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ABSTRACT

EFFECTIVE GROUPING FOR ENERGY AND PERFORMANCE: CONSTRUCTI ON
OF ADAPTIVE, SUSTAINABLE, AND MAINTAINABLE DATA STORAGE

David S. Essary, PhD

University of Pittsburgh, 2011

The performance gap between processors and storage syssrbeen increasingly critical over
the years. Yet the performance disparity remains, and durtstorage energy consumption is
rapidly becoming a new critical problem. While smarter ¢aghand predictive techniques do
much to alleviate this disparity, the problem persists, daté storage remains a growing contrib-
utor to latency and energy consumption.

Attempts have been made at data layout maintenance, oligetel physical placement of
data, yet in practice, basic heuristics remain predomindrbblems that early studies sought
to solve via layout strategies were proven to be NP-Hard, datd layout maintenance today
remains more art than science. With unknown potential araih@ath inherently full of uncertainty,
layout maintenance persists as an area largely untappedtgrmsystems. But uncertainty in
workloads does not imply randomness; access patterns Rhiksted repeatable, stable behavior.
Predictive information can be gathered, analyzed, andoéepl to improve data layouts. Our
goal is a dynamic, robust, sustainable predictive engimee at improving existing layouts by
replicating data at the storage device level.

We present a comprehensive discussion of the design antfectien of such a predictive en-
gine, including workload evaluation, where we present araduate classical workloads as well as
our own highly detailed traces collected over an extendeid@eWe demonstrate significant gains
through an initial static grouping mechanism, and compgeéret an optimal grouping method of

our own construction, and further show significant improeetrover competing techniques. We



also explore and illustrate the challenges faced when ngdvam static to dynamici(. online)
grouping, and provide motivation and solutions for addresthese challenges. These challenges
include metadata storage, appropriate predictive cdilmcaonline performance, and physical
placement. We reduced the metadata needed by several ofdeagnitude, reducing the required
volume from more than 14% of total storage down to less t%%n We also demonstrate how our
collocation strategies outperform competing technigiésally, we present our complete model
and evaluate a prototype implementation against real henelwl his model was demonstrated to

be capable of reducing device-level accesses by up to 65%.

Keywords: computer systems, collocation, data management, file ragstgrouping, metadata,

modeling and prediction, operating systems, performgmoeger, secondary storage.
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1.0 INTRODUCTION

The disparity between the throughput of processors andriyirig storage devices has presented a
challenge to systems designers since the inception of tldemdPU. Incremental achievements
over the past sixty years have greatly alleviated the strfdimese devices. Yet the latency observed
by end-users due to the limitations of storage system hasdmeanains significant. Additionally,
data storage represents an ever-growing portion of enengyuenption, and energy is an increas-
ingly critical problem. As energy becomes a more valuald®uece, and storage demands grow
along with their corresponding energy footprint, everyl@dxecomes more precious. We address
the performance disparity and increasing energy costsoohge systems through the predictive
grouping of data based on the dynamic analysis of accesdaanik

Recent trends indicate that latency and energy concern®iage devices are not only jus-
tified, but will continue becoming more and more critical. 2002, approximately 5 exabytes of
data was generated and stored on magnetic mé&#]a [n 2007, that amount of data was gener-
ated every 6 and a half day47); today, it can take as little as two days2[d. In fact, the year
2007 marked the first time that the amount of data producetbareplicated outpaced available
storage 42]. By 2011, it is estimated that nearly half of all data getedawill have no permanent
storage location. Additionally, the energy cost of movihg tinformation flood is becoming as-
tronomical. In 2006, a study by the EPA estimated that U.& denters and servers consumed 61
billion kilowatt-hours, at an estimated $4.5 billioB]{ A simple carbon footprint estimate, using
the CDIAC’s general estimate of 2.3 pounds of {ér kilowatt-hour B8], yields an estimated
140.3 billion pounds of CQ more than a third the carbon footprint of all U.S. aircraf2D03 P].

Thankfully, the driving workloads that storage systems insagisfy are very often far from
random. They represent the needs of applications and sysiserts; their behavior may not be

deterministic, but it is rarely arbitrary. The resultingegictable nature of these workloads has



culminated some of the most important technological biaakighs of the personal computer era.
Caching and memory management are among the earliest aoteets. These strategies look to
the recent past as an approximation of the near future. Maently, prefetching strategies have
been explored in great detail, looking at prior events, betient as well as venerable, in an effort
to glean established patterns with which to predict thertutiAnd yet, the challenge of keeping

pace with processors persists.

To understand these challenges, it is essential to underst@ nature of the latency delays
and the energy costs of data retrieval. Latency delays a@mfieneral varieties; those that are
inevitable, and those that are avoidable, or at least mésk@ibe first flavor is best exemplified by
a streaming live video. Data is transferred, decoded, anduwued, never to be used again. Even
with optimized hardware and the best compression methbése twill be unavoidable delays.
However, with storage systems, this is far from the norm. tMdten, data items are accessed
repeatedly within a relatively small window of time. Withothis trend, caching would have
little effect; it is perhaps the most powerful trend that vean @xploit. Yet caching alone is not
the silver bullet. Data must first keccessedefore it can bae-accessedthus, we will pay an
initial cost to bring an item into the cache. Prefetch caglseeks to alleviate this initial cost
by masking the latency; a predictive request, generbtfdrethe data is actually needed, can
bring data into the cache early, so that it is immediatelylalgbe upon its actual request. But the
request must have sufficient lead-time, and must conterdatitter queued requests, in order to
have significant impact. This inexorably ties prefetchiaghe data path, and dictates a narrow
window of opportunity for action. Further, predictions rhbs very accurate, as mistakes can be
very costly. Many predicting methods require keeping ertetadata in the form of records of

accesses to improve their accuracy, but storing thesereshrgcords can be quite costly.

On yet another front, predictions used for traditional eteliing of data must not only be
accurate, but must be timely. As such, predictive and prkiey caches have tended to go to
great lengths to increase the lead-time of the predictioeg tffer, desperate to make predictions
further into the future. This is a problem for any approaddt tittempts to act on a prediction by
immediate prefetching. Such techniques are caught in &-&cwhere they expend resources to
make longer-reaching accurate predictions. And yet thbénahead a prediction is attempted, the

more likely for it to be inaccurate. This problem is addrelslsg using prediction as the basis for



a grouping strategy, or a means by which the layout can beoweprby dynamically collocating
data chunks on the fly at the device level. This allows préfatcto become implicit and removed
from the demand path of user data requests. When combinédavdata layout strategy, such

groupings can potentially reduce latencies and energyuropgon simultaneously.

Data layout strategies seek to make predictions more inhbyaeducing the cost of accessing
items, assuming one must go all the way down to the devicétevetrieve them. In this way, one
can cleverly arrange data so that items that will be needededetched are easier to access. Early
strategies tried to use frequency-based positioning gmaired the interdependence of data access.
Prediction models from prefetch caching can be appliedpbaé again a common problem is the

required space for access metadata.

This common challenge, tracking predictive metadata,icoes to be a daunting task, and is
exacerbated by increasing storage demands. On mobilesgetie problem is compounded by a
need to make the best use of available resources. Addilyplzajer metadata translates to further
strain on the storage system for updates and retrieval di@thich must be streamlined operations
in order to have little or maskable impact on observed lagsnd hese problems exist for strategies
operating at the file or object granularity, but can be crmpfor block-level strategies. This reason
alone can be enough for developers to operate at the abistitactore human-oriented file level,
rather than at the block level, which is more native to stersghsystems. However, it is desirable
to operate at the block level, as that results in a solutigliegble for any storage system, not
just object stores. Of course, one could restrict the amolintetadata, but arbitrary limits will
often only benefit “hot” data, or those blocks within the ewmtrworking set; arguably, this set
is less in need of pattern discovery due to the effectivenessen basic caching schemes. This
inevitably precludes the opportunity to discover longamt patterns across less intensely active
regions. Attempts to manage storage devices to reduce\ehexg typically been at the cost
of performance, however, successfully collocating dattha potential of realizing the ideal of

simultaneously reducing energy and latency.



1.1 CONTRIBUTIONS

This dissertation presents solutions to the problems fagedhta layout strategies, and develops
a practical data collocation solution aimed at reducingggnand latency. We tackle the spatial
requirements of metadata that could be ubeth for predictive caching as well as layout man-
agement. In particular, we address the problem of trackifgymation at the block level, where
the state-space explosion of metadata has the highestrburdether, we present applications of
predictive models to group related data chunks (for eveémlbocation at the device level). We
explore the difficulties and challenges of moving from stgtiouping, such as a one-time defrag-
mentation, to dynamic grouping, where the system automitimaintains a layout strategy on
the fly. We also present preliminary bounding efforts on thgsible benefits from these strategies.
The effectiveness of our methods is examined using worktcack sets, including established
traces used in prior and related work, as well as our own nexsétload trace sets. These traces
represent a variety of systems and configurations, allofangorkloads indicative of newer soft-
ware and hardware while providing the ability to comparewark with prior and related efforts.
Our evaluations are done via simulation. This affords usofhyortunity to test more parameters
and more workloads, supplying generalized results thahard¢ied to any particular system con-
figuration. However, in order to validate these results, madude the design and analysis of our
prototype hardware test bed system using accurate powesumgaents on a prototype system
using a DAQ (Data AcQuisition) system to measure voltagetfermechanical components of the

disk at 20,000 samples per second.



2.0 RELATED WORK

Placing related items within close proximity to one anothes been a traditional standard in stor-
age systems as a means of reducing latency. This data ggogpéahcan be addressed in a number
of ways, and as such, several related areas of researcmicdlo@r work. Of particular impact are
studies on file access prediction, including access andliaamtkmodeling, prefetching, and metrics
used to evaluate and compare prediction and prefetchingigml Caching is perhaps the oldest
and certainly among the most successful and popular datamknt strategies. We explore both
traditional and recent caching research. Additionally,im@ude background discussion on I/O
workload manipulation, as these represent some of theestdevice-level strategies for reducing
power and enhancing performance.

The most closely affiliated research areas to our own invdat& layout maintenance. A
number of file systems attempt some amount of replicatiomaigcation of data, and are discussed
along with these layout maintenance strategies. Recegratlyer consumption goals have become
more imperative to designers. Therefore, we will conclutedhapter by considering recent and
classic strategies for reducing the overall power consiontf storage systems. As many of our
initial results are based on simulated systems, we detaih#er of strategies used to model power

consumption and disk simulation.

2.1 PREDICTION, PREFETCHING, AND CACHING

A study on graph-based access predictors was first preden@dffioen and Appletor49]. These
predictors were used to provide sufficient lead-time to eerkde prediction useful for prefetching

as well as managing access patterns spanning multiplecaiphs. The use of the last succes-



sor model for file prediction, and more elaborate technidpzsed on pattern matching, were first
presented by Lei and Duchamp7]. Similar work has been done researching a last successor pr
dictor, finite multi-order context modeling-MOC) models from branch prediction methods, and
a partitioned context modePCM) [71]. While a last successor strategy predicted with surpris-
ing accuracy, there tends to be enough noise in an acceamstoeconfuse it§]. A more stable
predictor,Noah is presented that removes this noise by predicting onlysiihility condition is

satisfied.

Previous work has also shown that comparing two differeadljgtors is non-trivial. To aid in
this dilemma, three measures of prediction accuracy wereloleed; general accuracy and specific
accuracy b, 8] and effective-miss-ratial]24]. General and specific accuracy were used to compare
Noahwith last successor and first success)r [t is noted thalNoahsuffers from non-decreasing
general accuracy for high stability parameters. A new ptediRecent Popularityis shown to
solve this problem. It is also noted tHRécent Popularitadapts quicker with changing workloads
thanNoah[8]. To benefit from this robustness and adaptability, our népines use variants on

Recent Popularityor gathering data for prediction.

Further advancements in predictive caching has takenuwafarms and addressed various
problems. Advances in caching strategies include usingjpieiexperts in cache managemeif]|
power aware storage cache managemkzf[ and self-tuning cache replacement policieég 8g].
Work has also been done on augmenting caches with prefgtchpabilities 70| and the effects
caches have when placed back to ba@k [Prefetching and predictive caching have also been
used as a means of overcoming latency in web prodg&sB, 93] as well as in object prefetching
for internet applicationsg2, 98]. Similar work on the aggregating cachdg fiffers from related
work on predictive prefetching systems, but uses analogustures to Griffioen and Appleton’s
graph-based scheméd. The work on the aggregating cache allows the gathering afenac-
cess information at the server, while decoupling clienbfritie any critical timing issues related
to prefetching. This is accomplished via cooperative tlaard server-side modules, as with AFS
or Coda p5]. Kroeger and Long71] compared the predictive performance of the last succes-
sor model, Griffioen and Appleton’s graph-based strategg, riew techniques based on context
modeling and data compressiof?]. The earliest proposed use of data compression strategies

predict disk accesses was presented by Vitter and Krisi2@l®T, 121]. The strategies studied



includedLZ compression]30, prediction by partial matchRPM), and first-order Markov predic-
tion (FOM). Shriveret al.[111] has provided analytical reasoning for the benefits of ralaeiad
buffering and prefetching. Other recent work ABP[12] presents a study of a strip prefetching
scheme for striped disk arrays. The authors provide separabagement of prefetched and regular
cache lines with a culling scheme using differential fe@ttlgimilar to the adaptive marginal util-
ity used inSAR([44)]. Such prefetching of data is not without costs, many of \ntdce addressed
in ASP. Any prefetching strategy must have a reasonable leaditirogler to retrieve data before
it is actually requested. Additionally, any benefit fromstprefetching, like spin-down techniques,
lie directly on the data path. Our strategy enables the gqe#rwuof the strategy from the data path,
allowing us to disable device-level rearrangement whilétstnefitting from previous efforts to
properly cluster data.

Recent work has shown advances toward utilizing devicetlkemowledge of physical data
layout. Prediction for both caching purposes and prefatgipurposes have begun emphasizing
spatial locality as having a higher utility than a randomesssg; that is, of two blocks with identical
expected likelihood of occurrence, the block nearer theectitocation of the read head has higher
utility. DULO [60Q] presents a buffer cache management scheme that expléftsdsoporal and
spatial locality, whileDiskSeen27] presents work utilizing similar table structures for ude o
predictive prefetchingDiskSeerfetches at the device level, and is designed to be synergigt
file-level prefetching strategies. More recent work TaP [83] describes using a separate data
structure to store previous addresses in order to idergifpisntial data streams without having
to use precious cache space to do so. Our work seeks to detheasxpected distance between
consecutively requested blocks, and would be highly beaéft@such location- and stream-aware

strategies.

2.2 /0 WORKLOAD SHAPING

Traditional research to improve performance of hard digsksodifying 1/0 workloads include
scheduling strategies such @8STE SCAN[26], C-SCAN[106], and LOOK [90]. More recently,

approaches for decreasing the growing impact of rotatideddy have been presentesl/59,



99,108. These efforts are considered orthogonal to the work odigtien and data regrouping
presented in this dissertation.

The use of prediction as a means of workload shaping to repglowwer consumption has been
proposed by Flinn and Satyanaryan&][and also Lorch and SmittBf]. These suggestions
focused on the ability of prefetching data to allow for irased idle-time periods, which in turn
would hopefully allow greater opportunities for disk sglawns. Similarly, recent work by Weissel
et al.[123, and Papathanasiou and Sc@&#,[95], attempts to actively modify the workload and
increase workload burstiness to increase opportunitredi$& spin-down. Predictive methods such
as these are expected to benefit from metadata strategieawsadbveloped, and are considered

orthogonal to our predictive work.

2.3 DATA LAYOUT MAINTENANCE AND FILE SYSTEMS

The desire to place related data together on disk is tradiipaccepted as a wise storage-system
goal, and recent work indicates that its uses continue teptehemselve£[,60,62]. For exam-
ple, work by Kandemiet al.[62] focuses on utilizing disk layout knowledge at compiler iffior
data intensive applications, notably scientific applmasi

Access patterns can be used to rearrange tracks on theldigk & problem known to be
NP-Hard RQ], to improve on the organ-piping metho82, detailed and discussed in depth by
Wong [126. Such patterns can also use be used to identify which filesdee to tertiary stor-
age B3]. Other forms of disk management include storing data tlasdot cross track bound-
aries [L04 as well as how to extract that information and use it as sttipit boundaries105,
storing inodes by embedding them in their directory, andighog together small files on disk to
be read as onep)]. It has been demonstrated that it is possible to separateesifrom data over
a distributed systenilp).

Early data placement and predictive grouping studies attednto use frequency of access
as an estimated likelihood in order to optimally place hitgmand data. The optimum arrange-
ment of files on disk was originally a manual task, placingyapfiles near the center of the

disk cylinder. The necessary automation of this procesdéas addressed by Staelin and Garcia-



Molina [113-115, whose work dealt with models that provided optimal plaeetof files where
accesses were independent. However, data accesses wftie tilynamic relationships, where ac-
cess dependencies change over time. Berkeley3[86, 112 includes attempts to cluster related
data and metadata into cylinder tracks on a disk. More rgcdntand Wang combinedrFS (or
UFS) andGFSmodules into a single file systefBEFS[80, 81]. However, these approaches typi-
cally require disjoint sets as groups. Our approach makasicio constraints, allowing replication
between groups formed, although not within them. Suchcstgiiimizations are common among
modern file system<, 86,119, while our work is toward dynamic solutions that have pbkesi
static application. Similar replication was performed biyyArek and Salem in 1995, where pop-
ular “hot” blocks were copied to a common disk area to imprdigl performance4]. However,
this study was based only on the global popularity, or peeggnof access, rather than inter-file re-
lationships. Dynamic group4 1§ attempt to exploit inter-file relationships, but requirexplicit
application hints to determine group membership. Examplietforts in automated grouping in-
cludeC-FFS[39] (collocatingFFS), which bases grouping on a directory-membership hearisti
and Hummingbird11Q which utilizes the underlying structure of web files. In t@st, our model
does not require any knowledge of underlying data strucag@®ur grouping mechanism can es-
tablish relationships based on observed access behavimppased to inference from file location

or content.

Recent work most closely related to our own would includesgdabased on-disk cachint
and use of on-disk free space for file replicatidf][ Efforts exploiting free space for reorganiza-
tion achieve impressive results only after repeating tmeesaccess patterns multiple timés]
While reasonable, we believe the use of repeated runs torffewading, as such repetition would
eliminate single-event occurrences, or the requests akblthat will never be requested again,
as well as strengthening access noise. Efforts for dynaemsigient grouping must be adaptive
but resistant to this noise, yet these phenomena introdugagrkload repetition would actually
reward strategies that refrain from doing so. On-disk aaglalso shows promise, but requires
multiple phases of extraction, analysis, planning, andeten [15], and has several drawbacks.
First, they incur high computational costs at various peasé¢he cycle. While these costs can be
alleviated to a point by using low priority operations, theyst be completed in a timely manner.

Second, the on-disk cache has a single location. Leavisddbation may result in a large seek in



order to return to the designated cache area. Finally, wighegies that operate in distinct phases,
opportunistic updating becomes difficult or impossibledded, it is entirely possible that all pre-
vious caching efforts need to be updated, and this updatingre at once, rather than gradually.
Our work is directed toward dynamic, adaptive, gradual tipdahat is robust to swift changes in

workload behavior.

2.4 POWER

Greenawalt presented one of the earliest studies on mgdatwer, latency, and life expectancy
of hard disks using multiple power states in 1998][ A more detailed approach was presented by
Zedlewskiet al. in 2003 [L2§ using an extension of thBiskSimsimulator [L7, 18,40, 41] called
Dempsey Zedlewski used simulated disk traces as well as a portiacheoi992cello trace [L0OZ]

as validation foDempseywhile Greenawalt used a Poisson distribution to model Hasklaccess
behavior.

The earliest suggested use of predictive techniques tondigadly adjust the spin-downs for
hard disks for power conservation was presented by Wilkd®982 [125. In 1994, Douglis, Kr-
ishnan, and Marsh demonstrated that perfect, non-invapivedowns were capable of decreasing
disk power consumptio60%, while online algorithms achieved a 53% reduction over tlamum
facturer's recommended five minute time-o8@j][ Later work by Krishnaret al. analytically mod-
eled spin-down decisions as a rent-to-buy problem in 188%p]. Studies on how to capitalize on
these spin-downs by predicting when they should occur wersemted by Goldingt al.[45,46]
and Dougliset al.[29,30]. The greatest power savings achievements to date thahase tech-
niques on an unaltered workload employed an adaptive madbarning algorithm43, 54] that
used a variant on the weighted majority voting algorith@i®] called the “share” algorithmgs).
Similar work focuses on device-level management, similapin-down techniques, using various
dynamic power management decision engines on a large dathtsaces 7). Recent work on
thermal modeling of disk drives suggests that temperatigeyell as power, is increasing in im-
portance for drivesq0, 51, 64]. Other recent work on data centers uses fast transitiotveclea

“active” and “idle” states to save energy on server idle @#sgiB9]. Our work differs from these
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efforts in that we seek to change the physical location afrimftion on the hard disk rather than
adjust any spin-down timeouts or moving devices betweesldesf power consumption. Such a
strategy has the benefit of being taken off the data path agiplin the event of high activity,
while previous efforts of restructuring are expected toticwe to have a positive effect on system
performance. Furthermore, our techniques demonstratbibty & reduce a workload’s footprint
or working set by reducing the percentage of raw storagemveltetrieved or traversed unneces-
sarily. This makes these techniques useful to multi-mackiystems at the system level, while
spin-down efforts only benefit such systems at the machired.le

Recent work by Narayanaat al. seeks to accomplish further spin-down savings in entexpris
storage systems by temporarily off-loading pending wriguests to available persistent storage
locations elsewhere in the storage syst&#.[ Other studies by Crk and Gniad23] seeks to
predict upcoming transitions from a low-power state to &pgwer state of storage devices, thus
reducing the observed latencies incurred from spinninghepisk. Joukov and Sipek]] show
that constantly spinning the disk up and down decreasesféhexipectancy of the device. They
presentGreenFS a file system that utilizes flash technology for providingrharchical run-time
data protection that keeps disks spun down and limits theuatrad spin-ups necessary.

The common thread in these works is the concentration ordgpAms or similaon-offswitch-
ing as the mechanism for reducing power consumption. Theagsyi costs associated with these
strategies are the observed latency while waiting for tis& tb re-enter the active state, or the
so-called “spin-up” time, as well as the corresponding pavests. In addition, all power conser-
vation attempts lie directly on the data path, and none &eengtted while the disk is active. Recent
efforts on data compression show promise, but remain umgkzreble, and tend to have limited
application p6]. Our approach seeks to employ reduced disk activity unidjpredictive grouping
while the disk remains active, and incurs no such latencyowrep penalties. Additionally, our

experiments utilize more detailed power measurementsghanpublished research.
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3.0 PROBLEM DEFINITION

As we have discussed, the general goal of placing relateditgsihs near one another on the disk
can be tackled in a number of ways; therefore, in this chapéewill detail the precise problem
that our research seeks to solve. The first step is to unddriiat latency, in our terms, means not
only the amount of time observed for satisfying a single esfjfior a particular item, but the total
observed time of the entire system. In particular, we naeettistence of a number of unavoidable
costs forany single request; for instance, a device on a distributeceayshight have bandwidth
constraints and other communication overheads. A singleeenight have to wait for a channel
to become available. These costs are largely uncontrellalold occur at the start of any request.
If we can reduce the number of total requests, we might tlyeretbuce these unavoidable costs.
As a reasonable real-world example, consider a track hyféet of a standard modern computer.
Any request to the hard disk will read an entire track intotthek buffer, which acts as a one-item
cache whose size is equivalent to the size of the disk tracl. fAture requests that occur within
the same track are read from the track buffer, thereby avgidostly disk reads. Therefore, in our
example, the collocating group becomes the track, anddgtesduction is achieved as a result of
reduced disk reads. Thus our first goal becomes reducingchatay reducing total requests; in
particular, we seek to accomplish this goal through cotiogedata chunks on disk.

