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ABSTRACT 
 

 
 

NASH-BASED STRATEGIES FOR THE CONTROL OF EXTENDED COMPLEX SYSTEMS 
 

 
Yong Liu, PhD 

 
 

University of Pittsburgh, 2003 
         
 

 
An extended complex system is a large scale hierarchical system controlled by two or more 

teams of decision-makers.  The teams may have different objective functions, and often can be in 

direct conflict with each other.   Within each team, the decision-makers must cooperate for the 

collective benefit of the team, but outside the team each member must compete with the 

decision-makers in the other teams.  Decision-making in the context of such an extended 

complex system can be modeled as a new framework within the theory of games, called multi-

team games.  A multi-team game is a decision-making structure consisting of several interacting 

teams of cooperating decision-makers that are simultaneously in conflict with the other teams.  

In this dissertation, a new strategy, called Noninferior Nash strategy, is proposed to define 

optimal cooperative decisions for members of non-cooperative teams in an extended complex 

system.  This strategy represents an equilibrium for the teams characterized by the property that 

no team has an incentive to unilaterally deviate, while maintaining cooperation among its 

members, in order to improve its overall team performance.  The Noninferior Nash strategy in 

both static and dynamic systems is developed and its properties are investigated.  In order to deal 
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with the issue of non-uniqueness of the solution, a team structure that allows for a leader to 

oversee the overall performance of the team is introduced.  The Noninferior Nash strategy with a 

Leader is formulated so as to select the particular Noninferior Nash strategy that is best for the 

team.  To illustrate these concepts on a realistic system, we consider a practical example of a 

military air operation modeled as an extended complex system.  The Nash Noninferior Strategies 

are investigated as possible solution concepts for dynamic teaming, team tasking, and unit task 

assignments and reassignments in the process of optimally planning of shared responsibilities 

and roles in the hierarchical deployment of the units in the combat.  Simulation examples are 

presented to illustrate the effectiveness of these strategies in preserving the friendly force while 

destroying the defending enemy units. 
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1.0 INTRODUCTION 

 

1.1 COMPLEX SYSTEMS IN THE PRESENCE OF AN ADVERSARY 

Modern control systems must meet increasingly demanding requirements stemming from the 

need to cope with significant degrees of uncertainty, as well as more dynamic environment, and 

to provide greater flexibility [1].  This, in turn, means that a complex dynamic system invariably 

has a large number of interacting decision-making units and sometimes is vulnerable to various 

types of disturbances.  A general objective of the complex system control is to maximize 

economic efficiency over a long time horizon.  The optimal control to meet this objective is often 

accomplished by employing a multilevel hierarchical structure.  Such control is known as 

hierarchical control.  On the higher level, longer-term goals such as mission planning are 

considered; and on the lower lever, more specific operations such as mission execution are 

implemented.  In order to implement the hierarchical control efficiently at any level of the 

system, the decision-makers are often grouped into a team.  The main control efforts therefore 

become to tackle coordination and collaboration problems among these team members to achieve 

a common goal.   

The processes and events that affect the performance of the complex system comprise the 

operational environment of the system.  Usually, such an operational environment is viewed as 

an external part with uncertainty and noise.  Considering these effects outside the system, the 

power of the control methodology becomes more and more necessary to enable the parts of the 
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complex system to remain operational or even to automatically reconfigure themselves in the 

event of a threat or other potentially destabilizing disturbance.  Management of disturbance in all 

such systems requires a basic understanding of the true system dynamics, as well as the resource 

and properties of the disturbance.  If the nature of the disturbance is not very clear, it is often 

thought of as noise, or a random signal, with certain statistical properties.  However, some of the 

disturbances may come from non-random sources such as another system with its own dynamics 

controlled by another team of decision-makers.  We refer to this team of decision-makers as an 

adversary to the team controlling the original system.  In such an extended view, the decision- 

makers in the adversarial system are treated the same way as independent decision-making units 

in the original system.  It is clear that the relationship between the adversarial team and the 

original team is not necessarily cooperative, but may be more competitive since they generally 

have conflicting benefits.   The overall system is known as an extended complex system [2].  

  

1.2  MOTIVATION OF THE DISSERTATION 

Within an extended complex system, it is apparent that most problems require multiple teams to 

represent the decentralized nature of the system, the multiple local controls, the multiple 

perspectives, or the competing interests.   An extended complex system, therefore, can be best 

analyzed in the framework of the game theory.  A game is controlled by a group of individuals 

such that the fate of an individual depends not only on his actions but also on the actions of the 

others in the group.  In an extended complex system, the outcome is determined by the control 

actions of both the original team and its adversary.  In this situation, the control problem for each 

decision-maker is: what choice should he make in order that his partial influence over the 
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outcome benefits him most.  Game theory provides possible answers to this question.  It deals 

with choices that the decision-makers may make to reach an equilibrium outcome and in some 

cases with aspects related to the communication and collusion which may occur among the 

decision-makers in their attempts to improve their outcomes.  During the past few years, many 

research fields such as in economics, telecommunication and military planning where conflicts 

or the cooperation between decision-makers arise have benefited from the introduction of game 

theoretic tools.   

Noncooperative and cooperative game theories are the main two components of game 

theory.  As their names suggest, noncooperative game theory provides decision-makers with 

strategies if they pursue their own interests which are completely or partly conflicting with 

others, whereas the cooperative game theory mainly works out the cooperative strategies among 

the decision-makers having common objectives.   Thus, each component of game theories can 

deal with those systems where there is one relationship among the decision-makers: either 

noncooperative or cooperative.  However, in an extended complex system, the requirements of 

noncooperation (between the original team and the adversary) and cooperation (within the 

original team or the adversary) must exist at the same time.   The control design in either case is 

now required to coordinate its own decisions in ways consonant with the established global goals 

and also to minimize the adverse influence enforced by the adversary.  

In this research, our objective is to develop a new game theoretic strategy to design optimal 

controllers for extended complex systems where cooperation and competition coexist.  We will 

also investigate the problems of team composition and task assignment.  That is, how to group 

the units in a system into cooperative teams and how to allocate these teams to accomplish the 

systemic tasks and meet the system objectives efficiently.  These problems are very important 
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especially in a large-scale complex system.   In particular, we will demonstrate the traditional 

and newly developed game theoretic approaches on a practical example in a future combat 

system which involves optimal planning of shared responsibilities and roles in the hierarchical 

deployment and operation of teams of distributed cooperative semiautonomous entities and 

human operators. 

 

1.3 ORGANIZATION OF THE DISSERTATION  

The dissertation comprises seven chapters.  The present chapter serves the purpose of 

introducing motivation of this dissertation.  In the next chapter, we review the basic concepts and 

background material regarding the game-theoretical strategies in noncooperative games and 

cooperative games.  This includes discussion and related literature on the properties of Nash 

strategies and Pareto strategies in static and dynamic games.     

In Chapter 3, we formulate a new game framework, called a multi-team game, and develop 

a Noninferior Nash strategy to deal with cooperative control problems within one team while 

having an adversarial relationship with other teams.  In this chapter, we discuss the properties of 

the Noninferior Nash strategies in finite and infinite games, and we investigate mathematical 

conditions for its existence.  We also derive the corresponding analytical expressions for these 

strategies in both static and dynamic linear quadratic multi-team games.   

In Chapter 4, we address the problem of how to select a specific strategy from the set of 

Noninferior Nash Strategies by introducing the concept of team leaders.  We present two 

examples to demonstrate this strategy: one is a microeconomics problem and the other is routing 

control problems in the telecommunication network systems. 
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In Chapter 5, in order to apply our results to a practical problem in the military planning 

and decision-making area, we derive a mathematical attrition model for a military air operation 

involving two forces in combat.  This model is used as a main test bed for analyzing our 

theoretical results.  It is a discrete-time deterministic state space model with two opposing forces, 

labeled Blue and Red, each with multiple decision-makers and a two-level hierarchical control 

structure.  In section 5.1, we describe the state variables, the control variables, the state 

difference equations and the objective functions in the model in details.   In section 5.2, we apply 

a moving-horizon optimization scheme to this finite dynamic game with a single objective 

function defined for each side.  The results of one-step and two-step look-ahead Nash controls 

are presented for comparison purposes.  

In Chapter 6, we present several Nash-based strategies for cooperative teaming and 

dynamic task assignments that are an integral part of the military planning process.  Nash 

reassignment strategies are introduced in section 6.1.  We apply this strategy to address the 

dynamic resource allocation mechanism during the course of a military operation so as to 

improve the overall performance of the system.  In section 6.2, Nash ordinal strategy is used to 

determine the initial team composition or mission plan for the top commanders based on their 

subjective experiences.  In section 6.3, we investigate the effects of the strength of the two forces 

on teaming and tasking problems.  In the last section, Noninferior Nash strategies are presented 

to deal with the cooperative control among the teams in the Blue force.   

Finally, conclusions are given in Chapter 7 which summarizes the accomplishments of this 

research.  
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2.0 NONCOOPERATIVE AND COOPERATIVE GAME THEORY 

 

The foundations of game theory were laid by John von Neumann with the publication of the 

book Theory of Games and Economic Behavior in 1944 [3].  They introduced the ideas of the 

extensive-form and normal-form (or strategic-form) representations of a game, defined the 

minimax solution, and showed that this solution exists in all two-player zero-sum games, which 

are noncooperative in nature.  Nash (1950) [4] proposed what came to be known as "Nash 

equilibrium" as a way of extending game-theoretic analysis to noncooperative nonzero-sum 

games.  Nash equilibrium is a natural generalization of the equilibria studied in specific models 

by Cournot [5], and it is the starting point for most economic analysis.  The theory of dynamic 

games was introduced since the study of differential games was initiated by Isaacs in 1954 [6].  

Minimax controls and Nash and Stackelberg open-loop and closed-loop controls were considered 

respectively by Starr and Ho [7] and [8], and Simaan and Cruz [9] in the general nonzero-sum 

differential games.  In addition, the noninferior controls for cooperative players in a differential 

game were proposed in [7] and obtained from the pareto solutions to a multi-criterion (or vector-

value) optimization problems [10],[11].  In this chapter, we will review the basic concepts and 

the strategies used in noncooperative games and cooperative games in details. 

In general, a static game has three elements: (1) a set of Decision-Makers (DMs), also 

called players, denoted by Ρ { }1 2, , , NP P P= "

, N"

 where is the number of DMs;  (2) a strategy 

space for each DM U , ; (3) and a payoff function, , for each DM to 

N

i 1,i = 1 2( , , , )iJ u u u" N
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minimize where u  ( i N ).  If i iU∈ 1, ,= " 2N = , such a game is called a two-DM game.  For 

example, economic competition by two companies or combat carried out by two forces against 

each other can be thought of as a two-DM game.  If 1
1

( , , ) 0
N

i N
i

J u u
=

=∑ "

2P

2
ju

, such game is called a 

zero-sum game; otherwise, it is called a nonzero-sum game.  When the strategies in the strategy 

spaces  for i =1," ,N form a finite set, we called such a game a finite game; otherwise, it is 

called an infinite game.   

iU

1 1( ,J u

1m

) 1P( ), 2 1 2( ,iJ u u

 

2.1 FINITE GAMES        

An elementary way to represent a static finite game is in the normal (or matrix) form.  A static 

game represented by a matrix is called a matrix game.  Suppose the DMs and  have m  and 

 strategies to choose from, respectively.  Thus, the dimension of the matrix is m .  For , 

the possible choices are the rows of the matrix, while for  the possible choices are the 

columns of the matrix.  Each entry of the matrix is a pair of outcomes of the payoff functions, 

i.e., when  and  choose u and as their strategies, respectively.   

1P 2P 1

2m

2m

1 m× 2 1P

2 )i j ju 2P 1
i

In two-DM zero-sum games, what is good for one DM is absolutely harmful to the other 

because their objectives are opposite.  In this case, cooperation is not possible, which may be too 

restricted in some practical systems where the decision-makers, more or less, may have some 

common interests.  Moreover, no one in the zero-sum games can gain from announcing his 

strategy in advance of his opponent.  Thus, there is no hierarchical structure in zero-sum games.  

A more widely applied theory is that of nonzero-sum games.    In a two-DM nonzero-sum game, 
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as its name implies, the sum of the two payoff functions is not necessarily equal to zero or a 

constant.  In other words, their objectives are not directly opposite.  Thus, a possible collusion 

among the DMs is allowed.  A little more complicated information structure occurs here: one 

DM may not know the other’s payoff function, which is not the case in a two-DM zero-sum 

game.  The strategies currently used in nonzero-sum games include the minimax strategy, the 

Nash strategy, the Stackelberg strategy and the noninferior strategy.  In the view of different 

levels of cooperation between the two DMs, we may divide the strategies in nonzero-sum games 

into the following several categories.   

2.1.1 Strategies with no cooperation 

 
In a hostile environment, the DMs in a game do not have any prior information on any other 

DM’s payoff.  One could assume that the others want to do maximum harm to him only and thus 

takes a strategy to secure his losses against any (rational or irrational) action taken by the others.  

This assumption is pessimistic and the corresponding solution, called the minimax strategy, is 

also thought of as a pessimistic strategy.  Its definition is given as 

Definition 2.1 [5]  A strategy  is a minimax strategy for the i  DM (minimizer) if, for any 

admissible control u U  

*
iu

1,"

th

, , ,i i i N∈ =

1 1 1 1 1 1

*
1 1, , , , , , , , , ,

max ( , , , , ) max ( , , , ,
i i N i i N

i i N i iu u u u u u u u
J u u u J u u u

− + − +

≤
" " " "

" " " " )N

)N )N

                   (2.1) 

 

Denote  by   ( 1
1 1 1

*
1, , , , ,

max ( , , , ,
i i N

i iu u u u
J u u u

− +" "
" " *

iJ , ,i = "   where  is known as the security 

level of the i  DM.  (  is called the minimax value of the games. 

*
iJ

th * * *
1 2, , , NJ J J" )
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By using this strategy, each DM will achieve the smallest from all the largest possible 

values of its objective functions.  For example, in Figure 2.1, the maximum cost incurred to  is 

3 if he chooses the strategy A or C.  If he selects the strategy B, the maximum cost for him is 2.  

Thus, the minimax strategy for  is the strategy B.  This strategy guarantees that he will not 

suffer any loss greater than 2.  Similarly,  also has one minimax strategy a.  If  holds fast to 

the strategy a, his payoff will be no more than 1.  The minimax value of this game is (2,1).  

However, if the strategy pair (B,a) is implemented, the outcome of the game is (1,-1), which is 

less than the minimax value of this game. 

1P

1P

2P 2P

When a DM does not know the payoffs, or even the rationality, of the other DMs, the 

minimax strategy provides a useful solution concept to such a game.  However, as we can see, 

since this strategy is so pessimistic, it is not widely used in practice. 

 

 

 

2P              
a b c d 

   A (1,1) (3,3) (3,1) (-2,-1) 
B (1,-1) (-3,2) (2,0) (1,2) 1P  
C (-2,-1) (-2,-3) (3,2) (1,0) 

 

 

Figure 2.1Minimax strategies for a two-DM nonzero-sum game 
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2.1.2 Strategies with limited cooperation 

 
In some cases, the DMs in a nonzero-sum game may decide to make an agreement to some 

extent.  This requires cooperation between the two DMs.  How much cooperation they can 

achieve depends on how much information is available to them.  In general, there are two cases 

of interest: absolutely equivalent information available to the two DMs and unequivalent 

information available to them.  Here, we consider the strategies for the former case only. 

If all the DMs in a nonzero-sum game know the exact information about each other’s 

payoff functions, and they announce their strategies at the same time, then the strategy they use 

in this situation is called the Nash strategy.  We give the definition of the Nash strategy in an N-

DM nonzero-sum game as follows: 

Definition 2.2 [7] The strategy set ( )* *
1 ,..., Nu u is a Nash equilibrium strategy set if,  

* * *
1( , , , ,i iJ u u u" " )N ≤ * * *

1 1 1( , , , , , , )i i i iJ u u u u u− +" " *
N N          for i    (2.2) 1, ,= "

whereu . i iU∈

If the Nash strategy exists, it gives all the DMs a fair solution where any one of them 

cannot get a more satisfactory solution by refusing to use this strategy if the others stick to this 

strategy.  For example, in Figure 2.1, the strategy pair (A,d) is a Nash solution.  It should be 

noted that the minimax value in a game are definitely not lower (in an ordered way) than the 

values of any Nash equilibrium outcome.  For example, in this game, the minimax value (2,1) is 

greater than the value of the Nash strategy (A,d), i.e., (-2,-1).  Even when the unique Nash 

equilibrium strategies correspond to the minimax strategies, the minimax values could be higher 

than the values of the Nash equilibrium outcome.  For example, in Figure 2.2, we can easily 
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know that the minimax strategies for  and  are A and d, respectively.  Clearly, the unique 

Nash strategy is (A,d) also.  However, the value for the minimax strategy (A,d) is (2,2) which is 

greater than the value of the Nash strategy of (-2,-1).   

1P 2P

Let us consider a three-DM nonzero-sum matrix game in which each DM has two 

alternatives to choose from.  That is, 3N =  and the i DM is denoted by  ( i =1,2,3).  Suppose 

{A,B}, {C,D} and U ={E,F}.  The outcomes of the game can be displayed in the 

following two 2 ×  2 matrices as shown in Figures 2.3 (a) and (b).  The component in each 

entry is the value of the payoff function for the  DM.  The entries of the matrix (a) and (b) are 

the outcomes of the game if  fixes his control at =E and at u =F, respectively.  We now 

claim that (B,D,F) is the Nash equilibrium strategy for this game.  To check this, we can use the 

definition of the Nash strategy.  If  deviates from this equilibrium strategy =B, then his loss 

becomes 3 which is not favorable.  If  deviates from =D, his loss becomes 2 which is not 

favorable either.  Finally, if  deviates from =F, his loss becomes 1 which is higher than his 

equilibrium loss 0.  Consequently, (B,D,F) indeed provides a Nash equilibrium outcome, i.e., 

(0,1,0).  By checking every possibility of strategy combinations, we note that this is the only 

Nash equilibrium solution of this 3-DM game. 

th

3u

iP

thi

1U = 2U = 3

3P

thi

*
3

3

1P *
1u

2P *
2u

3P u
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2P               

a b c d 
   A (1,3) (2,3) (2,1) (-2,-1) 

B (3,-1) (-3,2) (2,0) (1,2) 1P  
C (-2,-1) (-2,-3) (3,4) (1,0) 

 
 

Figure 2.2 Nonzero-sum game where the Nash strategy is same as the minimax strategy 
 
 
 
 
 
 

 
 

2P  
3P :u =E3 C D 

 A (0,-1,2) (2,3,-1) 
1P  

B (1,1,0) (1,2,1) 
 

(a) 
 

2P   
3P : =F3u C D 

 A (2,5,1) (3,2,-1) 
1P  

B (-1,2,-1) (0,1,0) 
 

(b) 
Figure 2.3 A three-DM nonzero-sum game 

  12

Yong


Yong

Yong



 One way to easily determine the Nash solution is to make use of the concept of reaction 

sets, which is given as         

Definition 2.3 In a N-DM nonzero-sum finite game, let ( )1 1 1, , , , ,i i Niu u u u u− += " "  and  

1 1 1i iiU U U U U− += × × × × ×" " N .  The set ( )i i iR u U⊂ , defined for each i U∈ iu  by 

{ }* *( ) : ( , ) min ( , )
i i

i i i i i i ii i u U iR u u U J u u J u u
∈

= ∈ =  ,                                   (2.3) 

is the rational reaction (optimal response) set of DM i  to the strategy i U iu ∈ of other DMs. 

For each DM, the reaction set should be nonempty in a finite game.  It is well known that 

the Nash equilibrium solution can be obtained by taking the intersection of the reaction sets of all 

the DMs [7],[8] and [9]. Let ( )* * *
1 , , , ,iu u u= " " *

Nu  and ( )* * * * *
1 1 1, , , , ,i i Ni u u u− += " "u u .  u is a 

Nash equilibrium strategy if and only if 

*

* *( )i i iu R u∈  for i 1, , N= " .  All the Nash equilibrium 

solutions in the previous examples can be computed by taking the intersection elements of the 

reaction sets.  If the set of intersection elements is empty, then there is no Nash strategy.  Here, 

we give another example to illustrate this approach.   Figure 2.4 gives a two-DM nonzero-sum 

game.   

If  chooses A,  will choose a or c to obtain a minimum payoff of –1, i.e., 1P 2P

2R (A)={a,c}.  If  chooses B,  will choose a or d with the corresponding the minimum cost 

of 2.  Similarly, we can get all the reaction sets for  and , which are displayed in Table 2.1.  

1P 2P

1P 2P
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2P               
a b c d 

   A (0,-1) (-2,1) (0,-1) (-2,1) 
B (3, 2) (0,3) (0,3) (3,2) 1P  
C (2,1) (-1,0) (-1,0) (2,1) 

 
 

Figure 2.4 Application of the concept of reaction sets in a game 
  

 

 
Table 2.1 Reaction sets for the example in Figure 2.4 

 
 

(a) 
1u  2 1( )R u  

A {a,c} 
B {a,d} 
C {b,c} 

 
(b) 

2u  1 2( )R u  
a {A} 
b {A} 
c {C} 
d {A} 

 

 

 

We observe that A 1R∈ (a) and a 2R∈ (A).  Thus, (A,a) is a Nash equilibrium solution.  We 

also note that the reaction set of the strategy A is not unique, which includes the strategies a and 

c.  However, (A,c) is not a Nash equilibrium solution because A 1R∉ (c).  In other words, if  1P
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chooses the strategy A and  chooses the strategy c instead of the strategy a,  seems not hurt 

by this selection because the cost incurred to him is still -1.  However,  may notice this 

possibility and will choose the strategy C if  switches his control to c.  Thus, (A,c) cannot be 

an equilibrium strategy pair.  We may also check this by observing that (A,c)> (C,c), which 

doesn’t satisfy the inequality expression (2.2) in the definition 2.2.  In addition, we find that 

C

2P 2P

1P

2P

1J 1J

1R∈ (c) and c 2R∈ (C).   Therefore, we know that (C,c) is another Nash equilibrium solution.  

Clearly, the Nash equilibrium solution is not unique in this example.  

3P

1R

For the example in Figure 2.3, we may obtain the Nash solution by taking the intersection 

of the reaction sets of all three DMs, which is given in Table 2.2.  Clearly, the intersected 

strategy is (B,D,F), which has been shown as the Nash solution to this example. 

 

 

Table 2.2 Reaction set for the example in Figure 2.3 
 

(a) normal form 
 

 E F 2P  C D 1P  A B 
A C 2 1 A E -1 3 C E 0  1 
A D -1 -1 A F 5 2 C F 2 -1 
B C 0 -1 B E 1 2 D E 2 1 
B D 1 0 B F 2 1 D F 3  0 

 

(b) reaction set 
 

 3R   2R    
A C F A E C C E A 
A D E,F A F D C F B 
B C F B E C D E B 
B D F B F D D F B 
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2.1.3 Strategies under complete cooperation 

 
A nonzero-sum game, in which all DMs have common interests and desire to improve their 

payoffs, if they cooperate, is called a cooperative game.  In this situation, the noninferior strategy 

provides a mechanism in which the common benefits of all DMs can be optimized.  Its formal 

definition is given as   

Definition 2.4 [7]  The strategy (  belongs to the noninferior (or pareto) set if, for any 

other strategy , 

)**
1 , , Nu u"

( )1, , Nu u"

{ }* *
1 1( , , ) ( , , ), 1, ,i N i NJ u u J u u i N≤ =" " "  

only if    { }* *
1 1( , , ) ( , , ), 1, ,i N i NJ u u J u u i N= =" " " . 

 

In the definition 2.4, we note that any strategy from the noninferior set, also called a noninferior 

strategy, is attempting to minimize the values of the payoff functions of all DMs.  To agree on 

the noninferior strategy means that no other feasible choice of strategies could decrease the costs 

incurred to some DMs without increasing the costs incurred to the others.  For example, in 

Figure 2.2, (B,b) and (C,b) are noninferior strategies.  Note that (A,d) is a Nash strategy in this 

example, which is not better than (C,b).  As we explained before, the Nash strategy is applicable 

in a hostile environment where both sides do not want to fully cooperate with each other.  

However, if they can reach an agreement on their interests, i.e., choosing a noninferior solution, 

they may get better results than by using their Nash strategies. 

In general, there are more than one noninferior strategy that satisfy the definition 2.4 as 

seen from the above example.  The values of the components in the noninferior set such as (-3,2) 
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and (-2,-3) are not ordered by the vector criterion for the example in Figure 2.2.  Thus, in order 

to implement this strategy, all the DMs need to share the information and agree on the final 

solution.   

