096 1024 WD 3 2130 1670 15.66 – 28.15

month 512 8192 WD 3 2160 1840 11.09 – 18.48

month 512 1024 WD 3 2970 2700 1.86 – 16.74

year 8192 8192 WD 3 22500 8730 51.80 – 70.65

year 8192 1024 WD 3 34800 13700 49.25 – 71.78

year 4096 8192 WD 3 25300 9450 58.69 – 66.70

year 4096 1024 WD 3 41300 18000 54.18 – 58.76

year 512 8192 WD 3 43100 23600 41.31 – 48.84

year 512 1024 WD 3 57700 52800 4.76 – 12.29

Using our system model from Equations21and22, we found thatSPOReto exhibit a reduction

of time for 87.5% of configurations (see Figure66). For energy, we found reductions in 66.1%

of configurations. Every configuration that showed energy reductions were found to also reduce

time. On average, energy was reduced by 17.4% and time by 23.8%. Table23 shows these results

separated by trace, block size, group size, and drive tested.

150

(a) Percentage of system configurations where SPORe shows a benefit

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

R
e
d
u
c
t
i
o
n

%

Minimum, Maximum, and Average
Reductions of System Energy and Time

Energy

R
ed
u
ct
io
n
 %

Time

Minimum, Maximum, and Average Reductions of

System Energy and Time

(b) Average, max, and min system reductions

Figure 66: System model results.

151

Table 23: Reductions of system time and energy forSPOReaccording to our system model, broken

down by trace, block size, group size, and test drive.

BLOCK SIZE GROUPSIZE DRIVE PERCENTAGE AVERAGE ENERGY PERCENTAGE AVERAGE T IME

TRACE (BYTES) (BLOCKS) TESTED (FOR ENERGY) REDUCTION (FOR T IME) REDUCTION

mozart, month 512 1024 WD 75.0 3.0 100 6.6
mozart, month 512 8192 WD 37.5 -0.6 75.0 8.7
mozart, month 4096 1024 WD 100 18.6 100 21.3
mozart, month 4096 8192 WD 25.0 -4.4 75.0 5.9
mozart, month 8192 1024 WD 100 19.7 100 22.9
mozart, month 8192 8192 HIT 25.0 -5.1 50.0 -0.9
mozart, month 8192 8192 SAM 25.0 -3.7 75.0 0.3
mozart, month 8192 8192 WD 25.0 -4.1 50.0 0.2

mozart, year 512 1024 WD 37.5 0.4 100 5.5
mozart, year 512 8192 WD 75.0 16.0 100 33.7
mozart, year 4096 1024 WD 100 54.6 100 56.5
mozart, year 4096 8192 WD 100 44.4 100 56.0
mozart, year 8192 1024 WD 100 59.7 100 61.4
mozart, year 8192 8192 WD 100 45.2 100 55.8

152

11.0 CONCLUSIONS AND FUTURE WORK

With the rate of data generation at an all-time high, and increasing at an alarming pace, storage

system maintenance is an increasingly crucial task. Persistent predictive replication differs from

prefetching in several key ways; most critically, layout maintenance strategies are able to benefit

from prior work on behalf of the system, while prefetching, be it accurate or error-prone, is inher-

ently temporary, even evanescent, tied tightly to the data path. Such predictive layout maintenance

is an area that remains largely unutilized, with only the simplest of techniques that are prevalent.

Yet, in the face of shifting and uncertain workloads, sufficient underlying patterns can be extracted

and utilized towards optimized replication, and can be doneso efficiently and opportunistically.

Towards understanding how these techniques must change to fit modern systems, we have

collected our own long-term, block-level file system traces, complete with cache activity. These

traces, used in tandem with classic file system traces, are used throughout our work for validation

and testing, representing real-world request streams. To further understanding in storage system

layout maintenance, we have defined and optimally solved a general and relaxed grouping problem.

Our solution,DrNO, is optimal in terms of transitions and distance.

With Optimal Expansion, Maximized Expectation, we demonstrate adaptive, efficient, robust

strategies for simultaneously reducing energy and latencycosts for storage systems. We have de-

veloped three such strategies; a generalizable, block-level strategy calledOE ME, a distance-aware

strategy calledOE ED, and a variable-size strategy calledOE ESS. Our primary technique,OE ME,

operates at the block-level, maximizing applicability andgeneralizable utility with minimal nec-

essary information. This method is shown to greatly outperform existing predictive methods in

terms of group transitions as well as distance, tested against real-world workloads. A trend of

diminishing returns is clearly observed with respect to increasing group size in existing methods.

Our technique exhibits particular resilience to this trend, showing up to 70% reduction in both

153

estimated latency and energy while forming far fewer groups.

In order to progress from static grouping to dynamic grouping, our methods must address sev-

eral key issues. We have presented these challenges and our solutions to them, including how

to deal with an explosion of predictive metadata. Our metadata storage structure,SESH, greatly

reduces the size of necessary predictive information without sacrificing information, often reduc-

ing the volume of data by several orders of magnitude. This strategy consistently provides first-

successor information for less than one half of one percent of the total volume of data stored,

with minimal impact on the CPU. A straight-forward augmentation, tracking predecessor as well

as successor information, we have shown to exhibit perfect working set and working sequence

reconstruction.

We have also presentedLRDU, or Least Recently, Distantly Used; when combined with an

LRU filter, this strategy is shown to outperform competing strategies for selecting high-frequency

block offenders while maximizing the utility for prediction. This allows for a highly-sortable, fast,

efficient, adaptive tracking of potential roots upon which to form predictive groups, capable of

approximating optimal strategies for some realistic workloads.

In SPORe, we have presented the culmination of these predictive efforts into a unified, dy-

namic, sustainable engine for adaptive layout maintenanceand replication. This engine is shown

to be robust and resilient to low-confidence workloads as well as incorrect or unknown track size.

Further, we demonstrate our recurring claim of persistent prediction utility and demonstrate that

our predictive groups act as low-confidence pattern buffers, tackling the areas of a workload that

are difficult to characterize. This ability allows for increased utility of sequential, “raw” groups,

even when predictive groups have low average accesses per use. For workloads with high pre-

dictability, our predictive groups show much higher utility than these sequential groups. Further,

we exhibit reduction of necessary group updates, or generated writes to the underlying storage

system, by group comparison, and show increased predictivegroup use through scanning. Addi-

tionally, we present a variety of system parameters, including very large group sizes, in order to

project in the future of hardware storage devices. We have presented an augmented version of our

originalOptimal Expansion, Maximized Expectationalgorithm that formssupergroupsas a way to

combat diminishing returns that we observed in our study of static grouping.