A second goal of our research is also held in our analogypfir@iducing power consumption.
Hard disks have been shown to consume up to 30% of total systevar, and remain a major
concern for reducing the lifetime cost of the system. By o#olythe number of disk reads in our
analogy, we reduce the total disk seeks, which are among ts¢ costly operations performed
by the disk. Since the disk head is mechanical, its opersitemst much more than accessing
an electrical track buffer. If we collate highly correlatddta, we might reduce the workload

footprint, and the track buffer will presumably remain tlisce of requests granted for a long
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period of time. This increases the workload’s “bursty” mat{lL4, 16, 91, 94, 95, 1024, and aids
other strategies orthogonal to our own, such as spin-dowa thanipulation.

However, the ability to reduce a workload’s footprint hadiidnal applications. In distributed
systems, a major cost of the system is not just the total nuoflevices, but energy costs of the
total number ofactivedevices in the system. Dynamically reducing a workloadétant could
potentially reduce the number of active devices, thereleatly reducing the cost of the entire
system.

Thankfully, data accesses have been shown to exhibit heghigiability, which we will exploit
in our collocation. The next question we must address is loayather the appropriate metadata to
ensure accurate prediction. We would like our strategy taggdicable dynamically, as workloads
can and do shift over time. Thus, the ability to rapidly adatiso desirable. However, adjusting
to the workload prematurely before a trend has been edteblisan be detrimental. Thus, a
certain robustness to noise in the signal is also highlyrdes. Finally, we must ensure minimal
requirements for this volume of metadata. It does no gooddatty reduce workload accesses if
metadata accesses increase accordingly, nor does it behmogystem to completely fill system
memory with it. We therefore wish to limit the total amount ©fstem metadata used in our
predictions.

We therefore seek to accomplish the following.

1. Gather predictive metadata without taxing the undegyystem.
2. Use this metadata to collocate related data at the deawret |

3. Employ these collocated regions to reduce total deaeellaccesses, and thereby reduce sys-

tem latency and energy consumption.

Throughout our work, referencesdocesseanddata accessess well asaccess patternand
workload tracesare used to refer tblock-levelaccesses, rather than file-level, unless otherwise
noted. We do this for a number of reasons. First of all, assgrall data chunks are unit sized
reduces the calculation costs significantly. Additionallyr work strives to remain as generalizable
as possible, and refrain from imposing high-level absimastupon workloads. Rather than using
file-level information toguessat how a workloadshouldbehave, we allow the access pattern to

emerge from observed events. Finally, since the vast ntyajofistorage systems operate at the

13



block level, there is no additional translation necess#gy.a result, unless noted, we consider
block chunk or file to be equivalent. We often refer to a file ID, or a file’s estiethprobability;

these translate to a block ID and a block’s probability, ibmaents and purposes.
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4.0 EXPERIMENTAL METHODOLOGY

The merits of trace-driven simulation of system perfornreahave long been understoatDf.
The use of access traces is highly desirable for its reafismticularly so when compared to syn-
thetic functions and independent distributions. This [geeglly true when evaluating predictive
techniques, which must be judged on their ability to idgraiid exploit predictability in real-world
workloads, and not on their ability to coincidentally magchynthetic or statistical generator. Ap-
plications for these traces are wide-ranging, includinghaag, prefetching, memory management,
data layout, hybrid (NVRAM) system evaluation, low-levgstem behavior analysis, system de-
sign and performance tuning.

Recently, it has been suggested that longer traces can bexappted by repeatedly using
the same smaller trace (or tracesy|f While reasonable, this strategy introduces new pittitg
traditional trace usage avoids. For instance, repeatinggestrace will boost the access counts,
including access “noise”. While the overall percentageca$@ would remain unchanged, theeme
noise would be recorded, making it more difficult for stragésgo eliminate or ignore this system
static. Moreover, single-time events completely disapmgaing the illusion that the system need
not be concerned with an event that it might never witnesmagarther, the access signal becomes
somewhat stagnant, with no new event ever arriving. Theradge of repeating a single trace is
that a learning or adaptive strategy is given ample time tbeganecessary information. However,
we would argue that adaptive strategies should be able ® wiijp sparse information to remain
generalizable.

For these reasons, our work is inevitably linked with thatrate gathering and analysis. We
have strived to use traces that represent multiple worktbadacterizations, including established
sets that are well documented for ease of comparison andrreaees that we have collected

ourselves. These newly collected traces represent vanekloads and conditions.

15



4.1 CLASSIC TRACE SETS

The trace sets presented in this dissertation represeatisbied workloads used in previous work
in related fields, such as cachir§] pnd file prediction 11,96, 127, system benchmarkind.[Lg,

and workload characterizatio(Q.

4.1.1 mozart

Themozartset consists of a workstation trace gathered usin@#®Tracesystem §1], providing
information at the system-call level. This set represemésariginal access stream, prior to any
caching. These traces were converted into equivalent Bk traces with block sizes of 512,
4096 (4K), and 8192 (8K) bytes. There were four differengioral trace sizes; day length, week
length, month length, and year length. This set has the ambedlowing the analysis of our
strategies over different definitive time periods as wekld®nving us to convert easily to different
block sizes.

Except where noted, these traces had block IDs numbereddiiwgdo order of initial access.
This numbering strategy implicitly includes a level of apization in terms of accesses and space,

thereby providing a more ambitious baseline against wii@ompare our grouping strategies.

4.1.2 hplajw

The second sehplajw, is a block-level workstation trace from a HP-UX systelfiJ]. This trace
had a single user, John Wilkes, and was used primarily foilemd paper editing. This trace set
represents disk-level accesses; the authors note thablitivity was seen at this level, due to the
effectiveness of the UNIX buffer-cache.

This set has the advantage of natively being a block-leaektrand therefore does not require
conversion. However, there is only a single trace lengtl Jacks any information of original file-
system level access information, and therefore cannotheaely converted to traces of differing
block sizes.

Much like ourmozarttrace set, unless otherwise noted, this workload had bldskiumbered

in order of appearance, allowing for higher quality basdifor our predictive grouping.
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4.2 NEWLY COLLECTED TRACE SETS

As storage systems, operating systems, and file systemgeleane revised, and evolve, so evolve
the demands placed upon them. Workload habits adapt aridiskifo increased storage capacities
and higher bandwidths. New applications cause new behawear behavior yields new demands;
new demands dictate new design. As a result, more modemstee constantly needed in order
to avoid outdated assumptions for updated systems. Tortkisvee have collected our own trace
sets, for several workload classifications, in order tofyeassumptions made from established

trace study.

4.2.1 ranin

The custom trace setinin was collected on a Mac PowerBook G4 1.25 GHz processor with
512 MB of memory on a 5400 RPM Seagate Momentus hard drive ¥#dhGB capacity. The
workstation was running OS X 10.4 with vanilla Darwin and XX&ernel and used the standard
f s_usage command found on OS X. These traces were gathered in 2007 Nlmvember to
December. The workload represents a typical graduate rstwebgkstation, namely the author’s,
used for day to day activities, including internet browsiiilg editing, code compiling, and running
and testing experimental simulations, most of which wergg@u C++ programs. While there
were a few trace interruptions due to rebooting, including major software update, inaccuracies
introduced we considered negligible due to their infregqyenAdditionally, the ensuing shifts
in workload behavior represent realistic changes due tbwedd activity. Cache activity was
gathered, but for the majority of our work, they were igngredly device-level requests were
used. These requests were in the form of read and write ddtmatadata as well as page ins and
outs. Tablel details all the system calls collected through the entaesywhile Tabl details the

system call counts and byte information most pertinent taresearch.

4.2.2 playlist

The custom trace selaylistwas gathered on two different Mac mini G4 workstations, eaith

512 MB of memory and running Mac OS X 10.3.9 with vanilla Danand XNU kernel. We ran
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Table 1: Table of all system call counts frgamin trace.

SYSTEM CALL COUNT % SYSTEM CALL COUNT % SYSTEM CALL COUNT %
CACHE _HIT 60,000,000 30.4 fchdir 300,000 | 0.151 delete 5,270 | 0.00265
Istat 39,000,000 19.8 WrData 208,000 | 0.105 buffer 3,976 | 0.00200
read 31,000,000 15.8 chown 183,000 | 0.0922 mapfd 3,235 | 0.00163
write 17,000,000| 8.42 rename 175,000 | 0.0878 accessextended 2,989 | 0.00150
stat 11,000,000| 5.57 fsync 154,000 | 0.0775 RdData 2,933 | 0.00148
open 7,500,000| 3.78 unlink 146,000 | 0.0736 exchangedata 1,088 | 0.000548
pread 6,000,000 3.01 mmap 133,000 | 0.0668 PAGE.OUT.V 814 | 0.000410
getattrlist 4,500,000 | 2.27 mkdir 131,000 | 0.0659 fchmod.extended 640 | 0.000322
close 4,300,000| 2.18 statfs 124,000 | 0.0624 flistxattr 618 | 0.000311
Iseek 2,500,000| 1.25 getdirentriesat | 120,000 | 0.0603 RdMeta[async] 507 | 0.000255
fstat 2,200,000 1.13 utimes 115,000 | 0.0578 symlink 396 | 0.000199
getdirentries 1,700,000 0.874 || Ichown 100,000 | 0.0503 fstatextended 348 | 0.000175
PAGE.IN 1,500,000 | 0.733 || execve 90,000 | 0.0454 getxattr 297 | 0.000149
WrMeta[async] 1,100,000| 0.541 || fsctl 68,000 | 0.0344 searchfs 211 | 0.000106
RdData[async] 1,100,000 0.531 || listxattr 56,000 | 0.0284 writev 195 | 9.81e-05
fstatfs 775,000 | 0.390 || fchmod 54,000 | 0.0273 WrMeta 189 | 9.51e-05
WrData[async] 691,000 | 0.348 || sync 33,000 | 0.0166 pathconf 155 | 7.80e-05
RdMeta 667,000 | 0.335 || setattrlist 26,000 | 0.0129 setxattr 146 | 7.35e-05
pwrite 526,000 | 0.265 || statextended 26,000 | 0.0128 fgetxattr 70 | 3.52e-05
Pgln[async] 484,000 | 0.244 || fchown 22,000 | 0.0112 link 66 | 3.32e-05
chmod 421,000 | 0.212 || rmdir 9,794 | 0.00493 || fsetxattr 33 | 1.66e-05
access 409,000 | 0.206 || readlink 9,145 | 0.00460 || revoke 11 | 5.54e-06
PAGE.OUT.D 398,000 | 0.200 || ftruncate 8,817 | 0.00444 || removexattr 10 | 5.03e-06
PgOut[async] 394,000 | 0.198 || PgOut 5,379 | 0.00271 || chflags 4 | 2.01e-06
chdir 302,000 | 0.152 || PgIn 5,337 | 0.00269 || fremovexattr 1| 5.03e-07

Table 2: Table of select system call counts and byte couaits fanin trace. Percentages reported

include only those calls present in this table.

SYSTEM CALL TOTAL BYTES BYTE % ACCESSES| ACCESsS% | BYTES/ACCESS
CACHEHIT 231 GB 52.5 60,000,000 92.9 4096 B
RdData[async] 102 GB 23.2 1,060,000 1.62 101 KB
WrData[async] 59 GB 13.51 691,000| 1.06 90 KB
RdMeta 14 GB 3.13 666,000 | 1.02 22 KB
WrMeta[async] 11 GB 2.47 1,070,000| 1.65 11 KB
Pgln[async] 8.1GB 1.84 484,000 | 0.744 18 KB
PgOut[async] 7.6 GB 1.73 394,000 | 0.605 20 KB
WrData 7.3GB 1.65 208,000 | 0.320 37 KB
PgOut 55 MB 0.0123 5,379 | 0.00827 11 KB
Pgin 54 MB 0.0120 5,337 | 0.00820 10 KB
RdData 11 MB 0.00253 2,933 | 0.00450 4075 B
WrMeta 2.9 MB 0.000638 189 0.000291 16 KB
RdMeta[async] 1.2 MB 0.000262 507 0.000779 2442 B
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Table 3: Table of all system call counts frgataylist, shuffldérace.

SYsSTEM CALL COUuNT % SYSTEM CALL COUNT % SYSTEM CALL | COUNT %
pread 5,080,000 40.5 setattrlist 1,416 | 0.0113 PAGE.IN 25 | 0.000199
RdData[async] | 4,740,000 37.8 exchangedata 1,416 | 0.0113 Istat 23 | 0.000183
CACHE _HIT 1,480,000| 11.8 delete 1,416 | 0.0113 stat 21 | 0.000167
getattrlist 784,000 | 6.25 read 813 | 0.00648 rename 20 | 0.000159
open 151,000 | 1.20 fstat 777 | 0.00619 chmod 20 | 0.000159
close 151,000 | 1.20 RdMeta 321 | 0.00256 Pgln[async] 9 | 7.17e-05
fsync 149,000 | 1.18 WrData 185 | 0.00147 getdirentries 8 | 6.38e-05
WrData[async] 2,144 | 0.0171 || WrMeta[async] 56 | 0.000446

pwrite 2,124 | 0.0169 || write 34 | 0.000271

Table 4: Table of select system call counts and byte coumtstaylist, shuffledrace. Percentages

reported include only those calls present in this table.

SYSTEM CALL TOTAL BYTES BYTE % ACCESSES| ACCESS% | BYTES/ACCESS
RdData[async] 290 GB 98.0 4,740,000| 76.1 64 KB
CACHEHIT 5.7GB 191 1,480,000 23.8 4096 B
WrData[async] 391 MB 0.129 2,144 | 0.0345 187 KB
RdMeta 2.4 MB 0.000792 321 0.00516 7838 B
WrData 543 KB 0.000175 185 0.00297 3006 B
WrMeta[async] 437 KB 0.000141 56 0.000900 7982 B
Pgln[async] 43 KB 1.37e-05 9 0.000145 4836 B

Table 5: Table of all system call counts frgetaylisttrace (no shuffle).

SYsSTEM CALL COUuNT % SYSTEMCALL | COUNT % SYSTEM CALL | COUNT %
pread 5,120,000 | 37.6 setattrlist 2,544 | 0.0187 Pgln[async] 15 | 0.000110
RdData[async] | 4,780,000 35.1 exchangedata 2,544 | 0.0187 write 14 | 0.000103
CACHE _HIT 2,380,000 17.5 delete 2,544 | 0.0187 stat 14 | 0.000103
getattrlist 842,000 | 6.19 read 1,347 | 0.00990 rename 14 | 0.000103
open 156,000 | 1.15 fstat 1,330 | 0.00978 chmod 14 | 0.000103
close 156,000 | 1.15 RdMeta 386 | 0.00284 getdirentries 6 | 4.41e-05
fsync 152,000 | 1.12 WrData 179 | 0.00132 statfs 1 | 7.35e-06
WrData[async] 3,830 0.0282 || PAGE.IN 48 | 0.000353 || pathconf 1 | 7.35e-06
pwrite 3,816 | 0.0281 || Istat 22 | 0.000162
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Table 6: Table of select system call counts and byte couats flaylisttrace (no shuffle). Per-

centages reported include only those calls present indhis.t

SYSTEM CALL | TOTAL BYTES BYTE % ACCESSES| ACCESS% | BYTES/ACCESS
RdData[async] 292 GB 96.76 4,780,000| 66.7 64 KB
CACHEHIT 9.1 GB 3.01 2,380,000 33.2 4096 B
WrData[async] 703 MB 0.227 3,830 | 0.0535 188 KB
RdMeta 2.7 MB 0.000876 386 0.00539 7357 B
WrData 90 KB 2.83e-05 179 0.00250 512B
Pgln[async] 72 KB 2.28e-05 15 0.000209 4915 B

a playlist of 148 songs (mp3 files), with a runtime of approaiety 14.8 hours, on each machine.
Traces were gathered from August 31, 2008 to March 23, 2@88Jting in play counts over 300.
All disk activity due to the music software was isolated aecbrded using built-in tracing facilities
of Mac OS X. One trace gathered information on a sequentalfligt, while the other playlist
was shuffled. These traces, denotedokaylist and playlist, shuffledrepresent one extreme of
predictability, an estimated upper bound on how predietahiealistic workload could be. Tale
and4 detail system calls collected through thlaylist, shuffledrace, while Tablé and6 detall

theplaylisttrace.
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5.0 OPTIMAL GROUPING

In order to construct a solution to both latency and powenédge detailed in Chapt& we begin
by first exploring how an optimal solution might be constattTo do so, we must formally define
precisely the problem of data grouping and what it means feirategy to be optimal. We will
show that relaxing our initial definition of this problem uéts in a problem easily solvable with
a greedy approach. Further, we provide proofs of our gre&glyrithm’s optimality in terms of
group transitions, disk distance, and power consumpti@tdumechanical movement of the disk

arm.

5.1 MOTIVATION

Our strategy for optimally grouping data chunks utilizesiafe-aware algorithm. Using such an
oracle-based strategy in practice is impossible; our viefutare requests is imperfect. However,
this strategy serves as an illuminating bound on the implptexictive grouping strategies and

serves to illustrate what trends we might expect or strivetd.

5.2 OPTIMAL GROUPING PROBLEM DEFINITION

The problem definition for optimal data grouping is as foltow
Input: A sequence of requests for stored item& = {(fo, so), (f1,51), ...}, where ordered
pairs(f;, s;) representfile ID f;) and file size £;), C.,..., @ maximum size of a group in bytes, and

D, a maximum size of the disk in bytes.
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Output: A list of groups, allowing for replication between themgchuthat the total number
of groups traversed.€. the total number of switches or transitions between groigasjnimized,

satisfying the following constraints.

1. Every file must be in at least one group (no loss of data)

2. No group uses more disk space tlian,, (all groups fit into a track)

3. No more than D/C,,...| groups are used (we do not use more space than is availakhe on t
disk)

If no solution exists, we output O (or “no solution”).

This problem definition provides the general formulatioattive address throughout the re-
mainder of this dissertation. But optimally reducing tradansitions is difficult. However, should
we relax the problem, the solution becomes quite simple.ré&laxed problem we chose to solve
is identical to the general problem with the exception thatremove the disk size constraiii,

In effect, we allowD to be arbitrarily large. Supposing we know the future exaethd have a disk
of arbitrarily large capacity a simple greedy algorithm can produce a static groupingraetthat
is optimal in the number of transitions. We call this optiradorithm DrNO (Data replication:

Naive Optimal) B2, 33]. The pseudocode is given in Algorithin

5.3 OPTIMAL BEHAVIOR OF DRNO

The general strategy behind our optimal algorithm is try stkenthe current group as big as pos-
sible and throw it away as soon as we are done with it. Sinceonsoticare about the total disk
space useih solving this optimal grouping probleme. how many groups are used in the process,

we are able to extract the greatest benefit from each group.
Theorem 5.3.1DrNO provides an optimal solution for minimizing the numbétransitions.

Proof The proof of optimality that we construct is an indirect grod/e assume that algorithm
DrNO is not optimal and reach a contradiction.
First, we note that both the second and the third constramltsfor our algorithm. The third

is guaranteed because as soon as a file does not fit withintletgroup, we form a completely
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ALGORITHM 1 DRNO(FT,maz) - an optimal, oracle-based greedy algorithm for solving the

relaxed version of the optimal grouping problem.

Input: a sequence of requests for stored iteig, a maximum size of a group in bytes,ax,
equivalent ta’,,,., from the general grouping problem in Sect@i2

Output: alist L of n groupsG;...Gn

forall fin FT do
if SIZEOF(f) > max then
PRINT “No solution”
return NIL
end if
if SIZEOF(G)+ SIZEOF(f) < max then
ADDTOGROUP(G, f)
else
ADDTOGROUPLIST(L, G)
G «— NIL
end if
end for

return L

new group. The second constraint is guaranteed since eleeiy the trace is placed into a group
that can contain it (unless a file’s size exceélls., in which case we immediately exit out of the

program). Therefore, our algorithm finds a solution if onesesx

To prove optimality, we compare our algorithm’s behaviorthat of an optimal solution’s
behavior. Note that an optimal solution exists. Among atiropl solutions, we consider the one

whose behavior most closely resemdletO. Call this solutionO PT'.

We define “most closely resembles” to mean the following. <ider the positions id"1" that
an algorithm inserts a group switch. @rNO, this is just before a new group is formed.) We say
that a solution behaves most likgNO if it has the most number of consecutive group switches in

the same positions &rNO, beginning at the first file id'T".
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Define X as the first group switch i@ P7" that differs fromDrNO. In other words, at position
X, OPT has hadn group switches anBrNO has had: group switches, where # m.

Note that it must be the case that< m. SinceDrNO greedily fills its groups until no more
files can fit, it can not be the case tlatNO has a group switch befol@ P7T. We now defing”
as the next position itt"7" thatDrNO has a group switch aftex. Call the last place i#'T where
DrNO andOPT had a group switch at the same place

Call & the number of groups th& PT has. We construct a soluti@x from O PT that more
closely resembleBrNO and remains optimal, thus reaching our contradiction. @aog)’ in the
following way. Add thek+15 group, which contains all the files i7" from positionZ to position
Y —1,toOPT. This does not violate the second condition, nor the thirdddoon, since these files
can fitinto a group (sincBrNO put them all in a group), and no files are removed from any gsoup
Use thek + 1°¢ group to put a group switch at locatidhand remove all other group switches from
Z toY. Thus,0" hass group switches, where < m, andO’ more closely resembld3rNO than
OPT. But OPT was the optimal solution thahostclosely resembleBrNO. Thus, we reach a

contradiction, and we are done. |}

This optimal grouping scheme does not just minimize traosst If the groups created by our
optimal grouper are laid out linearly on the disk, we obtainogtimal solution for minimizing
distance or the number of groups that we must traverse throughoueritiee workload. This

distance is defined as

dist = i dist(G(1), G(i + 1)) (1)

wheren is the total number of transitions addst(G (i), G(i + 1)) denotes the distance between
the current group at the time of ti#& transition and the target group(i + 1) that will be switched
to. This is of particular interest because of its appliagbib hard disks. Our constructed groups
can easily be interpreted as tracks on the disk. While wetder@) as the group used until the
it" transition, we will denoté:; as thej*" group or track on the disk. In other words(i + 1) will
beneeded aftet(4) in the workload, while track7; ., is located aftettrack G; on the disk.

In order to translate from a requested gra@a) to a location on disk¢r;, we use a transfor-

mation functionl” such that

j=T(G(i)) 2)
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Alternatively, this relationship can be described as
G = Graw) 3)

Using this definition, we can redefine our distance metrigla@ngdist(G (i), G(i + 1)) by using

our transformation functiofd'.
dist = " |T(G(i)) = T(G(i + 1)) (4)
=1

While it is easy to see that our algorithm, combined with adinlayout strategy of groups in order
of creation, produces unit size distances, this definitidhbg&come useful when we discuss other
grouping methods.

Since the number of transitions is minimizedDyNO, and all transitions result in a distance

of 1, it follows directly that the distance is also minimizZegiIDrNO.

Corollary 5.3.2 Assuming a linear layout of groups in order of creation, aitfon DrNO provides

an optimal solution for minimizing distance.

Once again, this result has particular applicability fordhdisks. Our distance metric from
Equation §) translates directly into track distance. This is espcebpealing since power and
latency penalties due to mechanical components of the hiskdldpend upon the number of times
we seek a new track and the track distance of each seek. Mingrthe distance via a minimized
number of seeks, each of which is unit sized, results in mizechpower and latency costs due
to these mechanical components. Thus, our algoridvdO with a linear layout of groups in
the form of disk tracks is also optimal for minimizing powerdalatency due to the mechanical

components of the disk arm.
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Figure 1: Comparison of various block sizes for month lemgtzarttrace.

5.4 DISCUSSION

Perhaps the most interesting trend exhibitedoi}O is the number of group transitions against

the size of each group. For every case tested, we see rougddy,|lgenerally decreasing relation-

ship on a log-scaled graph, making the actual relationstpproximately) inversely proportional

between group size and transitions. This suggests inhdnm@mishing returns for our grouping

problem.