 

2.2 INFINITE GAMES  

Games where at least one of the DMs has an infinite number of control choices form a class of 

infinite games.  Infinite static games cannot be represented by matrices as the finite games.  We 

still use the terminology as in the previous section, for example, there are DMs, denoted by 

, ," , , where the payoff function of  is  and the action variable for  is u  which is 

in the admissible control set U .  The differences are that the admissible control set U  is 

supposed to be a compact metric space and the payoff function  is supposed to 

be continuous, differentiable and strictly convex on the product spaceU U .  As we 

know, by introducing the concept of reaction sets, we can easily determine the Nash solution in 

finite games.  The notion of reaction sets is still important to infinite games.  Particularly, if, for 

any

N

,u

1 2× ×

1P 2P NP iP iJ iP

)

"

i

N

NU×

i i

1 2( , ,iJ u u "

i iUu , ∈ ( )i iR u is a singleton, ( )iR ⋅  is called the reaction curve or reaction function of .  

When  is continuous, differentiable and strictly convex with respect to its arguments, the 

reaction curve of , denoted by 

iP

iJ

iP (i iC u

u

) , can be obtained by taking the partial derivative of  

with respect to his own control variable  and setting it to zero, i.e., 

iJ

i

1( , , ) 0i N

i

J u u
u

∂
=

∂
"

⇒ ( )i i iu C u=  
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Using the vector notation, these relations can be written in the compact form as follows:   

1 1 2 3

2 2 1 3

1 2 1

( , , , )
( , , , )

( , , , )

N

N

N N N

u C u u u
u C u u u

u C u u u −

=
 =


 =

"
"

"
"

 

or, 

( )u C u=  

where u u  and ( )1 , , Nu ′= " ( )1, , NC C C ′= " . 

The Nash strategies are the intersection points of the reaction curves of all the DMs.  In 

other words, if u u  is a Nash strategy, then it should satisfy that (* * * *
1 2, , , Nu u ′= " )

* *( )u C u= . 

If, for the  DM in the game, the cost function  is jointly continuous in all its arguments and 

strictly convex in u  for every u U

thi iJ

i j j∈ ( j i≠ ) and U  is a compact convex set, then the 

associated N-DM nonzero-sum game admits a Nash equilibrium strategy.  One example for a 

two-DM nonzero-sum game is shown in Figure 2.5 [7].   The intersection point N is a Nash 

equilibrium solution.  Neither of the DMs can improve its payoff if it decides to deviate from this 

point.  If the two reaction curves do not intersect, a Nash solution will not exist.  If the two 

reaction curves have more than one intersection points, each of them is a Nash equilibrium 

solution.  

i

In a cooperative game, the noninferior strategies can be computed as solving a multi-

objective optimal problem [13], if ’s, iJ 1, ,i N= " , are convex functions on a convex set 
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1 2 NU U U× × ×"

1

.  All the objective functions can be summed up and multiplied by stipulated 

weights α , 2α ,…, Nα  to form one objective , which is given by  J

i Jα

1

1,
N

i
i

α
=
∑ α

                                  
1( , , )
min

Nu u"
=J ∑

=

N

i
i

1
                                                                      (2.4) 

where .  Thus, after solving this optimal problem (2.4), the result is the 

noninferior strategy that the DMs are concerned with.  In Figure 2.5, the dashed curve is the 

noninferior set of strategies. It is clear that we cannot find any other point with lower levels for 

both sides simultaneously than those points on the dashed curve.  The selection of a specific 

solution in the noninferior set is generally done subjectively among all the DMs.  Agreement on 

implementing the solution must also be reached.  Without the convexity assumption, the 

solutions to the problem (2.4) provide a subset of noninferior solutions only [14],[15].  In other 

words, some noninferior solutions may never be discovered by solving the problem (2.4).   

0i= ≥
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1u

2u

1J

2J
2C

1C

N

 

Noninferior Set

 
Figure 2.5 Reaction curves in a two-DM nonzero-sum infinite game 
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3.0 NONINFERIOR NASH STRATEGIES FOR EXTENDED COMPLEX SYSTEMS 

 

Systems controlled by a large number of decision-makers with conflicting objectives are best 

analyzed using the traditional theory of games as reviewed in the previous chapter.  In these 

systems, each decision-maker acts independently taking into account decisions made by all other 

decision-makers.  The Nash and Stackelberg strategies [7],[18] are very powerful solution 

concepts for optimizing such systems.  On the other hand, systems where all the decision-makers 

are willing to cooperate are best analyzed using concepts from team theory [19].   In these 

systems, each decision-maker must operate within the framework of the team, and the 

Noninferior (or Pareto) strategy [7] is a very powerful solution concept for optimizing such 

systems.   Figure 3.1 shows a block diagram illustrating a system with individual non-

cooperating decision-makers and Figure 3.2 shows a block diagram of a system with one team of 

cooperating decision-makers.  In these diagrams, there are N decision-makers, denoted 

by , whose control variables are expressed as  respectively.  The i1,...., NDM DM

1 2( , ,u=

1 2, ,..., Nu u u th 

decision-maker has an objective function  to minimize, which is generally influenced not 

only by its own control variables but also by the control variables of all other decision-makers.  

That isu u .  

( )iJ u

..., )Nu ′

An issue that arises in the optimization of systems that are controlled by one team is that, 

in general, the noninferior solution consists of a set and the decision-makers have to mutually 

agree and select one specific noninferior strategy from this set.  An alternative mechanism is to 
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assume that the team has a Leader decision-maker, , who selects from the set of noninferior 

solutions, a strategy that optimizes a mutually agreed-upon Leader objective function .     

LDM

( )LJ u

 In the team optimization problem, because of the cooperative nature of the decision 

environment, all the decision-makers are included as members in one team.  However, in a larger 

and more complicated organization, the decision environment may be such that some decision-

makers may have compatible objectives with other decision-makers while at the same time 

having incompatible objectives with other individual, or other groups of, decision-makers.  It is 

therefore reasonable to consider systems that are controlled by several competing teams of 

decision-makers, with each team consisting of several cooperating decision-makers.  We refer to 

these types of systems as extended complex systems, or multi-team systems.  The optimization 

of an extended complex system must be done within a framework that combines team theory 

with game theory.  We refer to this framework as nonzero-sum multi-team games (MTGs).  

Compared with the optimization schemes of Figure 3.1 and Figure 3.2, a block diagram 

illustrating the architecture of an extended complex system is shown in Figure 3.3.   Zero-sum 

multi-team games where all the decision-makers in each team have the same objective function 

have been studied in [20].  Similarly, systems controlled by more than two decision-makers 

where there exists the possibility of a subset of decision-makers forming a coalition (team) so 

that the worst performing member in the coalition cannot be improved with another decision 

without degrading the worst performance of another member in the coalition, have been studied 

in [21] and [22].    

The solution framework of multi-team systems is inherently large and complex due to the 

introduction of both complicated relationships among the decision-makers and team objective 

functions.   In this chapter, we will first develop a strategy that provides for cooperation among 
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all members within each team and insures a non-cooperative Nash equilibrium among all teams.  

We refer to this strategy as the Noninferior Nash Strategy (NNS).  We show that for systems 

with continuous control variables, the NNS for each team belongs to a set of solutions. 

This chapter is organized as follows.  In section 3.1, we formulate the multi-team game 

problem, define the NNS, and discuss its properties.  In section 3.2, we obtain conditions for 

existence of the NNS in static continuous systems and derive analytical expressions for these 

strategies for a class of systems with linear quadratic objective functions.  In section 3.3, we 

obtain the conditions for the existence of open-loop and closed-loop NNS solutions in linear 

quadratic differential multi-team games.  Finally, in section 3.4 we present some concluding 

remarks.  
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… DMNDM3DM2DM1 

 

 

 

 

 Figure 3.1 System with individual non-cooperative decision-makers 
 

 

Team

Controlled System 

… DMNDM3DM2DM1 

 

 

 

 

 

 

Figure 3.2 System with one team of cooperative decision-makers 
 

 

 
Team 2 Team MTeam 1

Controlled System 

… DMNDM3DM2DM1 
 

 

 

 

 

 Figure 3.3 System with multiple teams of decision-makers 
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3.1 NONINFERIOR NASH STRATEGIES IN FINITE STATIC MTGS 

Without loss of generality, and for the sake of simplicity of notation, in this thesis we will 

consider multi-team systems where there are only two teams: Team 1 and Team 2.  Systems 

with more than two teams can be treated in a very similar manner.  Let team X have m  

members of decision-makers (X=1, 2) and let the control variable of the i  member u  be a 

vector of dimension .  Let u u

X

th X
i

X
ik ( 1 , ,

X

X X X
mu )′= "

( ,X
iJ u

denote the overall control vector for team X.  

Let  be the admissible control set for the i  member in team X.  Thus 

is the admissible set for the overall control vector u of team X.  

Assume that the  member in team X wishes to minimize an objective function  by 

choosingu .  Note that the cost function  depends on the control variables of all 

decision-makers in both teams.  The optimization of such a system can be formulated as a pair of 

vector-valued minimizations of the form: 

X
iU th

XU 1 2
X X XU U= × ×"

thi

X
i

XmU× X

X
i

1( ,u2 )J u

1 2 )u

1 2
1

1 2
2

1 2

( , )
( , )

.min  ,     for 1, 2

.
( , )

X X

X

X

X

u U

X
m

J u u
J u u

X

J u u

∈

 
 
 
  =
 
 
 
 

 

In these systems, we stipulate that the relationship between the two teams is completely 

adversarial and that cooperation between them is not permissible.  In other words, both 

cooperation within each team and competition between the teams must coexist.  An optimum 
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solution {u } with u u1ˆ ˆ,u2 ( )1

1 1 1 1
1 2ˆ ˆ ˆ ˆ, , , mu u ′= "  and u u( 2

2 2 2 2
1 2ˆ ˆ ˆ ˆ, , , mu u )′= " , if it exists, must possess 

the following two properties: 

Property 3.1 Within each team X, the control vector  is a noninferior (or Pareto) 

strategy for team X, and   

ˆ Xu

Property 3.2 Between the two teams, the pair of control vectors {u } is a Nash 

equilibrium strategy. 

1ˆ ˆ,u2

2

2

Thus, with this pair of strategies {u } there is no incentive for the members in one team 

to collectively deviate, since this will not improve the objective functions of all members of that 

team simultaneously, but instead will cause a deterioration in the overall team’s performance.  

We will refer to this strategy as the Noninferior Nash Strategy (NNS), and its formal definition 

is given by: 

1ˆ ˆ,u

Definition 3.1 The pair of control vectors { ,1 2 1ˆ ˆ }u u U U∈ × is a NNS if, for any other 

 and u ,  1u U∈ 1 2 2U∈

{ }1 1 2 1 1 2
1ˆ ˆ ˆ( , ) ( , ), 1, ,i iJ u u J u u i m≤ = …  only if  { }1 1 2 1 1 2

1ˆ ˆ ˆ( , ) ( , ), 1, ,i iJ u u J u u i m= = … ,     (3.1) 

and 

{ }2 1 2 2 1 2
2ˆ ˆ ˆ( , ) ( , ), 1, ,i iJ u u J u u i m≤ = …  only if { }2 1 2 2 1 2

2ˆ ˆ ˆ( , ) ( , ), 1, ,i iJ u u J u u i m= = … .     (3.2) 

 

Each condition in the above definition requires that the control vector chosen by one team (say 

for team 1) be a noninferior solution against the control vector chosen by the other team 

( for team 2).  Additionally, a pair of control vectors { , that satisfies conditions (3.1) and 

(3.2) simultaneously will also represent a Nash equilibrium solution between the two teams.                  

1û

2û 1 2ˆ ˆ }u u
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In order to illustrate the general idea behind this solution concept, let us consider the 

simple two-team matrix game shown in Figure 3.4, and the team composition as given in Table 

3.1.  The first team has two decision-makers, denoted by  and , respectively.  

Decision-maker  has a control variable u  with two choices: A and B; and decision-maker 

 has another control variable  with two choices: C and D.  The second team also has two 

decision-makers, denoted by  and , respectively.  Decision-maker  has a control 

variable  with two choices: a and b; and decision-maker  has another control variable u  

with also two choices: c and d.  For each pair of choices {u } with andu , 

the corresponding entries in the matrix shown in Figure 3.4 are the pair of vector-valued 

objective functions  for team 1 and  for team 2.  Each decision-maker 

wants to cooperate with the other member in its team while at the same time insuring that a Nash 

equilibrium exists between the collective choices of the two teams. 

1
1DM

2



1
2DM

2
1DM

1
1
1
2

u
u
 

= 
 

1
1DM 1

1

1
2DM 1

2u



2
1DM

2

2

)
)

u
u

 

 

2
2DM

2
1u 2

2DM

1,u

2

2

)
)

u
u

 

 

2
2

2
1
2
2

 
 
 

1u 
2 u

u
=

1 1
1
1 1
2

( ,
( ,

J u
J u

2 1
1
2 1
2

( ,
( ,

J u
J u

According to the definition given above, for the game in Figure 3.4, we can determine that the 

pair {u } with u and u is a Noninferior Nash strategy.  If the decision-makers 

in team 1 stick to the strategy , then the decision-makers in team 2 cannot improve both values 

of their objective functions by changing the strategy .  Similarly, if the strategy of the decision-

makers in team 2 remains fixed atu , then the decision-makers in team 1 have no incentive to 

choose a strategy different from u  because this will not improve the benefits for both decision-

makers in that team simultaneously.  In other words, the strategies u and u  

1ˆ ˆ,u2 1ˆ
A
C
 

=  
 

2ˆ
b
c
 

=  
 

2ˆ

1ˆ

1û

2û

1ˆ
A
C
 

=  
 

2ˆ
b
c
 

=  
 
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 Team 2 

                  

      
2
1
2
2

J
J

 
 
 

  

 
1
1
1
2

J
J

 
 
 

  

a
c
 
 
 

 
a
d
 
 
 

 
b
c
 
 
 

  
b
d
 
 
 

 

A
C
 
 
 

 
4
4
 
 
 

,  
   

3
4 

6
6
 
 
 

 ,  
6
5
 
 
 

0
1
 
 
 

,   
3
3



 

3
3
 
 
 

,  
9
9
 
 
 

A
D

 
 
 

 
3
3
 
 
 

,   
1
1



 

5
5
 
 
 

 ,  
0
0
 
 
 

2
2
 
 
 

,  
   

3
4 

1
1
 
 
 

,  
4
3
 
 
 

B
C
 
 
 

 
3
4
 
 
 

,  
   

2
1 

5
4
 
 
 

,  
2
4
 
 
 

1
0
 
 
 

,  
   

2
2 

2
4
 
 
 

,  
3
4
 
 
 

Team 1 

B
D

 
 
 

 
4
3
 
 
 

,  
   

6
0 

5
5
 
 
 

,  
3
4
 
 
 

2
4
 
 
 

,   
3
3



 

2
3
 
 
 

,  
9
9
 
 
 

 

 

Figure 3.4 A two-team game in matrix form 
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Table 3.1 Team composition and decision variables 
 
 

Teams Team composition Decision Choices 
1
1DM  A,  B  

Team 1 1
2DM  C,  D 
2

1DM  a,  b  
Team 2 2

2DM  c,  d 
 

 
 

satisfy both conditions (3.1) and (3.2) of the above definition simultaneously and thus constitute 

an NNS.  

The counterpart of the traditional reaction set of game theory when figuring out a 

Noninferior Nash strategy is called the Noninferior Reaction Set (NRS) and is defined as 

follows:  

Definition 3.2 The map 2 1 1[ ] :NRS
2R u U U→  is defined as the Noninferior Reaction Set for 

team 2 if given any arbitrary control vector u1 U 1∈  for team 1, the control vector 

2u ∈ 2 1[ ]NRSR u satisfies:  

   { }2 1 2# 2 1 2
2( , ) ( , ), 1, ,i iJ u u J u u i m≤ = … only if { }2 1 2# 2 1 2

2( , ) ( , ), 1, ,i iJ u u J u u i m= = …           (3.3) 

for all u .   2# 2U∈
 
In a similar way, we can define 1 2 2[ ] :NRS

1R u U U→  as the Noninferior Reaction set for 

team 1.  Thus, the noninferior reaction set for team 2 is equivalent to the collection of all 

noninferior control sets for team 2 for all possible choices of control vectors by the members of 

team 1.  For the above example, Figure 3.5 illustrates how this is done when team 2 
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choosesu .  In this situation, the matrix game shown in Figure 3.5 describes the options 

available for the two decision-makers and  in team 1.  The noninferior solution set in 

this case consists of the two pairs of controls and

2 b
c
 

=  
 

1
1DM 1

2DM

 


 

A
C

B
C
 
 
 

. Thus, . 1 [ ] { , }NRS

b A B
R

c C C
     

=     
     

1
2

0
1
 
 
 
1
0
 
 
 

1
2DM

u2 ]u 2 2ˆ ∈

 

 

Decision-maker  of Team 1 DM
Team 2:     

b
c
 

  C D 

A   
2
2
 
 
 

  
Decision-maker  

 of Team 1 1
1DM

B   
2
4
 
 
 

  

 

 
Figure 3.5 Matrix game for  and when  and  select b and c 1

1DM 2
1DM 2

2DM
 

 

With the introduction of the concept of noninferior reaction sets, it is clear that a strategy 

 is a NNS if 1 2 1ˆ ˆ{ , }u u U U∈ × 2

ˆ                                           and                                            (3.4) 1 1ˆ ˆ[NRSu R∈ 1[ ]NRSR u

That is, a NNS must lie in the intersection of the noninferior reaction sets of the two teams.  In 

order to illustrate this approach for finding the NNS, let us determine the noninferior reaction 

sets for the two teams of Figure 3.4.  These sets are shown in Table 3.2.   
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The unique intersection of both reaction sets is the pair {  which is the NNS for 

this game.   Note that  has two elements which are: 

  and 

, }
A b
C c
   
   
   

A
C



 
1 [NRS

b
R

c
 
 
 

]
B
C



 


 with corresponding 

outcomes for team 1 of 
0
1
 


 
 and , respectively.  However, the pair {

1
0
 
 
 

B
C
 


 
  ,

b
c
 


 
 } is not a 

NNS.   If team 2 chooses 
b
c
 


 
  and team 1 chooses

B
C
 


 
 , only decision-maker   in team 1 

obtains a better outcome.  On the other hand, if team 2 knows that team 1 may choose 

1
2DM

B
C
 


 
 , it 

will choose  instead of 

 since

a
c
 
 
 

b
c



 
2 [ ]NRS

B a
C c

 
 
 

R  
= 

 
.  Hence, the control pair {

B
C


 


  ,


 } is 

not an equilibrium solution.  

b
c



 

 
 
 
 

Table 3.2 Noninferior reaction sets for the game in Figure 3.4 
 

 
1u  2 1[ ]NRSR u  2u  1 2[ ]NRSR u  

A
C
 
 
 

 
b
c
 
 
 

 
a
c
 
 
 

 
A
D

 
 
 

  

A
D

 
 
 

 
a
d
 
 
 

  
a
d
 
 
 

 
B
C
 
 
 

  

B
C
 
 
 

 
a
c
 
 
 

  
b
c
 
 
 

 { ,
A
C
 
 
 

B
C
 
 
 

} 

B
D

 
 
 

  {
a
c
 


 
 , 

b
c
 


 
 } 

b
d
 
 
 

 
A
D

 
 
 
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3.2 CONTINUOUS STATIC MTGS 

3.2.1 Noninferior Nash strategies in continuous static multi-team games 

 
Consider a two-team game, with decision-makers in team 1 and decision-makers in team 

2.  Let the control vectors  for the members i

1m 2m

X
iu 1, , Xm= "  in each team be grouped into a team 

control vector u u that belong to compact and convex admissible sets of the 

form where X =1, 2.   Let the objective function of the i  decision-

maker in team X, , be a real-valued continuous and strictly convex function onU

1 2 ,Xu

XmU×

2 )

( , ....,X X=

1 2
X XU= × ×"

1( ,X
iJ u u

)
X

X
mu

X XU U th

1 2U× .  

For the purpose of simplifying the notation, when one team is denoted by X, we will use X to 

denote the other team, and vice versa.  That is, 

2 when  1
1 when  2

X
X

X
=

=  =
. 

Now let us assume that team X  has chosen a team control Xu , then the corresponding 

noninferior reaction set for team X can be determined by minimizing the function:   

                                                                                               (3.5) , 1 2 1 2

1
( , ) ( , )

XX
m

X X X
i i

i
J u u J u uξ ξ

=

=∑

with respect to for every vector of parameters Xu 1 2( , ,....., )
X

X X X X
mξ ξ ξ ξ ′= XW∈  where W is given 

by 

X

1 2
1

: 1,     0 1,     ( , , , )
X

X

X

m
mX X X X X X X X

i i
i

W ξ ξ ξ ξ ξ ξ
=

 
′= ∈ = ≤ ≤ = 

 
∑ "R mξ                        (3.6) 
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Let ( ,X X X
NRS uξ )C  denote the set of solutions , XXu ξ  to the optimization problem given in (3.5) and 

parameterized by Xξ .  We now give a definition of the NNS in terms of the vector
1

2

ξ
ξ

ξ
 

=  
 

, 

followed by a theorem that provides necessary conditions for its existence.  

Definition 3.3 For a given vectorξ  , the pair of team control vectors{ ,1, 2,ˆ ˆu u }ξ ξ  is a 

Noninferior Nash strategy if   

                                  1, 1 1 2,ˆ ˆ( , )NRSu C uξ ξξ∈  and 2, 2 2 1,ˆ ( , )NRSu C ûξ ξξ∈                                    (3.7) 

 

Theorem 3.1 (Existence of NNS in Two-Team Games) For each team , let 

 be a compact and convex subset of R .  Let the cost functional 

 be jointly continuous in u and  , and  

strictly convex in u  for every 

{1,2}∈X

1 2U U∈ ×

1U U×

( ,XJ u

2

1 2

1 1

m m
k ki j

i j
+∑ ∑

= =

1 2 1 2) :    for 1,....,i Xu U U R i m× → =

X

1 2u

X U∈ Xu .  Then, for every vector of weights 
1

2

ξ
ξ

ξ
 

=  
 

 there 

exists a Noninferior Nash solution. 

Proof.  Without loss of generality let us consider the reaction of team 1 for a specific 

choice  u  by team 2.  The noninferior control vector u can be determined by 

minimizing with respect to u the function defined in (3.5).  Since  for 

 are strictly convex for all 

2 ∈U

1,m

2 11, 1Uξ ∈

1 11, 1 2( , )J u uξ

1

1
iJ

1, 2,i = " 1u U∈  it follows that  is also strictly convex 

for allu .  Hence there exists a unique mapping 

11, 1 2( ,J u uξ

1→

)

1 21 1U∈ 1 :
ξ

f U U

1
1

 such that u f  

uniquely minimizes for the givenu .  The mapping 

11, 2( )uξ = 1
1
ξ

11, 1 2( ,J uξ )u 2 2∈U
ξ

f  represents a noninferior 

reaction solution for team 1 when it uses a weight vector 1ξ .  Similarly, the noninferior reaction 
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solution for team 2 when it uses a weight vector 2ξ , given that team 1 chooses u , can be 

determined as the unique mapping

1 U∈ 1

2
2 1: 2f U
ξ

→U , i.e., .  Using a vector notation, 

these two mappings can be combined in a compact form as 

2

2
2, 2 1( )u f uξ

ξ
=

( )uu Fξ ξ
ξ=  where 

1

2

1,

2,

u

u

ξ

ξ

 
 
 
 

u ξ = , 

1

2

1

2

f
F

f
ξ

ξ

ξ

 
=

 




 and 
1

2

ξ
ξ

ξ
 

= 
 

 .  Clearly, the functions 1
1
ξ

f and 2
2
ξ

f  are continuous in their arguments, 

and hence Fξ is a continuous mapping.   Since Fξ  maps 1 2×U  into itself, and because of the 

compactness of U andU , by using Kakutani fixed point theorem [23], there exists a unique 

U

1 2

1,

2,

ˆ
ˆ

ˆ
u

u
u

ξ
ξ

ξ

 
= 
 

   such that u Fˆ ( ˆ )uξ ξ ξ= .  The pair { ,1,u u2,ˆ ˆ }ξ ξ 1 2U U∈ × belongs to the intersection of 

both reaction sets and hence it constitutes a Noninferior Nash Strategy for the given weight 

vectors 1ξ  and 2ξ .   □ 

( )
,11

2
,21

)
Xi X

Xi X

R R
u

R R


′ ′= 


(
1

,1
2

( ) (Xiu
r

u
 

′ 
 

,12

,22

i

i
1 2 1( , )

2
u 1( ) (uX

i
XicJ u





3.2.2 Noninferior Nash strategies in quadratic multi-team games 

 
Quadratic games with quadratic cost functions are of particular interest in the game theory.  In a 

quadratic multi-team system each decision-maker has a quadratic cost function.  For decision-

maker i in team X (X=1, 2), let the objective function be of the form: 

        )
1

,2
2

)Xi u
r

u
 

′+  
 

           (3.8) +
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where u and with  being the dimension of the control vector for member i 

in team X.  In (3.8), 

1

.