With SPORe, we demonstrate reductions for both transitions as well as distance in order to

154

generalize across systems. These reductions we have verified through hardware validation using

accurate energy calculation. These measurements were gathered using a data acquisition unit mea-

suring voltage drops across a low-impedance resistor in series with test drives’ mechanical power

supplies. We measured voltages at a high sample rate, and have presented straightforward tech-

niques to accurately identify workload boundaries. Energyand latency reductions indicate a close

correlation to transition reductions shown in our simulation study onSPORe; further, the difference

between raw and optimized device-level workloads is shown to be statistically significant, even for

small workloads, with high confidence. These hardware validations are also shown to have low

variance across multiple test drives.

11.1 FUTURE WORK: AUGMENTING SPORE

Several areas within our work onSPORepresent themselves for further study. Default track sizes in

modern disk drives remain significantly smaller than the largest tested sizes in our work. However,

with advances in hardware, this trend may not continue to hold, and larger group sizes we have

demonstrated to demand higher CPU utilization. In addition, all predictive information presented

is replicated; therefore, we foresee possible extensions to write-oriented techniques using low-

confidence predictions within our predictive groups.

11.1.1 Increasing Throughput

Future augmentations ofSPOReinclude various improvements to increase throughput and fur-

ther reduce CPU demand. Many of our techniques greatly help reduce this cost, including use

of supergroups, priority queue “short circuiting”, and especially the useof a compact successor

history structure inSESH. But larger group sizes from possible future devices will require more

CPU cycles to handle. We can increase throughput further in anumber of ways. First, we have

demonstrated thatSPOReis robust to incorrect track size. This means that we are ableto reduce

the sizeobservedgroup sizes if we wish, resulting in lower CPU strain. We may also intentionally

translate smaller blocks seen by the system into larger blocks to be processed bySPORe.

155

Without intentionally misinforming our data layout management engine, we may also devise

a means of decreasing the number of predictive groups formed. While we have demonstrated

the effectiveness of avoiding predictive groupoperations, or writes generated to the underlying

storage device, we have not avoided forming the group. An early detection mechanism for these

uncommitted groups would greatly reduce the computationalcost.

Another way of reducing the computational complexity wouldbe to dynamically decide to

turn off the regrouping portion ofSPORe; we have alluded to this augmentation in Section9.4.1.

This could be done for several reasons, including heavy workload, low observed or expected im-

provement, low confidence in predictions, or little observed change in workload pattern, among

others.

Finally, the structure ofSESHeasily lends itself to custom caching techniques. Predictions on

a block cause aDynamic Bitmapnode to be accessed; with high probability, the same node will

be accessed next. We currently implement a new hash table look up on each access; augmenting

this structure may involve even a simple one-node sized buffer to be checkedbeforeany hash table

operation.

11.1.2 Location ofSESH

Our own collected traces are shown to have low confidence patterns. While reductions are pre-

sented, we anticipate improvements by moving the data collection up in the storage hierarchy.

Further study would require long-term file system traces complete with caching information, sim-

ilar to our own traces, along with a translation fromcache addressto device address. Using this

translation would enable better interaction with cache andmemory management. Specifically, we

anticipate much higher confidence if data is captured pre-cache. Our structure is expected to main-

tain high sequentiality necessary for size reduction, the tree structure used has been shown to be

resistant to system noise [8].

Additionally, we may get some benefit from using knowledge orsimulation of cache or mem-

ory management. Predictive groups become useful if some request isnot satisfied by cache or

memory. We may be able to exploit this by specificallynot including items that are likely to exist

in the cache, given that some request (most likely, the root)has been generated. Such answers

156

may be refined by looking backward from this request,e.g. using our augmentedSESHstructure

that tracks predecessor information. We envision a backwards prediction, with any predecessor

occurring with confidence lower than some threshold being added to a “black list” of IDs that are

not to be added to the predictive group.

11.1.3 Extensions to Write Strategies

Read requests occur when data has already been committed; the underlying system, presumably,

has the information, while a write request is acting upon information yet to be witnessed. This

simple but fundamental difference is the driving impetus behind our focus on read requests. Future

augmentations of our predictive engine may take greater care of write requests in a number of

ways. For example, upon a block’s write request, how might weupdate copies held in predictive

groups? A simple mechanism to solve this coherence problem is to simply free all copies from

predictive groups; the primary benefit is that this operation need not access the track within which

the copies exist.

This “free block” strategy, coupled withreplicatedpredictive groups, presents an additional

possible augmentation. Using freed blocks, possibly alongwith blocks predicted with low con-

fidence, we may provide an area for pending writes, allowing for reduced write-triggered seeks.

We envision the free and low-confidence areas of predictive groups serving as write offloading

locations, as used in [92], but at the device level rather than the data center level.

11.2 FUTRE WORK: TRACE GATHERING AND USAGE

We have previously discussed the merits of trace-driven simulation in Chapter4. With our observa-

tions on reduced confidence patterns existing post cache in our custom collected traces, we foresee

a need for similar traces in the future. Accurate, detailed,long-term traces seem to be uncommon;

indeed, many research papers use short benchmarks lasting 8hours or less [118]. Additionally,

many benchmarks leave out cache information. We predict that traces similar to our own, with

cache translations included, will be in high demand if storage systems and devices are to keep pace

157

with demand trends.

With this in mind, trace gathering need not be a complicated process. We propose the use

of simple tools, such as thefs usage command, used in gathering our own traces, to encourage

trace collection from various public sources. Additionally, we envision a possible system using our

own augmentedSESHstructure to recreate working sequences, wherever they aregathered from,

for large or short trace generation. Upon a simple trace request, the working sequence could be

generated and saved within moments, rather than requiring specific gathering scripts to be initiated.

While recreating a trace in this way has no guarantee of tracelength, it often can generate very large

traces, and would do so within moments, rather than hours or days. Even in the case of intentional

trace collection, a working sequence reconstruction mightbe used for additional sequencing to be

added at the beginning of the workload history.

158

BIBLIOGRAPHY

[1] Hitachi travelstar 5k250 disk drive technical specifications. Retrieved October 6, 2010.
http://www.hitachigst.com/tech/techlib.nsf/techdocs/
E1F385C6ABA70364862572F00067C59B/$file/5K250_DS.pdf.

[2] U.S. Environmental Protection Agency. Greenhouse gas emissions from the U.S. transporta-
tion sector (1990–2003). Technical Report EPA 420-R-06-003, Office of Transportation and
Air Quality (6401A), 2006.

[3] U.S. Environmental Protection Agency. Report to Congress on server and datacenter energy
efficiency. Public Law 109–431, 2007.

[4] Sedat Akyürek and Kenneth Salem. Adaptive block rearrangement.ACM Transactions on
Computer Systems, 13(2):89–121, 1995.

[5] Ahmed Amer.Predictive Data Grouping Using Successor Prediction. PhD thesis, Univer-
sity of California, Santa Cruz, Septemeber 2002. Long, Darrell D.