In more practical predictive grouping, this behavior of giishing returns is expected to per-
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petuate, and become more critical. Without a perfect onagten which to draw, predictions must
be made based upon heuristics. Thus, very valuable blodkgpvasumably, be chosen first. As

the group size increases, blocks’ “values” will decreasanting less and less benefit per block.
In this way, the choice of a grouping scheme becomes somdesgsmtrucial for small blocks;
one reasonable grouping scheme should closely approxanatber. However, when group sizes
become very large, and grouping schemes form drasticabiypy, the choice of scheme becomes
much more critical. While larger group sizes will allow foetber performance, we should antici-
pate a need to reduce the number of predictive groups negeBggurel shows a brief comparison
of mozarttraces for varying block and group sizes.

Interestingly, our algorithm exhibits a counter-intugiresult in the amount of necessary space
for predictive groups. When forming predictive groups gsiaplication, one would assume in-
creasing the group size would result in a larger overallgoot for predictive groups. This is
not the case foDrNO; the total number of groups needed decreases faster thagrabp size
increases. This result is also shown in Figliysince the number ajroupsnecessary is identical
to the number ofransitionsnecessary. (Actually, the number of groups is equal to thebau
of transitions plus one.) While intriguing, this behavisrriot to be expected in more practical
methods, as we will see in Chapt&rwhere we will compare practical methodsRoNO to see
how close those methods can come to optimal behavior. Residiminishing returns will also

become increasing crucial for designing a dynamic groupmgjne, in Chapte9.
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6.0 STATIC GROUPING

As we have stated, predictive grouping is the identificabbrnelationships between data, based
on predictions of future access patterns, with the aim ofigireg together the most related data

items. If a workload exhibits repetitive or otherwise pdble access patterns, then predictive

GroupA: | 1 2 3 4 GroupA: | 1 5 9 2
GroupB: | 5 6 7 8 Remap with GroupB: | 6 1 3 7

Replication LT T T
Group C: | 9 10 11 12 Group C: | 11 4 8 10

Block Access Pattern: 1,5,9,2,6,1,3,7,11
g Used block
Free block
Group Access Pattern Group Access Pattern with
Prior to Remapping: A,B,C,A,B,A,B,C Remapping and Replication: A,B,C

Figure 2: Predictive grouping example. The grouping on éfiei$ a sequential layout, including
some free blocks. The grouping on the right is one possiloapping that allows for replication

between groups.
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grouping can be used to reduce the number of power-statgtioans, reduce the number of active
nodes in a multi-device system, and even reduce the me&haatvity within a single device.
Predictive grouping can thereby improve performance amdggnefficiency in storage systems,
while simultaneously reducing access latencies. See &Rtor examples of group remapping
with replication.

Successful strategies result in fewer transitions amoogpyg; our working analogy of disk
tracks demonstrates this eloquently. Intuitively, fewansitions among groups translates to fewer
disk seeks and smaller overall latency and power. A secgn@ault is an increase in access
burstiness, allowing for orthogonal strategies such ak sign-down additional opportunity of
application. To this end, we must examine the effectivenésgveral prediction strategies, each

allowing for replicationacrossgroups, but not within them.

6.1 MOTIVATION

Our optimal grouping strategy in Chapteutilizes an oracle-based strategy, allowing for perfect
future prediction. Obviously, such a strategy is impraadtio practice; no perfect predictor exists.
However, the use of past events to predict the future hasdstahlished as a solid strategy capable
of adaptability, high accuracy, and resilience to signakedb, 8, 23, 77,111, 121]. Scores of
applicable policies abound, from graph-based modeHd8ftp multi-order context predictiorv[l].
Even simple strategies such as last successor have been ghbave surprising effectiveness for
predictive purposes/[7]. Ergo, we tackle our first question. What strategy are wehtinse?

A number of factors influence this critical decision. Préidic accuracy is, of course, a high
priority. Speed, or asymptotic behavior, is certainly anffigant concern. Robustness in the face of
signal noise, seemingly random behavior of the workloaligkly desirable, but we must remain
adaptable. Small storage requirements are also crittades little good to require great amounts
of metadata stored for small workload footprints. With #ésctors in mind, our first decision
was to explore the use of first-order successor informatientjased on a context depth of size
one). This metadata strategy has far reduced storage eeggnits than multi-order strategies and

has been shown to have applications for predictive caclarigibiting adaptability, resilience to
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Figure 3: Simple access tree, where nodes denote blocksiauted edges are weighted with

estimated likelihood of occurrence.

signal noise, and high prediction accura8y [

6.2 GROUPING STRATEGIES

6.2.1 Baseline Strategies

We present two baseline static grouping schemes used iprtjesct. The first methodyoRep or
no replication lays the data out linearly on the disk according to ID, maxzing density. To use
this grouping scheme, on a transition we seek the only groaipdontains the offending file (the
file that caused the transition). This method proves usefuldducing the distance of a transition
compared to other replicating strategies, but is expectddve many transitions.

The second methodhaximal replicationor MaxRep groups blocks linearly, with each group
G; beginning at blockB; and ending at blocks;  ;,oups:.c. This sScheme maximizes replication of

blocks. To use this scheme, on a transition we seek the ghatipégins with the offending block.
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Such a scheme might prove useful in reducing transitionsMa&ep but may suffer from greater

track distances.
ALGORITHM 2 OE.ME(T, root, max) - a balanced approach for forming a predictive group.

Input: set of first-order successor treés,a root 1D, root; @ maximum group sizenax

Output: a set of IDs(, representing the predictive group

ENQUEUE(max_pq, root, 1)
while ISNOTEMPTY (maz_pq) and SIZEOF(G) < max do
p < TOPPRIORITY (maz_pq)
f < DEQUEUE(mazx_pq)
if SIZEOF(G)+ SIZEOF(f) < max then
ADDTOGROUP(G, f)
maz_pq < OE_.ME_EXPAND(T, max_pq, f,p)
end if
end while

return G

6.2.2 Predictive Grouping

For the predictive grouping methods, we need to maintaircessor information for each ID.
However, tracking successor paths of arbitrary length fggsrhetadata overheads. Instead, we use
first order successor information, tracking immediate sasors, drastically reducing the spatial
requirements to a practical amount. We then use this simfidemation to build larger groups of
related files based on access trees. A simple access treemsigiFigure3.

Using this first order successor information, there are tinatesgies we can adopt. The first
strategy is a breadth-first expansi®HS, cautiously capturing all of a block’s successors before
moving on to further descendants. AdoptinB@&Sstrategy for the tree in Figui& we would add
(inordenA, B, D,C, E, F, G, H, etc. The second strategy is an aggressive depth-first sixpan
(DF9), seeking to obtain as many successors along a single “ikelt’lpath, hoping to maximize
the use of that successor path at high risk of missing othaspAdopting eDFS strategy for the
tree in Figure3, we would add4, B, F, I, etc.
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ALGORITHM 3 OE_ME_EXPAND(T, max_pq, f, p) - expands the maximum priority queue used
in Algorithm 2. Note that RT’, f, s) denotes a function used to calculate the estimated pratyabil

of child s of f’s access tree withiff'".

Input: set of first-order successor treds, a maximum priority queuenax_pq; a file or block
ID, f; an estimated probability,
Output: max_pq

for all s such that is a child of f in T" do
p < px P(T, f,s)
ENQUEUE(maz_pq, s, p)

end for

return max_pq

A third strategy, which we calDE ME, or Optimal Expansion, Maximized Expectatimses
both of these simpler strategies by performing an automlstibalanced expansion. This strategy
is similar to the balanced approach used in recent accedscimes [7, 74] and has previously
shown pattern modeling qualitie®d. It is also similar to A* searching and Huffman encoding.
See Russell and Norvidlp3 for comprehensive discussion on A* search and SedgewlioK] [
for details on Huffman encoding. The tree in Figieunder our new strategy, would add
(prob= 1.0), B (prob= 0.6), E (prob= 0.6 x 0.6 = 0.36), D (prob= 0.35), F' (prob= 0.6 x
0.4 = 0.24), etc.

The general algorithm for grouping using these methodsvisngin Algorithm?2. The crucial
pointis within the Expand subroutine, in AlgoritiBnwhere we use the global estimated likelihood
of the file f multiplied by the local estimated likelihood of chikdof f.

6.3 EXPERIMENTAL SETUP AND DESIGN

We evaluated our performance through simulation on seffarent trace sets. The first set,

mozart consists of a typical workstation file system trace gaitharsing theDFSTracesys-
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tem [91]. The file system workloads were converted to their equiviadeKB block-level read
workloads. The second sdiplajw, is a block-level workstation trace. (7. These workloads
were chosen because they are not drawn from synthetic éunsctr independent distributions,
but rather represent real-world traces that exhibit thésteapredictability and patterns of a data
access workload resulting from user, program and operatistgm behavior. In addition, they are
lengthy traces obtained over extended periods of timewallpus to evaluate the effectiveness of
grouping as a layout mechanism. We find thezarttrace particularly useful since we are able to
evaluate the effectiveness of our strategies at varying §pans, up to a year-long period. We have
found our balanced approach to be more robust than otheroaheth terms of effectiveness over
extended periods of time. THweplajw workload, a block-level workstation trace, shows results
very similar to those from thenozarttraces, in spite of their different origins, both traces aver
evaluated in terms of block-level layout.

In order to obtain accurate energy estimates, we used a/pmger measurements from a va-
riety of hard-drives21]. We selected these measurements for our estimates bebaysepresent
detailed, isolated power measurements of a disk arm ratheraggregate measurements of total
energy over time. Detailed energy usage was gathered ustdard-drives ranging from 2 GB
to 80 GB. The energy consumed was evaluated using bencharadksmultaneous measurement
of energy consumed over the separate 12 and 5 Volt power. IlBegarate power lines provided
the advantage of isolating the energy usage of drive mect&h? V line) from drive electronics
(5 V line). The voltage drop was measured across Q.0ésistors in series with each of the two
lines.

We used a DAQ system collecting 20,000 samples per secomraébrbenchmark experiment.
These samples were used to calculate the average poweraishgelrive based on the percentage
of the disk that was traversed during each seek. See Fgajéor an illustration. The ability to
isolate drive motor power sources, combined with high fesgquy sampling, allowed us to isolate
the contribution of the disk arm movement to the disk’s ollenr@ergy usage.

We used these average power measurements to estimate mimgelag functions. We used a

generic log function of the form

power = a X log(perc+b) + ¢ (5)
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Figure 4: Reducing disk power consumption by reducing armenents.

Note thatperc here represents the percentage of the disk that was trayersmunded quantity
ranging from 0 to 100. A repeated simulated annealing psoe@s used to adjust the weights,
andc such that the average squared distance was minimized. ffaisgy was adopted to obtain
functions that were much closer to data than available tfiv@imple function estimators. The
power estimation function, shown in Figudéb), has an average squared distance of 0.002604.

The calculated parameters for this drive are provided inelab

The energy used by each of the trace workloads, and the jaianarred, was evaluated
through simulation based on the above drive performananpaters. Our simulations were con-
ducted as follows: First, we read through the appropriaeetrgathering first successor informa-
tion. We then read the trace again, calculating track degtsnestimating latencies and energy
consumption. During this second run through the workload,ewaluated energy consumption
and latencies for the different grouping algorithms andr ttesulting layouts. We also record the
number of groups formed by the different algorithms, thaltbtinsitions between these groups,
and the number of requests satisfied before each groupticemdihe following equation was used

for calculating the time of a disk arm movement due to tramss.
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Table 7: Power parameters for caviar2gb through repeatedaied annealing.

Drive a b c

caviar2gb| 0.331219| 1.036054| 1.729115

trackDist
avgTrackDist

time = avgSeekTime x \/ (6)

We used a minimum seek time of 0.001 seconds and an averdgse®f 0.008 seconds for the
results presented below.

Total energy consumed was estimated by multiplying the p@easumption by the latency.
Note that since we are using an average power figure, we casimapée multiplication and need

not integrate.

energy = power X time (7

Tracks were laid out in the order they were requested, inmgosd structure to the tracks
themselves. This is in accordance with the expected behaVithe different algorithms being
dynamically applied to a workload. The exceptions are the baseline algorithms for which
tracks were laid out in linear order for consistency, as theyot offer a clear sequence of group

creation.

6.4 RESULTS

Table 8 shows a comparison of strategies based on the energy andylgtenalties of the disk
arm movement. These numbers are for th@zartyear trace, a group size of 2048 blocks, and
the performance and measured energy characteristics obgeklveDigital caviar2gb disk. As we
can see from the tabl®rNO is by far the most effective strategy, requiring less thaneks of

energy and less than 8 seconds to process the entire traiseis Bim impossible result to achieve
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Table 8: Comparison of strategies based on the energy amntiatosts associated with the disk

arm. These numbers are for thezartyear trace, group size 2048, based on a Western Digital

caviar2gb disk.
Strategy | Energy (J) | Time (sec)
DrNO 4.31 7.54
OE ME 194.63 389.53
DFS 555.31 1153.90
BFS 790.05 1608.94
MaxRep 4533.75| 13072.22
NoRep 968.56| 1694.98

in practice, due tdrNO's ability to perfectly know the future and to use an unlirdigegree of
replication and space for its groups, but it does illustthe dramatic potential of grouping re-
ductions for data reads. To further clarify it is importamfoint out that these results are for all
block read requests generated, and do not include writeestsju This means that our approach
is being applied to a subset of the workload, read requestshts is the very subset that cannot
be addressed by dynamic relocation of data to the curreitigqosf the disk-head (as is done in
logging or copy-on-write techniques). While writes allos/to physically write the data to a new
location and update metadata to indicate this new locatemads must be satisfied from wherever
the data is available, and predictive grouping attemptsaadehaving physically remote requests.
While DrNO is an unattainable ideal, it does demonstrate how effeptigdictive grouping with
replication may be. Our algorithmQE ME, is far from reaching this infeasible ideal but is nonethe-
less more than a four-fold improvement over the non-reptigebaseline loRep for both energy
and latency. The improvement over the aggressively repligatrategy fMaxRep is even more

impressive, at almost twenty times, illustrating the das@é unrestrained replication.

In Table8 we show the performance of our predictive grouping appraachpared for a sin-

gle group size and workload. A better view of these resultstarir meaning can be seen when
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Figure 5: Energy usage due to disk arm movement fontbeartday and week length traces. Note

that the sudden drop off for the last group size in the daytletrgce indicates the point at which

all the unique files fit within a single group.
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Figure 6: Energy usage due to disk arm movement fontbeartmonth and year length traces.
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Group Size vs Energy Usage (hplajw)
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Figure 7: Energy usage due to disk arm movement fohgiiajwtrace.

considering different workloads, durations, and groupsiFigure$ and6 show the energy con-
sumption from themozarttrace set, evaluated for four different durations and féfecent group

sizes. This is the energy cost that would be incurred by tfierdnt grouping algorithms, based
on the power consumption function estimated from the cagiadrive. Improved performance is

indicated by a reduction of this cost, as we aim to reduceatvemergy consumption.

These results demonstrate that there are massive saviteggipls, over 99%, achievable by
our optimal groupeMrNO. Our balanced expansion algorith@E ME, demonstrates up to 70%
reduction over the closest competing strategy for nonalrgroup sizes. This balanced expansion
also demonstrates robustness to both group size as wediasléngth not exhibited by the com-
peting strategies. As the group size increase®iNO, we see a continuing decrease in energy
consumed. This is not surprising given the optimal natutb®fjrouping performed, adding more
space to individual groups results in the maximum possédection in inter-group travel (and the

equivalent mechanical activity). For small group sizesdistinction between the strategies is not

39



pronounced, but as group sizes grow the difference in theenbof these groups becomes more
pronounced, and the performance impact of better predigtisuping becomes more pronounced.
OE ME does not follow the continuous improvementimNO, showing a leveling off of energy
gains as group sizes increase. Nonetheless, these dagreasirns are much better than those
of the competing strategies, suggesting & ME, while offering impressive energy gains, can
be further improved upon. Such improvement would requitéeb&nowledge of the future, or a
different method of group constructio@E ME is optimal in terms of group formation based on
successor predictions, and can directly use any improwsigiors that are developed. Improving
the grouping mechanism would require a more complex algorthat uses more than successor
predictions, with the added complexity and metadata oaethiéhat this implies.

The trends in FigureS and6 were more pronounced as trace durations grew and were simila
to the trends shown for thieplajw block trace shown in Figur@. As the duration of a trace
grows, predictive grouping has a greater chance to impaatdiyperformance. Whil®rNO has
full knowledge of the future, there is no warm-up or trainipgyiod for ourOE ME algorithm,
and so extended durations offer more time to learn and addpetworkload’s access patterns. It
is interesting to note that aggressive replication can Iendental to performance (as we see for
the MaxRepresults). In spite of using the same successor predicti®@¥=aME, the enthusiastic
construction of groups for every context results in incegbsnergy consumption for larger group
sizes.

Figures8, 9, and10show the latencies experienced for thezarttraces and thaplajwtrace.

In these figures we see a mirroring of the results for enemgge @gain we have over 99% re-
duction for the optimal grouping, whil®E ME shows 70% reduction for larger group sizes. The
correspondence of energy and latency results is expedtes, the energy results are specifically

for the mechanical movement in a disk drive, which are thengry component of access latency.

6.4.1 Group Formation, Access Behavior and Transitions

Fewer unique groups formed means a reduced usage of tatafstepace, as well as decreased
likelihood of physical movement between these fixed-sizrigs covering large distances. The

number of transitions is the number of times a workload tedluin a request for a group other
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Figure 8: Total time delay (access latency) due to disk armement for thenozartday and week
length traces. Note that the sudden drop off for the lastgsize in the shortest trace indicates

the point at which all the unique files fit within a single group
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Group Size vs Service Time (month)
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Figure 9: Total time delay (access latency) due to disk armmement for themozartmonth and
year length traces.
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Figure 10: Total time delay (access latency) due to disk aowament for thénplajwtrace.

than that of the last request, reducing this number meanseatdieduction in device activity.
If groups are used as the unit of data retrieval, as in the ch#ge aggregating cach][ then
transitions correspond to the total number of read requleats server will need to satisfy. In the
case of data layout on a disk, if a group size correspondsraxk buffer size then the number of
transitions equates to the number of disk requests thatreeghysical activity. Applied directly

to a disk’s data layout, reduced transitions result in redunechanical activity.

Table9 shows a comparison of strategies based on the number ofgfouped and the num-
ber of transitions. As with Tablgthese numbers are for th@ozartyear trace, and a group size of
2048 blocks. It is interesting to note the behavior of theesbas algorithms. The maximum repli-
cation strategy forms a very large number of groups, andtsesua large number of transitions
(more than eight times the number for dDE ME algorithm, six times the competing strategies,
and fifty times the optimal limit). This behavior is consistavith the poor energy and latency

behavior of this strategy for large group sizes and longetdagrations.
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Table 9: Number of groups formed and total transitions. €hasmbers are for themozartyear

trace, group size 2048.

Strategy | Groups Formed | Transitions

DrNO 4311 4310
OE ME 21916 143505
DFS 31318 368472
BFS 34147 554660
NoRep 136| 20685059
MaxRep 277710, 20546301

What is also interesting, and even more illuminating, islibbavior of the first baseline al-
gorithm. Theno replication(NoRep strategy forms a very small number of groups, 136 groups
compared to the optimal algorithm’s 4311 groups. This isxcekent result in terms of space
usage, and is to be expected since there is no replicatioataf 8ut without replication we see a
number of group transitions that is even worse than the agiyeereplication strategy. The ques-
tion this table raises is how this baseline strategy carr bf¢ter energy and latency results than
MaxRepin spite of this slight increase in total group transitionghe answer lies in the small
number of groups formed, and a subtle optimization in dataua While tempting to describe
NoRepas a baseline equivalent to the static layout of data on avditiout optimization, a more
accurate description would be that it is a static, yet oédj layout of data. The block layout
for NoRepwas based on the initial request order for the data. This st for each test work-
load, blocks were placed based on the order in which theyaapden the workload. This avoided
penalizing the baseline algorithm for any artificially pdayout choices, such as the dislocation
of metadata and its associated metadata. This inheremhiaption accounts for the better than
expected energy and latency performance ofNlb®epbaseline strategy, and the small storage
footprint accounts for its tolerance of slightly highentsétion rates than the maximum replication

strategy.
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In Figure11 we see the number of groups formed for the competing prababiapproaches.
Our predictive grouping algorithm can be seen to producéetivest groups, a trend that increases
with lengthier workloads. This suggests that our algoridwnids constructing superfluous groups,

but we need to consider the number of transitions betweeupgro

Our results confirm that of all probabilistic approaches,lmlanced expansio®©®E ME) has
fewer groups formed and fewer transitions for non-triviadup sizes (shown in FigurE?). These
results are consistent across all workloads. As the gragiscreases, it becomes increasingly
important to strike a balance between replicating a bloacks@mply moving it to another group.
Too much replication will result in groups that contain tdatld variety and a large number of
groups, thereby increasing the amount of movement betwemipg. Not replicating data suffi-
ciently between groups will also result in unnecessary mmerd between groups due to blocks

that are accessed with high overall frequency.

For lengthier workloadsnjozartmonth and year, as well dgplajw), the maximal replication
baseline strategyMaxRep shows diminishing returns more rapidly than other stiateg This
supports our assertion that, while aggressive replicat@mnbe beneficial, it must be done intelli-
gently. We see little or no improvement in number of traosis over theno replicationstrategy
(NoRep. This confirms our suspicion that maximal replication iso@ipgrouping strategy, effec-
tive only for the collocation of small numbers of blocks. $maximum replication strategy is
effectively building a group for every predicted sequentikeigth equal to the group size, and as
the group size increases the number of such groups becomessase. This raises the question of
the relative worth of different groups. A group that is us&fill be accessed frequently, and most

of its contents will be used. This brings us to the metriacdesses-per-transition

In Figuresl3andl4we see the average number of requests satisfied before atgaospion is
required. As group sizes increase, these requests aretedpeciecrease, with the rate of decrease
being indicative of how effective the grouping strategy baen at building useful groups. With
fewer groups, and a tendency to build more effective grotiygsenergy and latency performance
of our predictive grouping algorithm is further explaineBewer groups implies a reduction in
overall distance traveled by the arm mechanism, while feavegrsitions indicated a reduction in
the number of inter-group “trips” that had to be made. Withufes13 and14 we see how these

results correspond to more effective work (requests sadiisbefore requiring a move to a new
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Figure 11: Total number of groups formed for tim@zarttrace.
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Figure 12: Total transitions for thmozarttrace.
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group.

6.5 DISCUSSION

Throughout the majority of our work, optimal Expansion, Maximized Expectatialgorithm

forms the core of our prediction and grouping strategy. Afiaxe discussed, this strategy employs
a balanced approach to tree expansion using only the estirle¢lihood of successor occurrence.
No other information is used; data chunks, assumed to b&$lace treated as unit sized pieces,
and no consideration is given to how far two blocks are fromamother. For the sake of discussion
as well as completeness, we briefly present here two stestegme that utilizes distance from the

root, and another that utilizes variable file sizes.

6.5.1 Optimal Expansion, Estimated Distance

In future chapters, we will discuss a number of ways to rediraek distance”, as well as tran-
sitions. It is worth noting that such distance concerns ateaddressed in oDE ME algorithm.
An early test we performed was to comp&E MEwith a variant that included a distance metric.
This algorithm Optimal Expansion, Estimated Distan@g OE ED, is given in Algorithmd4, with
its queue expansion function given in Algorittsn

The key decision in this algorithm was the use of a sigmoidtion in the priority queue. We

use the following equation as this sigmoid function.

1
—aE (8)
l14+e 7 F

Since distance has no known maximum without prior knowleafgee system, we need some way
to bound an unbounded quantity. Further, once we estalblssiméed for a “very long” seek, it

is somewhat pedantic to discern between such very largendiss; one “very long” seek is near
the equivalent to another. Similarly, items that are “veeari our current location should not be

harshly penalized for small differences in distance.