.

X

X

X

X
m

u

u

 
 
= 
  
 




X
ikX

iu ∈R

(,21Xi XiR

X
ik

),12R ′= and the matrices ,Xi pqR  for 1, 2; 1,2;  and 1,2X p q= = =  are 

partitioned as follows: 

, , ,
11 12 1

, ,
, 21 22

, ,
1

q

p p

Xi pq Xi pq Xi pq
m

Xi pq Xi pq
Xi pq

Xi pq Xi pq
m m

R R R

R R
R

R R

 
 
= 
 
 
 

"

" #
# # % #

" "
qm


        (3.9) 

and the sub-matrices  have dimensions ,Xi pq
slR ( )p q

s lk k×  for 1, , ps m= " ; .  The 

vectors  for  are partitioned as follows: 

1, , ql = " m

=




,Xi pr 1, 1,2p2 and X =

,
1

,
2,

,
p

Xi p

Xi p
Xi p

Xi p
m

r
r

r

r

 
 
= 
  
 

#
,        (3.10) 

and the subvector r has dimension ,Xi p
s

p
sk  for 1, , ps m= "

, foXi pp

.  The term c is a constant.  Without 

loss of generality, we assume that the matrices

Xi

1r 1,2;   , 2;  and 1,..., X
iR X p i = k= =  are 

symmetric and positive definite.   

Theorem 3.2 Two-team games with quadratic objective functions as defined by (3.8)-

(3.10) with >0, admits a unique Noninferior Nash solution u,Xi ppR
1,

2,

ˆ
ˆ

ˆ
u
u

ξ
ξ

ξ

 
= 
 

  for the given 

weight vectors 1ξ ( 1

1 1
1 , , m )ξ ξ ′"= 1∈W  and 2ξ ( 2

2 2
1 , , mξ ξ )′= " 2∈W  if the matrix  
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                                                Rξ =                                             (3.11) 
1 1

2 2

1 ,11 1 ,12

2 ,21 2 ,22

R R

R R

ξ ξ

ξ ξ

 


 




,R

where  

                                                      ,                                                  (3.12) ,

1

XX
m

X pq X Xi pq
i

i
R ξ ξ

=

= ∑

 is nonsingular.   This Noninferior Nash solution is unique if the matrix defined by (3.11) is 

invertible, in which case it is given by 

                                                         ( ) 1
û R rξ ξ −

= − ξ



, pr

                                                    (3.13) 

where  , and 
,1

,2

X

X

X

X

r
r

r

ξ
ξ

ξ

 
=  

 

                    .                                                                                             (3.14)  ,

1

XX
m

X p X Xi
i

i
r ξ ξ

=

=∑

Proof.  For each team  the noninferior set of solutions can be determined by 

minimizing the objective function:  

{1,2}∈X

( ) ( )

1 2 1 2

1

,11 ,12 1
1 2 ,1 ,2

2 2,21 ,22

( , ) ( , )

1                   ( ) ( ) ( ) ( )
2

XX

X X

X X

X X

m
X X X

i i
i

X X
X X

X X

J u u J u u

R R u u
u u r r c

u uR R

ξ

ξ ξ 1
XXξ ξ ξ

ξ ξ

ξ
=

=

    
′ ′ ′ ′=   +        

∑

+
 . (3.15)                         
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We note that in (3.15) (,21 ,12X XX XR Rξ ξ )′=

1, 2X =

.  The Nash solution is now easily derived by setting 

 for , i.e.,  1 2( , ) 0
X

X
X

u
J u uξ∇ =

                                       

, , ,( , ) +
X

X X X
X X X

X XX X X XX X X X
X

J u u R u R u r
u

ξ
ξ ξ ξ∂ 0= +

∂
=






                               (3.16) 

 which yield the linear matrix equation: 

1 1 1

2 2 2

1 ,11 1 ,12 1 ,11,

2,2 ,21 2 ,22 2 ,2

ˆ
ˆ

R R ru
uR R r

ξ ξ ξξ

ξξ ξ ξ

   
  = −      

      (3.17) 

Therefore, the necessary and sufficient conditions for the solution given in (3.17) to be an NNS 

are as follows.   For each pair of weight vectors{ , : 
11 2 2} W Wξ ξ ∈ ×

                         (a) The matrices 
11 ,11R ξ and

22 ,22R ξ  are positive definite,                               (3.18a) 

   (b) The matrix  is nonsingular.                            (3.18b) 
1 1

2 2

1 ,11 1 ,12

2 ,21 2 ,22
ˆ R R
R

R R

ξ ξ
ξ

ξ ξ

 
=  

 



y

We note that the matrix in (b) is not necessarily symmetric.                                                        □ 

 

Example 3.1 Consider two households, each consisting of a husband and wife, in conflict.  The 

team members of household 1 are H1 and W1 and the team members of household 2 are H2 and 

W2.  Let the decision variables of H1 and W1 be u x1 1
1 2 and u= =  respectively and the decision 

variables of household 2 be  respectively as shown in Table 3.3.  2
1  and u u u= 2

2 v=
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Table 3.3 A quadratic two-team example 
 
 

Teams Team 
Composition 

Decision 
Variables 

Objective Function 
(Minimize) 

DM1
1  (H1) x  2 2

1
1 [( ) ( ) ]
2HJ x v y u= − + −  

Household 
1 

DM1 (W1) 2
y  2 2

1
1 [( 1) ( ) ]
2WJ x u y v= − − + −

DM (H2) 2
1 u  2 2

2
1 [ ( )
2HJ v u x= + − ]  

Household 
2 

DM (W2) 2
2 v  2 2

2
1 [( 1) ( ) ]
2WJ v u= − + − y  

 
 

 
 
 

Consider the weight vectors 
1

1 1
1
2 1

αξ
ξ

αξ
   

= =   −  
 1 with ( 0 α≤ ≤ ) for household 1, and 

2
2 1

2
2 1

βξ
ξ

βξ
   

= =   −  
  with ( 0 1β≤ ≤ ) for household 2.  With these parameters, equation (3.17) 

can be written as: 

1 0 (1 ) 1
0 1 (1 ) 0

(1 ) 1 0 0
0 0 0 1 1

x
y
u
v

α α α
α α

β β
β

− − − − 
 − − − =
− − −
   − 

   
   
   
   
      
   

 .   (3.19) 

The above matrix satisfies the necessary and sufficient conditions (3.18) for existence of the 

NNS provided its determinant is not equal to zero.  That 

is: .   Under this condition, (3.19) can be solved for the 

NNS to get: 

ˆDet ( )= [1 (1 ) (1 )] 0Rξ α β β α− − − − ≠
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1

1

2

2

2

2

2

(1 ) (1 ) (1 )ˆ (1 ) (1 )
1 (1 ) (1 )

(1 ) (1 ) (1 )ˆ (1 )(1 )
1 (1 ) (1 )

(1 ) (1 ) (1 )ˆ
1 (1 ) (1 )

ˆ (1 )

x

y

u

v

ξ

ξ

ξ

ξ

β α β αβα αβ
α β β α

β α β αβα α β
α β β α

β α β αβ
α β β α

β

  − − + −
= − + −  − − − − 

  − − + − = +  − − − −  
 − − + − =

− − − −


= −

− −
                              (3.20) 

Clearly, in this example the NNS is not unique and depends on the values of α and β .  

Table 3.4 illustrates several NNSs corresponding to the several combinations of values for 

α and β .   For 0 , 1α β≤ ≤ , contour curves of the determinant ˆDet ( )Rξ are shown in Figure 3.6.  

It is clear that the value of ˆDet ( )Rξ  equal to zero is at only two points: A ( 1,0 == βα ) and B 

( 0,1 == βα ).  At point B, we still can find such a Noninferior Nash solution as given by 

( ) ( )1 1 2 2
ˆ ˆ ˆ ˆ, , , 1, 1, 1, 1x y u vξ ξ ξ ξ ′ ′=  . 

Therefore, The existence conditions for NNS are not satisfied at only point A.   

 
 
 

 
Table 3.4 Several possible Noninferior Nash solutions for different values of  and α β  

 

 (α , β ) x̂  ŷ  û  v̂  
1

ˆ
HJ  1

ˆ
WJ  2

ˆ
HJ  2

ˆ
WJ  

(0.5,0.5) 1.2500 0.7500 1.0000 0.5000 0.3125 0.3125 0.1563 0.1563
(0.6,0.2) 1.2727 0.9091 0.9818 0.8000 0.1144 0.2574 0.3623 0.0226
(0.1,0.8) 3.5923 0.4769 2.9692 0.2000 8.8597 0.1094 0.2141 3.4258
(0.2,0.2) 1.7882 0.8471 1.0353 0.8000 0.5060 0.0316 0.6035 0.0377
(0.8,0.8) 0.4471 0.3882 0.4353 0.2000 0.0316 0.5060 0.0201 0.3211
(0.6,1) 0.6667 0.4000 0.6667 0 0.2578 0.5800 0 0.5356
(1,0) 1 1 1 1 0 0.5 0.5 0 
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A 

B 

Figure 3.6 Contour curve of ˆDet( ) 1 (1 ) (1 )Rξ α β β α= − − − −  in Example 3.1 
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3.3 CONTINUOUS-TIME INFINITE DYNAMIC MTGS 

In this section, we mainly concern with a special class of dynamic multi-team games, i.e., linear 

quadratic differential games where the system is linear and the payoff functions are quadratic 

functions of states and controls.   

For simplicity, we still consider a two-team dynamic system with decision-makers in 

team 1 and m decision-makers in team 2.  Let the control vectors u  for the members 

 in each team be grouped into a team control vector u u that 

belongs to compact and convex admissible sets of the form U U where X 

=1, 2.    

1m

X
i

(=

1 2U

2

1, , Xi = " m 1 2, ,...., )
X

X X X X
mu u

X

X X X X
mU= × × ×"

The overall linear dynamic system is described by the following state equations: 

               
1 2

1 1 2 2

1 1

( ) ( )
m m

j j j j
j j

x t Ax t B u B u
= =

= + +∑ ∑�                            0( ) 0x t x=                            (3.21) 

where state variable , and( ) nx t ∈R ( )A ⋅ ( ) ( 1, 2; 1, )X
j XB X j m⋅ = = "  are matrices of appropriate 

dimensions.  0x  is the initial state.  For the decision-maker in team X, the cost function is 

given by 

thi

 ( ) ( )
1 2

0

1 2 1 1 1 2 2 2

1 1

1 1( , , , ) ( ) ( )
2 2

f
m mt T TX T X T X X

i f if f i j ij j jt
j j

J x t u u x t S x t x Q x u R u u R u d
= =

 
= + + + 

 
∑ ∑∫ X

ij j t     (3.22) 

where , and are matrices of appropriate dimensions, defined on [ ,( ), ( )X X
if iS Q⋅ ⋅ 1( )X

ijR ⋅ 2 ( )X
ijR ⋅ 0 ]ft t , 

and with continuous entries.  Furthermore, ( )X
ifS ⋅  and Q ( )X

i ⋅  are symmetric, and 1X
ijR ( )⋅  and 

 are positive definite over[ , .  2X
ijR ⋅( ) 0t t ]f
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In optimal control problem [16], open-loop controls, functions of time, are the optimal 

controls for a trajectory through a specified initial state, and closed-loop (or feedback) controls, 

are the optimal controls which are the functions of the state and time everywhere.  It is well 

known that, in deterministic optimal control problems, the open-loop solution can be generated 

from the closed-loop control simply by integrating the state equation forward from the given 

initial points.  Alternatively, a closed-loop control can be generated by successively solving the 

open-loop problem for each initial point.  Therefore, in a deterministic optimal control problem, 

open-loop controls and closed-loop controls are only the different ways of describing the same 

result.  However, this conclusion is not true for the dynamic games any longer [8].  Generally 

speaking, open-loop Nash controls are not identical to closed-loop Nash controls in a dynamic 

game.  One reason for the difference between the open-loop controls and the closed-loop 

controls is that, for the closed-loop controls, several control sequences are eliminated from 

consideration at the initial instant (t=0) by the assumption that, for optimizing the transition from 

the current states to the remaining part of trajectory based on the current states, DMs always 

attempt to use the same game rules.  Thus, it is not always safe to apply this assumption to the 

nonzero-sum games.  In addition, the closed-loop controls do not always give us the better 

results than the open-loop controls [8].  

3.3.1 Open-loop noninferior Nash control 

 
For the decision-makers in team X, they minimize the following aggregated objective function 

under the given weight vector  (where W is given by (3.6)): X Wξ ∈ X X
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1 2

1
( , , , ; )

Xm
X X

i i
i

J x t u u Jξ ξ
=

=∑ X X  

     =
1

1 ( ) ( ) ( )
2

Xm
T X X

f i if f
i

x t S x tξ
=

+∑  

        ( ) ( ) ( ) ( )
1 2

0

1 1 1 2 2

1 1 1 1 1

1 ( )
2

X X X
f

m m m m mt T TT X X X X X X
i i j i ij j j i ij jt

i j i j i

2x Q x u R u u R u dtξ ξ ξ
= = = = =

 
+ + 

 
∑ ∑ ∑ ∑ ∑∫       (3.23) 

Let , ,
1

Xm
X X
f i

i
S Sξ

=

=∑ X
if

1

Xm
X X

i i
i

Q Qξ
=

=∑ X 1 1

1

Xm
X X
j i

i

X
ijR Rξ

=

=∑  and 2

1

Xm
X X
j i

i

2X
ijR Rξ

=

=∑ .  The expression 

(3.23) can be rewritten as: 

   1 2( , , , ; )X XJ x t u u ξ = 1 ( ) ( )
2

T X
f f fx t S x t +  

                                    ( ) ( )
1 2

0

1 1 1 2 2 2

1 1

1
2

f
m mt T TT X X X

j j j j j jt
j j

x Q x u R u u R u dt
= =

 
+ + 

 
∑ ∑∫  .                          (3.24) 

In the view of restriction ( )X
ifS ⋅  and Q ( )X

i ⋅ 0≥ , 1 2( , , , ; )XJ x t u u Xξ is a strictly convex 

function of u for all permissible control functions X Xu .  According to Theorem A-1 [12], it is a 

sufficient condition and every solution set of the first order conditions provides an open-loop 

NNS with the given 1ξ and 2ξ .  Next, we will derive the analytical expressions for the open-loop 

NNS.  

 The Hamiltonian is given by 

            1 2( , , , ; )X XH x t u u λ = ( ) ( )
1 2

1 1 1 2 2

1 1

1
2

m mT TT X X X
j j j j j j

j j

2x Q x u R u u R u
= =

 
+ + 

 
∑ ∑  

                                                    
1 2

1 1 2 2

1 1
( )

m m
X T

j j j j
j j

Ax B u B uλ
= =

 
+

 
∑ ∑+ +                                      (3.25) 
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Let , 

1
1

1
21

1
X

X

X
X

X
m

R
R

R

R

 
 
 =  
 
  

%

2
1

2
22

2
X

X

X
X

X
m

R
R

R

R

 
 
 =  
 
  

%
and .  The 

1

2

X

X

X
X

X
m

B
B

B

B

 
 
= 
 
  

"



Hamiltonian can be rewritten as 

1 2( , , , ; )X XH x t u u λ = ( ) ( )( )1 1 1 2 21
2

T TT X X X 2x Q x u R u u R u+ + ( )1 1 2 2( )X T Ax B u B uλ+ + +   (3.26)                        

Now, we can write out the necessary condition for NNS as follows: 

              

( )

1 1 2 2
0 0

0 1,2

1 ( ) ( )
2( ) ( )

( )

( )

X TXX X X X
X

T X
X f f f

X X T X X
f

f

H R u B X
u

x t S x t
H Q x A t
x x

x Ax B u B u x t x

λ

λ λ λ

∂
= + = = ∂

  ∂   ∂ = − = − + = ∂ ∂
 = + + =



�

�

t
                   (3.27) 

Furthermore, we can obtain the NNS ( )1, 2,ˆ ˆ,o ou u under the given weight vector as  X XWξ ∈

            u R           X=1,2.                                                   (3.28)  ( ) ( )1,ˆ ( ) ( ) ( )
TX o XX X X XB tξ

−
= − tλ

The costate equation is given by 

                ( ) ( ) ( )X X T X X X
f f fQ x A t S x tλ λ λ= − + =� , X=1,2.                                         (3.29) 

The optimal trajectory { }0ˆ( ), [ , ]fx t t t t∈ can be obtained as: 

                                               (3.30) 
( ) ( )

2
,

1
2 1

0 0
1

ˆ ˆ ˆ

ˆ ˆ( ) ( ) ( ) ( ) ( ) .

X X o

X

TX XX X X X

X

x Ax B u

Ax B t R B t t x t xξ λ

=

−

=

= +

= − =

∑

∑

�

The set of differential equations constitutes a two-point boundary value problem, the 

solution of which can be written, without loss of generality, as  
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         .                                                 (3.31) 0ˆ( ) ( ) ( ) 1, 2; [ , ]X X
ft M t x t X t t tλ = = ∈

ˆ

Substituting (3.31) into the costate equation (3.29), we got 

                         ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )X X X T XM t x t M t x t Q x t A M t x t+ = − −� � .                                   (3.32) 

From (3.30), we have 

( ) ( )
2 1

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
TX i ii i i i X X T X

i

ˆM t Ax B t R B t M x t M t x t Q x t A M t x tξ
−

=

 − + = − 
 

∑ � −

=

X

. 

As a result, we got the coupled matrix Riccati differential equations as follows: 

( ) ( )
2 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) 1,2

TX X T X X X i ii i i i

i

X X
f f

M t M t A A M t Q M t B t R B t M t

M t S X

ξ
−

=

  + + + −  
 

 = =

∑�
       (3.33) 

The unique open-loop NNS under the given weight vector is given by X Wξ ∈

               ( ) ( )1,
0 0ˆ ( , ) ( ) ( ) ( ) ( , ) 1,2

TX o X XX X X XR B t M t t t x Xξ ξ
−

= − Φ =u t                  (3.34) 

where Φ is the state transition matrix of the system satisfying: 0( , )t t

                          .      (3.35)         ( ) ( )
2 1

0 0
1

( , ) ( ) ( ) ( ) ( ) ( , )
Ti ii i i i

i

t t A B t R B t M t t tξ
−

=

Φ = − Φ
 

∑� 
 ( , )t t IΦ =

3.3.2 Closed-loop noninferior Nash control  

 
We use dynamic programming method to derive the closed-loop NNS for linear quadratic 

differential multi-team systems.  In the expression (3.28), let 
ˆ ( , )( )

ˆ

X
X J x tt

x
λ ∂

=
∂

 and we have 

                                  ( ) ( )1 ˆ ( , )ˆ ( ) ( )
ˆ

XTX XX X X J x tB tu R
x

ξ
− ∂

= −
∂

.                                    (3.36) 
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Suppose that 1( , ) ( )
2

X T XJ x t x S t x= , thus we got 

  ( , ) ( ) ( )
X

X XJ x t S t x t
x

λ∂
= =

∂
,                                           (3.37a) 

( , ) 1 ( )
2

X
T XJ x t x S t x

t
∂

=
∂

� .                                               (3.37b) 

We also know that 

                            1 2
ˆ( , ) ˆ ˆ ˆ( , , , , )

X X
XJ x t JH x t u u

t x
∂

= −
∂ ∂

∂                                                             (3.38) 

Substituting (3.37b), (3.26) and (3.28) into (3.38), we have 

2
1 1

1

2
1

1

1 1( ) ( ( ) ( ) ) ( ( ) ( ) )
2 2

( ) ( ( ) ( ) )

T X T X ii i i T i T Xi ii i i T i

i

X T i ii i i T i

i

x S t x x Q x R B R R B

Ax B R B

ξ λ ξ

λ ξ λ

− −

=

−

=

 = − + − − 
 

 
− + − 

 

∑

∑

� λ
                     (3.39) 

Substituting (3.37a) into the above equation (3.39), we got 

2
1 1

1

2
1

1

1 1 1( ) ( ) ( ) ( ) )
2 2 2

( ) ( ) ( ) .

T X T X T i i ii i Xi ii i i T i

i

T X T X T i ii i i T i

i

x S t x x Q x x S B R R R B S x

x S Ax x S B R B S x

ξ ξ

ξ

− −

=

−

=

 = − −  
 
 − +  
 

∑

∑

�

                           (3.40) 

Considering the symmetry of the matrix , we can write it into XS

                                              1 1 .
2 2

X X TS A S A A S= + X                                                         (3.41) 
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Replacing S in (3.40) using (3.41), we have the equation for (t) as: X XS

                          (3.42) 

2
1 1

1

2 2
1 1

1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) , 1,2.

X X X T X i i ii i Xi ii i i T i

i

X T i ii i i T i i ii i i T i X

i i

X X
f f

S t Q S A A S S B R R R B S

S B R B S B R B S

S t S X

ξ ξ

ξ ξ

− −

=

− −

= =

  = − − − −  
 

     + +    
   

 = =



∑

∑ ∑

�

S

 The closed-loop NNS ( )1, 2,ˆ ˆ,c cu u under the given weight vector can be calculated as X Wξ ∈ X

         ( ) ( )1,ˆ ˆ( ) ( ) ( ) 1,2
TX c XX X X XB S t x t Xξ

−
= − =u R .                            (3.43) 

The optimal state trajectory is calculated as: 

                   ( ) ( )
2 1

0
1

ˆ ˆ( ) ( ) ( ) ( ) ( )
TX XX X X X

X
0ˆx A B t R B t S t x x tξ

−

=

 = − = 
 

∑� x .                       (3.44) 

 
 

3.4 CONCLUSIONS 

In this section, we presented a new framework for optimizing extended complex systems that 

involve multiple teams of decision-makers.  We developed a new solution concept, called the 

Noninferior Nash Strategy (NNS), which combines the properties of the cooperative noninferior 

(or Pareto) solution from team theory and the noncooperative Nash solution from game theory.  

Such a strategy insures cooperation within each team and competition among the various teams.  

We investigated the properties of the Noninferior Nash Strategy in matrix and static multi-team 

games and provided necessary conditions for its existence.  We have shown that, in general, 

there is a set of Noninferior Nash Strategies.  Therefore, how to select an appropriate Noninferior 

Nash Strategy is a critical issue.  Several examples to illustrate the various solution concepts 
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introduced in this section were also presented.  We also presented the analytical expressions for 

open-loop and closed-loop Noninferior Nash controls to a class of linear quadratic differential 

multi-team games.  
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4.0 NONINFERIOR NASH STRATEGIES WITH A LEADER FOR EXTENDED 

COMPLEX SYSTEMS 

 

As can be seen from the analysis in the previous chapter, how each team chooses a specific 

solution from a set of Noninferior Nash strategies (or how it chooses the weight vector Xξ ) is 

critical in determining the resulting NNS.  While this choice can be done by a mutual 

(enforceable) agreement among all team members, in some cases there may exist a team Leader 

whose responsibility is to make that choice.  Furthermore, the team Leader may use a different 

objective function as a criterion for making this choice.  If all the team Leaders’ objective 

functions depend on the control variables of all decision-makers, then a game situation will also 

exist among the team Leaders and the specific choices of noninferior Nash solutions will have to 

be made based on a game theoretic approach.  This situation actually occurs in many real 

applications such as in cooperative teaming of autonomous entities such as unmanned aerial 

vehicles, robots, etc., in the control of ancillary services in future energy distribution grids, as 

well as in the management of computer communication networks.   

We have shown that, in general, there is a set of Noninferior Nash Strategies for multi-

team systems.  How to determine the NNS to implement is a critical issue.  In this chapter, we 

involve the team Leaders’ objective functions as a mechanism for selecting a strategy from this 

set.  We call this strategy the Noninferior Nash Strategy with a Leader (NNSL).  In section 4.1, 

we present the definition of NNSL.  In section 4.2, we present a simple microeconomic example 
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to illustrate the properties of NNSL.  In section 4.3, we apply the NNSL to the routing control 

problems in two-node parallel-link network system.  In section 4.4, we give some concluding 

remarks. 

 

4.1 NONINFERIOR NASH STRATEGIES WITH A LEADER 

In this section, we will address the issue of selecting a specific solution from the set of NNS in 

the context of continuous games where each team Leader has the task of choosing its team 

weight vector Xξ .   As before, we will consider only the case of two teams.  We will assume that 

the Leader of team X chooses so as to minimize an objective 

function

X XS Wξ ∈ ⊆ X

2 ), 1ˆ ( ,X
LJ u Jˆ( )X X

L
ξ ξ ξ= .  Note that the form of ( )X

LJ ⋅  for the team leader may be different 

from those of decision-makers in the corresponding team.  The subset corresponds to the 

values of parameters for which NNS solutions exist.  Within this new structure, we 

give the following definition of the Noninferior Nash Strategy with a Leader (NNSL). 

