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The synthesis and characterization of copolymers possessing exact repeating sequences 

of 9,9-dihexylfluorene and methylene repeat units are described. Each poly(9,9-dihexylfluorene-

mb-methylene) (PFM, mb = multiblock) was synthesized following the assembly of a 

symmetrically disubstituted monodisperse oligofluorene. Alkyl segments possessing terminal 

alkene functionality were then coupled at both of the substituted positions on the oligofluorene to 

give a macromolecular “segmer” compound. Each segmer was polymerized using Acyclic Diene 

Metathesis (ADMET) and, following post-polymerization hydrogenation, a PFM with an entirely 

repeating diblock sequence was produced. PFMs possessing 9,9-dihexylfluorene segment lengths 

of x = 1, 2, 3, 4, 7, or 8 units and methylene segment lengths of y = 10 or 18 units were prepared 

to give a ten member PFM library.  

As PFMs have exact chemical compositions and monomer unit sequencing, studies aimed 

at elucidating solution and bulk phase trends were performed. Spectroscopic characteristics that 

make polyfluorene-type materials attractive include their generally efficient blue light emission 

(λmax ~ 448 nm). Successful investigations into the optical tuning of PFMs in solution and in the 

bulk are described. Additionally, thermal- and photostabilities of PFMs under a variety of 

conditions are reported and compared to the related homopolymer, poly(9,9-dihexylfluorene) 

[PDHF]. Compared to PDHF, PFMs display similar, and in some cases superior resistance to 

photobleaching processes. Additionally, thermal and photostability investigations into keto-
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induced degradation processes of PFMs suggest that interruption of the fluorene segments with 

alkyl spacers effectively suppresses intrachain charge migration and interchain Förster energy 

transfer in the bulk. The rate of PFM, and likewise PDHF degradation was found to be at least 

partially dependent on the initial state of the sample. 

Efforts toward the transition metal-catalyzed production of cyclic oligomers are 

described. Two rigid bifunctional molecules bearing both transition-metal metathesis initiating 

and terminating groups were prepared. The synthesis and metathesis activity of these compounds 

are reported. 
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1. Introduction 

 

1.1. Repeating Sequence Copolymers: Inspiration from Nature 

 

Nature is the ultimate inspiration for the development of polymers with controlled 

sequence.  Biopolymers that combine sequence and a multiblock architecture have enviable 

mechanical properties that are difficult to duplicate. This is the case in spider silks, which 

combine strength, elasticity, light weight and adhesive properties and have been much studied.1, 2 

It has been found that naturally occurring silks consist of crystalline segments such as 

(GlyAlaGlyAlaGlySer)n
 that alternate with amorphous segments. These amorphous segments 

often contain amino acids with bulky side groups.3 The ordered sequences are believed to be key 

in the formation of anti-parallel β-sheets that act as temporary cross-links. Attempts to prepare 

synthetic polymers with similar properties have been undertaken by several groups. Rathore and 

Sogah reported that multiblock copolymers with (Ala)4,6 or (AlaGlyAlaGly) alternating with 

short PEG oligomers (n ~ 13) gave the desired β-sheet structures (Figure 1.1).2 Zhou reported 

similar ordering in copolymers possessing (Ala)5 and isoprene blocks.4 Tirrell and coworkers 

prepared related "periodic polypeptides".5 Keratin, fibronectin, elastin, and collagen are other 

examples of biopolymers whose properties can be traced to specific sequences.6-11 Termonia has 

modeled this class of multiblock copolymer.12 
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Figure  1.1. Top: alanine segments present in silk of N. clavipes order into β-sheet regions. Middle: Rathore’s 
conceptual rendering of PEG-poly(alanine) segmented copolymers. Bottom: Chemical compositions of polymers 
Rathore used to construct self assembled β-sheets. This figure is taken from Rathore and Sogah, J. Am. Chem. Soc., 
2001, 123, 5231-5239. 

 
Though they are not technically RSCs (because biomolecules rarely have an exact 

repeating motif throughout), polypeptides represent an extremely important class of highly 

sequenced macromolecules that are routinely prepared in the laboratory. The solid phase 

synthesis used in their preparation is not practical for routine materials preparation, however.  

The method suffers from significant limitations in scale–milligram quantities are considered 

large preps, as well as practical lengths of chains (DP < 50) that can be prepared.13 Moreover, 

since the scale-up necessarily involves co-opting the synthetic machine of natural organisms, 

there is a severe restriction on the types of polymers that can be produced.14-16 Despite these 
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limitations, the effect of sequence on solution interactions has been exhaustively studied for 

polypeptides, both synthetic and natural. Protein conformation, which determines function, is 

one of the most dramatic justifications for the development of synthetic materials with complex 

sequencing.  

 

1.2. Repeating Sequence Copolymers: Precedence 

 

1.2.1. Polyurethanes 

 

The foremost model of synthetic RSCs comes in the form of the amazingly versatile 

polyurethanes/polyureas (PUs) which are the best understood and most economically important 

segmented multiblock copolymers. Consumed at a rate of greater than 9 million tons per year 

worldwide, polyurethane foams, coatings, adhesives, and elastomers are utilized in a variety of 

applications.17 The most common synthesis of segmented PUs involves the combination of a 

poly(ether glycol) with an excess of diisocyanate to form an isocyanate-functionalized 

prepolymer (Scheme 1.1).  Reaction of this prepolymer with a short chain diamine or diol chain 

extender gives high molecular weight PU. This 2-step synthesis gives a highly segmented 

polymer with soft blocks, dominated by the diol chains, and hard blocks comprising the 

hydrogen-bonded urea/urethane chains connected by chain extenders.  Although there is much to 

learn from structure/function studies of PUs, the inherent polydispersity in their segments 

disrupts long range order.18-20  
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Scheme  1.1. The conventional preparation of segmented PUs. 

 
 

Well-defined polyurethane/polyureas RSCs have been occasionally prepared and their 

properties have been found to differ from the less uniform multiblock PUs prepared by the 

conventional synthetic approach described above. In particular, an effort has been made to define 

the number of urethane/urea groups in the hard block. Sijbesma and coworkers prepared a series 

of PUs wherein the number of urea groups between THF-derived polyether softblocks ranged 

from 1-4 (Figure 1.2).21 They found that hydrogen bonding was significantly greater and 

increased with the number of urea groups in the hard block. Not surprisingly, flow temperatures 

were also dependent, ranging from < 20 °C for one urea group to > 200 °C for four.  Even more 

interesting was the comparison of the polymers with two urea groups per hard block with a 

conventionally prepared polyurea that had the same ratio of urea groups to soft block groups, but 

did not have the same uniformity. The conventionally prepared polymer showed less effective 

hydrogen bonding and a lower flow temperature than the RSC polyurea. The length and 

polydispersity of the soft block also affects PU properties. 
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Figure  1.2. Poly(ether-b-polyurea)s prepared by Sibesjma and coworkers. 

 

1.2.2. Main Chain Liquid Crystalline Polymers 

 

Main chain liquid crystalline (LC) polymers are the most common class of polymers that 

have been prepared as RSCs.22, 23 These polymers typically consist of rigid backbone groups and 

flexible spacer units and are most often assembled by the condensation of the preformed 

segments; ester linkages predominate. Sequence has been shown to be crucial in these systems. 

The rigid groups are predisposed to form ordered phases in the melt (or solution). As an 

example, changing the mesogen from biphenyl (a = 2) to terphenyl (a = 3) in the polymer in 

Figure 1.3 increases the Ti, the temperature which the polymer loses its liquid crystalline 

characteristics and becomes isotropic.24 Changing the length of the alkyl spacer by one unit from 

b = 5 to b = 6 changes the liquid crystalline phase from smectic C to smectic A.25 In another 

study, an RSC comprising regularly alternating poly(p-oxybenzoate-co-p-phenylene 

isophthalate) was compared with a copolymer formed by a random copolymerization of the three 

components: p-hydrobenzoic acid, isophthalic acid, and hydroquinone diacetate. The RSC 

exhibited a higher Tg and exhibited two sharp nematic transitions; the random copolymer had a 

lower Tg  and exhibited only one broad crystalline-to-nematic transition.26  
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Figure  1.3. A liquid crystalline RSC.27, 28 

 

Although many RSCs have been prepared in an effort to yield good main chain liquid 

crystalline materials,22, 25, 29-32the research has been driven by application and, with only a few 

exceptions, little effort has been put into a holistic evaluation of the structure/function 

relationships of these polymers.33-35  

 

1.3. Polyfluorene: A Main Chain LC Homopolymer 

 

Polyfluorene (PF, Figure 1.4) is a member of the conjugated homopolymer class of 

materials. A conjugated polymer (CP) is polyunsaturated and features complete π–electron 

delocalization along its backbone. This extended delocalization translates into an electronic band 

structure that is reminiscent of silicon, and as such organic CPs are sometimes thought to be 

“synthetic metals.” CPs first came to prominence in 1977 when Shirakawa showed that 

polyacetylene (PA, Figure 1.5), normally considered a semiconducting material, exhibited a 

significant increase in conductivity upon doping with electron donors or acceptors.36-38 These 

materials received more attention in 2000 when Shirakawa, Heeger, and MacDiarmid were 

recognized with the Nobel Prize in Chemistry for their work on CPs.39 The electronic properties 

of CPs remain the subject of intense investigation, with applications in organic lasers,40, 41 field 

effect transistors,42-44 polymeric light emitting devices (PLEDs),45 and non-linear optical 

devices46, 47 being pursued. 
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Figure  1.4. The general structure of polyfluorene (PF). 

 

In addition to PF and PA, other examples of conjugated polymers with all-carbon 

skeletons include poly(para-phenylene) (PPP), poly(para-phenylene vinylene) (PPV), and 

poly(para-phenylene ethynylene) (PPE). Conjugated polymers incorporating heteroatoms are 

numerous as well; examples of this include polypyrrole (PPy), poly(p-aniline) (PANI, shown in 

emeraldine base form), poly(3,6-carbazole) (PC), and poly(2,5-thiophene) (PT).  
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Figure  1.5. Other examples of conjugated polymers. 

 

Any discussion of the attractive features of PF should first begin by introducing the 

numbering convention along the fluorene moiety. This is illustrated in Figure 1.6. There are three 

common sites of reactivity along the fluorene moiety- these are denoted as carbons 2, 7, and 9. 

From a reactivity standpoint, C2 and C7 are sites for substitution by the presence of an 
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electrophile, while C9 is subject to deprotonation-substitution as well as radical-pathway 

reactions. The vast majority of chemical transformations on the fluorene backbone occur at these 

three sites. Because connectivity along PF occurs at C2 and C7, substitution at C9 is the main 

distinguishing characteristic of PF homopolymers and fluorene-containing copolymers. This 

subject is treated in Section 1.4. 

 

2
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89
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Figure  1.6. Numbering convention on the fluorene moiety. 

 

The motivation for polymerizing 9,9-disubstituted fluorene first arose due to drawbacks 

associated with the structurally similar homopolymer PPP. The unsubstituted form of PPP is 

rendered insoluble at relatively low molecular weight. Since polymer processing is typically 

performed from a concentrated solution of the polymer, the inability to solubilize PPP makes it 

difficult to cast it into a film for transistor applications, for example. Additionally, in order to 

relieve steric strain, PPP adopts a dihedral angle of 23° between phenylene units on average.48 

Dihedral twisting is undesirable because it reduces the polymer’s effective conjugation length,  

which is defined as the number of bonded aromatic rings at which the optical and electronic 

properties of a conjugated polymer become saturated. Inter-ring phenylene torsion thus directly 

impacts the polymer’s conductivity. Müllen and Berresheim synthesized more soluble, higher 

molecular weight PPP by introducing alkyl or alkoxy groups on the arylene repeat unit, but this 
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modification was found to exacerbate inter-ring torsion–the dihedral angle of poly(para-2,5-

dialkyl phyenylene) increased to 45°.49 

PF is a formal analogue of PPP. The biphenyl repeat unit in PF serves to incorporate the 

PPP motif, with the added benefit of planarity of the two phenyl rings within the fluorene repeat 

unit. It should be noted that, like PPP, PFs do have an inter-fluorene dihedral angle; this is found 

to be between 15° and 24°.50 Additionally, though the fluorene moiety is “planarized” by C9 

there remains a small deviation from collinearity of the phenylene rings. An angle of 19° was 

calculated to be the angle at which the para axes in fluorene (defined by lines connecting C2-C11 

and C7-C12) deviated from strict linearity.51  

The structural differences between PF and PPP affect the properties they display in the 

bulk, as evidenced by the effective conjugation lengths of each. Studies of low molecular weight 

PPP revealed an effective conjugation length of 11 phenylene units,52, 53 while PF was reported 

to reach effective conjugation at 10-12 units, or 20-24 aromatic rings.48 This contrasts greatly 

with PT, where extended coplanarity of the thiophenyl moieties results in an effective 

conjugation length upwards of 96 repeat units.54 Longer effective conjugation lengths allow for 

greater resistance against oxidative doping, higher ionization potential, and smaller electronic 

band gaps.55 CPs with small band gaps at short effective conjugation lengths are highly desirable 

because light emission from a conjugated polymer shifts bathochromically with increasing 

effective conjugation length. The band gap for PF is typically ~2.8 eV,56 which is lower than the 

band gap of 3.4 eV reported for poly(para-2-decyloxy phenylene).57 This decreased band gap 

can be attributed to increased planarity of the fluorene unit relative to a biphenyl unit. Optical 

properties of CPs, and PF in particular, are described in more detail in Section 1.6 and Section 

1.10.1. 
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1.4. C9 Substitution 

 

The vast majority of fluorene-containing polymers are substituted at C9, though isolated 

reports on the incorporation of 9,9-unsubstituted fluorene into a polymer58 as well as its use in 

end capping 9,9-dialkyl PFs59 are known. Substitution at C9 is routinely performed prior to 

polymerization and is facilitated using standard SN2 chemistry, which allows for the attachment 

of a variety of groups. A representative sample of these groups is shown in Figure 1.7 and 

includes n- (A),60, 61 branched (B),62 chiral (C)60, 61, and spirocyclo alkyls (D);63 oligoether (E);60, 

64 phenol (F);65 ester (G);58 alkyl(trialkylamine) (H) and alkyl(tetraalkylammonium) (I);66-68 

spirofluorenyl (J);69 spiro(bis-styrylamino)fluorenyl (K);70 triarylamine(L);71 and phenylene72 

(M) and benzyl ether73 dendron (N) groups. Careful control of nucleophile stoichiometry and 

relative ease of purification away from byproducts allows for monosubstitution at C9, and as 

such fluorene moieties bearing one n-hexyl (O) and one ethyl ester substituent (P) have been 

reported.58 Polymeric fluorene moieties with ternary C9 functionality such as alkylidene (Q) 

have also been reported.44 

Key to these modifications is the finding that the electronic character about the fluorene 

moiety is not changed appreciably by substitution at C9.74 Thus, C9 substituents have been 

chosen to render PFs soluble in organic and/or aqueous solvents,68, 75 to facilitate Förster energy 

transfer behavior,70, 76 to enforce particular phase ordering in the bulk,77 and to inhibit polymer 

degradation,72 for example. 
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Figure  1.7. Illustration of various groups substituted at C9 on fluorene-containing polymers.  

 

1.5. PF Conductivity 

 

Ranger prepared PF copolymers P9EF, P9KF, P9BF, and P9BFP (Figure 1.8) in an effort 

to gauge the ability of PFs to conduct electrons.58, 78, 79 The polymers were prepared such that the 

repeat unit was a perfectly alternating bifluorene wherein one fluorene was 9,9-dialkyl or, in the 

case of P9BFP, alkylidene substituted. The other fluorene moiety was monosubstituted with an 

electron withdrawing functionality. 
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Figure  1.8. Base-dopable PF copolymers prepared by Ranger and coworkers. 

 

The addition of tBuOK to a solution of the polymer in THF served to dope the polymer 

backbone (shown for P9KF, Scheme 1.2). Ranger reported stabilized conductivities of σ ~ 10-9 

S/cm for undoped PF copolymers. When doped with base the polymers were much more 

conductive, with σ = 10-6 for the ester-containing P9EF,  and σ ~ 10-4 -10-3 S/cm for the ketone-

functionalized copolymers P9KF, P9BF, and P9BFP. These conductivities are respectable for 

organic conductors but do not yet approach the conductivity, σ ~ 101 S/cm, of polished, prime 

silicon.80 
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Scheme  1.2. Method of doping employed by Ranger. 

 

1.6. Light Emission Characteristics of PF Homopolymers 

 

A major source of interest in fluorene-containing polymers stems from their attractive 

light emission characteristics. As can be seen in the case of poly(9,9-di-n-hexylfluorene) (PDHF) 
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in Figure 1.9, the absorption spectrum of a pristine polyfluorene in CHCl3 consists of a 

featureless π-π* transition at 380 nm. Any vibronic fine-structure is obscured by the presence of 

a range of conjugation lengths in the polymer. The solution-phase emission, in contrast, exhibits 

three well-resolved bands at 420, 448, and 472 nm, assigned to the 0-0, 0-1, and 0-2 transitions, 

respectively.81 PF has a high quantum efficiency (50-70%) and emits an intense sky blue color 

under UV light.64, 82 As PF is processible under a variety of C9 substitutions and as it is readily 

accessed (see Section 1.8) it is very attractive for light emitting applications.  
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Figure  1.9. The absorption and emission spectra of PDHF in CHCl3, and the emission spectrum of a pristine film of 
PDHF.       

 

The emission spectra of solid state PF films have characteristics similar to the polymers 

in solution although the maxima are shifted bathochromically by 30-40 nm and the quantum 

yields decrease to ~16%.82 The emission maximum for a pristine film of PDHF, then, occurs at 

450 nm, and vibronic coupling is denoted by shoulders at 480 and 535 nm.  
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PF emission properties are currently the subject of much discussion, as the stability of 

these polymers when cast as films does not meet performance criteria for commercialization. 

Specifically, upon heating (or exposure to UV-light or current), the PF spectrum undergoes a 

dramatic transformation.74  The blue emission decreases and a weak band at ca. 535 nm (2.3 eV) 

appears and becomes intense, resulting in an undesired dominant green emission. Efforts aimed 

at understanding the origin of this emission and at establishing the increased stability of our 

fluorene-containing RSC polymers are described in Chapter 3.  

 

1.7. Bulk Phase Morphology and Liquid Crystallinity 

 

The bulk morphology of n-alkyl derivatives of PF has been studied. Two distinct phases 

have been identified, a glassy α-phase and a more highly ordered β-phase.51 The β-phase 

spectrum is analogous to that of the α-phase except for a small bathochromic shift in both 

absorption and emission. The formation of this phase, which occurs upon exposure of α-phase 

films to thermal cycling and certain solvents, is attributed to side-chain crystallization. The 

extended correlation length, 22 nm for the β-phase vs. 15 nm for the α-phase of PFO, is said to 

result from more efficient packing of the alkyl chains in the bulk. These chains are hence prone 

to crystallization and promote the onset of the α-phase.77 The substitution of branched side-

chains suppresses the formation of the β-phase.83  

As mentioned in Section 1.3, PFs are known to exhibit LC behavior. The first report of 

this phenomenon by Bradley and coworkers who observed the formation of an LC phase by 

DSC.84 Transition temperatures from semi-crystalline to LC phases occur from 60-160 °C, 

depending on the length and branching of the side-chains.74, 82 The birefringent phases for dialkyl 
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polyfluorenes exhibit Schlieren textures that are consistent with nematic organization.82 The 

clearing point (the transition from the LC state to the isotropic state) is quite high (>250 °C) and 

is difficult to detect as thermal decomposition begins in the same temperature range.74  

The ability of poly(9,9-di-n-octylfluorene) (PDOF) to align in the bulk into an LC 

monodomain was demonstrated by Grell and Bradley in 1997.84 This was the first report of the 

alignment of a conjugated polymer in its LC state, which was accomplished by spin-coating the 

film onto a rubbed polyimide substrate. Alignment occurred after heating the film above its 

melting temperature, Tm = 170° C, and cooling the film slowly. Two ordered, aligned states for 

PDOF were produced. First, cooling slowly from Tm to room temperature oriented PDOF into a 

crystalline film. However, by cooling slowly from 200° C to the Tm and then rapidly quenching 

the film to room temperature, PDOF was found to bypass crystallization and was obtained as an 

oriented LC glass. Monodisperse oligofluorenes have also been found to exhibit liquid 

crystalline behavior and have similarly been trapped in their LC states by bulk processing 

methods.85 Monodisperse oligofluorenes are described in greater detail in Section 1.9. 

 

1.8. Polyfluorene Synthesis 

 

The first synthesis of PF was reported by Fukuda in 1989.86 In this report, PDHF was 

produced by the oxidative coupling of 9,9-dihexylfluorene using FeCl3 (Scheme 1.3). The 

polymer recovered was found to have low molecular weight (Mn = <5000 as determined by GPC 

relative to PS standards) and suffered from lack of complete regioselectivity in that coupling at 

carbons other than C2 and C7 occurred, leading to structural defects in the polymer. The 

substituional irregularity led to poor quality films. Removal of metallic impurities was also 
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problematic and posed problems for potential device incorporation. Fukuda did, however, report 

the important observation that as the length of the straight chain alkyl substituents on C9 

increased the Tg of the polymer decreased. 

 

FeCl3

n

PDHF  

Scheme  1.3. Fukuda’s approach to PF. 

 

With the development of improved aryl-aryl coupling methodologies came improved 

syntheses of PF. Pei published the first transition metal-catalyzed synthesis of PF in 1996, 

accomplishing the regioregular polymerization of dibromofluorene using Ni0 generated in situ 

from NiCl2 and Zn. The resultant poly[9,9-bis(dioxaheptyl)fluorene] (BDOH-PF) exhibited a 

dramatic increase in MW (Mn = 94,000 and Mw = 215,000, GPC relative to PS) relative to 

previous preparations (Scheme 1.4).64 Additionally, Pei noted the strikingly small 

solvatochromic effect present in samples of BDOH-PF: whereas poly(3-n-hexylthiophene) 

exhibited absorbance maxima of λ = 425 in a dilute solution of CHCl3 and λ = 405 when cast as 

a film,87 BDOH-PF gave absorbance maxima of λ = 385 nm as a film and λ = 378 nm as a dilute 

solution in THF. This very minor difference in maxima was attributed to the relief of inter-ring 

torsion associated with PF.  
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Scheme  1.4. Pei’s Ni0-catalyzed route to PF. 

 

Ranger58 and Woo88 synthesized 9,9-dialkyl PFs via the Suzuki cross-coupling 

methodology in 1997. This reaction is catalyzed by Pd0 and couples a 2,7-dihalo-9,9-

dialkylfluorene and a 9,9-dialkylfluorene-2,7-bisboronic ester or acid. Ranger used derivatized 

9,9-dioctylfluorenes to yield PDOF with molecular weights of Mn = 24,000 and Mw = 40,000 

(Scheme 1.5). 

 

BrBr BB
O

O O

O Pd(PPh3)4

PDOF

+
Na2CO3(aq), PhMe, ∆ n

 

Scheme  1.5. The Pd0-catalyzed route to PF from a dibromofluorene and a fluorene-bis(boronic ester). 

 

In 1998, Kreyenschmidt89 reported the synthesis of PDHF via the simplified, Zn-free 

Yamamoto homocoupling methodology. This route uses stoichiometric quantities of Ni(COD)2 

as a coupling agent to polymerize a 2,7-bromo-9,9-dialkylfluorene. In this fashion PDHF with a 

degree of polymerization, DP = 54 was prepared (Scheme 1.6).  
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Scheme  1.6. Kreyenschmidt’s synthesis of PDHF using the Yamamoto homocoupling strategy. 

 

1.9. Monodisperse Oligofluorenes 

 

Kreyenschmidt’s report of the synthesis of PDHF coincided with a report by Klaerner on 

oligomeric 9,9-dihexylfluorenes.48 This was the first instance of the synthesis and 

characterization of fluorenes of low DP (n = 3-10). Oligomer compounds are useful for the 

modelling of analogous polymers and for the elucidation of structure-property relationships.90 

Indeed, Klaerner’s motivation for preparing oligofluorenes was for the unambiguous 

determination of the effective conjugation length of PDHF. An oligofluorene series was prepared 

in one pot by optimizing the homocoupling conditions shown in Scheme 1.6 to yield statistical 

mixtures of oligomeric product. After end-capping with 9,9-dihydrofluorene and removing high 

molecular weight polymer by precipitation, oligomers from terfluorene (n = 3) up to 

decafluorene (n = 10) were separated by HPLC for subsequent characterization. The plot of the 

absorption energy, λmax, of each oligomer versus 1/n revealed the effective conjugation length of 

PDHF to be 12 fluorene units, or 24 aryl rings upon linear extrapolation of 1/n to zero (Figure 

1.10).  
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Figure  1.10. Klaerner’s plot of λmax vs. 1/n for oligofluorenes of n = 3 - 10. This figure is from Klaerner, G.; and 
Miller, R.D. Macromolecules 1998, 31, 2007-2009. 

 

In 2000, Lee and Tsutsui reported the use of an iterative synthetic strategy to arrive at 

oligofluorenes using controlled chemical means.91 This approach is depicted in Figure 1.11. 

Iterative oligomer assembly is an attractive strategy because, by design, it requires the 

preparation of few reactive intermediates and because growth of suitably long oligomers is 

achieved using a limited variety of reaction conditions. Lee’s strategy began with the preparation 

of 2-bromo-9,9-dihexylfluorene, which was then homocoupled using Yamamoto conditions to 

produce the bifluorene (A, Scheme 1.7). This bifluorene was then “reactivated” by bromination 

at C2 and C2’ to give the dibromobifluorene (B). At this point, Lee employed the Suzuki 

coupling of B with two equivalents of 9,9-dihexylfluorenyl boronic ester to yield the 

quaterfluorene (C). Though it was not performed, the synthetic cycle could conceivably begin 

anew, with a “reactivating” bromination of the quaterfluorene and subsequent Suzuki reaction to 

yield a hexafluorene, and so on to give even-numbered oligofluorenes. A similar cycle was 

described to allow for the preparation of oligofluorenes with odd-numbered segment lengths. 
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The iterative 2n growth described was advantageous in that it avoided the complex separation of 

oligomers Klaerner had performed. On the other hand, Klaerner had arrived at a library of 

oligofluorenes in one synthetic step, whereas Lee had run multiple reactions and obtained a 

smaller library. Regardless, both studies found that as the length of the oligofluorene increased, 

optical absorption and emission maxima shifted to longer wavelengths. 

 

 

Figure  1.11. Conceptual representation of iterative oligomer assembly. This figure is from  Lee, S.H.; and Tsutsui, 
T. Thin Solid Films, 2000, 363, 76-80. 
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Scheme  1.7. Lee’s iterative approach to oligofluorene assembly. 
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A third strategy to the synthesis of monodisperse oligofluorenes was published by Geng 

in 2002.85 This approach was modular in nature, using multiple combinations of relatively few 

fluorenyl intermediates to assemble oligofluorene products. An example from Geng’s report is 

reproduced in Scheme 1.8, where 2,7’’-diiodoterfluorene (A) is used as a core module. Fluorene 

A was employed in three separate Suzuki reactions where the coupling partner was bifluorenyl (n 

= 2), terfluorenyl (n = 3) or quaterfluorenyl (n = 4). The products of these reactions were 

oligofluorenes with fluorene segment lengths of n = 7, 9, and 11, respectively. In this fashion 

oligofluorenes with segment lengths from two up to sixteen units were rapidly accessed. Geng 

went on to show that oligofluorenes exhibited Tgs that increased with increasing fluorene 

segment length (as observed by DSC according to first cooling scans). Furthermore, when 

cooling, the oligofluorenes retained their oriented, glassy nematic state while resisting 

crystallization as described in Section 1.7. Also, because the oligofluorenes were peralkylated at 

C9 with chiral 2-(S)-methylbutyl groups, they exhibited polarized fluorescence. This resulted 

from the arrangement of oligomers into left-handed helices in the bulk as revealed by molecular 

dynamics simulations. Culligan then incorporated closely related monodisperse chiral 

oligofluorenes into a device for polarized electroluminescence.92 
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Scheme  1.8. Geng’s modular approach to oligofluorene assembly. 
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1.10. Fluorene Copolymers 

 

Fluorene monomer compounds are frequently employed in the synthesis of functional 

copolymers. Copolymerization with other monomer units can be performed in order to maintain 

conjugation or rigidity throughout the polymer backbone (Sections 1.10.1 and 1.10.2), or it can 

be performed such that conjugation is interrupted by a flexible spacer unit (Section 1.10.3). The 

polymers produced then fall into two general categories: if rigidity is maintained throughout the 

backbone the polymer is a rod-rod copolymer, and if fluorene segments are broken by segments 

with significant conformational freedom (i.e. n-alkyl groups) the polymer is a rod-coil 

copolymer. 

 

1.10.1. Rod-Rod Copolyfluorenes: Scope and Light Emission Characteristics  

 

A wide variety of rod-rod copolymers incorporating a fluorene repeat unit have been 

prepared. In 2000, Leclere described the variety of repeat units used for random, alternating, and 

block copolymers (Figure 1.12).93 The ensuing six years have seen further elaboration on the 

type of conjugated monomer used in copolyfluorene synthesis; a representative selection of these 

examples follows in Figure 1.13. The copolymerization of fluorene monomer units with other 

aryl units produces polymers in which each monomer unit contributes rigid rod-like packing 

forces. So-called rod-rod copolymers containing fluorene units are of interest for a number of 

reasons. First, the solubilizing effect of, for example, 9,9-di-n-alkyl fluorenes is very attractive 

when paired with other repeat units lacking such character, or upon which substitution would 

significantly alter its electronic properties. Because processing a polymer frequently involves 

handling it in solution, the ability to dissolve a polymer is an important design criterion. Schmitt 
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used fluorene prepolymers to enable the selective dissolution of a PF-PANI block copolymer 

away from insoluble PANI homopolymeric material. The PF-PANI copolymer was thereafter 

shown to be processible in toluene.94 The synthesis of this copolymer is described in Section 

1.10.2. 
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Figure  1.12. Fluorene-containing rod-rod copolymers. This figure is reproduced from Leclerc, M., J. Polym. Sci. Pt. 
A: Polym. Chem. 2001, 39, 2867-2873. 
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Figure  1.13. New rod-rod copolyfluorenes.56, 65, 95-103 

 

A second motivation for the preparation of rod-rod copolyfluorenes lies in the attractive 

light emission properties the materials have been found to exhibit. The shifting of absorption and 

emission maxima by copolymerization with other conjugated moieties offers a simple but 

powerful method of tuning optics properties. Light emission is readily tuned by adjusting 

effective conjugation lengths on the polymer backbone. As such, the longer the effective 

conjugation is, the greater the wavelength of maximum emission will be. Fluorene-containing 

copolymers with photoexcitation maxima in the violet (380-420 nm), blue (440-500 nm), green 

(520-565 nm), yellow (565-590 nm), orange (590-625 nm), and red (625-740 nm) sectors of the 

visible region have been produced (Figure 1.14). Additionally, a fluorene-containing random 

copolymer emitting white light as a combination of intense red, green, and blue emission (400 – 

800 nm) under electroluminescence has been produced (Figure 1.15).  
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Figure  1.14. Examples of the array of colors emitted by fluorene-containing copolymers in solution upon 
photoexcitation. Shown are violet,104 blue, 105 yellow,106 green, 100 orange, 107 and red.56 
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Figure  1.15. An example of a copolymer which exhibits white light emission upon electrostimulation.108 
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1.10.2. Rod-Rod Copolyfluorenes: Synthesis 

 

In addition to facilitating the regioregular homopolymerization of 2,7-substituted 

fluorenes, the development of well-defined transition metal-catalyzed reactions has greatly 

enabled the synthesis of new and useful rigid rod copolyfluorenes. The majority of these 

copolymers are prepared using Suzuki and Yamamoto reactions (see Section 1.8). 

Polymerization via the Suzuki reaction can yield alternating copolyfluorenes, as the fluorene 

monomer possesses 2, 7-diboronate or boronic acid substitution while the comonomer is bromo-, 

iodo- or tosyl-substituted. An example in which the Suzuki reaction has been employed for this 

purpose is the preparation by Vamvounis104 of poly(9,9-dihexylfluorene-alt-thiophene), shown in 

Scheme 1.9.  
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Scheme  1.9.  The preparation of poly(9,9-dihexylfluorene-alt-thiophene) via the Suzuki reaction. 

 
 

Copolymers produced using the Yamamoto reaction are random, as coupling of halogen-

terminated aryl monomers occurs without control over monomer sequence. An example of this 

approach is the copolymerization by Galbrecht102 of 2,7-dibromo-9,9-dioctylfluorene with a 

dichloro-substituted Pt-salen complex, shown in Scheme 1.10. 
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Scheme  1.10. The preparation of poly[9,9-dioctylfluorene-co-(Pt-salen)] via the Yamamoto reaction. 

 

Poly(9,9-dialkylfluorene-alt-vinylene) (PFV), a rigid rod CP which can be considered an 

alternating copolymer of a 9,9-dialkylfluorene and acetylene, has been produced using several 

less commonly employed routes. These routes are depicted in Scheme 1.11 and include 

implementations of Heck,109 Horner-Emmons,110 and Acyclic Diene Metathesis (ADMET)111 

polymerization reactions. The Horner-Emmons polymerization is noteworthy as it is transition 

metal free, though these reaction conditions call for the use of excess base. Use of Horner-

Emmons conditions generate PFV with monomodal size distribution with molecular weights Mw 

= 94,000 and Mn = 27,000 (PDI = 2.7) relative to PS standards. PFV was also prepared from 2,7-

divinyl-9,9-di-octylfluorene using the ADMET polymerization reaction. The metathesis catalyst 

used in this instance was the air sensitive Schrock alkylidene (Scheme 1.11, inset) and molecular 

weights of Mw = 14,000 – 58,000 and Mn = 8,900 – 31,600 (PDI = 1.61 – 1.92) were reported. 

The use of ADMET is treated in greater detail in Section 2.3.2. Curiously, no molecular weights 

were reported for the synthesis of PFV by the Heck reaction.  

 

27 



 

+
RR P(OEt)2(EtO)2P

O O

R = n-octyl

Pd0

MoVI

RR
Br Br

R = n-hexyl

+
RR

xs tBuOK
PFV

Heck:

RRADMET:
PFV

iPr

RR
n

PFV

MoVI =

RR

O
H

O
H

Mo

N

O

OF3C
F3C

CF3
CF3

iPr

R = n-octyl

Horner-Emmons:

 

Scheme  1.11. The preparation of PFV via the Heck, Horner-Emmons, and ADMET polymerization reactions. Inset: 
Schrock’s MoVI catalyst used in the making of PFV by ADMET. 

 

Lastly, Pschirer112 and Brizius113 reported the acyclic diyne metathesis (ADIMET) 

polymerization of 2,7-di(prop-2-ynyl) fluorenes to yield the corresponding poly(9,9-

dialkylfluorene-alt-ethynylene)s (PFEs, Scheme 1.12). This reaction uses a Mo(CO)6/4-

chlorophenol precatalyst system to generate PFEs, which were produced with degrees of 

polymerization ranging from DP = ~ 20 to 82 . Polydispersity indices (PDIs) ranged from 3.6 to 

5.8. Substrates with n- and branched alkyl substituents at C9 were polymerized by ADIMET, as 

was a 9,9-di-ω-alkenyl fluorene (R = (S)-(+)-citronellyl, shown) indicating that ADIMET 

polymerization tolerated alkenes. PFEs in chloroform were found to exhibit aggregation behavior 

consistent with that observed for PPE upon addition MeOH, while their emission spectra were 

more consistent with PF. 
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Scheme  1.12.  The preparation of PFEs via the ADIMET polymerization reaction.  
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Block copolymers have also been prepared using transition metal-catalyzed reactions. 

Asawapirom prepared poly(9,9-diethylhexylfluorene-b-poly-2-undecyl aniline) by first 

synthesizing the fluorene block under Ni0-catalyzed Yamamoto conditions and endcapping with 

p-bromoaniline (A, Scheme 1.13).114 2-Undecyl aniline was then  polymerized under standard 

PANI oxidative coupling conditions (NH4S2O3/H+) to give tri-block PANI-PF-PANI (B). 

Asawapirom’s interest in producing PF-PANI stemmed from the likelihood that it would self 

assemble in the bulk phase. Self assembly was indeed observed–cylindrical domains 50-300 nm 

in diameter were noted. This feature is expected to directly impact the material’s charge 

separation properties because PF and PANI have different oxidation and reduction potentials. 

The identification of phase separation in PF-PANI has implications for photovoltaic devices, 

where charge injection from an electron donating component to an acceptor component is made 

more efficient when the material is a single, microphase-structured entity. Asawapirom also 

reported the synthesis of a PT-PF-PT triblock copolymer which exhibited interesting 

morphological properties.114 
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Scheme  1.13.  Preparation of poly[9,9-dialkyl PF-block-(2-undecyl) PANI]. 
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1.10.3. Rod-Coil Copolyfluorenes: Scope, Synthetic Approaches and Bulk Characteristics 

 

A number of rod-coil copolymers incorporating fluorene segment lengths have also been 

prepared. Motivation for synthesizing these copolymers also stems from nanophase separation or 

separations they may adopt in the bulk. Phase separation on the micro or nanoscale can be 

advantageous, as evidenced by an early example of a PF-b-poly(ethylene oxide) (PEO) prepared 

by Marsitzky.115 Marsitzky prepared PF-b-PEO by first synthesizing a low molecular weight (Mn 

= 3380, DP ~ 8) mono-end-functionalized PDOF (A, Scheme 1.14). End functionalization of the 

PF block with a benzyl alcohol group provided for subsequent deprotonation by treatment with 

potassium naphthalenide (B). Macroinitiator B was subjected to anionic polymerization with 

ethylene oxide in THF such that after purification of the copolymer (C) the PF:PEO block length 

ratio was found to be ~1.4 (8 : 5-6).  
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Scheme  1.14.  PF-b-PEO as prepared by Marsitzky. 

 

The absorption and emission measurements of PF-b-PEO showed that the coil blocks had 

a noticeable effect on the optoelectronic properties of the rod segments. Specifically, PF-b-PEO 

was found to have more order in the bulk. Absorbance measurements for the PF prepolymer (A 

in Scheme 1.14) showed λmax = 369 nm, with a shoulder at 432 nm (Figure 1.16a). The 

absorption maximum of PF-b-PEO (C in Scheme 1.14) was found to be bathochromically shifted 

to λmax = 377 nm with an additional peak at 428 nm (Figure 1.16b). Bulk ordering in PF-b-PEO 
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was further demonstrated by emission spectra of pristine, drop cast films. Whereas the PF 

prepolymer exhibited emission maxima at λmax = 420, 437, and 460 nm with shoulders at 495 

and 536 nm (Figure 1.16b), PF-b-PEO gave well-resolved maxima of λmax = 437, 464 and 495 

nm with shoulders at 420 and 536 nm. The pronounced features in the film emission spectrum of 

PF-b-PEO were attributed to enhanced order phenomena. 

 

 

Figure  1.16.  Absorbance (a) and PL emission (b) spectra for films of Marsitzky’s benzyl alcohol-terminated PF (-) 
and PF-b-PEO (o). This figure is taken from Marsitzky, D.; Klapper, M.; and Müllen, K. Macromolecules 1999, 32, 
8685-8688.  