48
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Figure 13: Average accesses per transitiomfozartweek and month length traces.
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Group Size vs Avg Access per Trans (hplajw)
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Figure 14: Average of accesses per transitiorhfaajw trace.

Our preliminary tests showed a noticeable sensitivity eodigmoid function used. In partic-
ular, the algorithm seems to be sensitive to the condiaWith proper selection of this constant,

OE EDhad similar performance ©OE ME, suffering only minimally in the number of transitions.

Incorporated in a dynamic settin@E ED is expected to match or outperfor®@E ME in
terms ofdistance but not intransitionsbetween groups, although the difference between them is
expected to be negligible, even with a proper selectiongrhsid function. As a resulQE ME
was chosen oveDE ED for several reasons. First, there is no sensitivity to a t@msmaking
OE ME more generalizable. Secon@E ED has a more complicated floating point calculation
within the expansion function, which exists within the lodpince our goal is a dynamic variant
of prediction, we need to be concerned with reducing the edatpnal overhead. Without visible
improvements to both transitions as well as distance, ttefamore elegant computati@Qt ME

was favored.
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ALGORITHM 4 OE_ED(T,root, max) - a balanced approach for forming a predictive group

using a distance metric. The sigmoid function is given in &amn @).

Input: set of first-order successor treés,a root 1D, root; @ maximum group Sizenax

Output: a set of IDs(, representing the predictive group

ENQUEUE(max_pq, root, 1)
while ISNOTEMPTY (maz_pq) and SIZEOF(G) < max do
p < TOPPRIORITY (maz_pq)
f < DEQUEUE(mazx_pq)
d «— ABSVAL (root — f)
¢« p/ SIGMOID (d, F)
if SIZEOF(G)+ SIZEOF(f) < max then
ADDTOGROUP(G, f)
max_pq «— OE_ED_EXPAND(T, maz_pq, f, ¢, root)
end if
end while

return G

6.5.2 Optimal Expansion, Estimated Storage Space

We mentioned in Chapt&that we restrict the bulk of our work for block-level predast. How-
ever, it may be of interest to discuss the possibility of edteg our work to the file level. The
algorithmOptimal Expansion, Estimated Storage SpaweOE ES$was developed for this rea-
son. At first glance, this algorithm, given in Algorith&)looks almost identical to the algorithm
for Optimal Expansion, Maximized Expectatioom Algorithm 2. However, there are several key
differences. First, the priority queue f@E ESSs aminqueue, not anaxqueue as iIOE MEand
OE ED. Second, the priority queue must be able to store three p&cgata, not just two. Each
node in the queue stores the file ID and the priority, just @BEME. But in OE ES$the priority

is notequal to the estimated expectation. Rather, the prioritlgggproduct of the&eomplemenof

the file occurring and the file’s size.
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ALGORITHM5 OE_ED_EXPAND (T, maz_pq, f, c, root) - expands the maximum priority queue
used in Algorithm4. Note that RT', f, s) denotes a function used to calculate the estimated prob-

ability of child s of f’s access tree withifi. The sigmoid function is given in Equatio)(

Input: set of first-order successor treds, a maximum priority queuenax_pq; a file or block
ID, f; an estimated probability; a root ID,root

Output: max_pq

for all s such thats is a child of f in T" do
c—cx P(T, f, s)
d «— ABSVAL (root — f)
p < cx SIGMOID (d, E)
ENQUEUE(mazx_pq, s,p)

end for

return max_pq

If all file sizes are equivalent, this algorithm is functilpaequivalent toOE ME However,
there are significant calculation costs involved, as welhaseeased memory usage. As we men-
tioned, one main goal of our work is to remain as generaleablpossible, hence this strategy was

not explored beyond the algorithm development, as we foauslack prediction rather than file
prediction.
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ALGORITHM 6 OE_ESST,root, max) - a balanced approach for forming a predictive group
using variable size files. Note that the priority queue fliot@ENQUEUE(min_pgq, f, ¢, p) Stores ID

f and confidence, or probability, while using the priorityp for ordering within the queue. The
function TOPPROBABILITY (min_pq) returns the confidenceof the top node in the queue, not the
priority. This is a key distinctionDE ME makes no distinction between confidence and priority.

The function DEQUEUE(min_pq) simply returns the file IDf from the top node.

Input: set of first-order successor treés,a root 1D, root; @ maximum group Sizenax

Output: a set of IDs(, representing the predictive group

ENQUEUE(min_pq, root, 1,0)
while ISNOTEMPTY (min_pq) and SIZEOF(G) < max do
¢ < TOPPROBABILITY (min_pq)
f < DEQUEUE(min_pq)
if SIZEOF(G)+ SIZEOF(f) < max then
ADDTOGROUP(G, f)
min_pq <— OE_ESSEXPAND (T, min_pq, f,c)
end if
end while

return G
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ALGORITHM 7 OE.ESSEXPAND(T, min_pq, f,c) - expands the maximum priority queue
used in Algorithm6. Note that RT, f,s) denotes a function used to calculate the estimated
probability of child s of f’s access tree withiff. Also note that the priority queue function

ENQUEUE(min_pgq, f, c, p) stores IDf and confidence, or probability, while using the priorityp
for ordering within the queue.

Input: set of first-order successor tre&§,a minimum priority queuenin_pq; a file or block ID,
f; an estimated probability, or confidenee,

Output: min_pq

for all s such that is a child of f in T" do
c—cx P(T, f, s)
p«— (1 —c)x SIZEOF(f)
ENQUEUE(min_pq, s, ¢, p)

end for

return man_pq
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7.0 DYNAMIC GROUPING AND METADATA

Having studied the effects of static grouping strategibs, next step is to develop a dynamic
grouper. This transition from static to dynamic boasts a Inemof benefits, but presents new
challenges. We have already established the need for regitive size of predictive metadata
required by the storage system grouper; this was one of aungrmotivations for choosing
a first-order successor strategy. But the problem is congeaiin dynamic grouping; indeed,
managing metadata in general is becoming increasinglyestgahg [78,79]. With static grouping,
we apply the grouping algorithms on a system in a fixed statd,s® can be done offline, or
in applications where we do not wish to update our groupingsitens in response to workload
changes. With dynamic grouping we aim to perform groupingsiens based on an ongoing
workload, in an online manner, updating grouping decismwhgre necessary, yet continuously
collecting and updating metadata. With such goals, it iemss for dynamic grouping to be
highly optimized in terms of memory usage, disk space, and Cfles required. Every piece
of a dynamic grouper must be compact, fast, and, in the caseetz#data, easily retrievable. This
necessitates the revisiting of our metadata problem.

In this chapter, we will detail several new data structurgsdufor tracking our first-order suc-
cessor metadata. These structures allow us to reduce tbesagey volume of data by several orders
of magnitude. Our goal is to have an efficient method of tragkhis information regardless of
block size. We will continue to refine our grouping strategiefollowing chapters. Static grouping
strategies discussed in Chapéesrganized groups as they were created, and ctumdg or block
IDs upon which to begin predictive grouping, based on whatklbr chunk was requested next.
Dynamic grouping requires knowledge of what block is likedybe requested. These challenges
and our solution strategies are discussed in Chaptén Chapter9, we will tie these solutions

together by describing our dynamic regroug®,ORe and detail how each previous solution is
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applied.

7.1 MOTIVATION

Optimizing storage system performance in the face of varyworkloads requires the accurate
tracking and exploitation of patterns in data access behawuch information is useful for a
broad range of applications, including caching, placemewirkload shaping, data collocation
and migration. Unfortunately, tracking access behaviar gredicting future access behavior can
result in large metadata demands. This is true when dealitigdata at the granularity of files
and objects, but quickly becomes unmanageable when aitegrtpt monitor block-level access
behavior in large storage systems. An explosion in metaddtame is doubly problematic when
we consider that retrieving and updating such metadatawaesly become an additional burden
upon the storage subsystem. On the other hand, arbitramiiyrig the volume of metadata being
maintained will only allow for optimizations to data withancurrent hotspot, the currently active
working set, which is arguably less in need of pattern discpand placement optimization (due
to the effectiveness of even basic caching schemes on shektsiyt This inevitably precludes the
opportunity to discover longer-term patterns across le&nsely active regions.

To improve the accuracy of placement and collocation decssiand improve the overall per-
formance of predictive analysis of data access patternsyisleto maintain as much metadata as
possible, but only if it is useful. Our previous work on predie data grouping34] (see Chap-
ter 6) demonstrates one such strategy that stores a number of bioek successors for each data
access. Our strategy shows promise in the area of data ggugid is similar to previously ex-
plored strategies in prefetching and prefetch-cachirgtesgies adopted by Kroeget al. at the
file level [71]. We present a study of how it is feasible to reduce the mésadguirements of our
strategy in the face of block-level I/O workloads. The stuues used in our work are reminiscent
of the limited-length queue of access successors irRéent Popularitystrategy g], also used
in EEFS[80,81]. Such single-successor strategies are better chosehdwreffficiency benefits
over multicontext modeling, yet still require huge amouftstorage. Minimally, we would need

to track the root block’s ID, which could simply be a transthtocation within an array, and the
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gueue of accesses, each of which is a block ID. Thus, thedtatalge space would be the number
of successors stored, times the total number of blocks, For modern systems, this metadata
volume is too large. For a 4 TB disk array, assuming a bloak gfzl KB, this would mean storing
information for 1 billion blocks. Assuming a 64-bit addre#isis system would require 8 GB of
spacgust for storing a single successowWe address the issue of metadata volume requirements

in SESH 35, 36] by observing that most blocks share two properties.

1. They only have a single successor.

2. The only successor they have is the next sequential block.

Using this information, we are able to drastically reduce tibtal size needed for our predictive
information while incurring little overhead. Further, ostrategy scales better in the number of

successors tracked.

7.2 EXPERIMENTAL SETUP AND DESIGN

Our goal is to develop space-efficient structures for traghknetadata, specifically for predictive
information. Ideally, these structures would incur litileno overhead while maintaining undimin-
ished usefulness. Further, we seek to define, in a genelwhat the expected benefits of these
structures would be. Finally, we endeavor to verify our e&tagons by testing working implemen-
tations against realistic workloads in order to determiow bffective our data pattern exploitation

techniques would be at reducing metadata volumes in retdrags

We have developed a novel mechanism for reducing the metatiatage requirements for
predictive block-based metadata. Our approach was founediace such capacity requirements
by more than 98%. We discuss this strategy by describingthetares we have developed as well
as an estimated reduction formula. We then describe therdift trace sets used to evaluate our

current implementations. Finally, we detail our metadatame calculations.
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Figure 15: Optimal Expansion Tre®pExTre¢ example.

7.3 DATA STRUCTURES

Several new data structures were designed for as comparfemisSESHstructure. Théptimal
Expansion Treeor OpExTreeis the base structure used in our previous efforts (seet€h@dor
tracking metadata for predictive data grouping. Thaamic Bitmaps a functional equivalent to

a normal bitmap, but with the advantage of being dynamicdlbcated and able to spontaneously
grow or shrink. Thédynamic Regioiis used to map a fixed number of bits to some ID. Finally, the
SESHstructure is the combination of the above structures usdddrease the size of the necessary

metadata. Following is a brief discussion of each structure

7.3.1 Optimal Expansion Tree

Our standard metadata storage structure consists of &¥paoit the element’s block number, and an
array of immediate successors, or children. The structurased on thRecent Popularitgtrategy
from earlier work on predictive caching and prefetchiBj hnd was chosen for its robustness to
signal noise and speed of adaptation to changing workloads.

Children are in the form of block numbers that occurred diyeafter the root ID. While our
structure allows this array to be unbounded, we limit the benof children. Additionally, we
track how often each child occurred.

Upon seeing a new event's successor, we add it to the tree by
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1. Updating the appropriate count, or

2. Adding a new child to the successor array and setting theogpiate count to 1.

In the case of a bounded structure, once we reach the maxiraorber of children to track, we
update the structure by choosing the lowest occurring ssocend removing it from the structure.
The new successor is then placed into the array and its cewsatito 1. See Figurd$(a)and
15(b)for an example.

An alternate structure design replaces the successor aitiaya queue of children, in order
of occurrence, representing an access history. Upon meathé maximum capacity, a dequeue is
performed before adding the new event. In this case, thets@ne calculated by iterating through
the queue. While this method will typically adjust to woratbshifts easier, in practice we find the
event counting to be a severe bottleneck.

A third alternate structure contains a queue as well as ay arrd counts. The queue is used
in the same way as above, but dequeued items have their aeohisted, and are removed once
their count reaches zero. In practice, we have found thastundard use of only an array very

closely approximates this method, and the queue was renfoyadhe standard version.

7.3.2 Dynamic Bitmap

TheDynamic Bitmagsee Figurel6(a) structure consists of a count of total number of entries and
a hash table of nodes. Each node consists of a simple intaggrthat represents a region of the
functional bitmap. Three operations are possible on angtioe: Set Unset andCheck Each
Set, Unset, or Check of any particular location is hashedtla@dppropriate node, if existent, is
fetched. On a Set, the appropriate integer within the naalessy is adjusted to update the map. If
the node does not exist, it is created. Similarly, on an Urtketappropriate integer is adjusted.
If the Unset results in an empty node, equivalent to an arfall aeroes, the node is destroyed.
On a Check, if the node does not exist, zero is returned. @tbeythe appropriate bit within the
existent array is returned.

As an example, assume we have a node consisting of 512 8dndddng integers, and we
are attempting a Check operation. The total number of enitnieach node is equal to the number

of bits; in this case, 32768, and each entry in the array, a8-layte integer, contains 64 bits.
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(a) Dynamic Bitmap, key 1055 (b) Dynamic Region, key 1055

Figure 16:Dynamic BitmamndDynamic Regiomxamples.

Given below are calculations of the node ID (Equati®y,(the array position within the node

(Equation (0)), and the bit location within the 8-byte integer (Equat{@i)). Note that all are

integer division operations.

id = key/total_node_size (9)
ary_loc = key/single_location_size (20)
bit_loc = key%single_location_size (11)

In our examplejd = 1055/32768 = 0, ary_loc = 1055/64 = 16, andbit_loc = 1055%64 = 31.

In this case, we calculate our ID of 0, hash on that ID to re¢rithe node, if it exists. Assuming
existence, we calculate the array location of 16, retribeetbyte integer, calculate the bit location
of 31, and perform a bit shift and bit mask to retrieve the gallthus, the overhead of a single
Check operation is a three integer division operations,sh hable retrieval, an array retrieval, a

bit shift, and a bit mask, all of which are very efficient.

7.3.3 Dynamic Region

The Dynamic Regiorstructure is very similar to a bitmap. Instead of each bihfeised to rep-
resent some property of some event, a number of bits are ug@d.is achieved by utilizing a

Dynamic Bitmapand for each event ID, we increment some region on the mapW@urposes,
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Figure 17:SESHfigure.
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we required only that each region denote a count, or intédksinalogous operations follow easily
from theDynamic Bitmastructure. The only change needed is that we must multigkéy by
the number of bits stored for each region. Using our exampla karlier, assuming 3 bits per re-
gion,id = 1055 x 3/32768 = 0, ary_loc = 1055 x 3/64 = 49, andbit_loc = 1055 x 3%64 = 29.
See Figurel6(b) for clarification and comparison to tH&ynamic Bitmapstructure’s analogous
operation.

The computational overhead for tii/namic Regioris expected to be almost identical to
the Dynamic Bitmap Assuming that the region size is smaller than the numbeiteirban array
location, there are only two cases where significant diffees occur. First, a single array operation
may access two array locations, requiring an additionalygsosition calculation and retrieval and
additional bit location calculation. The other case ineslwode overlap, requiring and additional
hash retrieval and array retrieval. Thus, in the worst casagequire two node ID calculations and
hash retrievals, two array location calculations and eedétlis, andh bit shifts and masks, where
n is the number of bits in each region. Note that all of theseatjmns are expected to be very

efficient, and that the numberis expected to be quite small, usually 3 to 5.

7.3.4 SESH, or Space-Efficient Storage of Heredity

During our work on prediction and data regrouping (Chapjewe noted that many blocks have
only a single successor. Most commonly, this successordmapio be the next block. TH&ESH
data structure utilizes this observation by removing sOgExTreesrom the successor table,
typically a hash table, and utilizing@ynamic Regiorio represent the tree. Some region being
non-zero within theDynamic Regiorstructure represents a tree having only a single successor,
which happens to be the block directly after the root blockjurestion. We call the successors
stored within the regiomheir apparents These heir apparents occur the vast majority of the time
(see Figurel8, and each reduces the amount of metadata required fromnjalig) several bytes

to only a few bits (on average). Thus, we have most of our na¢gadhat of all heir apparents,
contained within @ynamic Regionwith the small remainder held within a successor tablerggor
Optimal Expansion trees. See Figuréfor clarification. As a realistic example, tracking eight

successors (64-bit addresses, or 8 bytes) on a 256 GB hamlwvdith a block size of 512 bytes
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Figure 18: Rate of occurrence of heir apparents for variaces.

would require 32 GB of metadata.
8 x 8 x (256 GB/512) =32 GB

However, each heir apparent would only require, on averadpts. Given below is a estimated
calculation for the reduced size, in bits,based on the number of blocKs,the percentage of

blocks that only contain heir apparentsand the number of successors tracked for each btack,
r=>bx (log(n) x p+ (1 —p) x (64 + (64 x n)))

Note that this assumes 64-bit block numbers and ignoremaltéragmentation within ouby-
namic Bitmaystructure. One note of interest presented by this formulaaiswheryp is very high,
the resulting size becomes very scalable with respect to the number of suasgas&ince most
blocks will be stored in th®ynamic Regionincreasing: results in dog(n) increase in the space

necessary to store it. The larger structures increaserltnea Even though these structures are
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Estimated SESH Savings (256GB, 512 Block)
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Figure 19: Estimated calculation of metadata storage sgggags on a 256 GB hard drive with a

block size of 512 bytes.

expected to represent only a small percentage of all iteacked, theyare expected to dominate

the space used fairly quickly. Figui® show a 3D plot of a 256 GB hard drive and the metadata

required for storing information for all blocks, both bedand after reduction, against the number

of children tracked and the percentage of blocks that cofhiteir apparents.

The computational overhead of (BESHobject’s operations is expected to be quite small. The

worst-case overhead is the sum of the worst-case overhemthdéd Dynamic Regioroperation

and a hash retrieval of a@pExTreestructure. However, moSESHoperations will be a single

Dynamic Regiomperation, as most blocks are expected to be heir apparents.
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7.4 TRACES

In order to test the reductions &ESH we used four different workload sets. Thezartset
consists of a workstation trace gathered usingDR&Tracesystem 91]. These traces were con-
verted into equivalent block-level traces with block sin€812, 4096 (4K), and 8192 (8K) bytes.
There were four different original trace sizes; day lengtkek length, month length, and year
length. This set has the appeal of allowing the analysis oltrategies over different definitive
time periods as well as allowing us to convert easily to déife block sizes.

The second sehplajw, is a block-level workstation tracd(2Z. This set has the advantage of
natively begin a block-level trace, and therefore doeseuguire conversion. However, there is only
a single trace length, and lacks any information of origiilatsystem level access information,
and therefore cannot be converted to traces of differingkizes.

The third setranin, is a trace set we gathered using the stanflardisage command found
on Mac OS X. The traces were gathered in 2007 from Novembeet®Dber on a Mac Power-
Book G4 running Mac OS X 10.4. The workload represents a §§giaduate student workstation,
and was used for internet browsing, file editing, code comgiland running and testing experi-
ments (predominantly C++ programs). While there were a fagetinterruptions due to rebooting,
including one major software update, the inaccuraciesdhiced would be negligible. Addition-
ally, the software update had no impact on tleeusage command itself, and any system-level
workload shifts due to this update would represent realistrkload shifts experienced by users
updating their operating system. Cache activity was gathdout for these traces they were ig-
nored; only device-level requests were used. These resquese in the form of read and write
data and metadata as well as page ins and outs.

The final setplaylist, is a trace set gathered using the sémaisage command. This setwas
gathered on two different Mac mini G4 workstations, eacthwit2 MB of memory and running
Mac OS X 10.3.9. A playlist of 148 songs, with a runtime of apgmately 14.8 hours, was run
on each machine. Traces were gathered from August 31, 2008rich 23, 2009, resulting in play
counts over 300. All disk activity due to the mp3 software wsdated and recorded. One trace
gathered information on a sequential playlist, while theeotplaylist was shuffled. These traces

represent one extreme of predictability, an estimated uppend on how predictable a realistic
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workload could be.

Similar to themozarttraces, ouranin andplaylistworkloads include information about how
large an access was requested, and therefore could easibynberted to equivalent block-level
workloads. Perhaps the most interesting block size is 51@sbyvhich is the natively preferred
block size of the hard drives, both for the PowerBook and tlae khinis. However, we included

runs on 4K and 8K block sizes for consistency.

Since thef s_usage command collects information aadl devices, these traces do require a
bit of attention to what raw device is being accessed. Somieelk such as dev/ NOTFOUND,
were pruned. All devices that seem viable were included éentést run and mapped to a single
device. This mapping was done by giving a 200 GB range to eavcitel TablelO summarizes
the devices found in thenintraces and how often each occurred, as well as noting whitttesé

were ignored.

Table 10: List of all devices found in thanin trace set.

Device Occurrence Coun}t Included?
/ dev/ di sk0s3 3700000 Yes
/ dev/ NOTFOUND 570000 No
/ dev/ di sk2s1 190000 Yes
/ dev/ di sk2 73000 Yes
/ dev/ di sk2s0 11000 Yes
/ dev/ di sklsl 950 Yes

All of these traces consist of data gathered from actualesyst and as such contain real-
world predictability due to user, program, and system bimavather than being drawn from a

distribution or synthetic function.
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Table 11: Comparison of total space ofahin traces.

BLoCK SIZE
TRACE (BYTES) # BLOCKS | PROJECTED REDUCED
day 512 33,000,000 3.2GB 37 MB
week 512 74,000,000 7.2GB 77 MB
two week 512 99,000,000 9.6 GB 108 MB
full 512 120,000,000 11.6 GB 140 MB
day 4096 4,260,000, 417 MB 41 MB
week 4096 12,000,000 1.1GB 92 MB
two week 4096 16,400,000 1.6 GB 132 MB
full 4096 22,900,000 2.2GB 180 MB
day 8192 2,150,000, 207 MB 41 MB
week 8192 6,270,000, 604 MB 91 MB
two week 8192 8,590,000, 823 MB 131 MB
full 8192 12,200,000 1.1GB 176 MB
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Table 12: Comparison of reduction by percentage and sawoihgéranin traces.

BLOCK SIZE REDUCTION
TRACE (BYTES) SAVINGS (%)
day 512 3.2GB 98.9
week 512 7.1GB 99.0
two week 512 9.4GB 98.9
full 512 11.5GB 98.8
day 4096 376 MB 90.2
week 4096 1.1GB 92.2
two week 4096 1.4GB 91.7
full 4096 2.0GB 91.9
day 8192 167 MB 80.4
week 8192 513 MB 84.9
two week 8192 692 MB 84.1
full 8192 990 MB 84.9
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7.5 CALCULATING METADATA REQUIREMENTS

Each workload was split into ten sequential segments ofcequpiately equal access counts. The
trace was then run through our simulator. Each run consistéle first segment, followed by
running the first and second segments together, and so dthenéintire trace was run. At the end
of each segment run, the total metadata space used wasedcord

Each segment’s metadata requirement consisted of thelatbcuof total space used by our
SESHSstructure. This includes any and all extra metadata we umesbke of statistics gathering,
though these extra object fields are negligible. In caloujathese metadata requirements, we
count all nodes of alDynamic Bitmapsised in ourDynamic Regionsrather than estimating a
number of bits per heir apparent as in Figlife In order to calculate the projected size of metadata
using a hash table @pExTreeswe multiply the number of heir apparents by the total sizthef
same number of single-chil@pExTreesand add the appropriate hash table metadata needed to

track the extra trees.