[6] Ahmed Amer and Darrell D. E. Long. Noah: Low-cost file access prediction through pairs.
In Proceedings of 20th International Performance, Computing, and Communications Con-
ference (IPCCC 2001), pages 27–33, Phoenix, Arizona, April 2001. IEEE Computer Soci-
ety.

[7] Ahmed Amer, Darrell D. E. Long, and Randal C. Burns. Group-based management of
distributed file caches. InProceedings of the 22 nd International Conference on Distributed
Computing Systems (ICDCS’02), Vienna, Austria, 2002. IEEE Computer Society.

[8] Ahmed Amer, Darrell D. E. Long, Jehan-François Pâris,and Randal C. Burns. File ac-
cess prediction with adjustable accuracy. InProceedings of 21st International Performance,
Computing, and Communications Conference (IPCCC 2002), pages 131–140, Phoenix, Ari-
zona, 2002. IEEE Computer Society.

[9] Ahmed Amer, Alison Luo, Newton Der, Darrell D. E. Long, and Alexander Pang. Vi-
sualizing cache effects on i/o workload predictability. InProceedings of the International
Performance Conference on Computers and Communication (IPCCC ’03), pages 417 – 424,
Phoenix, Arizona, April 2003. IEEE Computer Society.

159

http://www.hitachigst.com/tech/techlib.nsf/techdocs/E1F385C6ABA70364862572F00067C59B/$file/5K250_DS.pdf
http://www.hitachigst.com/tech/techlib.nsf/techdocs/E1F385C6ABA70364862572F00067C59B/$file/5K250_DS.pdf

[10] Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L. Miller, Scott A. Brandt, and Darrell
D. E. Long. ACME: Adaptive caching using multiple experts. In Distributed Data & Struc-
tures 4, Records of the 4th International Meeting (WDAS 2002), volume 14, pages 143–158,
Paris, France, March 2002. Carleton Scientific.

[11] Jinsuk Baek, Paul S. Fisher, and Min Gyung Kwak. Fi-based file access predictor. In
ACM-SE 47: Proceedings of the 47th Annual Southeast Regional Conference, pages 1–4,
Clemson, South Carolina, March 2009. ACM.

[12] Sung Hoon Baek and Kyu Ho Park. Prefetching with adaptive cache culling for striped
disk arrays. InATC ’08: USENIX 2008 Annual Technical Conference on Annual Technical
Conference, pages 363–376, Boston, Massachusetts, 2008. USENIX Association.

[13] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.Com-
puter, 40(12):33–37, 2007.

[14] Cullen Bash and George Forman. Cool job allocation: measuring the power savings of
placing jobs at cooling-efficient locations in the data center. In ATC’07: 2007 USENIX
Annual Technical Conference on Proceedings of the USENIX Annual Technical Conference,
pages 1–6, Berkeley, CA, USA, 2007. USENIX Association.

[15] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak, Raju Ran-
gaswami, and Vagelis Hristidis. Borg: block-reorganization for self-optimizing storage sys-
tems. InFAST ’09: Proccedings of the 7th conference on File and storage technologies,
pages 183–196, Berkeley, CA, USA, 2009. USENIX Association.

[16] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael Kistler, Charles Lefurgy,
Chandler McDowell, and Ram Rajamony. The case for power management in web servers.
Power aware computing, pages 261–289, 2002.

[17] John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger, and Contributors.
The disksim simulation environment. Retrieved on August 19, 2009http://www.pdl.
cmu.edu/DiskSim/, 2008.

[18] John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger, and Contributors.
The disksim simulation environment version 4.0 reference manual. Technical Report CMU-
PDL-08-101, Carnegie Mellon, 2008.

[19] Luis-Felipe Cabrera and Darrell D. E. Long. Swift: Using distributed disk striping to provide
high i/o data rates.Computing Systems, 4(4):405–436, 1991.

[20] Scott D. Carson and Paul F. Reynolds Jr. Adaptive disk reorganization. Technical Report
UMIACS–TR–89–4 and CS–TR–2178, Institute for Advanced Computer Studies, Depart-
ment of Computer Science, University of Maryland, and Department of Computer Science,
University of Virginia, January 1989.

160

http://www.pdl.cmu.edu/DiskSim/
http://www.pdl.cmu.edu/DiskSim/

[21] Matthew Craven and Ahmed Amer. Predictive reduction ofpower and latency (PuRPLe).
In MSST ’05: Proceedings of the 22nd IEEE / 13th NASA Goddard Conference on Mass
Storage Systems and Technologies, pages 237–244, Monterey, California, April 2005. IEEE
Computer Society.

[22] Igor Crk and Chris Gniady. Context-aware mechanisms for reducing interactive delays of
energy management in disks. InATC ’08: USENIX 2008 Annual Technical Conference on
Annual Technical Conference, pages 71–84, Boston, Massachusetts, 2008. USENIX Asso-
ciation.

[23] Kenneth M. Curewitz, P. Krishnan, and Jeffrey Scott Vitter. Practical prefetching via data
compression.SIGMOD Record, 22(2):257–266, 1993.

[24] Helen Custer.Inside the Windows NT File System. Microsoft Press, Redmond, WA, USA,
1994.

[25] Yuhui Deng. Exploiting the performance gains of moderndisk drives by enhancing data
locality. Information Sciences, 179(14):2494–2511, 2009.

[26] Peter J. Denning. Effects of scheduling on file memory operations. InAFIPS ’67 (Spring):
Proceedings of the April 18-20, 1967, Spring Joint ComputerConference, pages 9–21, At-
lantic City, New Jersey, April 1967. ACM.

[27] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong Zhang. Diskseen: ex-
ploiting disk layout and access history to enhance i/o prefetch. InATC ’07: 2007 USENIX
Annual Technical Conference on Proceedings of the USENIX Annual Technical Conference,
pages 1–14, Santa Clara, California, 2007. USENIX Association.

[28] Bruno Diniz, Dorgival Guedes, Wagner Meira, Jr., and Ricardo Bianchini. Limiting the
power consumption of main memory. InProceedings of the 34th annual international sym-
posium on Computer architecture, pages 290–301, San Diego, California, June 2007. ACM.

[29] Fred Douglis, P. Krishnan, and Brian Bershad. Adaptivedisk spin-down policies for mobile
computers. InMLICS ’95: Proceedings of the 2nd Symposium on Mobile and Location-
Independent Computing, volume 8, pages 121–137. USENIX Association, April 1995.

[30] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-hungry disk. InWTEC
’94: Proceedings of the USENIX Winter 1994 Technical Conference on USENIX Win-
ter 1994 Technical Conference, pages 293–306, San Francisco, California, January 1994.
USENIX Association.

[31] Dan Duchamp. Prefetching hyperlinks. InUSITS’99: Proceedings of the 2nd conference
on USENIX Symposium on Internet Technologies and Systems, Boulder, Colorado, 1999.
USENIX Association.