 

Another impressive example of a rod-coil copolyfluorene is the PDHF-poly(γ-benzyl-L-

glutamate) [PBLG] polymer prepared by Kong.116 This triblock copolymer, which ultimately is 

of interest for applications such as biosensors and stimuli-responsive biological components, was 

investigated for its ability to self assemble, which was promoted in this case by the nature of the 

polypeptide blocks, which are known to attain α-helix or β-sheet conformations depending on the 

PBLG block length. The copolymer was made starting with the preparation of block PDHF by 

the Yamamoto route. The PDHF block was then endcapped with N-(benzyl)phthalimide groups 

(A, Scheme 1.15). The end groups were converted to benzyl amines using hydrazine to yield 
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macroninitiator B, and ring opening polymerization of the γ-benzyl-L-glutamate derivatized N-

carboxyanhydride to furnish triblock copolymer C.  
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Scheme  1.15.  Kong’s synthesis of PBLG-PDHF-PBLG by ring opening polymerization. 

 

 Kong used stoichiometry to control the lengths of γ-benzyl-L-glutamate and 9,9-

dihexylfluorene blocks in the product copolymers, preparing PBLG23PDHF15PBLG23 and 

PBLG16PDHF28PBLG16 (as determined by end group analysis of the 1H NMR spectra). Studies 

performed using atomic force microscopy (AFM) revealed that the former copolymer had 

sufficiently long (m > 20) peptide segments to allow for α-helix formation to occur. In contrast, 

the latter copolymer sample possessed shorter (m < 20) peptide segments which destabilized α-

helices, resulting in the appearance of the β-sheet conformation. Additionally, Kong was able to 

control self assembly processes in the copolymer samples depending on the solvent mixture from 

which films were cast. When a film of PBLG23PDHF15PBLG23 was cast from 30% 

trifluoroacetic acid (TFA) in CHCl3, the AFM image obtained showed a nanospherical 

orientation of the copolymer (Figure 1.17a). However, when PBLG23PDHF15PBLG23 was cast 

from 3% TFA in CHCl3 Kong observed parallel sheet-like orientation of the sample. (Figure 
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1.17b). Because helical polypeptides are known to possess large net dipoles, Kong proposed the 

side-by-side antiparallel conformation for PBLG23PDHF15PBLG23 cast from 3% TFA. 

 

 

Figure  1.17. AFM amplitude images of PBLG23PDHF15PBLG23 cast from (a) 30% TFA in CHCl3 and (b) 3 % TFA 
in CHCl3. (c): Representation of the triblock copolymer in (a). (d) Representation of the triblock copolymer in (b). 
The images in this figure were taken from Kong and Jenekhe, Macromolecules 2004, 37, 8180-8183.  

 

Tsolakis used a rigid terfluorene macroinitiator for production of di- and triblock rod-coil 

copolymers by atom transfer radical polymerization (ATRP, Scheme 1.16).117 This method of 

polymerization allowed for the attachment of polystyrene (PS, shown) and poly(tbutyl acrylate) 

blocks onto the light-emitting terfluorene moiety. The spectroscopic properties of the film cast 

polymers were found to be identical to the macroinitator. Perhaps more interestingly, when 

studied by differential scanning calorimetry the terfluorene-b-polystyrene copolymers were 

found to exhibit two Tg values. The first value (Tg ~ 30° C) stemmed from the glass transition for 

the terfluorene group, while the second observed transition (Tg ~ 100° C) was attributed to the PS 

block. The defined transitions indicated the separation of the terfluorene initiator and PS blocks 

33 



 

into microphase domains. This was found to be true for the terfluorene-b-PS copolymers even at 

modest molecular weights (Mn = 15,500), indicating that even short rod/coil block lengths 

exhibited phase separation in the bulk. ATRP as a route to interesting rod-coil block 

copolyfluorenes has been used to great success by Kallitsis.118-120 
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Scheme  1.16.  ATRP-based synthesis of PS-PDHF-PS block copolymer.117 

 

Kallitsis and Chochos have also reported the synthesis of poly(fluorene-co-polyether)s 

[PFcEs, Scheme 1.17].35 Using a terfluorene substituted with p-phenol groups at the C2 and C2’’ 

termini, α,ω-dibromoalkanes are used to produce the corresponding PFcEs by anionic 

polymerization. These can be considered repeating sequence copolymers in which the fluorene 

segment length is three and the ether segment length is one, though the ether segment can be 

engineered to possess nine through twelve methylene units depending on the dibromoalkane 

used. Kallitsis’ PFcEs are discussed in more detail in Chapter 3. 
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Scheme  1.17.  Terfluorene macroinitiator synthesized by Kallitsis and Chochos for ATRP. 
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Other PF-containing rod-coil copolymers include Tirapattur’s PF-co-polyester (Figure 

1.18, A),121 Zhang’s diblock (B) and Surin’s triblock (C) PF-b-poly(ethylene oxide), and Lu’s 

PF-b-poly[2-(9-carbazolyl) ethyl methacrylate] (D).122 
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Figure  1.18. Rod-coil copolymers bearing fluorene segments. 

 

1.11. Conjugated Polymers and Oligomers as Scaffolds for Sensory Applications 

 

The fascinating properties conjugated materials present have led to significant interest in 

extending their use to sensor applications; McQuade, Pullen, and Swager issued a comprehensive 

review of this field in 2000.123 The first CP modified for sensing purposes is believed to be the 

PT shown in Figure 1.19, synthesized by Roncali and coworkers in 1989.124, 125 Roncali used 

cyclic voltammetry to study the response the pendant ether-substituted PT gave in the presence 

of complexing ions such as Bu4N+ and Li+. Ion concentration in solution was found to impact the 
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conformation of the polymer backbone in the film, and modification of the glycol ether to a 

crown ether moiety allowed the polymer to display ion selectivity.  

 

S

O O

n  

Figure  1.19. The glycol ether-substituted PT synthesized and studied by Roncali.124, 125  

 
 

Conjugated macromolecules, oligomers and polymers present multiple avenues for 

sensing. First, they can display changing electronic character as detected by conductivity or 

potentiometry measurements. Sensing is then determined by an increase (generally dubbed “turn-

on” sensing) or decrease (“turn-off” sensing) in the electrochemical signal as the analyte 

concentration is increased. The classical example of this method of sensing by a CP is that of n-

doped polyacetylene, which was found by André to undergo a dramatic (~104) increase in 

conductivity upon dipping into THF followed by solvation of Na+.126 

A second method of sensing takes advantage of the colorimetric properties of conjugated 

materials. This pathway relies on the changing conformations CPs, for example, can display 

upon favorable interaction with an analyte, and as described in Section 1.3, the conformation of a 

CP affects its conjugation length, which determines its band gap properties. Kolushiva and 

Jelinek recently reported the use of poly(diacetylene) as the chromic component in a system 

designed for recognition of a peptide sequence by bovine serum albumin.127 Regarding 

polyfluorene-based colorimetric sensing, Zhang and Ma used coordination-induced 

conformational changes in poly(bipyridine-alt-9,9-dihexylfluorene) and poly(phenanthroline-alt-

9,9-dihexylfluorene) (Figure 1.20a) to show sensitivity to Ag+, Zn2+, Cr2+, Mn2+, and Sn2+.128 The 
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absorption spectrum of poly(phenanthroline-alt-9,9-dihexylfluorene) with increasing Sn2+ 

concentration is shown in Figure 1.20b. 

 

N N
hexhex

N N
hexhexn n  

                                       (a)                                            (b) 

 

(c) 

Figure  1.20. Zhang’s poly(bipyridine-alt-9,9-dihexylfluorene) (a) and poly(phenanthroline-alt-9,9-dihexylfluorene) 
(b). (c) Absorption spectra of (b) at increasing concentration of Sn2+ (from top to bottom at 425 nm). Figure 20c is 
from Zhang, M.; Lu, P.; Ma, Y.; and Shen, J. J. Phys. Chem. B 2003, 107, 6535-6538. 

 

Fluorescence response constitutes a third method of sensing by conjugated materials. 

Fluorescence spectrophotometry is inherently sensitive, and the potential for signal amplification 

by efficient energy transfer events makes this approach very attractive for turn-on sensor 

applications. Among the myriad conjugated materials developed for this purpose, polyfluorenes 

have been successfully implemented. This is evidenced by the imidazole-functionalized PF 

shown in Figure 1.21a, which Pei used for enhanced turn-off detection of Cu2+ in solution. This 

contrasted markedly with the polymer’s response to treatment with solutions of Ag+, Cd2+, Co2+, 

37 



 

Cr3+, Fe2+, Mn2+, Ni2+, Pb2+, and Zn2+, which gave little or no quenching of the polymer’s 

photoluminescence (Figure 1.21b).129 Zhou, Wang and coworkers used a similar turn-off 

approach in their study of phosphonate-functionalized polyfluorenes, which selectively detected 

Fe3+ (Figure 1.21c).130 And in a third example, Bazan and Liu used a water soluble statistical 

copolyfluorene to enable detection of single-stranded DNA (Figure 1.22a).131 This 

implementation involved the turning off of photoluminescence emission associated with PF upon 

increasing the ss-DNA concentration in solution. However, the fluorescence response attributed 

to the 2,1,3-benzothiodiazole moiety exhibited a turn-on response to ss-DNA; this was observed 

as a more prominent green emission upon increasing the concentration of ss-DNA (Figure 

1.22b). 
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                                      (a)                                                        (b) 

 
Figure  1.21. (a) The imidazole-functionalized copolyfluorene synthesized by Zhou. (b) The fluorescence titration of 
the polymer in (a) upon addition of Cu2+. Figure 21b is from Zhou, X.-H.; Yan, J.C.; and Pei, J. Macromolecules 
2004, 37, 7078-7080. 
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                                      (a)                                                        (b) 

Figure  1.22. (a) The water soluble poly(fluorene-co-phenylene-co-benzothiadiazole) synthesized by Liu. (b) The 
fluorescence spectra of the polymer in (a) upon addition of ss-DNA. Figure 22b is from Liu, B.; and Bazan, G.C. J. 
Am. Chem. Soc. 2004, 126, 1942-1943. 
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2. Synthesis of PFMs 

 

2.1. Overview 

 

The synthesis of poly(9,9-dihexylfluorene-multiblock-polymethylene)s (PFMs) is 

presented. The product polymers are engineered to have completely-defined chemical 

compositions along their backbones, meaning that for each poly(9,9-dihexylfluorene-mb-

polymethylene) synthesized, the fluorene and methylene segment lengths are predetermined, are 

entirely alternating, and are readily tailored using synthetic chemical strategies to give a 

copolymeric library. The library is comprised of PFMs having fluorene segments lengths of one, 

two, three, four, seven, or eight and having methylene segment lengths of ten or eighteen. 

 

2.2. Introduction 

 

Copolymer preparation has traditionally revolved around the making of alternating, block 

or random polymeric products (Figure 2.1). Examples of these are the poly(thiophene-alt-

perfluoroarene)made by Wang and Watson132 (Figure 2.2, top), the poly(ethylene glycol-block-

N-vinylformamide) made by Shi, Chapman and Beckman (middle),133 and the poly(para-n-

butylstyrene-co-styrene) made by Thomann, Kressler, and coworkers (bottom).134 A distinction 

can be made in comparing these copolymer architectures–the first case provides for exact 

structure-property relationships but lacks synthetic ease in varying chemical composition using 

the same alternating pattern. The opposite can be said to be true for the latter two cases, which 

40 



 

incorporate greater flexibility in terms of chemical composition but sacrifice a degree of 

certainty in relating structure to observed properties. 

 

 

Figure  2.1. Conceptual representations of alternating (top) block (middle), and random (bottom) copolymer 
architectures. 
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                                             (a)                         (b)        (c) 

Figure  2.2. (a) Wang's poly(thiophene-alt-perfluoronaphthalene. (b) Shi’s poly(ethylene glycol-b-N-
vinylformamide. (c) Thomann’s poly(p-n-butylstyrene-co-styrene). 

 

The polymers herein were made for the purpose of combining compositional flexibility 

with exact structure-property relationships (Figure 2.3). As is discussed in Section 2.4, varying 

the segment lengths of each type of repeat unit allows for a library of copolymers to be produced. 

We designate the copolymers Repeating Sequence Copolymers (RSCs) to note the exactness of 

their repeating diblock composition. As already discussed in Sections 1.1.3-1.1.7, the fluorene 

repeat unit presents a number of interesting properties and as such lends itself to the preparation 

of this library. As a polycyclic aromatic compound, fluorene represents the classical rod-like 

repeat unit. In contrast, the methylene repeat unit (-CH2-), which is a flexible chain, can be 

considered to be the prototypical coil repeat unit. The alkyl subunit also differs from the π-
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conjugated and dopable polyfluorene in that it is insulating. Along these lines, Radano, Meijer 

and coworkers recently prepared PT-b-PE for the purpose of examining the morphology of a 

copolymer containing semiconducting and insulating blocks.135  

 

 

Figure  2.3. RSC architecture. 

 

2.3. Strategy Towards Polymer Synthesis  

 

Our preparation of poly(fluorene-mb-polymethylenes (PFMs) proceeds according to the 

strategy depicted in Scheme 2.1. This approach involves the synthesis of a family of 

symmetrically substituted monodisperse oligofluorenes (A). Each oligofluorene is then converted 

to a polymerizable segmer compound (B) by the attachment of alkyl chains bearing 

polymerizable end-groups. Upon polymerization and another step to remove residual 

functionality left by coupling, a completely regular RSC of fluorene and methylene (C) is 

produced. Varying x and y in the chemical composition of B is necessary in order to arrive at a 

library of PFMs. 

R R
x xy y x

n

dihexylfluorene monodisperse
 oligofluorene

segmeric prepolymer repeating sequence PFcM

A B

= polymerizable end group

2y+2

C  

Scheme  2.1. General approach to PFMs. 
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Given that the modular route to monodisperse oligofluorenes had been previously 

developed by Geng, Chen, and coworkers,85 new steps leading to the synthesis of each PFM that 

required development in our labs were (1) a Suzuki reaction used to couple olefin-terminated 

substituents to the oligomers, (2) an olefin metathesis reaction employed in the polymerization, 

and (3) a hydrogenation of residual olefin groups to yield the final RSC. These reactions are 

described as in Section 2.3.1 and Section 2.3.2.  

 

2.3.1. The Suzuki Reaction 

 

The Suzuki reaction is an extremely versatile method for catalytic C-C bond formation. As 

shown in Scheme 2.2, this reaction uses catalytic amounts of a Pd0 species to mediate the 

coupling of an aryl, vinyl, or alkyl halide to an electrophilic boron partner. This component may 

be aryl, vinyl, or alkyl substituted. This reaction has found a myriad of uses in organic synthesis, 

and a review on this chemistry was recently written by Miyaura and Suzuki.136  

 

XR1 + BY2R2
Pd0, base R2R1  

Scheme  2.2. Suzuki reaction. 

 

The generally accepted mechanism (Figure 2.4) of this transformation begins by 

oxidative addition of Pd0 into the carbon-halogen bond (A) of the organohalide. This addition 

initially yields the cis-palladium complex, though this rapidly converts to the trans-complex 

pictured. Reaction with base (typically an alkali metal alkoxide or carbonate) yields the 

oragnopalladium(II) alkoxide intermediate (B), which undergoes transmetallation with the 
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boron-ate complex to form the organopalladium intermediate (C). Reductive elimination of the 

desired product restores the catalyst to Pd0, and the cycle begins anew (D). 
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Figure  2.4. Mechanism of Pd0-catalyzed Suzuki coupling. 

 

We exploited the Suzuki coupling of halide-functionalized fluorenes with alkyl boranes 

to prepare the segmer prepolymer compounds as depicted in Scheme 2.3. A close precedent for 

the alkyl-fluorenyl coupling exists in the literature. In 1989, Peifer, Milius, and Alt reported the 

coupling of  2,7-diiodo-9H-fluorene with an ω-alkenyl derivatized 9-borabicyclo[2.2.1]nonane 

(9-BBN, Scheme 2.4).137 Peifer did not, however, extend the reaction to oligofluorenes.  
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Scheme  2.3. Use of the Suzuki reaction to yield segmer compounds. 
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Scheme  2.4. Peifer’s preparation of 2,7-dioct-7-enyl fluorene. 

 

2.3.2. ADMET Polymerization and Subsequent Hydrogenation 

 
The segmers bear terminal olefin functional groups which are polymerizable using the 

Acyclic Diene Metathesis (ADMET) reaction protocols established by Wagener.138, 139 

Metathesis is described in further detail in Chapter 4. The most commonly employed precatalysts 

for the ADMET reaction are the Grubbs-I and Grubbs-II Ru-carbenes shown in Figure 2.5. We 

elected to use the Grubbs-I catalyst over the Grubbs-II catalyst for these polymerizations in part 

because the former was shown by Lehman to be the more effective metathesis catalyst at 

moderate temperatures (30-45° C).140 Performing ADMET polymerizations at moderate 

temperture is important to minimize competing olefin isomerization events, which are 

undesirable for the purpose of making a completely sequence-regular RSC. Were a segmer to 

undergo an isomerization event followed by ADMET, it would introduce a defect into the 

polymer backbone in the form of a shortened alkyl segment length. Furthermore, the Grubbs-II 

catalyst is known to promote a significant degree of olefin isomerization in ADMET 

polymerizations.141  
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                                                             (a)                  (b) 

Figure  2.5. Grubbs-I (a) and Grubbs-II (b) catalysts. 

 

The Grubbs-I catalyst acts as a formal CHR (or in some cases (CR2) transfer agent. In the 

absence of a driving force, metathesis is an equilibrium-controlled reaction. As shown in Figure 

2.6, then, an incoming olefin, activated by coordination to the metal center, can undergo a [2+2] 

cycloaddition (A) to generate a metallocyclobutane intermediate. Cycloreversion can yield either 

the original substrate, R2HC=CHR3 or the metathesis product, R1HC=CHR3 (B), depending on 

which bonds are broken. 
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Figure  2.6. Principle of olefin metathesis. 

 

The detailed pathway for ADMET is depicted in Figure 2.7. Following phosphine 

dissociation from the metal and coordination of olefin to the metal (A), conversion to the 

metallocyclobutane intermediate occurs (B). The productive cycloreversion (C) generates the 

active chain-growth polymerization agent. Reaction with a second olefin (D) produces a new 

metallocyclobutane which undergoes cycloreversion to yield the coupled product (E). The 

catalytic cycle proceeds (F) to give a transient ruthenium methylidene species, which can 

reassociate and dissociate phosphine (G), or coordinate an olefin and undergo another [2+2] 
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cycloaddition (H). This metathesis event generates ethylene byproduct (I) and generates the 

active catalytic species, ready for another coupling (J).  
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Figure  2.7. Mechanism of Grubbs-I catalyzed ADMET polymerization. 

 

ADMET polymerization occurs under reduced pressure to drive the reaction through the 

entropically favorable condensation of ethylene. A wide variety of chemical motifs have been 

47 



 

incorporated into polymer backbones using the ADMET reaction. Some examples include 

hydrocarbons, ethers, amino acids, esters, carbonates, boronates, dichlorosilanes, phosphazenes, 

and phenylenevinylenes.142  

As the products of ADMET polymerization possess unsaturation along the polymer 

backbone, it is necessary to submit the polymer to hydrogenation to obtain an RSC that bears no 

double bonds along the alkyl chain (Figure 2.8). Fortunately, a protocol has been developed by 

Watson and Wagener143 that allows for a one-pot polymerization-hydrogenation reaction 

sequence. This reaction exploits the fact that the decomposition product of the Grubbs-I catalyst, 

a ruthenium hydride compound, is itself a hydrogenation catalyst.  

 

xy y x 2y+2
n

xy y
n

ADMET hydrogenation

 

Scheme  2.5. ADMET polymerization/hydrogenaton route to RSCs. 

 

2.4. Naming Conventions  

 

As the full names are unwieldy and compound numbers are not descriptive, polymers and 

segmers have been given unique designations. Polymers are referred to in the text as PFxMy, 

where P indicates the material is a polymer, x indicates the fluorene (F) sequence length, and y 

indicates the methylene (M) sequence length. For example, PF3M10 refers to the RSC having 

fluorene sequence lengths of three and methylene sequence lengths of ten. Segmer compounds 

are similarly identified as SFxMy, where S indicates the compound is a segmer, x denotes the 
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fluorene sequence length, and y denotes the methylene sequence sequence length of the resultant 

RSC. For example, the segmer compound polymerized to yield PF3M10 is called SF3M10, even 

though it possesses 12 aliphatic carbons. Synthetic intermediates are assigned incremental 

numbers as per the normal convention. 

 

2.5. Results 

 

2.5.1. Synthesis of Poly(monofluorene-mb-methylene)s 

 

To probe the practicality of the approach outlined in Section 2.3, monofluorenyl PFMs 

were initially synthesized. To generate segmer “arms” for M10 and M18 RSCs, terminal dienes 

1,5-hexadiene and 1,9-decadiene were each subjected to hydroboration by 9-BBN to yield ω-

alkenyl boranes 1 and 2, respectively (Scheme 2.6).144  

 

B

B
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THF
85%

THF
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2  

Scheme  2.6. Reaction of 9-BBN with 1,5-hexadiene and 1,9-decadiene. 

 
 

To generate the fluorenyl partner, a two-fold hexylation of fluorene was first performed 

according to the protocol given by Ranger58 to give 9,9-dihexylfluorene (3) in 88% yield after 

recrystallization (Scheme 2.7). Dihexylfluorene 3 was then electrophilically iodinated at carbons 

2 and 7 to produce 2,7-diiodo-9,9-dihexylfluorene (4) in 91% yield after recrystallization. The 
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Suzuki reaction was used to couple borane 1 or 2 with diiododihexylfluorene 4, producing 

monofluorenyl segmers SF1M10 and SF1M18 in yields of 46% and 49%, respectively. 

Substantial amounts of mono-coupled product were recovered from these reactions (typically 

~20%). Attempts to increase the yield of this reaction by supplying excess borane reagent (~4 

eq) and by running the reaction at temperatures greater than 23 °C were made, though neither 

approach increased the yield of  desired product. Furthermore, performing the reaction at 45° C 

or greater led to significant isomerization of terminal olefin groups to more thermodynamicaly 

stable internal olefins. This isomerization was undesirable as the polymerization of these 

segmers would introduce errors in the backbone sequence. Despite the modest yields, suitable 

quantities of SF1M10 and SF1M18 were isolated, paving the way for ADMET polymerization. 
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Scheme  2.7. Preparation of monofluorenyl segmers. (i) BuLi, bromohexane, THF, -78° C to RT, 4 h. (ii) I2, H5IO6, 
H2SO4, AcOH, H2O, 80° C, 3h. (iii) K2CO3, Pd(Cl)2(PPh3)2, DMF, 8h. 

 

The segmers SF1M10 and SF1M18 were polymerized using 2.5 mol% Grubbs-I catalyst 

in Ph2O solvent (Scheme 2.8). The high boiling diphenyl ether solvent facilitates the 

polymerization by reducing the viscosity delaying gelation relative to the neat reaction.  

The ADMET polymers 5 and 6 were generally not isolated.  Instead the gelled reaction 

mixture  was simply diluted with toluene and subjected to the hydrogenation conditions: 160-180 
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psi H2, 80° C and 10-12 eq SiO2. PF1M10 and PF1M18 were recovered as amorphous solids by 

precipitation into acetone in yields of 83% and 63%, respectively. 
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Scheme  2.8. Synthesis of PF1M10 and PF1M18. (i) 2.5 mol% Grubbs-I catalyst, Ph2O, RT to 45° C. (ii) SiO2, H2, 
PhMe, 80° C, 2 d. 

 

2.5.2. Synthesis of Poly(bifluorene-mb-methylene)s 

 

Having validated the synthetic approach for the preparation of monofluorenyl PFMs, the 

task of making PFMs incorporating longer oligofluorene segment lengths was undertaken.The 

route to segmeric bifluorenes SF2M10 and SF2M18 is shown in Scheme 2.9. 
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Scheme  2.9. Synthetic route to bifluorene segmers. (i) Br2, FeCl3, CHCl3, 0° C to RT 3 h. (ii) BuLi, TMSCl, THF, -
78° C to RT, 30 min. (iii) BuLi, B(OiPr)3,THF, -78° C to RT, 8 h. (iv) 3 mol% Pd(PPh3)4, 2 M Na2CO3(aq), PhMe, 
90° C, 2 d. (v) ICl, DCM, 0° C to RT, 15 min. (vi) 1 or 2, Pd(Cl)2(Ph3)2, K2CO3, DMF, PhMe, 40° C, 8 h.  
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Bromination of dihexylfluorene 3 yielded 2,7-dibromo-9,9-dihexylfluorene 7 in 90% 

yield after recrystallization. A synthetic sequence reported by Geng and coworkers was then 

used,85 beginning with the desymmetrization of compound 7 by lithium-halogen exchange to 

give 2-bromo-7-trimethylsilyl 8 as a colorless oil in 97% yield after chromatography. A second 

lithium-halogen exchange followed by treatment with triisopropyl borate converted 8 to 2-

trimethylsilylfluorenyl boronic acid 9. Compound 9 was recovered as a white flaky solid in 89% 

yield after chromatography. An aryl-aryl Suzuki coupling protocol was employed to couple 

fluorenyl intermediates 8 and 9 using 3 mol% Pd(PPh3)4 to produce bis-trimethylsilylbifluorene 

10 in 73% isolated yield. The trimethylsilyl groups in 10 serve as latent halogens, and as such 

bifluorene 10 underwent rapid electrophilic substitution upon treatment with ICl to yield 2,7’-

diiodobifluorene 11 in 85% yield after column chromatography. Bifluorene 11 was thereafter 

treated with ω-alkenyl-9-BBN 1 or 2 using alkyl-aryl Suzuki coupling protocols modified 

slightly from those used in the preparation of SF1M10 and SF1M18. Specifically, a 1:1 v/v 

mixture of DMF and PhMe was used; this permitted solvation of 11 at room temperature. 

Additionally, mild heat (40° C) was required as coupling did not occur at room temperature. 

Bifluorenyl segmer compounds SF2M10 and SF2M18 were recovered as viscous oils in 71% 

and 51% yield, respectively.  

SF2M10 and SF2M18 were then subjected to ADMET polymerization followed by 

hydrogenation (Scheme 2.10). Following precipitation of the polymers into acetone, PF2M10 

and PF2M18 were recovered as colorless glassy solids in 60% and 61% yield, respectively. 
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Scheme  2.10. Synthesis of PF2M10 and PF2M18. (i) 2.5 mol% Grubbs-I catalyst, Ph2O, RT to 45° C. (ii) SiO2, H2, 
PhMe, 80° C, 2 d. 

 

2.5.3. Synthesis of Poly(terfluorene-mb-methylene)s 

 

The pathway to the synthesis of PFMs possessing terfluorene moieties began with the 

preparation of terfluorenyl segmers. This route is given in Scheme 2.11. The synthesis began 

with the two-fold Suzuki coupling of diiodofluorene 4 with fluorenylboronic acid 9 to produce 

2,7”-trimethylsilylterfluorene 12 in 55% yield. A small quantity (8 – 10%) of bifluorene 13 was 

also recovered. Worth noting is the use of tetra-n-butylammonium bromide (nBu4NBr, or 

TBABr) as a phase-transfer catalyst. The employment of nBu4NCl for this same purpose was 

reported by Thiem, Stroreigl and coworkers145 conceivably for two reasons. First, because the 

reaction is biphasic, the base necessary to turn the catalytic cycle over must do so after first 

crossing from H2O into the organic solvent, PhMe. Base also aids in the converison of the 

boronic acid to the boron-ate complex. It follows that the likelihood of both of these events 

occurring increases dramatically with the use of a quaternary alkylammonium cation, which can 

act to shuttle the base into the organic phase of the reaction. 
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Scheme  2.11. Synthetic route to terfluorene segmers. (i) TBABr, 3 mol% Pd(PPh3)4, 2 M K2CO3(aq), PhMe, 90° C, 
12 h. (ii) ICl, DCM, 0° C to RT, 15 min. (iii) 2, Pd(Cl)2(Ph3)2, K2CO3, DMF, PhMe, 40° C, 8 h. (iv) 1, Pd(Cl)2(Ph3)2, 
2M K2CO3(aq), PhMe, 45° C, 8 h. 

 

Upon isolation of bis-silated intermediate 12, substitution of both trimethylsilyl groups 

for iodo groups proceeded rapidly (15 min) and in high yield (91%) to give 2,7”-

diiodoterfluorene 14 as a white solid. This terfluorene intermediate was appropriately derivatized 

by Suzuki coupling with borane 1 or 2.  

Reactions to produce terfluorene segmers SF3M10 and SF3M18 were performed using 

two sets of reaction conditions which proved equally suited to generating the desired product. As 

in the synthesis of the bifluorene segmers, SF3M18 was prepared using borane 2, 4 mol% 

Pd(Cl)2(PPh3)2 and K2CO3 in 1:1 DMF/PhMe at 40° C. Following column chromatography, 

SF3M18 was recovered as a colorless, glassy solid in 85% yield.  

SF3M10 was prepared using conditions adapted from aryl-aryl Suzuki couplings, and as 

such SF3M10 was synthesized by reaction of diiodoterfluorene 12 with borane 1, TBABr, 4 

mol% Pd(Cl)2(PPh3)2, aqueous K2CO3 and PhMe. Whereas aryl-aryl coupling to produce 12 was 

carried out at 90° C, this reaction proceeded at 45° C, which reflects the enhanced reactivity of 

trialkyl boranes relative to boronic acids and esters in Pd0-catalyzed reactions. SF3M10 is 

thereafter recovered as a colorless glassy solid in 85% yield. The isolated yields for SF3M10 and 

SF3M18 are an improvement over mono- and bifluorenyl segmer syntheses and suggest that the 
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coupling sites on oligofluorene substrates achieve electronic isolation at suitably long segment 

lengths. 

SF3M10 and SF3M18 were then subjected to ADMET polymerization-hydrogenation 

(Scheme 2.12). Following precipitation of the polymers into acetone, PF3M10 and PF3M18 

were recovered as flaky white solids in 70% and 72% yield, respectively. 
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Scheme  2.12. Synthesis of PF3M10 and PF3M18. (i) 2.5 mol% Grubbs-I catalyst, Ph2O, RT to 45° C. (ii) SiO2, H2, 
PhMe, 80° C, 2 d. 

 

 

2.5.4. Synthesis of Poly(quaterfluorene-mb-methylene)s 

 

Preparation of quaterfluorene-containing PFMs began, as before, with assembly of the 

appropriate monodisperse oligofluorene. As shown in Scheme 2.13, Pd0-catalyzed coupling 

using excess (2.1 eq) dibromofluorene 7 and boronic acid 9 generated bromobifluorene 15 as the 

major product in 59% isolated yield. Terfluorene 12, the product of two-fold coupling, was 

recovered in 12% yield. It is worth noting that this reaction is essentially the same coupling 

reaction as that given in Scheme 2.11 in which 12 was isolated as the major product. In this case, 

however, the bifluorenyl product is desired, so reaction conditions given by Geng85 were used in 

order to favor monocoupled intermediate 15. Specifically, Geng’s protocol used boronic acid 9 
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as the limiting reagent to hinder two-fold coupling. Production of terfluorene 12 was further 

hindered by the absence of TBABr under these reaction conditions. 
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Scheme  2.13. Synthetic route to bromobifluorenyl intermediate 15. (i) 3 mol% Pd(PPh3)4, 2 M Na2CO3(aq), PhMe, 
90° C, 2 d. 

 

Subsequent elaboration on bifluorene 15 required the preparation of bis(1,5-

cyclooctadiene)nickel(0) from Ni(acac)2 according to the method used by Krysan and 

Mackenzie.146 Ni(COD)2 was isolated as a tan solid in 85% yield after recrystallization (Scheme 

2.14).  
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Scheme  2.14. Preparation of Ni(COD)2. 

 

Bromobifluorene 15 was then homocoupled using Ni(COD)2 under Yamamoto coupling 

conditions to produce bistrimethylsilyl quaterfluorene 16 in 84% yield (Scheme 2.15). Iodination 

of compound 16 gave quaterfluorene 17 as a pale yellow solid in 87% yield following 

purification by column chromatography. Quaterfluorenyl segmers SF4M10 and SF4M18 were 

thereafter prepared using borane 1 or 2, 4 mol% Pd(Cl)2(PPh3)2 and K2CO3 in 1:1 DMF/PhMe at 
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40° C. SF4M10 was  recovered as a white solid in 90% yield, and SF4M18 was recovered as a 

white solid in 82% yield. 
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Scheme  2.15. Synthetic route to quaterfluorenyl segmers. (i) Ni(COD)2, bipy, COD, PhMe, 80° C, 2 d. (ii) ICl, 
DCM, 0° C to RT, 15 min. (iii) 1 or 2, Pd(Cl)2(Ph3)2, K2CO3, DMF, PhMe, 40° C, 8 h. 

 

Quaterfluorenyl segmers SF4M10 and SF4M18 were then subjected to ADMET 

polymerization-hydrogenation (Scheme 2.16). Following precipitation of the polymers into 

acetone, PF4M10 and PF4M18 were recovered as flaky white solids in 68% and 59% yield, 

respectively. 
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Scheme  2.16. Synthesis of PF4M10 and PF4M18. (i) 2.5 mol% Grubbs-I catalyst, Ph2O, RT to 45° C. (ii) SiO2, H2, 
PhMe, 80° C, 2 d. 
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2.5.5. Synthesis of a Poly(heptafluorene-mb-methylene) 

 

The preparation of a PFM possessing 9,9-dihexylfluorene segment lengths of seven was 

accomplished following the synthetic pathway shown in Scheme 2.17. Bromobifluorene 15 first 

underwent lithium-halogen exchange upon treatment with BuLi, and addition of triisopropyl 

borate produced bifluorenyl boronic acid 18 in 79% yield following column chromatography. 

Bifluorene 18 was then treated with 0.45 eq terfluorene 14 using Pd0 coupling conditions to 

produce bis(trimethylsilyl) heptafluorene 19. This compound was recovered as a pale green solid 

in 59% yield after purification by column chromatography. As before, substitution of the 

trimethylsilyl groups for iodines proceeded rapidly to give bis(iodo) heptafluorene 20 in 95% 

yield following purification by silica gel filtration. Heptafluorenyl segmer SF7M18 was prepared 

from 20 using borane 2, 4 mol% Pd(Cl)2(PPh3)2, TBABr, 2M K2CO3(aq) and PhMe at 40° C. 

SF7M18 was thereafter recovered as a pale green solid in 78% yield after column 

chromatography. 
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Scheme  2.17. Synthetic route to heptafluorene segmer SF7M18. (i) BuLi, B(OiPr)3, THF, -78° C to RT, 8 h. (ii) 
TBABr, 4 mol% Pd(PPh3)4, 2 M K2CO3(aq), PhMe, 90° C, 12 h. (iii) ICl, DCM, 0° C to RT, 15 min. (iii) 2, 
Pd(Cl)2(Ph3)2, 2M K2CO3(aq), PhMe, 45° C, 8 h. 
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SF7M18 was then subjected to ADMET polymerization-hydrogenation (Scheme 2.18). 

Following precipitation, PF7M18 was recovered as a tan powder in 59% yield. 
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Scheme  2.18. Synthesis of PF7M18. (i) 2.5 mol% Grubbs-I catalyst, Ph2O, RT to 45° C. (ii) SiO2, H2, PhMe, 80° C, 
2 d. 

 

2.5.6. Synthesis of a Poly(octafluorene-mb-methylene) 

 

The preparation of a PFM possessing 9,9-dihexylfluorene segment lengths of eight was 

accomplished following the synthetic pathway shown in Scheme 2.19. Bifluorenyl boronic acid 

18 was treated with 0.45 eq quaterfluorene 17 under Pd0-catalyzed coupling conditions to 

produce bis(trimethylsilyl) octafluorene 21. This compound was recovered as a pale green solid 

in 52% yield after purification by column chromatography. Substitution of the trimethylsilyl 

groups for iodines proceeded rapidly to give bis(iodo) octafluorene 22 in 92% yield following 

purification by column chromatography. Octafluorenyl segmer SF8M18 was prepared from 22 

using borane 2, 4 mol% Pd(Cl)2(PPh3)2, TBABr, 2M K2CO3(aq) and PhMe at 40° C. SF8M18 was 

thereafter recovered as a pale green solid in 71% yield after column chromatography. 
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Scheme  2.19. Synthetic route to SF8M18. (i) BuLi, B(OiPr)3, THF, -78° C to RT, 8 h. (ii) TBABr, 4 mol% 
Pd(PPh3)4, 2 M K2CO3(aq), PhMe, 90° C, 12 h. (iii) ICl, DCM, 0° C to RT, 15 min. (iii) 2, Pd(Cl)2(Ph3)2, 2M 
K2CO3(aq), PhMe, 45° C, 8 h. 

 

SF8M18 was then subjected to ADMET polymerization-hydrogenation (Scheme 2.20). 

Following precipitation of the polymer into acetone, PF8M18 was recovered as a tan powder in 

59% yield. 
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Scheme  2.20. Synthesis of PF8M18. (i) 2.5 mol% Grubbs-I catalyst, Ph2O, RT to 45° C. (ii) SiO2, H2, PhMe, 80° C, 
2 d. 

 

2.5.7. Synthesis of Poly(9,9-dihexylfluorene) 

 

The homopolymer, poly(9,9-dihexylfluorene) (PDHF), was synthesized using the Ni0- 

promoted homocoupling of 2,7-dibromo-9,9-dihexylfluorene 7 reported by Kreyenschmidt, 

Miller and coworkers (Scheme 2.21).89 End-capped and non-capped samples of PDHF were 

prepared. PDHF-capped was end-capped with phenyl groups by the addition of bromobenzene 

into the reaction after 2 d. Two samples of non-capped PDHF were prepared and studied these 
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are referred to as PDHF-old and PDHF-new for reasons described in  Section 3.6. The polymers 

were each recovered by precipitation into a 1:1:1 mixture of con. HCl, acetone and MeOH 

followed by 2-3 reprecipitations into a 1:1 mixture of acetone and MeOH. PDHF-capped was 

recovered as a tan powder in 74% yield, while non-capped PDHF-old and PDHF-new were 

recovered as tan powders in 57% and 53% yield, respectively. 
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Scheme  2.21. Synthesis of PDHF samples. 

 

2.5.8. Use of NMR Spectroscopy for Confirmation of Structural Regularity in PFMs 

 

1H NMR spectroscopy served as a diagnostic tool for gauging the progress of substrates 

through the Suzuki reaction-ADMET polymerization-hydrogenation synthetic sequence. Figures 

2.8-2.11 serve to illustrate this by showing the 1H NMR spectra for diiodofluorene 4, SF1M10, 

the ADMET polymer 5, and PF1M10, respectively. In Figure 2.8, the 1H NMR spectrum of 

diiodofluorene 4 has, as defining features, the chemical shift pattern for n-hexyl chains at C9 and 

an arene pattern consistent with 2, 7-substitution.  

The conversion of 2,7-diiodofluorene 4 to SF1M10 is marked by numerous features in 

the 1H NMR spectrum (Figure 2.9). First, the triplet at δ 2.67 is consistent with the presence of 
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benzylic protons in the product. The multiplets at δ 4.95 and δ 5.78 indicate the presence of a 

terminal alkene functionality.  

 

 

 

 

 

 

 

 

 

 
Figure  2.8. 1H NMR spectrum of diiodofluorene 4 (CDCl3). 
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Figure  2.9. 1H NMR spectrum of SF1M10 (CDCl3). 
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ADMET polymerization of SF1M10 to 5 (Figure 2.10) is effectively monitored by 1H 

NMR spectroscopy. The progress of this reaction is gauged by the disappearance of terminal 

olefin signals and the dominance of the internal olefin pattern. Monitoring the polymerization in 

this way ensures the production of polymer of suitably high DP. In this context, an aliquot of 5 

showed DP = 42 by end-group analysis of its 1H NMR spectrum. It should be noted that 

ADMET polymerizations were performed using diphenyl ether as solvent. This greatly 

complicates the aryl regions for the crude unsaturated polymers, as is evident upon inspection of 

the aryl region in Figure 2.10. 

