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ADAPTIVE CONTROL FOR THE POSITION OF MAGNETIC PARTICLES

USING MAGNETIC TRAPS

Jason G. Pickel, M.S.

University of Pittsburgh, 2009

Magnetic traps are an important instrument for analyzing the behavior of systems and

biological processes. They manipulate magnetic particles by applying a force under the

influence of magnetic fields. Controlling the position of the magnetic particle for single

molecule studies is difficult due to the complexity of the instrument because its dynamics

can change per experiment. This results in users spending an immense amount of time

designing compensators to meet experimental requirements, yielding insufficient time spent

concentrating on the experiment.

One method to alleviate users of designing compensators is to incorporate adaptive con-

trol methods into the design of magnetic traps. Adaptive control is able to adjust the

parameters of the compensator to ensure the performance of the instrument meets specific

requirements. The magnetic particle constantly moves from the Brownian disturbances act-

ing upon it. These disturbances can be minimized by using an adaptive Q-parametrized

compensator structure with LMS to minimize a frequency weighted version of the displace-

ment of the magnetic particle for low frequencies.

An adaptive Q-parametrized compensator structure was incorporated into the design of

the magnetic trap, resulting in the position of the magnetic particle being stabilized, the

effects of the Brownian disturbances being reduced, and the dynamics of the instrument

changing into account. The displacement of the magnetic particle due to the Brownian

disturbances was suppressed more as the number of FIR weights increased than using the

nominal adaptive compensator.
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1.0 INTRODUCTION

The development of single molecule manipulation has allowed biophysicists to gain valuable

knowledge of biological processes and molecular functions in real time. By manipulating

biomolecules, biophysicists have gained insight into the governing inter-conversion of mechan-

ical and chemical energy in biological processes including: protein folding, DNA elasticity,

and the behavior of molecular motors [22, 5].

There are several micromanipulation techniques available to analyze the behavior of

biological specimens: optical tweezers, atomic force microscopy, permanent magnet magnetic

traps, and electromagnet magnetic traps, that was used for this thesis. There are several

advantages electromagnetic magnetic traps offer over the other methods. Permanent magnets

offers scientists a tool that is simple, portable, and requires no external power source however

their main drawback is the controllability of the magnetic particles [15, 6]. Optical tweezers

are able to manipulate microscopic objects using a laser as long as the refractive index

is different from the surrounding medium. However optical tweezers could have difficulty

analyzing the components of the cell because the cell contains many myriad objects similar

to the dielectric particle [17]. This results in the refractive indices of the dielectric particle and

the components of the cell being similar, meaning the optical tweezer may no longer be able to

selectively operate within the cell. In addition, the laser used to control the dielectric particle

can cause localized heating damage to the biological material [15]. Electromagnet magnetic

traps have advantages in that the magnetic particle is easily controllable by controlling the

current in a electromagnet, that the biological specimen has very low magnetic susceptibility

resulting in the magnetic particle being controlled independently within the specimen, and

finally that the magnetic particle is controlled by external magnetic fields which eliminates

the possibility of localized photodamage [22, 6].
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1.1 BACKGROUND

Magnetic tweezers are an important tool used in studying the viscoelastic properties of

the cell. The viscoelasticity of the cell is vital for many cellular processes including the

transportation of vesicles and the regulation of the cell shape [3]. Analysis of the viscoelastic

properties allow insight into how drugs and diseases affect the cell structure while also gaining

knowledge of the internal cytoskeleton of the cell. Ziemann studied the frequency dependence

of viscoelastic moduli of entangled F-actin networks using magnetic traps to account for the

local thermal fluctuations and local inhomogeneities from non equilibrium effects [39]. The

results highlight how magnetic traps can be used to study cell locomotion and cellular shape

changes. Bausch used a magnetic trap to quantify the viscoelastic property of fibroblasts on

the cell envelope. After attaching the fibroblasts to a solid substrate, the three-phasic creep

response curves of the cell were analyzed [3]. In addition, Bausch used magnetic tweezers to

analyze the viscoelastic moduli of macrophages and the local active forces inside cytoplasm

[2].

Magnetic traps are also used in DNA supercoiling analysis, in that the DNA twists to

become a double-helical structure. DNA supercoiling has applications in transcription, which

is the forming of RNA from the DNA template, the condensation of DNA to prepare for cell

division, the separation of homologous chromosomes during the anaphase of mitosis, and the

separation of sister chromatids during meiosis [7] [31]. Strick examined the elasticity of linear

DNA molecules by attaching magnetic particles to the free ends of DNA and measured the

magnetic force applied to the DNA molecules [31]. As a result, Strick analyzed the coiling

and uncoiling of DNA by studying the transverse Brownian fluctuations of the DNA using

the equipartition theorem [31].

Magnetic traps have been used at the macroscopic level for magnetic drug targeting appli-

cations to target certain cells within the body. Possible applications include targeting tumor

cells of cancer patients and treating localized diseases like restenosis in coronary arteries

[29]. Chemotherapy is a very toxic treatment as it does not differentiate between tumor-

genic and healthy cells in the patient. In magnetic drug targeting, magnetic nanoparticles

are attached to prescriptions and injected into the patient as a ferro-fluid. The ferro-fluid
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is then directed towards the desired location using external magnetic fields [35]. The first

applications used static magnetic fields outside the body to move the nanoparticles to the

desired locations. However this method targets cells within 5cm of the patient’s skin which

is not sufficient when the goal is to target cells deep within the body. Shapiro is in the

preliminary stages of controlling magnetic nanoparticles deep within the body by using feed-

back control techniques to manipulate the magnetic fields at the drug targeting location [29].

Once the magnetic nanoparticles are injected into the patient, they move toward the highest

field gradient through blood vessels, located at the drug targeting location [35]. The blood

vessel will then absorb the nanoparticle, which will move to the targeted cells through the

control of the magnetic fields [29].

1.2 MOTIVATION

The open-loop displacement of the magnetic particle is inherently unstable due to Earnshaw’s

theorem [22]. The particle moves in the direction of the electromagnet that generates the

highest field gradient, until the particle contacts the electromagnet. However implementing

magnetic traps to examine the behavior or the mechanical properties of biological specimen

requires the precise control for the displacement of the magnetic particle. Feedback control

techniques must be incorporated into the design of magnetic traps to stabilize the position

of the particle by controlling the current in the electromagnets.

The dynamics of the magnetic trap change for each experiment for several reasons. The

location of the magnetic particle in solution produces a viscous drag on the particle, however

the particle experiences less viscous drag near the bulk of the solution than near the micro-

scope slide or the coverslip. The magnetic properties for the individual particles fluctuate

because manufacturers provide the average magnetic properties for a sample of particles

[30]. The average magnetic properties are characterized due to the manufacturing processes

of the magnetic particles being complex [30]. This results in the magnetic properties of
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individual magnetic particles varying from the bulk magnetic properties [30]. In addition to

the dynamics changing, Brownian disturbances causes the particle to constantly drift in the

solution.

Feedback control techniques must also be incorporated into the design of magnetic traps

to compensate for the changes in experimental conditions and to minimize the effects of the

Brownian disturbances. However biophysicists are currently spending an enormous amount

of time designing compensators to satisfy their experimental conditions which results in

minimal time allotted to investigate their experiments. The effort spent on designing com-

pensators highlights the lack of knowledge biophysicists have in control theory.

Automated methods for compensator design can alleviate user’s time spent designing con-

trollers. Adaptive control techniques provide one method for automated compensator design

by automatically adjusting the control law to change the parameters of the compensator.

This ensures the performance of the system meets specified criteria while compensating for

the changing dynamics of the micromanipulator. By incorporating adaptive control tech-

niques into the design of magnetic traps, users will be able to concentrate more time and

energy into their experiments.

This research demonstrates how adaptive control techniques can be incorporated into the

design of magnetic traps to accommodate different experimental conditions while minimizing

the effects of the Brownian disturbances. The adaptive controller has a Q-parametrization

structure while the parameters are updated using filtered-x least mean squares (FX-LMS)

techniques.

1.3 LITERATURE REVIEW

The following section discusses the historical aspects of the critical parts for this work. The

background of adaptive control, coprime factorization, and least mean squares will be given.
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1.3.1 Adaptive Control

In the 1950’s, the design of autopilots for aircraft was critical because an aircraft had to

operate at different air speeds and altitudes. Single constant gain compensators were at-

tempted to design the autopilots, however due to the large variations in the conditions,

a single constant gain compensator could only obtain good performance at one operating

condition [28, 18]. The design of autopilots to operate at the various operating conditions

required a more advanced compensation method. The compensation method invented was

adaptive control, that changed the parameters of the compensator to the changes in the

plant.

The first adaptive control method implemented to design autopilots for aircraft was gain

scheduling which occurred in the 1950’s and 1960’s. Gain scheduling used single constant

gain compensators for each operating condition of the plant. This was accomplished by

finding auxiliary variables of the system that correlated well to the dynamics of the plant

[28]. The advantage of this method is the parameters of the compensator can change quickly

as functions of the auxiliary variables. There were several disadvantages to this method:

it is an open-loop adaptation resulting in no learning of the system and there had to be a

constant gain compensator for every operating condition.

After the gain scheduling method was created, H.P. Whitaker proposed another adap-

tive control method called model reference adaptive control (MRAC), that adjusted the

parameters of the compensator by comparing the output of the feedback system to the out-

put of a reference system that satisfied the design criteria [28, 18]. The parameters of the

compensator were adjusted until the difference between the outputs or the error was zero.

The first applications updated the compensator parameters until the error was zero using

gradient update methods. However, the unknown plant parameters were contained within

the gradient updates causing the gradient to be unavailable. The MIT rule was invented

to obtain estimates of the unknown plant parameters at certain times. Unfortunately, the

closed-loop stability of the compensated system was difficult to prove with the MIT rule

because it only worked if the adaptation gain and the magnitude of the reference input were

small [28]. Closed-loop stability of the feedback system was determined by P.C. Parks in
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1966 through the use of Lyapunov theory. Lyapunov theory determines the update laws

for the compensator parameters, causing the error to decrease thus proving the feedback

compensated system is stable.

There is another MRAC scheme called the series high-gain scheme. In this scheme, the

reference signal is fed into the reference model transfer function, whose output is then fed

into a unity feedback system with the feedforward gain being the product of a single constant

gain and the plant. The objective is to make the single constant gain very large to yield

the resultant transfer function of the feedback loop to be one, resulting in the output of the

plant matching the output of the reference model. The disadvantage occurs when the single

constant gain becomes very large, resulting in the system saturating, which mask oscillations

within the system allowing the value of the single constant gain to go beyond a critical value

causing instability [28].

In 1958, R.E. Kalman invented self tuning compensators that update the parameters of

the compensator using the certainty equivalence principle. The plant parameters are esti-

mated using a recursive algorithm while the parameters of the compensator are obtained as

if the estimated plant parameters are the actual plant parameters.

1.3.2 Coprime Factorization

Fractional representation models to analysis feedback control problems are critical in defining

the set of compensators that causes the feedback system to be stable. Dante Youla in

1976 was able to characterize an optimal controller that guaranteed asymptotical stability

for a feedback system when the plant is stable, unstable or minimum phase [37]. Youla

accomplished this by minimizing a least-square Wiener-Hopf equation. C.A. Desoer in 1980

was able to characterize the set of stabilizing compensators using left and right coprime

factorization within a subring instead of a ring of polynomials, while M. Vidyasagar in

1982 concentrated on characterizing the set of stabilizing compensators to multiple input

multiple output systems [10, 9, 33]. Characterizing the set of of stabilizing compensators

using coprime factorization with a state-space approach was finally implemented in 1982 by
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P. Khargonekar and E.Sontag while C.N. Nett derived computational algorithms to obtain

the set of stabilizing compensators using coprime factorization with a state-space approach

in 1984 [10].

1.3.3 Least Mean Squares

The interest of interpreting observations and making predictions have been around since the

Babylonians, who used Fourier series to make their predictions [19]. Galileo Galilei in 1632

began making estimates by minimizing various error functions. The use of least squares

has been around since the last 1700’s where Gauss was the first person to use this method,

however the method was not documented until Legendre in 1805 [19].

Least squares estimation was used to solve stochastic processes by A.N. Kolmogorov in

1939, who derived a comprehensive method of prediction problems for discrete-time station-

ary processes [19]. M.G. Krien used least squared estimation in 1945 to work on orthogonal

polynomials and extended those results to continuous-time using bilinear transformations

[19]. N. Wiener in 1942 was the first to provide solutions of stochastic processes using

least squares estimation although his work was not published until 1949. [19, 20]. Wiener

was interested in deriving a formula to predict the optimal predictor from applications in

anti-aircraft fire-control problems, which he used a variational argument to solve [19]. This

resulted in Wiener solving the Wiener-Hopf integral equation, which first arose in astro-

physics in 1894 [19]. The accomplished of Wiener allowed others to continue his work and

make additional contributions to linear filter theory. H.W. Bode and C.E. Shannon in 1950

showed how arbitrary random signals can be represented as an output of a linear system

that is excited by white noise [20]. M.C. Yovits and J.L. Jackson derived an expression for

the mean square error for an uncorrelated signal and noise, that can be used to determine if

the optimal filter is useful for the particular application.
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2.0 THEORY

This chapter discusses the theory of the four primary aspects of this project: the modeling

of the dynamics of the magnetic particle, the actuation of the magnetic particle, the sensing

mechanism to measure the displacement of the magnetic particle, and the control theory

needed to stabilize and manipulate the position of the magnetic particle.

2.1 MAGNETIC PARTICLE DYNAMICS

The magnetic trap system is shown in figure 1. The equation of motion (EOM) describing

the position of the magnetic particle is:

mẍ+ γẋ = Fm + Fe + F̃B, (2.1)

Figure 1: Schematic of the forces applied to a magnetic particle suspended in a fluid medium
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where x is the displacement of the magnetic particle, m is the mass of the magnetic particle,

and γ is the Stokes drag acting on the magnetic particle due to the surrounding fluid. The

external forces applied to the magnetic particle are: the fluctuating Brownian force, F̃B, the

exogenous force, Fe, that may include molecular forces and van der Waals forces, and the

magnetic force, Fm, that can be controlled by the electromagnetic current as discussed later.

As the particle moves through the solution due to the magnetic force, there is an addi-

tional force acting on the magnetic particle in the opposite direction, a viscous Stokes drag

given by

~Fs = −6πηr~̇x = −γ~̇x, (2.2)

where η is the viscosity of the surrounding fluid, r is the radius of the magnetic particle, and

~̇x is the velocity of the magnetic particle [17] [16]. Stokes drag simplifies the Navier-Stokes

equations by neglecting the inertial effects but only holds for low Reynold’s numbers [16]. The

viscous drag is modeled as a viscous damper, the damping coefficient is γ = 6πηr because the

velocity of the particle is on the order of microns per second, yielding the Reynold’s number

of the magnetic particle being on the order of 10−5 [15]. The equation for Stokes drag is

valid when the particle is in the bulk of the solution to minimize wall effects associated near

the microscope slide or the coverslip [15, 17]. These wall effects can be accounted for by

using the Oseen boundary condition term in equation 2.2 [1, 16].

~Fs = −6πηr~̇x[1 +
3

8
NRe +

9

40
N2
Re lnNRe +O(N2

Re)] (2.3)

The transfer function for the magnetic trap, Gm(s), relating the position of the magnetic

particle, x, to the applied magnetic force, Fm, is a second order type one system.