[32] David Essary and Ahmed Amer. Dr NO clustering: Mozart trace analysis. Technical Report
TR-04-112, Department of Computer Science, University of Pittsburgh, August 2004.

161

[33] David Essary and Ahmed Amer. Project (Dr.) NO proof of optimality. Technical Report
TR-04-113, Department of Computer Science, University of Pittsburgh, March 2004.

[34] David Essary and Ahmed Amer. Predictive data grouping:Defining the bounds of energy
and latency reduction through predictive data grouping andreplication. Transactions on
Storage, 4(1):1–23, May 2008.

[35] David Essary and Ahmed Amer. Avoiding state-space explosion of predictive metadata with
SESH. InProceedings of the IEEE International Performance, Computing and Communi-
cations Conference (IPCCC), Phoenix, Arizona, December 2009. IEEE Computer Society.

[36] David Essary and Ahmed Amer. Space-efficient predictive block management. InProceed-
ings of the International Workshop on Software Support for Portable Storage (IWSSPS’09),
Grenoble, France, October 2009. ACM.

[37] Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications.
SIGOPS Operating Systems Review, 33(5):48–63, December 1999.

[38] Community Office for Resource Efficiency. Carbon dioxide information analysis center
frequently asked questions. Retrieved on August 19, 2010 fromhttp://cdiac.ornl.
gov/pns/faq.html.

[39] Gregory R. Ganger and M. Frans Kaashoek. Embedded inodes and explicit grouping: Ex-
ploiting disk bandwidth for small files. InATEC ’97: Proceedings of the annual conference
on USENIX Annual Technical Conference, pages 1–17, Anaheim, California, January 1997.
USENIX Association.

[40] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The disksim simulation en-
vironment version 1.0 reference manual. Technical Report CSE-TR-358-98, University of
Michigan, February, 1998.

[41] Gregory R. Ganger, Bruce L. Worthington, and Yale N. Patt. The disksim simulation envi-
ronment version 2.0 reference manual. Technical report, Carnegie Mellon, 1999.

[42] John F. Gantz, Christopher Chute, Alex Manfrediz, Stephen Minton, David Reinsel,
Wolfgang Schlichting, and Anna Toncheva. The diverse and exploding digital universe.
IDC white paper, http://www.emc.com/collateral/analyst-reports/
diverse-exploding-digital-universe.pdf, 2008.

[43] Lieutenant Colonel Tim Gibson and Ethan L. Miller. An improved long-term file usage
prediction algorithm. InCMG ’99: 25th International Computer Measurement Group Con-
ference, pages 639–648, Reno, Nevada, December 1999. Computer Measurement Group.

[44] Binny S. Gill and Dharmendra S. Modha. Sarc: sequentialprefetching in adaptive replace-
ment cache. InATEC ’05: Proceedings of the annual conference on USENIX Annual Tech-
nical Conference, Anaheim, California, April 2005. USENIX Association.

162

http://cdiac.ornl.gov/pns/faq.html
http://cdiac.ornl.gov/pns/faq.html
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf

[45] Richard Golding, Peter Bosch, Carl Staelin, Tim Sullivan, and John Wilkes. Idleness is not
sloth. InTCON’95: Proceedings of the USENIX 1995 Technical Conference Proceedings on
USENIX 1995 Technical Conference Proceedings, New Orleans, Louisiana, January 1995.
USENIX Association.

[46] Richard Golding, Peter Bosch, and John Wilkes. Idleness is not sloth. Technical Report
HPL-96-140, Hewlett-Packard Laboratories, Palo Alto, California, 1996.

[47] Jim Gray and Prashant Shenoy. Rules of thumb in data engineering. InICDE ’00: Proceed-
ings of the 16th International Conference on Data Engineering, Washington, DC, USA,
2000. IEEE Computer Society.

[48] Paul M. Greenawalt. Modeling power management for harddisks. InMASCOTS ’94: Pro-
ceedings of the Second International Workshop on Modeling,Analysis, and Simulation On
Computer and Telecommunication Systems, pages 62–66, Durham, North Carolina, Febru-
ary 1994. IEEE Computer Society.

[49] James Griffioen and Randy Appleton. Reducing file systemlatency using a predictive ap-
proach. InUSTC ’94: Proceedings of the USENIX Summer 1994 Technical Conference on
USENIX Summer 1994 Technical Conference, pages 197–207, Boston, Massachusetts, June
1994. USENIX Association.

[50] Sudhanva Gurumurthi, Youngjae Kim, and Anand Sivasubramaniam. Using steam for ther-
mal simulation of storage systems.IEEE Micro, 26(4):43–51, July 2006.

[51] Sudhanva Gurumurthi, Anand Sivasubramaniam, and Vivek K. Natarajan. Disk drive
roadmap from the thermal perspective: A case for dynamic thermal management. InISCA
’05: Proceedings of the 32nd annual international symposium on Computer Architecture,
volume 33, pages 38–49, Madison, Wisconsin, May 2005. ACM.

[52] G. H. Hardy, J. E. Littlewood, and G. Pólya.Inequalities. Cambridge University Press, 2
edition, 1952, reprinted 1983.

[53] David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and Bruce Sherrod. Adaptive
disk spin-down for mobile computers.ACM/Baltzer Mobile Networks and Applications
(MONET), 5(4):285–297, December 2000.

[54] David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dynamic disk spin-down
technique for mobile computing. InMobiCom ’96: Proceedings of the 2nd annual inter-
national conference on Mobile computing and networking, pages 130–142, Rye, New York,
November 1996. ACM.

[55] Mark Herbster and Manfred K. Warmuth. Tracking the bestexpert. InTwelfth International
Conference on Machine Learning, pages 286–294, Tahoe City, California, 1995. Morgan
Kaufmann.

163

[56] Hai Huang, Wanda Hung, and Kang G. Shin. Fs2: dynamic data replication in free disk
space for improving disk performance and energy consumption. SIGOPS Operating Systems
Review, 39(5):263–276, December 2005.

[57] Lan Huang and Tzi cker Chiueh. Implementation of a rotation latency sensitive disk sched-
uler. Technical Report CS-TR-283-90, Computer Science Department, State University of
New York at Stony Brook, 2000.

[58] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk scheduling framework to
overcome deceptive idleness in synchronous I/O. InSOSP ’01: Proceedings of the eigh-
teenth ACM symposium on Operating systems principles, pages 117–130, Banff, Alberta,
Canada, October 2001. ACM.

[59] David M. Jacobson and John Wilkes. Disk scheduling algorithms based on rotational
position. Technical Report HPL-CSP-91-7, Concurrent Computing Department, Hewlett-
Packard Company, Palo Alto, California, 1991.

[60] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong Zhang. Dulo: an effective
buffer cache management scheme to exploit both temporal andspatial locality. InFAST ’05:
Proceedings of the 4th conference on USENIX Conference on File and Storage Technologies,
pages 8–8, San Francisco, California, 2005. USENIX Association.