Hydrogenations of ADMET polymers can also be monitored by observing diagnostic 

changes in the 1H NMR spectrum. In this instance the decrease of the olefinic signals indicates 

saturation of the alkyl segments in the polymer backbone (Figure 2.11). It is worth noting that 

the pattern in the aryl region in the product RSC is analogous to that of the parent segmer, as 

would be expected. Diphenyl ether is easily removed upon precipitation of the polymer. 
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Figure  2.10. 1H NMR spectrum of the crude ADMET polymer 5 generated from SF1M10 (CDCl3). The sample 
contains significant Ph2O. 
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Figure  2.11. 1H NMR spectrum of PF1M10 (CDCl3). 

 

Characterization by 13C NMR spectroscopy can also serve to confirm the structures of the 

intermediates and polymers. As an example, Figure 2.12 shows the 13C NMR spectra of 

diiodoquaterfluorene 18 (top), SF4M10 (middle), and PF4M10 (bottom). The spectrum for 

diiodoquaterfluorene, like many oligofluorene intermediates, has a remarkably clear alkyl region 

(< δ 65). Though it possesses 56 aliphatic carbons, the eight n-hexyl chains are coincident and 

give the six chemical shifts furthest upfield. The quaternary carbons at C9 on the fluorene 

skeleton are found at δ 55.4 and δ 55.5, consistent with the slight difference in chemical 

environments between the internal and terminal fluorene units. The signal at δ 92.4 in the 

spectrum of 18 is assigned to the aryl carbon bearing the iodine substituent.  

Upon coupling by the Suzuki reaction to give SF4M10, the chemical shift for Caryl-I 

disappears and that for Caryl-Cbenzyl is observed at δ 138.5. Two more diagnostic chemical shifts 

worth noting are that for RHC=CH2 (δ 114.4) and RHC=CH2 (δ 138.9) on the terminal alkene. 
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ADMET polymerization followed by hydrogenation of SF4M10 gives PF4M10, which is 

immediately characterizable by 13C NMR spectroscopy for the disappearance of both olefinic 

carbon resonances. Additional 1H and 13C NMR spectra are included as Appendix A.  
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Figure  2.12. 13C NMR spectra of quaterfluorene 18 (top spectrum), SF4M10 (middle), and PF4M10 (bottom, 
CDCl3). 
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2.5.9. Crystal Structure of Bifluorene 10 by Determined X-Ray Diffractometry 

 

An X-ray diffraction study of a single-crystal of bifluorene 10 provides some insight into 

the structures of the segmers comprising fluorene oligomers, despite the relatively poor quality 

of the data (Rw = 0.23). Particularly striking is the orthogonality of the alkyl chains relative to the 

plane of the fluorene rings. Although this geometry is necessitated by the fluorene structure, the 

conventional schematic representation of dialkylfluorenes as 2D objects can contribute to a 

mistaken impression that the alkyl groups extend away from the fluorene moiety in nearly the 

same plane rather than extending significantly above and below the plane. It should be noted that 

the poor quality of this structure is due mainly to disorder in these alkyl chains, a common 

problem in this type of molecule. The structure is pictured without thermal ellipsoids for the 

disordered carbons for reasons of clarity (Figure 2.13). 

 

 

Figure  2.13. ORTEP rendering of bifluorene 10. 
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 The X-ray structure also gives some information about the conjugation within the 

fluorenes and between them. The presence of the C9 carbon serves to planarize the two phenyl 

rings relative to unbridged biphenyl groups. In particular, the dihedral angle between the phenyl 

groups within the fluorene is only 1.82°. The fluorene units, in contrast, are significantly twisted 

relative to each other (55.9°). While packing forces are dominant in the determination of this 

angle in the solid state crystal, it is well known that there are significant dihedral angles between 

arenes in polymeric materials. PF is known, for example, to exhibit a 15-24° angle between 

adjacent fluorene units.50 Tables, including those specifying bond lengths and angles, can be 

found in Appendix B. 

 

2.5.10. Gel Permeation Chromatography 

 

PFMs were characterized by GPC in order to assess molecular weights Mn and Mw 

relative to PS standards. The data obtained are summarized in Table 2.1. Values of 7,000 – 

36,000 were found for Mn, while values of 9,800 – 57,000 were found for Mw. PDIs ranged from 

1.4–2.1 and DPs between 5 to 30 were determined. The majority of the polymers prepared 

exhibited monomodal distributions after isolation by precipitation. A typical GPC trace is shown 

for the case of PF3M10 in Figure 2.14a. Polymers PF4M10, PF4M18, and PF8M18 showed 

more complexity in their molecular weight distributions. The GPC trace for PF4M10 is shown in 

Figure 2.14b. The polymodal character of these polymer samples are consistent with a lower DP 

and/or the formation of signifcant cyclic material. Molecular weights for PF4M10 and PF4M18 

were in fact both low. Low MW in condensation polymerizations are usually due to the presence 

of small amounts of chain-terminating monofunctional monomer. Examples of likely chain 
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terminating species are shown in Figure 2.15. In preparing the segmer compounds, even trace 

amounts of impurities such as monocoupled segmer (Figure 2.15a) can act as chain-terminators. 

Also, additional deboronation/dehalogenation processes are known to occur in Suzuki 

reactions.147 Dehalogenation in Pd-catalyzed reactions can be useful under certain 

circumstances.148, 149 However, here this would “cap” the fluorene segment with hydrogen, 

resulting in another chain-terminator (Figure 2.15b).  

 

Mn
a Mw

a PDI DP
PF1M10 14,000 30,000 2.1 28
PF2M10 9,200 17,000 1.9 11
PF3M10 26,000 44,000 1.7 22
PF4M10 7,000 9,800 1.4 5
PF1M18 16,000 33,000 2.1 30
PF2M18 13,000 21,500 1.7 15
PF3M18 13,000 20,000 1.5 11
PF4M18 7,600 10,600 1.4 5
PF7M18 36,000 57,000 1.6 14
PF8M18 14,000 22,000 1.6 5

PDHF-capped 22,000 56,000 2.6 66
       a Molecular weights determined by comparison with polystyrene standards.

 

Table  2.1. GPC data for PFMs and PDHF-capped. 
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                                           (a)                                                                            (b) 

Figure  2.14. GPC traces for PF3M10 (a) and PF4M10 (b). 
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Figure  2.15. ADMET polymerization chain terminators produced by incomplete coupling (a) and 
deboronation/dehalogenation (b) events.  

 

2.5.11. Synthesis of a Terfluorene Substrate for Further Elaboration 

 

A terfluorene substrate was synthesized for the application towards new chemical sensing 

materials as described in Section 1.1.11. Terfluorene 23 was prepared according to the reaction 

sequence shown Scheme 2.22. Fluorene was first iodinated at C2 and C7 to produce 

diiodofluorene 24 in 65% yield after recrystallization. Compound 24 was then alkylated using 

1,6-dibromohexane to yield the 9,9-dibromohexyl-terminated intermediate 25 as a pale yellow 

solid in 52% yield after column chromatography. This compound was subjected to aryl-aryl 

Suzuki coupling conditions using fluorenyl boronic acid 9 to produce terfluorene 26. The 

reaction to produce 26 involves the in situ formation of KI, which servef to transhalogenate a 

significant percentage of the terminal bromines. As such, intermediate 26 contained a mixture of 

bromo- and iodo-alkylated material. Regardless, it underwent electrophilic substitution to 

generate bis-iodo terfluorene 27, which was treated with NaN3 in DMF to yield diazide 28 as a 

pale yellow solid in 67% yield over three steps. Compound 28 was thereafter treated with LiAlH4 

under standard azide reduction conditions. In addition to reduction to the amine, treatment with 
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LiAlH4 reductively dehalogenated 28. Diamino terfluorene 23 was recovered as a flaky white 

solid in 87% yield.  
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Scheme  2.22. The synthetic route to diamino terfluorene 23. (i) I2, H5IO6, H2SO4, AcOH, H2O, 80° C, 3h. (ii) 1,6-
dibromohexane, TBABr, KOHaq. (iii) 2.1 eq 9, 3 mol% Pd(PPh3)4, 2 M K2CO3(aq), PhMe, 75° C, 12 h. (iv) ICl, 
DCM, 0° C to RT, 15 min. (v) NaN3, DMF, 80° C, 12 h. 

 

The amine functionalities on substrate 23 present opportunities for further modifications. 

Namely, 23 could be used to make amide linkages upon treatment with an anhydride. A potential 

implementation of 23 is shown in Scheme 2.23. Reaction of 26 with the bis-anhydride of 

diethylenetriaminepentaacetic acid (DTPA) under anhydride-opening conditions would generate 

the conjugated oligomer-macrocyclic hybrid A, which could facilitate efficient energy transfer to 

a coordinated metal ion (B) for sensing purposes as described in Section 1.1.11.  

70 



 

23

O
NO

O

N

N
O

O
HO

O

O
HN NH

O O

N N

N O
O

OO
O O

M3+

M
HN NH

O O

N N

N O
OH

OO
HO OH

A B  

Scheme  2.23. A potential implentation of terfluorene 23. In B, dative bonds from carbonyl oxygens to the 
coordinated M species have been omitted for the sake of clarity. 

  

2.6. Experimental 

 

2.6.1. General Methods 

 

Ether and toluene were distilled under nitrogen from sodium. THF was passed through 

activated alumina using the SPS 400 (Innovative Technology, Inc.). CH2Cl2, 1,5-hexadiene and 

1,9-decadiene were distilled under nitrogen from calcium hydride. Pd(PPh3)4 (Strem), 

Pd(Cl)2(PPh3)2 (Strem), and bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride 

(Aldrich) were commercially obtained and stored in a nitrogen-filled glove box. All other 

reagents were commercially obtained and used without further purification. 1H- (300 MHz) and 

13C-NMR (75 MHz) spectra were recorded with Bruker spectrometers. Chemical shifts were 

referenced to residual 1H or 13C signals in deuterated solvents. Column chromatography was 

performed using Sorbent 60Å 40-63 µm standard grade silica. Gas chromatography-mass 

spectrometry (GC-MS) was performed on a Hewlitt Packard Series 5980 GC/5971 A MS with a 

Hewlitt Packard Series 1 column. Gas chromatography (GC) was performed on a Hewlitt 

Packard Series 6850 GC with a Hewlitt Packard Series 1 methyl siloxane column. High-
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resolution mass spectra (HRMS) were obtained on a Fison VG Autospec in the Mass Spectral 

Facility of the University of Pittsburgh. Elemental analysis was performed independently by 

Atlantic Microlab, Inc., Norcross, Georgia. 

 

2.6.2. X-ray Crystallography 

 

Single-crystal X-ray crystallography was performed by Dr. Steven J. Geib at the 

University of Pittsburgh.  Data was collected using a single crystal on a Bruker Smart Apex CCD 

diffractometer with graphite-monochromated MoKα ( λ= 0.71073 Α) radiation and MonoCap 

optics.  The parameters used during the collection of diffraction data are summarized in 

Appendix X.  Crystals were adhered to fine glass fibers with epoxy cement and placed in a cold 

N2 stream (150 K) for data collection. 

     Unit-cell parameters, systematic absences, and photograph evidence indicated space 

group P 21/c. Unit-cell dimensions were derived from 90 data frames covering a wide range of 

reciprocal space.  Data was collected with a crystal-detector distance of 5.0 cm using 0.3° ω 

scans and 20 s per frame.  Data reduction was done with the SAINT program and data were 

corrected for absorption using the SADABS procedure.  No significant crystal decay (<1%) was 

observed. 

     The structure was solved via direct methods, which located the positions of all non-

hydrogen atoms which were refined anisotropically.  Idealized atom positions were calculated 

for the hydrogen atoms (d-(C-H) = 0.96A, U = 1.2Uiso of attached carbon). 

          Although final difference Fourier syntheses showed only chemically insignificant 

electron density, there was evidence of significant disorder in the alkyl chains.  The final Rw of 
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0.23, which reflects this disorder, is sufficiently high that bond lengths and angles are likely to be 

inaccurate, particularly those near the γ-ends of the alkyl chains. An inspection of Fo vs. Fc 

values and trends based upon sin θ, Miller index, or parity group failed to reveal any systematic 

error in the data.  All computer programs used in the data collection and refinements are 

contained in the Bruker program packages SMART, SAINT,  and SHELXTL (version 6.10). 

 

2.6.3. Preparation of Borane Reagents and Ni(COD)2 

 

B

 

9-Hex-5-enyl-9-bora-bicyclo[3.3.1]nonane (1) jecv3: According to the method of Chung,144 a 

flame-dried three-neck round-bottom flask was brought into a nitrogen-filled glove box 1, 5-

hexadiene (65.0 mL, 0.548 mol, 4.0 eq) was added. 9-BBN (0.137 mol, added as a 0.5 M 

solution in THF) was added dropwise over 30 min, and the reaction mixture was allowed to stir 

for 8 h. Outside the glove box, the product was isolated by fractional distillation (60-62˚ C, 0.04 

mmHg) under nitrogen as a colorless oil (28.7 mL, 88.4%). 1H NMR (300 MHz, CDCl3) δ 0.93 

(q, 2 H), 1.33-1.84 (bs, 16 H), 2.07 (q, J = 7.1 Hz, 2 H), 4.95 (m, 2 H), 5.83 (m, J = 7.0 Hz, 1 

H).13C NMR (75 MHz, CDCl3) δ 13.8, 19.0, 23.3, 24.0, 26.7, 28.0 (broad), 31.0 (broad), 32.2, 

33.2, 33.8, 114.0, 139.2. 
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B

 

9-Dec-9-enyl-9-bora-bicyclo[3.3.1]nonane (2) jecvi73/jecv8: According to the method of 

Chung,144 a flame-dried three-neck round-bottom flask was brought into a nitrogen-filled glove 

box and 1, 9-decadiene (80.5 mL, 0.440 mol, 4.0 eq) was added. 9-BBN (0.110 mol, added as a 

0.5 M solution in THF) was added dropwise over 45 min, and the reaction mixture was allowed 

to stir for 8 h. Outside the glove box, the product was isolated by fractional distillation (88-90˚ C, 

0.015 mmHg) under nitrogen (28.3 mL, 85.2%). 1H NMR (300 MHz, CDCl3) δ 1.17-1.99 (b, 26 

H), 2.02 (q, J =6.8 Hz, 2 H), 4.94 (m, 2 H), 5.78 (m, J = 6.8 Hz, 1 H). 13C NMR (75 MHz, 

CDCl3) δ 23.3, 24.5, 28.2 (broad), 29.0, 29.2, 29.6, 31.2 (broad), 33.0, 33.2, 33.9, 114.1, 139.2. 

 

Ni

 

Bis(1,5-cyclooctadiene)nickel(0) jecv1/jecv46: Using the method of Krysan and Mackenzie,146 

in a nitrogen-filled glove box a flame-dried Schlenk flask was charged with 

nickel(acetylacetonate) (35.00 g, 0.136 mol), 1,5-cyclooctadiene (97.8 mL, 0.546 mol, 4 eq), and 

35 mL THF. The flask was brought out of the glove box and cooled to -78˚ C. DIBAH (0.341 

mol, 2.5 eq, added as a solution in 1 M THF) was added dropwise over 3 h. The mixture was 

warmed to 0˚ C over 1 h and 250 mL diethyl ether was added. The contents were cooled to -78˚ 

C and the product was allowed to precipitate over 12 h. The majority of solvent was then 

removed by filter-tip cannula transfer. After further concentration under vacuum the reaction 

vessel was brought into the glove box.  The product was isolated by filtration as a tan powder 

(32.098 g, 85.6 %). 1H NMR (300 MHz, CD2Cl2) δ 2.34 (b, 8 H), 5.53 (b, 4 H). 13C NMR (75 

MHz, CD2Cl2) δ 27.9, 128.4. 
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2.6.4. Preparation of Fluorene Intermediates 

 

 

9,9-Dihexylfluorene (3) jecv54: Using the method of Ranger et. al.,58 fluorene (40.00 g, 0.241 

mol) was dissolved in 450 mL anhydrous THF in a nitrogen atmosphere. After cooling to -78˚ C 

n-butyllithium in hexanes (318 mL x 1.6 M, 0.509 mol, 2.1 eq) was added over 4 h. After stirring 

for an additional 45 min, bromohexane (77.8 mL, 0.552 mol, 2.3 eq) was added dropwise over 

30 min. After allowing the reaction mixture to warm to RT over 3h the contents were poured into 

water and extracted with diethyl ether (3 x 150 mL). The organic extracts were then combined, 

washed with brine, and then dried over MgSO4. Solvent and excess bromohexane were removed 

by distillation under reduced pressure. The product was crystallized from hexanes at -30˚ C to 

yield the product as colorless crystals (70.37 g, 87.4%). 1H NMR (300 MHz, CDCl3) δ 0.57 (b, 4 

H), 0.74 (t, 6 H), 1.93 (m, 4 H) 7.32 (m, 4 H), 7.69 (m, 2 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 

22.6, 23.8, 31.5, 40.4, 55.1, 119.6, 122.9, 126.7, 127.0, 141.2, 150.7. MS (EI), m/z 334 (M.+), 

249, 179 (base), 165. 

 

I I

 

2,7-Diiodo-9,9-dihexylfluorene (4) jecvi35: According to the method of Okumoto,150 to a three-

neck round-bottom flask equipped with a stir bar were added 210 mL AcOH, 40 mL H2O, 7 mL 

concentrated H2SO4, H5IO6 (5.16 g, 0.023 mol, 0.5 eq), and I2 (11.42 g, 1 eq). After stirring for 5 
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min 9,9-dihexylfluorene 3 (15.00 g, 0.449 mol) was added and the reaction mixture was heated 

to 80˚ C for 3 h. After cooling, solvent was removed under vacuum and hexanes were added to 

dissolve the crude product. The organic material was washed with aqueous K2CO3, aqueous 

Na2S2O3, and brine before drying with MgSO4. The organic phase was then concentrated and the 

product was purified by recrystallization to give a pale yellow powder (23.98 g, 91.1%). 1H 

NMR (300 MHz, CDCl3) δ 0.56 (b, 4 H), 0.76 (t, J = 6.9 Hz, 6 H), 1.07 (m, 14 H), 1.87 (m, J1 = 

8.4 Hz, J2 = 3.7 Hz, 4 H), 7.37 (d, J = 7.7 Hz, 2 H), 7.61 (d, J = 7.6 Hz, 4 H). 13C NMR (75 

MHz, CDCl3) δ 14.0, 22.5, 23.6, 29.5, 31.4, 40.1, 55.6, 93.1, 121.5, 132.1, 136.0, 139.8, 152.5. 

MS (EI), m/z 586 (M.+, base), 501, 417, 304, 189, 176. 

 

Br Br

 

2,7-Dibromo-9,9-dihexylfluorene (7) jecv57: Using the method of Price,151 FeCl3 (290 mg, 1.5 

mol%) was added to a flame-dried flask in a nitrogen-filled glove box. The flask was brought out 

of the glove box and 9,9,-dihexylfluorene 3 (40.00 g, 0.120 mol) and 350 mL CHCl3 were added 

under nitrogen. The contents were cooled to 0˚ C and the flask was wrapped in aluminum foil. 

Bromine (14.2 mL, 0.275 mol, 2.3 eq) was added dropwise over 20 min. After the flask was  

warmed to RT and stirred for 3 h, the contents were poured into aqueous Na2S2O3. Upon 

discoloration of the organics, the aqueous phase was extracted with hexanes (3 x 150 mL). The 

organic extracts were combined, washed with brine,and dried over MgSO4. After solvent 

removal under vacuum, the product was crystallized using hexanes at -30˚ C to yield the product 

as pale yellow crystals (52.86 g, 89.7%). 1H NMR (300 MHz, CDCl3) δ 0.56 (b, 4 H), 0.76 (t, 6 

H), 1.11 (m, 14 H), 1.88 (m, 4 H), 7.42 (pd, 2 H), 7.48 (pd, 4 H). 13C NMR (75 MHz, CDCl3) δ 
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13.9, 22.5, 23.7, 29.6, 31.4, 40.2, 55.7, 121.1, 121.5, 126.2, 130.2, 139.1, 152.6. MS (EI), m/z 

492 (M.+), 407, 323, 176 (base). 

 

Br Si

 

2-Bromo-7-trimethylsilyl-9,9-dihexylfluorene (8) jecv61: According to the method of Geng,85 

2,7-dibromofluorene 7 (32.09 g, 65.22 mmol) was added to a flame-dried Schlenk flask 

containing 470 mL anhydrous THF. After cooling to -78˚ C,  n-butyllithium in hexanes (40.8 mL 

x 1.6 M, 65.3 mmol) was added over 2 h. After an additional 60 min, trimethylsilyl chloride 

(9.35 mL, 73.6 mmol, 1.13 eq) was added. The mixture was warmed to RT, stirred for 

approximately 45 min and poured into water prior to extraction with hexanes (3 x 100 mL). The 

organic extracts were combined and washed with brine, then dried over MgSO4. After solvent 

removal under vacuum, the product was purified by column chromatography (silica, petroleum 

ether) to afford the desired product as a colorless oil (30.19 g, 95.5%). 1H NMR (300 MHz, 

CDCl3) δ 0.29 (s, 9 H), 0.61 (b, 4 H), 0.76 (t, 4 H), 0.87 (m, 4 H), 1.04 (m 14 H) 1.3 (b, 4 H), 1.9 

(m, 4 H), 7.4 (m, 4 H), 7.5 (d, J = 7.9 Hz, 1 H), 7.6 (d, J = 7.5 Hz, 1 H). 13C NMR (75 MHz, 

CDCl3) δ -0.90, 13.9, 22.5, 23.7, 29.6, 31.4, 40.1, 55.5, 119.1, 121.1, 126.4, 127.7, 130.0, 130.3, 

132.0, 139.8, 140.3, 140.8, 149.6, 153.3. MS (EI), m/z 486 (M.+, base), 471, 401, 315, 219, 73. 

 

B Si
HO

HO
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2-Trimethylsilyl-9,9-dihexylfluoren-7-yl boronic acid (9) jecvi1: According to the method of 

Geng,85 in a nitrogen-filled glove box, 2-bromo-7-trimethylsilylfluorene 8 (10.93 g, 22.53 mmol) 

and 75 mL THF were added to a flame-dried Schlenk flask. After the flask was brought out of 

the box and cooled to -78˚ C n-butyllithium in hexanes (15.4 mL x 1.6 M, 54.9 mmol), was 

added over 15 min. After stirring for 45 min triisopropyl borate (7.75 mL, 33.56 mmol, 1.5 eq) 

was added all at once and the flask was slowly warmed to RT under nitrogen for 8 h. The 

reaction mixture was then poured into water and extracted with diethyl ether (3 x 150 mL). The 

organic extracts were combined and washed with brine and dried with MgSO4. After removal of 

solvent under vacuum, the organic material was chromatographed (silica, hexanes, then 10% 

EtOAc in hexanes, then 30% EtOAc in hexanes) to yield the desired product as a white powder 

(9.04 g, 89.2%). 1H NMR (300 MHz, CDCl3) δ 0.33 (s, 9 H), 0.72 (b, 10 H), 1.07 (m, 12 H, 2.07 

(m, 4 H), 7.52 (m, 2 H), 7.79 (pdd, 2 H), 8.21 (s, 1 H), 8.28 (pd, 1 H)). 13C NMR (75 MHz, 

CDCl3) δ -0.87, 14.0, 22.5, 23.8, 29.6, 31.4, 40.2, 55.0, 119.4, 119.7, 127.8, 129.2, 129.8, 131.9, 

134.6, 140.2, 141.4, 145.6, 150.4, 150.8. MS (EI), m/z 406, 321, 235, 73 (base). 

 

Si Si

 

7,7’-Bis(trimethylsilyl)-9,9,9’,9’-tetrakis(hexyl)-2,2’-bifluorene (10) jecvi41/jecv65: 

According to the method of Geng,85 in a nitrogen-filled glove box, 2-bromo-7-

trimethylsilylfluorene 8 (2.38 g, 4.91 mmol) and 2-trimethylsilylfluoren-7-yl boronic acid 9 

(2.21 g, 4.91 mmol) were added to a flame-dried Schlenk flask. Pd(PPh3)4 (0.060 g, 0.052 mmol, 

1 mol%) was added and the mixture was dissolved in 12 mL toluene. The reaction flask was 

brought out of the glove box and aqueous Na2CO3 (7 mL x 2.0 M, 14 mmol ) was added by 
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syringe. The reaction mixture was heated at 90˚ C for 48 h. Upon cooling, the organic phase was 

separated and solvent was removed. The material was then chromatographed (silica, petroleum 

ether, then hexanes, then 10% CH2Cl2 in hexanes) to yield the desired product as colorless 

crystals (2.90 g, 72.9%). 1H NMR (300 MHz, CDCl3) δ 0.31 (s, 18 H), 0.74 (m, 20 H), 1.06 (m, 

24 H), 2.0 (t, 8 H), 7.48 (m, 4 H), 7.60 (m, 4 H), 7.75 (m, 4H). 13C NMR (75 MHz, CDCl3) δ -

0.86, 13.9, 22.5, 23.8, 29.6, 31.4, 40.2, 55.1, 119.0, 120.0, 121.6, 126.0, 127.7, 131.8, 140.3, 

140.8, 141.5, 150.2, 151.7.  

 

I I

 

7,7’-Bis(iodo)-9,9,9’,9’-tetrahexyl-2,2’-bifluorene (11) jecvi72: According to the method of 

Geng,85 bis(trimethylsilyl)bifluorene 10 (2.90 g, 3.58 mmol) was added to a round-bottom flask 

and dissolved in 17 mL CH2Cl2. The flask was cooled to 0˚ C and ICl in CH2Cl2 (7.70 mL x 1.0 

M, 7.70 mmol) was added over 20 min. The reaction mixture was brought to RT and an aqueous 

solution of Na2S2O3 was added with vigorous stirring to quench the reaction. Upon discoloration, 

the organic material was washed with brine and dried with MgSO4. After solvent removal under 

vacuum, the crude product was chromatographed (silica, hexanes, then 10% CH2Cl2 in hexanes) 

to yield the product as a pale yellow powder (2.74 g, 83.3%). 1H NMR (300 MHz, CDCl3) δ 0.75 

(m, 20 H), 1.15 (m, 24 H), 1.99 (oct, J = 5.7 Hz, 8 H), 7.34 – 7.73 (m, 12 H). 13C NMR (75 

MHz, CDCl3) δ 14.0, 22.5, 23.7, 29.6, 31.4, 40.2, 55.5, 120.1, 121.4, 126.3, 132.2, 135.9, 139.4, 

141.0, 151.0, 153.5.  
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Si Si

 

2,7’’-Bis(trimethylsilyl)-9,9,9’,9’,9’’,9’’-hexahexyl-7,2’;7’,2’’-terfluorene (12) jecvii12: In a 

variation of the method of Thiem,152 diiodofluorene 4 (1.17 g, 2.00 mmol) and boronic acid 9 

(1.97 g, 4.38 mmol, 2.2 eq) were combined with TBABr (0.138 g, 0.778 mmol, 30 mol%), 19 

mL toluene, and aqueous K2CO3 (10.0 mL x 2.0 M, 20.0 mmol) in a Schlenk flask. The mixture 

was thoroughly degassed and Pd(PPh3)4 (0.093 g, 4 mol%) was added under nitrogen. The 

reaction mixture was heated at 90˚ C for 12 h. Upon cooling, the organic phase was separated 

and the aqueous phase was extracted with CH2Cl2 (2 x 20 mL). The organic extracts were 

combined, washed with brine, and dried with MgSO4. After solvent removal under vacuum, 

column chromatography (silica, petroleum ether, then hexanes, then 5% CH2Cl2 in hexanes, then 

15% CH2Cl2 in hexanes) afforded the desired product as a white, glassy solid (1.25 g, 54.7%). 1H 

NMR (300 MHz, CDCl3) δ 0.33 (s, 18 H), 0.78 (b, 30 H), 1.10 (b, 36 H), 2.01-2.13 (m, 12 H), 

7.50 (m, 4 H), 7.64-8.83 (m, 14 H). 13C NMR (75 MHz, CDCl3) δ -0.87, 13.9, 22.5, 23.8, 29.6, 

31.4, 40.2, 40.4, 55.2, 55.4, 119.0, 120.0, 121.0, 121.7, 126.1, 126.2, 126.4, 127.7, 130.1, 131.9, 

139.0, 140.1, 140.4, 140.7, 140.8, 141.6, 150.3, 151.8.  

 

I I

 

2,7’’-Diiodo-9,9,9’,9’,9’’,9’’-hexahexyl-7,2’;7’,2’’-terfluorene (14) jecvi17/jecvi89: According 

to the method of Geng,85 bis(trimethylsilyl)terfluorene 12 (1.39 g, 1.22 mmol) was added to a 

round-bottom flask and dissolved in 7.5 mL CH2Cl2. The flask was cooled to 0˚ C and ICl in 
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CH2Cl2 (2.44 mL x 1.0 M, 2.44 mmol) was added over 10 min. The reaction mixture was 

brought to RT and an aqueous solution of Na2S2O3 was added with vigorous stirring to quench 

the reaction. Upon discoloration, the organic material was washed with brine and dried with 

MgSO4. After solvent removal under vacuum, the crude product was chromatographed (silica, 

hexanes, then 10% CH2Cl2 in hexanes) to yield the product as a pale yellow powder (1.38 g, 

90.6%). 1H NMR (300 MHz, CDCl3) δ 0.79 (m, 30 H), 1.07 (b, 36 H), 1.94-2.10 (m, 12 H), 7.45 

(d, J = 8.5 Hz, 2 H), 7.52-7.81 (m 16 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 22.5, 23.8, 29.6, 

31.4, 40.2, 55.4, 92.4, 120.0, 121.4, 126.3, 132.2, 135.9, 139.3, 140.1, 140.4, 140.5, 141.3, 151.0, 

151.9, 153.5.  

 

SiBr

          

7-Bromo-7’-trimethylsilyl-9,9,9’,9’-tetrakis(hexyl)-2,2’-bifluorene (15) jecvi25: According to 

the method of Geng,85 in a nitrogen-filled glove box, boronic acid 9 (5.40 g, 12.0 mmol, 2.5 eq) 

and dibromofluorene 7 (13.58 g, 27.6 mmol, 2.3 eq) were added to a flame-dried Schlenk flask. 

Pd(PPh3)4 (0.138 g, 0.120 mmol, 1 mol%) was added and the mixture was dissolved in 45 mL 

toluene. The reaction flask was brought out of the glove box and aqueous Na2CO3 (27 mL x 

2.0.M, 54 mmol) was added by syringe. The reaction mixture was heated at 90˚ C for 48 h. Upon 

cooling, the organic phase was separated and the aqueous phase was extracted with CH2Cl2 (2 x 

20 mL). The organic fractions were combined and washed with brine, then dried with MgSO4 

and solvent was removed under vacuum. The crude material was then chromatographed (silica, 

petroleum ether, then hexanes, then 5% CH2Cl2 in hexanes, then 15% CH2Cl2 in hexanes) to 

yield 15 as a colorless, glassy solid (5.78 g, 58.9%). 1H NMR (300 MHz, CDCl3) δ 0.31 (s, 9 H), 
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0.75 (b, 20 H), 1.07 (b, 24 H), 2.03 (m, 8 H), 7.44-7.50 (m, 4 H), 7.58-7.63 (m, 4 H), 7.71-7.77 

(m, 4 H). 13C NMR (75 MHz, CDCl3) δ -0.87, 13.9, 22.5, 23.8, 29.6, 31.4, 40.1, 40.3, 55.1, 55.6, 

119.0, 120.0, 121.0, 121.5, 126.1, 126.3, 127.7, 130.0, 131.9, 139.1, 139.2, 140.5, 141.2, 141.4, 

150.2, 151.1, 151.8, 153.3.  

 

Si Si

 

2,7’’’- Di(trimethylsilyl)-9,9,9’,9’,9’’,9’’,9’’’,9’’’-octahexyl-7,2’;7’,2’’;7’’,2’’’-tetrafluorene 

(16) jecvi30: A flame-dried Schlenk flask was charged with 7-bromo-7’-trimethylsilylbifluorene 

15 (5.78 g, 7.07 mmol). The flask was brought into a nitrogen-filled glove box and dissolved in 

60 mL toluene. Ni(COD) (2.33 g, 8.46 mmol, 1.2 eq), bipyridine (1.32 g, 8.46 mmol, 1.2 eq), 

and 1, 5-cyclooctadiene (0.87 mL, 7.1 mmol) were then added. The reaction mixture was heated 

then at 80˚ C for 48 h. After cooling, the material was filtered through a celite pad with hexanes 

as eluant. After solvent removal under vacuum, the crude product was chromatographed (silica, 

hexanes, then 10% CH2Cl2 in hexanes) to yield the product as a white, flaky solid (4.38 g, 

84.0%). 1H NMR (300 MHz, CDCl3) δ 0.31 (s, 18 H), 0.76 (b, 40 H), 1.10 (b, 48 H), 7.51-7.82 

(m, 24 H). 13C NMR (75 MHz, CDCl3) δ -0.85, 14.0, 22.4, 22.5, 23.8, 23.9, 29.6, 29.7, 31.4, 

31.5, 40.2, 40.4, 55.2, 55.4, 119.0, 120.0, 126.1, 126.2, 127.7, 131.9, 139.0, 140.0, 140.4, 140.6, 

141.5, 150.2, 151.8. 
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I I

 

2,7’’’-Diiodo-9,9,9’,9’,9’’,9’’,9’’’-octahexyl-7,2’;7’,2’’;7’’,2’’’-quaterfluorene (17) jecvi37: 

According to the method of Geng,85 bis(trimethylsilyl)tetrafluorene 16 (3.88 g, 2.63 mmol) was 

added to a round-bottom flask and dissolved in 16 mL CH2Cl2. The flask was cooled to 0˚ C and 

ICl in CH2Cl2 (5.50 mL x 1.0 M, 5.50 mmol) was added over 20 min. The reaction mixture was 

brought to RT and an aqueous solution of Na2S2O3 was added with vigorous stirring to quench 

the reaction. Upon discoloration, the organic material was washed with brine and dried with 

MgSO4. After solvent removal under vacuum, the crude product was chromatographed (silica, 

hexanes, then 15% CH2Cl2 in hexanes) to yield the product as a light yellow solid (3.61 g, 

86.8%). 1H NMR (300 MHz, CDCl3) δ 0.76 (b, 40 H), 1.10 (b, 48 H), 7.51-7.82 (m, 24 H). 13C 

NMR (75 MHz, CDCl3) δ 14.0, 22.5, 23.9, 29.7, 31.4, 40.4, 55.4, 55.5, 92.4, 119.7, 120.0, 121.6, 

123.0, 126.2, 126.9, 132.2, 135.9, 139.3, 140.0, 140.2, 140.4, 140.5, 140.8, 141.3, 151.0, 151.5, 

151.8, 153.5. 

 

SiB
HO

HO

 

2-Trimethylsilyl-9,9,9’,9’-tetrakis(hexyl)-2,2’-bifluoren-7’-yl boronic acid (18) jecvii15: 

According to the method of Geng,85 in a nitrogen-filled glove box, 7-bromo-7’-

trimethylsilylbifluorene 15 (1.13 g, 1.38 mmol) and 5 mL anhydrous THF were added to a 

flame-dried Schlenk flask. After the flask was brought out of the box and cooled to -78˚ C n-

butyllithium in hexanes (0.94 mL x 1.6 M, 1.51 mmol) was added over 10 min. After stirring for 
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45 min, triisopropyl borate (0.47 mL, 2.07 mmol, 1.5 eq) was added all at once and the flask was 

slowly warmed to RT under nitrogen for 8 h. The reaction mixture was then poured into water 

and extracted with diethyl ether (3 x 25 mL). The organic extracts were combined and washed 

with brine and dried with MgSO4. After removal of solvent under vacuum, the organic material 

was chromatographed (silica, 1% EtOAc in hexanes, then 10% EtOAc in hexanes, then 40% 

EtOAc in hexanes) to yield the desired product as a white powder (0.85 g, 78.9%). 1H NMR (300 

MHz, CDCl3) δ 0.31 (s, 9 H), 0.76 (b, 20 H), 1.09 (m, 24 H), 2.00-2.06 (b, 8 H), 7.49 (d, 2 H), 

7.63-7.94 (m, 8 H), 8.25 (s, 1H), 8.32 (m, 1H). 13C NMR (75 MHz, CDCl3) δ-0.85, 14.0, 22.5, 

23.8, 23.9, 29.6, 29.7, 31.4, 31.5, 40.2, 40.4, 55.2, 55.3, 119.1, 119.3, 120.0, 120.6, 121.7, 126.2, 

127.7, 129.0, 131.9, 134.8, 139.1, 139.9, 140.5, 140.6, 141.4, 141.6, 145.3, 150.3, 150.5, 151.8, 

152.5.  

 

Si Si

 

2,7’’’’’’’- Di(trimethylsilyl)-tetradecahexyl heptafluorene (19) jecvii17: In a variation of the 

method of Thiem,152 bis(iodo)terfluorene 14 (0.458 g, 0.367 mmol) and 2-

trimethylsilylbifluoren-7’-yl boronic acid 18 (0.631 g, 0.807 mmol, 2.2 eq) were combined with 

TBABr (0.025 g, 0.140 mmol, 30 mol%), 3.5 mL toluene, and aqueous K2CO3 (2.0 mL x 2.0 M, 

4.0 mmol) in a Schlenk flask. The mixture was thoroughly degassed and Pd(PPh3)4 (0.017 g, 

0.014 mmol, 4 mol%) was added under nitrogen. The reaction mixture was heated at 90˚ C for 

48 h. Upon cooling, the organic phase was separated and the aqueous phase was extracted with 

CH2Cl2 (2 x 20 mL). The organic extracts were combined, washed with brine, and dried with 

MgSO4. After solvent removal under vacuum, column chromatography (silica, 2% CH2Cl2 in 
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hexanes, then 15% CH2Cl2 in hexanes) afforded the desired product as a pale green solid (0.522 

g, 58.6%). 1H NMR (300 MHz, CDCl3) δ 0.32 (s, 18 H), 0.77 (b, 70 H), 1.11 (b, 84 H), 2.02-2.10 

(b, 28 H), 7.49 (m, 4 H), 7.65-7.84 (m, 38 H). 13C NMR (75 MHz, CDCl3) δ -0.85, 14.0, 22.5, 

23.9, 29.7, 31.4, 31.5, 40.2, 40.4, 55.2, 55.4, 119.0, 120.0, 121.6, 126.2, 127.7, 131.9, 140.1, 

140.4, 140.6, 151.9. 

 

I I

 

2,7’’’’’’’- Diiodo-tetradecahexyl heptafluorene (20) jecvii24: According to the method of 

Geng,85 bis(trimethylsilyl)heptafluorene 19 (0.493 g, 0.203 mmol) was added to a round-bottom 

flask and dissolved in 4 mL CH2Cl2. The flask was cooled to 0˚ C and ICl in CH2Cl2 (0.447 mL 

x 1.0 M, 0.447 mmol) was added over 10 min. The reaction mixture was brought to RT and an 

aqueous solution of Na2S2O3 was added with vigorous stirring to quench the reaction. Upon 

discoloration, the organic material was washed with brine and dried with MgSO4. After solvent 

removal under vacuum, the crude product was chromatographed (silica, 10% CH2Cl2 in hexanes, 

then 20% CH2Cl2 in hexanes) to yield the product as a pale green solid (0.490 g, 95.2%). 1H 

NMR (300 MHz, CDCl3) δ 0.77 (b, 70 H), 1.12 (b, 84 H), 1.98-2.10 (b, 28 H), 7.46 (pd, 4 H), 

7.59-7.84 (m, 38 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 22.5, 23.9, 29.6, 29.7, 31.5, 40.2, 40.4, 

55.4, 55.5, 119.3, 121.7, 126.2, 132.3, 136.0, 139.3, 140.1, 140.7, 141.4, 151.0, 151.9. 
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Si Si

 

2,7’’’’’’’’- Di(trimethylsilyl)-hexadecahexyl octafluorene (21) jecvii22: In a variation of the 

method of Thiem,152 diiodoquaterfluorene 17 (0.650 g, 0.411 mmol) and boronic acid 18 (0.707 

g, 0.904 mmol, 2.2 eq) were combined with TBABr (0.028 g, 0.157 mmol, 30 mol%), 4 mL 

toluene, and aqueous K2CO3 (2.3 mL x 2.0 M, 4.6 mmol) in a Schlenk flask. The mixture was 

thoroughly degassed and Pd(PPh3)4 (0.019 g, 0.016 mmol, 4 mol%) was added under nitrogen. 