Gm(s) =
x

Fm
=

1

s(ms+ γ)
(2.4)
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2.1.1 Brownian Disturbances

The magnetic particle experiences a fluctuating force, F̃B, in the absence of magnetic forces

due to the surrounding water molecules colliding into it. The EOM describing the velocity

of the magnetic particle, ẋ:

m
d(ẋ)

dt
= −γẋ+ F̃B, (2.5)

where γ = 6πηr is the viscous drag coefficient due to Stokes drag. The water molecules

collide into the magnetic particle from all directions yielding the mean displacement of the

magnetic particle being zero, 〈x〉 = 0. The magnitude of the fluctuating force is important

when designing compensators to eliminate the random motion of the magnetic particle and

is characterized by the mean squared displacement of the magnetic particle, 〈x2〉. The mean

squared displacement of the magnetic particle is found by multiplying equation 2.5 by the

position of the magnetic particle, x, and taking the expected value of both sides.

m

〈
d(ẋ)x

dt

〉
= m

d(〈xẋ〉)
dt

−m
〈
ẋ2
〉

= −γ 〈ẋx〉+
〈
F̃Bx

〉
(2.6)

The fluctuating force is independent of the position of the magnetic particle, resulting in the

expected value for the product of the fluctuating force and position of the magnetic particle,〈
F̃Bx

〉
, being zero. The product for the mass of the particle and its mean squared velocity,

m
〈
ẋ2
〉

, equals the thermal energy of the system, kbT , due to the equipartition theorem

where kb is Boltzmann’s constant and T is the absolute temperature of the water solution

in kelvin. The simplification of equation 2.6 yields a first order differential equation in 〈xẋ〉

with an initial condition that states: the position of the magnetic particle is zero when time

is zero.
1

2
m
〈
ẋ2
〉

=
1

2
kbT,

〈
ẋ2
〉

=
kbT

m
(2.7)

d 〈xẋ〉
dt

=
kbT

m
− γ

m
〈xẋ〉 , x(t = 0) = 0 (2.8)

Solving for 〈xẋ〉 produces a first order differential equation for the mean squared displacement

of the magnetic particle, d
〈
ẋ2
〉
/(dt). The solution of 〈x2〉 allows the control engineer to

10



analyze the effects of the random motion of the magnetic particle due to the fluctuating

force.

〈xẋ〉 =
1

2

d 〈x2〉
dx

=
kbT

γ
(1− exp

−t
τ

), τ =
m

γ
(2.9)〈

x2
〉

=
2kbT

γ
(t− τ(1− exp

−t
τ

)) (2.10)

The mean squared displacement of the magnetic particle is found to be proportional to time

when the magnetic particle is in the water solution for a longer time duration than the

characteristic time t � τ . This results in the random motion of the magnetic particle due

to the fluctuating force being unstable.

〈
x2
〉

=
2kbT

γ
t (2.11)

The fluctuating disturbances acting on the magnetic particle has two effects: its the resistive

force acting on the magnetic particle as it moves through the solution due to Stokes drag and

the driving force that causes the particle to constantly move. These effects are from the same

source resulting in the viscosity of the water solution being related to the magnitude of the

fluctuating force. As the particle moves through the solution due to the fluctuating force, the

particle experiences a resistive viscous force due to the water molecules it collides into. These

effects are related by analyzing the system using energy methods. Kinetic energy is added

to the system as a result of the water molecules colliding into the magnetic particle, however

the kinetic energy of the system is decreased as the magnetic particle moves through the

solution due to the viscous effects. The expression relating the change in the kinetic energy

of the system from the interaction between the magnetic particle and the water molecules is

obtained by the following: multiplying equation 2.5 by the velocity of the magnetic particle,

integrating with respect to time and taking the expected value.

1

2
m
〈
ẋ2
〉
|t2t1 =

∫ t2

t1

(
〈
F̃Bẋ

〉
− γ
〈
ẋ2
〉

)dt (2.12)

The kinetic energy in the system is constant due to the equipartition theorem yielding
〈
F̃Bẋ

〉
being equal to γ

〈
ẋ2
〉

in equation 2.12.

〈
F̃Bẋ

〉
= γ

〈
ẋ2
〉

=
γkbT

m
(2.13)
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〈
F̃Bẋ

〉
can be further simplified by solving for the velocity of the particle in equation 2.5,

multiplying by the fluctuating force and then taking the expected value:〈
F̃Bẋ

〉
= exp

(
−t
τ

)〈
F̃Bvo

〉
+

1

m

∫ t

0

exp

(
−(t− s)

τ

)〈
F̃BF̃B(s)

〉
ds, (2.14)

where vo is the initial velocity of the magnetic particle. As the time that the magnetic

particle is in the solution becomes much greater than the characteristic time, the following

assumption is usually made: the fluctuating forces, F̃B(t) and F̃B(s), are only correlated

over infinitesimally time scales.〈
F̃BF̃B(s)

〉
= σ2δ(t− s), σ2 = 2γkbT (2.15)

The position of the magnetic particle is open-loop stable because its mean squared dis-

placement is proportional to time due to the fluctuating force acting upon it. The position

of the magnetic particle from the Brownian disturbance cannot be confined to a stable equi-

librium point using time-independent magnetic fields due to Earnshaw’s theorem [22].

Theorem 1 Earnshaw’s theorem: Time-independent magnetic fields cannot confine a mag-

netic particle to a stable equilibrium point.

2.2 MAGNETIC FORCES ACTING ON THE PARTICLE

Magnetic traps are a crucial micromanipulator biophysicists use to manipulate biological

specimen. The behavior of the biological specimen is examined by applying magnetic forces

to micron sized magnetic particles attached to the specimen [8, 22].

The magnetic force, ~Fm, acting on the magnetic particle depends upon the particle’s

magnetic dipole moment, ~m, and the applied magnetic field, ~B. The particle’s magnetic

dipole moment is the product of the magnetization of the particle, ~M , and the volume of

the particle, V .

~Fm = ~m · ∇ ~B (2.16)

~m = ~MV (2.17)
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Figure 2: Plot showing how the magnetization of the particle depends upon the applied

magnetic field

The magnetization of the particle is proportional to the applied magnetic field by the fol-

lowing: χ/µo, where χ is the susceptibility of the particle and µo, 400π(10−9) H/m, is the

permeability of free space.

~M =
χ

µo
~B (2.18)

The susceptibility of the particle describes the ability of the particle’s magnetic dipole mo-

ments to align in the direction parallel to the applied magnetic field, ~B [14, 26]. The magnetic

dipole moments will align in the direction parallel to the applied magnetic field as the mag-

nitude of the field increases. The magnetic dipole moments will continue to align until the

particle is magnetically saturated, which implies increasing the magnitude of the magnetic

field no longer has an effect on the magnetization of the particle as shown in figure 2 [17].

The manipulation of the particle requires a change in the magnitude of the magnetic field

producing a corresponding change in the magnetization of the particle. This results in the

linear region of figure 2 being of interest.

13



The magnetic dipole moment of the particle can be expressed as a function of the applied

magnetic field by substituting equation 2.18 into equation 2.17. This results in the magnetic

force being a function of the magnetic field, ~B, and the field gradient, ∇ ~B.

~m =
V χ

µo
~B (2.19)

~Fm =
V χ

µo
~B · ∇ ~B (2.20)

The following assumption is made to simplify the analysis: the magnetic field only has a x

component, By = Bz = 0, reducing the magnetic force in equation 2.20 to

Fm =
V χ

µo
Bx

∂Bx

∂x
. (2.21)

The magnetic field, Bx, acting on the magnetic particle due to the electromagnets can

be modeled as a tightly wound solenoid:

Bx =
µoNa

2

2(x2 + a2)
3
2

I (2.22)

where a is the radius of the coils, N is the number of turns, x is the distance between the

particle and the electromagnet along the electromagnet’s axis, and I is the current in the

electromagnet [38]. The magnetic field is proportional to the current in the electromagnet,

Bx = βI, where β depends upon the radius of the coils, number of coils, and the distance be-

tween the particle and electromagnet along the electromagnet’s axis [38]. Since the magnetic

field depends upon the distance between the particle and the electromagnet, and a multi-

ple electromagnet setup is used, the following assumption is made to simplify the analysis:

the particle is located at the center of the electromagnet setup causing the proportionality

constant, β, to be equal for all electromagnets.

The field gradient, ∂Bx/∂x, is found by taking the derivative of the magnetic field in

equation 2.22 with respect to x.

∂Bx

∂x
= −

3
2
µoNxa

2

(x2 + a2)
5
2

I (2.23)
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The relationship between the magnetic force, Fm, and the current in the electromagnet,

I, is nonlinear by substituting the magnetic field and the field gradient, equation 2.22 and

equation 2.23 respectively, into equation 2.21. This nonlinear relationship does not permit

the use of linear control theory.

Fm =
−3

4

V χµox(Na2)2

(x2 + a2)4
I2 (2.24)

Linear control theory is used by using the following variables to create a linear relationship

between the magnetic force and the current in the electromagnet: define the nominal current

in the electromagnets, I, and the change in the current between the electromagnets, ∆I.

These variables are arranged for I is constant while ∆I changes, yielding a linear relationship

between the magnetic force and the change in the current of the electromagnet, where I1

and I2 are the currents in the respective electromagnets.

I =
I1 + I2

2
, ∆I =

I2 − I1
2

(2.25)

The transfer function relating the magnetic force to the change of the current in the

electromagnets is found by redefining the magnetic field and the field gradient in terms of I

and ∆I as discussed below.

The magnetic fields produced by the electromagnet setup are approximated to decrease

with distance exponentially as shown in figure 3. The decay rates for the magnetic fields are

λ1 and λ2 for electromagnet 1 and electromagnet 2 respectively. The following assumption

is made to simplify the analysis: the decay rate for the electromagnets are the same, λ =

λ1 = λ2.

B1(x) = B1e
−λx, B2(x) = B2e

λ(x−L). (2.26)

The total magnetic field, Bx, at the center of the electromagnet configuration is found

by the following analysis:

• The total magnetic field between the electromagnets, Bx(x), is found by superimposing

the individual magnetic fields produced by the separate electromagnets in equation 2.26.

• Simplifying the exponents of the individual magnetic fields using first order Taylor series

expansion
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Figure 3: Magnetic fields from each electromagnet for one dimensional analysis where L is

the distance between electromagnets, and B1 and B2 are the magnitude of the respective

electromagnets

• Evaluating Bx(x) at x = L/2, the location of the magnetic particle.

The Taylor series approximation for the exponents of the individual magnetic fields are:

e−λx = 1 − λx and eλ(x−L) = 1 + λ(x − L) for B1(x) and B2(x) respectively. These first

order approximations are valid if the characteristic length that the magnetic field decays,

Lc = 1/λ, is longer than the distance the magnetic particle moves, x, or ||λx|| � 1. The

total magnetic field is found by substituting these first order approximations into equation

2.26 and superimposing the individual magnetic fields.

Bx(x) = B1(1− λx) +B2(1 + λx− λL) (2.27)

The following assumption is made to further simplify the calculations for the total magnetic

field acting on the magnetic particle: the electromagnet’s decay characteristic length is

equated to the length between the electromagnets, Lc = L = 1/λ. The total magnetic field,

Bx, acting on the magnetic particle is found by evaluating equation 2.27 at x = L/2.

Bx =
B1 +B2

2
= β

I1 + I2
2

= βI (2.28)

The total field gradient, ∂Bx/∂x, acting on the particle is found by taking the derivative

of the total magnetic field with respect to x and applying the following assumption already

given, Lc = L = 1/λ.

∂Bx

∂x
=
B2 −B1

L
=

2β

L

I2 − I1
2

=
2β

L
∆I (2.29)
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Figure 4: Block diagram for the plant

The linear relationship relating the applied magnetic force, Fm, to the change in the

current of the electromagnets, ∆I, is found by substituting equation 2.28 and equation 2.29

for the magnetic field and field gradient respectively into equation 2.21.

Fm = κ∆I, κ =
2IV χβ2

µoL
(2.30)

2.2.1 Resulting Dynamics of the Actuator and Plant

The total system is composed of 3 subsystems shown in figure 4, which are: g is the transcon-

ductance amplifier, κ is the gain of the magnet, and Gm is the transfer function relating the

displacement of the magnetic particle to the applied magnetic force. The transfer function

for the system, G(s), yields a linear relationship between the input voltage of the amplifier,

Vo and the position of the magnetic particle, x.

G(s) = gκGm(s) =
x

Vo
=

gκ

s(ms+ γ)
(2.31)

2.3 SENSOR

Sensors are a vital aspect of feedback controls by measuring the states of the system quanti-

tatively. These measurements are compared to the desired values to determine if the system

is performing correctly.

17



2.3.1 Sensing Principle

Feedback control for the magnetic particle requires the use of a position sensor and laser

for the comparison of its actual position with its desired position. The laser enters the

optical axis of the microscope using a dichroic mirror and strikes the particle, resulting

in the scattered light off the magnetic particle being reflected in both the forward and

backward directions. The scattered light contains the information about the displacement of

the magnetic particle in both directions [12, 34]. The advantage of measuring the backward

scattered light is the measurements can be performed on non-transparent particles, like

magnetic particles.

The position sensor to measure the displacement of the magnetic particle is a quadrant

photodiode, QPD. The QPD must be placed at the back focal plane of the microscope objec-

tive to measure the angular spectrum of the reflected light to obtain accurate measurements.

However the sensing laser passes through the back focal plane of the microscope, resulting

in an optical system being created to translate the angular spectrum of the reflected light

for measurements. The optical system is shown in figure 5, where the beam splitting cube,

BSC, redirects the reflected light for the QPD to measure its intensity.

The displacement of the magnetic particle is measured by examining the intensity dis-

tribution of the reflected light at the QPD. When the particle is at the center of the laser,

the intensity distribution of the reflected light will be symmetric, however if the particle

is off center, the resulting intensity distribution will not be symmetric. This results in the

displacement of the particle not causing a change in the displacement of the reflecting light

striking the QPD, but a change in the location of the maximum of the intensity distribution

as shown in figure 6 [21].

2.3.2 QPD

The QPD quantitatively measures the displacement of the particle by converting the photons

of the reflected light into current for four diodes simultaneously. When the laser is striking

the center of the QPD, the difference between the sum of the two top diodes and the bottom

two diodes is zero while the sum of the two right diodes and the two left diodes is zero.
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Figure 5: Schematic of the optical system to translate the angular intensity of the reflected

light: The laser is expanded then enters the optical path of the microscope by a dichroic

mirror. The backward scattered light is redirected by a beam splitting cube to be measured

by the QPD. The neutral density filter, NDF, reduces the amount of light power that passes

through for all frequencies.
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Figure 6: Illustrates that a displacement in the particle does not translate the backward

scattered light striking the QPD. The displacement of the particle translates in the movement

of the maximum light intensity striking the QPD resulting in displacement measurements.
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The actual position of the particle is determined using the difference signals of the QPD.

The x difference signal measures the position of the particle in the x direction by subtracting

the current from the two right diodes from the two left diodes, while the y difference signal

measures the y position of the particle by subtracting the current from the two top diodes

from the two bottom diodes as shown in figure 7 [21]. These QPD difference signals are

compared with the desired signals to determine if the magnetic particle is located at the

desired position. The response of the QPD difference signals as the particle moves from the

negative direction to the position direction on a particular axis is shown in figure 8 [21].

The displacement measurements of the particle requires a proportional change in the output

voltage of the sensor to movements of the particle. This requires the measurements being

performed in the linear region of figure 8.

2.4 CONTROLLER PARAMETRIZATION

This section discusses methods to parametrize all controllers using Q-parametrization tech-

niques by characterizing the entire set of stabilizing controllers that makes the feedback

system as shown in figure 9 internally stable. Controller parametrization is useful to adap-

tive control theory because it enables the designer to characterize the entire set of stabilizing

controllers, K. Even though the entire set of controllers stabilizes the feedback system, not

all controllers will have good nominal performance or robust stability.

The theory for internal stability will be discussed first to further understand what the

entire set of controllers is accomplishing. Next, the design for the set of controllers using

both transfer function and state-space techniques are discussed. State-space techniques

are discussed because the controller parametrization will be performed using state-space

methods and provides useful numerical tools for building controllers. The theory of least

mean squares, LMS, is discussed because this will be used to update the parameters of the

adaptive compensator.
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Figure 7: The difference channels of the QPD are the two important signals used to determine

the position of the bead.

Figure 8: The response of the difference channel of the QPD while the bead is moving in the

positive direction of the axis.