7.6 RESULTS

Our results show that almost all traces of non-trivial sikevg a drastic decrease in necessary
metadata. For most workloads, we can reduce this storage spanly a small percentage of the
original space, typically between 1 and 3 percent for smhblleck sizes. Tablé1 summarizes the
sizes recorded at the very end of ttaain workloads, while Tabld2 summarizes the reductions
and savings. Figur20(a)illustrates the difference between the projected metadafairements
and the reduced space on tlamin traces with 512 byte blocks, while Figue@(b) shows the re-
duced size in terms of projected volume’s percentage. Bgflir(a)and21(b)show the respective
results for themozarttraces, again with 512 byte blocks. Thplajwtrace showed results similar
to these 512 byte block traces, with reductions falling leetw91% and 97%. The interesting
difference is that théplajwtrace does better early on, then quickly falls to 91% reduckiefore
flattening out. Theplaylist traces showed reductions similar to tfamin workloads, exceeding

98% reductions for small (512 byte) blocks.
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Figure 20: Comparison of total projected metadata storagsug reduced storage for &nin
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mozart Traces, Block Size 512
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Figure22 shows the amount of space tI®E SHrequires for a representative selection of our
traces, as a percentage of the total storage volume. Ndtéhthéotal amount of space across all
traces and block sizes is less than half a percent. Alsoantiitat the actual space required®gSH
is higher than our estimate. However, this is not unexpeetedur implementations @pExTrees
keeps additional information than what is accounted forunestimate.

As expected, larger traces have more consistent requitenfmnmetadata storage. Smaller
data sets would not adequately capture the larger pictntewauld have new blocks introduced
quite frequently, while larger sets would add only the omo@e new block.

An interesting result is that total required storage spatfter reductions, is reasonably consis-
tent across block sizes, varying only by about 20%, whildgoled number of blocks increases by a
factor of 10 to 15, depending on block size. For instancefutheanin trace, at roughly a month in
length, requires about 150 to 189 MB, depending on block svbde the total number of blocks
increases from about 12 million (for 8 KB blocks) to 119 naitli (for 512 byte blocks). It is also
interesting that foreducedsizes, it is the middle block size (4096 bytes) that requinesmost
space. As expected, the smallest block size has a much higghgation rate, as it would exhibit a

far greater amount of predictability, while the largestdidsize has far fewer blocks to track.

7.7 DISCUSSION AND POSSIBLE ENHANCEMENTS

The application of storage prediction greatly depends tperfficient management of supporting
metadata. We have described a novel method for greatly iregigach a volume of first-order
successor information. Our introduced structtB&SH in addition to requiring minimal, fast
operations for its implementation, dramatically redu¢esrhemory demands of the metadata, two
key complementary features allowing highly optimized affigient metadata tracking.

An interesting augmentation to o8ESHstructure follows directly from the observation that
theDynamic Regiostructure, used to track successor trees with only the eextential block ID
as a successor, is actually more potent than presented. e\bkr to use these successor trees
to look up candidates for the next block ID, but to look up ddatks forpreviousblock IDs,

we have to perform an exhaustive search, looking at eactk bl¥s children for a match. At
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Figure 22: Percentage of total storage volume 8t&SHrequires, compared to the estimate.

first glance, a request for the previous block ID seems swpersl that request has already been
satisfied. However, several interesting applicationsediiem extending that request. Knowing
all previous block IDs for the last accesses is the very definition of a working set, a set that
caching techniques attempt to replicate. Further, knowioigonly what the working set is, but
the exacsequencereated it has appealing application as well. Any statenaftt to regroup data
on the storage device, easily exemplified by defragmematiould negate dynamic attempts to
replicate predicted blocks. However, knowing the sequeriaequests leading up to the time

of defragmentation, if large enough, would allow for reption opportunity with the new data
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grouping. The system could “replay” the sequence, makeatsstbns on where and what to

replicate, and carry out those replications, all as patefdefragmenting process.

These applications rely on the ability to recreate large aetl sequences. O8ESHstructure
can easily be modified to allow such recreations. Since moskb are only ever succeeded by
the next sequential block ID, it follows that most blocks ardy everprecededoy the previous
sequential block ID. Thus, our heir apparents may be modifiesbntain only these block pairs.
We call these objectspparent pairs Tracking these pairs follows directly from our origir@ESH
design. However, the obvious question that follows is wbaka with the block pairs that do not fit
this new criterion. We resolve this by keeping our old susoe$able, storing all block successor
information not found in the apparent pairs, and adding aestor table, storing Optimal Expan-
sion trees that store a block’s predecessors. Thus, to gefuttcessor candidate list for blokk
we check the apparent pairs flds entry being non-zero. Upon failure, we retrieve the Oplim
Expansion tree from the successor list. To get the anceatatidate list for the same block, we

check apparent pairs for 1, and upon a failure, retrieve the expansion tree from thestoclist.

The addition of our ancestor table, coupled with the newrigin on our apparent pairs
structure, effectively doubles the amount of necessanadags, but allows for straightforward
recreations of our working set and sequence. We begin bykoigethe predecessor candidates
for the last requested block 1D, If p — 1 is in apparent pairs, them— 1 has to have preceded
p the last timep occurred. However, the value returned from the request par@nt pairsy is
the total number of known times that— 1 precedec. Thus, we need to track how many times
in the reconstructed sequence we have encountered ead¢h gcis not in apparent pairs, we
check the Optimal Expansion tree from the ancestor tablealReom Sectior7.3that an alternate
version of our Optimal Expansion tree included a successeune, rather than an array. This queue
contains the last successors of the block. Thus, the last item, abidekof the queue, was most
recent successor for the block, and is added to the recatestrsequence. Note that we need to
track how many times each block occurs in our sequence,ikestdr those blocks that exist in
our apparent pairs. Working this way, we can “unravel” thgussce, up to the point where we
encounter a block with n total predecessors (not necessarily unique), where wedreaintered
blockd in the reconstructed sequencéimes previously. This gives us the maximum size working

sequence, and reconstructing the working set from thisesemguis trivial.
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Figure 23: Total size, in bytes, of the reconstructed secgiéor theranin day trace by access #
(block size 512 bytes).

Our initial trials on this strategy indicated that there &v@nany instances in the workload
where the maximum size of the reconstructed set and sequieapped off very suddenly, but
we could often reconstruct large chunks of both set and segueerfectly. Figur@3 shows the
total number of bytes we were able to reconstruct for thesecgiof theanin day trace (512 byte
blocks), based on the number of children tracked, while f€igd shows the percentage of the total
encountered volume. Figurgs and26 show the byte and percentage figures for the reconstructed

set.

These initial results show a great deal of promise for reitooted set and sequence applica-

tion, but due to time constraints, we chose to continue czug@n dynamic regrouping. However,
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Figure 24: Total size, as a percentage of the total voluméhefeconstructed sequence for the

ranin day trace by access # (block size 512 bytes).

it should be noted that, for the remainder of our researchaeteally utilized this augmented
structure, including the queue version of our Optimal Exgi@mtree, in the interest of facilitating

future integration of these reconstructing strategies.
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Figure 26: Total size, as a percentage of the total volumtheofeconstructed working set for the

ranin day trace by access # (block size 512 bytes).
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8.0 ROOT SELECTION

In this chapter we describe our strategy for choosing whlokKs constitute good selections as
predictive group roots, or starting points for predictivve have presented grouping strategies for
identifying what data needs to be collocated, and have edtbiihese strategies to be effective in
an online manner, as well as reducing their metadata ovesheallow their efficient application
at the block level. While these techniques identify goodoé®for collocation, a practical decision
needs to be made about which items to collocate first, a rgriistarting points for groups, what

we call the “root selection” for the groups.

As we have previously mentioned, disk layout maintenancsvalfor the decoupling of strat-
egy from the data path. As a result, we would be able to shuhdegrouping efforts, presumably
during heavy workload periods, while still benefiting fromrker efforts. However, such decou-
pling introduces new challenges. In caching, as well asratiategies lying directly on the data
path, we are typically given a block address, and decide adtains may be taken. Notice that we
aregivena starting point for our scenario because we are operatirtjeodata path. Such is not

the case in disk layout maintenance; we nfirgt such a starting point to act upon.

Finding these starting points, or roots, is non-trivial.mylatrategies that immediately present
themselves may easily fail. For instance, we may choosedk lthat occurs very often. However,
if that block is very well placed, a predictive group mighél little benefit, if any at all. But if
we choose a block that is very poorly placed, but does notrogety often, we may never have

opportunity to use the predictive track.
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8.1 MOTIVATION

There are several distance metrics that can be used to &stimgcost” of a disk access. The most
straightforward method islock distanceThis metric is simply the distance between the previous
block address requested and the current block address. iRsimretric istrack distancedefined

in Equation &). A third metric is a simplification of track distance, whictunts only the number
of transitions caused by an offending block.

Additionally, there are several properties that would tghtyi desirable among structures used
to track any set of potential roots. The most obvious is sorag W sort potential roots so that
events that have higher potential benefit might be chosetn f8scondly, it must be adaptive.
Extrapolating from caching and memory management stregegie can guess that global infor-
mation is important, but should be skewed towards more tdommds. Thus, our distance metrics
should be tempered with an aging strategy.

Most likely, we will need to set a maximum size for this infation. The easiest way to do so
is to treat the structure like a cache; once it reaches agen@ximum capacity, items are evicted
to make way for newer items. Thus, it is desirable to have b hignber of “hits” in our structure.
Just like a cache hit, this occurs when we encounter an oinjexir workload that is contained
within the structure. However, in our case, we have an amfdhticoncern. Usually in caching
strategies, the most crucial statistic to maximize is thalmer of hits. In layout management, we
not only want to maximize the number of hits, but we want toimime the number of requisite
updates. It does no good to have a predictive group used ihevedst of updating outweighs the
benefit of its use. Thus, it is desirable to have a strategy tiale not static, exhibits stability.
This stability would allow us to make choices about rootshweithigher confidence that they will

remain good choices.

8.2 DATA STRUCTURES

We have observed that finding roots, upon which predictieeigs can be formed, is crucial to our

predictive disk layout strategy. But how does one desigmnuettre for capturing what constitutes
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a good root? How are we to capture distance, as well as reeddoyw can we obtain adaptable,
but stable, predictive roots?

The first mechanism one might consider is a sttiBJ structure. This presents an easily
sortable structure that captures recency well. Howevelpdés not capture frequency. A Least
Recently Frequently Used mechanisi]| or LRFU, that contains simple aging, is a reasonable
alternative. But such aging techniques very quickly bec@nuhibitively expensive with large
data sets due to large priority queues. In order to obtairbémefits of a strict RFU structure
without paying high computational costs, we used a hot tistcture, similar to the frequency
tracker used by Deng2f), first detailed as the Segmente®U strategy SLRU by Karedlaet
al. [63]. These strategies use a du&tU structure, one as a recency list, and one as a hot list that
items are promoted to out of the recency list. Our structtifizes a fixed-size.RU recency list,
or “filter”, and anLRFU hot list of the same size. Our attempt to balance betweemcgcand
frequency is also similar to efforts made in AR&7], where two distinct lists are merged, biasing
towards the list that would, in pure form, provide betterfpenance. We further expand on the
baseL RFU scheme by using a distance metric as the score addition tdrRE structure. We call
this altered strategy Least Recently Distantly Udd/U).

In order to test ouLRU, LRFU, andLRDU structures, we tested “pure” strategies against each
other and against their hot list counterparts, as well amag&avo “best case” strategies. Following

is a brief discussion of each structure and strategy tested.

8.2.1 Highest Count

Thehighest counstructure, ohighest counarray, is simply an array of ordered paif&,c), con-
taining each event's block 104, and a countg¢, of how many times in the workload the event
occurred. For ranking purposes, this array was kept sogtedbnt. While computationally unre-

alistic to implement in a real system, this structure presid reasonable target for our structures.

8.2.2 Highest Distance

While tracking how often an event occurs might be a reasensiiphtegy, tracking the block dis-

tance or track distance caused by each event would prove Ipeoficial. For our purposes, if
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block A is followed by blockB, then the distanced — B| is said to be caused b#, since the
storage device must move fromto B. Another way to clarify this is to observe thdthas been
satisfied, and thus has already “caused” its associated wbgé B is an outstanding request.
Thus, we can define distance of each event, similar to Equ&afly and @), whereB is preceded

by A.
dist(B) = |A — B (12)

A similar design using track distance for blodkin tracka to block B in track 3 would have block

B’s distance as follows.

dist(B) = | — [| (13)

This equation has the additional benefit of reduced risk eifbaw errors, since track distances
are much smaller than block distances. Additionally, thelétle to no overhead incurred, since
we need to calculate the respective tracks for determinimgtier a transition has occurred.
Using this definition of distance, we kept an array of ordgpads, (b, d), containing each
event's block ID,b, and the distance caused by that eventSimilar to ourhighest coungarray,

our highest distancarray was sorted by distance for ranking purposes.

8.2.3 LRU and LRU Hot List

We utilized a structure nearly identical to Deng’s frequetnacker R5], containing arLRU “filter”

or “recent list”, as well as ahRU “hot list” of the same size. Upon an event’s request, we check
the filter as well as the hot list. If the item is absent fromhydatis added to the filter. If the item
exists in the filter, it is promoted to the first rank within thet list. If the item is in the hot list, it

is moved to the first rank. Once the hot list is full, upon anmggegpromotion, the lowest item is
popped off and demoted to the filter’s first rank.

An important clarification for the hot list structures is tltlae entire structure’sizeis deter-
mined by the sum of the size of its parts, with each part, bdtgr fand hot list, having equal
size. Ahitis defined as a requested item being intio¢ list, an item’s existence within the filter
constitutes a miss. A miss is also generated if an objecttipmsent in either the hot list or the

filter.
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8.2.4 LRFU and LRFU Hot List

OurLRFU structures utilize an aging scheme that closely resemid$RU strategy detailed and
discussed by Tanenbaui[7]. Upon an event’s request, we check the structure to see #ibnt
exists. If it does not, an ordered pair, s) is added to the structure, wherés the event’s unique
ID and s is the default “new addition score”. If the item already éxiwithin the structure, the
score is updated with a default “event addition” score thatightly smaller than the new addition
score. If the structure exceeds the maximum number of cddeses, the item with the lowest
score is removed.

Each request for an item generates a structure “clock tichfon reaching a pre-determined
maximum number of ticks, all scores are halved by bit shattin

This baselLRFU structure is then used for drRFU Hot List, similar to theLRU Hot list
detailed in SectioB.2.3 The strategy for this hot list structure follows directtgin theLRU based
example, with at.RUfilter and arLRFU hot list. This strategy is expected to be significantly faste

than a straight RFU structure due to the expensiBFU portion being half the size.

8.2.5 LRDU and LRDU Hot List

Our LRDU strategy is exactly ourRFU structure with the default “new addition” and “event ad-
dition” scores replaced with the event’s most recent trastadce, as calculated by Equatidr3).
The hot list version follows directly from thERFU version in Sectior8.2.4 with anLRU filter

and aLRDU hot list.

8.3 EXPERIMENTAL SETUP AND DESIGN

For this project, we used a selection of traces detailed ap@4 to test our prototype structures.
In particular, themozart hplajw, ranin, andplaylistsets were used. In order to determine sensitiv-
ity to structure size, we ran each trace with a variety ofssiz&nging from 256 to 16384, doubling
the size at each step. Preliminary tests oftiwzarttrace, where we also varied the block sizes

of each workload. Thenozarttests verified insensitivity to block size, detailed in tlexisection.
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Figure 27:LRDU stability of mozart month and year traces, with 512 byte blocks.
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Figure 28:LRDU stability of mozart month and year traces, with 4 KB blocks.



Hits per hit-root vs. # of Roots - year 8K
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Figure 29:LRDU stability of mozart month and year traces, with 8 KB blocks.
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Hits per hit-root vs. # of Roots - hplajw whole
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Figure 31:LRDU stability of full ranin trace, 512 byte blocks.
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As a result, all other workloads were kept in their “naturaldck sizes; 512 bytes for thanin
andplaylisttraces, and 8 KB for thiaplajwtrace.

In order to eliminate the bulk of blocks throughout the wodd, we employ the use trfack
distance Any block that causes a track transition is considereddditeon to each structure.

The most tempting statistic of interest to gather for theqegments is the number of hits
within each structure. However, as we mentioned in Se@&iathis is not our only concern. We
must choose roots that exhibit high stability in order touszlthe number of necessary updates at
the storage system level. Thus, we need to track how manp¢itsrand how many unique root
IDs caused a hit. Ideally, this hit-per-hit-root statigtit per unique potential root that has caused
a hit) should be high, showing high stability.

We also mentioned that an ideal structure would exhibitlaediorm of stability, easy sortabil-
ity, with higher priority items possessing a higher estiegiegavings potential. In order to estimate
this “sorting stability”, we track the total track distancaused by each block, using Equatiag)(
throughout the entire trace. At the very end of the trace, tesate through each structure and
check the global track distance caused by each ID at each fmksimplicity, we restrict our
graphs to the top 250 items in each structure. These itemesem the highest priority offered
by each structure. Structure with sorting stability shcwdsle a cumulative distribution graph that
closely matches that of our Highest Distance metric, pesteaen above the Highest Count met-
ric, while strategies with low sorting stability will havecamulative distribution graph well below

these metrics.

8.4 RESULTS

Our results show that for both hits per hit-root as well adisgrstability, ourLRDU hot list
closely matches or outperforms other feasible strategiegarticular, we see that thisRDU hot
list strategy is a close second to thiRFU hot list in terms of hits per hit-root, even outperforming
it for larger structure sizes on thranin traces in Figure81l. In almost all cases, in fact, similar
strategies tend to perform more and more alike as we inctbassructure sizes. This behavior is

expected; the better strategies choose better roots wheurces are scarce. As available resources
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become abundant, eviction decisions begin to matter leddems. Thus, as the structure sizes
increase, all three hot list strategies perform more anceralike, while all three “pure” strategies
remain dominated by the hot lists, but perform more and nikesdlach other. We also note, as we
mentioned previously, that these trends hold across biaek sas well as across trace lengths and
workloads.

For block comparisons, consider Figug&ga) 28(a) and29(a)for themozartyear traces and
Figures27(b), 28(b), and29(b) for mozartmonth traces. Note that Figug¥ displays results for
512 byte blocks, Figur28for 4 KB blocks, and Figur@9for 8 KB blocks. For further comparison
across workloads, see Figuseé for the hplajwtrace and Figur&1 for the full ranin trace with its
native block size of 512 bytes.

Our sorting stability results in Figure¥2, 33, 34, 35, and36 show that ouL RDU andLRDU
hot list structure consistently outperforms other feasitrategies. Indeed, in some cases, we
even outperform thaighest counstrategy, a computationally infeasible policy, as can lense
Figures35(a)and36(a) In fact, Figure35(a)shows oulLRDU strategies very closely approximate
the highest distanceWe also note that, for all cases, each hot list version etlusely matches
or outperforms its “pure” counterpart. Again, these treadsconsistent across block sizes, trace
lengths, and workloads.

We also note that, for sorting stability, as the structuze gicreases, the hot list strategies and
the “pure” strategies tend to perform more and more alike.cémparison, Figure32(a) 33(a)
34(a) 35(a) and36(a)all have a structure size of 16384, while Figug2gb), 33(b), 34(b), 35(b),
and36(b)all have a structure size of 512. Talll@summarizes these results for all six of the tested

strategies.

8.5 DISCUSSION

Now that we have established that both @RDU hot list andLRFU hot list represent good can-
didates for root selection, we are faced with a choice. Whbidese strategies are we to adopt?

In order to address this, we must consider two factors:

1. Do we prefer hits per hit-root to sorting stability?
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Figure 32:LRDU sorting stability ofmozart year trace, with 512 byte blocks.
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Figure 33:LRDU sorting stability ofmozart year trace, with 4 KB blocks.
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Figure 34:LRDU sorting stability ofmozart year trace, with 8 KB blocks.
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Figure 35:LRDU sorting stability othplajwtrace.
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Figure 36:LRDU sorting stability of fullranin trace, with 512 byte blocks.

94



Table 13: Summary of advantages of all root selection grage

Strategy Remains efficient with | High Hit to High Sorting
larger structure size | Hit-root ratio Stability

LRU v

LRFU v

LRDU v

LRU hot list v v

LRFU hot list v v v

LRDU hot list v v v

2. How big do we anticipate our structures to be?

The answer to the first question is straightforward; we prieifis per hit-root. If the structures
are anticipated to be small, we should chooseldrIFU hot list. However, if we anticipate our
structures being quite large, then both strategies will terhave the same or very similar ratio of
hits to hit-roots, while the sorting stability for thdRDU hot list would improve faster than that of
the LRFU hot list. Thus, we must answer only this question; do we grdte the structure sizes
to be quite large? In general, the larger the structure, e mits we can anticipate. Figurds
and38 show that, for all hot list structures, this appears to holé t It is interesting to note that
both pureLRFU and purd_.RDU seem to suffer from Belady’s anomaly, while the other stiate
do not. Thus, if we are to increase the total potential of ategyy, we may wish to increase the
structure size, and we would prefer theDU hot list to theLRFU hot list.

Alternatively, we can consider the choice between.RDU and anLRFU hot list by consid-
ering our original intent from Sectio® 1. We wish to have a stable set of potential predictive roots
that have a high probability of occurring within the worktiband have a large potential benefit.
Stability, we have mentioned, corresponds to our hit perdot ratio. Potential benefit can be con-
sidered in one of several ways. First, we can consider thardie potentially saved by each hit.

Thus, larger distances correspond to larger potentiahgaviThis implies that outRDU strategy
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should be chosen because of its consideration towardsidést8ut there is another consideration
as well. Assuming we have a predictive group already madenwtill we switch to it? While
we address this question in detail in Chag#eit is worthwhile to briefly answer here. In general,
if we areforcedto switch to a different group, we prefer a group that is adldeeone that is far
away, all other things being equal. Thus, if we give prefeeeto roots that cause large seeks, we
are more likely to use those roots when we are faced with tlogce, and again, we should choose

our LRDU hot list over oul.RFU hot list, regardless of structure size.

8.5.1 Conclusions

We have examined a number of candidate solutions, inclusiagral new and novel strategies, for
tracking group roots, a necessary task for an online graugngine utilizing first-order successor
information. The best candidatesl.RFU hot list andLRDU hot list, both exhibit desirable qual-
ities. Both are easily sortable, efficient even for largadtire sizes, and both exhibit high hit to
hit-root ratios. In fact, in some cases, these strategies eutperform competing but computation-
ally infeasible methods. Of these two, dtRDU hot list is preferred due to higher expected value
of distantroots overfrequentroots, leading to higher potential use of groups within dadise-

aware engine.
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Figure 37: Hits vs. structure size forozartyear trace, with 512 byte blocks
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9.0 SPORE - SPACE-EFFICIENT ONLINE REORGANIZER

Having studied various prospective collocation methods, lzaving addressed metadata storage
solutions as well as root tracking strategies, we now prakerconstruction of our dynamic group-
ing engine. We have previously described strategies farging and collocating data, as well as
further enhancements to provide effective online appbcat We have further detailed mecha-
nisms of metadata reduction to greatly reduce predictifggnmation overhead, and have provided

methods of identifying practical starting points for grdopmation, called roots.

Our comprehensive predictive grouping englBBOReor SPace-efficient Online Reorganizer
uses our optimal expansion strate@kE ME, from Chapter6. We also incorporate oUBESH
structure for tracking metadata; in practice, we use thermuinged structure that tracks predecessor
information as well as successor information, in hopes aiiriaugmentations using ancestor
history. As a result, the Optimal Expansion tree structueeclose to use is the queued variant
detailed in Sectiof.3. OurLRDU hot list from Sectior8.2.5is used to monitor potential roots for

predictions.