The reaction mixture was heated at 90˚ C for 48 h. Upon cooling, the organic phase was 

separated and the aqueous phase was extracted with CH2Cl2 (2 x 20 mL). The organic extracts 

were combined, washed with brine, and dried with MgSO4. After solvent removal under vacuum, 

column chromatography (silica, 2% CH2Cl2 in hexanes, then 15% CH2Cl2 in hexanes) afforded 

the desired product as a pale green solid (0.593 g, 51.6%). 1H NMR (300 MHz, CDCl3) δ 0.32 (s, 

18 H), 0.77 (b, 82 H), 1.12 (b, 94 H), 2.11 (b, 32 H), 7.33 (m, 4 H), 7.49 (m, 4 H), 7.65-7.84 (m, 

40 H). 13C NMR (75 MHz, CDCl3) δ -0.85, 14.0, 22.5, 23.9, 29.7, 31.5, 40.4, 55.4, 120.0, 121.6, 

126.2, 140.1, 140.6, 151.9. 

 

I I

 

2,7’’’’’’’’- Diiodo-hexadecakis(hexyl) octafluorene (22) jecvii30: According to the method of 

Geng,85 bis(trimethylsilyl)octafluorene 21 (0.545 g, 0.195 mmol) was added to a round-bottom 

flask and dissolved in 4 mL CH2Cl2. The flask was cooled to 0˚ C and ICl in CH2Cl2 (0.428mL x 

1.0 M, 0.428 mmol) was added over 10 min. The reaction mixture was brought to RT and an 
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aqueous solution of Na2S2O3 was added with vigorous stirring to quench the reaction. Upon 

discoloration, the organic material was washed with brine and dried with MgSO4. After solvent 

removal under vacuum, the crude product was chromatographed (silica, hexanes, then 15% 

CH2Cl2 in hexanes) to yield the product as a pale green solid (0.519 g, 91.5%). 1H NMR (300 

MHz, CDCl3) δ 0.77 (b, 82 H), 1.11 (b 94 H), 2.10 (b, 32 H) 7.32 (m, 4 H), 7.46 (m, 2 H), 7.57-

7.84 (m, 42 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 22.5, 23.9, 29.7, 31.5, 40.2, 40.4, 55.4, 55.5, 

120.0, 121.7, 126.2, 132.3, 136.0, 139.3, 140.1, 140.7, 141.4, 151.0, 151.9. 

 

2.6.5. Preparation of a Terfluorene for Metal Chelation 

 

H2N NH2  

9’,9’-Bis-(6-aminohexyl)-9,9,9’’,9’’-tetrahexyl-2,2’;7’,2’’-terfluorene (23) jecvii54: Adapting 

the method of Wang,153 terfluorene 28 (0.405 g) was added to a round-bottom flask and 

dissolved in 5 mL anhydrous THF. The flask was cooled to 0° C and LiAlH4 (1.22 mmol, 1.22 

mL 1M in diethyl ether) was added over 5 min. The flask was slowly warmed to RT and stirred 8 

h. EtOH (0.5 mL) was added to destroy unreacted LiAlH4, the mixture was poured into water, 

and the product was extracted into diethyl ether. The combined organic extracts were washed 

with brine and dried with MgSO4. Solvent was removed under vacuum to give the product as a 

white, flaky solid (0.272 g, 67.1% yield over three steps). 1H NMR (300 MHz, CDCl3) δ 0.75 (b, 

24 H), 1.07-1.25 (b, 36 H), 1.99-2.12 (b, 12 H), 2.53 (t, J =6.9 Hz, 4 H), 7.32 (q, J = 5.8 Hz, 6 

H), 7.61-7.81 (m, 14 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.5, 23.8, 26.5, 29.7, 29.9, 31.5, 
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33.7, 40.4, 42.1, 55.2, 119.7, 121.4, 122.9, 126.0, 126.2, 127.0, 140.0, 140.4, 140.6, 140.8, 151.0, 

151.3, 151.7. 

 

I I 

2,7-Diiodofluorene (24) jeciv63: According to the method of Okumoto,150 to a three-

neck round- bottom flask equipped with a mechanical stirrer were added 1.0 L AcOH, 200 mL 

H2O, 30 mL concentrated H2SO4, H5IO6 (24.05 g, 0.106 mol, 0.5 eq), and I2 (53.58 g, 1 eq). 

After stirring for 10 min, fluorene (35.00 g, 0.211 g) was added and the reaction mixture was 

heated to 80˚ C for 3.5 h. After cooling, the volatile organics were removed under vacuum and 

toluene was added to dissolve the crude product. The toluene extract was washed with aqueous 

K2CO3, aqueous Na2S2O3, and brine before drying with MgSO4. The organic phase was then 

concentrated and the product crystallized as a light yellow powder (64.43 g, 73.1%). 1H NMR 

(300 MHz, CDCl3) δ 3.79 (s, 2 H), 7.46 (d, J = 8.0 Hz, 2 H), 7.68 (m, 2 H), 7.84 (s, 2 H). 13C 

NMR (75 MHz, CDCl3) δ 36.3, 92.4, 121.6, 134.2, 136.0, 140.4, 144.8. MS (EI), m/z 418 (M.+), 

291, 163 (base). 

 

I I

Br Br  

9,9-Di-(6-bromohexyl)-2,7-diiodofluorene (25) jecvi83: Adapting the method of Liu,76 380 mL 

50% KOHaq,  TBABr (1.27 g, 7.13 mmol, 0.36 eq), and 1,6-dibromohexane (30.67 mL, 198 

mmol, 10 eq) were added to a round-bottom flask and brought to 75° C. Diiodofluorene 24 (8.25 

g, 19.7 mmol) was added and the mixture was stirred for 15 min. After cooling to RT, the 

mixture was extracted with CH2Cl2. The organic extract was washed with water, 1 M HCl, water, 
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and brine. After drying with MgSO4, excess 1,6-dibromohexane was removed by vacuum 

distillation. The crude product was purified by column chromatography (SiO2, hexanes, then 

10% CH2Cl2 in hexanes) to give 25 as a pale yellow solid (7.64 g, 52.1%). 1H NMR (300 MHz, 

CDCl3) δ 0.54 (m, 4 H), 1.03-1.21 (m, 8 H), 1.65 (quintet, J = 6.9 Hz, 4 H), 1.89 (m, 4 H), 3.28 

(t, J = 6.8 Hz, 4H), 7.4 (d, J = 7.9 Hz, 2H), 7.63 (m, 4H). 13C NMR (75 MHz, CDCl3) δ 23.5, 

27.7, 28.9, 32.6, 33.6, 39.9, 55.5, 93.1, 121.6, 132.1, 136.3, 139.8, 152.2.  

 

Si Si

X X  

2,7’’-Bis(trimethylsilyl)-9,9,9’,9’,9’’,9’’-hexahexyl-7,2’;7’,2’’-terfluorene (26) jecvii20: In a 

variation of the method of Thiem,152 diiodofluorene 25 (1.30 g, 1.75 mmol) and 2-

trimethylsilylfluoren-7-yl boronic acid 9 (1.73 g, 3.85 mmol, 2.2 eq) were combined with 

TBABr (0.260 g, 1.46 mmol, 30 mol%), 29 mL toluene, and aqueous K2CO3 (19.0 mL x 2.0 M, 

38.0 mmol) in a Schlenk flask. The mixture was thoroughly degassed and Pd(PPh3)4 (0.090 g, 

0.078 mmol, 4 mol%) was added under nitrogen. The reaction mixture was heated at 60˚ C for 

48 h. Upon cooling, the organic phase was separated and the aqueous phase was extracted with 

CH2Cl2 (2 x 20 mL). The organic extracts were combined, washed with brine, and dried with 

MgSO4. After solvent removal under vacuum, column chromatography (silica, petroleum ether, 

then hexanes, then 3% CH2Cl2 in hexanes, then 10% CH2Cl2 in hexanes) afforded the desired 

product as a pale yellow powder (1.80 g). 1H NMR (300 MHz, CDCl3) δ 0.32 (s, 18 H), 0.76 (b, 

26 H), 1.12 (b, 34 H), 1.59 (m, 4 H), 1.99-2.05 (m, 12 H) 3.03 (t, 3 H), 3.25 (t, 1 H), 7.48 (d, J = 

8.5 Hz, 4 H), 7.59-7.81 (m, 14 H). 13C NMR (75 MHz, CDCl3) δ -0.85, 6.6, 13.9, 22.5, 23.8, 
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27.8, 28.9, 29.6, 30.1, 31.4, 32.7, 33.4, 33.5, 40.2, 55.2, 55.3, 119.1, 120.1, 121.5, 121.6, 127.8, 

131.9, 139.1, 140.1, 140.5, 140.7, 140.9, 141.5, 150.3, 151.5, 151.9. 

 

I I

X X  

9,9,9’’,9’’-Tetrahexyl-7,7’’-diiodo-9’,9’-bis-(6-iodohexyl)-2,2’;7’,2’’-terfluorene (27) 

jecvii26: According to the method of Geng,85 bis(trimethylsilyl)terfluorene 26 (1.13 g, 0.8 mmol) 

was added to a round-bottom flask and dissolved in 11 mL CH2Cl2. The flask was cooled to 0˚ C 

and ICl in CH2Cl2 (1.88 mL x 1.0 M, 1.88 mmol) was added over 10 min. The reaction mixture 

was brought to RT and an aqueous solution of Na2S2O3 was added with vigorous stirring to 

quench the reaction. Upon discoloration, the organic material was washed with brine and dried 

with MgSO4. After solvent removal under vacuum, the crude product was chromatographed 

(silica, 3% CH2Cl2 in hexanes, then 20% CH2Cl2 in hexanes) to yield the product as a pale 

yellow powder (1.14 g,). 1H NMR (300 MHz, CDCl3) δ 0.76 (b, 26 H), 1.12 (b, 34 H), 1.59 (m, 4 

H), 1.98-2.08 (m, 12 H) 3.03 (t, 3 H), 3.25 (t, 1 H), 7.48 (d, J = 8.4 Hz, 4 H), 7.59-7.82 (m, 14 

H). 13C NMR (75 MHz, CDCl3) δ 6.8, 14.0, 22.5, 23.8, 27.7, 28.8, 29.6, 30.0, 31.4, 32.6, 33.3, 

33.7, 40.2, 55.3, 55.5, 92.4, 120.1, 121.4, 126.3, 132.2, 135.9, 139.4, 140.1, 140.5, 141.1, 151.0, 

151.5, 153.5. 
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I I

N3 N3  

9,9,9’’,9’’-Tetrahexyl-7,7’’-diiodo-9’,9’-bis-(6-azidohexyl)-2,2’;7’,2’’-terfluorene (28) 

jecvii31: Diiodoterfluorene 27 (0.864 g) was added to a round-bottom flask and dissolved in 13 

mL DMF. NaN3 (89 mg, 1.37 mmol) was added and the contents were stirred at 80° C for 12 h. 

After cooling the flask to RT, the mixture was poured into water and extracted with hexanes. The 

combined organic extracts were washed with brine and dried with MgSO4. Upon solvent removal 

under vacuum, the product was purified by column chromatography (SiO2, 10% CH2Cl2 in 

hexanes, then 20% CH2Cl2 in hexanes) to give the product as an off-white solid (0.715 g) 1H 

NMR (300 MHz, CDCl3) δ 0.77 (b, 26 H), 1.13 (b, 34 H), 1.40 (m, 4 H), 1.95-2.08 (b, 12 H) 

3.10 (t, J =6.9 Hz, 4 H), 7.46 (d, J = 8.5 Hz, 4 H), 7.58-7.82 (m, 14 H). 13C NMR (75 MHz, 

CDCl3) δ 14.0, 22.5, 23.78, 26.3, 28.7, 29.5, 29.6, 31.4. 40.2, 51.4, 55.3, 55.5, 92.5, 120.1, 121.4, 

126.3, 132.2, 136.0, 139.4, 140.2, 140.5, 141.1, 151.0, 151.5, 153.5. 

 

2.6.6. Fluorene-Methylene Segmer and Polymer Synthesis 

 

 

2,7-Bis-hex-5-enyl-9,9-dihexylfluorene (SF1M10) jecv17/jecv22: According to the method of 

Peifer,137 diiodofluorene 4 (3.00 g, 5.12 mmol) was combined with 180 mL DMF, Pd(PPh3)2Cl2 

(0.145 g, 2.5 mol%) and K2CO3 (2.97 g, 21.5 mmol, 4.2 eq) in a flame-dried Schlenk flask under 

nitrogen. 9-Hex-5-enyl-9BBN 1 (2.72 mL, 11.49 mmol, 2.25 eq) was then added under nitrogen 
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by syringe as a solution in 5 mL DMF. After the mixture was stirred for 8 h the contents were 

poured into water and the mixture was extracted with hexanes (3 x 100 mL). The organic 

extracts were combined, washed with brine, and dried with MgSO4. After solvent removal under 

vacuum, column chromatography (silica, hexanes) afforded the desired product as a colorless oil 

(1.16 g, 45.5%). 1H NMR (300 MHz, CDCl3) δ  0.61 (b, 4 H), 0.75 (t, 6 H), 1.03 (m, 14 H), 1.39 

(m, 4 H), 1.63 (quintet, 4 H), 1.88 (q, 4 H), 2.06 (q, 4 H), 2.66 (t, 4 H), 4.97 (m, 4 H), 5.77 (m, 2 

H), 7.07 (m, 4 H), 7.51-7.54  (m, 2 H). 13C NMR (75 MHz, CDCl3) δ 14.1, 22.5, 23.6, 28.4, 29.7, 

31.2, 31.4, 33.7, 36.0, 40.4, 54.6, 114.3, 119.0, 122.9, 126.8, 138.9, 141.1, 150.7. MS (EI), m/z 

498 (M.+), 429, 343, 273 (base), 204, 55. HRMS calcd for C37H54: 498.4226. Found: 498.4229. 

Anal. calcd for C37H54: C, 89.09; H, 10.91. Found: C, 89.10, H, 11.02. 

 

 

2,7-Bis-dec-9-enyl-9,9-dihexylfluorene (SF1M18) jecv24: According to the method of 

Peifer,137 diiodofluorene 4 (3.00 g, 5.12 mmol) was combined with 180 mL DMF, Pd(PPh3)2Cl2 

(0.145 g, 2.5 mol%) and K2CO3 (2.97 g, 21..5 mmol, 4.2 eq) in a flame-dried Schlenk flask 

under nitrogen. 9-Dec-9-enyl-9-BBN 2 (3.48 mL, 11.52 mmol, 2.25 eq) was then added under 

nitrogen by syringe as a solution in 5 mL DMF. The mixture was stirred for 8 h, at which point 

the contents were poured into water for extraction with hexanes (3 x 100 mL). The organic 

extracts were combined, washed with brine, and dried with MgSO4. After solvent removal under 

vacuum, column chromatography (silica, hexanes) afforded the desired product as a colorless oil 

(1.53 g, 49.0%). 1H NMR (300 MHz, CDCl3) δ 0.66 (b, 4 H), 0.76 (t, 6 H), 1.10 (m, 16 H), 1.32 

(b, 26 H), 1.64 (b, 6 H), 1.91 (m, 4 H), 2.02 (q, 4 H), 2.67 (t, 4 H), 4.95 (m, 4 H), 5.79 (m, 2 H), 
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7.09 (m, 4 H), 7.53 (m, 2 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.6, 23.7, 29.0, 29.2, 29.5, 

29.7, 31.5, 31.8, 33.8, 36.3, 40.5, 54.6, 114.1, 119.0, 122.8, 126.8, 138.9, 141.3, 150.7. HRMS 

calcd for C45H70: 610.5478. Found: 610.5487. 

 

7,7’-Bis-hex-5-enyl-9,9,9’9’-tetrahexyl-2,2’-bifluorene (SF2M10) jecvi81/jecv76: Adapting 

the method of Peifer,137 diiodobifluorene 11 (1.18 g, 1.29 mmol) was combined with 28 mL 

DMF, 28 mL toluene, Pd(PPh3)2Cl2 (0.045 g, 5 mol%) and K2CO3 (0.80 g, 5.80 mmol, 4.2 eq) in 

a flame-dried Schlenk flask under nitrogen. 9-Hex-5-enyl-9-BBN 1 (0.75 mL, 3.23 mmol, 2.25 

eq) was then added under nitrogen by syringe as a solution in 5 mL DMF. The mixture was 

stirred for 8 h at 45˚ C, at which point the contents were poured into water for extraction with 

hexanes (3 x 50 mL). The organic extracts were combined, washed with brine, and dried with 

MgSO4. After solvent removal under vacuum, column chromatography (silica, hexanes) afforded 

the desired product as a colorless oil (0.764 g, 71.4%). 1H NMR (300 MHz, CDCl3) δ 0.76 (b, 20 

H), 1.07 (b, 26 H), 1.45 (quintet, 4 H), 1.69 (quintet, 4 H), 1.98-2.09 (m,  14 H), 2.70 (t, J = 7.4 

Hz, 4 H), 4.95 (m, 4 H), 5.81 (m, 2 H), 7.13 (m, 4 H), 7.57-7.70 (m, 8 H). 13C NMR (75 MHz, 

CDCl3) δ 14.1, 22.7, 23.9, 28.6, 29.8, 31.4, 31.6, 33.8, 36.2, 40.5, 55.1, 114.5, 119.6, 121.4, 

123.2, 126.0, 127.2, 138.6, 139.0, 140.2, 140.5, 141.8, 151.2, 151.5. Anal. calcd for C62H86: C, 

89.57; H, 10.43. Found: C, 89.61, H, 10.51. HRMS calcd for C70H102: 830.6730. Found: 

830.6846. 
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7,7’-Bis-dec-9-enyl-9,9,9’9’-tetrahexyl-2,2’-bifluorene (SF2M18) jecvi85/jecv78: Adapting 

the method of Peifer,137 diiodobifluorene 11 (1.18 g, 1.29 mmol) was combined with  28 mL 

DMF, 28 mL toluene, Pd(PPh3)2Cl2 (0.045 g, 5 mol%) and K2CO3 (0.80 g, 5.80 mmol, 4.2 eq) in 

a flame-dried Schlenk flask under nitrogen. 9-Dec-9-enyl-9-BBN 2 (0.97 mL, 3.23 mmol, 2.25 

eq) was then added under nitrogen by syringe as a solution in 5 mL DMF. The mixture was 

stirred for 8 h at 45˚ C, at which point the contents were poured into water for extraction with 

hexanes (3 x 50 mL). The organic extracts were combined, washed with brine, and dried with 

MgSO4. After solvent removal under vacuum, column chromatography (silica, hexanes) afforded 

the desired product as a colorless oil (0.624 g, 51.4%). 1H NMR (300 MHz, CDCl3) δ 1H NMR 

(300 MHz, CDCl3) δ  0.70 (b, 24 H), 1.11 (b, 28 H), 1.32 (b, 20 H), 2.05 (m, 12 H), 2.69 (t, 4 H), 

4.96 (m, 4 H), 5.76 (m, 2 H), 7.14 (m, 4 H), 7.58-7.73 (m, 8 H). 13C NMR (75 MHz, CDCl3) δ 

14.0, 22.5, 23.7, 28.9, 29.1, 29.2, 29.5, 29.7, 31.4, 31.8, 33.8, 36.3, 40.4, 54.9, 114.1, 119.4, 

121.3, 123.0, 125.9, 127.0, 138.4, 139.2, 140.0, 140.3, 141.9, 151.1, 151.4. HRMS calcd for 

C70H102: 942.7982. Found: 942.8060. 

 

 

2,7’’-Bis-hex-5-enyl-9,9,9’,9’,9’’,9’’-hexahexyl-7,2’;7’,2’’-terfluorene (SF3M10) 

jecvi26/jecvii38: Terfluorene SF3M10 was prepared using the following methods: 
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Method 1: Adapting the method of Peifer,137 diiodoterfluorene 14 (0.56 g, 0.45 mmol) 

was combined with  10 mL DMF, 10 mL toluene, Pd(PPh3)2Cl2 (0.012 g, 2 mol%) and K2CO3 

(0.27 g,  1.96 mmol, 4.2 eq) in a flame-dried Schlenk flask under nitrogen. 9-Hex-5-enyl-9-BBN 

1 (0.43 mL, 1.80 mmol, 4 eq) was then added under nitrogen by syringe as a solution in 2 mL 

DMF. The mixture was stirred for 8 h at 45˚ C, at which point the contents were poured into 

water for extraction with hexanes (3 x 30 mL). The organic extracts were combined, washed 

with brine, and dried with MgSO4. After solvent removal under vacuum, column 

chromatography (silica, hexanes, then 10% CH2Cl2 in hexanes) afforded the desired product as a 

white powder (0.443 g, 84.9%).  

Method 2: In a variation of the method of Thiem,152 diiodoterfluorene 14 (0.63 g, 0.51 

mmol) was combined with TBABr (0.025 g, 0.15 mmol, 30 mol%), 17 mL toluene, and aqueous 

K2CO3 (6.8 mL x 2.0 M, 13.6 mmol) in a Schlenk flask. The mixture was thoroughly degassed 

and Pd(PPh3)2Cl2 (0.017 g, 3 mol%) and 9-hex-5-enyl-9BBN 1 (0.43 mL, 1.80 mmol, 4 eq) were 

added under nitrogen. The reaction mixture was heated at 45˚ C for 8 h. Upon cooling, the 

organic phase was separated and the aqueous phase was extracted with hexanes (3 x 30 mL). The 

organic extracts were combined, washed with brine, and dried with MgSO4. After solvent 

removal under vacuum, column chromatography (silica, hexanes, then 10% CH2Cl2 in hexanes) 

afforded the desired product as a white powder (0.497 g, 84.5%). 1H NMR (300 MHz, CDCl3) δ 

0.77 (b, 30 H), 1.10 (b, 44 H), 1.42 (quintet, 4 H), 1.67 (quintet, 4 H) 2.02-2.11 (m, 16 H), 2.71 

(t, 4 H), 4.97 (m, 4H), 5.82 (m, 2 H), 7.14 (m, 4 H), 7.60-7.81 (m, 14 H). 13C NMR (75 MHz, 

CDCl3) δ 13.9, 22.5, 23.9, 28.5, 29.7, 31.2, 31.5, 33.6, 36.2, 40.4, 55.1, 55.4, 114.3, 119.5, 119.7, 

121.6, 123.1, 126.1, 126.7, 127.1, 138.7, 138.9, 140.1, 140.3, 140.6, 140.8, 141.8, 151.4, 151.6, 

151.9. Anal. calcd for C87H118: C, 89.78; H, 10.22. Found: C, 89.54, H, 10.21. 
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2,7’’-Bis-dec-9-enyl-9,9,9’,9’,9’’,9’’-hexahexyl-7,2’;7’,2’’-terfluorene (SF3M18) 

jecvi90: Adapting the method of Peifer,137 diiodoterfluorene 14 (0.58 g, 0.46 mmol), was 

combined with 10 mL DMF, 10 mL toluene, Pd(PPh3)2Cl2 (0.013 g, 2 mol%) and K2CO3 (0.27 g,  

1.96 mmol, 4.2 eq) in a flame-dried Schlenk flask under nitrogen. 9-Dec-9-enyl-9-BBN 2 (0.56 

mL, 1.85 mmol, 4 eq) was then added under nitrogen by syringe as a solution in 2 mL DMF. The 

mixture was stirred for 8 h at 45˚ C, at which point the contents were poured into water for 

extraction with hexanes (3 x 30 mL). The organic extracts were combined, washed with brine, 

and dried with MgSO4. After solvent removal under vacuum, column chromatography (silica, 

hexanes, then 10% CH2Cl2 in hexanes) afforded the desired product as a white powder (0.417 g, 

71.0%). 1H NMR (300 MHz, CDCl3) δ 0.77 (b, 30 H), 1.14-1.40 (b, 60 H), 1.67 (b, 4 H) 2.01-

2.07 (b, 12 H), 2.70 (t, J = 7.2 Hz, 4 H), 4.95 (m, 4H), 5.83 (m, 2 H), 7.16 (m, 4 H), 7.61-7.81 

(m, 14 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 22.5, 23.9, 29.0, 29.2, 29.5, 31.5, 31.7, 33.8, 36.3, 

40.4, 55.1, 55.4, 114.1, 119.5, 119.9, 121.6, 123.1, 125.7, 127.1, 138.6, 139.1, 140.1, 140.2, 

140.6, 140.8, 142.0, 151.3, 151.5, 151.9. 

 

 

2,7’’’-Bis-hex-5-enyl-octahexyl-7,2’;7’,2’’;7’’,2’’’-quaterfluorene (SF4M10) jecvi59: 

Adapting the method of Peifer,137 diiodoquaterfluorene 17 (0.86 g, 0.54 mmol), was combined 
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with 10 mL DMF, 10 mL toluene, Pd(PPh3)2Cl2 (0.015 g, 2 mol%) and K2CO3 (0.33 g,  5.80 

mmol, 4.5 eq) in a flame-dried Schlenk flask under nitrogen. 9-Hex-5-enyl-9-BBN 1 (0.52 mL, 

2.17 mmol, 4.0 eq) was then added under nitrogen by syringe as a solution in 2 mL DMF. The 

mixture was stirred for 8 h at 45˚ C, at which point the contents were poured into water for 

extraction with hexanes (3 x 40 mL). The organic extracts were combined, washed with brine, 

and dried with MgSO4. After solvent removal under vacuum, column chromatography (silica, 

hexanes, then 10% CH2Cl2 in hexanes) afforded the desired product as a white powder (0.731 g, 

89.8%). 1H NMR (300 MHz, CDCl3) δ 0.77 (b, 70 H), 1.12 (b, 86 H), 1.42 (quintet, J = 7.7 Hz, 4 

H), 1.67 (quintet, J = 7.6 Hz, 4 H) 2.02-2.13 (m, 30 H), 2.71 (t, J = 7.1 Hz, 4 H), 4.97 (m, 4H), 

5.83 (m, 2 H), 7.16 (bs, 4 H), 7.36 (q, 4 H), 7.62-7.83 (m, 32 H). 13C NMR (75 MHz, CDCl3) δ. 

14.0, 22.5, 23.8, 28.4, 29.7, 31.4, 33.7, 36.1, 40.4, 55.0, 55.3, 114.4, 119.5, 119.9, 121.4, 121.5, 

123.0, 126.0, 127.1, 138.5, 138.9, 139.9, 140.3, 140.6, 141.7, 151.2, 151.4, 151.5, 151.8. Anal. 

calcd for C112H150: C, 89.90; H, 10.10. Found: C, 89.26, H, 10.03. 

 

 

2,7’’’-Bis-dec-9-enyl-octahexyl-7,2’;7’,2’’;7’’,2’’’-quaterfluorene (SF4M18) jecvi92: 

Adapting the method of Peifer,137 diiodoquaterfluorene 17 (0.85 g, 0.54 mmol), was combined 

with 12 mL DMF, 12 mL toluene, Pd(PPh3)2Cl2 (0.015 g, 2 mol%) and K2CO3 (0.80 g,  5.80 

mmol, 4.5 eq) in a flame-dried Schlenk flask under nitrogen. 9-Dec-9-enyl-9-BBN 2 (0.65 mL, 

2.15 mmol, 4.0 eq) was then added under nitrogen by syringe as a solution in 2 mL DMF. After 

stirring for for 8 h at 45˚ C, the contents were poured into water for extraction with hexanes (3 x 

40 mL). The organic extracts were combined, washed with brine, and dried with MgSO4. After 
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solvent removal under vacuum, column chromatography (silica, hexanes, then 10% CH2Cl2 in 

hexanes) afforded the desired product as a white powder (0.705 g, 81.7%).  1H NMR (300 MHz, 

CDCl3) δ 0.77 (b, 48 H), 1.13 (b, 52 H), 1.33 (b, 20 H), 1.67 (b, 4 H) 2.01-2.09 (b, 20 H), 2.71 (t, 

J = 7.3 Hz, 4 H), 4.97 (m, 4H), 5.83 (m, 2 H), 7.17 (bs, 4 H), 7.36 (q, 4 H), 7.62-7.81 (m, 16 H). 

13C NMR (75 MHz, CDCl3) δ 13.9, 22.3, 23.9, 29.0, 29.2, 29.5, 29.7, 29.9, 31.5, 31.7, 33.8, 36.4, 

40.4, 55.1, 55.3, 114.1, 119.6, 120.0, 121.7, 123.0, 126.2, 126.3, 126.9, 127.2, 138.6, 139.7, 

140.0, 140.2, 140.7, 140.9, 142.0, 151.3, 151.6, 151.9. 

 

2,7’’’’’’’-Bis-dec-9-enyl-tetradecahexyl heptafluorene (SF7M18) jecvii35: In a variation of 

the method of Thiem,152 diiodoheptafluorene 20 (0.46 g, 0.18 mmol) was combined with TBABr 

(9 mg, 0.05 mmol, 30 mol%), 6 mL toluene, and aqueous K2CO3 (2.4 mL x 2.0 M, 4.8 mmol) in 

a Schlenk flask. The mixture was thoroughly degassed and Pd(PPh3)2Cl2 (6 mg, 3 mol%) and 9-

dec-9-enyl-9-BBN 2 (0.22 mL, 0.72 mmol, 4 eq) were added under nitrogen. The reaction 

mixture was heated at 45˚ C for 8 h. Upon cooling, the organic phase was separated and the 

aqueous phase was extracted with hexanes (3 x 20 mL). The organic extracts were combined, 

washed with brine, and dried with MgSO4. After solvent removal under vacuum, column 

chromatography (silica, hexanes, then 15% CH2Cl2 in hexanes) afforded the desired product as a 

white powder (0.356 g, 77.5%). 1H NMR (300 MHz, CDCl3) δ 0.77 (b, 70 H), 1.11-1.47 (b, 

114), 1.63 (b, 4 H), 1.86-2.11 (b, 30 H.) 2.69 (t, 4 H), 4.95 (m, 4 H), 5.79 (m, 2 H), 7.16 (b, 4 H), 

7.59-7.84 (m, 38 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 22.5, 23.9, 29.0, 29.2, 29.5, 29.7, 31.5, 

31.8, 33.8, 36.3, 40.4, 55.1, 55.4, 114.1, 119.4, 119.5, 120.0, 121.7, 123.1, 126.0, 126.2, 127.1, 

138.6, 140.0, 140.1, 140.6, 140.7, 140.9, 142.0, 151.3, 151.5, 151.9. 
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2,7’’’’’’’’-Bis-dec-9-enyl-hexadecahexyl octafluorene (SF8M18) jecvii40: In a variation of the 

method of Thiem,152 diiodooctafluorene 22 (0.42 g, 0.15 mmol) was combined with TBABr (7 

mg, 0.05 mmol, 30 mol%), 5 mL toluene, and aqueous K2CO3 (2.0 mL x 2.0 M, 4.0 mmol) in a 

Schlenk flask. The mixture was thoroughly degassed and Pd(PPh3)2Cl2 (5 mg, 3 mol%) and 9-

dec-9-enyl-9-BBN 2 (0.18 mL, 0.58 mmol, 4 eq) were added under nitrogen. The reaction 

mixture was heated at 45˚ C for 8 h. Upon cooling, the organic phase was separated and the 

aqueous phase was extracted with hexanes (3 x 20 mL). The organic extracts were combined, 

washed with brine, and dried with MgSO4. After solvent removal under vacuum, column 

chromatography (silica, hexanes, then 15% CH2Cl2 in hexanes) afforded the desired product as a 

white powder (0.306 g, 71.4%). 1H NMR (300 MHz, CDCl3) δ 0.77 (b, 82 H), 1.12-1.41 (b, 118 

H), 1.66 (b, 4 H), 1.90-2.25 (b, 32 H), 2.69 (t, 4 H), 4.96 (m, 4 H), 5.83 (m, 2 H), 7.15 (bs, 4 H), 

7.34 (m, 4 H), 7.64-7.84 (m, 40 H). 13C NMR (75 MHz, CDCl3) δ 13.9, 22.5, 23.9, 24.0, 29.0, 

29.2, 29.5, 29.7, 31.5, 31.8, 33.8, 40.4, 55.1, 55.4, 114.1, 119.5, 120.0, 121.7, 123.0, 123.1, 

126.0, 126.2, 126.8, 127.1, 138.6, 140.0, 140.1, 140.7, 140.9, 142.0, 151.3, 151.6, 151.9. 

 

n

 

Poly(9,9-dihexylfluorene-co-decane) (PF1M10) jecvi47: Adapting the method of Watson,143 a 

pear-shaped flask was charged with SF1M10 (0.607 g, 1.22 mmol). A gas adapter was fitted to 
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the top and the flask was evacuated thoroughly. The flask was brought into a nitrogen-filled 

glove box and diphenyl ether (0.5 g) and bis(tricyclohexylphosphine)benzylideneruthenium(IV) 

dichloride (25 mg, 2 mol%, added as a solution in 2 mL toluene) were added. The flask was 

brought out of the glove box and vacuum was applied to the mixture until the stir bar was 

immobilized. Stirring was reestablished by heating the flask at 45˚ C, and vacuum was applied 

overnight. The flask was then cooled to RT and brought into the glove box. The reaction mixture 

was taken up in 10 mL toluene and transferred to a stainless steel reaction vessel. To this vessel 

was added 1.9 g silica. The vessel was brought out of the glove box, charged with 180 psi H2, 

and heated at 80˚ C for 48 h. After cooling the vessel, the contents were subjected to 

centrifugation and the mother liquor was removed and concentrated. The polymer was isolated 

by precipitation into acetone with vigorous stirring to yield the desired product as a white solid 

(0.391 g, 67.9%). Mw = 30,000; Mn = 14,000; PDI = 2.1. 1H NMR (300 MHz, CDCl3) δ 0.60 (b, 

6 H), 0.74 (t, 6 H), 1.02 (m, 16 H), 1.22-1.29 (b, 32 H), 1.61 (b, 4 H), 1.88 (m, 4 H), 2.64 (t, 4 

H), 7.07 (m, 4 H), 7.50 (d, J = 8.1 Hz, 2 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.5, 23.7, 29.3, 

29.7, 31.4, 31.8, 36.3, 40.4, 54.6, 118.9, 122.9, 126.8, 138.9, 141.4, 150.8.  

 

n

 

Poly(9,9-dihexylfluorene-co-octadecane) (PF1M18) jecvi78: Adapting the method of 

Watson,143 a pear-shaped flask was charged with SF1M18 (0.573 g, 0.94 mmol). A gas adapter 

was fitted to the top and the flask was evacuated thoroughly. The flask was brought into a 

nitrogen-filled glove box and diphenyl ether (0.56 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (17 mg, 2 mol%, added as a 
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solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 8.5 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 1.6 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 

subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring to yield the desired product as a 

white solid (0.454 g, 82.8%). Mw = 33,000; Mn = 16,000; PDI = 2.1. 1H NMR (300 MHz, 

CDCl3) δ 0.60 (b, 4 H), 0.76 (t, 6 H), 1.02 (m, 12 H), 1.22-1.29 (b, 28 H), 1.61 (t, 4 H), 1.89 (m, 

4 H), 2.64 (t, 4 H), 7.07 (m, 4 H), 7.50 (d, 2 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.5, 23.6, 

29.3, 29.6, 29.7, 31.4, 31.8, 36.2, 40.4, 54.6, 118.9, 122.9, 126.8, 138.8, 141.3, 150.7. 

 

n

 

Poly(9,9,9’,9’-tetrahexyl-2,2’-bifluorene-co-decane) (PF2M10) jecvi84: Adapting the method 

of Watson,143 a pear-shaped flask was charged with SF2M10 (0.473 g, 0.57 mmol). A gas 

adapter was fitted to the top and the flask was evacuated thoroughly. The flask was brought into 

a nitrogen-filled glove box and diphenyl ether (0.3 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (10 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

101 



 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 5.5 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.97 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 

subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring to yield the desired product as a 

white solid (0.275 g, 60.0%). Mw = 17,000; Mn = 9,200; PDI = 1.9. 1H NMR (300 MHz, CDCl3) 

δ 0.75 (b, 16 H), 1.06 (b, 24 H), 1.31 (b, 16 H), 1.65 (b, 4 H), 1.97 (b, 8 H), 2.67 (t, 4 H), 7.14 

(bs, 4 H), 7.56-7.69 (m, 8 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.5, 23.7, 29.3, 29.6, 31.4, 

31.9, 36.3, 40.4, 54.9.119.4, 119.5, 121.3, 123.0, 125.9, 127.0, 138.4, 140.0, 140.3, 141.9, 151.1, 

151.4. Anal. calcd for C60H84: C, 89.49; H, 10.51. Found: C, 89.24, H, 10.46. 

 

n

 

Poly(9,9,9’,9’-tetrahexyl-2,2’bifluorene-co-octadecane) (PF2M18) jecvi88: Adapting the 

method of Watson,143 a pear-shaped flask was charged with SF2M18 (0.488 g, 0.53 mmol). A 

gas adapter was fitted to the top and the flask was evacuated thoroughly. The flask was brought 

into a nitrogen-filled glove box and diphenyl ether (0.5 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (12 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 
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vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 5.5 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.96 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 

subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring to yield the desired product as a 

white solid (0.298 g, 61.2%). Mw = 21,500; Mn = 13,000; PDI = 1.7. 1H NMR (300 MHz, 

CDCl3) δ 0.77 (b, 16 H), 1.08 (b, 24 H), 1.26-1.40 (b, 32 H), 1.66 (b, 4 H), 2.02 (b, 8 H), 2.70 (t, 

4 H), 7.15 (bs, 4 H), 7.59-7.70 (m, 8 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.5, 23.7, 29.3, 

29.7, 31.4, 31.8, 36.3, 40.4, 54.9, 119.4, 119.5, 121.3, 123.0, 125.9, 127.0, 138.4, 140.0, 140.4, 

141.9, 151.1, 151.4.  

n

 

Poly(9,9,9’,9’, 9’’,9’’-hexahexyl-2,2’;2’,2’’-terfluorene-co-decane) (PF3M10) jecvii47: 

Adapting the method of Watson,143 a pear-shaped flask was charged with SF3M10 (0.989 g, 

0.851 mmol). A gas adapter was fitted to the top and the flask was evacuated thoroughly. The 

flask was brought into a nitrogen-filled glove box and diphenyl ether (0.9 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (14 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 11 mL toluene and transferred to a stainless steel reaction 

103 



 

vessel. To this vessel was added 1.5 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 

subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring to yield the desired product as a 

white solid (0.673 g, 69.6%).  Mw = 44,000; Mn = 26,000; PDI = 1.7. 1H NMR (300 MHz, 

CDCl3) δ 0.75 (b, 24 H), 1.08 (b, 34 H), 1.29 (b, 20 H), 1.52 (b, 4 H) 2.01 (b, 12 H), 2.68 (t, 4 

H), 7.15 (bs, 4 H), 7.59-7.80 (m, 14 H). 13C NMR (75 MHz, CDCl3) δ 14.1, 22.7, 24.1, 29.5, 

29.9, 31.7, 32.0, 36.6, 40.6, 55.3, 55.6, 119.7, 119.9, 121.8, 123.3, 126.3, 126.4, 127.3, 138.8, 

140.3, 140.4, 140.8, 141.0, 142.3, 151.5, 151.7, 152.1. 