22



Figure 9: Traditional feedback control loop. r is the desired reference signal, y is the output

signal of the controlled system, K is the controller, G is the plant, d is the feedforward

disturbance, u is the control signal, e is the error between the desired signal and output

signal and x2 is the input into the plant. [10]

2.4.1 Internal Stability of Feedback Systems

All linear feedback control systems have the following components: a sensor, F , that mea-

sures the output y, a plant, G, and a controller, K, that changes the dynamics of the system

to meet specified requirements as shown in figure 10 [10]. The input signal for each compo-

nent is composed of two signals: an external signal and an internal signal. The input signal

for the components are composed of the following signals [10]:

• The input of the compensator, x1, is composed of: r the reference signal and v the output

of the sensor

• The input of the plant, x2, is composed of: d the feedforward disturbance and u the

control signal

• The input of the sensor, x3, is composed of: n the measurement noise and y the output

of the system

Internal stability is critical because an internal signal within the feedback system can

be unstable while the closed-loop transfer function is stable, causing adverse effects on the

system [10]. The system is internally stable if and only if all transfer functions from the

external signals: r, d, and n to the input signals of the components: x1, x2, and x3 are

stable. The system is internally stable when the external inputs are bounded in magnitude

resulting in the input signals of the components being bounded in magnitude [10]. The
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Figure 10: Traditional feedback control loop. r is the desired reference signal, y is the output

signal of the controlled system, K is the controller, G is the plant, F is the sensor, d is the

feedforward disturbance, n is measurement noise, u is the control signal, v is the sensor

output, and x1, x2, and x3 are the input signals for the system components [10].

external signals of the feedback system can be expressed as a function of the input signals

of the components in matrix form in the following way:
1 0 F

−K 1 0

0 −G 1



x1

x2

x3

 =


r

d

n

 . (2.32)

The closed-loop transfer functions relating the input signals of the components to the external

signals were found by solving for the input signals of the components: x1, x2, and x3 in

equation 2.32. The feedback system is internally stable if the following conditions hold for

equation 2.33 [10]. 
x1

x2

x3

 =
1

1 +GKF


1 −GF −F

K 1 −KF

GK G 1



r

d

n

 (2.33)

1. The roots of 1+GKF are in the unit disk because the compensator is designed digitally.

2. There are no pole-zero cancellations in the loop gain of the system, GKF , outside or on

the unit disk.

3. The plant, G, is strictly proper while both the compensator, K, and the sensor, F , are

proper to ensure 1 +GKF is not strictly proper.
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2.4.2 Controller Parametrization Using Transfer Function Techniques

This section discusses the conditions to find the entire set of controllers, K, that internally

stabilizes the feedback system without considering the stability of the plant. First, the

expression for the plant using coprime rational functions is discussed followed by the criterion

the coprime rational functions must satisfy for the compensator to achieve internal stability.

Finally, the method for internally stabilizing the feedback system using Q-parametrized

methods is discussed.

2.4.2.1 Coprime Factorization of the Plant The plant, G, is written as a ratio of

coprime rational functions: N,M ∈ S where S implies all stable, proper, and real-rational

functions [10]. Coprime implies no common roots in the numerator and denominator. The

plant can only be written as a ratio of coprime rational functions if there exists two additional

rational functions: X, Y ∈ S that satisfies the Bezout identity [10].

G =
N

M
: N,M ∈ S (2.34)

NX +MY = 1 (2.35)

2.4.2.2 Entire Set of Stabilizing Controllers Using Q-parametrization A con-

troller, K, is in the entire set of stabilizing controllers, K, for the feedback system only if Q

is in S [10]. The controller can also be written as a ratio of coprime factorization in S, Nc

and Mc [10].

K =

{
K =

X +MQ

Y −NQ
: Q ∈ S

}
(2.36)

K =
Nc

Mc

, Nc = X +MQ, Mc = Y −NQ (2.37)

There is a uniqueness property about the Q-parametrized compensator that states: for a

given internal stabilizing controller K and a set of coprime rational functions, there can only

be one Q ∈ S that satisfies equation 2.36. This uniqueness property is vise versa, for a given
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Q ∈ S and a set of coprime rational functions, there can only be one internally stabilizing

controller K.

Q =
Y K −X
NK +M

: Q ∈ S (2.38)

The Q-parametrized compensator internally stabilizes the unity feedback system as

shown in figure 9, if the transfer functions relating the input signals of the components:

e and x2 to the external signals: r and d are stable. This implies the roots of 1 +GK must

have magnitudes less then one for stability. e

x2

 =
1

1 +GK

 1 −G

K 1

r
d

 (2.39)

2.4.2.3 Transforming a Feedback Controls Problem into a Model-Matching Pr-

oblem There are four closed-loop transfer functions that are expressed in equation 2.39.

These closed-loop transfer functions are: the sensitivity function, S, the complementary

sensitivity function, T , the product of the plant and sensitivity function, GS, and the product

of the compensator and sensitivity function, KS. These closed-loop transfer functions can

be expressed by the coprime rational functions using equation 2.34 and equation 2.36 for the

plant and controller respectively.

S = M(Y −NQ) (2.40)

T = N(X +MQ) (2.41)

GS = N(Y −NQ) (2.42)

KS = M(X +MQ) (2.43)

By expressing these transfer functions using the coprime rational functions, the feedback

control problem was turned into a feedforward control problem since those relationships are

affine in Q. This makes adaptation easy since LMS can be used to update the dynamics of

the Q parameter in equation 2.36. Feedforward control techniques is used to update Q using

adaptive filter theory, resulting in an adaptive compensator as discussed later.
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Figure 11: Schematic of the state feedback block diagram where the states are x ∈ Rn×1 and

F ∈ R1×n. The triangle represents integration. M and N are the transfer functions: u/r

and y/r respectively.

2.4.2.4 Controller Design Using State-Space Techniques This section discusses

the theory of Q-parametrized compensation using state-space methods.

Controller parameterization can also be implemented using state-space techniques. The

state-space representation for the plant, G, is

G ∼

A B

C D

 , (2.44)

where A is the state matrix, B is the input matrix, C is the output matrix, and D is the

feedforward matrix. The dimensions for each matrix are given in terms of the number of

states, n, the number of inputs, q, and the number of outputs, p, as follows: A ∈ Rn×n,

B ∈ Rn×q, C ∈ Rp×n and D ∈ Rp×q.

The state-space representations for the coprime rational polynomials of the plant: N,M ∈

S are obtained similarly to state feedback design. If the plant is controllable, a matrix

F ∈ R1×n can be chosen to find N and M [10, 4]. The state space representations for M

and N are from r to u and r to y respectively from figure 11.

M ∼

A+BF B

F 1


N ∼

A+BF B

C +DF D

 (2.45)
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The state space representations for the additional coprime rational functions: X, Y ∈ S

are obtained by choosing a real matrix H, H ∈ Rn×1, that causes the state matrix, A+HC,

to be stable [10].

X ∼

A+HC H

F 0


Y ∼

A+HC −B −HD

F 1

 (2.46)

2.4.3 Least Mean Squares

This section discusses how the parameters of the Q-parametrized compensator are updated

using a least mean square (LMS) approach. The Q parameter in the Q-parametrized com-

pensator is modeled as a finite impulse response (FIR) filter. LMS is used to update the

weight coefficients of the Q parameter, resulting in an adaptive compensator. The theory of

LMS is explained through the theory of the steepest descent method.

2.4.3.1 Steepest Descent Method LMS algorithm is based on minimizing a cost func-

tion. The mean squared error, J(n), is the quadratic cost function that expresses the ex-

pected square of the error, e(n), for each discrete time step, n [25]. The error e(n) is the

difference between the desired signal, d(n), and the estimated signal, y(n).

J(n) =
1

2
E[e2(n)] (2.47)

LMS is a recursive method used to adaptively adjust the FIR filter coefficients to produce

an estimated signal of the desired signal using a linear combination of the input signal, x(n),

in such a way to minimize J(n) [25]. The block diagram representation of filter optimization

is shown in figure 12. The desired signal is a single value at each time step resulting in the

estimated signal being the inner product between the weight coefficients, ~w(n), and the filter

input, ~x(n) at each time step [25].

y(n) = ~w(n)T~x(n)) (2.48)

e(n) = d(n)− y(n) = d(n)− ~w(n)T~x(n) (2.49)
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Figure 12: Block diagram representation of filter optimization. w is the filter weights, d(n)

is the desired signal, y(n) is the estimate signal, x(n) is the input signal into the tapped

delay line, and e(n) is the error signal.

The cost function, J(n), can be rearranged by substituting the error, equation 2.49, into

equation 2.47, where σ2
d is the expected value for the variance of the desired signal, pdx is

the expected value of the cross correlation between x(n) and d(n), and Rx is the expected

value for the correlation matrix of the input, x(n) [25].

J(n) =
1

2
σ2
d − ~w(n)Tpdx +

1

2
~w(n)TRx ~w(n) (2.50)

σ2
d = E[d2(n)] (2.51)

~pdx = E[d(n)~x(n)] (2.52)

~Rx = E[~x(n)~xT (n)] (2.53)

The weight coefficients, ~w(n), are continuously updated until their optimal values are

reached. The optimal weight coefficients, ~w◦(n), results in the minimum distance between

the weight coefficient space and the minimum point on J(n) [25]. The conditions for the

weight coefficients to achieve these optimal coefficients are [25]:

• The gradient of J(n) with respect to the weight coefficients, ∂J(n)/∂ ~w, is zero

∂J(n)

∂ ~w(n)
= 0 (2.54)

• The second derivative of J(n) with respect to the weight coefficients is positive

∂2J(n)

∂ ~w2(n)
> 0 (2.55)
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The gradient of the cost function, ∂J(n)/∂ ~w, is obtained by taking the derivative of J(n)

with respect to the weight coefficients, ~w(n). The optimal weight coefficients are found by

solving for ~w(n) in equation 2.56 [25].

∂J(n)

∂ ~w
= −~pdx + ~Rx ~w(n) (2.56)

~w◦(n) = ~R−1~pdx (2.57)

The weight coefficients are updated by adjusting the current weight coefficients in the neg-

ative direction of the cost function gradient to find the weight coefficients at the next time

step, ~w(n + 1) [25]. The weight coefficients are updated as a function of µ, a step-size pa-

rameter at each time step. The step-size parameter value is important because it must be

small to ensure convergence to the optimal weight coefficients however a small value leads

to long convergence times [32].

~w(n+ 1) = ~w(n)− µ∂J(n)

∂ ~w
(2.58)

2.4.3.2 Least Mean Square Algorithm The weight coefficients are updated with LMS

similar to the steepest descent method. The necessity of using LMS is the instantaneous

estimates of ~pdx and ~Rx are used instead of their expected values in the gradient of the cost

function [25]. The weight coefficients at the next time step, ~w(n + 1), are dependent upon

the error signal, e(n), and the input signal, x(n) [25].

~w(n+ 1) = ~w(n)− µ[−d(n)~x(n) + ~x(n)~xT (n)~w(n)] = ~w(n) + µe(n)~x(n) (2.59)

The weight coefficients will remain constant once their optimal values have been reached.

However a change in the desired signal produces a nonzero error signal, resulting in the

weight coefficients being updated again until their optimal values are reached.

An alternative method of obtaining the weight coefficients is by substituting the instan-

taneous estimate for the gradient of the cost function, ∂J(n)/∂ ~w(n), into equation 2.58. The
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gradient of the cost function is simplified by recalling the error is a function of the weight

coefficients as shown in equation 2.49.

J(n) =
1

2
e(n)2 (2.60)

~w(n+ 1) = ~w(n)− µJ(n)

~w(n)
= ~w(n)− µe(n)

∂e(n)

∂ ~w(n)
(2.61)

The adaptation of the FIR weight coefficients of the Q parameter in the Q-parametrized

compensator is important because LMS is used to adjust the weight coefficients to yield an

adaptive compensator.

2.4.3.3 Leaky Least Mean Square Algorithm While performing the experiments of

the adaptive compensators, leaky LMS was used to stabilize the LMS algorithm. The LMS

algorithm may not have converged because an eigenvalue of the correlation matrix for the

input signal was 0 [25]. To prevent the undamped modes becoming unstable, these modes

can be forced to 0 using a leakage factor, γ, whose magnitude is less than 1 [25]. Leaky LMS

is similar to normal LMS, equation 2.61, except there is a leakage factor. Another difference

between the normal LMS and leaky LMS occurs when the step-size parameter is suddenly

set to zero. When the step-size parameter is suddenly set to zero, the weight coefficients

remains constant for normal LMS however the weight coefficients will gradually decay to

zero using leaky LMS [36].

~w(n+ 1) = γ ~w(n)− µe(n)
∂e(n)

∂ ~w(n)
(2.62)

The weight coefficients are updated using normal LMS by placing equal emphasis on all the

past weight coefficients. However due to the leakage factor being less than one, the weight

coefficients are updated by placing more emphasis on the recent past weight coefficients by

suppressing the weight coefficients that occurred in the beginning. The weight coefficients

at time step k are dependent upon the initial weight coefficients and the sum of the product

of the step-size parameter and the gradient of the cost function with respect to the weight

coefficients.

~w(n+ k) = γk ~w(n)− Σk
i=1γ

k−iµe(n+ i− 1)
∂e(n+ i− 1)

∂ ~w(n+ i− 1)
. (2.63)
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2.5 ROBUST CONTROL

This section discusses the theory of nominal performance and robust stability. The nominal

performance for the compensated feedback system quantifies the ability of the compensator to

meet certain design criteria like rejecting disturbances or tracking reference signals. Typically

compensators are designed for the nominal plant, the mathematical representation of the true

system. However the nominal plant does not always contain all the dynamics of the true

system either because the system is too complex or there is a computational limitation.

Robust stability characterizes the ability of the compensator to internally stabilize a set of

plants that contains the true plant to account for the unmodeled dynamics.

2.5.1 Nominal Performance

The convergence of the feedback system to its reference signal in the presence of unknown

disturbances is an important consideration in control theory. However control engineers

seldomly design compensators for a single disturbance or reference signal. This results in

engineers relaxing the constraints of the disturbances and reference signals by forming a set

of all possible references and disturbances the system can experience [10, 27]. One method

to ensure good compensator performance is to assume an upper bound on the energy for

both sets using signal and system norms.

The feedback system achieves disturbance rejection or good tracking performance if the

magnitude of the sensitivity function, |S(z)|, is minimized for low frequencies. The sensitivity

function relates the closed-loop transfer functions from the error signal e(z) to the reference

signal r(z) and from the output of the system y(z) to the disturbance of the system d(z) as

shown in figure 13.

S(z) =
e(z)

r(z)
=
y(z)

d(z)
=

1

1 +K(z)G(z)
(2.64)

The sensitivity function can be minimized using a frequency weighted filter, W1(z), a real-

rational function that is stable. The frequency weight scales the energy spectrum for the
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Figure 13: Schematic for nominal performance, which shows the sensitivity function is equiv-

alent for disturbance rejection and tracking reference signals

set of prefiltered reference signals, rp(z) [10]. There is an energy constraint on the set of

prefiltered reference signals that states: the energy for the prefiltered inputs is less than or

equal to one [10].

r(z) = W1(z)rp(z), |rp| ≤ 1 (2.65)

The size of the error signal, e(z), is used to determine if the feedback system achieves nominal

performance. The magnitude of the error signal is characterized using its 2-norm and the

constraint to achieve nominal performance is the following: the 2-norm of the error signal,

||e||2, is less then one for all frequencies, θ.

||e||2 ≤ 1 ∀θ (2.66)

The 2-norm of the error signal is quantified using the sensitivity function and the submulti-

plicative property that states: the norm for the product of systems is less then or equal to

the product for the norm of the individual systems.

||e||2 ≤ ||SW1||∞ ||rp||2 ≤ ||SW1||∞ ≤ 1, ∀θ (2.67)
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The requirement for the feedback system to attain nominal performance is the following:

the ∞-norm for the product SW1 is less then one for all frequencies as shown in equation

2.67.

||SW1||∞ ≤ 1, ∀θ (2.68)

2.5.2 Robust Stability

A mathematical model for the system is not a complete representation of the system because

the model may not contain all the dynamics of the system. These unmodeled dynamics are

crucial in terms of closed-loop stability because the simulation of the compensator on the

nominal plant could yield a stable system while integrating the same compensator with the

actual system can yield catastrophic effects. The unmodeled dynamics are accounted for in

the analysis with the nominal plant as modeling uncertainty. Model uncertainty needs to

have an upper bound to ensure internal stability of the actual system because closed-loop

stability can not be guaranteed if there is no upper limit to the uncertainty [27].