XS

X Wξ ∈ X

2

}Definition 4.1   The pair of strategies { ,  is NNSL if there exists a pair{ ,
1ˆ ˆ1, 2,ˆ ˆu uξ ξ 1 2ˆ ˆ }ξ ξ  

such that:  

1 1 2 1 1 2 1 1

2 1 2 2 1 2 2 2

ˆ ˆ ˆˆ ˆ( , )  ( , )   for all 
ˆ ˆ ˆˆ ˆ( , )  ( , )   for all 

L L

L L

J J

J J

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

≤ ∈

≤ ∈

S

S

}

.                  (4.1) 

 

In other words, the pair{ ,  is an NNSL if the pair of weight vectors {
1 2ˆ ˆ1, 2,ˆ ˆu uξ ξ 1ξ̂ , 2ξ̂ } results in a 

Nash equilibrium between the objective functions of the two leaders.   
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As we can see from the definition above, when each Leader’s objective function is 

expressed in terms of the weight vectors, the resulting functions may end up depending on the 

weight vector of that Leader’s team only.  In other words, on the higher level, a noncooperative 

game exists between two leaders who select the appropriate control variables  in order to 

improve their own objectives.  Nash strategy is a reasonable solution to such a game.  Since it is 

not easy to obtain the analytical expression of NNSL to such a complicated hierarchical decision-

making system, in the following sections, we present several examples to illustrate the properties 

of NNSL.   

X Sξ ∈ X

 

4.2 NNSL TO MICROECONOMICS PROBLEMS 

One particular situation will occur in a two-team system where one team has only one decision-

maker as will be illustrated in the following simple example from duopoly microeconomics [24] 

and [25].  In this case, each Leader will be faced with a simple optimization problem rather than 

a game with the other Leader.   In this example, we consider one team with two decision-makers 

( m ) and a Leader and the other team with only one decision-maker ( m ).  In the case of 

a team with one member, that decision-maker will also be the Leader, and the NNS for that team 

will be a function of only the other team’s weight vector.  

1 2= 2 1=

Consider two firms A and B that produce and sell the same product in a competitive 

market.  Firm A has two divisions (for example West Coast and East Coast divisions) A1 and A2 

each having an independent decision-maker.  Firm B has only one division and one decision-

maker.  Table 4.1 describes the production variables and profit functions for each of the three 

divisions involved in the market.  
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Table 4.1 Description of market competition example 
 
 

Teams Division 
Decision

-Maker 

Productio

n Output 

Production 

Constraints

Production 

Cost 
Profit Function

Division  1A DA1 1x  10 5x 0≤ ≤ 2
1 1 1( 0>a x a ) 1 

21
1 1 1J px a x= −

 Firm A 
Division  2A DA2 2x  20 5x 0≤ ≤ 2 2 2( 0>a x a ) 2

 

1
2 2 2J px a x= −

 

Firm B  DB y  0 5y 0≤ ≤  2 ( 0>by b )  2 2J py by= −  

 
 
 
Assume that the product is sold at a market price p which is determined based on a demand 

function of the form [26]: 

0 1 2( )= − + +p p x x y    ( )                                               (4.2) 0 0p >

The objective of each decision-maker is to maximize the profits of his/her division.  We note that 

since Firm B has only one decision variable, its weight vector will be a fixed scalar 2ˆ 1ξ = .  The 

Leader of Firm A, however, has to decide on a solution in the noninferior set of its two divisions.  

The noninferior set for Firm A is determined by considering an objective function of the form 

  where 01 1
1 2(1 )J Jα α= + − 1J 1α≤ ≤ .  Using the results in (3.17) with 1

1
α

ξ
α

 
=  − 

and 2ξ 1=  we 

have 

1

1

2

11 0

2 0

0

ˆ2 (1 ) 1
ˆ1 2(1 ) (1 ) (1 )(

1 1 2(1 )

xa p

2 )x p a
b py

ξ

ξ

ξ

α α
α α α

 +      − − = − −     +     

α 





.                       (4.3) 
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 The necessary and sufficient conditions (3.18a) and (3.18b) for an NNS to exist are satisfied 

provided: 

a) 1

1 1

1 1 1 1( ) (
2 2 1 2 2 1

a
a a

α− < < +
+ +

1 )a , and      (4.4a) 

  b) .    (4.4b) 1 1
ˆDet( ) 2 (1 )(4 3 4 2) (2 1) 0R a b a b bξ α α= − + + + − + ≠

Under these conditions, we get the following NNS solutions:  

2
1 2 3

1
1 1

2
1 2

2
1 1

2
1 2 3

1 1

ˆ ( )
2 (1 )(4 3 4 2) (2 1)

ˆ ( )
2 (1 )(4 3 4 2) (2 1)

ˆ( )
2 (1 )(4 3 4 2) (2 1)

v v vx
a b a b b

u ux
a b a b b
h h hy
a b a b b

α αα
α α

α αα
α α

α αα
α α

 + +
= − + + + −

 + = − + + + −
 + +
 =

− + + + − +

+

+

0p

2a

                                                 (4.5) 

where 

1 2 0 2 2 0 3 0 22(2 1) ,    (2 3) 3(2 1) ,    ( 1 2 ) 2 (1 )v a b p v a b b p v b p a b= − + = − + + + = − − + + , 

1 1 1 2 1 0 2 1 1 2 1(3 ) 2(1 )(1 2 ) ,     (3 ) (2 1)(2 1)u a b a b a a b p u a b a b a a b= + + + − + + = − + + + + + + , 

1 1 2 1 0 2 1 2 1 0 32(1 ) 2 ,     (2 3) 2 ,     h a a a p h a a a p h= − + − = + + = − . 

As we can see from (4.5), the Noninferior Nash strategies are functions of the weight 

parameterα  provided α  satisfies conditions (4.4).  Now, let us suppose that the Leader (or 

CEO) of Firm A wants to choose a weight α  so as to maximize his firm’s market share.  That is, 

he wishes to maximize the objective function:  

                                                1
1LJ x x2= +                                                                            (4.6) 

Considering the results in (4.5), the Leader objective function (4.6) can now be expressed as 

                             
2

1 1 1 2 2 3

1 1

( ) ( )ˆ ( )
2 (1 )(4 3 4 2) (2 1)L

v u v u vJ
a b a b b
α αα

α α
+ + + +

=
− + + + − +

                                          (4.7) 
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Since maximizing this function analytically with respect to α is not practical, we will illustrate 

the results using the following numerical values for the various parameters in the problem.  

Let , ,  and .   For these values, conditions (4.4a-4.4b) are satisfied 

provided

1 1=a 2 50a =

0.15

0.8=b

0.85

0 200p =

α≤ ≤ .  Plots of 1ˆd L1 2 1 2ˆ ˆ ˆ ˆ ˆ( ),  ( ),  ( ),  an ( ) ( ) ( )x x y J x xα α α α α α= +  and plots of 

the resulting product price ˆ ( )p α and profits 1 1
1 2

ˆ ˆ( ) a ( )J Jnd α α  for divisions , 1 2and A A

1
1̂ ( ) + J 1

2
ˆ ( )Jα α  for Firm A, and 2ˆ ( )J α  for Firm B, for values of α  in this range are shown in 

Figures 4.1-4.3, respectively.   

 

 

1 2ˆ ˆFirm A ( )x x+

ˆFirm B ( )y  

 

Figure 4.1 Production outputs 1 2ˆ ˆ ˆ( ),  ( ),  (x x yα α α
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2 2ˆDivision A  ( )x

1 1ˆDivision A  ( )x

 

),  and
 

1
1 2

ˆ ˆ ˆ ( ) ( ) ( )LJ x xα α α= +  as functions ofα   



ˆ ( )p α

Figure 4.2 P
 
 

Firm B  

Figure 4.3 Profits of

 

 

rice ˆ ( )p α as a function of α  

Firm A

 Firm
1Division A

 A and F

 55
2Division A

irm
 

 B as functions of α   



It is clear from Figure 4.1 that the maximum of 1
1 2

ˆ ˆ ˆ( ) ( ) ( )LJ x xα α= + α occurs when ˆ 0.4α = , 

i.e.,  and has a value of .  In other words, with this choice of 1 0.4ˆ
0.6

ξ


= 
 




1ˆ ˆ( ) 57.10LJ α = 1ξ̂ the 

Leader (CEO) of Firm A is able to maximize his firm’s total market share while at the same time 

keeping a Nash equilibrium between his and the other firm.  We note that if the Leader’s 

objective is to maximize the total profits of Firm A, the choice of α̂ should be at 0.5 instead of 

0.4 as is clear from Figure 4.3. 

Plots of the reaction sets for both divisions in Firm A, and for both firms, are shown in 

Figure 4.4 and Figure 4.5 respectively.  We note that the reaction set of Firm B in actuality 

should be a three-dimensional plot representing the reaction for all possible choices 

of

y

1  and 2x x .  Since producing this plot would require considerable effort in visualizing three 

dimensional surfaces, we only produced a subset of this plot, shown in Figure 4.5, representing 

the reaction for all possible choices of y 1 2x x+ .  From this plot, it is clear that all the NNSs are 

concentrated in a small region bounded in the range 35 50y≤ ≤ and 1 2 60x x40 ≤ + ≤ .  We zoom 

in on this region in Figure 4.6.   
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Figure 4.4 Reaction sets of Division A1 and Division A2 of Firm A 
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 Figure 4.5 Reaction sets of Firm A and Firm B 
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Figure 4.6 Noninferior Nash solutions (marked as circles) for different values of α  
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4.3 NNSL TO ROUTING CONTROL PROBLEMS 

The problem of routing is encountered in all and every network shared by a large number of 

users.  It is necessary to multiplex the resources of communication traffic in order to assign 

dedicated links of sufficient capacity to all the users to meet their needs.  Traditionally, such 

networks are designed and built as a single entity with a single administration and objective 

under the assumption that users are passive and would cooperate to enhance the overall 

performance of the network.  In modern communication networking, however, this assumption 

of a single administration is no longer valid since the users now have various, even 

contradictory, performance measures and demands.  One possible way of managing such a 

network is to let the individual users compete with each other in a way that allows each of them 

to reach its optimal working state.  In such a situation, users may change their control strategies 

based on the state of the network.  A change in the control by one user is likely to affect other 

users’ performance and cause them to change their control strategies as well, resulting in a 

dynamic system.  At the end, the outcome of the network is heavily dependent on the actions 

taken by all the users, and consequently the problem for each user to determine its optimum 

control actions, is be best analyzed within the framework of game theory.  

 The literature on the analysis of equilibria in competitive routing control problems using 

game theory is very rich.  Routing problems in communication networks shared by selfish users 

are modeled as noncooperative games in [27],[28],[29],[30] and [31] or as noncooperative 

repeated games in [32].  The concept of a Nash equilibrium, a main concern in 

[27],[28],[29],[30] and [31], ensures that no user find it beneficial to change its behavior 

unilaterally.  Conditions for the existence and uniqueness of Nash equilibria are presented based 
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on various types of cost functions for the users, such as polynomial link holding functions [27], 

utility functions in the form of “throughput/delay” [28], utility function in the form of 

“throughput-delay” [29], communication quality functions [30], and average delay functions 

[31],[32].   However, Nash equilibria are generically inefficient and exhibit suboptimal network 

performance.  This deficiency can be overcome with the intervention of a network agent, say a 

network manager or a team leader.  Stackelberg strategies are applied to address this issue 

[33],[34].   Considering a network manager who acts as a Stackelberg leader and controls a 

portion of the network flow, Korilis, et al. [33] derived necessary and sufficient conditions for 

the existence of a maximally strategy for manager to drive the system into a global optimum.  

Note that the leader considered in [33] is a special user in the system, and hence the problem is 

not formulated within a hierarchical structure.   Basar, et al. [34] introduced a hierarchical 

network between a Stackelberg leader, who sets the price per unit of bandwidth, and multiple 

Nash followers, who decide on their flow rates.  The leader’s objective is to maximize the total 

revenue it collects and the followers choose their levels of flow so as to maximizing an objective 

function that represents a tradeoff between the disutility of the payment to the leader and 

congestion costs on the link they use.  They observed that the revenue-incentive for the network 

increases the available capacity (or decreases the delay) in the network in proportion to the 

number of users in the network.  In [33],[34], however, only one team leader is considered.   

In a network with more complicated organization, control may be shared by competing 

teams of users rather than single users.  Teams are groups of users that share a common 

objective.  With this structure, it is possible to envision the existence of a leader (or manager) for 

each team, whose function is to centralize all decisions for that team.  Each type of entity can be 

considered as a user.  For example, a set of different companies, each with different classes of 
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traffics such as data, audio, image or video, each class of traffic controlled by a user,  in the same 

neighborhood use wireless local area networks and share the same internet resource to send their 

traffics.  The network manager (or team leader) for each company attempts to optimize the 

performance of all the traffics sent from his company.  Obviously, team leaders usually have no 

choice but compete with each other to try to gain their own users over the network.  One natural 

way of managing such a resource is allowing the users belonging to identical team leader to 

cooperate with each other and letting those team leaders compete with each other and settle to an 

equilibrium where each of them reaches its optimum operation point.  The diagram of such a 

hierarchical structure is given in Figure 4.7.  A similar structure is considered in [35].  However, 

each team leader only considers the average performance of all his entities (or users) as his 

objective in [35].  Of practical interest, each user in a team may have its own objective to meet.  

Team leaders may also have their own objectives different from those of their users.   

In previous section, when using NNSL, we note that an optimization problem rather than a 

game is considered on the higher level.  In this section, we will apply NNSL to a simple network 

consisting of a common source node and a common destination node interconnected by a number 

of parallel links.  This network is shared by several teams of users and each team has a Team 

Leader (TL) to coordinate the actions of his team members.  The users within each team 

cooperate for the benefit of their team.  The teams, on the other hand, compete among 

themselves in order to achieve an objective that relates to the overall performance of the 

network.  Our main goal is to devise a control scheme for the modern parallel-link networks and 

investigate the effectiveness of NNSL in the problem of splitting load among those link 

resources, i.e., routing problem. 
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Figure 4.7 Diagram of hierarchical structure in network routing 
 

 

 

4.3.1 Model and problem formulation 

 
We present a generic parallel-link network model and formulate the routing problem within the 

framework of a multi-team system.  We consider a set { }1, , NN = "  of teams and a set of Team 

Leaders (TLs) TL .  Each team consists of several users that share a set 1{ , , NTL TL= " }

{ }1, , LL = "  of communication links, interconnecting a common source and a common 

destination node.  Let  be the capacity (or service rate) of link l, lc ( )1, ,c c c= " L  the capacity 

configuration, and the total capacity of the system of parallel links.  Suppose 

that

L

1
l

l

C c
=

= ∑

1 2 Lc c .  The ic< ( 1i =

X
i

< <" th  user has a throughput demand that is Poisson process 

with average rate 

, , X" )n

λ >0.   Let 
N

1 1

Xn

X i

X
iλ λ

= =

= ∑∑  be the total throughput demand of all users in the 

  63



networks.  Furthermore, for stability reasons it is supposed that the total throughput demand is 

less than the total capacity of the parallel links, i.e., λ < C .   The  ith user in team X ships its flow 

by splitting its demand X
iλ  over the set of parallel links.  Let ( )X

if l

1,0

denote the expected fraction 

of flow that user i in team X sends on link l.  The user flow fraction configuration  

L)

( )X
i

X X f l= ∈ = ≤

), f
X

X

FX

)N

F

                                                                                    (4.8) (f (1), , (X X X
i i if f= " )

is called a routing strategy of user i in team X and the set  

L
L

1

F f : 0 ( ) , ( ) 1,X X X
i i i i l i

l

f l c f l l Lλ
=

 
≤ ≤ ≤ ∈ 

 
∑\                (4.9) 

of strategies that satisfy the user’s demand is called the strategy space of user i in team X.  The 

routing control profile for the users from team X is denoted by 

( 1f f ,X X
n= "                                                            (4.10) 

and takes values in the product strategy space 

1F XnX
i i== ⊗ .                                                                (4.11) 

The system routing control profile is given by 

( 1f f , , f= "                                                               (4.12) 

and takes values in the overall product strategy space 

N
1F X

X == ⊗ .                                                                (4.13) 

Such a system is shown in Figure 4.8.  
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Figure 4.8 Two-node parallel-link communication network with multiple teams of users 
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The user i from team X has certain routing decision ( )1), , (X X X
i i if f= "f (  to make for 

the purpose of, for example, minimizing their average delay time.    In this research, we consider 

the average delay as a cost function for each user.  In particular, we let the service requirement of 

each user be exponentially distributed with mean 1, without loss of generality.  We concentrate 

on the  delay function [36]

L)

1/ /M M   ( )d l  on link l  ( Ll∈ )  : 

           

N

N
1 1

1 1

N

1 1

1 ( )
( )

( )

( )

X

X

X

n
X X

i i ln
X X X i

l i i
X i

n
X X

i i l
X i

f l c
c f l

d l

f l c

λ
λ

λ

= =

= =

= =


<

 −= 

 ∞ ≥


∑∑
∑∑

∑∑

                                     (4.14) 

Thus, the total delay for user i from XM  is: 

                    .                                                                       (4.15) 
L

1

( ) ( )X X X
i i i

l
d f lλ

=

=∑ d l

The average delay, i.e., the cost function, for user i in team X under control strategy profile f  to 

be minimized is given by 

i
j

                      
L

1

(f ) ( ) ( )
X

X i
i iX

li

dJ f
λ =

= =∑ X l d l                                                                   (4.16) 

where  and, obviously, this cost function depends on the control strategies of other 

users also.    

: FX
iJ → \

Team leaders may have various forms of objective functions, denoted by , at 

a higher level.  In this section, we consider two types of objective functions for team leaders: 

efficiency objective function (Type 1) and flow cost function (Type 2).  Team leader with the 

objective function of Type 1 wants to maximize the efficient utilization of highest capacity link. 

This objective function is given by  

: FX XP → \
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Type 1:                                                                                               (4.17a) 
1

(f ) ( )
Xn

X X X X
i i

i
P λ

=

=∑ f L

Team leader with the objective function of Type 2 is to minimize the total cost of flow for 

his users.  Let ( )Xp l be the cost paid by users from team X for their flow on link l, andTL  

wishes to minimize the total cost of the flow.  This objective function is given by 

X

Type 2:                                                                            (4.17b) 
L

1 1
(f ) ( ) ( )

Xn
X X X X X

i i
l i

P p l fλ
= =

 
= 

 
∑ ∑ l 

N

N

X

where .    : FX XP → \

The optimal routing problem is formulated as 

               for each TL in the system;        (4.18a)           f

f

max (f ) for Type 1 f F ,          

or min (f ) for Type 2 f F ,          

X

X

X X X X

X X X X

P X

P X

∈ ∈

∈ ∈

f
. . min (f ) f F, f F , , 1, ,

X
i

X X X
i i is t J X N i n∈ ∈ ∈ = "    for each user from TL X.     (4.18b) 

4.3.2 Team optimization for single-team routing control problems  

  
Before applying NNSL, let us consider the team optimization problem [19] in routing control, 

i.e., N=1.   For simplicity, we consider two users with the throughput demand of 1λ  and 2λ , 

respectively,  and two parallel links in the system with capacities of  and c , respectively.  Let 1c 2

x  and y denote the fraction of flow demand of user 1 and user 2 will be assigned to link 1, 

respectively.  According to constraints in (4.9), 1-x (or 1-y) is the fraction of flow demand of the 

user 1 (or user 2) will be assigned to link 2.  The system is illustrated in Figure 4.9. 
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Figure 4.9 Single-team routing problem   

 

 

As expressed in (4.16), the cost function  for user i is given by iJ

1
1 1 2 2 1 2

1( , )
(1 ) (1 )

x xJ x y
c x y c x yλ λ λ λ

−
= +

− − − − − −
                                      (4.19) 

and 

2
1 1 2 2 1 2

1( , )
(1 ) (1 )

y yJ x y
c x y c x yλ λ λ λ

−
= +

− − − − − −
                                      (4.20) 

In the team optimization problem, both users can cooperate with each other and there is a leader 

for the system, whose objective is to maximize the efficient usage of the link with high capacity 

(objective function of Type 1).  The objective function for the team leader is given by 

   1 2( , ) (1 ) (1 ) LJ x y x yλ λ= − + −                                       (4.21) 

The team optimization problem can be formulated as: 

                                                                                                                            (4.22) 
,

max ( , )Lx y
J x y

                            s.t.  and                                                              (4.23) 1min ( , )
x

J x y 2min ( , )
y

J x y

                                  c x1 1 2 yλ λ− − >0 and c x2 1 2(1 ) (1 )yλ λ− − − − >0                                (4.24) 

                                   0 , 1≤ ≤x y                                                                                             (4.25) 
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The cost functions and  are convex with respect to x and y over the convex 

space given by (4.24) and (4.25).  Thus, the optimal solution for (4.23) can be figured out by 

minimizing a weighted scalar-valued cost function 

1( , )J x y 2 ( , )J x y

( , ; )αJ x y  as follows: 

                 1,
min ( , ; ) ( , ) (1 ) ( , )2α α α= + −

x y
J x y J x y J x y                                                (4.26) 

where α  is a weight factor satisfying 0 1α≤ ≤ . 

           As we know, for each α , there exists an optimal solution ( * *( ), ( )α αx y ).  Therefore, the 

infinity number of optimal solutions results from the infinity number of candidates of α .  Since 

the cost function of team leader on the higher level is also determined by the optimal controls x 

by user 1 and y by user 2,   becomes a function of weight factor ( ,LJ x )y α .  In other words, the 

objective function of team leader is used to decide the optimal choice of α .    

           For example, let =400, =100,1p 2p 1λ = 1, 2λ = 3, 1c = 3 and 2c = 6.   The convex set given 

by (4.24) and (4.25) is expressed as the blue-shaded area shown in Figure 4.10.  The cost 

function of user 1, , is given in Figure 4.11.  We observe that   is convex with 

respect convex set given by (4.24) and (4.25).   However, the objective function for user 1, the 

average delay, is extremely large with respect to the decisions around the boundaries 

1( ,J x )y 1( , )J x y

1 1 2c x yλ λ− − =0 and c x2 1 2(1 (1) )yλ λ− − − − =0.   Therefore, in practice, user 1 has to avoid the 

use of those decision choices.    The objective functions and  in reasonable 

areas are given in Figure 4.12.  After figuring out all the possible cooperative controls for both 

users, i.e., (

1( ,J x )y 2 ( ,J x )y

*( ) * ), (α αyx ) for allα ’s, we substitute these solutions to (4.21) to calculate the 

optimal value of LJ .  The result is shown in Figure 4.13: *α =0.25, 0.03,* *( )α =x * *( )α =y 0.3, 

0.3456 , 0.3838 and 3.07.    *
1 =J J *

2 =
*
LJ =
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Figure 4.13 Objective function for team leader w.r.t. different values of weight factor 
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4.3.3 NNSL for multi-team routing control problems 

 
In the team optimization problem as explained above, one assumption is that all the users in the 

system want to cooperate with each other.  Naturally, it should be assumed that the users in the 

same team can cooperate with each other for the socially optimum and will compete for the 

limited common resources with the users in other teams.   

For simplicity, assume there are two teams, called HET and TELE, respectively, and each 

team has two users also.  We still consider a two-node parallel-link communication network as 

before.  The total system capacity is 
2

1
X

X
C c

=

= ∑ .  Let the throughput demand of user i from HET 

arrives at the system with rate H
iλ  (i=1,2).  The total throughput demand for the users from HET 

is 
2

1

H H
i

i
λ λ

=

=∑ .  The fractions of flow of user 1 and user 2 from HET assigned to link 1 are x  

(∈ ) and (∈ ), respectively.  Let the throughput demand of user j served by TELE 

arrives at the system with rate 

[0,1] y [0,1]

T
jλ  (j=1,2).  The total throughput demand for TELE customers is 

2

1

T T
j

j

λ λ
=

=∑

[0,1]

.   The fractions of flow of user 1 and user 2 from TELE assigned to link 1 are 

(∈ ) and v (∈ ), respectively.    Furthermore, we only consider the total capacity can 

accommodate the total user demand, that is, 

u [0,1]

λ λ+ ≤N T C .  The whole system is illustrated in 

Figure 4.14.  
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Figure 4.14 Two-team routing problem 

 
 
 
 

As before, each user wants to minimize its average delay in the system.   It can be 

formulated as the following optimal problem:   

1
1min ( , , , )

( , , , ) ( , , , )
H

x

xJ x y u v
g x y u v h x y u v

x−
= +                                                     (4.27) 

2
1min ( , , , )

( , , , ) ( , , , )
H

y

yJ x y u v
g x y u v h x y u v

y−
= +                                                     (4.28) 

           for the users from HET, and  

      1
1min ( , , , )

( , , , ) ( , , , )
T

u

uJ x y u v
g x y u v h x y u v

u−
= +                                                   (4.29) 

                       2
1min ( , , , )

( , , , ) ( , , , )
T

v

vJ x y u v
g x y u v h x y u v

v−
= +                                                  (4.30) 

            for the users from TELE. 

 s.t.                     and                                    (4.31) ( , , , ) 0g x y u v > ( , , , ) 0h x y u v >

                               0 , , , 1≤ ≤x y u v                                                                     (4.32) 

  75



where 

1 1 2 1 1( , , , ) H H Tg x y u v C x y u vTλ λ λ λ= − − − − , 

and 

2 1 2 1 1( , , , ) (1 ) (1 ) (1 ) (1H H T Th x y u v C x y u vλ λ λ λ= − − − − − − − − ) . 