 

n

 

Poly(9,9,9’,9’, 9’’,9’’-hexahexyl-2,2’;2’,2’’-terfluorene-co-octadecane) (PF3M18) jecvi91: 

Adapting the method of Watson,143 a pear-shaped flask was charged with SF3M18 (0.310 g, 

0.243 mmol). A gas adapter was fitted to the top and the flask was evacuated thoroughly. The 

flask was brought into a nitrogen-filled glove box and diphenyl ether (0.3 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (5 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 3 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.45 g silica. The vessel was brought out of the glove box, 
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charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 

subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring to yield the desired product as a 

white solid (0.227 g, 74.9%). Mw = 20,000; Mn = 13,000; PDI = 1.5. 1H NMR (300 MHz, 

CDCl3) δ 0.77 (b, 76 H), 1.09 (b, 38 H), 1.66 (b, 4 H), 2.00-2.06 (b, 12 H), 2.69 (t, J = 7.2 Hz, 4 

H), 7.15 (b, 4 H), 7.60-7.81 (m, 12 H). 13C NMR (75 MHz, CDCl3) δ 14.2, 22.7, 23.9, 29.4, 29.8, 

31.6, 32.0, 36.4, 40.5, 55.1, 55.4, 119.5, 119.6, 120.0, 121.5, 123.2, 126.0, 126.2, 127.2, 138.5, 

140.0, 140.6, 140.7, 142.2, 151.2, 151.5, 151.8. 

 

n

 

Poly(9,9,9’,9’, 9’’,9’’,9’’’,9’’’-octahexyl-2,2’;2’,2’’-quaterfluorene-co-decane) (PF4M10) 

jecvi71: Adapting the method of Watson,143 a pear-shaped flask was charged with SF4M10 

(0.400 g, 0.268 mmol). A gas adapter was fitted to the top and the flask was evacuated 

thoroughly. The flask was brought into a nitrogen-filled glove box and diphenyl ether (0.3 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (5 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 3.5 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.47 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 
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subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring. After reprecipitating into 

acetone, PF4M10 was recovered as a white solid (0.272 g, 69.1%). Mw = 9,800; Mn = 7,000; 

PDI = 1.4. 1H NMR (300 MHz, CDCl3) δ 0.78 (b, 60 H), 1.12-1.40 (b, 86 H), 1.67 (b, 4 H), 2.03-

2.10 (b, 22 H), 2.70 (t, 4 H), 7.15 (b, 4 H), 7.35 (q, 2 H), 7.61-7.81 (m, 28 H). 13C NMR (75 

MHz, CDCl3) δ 14.0, 22.6, 23.8, 29.3, 29.7, 31.4, 31.9, 36.3, 40.4, 55.1, 55.3, 119.4, 119.9, 

121.4, 123.0, 125.9, 126.1, 127.0, 138.3, 139.8, 139.9, 140.3, 140.4, 140.6, 142.0, 151.1, 151.4, 

151.8.  

 

n

 

Poly(9,9,9’,9’, 9’’,9’’,9’’’,9’’’-octahexyl-2,2’;2’,2’’-quaterfluorene-co-octadecane) 

(PF4M18) jecvi94: Adapting the method of Watson,143 a pear-shaped flask was charged with 

SF4M18  (0.468 g, 0.291 mmol). A gas adapter was fitted to the top and the flask was evacuated 

thoroughly. The flask was brought into a nitrogen-filled glove box and diphenyl ether (0.4 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (5 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 4 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.53 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 
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subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring. After reprecipitating into 

acetone, PF4M18 was recovered as a white solid (0.312 g, 67.9%). Mw = 10,600; Mn = 7,600; 

PDI = 1.4. 1H NMR (300 MHz, CDCl3) δ 0.77 (b, 60 H), 1.09-1.33 (b, 104 H), 1.66 (b, 4 H), 

2.03-2.10 (b, 22 H), 2.70 (t, 4 H), 7.15 (b, 4 H),  7.61-7.81 (m, 28 H). 13C NMR (75 MHz, 

CDCl3) δ 14.0, 22.5, 23.8, 29.3, 29.6, 31.4, 31.8, 36.3, 40.4, 55.0, 55.3, 119.4, 119.5, 119.9, 

121.4, 121.5, 123.0, 125.9, 126.1, 127.0, 138.4, 139.8, 140.0, 140.3, 140.6, 140.8, 142.0, 151.0, 

151.1, 151.4, 151.5, 151.8.  

 

n

 

Poly(tetradecahexyl heptafluorene-co-octadecane) (PF7M18) jecvii48: Adapting the method 

of Watson,143 a pear-shaped flask was charged with SF7M18  (0.324 g, 0.125 mmol). A gas 

adapter was fitted to the top and the flask was evacuated thoroughly. The flask was brought into 

a nitrogen-filled glove box and diphenyl ether (0.15 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (3 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 3 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.22 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 
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subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 

was isolated by precipitation into acetone with vigorous stirring. After reprecipitation into 

hexanes, PF7M18 was recovered as a tan powder (0.190 g, 59.0%). Mw = 57,000; Mn = 36,000; 

PDI = 1.6. 1H NMR (300 MHz, CDCl3) δ 0.76 (b, 70 H), 1.10-1.32 (b, 104 H), 1.52-1.65 (b, 12 

H), 2.09 (b, 28 H), 2.68 (b, 4 H), 7.14 (b, 4 H), 7.59-7.83 (b, 38 H). 13C NMR (75 MHz, CDCl3) 

14.0, 22.5, 23.9, 29.3, 29.7, 31.5, 36.3, 40.4, 55.0, 55.4, 119.5, 120.0, 121.6, 123.0, 126.2, 127.1, 

138.5, 140.1, 140.6, 142.1, 151.2, 151.5, 151.9 

 

n

 

Poly(hexadecahexyl octafluorene-co-octadecane) (PF8M18) jecvii49: Adapting the method of 

Watson,143 a pear-shaped flask was charged with SF8M18  (0.277 g, 0.094 mmol). A gas adapter 

was fitted to the top and the flask was evacuated thoroughly. The flask was brought into a 

nitrogen-filled glove box and diphenyl ether (0.15 g) and 

bis(tricyclohexylphosphine)benzylideneruthenium(IV) dichloride (3 mg, 2 mol%, added as a 

solution in 2 mL toluene) were added. The flask was brought out of the glove box and toluene 

was removed under high vacuum with stirring. High vacuum was then applied to the mixture 

until the stir bar was immobilized. Stirring was reestablished by heating the flask at 45˚ C, and 

vacuum was applied overnight. The flask was then cooled to RT and brought into the glove box. 

The reaction mixture was taken up in 5 mL toluene and transferred to a stainless steel reaction 

vessel. To this vessel was added 0.17 g silica. The vessel was brought out of the glove box, 

charged with 180 psi H2, and heated at 80˚ C for 48 h. After cooling the vessel, the contents were 

subjected to centrifugation and the mother liquor was removed and concentrated. The polymer 
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was isolated by precipitation into acetone with vigorous stirring. After reprecipitation into 

hexanes, PF8M18 was recovered as a tan powder (0.107 g, 39.1%). Mw = 22,000; Mn = 14,000; 

PDI = 1.6. 1H NMR (300 MHz, CDCl3) δ 0.77 (b, 84 H), 1.12-1.32 (b, 112 H), 1.52-1.66 (b, 12 

H), 2.10 (b, 32 H), 2.69 (t, 4 H), 7.15 (s, 4 H), 7.66-7.84 (m, 44 H). 13C NMR (75 MHz, CDCl3) 

δ 13.9, 22.5, 23.9, 29.7, 31.5, 40.4, 55.0, 55.4, 118.8, 120.0, 121.6, 123.1, 126.2, 140.1, 140.6, 

151.2, 151.5, 151.9. 

 

n

 

Poly(9,9-dihexylfluorene) (PDHF) jecv96/jecvii7/jecvii55: Three samples of PDHF were 

prepared based on the method of Kreyenschmidt.89  

PDHF-old: A flame-dried Schlenk flask was brought into a nitrogen-filled glove box and 

charged with Ni(COD)2 (2.58 g, 9.38 mmol, 1.5 eq) and bipyridine (1.47 g, 9.38 mmol, 1.5 eq). 

The mixture was dissolved in 15 mL DMF and COD (1.02 g, 9.38 mmol, 1.5 eq) was added. 

After the flask was brought out of the glove box and heated to 80˚ C for 30 min, 2,7-

dibromofluorene 7 (3.00 g, 6.10 mmol, as a solution in 10 mL anhydrous toluene) was added 

under nitrogen. The flask was wrapped in aluminum foil and the reaction was stirred at 80˚ C for 

48 h. The hot solution was then added dropwise to an equivolume mixture of rapidly stirring 

concentrated HCl, acetone, and methanol. After filtering through a sintered glass frit, the 

polymer was redissolved in CH2Cl2 and precipitated twice into an equivolume mixture of 

acetone and methanol. The recovered polymer was dried under vacuum for 12 h to yield the 

desired product as a tan powder (1.160 g, 57.0%).  
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PDHF-new: A flame-dried Schlenk flask was brought into a nitrogen-filled glove box 

and charged with Ni(COD)2 (1.29 g, 4.69 mmol, 1.5 eq) and bipyridine (0.75 g, 4.69 mmol, 1.5 

eq). The mixture was dissolved in 8 mL DMF and COD (0.51 g, 4.69 mmol, 1.5 eq) was added. 

After the flask was brought out of the glove box and heated to 80˚ C for 30 min, 2,7-

dibromofluorene 7 (1.50 g, 3.05 mmol, as a solution in 5 mL anhydrous toluene) was added 

under nitrogen. The flask was wrapped in aluminum foil and the reaction was stirred at 80˚ C for 

48 h. The hot solution was then added dropwise to an equivolume mixture of rapidly stirring 

concentrated HCl, acetone, and methanol. After filtering through a sintered glass frit, the 

polymer was redissolved in CH2Cl2 and precipitated twice into an equivolume mixture of 

acetone and methanol. The recovered polymer was dried under vacuum for 12 h to yield the 

desired product as a tan powder (0.543 g, 53.4%). 

PDHF-capped: A flame-dried Schlenk flask was brought into a nitrogen-filled glove box 

and charged with Ni(COD)2 (1.29 g, 4.69 mmol, 1.5 eq) and bipyridine (0.75 g, 4.69 mmol, 1.5 

eq). The mixture was dissolved in 8 mL DMF and COD (0.51 g, 4.69 mmol, 1.5 eq) was added. 

After the flask was brought out of the glove box and heated to 80˚ C for 30 min, 2,7-

dibromofluorene 7 (1.50 g, 3.05 mmol, as a solution in 5 mL anhydrous toluene) was added 

under nitrogen. The flask was wrapped in aluminum foil and the reaction was stirred at 80˚ C for 

48 h. Bromobenzene (20 µL, 5 mol%) was added as a solution in .4 mL dry toluene, and the 

mixture was stirred an additional 24 h. The hot solution was then added dropwise to an 

equivolume mixture of rapidly stirring concentrated HCl, acetone, and methanol. After filtering 

through a sintered glass frit, the polymer was redissolved in CH2Cl2 and precipitated twice into 

an equivolume mixture of acetone and methanol. The recovered polymer was dried under 

vacuum for 12 h to yield the desired product as a tan powder (0.745 g, 73.6%). Mw = 56,000; Mn 
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= 22,000; PDI = 2.6. 1H NMR (300 MHz, CDCl3) δ 0.78 (b, 10 H), 1.12 (b, 12 H), 2.11 (b, 4 H), 

7.66-7.84 (b, 6 H). 13C NMR (75 MHz, CDCl3) δ 14.0, 22.6, 23.8, 29.7, 31.5, 40.4, 55.3, 120.0, 

121.5, 126.1, 140.0, 140.5, 151.8. 
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3. Degradation Characteristics of PFMs 

 

3.1. Overview 

 

With the synthesis of a PFM library achieved, this chapter is devoted to their 

characterization. Since future applications of these polymers are likely to involve the blue-light 

emission properties that have made the parent PF materials attractive for device fabrication, a 

particular focus is given to their photophysical properties and to their stability. Studies 

comparing these new PFMs to PDHF in terms of their thermal and photo stabilities are then 

described.  

 

3.2. Introduction: Degradation of PF 

 

As mentioned in Sections 1.5-1.7, PFs exhibit a number of desirable properties. As 

homopolymers they emit in the blue (440-500 nm) in dilute solution and when cast as thin (<100 

nm) films. As copolymers they can be chemically tuned to emit across the visible spectrum. The 

high quantum yields generally reported for PFs make them attractive materials for 

photoluminescent devices.  

A primary barrier to the incorporation of PF in light-emitting applications has been the 

instability of these materials under device-operating conditions. For a material to warrant 

incorporation in an OLED, for example, intense light emission at static color purity over long 

periods of time is desired. PF presents highly desirable emission intensity, but is deficient in both 
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color purity and lifetime characteristics under device-operating conditions. Specifically, 9,9-

dialkyl PF suffers from degradation of the purity of its light emission which manifests itself as a 

change from an intense sky blue color to a green-yellow color. This is observed in dilute 

solutions, and more problematically, in solid films of PF. As shown in Figure 3.1, the green-

yellow color arises in photoluminescent (PL) spectra of PF in the form of a broad, featureless 

emission centered at ca. 525 nm. Concurrent with the increasing intensity of this emission is the 

diminishing intensity of the original transitions in PF. These changes occur when PF is exposed 

to current or to UV light. Figure 3.1 shows this degradation as the result of exposure to light of λ 

= 351 nm (intensity ~ 80 mW/cm2). Reported by Sims, Grell, Bradley, and coworkers,154 Figure 

3.1 clearly shows the declining of desired emission in a thin film of PDOF. After only six 

minutes of exposure (sixth spectrum from bottom), the intensity of PDOF film emission at 450 

nm has already diminished by more than 50%. The broad green band around 525 nm has 

simultaneously increased in intensity–after 8.5 min (fifth from bottom) this emission is 

essentially as intense as that at 450 nm. 

The degradation of 9,9-dialkyl PF is also observed upon thermal treatment. As reported 

by Gong, Moses, Heeger and coworkers (Figure 3.2, right),155 treatment of PDOF films in open 

atmosphere results in bleaching of the 0-0 (450 nm) and 0-1 (478 nm) emissions, though this 

result is obscured by normalization of the data. These spectra also show that after annealing 12 h 

in an open air environment, PDOF films suffer degradation that increases with increasing 

temperature. This behavior contrasts greatly with similar treatment of PDOF films in a N2 

environment (Figure 3.2, left). Examination of the spectrum produced after annealing PDOF at 

140° C for 8 h shows that the broad band centered at 525 nm is noticeably less intense for PDOF 

annealed in N2 compared to open air. The durations of annealing differ (8 h in N2 vs. 12 h in air) 
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and as such the spectra are not directly comparable, but this observation serves to illustrate the 

fact that the thermal stability of 9,9-dialkyl PF differs by environment. Gong showed thereafter 

that PF electroluminescence (EL) was affected to an even greater extent by this degradation.  

 

 

Figure  3.1. The photoluminescence spectra of a thin film of PDOF (film thickness < 100 nm, relative intensities, λex 
= 351 nm, from top to bottom at 450 nm) at 0, 0.5, 1, 1.5, 3, 6, 8.5, 12, 18, 36, and 95 min UV exposure. This figure 
is from Sims, M.; Bradley, D.D.C.; Ariu, M. ; Koeberg, M., Asimakis, A., Grell, M.; and Lidzey, D.G. Adv. Func. 
Mat. 2004, 14, 765-781.  

 

 

Figure  3.2. The photoluminescence spectra (normalized intensities, λex = 380 nm) of thin films of PDOF annealed at 
varying temperatures in N2 (left) and open air (right) atmospheres. The duration of annealing is indicated for each 
sample. This figure is from Gong, X.; Iyer, P.K.; Moses, D.; Bazan, G.C.; Heeger, A.J.; and Xiao, S.S.  Adv. Func. 
Mat. 2003, 13, 325-330.  
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3.3. Reported Causes of PF Degradation 

 

3.3.1. Degradation Processes in Related Conjugated Polymers 

 

The root cause of degradation processes in CPs has been studied. Tada examined the 

circumstances by which an alkoxy-derivatized PPV degraded upon incorporation in a polymeric 

light emitting device (PLED) and noted that main chain scission and photooxidation were both 

occurring.156 Bond scission occurring at vinylene sites along the polymer chain resulted in 

reduction of the polymer’s molecular weight, and photooxidation was found to quench 

electroluminescence in the device, resulting in decreased average conjugation length. Tada noted 

that the decrease in emission intensity during the first minute of EL device operation was 

significantly slower than that subsequently observed, an observation which may suggest 

autocatalytic behavior within the film cast polymer. Included in Tada’s findings was the idea that 

photooxidized defect groups present in the form of carbonyls quenched light emission from the 

active species, the active species in the case of alkoxy-PPVs being singlet excitons. The idea that 

minute amounts of carbonyl-bearing impurities could degrade polymer emission in LEDs was 

originally put forth by Galvin and coworkers at AT&T Bell Laboratories, who reported the 

detection of carbonyl species introduced during the pyrolytic synthesis of PPV in 1994.157 The 

presence of carbonyl defects was established on the basis of IR spectroscopic data, which 

showed carbonyl stretching modes of weak intensity in the 1720 cm-1 region. 
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3.3.2. Excimer Emission and Interchain Aggregation Effects 

 

The degradation of PF films marked by the growth of a broad green band at 525 nm has 

been widely reported. In fact, Pei’s initial report on the regioselective preparation of 2,7-

polyfluorene (Section 1.8) includes this finding.64 The PL spectrum of Pei’s BDOH-PF shows 

significant green emission for the pristine film–the band at 525 nm is already half as intense as 

the maximum intensity observed at 420 nm (Figure 3.3). Pei found BDOH-PF to be suitably 

stable to photochemical treatment, but upon heating the polymer film (1 h at 110° C under N2) it 

was reported that fluorescence emission occurred across the visible spectrum, producing a white 

light of low relative intensity. As the band’s intensity was greatly diminished in dilute solutions 

of THF, Pei concluded its enhancement in the film was the result of excimer formation. 

Excimers form in species with delocalized ground states, and PFs are, ideally, totally delocalized 

in the ground state. They are excited state dimer complexes formed by the interaction of an 

excited chromophore with an unexcited neighbor. Also, the reporting of interchain excimer 

formation had precedent in similar spectral features observed in the closely related ladder PPP-

type materials.158 Excimer formation had been postulated to result in red-shifted emission in 

ground state aggregates,81 and so interchain excimer formation was initially proposed to explain 

the degradation pathway of PF systems. 
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Figure  3.3. The absorbance and PL spectra for BDOH-PF in solution (THF) and as a thin film spun-cast from THF. 
This figure is from Pei, Q.; and Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416-7417. 

 

Bradley thereafter published studies showing that, when dissolved in poor solvents, PFs 

formed clusters which resulted in aggregation behavior in those solvents as well as in thin films 

cast from those solvents.82 Solution-based aggregation effects of CPs can be identified as a 

function of solvent composition–a common two-component system used is CHCl3-MeOH, or as 

a function of temperature, where aggregation is promoted upon cooling. Teetsov and Fox 

examined aggregation-based behavior of PFs bearing n-hexyl (PDHF), n-octyl (PDOF), and n-

dodecyl substituents at C9. The polymers were found to undergo reversible absorbance features 

at high concentration (10 µg/mL) in good solvents (toluene and THF) as well as poor solvents (n-

heptane, cyclohexane) and aggregation behavior was postulated. Fluorescence measurements of 

these polymers in n-heptane revealed that, in addition to the emissive S1,S0 singlet exciton 

responsible for the light produced by PFs, long-lived species of 2 ns and 8 ns were observed at 

550 nm which were not observed in THF at similar concentration.  

On the observation that, after annealing, a film of PDHF saw its fluorescence quantum 

yield decrease (albeit only slightly) Teetsov postulated that packing of shorter-length alkyl 
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chains brought fluorene moieties in closer proximity. This, in turn, could promote interchain 

aggregation over excimer emission. Vastly decreased quantum yields for these three polymers 

(reported ~3%) were found and attributed to aggregation-imposed  packing forces. 

 

3.3.3. Keto Formation and/or Exciton Migration 

 

List, Scherf and coworkers found evidence that led to another credible hypothesis for the 

origin of the broad green emission in PFs. They invoked the presence of fluorenone defects in 

the polymer chain.74, 159 Furthermore, they described a possible mechanism for the formation of 

these defects based on the presence of trace amounts of monoalkylated or non-alkylated 

impurities in monomers used to prepare PFs. Specifically, List and Scherf found that 9,9-

monoalkylated and 9,9-dihydrofluorenes (i.e. non-alkylated) could conceivably undergo photo- 

and electrooxidative processes to generate keto defects along the polymer backbone. This 

mechanism was identified as a possible pathway to PF degradation by IR studies which revealed 

the C=O stretching mode (1721 cm-1) at weak intensity upon photooxidation. Their IR spectra 

for monoalkylated PF and the assumed-dialkylated PF are reproduced in Figure 3.4. The top 

diagram shows mono-alkyl PF as the dashed line spectrum superimposed on that of dialkyl PF. It 

is evident that the mono-alkylated PF already shows evidence of some C=O stretching. The 

dialkyl PF material, on the other hand, shows an absence of this stretching mode. Upon 

irradiation by the halogen lamp for periods of two, four, and six minutes, the dialkyl PF is 

observed to undergo a changing IR spectrum in the carbonyl region. The bottom spectra in 

Figure 3.4 show the evolution of the C=O stretch over this time span. List and Scherf tied this 

finding in with PL spectra that showed that a film of dialkyl PF, when irradiated for the same 
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periods of time, underwent the familiar change showing the dramatic and dominant appearance 

of the broad band at 525 nm. EL evidence also pointed to a connection between the weak C=O 

stretch and the broad band. 

Due to the fact that their PFs had been prepared using Yamamoto couplings, List and 

Scherf initially proposed a Ni0-mediated pathway that yielded intermediate fluorenyl anion 

(Scheme 3.1). The mechanism for this initial step is not well understood, but nonetheless upon 

deprotonation the anion can conceivably react with molecular oxygen to form highly reactive 

hydroperoxide anions. Rearrangement to yield a keto defect thus forms the fluorenone moiety. 

 

 

Figure  3.4. The IR spectra reported by List and Scherf for monoalkylated and dialkylated PF. (a) Inset: The 
carbonyl region for pristine dialkyl PF (solid line) and monoalkyl (dashed line) PF films. (b) Inset: The evolution of 
the carbonyl stretching mode upon photooxidation for (from top to bottom at 1721 cm-1) 0, 2, 4, and 6 min. This 
figure is taken from List, E.J.W.; Guentner, R.; Freitas, S.-d. P.; and Scherf, U. Adv. Mater. 2002, 14, 374-378. 
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Scheme  3.1. The Ni0-mediated pathway proposed by List and Scherf to explain the appearance of keto defects in PF.  
This figure is reproduced from Scherf, U., and List, E.J.W. Adv. Mat. 2002 , 477-487. 

 

Ma and coworkers have recently proposed the radical pathway shown in Scheme 3.2.160 

Although the initiation requires the presence of monoalkylated defects, the proposed propagation 

steps show oxidation of dialkylated fluorene units. Consistent with this proposal is the 

observation by Meijer and coworkers that established that rigorous purification of monomers to 

remove mono-alkylated contaminants prior to polymerization increased the stability of the 

resulting PF.161 Also relevant was the discovery by List and coworkers that mono-alkylated 

fluorenes could be converted into fluorenones under the common polymerization conditions.159  

Samples of PF that have been exposed to heat, light or current under an oxygen atmosphere show 

new bands in the IR at 1717 and 1707 cm-1 that are comparable to those exhibited by small 

molecule fluorenone.162 Moreover, several groups have deliberated synthesized fluorene-co-

fluorenone oligomers whose absorption and emission spectra are consistent with that of the 

degraded PF samples.100, 163-168  
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Scheme  3.2. The mechanism for keto formation by (A) radical initiation, (B1–B3) radical propagation, and (C1 and 
C2) peroxide rearrangement to keto defects. This figure is reproduced from Liu, L;, Tang, S.; Liu, M.; Xie, Z.; 
Zhang, W.; Lu, P;, Hanif, M.; and Ma, Y. J. Phys. Chem. B 2006, 110, 13734-13740. 

 

3.3.4. Evidence In Favor of Keto Formation 

 

Recent studies by several groups have convincingly established that the green emission is 

due to on-chain keto defects and that excimer formation is both unlikely and unnecessary to the 

formation of the 525 nm band in PF and in ladder poly(para-phenylenes).169-173 The presence of 

fluorenones are now acknowledged in most circles as being crucial to the appearance of the 525 

nm band, though some continue to invoke excimers because they claim that the defects are 

"necessary but not sufficient" to produce the observed spectra.119, 154 Other groups have also 
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presented arguments in favor of excimer formation as well although it is not clear if these 

researchers continue to support the hypothesis given recent reports.69, 174 

Lupton and coworkers carried out experiments on single polymer chains of fluorene-co-

fluorenone.168  They found a high correlation between the % fluorenone, the intensity of the 

green emission, and the intensity of the blue emission for a sampling of 1152 isolated individual 

chains.  Moreover, they found no evidence for excimer emission from a control molecule which 

placed two fluorenone units in a cofacial arrangement to simulate a situation where two 

fluorenone units in a single polymer chain could interact (Figure 3.5).  
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Figure  3.5. Macrocycle studied by Lupton for proximity-enhanced excimer formation.  

 
 

The work of Chi and coworkers also substantiates the primary role of keto defects. They 

prepared a series of 9,9-dialkyl oligofluorenes (Figure 3.6a) with central fluorenone defects.167 

The characteristic green emission was found to be concentration independent, which ruled out 

bimolecular excimers as the source of the emission. When these oligomers were blended with 

pristine PF, the lifetime of the blue emission from PF decreased dramatically (from 273 to 33 ps) 

and became multiexponential as the weight percent of the oligomer in the blend was increased 

from 0-10%. This finding is represented in the steady-state fluorescence spectra shown in Figure 

3.6b. Moreover, the obvious quenching of the PF emission by the added fluorenone-containing 

oligomers is strong evidence for Förster-type energy transfer from non fluorenone-containing 
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polymer to the oligomers. It should be noted that overlap between the emission of PF and the 

absorption of fluorenone that is a prerequisite for efficient energy transfer is observed.165 

 

O

R RR R

O

R RR R

RR RR

O

R RR R

RR RR

R R R R

3

2

1

 

(a) 

 

(b) 

Figure  3.6. (a) The oligofluorenes prepared by Chi. (b) Steady-state fluorescence spectra of PF doped with amounts 
of Chi’s oligofluorenes at increasing concentration (0 – 10%). This figure is taken from Chi, C.; Im, C.; Enkelmann, 
V.; Ziegler, A.; Lieser, G.; and Wegner, G. Chem. Euro. J. 2005, 11, 6833-6845. 

 

In summary, experimental evidence from several groups suggests that fluorenones that 

are present either from the original reaction conditions or that are formed when the sample is 
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exposed to thermal, photo or electrical energy act as exiton traps.  Intrachain and Förster energy 

transfer events result in the quenching of the original blue fluorene emission in favor of the 

fluorenone-based green emission. The inhbition or prevention of this occurrence in PFs is of 

great importance. 

 

3.4. Approaches to Green Band Inhibition in PFs 

 

Soon after Pei’s original observation of undesired green emission in PFs, approaches to 

homo- and copolyfluorenes with inhibited green emission were reported. A number of these 

approaches were recently reviewed by Neher.81 As this chapter is concerned with the inhibition 

by chemical means of keto formation and green emission, only chemical approaches to this 

problem are described, though physical approaches (i.e. blending, MW control, see for ref. 

Neher) have been used. Chemical strategies have used the following rationale: 

That substitution of dendritic groups at C9 (see for ref.: M and N in 

Figure 1.7, Section 1.4) limits access at this position to radical/oxidative species. 

This has been shown to slow the rate of keto defect formation, though the 

complete prevention by this method has not been reported. End-capping PF with 

charge-trapping groups. An example cited for this purpose is the anthracene 

moiety. 

End capping with hole-trapping groups. Triarylamines have been used for 

this purpose to yield PF with an observed green emission component which 

decreases with increasing end capper concentration. Related to this is the 

copolymerization with hole trapping monomer units. Owing to the synthetic 
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flexibility of the Yamamoto route to PFs a variety of triarylamines have been 

incorporated as stastical comonomers on main chain of PFs.93 

End capping with crosslinking groups. This approach uses 

postpolymerization modification to create a rigid, liquid crystalline network. 

Thermal crosslinking of fluorene-styrene copolymers has been performed to 

create a fixed matrix for encapsulation of fluorene segments. Photochemical 

crosslinking of acrylate groups terminating an oligofluorene macromonomer was 

communicated (but not performed) recently.152  

Interruption of conjugation by m-phenyl linkage incorporation. Ritchie, 

Crayston and coworkers used this approach to produce rigid rod PFs with 

shortened effective conjugation lengths as a method for decreasing the likelihood 

of excimer contamination.175 This is represented conceptually in Figure 3.7. 

Ritchie found that although excimer formation was inhibited, the copolymers 

produced were of lower molecular weight with increasing amount of meta-

phenylene monomer unit used. Presumably this was a result of decreased 

solubility conferred to the material by the meta linkage. A hypothesis offered for 

the trend towards decreased excimer formation with increasing meta-phenylene 

was that conjugation breaks in the copolymers prevented excitons from easily 

migrating to ketone groups present on PF segments. In preventing exciton 

migration, then, keto defect emission was effectively suppressed. 
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Figure  3.7. Depiction of approach used by Crayston to describe employment of conjugation interrupters in PF. This 
figure is taken from Ritchie, J.; Crayston, J. A.; Markham, J.P.J.; and Samuel, I.D.W. J. Mat. Chem. 2006 16, 1651-
1656. 

 

Interruption of conjugation by aliphatic linkage incorporation. Whereas 

m-phenyl linkages preserve the rigid rod motif while decreasing the effective 

conjugation lengths of segments within the polymer, the copolymerization of PF 

with aliphatics yields rod-coil copolymers with broken conjugation. An example 

from the literature is the recent report of poly(terfluorene-co-ether)s produced by 

Chochos and Kallitsis.35 This copolymer was described in Section 1.1.10.3 and is 

considered in comparison to PFcMs in Section 3.6.3. 

 

3.5. Experimental 

 

3.5.1. Differential Scanning Calorimetry 

 

Differential scanning calorimetry (DSC) was performed on 2–5 mg samples in a Thermal 

Analyst 2000 (TA Instruments) DSC 2910 differential scanning calorimeter. A typical method 

involved a first heating scan at 20° C/min over a temperature range of -40 to 270° C. After a hold 

time of 2 min, a cooling scan was performed at -20° C/min over a temperature range of 270° C to 
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-40° C. Following another holding time of 2 min, a second heating scan was performed at 20° 

C/min to 290° C.  

 

3.5.2. UV-Vis Spectroscopy 

 

Absorption spectra for all PFMs were obtained in dilute chloroform (~10-6 M by fluorene 

content) on a Perkin-Elmer UV/VIS/NIR Spectrometer Lambda 9. Spectra were analyzed using 

UV Winlab software supplied by Perkin-Elmer. 

 

3.5.3. Photoluminescence Spectroscopy 

 

PL spectra for all PFMs were obtained in dilute chloroform (~10-6 M by fluorene content) 

on a Varian Cary Eclipse Fluorescence Spectrophotometer. Spectra were analyzed using 

software supplied by Varian. Thin film PFM samples were prepared by drop casting from 20-25 

mg/mL solutions in toluene onto quartz slides (Chemglass, 75x25 mm) and, after allowing for 

slow evaporation, removing remaining solvent at RT under high vacuum. Films of PDHF were 

prepared in the same manner from 50 mg/mL solutions in CHCl3.  

 

3.5.3.1. Photoinduced Film Degradation  
 
 
 

Pristine films were irradiated using a UVP Blak-Ray lamp, Model UVL-21 (λ = 366 nm, 

115 V, 60 Hz, 0.16 A). PL spectra were recorded at total irradiation times of 0, 5, 15, and 30 

min. 
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3.5.3.2. Thermally Induced Film Degradation  
 

Films were annealed in a nitrogen filled glove box for 30 min at 200-230° C, then heated 

in open air at 160° or 200° C. Spectra were recorded at total heating times of 0, 0.5, 1, 2, and 4 h 

(160° C) or 0, 0.5 and 1 h (200° C). Films were cooled to RT prior to collection of spectra. 

 

3.5.4. Infrared Spectroscopy 

 

Thin film PFM samples were prepared by drop casting from 20-25 mg/mL solutions in 

toluene onto single-crystal NaCl disks and, after allowing for slow evaporation, removing 

remaining solvent at RT under high vacuum. Films of PDHF were prepared in the same manner 

from a 50 mg/mL solution in CHCl3. IR spectra were collected on a Nicolet Avatar 360 Fourier 

transform infrared spectrometer (FT-IR) using the Transmission ESP Program. All spectra were 

averaged over 16 scans.  

 

3.5.4.1. Photoinduced Film Degradation  
 

Samples were irradiated using a UVP Blak-Ray lamp, Model UVL-21 (λ = 366 nm, 115 

V, 60 Hz, 0.16 A). IR spectra were recorded at total irradiation times of 0, 20, 40, 60 and 120 

min.  

 

3.5.4.2. Thermally Induced Film Degradation  
 
 

Samples were heated in open air at 200° C. Spectra were recorded at total heating times  
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of 0, 30, and 60 min. Films were cooled to RT prior to collection of spectra. 

 

3.5.5. Exposure of PF3M10 to Ni0-mediated PDHF Preparation Conditions  

 

Following the method of Kreyenschmidt, a flame-dried Schlenk flask was brought into a 

nitrogen-filled glove box and charged with Ni(COD)2 (59 mg, 0.214 mmol, 1.5 eq) and 

bipyridine (33 mg, 0.214 mmol, 1.5 eq). The mixture was dissolved in 2 mL DMF and COD (26 

µL, 0.214 mmol, 1.5 eq) was added. After the flask was brought out of the glove box and heated 

to 80˚ C for 30 min, PF3M10 (158 mg, 0.139 mmol by fluorene content, as a solution in 2 mL 

anhydrous toluene) was added under nitrogen. The flask was wrapped in aluminum foil and the 

reaction was stirred at 80˚ C for 48 h. The hot solution was then added dropwise to an 

equivolume mixture of rapidly stirring concentrated HCl, acetone, and methanol. After filtering 

through a sintered glass frit, the polymer was redissolved in CH2Cl2 and precipitated twice into 

an equivolume mixture of acetone and methanol. The recovered polymer, PF3M10-2 was dried 

under vacuum for 12 h to yield the product as a white solid (102 mg, 64.6%). 

 

3.6. Results and Discussion 

 

One of the fundamental goals that motivated our synthesis of PFM RSCs is the 

correlation of properties with sequence.  In this chapter we present our initial characterization 

studies: DSC, UV-Vis, PL, and IR.  In addition, we present detailed studies on the thermal- and 

photo-stability of PFMs.  
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As we also compare the properties of our segmented PFMs to those of the parent 

homopolymer. It is important to reiterate that the samples of PDHF comprise three separate 

preparations and are distinguished as follows: PDHF-old, PDHF-new, and PDHF-capped. 

PDHF-old was prepared in August 2005 using the preparation described in Section 2.5.7. 

PDHF-new was prepared by the same procedure in August 2006. PDHF-capped is described in 

Section 2.5.7 as phenyl-capped polymer and was prepared in June, 2006. As these samples did 

not behave equivalently, particularly under degradation conditions, the collection dates for 

affected spectra are noted in the text. 

 

3.6.1. Solution and Bulk Phase Optical Properties of PFMs 

 

Absorption data were collected for dilute solutions of each PFM in chloroform. Emission 

spectra for each RSC were collected in the solution phase and in the solid phase as thin films 

(Figure 3.8 and Figure 3.9). Solution and bulk phase spectra for PDHF-new are included for 

reference. The data are summarized in Table 3.1.  
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Figure  3.8. The absorbance (a) and emission (b) spectra of PFMs as dilute (~10-6 M) solutions in CHCl3. Spectra for 
PDHF-new are included for reference. 
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Figure  3.9. The emission spectra of indicated PFMs as thin films. The spectrum for PDHF-new is included for 
reference. 
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λabs, in λem, nm, in λem, film
PFM CHCl3 (nm) CHCl3 (λex, nm)a (nm)

1 PF1M10 279 330 (300) 386
2 PF2M10 335 371 (335) 416
3 PF3M10 356 401 (355) 423
4 PF4M10 365 409 (365) 438
5 PF1M18 278 332 (300) 390
6 PF2M18 335 372 (335) 414
7 PF3M18 354 399 (355) 429
8 PF4M18 366 408 (365) 438
9 PF7M18 376 416 (375) 445
10 PF8M18 375 415 (375) 445
11 PDHF-new 385 417 (388) 450

        a Values in parentheses are the excitation wavelengths used to collect 

emission spectra for dilute solutions and thin films of the PFcM.  

Table  3.1. Summary of PFM absorbance and emission maxima. 

 

For reasons already discussed (Section 1.6 and Section 1.10.1), light absorbance and 

emission are qualities of primary interest in fluorene-bearing polymer systems. To provide a 

context for our data it is important to consider the results of Geng’s and Chen’s extensive studies 

on monodisperse oligofluorenes,85 and Klaerner’s and Miller’s prior to that.48  Both groups have 

shown that exact control of chromophore segment length allows for the tuning of the substrate’s 

light absorbance and emission maxima. Specifically, they found that the absorption and emission 

maxima shifted to the red with increasing oligomer length. At short segment lengths (n < 6) the 

magnitude of red shifting was observed to be fairly large at 5 to 20 nm from segment length n to 

n+1, consistent with the notion that, percentage-wise, the oligomer’s conjugation length was 

increasing most rapidly at this stage. For example, Geng’s terfluorene exhibited a first 

absorbance maximum at λ = 350 nm in CHCl3; this figure shifted 11 nm to 361 nm for the 

quaterfluorene. Shifts in maxima of nearly equal magnitudes were observed in absorbance and 

emission spectra for thin films of short length oligofluorenes. As oligofluorenes of longer 

segment lengths were prepared, their optical properties were found to plateau. For example, 

hexafluorene (n = 6) was found by Geng to give λmax, abs = 370 nm; dodecafluorene (n = 12) 
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exhibited λmax, abs = 379 nm, a comparatively small movement of 9 nm over a lengthening of six 

oligomeric units. That the optical maxima were leveling off was confirmation of Miller’s 

assessment of the effective conjugation length of polyfluorene being approximately twelve 

repeat units, or 24 aromatic rings.  

As the PFMs we produced incorporated oligofluorenes of exact segment lengths, our 

expectation was that their solvent-based and bulk phase optical properties would track with the 

trends reported in literature for the isolated oligomers. PFMs in dilute solution (CHCl3, ~10-6 M 

based on fluorene content) are indeed found to give maximum light absorption at progressively 

longer wavelengths. Monofluorenyl PFMs (entries 1 and 5, Table 3.1) absorb at the shortest 

wavelengths. Increasing the fluorene segment length to two units shifts the wavelength of 

maximum absorption bathochromically by approximately 55 nm (entries 2 and 6). A similar shift 

of 10 nm is observed in going from quaterfluorenyl PFMs (entries 4 and 8) to the heptafluorenyl 

PF7M18 (entry 9, λabs = 376 nm). A barely discernible decrease in λabs is observed for PF8M18 

(entry 10, λabs = 375 nm). This finding is interpreted as an indication that the absorption 

properties of PFMs are reaching a plateau, i.e. that they are beginning to approach the effective 

conjugation present in PDHF. Comparison of the absorption maximum of PF8M18 with an as-

prepared sample of PDHF-new (entry 11, λabs = 385 nm) supports this notion. Furthermore, 

Geng observed movement to the red of only 1 nm in going from the oligomeric heptafluorene to 

octafluorene.85 Given that the precision associated with the UV-Vis instrument used to perform 

these studies is +/- 2 nm, the trend, as outlined above, holds. 