[61] Nikolai Joukov and Josef Sipek. Greenfs: making enterprise computers greener by protect-
ing them better. InEurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pages 69–80, Glasgow, Scotland UK, April 2008.
ACM.

[62] Mahmut Kandemir, Seung Woo Son, and Mustafa Karakoy. Improving disk reuse for reduc-
ing power consumption. InISLPED ’07: Proceedings of the 2007 international symposium
on Low power electronics and design, pages 129–134, Portland, Oregon, 2007. ACM.

[63] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching strategies to im-
prove disk system performance.Computer, 27(3):38–46, 1994.

[64] Youngjae Kim and Sudhanva Gurumurthi An. Understanding the performance-temperature
interactions in disk i/o of server workloads. InHPCA-12: 12th International Symposium on
High-Performance Computer Architecture, pages 179–189, Austin, Texas, February 2006.
IEEE Computer Society.

[65] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system.
13th ACM Symposium on Operating Systems Principles (SOSP), 25(5):213–225, October
1991.

[66] Rachita Kothiyal, Vasily Tarasov, Priya Sehgal, and Erez Zadok. Energy and performance
evaluation of lossless file data compression on server systems. InSYSTOR ’09: Proceedings
of SYSTOR 2009: The Israeli Experimental Systems Conference, pages 1–12, New York,
NY, USA, 2009. ACM.

164

[67] P. Krishnan.Online prediction algorithms for databases and operating systems. PhD thesis,
Department of Computer Science, Brown University, Providence, RI 02912, August 1995.

[68] P. Krishnan, Philip Long, and Jeffrey Scott Vitter. Learning to make rent-to-buy decisions
with systems applications. InProceedings of the Twelfth International Conference on Ma-
chine Learning (ML95), pages 322–330, Tahoe City, California, July 1995. Morgan Kauf-
mann.

[69] P. Krishnan, Philip Long, and Jeffrey Scott Vitter. Adaptive disk spin-down via optimal
rent-to-buy in probabilistic environments.Algorithmica, 23(1):31–56, July 1999.

[70] Thomas M. Kroeger and Darrell D. E. Long. Predicting future file-system actions from prior
events. InProceedings of the 1996 Usenix Winter Technical Conference, pages 319–328, San
Diego, California, January 1996. USENIX Association.

[71] Thomas M. Kroeger and Darrell D. E. Long. The case for efficient file access pattern mod-
eling. InHOTOS ’99: Proceedings of the The Seventh Workshop on Hot Topics in Operating
Systems, pages 14–9, Rio Rico, Arizona, March 1999. IEEE Computer Society.

[72] Thomas M. Kroeger and Darrell D. E. Long. Design and implementation of a predictive file
prefetching algorithm. InUSENIX Annual Technical Conference, pages 105–118, Boston,
Massachusetts, June 2001. USENIX Association.

[73] Thomas M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring the bounds of web
latency reduction from caching and prefetching. InUSITS’97: Proceedings of the USENIX
Symposium on Internet Technologies and Systems on USENIX Symposium on Internet Tech-
nologies and Systems, Monterey, CA, 1997. USENIX Association.

[74] James A. Larkby-Lahet, Ganesh Santhanakrishnan, Ahmed Amer, and Panos K. Chrysan-
this. Step: Self-tuning energy-safe predictors. InMDM ’05: Proceedings of the 6th inter-
national conference on Mobile data management, pages 125–133, Ayia Napa, Cyprus, May
2005. ACM.

[75] Donghee Lee, Jongmoo Choi, Jong hun Kim, Sam H. Noh, SangLyul Min, Yookun Cho, and
Chong Sang Kim. LRFU (least recently/frequently used) replacement policy: A spectrum of
block replacement policies. InIEEE Transactions on Computers. IEEE Computer Society,
1996.

[76] Charles Lefurgy, Karthick Rajamani, Freeman Rawson, Wes Felter, Michael Kistler, and
Tom W. Keller. Energy management for commercial servers.Computer, 12, December
2003.

[77] Hui Lei and Dan Duchamp. An analytical approach to file prefetching. InATEC ’97:
Proceedings of the annual conference on USENIX Annual Technical Conference, Anaheim,
California, January 1997. USENIX Association.

165

[78] A W Leung, M Shao, T Bisson, S Pasupathy, and E L Miller. High-performance metadata
indexing and search in petascale data storage systems.Journal of Physics: Conference
Series, 125(1), 2008.

[79] Andrew W. Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and Ethan L.
Miller. Spyglass: fast, scalable metadata search for large-scale storage systems. InFAST
’09: Proccedings of the 7th conference on File and storage technologies, pages 153–166,
Berkeley, CA, USA, 2009. USENIX Association.

[80] Dong Li. High performance energy efficient file storage system. PhD thesis, University of
Nebraska at Lincoln, Lincoln, NB, USA, 2006. Adviser-Wang,Jun.

[81] Dong Li and Jun Wang. A performance-oriented energy efficient file system.SNAPI ’04:
Proceedings of the international workshop on Storage network architecture and parallel
I/Os, pages 58–65, 2004.

[82] Huajing Li, Wang-Chien Lee, Anand Sivasubramaniam, and C. Lee Giles. A hybrid cache
and prefetch mechanism for scientific literature search engines. InICWE’07: Proceedings
of the 7th international conference on Web engineering, pages 121–136, Berlin, Heidelberg,
2007. Springer-Verlag.

[83] Mingju Li, Elizabeth Varki, Swapnil Bhatia, and Arif Merchant. TaP: table-based prefetch-
ing for storage caches. InFAST ’08: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, pages 1–16, San Jose, California, 2008. USENIX Association.

[84] Jacob R. Lorch and Alan Jay Smith. Software strategies for portable computer energy man-
agement.IEEE Personal Communications, 5(3):60–73, June 1998.

[85] Peter Lyman and Hal R. Varian. How much information. Retrieved on August 19, 2010
from http://www.sims.berkeley.edu/how-much-info-2003, 2003.

[86] Marshall K. McKusick, William N. Joy, Samuel J. Leffler,and Robert S. Fabry. A fast file
system for UNIX.ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[87] Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tuning, low overhead replacement
cache. InFAST ’03: Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pages 115–130, Berkeley, CA, USA, 2003. USENIX Association.

[88] Nimrod Megiddo and Dharmendra S. Modha. Outperforminglru with an adaptive replace-
ment cache algorithm.Computer, 37(4):58–65, 2004.

[89] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server idle
power. InASPLOS ’09: Proceeding of the 14th international conference on Architectural
support for programming languages and operating systems, pages 205–216, New York, NY,
USA, 2009. ACM.

[90] Alan G. Merten.Some quantitative techniques for file organization. PhD thesis, University
of Wisconsin-Madison, Madison, Wisconsin, June 1970.