New challenges arise as we attempt to unify these solutitosai complete grouping policy.
The rest of this chapter focuses on these new challengesemaptimizations. While Chap-
ters7 and8 discuss isolated solutions to individual problems relatedynamic grouping, new
challenges are introduced and addressed when combiningabgarts of a single online predic-
tive grouping engine. Consequently, we seek to offer thdeea greater understanding of the
challenges within the context of a dynamic grouping engiather than generalizing outside such

context as in previous chapters.
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Figure 39: Hard disk drive, separated into three ranges$, easisting of four tracks.

9.1 MOTIVATION

As we have already established, a dynamic grouper must tepeifactively in the face of many

constraints. In general, we need to be able to do the follgwin

o 00~ W NP

Form a predictive group from some root or roots.

Gather the necessary metadata for predicting.

Choose roots for our predictive groups.

Decide where these predictive groups will reside on thesiglal storage device.

Choose when to write out and when to update these pregligtoups.

. When necessary, decide which group, predictive or n@witch to.

Our constraints while achieving these goals are:

. Avoid excessive strain on the CPU.
. Eliminate unnecessary updates to reduce the burden ostdhage system.

. Avoid excessive metadata volume size.
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Most of these goals and constraints we have already addre¥¥e have demonstrated that
accurate predictive groups can be formed with Gytimal Expansion, Maximized Expectation
(Section6.2) strategy, given some root (goBl. Further, this strategy shows higher accuracy and
better resilience to diminishing returns than competisitrategies. Satisfying this goal allows us
to adapt to previously observed behavior in order to prddicire events. With such a prediction
strategy, it becomes necessary to track this previouslgrebd behavior (go&) without taxing
the storage subsystem with metadata retrievals and up@datestraint3). We have addressed this
issue wWithSESH and it has allowed us to compact this potent first-order essmmr information

from 14% down to less than 1% the total volume of the storagtesy.

Predicting from some root allows us adaptability, but nsitates a starting position, the root
itself, in order to proceed (god). Our proposed solution, d&rRDU hot list structure (Sectiod.?2),
easily lends itself to the task by providing roots that wil dasier to transition to, given a group

transition is necessary, as well as providing roots withgd Isiavings potential.

Having formed a predictive group, we must decide where itre@flide on the storage system; it
must exists somewhere in order for that group to be avaifableiture use (goad). One generally
accepted rule of thumb in systems research is that disk s&s@se precious, a costly commaodity,
while disk space is, by comparison, expendaldlg.[ This observation, along with early work by
Akyurek and Salem on adaptive block placemdit$uggests a preference to copying, rather than
shuffling or migrating, a suggestion followed by recent wlwk data layout 15, 56]. Thus, we
seek to utilize empty disk space in order to store predigieeips. Further, we would like to both

manipulate and utilize these predictive groups opportigaily (goals5 and6).

From a high level, the objective is easy to describe. We widhai/e a predictive group close
by when needed; when we write out the group, it should be dbyseind contain blocks that
are normally located very far away but have high estimategliiood of occurrence from the
current position of the disk head. We accomplish this by ingwviot only a single.RDU hot list
structure, but multiple structures, each for a portiomamge of the disk, as shown in Figu&o.
This strategy has several benefits. Decisions become Mealjew roots as “good roots for this
section”. This allows us to reduce the size of tieDU hot list structure, which allows for faster
updates and retrievals (constraidtand3) while enabling more adaptable behavior. In addition,

the task of locating a suitable position for the predictiveup is simplified; we need to find a
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Figure 40: Example of aupergroupwith provided expansion trees, rooteddaand K. Group 1
and Group 2 have their members in order of addition to themrdiotice that, after merging the
two smaller groups, there are four additional objects thatlve added to theupergroup due to

the overlap between Group 1 and Group ZofF', G and!.

nearby free physical location, or a group that has not yet lised by the system. This is easily
accomplished by a free-list bitmap to track unugeaups rather than blocks.

Once we have a predictive group written out, we would likedekit as up-to-date as possible.
Stale blocks are of limited use. Recall, however, that dgdrations are precious; we do not want
to overburden the storage system with an inordinate numbepdates (constrair?). We can
accomplish this via several strategies. First, recall fammwork on static grouping (Chaptéy
that larger group sizes yield better savings potential, dyerience diminishing returns. The
expected benefit is roughly inversely proportional to theugrsize. For these larger groups, we
may be able to combat this by allowing several smaller gréoeserlap, creating ongupergroup
from several smaller ones. Consider a simple motivatingngte; two groups with 8 objects may
have an overlap. When merged into one group, we are able tafi than 8 objects per group
without exceeding a total of 16 objects. Figd@clarifies this example.

Usingsupergroupsn this way yields several benefits. Fewer total groups aceseary, since

we have more than one root used per group; fewer total groopddwield fewer necessary up-
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Figure 41: Example of four possib@E ME groupings of size 4 from the given expansion tree.

dates. In addition, we may be able to have a higher group szeopt due to overlap, as in our
example. In fact, we can even try to consciously exploit.tHis our example, the formesu-
pergroupwas the merge of Group 1 and Group 2. Suppose we know that Ardwag a higher
potential. Presumably, both and K" were obtained from outRDU hot list structure. IfA was
reported to have higher potential, we may wish to biastigergrougowardsA. This can be done
by forming the group foi< first, up to half the totasupergroupsize, then fill the remainder with
A’s group. Any overlap between the groups would allow addaioobjects that followA to be

added, biasing the group towardswithout penalizing’s group.

Our example in FigurdOalso illustrates another possible improvement. In our gptapmotice
that objectV has only a single successot, Indeed, our prior work oSESHexploits such cases;
they are expected to occur the vast majority of the time. és¢hcases, performing priority queue
operations is somewhat superfluous; if there is roonCf@fter adding/V, we may simply add it
and expand the priority queue wigtis successors. Indeed, it may even be beneficial to avoigiusin
the priority queue in this case. The first issue to consideomputational cost. These operations
we have observed as the most demanding foOtEéviEalgorithm for large groups; reducing them
could greatly improve time complexity (constraif)t Second, it is expected for block accesses to
occur sequentially more often than not. Continually goimghte priority queue can, in the case

of equal priorities, have unexpected results, dependingasticular implementation. Consider
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another example, Figur&l. Notice that it is not clear which of the four groupings wititaally
occur, though we would clearly prefer either the first or @&, since these groups contain intact

sequences.

9.2 EXPERIMENTAL SETUP AND DESIGN

Our dynamic groupeiSPOReis composed of four objects; a controller, a scribe, a rooitor,
and a cartographer, shown in Figut2 The data request stream, which normally would have
gone directly to the storage system, is redirected throhgSPORecontrol. This is a high-level
decision engine, used to generate requests to the other phiraary objects. The scribe is a
SESHobject implemented with a maximum of 8 children. This ohjelgtailed in Chaptet, is
responsible for monitoring first-order successor infoiorafor all unique block IDs encountered

as well as providing this information upon request.

The root monitor is a collection dIRDU hot list objects from Chapte8. Each hot list is
responsible for tracking potential roots for a single rangethe disk. These ranges are further
detailed in Sectiod.2.1 Since we reduce the number of roots that need tracked bystacture,
we are able to reduce the structure size required of eachstan lorder to maximize stability.
In addition, small structures allowed for very fast updaed retrievals. The default structure
size we used was the group size divided by 256. This numbechasen based on preliminary
exploration; however, further research is needed to confisansitivity to this parameter that we

observed.

The cartographer object was responsible for several tdgkst importantly, it is responsible
for making the final requests to the underlying storage sysifiehese requests could be untouched
requests from the data stream or redirected requests tfvedyroups. The cartographer is also

responsible for generating write operations for initimlgzand updating these predictive groups.
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9.2.1 Root Placement

One function our cartographer object serves is to keep wapkysical device layout. We do this
by first marking each group that is to be accessed withoustation. We call these accessasy
accessesand refer to these groups v groups Groups are divided inttangeson the device,
with the translation from any particular group ID to its @sponding range ID calculated by a
simple integer division, provided in Equatioty).

group_id

range_id = (14)

range_size
Each range is allotted &rRDU hot list for tracking prospective roots for predictive gpang.
These hot lists are contained within the root monitor ohjantl provide localized views of what
roots have the highest cost to access from some particuigeran order to place these groups, we
first scan the range that we are predicting for. If there israrsad group within the range (a group

not yet marked as raw), we perform our prediction there. tf me@ begin scanning the device
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outward from the range in question for an unused group. If @i some maximum distance
from the ranger_max, and have not yet found an empty group, we cease the scan akdhmea
range as unpredictable. In practice, we haweax set to the average raw track distance, or the
average track distance that would be traveled without aagliptive grouping. This allows us to
avoid unnecessary scans for the range; in the future, weinglyscheck to see if the range is

unpredictabléeforescanning.

9.2.2 Reducing Update Overhead

ALGORITHM 8 SUPERGROUPOE_ME(T, R, maz) - a variant ofOE ME given in Algorithm2,

that forms a group from several roots. Note that we calllE_Prime (Algorithm9).

Input: set of first-order successor tre@g,an array of root IDsR, arranged in increasing order
of estimated potential; a maximum group sizeyx

Output: aset of IDs(, representing the predictigipergroup

p-max «— max/SIZEOF(R)
S < p_-max
for i = 0to SZzEOF(R) — 1 do
G — OE_ME_Prime(G,T, R[i], s)
S «— p_max
end for
G — OE_ME_Prime(G, T, R[SIZEOF(R)|, max)

return G

We are able to reduce the overhead of updates perform&PIBRen three ways. First, in
order to cut down on the number of necessary predictive graand thereby reducing the number
of necessary updates, we use predicsivpergroupsRather than form groups using a single root,
as we did in our work on static grouping, we use multiple ro@ar modified algorithm, given in
Algorithm 8, goes through an ordered array of roots, each with incrggmitential, predicting on
each successive root in turn while allowing overlap betweergroups.

We are also able to reduce the total number of updates byiagpodates that have very lim-

ited use. While we hope to keep predictive groups freshetigelittle gain to be expected from
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updating an entire group if only a few blocks are to be reflat®e such cases, where the majority
of blocks remain unchanged, we should consider the gro@stifenough”, and avoid updating it
at this time. We are able to accomplish this task by perfognaigroup difference between a pre-
viously written predictive group and its updated versiagnyat unwritten. Computationally, this
group difference is equivalent to performing a set diffeeenlif the overlap between the groups
exceeds some thresholdwe perform the update. If not, we consider the old versidhcsently
fresh, and abort the update. In practice, we used an ovdmntapttold of 0.75. This number was
chosen based on preliminary exploration; however, funteeearch is needed to confirm insensi-
tivity to this parameter that we observed.

The last way to reduce the overhead of updates is by oppstically using blocks that exist
in memory. As we are forming a predictive group, we check ddobk for existence in memory.
The block is added to the group only if it is readily availablihout causing an additional device
access for retrieval, as shown in AlgorittimFor our simulations, this requires a memory model.
In practice, we initially modeled a strieRU memory object, varying the size from 512 MB to 2
GB. In all cases, we found only a small percentage of rejastidue to a block not in memory;
usually, this rejection rate was between one and three pertée consider this rate to be small

enough to warrant removing the memory object model from o frersion ofSPORe

This decision to remove the memory object was made for twsoresa In practice, memory
management is much more sophisticated than simRlg. Accurately capturing the behavior of
modern systems’ memory management we consider beyonddpe etour research. Second, itis
our goal to have generalized results. Modeling memory weedgire multiple settings, including
size, speed, and policy choices. With a rejection rate thiaduich smaller than our overlap thresh-
old, especially from a simple strategy, suchL&d), indicates that memory management would

have minimal impact.

9.2.3 Reducing Priority Queue Size

During our work on static grouping, we noticed that one ofltrgest demands on resources, both
memory and CPU cycles, was the priority queue operationsrder to substantially reduce the

cost of these operations, as well as to promote intact séiglsaquences within our predictive
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groups, we employ a priority queue “short circuit”. Whenewe decide that a block should exist
within a predictive groupregardlessvhether the block is in memory, we immediately check the
block’s number of successors. If only a single successat®xive attempt to add this successor,
and repeat the process until more than one successor is.folimd optimization is shown in

Algorithm 9.

9.2.4 Group Scanning

Once we have written a predictive group out to the disk, weldoltimately like to maximize
the use of the group for several reasons. First, and perhapsahviously, the aim of predictive
grouping is to form areas on the disk that require fewer ttems and shorter disk head movement
than the sequentially organized areas of the disk. In addifrequent visits to predictive groups
grants us low-cost opportunities for attempting updatestilWow, the only discussed method
of entering a predictive group has been by a request for awibin the group. We are able to

dramatically increase the number of uses of predictiveggday relaxing this constraint.

To this end, we use two simple methods. First, upon a reqaeatlflock not contained within
the current group, we immediately check the current rangesslictive group. If the block is
contained within this target group, we transition thereit i§ not, we scan each predictive track
between the current head location and the target raw trdekn€arest predictive group containing
the block, assuming such a group is found, becomes the gnmgb, and the disk head is redirected

to this closer group.

This strategy intuitively results in higher usage of prédegroups, but weakens each use. Ar-
guably, these groups’ greatest strength is the amountrditran reduction. Entering the group on
a block that is not aroot, or at least near a root, is expectegtiuce the number of accesses within
the group. We claim that our grouping strategy is powerfuwgh to withstand this weakening,
and is expected to continue to outperform raw accessessmdfard. The benefits of increased
predictive group usage are therefore expected to greatlyeigh the risks of entering on a block

far down in the priority queue.
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ALGORITHM 9 OE_ME_PRrRIME(G, T, root, maz) - a balanced approach for forming a predic-
tive group, using a group that may or may not already have reesniNote that we use the same

expansion function, OBME _Expand (Algorithm3), asOE ME (Algorithm 2).

Input: an existing grouf; a set of first-order successor treé&s,a root 1D, root; a maximum
group sizemazx

Output: a set of IDs(, representing the predictive group

ENQUEUE(max_pq, root, 1)
while ISNOTEMPTY (maz_pq) and SIZEOF(G) < max do
p < TOPPRIORITY (mazx_pq)
f < DEQUEUE(mazx_pq)
if SIZEOF(G)+ SIZEOF(f) < max then
if f1isin memorythen
ADDTOGROUP(G, f)
end if
while SIZEOF(G) < maz and f has only one successto
f < SUCCESSOK)
if SIZEOF(G)+ SIZEOF(f) < max and f is in memorythen
ADDTOGROUP(G, f)
end if
end while
maz_pq < OE_.ME_EXPAND(T, max_pq, f,p)
end if
end while

return G
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| 0.1 [ n.@n1) | 2n.@n-1) | 3n..@n-1) [ 4n..(5n1) | 5n...(6n-1) | 6n...(7n-1) |

remapped remapped remapped remapped
unchanged  unchanged  unchanged 1 group h/b{h‘er 1 group higher 1 group higher 2 groups higher
| 0...(n-1) | n...(2n-1) | 2n...(3n-1) | empty | 4n...(5n-1) | 5n...(6n-1) | 6n...(7n-1) | empty | 8n...(9n-1) |

Figure 43: Inserting empty groups; in this case, we insegtempty group per four groups, simu-

lating a device that is 25% empty.

9.2.5 Traces

We tested our prototype predictive englBleORen three workload sets representing three differ-
ent environments. The first set used wasrtiezartworkload traces from Sectioh 1.1, gathered
using theDFSTracd91] system, and represent a pre-cache access stream. Thimsts of four
trace lengths, namely day, week, month, and year lengthesicsensitivity to varying block size,

these traces were converted to 512 byte, 4 KB, and 8 KB blades.

In order to provide empty space for predictive grouping, Verad this workload by placing
empty groups within the trace. We provide results for bottb& 2mpty disk as well as a 75%
empty disk. Distance results provided are based on thenafigiompact workloads without empty

groups. Figuret3 demonstrates this insertion strategy.

The second sehplajwfrom Sectiord.1.2 represents a native block-level trace gathered from
an HP-UX system107 at the disk level (.e. filtered through the UNIX buffer-cache). This set
was not converted into other block sizes, due to lack of filgteam level information in the trace.
Similar to themozarttrace set, we inserted empty tracks to simulate a 25% empity 3% empty

disk, with reported distances based on the original, cotrtpame without any empty groups.

Finally, we used our own trace sefnin, detailed in Sectiod.2.1 This trace set represents
more modern disk access patterns, taken from a graduatenstiaghtop workstation, namely the
author’s. For our work, cache-level information was, usletherwise noted, ignored; only device

level information was used. Much like tmeozarttrace set, this set was converted into different
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block sizes to test for block size sensitivity.
These workloads were used without any warm up period priori information stored; all
predictive information was captured on the fly. As a resu#t,can expect shorter traces to show

little improvement, as the system requires time to gathdraan upon observed workload patterns.

9.2.6 System Configuration

We conducted all of our experiments on a MacBook running O%.8 with a 2.4 GHz Intel
Core 2 Duo processor. This workstation contained 2 GB of 66%zN0DR2 SDRAM, 3 MB of
L2 cache, and an 800 MHz system bus. The test hard drive wastemmal 5400 RPM Hitachi
Travelstar 2.5 inch SATA drive with 160 GB capacity and an 8 RHghe. A vanilla version of
Darwin 9.8.0 with a standard XNU kernel was used.

All programs were implemented in C or C++ compiled with théadét versions of the GNU
projectgcc andg++ compilers. To ensure correct program behavior, no optitiwadlags were

used during project compiling.

9.2.7 Competing Model - Hot Block Clustering

In order to provide a strong competitive comparison3®ORewe implemented our own version
of an on-disk caching scheme based on hot blodks/arying over how often blocks were moved,
the size of a group (or track) in blocks, and the number otksaeserved for on-disk caching.
Additionally, to further strengthen this hot block clustey scheme, rather than use the numerical
“middle” of the disk, we calculated the average block lomatthroughout each trace, and cen-
tered the disk caching at this average location. This pes/@h impractical but very beneficial
optimization.

This scheme was run over all block sizes (512 byte, 4 KB, and8 ¢h themozartweek,
month, and year length traces as well asrtren day, week, two week, and full length traces. The
caching interval was varied between every 8192 accessb8pGiccesses, and 524288 accesses.
Group sizes used were 1024, 2048, 4096, and 8192 blocksrvedsmching spacegefjion sizep
used were 1, 2, 3, 4, 8, 16, 32, 64, and 128 groups.

We also used two organization techniques for how blocks Wadeout within the hot block
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clustering region. The first technique used organ-pipb#j &s originally suggested for this on-
disk caching strategyl]. The second technique was to arrange the blocks by ID. Dtrestbighly
sequential nature of the traces used, organ-piping pegdrrary poorly for any region size greater
than 1 group. As a result, in all cases tested, the sequdayialit strategy outperformed organ-
piping. For a region size consisting of a single group, trsilts were always identical to the
sequential layout. For these reasons, only the sequeayialit technique was compared against
SPOReproviding a stronger competitive comparison.

These caching schemes were implemented in C++ compiledtigtidefault versions of the
GNU projectgcc andg++ compilers. To ensure correct program behavior, no optiticizdlags

were used during project compiling.

9.3 RESULTS

We divide our results into five general categories: traositeductions, distance reductions, aver-
age number of accesses per use, write reductions, and esfitheoughput oSPORe The most
crucial of these we expect to be transition reductions, emtimber of times that the disk must
seek to a new location. Of course, given that a transitiorecessary, we would prefer a smaller
seek distance in order to satisfy the request. The averagsses per use shows the strength of our
predictive groups against that of the “raw”, sequentiabgoalready present on the disk. We also
present the effect of our write reduction strategy, prasgrioth the number of writes attempted
and the number of writes performed. Finally, we present stienated throughput SPORe

In order to minimize effects of strategies not directly tethto data grouping, we assume, in
all experiments, a never-idle disk. This avoids power amenley effects associated with other,

largely orthogonal power-saving techniques, such as@pim techniques.

9.3.1 Reducing Transitions

Our results show transition reductions for almostratizartworkloads longer than the day trace

for all parameters tested. Figuré4 and45 show transition reductions for the week, month, and
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Table 14: Comparison of estimated predictability of vasieworkloads.

BLOCK SIZE TOTAL UNIQUE
TRACE (BYTES) ACCESSES| % SEQUENTIAL BLOCKS | % UNIQUE
mozart day 512 91,000 94.3 11,000 11.9
mozart week 512 1,760,000 96.3 191,000 10.8
mozart month 512 7,730,000 98.0 444,000 5.74
mozart year 512 299,000,000 99.5 2,070,000 0.691
hplajw 8192 2,360,000 92.9 198,000 8.39
ranin, day 512 43,700,000 99.6 33,300,000 76.1
ranin, week 512 125,000,000 99.6 74,200,000 59.2
ranin, two week 512 181,000,000 99.6 98,700,000 54.5
ranin, full 512 260,000,000 99.5 120,000,000 46.2

year length traces for the 25% and 75% empty devices, ragegciSimilar results for théaplajw
workload are provided in Figu46. These results include both group switches as well as update
for predictive groups.

Of these 72 tested parameter permutations, only 8 showeahmmvement, and only one of
which showed any degradation. All of these cases had lafgek bizes (4 KB or 8 KB) and larger
group sizes (4096 objects or 8192 objects). Only the weekttemnace with 8 KB blocks and 4096
objects per group, with 25% empty disk, and 4 groups per rahgeed a decline, registering a 1
additional transition and 1 update from 1126 raw transgj@m increase of 0.1776%.

These results indicate several trends. First of all, we tiodé changing block size, while
holding the number of blocks per group constant, increasaspgsize in bytes. This parameter,
group sizen bytes is the most crucial parameter observed; beyond its infeienthis way, block
size is observed to have little effect, especially for largerkloads.

Trace length trends show that increasing group size in lgteds to have smaller effect, while

larger workloads show an increase in performance. Onelgessiplanation is that the deep pre-
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(b) Eight groups per range

Figure 44.SPORédransition reductions for 25% empty diskpzarttraces. Included are the week,

month, and year length traces, with block sizes of 512 byt&$3, and 8 KB.
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Figure 45:SPORdransition reductions for 75% empty diskozarttraces Included are the week,

month, and year length traces, with block sizes of 512 byté$3, and 8 KB.
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Figure 46:SPORadransition reductions fanplajwtrace.

dictions necessary for larger group sizes require longeoge of time to develop. Additionally,
longer workloads will have predictive groups available fioost of the trace, while shorter work-
loads need to actively write predictive groups, yet haikelttme in which to use them. Finally, as

group sizes increase, the total volume of shorter traceapbes that of a single group.

Our ownranin trace set represents a test of robustness for our predaiyme. While more
sequential than either thmozart the ranin trace set exhibits less predictability due to a large
number of blocks that occur only once in the entire trace.leTaB shows a comparison of the
mozarttraces with 512 byte blocks, along witiplajw, a natural 8 KB block trace, against ganin
traces. As expected, over time, the percentage of accdsstesccur on an item not previously
observed drops. Yet the shortesvzartworkload has a ratio of unique blocks to accesses almost
four times smaller than the largasinin trace. Our fullranin trace, over a month long, has almost
half the accesses as unique blocks. Such an environmentug detst of a predictive engine’s

sustainability. Even under these difficult conditio8$ORenot only does not suffer, but shows

115



ranin Transition Reduction
Range size=4

35 T
3t 4 :
S
= i
g
o
=
3 i
]
=
.8
2 i
g
05 L s
1e+06 le+07 1e+08
group size(bytes)
day, 512 -2 week, 4K —6— two week, 8K -~
day, 4K © week, 8K —&— full, 512 ---EF---
day, 8K A two week, 512 - full, 4K ----©---
week, 512 —5— two week, 4K ---O--- full, 8K A+
(a) Four groups per range
ranin Transition Reduction
Range size=8
2.5 T
S ,
=
g
o
=
] i
2
=
g
[ ]
g
-0.5 L L
1e+06 le+07 1e+08
group size(bytes)
day, 512 -2 week, 4K —6— two week, 8K ---A---
day, 4K © week, 8K —&— full, 512 ---EF---
day, 8K A two week, 512 - full, 4K ----©---
week, 512 —5— two week, 4K ---O--- full, 8K A=+

(b) Eight groups per range

Figure 47: SPORdransition reductions foranin traces. Included are the week, two week, and

full-length traces, with block sizes of 512 bytes, 4 KB, ankEB
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transition improvements, usually between 0.5% and 1.5%heawn in Figured?.