Emission spectra of PFMs also show that they are chemically tuned according to 

oligofluorene segment length. As summarized in Table 3.1, a range of 85 nm within the violet-

blue region of the visible spectrum is covered by the copolymers studied. Light at the low end of 
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this range is emitted by monofluorenyl PFMs at λmax = 330 and 332 nm (entries 1 and 5). As with 

absorption, emission moves significantly to the red (40-41 nm) for bifluorenyl PFMs (entries 2 

and 6). Excellent agreement of light emission is observed within each pair of PFMs having 

identical fluorene segment lengths. As was observed in the absorption spectra, a movement to the 

red, this time of 8 nm, is found in comparing the emission of PF4M18 (entry 8, λmax = 408 nm) 

with PF7M18 (entry 9, λmax = 416 nm). The emission maximum for PF8M18 comes 1 nm less 

than for PF7M18. The trend toward longer wavelength emission has clearly leveled at this point, 

however.  PDHF-new is found to emit just 1 nm greater than that found for PF7M18, at λmax = 

417 nm. The emission maxima for terfluorene–through octafluorene-containing PFMs fall 

squarely in the sky blue portion of the visible spectrum.  

As observed for the copolymers in dilute solution, thin films of the PFMs exhibit 

emission maxima at successively longer wavelengths and as the fluorene block length lengthens 

the series rapidly converges to the thin film emission of PDHF (dashed series). Film emission 

studies of these copolymers are discussed in detail in Section 3.6.3. 

 
 
3.6.2. Differential Scanning Calorimetry  

 

A selection of the PFMs have been characterized by DSC: PF2M10, PF3M18, PF4M10, 

PF4M18, PF7M18, and PF8M18. Figure 3.10 shows the calorimetric data obtained for the first 

heating scans of each PFM studied. DSC data sets for PF2M10, PF3M18, PF4M18, and 

PF7M18 can be found in Appendix H. The data are summarized in Table 3.2.  It should be noted 

that many of the assignments are tentative.  Data for some members of the complete PFM series 
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have yet to be collected and it may be necessary to examine samples with multiple thermal 

histories before all features will be well understood. 
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Figure  3.10. DSC scans for first heating cycles of indicated PFMs. Data was recorded at 20° C/min heating rate. 

 

Tg (° C) Tendo (° C)
PF2M10  -9a 29
PF3M18 18 40
PF4M10 -9 55
PF4M18 47 78
PF7M18 64b 111
PF8M18 77a 105
PDHF 168

        a Tentative assignment. Transitions are weakly defined.
        b This transition is not visible in the cycle, but has been 

estimated based on the cooling data.  

Table  3.2. Phase transitions for PFMs as found by DSC. 

 

In general, the PFMs show two transitions, a very weak transition at low temperatures 

that, by the shape, is clearly a Tg and a stronger endothermic transition that is likely a Tm.  

Focusing particularly on the M18 series, this pattern is very clear–except for PF7M18 polymer, 

the spectrum of which displays only a very strong endothermic transition in the first heating.  An 
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assignment of a Tg for this polymer can be made from the cooling scan (not shown), but without 

further verification this assignment must be regarded as tentative at best. Even with the tenuous 

Tg assignment PF7M18 does not fit well into the series, however. It is not known at this point 

whether the data itself is anomalous or if the DSC data is revealing thermal behavior that is 

particular to the F7M18 sequence. If the data for PF7M18 is excluded, the behavior of the 

remaining M18 polymers can be generalized: the initial Tg
 and the second endothermic transition 

are observed to shift to higher temperatures as a function of fluorene segment length.   

 It is also of interest to compare the M10 and M18 polymers.  Both of the M10 polymers 

exhibit a very weak Tg at < -9 °C.  Given the differences in sequence it is tempting to assign this 

transition to the shorter methylene segment. Although the higher temperature endotherm shifts to 

higher temperature between PF2M10 and PF3M10, the temperatures observed for PF3M10 and 

PF3M18, the only comparable samples, are not the same. Based only on these limited data, 

however, we could hypothesize that the transition corresponds to a Tm for the whole FxMy 

segmer rather than for an individual block. Clearly, further data must be collected before this 

hypothesis can be evaluated. 

 As a reference for the interpretation of the thermal data, it is useful to examine the DSC 

traces for the oligofluorenes prepared by Yoon, Wegner and coworkers (Figure 3.11).176 Their 

oligomeric substrates, which bear branched side chains, exhibit Tgs ranging from -21 to 42 °C 

that increase with the number of repeating units. A second, endothermic transition is also 

observed for oligomers with four or more fluorene units. This transition, which also increases 

with increasing oligomer length (64-246 °C) is identified as the liquid-crystalline to isotropic 

transition by polarized optical microscopy (POM) study. The Schlieren texture that is 

characteristic of a nematic phase was observed for each of these oligomers below Tiso.  
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Figure  3.11. The first heating runs of monodisperse oligofluorenes. This figure is from Jo, J.; Chi, C.; Hoeger, G.; 
Wegner, G.; Yoon, D.Y. Chem Euro. J. 2004, 10, 2681-2688. 

 

  

These data suggest that the second endothermic transition for the PFM RSCs could be a 

crystalline-to-liquid crystalline transition, rather than a simple Tm. An analysis of PF3M18, 

PF4M18, and PF7M18 by POM, however, did not give any evidence to support this supposition. 

Neither did segmers SF3M10, SF3M18 or SF4M18 show any birefringence when heated.  

PF8M18 is still being studied.   

The lower bulk-phase order of our RSC polymers relative to the isolated oligomers of 

Yoon and Wegner is not surprising. The linking of the oligomers would be expected to 

kinetically hinder the close packing of the fluorene segments and possibly interfere physically 

with the alignment. Moreover, as described in Section 1.7, branched side chains stabilize liquid 

crystalline phases relative to their straight-chain analogs. 
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3.6.3. Degradation Studies  

 

As discussed in Section 3.3, the instability of PF when processed into thin films is a 

barrier to its application in, among other things, LEDs. The degradation of PF is believed to 

result primarily from the oxidative formation of fluorenone units. Degradation studies were 

performed to gauge the ability of PFMs to withstand this type of keto defect formation. As 

degradation may be photoinduced and thermally induced, both pathways were explored with 

regard to PFM stability. Studies were performed using PL and IR spectroscopy. 

 

3.6.3.1. PFM Photostability Monitored by PL Spectroscopy 
 

Photooxidation as a cause of PL degradation in PFs has been described (Section 3.3). 

With this in mind, the stability of a selection of PFMs towards radiation from a UV light source 

was investigated. Films of PF3M10, PF3M18, PF4M10, PF4M18, PF7M18, and PDHF-

capped were prepared for this purpose. PL spectra of relative and normalized intensities for 

PDHF-capped and a typical PFM, PF4M18, are presented in Figures 3.12 and 3.13, 

respectively. PL spectra for PF3M10, PF3M18, PF4M10 and PF7M18 investigated in this 

study are included as Appendix D. 

As shown in Figure 3.12a, the PL spectrum of pristine PDHF-capped changes rapidly–

there is visible evidence of color degradation in the form of the green band after only five min 

UV irradiation. At the 15 min mark (dashed line, Figure 3.12a), the desired blue emission at 450 

nm has photobleached to roughly 40% its original intensity. More importantly, the green 

emission is now at comparable intensity. At 30 min UV irradiation, the green emission 
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dominates the PL spectrum of PDHF-capped. The normalized spectra in Figure 3.12b bear this 

out. 

By contrast, PL spectra obtained for PF4M18 after the same periods of UV radiation 

show a noticeably slower rate of photobleaching (Figure 3.13). Further, after 30 min UV 

exposure PF4M18 shows total absence of green emission about 525 nm. PL profiles for the five 

PFMs and PDHF-capped examined in this study have been summarized in chart form in Figures 

3.14 and 3.15.  
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(a)      (b) 

Figure  3.12. PL spectra of relative (a, λmax for pristine film = 1) and normalized (b, λmax for all spectra = 1) 
intensities for a film of PDHF-capped irradiated by UV (λ = 366 nm) light.  
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(a)      (b) 

Figure  3.13. PL spectra of relative (a, λmax for pristine film = 1) and normalized (b, λmax for all spectra = 1) 
intensities for a film of PF4M18 irradiated by UV (λ = 366 nm) light. 

 

0

0.2

0.4

0.6

0.8

1

PF3M10 PF3M18 PF4M10 PF4M18 PF7M18 PDHF-
capped

R
el

at
iv

e 
PL

 in
te

ns
ity

, λ
0-

0

0 min 5 min 15 min 30 min  

Figure  3.14. Relative intensities of blue emission maxima for PF3M10, PF3M18, PF4M10, PF4M18, PF7M18, 
and PDHF-capped after UV irradiation (λex = 366 nm) for periods of 0, 5, 15, and 30 min total.  
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Figure  3.15.  Ratio of green band emission maximum normalized relative to blue emission maximum for PF3M10, 
PF3M18, PF4M10, PF4M18, PF7M18, and PDHF-capped after UV irradiation (λex = 366 nm) for periods of 0, 5, 
15, and 30 min. 

 

 Figure 3.14 charts the relative intensities of the blue emission maxima for each PFM as 

well as PDHF-capped. With the possible exception of PF4M10, each PFM shows enhanced 

blue light emission over the duration of testing with respect to PDHF-capped. These 

observations suggest that bleaching processes occur less readily for PFM films. It was noted that 

PDHF-capped had aged approximately two months at the time this study was performed, which 

explains in part the pronounced decrease in relative intensity for this film. However, the ages of 

each PFM were similar, if not older at the time of their characterization in this study.  

In addition to longer lived blue emission properties, the PFMs studied show a marked 

decrease in the growth of the green emission at λ = 525 nm as illustrated in Figure 3.15. This 

behavior was typical of every PFM studied–there is essentially zero increase in emission in the 

green band for films of these copolymers, whereas PDHF-capped underwent an increase in 

emission intensity at λ = 525 nm by a factor of 3.5. Photostabilities for the PFMs selected for this 

study do not appear to vary based on fluorene or alkyl segment length. Under the conditions used 
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herein they exhibit superior photostabilities relative to PDHF-capped when subjected to UV 

irradiation. 

PFMs can also be compared to related rod-coil copolyfluorenes. One pertinent example is 

the PFcE copolymer series prepared by Chochos and Kallitsis.177 As mentioned in Section 

1.10.3, these copolyfluorenes feature terfluorene segments with α,ω-bisalkoxy spacer groups. 

The general PFcE chemical structure is shown in Figure 3.16. Chochos prepared PFcEs having 

methylene segments nine to twelve units in length.  
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Figure  3.16. An example of a PFcE prepared by Chochos and Kallitsis.177 

 
 

An investigation into the photostabilities of PFcEs was performed using PL spectroscopy. 

The relative and normalized PL spectra from a typical experiment on a PFcE (for x = 10 in 

Figure 3.16) are shown in Figure 3.17. As shown in Figure 3.17a, extensive bleaching of the blue 

emission occurred within 5 min UV exposure; this progressed over 30 min to the point that blue 

emission was severely quenched. Furthermore, as revealed in the normalized spectra in Figure 

3.17b, keto formation was not inhibited as green emission at λ = 525 nm became approximately 

20% as intense as the desired blue emission after 30 min. Due to differences in irradiation 

sources, the photostabilities of PFMs and PFcEs can not be directly compared. That detail 

notwithstanding, PF3M10 and PF3M18 compare very favorably to Chochos’ PFcEs, of which 

the values used in Figure 3.18 have been reasonably estimated using the spectra in Figure 3.17. 

For the PFcE possessing methylene segment lengths of 10 units, PF3M10 and PF3M18 are seen 
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to maintain their blue emission at greater relative intensity over identical time periods (Figure 

3.18a). Furthermore, green emission at λ = 525 nm looks to be dramatically reduced in PFMs 

(Figure 3.18b). After 30 min UV irradiation Chochos’ PFcE displays green emission at 

approximately five times the intensity relative to PF3M10 and PF3M18. 

 
 

  
 

    

 

 

 

                                              (a)                                                                (b) 

Figure  3.17. The relative (a) and normalized (b)  PL spectra of a PFcE. This figure is from Chochos, C.L.; 
Papakonstandopoulou, D.; Economopolous, S.P.; Gregoriou, V.G.; and Kallitsis, J. J. Macromol. Sci. A: Pure & 
Appl. Chem. 2006 43, 419-431. 
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(a)                                                                (b) 

Figure  3.18.  (a) Relative intensities of blue emission maxima for PF3M10, PF3M18, and estimated values for the 
PFcE shown in Figure 3.16 after UV irradiation for periods of 0, 5, 15, and 30 min total. (b) Ratio of normalized 
green band emission maximum to blue emission maximum for PF3M10, PF3M18, and estimated values for the 
PFcE shown in Figure 3.16 after UV irradiation (λex = 366 nm) for periods of 0, 5, 15, and 30 min. 

 

3.6.3.2. PFM Photostability Monitored by IR Spectroscopy 
 

The presence of trace amounts of monoalkyl fluorene (as well as 9,9-H-fluorene) in PF 

was first put forth as a reason for its degradation by List and Scherf.159 List and Scherf reported 

the deliberate preparation and subsequent degradation of monoalkylated PF as supporting 

evidence. The results of that degradation were compared side-by-side with the deliberate 

degradation of an authentic sample of 9,9-dialkyl PF. A primary finding upon irradiating each 

sample under a halogen lamp was the change apparent in the IR spectra of each polymer. 

Specifically, the appearance of a band centered at 1721 cm-1 was noted. List and Scherf assigned 
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this as a C=O stretching mode of weak intensity, indicating that only a small population of the 

material contained the C=O functionality.  

Inspired by Scherf’s studies on PDHF, the photostabilities of a selection of PFMs were 

also investigated using IR spectroscopy. The RSCs investigated were PF3M10, PF3M18, 

PF4M10, and PF4M18. IR spectra of normalized absorptions for PF4M18 and PDHF-capped 

are presented in Figures 3.19 and 3.20, with expansions of the C=O stretching mode regions 

(1550 – 2000 cm-1) for each. IR spectra for PF3M10, PF3M18, and PF4M10 investigated in this 

study are included as Appendix E.  

IR spectra of PFMs are characterized by sp3 C-H stretches from 2800 to 3000 cm-1 of 

great intensity and sp2 C-H stretching from 3000 to 3100 cm-1 of moderate to weak intensity. 

This is the case for PF4M18 in Figure 3.19a. A second characteristic stretch is the C=C stretch, 

which is observed in Figure 3.19b as a sharp peak of weak intensity at 1610 cm-1. These features 

are also present in PDHF-capped, for which the IR spectra is given in Figure 3.20.  
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                                           (a)                                                                         (b) 

Figure  3.19. (a) IR spectra of PF4M18 recorded after UV irradiation (λ = 366 nm) for 0, 20, 40, 60, and 120 min. 
(b) Expansion of the C=O region of the IR spectrum. 
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                                             (a)      (b) 

Figure  3.20. (a) IR spectra of PDHF-capped recorded after UV irradiation (λ = 366 nm) for 0, 20, 40, 60, and 120 
min. (b) Expansion of the C=O region of the IR spectrum. 

 

A notable difference in the IR spectra of PF4M18 and PDHF-capped arises after 

irradiating both films. Upon exposure to UV light (λ = 366 nm) for 1 h, a very weak absorption 

at 1731 cm-1 indicative of C=O stretching is observed in the IR spectrum of PDHF-capped 

(Figure 3.20b, solid line). This peak is also observed after 2 h irradiation (dashed line). The fact 

that this stretch is weak should not be reason to discount it as the proportion of fluorenone units 

is expected to be quite small, despite the strong effects on the UV-Vis spectra.  In contrast, 

PF4M18 does not show any absorption changes at all in the carbonyl region IR spectrum. This 

lack of evidence for significant CO formation upon UV irradiation is typical  of all the PFMs 

included in this study. Lack of carbonyl stretching in the IR spectrum for PFMs is a further 

indication of their improved photostability with respect to PDHF. 

Comparison can also be made with the PFcEs prepared by Chochos and Kallitsis.177 In 

examining the photostabilities of PFcEs by IR spectroscopy, Chochos detected carbonyl 

stretching at 1726 cm-1 after 5 min UV exposure (Figure 3.21). The inset shown in Figure 3.21 
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highlights the carbonyl region, which undergoes a dramatic change over the course of the 

experiment, indicating significant keto formation has occurred. Based on the appearance of the 

shoulder at 1775 cm-1, Chochos also suggested the formation of a second species generated by 

UV irradiation. Though the source of their light generator is not the same used in our 

investigation this difference in photostability is worth noting. 

 

 

 

 

 

 

3O O 11

TF11

 

 

Figure  3.21. IR spectra of TF11 after UV radiation (λ = 365 nm for 0, 5, 15, and 30 min). The carbonyl region is 
highlighted as the inset.  This figure is from Chochos, C.L.; Papakonstandopoulou, D.; Economopolous, S.P.; 
Gregoriou, V.G.; and Kallitsis, J. J. Macromol. Sci. A: Pure & Appl. Chem. 2006 43, 419-431. 

 

3.6.3.3. PFM Thermal Stability at 160° C Monitored by PL Spectroscopy 
 

Film-cast PF undergoes degradation/oxidation processes upon heating in an open air 

environment. (Section 3.3). For this reason a selection of PFMs were investigated for their light 

emission characteristics when heated at 160° C for designated time intervals. As the basis for 

comparison is PDHF, relative and normalized PL spectra of PDHF-new are presented in Figure 

3.22. The relative intensity of the blue emission at λmax = 450 nm is the greatest for the annealed 

film (0 h, top spectrum at λ = 450 nm in Figure 3.22a). Heating the film causes this emission 
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peak to decrease in intensity such that after 4 h it is 33% as intense as the initial measurement. 

The green emission concomitantly increases in intensity–from the normalized spectra in Figure 

3.22b it is observed that after 4 h at 160° C this emission is 39% as intense as the desired blue 

emission (top spectrum at λ = 525 nm). 
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(a)      (b) 

 

Figure  3.22. Relative (a) and normalized (b) PL spectra of PDHF-new, prepared August, 2006. Spectra were 
recorded August, 2006 at λex = 388 nm  after heating at 160° C for (from top to bottom at 450 nm in left figure, 
bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized with respect to the 0-0 transition. 

 

Corresponding spectra for PFMs show similar features. Spectra of relative and 

normalized intensities for a representative PFM, PF7M18, are presented in Figure 3.23. The 

relative intensity at λmax = 445 nm is greatest for the annealed film, i.e. the PL intensity at λmax = 

1.0 by definition. Heating this film at 160° C results in a steady decrease in the intensity of this 

emission, defined as arising from the 0-0 singlet transition. After 4 h, the emission at λmax = 445 

nm has decreased to roughly 35% its original intensity, while the band produced by emission of 

the fluorenone products of oxidation keto formation has grown to roughly 10% relative intensity. 

The normalized spectrum of PF7M18 shows the steady increase of the keto emission upon 

heating–it begins in the annealed film as an ill-defined shoulder (bottom spectrum at λ = 525 nm, 
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Figure 3.23b) but after 4 h has grown to be 22% as intense as the desired blue emission (top 

spectrum at λ = 525 nm, Figure 3.23b). 
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Figure  3.23. Relative (a) and normalized (b) PL spectra of PF7M18. Spectra were recorded at λex = 375 nm  after 
heating at 160° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 
2, and 4 h. 

 
PFMs incorporating shorter (1-2) fluorene segment lengths undergo rapid bleaching at 

160° C. A representative example is PF2M10, the relative and normalized spectra for which are 

shown in Figure 3.24. The emission at λmax = 416 nm is reduced to 21% relative intensity after 

only 30 min heating. 
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Figure  3.24. Relative (a) and normalized (b) PL spectra of PF2M10. Spectra were recorded at λex = 335 nm  after 
heating at 160° C for (from top to bottom at 425 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 
2, and 4 h. 

 
 

The stabilities of all PFMs were investigated at this temperature; the remaining spectra 

are included in Appendix F. The data for these thermal stability studies is summarized in Figures 

3.25 and 3.26. Figure 3.25 charts the progression of relative intensities for each PFM over the 

course of each PL measurement from 0 to 4 h. For the PFMs with short (1-2) fluorene segment 

lengths, the effect of heating on the intensity at λmax is readily observed–bleaching reduces the 

intensities of blue emission in PF1M10 and PF1M18 to 18% and 11% after only 30 min. In 

contrast to this observation, it was found that PFMs generally benefit from longer fluorene 

segments. This was the case for films of PF3M10, PF4M10, PF7M18, and PF8M18. The blue 

emission maxima for each of these copolymers maintained an intensity that tracked well with 

that for PDHF-new, which after 4 h emitted at λmax = 449 nm at 32% its original intensity.  It 

should be noted that the films of PF3M18 and PF4M18 do not fit this trend, however; they 

rapidly bleached under these thermal conditions. 
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Figure  3.25. Bar graph representation of relative intensities of λmax for PFMs after heating 160° C for periods of 0, 
0.5, 1, 2, and 4 h total  (λmax,0 h = 1). The λmax progression for PDHF-new is shown for comparison.  

 

Interestingly, the growth of the green emission band in PFMs was generally found to be 

slower with respect to that observed in PDHF. This point is illustrated in Figure 3.26, which 

charts the intensity of emission in the green band against the normalized maximum intensity for 

PFMs with segment lengths of three and greater. The series for PDHF-new is presented for ease 

of comparison. In the cases of PF3M10, PF4M10, PF7M18 and PF8M18, the extent of 

emission in the green band of the PL spectrum is markedly less than that observed in PDHF-

new. As shown in Figure 3.26, samples of PF3M18 and PF4M18 give apparently anomalous 

results. It is important to note again that we are plotting the ratio of intensities of the two 

emissions; the green band appears to be growing in faster for these samples, not because it was 

actually very intense relative to the other PFMs, but because the loss of intensity of the blue 

emission was more pronounced.  If these two samples are treated as atypical it can be concluded 

that PFMs generally exhibit a slower growth of green band emission than PDHF at 160 °C.   
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Figure  3.26. Ratio of green band emission maximum normalized relative to ble emission maximum for PF3M10, 
PF3M18, PF4M10, PF4M18, PF7M18, PF8M18, and PDHF-new. 

 

3.6.3.4. PDHF Thermal Stability at 160° C Monitored by PL Spectroscopy 
 

Over the course of these investigations into the stabilities of PFMs, multiple samples of 

PDHF were prepared and characterized for comparison. It soon became apparent that these 

separate samples of PDHF possessed varying stabilities, an observation which was borne out in 

PL spectra for each sample after heating at 160° C. The PL spectra of relative and normalized 

intensities for PDHF-old are shown in Figure 3.27. Note that PDHF-old was prepared in 

August, 2005 and the PL spectra shown in Figure 3.27 were obtained in August, 2006. The PL 

spectra of PDHF-old contrasts greatly with that of PDHF-new, which was prepared in August, 

2006. The spectra of PDHF-new shown in Figure 3.28 were obtained in August, 2006. A third 

sample, PDHF-capped, was prepared in June, 2006. The spectra of relative and normalized 

intensities for PDHF-capped after heating at 160° C were obtained in July, 2006 and are 

presented in Figure 3.29. 
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(a)       (b) 

 
Figure  3.27. Relative (a) and normalized (b) PL spectra of PDHF-old, prepared August, 2005. Spectra were 
recorded August, 2006 at λex = 388 nm  after heating at 160° C for (from top to bottom at 450 nm in left figure, 
bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized with respect to the 0-0 transition. 
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Figure  3.28. Relative (a) and normalized (b) PL spectra of PDHF-new, prepared August, 2006. Spectra were 
recorded August, 2006 at λex = 388 nm  after heating at 160° C for (from top to bottom at 450 nm in left figure, 
bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized with respect to the 0-0 transition. 
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(a)       (b) 

Figure  3.29. Relative (a) and normalized (b) PL spectra of PDHF-capped, prepared June, 2006. Spectra were 
recorded June, 2006 at λex = 388 nm  after heating at 160° C for (from top to bottom at 450 nm in left figure, bottom 
to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized with respect to the 0-0 transition. 

 
 

The thermal stabilities these samples display after heating at 160° C are anything but 

static. On the contrary, PDHF-new exhibits the greatest degree of stability at 160° C, which 

stands to reason given that it was characterized for its thermal stability almost immediately 

following its preparation. PDHF-capped, which was characterized for its thermal degradation 

behavior one month following its preparation, exhibits a very different stability profile, as shown 

in Figure 3.29. The green emission in PDHF-capped after 4 h is 1.4 times as intense as the 

desired emission at λ = 448 nm. PDHF-old, which was a year old when characterization as 

shown in Figure 3.27 was performed, is even less stable upon heating. After 4 h at 160° C the 

emission at λ = 448 nm is only 11% as intense as the annealed film’s emission. Further, green 

emission around λ = 525 nm is 2.1 times as intense as the blue emission. Pertinent data in 

Figures 3.27-3.29 are redisplayed in Figure 3.30.  
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(a)       (b) 
Figure  3.30.  (a) Bar graph of relative intensities of λmax for PDHF-old, PDHF-new, and PDHF-capped after 
heating 160° C for periods of 0, 0.5, 1, 2, and 4 h total  (λmax,0 h = 1). (b) The ratio of emission maxima resulting 
from keto defects and 0-0 excitation taken from the normalized plots of PDHF-old, PDHF-new, and PDHF-
capped. 

 
In each sample of PDHF the blue emission does weaken in intensity as the film is heated. 

However, PDHF-new and PDHF-capped undergo a much more gradual decrease throughout 

the investigation. This is not the case with PDHF-old, which undergoes a significant (58%) 

reduction in the intensity of the blue emission maximum at λ = 448 nm after 30 min at 160° C. 

The extent to which the green band dominates the PL spectrum also looks to be based on sample 

age. PDHF-old shows a PL profile at the green band which points to its severe thermal 

instability after having aged one year.  

 

3.6.3.5. Investigation into Ni0-mediated PDHF Preparation Conditions as a Source of 
Fluorenone Defects 

 
 

A portion of PF3M10 was subjected to the reaction conditions used to prepare samples of 

PDHF. This was performed to investigate the method of preparation of PDHF as a potential 
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cause of its optical instability. As such, PF3M10 was treated under conditions identical to the 

preparation of PDHF to yield PF3M10-2 (Section 3.5.5). To examine the extent to which PDHF 

preparation conditions actually accelerate keto defect formation, PF3M10 and PF3M10-2 were 

cast as thin films and their relative thermal stabilities at 160° C were investigated in parallel. 

Figures 3.31 and 3.32 show the relative and normalized PL spectra for PF3M10 and re-treated 

PF3M10-2, respectively. Figure 3.33 charts the relative intensity of the blue emission maxima 

(a, λmax = 423 nm) and the normalized intensity of the keto band emission (b, λmax = 525 nm). 
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Figure  3.31. Relative (a) and normalized (b) PL spectra of PF3M10. Spectra were recorded at λex = 355 nm  after 
heating at 160° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 
2, and 4 h. 

 
Comparison of the PL profiles of PF3M10 and PF3M10-2 shows that the blue emission 

in re-treated PF3M10-2 lost intensity much more rapidly than did PF3M10–after 4 h the relative 

intensity of the emission at λmax for PF3M10 (31% of initial intensity) is still greater than that for 

re-treated PF3M10-2 after 0.5 h (23%). The greater thermal stability of the blue emission in  

PF3M10 over re-treated PF3M10-2 is evident.  
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(a)       (b) 

 
Figure  3.32. Relative (a) and normalized (b) PL spectra of re-treated PF3M10-2. Spectra were recorded at λex = 355 
nm  after heating at 160° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 
0, 0.5, 1, 2, and 4 h. 
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(a)                                                   (b) 

Figure  3.33.  (a) Relative intensities of blue emission maxima (λmax = 423 nm) for PF3M10 and PF3M10-2  after 
heating 160° C for periods of 0, 0.5, 1, 2, and 4 h total  (λmax,0 h = 1). (b) Keto defect:blue emission maxima taken 
from the normalized plots of PF3M10 and re-treated PF3M10. 

 

The notion that keto formation is accelerated by synthetic conditions used in making 

PDHF is also strengthened by the data given in Figures 3.31-3.33. The normalized PL spectra in 

Figures 3.31b and 3.32b make clear the observation that green emission at λ = 525 nm is 

enhanced in PF3M10-2. The graph in Figure 3.33b facilitates further comparison of the extent to 
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which green emission is present in each sample of PF3M10. It is seen that re-treating PF3M10 

with reaction conditions used in preparing PDHF results in a more prevalent green emission. 

 

3.6.3.6. PFM Thermal Stability at 200° C  Monitored by PL Spectroscopy 
 
 

A selection of PFMs were investigated at 200° C. The RSCs investigated were PF2M10, 

PF3M18, and PF4M10. Spectra of relative and normalized intensities for PF2M10, PF3M18, 

PF4M10, and PDHF-capped are presented in Figures 3.34-3.37.  
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Figure  3.34. Relative (a) and normalized (b) PL spectra of PF2M10. Spectra were recorded at λex = 335 nm  after 
heating at 200° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, and 
1 h. 

 

The PL spectra taken of a film of PF2M10 clearly show that at 200° C it undergoes rapid 

thermal bleaching (Figure 3.35). After 30 min the relative intensity of the emission at λmax = 420 

nm is only 1.5% the intensity of the pristine drop cast film. As such, PF2M10 did not lend itself 

well to assessing blue emission characteristics at this temperature. Films of PFMs with longer 

fluorene segments were more durable under these conditions, however. The PL spectra of 

PF3M18 (Figure 3.36) show that after heating 30 min the relative intensity of blue emission at 
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λmax = 423 nm is severely diminished (to 8%). After 60 min this intensity has decreased to 4% 

and is accompanied by a green emission band of significant intensity, which indicates significant 

loss of thermal stability in PF3M18 in comparing experiments performed at 160° C (see Section 

3.6.3.3) to 200° C. 
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(a)      (b) 

Figure  3.35. Relative (a) and normalized (b) PL spectra of PF3M18. Spectra were recorded at λex = 355 nm  after 
heating at 200° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, and 
1 h. 
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(a)      (b) 

Figure  3.36. Relative (a) and normalized (b) PL spectra of PF4M10. Spectra were recorded at λex = 365 nm  after 
heating at 200° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, and 
1 h. 
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(a)      (b) 

Figure  3.37. Relative (a) and normalized (b) PL spectra of PDHF-capped. Spectra were recorded at λex = 388 nm  
after heating at 200° C for (from top to bottom at 440 nm in left figure, bottom to top at 525 nm in right figure) 0, 
0.5, and 1 h. 

 

The loss in thermal stability observed in PF3M18 is also seen in PF4M10 (Figure 3.36). 

Heating a thin film of PF4M10 results in a rapid decrease in the blue emission at λmax = 438 nm. 

Inspection of the normalized spectra of PF4M10 (Figure 3.36b) reveal that keto formation is 

rapid to the degree that after 60 min green emission is as intense as blue emission. 

Comparison of the PFMs included in this study can be made to PDHF. PDHF-capped 

(Figure 3.37) was found to be more stable at 200° C than any PFM studied. This was 

demonstrated by the fact that after heating for 60 min the relative intensity of blue emission at 

λmax = 450 nm was still 23% that of the pristine film. However, keto formation in PDHF-capped 

was extensive. After heating for 60 min the green emission band dominated the PL spectrum and 

exceeded the emission intensity at λmax = 450 nm by a factor of greater than 2. 

 Key spectral features for this study are represented in Figure 3.38. As already noted, the 

relative intensities of PFMs (Figure 3.38a) at their blue emission maxima rapidly diminish due to 

thermal bleaching and fluorescence quenching upon formation of keto defects. This latter finding 

is shown for the PFMs with respect to PDHF-capped in Figure 3.38b. The rate of keto formation 
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is found to be greatly accelerated at 200° C in relation to investigations of PFMs performed at 

160° C. Likewise, blue emission diminishes at a greater rate at 200° C relative to investigations 

performed at 160° C. Comparison of PFMs to PDHF-capped in this study shows that the rate of 

keto formation is similar. Additionally, PFMs show similar thermal stabilities in relation to the 

PFcEs studied by Chochos and Kallitsis. The normalized keto emission of a film of TF11 

(Figure 3.16) after 30 min at 200° C is estimated to be aproximately 0.25 a.u. This value is 

charted in Figure 3.38b for ease of comparison and the PL spectrum reported by Chochos is 

reproduced in Figure 3.39.177 
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Figure  3.38. (a) Bar graph representation of relative intensities of λmax for PF2M10, PF3M18, PF4M10, and 
PDHF-capped after heating 200° C for periods of 0, 0.5, and 1 h total  (λmax,0 h = 1). (b) The ratio of normalized 
emission maxima resulting from keto defects and 0-0 excitation taken from the normalized plots of PF3M18, 
PF4M10, and PDHF-capped. The estimated normalized emission of the PFcE TF11 at λ = 535 nm after heating 30 
min at 200° C. 
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Figure  3.39. The solid state normalized PL spectra of PFcEs studied by Chochos after heating pristine films 200° C 
for 30 min. This figure is taken from Chochos, C.L.; Papakonstandopoulou, D.; Economopolous, S.P.; Gregoriou, 
V.G.; and Kallitsis, J. J. Macromol. Sci. A: Pure & Appl. Chem. 2006 43, 419-431. 

 

3.6.3.7. PFM Thermal Stability Monitored by IR Spectroscopy 

 
The stabilities of a selection of PFMs heated to 200° C were investigated using IR 

spectroscopy. The RSCs investigated were PF3M10, PF3M18, PF4M10, and PF4M18. Spectra 

of normalized absorptions for PF3M10 are presented in Figure 3.40. Figure 3.40b is an 

expansion of the C=O sretching mode region (1540 – 1840 cm-1). IR spectra for all remaining 

PFMs studied are included as Appendix G. 

The observation by PL spectroscopy that PFMs undergo rapid and extensive degradation 

at 200° C is reinforced by examination of their IR spectra after being subjected to the same 

conditions. After 30 min at 200° C, then, the C=O stretching mode absent from the IR spectrum 

of the pristine film becomes plainly visible in the form of the band centered at 1715 cm-1 in 

Figure 33b. This finding is consistent throughout the four PFMs studied by IR spectroscopy at 

this temperature; PDHF-capped gives the same band in this region. 
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     (a)                                                                  (b) 

Figure  3.40. Left: Infrared spectra for a film of PF3M10 heated at 200° C for 0, 30, and 60 min. Right: Expansion 
of the C=O region of the IR spectrum. 

 

3.6.4. Conclusions 

 

The synthesis of a PFM library enabled the characterization studies described in this 

Chapter. Studies based on DSC, UV-Vis, IR, and PL spectroscopy were performed, and the 

reasons for doing so were two-fold.  

First, systematic changes in chemical composition allowed for investigations into 

correlation with functional properties. DSC studies were performed in order to better understand 

this relationship. The PFMs studied showed weak Tgs at low temperature which followed no 

clear trend with chemical composition. Tms were more readily observed and increased with 

increasing fluorene segment length, consistent with results obtained by Yoon for oligofluorene 

Tms.176 PF7M18 exhibits phase behavior which does not readily fit with other PFMs investigated 

in that a Tg is not observed in the first heating scan, though crystallization is identified by 
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inspection of the first cooling scan. PFMs show transitions which vary by chemical composition 

and further studies by DSC are planned. 

A second motivation for characterizing PFMs is to compare their optical behavior with 

that of PDHF. It is found that PFMs appear to be more stable to UV decomposition than PDHF. 

For example, comparison of the PL spectra of PF4M18 (Figure 3.13) with PDHF-capped 

(Figure 3.12) show the dramatically improved emission characteristics of PFMs. PFMs bleach 

less readily under the photoexcitation conditions used, and they generate no observable keto 

emission band at 525 nm. This result bodes well for the incorporation of PFMs in LEDs, for 

example. Another finding with implications for the applicability of PFMs is that, by interrupting 

conjugated fluorene segments with methylene segments, the drive to form observable keto 

defects upon thermal treatment of films is effectively suppressed. We also speculate that keto 

emission is inhibited by the regularly situated methylene segments. These segments serve to 

“turn off” keto emission by interrupting intrachain charge migration and by isolating interchain 

fluorenone sites. Because Förster energy transfer is an interchain event, isolating fluorenone 

moeities diminishes the likelihood of generating the keto emission at λem = 525 nm. 

Lastly, over the course of these studies it became evident that histories of the PFM and 

PDHF samples are extremely important in determining their stabilities. It is likely the case that 

film degradation is auto-catalytic. We hypothesize that the perceived time course of degradation 

can be dramatically affected by small differences in the number of fluorenone groups present 

initially, something that is very difficult to control. 
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4. Imine Metathesis: Design of a System to Produce Cyclic Oligomers 

 

4.1. Introduction 

 

4.1.1. General Aspects 

 

We were interested in applying tandem olefin and imine metathesis for the production of 

controlled length cyclic oligomers. Transition metal-catalyzed heteroalkene metathesis has 

remained fairly undeveloped in terms of its application in organic synthesis. There are, however, 

examples of this which attest to the practicality of the overall transformation. The most familiar 

example is carbonyl olefination using the Tebbe reagent, which is a titanium carbene complex. 

The reagent is used stoichiometrically to produce terminal olefins (Figure 4.1). 

 

Cl
AlTi [Cp2Ti=CH2]

Cp2Ti

O R

Y

Y = H, R, OR, NR2

CH2

RY

O

RY

 

Figure  4.1. Use of the Tebbe reagent to produce a terminal olefin from a carbonyl-containing substrate. 

 

Carbonyls have also been ring-closed using stoichiometric amounts of Schrock’s 

alkylidene to give the cyclic alkene.178 The molybdenum-oxo compound produced excludes any 

possibility of catalytic activity, as it is a thermodynamic sink (Figure 4.2).  
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Figure  4.2. The stoichiometric reaction of an α,ω-carbonyl olefin produces a cyclic alkene and the metal-oxo 
compound.178 

 

Another recent development in heteroalkene metathesis is the metathesis of imines. 

Following an analogous pathway to olefin metathesis, imine metathesis can proceed by the 

reaction of an imine with an imide (Scheme 4.1). Reaction of two imines in the presence of such 

an imide catalyst gives =NR exchange between sp2 carbons.  

 

+
[M] N

R1

N
R2 R3

N

R3

[M]

R2

R1

+

 

Scheme  4.1. General principle of imine metathesis. 

 

As was achieved with olefin metathesis, catalytic imine metathesis cycles were reported 

for numerous transition metal based systems. To date, imine metathesis has been achieved using 

tungsten,179 tantalum,180 niobium,181 rhenium,182, 183 zirconium,184, 185 titanium186-188 and 

molybdenum-based catalysts. The (=NR) exchange reaction for the molybdenum bis-imide cycle 

was reported by Cantrell and Meyer to proceed by the mechanism shown in Scheme 4.2.189, 190 In 

the absence of significant driving force to the product side, this cycle yields a statistical mixture 

of all possible imines. 
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Scheme  4.2. The Chauvin-like mechanism for catalytic imine metathesis by a Schrock-type alkylidene.189 

 

Transition metal catalyzed cyclic oligomer production is relatively rare, though recent 

reports serve to show just how useful a method of controlled cyclic oligomer production can be. 