There are several models to characterize the uncertainty for the unmodeled dynamics.

The uncertainty model chosen is the multiplicative uncertainty model, resulting in a set of

plants, G, that contains the true plant GT (z). The true plant is a function of the nominal

plant G(z), the modeling uncertainty weight W2(z), and bounded uncertainty ∆(z).

G = {GT (z) = [1 + ∆(z)W2(z)]G(z) : W2(z),∆(z) ∈ S, ‖∆‖∞ < 1} (2.69)

The modeling uncertainty weight is a fixed stable transfer function whose magnitude in-

creases with frequency and accounts for the modeling uncertainty for all frequencies. This

results in the accuracy of the model being good at low frequencies but the accuracy decreases

with frequency [27]. The parameter ∆(z), accounts for the phase uncertainty in the modeling

for all frequencies.

The graphical representation for the multiplicative uncertainty model is shown in figure

14, which illustrates the magnitude for the ratio of the true plant to the nominal plant,

|GT (z)/G(z)|. This ratio is centered in the complex plane at 1 and bounded by the magnitude

of the uncertainty, |W2(z)| [10].
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Figure 14: Schematic for the multiplicative uncertainty model in which the true plant is

contained

Robust stability is achieved if the compensator causes the entire set of plants to be

internally stable, resulting in the actual system being internally stable [27]. The requirement

for robust stability will be derived using the small gain theorem.

2.5.2.1 Small Gain Theorem The small gain theorem is used in control theory to

characterize the stability of the system using BIBO stability on the loop gain of the system.

Theorem 2 Small Gain Theorem: The output of the system is stable by BIBO stability if

L(z) is stable and the∞-norm of L(z) is less than one for all frequencies and for all allowable

∆(z).

||L||∞ < 1, ∀θ (2.70)

||∆||∞ < 1 (2.71)
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Figure 15: Feedback block diagram schematic for the true plant being modeled using multi-

plicative uncertainty

2.5.2.2 Robust Stability Test The requirement for the feedback system to achieve

robust stability can be found using the small gain theorem and modeling the true plant with

multiplicative uncertainty. The block diagram for the compensated feedback system for the

true plant is shown in figure 15. Negative feedback is being emphasized by the negative sign

associated with the compensator.

The simplification of figure 15 is required to apply the small gain theorem. This simpli-

fication involves breaking the paths before and after the product of ∆(z)W2(z), resulting in

two paths: a typical positive feedback loop with a feedforward gain of −K(z)G(z) and the

other path is the product of ∆(z)W2(z). The typical positive feedback path is reduced to

the negative of the complementary sensitivity function, −T (z), as shown in figure 16.

The small gain theorem is implemented on figure 16 to obtain the requirement for robust

stability that states: the∞-norm for the loop gain of the system, L(z) = −T (z)∆zW2(z), is

required to be less than one for all frequencies and be stable. The loop gain for the system

can be reduced by applying the submultiplicative property to yield the loop gain being the

product of the complementary sensitivity function and the modeling uncertainty weight,

L(z) = T (z)W2(z). The final requirement for the compensated feedback system to achieve
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Figure 16: Reduction of the multiplicative uncertainty model for the true plant

robust stability is that the ∞-norm of the loop gain, L(z) = T (z)W2(z), be less than one

for all frequencies and is stable. This implies the entire set of plants, G, is made internally

stable by the compensator, resulting in the true plant being internally stable.

T (z) =
K(z)G(z)

1 +K(z)G(z)
(2.72)

||∆TW2||∞ ≤ ||TW2||∞ ≤ 1, ∀θ (2.73)

||TW2||∞ ≤ 1, ∀θ (2.74)
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3.0 ADDITIONAL REQUIREMENTS AND IMPLEMENTATION OF THE

COMPENSATORS

The objective of incorporating compensation methods into the design of magnetic traps is

to achieve certain requirements that the instrument can not achieve. The additional de-

sign requirements the instrument has to achieve in addition to stability is discussed first.

The design of the compensators are done using frequency domain techniques, requiring the

design requirements being expressed into equivalent frequency domain requirements. Nom-

inal performance of the various compensation methods is desired, resulting in the nominal

performance weight being determined. Finally, the method of implementing the adaptive

Q-parametrized compensator with LMS to update the weight coefficients of the Q parameter

is explained.

3.1 DESIGN GOALS FOR THE CLOSED-LOOP COMPENSATED

SYSTEM

There are additional design requirements the closed-loop system has to achieve in addition

to stabilizing the position of the magnetic particle. These requirements are characterized

by considering the applications of the instrument. A biological specimen deforms propor-

tional to the movement of the attached magnetic particle due to the applied magnetic force.

The accurate positioning of the magnetic particle requires the compensated system to have

minimum, ideally zero, steady state error for a step input.

The dynamics of biological systems occur faster due to the size of their geometric scale.

The settling time and transient characteristics of the compensated system are characterized
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Table 1: Design specifications that the various compensation methods must achieve

The steady state error with respect to the desired signal is zero

The settling time is 4.5 ms

Percent overshoot: 52.6

Table 2: Parameters for the functional form of the second order underdamped system

Parameter Value

ζ 0.2

ωn 5.11(103) rad/s

by modeling the closed-loop system as an underdamped second order system. The magnetic

particle moves through the solution at a constant velocity on the order of microns per second,

however the displacement of the particle is modeled on the order of nanometers as discussed

later [15]. As the magnetic particle moves through the solution at a constant velocity of

4.44 µm/s, the particle moves 1 nm in 225.23 µs. When the magnetic particle is subjected

to a step input of 20 nm, the position of the magnetic particle reaches steady state in 4.5 ms.

The settling time chosen for the position of the magnetic particle to converge to its reference

position was 4.5 ms. The percent overshoot was chosen to be 52.6 percent for an equivalent

damping ratio of 0.2. The design requirements that the magnetic trap must satisfy are

summarized in table 1. The numerical values for the second order underdamped system that

satisfies the design requirements are given in table 2.

3.1.1 Frequency Domain Representation of the Design Requirements

The methods for designing compensators in the frequency domain are well documented.

These methods are used to analyze the performance of the various compensation techniques

that are incorporated into the design of magnetic traps.
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The performance of the compensation methods are analyzed in the frequency domain,

resulting in the design requirements given in table 1, having to be characterized in the

frequency domain. The transient characteristics are quantified in the frequency domain by

the bandwidth frequency, the frequency that is 3 dB below the gain cross-over frequency, and

the phase margin, the phase above−180◦ at the gain cross-over frequency. The bandwidth for

the compensated system, ωbw, characterizes the desired settling time in the frequency domain

while being a function of the desired damping ratio [23]. The gain cross-over frequency for

the compensated system is approximated to be the bandwidth frequency that yielded the

desired settling time, 1.06 kHz using equation 3.1.

ωbw =
4

Tsζ

√
(1− 2ζ2) +

√
4ζ4 − 4ζ2 + 2 (3.1)

The phase margin, PM , is a critical parameter because it quantifies the amount of

damping within the system. The compensated system must have a phase margin of 20◦ by

equation 3.2 to satisfy the desired percent overshoot of 52.6 percent [23].

Pm ∼ 100 · ζ (3.2)

3.2 NOMINAL PERFORMANCE WEIGHT

Compensator design requires a trade-off between the sensitivity function, S, and the com-

plimentary sensitivity function, T , because the magnitude of these functions can not be less

than 1/2 concurrently. The analytic constant that must hold for all frequencies, θ, is: the

sum of the sensitivity function and complimentary sensitivity function must equal one.

S + T = 1,∀θ (3.3)
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The sensitivity function of the compensated system needs to be small in low frequencies to

achieve good tracking performance and disturbance rejection. This concludes the sensitivity

function having to be modified in the low frequency range to minimize the effects of the

Brownian disturbances using a nominal performance weight.

The various compensators are designed to achieve nominal performance, resulting in the

magnitude for the product of the nominal performance weight, W1(z), and the corresponding

sensitivity functions, S(z), being less than one for all frequencies,
∣∣W1(e

jθ)S(ejθ)
∣∣ < 1 ∀θ.

The nominal performance weight is characterized first in continuous-time to account for the

additional design requirements being expressed in the continuous-time frequency domain.

The continuous-time frequency weight accounts for the design requirements in the following

way:

• W1(s) has a pole at 75 Hz. The pole is placed close to the origin to satisfy the condition

for zero steady state error for a step input because a pole placed exactly at the origin

causes the frequency weight to be unstable.

• W1(s) has a zero at 7.5 kHz. The zero is placed after the desired bandwidth frequency

to account for the maximum of the sensitivity function due to the percent overshoot

requirement.

• The gain is chosen to be 0.1399 to have the magnitude of the nominal performance weight

be 0 dB at the bandwidth frequency.

W1(s) = 0.1399
s+ 47.12(103)

s+ 471.2
(3.4)

After the nominal performance weight is quantified in continuous-time, the discrete-

time nominal performance weight, W1(z), is obtained using bilinear Tustin transformation

with prewarp at the bandwidth frequency. Tustin transformation is used for mapping the

continuous-time frequency axis to one revolution on the discrete-time frequency axis [24].

The mapping of the continuous-time frequency axis to the discrete-time frequency axis using

Tustin transformations is important because aliasing is eliminated [24]. However the Tustin

transformation has a nonlinear relationship between the continuous-time frequencies and

the discrete-time frequencies, resulting in a continuous-time frequency and the corresponding

discrete-time frequency not occurring at the same location on their respective frequency axes.
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Figure 17: Frequency response function for the discrete-time nominal performance weight,

W1(z), and its inverse, 1/W1(z)

This nonlinear relationship can be eliminated for important frequencies like the bandwidth

frequency by prewarping the continuous-time frequency to the discrete time frequency [24].

This results in the frequencies that are prewarped occurring at the same location on the

frequency axes.

W1(z) = 0.27
z − 0.0266

z − 0.9812
(3.5)

The magnitude plots for the discrete-time nominal performance weight, |W1(z)|, and its

inverse, |1/W1(z)|, are shown in figure 17.
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Figure 18: Block diagram schematic for the displacement of the magnetic particle where r

is the desired particle position, G is the magnetic trap, y is the output of the magnetic trap,

K is the Q-parametrized compensator, W1 is the nominal performance weight, e is the error

signal, and z is the frequency weighted displacement of the magnetic particle.

3.3 IMPLEMENTING THE ADAPTIVE COMPENSATOR USING LMS

This section discusses the theory necessary to adjust the weight coefficients of the Q param-

eter in the Q-parametrized compensator using LMS to minimize the effects of the Brownian

disturbances. This is accomplished by transforming the feedback control problem into an

equivalent feedforward control problem.

3.3.1 Frequency Weighted Displacement of the Magnetic Particle

The block diagram representation for the displacement of the magnetic particle, x, is shown

in figure 18. The expression for the displacement of the magnetic particle is found to be a

function of the sensitivity function and the complimentary sensitivity function.

x =
1

1 +GK
F̃b +

GK

1 +GK
r = SF̃b + Tr

S =
1

1 +GK
, T =

GK

1 +GK

(3.6)

The closed-loop transfer function relating the displacement of the magnetic particle to the

Brownian disturbance, x/F̃b is the sensitivity function by letting the desired magnetic particle

position be zero. The sensitivity function can be expressed as a function of the set of coprime

rational functions that satisfies the Bezout identity to update the weight coefficients of Q
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in the Q-parametrized compensator using LMS. The expression for the sensitivity function

expressed by the coprime rational functions can be determined using equation 2.36 for the

Q-parametrized compensator and the ratio of coprime rational functions for the plant in

equation 2.34.
x

F̃b
= S = M(Y −NQ) (3.7)

The Brownian disturbance causes the magnetic particle to constantly move in the absence

of magnetic forces. The modeling of the Brownian disturbance is accomplished using white-

noise as discussed later. Since white-noise has a flat power spectral density, the spectrum for

the displacement of the magnetic particle is a frequency weighted version of the white-noise

spectrum. The spectrum for the displacement of the magnetic particle must be minimized

in the low frequency range to reduce the effects of the Brownian disturbances. This can

be accomplished using a frequency weighted filter, W1, the nominal performance weight,

that reduces the spectrum for the displacement of the magnetic particle in regions where

disturbance rejection is required.

The performance of the adaptive compensators is examined by analyzing the frequency

weighted displacement of the magnetic particle, z = W1x. The transfer function relating

the frequency weighted displacement of the magnetic particle to the Brownian disturbance,

z/F̃b, is the product of the nominal performance weight and the sensitivity function.

z

F̃b
=
z

x

x

F̃b
= W1S = W1M(Y −NQ) (3.8)

The closed-loop transfer function, z/F̃b, is affine in Q which illustrates the feedback problem

is equivalent to a model-matching problem. The advantage of the feedforward problem is

that it can be solved easily using adaptive filter theory. The equivalent feedforward block

diagram schematic relating the frequency weighted displacement of the magnetic particle to

the Brownian disturbance is shown in figure 19.

z

F̃b
= W1M(Y −NQ) = T1 + T2QT3

T1 = W1MY, T2 = −W1N, T3 = M

(3.9)
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Figure 19: Equivalent model-matching block diagram schematic for the magnetic trap sys-

tem, z/F̃b

3.3.2 Updating the Q Parameter in the Feedfoward Problem using LMS

The frequency weighted displacement of the magnetic particle, z, is expressed by the feed-

forward transfer functions: T1, T2, and T3, the FIR filter Q, and the Brownian disturbance,

F̃b. Since the frequency weighted displacement of the magnetic particle is a function of the

FIR filter Q, the frequency weighted displacement is also dependent upon the FIR weight

coefficients of Q. The FIR filter Q is equated to the sum of the products of the FIR weight

coefficients, wi, and the tapped delay line, Qi = z−i, where m is the total number of weights

in the tapped delay line. The index for the tapped delay line begins at zero and finishes at

m − 1 because the initial input into the tapped delay line is used. The adaptation for the

weight coefficients of Q is achieved using the instantaneous square of the frequency weighted

displacement of the magnetic particle as the cost function. The weight coefficients of Q are

updated in such a way to minimize the frequency weighted displacement of the magnetic

particle.

Q = Σm−1
i=0 wiQi

z = (T1 + T2QT3)F̃b = (T1 + T2Σ
m
i wiQiT3)F̃b

J(n) =
1

2
z2

(3.10)

The gradient of the cost function with respect to the weight coefficients of Q , ∂J(n)/∂ ~w(n),

is found to be the product of the frequency weighted displacement of the magnetic particle
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Figure 20: Equivalent feedback block diagram representation for the closed-loop transfer

function z/F̃b using the coprime rational functions of the Q-parametrization compensator

and the gradient of the frequency weighted displacement of the magnetic particle with respect

to the weight coefficients of Q using the chain rule.

∂J(n)

∂ ~w(n)
= z

∂z

∂ ~w(n)
(3.11)

The gradient of the frequency weighted displacement of the magnetic particle is found by

taking the derivative of z with respect to the weight coefficients of Q in equation 3.10.

However this gradient is dependent upon the Brownian disturbance acting upon the magnetic

particle. This causes a constraint for updating the weight coefficients of Q because the

Brownian disturbance is not a known signal for each discrete time step.

∂z

∂ ~w(n)
= Σm−1

i=0 QiT2T3F̃b (3.12)

The following illustrates how the unknown Brownian disturbance signal is characterized

using known signals of the feedback block diagram as shown in figure 20, to update the

weight coefficients of Q . The Q-parametrized compensator is separated into the individual

elements of the coprime rational functions. This separation is critical in updating the weight

coefficients of Q because the following signals are known at each time step: α the input into

Q, β the output of Q, x the displacement of the magnetic particle, u the control signal, η

the input into Y −1(z), and z the frequency weighted displacement of the magnetic particle.
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Block diagram algebra can be used to demonstrate that placing the individual elements

for the set of coprime rational functions is equivalent to the Q-parametrized compensator in

equation 2.36. This requires each element for the set of coprime rational functions be known,

including Y −1(z). The inverse of Y (z) is found by switching the definition of the input and

output variables for the state-space representation of Y (z) and solving for the new state

equation and new output equation. The state-space representation for Y −1(z) is written in

matrix form where YA is the state matrix, YB is the input matrix, YC is the output matrix,

and YD is the feedforward matrix of the coprime rational function Y (z).