166

http://www.sims.berkeley.edu/how-much-info-2003

[91] Lily Mummert and Mahadev Satyanarayanan. Long term distributed file reference tracing:
Implementation and experience.Software - Practice and Experience (SPE), 26(6):705–736,
June 1996.

[92] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading: Practical
power management for enterprise storage.Transactions on Storage, 4(3):1–23, 2008.

[93] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using predictive prefetching to improve
world wide web latency.SIGCOMM Computer Communication Review, 26(3):22–36, 1996.

[94] Athanasios E. Papathanasiou and Michael L. Scott. Energy efficiency through burstiness.
IEEE Workshop on Mobile Computing Systems and Applications, 2003.

[95] Athanasios E. Papathanasiou and Michael L. Scott. Energy efficient prefetching and
caching. InATEC ’04: Proceedings of the annual conference on USENIX Annual Tech-
nical Conference, Boston, Massachusetts, June 2004. USENIX Association.

[96] Jehan-François Pâris, Ahmed Amer, and Darrell D. E. Long. A stochastic approach to file
access prediction. InSNAPI ’03: Proceedings of the international workshop on Storage
network architecture and parallel I/Os, pages 36–40, New Orleans, Louisiana, 2003. ACM.

[97] Caleb Phillips, Suresh Singh, Douglas Sicker, and DirkGrunwald. Applying models of
user activity for dynamic power management in wireless devices. InMobileHCI ’08: Pro-
ceedings of the 10th international conference on Human computer interaction with mobile
devices and services, pages 315–318, New York, NY, USA, 2008. ACM.

[98] Alexander P. Pons. Web-application centric object prefetching. Journal of Systems and
Software, 67(3):193–200, 2003.

[99] Lars Reuther and Martin Pohlack. Rotational-position-aware real-time disk scheduling using
a dynamic active subset (das). InRTSS ’03: Proceedings of the 24th IEEE International
Real-Time Systems Symposium, Washington, DC, December 2003. IEEE Computer Society.

[100] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. Acomparison of file system work-
loads. InATEC ’00: Proceedings of the annual conference on USENIX Annual Technical
Conference, San Diego, California, June 2000. USENIX Association.

[101] Chris Ruemmler and John Wilkes. Disk shuffling. Technical Report HPL-CSP-91-30, Soft-
ware Systems Laboratory, Hewlett-Packard Company, October 1991.

[102] Chris Ruemmler and John Wilkes. Unix disk access patterns. InUSENIX Winter Technical
Conference, pages 405–420, San Diego, California, January 1993. USENIX Association.

[103] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, New Jersey, 2nd edition edition, 2003.

167

[104] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R. Ganger. Track-
aligned extents: Matching access patterns to disk drive characteristics. InFAST ’02: Pro-
ceedings of the 1st USENIX Conference on File and Storage Technologies, pages 259–274,
Monterey, California, January 2002. USENIX Association.

[105] Jiri Schindler, Steven W. Schlosser, Minglong Shao, Anastassia Ailamaki, and Gregory R.
Ganger. Atropos: A disk array volume manager for orchestrated use of disks. InFAST
’04: Proceedings of the 3rd USENIX Conference on File and Storage Technologies, pages
159–172, San Francisco, California, 2004. USENIX Association.

[106] Philip H. Seaman, Robert A. Lind, and Troy L. Wilson. Onteleprocessing system design
part iv: An analysis of auxiliary storage activity.IBM Systems Journal, 5(3):158–170, 1966.

[107] Robert Sedgewick.Algorithms in C++. Addison-Wesley Longman Publishing Co., Inc.,
Reading, Massachusetts, 1992.

[108] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. InProceedings of the
USENIX Winter 1990 Technical Conference, pages 313–324, Berkeley, California, 1990.
USENIX Association.

[109] S. W. Sherman and J. C. Browne. Trace driven modeling: Review and overview. InANSS
’73: Proceedings of the 1st symposium on Simulation of computer systems, pages 200–207,
Gaithersburg, Maryland, 1973. IEEE Computer Society.

[110] Elizabeth Shriver, Eran Gabber, Lan Huang, and Christopher Stein. Storage management
for web proxies. InProceedings of the General Track: 2001 USENIX Annual Technical
Conference, pages 203–216, Boston, Massachusetts, June 2001. USENIX Association.

[111] Elizabeth Shriver, Christopher Small, and Keith Smith. Why does file system prefetching
work? InATEC ’99: Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 71–83, Monterey, California, June 1999. USENIX Association.

[112] Keth A. Smith and Margo Seltzer. A comparison of FFS disk allocation policies. InATEC
’96: Proceedings of the 1996 annual conference on USENIX Annual Technical Conference,
pages 15–25, San Diego, California, January 1996. USENIX Association.

[113] Carl Staelin and Hector Garcia-Molina. Clustering active disk data to improve disk per-
formance. Technical Report CS-TR-283-90, Department of Computer Science, Princeton
University, 1990. Revised June 1990.

[114] Carl Staelin and Hector Garcia-Molina. File system design using large memories. InJCIT:
Proceedings of the fifth Jerusalem conference on Information technology, pages 11–21,
Jerusalem, Israel, October 1990. IEEE Computer Society.

[115] Carl Staelin and Hector Garcia-Molina. Smart filesystems. InProceedings of the Winter
1991 USENIX conference, pages 45–52, Dallas, Texas, January 1991. USENIX Association.

168

[116] David Capppers Steere.Using Dynamic Sets to Reduce the Aggregate Latency of Data
Access. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, January 1997.

[117] Andrew S. Tanenbaum.Modern Operating Systems. Prentice Hall, Englewood Cliffs, New
Jersey, second edition, 2001.

[118] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A nine year study of
file system and storage benchmarking.Transactions on Storage, 4(2):1–56, May 2008.

[119] Stephen Tweedie. Journaling the linux ext2fs filesystem. Proceedings of the 4th Annual
LinuxExpo, 1998.

[120] Dan Tynan. Prepare for data tsunami, warns Google CEO.PCWorld, 2010.

[121] J. S. Vitter and P. Krishnan. Optimal prefetching via data compression.Journal of the ACM,
43(5):771–793, September 1996.

[122] M. Warmuth and N. Littlestone. The weighted majority algorithm. Information and Com-
putation, 108(2):212–261, February 1994.

[123] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative I/O: A novel I/O semantics
for energy-aware applications. InOSDI ’02: Proceedings of the 5th symposium on Operat-
ing systems design and implementation, pages 117–129, Boston, Massachusetts, December
2002. ACM.

[124] Gary A. S. Whittle, Jehan-François Pâris, Ahmed Amer, Darrell D. E. Long, and Randal C.
Burns. Using multiple predictors to improve the accuracy offile access predictions.MSS
’03: Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass Storage
Systems and Technologies, pages 230–240, April 2003.