Sen used a tantalum halide system to trimerize ethylene exclusively to 1-hexene.191 This 

development has immediate implications for the improved production of linear low density 

polyethylene. Bielawski and Grubbs reported the use of a variation of Grubbs-II catalyst to 

produce cyclic polyoctene macrocycles, which were then hydrogenated to give cyclic 

polyethylenes.192 

Apart from these examples, our interest in this area has its origin in work by Badawood 

and Meyer, who reported Ring Closing Metathesis (RCM) of α,ω-iminoolefins to produce cyclic 

alkenes (Figure 4.3).193 This result was in accordance with findings reported by Cantrell and 

Meyer which suggested that alkylidene/imine metathesis was slower than alkylidene/olefin 

metathesis but feasible with Schrock-type alkylidenes.194 It was also shown that, when the 

ancillary ligands were alkoxides rather than chlorides, the resulting molybdenum (bis)imide 
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species was stable towards further metathesis, being brought to a thermodynamic energy 

minimum. 

 

RN

n

Schrock cat.

n = 0, 1
R = n-Bu

n

 

Figure  4.3. RCM of α,ω-iminoolefins. 

 

Our approach to probe the feasibility of controlled ROMP-RCM sequencing using 

tandem olefin and imine metathesis is given in Scheme 4.3. An imine-olefin substrate is used to 

produce a novel alkylidene (A). Alkylidene A benefits by possessing both the olefin metathesis-

active Mo=C bond and the thermodynamically attractive C=N bond. It is the presence of both 

interactions on the same substrate which constitutes the initial basis of this approach. Once 

generated, the alkylidene containing the remote imine functionality is treated under ROMP-type 

conditions with a compatible monomer such as norbornene to produce the initial kinetic product, 

a linear oligomeric chain (B). This species, after n insertions of norbornene, could orient itself 

such that the proximity of the imine functionality with respect to the Mo=C bond provides for 

ring-closing, giving the metal-imido species C and the cyclic oligomer D.  

 

[Mo]

NR

n
n

n
NR[Mo]

[Mo]=NR +

B CA D  

Scheme  4.3. Proposed reaction for oligomer growth and ring-closing. 
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Preliminary molecular mechanics calculations (MM/2) run with the Gaussian 98 package 

reinforced the plausibility of this approach. The total molecular mechanical energy of certain n-

mer compounds was calculated as a function of norbornene units. A representative example is 

given in Figures 4.4-4.6, with tin substituted for molybdenum because the version of MM/2 used 

was not parameterized for transition metals. Since we were primarily interested in examining the 

conformations of the oligomeric chain, the substitution was not expected to preclude any 

findings. The simplified models show the oligomeric chain growing away from the metal center 

in a more-or-less linear fashion, as pictured in Figure 4.4.  

As more and more monomer units insert into the growing chain, the oligomer gradually 

acquires more possible conformational arrangements, to the extent that a conformer similar to 

that shown in Figure 4.5 becomes energetically accessible. Finally, once the alkylidene and 

imine functionalities come into close proximity, it is conceivable that the alkylidene will ring-

close the growing oligomer, as is represented in Figure 4.6. As stated before, alkylidene-imine 

metathesis is possible, though it is slow to occur. It represents the thermodynamic minimum. 

Initially, we are looking to test the validity of these hypotheses. Should ring closing take place, 

however, we would then turn our attention to the regularity of ring closing. Determining the 

range of monomer units inserted prior to ring closing will be significant and could prove to be of 

great synthetic value. 
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Figure  4.4. A possible minimum energy conformation of the compound after six monomer insertions. 
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Figure  4.5. A second conformer of the same species. 

 

 

Figure  4.6. The product formed after ring closing of the six-mer. 

 

171 



 

4.1.2. Substrate Design 

 

Accordingly, alkylidene Mo-1 (Figure 4.7) was chosen as the target substrate for very 

specific reasons. The first, most evident, reason involved the basic placement of the terminal 

olefin and imine functionalities. That they are remote and fixed assures that ring-closing will not 

immediately occur.  

NAr

[Mo]

Mo-1  

Figure  4.7. Target alkylidene Mo-1. 

 
 

A second feature of this system is the isomeric family of Mo-1 generated using the 

selected transformations shown in Scheme 4.4. Two diastereomers are introduced initially with 

the use of aldehyde 1, which is shipped as the mixture of endo- and exo-aldehydes. A second 

stereocenter is introduced upon the net addition of ethylene across the internal C=C bond. 

Because the norbornene skeleton lacks any regiospecific directors, endo- and exo-species for 

both 2a and 2b are generated. This gives eight isomers, which are subjected to an imine-forming 

step to produce 3a and 3b and then treated with Schrock’s catalyst to yield Mo-1a and Mo-1b. 

Geometrical isomerization of the new molybdenum system would then produce sixteen isomers, 

as the Schrock catalyst is known to exist in the syn and anti form.  In essence, then, what is 

synthesized is a library of isomeric alkylidenes. Ostensibly, then the as-formed small library of 

substrates will provide for the running of sixteen experiments simultaneously. This 

organometallic approach would conceivably allow for direct identification of the alkylidene 

species which most lends itself to the production of cyclic n-mers. 
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Scheme  4.4. Synthetic approach to alkylidenes Mo-3a and Mo-3b. 

 

A third consideration given to the selection of Mo-1 as the substrate of choice has to do 

with the fragment it leaves behind after ring closing. Alkylidene Mo-1 transfers to the cyclic 

oligomer its norbornyl center. This ensures that the ring product is entirely composed of a series 

of cyclic hydrocarbons separated by unsaturated linkers when norbornene is used as a monomer. 

Norbornene is an attractive monomer for this application because it is known to be well-behaved 

to ROMP and because the 2,5-substitution of the cyclopentane rings biases the oligomers for 

macrocycle formation.  

Polynorbornene (PNB, Figure 4.8) generated by ROMP is known to be atactic with 

respect to carbons 2 and 5 because the five-membered rings are randomly R,S and S,R 

disubstituted. It is the bond across carbons 6 and 7, however, which gives insight into the 

conformational preference of PNB. Reports have shown that this bond is up to 73% cis in PNB, 

and it is this preference which gives PNB its blockiness, which is the ratio of cis-cis to trans-

trans strings.195 PNB which achieves a blockiness ratio of 4.5 is known to be soluble in organic 

solvents.  
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Figure  4.8. Polynorbornene. 

 

4.2. Results 

 

4.2.1. Overview 

 

Though the ultimate goal of using a bifunctional organometallic compound to mediate the 

formation of cyclic oligomers has yet to be achieved, the synthesis of an initial substrate for 

ligand substitution onto the metal center has been performed. This section describes synthetic 

trials en route to the substrate and notes early-stage progress in this project. 

 

4.2.2. Preparation of a Rigid MoVI-Alkylidene for Cyclic Oligomerization 

 

The key to the production of cyclic oligomers is the preparation of a rigid bifunctional 

imine olefin substrate (3) that can be attached to a Schrock-type metathesis catalyst. The 

resulting catalyst Mo-3 will have both an active alkylidene site for olefin metathesis and an 

imine terminating group. Previous studies on analogous systems have shown that the metathesis 

polymerization should take place at the alkylidene site but that the kinetically slower but 

thermodynamically more favorable reaction with the imine will terminate the reaction and kill 

the catalyst. Based on this reasoning, compound 3 was prepared as the catalyst for the cyclic 

oligomer study (Scheme 4.5). 
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A number of approaches to the synthesis of alkylidene Mo-1 were examined. The most 

successful and efficient route began with the conversion of aldehyde 1 to the dimethyl acetal 4. 

Acetal 4 was obtained in 89% yield by the addition of the addition of meso-2,3-butanediol to 5-

norbornene-2-carboxaldehyde and its structure was confirmed by 1H NMR spectroscopy and 

GC-MS analysis. Acetal formation was evident by the disappearance of the exo- (δ 9.40) and 

endo- (δ 9.18) aldehyde CHO signals and the presence of four doublets indicating the 

CH(dimethyl-1,3-dioxolane) proton from δ 4.46 – 5.49. The GC-MS exhibited an [M]+. peak at 

m/z 194 and a base peak at m/z 101, which corresponded to the mass of the dimethyl-(1,3-

dioxolane) ion. As expected, acetal 4 was produced as a mixture of exo- and endo- products.  
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Scheme  4.5. Synthesis of Mo-1 for imine-olefin competition study. 
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Hydrovinylation of 4 to give the 5-vinyl compound 5 was then achieved using a Heck 

reaction. 5-Vinyl 5 was produced as the diastereomeric mixtures of both 5a and 5b as indicated 

in Scheme 4.5. The vinyl product family 5 was recovered as a yellow liquid in yields ranging 

from 49 to 65% and its structure was verified by 1H NMR spectroscopy and GC-MS analysis. 1H 

NMR confirmed the presence of the vinyl group by the appearance of two multiplets in the 

region δ 4.5 – δ 5.8. Integration showed the more downfield signal to be roughly half that of the 

more upfield signal, which held with the presence of a vinyl group. A more conclusive 

determination could not be made owing to the number of isomeric vinyl groups present and the 

overlapping CH(dimethyl-1,3-dioxolane) signals. GC-MS showed the production of a family of 

isomeric compounds all with a peak at m/z 222. This corresponded to the [M]+. peak for 5-vinyl 

5. The product mixture was purified by column chromatography to remove phosphine and trace 

unreacted substrate. 

Aldehyde 2 was obtained using standard deprotection protocol using catalytic TsOH in a 

mixture of THF and H2O. Because this step offered the last chance of rigorous purification, the 

product was painstakingly refined by column chromatography to remove persisting phosphine 

and unreacted starting material. Characterization by 1H and 13C NMR spectroscopy confirmed 

the successful formation of aldehyde 2. The 1H NMR spectrum showed the presence of aldehyde 

signals for various isomers from δ 9.24 to δ 9.45 as well as the absence of all signals associated 

with the dioxolane, suggesting that cleavage of the protecting group had proceeded cleanly. The 

13C NMR spectrum exhibited distinct signals characteristic corresponding to the parent aldehyde 

at δ 200.9, δ 201.1, and δ 202.5. GC-MS indicated the production of a family of isomeric 

compounds all exhibiting an [M]+. peak at m/z 150, and an [M-29]+ peak at m/z 121, indicating 
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loss of the aldehyde functionality. Aldehyde 2 was finally isolated as a yellow liquid at 65% 

yield.  

Imine 3 was readily made from the condensation reaction of aldehyde 2 and 2,6-

dimethylaniline. Removal of excess aniline by purification with ROMPGEL196 was then 

attempted. ROMPGEL is convenient for amine sequestration because any amine encountered 

leads to opening of anhydride functionality on the polymer (Scheme 4.6), and as a polymer 

reagent ROMPGEL is then removed by simple filtration. Unfortunately, however, ROMPGEL 

proved to be ineffective owing to steric bulkiness surrounding the amine functionality. The 

remaining amine was found to be present by GC as a 5% impurity, and so it was deemed a 

tolerable impurity. Solvent was removed in vacuo to give imine 3 at 111% yield. The product 

was determined to be 91% pure by integration of GC, with the bulk of the impurity being excess 

amine. GC-MS showed the production of a family of isomeric imines giving identical 

fragmentation patterns. The mass spectrum of each isomer resolved through chromatography 

gave the expected parent [M]+. peak at m/z 253. 1H NMR showed signals corresponding to 

RCH=NR’ at δ 7.19 and δ 7.21. Additional imine signals may have been obscured by benzene. 

The amine impurity was identified by the RNH2 signal at δ 2.75. The signal for H2C=CH was 

present as a multiplet centered at δ 5.65 and integrated to 1.00. The signal for H2C=CH was 

present as a series from δ 4.91 to δ 4.97 and integrated to 2.01. The 13C NMR spectrum showed 

signals for RCH=NR’ at δ 169.2, δ 169.3, and δ 169.4. 

 

OO O

O

HOOC

O

n n

NHR1R2

R2R1N
O

 

Scheme  4.6. Reaction showing the mode by which amine is sequestered by ROMPGEL. 

177 



 

 

4.2.3. Investigation of Norbornene Hydrovinylation Catalyzed by [Ru]-H 6 

4.2.3.1. Hydrovinylation Performed on Norbornene Substrates Bearing Remote Acetal 
Functionalities 

 
A second method of hydrovinylation was explored and met with mixed results (Figure 

4.7). Using (PCy3)2Ru(H)(Cl)CO 6, aldehyde 2 was produced directly from aldehyde 1 and its 

identity confirmed by comparison of GC-MS data with the previous route to this compound. 

Though there was convincing agreement among the data, this route to 5- vinyl-2-carboxaldehyde 

2 was complicated greatly by the presence of byproduct aldehyde 7 (Figure 4.7). The aldehyde 

families 2 and 7 were determined by GC to exist in a 2:3 ratio, which meant the desired aldehyde 

was the minor product. Additionally, repeated attempts at separating 2 from 7 by column 

chromatography were unsatisfactory, with only a trace amount of pure aldehyde 2 recovered. 

 

O

1

ethylene, 5 mol% 6, HBF4
.Et2O, 

                benzene

O

2a, 2b

+

O

7a, 7b  

Scheme  4.7. Reaction giving singly- and doubly-hydrovinylated aldehydes 2 and 7. 

 

Before we discovered that Pd fixed the double vinylation problem we explored the use of 

alternate protecting schemes in an attempt to facilitate better separation of the singly- from the 

doubly hydrovinylated product. For that reason aldehyde 1 was converted to a series of three 

acetals: dioxolane 8, dimethyldioxolane 5, and tetramethyldioxolane 9 (Scheme 4.8). Ru-

mediated hydrovinylation was then attempted on each dioxolane (Scheme 4.9). 
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Scheme  4.8. Series of protected substrates tested for hydrovinylation by [Ru]-H 6. 
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Scheme  4.9. Summary of hydrovinylation tests. 

 

Acetal 8 was obtained in 81% yield by the nucleophilic addition of ethylene glycol to 5-

norbornene-2-carboxaldehyde 1 and its structure confirmed by 1H NMR spectroscopy. In 

particular, the aldehydic doublets at δ 9.48 (exo-CHO) and δ 9.26 (endo-CHO) were absent, and 

signals were present in the form of doublets from δ 4.30-4.70. These signals indicated 

diastereomeric acetal formation. The acetal was used without further purification. Attempts at 

hydrovinylating 8 using ruthenium hydride 6 were unsuccessful, however. It was thought that 

this might be due to the steric accessibility of the acetal oxygens, which could presumably have 
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made either or both of them available for coordination to ruthenium. With this in mind, more 

sterically hindered diols were explored. 

Dimethyl acetal 5 was obtained by the addition of the addition of meso-2,3-butanediol to 

5-norbornene-2-carboxaldehyde and its structure was confirmed by 1H NMR spectroscopy. The 

acetal was refined by column chromatography to 96% purity (52% yield) as determined by NMR 

inspection. Hydrovinylating 5 gave a mixture of 10 and 11. The production of 10 and 11 was 

verified by GC-MS analysis, though purification by column chromatography was still far from 

ideal. 

Tetramethyl acetal 9 was obtained in 83% yield by the addition of pinacol to 5-

norbornene-2-carboxaldehyde and its structure confirmed by 1H NMR spectroscopy. The acetal 

was used without further purification. Hydrovinylating 9 gave a mixture of 12 and 13. This 

product mixture was separated from other impurities by distillation The structures of 12 and 13 

were verified by 1H NMR spectroscopy and GC-MS analysis. Subsequent attempts at 

regenerating the respective aldehydes using 5-25% HCl in aqueous THF were unsuccessful 

owing to the familiar rearrangement tendencies of the pinacolato moiety. 

In the cases where the dioxolane substrate did hydrovinylate using [Ru]-H 6, the catalyst 

inevitably cycled through two net ethylene additions and the resulting product mixture was no 

easier to separate.  

 

4.2.3.2. Hydrovinylation Performed on a Norbornene Substrate Bearing a Remote Imine 
Functionality 

 
One final set of experiments was conducted using catalyst 6 on a preformed imine. This 

served to test the affinities of norbornenes with remotely placed aldehydes in comparison with 
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remotely placed imines and if successful, hydrovinylating an imine-substituted norbornene 

would have eliminated a synthetic step en route to the alkylidene 3. 

Several attempts to synthesize the imine prior to hydrovinylation were made. The 

reaction of aldehyde 1 with 2,6-diisopropylaniline went to 88-91% conversion to the imine as 

determined by GC (Scheme 4.10). Because separation by column chromatography was not an 

option, attempts were made to consume unreacted aldehyde with excess amine. Amine left 

unreacted was then to be scavenged by ROMPGEL. Repeated attempts of this approach proved 

unsuccessful. Incomplete conversion to the imine was attributed to the large steric demand of the 

ortho isopropyl groups.   

 

1

+
O NH2 N

benzene, 4 Å sieves

 

Scheme  4.10. Reaction of aldehyde 1 and 2,6-diisopropylaniline does not got to completion. 

 

Accordingly, an attempt to synthesize the less hindered imine 14 was undertaken 

(Scheme 4.11). Imine 14 was successfully prepared in 52% yield by the condensation of 2,6-

dimethylaniline with 5-norbornene-2-carboxaldehyde, and its structure confirmed by 1H NMR 

spectroscopy and GC-MS analysis. Hydrovinylation of imine 14 proved unsuccessful, however. 
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Scheme  4.11. Hydrovinylation check on imine-substituted 14 gave no reaction. 

 

4.3. Summary of Further Studies 

 

Imine 3, after being prepared as described in Section 4.2.2, was reacted with Schrock’s 

catalyst to produce Mo-1. It quickly became clear, however, that the ω-imino alkylidene species 

underwent decomposition in the reaction mixture which precluded any polymerization. This 

instability was likely due to the presence to amine, which can react in an uproductive fashion 

with the metal if not consumed.  

In an attempt to circumvent this problem we decided to investigate the preparation of a 

ruthenium based-linker molecule. Aldehyde 2 was treated with a phosphorus ylide to yield enol 

ether 15 in 50% yield following column chromatography (Scheme 4.12). Compound 15 was then 

investigated as a substrate for ligand substitution onto the Grubbs-I catalyst to produce Ru-A as 

shown in Scheme 4.13. Use of 15 as a bifunctional substrate followed the same rationale 

described for the employment of imine 3–ROMP reactions mediated by Grubbs carbenes are 

typically quenched by the addition of ethyl vinyl ether.197 The resulting ethoxy methylidene 

species is a thermodynamic sink and, as such, is inactive to further metathesis (Scheme 4.14). 
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Scheme  4.12. Preparation of enol ether 8 using the Wittig reaction. 
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Scheme  4.13. Reaction of enol ether 8 with Grubbs-I catalyst. 

 

Ru
PCy3

Cl
Cl + O Ru

PCy3

Cl
Cl

O
+

 

Scheme  4.14. The immediate quenching event of a Grubbs-type metathesis catalyst upon treatment with ethyl vinyl 
ether. 

 

The competition of the vinyl and enol ether functionalities for productive metathesis onto 

the metal center was then examined. This experiment is described by Scheme 4.15 and was 

performed to better understand the interplay between formation of the kinetic (Ru-A) and 

thermodynamic (Ru-B) products. 1H NMR experiments were conducted at various temperatures 

for the reaction of Grubbs-I and 4.5 eq enol ether 15. The Ru product distributions for these 

experiments after 12 h are shown in Figure 4.9. The spectra collected after 12 h at -78° and -25° 

C clearly indicate preferential reactivity at the vinyl end of substrate 15–the [Ru]=CHR 

integrations are approximately 10:1 Ru-A:Ru-B at -78° C and 3:1 Ru-A: Ru-B at -25° C. 

However, spectra collected after 12 h at 0° and 23° C show that the rate of reaction has increased 
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such that undesired metathesis to give Ru-B dominates. The alkylidene product distribution for 

the reaction after 12 h at 23° C is approximately 1:10 Ru-A:Ru-B by integration. 

 

OMe
[Ru]

[Ru]
OMe

Ru-B

OMe

Ru-A

[Ru]

15

+ 4.5 eq

Grubbs-I

Path A Path B

 

 
Scheme  4.15. The competition experiment of Grubbs-I and substrate 15. 
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 Grubbs-I Ru-A Ru-B

-78° C

-25° C

0° C

23° C

Figure  4.9. 1H NMR spectra taken after 12 h for competitive metathesis experiments using Grubbs-I and enol ether 
15 at -78°, -25°, 0°, and 23° C (d8-PhMe). 

 

4.4. Experimental 

 
 
General Considerations. All manipulations of air- and/or water-sensitive compounds were 

performed in a nitrogen filled glove box or by standard Schlenk techniques. Solid organometallic 

compounds were transferred in a nitrogen filled glove box and stored at -33 ˚C, unless otherwise 

stated. 

 1H and 13C NMR spectra were recorded with Bruker spectrometers at 300 MHz. 

Chemical shifts were referenced to residual 1H signals in deuterated solvents. Significant 1H data 
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are tabulated in the order: multiplicity, number of protons, coupling constant(s) in hertz. Gas 

chromatography-mass spectrometry (GC-MS) was performed on a Hewlett Packard Series 5980 

GC-5971 A MS with a Hewlett Packard Series 1 capillary column. Column chromatography was 

performed using Sorbent 60 32-60 standard grade silica gel. 

 

Materials. Unless otherwise indicated, materials were obtained from commercial suppliers and 

used without further purification. Aniline, 2,6-dimethylaniline, and 2,6-diisopropylaniline were 

distilled from calcium hydride. 5-norbornene-2-carboxaldehyde (1) was purified by column 

chromatography using benzene as eluant. Benzene and diethyl ether were distilled under nitrogen 

from sodium and benzophenone. Benzene-d6 was dried over sodium and benzophenone, 

degassed by repeated freeze-pump-thaw cycles, vacuum transferred, and stored in a nitrogen 

glove box. 

 

5-Vinyl-norbornane-2-carbaldehyde (2a), 6-Vinyl-norbornane-2-carbaldehyde (2b), 5-(1-

Methyl-allyl)-norbornane-2-carbaldehyde (7a), and 6-(1-Methyl-allyl)-norbornane-2-

carbaldehyde (7b):  

O

2a

O

2b

O

7a

O

7b

 

In a nitrogen-filled glove box, a solution of complex 6 (5 mol%) in 25 mL benzene was 

added to a 200 mL Schlenk tube equipped with a Teflon stopcock. The reaction tube was brought 
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out of the box and 84 µL 54 wt % HBF4
.Et2O (1.5 equiv) was added via syringe under inert 

atmosphere. The mixture was stirred for 30 min and was cooled in a liquid nitrogen bath. The 

reaction mixture was treated with a solution of aldehyde 1 (1.00 mL, 8.17 mmol) in 1 mL 

benzene was added. Excess ethylene was condensed into the reaction tube, and the reaction 

mixture was stirred for 12 h at room temperature. The tube was opened to air, the mixture was 

filtered through a pipet packed with 20 cm of silica gel, and the solvent was removed in vacuo to 

give the isomeric families 2 and 7 (0.43 mL). GC-MS 2a, 2b: [M]+. m/z 150, [M-CHO]+ m/z 

121, [C6H5O]+ m/z 93, base peak, [C7H7]+ m/z 91. GC-MS 7a, 7b: [M]+. m/z 178, [M-CHO]+ 

m/z 149, [M-C4H9]+ m/z 121, [C6H5O]+ m/z 93, base peak, [C7H7]+ m/z 91. 

A second method was utilized which yielded only 2a and 2b. Dimethyl acetal products 

5a and 5b (3.12 mL, 14.76 mmol) and TsOH (255 mg) were dissolved in THF (100 mL). H2O 

(25 mL) was added and the contents were refluxed 6 h. Upon coling, the organic product was 

extracted with ether (15 mL), washed, dried with Na2SO4, and the solvent removed in vacuo. The 

product was purified by column chromatography (SiO2, 10% hexanes in EtOAc) to give the 

isomeric products 2a and 2b (.904 g, 35%). 1H NMR (C6D6) δ 9.24 – 9.44 (ss, 1, CHO), δ 5.50-

5.56 (m, 1, CH=CH2), δ 4.83-4.88 (m, 2, CH=CH2). Numerous unresolved chemical shifts were 

present from δ 0.72-2.20 and indicated presence of protons on the norbornane skeleton. 13C 

NMR (C6D6) δ 200.8, 201.1, 202.4, 202.5 (CHO), δ 143.0, 143.3, 143.4 (CH2=CH), δ 112.3, 

112.6, 112.7 (CH2=CH).  Numerous chemical shifts were present from δ 28.5-54.6 and indicated 

presence of carbons on the norbornane skeleton. GC-MS [M]+. m/z 150, [M-CHO]+ m/z 121, 

[C6H5O]+ m/z 93, base peak, [C7H7]+ m/z 91.  
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(2,6-Dimethyl-phenyl)-(5-vinyl-norborn-2-ylmethylene)-amine (3a) and (2,6-Dimethyl-

phenyl)-(6-vinyl-norborn-2-ylmethylene)-amine (3b):  

NN

3a 3b  

2,6-Dimethylaniline (50 µL, 0.40 mmol) and the aldehyde mixture of 2a and 2b (66 mg, 

0.44 mmol) were added to a Schlenk flask containing 20 mL benzene and molecular sieves (4 Å, 

8 g). Filtration and solvent removal gave 3a and 3b (136 mg, 111%). 1H NMR (C6D6) δ 7.19-

7.21 (m, 1, CH=NR), δ 6.93-7.02 (m, 3, Hm, Hp), δ 5.67 (quint, 1, CH2=CH), δ 4.92 (m, 2, 

CH2=CH), δ 2.07 (s, 6, Me2Ph). The remaining chemical shifts were noted as indicative of 

protons on the norbornane skeleton. 13C NMR (C6D6) δ 169.2, 169.3, 169.4 (CH=N), δ 152.0, 

126.6, 123.4 (Me2Ph), 143.3, 143.6 (CH2CH), 112.1, 112.3 (CH2CH), δ 18.4 (Me2Ph). Numerous 

chemical shifts were present from δ 32.4-48.2 and indicated presence of carbons on the 

norbornane skeleton. GC-MS [M]+. m/z 253, [M-C4H7]+ m/z 198, [M-C6H7N]+ m/z 160, base 

peak. 

 

 

 

Norborn-5-en-2-yl-4,5-dimethyl-[1,3]dioxolane (5):  

O

O

 

To a Schlenk flask was added 100 mL benzene, followed by toluenesulfonic acid (35.0 

mg, .202 mmol), aldehyde 1 (0.65 mL, 5.4 mmol), and meso-2,3-butanediol (0.50 mL, 5.5 

mmol). The contents were refluxed and water was removed as a benzene azeotrope using a 
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Dean-Stark apparatus. After cooling, the reaction mixture was quenched with a saturated solution 

of NaHCO3. The benzene layer was collected and dried over MgSO4, and the solvent was 

removed in vacuo. The product was purified by flash chromatography (SiO2, benzene) to give 5 

as a colorless oil (0.52 mL, 52%). 1H NMR (C6D6) δ 6.04 (m, 2, HC=), δ 4.40-4.78 (d series, 1, J 

8.5, 2-endo/2-exo), δ 4.00 (m, 1, OCHsMe or OCHaMe), δ 3.77 (m, 1, OCHaMe or OCHsMe), δ 

3.03-3.18 (m, 1, bridgehead 4 CH), δ 2.60-2.70 (m, 1, bridgehead 1 CH), δ 2.35 (sept, 1, 

CHCHOCH2), δ 1.87 (m A of AB, 1, bridging 7 CHa or CHs), δ 1.39 (m B of AB, 1, bridging 7 

CHs or CHa), δ 1.08 (m, 1, 3-endo/3-exo), δ 0.93 (m, 6, CHMe). GC-MS: [M]+. m/z 194, [M-

C5H7]+ m/z 127, [M-C7H9]+. m/z 101, base peak. 

 

(PCy3)2Ru(H)(Cl)(CO) (6): 

Ru
Cl
PCy3OC

Cy3P
H

 

Using the method of Esteruelas,198 a solution of RuCl3
.3H2O (0.383 g, 1.46 mmol) in 45 

mL anhydrous methanol was treated with tricyclohexylphosphine (1.94 g, 6.92 mmol) and the 

mixture was heated for 24 hours under reflux. The resulting yellow precipitate was filtered off, 

washed with methanol and diethyl ether, and dried in vacuo to give 6 (0.593 g, 58%). 1H NMR 

(C6D6) δ 1.07-1.31, 1.60-1.72, 2.01-2.21, 2.40-2.57 (m, PCy3), δ -24.2 (t, 1, JPH = 18.0, Ru-H). 

Characterization matched known literature. 

 

Norborn-5-en-2-yl-[1,3]dioxolane (8):  

O

O

 

To a Schlenk flask was added 100 mL benzene, followed by toluenesulfonic acid (113 

mg, 0.653 mmol), aldehyde 1 (2.0 mL, 17 mmol), and ethylene glycol (1.4 mL, 25 mmol).The 

189 



 

contents were refluxed and water was removed as a benzene azeotrope using a Dean-Stark 

apparatus. After cooling, the reaction mixture was quenched with a saturated solution of 

NaHCO3. The benzene layer was collected and dried over MgSO4, and the solvent was removed 

in vacuo to give pure 8 (2.26 g, 81%). 1H NMR (C6D6) δ 6.02 (m, 2, HC=), δ 4.30-4.70 (d series, 

1, J 8.5, 2-endo/2-exo), δ 3.54 (m, 2, OCHsHCHsHO or OCHaHCHaHO), δ 3.35 (m, 2, 

OCHaHCHaHO or OCHsHCHsHO), δ 3.01-3.14 (m, 1, bridgehead 4 CH), δ 2.59-2.68 (m, 1, 

bridgehead 1 CH), δ 2.33 (sept, 1, CHCHOCH2), δ 1.81 (m B of AB, 1, bridging 7 CHa or CHs), 

δ 1.60 (m, 1, 3-exo), δ 1.36 (m A of AB, 1, bridging 7 CHs or CHa), δ 1.07 (m, 1, 3-endo). GC-

MS: [M]+. m/z 166, [M-C5H7]+ m/z 99, [M-C5H8O2]+. m/z 66, base peak. 

 

Norborn-5-en-2-yl-4,4,5,5-tetramethyl-[1,3]dioxolane (9): 

O

O  

Using the procedure that was employed for 5, toluenesulfonic acid (53.6 mg, .310 mmol), 

aldehyde 1 (1.7 mL, 14.28 mmol), and pinacol (1.85g, 15.7 mmol) were reacted to give 9 (2.64g, 

83%). 1H NMR (C6D6) δ 6.06 (m, 2, HC=), δ 4.66-5.00 (d series, 1, J 8.7, 2-endo/2-exo), δ 3.10-

3.18 (m, 1, bridgehead 4 CH), δ 2.61-2.67 (m, 1, bridgehead 1 CH), δ 2.30 (sept, 1, 

CHCHOCH2), δ 1.87 (m B of AB, 1, bridging 7 CHa or CHs), δ 1.40 (m A of AB, 1, bridging 7 

CHs or CHa), δ 1.11 (m, 12, CMe2). The chemical shift for 3-endo/3-exo was obscured by CMe2. 

GC-MS: [M]+. m/z 222, [M-C5H6]+. m/z 156, [M-C7H9]+ m/z 129. 

 

4,5-Dimethyl-2-(5-vinyl-norborn-2-yl)-[1,3]dioxolane (10a), 4,5-Dimethyl-2-(6-vinyl-

norborn-2-yl)-[1,3]dioxolane (10b), 4,5-Dimethyl-2-(5-(1-methyl-allyl)-norborn-2-yl)-
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[1,3]dioxolane (11a), and 4,5-Dimethyl-2-(6-(1-methyl-allyl)-norborn-2-yl)-[1,3]dioxolane 

(11b):  

O

O

10a

O

O

10b

O

O

11a

O

O

11b

 

Method 1:  

Using the method of Yi,199 in a nitrogen-filled glove box, a solution of catalyst 6 (5 

mol%) in 2 mL benzene was added to a 20 mL Schlenk tube equipped with a Teflon stopcock. 

HBF4
.Et2O (15 µL, 54 wt %, 1.5 equiv,) was added via syringe under inert atmosphere. After 

stirring and cooling, the reaction mixture was treated with a solution of alkene 5 (90.7 µL, 0.50 

mmol) in 1 mL benzene. Ethylene (6 mmol) was condensed into the reaction tube, and the 

reaction mixture was stirred for 12 h at room temperature. The tube was opened to air and work 

up gave the isomeric families 10 and 11 (115 µL). GC-MS 10a, 10b: [M]+. m/z 222, [C5H9O2]+ 

m/z 129, [M-C7H9]+. m/z 101, base peak. GC-MS 11a, 11b: [M-1]+ m/z 249, [C5H9O2]+ m/z 129, 

[M-C7H9]+. m/z 101, base peak. 

 

Method 2:  

A second approach produced 10a and 10b in the absence of 11a or 11b. Based on the 

method of Arcadi,200 Pd(OAc)2 (90 mg, 0.41 mmol), P(o-tolyl)3 (482 mg, 1.59 mmol), and 

piperidine (2.11 g, 24.8 mmol) were massed and added in a nitrogen-filled glove box to a 20 mL 

Schlenk tube equipped with a Teflon stopcock. The tube was brought out of the glove box and 
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the contents were frozen. Dimethyl acetal 5 (1.45 mL, 8.00 mmol), DMF (3.3 mL) and 88% 

formic acid (0.894 g) were added. The tube was evacuated, and vinyl bromide (8.00 mmol) was 

condensed into the reaction flask. The contents were allowed to come to room temperature and 

were stirred for 8 h. The contents were then heated in a 60˚ C for 4 h. The tube was cooled, and 

the mixture was diluted with ethyl acetate. The organic product was extracted with ethyl acetate, 

washed, dried with Na2SO4, and the solvent removed in vacuo. The product was purified by 

column chromatography using benzene as eluant to give the isomeric products 10a and 10b (1.04 

mL, 65%). 1H NMR (C6D6) δ 5.77 (m, 1, CH2=CH), δ 5.02-5.45 (d series, 1, J 8.5, 2-endo/2-exo) 

δ 4.92 (m, 2, CH2=CH), δ 3.98 (m, 1, OCHsMe or OCHaMe), δ 3.82 (m, 1, OCHaMe or 

OCHsMe), δ 2.69-2.74 (m, 1, bridgehead 4 CH), δ 2.39-2.43 (m, 1, bridgehead 1 CH), δ 2.08 (m, 

2, 6-endo/6-exo), δ 1.77 (m, 1, 2-endo/2-exo). Numerous chemical shifts present from δ 0.93-

2.73 were poorly resolved but were taken to indicate presence of protons on the norbornane 

skeleton.  

 

4,4,5,5-Tetramethyl-2-(5-vinyl-norborn-2-yl)-[1,3]dioxolane (12a), 4,4,5,5-Tetramethyl-2-

(6-vinyl-norborn-2-yl)-[1,3]dioxolane (12b), 4,4,5,5-Tetramethyl-2-[5-(1-methyl-allyl)-

norborn-2-yl]-[1,3]dioxolane (13a), and 4,4,5,5-Tetramethyl-2-[6-(1-methyl-allyl)-norborn-

2-yl]-[1,3]dioxolane (13b):  

O

O

O

O

O

O

O

O

12a

12b

13a

13b
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Using the procedure that was employed for 10 and 11, a solution of complex 6 (5 mol%) 

in 20 mL benzene was added to a 200 mL Schlenk tube equipped with a Teflon stopcock. The 

reaction tube was brought out of the box and 122 µL 54 wt % HBF4
.Et2O (1.5 equiv) was added 

via syringe under inert atmosphere. After stirring and cooling the mixture a solution the reaction 

mixture was treated with a solution of alkene 9 (1.44 g, 6.50 mmol) in 8 mL benzene. Excess 

ethylene (40 mmol) was then condensed into the reaction tube, and the reaction mixture was 

stirred for 13 h at room temperature. The tube was opened to air, the mixture was filtered 

through a column packed with 20 cm of silica gel, and the solvent was removed in vacuo to give 

the isomeric families 12 and 13. GC-MS 12a, 12b: [M]+. m/z 250, [M-C9H13]+ m/z 129, [M-

C7H9]+. m/z 101, base peak. GC-MS 13a, 13b: [M-1]+ m/z 277, [M-C9H15]+ m/z 155, [M-

C11H17]+ m/z 129, base peak, [M-C7H9]+. m/z 101. 

 

 

  

Schrock norbornyl-alkylidene (Mo-1): 

N

[Mo]

Mo-1  

 In a nitrogen-filled glove box, imine olefin 3 was dissolved in .200 mL C6D6 and 

transferred to a screw-valve NMR tube. To this was added enough of a 1.7 M standard solution 

of Schrock’s catalyst, Mo(=CHCMe2Ph)(=NAr)[OCMe(CF3)2]2 (Ar = 2,6-diisopropylphenyl) to 

convert the catalyst to the new alkylidene. The contents of the tube were allowed to mix for 30 

min. A 1H NMR spectrum was then collected to determine the extent of the reaction. 1H NMR 

(C6D6) δ 12.37 (s, 1, Mo=CH), δ 7.00 (m, 3, Mo=NC6H3(CHMe2)2), δ 6.95 (m, 3, CH=NMe2Ph), 
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δ 3.56 (s, 4, Mo=NC6H3(CHMe2)2) δ 2.08 (s, 6, CH=NMe2Ph), δ 1.53 (s, 6, OCMe(CF3)2), δ 1.19 

(s, 12, Mo=NC6H3(CHMe2)2). Diagnostic peak shifts indicating presence of free neophylidene 

were also observed: δ 5.97 (m, 1, CH2=CHMe2Ph), δ 4.98 (m, 2, CH2=CHMe2Ph), δ 1.27 (s, 6, 

CH2=CHMe2Ph). 
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APPENDIX A 

 
 
 

Selected 1H and 13C NMR Spectra 
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Figure A.1. The 1H NMR spectrum of decenyl-9-BBN 2. 

 
 

195 



 

II

4
C

D
C

l 3

H
2O

 

 
 

Figure A.2. The 1H NMR spectrum of diiodofluorene 4. 
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Figure A.3. The 1H NMR spectrum of SF1M10. 
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Figure A.4. The 1H NMR spectrum of ADMET polymer 5. 
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Figure A.5. The 1H NMR spectrum of PF1M10. 
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Figure A.6. The 1H NMR spectrum of PF3M18 
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Figure A.7. The 13C NMR spectrum of PF3M18 Figure A.7. The 13C NMR spectrum of PF3M18 
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Figure A.8. The 1H NMR spectrum of diiodo quaterfluorene 17. 
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Figure A.9. The 1H NMR spectrum of boronic acid 18. Figure A.9. The 1H NMR spectrum of boronic acid 18. 
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Figure A.10. The 1H NMR spectrum of PDHF-new. 
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APPENDIX B 
 
 

X-Ray Structure Refinement Data for Bifluorene 10 
 
 

Table B.1.  Crystal data and structure refinement for jc0630s. 

Identification code  jc0630s 

Empirical formula  C56 H82 Si2 

Formula weight  811.40 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 11.7999(8) Å α= 90°. 

 b = 18.8966(13) Å β= 95.823(2)°. 

 c = 24.6741(16) Å γ = 90°. 

Volume 5473.4(6) Å3 

Z 4 

Density (calculated) 0.985 Mg/m3 

Absorption coefficient 0.096 mm-1 

F(000) 1784 

Crystal size 0.29 x 0.14 x 0.13 mm3 

Theta range for data collection 1.66 to 25.00°. 