Y −1(z) ∼

YA − YBY −1
D YC YBY

−1
D

−Y −1
D YC Y −1

D

 (3.13)

The input signal into Q, α, depends upon two known signals at each discrete time step:

u the control signal and x the displacement of the magnetic particle. The output signal of

Q(z), β, is a frequency weighted version of its input signal, α. The input signal of Y −1(z), η,

is the sum of two known signals: β and the frequency weighted version for the displacement

of the magnetic particle, X(z)x. The output signal of Y −1(z), u, is the frequency weighted

version of its input, η.

α = Nu+Xx (3.14)

β = Qα = QNu+QMx (3.15)

u = Y −1(β +Xx) = Y −1[QNu+ (X +QM)x] (3.16)

The output signal of Y −1(z) is manipulated to obtain the transfer function from the control

signal to the displacement of the magnetic particle, u/x. The resulting transfer function is

equivalent to the Q-parametrized compensator in equation 2.36, yielding the set of the co-

prime rational functions can be selectively placed to obtain the Q-parametrized compensator.

u

x
= K =

X +MQ

Y −NQ
(3.17)

The equivalent block diagram schematic for the compensator has been derived and the

following proves the input signal of Q, α, is equivalent to a frequency weighted version of

the Brownian disturbance acting on the particle. This allows the signal α to be used in
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∂z/∂ ~w(n), to update the weight coefficients of Q, thus minimizing the frequency weighted

displacement of the magnetic particle. The signal α in equation 3.14, is written as a function

of the displacement of the magnetic particle, x, by recalling the control signal is the product

of the Q-parametrized compensator and the displacement of the magnetic particle, u = Kx.

The signal α is a frequency weighted version of the Brownian disturbance by recalling the

displacement of the magnetic particle is the product of the sensitivity function and the

Brownian disturbance as shown in equation 3.7.

α = Nu+Mx = N
X +MQ

Y −NQ
x+Mx =

1

Y −NQ
x

α =
1

Y −NQ
x =

1

Y −NQ
M(Y −NQ)F̃b = MF̃b

(3.18)

The resulting signal α is equivalent to the output of the Brownian disturbance being filtered

by the coprime rational function M , yielding a known signal being used to update the

weight coefficients of Q using LMS. The gradient of the frequency weighted displacement of

the magnetic particle, ∂z/∂ ~w(n), equation 3.12, is now a function of a known signal for each

discrete time step by equating the product of M and F̃b to α.

∂z

∂ ~w(n)
= Σm−1

i=0 QiT2(T3F̃b) = Σm−1
i=0 QiT2α (3.19)

The weight coefficients of Q(z) are updated using LMS to minimize the effects of the Brow-

nian disturbances and to minimize the frequency weighted displacement of the magnetic

particle using equation 2.61. The weight coefficients at the next time step, ~w(n + 1), is the

difference of the current weight coefficients, ~w(n), and the product of the step-size param-

eter, the frequency weighted displacement of the magnetic particle and the gradient of the

frequency weighted displacement of the magnetic particle, µz∂z/∂ ~w(n).

wi(n+ 1) = wi(n)− µz ∂z

∂ ~w(n)
= ~w(n)− µzΣm−1

i=0 QiT2α (3.20)
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4.0 SIMULATIONS

This chapter discusses the simulations for the various compensation methods to control

the magnetic trap. The numerical values for the parameters of the magnetic trap transfer

function and the effects of the Brownian disturbances acting upon the magnetic particle are

quantified first. The performance of each compensator has been analyzed in the frequency

domain using spectral analysis. This is particularly useful since Brownian disturbances act

on the magnetic particle. Fixed gain compensation methods have been implemented with

the magnetic trap to emphasize that compensation needs to satisfy the design requirements

and to form a benchmark to compare the performance of the adaptive compensators. Finally,

adaptive compensation has been used to control the magnetic trap.

4.1 NUMERICAL VALUES FOR THE PARAMETERS OF THE

MAGNETIC PARTICLE SYSTEM

The parameters for the magnetic trap must be quantified and characterized before any

compensation technique is implemented. Normally, magnetic traps exert forces on the order

of piconewtons, resulting in the displacement of the magnetic particle being on the order

of nanometers [13, 40]. These typical magnitudes for the magnetic force and the magnetic

particle displacement are accounted for in characterizing the parameters of the magnetic trap

transfer function by relating the desired displacement of the magnetic particle in nanometers

to the magnetic force in piconewtons.

The magnetic particles chosen have a mean diameter of 2.88 µm. The following assump-

tion is made about the density of the particles, ρ: the density of the particles is approximated
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Table 3: Numerical values for the parameters of the magnetic trap transfer function

Parameter Symbol Value

Viscosity of solution η 984(10−12) pNs/nm2

Density of the particle ρ 0.99777(10−24) kg/nm3

Mass of the particle m 11.4(10−15) kg

Damping coefficient γ 25.6(10−6) Ns/m

as the density of the water solution after viewing the beads had little sedimentation in the

microscope. The viscosity of the water solution, η, and the density of the magnetic particle,

ρ, are approximated as the dynamic viscosity and the density of water at room temperature

respectively [11]. The damping coefficient, γ = 6πηr, acting on the magnetic particle is a

function of the product for the viscosity of the water solution and the mean radius of the

magnetic particle. The numerical values for the parameters of the magnetic trap transfer

function relating the displacement of the magnetic particle in nanometers to the magnetic

force in piconewtons are quantified as shown in table 3.

The dynamics for the magnetic trap transfer function, the sensor, and the actuator are

characterized in continuous time to account for the first principal physical laws. The overall

magnetic particle system is composed of the dynamics for the magnetic trap transfer function,

the sensor, and the actuator.

4.1.0.1 Magnetic Trap Dynamics The continuous-time transfer function for the mag-

netic trap, Gm(s), equation 2.4, is characterized using the parameters in table 3. However

the mass of the magnetic particle is on the order of 109 times smaller than the damping

acting of the magnetic particle that produced a pole at 361.6 MHz. The pole at 361.6 MHz

is much greater than the desired bandwidth frequency, resulting in the mass of the magnetic

particle being ignored. This yields the response of the magnetic particle being dominated

by the viscous effects of the water solution instead of the inertial effects by the mass. The

continuous-time transfer function for the magnetic trap accounts for only the viscous ef-
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Table 4: Numerical values for the function form of the magnetic trap transfer function, the

transconductance amplifier, and the overall continuous-time magnetic particle system.

Parameter Value

gm 38.51(103)

gA 0.5

pA 75.398(103)

gc 1925.51

pc 75.398(103)

fects affecting the displacement of the magnetic particle while the numerical value for the

functional form of the transfer function for the magnetic trap is given in table 4.

Gm(s) =
1

s(ms+ γ)
(4.1)

Gm(s) =
gm
s

(4.2)

4.1.0.2 Amplifier Dynamics The dynamics for the transconductance amplifier are

characterized to obtain an accurate model of the instrument. The voltage to current con-

verter is used to produce a current in the electromagnet from the input voltage into the

transconductance amplifier. The transconductance amplifier, the Kepco BOP 20-5M am-

plifier, has a bandwidth frequency and passband gain of 12 kHz and 0.5 S respectively that

is given by the manufacturer. The dynamics for the amplifier, Ga(s), is characterized by

modeling the amplifier as a lowpass filter with a gain of 0.5 and the cutoff frequency equated

to the bandwidth frequency of the amplifier. The numerical values for the functional form

of the transfer function for the transconductance amplifier are given in table 4.

Ga(s) =
gA

s+ pA
(4.3)
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4.1.0.3 Magnet and Sensor Dynamics The gain of the magnet was to be character-

ized by the installation of the QPD and analyzing the response of the magnetic particle for

a given change in the current of the electromagnet. However while installing the QPD, one

of the difference channels contained broad-band white noise. Several methods were explored

in attempt to eliminate the noise but all attempts were unsuccessful. The main purpose

of this thesis is to demonstrate adaptive control techniques can stabilize the position of the

magnetic particle while minimizing the effects of the Brownian disturbances. The setup used

to emulate the experimental conditions if the sensor worked properly will be discussed later.

In practical situations, the gain of a signal can be modified through the use of an amplifier.

The gain for the magnet, κ, is arbitrarily chosen to be 10 pN/A to demonstrate the control

theory satisfies the design requirements.

The dynamics for the sensor are also characterized to obtain an accurate model of the

instrument. The bandwidth for the QPD is 300 kHz, given by the manufacturer, responds

25 times quicker than the dynamics of the transconductance amplifier. This results in the

dynamics of the sensor being ignored because there faster than the dynamics of interest.

However, the sensor would have been modeled as a low pass filter, resulting in the passband

gain of the sensor having an effect on the displacement of the magnetic particle. The pass-

band gain for the sensor, g2, contributes to the response of the magnetic particle system, is

chosen to be 10(10−3) V/nm.

4.1.0.4 Overall Magnetic Particle System Dynamics The overall continuous-time

transfer function for the magnetic particle system, G(s), is the product of the transconduc-

tance amplifier dynamics, the dynamics for the magnetic trap transfer function, the gain of

the magnet, κ, and the gain of the sensor, g2. The numerical values for the functional form

of the overall continuous time transfer function of the magnetic particle system, G(s), are

shown in table 4.

G(s) =
gc

s(s+ pc)
(4.4)

The continuous-time transfer function for the magnetic particle system is converted to

discrete-time, G(z), to be implemented with the linear digital control theory using zero order
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hold. This requires the continuous-time magnetic particle system being sampled at a rate of

at least twice the nyquist frequency to prevent aliasing. The sampling frequency chosen for

the discrete-time magnetic particle system is 25 kHz.

G(z) = 699.4(10−9)
z + 0.389

(z − 1)(z − 0.049)
(4.5)

4.1.1 Modeling the Brownian Disturbances

The Brownian disturbances are modeled as band-limited white noise to account for the

fluctuating Brownian forces acting on the particle. The output of the band-limited white

noise is modified by the gain of the sensor, g2, to have the control system experience the

actual displacement of the magnetic particle.

4.1.1.1 Analyzing the Data in the Frequency Domain Once the simulations and

the experiments for the various compensation methods are performed, the data can be ana-

lyzed in the frequency domain using spectral analysis with the reference voltage being 1 V.

The random characteristics due to the Brownian disturbance makes examining the perfor-

mance of the various compensators difficult in the time domain. A tracking performance

problem and disturbance rejection problem are equivalent, requiring the frequency response

of the sensitivity function being small at low frequencies. The performance for the various

compensation methods is analyzed by examining the sensitivity function, frequency weighted

sensitivity function, the displacement of the magnetic particle, and the frequency weighted

displacement of the magnetic particle using spectral analysis once the compensated system

reached steady state.

The effects of the Brownian disturbance are analyzed by examining the spectrum for the

displacement of the magnetic particle. The suppression of the Brownian disturbance using

each compensation method is found by comparing the mean magnetic particle displace-

ment in the low frequencies to the mean magnetic particle displacement at the dominant

frequency.
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4.2 FIXED GAIN COMPENSATION

Fixed gain compensation is incorporated into the design of the magnetic particle system

to illustrate compensation methods must stabilize the position of the magnetic particle.

The frequency response for the discrete-time magnetic particle system is analyzed first to

determine the compensation method needed to satisfy the design requirements. The two

fixed gain compensation methods incorporated into the design of the magnetic trap are:

proportional gain compensation and fixed gain Q-parametrized compensation. The fixed

gain Q-parametrized compensation is chosen to illustrate the compensation method satisfies

the design requirements before it is used with the adaptive Q-parametrized compensation

method.

4.2.1 Frequency Analysis for the Magnetic Particle System

The discrete-time magnetic particle system was examined in the frequency domain, as shown

in figure 21, to analyze its performance to determine the type of compensation needed to

satisfy the design requirements. The uncompensated system had a bandwidth of 3.91 mHz,

which was less than the desired bandwidth of 1.06 kHz. The magnitude, M , and phase

margin, PM , of the uncompensated system were found at the desired bandwidth frequency

to be −108.6 dB and 76.83◦ respectively through linear interpolation.

The phase margin for the uncompensated system was greater than the required phase

margin of 20◦, yielding the transient design requirements being satisfied. This results in

proportional gain compensation being required to modify the magnetic particle system to

have the magnitude of its frequency response be 0 dB at the desired bandwidth frequency.

4.2.2 Proportional Gain Compensation

Proportional gain compensation was the first fixed gain compensator implemented to improve

the magnitude for the frequency response of the magnetic particle system. This compensation

method was chosen because a gain only affects the magnitude of the frequency response by

having a constant magnitude and 0◦ phase for all frequencies.

54



Figure 21: Frequency response for the uncompensated magnetic particle system. The mag-

nitude plot relates the voltage output from the sensor to the voltage input of the transcon-

ductance amplifier.
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The magnitude for the frequency response of the compensated system at the bandwidth

frequency must be 0 dB. The gain for the proportional gain compensator, Kp, was found to

be 108.6 dB by equating the magnitude for the product of the proportional gain compensator,

Kp, and the magnitude for the uncompensated system at the desired bandwidth frequency,

M , to one.

KpM = 1 (4.6)

K(z) = Kp (4.7)

The frequency response for the loop-gain, sensitivity function and complimentary sensitivity

function of the compensated system are important in determining the characteristics of

the compensated system like the stability and nominal performance. The magnitude for

the frequency response of the loop-gain, sensitivity function, and complimentary sensitivity

function and the phase of the loop-gain for the compensated system are shown in figure 22.

The closed-loop stability of the compensated system was examined by analyzing the gain

margin and phase margin of its loop-gain. The gain margin and phase margin were found to

be 22.26 dB and 76.83◦ respectively, resulting in the compensated system being closed-loop

stable because both margins were positive while the closed-loop stability was verified using

the Nyquist stability criterion. The nominal performance of the compensated system was

determined using the nominal performance criteria as stated in equation 2.68, by analyzing

the magnitude for the product of the sensitivity function and the nominal performance weight

as shown in figure 23. The magnitude for the product of the sensitivity function and the

nominal frequency weight, |W1(z)S(z)|, was less than 0 dB for all frequencies, implying the

compensated system using proportional gain compensation achieved nominal performance

and also satisfied the design requirements.

Spectral analysis was performed to evaluate the performance of the proportional gain

compensator once the compensated system reached steady state. The simulation for the

compensated system was performed for 10 s while the spectral analysis was performed on the

last 5 s of the simulation. The spectral analysis for the sensitivity function and the weighted

sensitivity function is shown in figure 24 while the spectral analysis for the displacement of the

magnetic particle and the frequency weighted displacement of the magnetic particle is shown
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Figure 22: Frequency response for the loop-gain, sensitivity function, and complimentary

sensitivity function of the compensated magnetic particle system using both proportional

gain compensation and fixed gain Q-parametrized compensation for both sets of coprime

rational functions.
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Figure 23: Shows the magnitude for the product of the sensitivity function and the nominal

performance weight is less than 0 dB for all frequencies using proportional gain compensation

and fixed gain Q-parametrized compensation for both sets of coprime rational functions.
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in figure 25. These figures show by incorporating proportional gain compensation into the

design of the magnetic particle system, the sensitivity function is small in the low frequency

range thus minimizing the effects of the Brownian disturbances. The displacement of the

magnetic particle is suppressed by approximately at least 23.11 dB for frequencies below

100 Hz than the mean particle displacement of −8.756 dB at the dominating frequency of

3.264 kHz.

4.2.3 Fixed Gain Q-parametrized Compensators

The second fixed gain compensation method integrated with the magnetic particle system

was fixed gain Q-parametrized compensation. This compensation method was chosen to

demonstrate the compensated system could satisfy the design requirements. There were

two sets of coprime rational functions chosen to illustrate the uniqueness property of the

Q-parametrized compensator.