[125] John Wilkes. Predictive power conservation. Technical Report HPL-CSP-92-5, Concurrent
Systems Project, Hewlett-Packard Laboratories, Palo Alto, California, February 1992.

[126] C. K. Wong. Algorithmic Studies in Mass Storage Systems. W. H. Freeman & Co., New
York, NY, USA, 1983.

[127] Tsozen Yeh, Darrell D. E. Long, and Scott A. Brandt. Performing file prediction with a
program-based successor model. InMASCOTS ’01: Proceedings of the Ninth International
Symposium in Modeling, Analysis and Simulation of Computerand Telecommunication Sys-
tems, pages 193–202, Cincinnati, Ohio, August 2001. IEEE Computer Society.

[128] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Krishnamurthy, and
Randolph Wang. Modeling hard-disk power consumption. InFAST ’03: Proceedings of the
2nd USENIX Conference on File and Storage Technologies, pages 217–230, San Francisco,
California, March 2003. USENIX Association.

169

[129] Qingbo Zhu and Yuanyuan Zhou. Power-aware storage cache management.IEEE Transac-
tions on Computers, 54(5):587–602, May 2005.

[130] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. InIEEE Transactions on Information Theory, volume IT-24, pages 530–536. IEEE
Computer Society, Septemeber 1978.

170

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Table of all system call counts from ranin trace.
	2. System call sizes, ranin trace.
	3. Table of all system call counts from playlist, shuffle trace.
	4. System call sizes, playlist, shuffled trace.
	5. Table of all system call counts from playlist trace (no shuffle).
	6. System call sizes, playlist trace (no shuffle).
	7. Power parameters for caviar2gb through repeated simulated annealing.
	8. Energy and latency costs for Western Digital caviar2gb drive.
	9. Number of groups formed and total transitions.
	10. List of all devices found in the ranin trace set.
	11. Comparison of total space of all ranin traces.
	12. Comparison of reduction by percentage and savings of all ranin traces.
	13. Summary of advantages of all root selection strategies.
	14. Predictability table of various traces.
	15. Subset of trace parameters for throughput of SPORe.
	16. Subset of mulit-run trace parameters for throughput of SPORe.
	17. Percentages of configurations where SPORe outperforms Hot Block Clustering.
	18. SPORe distance, presumed vs. actual track sizes.
	19. SPORe transitions, presumed vs. actual track sizes.
	20. Trace and parameter set tested on prototype hardware.
	21. mozart hardware latency reduction results.
	22. mozart hardware energy reduction results.
	23. Reductions of system time and energy for SPORe.

	LIST OF FIGURES
	1. Comparison of various block sizes for month length mozart trace.
	(a). mozart trace, 4K block size
	(b). mozart trace, 8K block size
	(c). mozart trace, 16K block size
	(d). mozart trace, 32K block size
	2. Predictive grouping example.
	3. Simple access tree.
	4. Mechanical movement and power consumption.
	(a). Disk Mechanical Movement
	(b). Disk Power Consumption
	5. Energy usage for mozart day and week traces.
	(a). Day-long trace
	(b). Week-long trace
	6. Energy usage for mozart month and year traces.
	(a). Month-long trace
	(b). Year-long trace
	7. Energy usage for hplajw trace.
	8. Access latency for the mozart day and week traces.
	(a). Day-long trace
	(b). Week-long trace
	9. Access latency for the mozart month and year traces.
	(a). Month-long trace
	(b). Year-long trace
	10. Access latency for the hplajw trace.
	11. Total number of groups formed for the mozart trace.
	(a). Week-long trace
	(b). Month-long trace
	12. Total transitions for the mozart trace.
	(a). Week-long trace
	(b). Month-long trace
	13. Average accesses per transition for mozart week and month.
	(a). Week-long mozart trace
	(b). Month-long mozart trace
	14. Average of accesses per transition for hplajw trace.
	(a). hplajw trace
	15. Optimal Expansion Tree (OpExTree) example.
	(a). Visualization of OpExTree structure
	(b). OpExTree implementation
	16. Dynamic Bitmap and Dynamic Region examples.
	(a). Dynamic Bitmap, key 1055
	(b). Dynamic Region, key 1055
	17. SESH figure.
	18. Heir apparent rate of occurrence
	19. Estimated SESH savings.
	20. Comparison of projected and reduced ranin metadata.
	(a). total space
	(b). space reduction
	21. Comparison of projected and reduced mozart metadata.
	(a). total space
	(b). space reduction
	22. SESH storage requirements.
	23. ranin reconstructed sequence size.
	24. ranin reconstructed sequence percentage.
	25. ranin working set size.
	26. ranin working set percentage.
	27. LRDU stability, mozart, 512 byte blocks.
	(a). year
	(b). month
	28. LRDU stability, mozart, 4 KB blocks.
	(a). year
	(b). month
	29. LRDU stability, mozart, 8 KB blocks.
	(a). year
	(b). month
	30. LRDU stability of hplajw trace.
	31. LRDU stability of full ranin trace, 512 byte blocks.
	32. LRDU sorting stability, mozart, 512 byte blocks.
	(a). Structure size 16384
	(b). Structure size 512
	33. LRDU sorting stability, mozart, 4 KB blocks.
	(a). Structure size 16384
	(b). Structure size 512
	34. LRDU sorting stability, mozart, 8 KB blocks.
	(a). Structure size 16384
	(b). Structure size 512
	35. LRDU sorting stability, hplajw.
	(a). Structure size 16384
	(b). Structure size 512
	36. LRDU sorting stability, ranin.
	(a). Structure size 16384
	(b). Structure size 512
	37. Hits vs. structure size, year trace, 512 byte blocks.
	38. Hits vs. structure size, hplajw trace.
	39. Hard drive separated into ranges.
	40. Supergroup example.
	41. Four possible OE ME groupings of size 4.
	42. SPORe figure.
	43. Inserting empty groups.
	44. SPORe transition reductions, 25% empty disk, mozart.
	(a). Four groups per range
	(b). Eight groups per range
	45. SPORe transition reductions, 75% empty disk, mozart.
	(a). Four groups per range
	(b). Eight groups per range
	46. SPORe transition reductions, hplajw.
	47. SPORe transition reductions for ranin traces.
	(a). Four groups per range
	(b). Eight groups per range
	48. SPORe distance reductions, 25% empty disk, mozart.
	(a). Four groups per range
	(b). Eight groups per range
	49. SPORe distance reductions, 75% empty disk, mozart.
	(a). Four groups per range
	(b). Eight groups per range
	50. SPORe distance reductions, hplajw.
	(a). 25% empty disk
	(b). 75% empty disk
	51. SPORe distance reductions for ranin traces.
	(a). Four groups per range
	(b). Eight groups per range
	52. Windowed track distance of mozart year trace.
	53. Average accesses per group use for SPORe, mozart traces.
	(a). year trace
	(b). month trace
	54. Average accesses per group use for SPORe, full hplajw trace.
	55. Average accesses per group use for SPORe, full ranin trace.
	56. Estimated impact of update reduction for SPORe, mozart traces.
	(a). year trace
	(b). month trace
	57. Estimated impact of update reduction for SPORe, hplajw trace.
	58. Estimated impact of update reduction for SPORe, full ranin trace.
	59. SPORe compared with on-disk caching (hot block clustering).
	(a). Percentage of configurations where SPORe outperforms on-disk caching
	(b). Average, max, and min improvements of SPORe over on-disk caching
	60. Windowed comparison of vanilla and stopped SPORe for mozart, year trace.
	(a). windowed average accesses per use
	(b). windowed average accesses per use, stopped at 50M accesses
	61. Prototype hardware SPORe evaluation system.
	62. Identifying the beginning boundary of a workload replay.
	63. Comparison of SPORe estimates and real-world disk measurements.
	64. Comparison of SPORe latency estimates against measured mozart year trace.
	(a). 1024 blocks per group
	(b). 8192 blocks per group
	65. Comparison of SPORe energy estimates against measured mozart year trace.
	(a). 1024 blocks per group
	(b). 8192 blocks per group
	66. System model results.
	(a). Percentage of system configurations where SPORe shows a benefit
	(b). Average, max, and min system reductions