Index ranges -14<=h<=14, -22<=k<=22, -29<=l<=29 

Reflections collected 43683 

Independent reflections 9625 [R(int) = 0.0640] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction None 

Max. and min. transmission 0.9876 and 0.9727 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9625 / 0 / 523 

Goodness-of-fit on F2 1.052 

Final R indices [I>2sigma(I)] R1 = 0.1010, wR2 = 0.2286 

R indices (all data) R1 = 0.1792, wR2 = 0.2658 

Largest diff. peak and hole 0.413 and -0.190 e.Å-3 
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Table B.2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for jc0630s.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Si(1) 6989(1) 6438(2) 2535(1) 164(1) 

C(1) 2818(4) 6877(3) 3290(2) 96(2) 

Si(2) -6469(1) 7194(1) 5910(1) 98(1) 

C(2) 3920(3) 6480(3) 3239(2) 89(1) 

C(3) 4820(4) 6667(3) 2943(2) 111(2) 

C(4) 5764(4) 6220(4) 2930(2) 116(2) 

C(5) 5756(4) 5600(4) 3222(2) 123(2) 

C(6) 4871(4) 5388(3) 3519(2) 103(2) 

C(7) 3955(3) 5848(3) 3523(2) 83(1) 

C(8) 2893(3) 5784(2) 3791(2) 71(1) 

C(9) 2504(3) 5253(2) 4109(2) 77(1) 

C(10) 1440(3) 5334(2) 4296(2) 73(1) 

C(11) 777(3) 5925(2) 4175(1) 63(1) 

C(12) 1194(3) 6457(2) 3857(2) 74(1) 

C(13) 2248(3) 6380(2) 3666(2) 75(1) 

C(14) -2226(3) 7219(2) 5164(2) 73(1) 

C(15) -1742(3) 6639(2) 4824(2) 63(1) 

C(16) -667(3) 6582(2) 4650(2) 69(1) 

C(17) -368(3) 5990(2) 4369(1) 63(1) 

C(18) -1165(3) 5450(2) 4271(2) 68(1) 

C(19) -2250(3) 5508(2) 4428(2) 69(1) 

C(20) -2542(3) 6101(2) 4705(1) 60(1) 

C(21) -3597(3) 6297(2) 4939(1) 62(1) 

C(22) -4631(3) 5947(2) 4927(2) 72(1) 

C(23) -5466(3) 6243(2) 5205(2) 81(1) 

C(24) -5318(3) 6871(2) 5497(2) 74(1) 

C(25) -4266(3) 7215(2) 5495(2) 79(1) 

C(39) -2254(4) 7935(2) 4876(2) 97(2) 

C(26) -3419(3) 6927(2) 5215(2) 68(1) 

C(27) 2105(5) 6962(3) 2744(3) 118(2) 

C(28) 1842(5) 6304(4) 2434(2) 119(2) 
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C(29) 1060(5) 6409(4) 1915(3) 147(2) 

C(30) 865(7) 5767(5) 1573(4) 184(3) 

C(31) 100(9) 5859(7) 1034(5) 242(5) 

C(32) 163(15) 5373(12) 689(6) 458(16) 

C(33) 2991(6) 7632(4) 3527(3) 146(2) 

C(34) 3536(7) 7676(4) 4040(4) 173(3) 

C(35) 3683(12) 8483(8) 4296(7) 254(7) 

C(36) 2871(15) 8843(9) 4384(8) 320(8) 

C(37) 3172(15) 9608(7) 4755(6) 294(7) 

C(38) 3590(16) 10118(8) 4427(6) 333(8) 

C(40) -2855(4) 7952(3) 4311(3) 111(2) 

C(41) -2899(6) 8666(3) 4038(3) 157(3) 

C(42) -3461(7) 8682(4) 3479(4) 190(3) 

C(43) -3590(10) 9422(7) 3246(6) 311(8) 

C(44) -4174(12) 9523(9) 2816(6) 392(11) 

C(45) -1525(3) 7289(3) 5725(2) 92(2) 

C(46) -1410(5) 6637(3) 6070(2) 112(2) 

C(47) -632(5) 6715(4) 6595(3) 135(2) 

C(48) -530(9) 6046(6) 6922(3) 228(5) 

C(49) 520(30) 5960(20) 7425(12) 460(20) 

C(50) -12(19) 6244(14) 7726(10) 420(20) 

C(51) 6667(6) 7258(8) 2110(3) 331(9) 

C(52) 7132(10) 5768(9) 2045(5) 422(12) 

C(53) 8243(5) 6650(5) 2981(3) 201(4) 

C(54) -6421(6) 6661(4) 6535(2) 165(3) 

C(55) -6227(5) 8134(3) 6101(3) 136(2) 

C(56) -7883(4) 7080(4) 5507(3) 166(3) 

________________________________________________________________________________ 
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 Table B.3.   Bond lengths [Å] and angles [°] for  jc0630s. 

_____________________________________________________  

Si(1)-C(52)  1.771(10) 

Si(1)-C(53)  1.798(6) 

Si(1)-C(4)  1.870(5) 

Si(1)-C(51)  1.886(11) 

C(1)-C(2)  1.517(6) 

C(1)-C(27)  1.523(7) 

C(1)-C(13)  1.523(6) 

C(1)-C(33)  1.549(8) 

Si(2)-C(54)  1.836(6) 

Si(2)-C(55)  1.853(6) 

Si(2)-C(56)  1.867(5) 

Si(2)-C(24)  1.882(4) 

C(2)-C(7)  1.383(6) 

C(2)-C(3)  1.395(5) 

C(3)-C(4)  1.401(7) 

C(3)-H(3A)  0.9500 

C(4)-C(5)  1.377(8) 

C(5)-C(6)  1.393(6) 

C(5)-H(5A)  0.9500 

C(6)-C(7)  1.388(6) 

C(6)-H(6A)  0.9500 

C(7)-C(8)  1.480(5) 

C(8)-C(13)  1.377(5) 

C(8)-C(9)  1.379(5) 

C(9)-C(10)  1.390(5) 

C(9)-H(9A)  0.9500 

C(10)-C(11)  1.380(5) 

C(10)-H(10A)  0.9500 

C(11)-C(12)  1.396(5) 

C(11)-C(17)  1.483(5) 

C(12)-C(13)  1.381(5) 

C(12)-H(12A)  0.9500 

C(14)-C(15)  1.527(5) 

C(14)-C(26)  1.528(5) 
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C(14)-C(39)  1.528(6) 

C(14)-C(45)  1.544(6) 

C(15)-C(16)  1.383(4) 

C(15)-C(20)  1.398(5) 

C(16)-C(17)  1.381(5) 

C(16)-H(16A)  0.9500 

C(17)-C(18)  1.392(5) 

C(18)-C(19)  1.379(5) 

C(18)-H(18A)  0.9500 

C(19)-C(20)  1.376(5) 

C(19)-H(19A)  0.9500 

C(20)-C(21)  1.472(4) 

C(21)-C(26)  1.378(5) 

C(21)-C(22)  1.385(5) 

C(22)-C(23)  1.376(5) 

C(22)-H(22A)  0.9500 

C(23)-C(24)  1.388(5) 

C(23)-H(23A)  0.9500 

C(24)-C(25)  1.402(5) 

C(25)-C(26)  1.383(5) 

C(25)-H(25A)  0.9500 

C(39)-C(40)  1.497(7) 

C(39)-H(39A)  0.9900 

C(39)-H(39B)  0.9900 

C(27)-C(28)  1.477(7) 

C(27)-H(27A)  0.9900 

C(27)-H(27B)  0.9900 

C(28)-C(29)  1.513(8) 

C(28)-H(28A)  0.9900 

C(28)-H(28B)  0.9900 

C(29)-C(30)  1.483(9) 

C(29)-H(29A)  0.9900 

C(29)-H(29B)  0.9900 

C(30)-C(31)  1.538(11) 

C(30)-H(30A)  0.9900 

C(30)-H(30B)  0.9900 
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C(31)-C(32)  1.260(14) 

C(31)-H(31A)  0.9900 

C(31)-H(31B)  0.9900 

C(32)-H(32A)  0.9800 

C(32)-H(32B)  0.9800 

C(32)-H(32C)  0.9800 

C(33)-C(34)  1.363(9) 

C(33)-H(33A)  0.9900 

C(33)-H(33B)  0.9900 

C(34)-C(35)  1.654(14) 

C(34)-H(34A)  0.9900 

C(34)-H(34B)  0.9900 

C(35)-C(36)  1.212(17) 

C(35)-H(35A)  0.9900 

C(35)-H(35B)  0.9900 

C(36)-C(37)  1.729(19) 

C(36)-H(36A)  0.9900 

C(36)-H(36B)  0.9900 

C(37)-C(38)  1.382(13) 

C(37)-H(37A)  0.9900 

C(37)-H(37B)  0.9900 

C(38)-H(38A)  0.9800 

C(38)-H(38B)  0.9800 

C(38)-H(38C)  0.9800 

C(40)-C(41)  1.507(7) 

C(40)-H(40A)  0.9900 

C(40)-H(40B)  0.9900 

C(41)-C(42)  1.469(9) 

C(41)-H(41A)  0.9900 

C(41)-H(41B)  0.9900 

C(42)-C(43)  1.513(11) 

C(42)-H(42A)  0.9900 

C(42)-H(42B)  0.9900 

C(43)-C(44)  1.220(14) 

C(43)-H(43A)  0.9900 

C(43)-H(43B)  0.9900 
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C(44)-H(44A)  0.9800 

C(44)-H(44B)  0.9800 

C(44)-H(44C)  0.9800 

C(45)-C(46)  1.497(6) 

C(45)-H(45A)  0.9900 

C(45)-H(45B)  0.9900 

C(46)-C(47)  1.516(7) 

C(46)-H(46A)  0.9900 

C(46)-H(46B)  0.9900 

C(47)-C(48)  1.498(10) 

C(47)-H(47A)  0.9900 

C(47)-H(47B)  0.9900 

C(48)-C(49)  1.67(4) 

C(48)-H(48A)  0.9900 

C(48)-H(48B)  0.9900 

C(49)-C(50)  1.15(5) 

C(49)-H(49A)  0.9900 

C(49)-H(49B)  0.9900 

C(50)-H(50A)  0.9800 

C(50)-H(50B)  0.9800 

C(50)-H(50C)  0.9800 

C(51)-H(51A)  0.9800 

C(51)-H(51B)  0.9800 

C(51)-H(51C)  0.9800 

C(52)-H(52A)  0.9800 

C(52)-H(52B)  0.9800 

C(52)-H(52C)  0.9800 

C(53)-H(53A)  0.9800 

C(53)-H(53B)  0.9800 

C(53)-H(53C)  0.9800 

C(54)-H(54A)  0.9800 

C(54)-H(54B)  0.9800 

C(54)-H(54C)  0.9800 

C(55)-H(55A)  0.9800 

C(55)-H(55B)  0.9800 

C(55)-H(55C)  0.9800 
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C(56)-H(56A)  0.9800 

C(56)-H(56B)  0.9800 

C(56)-H(56C)  0.9800 

 

C(52)-Si(1)-C(53) 116.6(6) 

C(52)-Si(1)-C(4) 109.3(4) 

C(53)-Si(1)-C(4) 111.2(3) 

C(52)-Si(1)-C(51) 103.7(7) 

C(53)-Si(1)-C(51) 105.3(4) 

C(4)-Si(1)-C(51) 110.4(3) 

C(2)-C(1)-C(27) 112.4(4) 

C(2)-C(1)-C(13) 100.4(4) 

C(27)-C(1)-C(13) 111.5(4) 

C(2)-C(1)-C(33) 113.8(4) 

C(27)-C(1)-C(33) 106.1(5) 

C(13)-C(1)-C(33) 112.8(4) 

C(54)-Si(2)-C(55) 108.8(3) 

C(54)-Si(2)-C(56) 109.5(3) 

C(55)-Si(2)-C(56) 110.6(3) 

C(54)-Si(2)-C(24) 108.3(2) 

C(55)-Si(2)-C(24) 110.4(2) 

C(56)-Si(2)-C(24) 109.2(2) 

C(7)-C(2)-C(3) 119.9(4) 

C(7)-C(2)-C(1) 111.5(3) 

C(3)-C(2)-C(1) 128.5(5) 

C(2)-C(3)-C(4) 120.6(5) 

C(2)-C(3)-H(3A) 119.7 

C(4)-C(3)-H(3A) 119.7 

C(5)-C(4)-C(3) 117.0(4) 

C(5)-C(4)-Si(1) 120.5(5) 

C(3)-C(4)-Si(1) 122.5(5) 

C(4)-C(5)-C(6) 124.4(5) 

C(4)-C(5)-H(5A) 117.8 

C(6)-C(5)-H(5A) 117.8 

C(7)-C(6)-C(5) 116.7(5) 

C(7)-C(6)-H(6A) 121.6 
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C(5)-C(6)-H(6A) 121.6 

C(2)-C(7)-C(6) 121.4(4) 

C(2)-C(7)-C(8) 108.3(4) 

C(6)-C(7)-C(8) 130.3(5) 

C(13)-C(8)-C(9) 120.9(3) 

C(13)-C(8)-C(7) 107.9(4) 

C(9)-C(8)-C(7) 131.2(4) 

C(8)-C(9)-C(10) 118.3(4) 

C(8)-C(9)-H(9A) 120.9 

C(10)-C(9)-H(9A) 120.9 

C(11)-C(10)-C(9) 121.9(4) 

C(11)-C(10)-H(10A) 119.1 

C(9)-C(10)-H(10A) 119.1 

C(10)-C(11)-C(12) 118.7(3) 

C(10)-C(11)-C(17) 120.8(3) 

C(12)-C(11)-C(17) 120.5(3) 

C(13)-C(12)-C(11) 119.8(4) 

C(13)-C(12)-H(12A) 120.1 

C(11)-C(12)-H(12A) 120.1 

C(8)-C(13)-C(12) 120.4(4) 

C(8)-C(13)-C(1) 111.8(3) 

C(12)-C(13)-C(1) 127.7(4) 

C(15)-C(14)-C(26) 100.7(3) 

C(15)-C(14)-C(39) 111.8(3) 

C(26)-C(14)-C(39) 112.4(3) 

C(15)-C(14)-C(45) 111.0(3) 

C(26)-C(14)-C(45) 111.8(3) 

C(39)-C(14)-C(45) 109.0(4) 

C(16)-C(15)-C(20) 120.0(3) 

C(16)-C(15)-C(14) 129.2(3) 

C(20)-C(15)-C(14) 110.8(3) 

C(17)-C(16)-C(15) 120.5(3) 

C(17)-C(16)-H(16A) 119.7 

C(15)-C(16)-H(16A) 119.7 

C(16)-C(17)-C(18) 118.6(3) 

C(16)-C(17)-C(11) 121.1(3) 
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C(18)-C(17)-C(11) 120.3(3) 

C(19)-C(18)-C(17) 121.6(3) 

C(19)-C(18)-H(18A) 119.2 

C(17)-C(18)-H(18A) 119.2 

C(20)-C(19)-C(18) 119.3(3) 

C(20)-C(19)-H(19A) 120.3 

C(18)-C(19)-H(19A) 120.3 

C(19)-C(20)-C(15) 119.9(3) 

C(19)-C(20)-C(21) 131.6(3) 

C(15)-C(20)-C(21) 108.4(3) 

C(26)-C(21)-C(22) 120.9(3) 

C(26)-C(21)-C(20) 108.6(3) 

C(22)-C(21)-C(20) 130.5(3) 

C(23)-C(22)-C(21) 118.0(4) 

C(23)-C(22)-H(22A) 121.0 

C(21)-C(22)-H(22A) 121.0 

C(22)-C(23)-C(24) 123.1(3) 

C(22)-C(23)-H(23A) 118.4 

C(24)-C(23)-H(23A) 118.4 

C(23)-C(24)-C(25) 117.4(3) 

C(23)-C(24)-Si(2) 119.9(3) 

C(25)-C(24)-Si(2) 122.6(3) 

C(26)-C(25)-C(24) 120.3(4) 

C(26)-C(25)-H(25A) 119.9 

C(24)-C(25)-H(25A) 119.9 

C(40)-C(39)-C(14) 116.0(4) 

C(40)-C(39)-H(39A) 108.3 

C(14)-C(39)-H(39A) 108.3 

C(40)-C(39)-H(39B) 108.3 

C(14)-C(39)-H(39B) 108.3 

H(39A)-C(39)-H(39B) 107.4 

C(21)-C(26)-C(25) 120.3(3) 

C(21)-C(26)-C(14) 111.5(3) 

C(25)-C(26)-C(14) 128.2(3) 

C(28)-C(27)-C(1) 115.9(5) 

C(28)-C(27)-H(27A) 108.3 
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C(1)-C(27)-H(27A) 108.3 

C(28)-C(27)-H(27B) 108.3 

C(1)-C(27)-H(27B) 108.3 

H(27A)-C(27)-H(27B) 107.4 

C(27)-C(28)-C(29) 113.9(6) 

C(27)-C(28)-H(28A) 108.8 

C(29)-C(28)-H(28A) 108.8 

C(27)-C(28)-H(28B) 108.8 

C(29)-C(28)-H(28B) 108.8 

H(28A)-C(28)-H(28B) 107.7 

C(30)-C(29)-C(28) 114.8(7) 

C(30)-C(29)-H(29A) 108.6 

C(28)-C(29)-H(29A) 108.6 

C(30)-C(29)-H(29B) 108.6 

C(28)-C(29)-H(29B) 108.6 

H(29A)-C(29)-H(29B) 107.5 

C(29)-C(30)-C(31) 116.3(8) 

C(29)-C(30)-H(30A) 108.2 

C(31)-C(30)-H(30A) 108.2 

C(29)-C(30)-H(30B) 108.2 

C(31)-C(30)-H(30B) 108.2 

H(30A)-C(30)-H(30B) 107.4 

C(32)-C(31)-C(30) 115.7(13) 

C(32)-C(31)-H(31A) 108.4 

C(30)-C(31)-H(31A) 108.4 

C(32)-C(31)-H(31B) 108.4 

C(30)-C(31)-H(31B) 108.4 

H(31A)-C(31)-H(31B) 107.4 

C(31)-C(32)-H(32A) 109.5 

C(31)-C(32)-H(32B) 109.5 

H(32A)-C(32)-H(32B) 109.5 

C(31)-C(32)-H(32C) 109.5 

H(32A)-C(32)-H(32C) 109.5 

H(32B)-C(32)-H(32C) 109.5 

C(34)-C(33)-C(1) 116.1(7) 

C(34)-C(33)-H(33A) 108.3 
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C(1)-C(33)-H(33A) 108.3 

C(34)-C(33)-H(33B) 108.3 

C(1)-C(33)-H(33B) 108.3 

H(33A)-C(33)-H(33B) 107.4 

C(33)-C(34)-C(35) 115.7(9) 

C(33)-C(34)-H(34A) 108.4 

C(35)-C(34)-H(34A) 108.4 

C(33)-C(34)-H(34B) 108.4 

C(35)-C(34)-H(34B) 108.4 

H(34A)-C(34)-H(34B) 107.4 

C(36)-C(35)-C(34) 122.1(17) 

C(36)-C(35)-H(35A) 106.8 

C(34)-C(35)-H(35A) 106.8 

C(36)-C(35)-H(35B) 106.8 

C(34)-C(35)-H(35B) 106.8 

H(35A)-C(35)-H(35B) 106.7 

C(35)-C(36)-C(37) 116.1(18) 

C(35)-C(36)-H(36A) 108.3 

C(37)-C(36)-H(36A) 108.3 

C(35)-C(36)-H(36B) 108.3 

C(37)-C(36)-H(36B) 108.3 

H(36A)-C(36)-H(36B) 107.4 

C(38)-C(37)-C(36) 109.8(13) 

C(38)-C(37)-H(37A) 109.7 

C(36)-C(37)-H(37A) 109.7 

C(38)-C(37)-H(37B) 109.7 

C(36)-C(37)-H(37B) 109.7 

H(37A)-C(37)-H(37B) 108.2 

C(37)-C(38)-H(38A) 109.5 

C(37)-C(38)-H(38B) 109.5 

H(38A)-C(38)-H(38B) 109.5 

C(37)-C(38)-H(38C) 109.5 

H(38A)-C(38)-H(38C) 109.5 

H(38B)-C(38)-H(38C) 109.5 

C(39)-C(40)-C(41) 115.3(5) 

C(39)-C(40)-H(40A) 108.4 
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C(41)-C(40)-H(40A) 108.4 

C(39)-C(40)-H(40B) 108.4 

C(41)-C(40)-H(40B) 108.4 

H(40A)-C(40)-H(40B) 107.5 

C(42)-C(41)-C(40) 115.6(6) 

C(42)-C(41)-H(41A) 108.4 

C(40)-C(41)-H(41A) 108.4 

C(42)-C(41)-H(41B) 108.4 

C(40)-C(41)-H(41B) 108.4 

H(41A)-C(41)-H(41B) 107.4 

C(41)-C(42)-C(43) 113.2(9) 

C(41)-C(42)-H(42A) 108.9 

C(43)-C(42)-H(42A) 108.9 

C(41)-C(42)-H(42B) 108.9 

C(43)-C(42)-H(42B) 108.9 

H(42A)-C(42)-H(42B) 107.7 

C(44)-C(43)-C(42) 120.1(15) 

C(44)-C(43)-H(43A) 107.3 

C(42)-C(43)-H(43A) 107.3 

C(44)-C(43)-H(43B) 107.3 

C(42)-C(43)-H(43B) 107.3 

H(43A)-C(43)-H(43B) 106.9 

C(43)-C(44)-H(44A) 109.5 

C(43)-C(44)-H(44B) 109.5 

H(44A)-C(44)-H(44B) 109.5 

C(43)-C(44)-H(44C) 109.5 

H(44A)-C(44)-H(44C) 109.5 

H(44B)-C(44)-H(44C) 109.5 

C(46)-C(45)-C(14) 116.7(4) 

C(46)-C(45)-H(45A) 108.1 

C(14)-C(45)-H(45A) 108.1 

C(46)-C(45)-H(45B) 108.1 

C(14)-C(45)-H(45B) 108.1 

H(45A)-C(45)-H(45B) 107.3 

C(45)-C(46)-C(47) 114.7(5) 

C(45)-C(46)-H(46A) 108.6 
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C(47)-C(46)-H(46A) 108.6 

C(45)-C(46)-H(46B) 108.6 

C(47)-C(46)-H(46B) 108.6 

H(46A)-C(46)-H(46B) 107.6 

C(48)-C(47)-C(46) 112.8(6) 

C(48)-C(47)-H(47A) 109.0 

C(46)-C(47)-H(47A) 109.0 

C(48)-C(47)-H(47B) 109.0 

C(46)-C(47)-H(47B) 109.0 

H(47A)-C(47)-H(47B) 107.8 

C(47)-C(48)-C(49) 119.5(16) 

C(47)-C(48)-H(48A) 107.5 

C(49)-C(48)-H(48A) 107.5 

C(47)-C(48)-H(48B) 107.5 

C(49)-C(48)-H(48B) 107.5 

H(48A)-C(48)-H(48B) 107.0 

C(50)-C(49)-C(48) 91(3) 

C(50)-C(49)-H(49A) 113.5 

C(48)-C(49)-H(49A) 113.5 

C(50)-C(49)-H(49B) 113.5 

C(48)-C(49)-H(49B) 113.5 

H(49A)-C(49)-H(49B) 110.8 

C(49)-C(50)-H(50A) 109.5 

C(49)-C(50)-H(50B) 109.5 

H(50A)-C(50)-H(50B) 109.5 

C(49)-C(50)-H(50C) 109.5 

H(50A)-C(50)-H(50C) 109.5 

H(50B)-C(50)-H(50C) 109.5 

Si(1)-C(51)-H(51A) 109.5 

Si(1)-C(51)-H(51B) 109.5 

H(51A)-C(51)-H(51B) 109.5 

Si(1)-C(51)-H(51C) 109.5 

H(51A)-C(51)-H(51C) 109.5 

H(51B)-C(51)-H(51C) 109.5 

Si(1)-C(52)-H(52A) 109.5 

Si(1)-C(52)-H(52B) 109.5 
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H(52A)-C(52)-H(52B) 109.5 

Si(1)-C(52)-H(52C) 109.5 

H(52A)-C(52)-H(52C) 109.5 

H(52B)-C(52)-H(52C) 109.5 

Si(1)-C(53)-H(53A) 109.5 

Si(1)-C(53)-H(53B) 109.5 

H(53A)-C(53)-H(53B) 109.5 

Si(1)-C(53)-H(53C) 109.5 

H(53A)-C(53)-H(53C) 109.5 

H(53B)-C(53)-H(53C) 109.5 

Si(2)-C(54)-H(54A) 109.5 

Si(2)-C(54)-H(54B) 109.5 

H(54A)-C(54)-H(54B) 109.5 

Si(2)-C(54)-H(54C) 109.5 

H(54A)-C(54)-H(54C) 109.5 

H(54B)-C(54)-H(54C) 109.5 

Si(2)-C(55)-H(55A) 109.5 

Si(2)-C(55)-H(55B) 109.5 

H(55A)-C(55)-H(55B) 109.5 

Si(2)-C(55)-H(55C) 109.5 

H(55A)-C(55)-H(55C) 109.5 

H(55B)-C(55)-H(55C) 109.5 

Si(2)-C(56)-H(56A) 109.5 

Si(2)-C(56)-H(56B) 109.5 

H(56A)-C(56)-H(56B) 109.5 

Si(2)-C(56)-H(56C) 109.5 

H(56A)-C(56)-H(56C) 109.5 

H(56B)-C(56)-H(56C) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Table B.4.   Anisotropic displacement parameters  (Å2x 103) for jc0630s.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Si(1) 68(1)  326(3) 106(1)  -25(2) 46(1)  -31(1) 

C(1) 76(3)  93(4) 128(4)  3(3) 53(3)  -8(3) 

Si(2) 57(1)  138(1) 106(1)  -25(1) 33(1)  2(1) 

C(2) 60(3)  119(4) 93(3)  -3(3) 33(2)  -12(2) 

C(3) 70(3)  168(5) 99(4)  -3(3) 36(3)  -21(3) 

C(4) 58(3)  213(7) 83(4)  -17(4) 30(3)  -18(4) 

C(5) 57(3)  220(7) 96(4)  -19(4) 32(3)  23(4) 

C(6) 65(3)  150(4) 96(3)  -8(3) 24(2)  20(3) 

C(7) 54(2)  120(4) 77(3)  -12(3) 20(2)  1(2) 

C(8) 52(2)  90(3) 74(3)  -6(2) 18(2)  2(2) 

C(9) 64(2)  86(3) 83(3)  6(2) 16(2)  14(2) 

C(10) 59(2)  86(3) 79(3)  9(2) 26(2)  0(2) 

C(11) 51(2)  74(3) 66(2)  0(2) 17(2)  4(2) 

C(12) 63(2)  71(3) 92(3)  1(2) 30(2)  5(2) 

C(13) 59(2)  81(3) 91(3)  0(2) 33(2)  4(2) 

C(14) 51(2)  69(3) 101(3)  -24(2) 26(2)  -9(2) 

C(15) 48(2)  69(2) 74(2)  -7(2) 15(2)  -6(2) 

C(16) 49(2)  75(3) 86(3)  -3(2) 21(2)  -10(2) 

C(17) 55(2)  68(2) 68(2)  1(2) 23(2)  1(2) 

C(18) 64(2)  69(2) 77(3)  -10(2) 29(2)  -5(2) 

C(19) 57(2)  77(3) 75(3)  -7(2) 23(2)  -14(2) 

C(20) 48(2)  69(2) 64(2)  -5(2) 15(2)  -4(2) 

C(21) 48(2)  73(3) 66(2)  -5(2) 16(2)  -7(2) 

C(22) 58(2)  80(3) 80(3)  -15(2) 20(2)  -18(2) 

C(23) 50(2)  110(3) 87(3)  -19(3) 26(2)  -23(2) 

C(24) 46(2)  104(3) 74(3)  -14(2) 16(2)  -2(2) 

C(25) 55(2)  88(3) 97(3)  -28(2) 25(2)  -9(2) 

C(39) 70(3)  79(3) 147(5)  -18(3) 36(3)  -8(2) 

C(26) 49(2)  75(3) 83(3)  -11(2) 18(2)  -6(2) 

C(27) 96(4)  127(5) 141(5)  50(4) 56(4)  15(3) 

C(28) 95(4)  156(6) 107(4)  38(4) 20(3)  22(4) 
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C(29) 95(4)  211(8) 139(6)  47(5) 34(4)  21(5) 

C(30) 163(7)  221(9) 163(8)  27(7) -7(6)  22(7) 

C(31) 179(9)  350(16) 189(10)  20(10) -20(8)  71(10) 

C(32) 400(20)  670(40) 279(17)  -230(20) -93(15)  230(20) 

C(33) 135(6)  136(6) 178(7)  22(5) 72(5)  -38(4) 

C(34) 182(8)  149(7) 192(8)  0(6) 40(7)  -68(6) 

C(35) 258(16)  197(13) 328(15)  -47(11) 131(14)  -29(10) 

C(36) 330(20)  280(20) 350(20)  -23(16) -6(18)  -52(16) 

C(37) 420(20)  203(12) 268(16)  -26(11) 69(14)  -8(13) 

C(38) 470(20)  267(16) 269(16)  18(12) 86(15)  -23(16) 

C(40) 91(4)  98(4) 148(5)  17(3) 29(4)  3(3) 

C(41) 135(5)  117(5) 224(8)  50(6) 42(5)  -1(4) 

C(42) 198(8)  172(7) 202(8)  92(7) 33(7)  14(6) 

C(43) 238(12)  296(14) 375(18)  209(14) -83(11)  -62(10) 

C(44) 294(17)  440(20) 420(20)  274(19) -78(15)  9(14) 

C(45) 54(2)  110(4) 113(4)  -49(3) 18(2)  -16(2) 

C(46) 104(4)  126(5) 105(4)  -29(4) 10(3)  -10(3) 

C(47) 97(4)  198(7) 109(5)  -30(5) -1(3)  -5(4) 

C(48) 281(12)  268(12) 116(6)  12(7) -63(7)  -28(9) 

C(49) 560(50)  500(40) 310(20)  -70(20) 10(30)  -80(40) 

C(50) 310(20)  390(30) 510(40)  110(30) -200(30)  -140(20) 

C(51) 118(6)  730(30) 153(7)  217(12) 33(5)  -30(10) 

C(52) 310(14)  610(30) 398(17)  -304(18) 281(14)  -192(16) 

C(53) 80(4)  385(12) 137(5)  60(6) 11(4)  -54(5) 

C(54) 176(6)  196(7) 138(5)  13(5) 91(5)  30(5) 

C(55) 104(4)  142(5) 171(5)  -40(4) 50(4)  17(3) 

C(56) 54(3)  265(8) 182(6)  -73(6) 26(3)  1(4) 

______________________________________________________________________________ 
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Table B.5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for jc0630s. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(3A) 4792 7101 2748 133 

H(5A) 6396 5295 3221 147 

H(6A) 4894 4950 3709 123 

H(9A) 2952 4844 4197 93 

H(10A) 1162 4971 4514 88 

H(12A) 755 6871 3772 89 

H(16A) -131 6953 4725 83 

H(18A) -957 5033 4090 82 

H(19A) -2791 5141 4345 82 

H(22A) -4759 5516 4733 86 

H(23A) -6178 6007 5197 97 

H(25A) -4135 7647 5687 95 

H(39A) -2626 8282 5101 117 

H(39B) -1460 8095 4858 117 

H(27A) 1378 7193 2808 142 

H(27B) 2513 7286 2515 142 

H(28A) 1483 5964 2669 143 

H(28B) 2564 6091 2340 143 

H(29A) 315 6582 2013 176 

H(29B) 1386 6783 1696 176 

H(30A) 522 5399 1791 221 

H(30B) 1614 5587 1487 221 

H(31A) -700 5894 1119 290 

H(31B) 299 6312 867 290 

H(32A) -363 5475 365 687 

H(32B) -42 4921 846 687 

H(32C) 943 5347 586 687 

H(33A) 3430 7910 3280 175 

H(33B) 2235 7858 3527 175 

H(34A) 4303 7464 4038 207 
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H(34B) 3111 7387 4286 207 

H(35A) 4170 8442 4646 305 

H(35B) 4122 8759 4048 305 

H(36A) 2351 8549 4581 384 

H(36B) 2455 8975 4030 384 

H(37A) 2472 9784 4900 353 

H(37B) 3743 9506 5068 353 

H(38A) 3757 10551 4639 499 

H(38B) 3020 10220 4120 499 

H(38C) 4289 9945 4289 499 

H(40A) -3645 7783 4327 133 

H(40B) -2472 7615 4082 133 

H(41A) -3301 8999 4262 188 

H(41B) -2110 8841 4032 188 

H(42A) -4225 8464 3475 228 

H(42B) -3013 8393 3242 228 

H(43A) -3900 9723 3524 373 

H(43B) -2816 9600 3202 373 

H(44A) -4167 10028 2726 588 

H(44B) -4958 9372 2850 588 

H(44C) -3866 9251 2526 588 

H(45A) -751 7453 5664 110 

H(45B) -1877 7663 5933 110 

H(46A) -1117 6249 5854 134 

H(46B) -2176 6496 6162 134 

H(47A) 134 6859 6507 162 

H(47B) -930 7095 6818 162 

H(48A) -460 5649 6665 273 

H(48B) -1257 5978 7084 273 

H(49A) 706 5465 7524 552 

H(49B) 1223 6225 7358 552 

H(50A) 435 6286 8081 628 

H(50B) -702 5968 7764 628 

H(50C) -225 6716 7587 628 

H(51A) 7315 7366 1906 497 

H(51B) 6530 7656 2349 497 
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H(51C) 5987 7176 1855 497 

H(52A) 7307 5316 2231 634 

H(52B) 7751 5892 1826 634 

H(52C) 6418 5723 1808 634 

H(53A) 8455 6243 3216 301 

H(53B) 8087 7059 3207 301 

H(53C) 8869 6764 2764 301 

H(54A) -7018 6821 6755 247 

H(54B) -5675 6716 6744 247 

H(54C) -6545 6162 6438 247 

H(55A) -6834 8296 6314 205 

H(55B) -6230 8422 5770 205 

H(55C) -5489 8182 6319 205 

H(56A) -8485 7248 5721 249 

H(56B) -8006 6579 5419 249 

H(56C) -7900 7355 5169 249 

________________________________________________________________________________ 
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GPC Traces of PFMs 
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Figure C.1. GPC trace of PF1M10. 
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Figure C.2. GPC trace of PF1M18. 
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Figure C.3. GPC trace of PF2M10. 
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Figure C.4. GPC trace of PF2M18. 
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Figure C.5. GPC trace of PF3M10. 
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Figure C.6. GPC trace of PF3M18. 
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Figure C.7. GPC trace of PF4M10. 
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Figure C.8. GPC trace of PF4M18. 
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Figure C.9. The GPC trace of PF7M18. 
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Figure C.10. The GPC trace of PF8M18. 
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APPENDIX D 
 
 

UV-Induced Degradation Monitored by PL Spectroscopy 
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Figure D.1. PL spectra of relative (top, λmax for pristine film = 1) and normalized (bottom, λmax for all spectra = 1) 
intensities for a film of PF3M10 irradiated by UV (λ = 366 nm) light. 
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Figure D.2. PL spectra of relative (top, λmax for pristine film = 1) and normalized (bottom, λmax for all spectra = 1) 
intensities for a film of PF3M18 irradiated by UV (λ = 366 nm) light. 
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Figure D.3. PL spectra of relative (top, λmax for pristine film = 1) and normalized (bottom, λmax for all spectra = 1) 
intensities for a film of PF4M10 irradiated by UV (λ = 366 nm) light. 
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Figure D.4. PL spectra of relative (top, λmax for pristine film = 1) and normalized (bottom, λmax for all spectra = 1) 
intensities for a film of PF7M18 irradiated by UV (λ = 366 nm) light. 
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APPENDIX E 

 
 

UV-Induced Degradation Monitored by IR Spectroscopy 
 

 
Figure E.1. IR spectra of PF3M10 recorded after UV irradiation (λ = 366 nm) for 0, 20, 40, 60, and 120 min. 

 

 
 

Figure E.2. IR spectra of PF3M18 recorded after UV irradiation (λ = 366 nm) for 0, 20, 40, 60, and 120 min. 
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Figure E.3. IR spectra of PF4M10 recorded after UV irradiation (λ = 366 nm) for 0, 20, 40, 60, and 120 min. 
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APPENDIX F 
 
 

Thermally-Induced Degradation (160° C) Monitored by PL Spectroscopy 
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(b) 

Figure F.1. Relative (a) and normalized (b) PL spectra of PF1M10 (λex = 300 nm)  after heating at 160° C for (from 
top to bottom at 375 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

Figure F.2. Relative (a) and normalized (b) PL spectra of PF1M18 (λex = 300 nm)  after heating at 160° C for (from 
top to bottom at 375 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

Figure F.3. Relative (a) and normalized (b) PL spectra of PF2M10 (λex = 335 nm)  after heating at 160° C for (from 
top to bottom at 425 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

Figure F.4. Relative (a) and normalized (b) PL spectra of PF2M18 (λex = 335 nm)  after heating at 160° C for (from 
top to bottom at 425 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

Figure F.5. Relative (a) and normalized (b) PL spectra of PF3M10 (λex = 355 nm)  after heating at 160° C for (from 
top to bottom at 425 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

Figure F.6. Relative (a) and normalized (b) PL spectra of PF3M10-2 (λex = 355 nm)  after heating at 160° C for 
(from top to bottom at 425 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is 
normalized with respect to the 0-0 transition. 
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(b) 

Figure F.7. Relative (a) and normalized (b) PL spectra of PF3M18 (λex = 355 nm)  after heating at 160° C for (from 
top to bottom at 425 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

Figure F.8. Relative (a) and normalized (b) PL spectra of PF4M10 (λex = 365 nm)  after heating at 160° C for (from 
top to bottom at 435 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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(b) 

 

Figure F.9. Relative (a) and normalized (b) PL spectra of PF4M18 (λex = 365 nm)  after heating at 160° C for (from 
top to bottom at 435 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is normalized 
with respect to the 0-0 transition. 
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Figure F.10. Relative (a) and normalized (b) PL spectra of PF7M18 (λex = 375 nm)  after heating at 160° C for 
(from top to bottom at 450 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is 
normalized with respect to the 0-0 transition. 
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Figure F.11. Relative (a) and normalized (b) PL spectra of PF8M18 (λex = 375 nm)  after heating at 160° C for 
(from top to bottom at 450 nm in left figure, bottom to top at 525 nm in right figure) 0, 0.5, 1, 2, and 4 h. (b) is 
normalized with respect to the 0-0 transition. 
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APPENDIX G 
 
 

Thermally-Induced Degradation (200° C) Monitored by IR Spectroscopy 
 
 
 

 
 

Figure G.1. IR spectra of PF3M18 recorded after after heating at 200° C for 0, 0.5, and 1 h. 
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Figure G.2. IR spectra of PF4M10 recorded after after heating at 200° C for 0, 0.5, and 1 h. 
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Figure G.3. IR spectra of PF4M18 recorded after after heating at 200° C for 0, 0.5, and 1 h. 
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APPENDIX H 

 
 

DSC Data 
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Figure H.1. DSC scan for PF2M10. Data was recorded at 20° C/min heating and cooling rates. 

 

-50 0 50 100 150 200
Temperature, °C 

En
do

th
er

m
ic

2nd heating

1st cooling

1st heating

 
Figure H.2. DSC scan for PF3M18. Data was recorded at 20° C/min heating and cooling rates. 
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Figure H.3. DSC scan for PF4M18. Data was recorded at 20° C/min heating and cooling rates. 
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Figure H.4. DSC scan for PF7M18. Data was recorded at 20° C/min heating and cooling rates. 
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