Clearly, this optimal problem can be formulated as a multi-team system with N=2 

and .   The solution to this problem is a noninferior Nash strategy.  The average delay 

objective functions 

1 2 2n n= =

H
iJ  and  (i, j=1,2) are strictly convex over the convex space given by 

(4.31) and (4.32).   According to Theorem 3.1, there exists a noninferior Nash strategy under a 

given weight vector 

T
jJ

( ,1 ), ( ,1 )ξ ξ α α ξ β β= = − = −
N T 

2

 to the routing problem for the users 

served by two managers.  The linear combinational weighted objective functions for the users are 

given by 

                                    1( ) (1 )H HJ Jα α α= + − HJ

2
TJ

                                                 (4.33) 

                                                                                           (4.34) 1( ) (1 )β β β= + −T TJ J

Note that the noninferior Nash strategies are the functions of α and β , i.e., 

* * * * * *( , ), ( , ), ( , )α β α β α= = =x x y y u u β and * *( , )α β=v v .  Since there are infinite 

combinations of α and β , we still need to decide the optimal weight vector *ξ .  We introduce 

different types of objective function for the two TLs: 

                              (Type 1)                            (4.35) 
* *

* * * *
1 2

( , )
max ( , ) (1 ) (1 )H H H

L
x y

J x y x yλ λ= − + −

and 

    (Type 2)                   (4.36) 
* *

* * * * * *
1 1 2 2 1 2( , )

min ( , ) ( ) ( (1 ) (1 ))T T T T T T T
Lu v

J u v p u v p u vλ λ λ λ= + + − + −
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The leader from HET wants to maximize the throughput on the link with highest capacity 

( ), and the leader from TELE wishes to minimize the total cost of usage of different 

links.  Let 

2C C> 1

1
Tp and 2

Tp  be the price per flow for link 1 and link 2, respectively.  It is clear that 

and  are the functions of ( )H
LJ ⋅ (T

LJ ⋅) α  and β  as well.  The optimal choices of α and β can be 

determined by figuring out a Nash solution to a noncooperative game between two leaders with 

respective to the objective functions ( , )H
LJ α β and ( , )T

LJ α β .  Since it is not easy to obtain the 

analytical expression of NNSL to such a complicated hierarchical decision-making system, we 

use a numerical example to illustrate the properties and effectiveness of NNSL. 

  Let c , c , , 1 3= 2 6= 1 1Hλ = 2 3Hλ = , , 1 0.5λ =T
2 1λ =T , 1 10Tp =  and .  The 

corresponding NNSL (optimal routing fractions) under the managers’ objective functions are 

given in Table 4.2. 

2 30Tp =

 
 
 

Table 4.2 Noninferior Nash strategies under the team leaders’ objective functions 
 
 

*α  *β  *x  *y  *u *v *
1
HJ  *

2
HJ  *

1
TJ  *

2
TJ  *H

LJ *T
LJ

0.25 
0.8,0.85, 

0.9,0.95,1 
0.7 0 0 1 0.6748 0.4545 0.4545 0.7692 3.3 25 

 
 
           
 
 
 

For the purpose of comparison, we consider the situation where all the users choose the 

best strategies and they don’t consider the corresponding manager’s objective function.  Clearly, 
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these strategies among four users compose a Nash equilibrium strategy, which is given in Table 

4.3.  In other words, no user has a rational motive to unilaterally deviate from its equilibrium 

strategy.  

 

Table 4.3 Nash strategies for four users 
 
 

*x  *y  *u  *v  *
1
HJ  *

2
HJ  *

1
TJ  *

2
TJ  *H

LJ  *T
LJ  

0.2 0.3 0.02 0.2 0.5424 0.5574 0.5194 0.5424 2.78 40 

 

 

Comparing the results in Table 4.2 and Table 4.3, we observe that, using Nash strategy, some, 

but not all, users may gain better in reducing average delay time.  However, considering the team 

leaders’ cost functions and using NNSL, the total flow through link 2 from HET is 3.3, which is 

greater than 2.78 resulting from Nash strategy, and the cost paid by the manager from TELE is 

25, which is less than that when implementing Nash solution.  In other words, the objectives for 

both team leaders are improved by using NNSL. 

 
 

4.4 CONCLUSIONS 

In this chapter, we developed a new control strategy NNSL for the multi-team systems where 

each team has a leader with an objective usually different from those of the team members.  This 

strategy is extended from Noninferior Nash Strategy.  The team leader’s objective function is 

used as a criterion for selecting a particular solution from the set of NNS for that team.  Because 

each team’s collective choice of control variable, in general, will depend on the choice of control 
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variables by all other teams, each leader’s objective function will also depend on all the other 

leaders’ control variables.  The team leaders’ optimization problems, therefore, will need to be 

solved within the context of game theory as well.  We use the examples of duopoly 

microeconomics and routing control in a two-node parallel-link network to illustrate the 

effectiveness of NNSL in improving the overall system performance.   
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5.0 GAME-THEORETIC MODELING AND CONTROL OF AN EXTENDED 

COMPLEX SYSTEM: MILITARY AIR OPERATION 

 
As we know, a large-scale multi-team system involving many complex relationships such as 

cooperation among the members of a team and competition among the different groups.  A 

military air operation is a good example of such an extended complex system.  The schematic 

diagram of this system is shown in Figure 5.1.  The military system usually includes two 

adversaries: an attacking force labeled as Blue and a defending force labeled as Red.   Each force 

often has one top commander, and several fighting units (FUs), which are grouped and directed 

by unit commanders.   In order to win a battle, two forces have to use the resources available to 

them to carry out a campaign against each other.  In addition, the fighting units in either force 

must coordinate with each other in order to accomplish the assigned tasks efficiently.  Obviously, 

the military operation system reflects important features of a large-scale multi-team system.  

Thus, optimizing the coordination for such system allows us to investigate how to control a 

complex multi-team system efficiently. 

Model-based control of a military operation system provides us a convenient way to study 

the properties and performance of the extended complex system at a theoretical level.  This kind 

of control is based on a dynamic attrition model of the military operation.  A state space dynamic 

model of an extended complex military operation that involves two opposing forces is recently 

developed in [37].  Instead of only calculating the attrition for forces in an air combat, this model 

is expressed using the game theoretic approach and the state space approach, and hence is 
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amenable for the application of results from modern optimal control [16] and dynamic game 

theories [12].  The model considers an attacking Blue force and a defending Red force as shown 

in Figure 5.1.   The model is dynamic in nature with state variables whose evolution with time 

depends on the choice of control actions by both forces.  It is extended in the sense that the effect 

of each opposing force, and the environment if any, are explicitly included in the model.   The 

Blue force is composed of semi-autonomous aerial vehicles that consist of Blue Fighters (BFs) 

and Blue Bombers (BBs).  The fighters are essentially SEAD (i.e., Suppressing Enemy Air 

Defenses) fighter planes whose purpose is to attack and suppress the Red air defenses, and the 

bombers are planes whose purpose is to destroy the Red Fixed Targets (FTs) such as bridges, 

refineries, air bases, etc.  The Red force is composed of ground units that consist of Troops 

(RTs), such as tanks and mobile vehicles, and Air Defenses (RDs) such as SAM (i.e., Surface to 

Air Missile) batteries and radars.  In addition, FTs are the units that the Blue force is planning to 

attack and the Red force is planning to defend.  For each force, the command and control 

decisions are made at two levels:  a top-level commander, followed by lower level unit 

commanders.  The controls for a unit include relocation control, target selection, and fire control.  

The roles of a top commander involve mission planning, initial resource allocation and corridor 

assignment, etc.   Each commander has an associated objective function, and these objective 

functions, even for the same force, may differ from each other for a variety of reasons. These 

objective function models will be used for investigating a range of possible game-theoretic 

control strategies.   

In this chapter, we will introduce the state space dynamic model of this military air 

operation and the moving-horizon Nash strategies mainly used in controlling this system. 
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Figure 5.1 A military air operation system 
 
 
 

5.1 DESCRIPTION OF MODEL 

5.1.1 The unit’s state variables 

 
Let  denote the number of units of each type involved in the 

operation.   Although the model can be derived in the continuous time-space domain, we will 

initially assume that time is sampled into stages 

, , , , and BB BF RT RD FTN N N N N

0,1,2, ,k K= "  where K is the total number of 

stages, and that the scenario is taking place on a two-dimensional terrain sampled in the x-y 

directions into a square grid.   Continuous time and three-dimensional continuous space will be 

considered as an extension of this work at a later time.   
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Consider the unit of typethi X , where { ,  ,  ,or }X BB BF RT RD= .  Let the vector 

( )
( )

( )

X
X i
i X

i

x k
k

y k
η

 
= 
 

  denote its location at time , where k x  is the horizontal coordinate and is the 

vertical coordinate.  In each force, the individual elements are grouped into units, and the 

elements in each unit are referred to as platforms.  Thus a unit of BBs with ten platforms is a 

group of ten Blue Bombers acting as a unified entity.  Each platform in a unit is carrying a 

certain number of weapons.  Instead of considering individual weapons, we will characterize 

each unit by the average number of weapons per platform that it possesses.  Let denote 

the number of platforms and let w  denote the average number of weapons per platform at 

time in that unit.  We use the word platform as a generic description of the type of force in 

each of the units in the model (e.g. fighters, bombers, troops, etc.).  We assume that the platforms 

of a given unit carry only one type of weapons.  Thus, for each moving unit in the theatre of 

operations, we will define a 4-dimensional state variable: 

y

)(kp X
i

)k(X
i

k

( )
( )

( )
( )
( )

X
i
X

X i
i X

i
X
i

x k
y k

z k
p k
w k

 
 
 =
 
 
  

,  { , , , }X BB BF RT RD= ,   ,  1, 2, , Xi N= " 0,1,2,3, ,k K= " .      (5.1) 

Combining all the state variables for each type of forces into one vector, we can write: 

 .         (5.2) 
1 ( )

( )
( )X

X

X

X
N

z k
z k

z k

 
= 
  

# 




The overall state vectors corresponding to the Blue and Red forces are therefore defined as: 

 ,  and       (5.3) 
( )

( )
( )

BB
B

BF

z k
z k

z k
 

= 
 









=

)(
)(

)(
kz
kz

kz RD

RT
R
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Now, for the fixed targets, let their fixed positions be determined by the 

vectors , .  Let denote the number of platforms in the i fixed 

target at time k.   These platforms carry no weapons and are subject to attack by the Blue forces.  

We can define a state vector for the fixed targets as: 

FT
FT i
i FT

i

x
y

η
 

=  
 

1,2, , FTi N= " )(kp FT
i

th

      ,                                                                           (5.4) 
1 ( )

( )
( )FT

FT

FT

FT
N

z k
z k

z k

 
 =  
  

# 0,1,2,3, ,k = " K

where  ( )
( )

0

FT
i
FT

FT i
i FT

i

x
y

z k
p k

 
 
=

 
  




N,           i .       1, 2, , FT= "

Combining the state vectors for the Blue and Red forces as well as the state vector for the fixed 

targets, we can define a dimensional state vector for the 

entire operation as: 

4 ( )BB BF RT RD FTN N N N N× + + + +

          (5.5)  
















=
)(
)(
)(

)(
kz
kz
kz

kz
FT

R

B

5.1.2 Two-level hierarchical controls and control constraints 

 
(1) Unit Commander Controls  

We will assume that each moving unit commander in Figure 5.1 has the following control 

(or command) variables at each time : k

• Relocate control:  A unit can decide to relocate (move) to another adjacent point on the 

grid.  The corresponding control command is:   
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







=

)(
)(

)(
kb
ka

kr X
i

X
iX

i ,   where { }( ) 1,0, 1X
ia k ∈ − +  and { }( ) 1,0, 1X

ib k ∈ − +   (5.6) 

where corresponds to a move in the x-direction and corresponds to a move in the y-

direction. There are eight neighboring locations that each unit can relocate to, as 

illustrated in Figure 5.2.  The option corresponds to the unit deciding to remain in its 

current location.   

a b









0
0

 

 

 
 
 
 
 
 
 
 

 
 

x direction

y direction

 
 

Figure 5.2 Relocate commands 
 

 

• Fire Control: Each unit has an option to fire or not to fire.  When a unit decides to fire, it 

must decide on the salvo size .  There is a finite range from which the average salvo 

size at each time can be chosen.  That is

( )X
ic k

k  

          (5.7) ( ) [0,  ( )]X
i ic k C k∈ X

 where (C X is the largest salvo size that can be fired at time .  Note that if a unit 

decides not to fire, then c . 

)ki k

0)( =kX
i
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• Choice of Target:  Each unit can fire only at one target of the opposing forces.  If  

denotes the choice of target for unit i at time k, then

)(kd X
i

 

( ) { , , for some j}BB
i j j jd k RT RD or FT=      (5.8) 

( ) { , , for some j}BF
i j j jd k RT RD or FT=      (5.9) 

( ) { , for some j}RT
i j jd k BB or BF=                (5.10) 

( ) { , for some j}RD
i j jd k BB or BF=                (5.11) 

Combining all the command variables into one 4-dimensional control vector, we have the 

following control vector for each unit: 

                                            .                 (5.12) 





















=

)(
)(
)(
)(

)(

kd
kc
kb
ka

ku

X
i

X
i

X
i

X
i

X
i

We will now define a composite control vector for each type of forces: 

       ,  and u k

1

2

( )
( )

( )

( )BB

BB

BB
BB

BB
N

u k
u k

u k

u k

 
 
= 
 
  

#



1

2

( )
( )

( )

( )BF

BF

BF
BF

BF
N

u k
u k

u k

 
 
 =  
 
  

#
           (5.13) 

for the Blue units and  

 

1

2

( )
( )

( )

( )RT

RT

RT
RT

RT
N

u k
u k

u k

u k

 
 
= 
 
  

#

 ,  and  

1

2

( )
( )

( )

( )RD

RD

RD
RD

RD
N

u k
u k

u k

u k

 
 
 =  
 
  

#
           (5.14) 

 

for the Red units.   
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The overall control vectors for the Blue and Red forces can be represented as:  

 

( )
( )

( )

BB
B

BF

u k
u k

u k
 

= 
 

 ,  and  .            (5.15) 







=

)(
)(

)(
ku
ku

ku RD

RT
R

The dimensionality of these vectors will be and respectively. 4 ( )BB BFN N× + )(4 RDRT NN +×

There are numerous constraints that the above control variables must satisfy.  These are 

• Relocate-Fire constraint: For simplicity, we will assume that a unit cannot relocate and 

fire at the same time.  That is, a unit can fire its weapons only if its relocate command 

is . This constraint can be expressed as:







0
0

 

1]1)([)( ≤−+
∞

kcukr X
i

X
i .              (5.16) 

In the above expression the infinite norm 
∞

)(kr X
i is defined as follows: 

 


 ==

=
∞ Otherwise,1

0)( and 0)( if,0
)(

kbka
kr

X
i

X
iX

i            (5.17) 

That is, 
∞

)(kr X
i is equal to 0 if the unit decides to stay in the same location and is equal 

to 1 if the unit decides to relocate.  The notation is the standard discrete-time unit 

step sequence defined according to 

u[ ]n

               (5.18) 
0, 0

u[ ]
1, 0

n
n

n
<

=  ≥

Thus is equal to 0 if the unit decides not to fire and is equal to 1 if the unit u[ ( ) 1]X
ic k −

decides to fire.  The unit step notation u[.] should not be confused with the control 

notation u(k) used throughout this thesis. 

  87



• Fire-Target constraint: We will assume that no two units of the same force can fire at the 

same target of the opposing force.  The corresponding constraint is 

1 1
u[ ( ) 1] u[ ( ) 1] 1

BB BFN N
BB BF
i i

i i
c k c k

= =

− + − ≤∑ ∑    for each Red target j          (5.19) 

and 

1 1
u[ ( ) 1] u[ ( ) 1] 1

RT RDN N
RT RD
i i

i i
c k c k

= =

− + − ≤∑ ∑    for each Blue target j         (5.20) 

• Salvo size constraint: We will assume that ammunitions are not being replenished during 

the course of the operation.  Thus, the largest salvo size that a unit can fire is constrained 

by 

                                                  (5.21) )()1( kwkC X
i

X
i ≤+

• Speed constraints:  In order to account for different entities moving at different speeds, 

we will choose the interval between consecutive steps (i.e. k to k+1) as the time that it 

takes the fastest unit to move one position on the grid.   The relocate control of slower 

units can then be constrained to be activated only after a certain number of steps have 

elapsed, which corresponds to the time it will take that unit to move one position on the 

grid.   

(2) Top Commander Control 

The highest-level commands are the controls of the top commander of each force.  As 

shown in Figure 5.1, its purpose is to define: 

• The initial allocation of assets: That is, the numbers of platforms , and weapons 

for each moving unit. 

)0(X
ip

)0(X
iw
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• The mission planning: That includes initial team composition, initial task assignment and 

resource re-allocation. 

• The corridor assignment:  Any constraints on the paths of each unit. 

5.1.3 State difference equations 

 
As mentioned earlier, the state vector for each moving unit is a 4-dimensional vector consisting 

of the position sub-vector X
iη , the number of platforms , and the number of weapons per 

platforms in that unit.  The state vector for each fixed target consists only of the position sub-

vector 

X
ip

X
iw

FT
iη and the number of platforms .  We will now derive equations that describe the 

dynamics of the engagement between the forces.  These equations relate the state variables at 

time k+1 to the state and control variables at time k.  

FT
ip

• The position sub-vectors for all moving units in { , , , }X BB BF RT RD= change according 

to the equation of motions: 

( 1) ( ) (X X
i i ik k rη η+ = + )X k

j

                   (5.22) 

• The number of platforms for the moving units change according to the following attrition 

equations:  

1

1

( 1) ( ) 1 ( ) ( ) ( ( ), ( )) ( , ( ))

( ) ( ) ( ( ), ( )) ( , ( ))

RT

RD

N
BB BB BBRT BBRT BB RT RT
i i ij ij i j i

j

N
BBRD BBRD BB RD RD
ij ij i j i j

j

p k p k Q k P k k k BB d

Q k P k k k BB d k

δ η η δ

δ η η δ

=

=


+ = −




− 


∑

∑

k

j

     (5.23) 

1

1

( 1) ( ) 1 ( ) ( ) ( ( ), ( )) ( , ( ))

( ) ( ) ( ( ), ( )) ( , ( ))

RT

RD

N
BF BF BFRT BFRT BF RT RT
i i ij ij i j i

j

N
BFRD BFRD BF RD RD
ij ij i j i j

j

p k p k Q k P k k k BF d
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     (5.26) 

and 

• The number of platforms for the Fixed Targets change according to the attrition 

equation: 

1

1

( 1) ( ) 1 ( ) ( ) ( ( ), ( )) ( , ( ))

( ) ( ) ( ( ), ( )) ( , ( ))

BB

BF

N
FT FT FTBB FTBB FT BB BB
i i ij ij i j i j
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ij ij i j i j

j
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Q k P k k k FT d k

δ η η δ

δ η η δ

=

=


+ = −




− 


∑

∑

k

     (5.27) 

In expressions (5.23) to (5.27), the Kronecker delta, is defined as  

  
0 if 

( , )
1 if 

V W
V W

V W
δ

≠
=  =

   ,       (5.28) 

and the terms Q  and represent the engagement and attrition factors between 

the attacking unit ( unit of Y) and the unit being attacked ( i unit of X).  These two 

factors are determined according to the following expressions: 

)(kXY
ij

thj

)(kP XY
ij

th

( )
( )( ) (1 )XY XY

ij pij

Y
jXY

pij X
i

p k
p kQ k e

µ
β

−
= −       (5.29) 

and 

( )( ) 1 (1 )
Y
js kXY XY

ij w ijP k PKβ= − −       (5.30) 
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In expression (5.29), and are the number of platforms in the i unit of 

X and unit of Y respectively and represents the probability that the unit of Y 

acquires the unit of X as a target.  This probability is modified by an exponential 

factor that starts at 0 if the size of the attacking unit is much smaller than that of the unit 

being attacked and increases exponentially towards 1 as the size of the unit being 

attacked decreases in relation to the size of the attacking unit.  This can be seen in Figure 

5.3 with  and 

)(kp X
i

1XY

)(kpY
j

XY
pijβ

th

thj thj

thi

=1XYβ µ = .  The term XY
pijµ is a normalizing factor that uniformly 

scales the units of these platforms if they are of different types.   

In expression (5.30), wβ  is a weather dependent modification factor ( 0 1wβ≤ ≤

( )Y
js k

), 

represents the probability of kill under ideal weather conditions for a single weapon 

(i.e. an effective salvo size of 1) for the type of weapon used by unit j against the type of 

platform in unit i, and represents the average effective salvo size of the weapons 

fired by the unit of Y that reach the unit of X at time k.  Mathematically,  is 

computed according to: 

XY
ijPK

(Y
js )k

thj thi

 
( ) ( ) ( )

( ) ( )
( ) ( )

Y Y Y
j j jY

j X X
i i

c k p k p k
s k E

p k p k
=       (5.31) 

where ( )E ⋅  is a factor that models the inefficiencies of scale that may exist when two 

forces of unequal sizes are engaged in combat and modifies the average salvo size that 

reaches the target accordingly.   This factor was first introduced by Helmbold [38],[39] as 

a modification of Lanchester's equations, and was labeled as the effective firing 

modification factor.  In essence, this factor takes into account the fact that the larger the 

size of the attacking force with respect to the force being attacked the less effective their 
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weapons will be.  In other words, ( )E ⋅ should be a decreasing function of its argument.   

In our model, we will use the following expression for ( )E ⋅  as was suggested by 

Helmbold [38],[39]: 

( )
( )

Y Y

i i

p k
p k



1
( )

( )
( )

j jXY
pijX X

p k
E

p k

ω

µ
−

 
=
 

      (5.32) 

1where the factor 0 ω≤ ≤  is referred to as the Weiss parameter.  If the attacking unit is 

much larger than the unit being attacked, the firing modification factor will decrease the 

effectiveness of the average salvo size that reaches the target.  This is so, because of the 

physical constraints on space and timing that limit the capability of the larger attacking 

force.  On the other hand, if the force being attacked is much larger than the attacking 

force, then the firing modification factor will increase the effectiveness of the average 

salvo size that reaches the target.  This is so because the attacking force will have more 

targets to choose from.  One example of the size effect factors is given in Figure 5.4 

where 1
2

ω = . 
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Finally, we should mention that the form of equations (5.23)-(5.27) clearly 

assumes that acquisition of the target on the part of the attacking unit always occurs 

before weapons release. The number of weapons per platform for all moving units in 

{ },  ,  ,  X BB BF RT RD= changes according to the following expressions: 

                    (5.33) ( 1) ( ) ( )X X
i iw k w k c k+ = − X

i

Now, combining the position state equations (5.22), the number of platforms state 

equations (5.23)-(5.32), and the number of weapons state equations (5.33) for all forces into one 

vector, we get the final expression for the state equations 

                         (5.34) )),(),(),(()1( kkukukzfkz RB=+

where z is a dimensional state vector,  is an 

dimensional control vector of the Blue forces and is an 4  

dimensional control vector of the Red forces.  The function  is a 

vector of functions determined from equations (5.22)-(5.33) 

as described above. 

4 ( )BB BF RT RD FTN N N N N× + + + +

)RT RD FTN N N+ + +

Bu

RTN

f

4 ( )BB BFN N× +

4 ( BB BFN N× +

Ru )( RDN+×

5.1.4 Two-level objective functions  

 
As mentioned earlier, our model considers two levels of command for each force; the top-level 

commander control and the lower level unit controls.   