The design for the discrete-time coprime rational functions required the state-space real-

ization of the uncompensated system be controllable [4]. The controllability matrix for the

uncompensated system was found to be full rank or a rank of 2, yielding the eigenvalues for

the coprime rational functions can be placed in any desired location.

The dynamics for the coprime rational functions were chosen heuristically considering

that the coprime rational functions had to satisfy the Bezout identity. The magnitude for the

eigenvalues of the coprime rational functions were required to be less than one for stability.

The dynamics for the first set of coprime rational functions that satisfied the Bezout

identity were the following:

• N1(z) and M1(z) were found using equation 2.45 and choosing the eigenvalue locations

of: 0.16 and 0.17.

• X1(z) and Y1(z) were found using equation 2.46 and choosing the eigenvalue locations

of: 0.14 and 0.16.

The dynamics for the second set of coprime rational functions that satisfied the Bezout

identity were the following:
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Figure 24: The spectrum for the sensitivity function and weighted sensitivity function of

the compensation system using both proportional gain compensation and fixed gain Q-

parametrized compensation for both sets of coprime rational functions
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Figure 25: The spectrum for the displacement of the magnetic particle and the frequency

weighted displacement of the particle using both proportional gain compensation and fixed

gain Q-parametrized compensation for both sets of coprime rational functions
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• N2(z) and M2(z) were found using equation 2.45 and choosing the eigenvalue locations

of: 0.16 and 0.18.

• X2(z) and Y2(z) were found using equation 2.46 and choosing the eigenvalue locations

of: 0.18 and 0.20.

The distinct Q ∈ S was found for each set of coprime rational functions using the pro-

portional gain compensator as the controller in equation 2.38. The resulting Q and the

respective set of coprime rational functions were used to find the fixed gain Q-parametrized

compensators that should equal the proportional gain compensator of 108.6 dB. Frequency

analysis was performed on the fixed-gain Q-parametrized compensators to determine if the

magnitude and the phase of their frequency responses were 108.6 dB and 0◦ for all frequen-

cies as shown in figure 26 and figure 27 for the first and second sets of the coprime rational

functions respectively. These figures showed the magnitude of the frequency response for

the fixed gain Q-parametrized compensators were essentially 108.6 dB while the phase plots

were approximately 0◦ for all frequencies. This resulted in the fixed gain Q-parametrized

compensators being equal to the proportional gain compensator as expected. The frequency

response for the loop-gain, the sensitivity function, and the complimentary sensitivity func-

tion of the compensated system for both sets of coprime rational functions were equal to

the frequency response functions of the compensated system using proportional gain com-

pensation as shown in figure 22. The compensated system for both sets of coprime rational

functions were found to be closed-loop stable because the gain margin and phase margin

of the loop-gain were 22.26 dB and 76.83◦ respectively. The magnitude for the product of

the compensated sensitivity function and the nominal performance weight using the fixed

gain Q-parametrized compensation for both sets of coprime rational functions were equal

to the magnitude for the product of the compensated sensitivity function and the nominal

performance weight using proportional gain compensation as shown in figure 23. Both fixed

gain Q-parametrized compensators achieved nominal performance because the magnitude

for the product of the compensated sensitivity function and the nominal performance weight

were less than 0 dB for all frequencies.

Spectral analysis was performed to evaluate the performance of the fixed gain Q-param-

etrized compensators once the compensated system reached steady state. The simulation
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Figure 26: The frequency response for the fixed gain Q-parametrized compensator using the

first set of coprime rational functions
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Figure 27: The frequency response for the fixed gain Q-parametrized compensator using the

second set of coprime rational functions
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for both fixed gain Q-parametrized compensated systems were performed for 10 s while the

spectral analysis was performed on the last 5 s of the simulation. The spectral analysis for

the sensitivity function and the weighted sensitivity function is shown in figure 24 while the

spectral analysis for the displacement of the magnetic particle and the frequency weighted

displacement of the magnetic particle is shown in figure 25. These figures show by incorpo-

rating the fixed gain Q-parametrized compensators into the design of the magnetic particle

system, the sensitivity function is small in the low frequency range thus minimizing the ef-

fects of the Brownian disturbances. The displacement of the magnetic particle is suppressed

by approximately at least 23.11 dB for frequencies below 100 Hz than the mean particle

displacement of −8.756 dB at the dominating frequency of 3.264 kHz.

4.3 ADAPTIVE COMPENSATION

The final compensation method incorporated into the design of the magnetic particle system

to satisfy the design requirements was adaptive Q-parametrized compensation. A progression

from the fixed gain Q-parametrized compensation method to the adaptive Q-parametrized

compensation method will be shown by using the same sets of coprime rational functions.

The weight coefficients of the Q parameter in the Q-parametrized compensator were adjusted

to minimize the frequency weighted displacement of the magnetic particle using LMS. The

implementation of the adaptive compensation will be discussed first followed by the analysis

of the adaptive compensator for both sets of the coprime rational functions.

4.3.1 Implementing Adaptive Compensators in Simulink

The implementation of the adaptive Q-parametrized compensation method was important

for demonstrating that the design requirements were satisfied. The adaptive compensated

system used to minimize the frequency weighted displacement of the magnetic particle is

shown in figure 28, where the compensator is the compensator subsystem, LMS is the LMS

subsystem, G is the magnetic particle system, W1 is the nominal performance weight, and
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the band-limited white noise is the Brownian disturbance. The displacement of the magnetic

particle, the sum of the Brownian disturbance and the output of the magnetic particle sys-

tem, is compared with the desired magnetic particle position then fed into the compensator

subsystem and fed into the nominal performance weight to obtain the frequency weighted

displacement of the magnetic particle.

The difference of the desired magnetic particle position and the displacement of the

magnetic particle is fed into the compensator subsystem to adjust the dynamics of the

compensator as shown in figure 29. The α signal is fed into the LMS subsystem as shown

in figure 30, the graphical representation of equation 3.20, to update the weight coefficients

of the Q parameter. The negative sign accounted for the feedforward transfer function T2

being the negative product of the nominal performance weight, W1, and the coprime rational

function, N . There were m − 1 time delays for m FIR weights because the current input

into the tapped delay line was used. The weight coefficients at the current time step, ~w(n),

were fed into the compensator subsystem to adjust the dynamics of the Q parameter, the

inner product of the weight coefficients and the delayed α signal. The compensated system

was analyzed to determine if the number of FIR weight coefficients affect the performance

of the adaptive Q-parametrized compensator. The performance was analyzed using spectral

analysis once the compensated system reached steady state for the nominal compensator,

K = X/Y , and the adaptive compensator for different number of FIR weight coefficients.

The number of FIR weights chosen for the adaptive Q-parametrized compensator for both

sets of coprime rational functions were 5 and 25 FIR weights. The step-size parameter, µ,

that stabilized the feedback system was −1(109) while using the LMS subsystem in figure

30.

4.3.2 Adaptive Compensator for the First Set of Coprime Rational Functions

The first set of coprime rational functions were implemented with the adaptive Q-param-

etrized compensator to satisfy the design requirements. The simulation of the adaptive

compensator for both FIR weight cases were performed for a time duration of 150 s to ensure

the FIR weight coefficients converged to their nominal values. The FIR weight coefficients of
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Figure 28: Adaptive compensator structure used to minimize the frequency weighted dis-

placement of the particle.
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Figure 29: The controller subsystem has two inputs: the weight coefficients, weight, and

the error in the displacement of the magnetic particle, displacement. There are also two

outputs for the controller subsystem: the control signal, control, and the α signal

Figure 30: The LMS subsystem used to update the weight coefficients of the Q parameter.

There were two inputs into the LMS structure: the input signal into the FIR filter, α, and

the frequency weighted displacement of the magnetic particle, z. The weight coefficients,

weight, were fed into the compensator structure.
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the Q parameter for both FIR weight cases converged to nominal values as shown in figure

31, where the top plot is for 5 FIR weights while the bottom plot is for 25 FIR weights. Due

to the complexity of the compensated system, figure 31 shows the weight coefficients that

were downsampled by 2(103) that implies the adaptive compensated system was sampled at

12.5 Hz. Downsampling the adaptive compensated system is valid to show the characteristics

of how the FIR weight coefficients converge to their nominal values because downsampling

does not affect the performance of the system in the time domain.

The adaptive compensator was analyzed once the compensated system reached steady-

state. The compensated system reached steady state when the FIR weight coefficients con-

verged to their nominal values. The analysis was performed on the adaptive compensated

system over the last 5 s of the simulation. Once the weight coefficients of Q converged,

the loop-gain, the sensitivity function, and the complimentary sensitivity function for the

steady state compensated system were found for both FIR weight cases. The magnitude

for the frequency response of the loop-gain, the sensitivity function, and the complimentary

sensitivity function and the phase of the loop-gain for the compensated system are shown in

figure 32 and figure 33 respectively for the 5 and 25 FIR weights. The bandwidth frequency

and the phase margin for the adaptive compensated system with 5 FIR weight coefficients

were determined to be 3.88 kHz and 61.1◦ respectively through linear interpolation. The

adaptive compensator with 5 FIR weight coefficients had a faster bandwidth frequency and

a smaller phase margin than the fixed gain compensators. Since the bandwidth frequency

and the phase margin for the adaptive compensator with 5 FIR weights were greater then the

desired bandwidth frequency and the phase margin, the design requirements were satisfied.

The bandwidth frequency and the phase margin for the adaptive compensated system with

25 FIR weight coefficients were determined to be 3.84 kHz and 61.83◦ respectively through

linear interpolation. The adaptive compensator with 25 FIR weight coefficients had a faster

bandwidth frequency and a smaller phase margin than the fixed gain compensators. Since

the bandwidth frequency and the phase margin for the adaptive compensator with 25 FIR

weights were greater then the desired bandwidth frequency and the phase margin, the design

requirements were satisfied.
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Figure 31: Shows the weights coefficients for adaptive Q-parametrized compensator reaches

steady-state. The top plot is the weight coefficients using 5 FIR weights while the bottom

plot is the weight coefficients using 25 FIR weights.
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Figure 32: The magnitude for the loop-gain, sensitivity function, and complimentary sensi-

tivity function and the phase of the loop-gain for the adaptive Q-parametrized compensated

system with 5 FIR weights using the first set of coprime rational functions.
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Figure 33: The magnitude for the loop-gain, sensitivity function, and complimentary sensi-

tivity function and the phase of the loop-gain for the adaptive Q-parametrized compensated

system with 25 FIR weights using the first set of coprime rational functions.
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The magnitude for the closed-loop transfer function relating the frequency weighted dis-

placement of the magnetic particle to the Brownian disturbance was equivalent to the nomi-

nal performance criteria: the magnitude for the product of the nominal performance weight

and the sensitivity function. The nominal performance criteria for each FIR weight case was

examined by analyzing the magnitude of W1(z)S(z) as shown in figure 34. The adaptive Q-

parametrized compensator for both FIR weight cases achieved nominal performance because

|W1(z)S(z)| was less than 0 dB for all frequencies. This shows the design requirements were

satisfied by the adaptive Q-parametrized compensator for both FIR weight cases using the

first set of coprime rational functions.

The closed-loop stability for the compensated system was examined by analyzing the

compensated loop-gain using the Nyquist stability criterion for both FIR weight cases. The

pole locations for the compensated loop-gains were obtained using the nominal values for

the weight coefficients of the Q parameter. The magnitude for the pole locations of the

compensated loop-gain for both FIR weight cases were found to be within the unit disk.

Since the magnitude of the poles for the compensated loop-gains were within the unit disk,

the compensated system for both FIR weight cases would be closed-loop stable if the Nyquist

plots of the compensated loop-gains did not encompass −1 in the counterclockwise direction.

The Nyquist plots for the compensated system for both FIR weight cases are shown in figure

35, where the top plot is the Nyquist plot using 5 FIR weights while the bottom plot is

the Nyquist plot using 25 FIR weights. This shows the Nyquist plots of the compensated

loop-gains did not encompass −1 in the counterclockwise direction, resulting in the adaptive

Q-parametrized compensated system being closed-loop stable for both FIR weight cases

using the first set of coprime rational functions.

Spectral analysis was performed on the adaptive Q-parametrized compensator to deter-

mine if the number of FIR weight coefficients effect the performance of the nominal com-

pensator. The spectrum for the sensitivity function, frequency weighted sensitivity function,

displacement of the magnetic particle, and frequency weighted displacement of the magnetic

particle for the nominal compensator, 5 FIR weights, and 25 FIR weights are shown in fig-

ure 36, figure 37, figure 38, and figure 39 respectively. Figure 36 shows the sensitivity

function of the nominal compensator and the adaptive compensators with the FIR weights

73



Figure 34: Magnitude of the closed-loop transfer function, z/F̃b, for both FIR weight cases

using the first set of coprime rational functions. This was equivalent to the nominal perfor-

mance criteria, |W1(z)S(z)|. The adaptive compensator for both FIR weight cases achieved

nominal performance because |W1(z)S(z)| was less than 0 dB for all frequencies.
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Figure 35: Nyquist plot for the compensated loop-gains using the first set of coprime rational

functions. The top plot is the loop-gain for 5 weights and the bottom plot is for 25 weights
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Figure 36: The spectral analysis on the sensitivity function using the adaptive Q-

parametrized compensator with the first set of coprime rational functions for the nominal

compensator, 5 FIR weights, and 25 FIR weights.
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Figure 37: The spectral analysis on the frequency weighted sensitivity function using the

adaptive Q-parametrized compensator with the first set of coprime rational functions for the

nominal compensator, 5 FIR weights, and 25 FIR weights.
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Figure 38: The spectral analysis on the displacement of the magnetic particle using the

adaptive Q-parametrized compensator with the first set of coprime rational functions for the

nominal compensator, 5 FIR weights, and 25 FIR weights.
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Figure 39: The spectral analysis on the frequency weighted displacement of the magnetic

particle using the adaptive Q-parametrized compensator with the first set of coprime rational

functions for the nominal compensator, 5 FIR weights, and 25 FIR weights.
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were small in the low frequency range pertaining to the disturbance rejection, however the

sensitivity function for the nominal compensator is smaller in the low frequency range than

the adaptive compensators with the FIR weights. Figure 38 shows the nominal compensator

is able to suppress the movement of the magnetic particle due to the Brownian disturbance

by approximately at least 26.49 dB for frequencies less than or equal to 100 Hz than the

mean particle displacement of −6.988 dB at the dominating frequency of 3.37 kHz. This re-

sults in the effects of the Brownian disturbance being minimized in the low frequency range

or the range of frequencies that pertains to disturbance rejection. The number of the FIR

weight coefficients does have an effect of the performance of the adaptive Q-parametrized

compensator. The displacement of the magnetic particle is suppressed greater in the low

frequency range as the number of the FIR weight coefficients decrease. The spectrum for

the frequency weighted displacement of the magnetic particle shows by using the FIR weight

coefficients the frequency weighted displacement of the magnetic particle is minimized for

all frequencies while the nominal compensator may not be minimized for all frequencies.

In addition as the number of the FIR weight coefficients decrease, the frequency weighted

displacement of the magnetic particle was minimized more.

4.3.3 Adaptive Compensator for the Second Set of Coprime Rational Functions

The second set of coprime rational functions were implemented with the adaptive Q-pa-

rametrized compensator to satisfy the design requirements. The simulation of the adaptive

compensator for both FIR weight cases were performed for a time duration of 150 s to ensure

the FIR weight coefficients converged to their nominal values. The FIR weight coefficients

of the Q parameter for both FIR weight cases converged to nominal values as shown in

figure 40, where the top plot is for the 5 FIR weights while the bottom plot is for the 25

FIR weights. Due to the complexity of the compensated system, figure 40 shows the weight

coefficients that were downsampled by 2(103) that implies the adaptive compensated system

was sampled at 12.5 Hz. Downsampling the adaptive compensated system is valid to show

the characteristics of how the FIR weight coefficients converged to their nominal values

because downsampling does not affect the performance of the system in the time domain.
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Figure 40: Shows the weights coefficients for adaptive Q-parametrized compensator reaches

steady-state. The top plot is the weight coefficients using 5 FIR weights while the bottom

plot is the weight coefficients using 25 FIR weights.
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The adaptive compensator was analyzed once the compensated system reached steady-

state. The compensated system reached steady state when the FIR weight coefficients con-

verged to their nominal values. The analysis was performed on the adaptive compensated

system over the last 5 s of the simulation. Once the weight coefficients of the Q param-

eter converged, the loop-gain, the sensitivity function, and the complimentary sensitivity

function for the steady state compensated system were found for both FIR weight cases.