9.3.2 Reducing Seek Distance

Distance reduction is among the earliest data layout gfiegetudied. While we expect transitions
to play a larger role in modern disk drives, a generally agglie strategy should reduce distance
as well. SPOReesults indicate that distance reductions are more ditfiougeneralize. For suffi-
ciently large traces, using limited disk space (25%), distareductions actually outpace transition
reductions. However, it takes time to learn and act uponrebsgepatterns. For shortenozart
traces, we typically show an increase in distance. Thisrgelg due to the empty tracks inserted
in order to allow replication. For instance, inserting ongpéy track for every 3 raw tracks corre-
sponds to a 25% empty disk, but results in an expected 33%sarerin track distance. As a result,
SPOReeeds to exhibit approximately 33% reduction in distancerder to break even with the
original, unexpanded trace. Figut8 shows the reductions for threozartweek, month, and year
length traces on a 25% empty disk, while Figbf&a)shows the reductions for thelajw trace
for a 25% empty disk. In order to better visualize the impdauwr strategy on a single trace, we
summed track distance within windows of 2 million accessethemozartyear trace. Figuré2
shows thaSPORehas a dramatic impact after 50 million accesses, or less2@é# of the total

length of the trace.

The problem of additional distance due to empty track inselis compounded when using
a 75% empty disk, resulting in an expected 300% increaseagk tdistance. In this case, even
cutting the distance in half using the expanded trace waeddlt in doubling the distance of the
original, unexpanded trace. Only the year lengibzarttrace supplies sufficient time f@PORe

to exhibit a benefit under these conditions, as shown in Eigar

Once again, even in the face of high uncertainty, our oamn traces show reductions. The
only trace not to do so was the day trace, for 8192 blocks pmrm(all block sizes). Figurbl

shows our distance reductions for these traces.
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Figure 48:SPORadlistance reductions for 25% empty diskozarttraces. Included are the week,

month, and year length traces, with block sizes of 512 byit&®, and 8 KB. Distance reductions

are based on ungrouped, compact trace with no empty groups.
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Figure 49:SPORdlistance reductions for 75% empty diskpzarttraces Included are the week,

month, and year length traces, with block sizes of 512 byit&®, and 8 KB. Distance reductions

are based on ungrouped, compact trace with no empty groups.
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Figure 50:SPORalistance reductions fdplajwtraces, with 25% and 75% empty disk. Distance

reductions are based on ungrouped, compact trace with ntygmups. Note that the 75% empty

disk has increased distance for all group sizes.
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Figure 51: SPOReadistance reductions famanin traces. Included are the week, two week, and
full-length traces, with block sizes of 512 bytes, 4 KB, ankiE®B
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year, 512 byte block, 1024 group size, 2M window size
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Figure 52: Windowed track distancemibzartyear trace, 512 byte blocks, 1024 objects per group.
We used a window size of 2 million accesses. Notice that weasfamatic decrease in distance

after less than 20% of the trace.

9.3.3 Accesses and Group Usage

In order to show the effect of our predictive groups, we temtkisage counts throughout our re-
grouping simulation, both for “raw” groups as well as preige groups. These counts were used
to calculate the average number of accesses per use of eaghtgpe. This is similar to the aver-
age accesses per transition (Figut8sand14) from Section6.4.1 The slight difference is that a
transitionoccurs when the disk head moves, including writesus&occurs only when a track is
read. This provides us with a metric with less ambiguity ttransitions.

Figure 53 shows indicative comparisons of timeozartmonth and year traces with varying
group sizes, while Figurg4 shows thehplajwtrace. These results compare the predictive groups
formed inSPOReo both the untouched, original groups, both within the ioag trace as well

as withinSPORe In almost all cases, our predictive groups show much higherage accesses
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per use than sequential tracks. Interestingly, for smaieup sizes, we also see an increase in
sequential group performance as well. We project that thiduie to a very simple expectation.
Groups that are poorly formed are likely to have very low ases per use; hence, these groups are
likely to cause a transition. These transitions are likblyabed by our predictive groups, allowing

well-formed sequential groups to be predominantly used.

Additionally, we note that our predictive groups tend to hteeed predominantly by scanning,
as we discussed in Secti@2.4 This causes a predictive group to commonly be entered on an
object that the group has not been optimized f@: & non-root). Even in the face of this limitation,

our predictive grouping scheme is powerful enough to mairtiagh accuracy and usage.

Figure 55 shows the indicative impact @POReon our ownranin trace set. In the face of
high uncertainty in the workload, coupled with common sgliraized entrance via scanning, our
predictive groups tend to have much lower accesses peitieenyet commonly manage to allow

for better sequential group usage.

9.3.4 Updating and Storage System Overhead

Our results also show a dramatic decrease in necessarg Wyitgsing our group difference strat-
egy, with typical reductions of about 80%. We show this relsykracking how many updates were
attempted as well as how many were committed to the diskmatily, we would like to show the
impact of this reduction on the total number of transitiong estimate this by adding the updates
that werenot committed. This is a reasonable estimate because mostediffes between group
versions are expected to be deep predictions with littleadiehance of occurrence; hence, they

are not expected to have great impact on the system perfeanan

Figure56 shows indicative results for update reductions forrttezartyear and month traces,
while Figure57 exhibits indicative results for thieplajwtrace and Figur&8for our own fullranin
trace. We note that, in most cases, a reduction in updatesceseary to show a net gain in the

number of transitions.
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Figure 53: Average accesses per group us&RIORemozarttraces.
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Figure 54: Average accesses per group usSRORefull hplajwtrace.
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Figure 55: Average accesses per group us&RORefull ranin trace.
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Figure 56: Estimated impact of update reductionS®@ORemozarttraces.
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Figure 57: Estimated impact of update reduction3®ORehplajwtrace.
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Figure 58: Estimated impact of update reduction3®ORefull ranin trace.
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Table 15: Subset of trace parameters for throughp8RDRe Due to the observed limited impact
of range size and disk free space, all traces used the sameg@rs. In particular, we used a

range size of 4 and, fanozartandhplajw, 25% empty disks.

BLock Size | GROUP SIZE THROUGHPUT
TRACE (BYTES) (BLOCKS) GROUP SIZE | (BLOCKS/ SECQ)
mozart year 512 1024 512 KB 133,000
mozart year 512 2048 1MB 113,000
mozart year 512 4096 2 MB 86,000
mozart year 512 8192 4 MB 62,000
mozart year 4096 1024 4 MB 82,000
mozart year 4096 2048 8 MB 65,000
mozart year 4096 4096 16 MB 36,000
mozart year 4096 8192 32 MB 19,000
mozart year 8192 1024 8 MB 56,000
mozart year 8192 2048 16 MB 41,000
mozart year 8192 4096 32 MB 24,000
mozart year 8192 8192 64 MB 12,000
ranin, full 512 1024 512 KB 145,000
ranin, full 512 2048 1 MB 151,000
ranin, full 512 4096 2 MB 149,000
ranin, full 512 8192 4 MB 132,000
ranin, full 4096 1024 4 MB 83,000
ranin, full 4096 2048 8 MB 66,000
ranin, full 4096 4096 16 MB 57,000
ranin, full 4096 8192 32 MB 44,000
ranin, full 8192 1024 8 MB 52,000
ranin, full 8192 2048 16 MB 46,000
ranin, full 8192 4096 32 MB 34,000
ranin, full 8192 8192 64 MB 25,000

9.3.5 Throughput

Estimating the computational overhead of a predictive mags non-trivial and greatly depends
on a number of factors, including hardware, specific opegasiystem and file system version
number, and characteristics of the workload. Additionahg specific workload contributes to the
exact behavior of the system. Idle periods within the waeklplay a significant role, especially

when estimating CPU overhead of a system. Personal conspeder sit unused for hours at a
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time, and recent work indicates that servers and data cetyjgically experience about 20-30%
utilization [13,16,89]. Our own 5400 RPM Hitachi Travelstar 2.5 inch SATA drive lzaeported
peak transfer rate of 665 Mb/&][ or about 79.27 MB/s, yet only 123.79 GB was read during
our entireranin workload, averaging 3.25 GB of data per day. This translaiean aggregate

demanded transfer rate less than 0.005% of the drive’s marim

Table 16: Subset of multi-run trace parameters for througloyp SPORe Due to the observed

limited impact of range size and disk free space, all trasesl the same parameters. In particular,
we used a range size of 4 and, foozartand hplajw, 25% empty disks. The reported mean
throughput is in blocks per second, with 99% confidence vialexxpressed as a percentage of the

mean.

BLocK SizE | GROUPSIZE | MEAN THROUGHPUT | CONFIDENCE
TRACE (BYTES) (BLOCKS) (BLOCKS/ SEQ) INTERVAL (%)
mozart month 512 1024 103,000 95.5-104.5
mozart month 4096 1024 34,000 96.9-103.1
mozart month 8192 1024 20,000 96.5-103.5
mozart month 512 8192 38,000 99.8-100.2
mozart month 4096 8192 10,000 99.8-100.2
mozart month 8192 8192 21,000 99.8-100.2
hplajw 8192 1024 23,000 99.6-100.4
hplajw 8192 8192 4,000 99.5-100.5
ranin, day 512 1024 137,000 99.9-100.1
ranin, day 4096 1024 128,000 99.8-100.2
ranin, day 8192 1024 87,000 99.8-100.2
ranin, day 512 8192 173,000 99.8-100.2
ranin, day 4096 8192 161,000 99.9-100.1
ranin, day 8192 8192 153,000 99.9-100.1

In order to exhibit generalizable results, we present thauigfhput demonstrated IBPORein
terms of blocks per second, on our test bed system. Eactefested throughout this chapter was
timed using the standatd me command found on Mac OS X. These times included all programs
used in our script test bed, including decompressing tloe tiikes; however, the overhead of these
additional scripted commands we consider minimal. A subséhese results for longer traces
(mozartyear trace andanin full trace) are provided in Tablg5. In addition, we tested a subset

of traces and parameters on multiple runs in order to establbnfidence intervals. The set of
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workloads and parameters timed in this way is provided ilelab, along with mean throughput
and corresponding 99% confidence intervals. We chose oatgdrthat lasted longer than 25
seconds in order to help ensure consistency. Each tracesimthti-run subset was timed 30 times
using the standardi ne command found on Mac OS X.

In order to calculate throughput, we divided the total nundidlock accesses in the trace by
the total CPU time, which is calculated as the sum of the teparser and system time, shown in
Equation (5).

total block accesses

throughput = 15
gnp user time + system time (15)

The 99% confidence interval was then calculated using thestist-distribution.

9.3.6 Comparison against Hot Block Clustering

We compared our implementation of on-disk cachingRORe&n terms of transitions as well as
distance (see Figurg9). In particular, we compared agairfSPORewith a range size of 4 and,
for the mozarttraces, a 25% empty disk. We found tIf@OReoutperformed on-disk caching

in terms of both transitions and distance for 93.7%fzartconfigurations and 98.7% o&nin
configurations. On averagePOReshowed a 26.6% reduction in transitions and a 56.9% reductio
in distance over on-disk caching forozart tracesand a 9.9% reduction in transitions and 7.4%
reduction in distance for thanintraces. Tabld7shows these results separated by trace and block

size.

9.4 DISCUSSION

Recall our original goals and motivations for a dynamic datauper. We sought an engine, dy-
namic and adaptive, that was robust, sustainable, andergsidimed at predictions that are not
only accurate but alsopersistentunlikely to change quickly, and avoid “knee-jerk” reactsathat

become stale before they can be used. In an effort to imprpea the basic goal of prefetching
(i.e. satisfying requests before they are made) we have intendietbuple the satisfying strategy

from the data path by employing predictions that are expettieendure. These predictions, by
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Figure 59:SPOReompared with on-disk caching (hot block clustering).
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Table 17: Percentages of configurations wHeiR®©Reoutperforms Hot Block Clustering, broken

down by trace and block size.

BLoCK SIZE PERCENTAGE AVERAGE TRANSITION PERCENTAGE AVERAGE DISTANCE
TRACE (BYTES) (FORTRANSITIONS) REDUCTION (FORDISTANCE) REDUCTION

mozart, week 512 95.4 28.7 100 60.1
mozart, week 4096 92.6 23.4 98.1 64.5
mozart, week 8192 84.3 20.9 100 72.3
mozart, month 512 100 26.7 100 44.8
mozart, month 4096 100 21.6 100 60.7
mozart, month 8192 100 18.0 100 66.4
mozart, year 512 77.8 3.6 86.1 15.8
mozart, year 4096 100 27.4 100 54.4
mozart, year 8192 100 26.1 100 60.3
ranin, day 512 100 18.5 100 8.5
ranin, day 4096 100 6.3 100 3.4
ranin, day 8192 100 4.5 87.0 -11.9
ranin, week 512 100 18.7 100 10.5
ranin, week 4096 100 7.0 100 8.4
ranin, week 8192 100 5.3 100 8.0
ranin, two week 512 100 17.5 100 9.3
ranin, two week 4096 100 6.5 100 8.6
ranin, two week 8192 100 4.8 100 9.1
ranin, full 512 100 17.1 100 6.4
ranin, full 4096 100 7.1 100 6.8
ranin, full 8192 100 5.7 97.2 4.5

the nature of their expected persistence, lend themsedvasrsistent replicatioron the storage

system, rather than the transient replication of cachirtgraemory management.

Such persistent replication maintains the essence oftphafig implicitly without requiring
immediate action. This provides several improvements pveietch caching. First, replication
done in the past has value. Caching, by its nature, is tnanarel short-lived. Work that is done
at the caching level is expected to be short lived, and ptiedie made long before the current
moment of execution is unlikely to have survived until nowicB is not the case with persistent
predictions, which allow for future uses of the same set tibcated, replicated data. As a result,
the system builds upon itself, improving over time. Additadly, it allows for serendipitous use.
Where prefetch caching must be usefaiy, persistent replication allows for extended utiliyer,
even when we may not have expected it. Arguably, this engateserendipity is the greatest

strength of data layout management.
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9.4.1 Persistence of Predictions

In order to verify that our predictions continue to be usefvg altered ouSPOReengine to dis-
continue prediction after a predetermined number of aeseds practice, the decision to disable
replication should be made dynamically, and potentiallyfwariety of reasons. For instance, in
the case of high activity, low predictability, or observithg underlying hardware as idle. For ver-
ifying the intuition that persistent predictions remairuable, however, requires manual control.

In order to verify predictive groups’ persistent value, \&a themozartyear trace with a block
size of 512 bytes, group size of 1024, and a range size of 4eosirtiulated 25% empty disk trace.
This workload and configuration showed approximately 508ticgion in distance and about 11%
reduction in transitions. Figur@0(a)shows the windowed average accesses per use for this run
withouthalting predictions. Figur60(b)shows the same run with the same parameter set, halting
predictions after 50 million accesses. At the end of thiskla@d, after acting upon only one sixth
of the entire trace, we observed a 25% reduction in distandea&3.3% reduction in transitions.
Of particular note is the behavior of the sequential groupBigure60(b). Notice that almost
immediately after ceasing prediction, our predictive granehavior stabilizes well below that of
both the raw groups as well as the sequential groups wiii®Re However, the behavior of
sequential groups significantly improves. This supportseaulier observation that our predictive
groups tend to absorb the “difficult” locations within thenkimad, leaving well-formed sequential

groups as they are, and continues to do so long after we aeasguvely predict and update groups.

9.4.2 Robustness to Track Size

The motivating hardware example used throughout our woskbleen equatingroupswith disk
tracks We contend that knowing this track size, while certainlgfusand feasibleJ04), is not
strictly necessary. In order to test this, we ran th@zartmonth trace with 512 byte blocks and
simulated 25% empty disk with multiple parameter settirgfgnging the actual track size and
the presumed track size, or the group size use@®@BPRe Note that, sinc&SPOReuses only
groups that are completely empty for predicting, when thaasize of tracks is smaller than the
presumed, no prediction takes place, since no empty traekk®and. We calculated the transition

reduction as well as the distance reduction, both in ternatfal track size, shown in Tabl&8
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Figure 60: Windowed comparison of vanilla and stopS&®Rdor mozart year trace. Block size
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million accesses. Trace stopped prediction at 50 milliareases.
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Table 18: Comparison of reduced distance percentages ésupred vs. actual track sizes for

SPORen mozartmonth trace, 512 byte blocks.

Presumed
Actual 1024 2048 4096 8192
1024 67.7 - - -
2048 66.8 64.9 - -
4096 67.2 63.7 617 -
8192 69.6 65.1 63.2 59.7

Table 19: Comparison of reduced transition percentageprésumed vs. actual track sizes for

SPORen mozartmonth trace, 512 byte blocks.

Presumed
Actual 1024 2048 4096 8192
1024 94.0 - - -
2048 96.5 90.9 - -
4096 952 913 86.3 -
8192 95.7 912 86.2 8338

and18, respectively. These results indicate that, as lon§ROR& group size is at least as big as
the actual track size, we can expect similar benefit.
9.4.3 Confidence Thresholds

Workloads change, shift, and expand; it is inevitable. Tahavior is the very essence of what
makes automated adaptability so powerful. Just as we egfmreige system demand to be “bursty”

in nature [L4, 16,91, 94, 95, 107, so do we expect changes to occur in bursts. One undesirable
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scenario that we seek to avoid is predicting (and commitiinthe device) groups that use new,
immature information. Such “knee-jerk” predictions maydfdimited use; it would be better if
we were able to wait until our predicting engine was opegatwth a higher confidence to perform
predictions.

To accomplish this, we attempted the use of a confidencehthigksAt each block request, we
predict the most likely expected block, given the previamuest. This request actually generates
two return values, the predicted block, and the confidencenaf prediction. This confidence
is exactly the samé (T, f, s) used in our expansion functions. We keep a running predictio

confidencey, using the following equation.
T:QXT+(1—Q)XP(T,f,S) (16)

Notice that this equation isota global average confidence. Rather, it is an approximafisnah

an average, but with a strong bias towards recent predg;tiith lower values oft corresponding
to stronger bias. In practice, we used the vadl$® for «. Using this running confidence, we are
able to avoid attempting to predict, and therefore avoid pevice-level predictive updates, when
we become skeptical of our predictive engine. In practiuis,dtrategy was actually outweighed by
our other update reduction strategies. Our initial tesdgated that reducing this threshold to zero

actually improved performance; thus, our final results domdude use of a running confidence.
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10.0 HARDWARE-BASED VALIDATION

Much of our work revolves aroungeneralizable application Adaptable, dynamic systems are
more generalizable by their very nature; their ability t@ehe and adapt allows them to tailor
themselves to differing workloads and patterns. Operaginthe block level within a system,
without knowledge of requesting processes or file namestdgfmore generalizable strategies to
be applied. Even robustness can be viewed as a particuldrokirgeneralizability to withstand

adversarial workloads.

Keeping in this spirit of extensive application, our resuitive largely been gathered via sim-
ulation. In particular, the two most common results we pneaeetransitionsanddistance These
are generally accepted as the two metrics most closely iassdavith latency and energy costs
of a storage system’s underlying mechanical hardware. Bygnting simultaneous reductions on
these two metrics, we provide a means by which many hardwatera configurations can be
evaluated by approximation. The only knowledge requireddo is an estimating function of

system performance based on transition count and distance.

In order to validate our results, we present in this chapiedesign and analysis of a prototype
hardware system configuration. We have continued to usedtttednive as a motivating hardware
example, and have stressed the number of transitions asgbeted primary indicator of hardware
performance. We test these examples and verify our comgscin our prototype system by timing
a selected subset of the workloads and parameter settiogsdur SPOReexperiments while

simultaneously sampling the isolated power consumptidesifdrive mechanical components.
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10.1 EXPERIMENTAL SETUP AND DESIGN

We obtained our results from Chap®@wia simulation in order to present generalizable conclu-
sions while minimizing ties to any particular hardware cguafation. These results are based on
assumptions about storage system behavior. In partionkrassume the most likely indicator
of system energy cost and latency to be the number of groupitians; the second most likely
indicator we assume to be track distance. While these msedrie generally accepted as accurate
indicators, they are onlgstimatesrather than empirical measurements of real systems.

In order to accurately validate these metrics, a high sargphte is required. Some disk arm
actuators are capable of moving the physical arm from on @izbe disk to the other within
milliseconds; we will need to sample at a rate fast enouglapdure these very rapid changes.

Additionally, we need to minimize interference of existieigergy and latency reduction tech-
niques, including caching and disk spin-down strategieeng the disk busy should ensure that
no spin-down occurs, but avoiding the cache can be moreutffi€omplicating this issue is our
recurring motivating hardware example of disk tracks. Thgiwal motivation was that a track
buffer would be accessed more frequently for well-orgashg®ups, leading to fewer device-level
accesses. But this buffer is a cache; steps taken to avamgsaitogether would avoid the buffer

as well. Thus, we need to provide some mechanism for modetel buffer behavior.

10.1.1 System Configuration

All of our experiments were conducted using two test madiaa external hard drive enclosure,
and a DAQ. Two test machines were used in order to prevenettading of voltage drops from
interfering with the data request stream going to the tagediThe workload replay system used
the same MacBook test machine from &POReexperiments, running OS X 10.5.8 with the
same Darwin and XNU versions, 2.4 GHz Intel Core 2 Duo prame&sGB of 667 MHz DDR2
SDRAM, 3 MB of L2 cache, and an 800 MHz system bus. The intenaadl drive containing the
trace set was the same 5400 RPM Hitachi Travelstar 2.5 indiASive with 160 GB capacity
and an 8 MB cache. The voltage measurement workstation was/@rBook running Mac OS X

10.3.9 with vanilla Darwin and XNU kernel, 867 MHz G4 prooais$40 MB of 333 MHz DDR
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Figure 61: Prototype hardwa8POReevaluation system.

SDRAM, 256 KB of L2 cache, and a 133 MHZ system bus. The intéraed drive used to store
the voltage histories was a 4200 RPM Fujitsu Mobile MHS 2¢hiATA-100 drive with a capacity
of 60 GB and a 2 MB cache.

There were three IDE (PATA) drives used to measure latendyesrergy costs. We used a
320 GB Hitachi Deskstar 7200 RPM with 8 MB cache, a 250 GB Sagp&pinPoint 5400 RPM
with a 2 MB cache, and a Western Digital 320 GB Caviar Blue 7R60/ with an 8 MB cache.
The test drives were placed into an external drive encloandeconnected to the driving system
via Firewire 400. The Data Acquisition (DAQ) unit used was atiNnal Instruments cRIO-9215
with a National Instruments USB-9161 USB Catrrier.

In order to accurately measure power of the test drives, @lated the mechanical components

of the drive. All of our test drives were selected to have s#fjgab Volt and 12 \olt lines on the
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internal IDE power supply. The power consumption of the na@atal components of the drive
was measured by sampling the voltage drop across af@.f&sistor in series with the 12 Volt
line. These samples were taken at 20,000 samples per sesimgdalLDAQ systemZ1]. Figure61
diagrams our prototype system.

Following trace replication suggestions by Gray and Shdaag, all experiment runs were
scripted in order to reduce timing errors. Typical expentsevould prep a trace replay script,
the SPOReengine, simulated track buffer (described in Sectiorl.3, and replay driver on the
workload replay system (detailed in Sectibd.1.9, then issue a command vés h over the lo-
cal wireless network to the voltage measurement workstatibhis required a slight alteration
to our SPOReengine to allow a flag to output the necessary I/O operatiatiger than gather
statisticsaboutthose operations. The voltage measurement workstatiotdvwban prepare the
DAQ software with appropriate settings, issuesshcommand to the workload replay system to
begin replaying the trace, and immediately begin recorgwitages. While the voltage measure-
ment workstation was responsible for recording voltagesiréhe workload replay system was
responsible for recording the length of time the workloaaktto replay using the standard e
command on Mac OS X. For timing reasons, we would kill asy» command that lasted longer
than 20 seconds and restart the experiment.