	LIST OF ALGORITHMS
	1. DrNO(FT, max)
	2. OE_ME(T, root, max)
	3. OE_ME_Expand(T, max_pq, f, p)
	4. OE_ED(T, root, max)
	5. OE_ED_Expand(T, max_pq, f, c, root)
	6. OE_ESS(T, root, max)
	7. OE_ESS_Expand(T, min_pq, f, c)
	8. Supergroup_OE_ME(T, R, max)
	9. OE_ME_Prime(G, T, root, max)

	LIST OF EQUATIONS
	1. Distance metric
	2. Translation function
	3. Alternate translation function
	4. Revised distance function with included translation function
	5. Power estimation function
	6. Calculating latency due to disk arm movement
	7. Energy estimation
	8. Sigmoid function
	9. Node id within a dynamic bitmap
	10. Array position within a dynamic bitmap
	11. Bit location within a dynamic bitmap
	12. Block distance by offending block
	13. Track distance by offending block
	14. Range id calculation
	15. Throughput calculation
	16. Running confidence
	17. Power calculation
	18. Energy calculation for a single voltage sample
	19. Energy calculation
	20. Expanded energy calculation
	21. System energy
	22. Processor utilization

	PREFACE
	1.0 INTRODUCTION
	1.1 CONTRIBUTIONS

	2.0 RELATED WORK
	2.1 PREDICTION, PREFETCHING, AND CACHING
	2.2 I/O WORKLOAD SHAPING
	2.3 DATA LAYOUT MAINTENANCE AND FILE SYSTEMS
	2.4 POWER

	3.0 PROBLEM DEFINITION
	4.0 EXPERIMENTAL METHODOLOGY
	4.1 CLASSIC TRACE SETS
	4.1.1 mozart
	4.1.2 hplajw

	4.2 NEWLY COLLECTED TRACE SETS
	4.2.1 ranin
	4.2.2 playlist

	5.0 OPTIMAL GROUPING
	5.1 MOTIVATION
	5.2 OPTIMAL GROUPING PROBLEM DEFINITION
	5.3 OPTIMAL BEHAVIOR OF DRNO
	5.4 DISCUSSION

	6.0 STATIC GROUPING
	6.1 MOTIVATION
	6.2 GROUPING STRATEGIES
	6.2.1 Baseline Strategies
	6.2.2 Predictive Grouping

	6.3 EXPERIMENTAL SETUP AND DESIGN
	6.4 RESULTS
	6.4.1 Group Formation, Access Behavior and Transitions

	6.5 DISCUSSION
	6.5.1 Optimal Expansion, Estimated Distance
	6.5.2 Optimal Expansion, Estimated Storage Space

	7.0 DYNAMIC GROUPING AND METADATA
	7.1 MOTIVATION
	7.2 EXPERIMENTAL SETUP AND DESIGN
	7.3 DATA STRUCTURES
	7.3.1 Optimal Expansion Tree
	7.3.2 Dynamic Bitmap
	7.3.3 Dynamic Region
	7.3.4 SESH, or Space-Efficient Storage of Heredity

	7.4 TRACES
	7.5 CALCULATING METADATA REQUIREMENTS
	7.6 RESULTS
	7.7 DISCUSSION AND POSSIBLE ENHANCEMENTS

	8.0 ROOT SELECTION
	8.1 MOTIVATION
	8.2 DATA STRUCTURES
	8.2.1 Highest Count
	8.2.2 Highest Distance
	8.2.3 LRU and LRU Hot List
	8.2.4 LRFU and LRFU Hot List
	8.2.5 LRDU and LRDU Hot List

	8.3 EXPERIMENTAL SETUP AND DESIGN
	8.4 RESULTS
	8.5 DISCUSSION
	8.5.1 Conclusions

	9.0 SPORE - SPACE-EFFICIENT ONLINE REORGANIZER
	9.1 MOTIVATION
	9.2 EXPERIMENTAL SETUP AND DESIGN
	9.2.1 Root Placement
	9.2.2 Reducing Update Overhead
	9.2.3 Reducing Priority Queue Size
	9.2.4 Group Scanning
	9.2.5 Traces
	9.2.6 System Configuration
	9.2.7 Competing Model - Hot Block Clustering

	9.3 RESULTS
	9.3.1 Reducing Transitions
	9.3.2 Reducing Seek Distance
	9.3.3 Accesses and Group Usage
	9.3.4 Updating and Storage System Overhead
	9.3.5 Throughput
	9.3.6 Comparison against Hot Block Clustering

	9.4 DISCUSSION
	9.4.1 Persistence of Predictions
	9.4.2 Robustness to Track Size
	9.4.3 Confidence Thresholds

	10.0 HARDWARE-BASED VALIDATION
	10.1 EXPERIMENTAL SETUP AND DESIGN
	10.1.1 System Configuration
	10.1.2 Traces
	10.1.3 Simulated Track Buffer
	10.1.4 Avoiding Cache Interference
	10.1.5 Identifying Workload Boundaries
	10.1.6 Calculating Power
	10.1.7 Modeling System Energy and Latency

	10.2 RESULTS

	11.0 CONCLUSIONS AND FUTURE WORK
	11.1 FUTURE WORK: AUGMENTING SPORE
	11.1.1 Increasing Throughput
	11.1.2 Location of SESH
	11.1.3 Extensions to Write Strategies

	11.2 FUTRE WORK: TRACE GATHERING AND USAGE

	BIBLIOGRAPHY