(1) Top Commanders’ Objective Functions 

We will assume that the objective of each top commander is to allocate the least amount of 

initial resources to its forces while at the same time insuring that:  

1. The total number of platforms and the total number of weapons of its own forces 

remaining at the end of the battle are maximized, and  
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2. The total number of platforms and the total number of weapons of the adversary’s forces 

remaining at the end of the battle are minimized.  

Thus, the Blue force top commander must decide on the allocation of the initial assets 

, w , , and to maximize the objective function: (0)BF
ip (0)BF

i )0(BB
ip )0(BB

iw
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∑

         (5.35) 

Additionally, the top Blue commander may require the Blue Forces to remain within a prescribed 

corridor  

( ( ), ( ))B BB BF
i jk k 0ψ η η =               (5.36) 

in the state space.  Similarly, the Red force top commander must decide on the allocation of the 

initial assets , , , and to maximize the objective function: )0(RT
ip )0(RT

iw )0(RD
ip )0(RD

iw
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          (5.37) 

and may require the Red Forces to remain within a prescribed corridor  

( ( ), ( ))R RT RD
i jk kψ η η =                (5.38) 

in the state space.  In each of the previous expressions, we will assume that the alpha’s are all 

non-negative coefficients that account for normalization of the various terms in the objective 

function as well as the distribution of weights to assign relative importance to the terms in the 

objective function. 

(2) Unit’s Objective Functions 

        Once the top commander’s decisions have been made, the various units must at each time k 

thereafter decide on their control vectorsu ,u k , )u , and u .  We will assume 

that each unit’s objective is to preserve as much as possible its own forces (platforms and total 

weapons) and destroy as much as possible the forces of its adversary.  Thus, for the objective of 

the Blue Fighters is to maximize  

)(kBB (BF ) (kRT )(kRD

1
( )

K
BF BF

k
J J

=

= ∑ k                (5.39) 

where 
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        (5.40) 

and the objective of the Blue Bombers is to maximize 
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         (5.42) 

In  we have assumed that an additional objective of the Blue Bombers is to minimize 

the dispositions (i.e. destroy) of the fixed targets.  In a similar fashion, we will define 

objective functions for the Red Troops and Red Defenses as: 

BBJ

∑
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and 
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         (5.46) 

In each of the previous expressions, we will assume that the alpha’s are all non-negative 

coefficients that account for normalization of the various terms in the objective function as well 

as the distribution of weights to assign relative importance to the terms in the objective function.  

A sensitivity analysis of the effects of changing the distribution of weights [2] can provide a 

useful guide to a commander in planning for a battle, depending on the importance of various 

targets, availability of assets, and other mission constraints. 

 

5.2 MOVING-HORIZON NASH CONTROLS  

As described in the last section, the nonlinear model encompasses different types of controls that 

may generate many different control choices.  Depending on the richness of the control space, 

the number of possible states in which the system can be found can grow faster or slower, but 

always exponentially as a function of time.  Even in problems of reasonable size, deriving the 

optimal control solution for both forces may not be feasible for more than a couple of time steps.  

In other words, the optimization of the overall system, especially involving two opponent groups 

of controllers, is almost impossible.  Moving-horizon controls with finite steps are therefore 

  99



considered since, as we know, such type of control is particularly useful in the process where the 

dynamic system to be controlled is complicate and often subject to control and state constraints.    

5.2.1 K-step moving-horizon optimal controls 

 
Consider a discrete-time system controlled by two independent decision-makers whose state 

vector evolves according to the equation: 

 1 2
1 ( , , )k k k k kx f x u u+ = ,  k=0," ,N-1     (5.47)  

where kx is the state vector, u  and u  are independent control sequences of the two decision-

makers  and 

1
k

2
k

0x  is the initial condition at k=0.  Suppose that each decision-maker wishes to 

optimize a performance index over the interval [ of the form 0,  ]N

( ) ( )
1

1 2

0
, , , ,     1, 2

N
i i i

N N k k k
k

J N x L x u u i
−

=

= +∑φ = .         (5.48) 

Obtaining a game theoretic optimal solution for such a system may be extremely complex [12], 

and its complexity may rise exponentially with the length of the time horizon N.   In order to 

overcome these difficulties, we will consider an optimal solution over a short moving horizon of 

steps, which in general will require much less computational effort.  We can formulate this 

problem in the following form. 

 Given the description of the dynamic system (5.47) and the performance indices (5.48) 

for both decision-makers, we can obtain a solution { }* *1 2,k ku u at time k by considering 

performance indices over the reduced interval of K look-ahead steps: 

     ( ) ( )
1

1 2
, , , , ,    

k K
i i i
k k K k K k K j j j

j k

J k K x L x u u iφ
+ −

+ + +
=

= + + =∑ 1,2 k N K< −          (5.49) 
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Once the end of the horizon is reached, we retain the original form of the performance indices for 

 and calculate the optimal sequence k N K≥ − { }* *1 2,
N

k k
N K

u u
−

 using 

 .         (5.50) ( ) ( )
1

1 2
, , , , ,     1, 2

N
i i i
N K N N N k k k

k N K
J N x L x u u i

−

−
= −

= + ∑φ =

ˆ

We called such an optimal control sequence as a K-step moving-horizon control.   

5.2.2 One-step and two-step look ahead Nash controls 

 
One-step and two-step moving-horizon Nash controls using dynamic programming methods have 

been developed by J.B Cruz et al. in [40].  For the purpose of simplicity, in the initial stage, they 

ignored the hierarchical control structures inside the military model and assume that each force is 

looked as an entity or a group.  Thus, for each of the two forces, an aggregate objective function 

is defined at every stage k that each force wishes to maximize.  These functions are in the form: 

 
1 1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )( )
BB BF RT RD FTN N N N N

BB BF RT RD FT
BBi i BFi i RTi i RDi i FTi i

i i i i i

BJ p k p k p k p k p kk α α α α α
= = = = =

= + − −−∑ ∑ ∑ ∑ ∑             (5.51a) 

         
1 1 1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )( )
BB BF RT RD FTN N N N N
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BBi i BFi i RTi i RDi i FTi i

i i i i i

R ˆJ p k p k p k p k p kk β β β β β
= = = = =

= − − + ++∑ ∑ ∑ ∑ ∑  (5.51b) 

where ˆ ( )X
ip k is a normalized number of platforms: 

        
)0(
)()(ˆ X

i

X
iX

i p
kpkp =     0,1, 2,3, ,k K= " .                                              (5.52) 

The expressions in (5.51) are linear combinations of normalized platforms and express the 

objective of each force to maximize its own platforms and minimize the platforms of the 

opposing force.  Now we call those unit commanders and top commanders in each force simply 

as a force leader.   The controls at each stage k are chosen so as to maximize the above objective 
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functions at stage k+1.   In our model we have a finite set of control variables for every unit in 

the battle.  This set is determined by the allowable relocate controls, the choices of targets, and 

the salvo size controls.  In the one-step and two-step look-ahead methods, at each time k the 

forces consider their control options over only the next time step and the next two time steps, 

respectively.  

(1) One-step looking ahead Nash control  

In the one-step looking ahead Nash control, the Blue force will seek a control vector u  at 

time k that will maximize its objective function

*B
k

, 1
B
k kJ +  only at time k+1.  Similarly, the Red force 

will seek a control vector u  that will also maximize its objective function only at time 

k+1.  The Nash equilibrium strategies u  and u for such a solution must therefore satisfy: 

*R
k , 1

R
k kJ +

*B
k

*R
k

 .    (5.53) 
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where  and U  are sets of all available control choices at time k  for Blue and Red, 

respectively.  Following the expression used in (5.49), with 

B
kU R

k

1K = , we see that expression (5.51a) 

rewritten as  will become: , 1 1) ( , )R B B R
k k k k k ku J u u+ +=( ,B B

kJ u

       (5.54) 
1 1 1 1 1

, 1 ˆ ˆ ˆ ˆ ˆ( 1) ( 1) ( 1) ( 1) ( 1( , )
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+ = + + + + − +− −∑ ∑ ∑ ∑ ∑ )p k +

)RThe objective function  is determined in the same fashion. Since the forces will 

seek to optimize only for one step at a time, this type of solution may be interpreted as a 

sequence of finite static game solutions.  

, 1( ,R B
k k k kJ u u+
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(2) Two-step looking ahead Nash control 

A more interesting solution is to let K=2 which corresponds to a two-step look-ahead 

problem. In this case the Blue and Red forces determine their control variables u  and u  at 

time k by maximizing the objective functions given by the expressions:  

*B
k

*R
k

, 2 1 2
B B
k k k kJ J J+ += + B

+

R
+

+

)

          (5.55a) 

 .        (5.55b) , 2 1 2
R R
k k k kJ J J+ += +

where the right hand side terms are obtained from (5.51).  In the case of the Blue force, this 

corresponds to:  
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              (5.56) 

A similar expression can be derived for the Red force.  In the two-step Nash approach, both sides 

look for sequences of two consecutive controls ( )**
1,B B

k ku u +  and ( )**
1,R R

k ku u +  that will satisfy the 

Nash equilibrium:   

 ( )1
B B

k ku u U+

* ** *
, 2 1 1 , 2 1 1( , , , ) ( , ,  ,B B B R R B B B B

k k k k k k k k k k k kJ u u u u J u u U+ + + +

**
1, )R R

k ku u+ +≥ ∀ B
+∈ ×   (5.57a)  

and 

( )* * * ** *
, 2 1 1 , 2 1 1 1 1( , , , ) ( , , , ) ,R B B R R R B B R R R R R R

k k k k k k k k k k k k k k k kJ u u u u J u u u u u u U U+ + + + + + +≥ ∀ +∈ ×           (5.57b) 

where U  is the set of all admissible controls for force X at time step k.  After such sequences of 

control choices are found, only the controls at time k are actually implemented.  The controls at 

X
k
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time k+1 are obtained by considering the same problem at the next step, i.e., for performance 

functions in the form  and 1, 3 2 3
B B
k k k kJ J+ + + += + BJ RJ1, 3 2 3

R R
k k k kJ J+ + += + + , and so on.  As such, this is a 

two-step moving horizon Nash solution. 

Since the sets of all possible choices for the controls are finite, each of the one-step and 

two-step look-ahead Nash solutions, if it exists, can be determined from the corresponding 

bimatrix game representations.  The Nash solution for bimatrix games does not always exist in 

pure strategies.  If this situation occurs, the forces might then consider using a different solution 

strategy such as the Stackelberg solution [18] which is known to always exist in pure strategies. 

We should note that the one-step look-ahead approach does not really capture the dynamics of 

the operation and, hence, eliminates any possibility of using the relocate command.  That is, the 

units will not be able to initiate a movement as a result of the optimization process.  We rectify 

this by assigning a corridor for the Blue units, which guides each unit to a predetermined target.  

The two-step look-ahead approach includes some movement dynamics, but the units still have to 

be guided to the vicinity of their assigned engagement areas.  In the next section, we will 

illustrate these concepts with an example. 

5.2.3 Illustrative example 

 
We consider a scenario that is taking place on a 10×10 square grid.  Each square on the grid 

corresponds to roughly 40×40 square miles in dimensions.  The Blue force consists of a group of 

three airborne units: one Blue Bomber (BB) unit and two Blue Fighters (BFs).   The mission of 

the Blue force is to destroy one fixed target (FT) that is heavily defended by three Red Air 

Defense units (RDs).  Two Red Troop units are also available in the area.  The mission of the 

Blue force is considered accomplished when the fixed target is damaged by more than 40%.   
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After a successful mission, the Blue airplanes return to base.  The Blue base is located in the 

upper right hand corner of the grid at coordinated (10, 10).   We will assume that the Blue 

mission is planned for a maximum duration of 2 hours.  For the type of airplanes used, and grid 

dimensions, we will use time steps of 5 minutes each in real time.  The maximum duration of the 

mission will therefore correspond to 24 time steps.  We will assume that when engagement 

occurs, the forces will continue optimizing their controls until the goal of the Blue force is 

accomplished or until the Blue units spend all available weapons before accomplishing the 

mission.   

Table 5.1 summarizes the initial conditions (coordinates and force strength) for the 

scenario considered in the example.  On the Blue side, the Bomber unit consists of 10 F4 bomber 

planes each equipped with 4 MK2 guided bombs, and the Fighter unit consists of 6 F2-E fighter 

planes each and each plane equipped with 4 air-to-ground missiles.  On the Red side, each of the 

3 Air Defense units consists of 7 platforms: one radar system and 6 SAM launchers.  Each SAM 

launchers is equipped with 3 surface-to-air missiles.  Thus, the average number of weapons per 

unit is 18/7=2.57.  We also assume a maximum salvo size of one missile per launcher or 

6/7=0.86 missile per unit.  The troop units consist of 50 armored vehicles each and equipped 

with 3 shoulder-launched SAMs per vehicle.  Finally, the fixed target is an airport with a total of 

10 platforms (such as runways, command center, control tower, hangars, etc.) to be destroyed.  

As mentioned earlier, the mission of the Blue force is considered accomplished when at least 4 

of the 10 airport platforms have been destroyed.  The probabilities of kill for each unit on 

one side against units from the other side are given in Table 5.2.  The values are given for the 

case when a “row” unit fires at a “column” unit.  In our simulations, we will assume ideal 

weather conditions (

XY
ijPK

1wβ = ).  
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Table 5.1 Initial conditions for the example 

 
 
 

Unit Type Coordinates 
on the grid 

Number of 
Platforms 

Number 
of 

Weapons 

Max. 
Salvo 
size 

BB F4 bombers (8, 7) 10.0 4.0 1.0 
BF1 F2-E fighters (8, 7) 6.0 4.0 1.0 
BF2 F2-E fighters (8, 7) 6.0 4.0 1.0 
RT1 Armored vehicles (5, 5) 50.0 3.0 0.5 
RT2 Armored vehicles (5, 4) 50.0 3.0 0.5 
RD1 Fixed SAM & radar (2, 2) 7.0 2.57 0.86 
RD2 Fixed SAM & radar (2, 2) 7.0 2.57 0.86 
RD3 Fixed SAM & radar (2, 2) 7.0 2.57 0.86 
FT Airport (2, 2) 10.0 N/A N/A 

 
 

 
 

 
Table 5.2 Probabilities of kill for the example 

 
 

 BB BF1 BF2 RT1 RT2 RD1 RD2 RD3 FT 
BB 0 0 0 0.6 0.6 0.6 0.5 0.4 0.3 
BF1 0 0 0 0 0 0.8 0.7 0.7 0 
BF2 0 0 0 0 0 0.8 0.7 0.6 0 
RT1 0.2 0.1 0.1 0 0 0 0 0 0 
RT2 0.2 0.1 0.1 0 0 0 0 0 0 
RD1 0.7 0.3 0.3 0 0 0 0 0 0 
RD2 0.5 0.3 0.2 0 0 0 0 0 0 
RD3 0.5 0.2 0.2 0 0 0 0 0 0 
FT 0 0 0 0 0 0 0 0 0 
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The objective functions are specified in the form of equation (5.51), where the weighting 

coefficients ( '  and 's sα β

1

) for both Blue and Red forces are given in Table 5.3.  From the 

coefficients in the objective function of the Blue force we can see that the highest priority for the 

Blue force (α = ) is given to damaging the fixed target.  A high priority ( 0.8α = ) is also 

assigned for the preservation of the bombers.  On the other hand, for the Red force the highest 

priority ( 1β = ) is assigned for protecting the fixed target.  High priorities are also given for 

preserving the 1RD  unit ( 0.7β = ) and destroying as many of the Blue bombers as possible 

( 0.7β = ).  Clearly, the ( and α β ) weighting coefficients in the objective functions can be 

adjusted by the top commander to investigate the outcome for any given set of mission priorities, 

and assumptions of priorities on the other side.  

 

Table 5.3 Weighting coefficients in the objective functions for the example 
 
 

 BB BF1 BF2 RT1 RT2 RD1 RD2 RD3 FT 
Blue Xiα  0.8 0.5 0.5 0.1 0.1 0.3 0.3 0.2 1.0 
Red Xiβ  0.7 0.4 0.3 0.1 0.1 0.7 0.5 0.5 1.0 

 

 

The initial conditions are summarized in Figure 5.5.  The left hand side of the figure shows 

the location of the units on the two-dimensional grid, and the right hand side shows the number 

of platforms for each unit in bar chart form.  We will show a few snapshots at specific time 

instants.   In the one-step look-ahead simulation, the Blue units travel along a specified corridor 

towards the location of the fixed target and engage the Red defense units in that location.  The 

controls that govern this engagement are calculated for both sides using the one-step look-ahead 
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Nash strategy described above.  In Figure 5.6, we observe that all the Blue units enter the engage 

area together.  After several time steps of engagement, the Blue group manages to inflict more 

than 40% damage to the fixed target and returns to base.  Figure 5.7 shows the outcome at the 

end of the operation.  As can be seen, on the Blue side 8 bombers and 4 fighters have been lost.  

On the Red side the third air defense unit was left undamaged while the first two have been 

almost completely destroyed.  The Red troops are left intact since the Blue force decided to 

completely avoid them.  We note that in Figures 5.5 through 5.10, the scale for RT1 and RT2 on 

the bar charts should be multiplied by a factor of 10. 
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Figure 5.5 Initial states at k=0 
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Figure 5.6 Attrition during full engagement at k=7 
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Figure 5.7 Final outcome at k=24 for the one-step look-ahead solution 
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We then consider the two-step look-ahead case, which was solved using dynamic 

programming.  In this approach, at time step k, we determine all possible control options for both 

sides and compute all possible feasible states at time k+1.  Then for each of these states, we 

repeat and compute all possible feasible states at time k+2.  For each state at time k+1 that leads 

to a feasible state at time k+2, we then determine the Nash solution and the Nash costs-to-go for 

both forces.  These costs are added to the values of the objective functions for the transition from 

time k to k+1, and the Nash solution recomputed at time k, considering all possible control 

options available at that time.   We should note that even though this two-step look-ahead 

process yields control actions for the next two consecutive time steps, only the control actions for 

the first time step are implemented.  The dynamic programming process is then repeated at the 

next time step. 

In the simulation, as in the one-step case, the Blue airplanes follow a pre-specified corridor 

up to just one unit on the grid away from the location of the fixed target.  At that point, as the 

results of the solution reveal, the Blue force uses the opportunity of optimizing for the next two 

time steps (i.e., next 10 minutes) and finds that the Nash optimal strategy is to send only the two 

fighter units first to engage the Red force and weaken its air defenses before sending in the 

bombers.  This is consistent with what is known as the SEAD (Suppressing the Enemy Air 

Defenses) scenario.  A snapshot of this can be seen in Figure 5.8.   Clearly, there is an advantage 

for the Blue force to do so since the blue objective function includes a high weight on 

preserving the bombers.  Note that this is in contrast to the one-step look-ahead solution in which 

all Blue units (fighters and bombers) decided to engage the Red units at the same time, thus 

risking losing a large number of bombers since the Red air defenses have not yet been weakened, 

and they have a high priority towards destroying the Blue bombers.  Figure 5.9 is a snapshot at 

BJ
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the next time step.  Here we see that the Blue bombers join the attack only after the Red defense 

units have been weakened.  After several additional time steps the mission is accomplished when 

the fixed target is damaged by more than 40% and the Blue airplanes return to base.  Figure 5.10 

shows the outcome at the end of the operation.   As can be seen, on the Blue side 6 bombers and 

4 fighters have been lost.  On the Red side the first two air defense units have been almost 

completely destroyed as in the one step look-ahead case, and the third unit was considerably 

more damaged than in the one step look-ahead case.   The Red troops are still left intact since in 

this case the Blue force decided to also completely avoid them.   
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Figure 5.9 Bombers join the attack at step k=8 in the two-step look-ahead case 
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Figure 5.10 Final outcome at k=24 for the two-step look-ahead solution 
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           A comparison of the final outcomes for the one-step and two-step approaches is given in 

Figure 5.11.    From the perspective of the Blue side, the improvement in the two-step approach 

is obvious. The BF units were damaged a bit more in the two-step case, but the BB unit 

preserved considerably more platforms as a result of this better planned two-step look-ahead 

strategy.  At the same time the Red air defenses suffered substantially more damage. The third 

RD unit suffered almost 50% damage in the two-step case.  In the one-step case the RD3 unit was 

left undamaged and still capable of doing significant damage to the Blue airplanes.  Overall, it 

appears that the two-step look-ahead approach is a better strategy for the Blue force.    

 

 

 

0

1

2

3

4

5

6

7

Type of Unit

# 
of

 p
la

tfo
rm

BB BF1 BF2 RD1 RD2 RD3 FT

One-Step Nash
Two-Step Nash

 

 
Figure 5.11 Comparison of the remaining platforms for all units in the one-step and two-step 

look-ahead approaches 
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The Nash solution is generally a balanced solution that does not favor one force over the 

other.  In our case, the solution is not supposed to favor the Blue force over the Red force, and 

the outcome should in general depend only on the relative strengths of the forces.  In this 

example, however, it is important to point out that in almost all cases there is a tendency for the 

Blue force to gain an advantage over the Red force when the optimizing window is extended 

from one to two steps.  This appears to be more problem-specific than a general behavior.  

Clearly, in our example, the Blue airborne force is far more agile than the slow moving Red 

ground force.  It is therefore reasonable to expect that the force with better moving capabilities be 

able to benefit from the dynamic nature of the optimization.   

 

5.3 CONCLUSIONS 

 
In this chapter, an attrition-type discrete-time nonlinear dynamic model is formulated for two 

opposing forces engaged in a military air operation, which is known as a good example of 

extended complex systems.  We considered Nash strategies over a short, one or two-step look-

ahead, moving horizon as a possible mechanism for overcoming the computational complexity in 

a practical situation.  We performed our simulation tests and demonstrated the advantages of the 

two-step look-ahead Nash strategies over the one-step look-ahead Nash strategies.  Our 

simulation results also proved that this attrition model is sound and it can be readily used to 

investigate the effectiveness of various game theoretic control strategies applied to a complex 

system with an intelligent adversary. 
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6.0 NASH STRATEGIES FOR DYNAMIC TEAM COMPOSITION AND DYNAMIC 

TASK ASSIGNMENT IN A MILITARY AIR OPERATION 

 

As we mentioned before, in a large-scale extended complex system, different units may have 

different resources, and this leads to different capabilities and costs for handling the given tasks.  

In order to complete the various tasks more efficiently, the leader (or manager) often has to 

group the units into teams based on certain criteria, and allow them to cooperate with each other 

in order to enhance overall performance of the system.  To organize the units into teams is also a 

natural way to reduce the complexity of the system from the leader’s perspective.  In general, 

dealing with N teams of M agents each may be much simpler than dealing with agents.  

As we know, in the presence of an adversary such as the military dynamic system considered in 

the previous chapter, the situation becomes more complicated.  For example, the leader of each 

force may divide his units into several teams each allocated a specific task.   By teaming, the 

Blue force will organize all the Blue units in an efficient way in order to complete the assigned 

tasks, and the Red force will deploy all the Red defense parts to effectively protect the Red fixed 

target.  In addition, a team division by one force needs to refer to the team composition by the 

other one.  Thus, teaming is in the context of game.  As the operation of the overall system 

progresses, a leader may reassess his initial task assignment among the teams and may decide 

that a different assignment could yield better overall performance of the system.  In that case a 

reassignment of tasks and a redeployment of resources will have to be performed.  These 

problems are known as the dynamic resource allocation problems in a complex system.  

N M×
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Dynamic team composition and dynamic task assignment are very important, but very complex, 

issues of dynamic resource allocation in a multi-team system, and thus need to be considered in 

any control architecture of large dynamic multi-team systems.  We introduce several useful 

strategies for cooperative teaming and dynamic task assignment in this chapter, including NNS.  

In the previous chapter, the effects of teaming and tasking are not evident because of the limited 

number of fixed targets and other units in the scenario set-ups.  In this chapter, we will focus on 

the applications of these strategies to the military operation system.  