The magnitude of the frequency response for the loop-gain, the sensitivity function, and

the complimentary sensitivity function and the phase of the loop-gain for the compensated

system are shown in figure 41 and figure 42 respectively for the 5 and 25 FIR weights. The

bandwidth frequency and the phase margin for the adaptive compensated system with 5

FIR weight coefficients were determined to be 3.87 kHz and 61.09◦ respectively through lin-

ear interpolation. The adaptive compensator with 5 FIR weight coefficients had a faster

bandwidth frequency and a smaller phase margin than the fixed gain compensators. Since

the bandwidth frequency and the phase margin for the adaptive compensator with 5 FIR

weights were greater than the desired bandwidth frequency and the phase margin, the design

requirements were satisfied. The bandwidth frequency and the phase margin for the adap-

tive compensated system with 25 FIR weight coefficients were determined to be 3.82 kHz

and 63.35◦ respectively through linear interpolation. The adaptive compensator with 25 FIR

weight coefficients had a faster bandwidth frequency and a smaller phase margin than the

fixed gain compensators. Since the bandwidth frequency and the phase margin for the adap-

tive compensator with 25 FIR weights were greater than the desired bandwidth frequency

and the phase margin, the design requirements were satisfied.

The magnitude for the closed-loop transfer function relating the frequency weighted dis-

placement of the magnetic particle to the Brownian disturbance was equivalent to the nomi-

nal performance criteria: the magnitude for the product of the nominal performance weight

and the sensitivity function. The nominal performance criteria for each FIR weight case was

examined by analyzing the magnitude of W1(z)S(z) as shown in figure 43. The adaptive Q-

parametrized compensator for both FIR weight cases achieved nominal performance because

|W1(z)S(z)| was less than 0 dB for all frequencies. This shows the design requirements were
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Figure 41: The magnitude for the loop-gain, sensitivity function, and complimentary sensi-

tivity function and the phase of the loop-gain of the adaptive Q-parametrized compensated

system for 5 FIR weights using the second set of coprime rational functions.
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Figure 42: The magnitude for the loop-gain, sensitivity function, and complimentary sensi-

tivity function and the phase of the loop-gain of the adaptive Q-parametrized compensated

system for 25 FIR weights using the second set of coprime rational functions.
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satisfied by the adaptive Q-parametrized compensator for both FIR weight cases using the

second set of coprime rational functions.

The closed-loop stability for the compensated system was examined by analyzing the

compensated loop-gain using the Nyquist stability criterion for both FIR weight cases. The

pole locations for the compensated loop-gains were obtained using the nominal values for

the weight coefficients of the Q parameter. The magnitude of the pole locations for the

compensated loop-gain for both FIR weight cases were found to be within the unit disk.

Since the magnitude of the poles for the compensated loop-gains were within the unit disk,

the compensated system for both FIR weight cases would be closed-loop stable if the Nyquist

plots of the compensated loop-gains did not encompass −1 in the counterclockwise direction.

The Nyquist plots for the compensated system for both FIR weight cases are shown in figure

44, where the top plot is the Nyquist plot using 5 FIR weights while the bottom plot is

the Nyquist plot using 25 FIR weights. This shows the Nyquist plots of the compensated

loop-gains did not encompass −1 in the counterclockwise direction, resulting in the adaptive

Q-parametrized compensated system being closed-loop stable for both FIR weight cases

using the second set of coprime rational functions.

Spectral analysis was performed on the adaptive Q-parametrized compensator to deter-

mine if the number of FIR weight coefficients effects the performance of the nominal com-

pensator. The spectrum for the sensitivity function, frequency weighted sensitivity function,

displacement of the magnetic particle, and frequency weighted displacement of the magnetic

particle for the nominal compensator, 5 FIR weights, and 25 FIR weights are shown in fig-

ure 45, figure 46, figure 47, and figure 48 respectively. Figure 45 shows the sensitivity

function of the nominal compensator and the adaptive compensators with the FIR weights

were small in the low frequency range that pertains to disturbance rejection however the

sensitivity function for the nominal compensator is smaller in the low frequency range than

the adaptive compensators with the FIR weights. Figure 47 shows the nominal compen-

sator is able to suppress the movement of the magnetic particle by approximately at least

25.25 dB for frequencies less than or equal to 100 Hz than the mean particle displacement of

−7.845 dB at the dominating frequency of 3.16 kHz. This results in the effects of the Brown-

ian disturbance being minimized in the low frequency range or the range of frequencies that
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Figure 43: Magnitude of the closed-loop transfer function, z/F̃b, for both FIR weight cases

using the second set of coprime rational functions. This was equivalent to the nominal

performance criteria, |W1(z)S(z)|. The adaptive compensator for both FIR weight cases

achieved nominal performance because |W1(z)S(z)| was less than 0 dB for all frequencies.
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Figure 44: Nyquist plot for the compensated loop-gains using the second set of coprime

rational functions. The top plot is the loop-gain for 5 weights and the bottom plot is for 25

weights
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Figure 45: The spectral analysis on the sensitivity function using the adaptive Q-

parametrized compensator with the second set of coprime rational functions for the nominal

compensator, 5 FIR weights, and 25 FIR weights.
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Figure 46: The spectral analysis on the frequency weighted sensitivity function using the

adaptive Q-parametrized compensator with the second set of coprime rational functions for

the nominal compensator, 5 FIR weights, and 25 FIR weights.
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Figure 47: The spectral analysis on the displacement of the magnetic particle using the

adaptive Q-parametrized compensator with the second set of coprime rational functions for

the nominal compensator, 5 FIR weights, and 25 FIR weights.
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Figure 48: The spectral analysis on the frequency weighted displacement of the magnetic

particle using the adaptive Q-parametrized compensator with the second set of coprime

rational functions for the nominal compensator, 5 FIR weights, and 25 FIR weights.
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pertains to disturbance rejection. The number of the FIR weight coefficients does have an

effect on the performance of the adaptive Q-parametrized compensator. The displacement

of the magnetic particle was suppressed greater in the low frequency range as the number

of FIR weight coefficients decrease. The spectrum for the frequency weighted displacement

of the magnetic particle shows by using the FIR weight coefficients the frequency weighted

displacement of the magnetic particle is minimized for all frequencies while the nominal

compensator may not be minimized for all frequencies. In addition as the number of FIR

weight coefficients decreases, the frequency weighted displacement of the magnetic particle

was minimized more.
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5.0 EXPERIMENTAL RESULTS

This chapter discusses the experimental results for the various compensation methods that

were incorporated into the design of the magnetic particle system to minimize the effects of

the Brownian disturbances. The experimental method used to emulate the actual experi-

mental conditions since the sensor was not working properly is discussed first. Finally the

experimental results for the various compensation methods are given.

5.1 EXPERIMENTAL METHODS AND CONDITIONS

The demonstration of the performance for the various compensation methods was impor-

tant to illustrate the capabilities of the compensators. The method used to demonstrate

the experimental conditions without using a sensor was performed in the following way: two

controller boards with analog to digital, A/D, and digital and analog, D/A, compatibilities,

dSpace DS1104 RD controller boards, were connected together. One dSpace board contained

the discrete-time magnetic particle system and the Brownian disturbance while the other

board contained the feedback compensation structure. The control signal from the dSpace

board containing the compensator was sent through a D/A port and fed into the dSpace

board containing the magnetic particle system using an A/D port. The control signal was

sent through the magnetic particle system and superimposed with the Brownian disturbance

to obtain the displacement of the magnetic particle. The displacement of the magnetic parti-

cle was sent through a D/A port and fed into the dSpace board containing the compensator

structure using an A/D port that was then compared to the desired position of the mag-
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netic particle to create an error signal. The desired position of the magnetic particle was

set to 0 nm to have the movement of the magnetic particle be caused by only the Brownian

disturbance.

The D/A and A/D ports of the dSpace boards had 16 and 12 bits of resolution respec-

tively while the dynamic range of the dSpace boards were ±10 V. To ensure the control

signal and the displacement of the magnetic particle were within the dynamic range of the

dSpace boards, each signal if needed was modified by a gain that had units of volts per volts,

to place the signal within the dynamic range of the dSpace boards to prevent saturation.

After the signals were multiplied by its respective gain before being sent through the D/A

ports, the signals were also multiplied by the reciprocal of the gain on the other dSpace

board to have the control system experience the actual signals.

5.1.1 The Discrete-Time Magnetic Particle System for the Experiments

The experiments for the various compensation methods were initially performed having the

sampling frequency for both dSpace boards being equal to 25 kHz. The internal clocks

on the dSpace boards should of had been in sync by having the same sampling frequency,

resulting in the dSpace boards commuting information correctly. As the control signal from

the compensator dSpace board is fed into the magnetic particle system dSpace board, the

resulting displacement of the magnetic particle should of had been fed into the compensator

dSpace board as the control signal at the next time step is fed into the magnetic particle

system dSpace board. However while performing the experiments, the control signal and the

displacement of the magnetic particle were experiencing unexpected physical phenomena or

beat frequency characteristics when the experiments were running for long time durations.

One explanation for the beat frequency phenomena is the internal clocks of the dSpace boards

were out of sync, causing one dSpace board being a multiple of a time step off of the other

dSpace board. The method used to eliminate the beat frequency phenomena in the control

signal and the displacement of the magnetic particle was changing the sampling frequency of
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Table 5: The gain used to modify the control signal to use the dynamic range of the dSpace

boards using fixed gain compensation

Gain variable c1 (V/V)

Value 6.66(10−6)

the dSpace board containing the magnetic particle system and the Brownian disturbance by

an irrational number to 35.35 kHz. The discrete-time magnetic particle system was changed

as a result of the sampling frequency being changed.

G(z) = 423(10−9)
(z + 0.5025)

(z − 1)(z − 0.1185)
(5.1)

5.2 RESULTS FOR THE FIXED GAIN COMPENSATORS

This section discusses the experimental results for the fixed gain compensators to minimize

the effects of the Brownian disturbances. The first fixed gain compensator incorporated into

the design of the magnetic particle system was the proportional gain compensator. Finally

the results for the two fixed gain Q-parametrized compensators are given.

Fixed gain compensation methods were first incorporated into the design of the magnetic

particle system using the dSpace boards. The control signal and the displacement of the

particle were examined to determine if these signals needed to be modified to be within the

dynamic range of the dSpace boards. The simulation of the fixed gain compensation methods

were performed for 10 s to determine if these signals had to be modified. The displacement of

the magnetic particle was within the dynamic range of the dSpace, resulting in the control

signal being modified by a gain c1 as shown in table 5. The block diagram schematic of

the fixed gain compensator structure on the compensator dSpace board is shown in figure

49, where W1 is the nominal performance weight, K is the fixed gain compensator. The

control signal was scaled down to be within the dynamic range of the dSpace boards and
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was multiplied by a gain of 0.1 to counteract the dSpace board automatically multiplying

the signal by a gain of 10 during the D/A process. The displacement of the magnetic particle

was amplified by a gain of 10 to counteract the dSpace board automatically multiplying the

signal by 0.1 during the A/D conversion.

The control signal from the compensator dSpace board was fed to the magnetic particle

system on the other dSpace board as shown in figure 50, where the gain 1/c1 modifies the

control signal to have the magnetic particle system experience the actual control signal,

the band-limited white noise is the Brownian disturbance while the gain g2 converts the

displacement of the particle, due to the Brownian disturbance, into voltage.

5.2.1 Proportional Gain Compensation

The experiment for the proportional gain compensator was performed using ControlDesk,

an experimental software environment that is able to change the numerical values of the

parameters during the experiment and saves data. The performance of the proportional

gain compensator was evaluated by analyzing the displacement of the magnetic particle and

the frequency weighted displacement of the magnetic particle using spectral analysis for a

time duration of 2 s. The spectral analysis for the displacement of the magnetic particle and

the frequency weighted displacement of the magnetic particle are shown in figure 51 and

figure 52 respectively. The evaluation of the proportional gain compensator will be given

after the fixed gain Q-parametrized compensators.

5.2.2 Fixed Gain Q-Parametrized Compensation

The final fixed gain compensation method applied to the magnetic particle system was

the two fixed gain Q-parametrized compensators to demonstrate the compensator struc-

ture minimized the effects of the Brownian disturbances before the weight coefficients of Q

were adjusted with LMS to minimize the frequency weighted displacement of the magnetic

particle.
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Figure 49: The fixed gain compensator structure on the controller dSpace board to minimize

the Brownian disturbances and to stabilize the position of the magnetic particle using fixed

gain compensation methods. The compensator, K, is either the proportional gain compen-

sator or the fixed gain Q-parametrized compensator depending on the compensation method

being used.

Figure 50: The block diagram schematic of the magnetic particle system on the other dSpace

board. This schematic is the same for the various compensation methods except the gain of

1/c1 changes depending on the compensation method being used.
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Figure 51: Experimental displacement of the magnetic particle using spectral analysis for

the proportional gain compensation and the fixed gain Q-parametrized compensation for

both sets of coprime rational functions.
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Figure 52: Experimental frequency weighted displacement of the magnetic particle using

spectral analysis for the proportional gain compensation and the fixed gain Q-parametrized

compensation for both sets of coprime rational functions.
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5.2.2.1 Data for the First Set of Coprime Rational functions The experiment for

the first set of coprime rational functions with the fixed gain Q-parametrized compensator

was performed using ControlDesk. Spectral analysis was used to evaluate the performance of

the compensator by analyzing the displacement of the magnetic particle and the frequency

weighted displacement of the magnetic particle for a time duration of 2 s. The experimen-

tal displacement of the magnetic particle and the frequency weighted displacement of the

magnetic particle using the fixed gain Q-parametrized compensation with the first set of the

coprime rational functions are shown in figure 51 and figure 52 respectively.

5.2.2.2 Data for Second Set of Coprime Rational Functions The experiment for

the fixed gain Q-parametrized compensator using the second set of coprime rational functions

was performed using ControlDesk. Spectral analysis was used to evaluate the performance of

the compensator by analyzing the displacement of the magnetic particle and the frequency

weighted displacement of the magnetic particle for a time duration of 2 s. The experimental

displacement of the magnetic particle and the frequency weighted displacement of the mag-

netic particle using the fixed gain Q-parametrized compensation with the second set of the

coprime rational functions are shown in figure 51 and figure 52 respectively.

5.2.3 Analysis of the Performance for the Fixed Gain Compensators

The spectral analysis of the proportional gain compensator and the fixed gain Q-parametrized

compensators with both sets of coprime rational functions showed the displacement of the

magnetic particle, as shown in figure 51, was approximately equal for frequencies greater

than or equal to 100 Hz. The displacement of the magnetic particle was different using the

different compensation methods for frequencies less than 100 Hz. The Brownian disturbances

were suppressed by an average of 13.206 dB, 13.086 dB, and 12.56 dB for the proportional

gain compensator and the fixed gain Q-parametrized compensator using the first and second

sets of coprime rational functions respectively for frequencies less than 100 Hz from the mean

particle displacement of −6.184 dB at the dominating frequency of 2.615 kHz.
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The frequency weighted displacement of the magnetic particle for the proportional gain

compensation and the fixed gain Q-parametrized compensation using the first and second sets

of coprime rational functions were equal for frequencies higher than approximately 86 Hz.

The fixed gain compensation methods may not of had minimized the frequency weighted

displacement of the magnetic particle. The adaptive Q-parameterized compensators were

used to minimize the effects of the Brownian disturbances acting on the magnetic particle by

minimizing the frequency weighted displacement of the magnetic particle for all frequencies.