As with our SPOReproject, all programs were implemented in C or C++ compileth whe
default versions of the GNU projegt c andg++ compilers. To ensure correct program behavior,

no optimization flags were used during project compiling.

10.1.2 Traces

We selected a subset ofiozartworkloads and parameters from our previdsiBOReexperi-

ment simulations for validation. For hardware testing,iadallowing suggestions by Gray and
Shenoy 118, we selected only traces that had sufficient run time tohremstable state. The
shortest trace and parameter set we ran wasntbeartmonth trace with simulated 8 KB blocks
and 8192 blocks per group. This trace had an average run tone tman six minutes. A complete

list of workload parameters is given in Talié.

Most trace sets were run 3 times in order to calculate an geeaad 99% confidence interval.
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Table 20: Trace and parameter set tested on prototype headWhe drives tested are a 320 GB
Hitachi Deskstar (HIT), a 250 GB Samsung SpinPoint (SAM)Y an320 GB Western Digital
Caviar Blue (WD).

BLock Size | GROUP SIZE DRIVES
TRACE (BYTES) (# BLOCKS) | # RUNS TESTED
mozart year 512 1024 3 WD
mozart year 4096 1024 3 WD
mozart year 8192 1024 3 WD
mozart year 512 8192 3 WD
mozart year 4096 8192 3 WD
mozart year 8192 8192 3 WD
mozart month 512 1024 3 WD
mozart month 4096 1024 3 WD
mozart month 8192 1024 3 WD
mozart month 512 8192 3 WD
mozart month 4096 8192 3 WD
mozart month 8192 8192 30 HIT, SAM, WD
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In order to establish that the variance for energy and Igtenhexpected to be low, we ran the
shortest, and therefore most variable, trace and paramet@0 times. This trace and parameter
set was test on all three test drives, while all other expemisiwere tested on the Western Digital

Caviar Blue test drive.

10.1.3 Simulated Track Buffer

In order to replicate tracks of various sizes, we implemegatsimulated track buffer to sit on the
data request stream betwe®RAORend device driver. This simulated track buffer acceptedektr

size used to determine when a new track was necessary (dumattsdion). Every new track was
read in its entirety at the time of the first request. Whils tinack size is unlikely to coincide with
the test drive’s actual track sizes, it is a reasonable apetdion, validated by our original tests
on SPOR& robustness to track size. Additionally, any track bougaaiossed during the read of

the simulated track would be sequential in nature, causingmal latency or power cost.

10.1.4 Avoiding Cache Interference

To avoid interference with existing caching schemes, glliests bySPORewere filtered through
our simulated track buffer before being issued by a custgiayedriver program. Upon receiving
a block request, our replay driver would request the entiveg containing the request, simulating
a track request. These track requests were issued to theenaeedtypically, the device path
used wad dev/ r di sk2, although each time a test drive was connected, this pathverised
manually. By issuing raw device-level requests, we avoid@to caches or main memory, forcing

the physical underlying device to satisfy the request.

10.1.5 Identifying Workload Boundaries

While scripted experiments reduce the variation of redmtsemoving human error, not all net-
work commands take equal time to complete. In particularnatgced during initial experiment
development that mostsh commands took between 3 and 7 seconds. Additionally, duleeto t
DAQ software’s necessity to fill data arrays, it was necgsgaallow additional time for all perti-

nent voltage history information to be written to the diskaltihg the recorder immediately after
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Figure 62: Identifying the beginning boundary of a worklaagdlay by DAQ error rate. In partic-
ular, this is the first sixty seconds of the voltage histonydoe experiment on the Samsung test

drive, mozartmonth trace, 8 KB blocks, and 8192 blocks per group.

the workload trace replayer finished would result in misgshmgvery end of the trace. We there-
fore allowed the recorder to continue operation well atterworkload replay had completed. This
poses an interesting question: how do we separate the tpiese of the voltage history in or-
der to calculate energy demands? In order to accomplishwieidooked at the error rate of the
recorder. A resistor of any size should never have a negabivage drop, yet they exist through-
out the voltage history. While we ignore these in our energgudation, they can be useful in

identifying a more precise beginning and end to our workload

When a drive is idle, there is very little power on the suppig lto the mechanical components.
Intuitively, this increases the likelihood that the DAQ Wwitad an erroneous negative value, since
voltages closer to zero are more difficult to detect. We campite an idle device by specifically

waiting for several minutes between experiments. We camittentify a precipitous drop in error
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rate in order to identify an accurate beginning of the waakloTo calculate this error rate, we used
a window 0f0.03125 seconds;ﬁ% of a second).

To find the “start” of a trace, we first find the last positiGhbetween 0 and 60 seconds that
has error rate higher thans. We then find the lowest poirit betweenH and 60 seconds, with the
restriction that the error rate at poihtbe less tha.05. If no such point exists, we return the first
point L’ with error rate less tham25. Figure62 shows a typical drop and consequential workload
boundary identification around 4 seconds. In some caseseshdrive had not gone to sleep in
time. In these cases, we simply use the very beginning of dltage history as the beginning of
our workload. With workload replays lasting several migJnd a maximum wait of 20 seconds
for ssh commands, we consider the error introduced in this way to &gimal.

Since we know when the workload began, and we have timed hogvttte workload took to
complete, we can easily identify the end. This piece of tHeage history was extracted and used

in our power calculations.

10.1.6 Calculating Power

In order to closely approximate the energy cost of the machhnomponents of our test drives,
we used Equationl{’) and18. We denote as powerg as energyy as the voltage drop measured
and recorded in the voltage history, ands the resistance of the small resistor (G0 1in series

with the device on the 12 \olt line.

p(v) = Y« (12 — v) a7

ev) = p(v) X 5o (19)

Total energyF, was calculated as a sum of eagh) from the voltage history between the identi-

fied workload boundaries.

u - v; X (12 — ;)
;e(v ) ;p (v:) 20000 Z 20000 oS (19)
Replacingr; with 0.01€2 in Equation (9) yields the following.
(12 — v, 1 <
Z20000><001 00 2" (12 = v (20)

144



10.1.7 Modeling System Energy and Latency

In order to estimate the system-wide impactSH#ORewe used a straightforward system model
with three components: a processor, main memory, and theriyinty storage device. For the
processor, we considered both processor speed and maxirattage as parameters, as well as
a base percentage of processor usage. This percentagserggraow CPU-bound a workload
might be. For main memory, we considered total wattage asaifin of wattage per gigabyte and
number of gigabytes. The storage device parameters we usedidentically those gathered by
our hardware prototype, simulating three different handed.

Total system time was calculated by using the mean time foh storage device for each
workload. For example, if the mean run time for some workloeag sixty seconds for the Hitachi
test drive, we used a system run time of sixty seconds.

Total system energy was calculated using Equatibn
Esys = Pcpu X Uzpu X tsys + PRA]\/I X tsys + Edrive (21)

The valueP,,, is the peak power of the processay,, is the utilization of the processor expressed
as a percentage’z 1), is the power of main memory, or the product of wattage perlgigaand
the number of gigabytes in the systefy,.;,. was the amount of energy calculated for the trace.

To calculateu,,,, we used EquatioBA2.

F
g X ez
P Frase | Upase (22)

fom = treal
The value,,, is the measured amount of time each workload spent in the @RLsgm of system
time and user time from thei me command). F,,, is the processor speed in GHz, afg,. is
the speed of the processor used in our experiments (2.4 GH®.valuet,.,; is the amount of
time each workload took to complete (real time from there command), and,.. is the base
utilization percentage. li.,, was found to be greater than 1 (greater than 100% CPU uidiat
the value,,; was adjusted accordingly. Thus, if we calculatg, to be 1.1, we added an additional
10% tot,ys.

We tested multiple configurations, varying processor wattaetween 25 and 35 W, processor
speeds of 2.4 GHz and 3.3 GHz, memory power per gigabyte bet2&34 W 28 and 9.555 W

[76], main memory size of 2 and 4 GB, and base utilization of 5% 6.
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Figure 63: Comparison @POReestimates and real-world disk measurements.

10.2 RESULTS

Our results are very encouraging in that they indicate angtomrrelation between transitions, la-
tency, and energy costs. Figu8 shows a comparison between @iPOReaeduction estimates
using the number of transitions and the mean of our actuatuned reductions for all three test
drives. These tests were performed onri@zartmonth length trace with 8 KB blocks and 8192
blocks per groups, and were performed thirty times eachidardo form tighter confidence inter-
vals in Table21 and22. Figure64 shows the latency results for theozartyear length trace, with
a group size of 1024 blocks shown in Fig@éa)and a group size of 8192 blocks in Figu4(b).
Figure 65 shows the comparable energy results. These tests weremeddhree times each on

the Western Digital (WD) test drive.
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Figure 64: Comparison @PORdatency estimates against measumsakzartyear trace.
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Figure 65: Comparison @POReenergy estimates against measurezzartyear trace.
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Our results support our intuition that transition reductiosely approximates latency and
energy reductions. In particular, we see thatriezartyear length traces were very closely ap-

proximated, especially for larger block sizes.

Table 21:mozarthardware latency reduction results.

BLOCK SizE | GROUPSIZE RAw SPORe 99% CI
TRACE (BYTES) (#BLOCKS) | Disk | Runs | Time (S) | Time (S) | (% OF RAW Time)
month 8192 8192 HIT 30 389 384 0.96- 1.55
month 8192 8192 SAM 30 489 482 1.16- 1.90
month 8192 8192 WD 30 401 394 1.57- 2.09
month 8192 1024 WD 3 809 621 23.04 - 23.28
month 4096 8192 WD 3 463 398 13.45-14.37
month 4096 1024 WD 3 851 668 21.21-21.84
month 512 8192 WD 3 868 729 15.46 - 16.69
month 512 1024 WD 3 1180 1090 7.45- 7.73
year 8192 8192 WD 3 9270 3450 62.32-63.28
year 8192 1024 WD 3 14700 5630 61.41 -62.08
year 4096 8192 WD 3 10500 3850 63.19-63.67
year 4096 1024 WD 3 17300 7440 56.65—-57.27
year 512 8192 WD 3 17800 9760 4493 -45.31
year 512 1024 WD 3 24100 22000 8.05- 8.93

Table 21 summarizes the results for latency measurements, whilke P&bsummarizes the
energy costs. These tables show the mean raw and reducesdfameach trace, as well as the
99% confidence interval of the difference between the medisese confidence intervals are
expressed as a percentage of the raw trace measuremenexahgsle, the latency reduction for
themozartyear trace with 8 KB blocks and 8192 blocks per group exhihitéth 99% confidence,
between 62.3% and 63.3% reductions on the Western DigitB)(M&t drive, as shown in Tabld.
The same test shows, with 99% confidence, a 51.8% to 70.7%tredun energy, as shown
in Table22. Each of these tested cases, even those with small testzest show statistically
significant differences between the raw trace set and theceetltrace set for both energy and
latency reductions.

Interestingly, our latency reduction confidence intereglgear significantly tighter than energy
reduction confidence intervals. However, for larger tessemes as well as larger trace sizes, the

energy reduction confidence intervals remain reasonabdjyism
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Table 22:mozarthardware energy reduction results.

BLoCK SIZE | GROUP SIZE Raw SPORe 99% ClI
TRACE (BYTES) (#BLOCKS) | Disk | Runs| Energy (J) | Energy (J) | (% oF RAW Energy)
month 8192 8192 HIT 30 1550 1520 0.85- 242
month 8192 8192 SAM 30 1200 1160 2.41- 3.93
month 8192 8192 WD 30 982 954 1.59- 3.99
month 8192 1024 WD 3 2030 1610 12.52-29.20
month 4096 8192 WD 3 1140 1010 5.00-18.03
month 4096 1024 WD 3 2130 1670 15.66 — 28.15
month 512 8192 WD 3 2160 1840 11.09-18.48
month 512 1024 WD 3 2970 2700 1.86-16.74
year 8192 8192 WD 3 22500 8730 51.80-70.65
year 8192 1024 WD 3 34800 13700 49.25-71.78
year 4096 8192 WD 3 25300 9450 58.69 -66.70
year 4096 1024 WD 3 41300 18000 54.18 -58.76
year 512 8192 WD 3 43100 23600 41.31-48.84
year 512 1024 WD 3 57700 52800 4.76-12.29

Using our system model from Equatiadtand22, we found thaBPORéo exhibit a reduction
of time for 87.5% of configurations (see Figusé). For energy, we found reductions in 66.1%
of configurations. Every configuration that showed energlpcéons were found to also reduce
time. On average, energy was reduced by 17.4% and time by23&ble23 shows these results

separated by trace, block size, group size, and drive tested
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Figure 66: System model results.
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Table 23: Reductions of system time and energysieOReaccording to our system model, broken

down by trace, block size, group size, and test drive.

BLOCK SIZE | GROUPSIZE DRIVE PERCENTAGE | AVERAGEENERGY | PERCENTAGE | AVERAGE TIME
TRACE (BYTES) (BLOCKS) TESTED | (FORENERGY) REDUCTION (FORTIME) REDUCTION
mozart, month 512 1024 WD 75.0 3.0 100 6.6
mozart, month 512 8192 WD 375 -0.6 75.0 8.7
mozart, month 4096 1024 WD 100 18.6 100 21.3
mozart, month 4096 8192 WD 25.0 -4.4 75.0 59
mozart, month 8192 1024 WD 100 19.7 100 22.9
mozart, month 8192 8192 HIT 25.0 5.1 50.0 -0.9
mozart, month 8192 8192 SAM 25.0 -3.7 75.0 0.3
mozart, month 8192 8192 WD 25.0 4.1 50.0 0.2
mozart, year 512 1024 WD 375 0.4 100 5.5
mozart, year 512 8192 WD 75.0 16.0 100 33.7
mozart, year 4096 1024 WD 100 54.6 100 56.5
mozart, year 4096 8192 WD 100 44.4 100 56.0
mozart, year 8192 1024 WD 100 59.7 100 61.4
mozart, year 8192 8192 WD 100 45.2 100 55.8
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11.0 CONCLUSIONS AND FUTURE WORK

With the rate of data generation at an all-time high, andeasing at an alarming pace, storage
system maintenance is an increasingly crucial task. Rensipredictive replication differs from
prefetching in several key ways; most critically, layoutim@nance strategies are able to benefit
from prior work on behalf of the system, while prefetching,ibaccurate or error-prone, is inher-
ently temporary, even evanescent, tied tightly to the dath.[Such predictive layout maintenance
is an area that remains largely unutilized, with only thedast of techniques that are prevalent.
Yet, in the face of shifting and uncertain workloads, suéfitiunderlying patterns can be extracted
and utilized towards optimized replication, and can be damefficiently and opportunistically.

Towards understanding how these techniques must changenmdiern systems, we have
collected our own long-term, block-level file system tracasmplete with cache activity. These
traces, used in tandem with classic file system traces, acethsoughout our work for validation
and testing, representing real-world request streamsuffbdr understanding in storage system
layout maintenance, we have defined and optimally solvedargéand relaxed grouping problem.
Our solution DrNO, is optimal in terms of transitions and distance.

With Optimal Expansion, Maximized Expectatiome demonstrate adaptive, efficient, robust
strategies for simultaneously reducing energy and latensys for storage systems. We have de-
veloped three such strategies; a generalizable, bloat-$¢rategy calle@E ME, a distance-aware
strategy calledE ED, and a variable-size strategy call®@& ESSOur primary techniqueDE ME,
operates at the block-level, maximizing applicability ayeheralizable utility with minimal nec-
essary information. This method is shown to greatly outpenfexisting predictive methods in
terms of group transitions as well as distance, tested sgeeal-world workloads. A trend of
diminishing returns is clearly observed with respect tog@asing group size in existing methods.

Our technique exhibits particular resilience to this tresidowing up to 70% reduction in both
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estimated latency and energy while forming far fewer groups

In order to progress from static grouping to dynamic grogpour methods must address sev-
eral key issues. We have presented these challenges andlotiorss to them, including how
to deal with an explosion of predictive metadata. Our mdtadtorage structur&GESH greatly
reduces the size of necessary predictive information witkacrificing information, often reduc-
ing the volume of data by several orders of magnitude. Thetegy consistently provides first-
successor information for less than one half of one percettteototal volume of data stored,
with minimal impact on the CPU. A straight-forward augmeiata, tracking predecessor as well
as successor information, we have shown to exhibit perfeckiwg set and working sequence

reconstruction.

We have also presenteadRDU, or Least Recently, Distantly Usedhen combined with an
LRU filter, this strategy is shown to outperform competing sgés for selecting high-frequency
block offenders while maximizing the utility for predictio This allows for a highly-sortable, fast,
efficient, adaptive tracking of potential roots upon whiohférm predictive groups, capable of

approximating optimal strategies for some realistic woakls.

In SPORewe have presented the culmination of these predictivatsfiato a unified, dy-
namic, sustainable engine for adaptive layout maintenandeeplication. This engine is shown
to be robust and resilient to low-confidence workloads as ageincorrect or unknown track size.
Further, we demonstrate our recurring claim of persisteadiption utility and demonstrate that
our predictive groups act as low-confidence pattern buftarkling the areas of a workload that
are difficult to characterize. This ability allows for inased utility of sequential, “raw” groups,
even when predictive groups have low average accesses @eos workloads with high pre-
dictability, our predictive groups show much higher wilihan these sequential groups. Further,
we exhibit reduction of necessary group updates, or gesekratites to the underlying storage
system, by group comparison, and show increased predmptougo use through scanning. Addi-
tionally, we present a variety of system parameters, inolygery large group sizes, in order to
project in the future of hardware storage devices. We hasegmted an augmented version of our
original Optimal Expansion, Maximized Expectatiaigorithm that formsupergroupss a way to

combat diminishing returns that we observed in our studyaifcsgrouping.

With SPORewe demonstrate reductions for both transitions as wellistarate in order to
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generalize across systems. These reductions we have dehf@igh hardware validation using
accurate energy calculation. These measurements wergditlsing a data acquisition unit mea-
suring voltage drops across a low-impedance resistor iasseith test drives’ mechanical power
supplies. We measured voltages at a high sample rate, aredone@sented straightforward tech-
niques to accurately identify workload boundaries. Enengg latency reductions indicate a close
correlation to transition reductions shown in our simualatstudy orSPORefurther, the difference
between raw and optimized device-level workloads is shaetstatistically significant, even for
small workloads, with high confidence. These hardware a#ibids are also shown to have low

variance across multiple test drives.

11.1 FUTURE WORK: AUGMENTING SPORE

Several areas within our work @POR@resent themselves for further study. Default track sizes i
modern disk drives remain significantly smaller than thgdat tested sizes in our work. However,
with advances in hardware, this trend may not continue td,henhd larger group sizes we have
demonstrated to demand higher CPU utilization. In addjtédinpredictive information presented
is replicated therefore, we foresee possible extensions to write-tetetechniques using low-

confidence predictions within our predictive groups.

11.1.1 Increasing Throughput

Future augmentations @POReinclude various improvements to increase throughput and fu
ther reduce CPU demand. Many of our techniques greatly leglpce this cost, including use
of supergroupspriority queue “short circuiting”, and especially the usfea compact successor
history structure iIrSESH But larger group sizes from possible future devices wijuiee more
CPU cycles to handle. We can increase throughput furthemanaber of ways. First, we have
demonstrated th&8PORas robust to incorrect track size. This means that we aretableduce
the sizeobservedyroup sizes if we wish, resulting in lower CPU strain. We misp antentionally

translate smaller blocks seen by the system into largekbltacbe processed [BPORe
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Without intentionally misinforming our data layout managent engine, we may also devise
a means of decreasing the number of predictive groups farnvédile we have demonstrated
the effectiveness of avoiding predictive groaperations or writes generated to the underlying
storage device, we have not avoided forming the group. Aly eéatection mechanism for these
uncommitted groups would greatly reduce the computationstl.

Another way of reducing the computational complexity wobklto dynamically decide to
turn off the regrouping portion dPORewe have alluded to this augmentation in Sectiof.1
This could be done for several reasons, including heavy adk low observed or expected im-
provement, low confidence in predictions, or little obserebange in workload pattern, among
others.

Finally, the structure o8ESHeasily lends itself to custom caching techniques. Prexdiston
a block cause ®ynamic Bitmamode to be accessed; with high probability, the same node wil
be accessed next. We currently implement a new hash talkeufpon each access; augmenting
this structure may involve even a simple one-node sizeatbtdfbe checkebeforeany hash table

operation.

11.1.2 Location ofSESH

Our own collected traces are shown to have low confidencerpatt While reductions are pre-
sented, we anticipate improvements by moving the dataatalle up in the storage hierarchy.
Further study would require long-term file system tracesmete with caching information, sim-
ilar to our own traces, along with a translation fraache addrest device addressUsing this
translation would enable better interaction with cache methory management. Specifically, we
anticipate much higher confidence if data is captured peeezaOur structure is expected to main-
tain high sequentiality necessary for size reduction, the structure used has been shown to be
resistant to system noisg||

Additionally, we may get some benefit from using knowledgsiorulation of cache or mem-
ory management. Predictive groups become useful if someestdsnot satisfied by cache or
memory. We may be able to exploit this by specificalbt including items that are likely to exist

in the cache, given that some request (most likely, the roas) been generated. Such answers
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may be refined by looking backward from this request,. using our augmente8ESHstructure
that tracks predecessor information. We envision a baaksvarediction, with any predecessor
occurring with confidence lower than some threshold beirtgddo a “black list” of IDs that are

not to be added to the predictive group.

11.1.3 Extensions to Write Strategies

Read requests occur when data has already been committedhderlying system, presumably,
has the information, while a write request is acting upowrimfation yet to be witnessed. This
simple but fundamental difference is the driving impetusibe our focus on read requests. Future
augmentations of our predictive engine may take greater chuvrite requests in a number of
ways. For example, upon a block’s write request, how mightip@ate copies held in predictive
groups? A simple mechanism to solve this coherence proldeim simply free all copies from
predictive groups; the primary benefit is that this operatieed not access the track within which
the copies exist.

This “free block” strategy, coupled witteplicatedpredictive groups, presents an additional
possible augmentation. Using freed blocks, possibly aleitly blocks predicted with low con-
fidence, we may provide an area for pending writes, alloworgéduced write-triggered seeks.
We envision the free and low-confidence areas of predictieegs serving as write offloading

locations, as used i®P], but at the device level rather than the data center level.

11.2 FUTRE WORK: TRACE GATHERING AND USAGE

We have previously discussed the merits of trace-drivenlsition in Chapte#. With our observa-
tions on reduced confidence patterns existing post cach& icustom collected traces, we foresee
a need for similar traces in the future. Accurate, detail@uy-term traces seem to be uncommon;
indeed, many research papers use short benchmarks lagtiogrs or less]18. Additionally,
many benchmarks leave out cache information. We preditttthaes similar to our own, with

cache translations included, will be in high demand if gjeraystems and devices are to keep pace
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with demand trends.

With this in mind, trace gathering need not be a complicatetgss. We propose the use
of simple tools, such as tes_usage command, used in gathering our own traces, to encourage
trace collection from various public sources. AdditiogalVe envision a possible system using our
own augmente&ESHSstructure to recreate working sequences, wherever theyatinered from,
for large or short trace generation. Upon a simple traceestgihe working sequence could be
generated and saved within moments, rather than requpgfec gathering scripts to be initiated.
While recreating a trace in this way has no guarantee of tesuxggh, it often can generate very large
traces, and would do so within moments, rather than hourays.cEven in the case of intentional
trace collection, a working sequence reconstruction mightsed for additional sequencing to be

added at the beginning of the workload history.
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