 

6.1 NASH REASSIGNMENT STRATEGIES 

The problem of allocating resources and assigning tasks in multi-team systems is an extremely 

important step in insuring that maximum overall performance of the system is achieved.  A 

mechanism that allows for reallocation of resources and reassignment of tasks is important in the 

control of complex dynamic systems especially when the initial deployment of resources and 

assignment of tasks appear to be ineffective in yielding satisfactory results.  In other words, a 

reassignment of tasks and a redeployment of resources will have to be performed.  In a similar 

manner, when a specific team completes its initial assignment, the leader may consider two 

options.  He may decide to terminate this team’s control activity (i.e. retire the team), or reassign 

the team to another ongoing task.  In the former case, the control of the system will continue, but 

with fewer teams, and in the latter, the team may be merged with one of the remaining teams to 

help improve its ability to complete its task.   These complicated issues need to be considered in 

any control architecture that involves a multitude of teams and tasks.  In the model of the 

military operation developed in the previous chapter, there are several tasks that need to be 
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performed on each side of the engagement.  For example, a typical task for the attacking force 

may involve destroying a specific part of a fixed, or moving, target on the defending side.  The 

model allows for the possibility of teaming on each side for the purpose of accomplishing the 

required tasks.  The fighting units on each side can be teamed up and allocated specific tasks to 

accomplish.  In that case, a problem will arise if some of the teams are able to accomplish their 

tasks successfully and others are not.   For example, a situation of this type may occur when a 

weak team is assigned to a difficult task that it cannot accomplish on its own.  It is therefore 

natural for the commander to consider reassigning those teams that are still capable, after 

successfully finishing their tasks, to join the remaining teams.  In some cases, even if a team is 

able to complete its task on its own, the associated costs and the overall system performance may 

vary drastically if those teams that accomplish their tasks first are reassigned to the remaining 

tasks rather than if they are left inactive afterwards.  The commander may therefore consider 

reassigning teams that have accomplished their tasks first to cooperate with the remaining teams 

in order to accelerate the accomplishment of the overall mission of the force.   

In this section, the reassignment problem in multi-team multi-task dynamic systems, 

specifically as encountered by a commander in a military operation, is investigated based on the 

model developed in the previous chapter.  We consider the reassignment problem and use the 

moving-horizon Nash strategies to formulate possible solutions for it.  We present two 

simulation examples to illustrate the advantages of the Nash reassignment strategies. 

6.1.1 Problem formulation 

 
We begin by considering a general task reassignment problem for the Blue force.   Let us assume 

that there are distinct fixed targets, each occupying a specific location on the grid and m

defended by specific units of the Red force.  Destroying a fixed target and weakening its 
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defending units is defined as a task for the Blue force.  When there is only one fixed target on the 

Red side, the Blue commander will assign the entire Blue force to that task.  When the number of 

targets is greater than one, the commander may partition the Blue force into teams and decide 

which team will be assigned to which task.  Let us assume that the Blue force is divided into n  

teams{ }1 2, , ,B B B
nT T T" .  Each team consists of a combination of Blue units (bombers and 

fighters).  The objective function of team T  at stage k, denoted by , is given by a subset B
i ( )B

iJ k

of expression  in (5.51).  We assume that each team has a pre-assigned task.  If some ( )BJ k

teams accomplish their tasks before others, instead of returning to base, the commander has the 

option of reassigning them to other, either new or ongoing, tasks.  Let ( )cI k  denote the set of 

indices of teams that have accomplished their tasks at stage k.  For ( )ci I k∈ , let t denote the ( )B
i k

task that team T  can be re-assigned to.  The number of possible combinations of assignments of B
i

teams who have accomplished their tasks to unaccomplished tasks can grow exponentially as 

will be explained later.   Let  be the cost of reassigning team T  ( (i I ) to the new ( , ) 0r i k > B
i )c k∈

task t at stage k.  Thus, the optimal re-assignment problem at stage k can be formulated as: ( )B
i k

[ ( ), , (
max

B Bu k u� �"
( , )r i l


− 



( )
( )

B

B
i

u k
t k
 
 
 

� ci I∈

*( ), ,B B � �" 1)

,
1)]

B
k K

K
J

−

�     where  ,
( ) ( )

( )
c c

K
B B
k K i

l k i I l i I l

J J l
= ∉ ∈


= 


∑ ∑ ∑�                      (6.1) 

In (6.1) the control u k  for ( )B = ( )k , which basically says that the control vector in 

(5.15) has been augmented by the choice of a new task t .  It is clear that the optimal control ( )B
i k

actions  taken by the Blue teams also depend on the controls of the Red *(u K −u k 

force and hence the problem will need to be considered within the framework of game theory as 

will be discussed in the next section.  In other words, the solution will continue to be game-
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theoretic in nature.  We will maintain the Nash strategy as the approach to obtain the optimal 

reassignment controls for any Blue team that has been reassigned.  Once t is determined, the ( )B
i k

units in team  will move to the location of the new task.   B
iT

( )k

(B
it

( )an k

,
B
k KJ�

)k

Let  and be the number of teams to be re-assigned and the number of an ( )bn k

unaccomplished tasks at time k, respectively.  The number of task choices  for the  re-)k thi

assigned team is equal to , i.e., the number of unaccomplished tasks plus the choice of (bn k) 1+

returning to base.  Thus, the number of all possible combinations of task choices for the re-

assigned teams at time k is ( ( .  Clearly, this number will grow exponentially with ( )) 1) an k+bn k

increasing  and n k adding another complexity to the task reassignment problem.  To ( )b

reduce it, one way is to allow those re-assigned teams to select the unaccomplished tasks near 

their current locations only, and thus the cost of any reassigned path can be ignored in the 

objective functions.  

6.1.2 Moving-horizon Nash reassignment solution 

 
Because of the computational complexity involved, even in cases that do not involve 

reassignment, determining a solution for problems of this type over the entire time horizon K is 

not in general numerically feasible.  In order to reduce the computational complexity in 

determining the controls, instead of maximizing the objective functions  from stage k to the 

final stage K, we will consider the problem where the Blue and Red forces will seek control 

vectors  and at time k that will maximize the objective functions over a reduced *(Bu� *( )Ru k

look-ahead moving horizon of length  steps (rK rK K<< ): 
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          (6.2b) , ( )
r

r

k K
R
k k K

l k
J J

+

+
=

= ∑ R l

We should note that the one-step look-ahead approach does not effectively capture the 

dynamics of the air operation and, hence, eliminates any possibility of optimizing the relocate 

command of the Blue force.  The two-step look-ahead approach, on the other hand, includes 

some optimization over the relocate command, though limited to only two time intervals ahead 

of the present time.  Clearly, whenever reassignment is necessary the two-step look-ahead 

strategy enables the Blue commander to make more effective decisions in the sense that the 

unnecessary losses of the reassigned teams can be reduced.           

In this section, we do not intend to address the entire range of issues related to the re-

assignment problem. Instead, we will focus on the following two situations that require 

reassignment [41]:  

 Situation 1:  Some teams cannot complete their pre-assigned tasks on their own. 

 Situation 2:  Some teams can complete their pre-assigned tasks but with a heavy cost in 

time and losses. 

In both of these situations, the commander may consider reassigning a team that has 

completed its task to one or more of these “weaker” teams.  We will explore these characteristics 

and the advantages of the Nash reassignment strategies in the following illustrative examples.  

 

  

  120



6.1.3 Illustrative examples 

 
We consider a scenario where the Blue force consists of two groups of Blue bombers, BB1 and 

BB2, and two groups of Blue Fighters, BF1 and BF2.  The Red force includes two adjacent fixed 

targets, FT1 and FT2, (e.g., two bridges) defended by four groups of Red defense units (RD1, …, 

RD4) and one group of Red troops (RT1).  Let us consider an initial assignment, as shown in 

Table 6.1, where Blue is divided into two teams.  Team 1 includes BB1 and BF1 and is assigned 

FT2, and Team 2 includes BB2 and BF2 and is assigned FT1.  The task of a Blue team is 

considered accomplished when its assigned fixed target loses at least 40% of its platforms.  After 

a task is accomplished, the corresponding team will either be reassigned or will be returned to 

base (located in the upper right corner of the grid).  The initial states are shown in Figure 6.1.  To 

illustrate the results of the Nash Reassignment Strategies based on this scenario, we will discuss 

two examples, corresponding to the two different situations of reassignment mentioned in section 

6.1.2. 

 

Table 6.1 Initial deployment for the example 
 
 

Unit Type location Platforms Weapons Max.Salvo 
BB1 F4 bombers (5,5) 7 4 1 
BB2 F4 bombers (6,10) 7 4 1 
BF1 F2-E fighters (5,5) 8 4 1 
BF2 F2-E fighters (6,10) 6 3 1 
RT1 Armored vehicles (4,5) 50 3 0.5 
RD1 Fixed SAM & Radar (2,4) 6 15/6 5/6 
RD2 Fixed SAM & Radar (2,4) 7 18/7 6/7 
RD3 Fixed SAM & Radar (3,3) 6 15/6 5/6 
RD4 Fixed SAM & Radar (3,3) 18/7 6/7 
FT1 Bridge (2,4) 10 N/A N/A 
FT2 Bridge (3,3) 10 N/A N/A 

7 

  121

Yong



In both examples, the simulations are performed in MATLAB using Nash type two-step look-

ahead moving controls. 

Example 6.1:  In this example, we consider probabilities of kill for each pair of units as given in 

Table 6.2, and weighting coefficients in the objective functions of both Blue and Red force as 

given in Table 6.3.  

a) At first, the simulation is performed without the possibility of reassignment. The final 

outcome of this simulation is shown in Figure 6.2.  We see that Team 1 returned to base after 

accomplishing its task, but Team 2 exhausted all its weapons and could not accomplish its 

task since more than 60% of FT1’s platforms remain undamaged.  

b) We then performed the same simulation except that the top commander now decides to re-

assign Team 1, after it accomplishes its task, to join Team 2.  Figure 6.3, shows a snapshot of 

how this is accomplished.  We see that in the first step, upon joining Team 2, BF1 is very 

effective in increasing Team 2’s ability to weaken the defense units around FT1. In the next 

step, we see that BB1 now joins in the attack of FT1. This can be clearly seen in Figure 6.4.  

In Figure 6.5, we can see that FT1 is damaged to 40% and the task of Team 2 has now been 

accomplished with help from Team 1.   

c) Figure 6.6 gives a comparison of the remaining number of platforms in the two 

simulations discussed above.  It is clear that the reassignment of Team 1, after it finished its 

task against FT2, to join Team 2, not only helps that Team complete its task against FT1 but 

also saves more platforms of BB2 and BF2 in Team 2, while BB1 only suffers a little more 

damages than that in the simulation without using the reassignment strategies. 
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Figure 6.1 Initial states for the example 
 
 

 
 
 

Table 6.2 Probabilities of kill for Example 6.1 
 

 

  BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 RD4 FT1 FT2 
BB1 0 0 0 0 0.6 0.5 0.4 0.6 0.5 0.4 0.6 
BB2 0 0 0 0 0.6 0.5 0.4 0.5 0.4 0.3 0.5 
BF1 0 0 0 0 0 0.8 0.8 0.8 0.8 0 0 
BF2 0 0 0 0 0 0.7 0.7 0.7 0.7 0 0 
RT1 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 
RD1 0.7 0.7 0.3 0.3 0 0 0 0 0 0 0 
RD2 0.5 0.5 0.2 0.2 0 0 0 0 0 0 0 
RD3 0.5 0.5 0.15 0.15 0 0 0 0 0 0 0 
RD4 0.6 0.6 0.15 0.15 0 0 0 0 0 0 0 
FT1 0 0 0 0 0 0 0 0 0 0 0 
FT2 0 0 0 0 0 0 0 0 0 0 0 
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Table 6.3 Weighting coefficients in the objective functions for Example 6.1 
 
 

  BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 RD4 FT1 FT2 
Blue Xiα  0.8 0.4 0.2 0.1 0.1 0.3 0.2 0.3 0.3 1 1 
Red Xiβ  0.7 0.7 0.4 0.3 0.1 0.7 0.5 0.5 0.5 1 1 
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Figure 6.2 Final states without reassignment in Example 6.1 
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Figure 6.3 Effect of BF1 joining Team 2 in Example 6.1 
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Figure 6.4 Effect of BB1 joining Team 2 in Example 6.1 
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Figure 6.5 Team 1 and Team 2 accomplish Team 2’s task in Example 6.1 
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Figure 6.6 Comparison of the remaining platforms in Example 6.1 
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Example 6.2:  In this example, we modify the values of probabilities of kill and weighting 

coefficients in the objective functions.  These are now shown in Tables 6.4 and 6.5, respectively.  

The reason for doing this is to enhance Team 2’s ability to accomplish its task without Team 1’s 

help.  When there is no reassignment strategy in the simulation, we indeed see that Team 2 can 

now finish its task without the help of Team 1.  This is illustrated in Figure 6.7.  We note, 

however, that it takes seven time steps for Team 2 to accomplish this task, and this may not be 

considered satisfactory.   The top commander then decides to reassign Team 1, after finishing its 

task, to join Team 2.  In Figure 6.8, we see that upon joining Team 2 BF1 is active first, and 

Figure 6.9 shows the last step in which FT1 is destroyed.   It is interesting to note that, during the 

entire period when Team 1 is reassigned, the BB1 unit remains inactive since it appears that only 

BF1 is needed by Team 2 to accomplish its task.  Also, only five steps are now required to 

accomplish Team 1’s task resulting in a saving of two time steps.  Comparing the results of these 

two situations in Figure 6.10, we note that, as in the first example, the choice of reassignment 

also saves more platforms of BB2 and BF2 in Team 2 and destroys more units of RD1 and RD2. 

 

Table 6.4 Probabilites of kill for Example 6.2 
 
 

  BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 RD4 FT1 FT2 
BB1 0 0 0 0 0.6 0.5 0.4 0.5 0.5 0.4 0.6 
BB2 0 0 0 0 0.6 0.5 0.4 0.5 0.4 0.3 0.5 
BF1 0 0 0 0 0 0.8 0.8 0.8 0.8 0 0 
BF2 0 0 0 0 0 0.8 0.8 0.8 0.7 0 0 
RT1 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 
RD1 0.7 0.7 0.3 0.3 0 0 0 0 0 0 0 
RD2 0.5 0.5 0.2 0.2 0 0 0 0 0 0 0 
RD3 0.5 0.5 0.15 0.15 0 0 0 0 0 0 0 
RD4 0.6 0.6 0.15 0.15 0 0 0 0 0 0 0 
FT1 0 0 0 0 0 0 0 0 0 0 0 
FT2 0 0 0 0 0 0 0 0 0 0 0 
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Table 6.5 Weighting coefficients in the objective functions for Example 6.2 

 
 

  BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 RD4 FT1 FT2 
Blue Xiα  0.8 0.6 0.2 0.1 0.1 0.4 0.4 0.4 0.4 1 1 
Red Xiβ  0.7 0.7 0.4 0.3 0.1 0.7 0.5 0.5 0.5 1 1 
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Figure 6.7 Final states without reassignment in Example 6.2 
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Figure 6.8 Effect of BF1 joining Team 2 in Example 6.2 
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Figure 6.9 Team 2 accomplishes its task only with the help of BF1 in Example 6.2 
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Figure 6.10 Comparison of the remaining platforms in Example 6.2 
 
 
 

6.2 NASH ORDINAL STRATEGIES 

In the previous discussion, we assume that the initial deployment of Red defense parts and the 

initial team composition of the Blue force and the initial task assignment of these teams are well 

known to both the Blue force and the Red force.   Under this assumption, game-theoretic 

approaches such as Nash and Nash reassignment strategies can be applied to optimize the 

operation procedure.  In a real batter, however, there are often several possible ways for the Red 

force to deploy his parts and for the Blue force to organize his units into teams.  Different 

combinations of the initial choices taken by the top commanders in both forces may result in 
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different outcomes.   One force usually may not know the initial decision made by the other one 

exactly.  Thus, both commanders would like to consider the outcomes resulting from all the 

possible initial situations of both sides at first and then make their decisions.  Clearly, the 

outcome resulting from one top commander’s options also depend on the choices of the other 

one.  In other words, the decision of the initial team composition and task assignment made by 

the Blue top commander is required to consider the decision of the initial deployment made by 

the Red top commander, and vise versa.  The problem here still can be formulated as a game.   

Such game is a little different from the games we mentioned before because the top commanders 

may not have evident mathematic expressions for their goals as those objective functions given 

by (5.51).   The top commanders may rank, instead of a concrete calculation, the outcomes from 

various choices relying on their experiences.  These games are known as ordinal games [42].   In 

this section, we will apply the Nash strategies in the ordinal game theory, called Nash Ordinal 

Strategies (NOS), to determine the initial deployment for the Red defense parts and the task pre-

assignment and team composition for the Blue force [43].   

        We consider a scenario where the Blue force has two groups of Blue bombers, BB1 and 

BB2, and two groups of Blue fighters, BF1 and BF2.  The Red force includes two adjacent fixed 

targets, FT1 and FT2, (e.g., a refinery and a bridge) defended by four groups of Red defense 

units (RD1, …, RD4) and one group of Red troops (RT1).   The description for the units is 

shown in Table 6.6.  The probabilities of kill for each unit pair are given in Table 6.7.  
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Table 6.6 Description of units in the example 
 

Unit Type Platforms Weapons Max.Salvo 
BB1 F4 bombers 7 4 1 
BB2 F4 bombers 7 4 1 
BF1 F2-E fighters 8 4 1 
BF2 F2-E fighters 6 3 1 
RT1 Armored vehicles 50 3 0.5 
RD1 Fixed SAM & Radar 6 15/6 5/6 
RD2 Fixed SAM & Radar 7 18/7 6/7 
RD3 Fixed SAM & Radar 6 15/6 5/6 
RD4 Fixed SAM & Radar 7 18/7 6/7 
FT1 Building 10 N/A N/A 
FT2 Bridge 10 N/A N/A 

 

 

 

 

 

 

 

 

Table 6.7 Probabilities of kill for the example 
 

 BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 RD4 FT1 FT2 
BB1 0 0 0 0 0.6 0.5 0.4 0.5 0.5 0.4 0.6 
BB2 0 0 0 0 0.6 0.5 0.4 0.5 0.4 0.3 0.5 
BF1 0 0 0 0 0 0.8 0.8 0.8 0.8 0 0 
BF2 0 0 0 0 0 0.7 0.7 0.7 0.7 0 0 
RT1 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 
RD1 0.7 0.7 0.3 0.3 0 0 0 0 0 0 0 
RD2 0.6 0.6 0.2 0.2 0 0 0 0 0 0 0 
RD3 0.5 0.5 0.15 0.15 0 0 0 0 0 0 0 
RD4 0.6 0.6 0.15 0.15 0 0 0 0 0 0 0 
FT1 0 0 0 0 0 0 0 0 0 0 0 
FT2 0 0 0 0 0 0 0 0 0 0 0 
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We note that BB1 has stronger capabilities of destroying the red fixed targets than BB2 because 

the probabilities of FT1 and FT2 being killed by BB1 are greater than those of FT1 and FT2 

being killed by BB2, respectively.  With a similar reason, BF1 is stronger than BF2 in destroying 

the red defense units.  Moreover, RD1 and RD2 are stronger than RD3 and RD4 in killing the 

blue units.  Let us consider several reasonable initial choices for both forces.  The Blue 

commander has three options of team composition and task pre-assignment, which are listed in 

Table 6.8.   The Red commander has also three options of deployment as shown in Table 6.9.  

 

Table 6.8 Options of Blue for team composition and task assignment for the example 
 

Options for Blue 
Commander Teaming Task Assignment 

Team 1: BB1 and BF1 FT1 Option X Team 2: BB2 and BF2 FT2 
Team 1:  BB1 and BF1 FT2 Option Y Team 2: BB2 and BF2 FT1 

Option Z All Blue units in one Team FT1 then FT2 

 

 

 

 

 
 
 
 

Table 6.9 Options of Red deployment for the example 
 
 

Options for Red Commander Defending FT1 Defending FT2 
Option A RD1 and RD2 RD3 and RD4 
Option B RD1 and RD3 RD2 and RD4 
Option C RD1, RD2 and RD3 RD4 

 
 
 
 

  133



For example, in option X, the Blue top commander divides Blue units into two teams: team 1 

includes BB1 and BF1, assigned to attack FT1, and team 2 includes BB2 and BF2, assigned to 

attack FT2.  After a task is accomplished, the corresponding team will either be reassigned or 

will be returned to base.  In option B, the Red top commander deploys RD1 and RD3 to defend 

FT1, and assigns RD2 and RD4 to defend FT2.  The initial states are shown in Figure 6.11.  Nine 

simulations corresponding to 3×3 combinations are performed using two-step look-ahead Nash 

and Nash reassignment strategies.  Each pair of Blue and Red choices leads to a specific battle 

damage.  Table 6.10 gives the weights coefficients in the objective functions.  

 

Table 6.10 Weighting coefficients in the objective functions for the example 
 
 

 BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 RD4 FT1 FT2 

Blue Xiα  0.8 0.6 0.2 0.1 0.1 0.4 0.4 0.4 0.4 1 1 

Red Xiβ  0.7 0.7 0.4 0.3 0.1 0.7 0.5 0.5 0.5 1 1 
 

 

Figure 6.12 gives the total remaining platforms of each type of units for the nine simulations.  

For each Blue choice and each Red choice there is an ordered preferential ranking for the Blue 

commander and an ordered preferential ranking for the Red Commander, based on a battle 

damage assessment.  Figure 6.13 gives this ranking matrix.  The Blue commander ranks the 

outcome of the option Y as the best choice if the Red force selects the option B because the most 

blue bombers and blue fighters are preserved in this case.  The Red commander prefers the 

outcome of option C if the Blue force chooses the option X since most of defense units are saved 

in this situation.  We observe that the Nash ordinal strategy in this game is (Y, A), i.e., the Blue 
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commander will assign the strong team of BB1 and BF1 to attack FT2 and the weaker team of 

BB2 and BF2 to attack FT1, and the Red commander will deploy the strong units of RD1 and 

RD2 to defend FT1 and the weaker units of RD3 and RD4 to protect FT2.  Figuring out a Nash 

ordinal strategy can be done simply by only ranking each column choices for the Blue force and 

ranking each row choices for the Red force [42].  By doing this, the matrix in Figure 6.13 

becomes the matrix in Figure 6.14.   Note that only 3 options need to be compared and ranked at 

one time instead of 9 options in the previous way.  It is no doubt, that (Y,A) is still the Nash 

ordinal strategy in this game.  

 

 

 

 
Figure 6.11 Initial situation for the example 
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Figure 6.12 Outcomes  of 3 X 3 options for the example 
 

 
 
 

 
 

Red Commander  

A B C 
X (9,3) (7,2) (8,1) 
Y (5,6) (1,7) (3,9) Blue Commander 

Z (6,5) (4,4) (2,8) 
 

Figure 6.13 Ranking matrix in an ordinal game 
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Red Commander   
A B C 

X (3,3) (3,2) (3,1) 
Y (1,1) (1,2) (2,3) Blue Commander 

Z (2,2) (2,1) (1,3) 
 

Figure 6.14 Simplified ranking in an ordinal game 
 
 
 
 

6.3 EFFECTS OF RESOURCE CAPABILITIES ON COOPERATIVE TEAMING 

STRATEGIES 

Cooperative teaming is a very important issue in the optimization of large-scale multi-team 

systems, especially when there is an adversary affecting the outcome of the optimization.  If the 

Blue units happen to be much weaker than the Red units and are assigned to destroy a strongly 

defended Red fixed target first, the Blue force may be completely demolished before it has a 

chance to move on to other missions.  It is therefore natural for the leader of the Blue force to 

consider efficiently teaming its limited resource to complete its overall goal as much as possible.  

In that case, as the leader of the attacking entity, the Blue top commander may ask the questions: 

“What kind of Blue team composition and task assignment is most effective against the Red 

units?” or “Will there be an advantage for the Blue force in teaming its units against the Red 

adversary?”   In other words, an important question for the Blue commander to ask is: Is it 

always necessary to group its units into cooperating teaming?  In this section, we will attempt to 

answer these questions in the context of the military air operation model developed in the 

previous chapter.  This section will use several simulations based on the model of an air military 

operation to illustrate varying the resource capabilities available to each team can considerably 

influence the effectiveness of the team composition [44]. 
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In this section, we will consider the problem of team composition and task assignments 

faced by the Blue top commander.  That is, how should the Blue force be divided into teams and 

what should the team tasks be in order for the Blue force to optimally achieve its objectives?  We 

will attempt to answer these questions by considering the following specific scenario:  the Blue 

force consists of two groups of Blue bombers, BB1 and BB2, and two groups of Blue Fighters, 

BF1 and BF2.  The Red force includes two adjacent fixed targets, FT1 and FT2, defended by 

three groups of Red defense units RD1, RD2 and RD3 and one group of Red troop RT1.  The 

description and initial equipment for each unit are listed in Table 6.11.  We consider probabilities 

of kill for each pair of units as given in Table 6.12.  From Table 6.12, we observe that the group 

of bombers BB1 has stronger capability against the red fixed targets than the group BB2.  In 

addition, the group of fighter planes BF1 is more effective against RD1 – RD3 and RT1 than the 

group BF2.  Also, note that the Red troops (RT1) are not as effective as the Red defense units 

(RD1- RD3) against the Blue units.  In order to test the various teaming options that the Blue top 

commander may have, we will consider the following specific deployment of the Red forces.  