5.3 ADAPTIVE COMPENSATION

The final compensation method incorporated into the design of the magnetic particle system

was the adaptive Q-parametrized compensation to minimize the effects of the Brownian dis-

turbances. This was accomplished by adjusting the weight coefficients of the Q parameter

in the Q-parametrized compensator with LMS to minimize the frequency weighted displace-

ment of the magnetic particle. Similarly to the simulation of the adaptive compensators,

different number of weight coefficients were used to determine if the number of FIR weights

effects the performance of the adaptive compensator with respect to the nominal compen-

sator, K = X/Y . The number of FIR weights used for the experiments were 2, 5, and 10

FIR weights. The leakage factor, γ, and the step-size parameter, µ, chosen to stabilize the

LMS structure were 0.9999995 and 500(103) respectively.

The control signal and the displacement of the magnetic particle were examined to de-

termine if these signals needed to be modified to be within the dynamic range of the dSpace

boards. The simulation of the adaptive compensators were performed for 600 s to ensure

the weight coefficients converged to their nominal values. The last 5 s of the simulation was

analyzed, yielding the control signal had to be modified by a gain of c1, given in table 6, to

be within the dynamic range of the dSpace boards.

The block diagram schematic for the feedback adaptive compensator on the compensator

dSpace board is shown in figure 53, where controller is the compensator subsystem, LMS

is the LMS subsystem, W1 is the nominal performance weight, and the gain c1 scales down
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Table 6: The gain used to modify the control signal to use the dynamic range of the dSpace

boards using the adaptive Q-parametrized compensation methods

Gain variable c1 (V/V)

Value 2(10−6)

the control signal to be within the dynamic range of the dSpace boards. The schematic for

the magnetic particle system and the Brownian disturbance was the same schematic used

for the fixed gain compensators as shown in figure 50.

5.3.1 First Set of Coprime Rational Functions

The experiment was performed using the first set of coprime rational functions for the three

FIR weight cases and the nominal compensator with ControlDesk. The convergence of the

weight coefficients to their nominal values were important in analyzing the steady-state

compensated system with spectral analysis. The time duration for the FIR weight cases

varied to ensure the weight coefficients converged to nominal values as shown in figure 54,

where the top plot is for the 2 FIR weights, the middle plot is for 5 FIR weights, and

the bottom plot is for 10 FIR weights. The weight coefficients for the three FIR weight

cases, as shown in figure 54, were downsampled by 2000 or sampled at 12.5 Hz to show the

weights converged to nominal values due to the complexity of the feedback compensated

system. Downsampling the compensated system to show the FIR weights converged to their

nominal values was valid because the information of the compensated system is not affected

in the time domain by the sampling frequency. Once the weight coefficients converged to

their nominal values, the performance of the adaptive Q-parametrized compensators for the

three FIR weight cases and the nominal compensator were examined using spectral analysis.

Spectral analysis was used to analyze the steady state displacement of the magnetic particle

and the frequency weighted displacement of the magnetic particle as shown in figure 55 and

figure 56 respectively for a time duration of 2 s.
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Figure 53: The adaptive compensator structure on the controller dSpace board to mini-

mize the Brownian disturbances and to stabilize the position of the magnetic particle using

adaptive compensation.
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Figure 54: Experimental FIR weights for the adaptive Q-parametrized compensator using

the first set of coprime rational functions with 2, 5, and 10 FIR weight coefficients.
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Figure 55: Experimental displacement of the magnetic particle using spectral analysis for

the adaptive Q-parametrized compensator using the first set of coprime rational functions

with the nominal compensator and the three FIR weight cases.
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Figure 56: Experimental frequency weighted displacement of the magnetic particle using

spectral analysis for the adaptive Q-parametrized compensator using the first set of coprime

rational functions with the nominal compensator and the three FIR weight cases.
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The spectral analysis for the displacement of the magnetic particle yields as the number

of FIR weight coefficients increased, the Brownian disturbances were suppressed more than

with the nominal compensator in the low frequency range as shown in figure 55. The effects of

the Brownian disturbances being decreased as the number of the FIR weights increased was

expected because the number of the FIR weights is equivalent to the number of independent

variables used to minimize the frequency weighted displacement of the magnetic particle.

As the number of the FIR weights increase, the frequency weighted displacement of the

magnetic particle should decrease in the low frequency range as expected as shown in figure

56.

The Brownian disturbance was suppressed by an average of 8.55 dB, 11.78 dB, 14.00 dB,

and 15.45 dB for the nominal compensator and the adaptive Q-parametrized compensator

using 2, 5, and 10 FIR weights respectively for frequencies less than 400 Hz than the mean

particle displacement of −2.99 dB at the dominating frequency of 2.28 kHz.

5.3.2 Second Set of Coprime Rational Functions

The experiment was performed using the second set of coprime rational functions for the

three FIR weight cases and the nominal compensator with ControlDesk. The convergence

of the weight coefficients to their nominal values were important in analyzing the steady-

state compensated system using spectral analysis. The time duration for the FIR weight

cases varied to ensure the weight coefficients converged to nominal values as shown in figure

57, where the top plot is for the 2 FIR weights, the middle plot is for 5 FIR weights, and

the bottom plot is for 10 FIR weights. The weight coefficients for the three FIR weight

cases, as shown in figure 57, were downsampled by 2000 or sampled at 12.5 Hz to show the

weights converged to nominal values due to the complexity of the feedback compensated

system. Downsampling the compensated system to show the FIR weights converged to their

nominal values was valid because the information of the compensated system is not affected

in the time domain by the sampling frequency. Once the weight coefficients converged to

their nominal values, the performance of the adaptive Q-parametrized compensators for the

three FIR weight cases and the nominal compensator were examined using spectral analysis.
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Figure 57: Experimental FIR weights for the adaptive Q-parametrized compensator using

the second set of coprime rational functions with 2, 5, and 10 FIR weight coefficients.
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Spectral analysis was used to analyze the steady state displacement of the magnetic particle

and the frequency weighted displacement of the magnetic particle as shown in figure 58 and

figure 59 respectively for a time duration of 2 s.

The spectral analysis for the displacement of the magnetic particle yields as the number

of FIR weight coefficients increased, the Brownian disturbances were suppressed more than

with the nominal compensator in the low frequency range as shown in figure 58. The effects of

the Brownian disturbances being decreased as the number of the FIR weights increased was

expected because the number of the FIR weights is equivalent to the number of independent

variables used to minimize the frequency weighted displacement of the magnetic particle.

As the number of the FIR weights increase, the frequency weighted displacement of the

magnetic particle should decrease in the low frequency range as expected as shown in figure

59.

The Brownian disturbance was suppressed by an average of 9.81 dB, 12.46 dB, 14.48 dB,

and 14.48 dB for the nominal compensator and the adaptive Q-parametrized compensator

using 2, 5, and 10 FIR weights respectively for frequencies less than 400 Hz than the mean

particle displacement of −2.871 dB at the dominating frequency of 2.41 kHz.

The nominal compensator and the adaptive Q-parametrized compensator using 2 and

5 FIR weight cases suppressed the Brownian disturbances slightly more with the second

set of coprime rational functions than with the first set of coprime rational functions. The

Brownian disturbances were suppressed more with the first set of coprime rational functions

for the adaptive Q-parametrized compensator using 10 FIR weights than with the first set

of coprime rational functions.
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Figure 58: Experimental displacement of the magnetic particle using spectral analysis for

the adaptive Q-parametrized compensator using the second set of coprime rational functions

with the nominal compensator and the three FIR weight cases.
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Figure 59: Experimental frequency weighted displacement of the magnetic particle using

spectral analysis for the adaptive Q-parametrized compensator using the second set of co-

prime rational functions with the nominal compensator and the three FIR weight cases.
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6.0 SUMMARY

This chapter gives a summary of the work presented in this thesis, highlights the major

aspects, and list the recommendations that would further enhance the work.

6.1 DISCUSSION

Compensation methods had to be incorporated into the design of the magnetic trap to sta-

bilize the position of the magnetic particle and to minimize the effects of the Brownian

disturbances. The performance of the various compensation methods were analyzed in the

frequency domain using spectral analysis. This required the sensitivity function of the com-

pensated system be small in low frequencies to reject disturbances. The sensitivity function

was reduced in low frequencies using a nominal performance weight that reduced the effects of

the Brownian disturbances. The analysis of the open-loop magnetic particle system resulted

in two compensator structures being chosen to achieve the design requirements: proportional

gain compensation and Q-parametrized compensation, that characterized the entire set of

stabilizing compensators. The Q-parametrized compensator structure was used for a fixed

gain compensator and the adaptive compensator. The closed-loop transfer functions for the

feedback block diagram schematic of the magnetic trap were affine in Q, allowing the adap-

tive feedback control problem to be converted into a model-matching problem where LMS

was used to adjust the parameters of Q, that was modeled as an FIR filter. The adaptive

Q-parametrized compensator reduced the effects of the Brownian disturbance by updating

the weight coefficients of Q with LMS to minimize the frequency weighted displacement of

the magnetic particle.
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The compensation methods were simulated to show the design requirements were sat-

isfied, the Brownian disturbances were reduced, and nominal performance was achieved

before the experiments were performed. The fixed gain Q-parametrized compensators were

equated to the proportional gain compensator using two sets of coprime rational functions

by the uniqueness property of the Q-parametrized compensator to show the compensated

system satisfied the design requirements before LMS was used to updated the parameters

of Q. This resulted in the fixed gain compensators having the same performance. The fixed

gain compensators stabilized the position of the magnetic particle, achieved nominal per-

formance, and reduced the effects of the Brownian disturbance by 23.11 dB for frequencies

below 100 Hz than at higher frequencies. The two adaptive Q-parametrized compensators

were simulated while considering how different number of FIR weight coefficients affected

the performance of the compensated system by choosing 5 and 25 FIR weight coefficients.

The adaptive compensator for both FIR weight cases were able to stabilize the position of

the magnetic particle, achieve nominal performance, increase the compensated bandwidth

frequency by approximately a factor of 3.8, and reduce the effects of the Brownian distur-

bance. This results in the position of the magnetic particle reaching its desired position

faster using adaptive control methods than using fixed gain control methods . The perfor-

mance of the adaptive Q-parametrized compensator for both FIR weight cases were better

than the nominal compensator, however the performance for both FIR weight cases were

approximately equal. This was unexpected because as the number of FIR weights increased,

there were more independent variables to minimize the frequency weighted displacement of

the magnetic particle. The simulation for the various compensation methods proved the

position of the magnetic particle was stabilized, the compensated system achieved nominal

performance, and the effects of the Brownian disturbance were reduced.

The experiments for the various compensation methods were performed by connecting

two dSpace boards together because the sensor setup was not working properly. The various

compensation structures were on one dSpace board that fed the control signal to the other

dSpace board, containing the magnetic particle system and the Brownian disturbance, to

produce the displacement of the magnetic particle that was fed back into the compensator

dSpace board. While performing the experiments, the control signal and the displacement
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of the magnetic particle contained beat frequency phenomena as the result of one dSpace

board being a multiple of a time step off from the other dSpace board. This was unexpected

because the internal clocks of the dSpace boards should have been in sync since the sampling

periods were the same on both boards. The method used to eliminate the beat frequency

called for the sampling frequency of the dSpace board containing the magnetic trap to be

changed by an irrational number. The spectral analysis for the fixed gain compensators

showed that the displacement of the magnetic particle was reduced in the low frequencies as

shown in figure 60. This resulted in the fixed gain compensators reducing the effects of the

Brownian disturbances.

The experiments for the adaptive Q-parametrized compensators were performed while

considering how different number of FIR weight coefficients affected the performance of the

nominal compensator by choosing 2, 5, and 10 FIR weight coefficients. While performing

these experiments, leaky LMS had to be used to stabilize the LMS algorithm. The spectrum

for the displacement of the magnetic particle was suppressed more in the low frequency

range as the number of FIR weight coefficients increased using both the first and second

sets of coprime rational functions as shown in figure 60. This resulted in the effects of

the Brownian disturbances being suppressed more as the number of FIR weight coefficients

increased because there were more independent variables to minimize the frequency weighted

displacement of the magnetic particle.

The work presented in this thesis assumed there was only one experimental condition

because the sensor was not working properly. This resulted in the viscous force acting on the

magnetic particle being modeled using Stokes drag without the Oseen boundary condition

and the magnetic properties of the magnetic particle did not change because the gain of

the magnet was arbitrarily chosen to demonstrate the control theory satisfied the design

requirements. When the exact experimental conditions for the magnetic trap are known, the

experimental results indicated that fixed gain compensation will stabilize the position of the

magnetic particle and reduce the effects of the Brownian disturbance, thus produces good

compensator performance. However, determining these experimental conditions, requires an

enormous amount of time resulting in biophysicists spending minimal time working on their

experiments. The use of an adaptive Q-parametrized compensator structure that uses LMS
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Figure 60: Graph showing the amount the Brownian disturbances are suppressed for each

compensation method. Compensation method 1, 2, and 3 are the proportional gain com-

pensation, the Q-parametrized compensation structure using the first set of coprime rational

functions, and the Q-parametrized compensation structure using the second set of coprime

rational functions.
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to update the FIR weight coefficients of the Q parameter to minimize the frequency weighted

displacement of the magnetic particle alleviates biophysicists of the time spent designing

compensators to meet their experimental conditions. For any experimental condition and a

number of FIR weights, there exists optimal weight coefficients that minimizes the frequency

weighted displacement of the magnetic particle. The adaptive Q-parametrized compensator

structure alleviates users of the trouble of designing fixed gain compensators by finding

the optimal weight coefficients that minimizes the frequency weighted displacement of the

magnetic particle for the current experimental conditions.

6.2 CONCLUSION

Magnetic traps are a vital instrument for allowing biophysicists to study the behavior of

biological systems and processes. They manipulate magnetic objects by applying a magnetic

force under the influence of magnetic fields. However the manipulation of the magnetic

particle is cumbersome due to the dynamics of the instrument changing per experiment.

Adaptive control can be incorporated into the design of magnetic traps to alleviate

users of designing compensators to control the position of the magnetic particle. Adaptive

control automatically adjusts the parameters of the compensator to ensure the instrument

satisfies specific requirements. An adaptive Q-parametrized compensator structure with LMS

allows users to concentrate more effort on their experiments by finding the optimal weight

coefficients that minimizes a frequency weighted displacement of the magnetic particle for

the current experimental conditions.

6.3 FUTURE WORK

This research showed that incorporating an adaptive Q-parametrized compensator structure

into the design of magnetic traps the position of the magnetic particle was stabilized and

the effects of the Brownian disturbances were reduced. The following recommendations will
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enhance this research by implementing the various compensation methods on the actual

magnetic particle system and analyzing the performance of different adaptive compensators.

• The experimental results were produced by connecting two dSpace boards together be-

cause the sensor was not working properly. The broad-band white noise in the QPD

difference signal can be eliminated by properly aligning an optical system to move the

angular spectrum of the scattered light reflected from the particle, at the back focal plane

of the microscope objective, to measure the displacement of the particle. This will result

in a magnetic particle system that is able to manipulate and measure the position of the

magnetic particle in real time.

• Once the sensor is working properly, robust stability theory should be incorporated into

the design of the compensators. The model of the magnetic particle system was used to

demonstrate the various compensation methods satisfied the design requirements. How-

ever the model of the magnetic particle system could vary from the actual system which

could yield poor compensator performance. Robust stability would avoid the complica-

tions of not having the exact mathematical description of the system by characterizing a

compensator that stabilizes the position of the magnetic particle for a set of plants that

contains the actual magnetic particle system.

• The weight coefficients of Q were updated to obtain the optimal set of basis in the Q space

that minimized the frequency weighted displacement of the particle. The set of basis

chosen for Q had increase powers of z−1. This set of basis produced good compensator

performance, however different sets of basis should be analyzed to determine the best

compensator performance for a given set of coprime rational functions.

• Finally, there were two sets of coprime rational functions chosen for the adaptive Q-

parametrized compensator to satisfy the design requirements. These two sets of coprime

rational functions produced good compensator performance, however other sets should

be considered for a given Q to determine the set of coprime rational functions that yields

the best compensator performance.
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