Clearly, in a real situation, the Red top commander may also have several options of teaming his 

forces as well.  We will assume that FT1 is defended by the Red defense units RD1 and RD2, 

and FT2 is defended by the Red troops (RT1) and the Red defense unit RD3.  This can be seen in 

Figure 6.15.  For the purpose of simplicity, the deployment for the Red force is kept unchanged 

with respect to the varying options for the Blue force.  By examining Table 6.12, it is clear that 

FT1 is strongly defended and FT2 is weakly defended since the probabilities of the Blue units 

being destroyed by RD1 – RD3 are much larger than those by RT1.  This deployment is 

reasonable for the Red commander if FT1 is more important to defend than FT2.   
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Table 6.11 Description and initial equipment of units for the example 
 

 Unit Type Platforms Weapons Max.Salvo 
BB1 F4 bombers 10 4 1 
BB2 F4 bombers 10 4 1 
BF1 F2-E fighters 2 4 1 
BF2 F2-E fighters 2 3 1 
RT1 Armored vehicles 50 3 0.5 
RD1 Fixed SAM & Radar 7 18/7  6/7 
RD2 Fixed SAM & Radar 7 18/7  6/7 
RD3 Fixed SAM & Radar 7 18/7  6/7 
FT1 Bridge 1 10 N/A N/A 
FT2 Bridge 2 10 N/A N/A 

 

 

 

 

 
 
 
 
 
 

Table 6.12 Probabilities of kill for the example 
 
 

   BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 FT1 FT2 
BB1 0 0 0 0 0.7 0.6 0.6 0.6 0.7 0.7 
BB2 0 0 0 0 0.7 0.6 0.6 0.6 0.3 0.3 
BF1 0 0 0 0 0.6 0.8 0.8 0.8 0 0 
BF2 0 0 0 0 0.5 0.7 0.7 0.7 0 0 
RT1 0.1 0.1 0.1 0.1 0 0 0 0 0 0 
RD1 0.4 0.4 0.4 0.4 0 0 0 0 0 0 
RD2 0.4 0.4 0.4 0.4 0 0 0 0 0 0 
RD3 0.4 0.4 0.4 0.4 0 0 0 0 0 0 
FT1 0 0 0 0 0 0 0 0 0 0 
FT2 0 0 0 0 0 0 0 0 0 0 
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Figure 6.15 Initial states for the example 

 

 

Now let us consider six different team compositions and task assignments for the Blue top 

commander as shown in Table 6.13.  For example, Blue can be divided into two teams.  Team 1 

consisting of BB1 and BF1 is assigned to fixed target FT1 and Team 2 consisting to BB2 and 

BF2 is assigned to Fixed target FT2.  This particular option (Option 4 or Option 6 in Table 6.13) 

essentially consists of teaming the strong blue units together and assigning them to the strongly 

defended target and teaming the two weak Blue units together and assigning them to the weakly 

defended target.  In the different options, the simulations are performed in MATLAB using Nash 

type two-step look-ahead moving controls.  If there is cooperative reassignment, the simulations 
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will also use Nash Reassignment two-step look-ahead strategies.  The various weights in the 

objective functions (5.51) used in the simulations are given in Table 6.14.  The comparisons of 

remaining platforms for the Blue units and the Red units for the six options of Table 6.13 are 

shown in Figure 6.16. 

 
 
 

Table 6.13 Options for Blue commander for the example 
 
 

 

Options for 
Blue 

Commander 
Teaming  Task Assignment 

Is cooperative 
reassignment 

used? 

Option 1 No Teaming FT2 then FT1 
 

Option 2 No Teaming FT1 then FT2  

Team 1: BB1 and BF1 FT2Option 3 
Team 2: BB2 and BF2 FT1

No 

Team 1:  BB1 and BF1 FT1Option 4 
Team 2: BB2 and BF2 FT2

No 

Team 1: BB1 and BF1 FT2Option 5 
Team 2: BB2 and BF2 FT1

Yes 

Team 1: BB1 and BF1 FT1Option 6 
Team 2: BB2 and BF2 FT2

Yes 

 

Table 6.14 Weighting coefficients in the objective functions for the example 
 
 

  BB1 BB2 BF1 BF2 RT1 RD1 RD2 RD3 FT1 FT2 
Blue Xiα  0.9 0.9 0.1 0.1 0.25 0.25 0.25 0.25 1 1 
Red Xiβ  0.7 0.7 0.2 0.2 0.1 0.5 0.5 0.5 0.5 0.5 
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Figure 6.16 Comparison of remaining units for options 1- 6 

  142



In each option, the Blue units completed the required mission by destroying more than 40% of 

the red fixed targets.   However, the remaining Blue units and Red units vary considerably 

among the six options. This can be seen in Figures 6.16.  If the Blue commander wishes to 

preserve more of his bombers, then option 6, i.e., dispatching the stronger team to attack the 

strongly defended fixed target with reassignment, seems to be the best option since the number 

of the remaining BB platforms in this option is the greatest for this scenario.  If there is no 

teaming at all such as the situation in option 1, the blue side will lose 4 more blue bombers than 

that in option 6.  In addition, the reassignment strategies used in options 5 and 6 save more Blue 

fighters than those in option 3 and option 4 without reassignment, respectively.  In this situation, 

cooperative teaming and task assignment such as option 6 would be a wise choice for the Blue 

commander in terms of preserving more Blue bombers.  

In the previous scenario set-up, we note that the group of BB2 has a very small probability 

of kill against the red fixed targets.  In other words, some blue units have very limited 

capabilities to destroy the targets.  With limited resources, the overall planning, involving team 

division, task assignment and team reallocation, becomes a very important issue for the blue 

commander in the sense that different plans may lead to significantly different outcomes.  Our 

question now is: is it necessary to consider cooperative teaming and task assignment if the blue 

units are all very strong?  In order to answer this question, let us make the Blue units stronger 

and run the simulations again. We increased the probabilities of red fixed targets being destroyed 

by the group of BB2 from 0.3 to 0.5.  Comparisons of the remaining platforms for the Blue and 

Red units are shown in Figure 6.17, respectively. 
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Figure 6.17 Comparison of remaining units when Blue is made stronger 
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In Figure 6.17, we now observe that the differences among the remaining platforms of the Blue 

bombers are not as significant as in the previous example.   For the purpose of preserving more 

blue bombers, the team composition in this situation is less important than before.  In addition, 

the no-teaming options 1 and 2 provides the blue commander with better results in the sense that 

more blue fighters are saved and more red defense units are destroyed, as can be seen in Figure 

6.17. 

 

6.4 NONINFERIOR NASH STRATEGIES 

In this section, let us investigate the characteristics of NNS [45] in team composition and task 

assignment for the military air operation.   

6.4.1 Problem formulation 

 
The evolution of dynamic system is described as (5.34).   The team composition and task 

assignment is formulated as a multi-team system.  We assume that the Blue force and the Red 

force are divided into  and m  sub-teams, respectively.  For the j th  Blue sub-team, there are 

 BBs and  BFs, which satisfy  

Bm R

BB
jN BF

jN

1

Bm
BB BB
j

j

N N
=

=∑  and .                                           (6.3)  
1

Bm
BW BW
j

j

N N
=

=∑

 For the j  Red sub-team, there are  RTs ,  RDs  and  FTs, which satisfy th RT
jN RD

jN FT
jN

                                    and .                  (6.4) 
1 1

,
R Rm m

RT RT RD RD
j j

j j

N N N N
= =

= =∑ ∑
1

Rm
FT FT
j

j

N N
=

=∑
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Thus controllers u  and  can be written in the following form: B Ru

( )1 , ,
B

B B B
mu u u ′= "  and ( 1 , ,

R

R R R
mu u u )′= "                                  (6.5) 

where the ith Blue sub-team control u ( iB
i 1, , Bm= " ) and the jth Red sub-team control 

( ) are the vectors of appropriate dimensions.  R
ju 1, , Rj = " m

)

The Blue force and the Red force have conflicting objective functions and cannot 

cooperate with each other.  The objective function of each team at step  is given by k

        (6.6a) 

1 1

1 1 1

ˆ ˆ( ) ( )
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BB BF
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p k p k p k

k

i m

α α

α α α

= =

= = =

+

−

=

− − =

∑ ∑
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∑ ∑
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(6.6b) 

In the above expressions, ˆ
j

i
Xp is the normalized number of platforms for the j  unit of th X in i th  

team, i.e., 

( )
ˆ ( )

(0)
j

j

j

i
Xi

X i
X

p k
p k

p
=     Kk ....3,2,1,0= .                                           (6.7) 

Clearly, this newly model for military air operation can be formulated as an optimization 

problem of a two-team system.  For example, in the Blue force, the ith sub-team has its own 

objective function to be maximized.  Also, all the blue sub-teams are required to 

cooperate with each other to complete pre-assigned tasks.  The overall problem can be 

formulated as: 

( )iBJ k
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{ } { }1 1(0), , ( 1) (0), , ( 1)0 0
max ( ( )), , max ( ( ))mi B

B B B B
m mB B

K K
BB

u u K u u Kk k
J k J k

− −= =

 
 
 

∑
" "

" ∑

∑

                       (6.8a) 

for the Blue sub-teams and 

{ } { }1 1(0), , ( 1) (0), , ( 1)0 0
max ( ( )), , max ( ( ))mi R

R R R R
m mR R

K K
RR

u u K u u Kk k
J k J k

− −= =

 
 
 

∑
" "

"                               (6.8b) 

for the Red sub-teams such that 

                         .                                                               (6.9) )),(),(),(()1( kkukukzfkz RB=+

Note that the objective function , i m( )iBJ k 1, , B= " ,(or ,( )jRJ k 1, , Rj m= " ) is not only a function 

of the opposing force control  (or u ), but also a function of the controls of other sub-teams 

in the same force.  Therefore, we can apply Nash Noninferior Strategy to this multi-team 

dynamic system.  The algorithm used to determine this NNS is given as follows: 

Ru B

Step 1. Consider maximizing the sub-team objective function , 2
iB

k kJ +  (or ) over two-

step time horizon: 

, 2
iR

k kJ +

, 2 ( 1) ( 2i i iB B B
k kJ J k J k+ = + + + ) 1, , B, i m= " ;                               (6.10a) 

, 2 ( 1) ( 2i i iR R R
k kJ J k J k+ = + + + ) 1, , R, i m= " ;                                (6.10b) 

Step 2. Construct the scalar objective criteria for each force under a given weight 

vector ( ),B Rξ ξ as: 

                                                  (6.11a) ,
, 2 , 2

1
( ( ), ( 1); ( ), ( 1))

BB
i

m
BB B B R R B

k k i k k
i

J u k u k u k u k Jξ ξ+ +
=

+ + =∑

,
, 2 , 2

1
( ( ), ( 1); ( ), ( 1))

RR
i

m
RR B B R R R

k k i k k
i

J u k u k u k u k Jξ ξ+ +
=

+ + =∑                      (6.11b) 

where  
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( )1
1

, , , 1, 0, 1, , , ,
X

X

m
X X X X X

m i i X
i

i m X Bξ ξ ξ ξ ξ
=

= = ≥ =∑" " .                                (6.12) R=

Step 3. Solve for Nash Noninferior Strategies ( ) ( ){ }ˆ ˆ ˆ ˆ( ), ( 1) , ( ), ( 1)B B R Ru k u k u k u k+ + which 

satisfy that  

                                                    , ,
, 2 , 2ˆ ˆ ˆ ˆ ˆ ˆ( ( ), ( 1); ( ), ( 1)) ( ( ), ( 1); ( ), ( 1))

B BB B B R R B B B R R
k k k kJ u k u k u k u k J u k u k u k u kξ ξ

+ ++ + ≥ + +

                          { }( ), ( 1) ( ) ( 1)B B B Bu k u k U k U k∀ + ∈ × +

+

,                                             (6.13a) 

, ,
, 2 , 2ˆ ˆ ˆ ˆ ˆ ˆ( ( ), ( 1); ( ), ( 1)) ( ( ), ( 1); ( ), ( 1))

R RR B B R R R B B R R
k k k kJ u k u k u k u k J u k u k u k u kξ ξ

+ ++ + ≥ +                  

                           { }( ), ( 1) ( ) ( 1)R R R Ru k u k U k U k∀ + ∈ × + .                                           (6.13b)            

where  and U k are admissible control sets for the force X at step k and step k+1, 

respectively.   

( )XU k ( 1)X +

As we discussed before, for each given weight vector, there may exist a Nash Noninferior 

Strategy.  We will use the following example to explain the effect of various choices of weight 

vectors by force commanders on the outcome of system engagement. 

6.4.2 Illustrative example 

 
We consider a scenario where Red fixed target FT1, a bridge, is strongly defended by three 

groups of fixed SAMs & Radars (RD1~RD3) and two groups of armored vehicles (RT1,RT2). 

Blue force includes two groups of blue bombers (BB1 and BB2) and two groups of blue fighters 

(BF1 and BF2).  The initial deployment of units is shown in Table 6.15.  Probabilities of kill for 

each pair of units are given in Table 6.16. 

For simplicity, we consider only dividing the Blue force into two sub-teams, and keeping 

the Red force as one team.  The team composition is given in Table 6.17.  Each Blue sub-team 
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decides to maximize the remaining platforms of its own team members.  Furthermore, Team B1 

wishes to minimize the remaining platforms of the red defenses and red troops while Team B2  

hopes to minimize the remaining platforms of the red fixed target.  For each sub-team, the 

weighting coefficients of team members are listed in Table 6.18.   

 

Table 6.15 Initial situation and equipments of the units for the example 
 
 

Unit Type Location Platforms Weapons Max. Salvo 
BB1 F4 bombers (8,7) 8 4 1 
BB2 F4 bombers (8,7) 2 4 1 
BF1 F2-E fighters (8,7) 8 4 1 
BF2 F2-E fighters (8,7) 4 4 1 

RT1;RT2 Armored vehicles (5,5); (5,4) 50 3 1 
RD1 Fixed SAM & radar (2,2) 7 18/7 6/7 
RD2 Fixed SAM & radar (2,2) 7 18/7 6/7 
RD3 Fixed SAM & radar (2,2) 7 18/7 6/7 
FT Bridge (2,2) 10 N/A N/A 

 
 
 
 
 

Table 6.16 Probabilities of kill for the example 
 
 

 BB1 BB2 BF1 BF2 RT1 RT2 RD1 RD2 RD3 FT1 
BB1 0 0 0 0 0.6 0.6 0.6 0.5 0.4 0.3 
BB2 0 0 0 0 0.6 0.6 0.6 0.5 0.4 0.3 
BF1 0 0 0 0 0 0 0.8 0.7 0.7 0 
BF2 0 0 0 0 0 0 0.8 0.7 0.6 0 
RT1 0.2 0.2 0.1 0.1 0 0 0 0 0 0 
RT2 0.2 0.2 0.1 0.1 0 0 0 0 0 0 
RD1 0.7 0.7 0.3 0.3 0 0 0 0 0 0 
RD2 0.5 0.5 0.3 0.2 0 0 0 0 0 0 
RD3 0.5 0.5 0.2 0.2 0 0 0 0 0 0 
FT1 0 0 0 0 0 0 0 0 0 0 
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Table 6.17 Team composition for the example 
 
 

 Sub-Teams Units Objective Function 

Team B1 BB1, BF1 
1

1 1 1 1
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Table 6.18 Weighting coefficients of team members in the team objective function  
 
 

 BB1 BB2 BF1 BF2 RT1 RT2 RD1 RD2 RD3 FT 
Blue Xiα  0.8 0.8 0.5 0.5 0.1 0.1 0.2 0.2 0.2 1 
Red Xiβ  0.7 0.7 0.4 0.3 0.1 0.1 0.7 0.5 0.5 1 

 
 

In order to find the Nash noninferior strategies, we use the following scalar criterion for the 

blue side: 

1,
, 2 1 , 2 2 , 2

B BB B B
k k k k k kJ J Jξ ξ ξ+ += + 2B

+

)

                                                       (6.14) 

where .  We select several options of values of 1 2 1 21, , 0B B B Bξ ξ ξ ξ+ = ≥ 1 2( ,B Bξ ξ , which are given 

in Table 6.19. 

 

Table 6.19 Weighting coefficients in the scalar criterion of the Blue force 
 
 

Options Option 1 Option 2 Option 3 Option 4 Option 5 

1 2,B Bξ ξ     [0 , 1] [0.25 , 0.75] [0.5 , 0.5] [0.75 , 0.25] [1 ,  0 ] 
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By using two-step looking-ahead dynamic programming method, we solve for the Nash 

Noninferior Strategies.  Figure 6.18 shows the initial scenario of this example.  Figure 6.19 gives 

the simulation results for different options of weighting coefficients listed in Table 6.20.  In one 

extreme case such as option 1, the Blue force doesn’t complete its task because the number of the 

remaining platforms of FT1 is still more than 60%. This is caused by the fact that, with the 

option 1, i.e , Blue commander only cares to destroy the red fixed target and save 

units in Team B2 as many as possible.  However, he ignores the red defenses and the casualty of 

units in Team B1.  Therefore, BB1 will decide to attack the red target directly and BB2 will not 

enter the red area at all.  Also, since Blue fighters are only most effective in destroying red 

defenses, thus BF1 and BF2 decide not to enter the engagement area either.  Option 5, the other 

extreme case, is also unreasonable since the Blue force doesn’t attack the red fixed target (FT) at 

all, though attacking FT is undoubtedly the most important goal for the Blue force.  We called 

both option 1 and option 5 “blind choices” for the blue commander.  It shouldn’t occur in the real 

implementation. 

1 20, 1B Bξ ξ= =

In option 2, for the Blue objective function ,
, 2

BB
k kJ ξ

+  in (6.14), Team B1 has a smaller 

weighting coefficient than Team B2 (0.25<0.75).  The Blue commander still pays less attention 

to the red defense parts than to the red fixed target.  The number of BB1 is larger than that of 

BB2 and thus BB1 is more effective to attack fixed target than BB2.  Therefore, Team B1 enters 

the red area first as shown in Figure 6.20.  The fixed target is not attacked enough when BB1 is 

used up.  The Red defense parts are still strong.  BF2, at this moment, decides to participate in to 

weaken the red defense part. This can be seen in Figure 6.21.  Then, BB2 at last accomplishes 

the mission, as shown in Figure 6.22.  In this option, we see that the members in Team B1, 

especially BB1, suffer grievous losses. 
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In option 4, Blue commander focuses on attacking the red defense parts.  Thus the weight 

assigned to the objective of Team B2 in the scalar criterion is greater than that assigned to the 

objective of Team B1.  BFs in both teams decide to enter the area first to attack RDs, as shown in 

Figure 6.23.  In Figure 6.24, we see that, after the RDs are destroyed to some degree, BB1 joins 

them to attack the fixed target until the task is completed.  The final results are shown in Figure 

6.25.  BB2 never enters the area in this option since BB1 is more effective than BB2 to attack 

FT1 and BB1 is enough to finish this task when the defense parts are destroyed.  In this option, 

more BBs are saved than that in option 2 while BFs lose a lot.  
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Figure 6.18 Initial situations for the example 
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Figure 6.24  Number of Remaining Platforms for different options 2
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Figure 6.19  The number of remaining platforms for various options 
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Figure 6.20 BB1 and BF1 enter the area first in option 2 
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Figure 6.21 BF2 enters the area in option 2 
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Figure 6.22 BB2 enters to complete the task in option 2 
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Figure 6.23 BFs enter first to attack the red defense parts in option 4 
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Figure 6.24 BB1 enters to attack FT in option 4 
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 Figure 6.25 BB1 finishes the task without BB2 in option 4 
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Option 3, in which the weights for the objectives of both Team B1 and Team B2 are equal, 

is equivalent to that situation where there is no team composition at all.  Compared to option 4, 

only BF1 first enters the area to attack the red defenses, as shown in Figure 6.26.  Next, in Figure 

6.27, we see that BB1 gets into position to attack the fixed target.  We note that the red defense 

parts are still strong at this time. Therefore, BF2 also moves into the area to help to cripple the 

red defenses (in Figure 6.28).  At last, in Figure 6.29, we see that the BB1 finishes the task and 

return to the base while there is still red defense alive.  

We also compared the total remaining number of BBs’ and BFs’ platforms for the options 

2, 3 and 4 in Figure 6.30 and Figure 6.31, respectively.  For the purpose of saving more BBs, 

option 4 looks best.  For the purpose of saving more BFs, option 3 looks better.  As we can see in 

this example, several options have been provided to the Blue commander, from which he can 

choose one according to some fixed criterion or his own subjective desire.  
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 Figure 6.26 BF1 enters to attack RDs in option 3 
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Figure 6.27 BB1 enters the area in option 3 while RDs are still strong 
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Figure 6.28 BF2 moves into the area to attack RDs in option 3 
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Figure 6.29 The task is completed in option 3 
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Figure 6.30 Comparison of the total number of BBs’ remaining platforms in options 2-4 
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Figure 6.31 Comparison of the total number of BFs’ remaining platforms in options 2-4 
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6.5 CONCLUSIONS 

In this chapter, Nash reassignment strategies, Nash ordinal strategies and Noninferior Nash 

strategies are investigated as possible approaches to determine the optimal dynamic team 

composition and task assignment in the military air operation.   

The reassignment problem in multi-team multi-task dynamic systems is specifically 

encountered by a commander to reassign some teams successfully accomplishing their tasks to 

assist other teams which perform their pre-assigned tasks either unsuccessfully or inefficiently.  

Our simulation examples demonstrated the Nash reassignment strategies can improve the overall 

performance of the Blue force.  A Nash Ordinal strategy is presented for the top commander of 

each force to make decision on the initial task assignment and team composition.  We have 

shown that Nash ordinal strategies are effective and useful in the decision of the initial resource 

allocation by the top leaders especially when mathematical expressions for their objectives are 

not available.  We also discussed the effects of cooperative teaming with different set-ups by 

varying the resource capabilities available to each team.  Our simulation results have shown that 

when one side has limited resources and strength to complete its mission, cooperative teaming 

among its constituents can improve the overall system’s performance.  Cooperative teaming in 

that case would be a wise choice for the leader of that side.  However, as that side is made 

stronger, the difference in outcome between teaming and non-teaming becomes less and less 

noticeable.  In that case, teaming may not be as necessary, and in fact may result in deterioration 

in performance.  In the end, two-step look-ahead Noninferior Nash strategies are presented to 

investigate the effects of various options of weight vectors by force commanders for team task 

assignment on the cooperative performance among teams in one force.   
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7.0 CONCLUSIONS 

 

In this dissertation, we developed a new game theoretic strategy, called Noninferior Nash 

strategy for an extended complex system consisting of several teams of cooperating decision- 

makers that are simultaneously in conflict with other adversarial teams controlling the same 

system.  We investigated the properties of the Noninferior Nash strategy in both finite and 

infinite static games, and presented conditions for its existence in continuous time static games.  

We also obtained the conditions for existence of this strategy and its analytical solutions for a 

class of linear quadratic multi-team static games and dynamic games.   This strategy has the 

property that there is no incentive for any one team in the system to deviate unilaterally while at 

the same time maintaining complete cooperation among team members.  The Noninferior Nash 

strategies are considered as a mechanism for strengthening team cooperation in the presence of 

an adversary and thus improving the overall performance of the system.   

In order to deal with the issue of non-uniqueness of the solution, we introduced the concept 

of the Noninferior Nash strategy with a team Leader (NNSL).  This strategy is an extension of 

the Noninferior Nash Strategy, and allows for the selection of a particular solution from the set 

of solutions if each team has a Leader that optimizes a team objective function that may be 

different from those of the team members.  In the general case, obtaining this solution may also 

involve a game among the team Leaders.  Two examples of microeconomics problems and 

routing problems in parallel-link network are presented to illustrate the effectiveness of NNSL in 

improving the overall system performance.   
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A military air operation consisting of two sets of opposing forces is a typical example of an 

extended complex system.  In this thesis, we introduced a dynamic model of the military air 

operation and investigated various Nash-based strategies for optimal planning of shared 

responsibilities and roles in the hierarchical deployment of units in the combat.  Nash 

reassignment strategies (NRS) are applied in the situation when a team is not able to accomplish 

its task or when it can accomplish it in an inefficient manner.  The top commander (or system 

leader in general) may decide to reassign another team to reinforce that team’s ability to achieve 

its objective.  Our simulation results showed that it is possible to reallocate resources 

dynamically and optimally, and thus improve system’s performance using reassignment 

strategies.  We also discussed the effects of cooperative teaming with different set-ups for the 

capabilities of one of the forces.  Our experiments have shown that when one side has limited 

resources to complete its mission, cooperative teaming among its constituents can improve the 

overall system’s performance.  We applied the Noninferior Nash strategies (NNS) to determine 

the cooperative control for the teams on one side by varying the weighting coefficients related to 

the importance of these teams’ strategic objectives.      
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