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The first project considered in this dissertation was the improvement of an existing global 

optimization algorithm that uses extended dimensionality to find global minima of Lennard-

Jones clusters.  The speed of this algorithm was increased by three orders of magnitude, 

primarily by improving the algorithm for compressing the system from 4D to 3D at constant 

energy. 

The second project was modeling the adsorption of H2 molecules on the Si(100) surface 

using density functional theory (DFT) with the PW91 functional.  Consistent with the 

experiments, the calculations predicted an energetic preference for clustering of occupied sites in 

a dimer row.  However, our calculations did not verify the unbuckling induced by H2 adsorption 

reported by Buehler and Boland.   

 The third project was modeling molybdenum and rhodium-catalyzed [2 + 2 + 1] 

cyclocarbonylation reaction using DFT with the B3LYP functional.  We found that in the 

rhodium-catalyzed [2 + 2 + 1] cyclocarbonylation reactions of allenes the oxidative addition step 

determined both the rate and the product of the reaction.  For the molybdenum-promoted 

reaction the rate was controlled not by oxidative addition, but by the next step, the attachment of 

a carbon monoxide molecule from the media to the molybdenum atom. 

 The fourth project was modeling the transfer of hydrogen from one side of the 

heterocyclic ring to another in rhodium(I) catalyzed allenic Pauson-Khand type reactions.  Our 

calculations showed that this process occurs after the cyclization step.  We have also discovered 

 iii



a novel mechanism for this process - hydride transfer; however, we believe that in most cases the 

reaction proceeds by β-hydride elimination. 

 iv
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1. Introduction 

 

1.1. Nanotechnology 

 

1.1.1. Proteins – natural nanodevices 

Nanotechnology is a science that studies devices between 1 and 100 nm in size.  Long before 

people were able to build their own nanodevices, nanodevices already existed in nature.  For 

example proteins are nanodevices.  They serve various useful purposes in living organisms that 

include catalyzing reactions and signaling.  If one can adjust the behavior of a protein, one can 

potentially treat a disease.  For example, bacteria have a lot of proteins in them.  Some bacteria 

are malignant.  A small molecule that can inhibit the functioning of certain proteins in bacteria 

can be used to treat bacterial infections.  Such small molecules are called antibiotics.  Chapter 4 

deals with the synthesis of a small molecule that can act as an antibiotic agent.  Chapter 5 deals 

with the mechanism of a synthetic step used in producing other small molecules that can regulate 

protein activity. 

1.1.2. Global optimization – a way to find protein structure 

To design a small molecule that will either enhance or inhibit protein activity it helps to know 

the structure of the protein.  Today, because of advances in the field of bioinformatics, the 

sequence of amino acids in the protein is known most of the time.  However it is hard to find the 

structure.  By using molecular mechanics with modern force fields it is possible to predict 

relative energies of protein conformations, however the number of possible conformations for a 
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protein is so vast, that it is impossible to sample all of them exhaustively.  Global optimization 

algorithms have been developed to solve problems like these.  They allow one to find the best 

solution without exhaustively sampling all of the solutions.  Chapter 1 deals with improvement 

of an existing global optimization algorithm.  

1.1.3. Man-made nanodevices 

Today people can make their own nanodevices like nanotubes and are able to make them 

perform useful functions.  For example carbon nanotubes have been used to build nanoscale 

transistors.   

1.1.4. Interfacing nanodevices to modern electronic devices 

A human can not manipulate a nanodevice without appropriate tools.  One has to interface them 

with conventional electronic devices.  Most electronic devices today are built from silicon.  It is 

possible to manufacture very intricate silicon-based devices.  If one wants to use nanosized 

molecular electronics devices, one should consider interfacing them to modern silicon-based 

devices. 

A series of experiments showed a promising way to integrate nanotechnology with the 

existing silicon-based technology.  Recent experiments have shown that it may be possible to 

construct nanostripes on the Si(100) surface by H2 adsorption.  Modeling this process is 

described in Chapter 3.   
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1.2. Density Functional Theory 

 

1.2.1. Introduction 

Density Functional Theory (DFT)1, ,  2 3  was first introduced in the 1920s by Fermi and Thomas4 

who suggested that the energy as well as all other electronic properties of a ground-state atom or 

molecule can be uniquely determined by the electron density, )r(ρ  which replaces the more 

familiar N-electron wave function, )x, ... ,x ,xΨ( N21 .  Four decades later, in 1964, Hohenberg and 

Kohn5 gave the first formal proof that the ground state energy (E0) of an electronic system is 

uniquely identified by its density, thereby validating the use of )r(ρ .  They did not show, 

however, how to calculate E0 from the ground state electron density.  Kohn and Sham 

demonstrated a year later that E0 could be determined by using a set of localized one-electron 

orbitals, called Kohn-Sham (KS) orbitals, with the resulting orbital equations having the same 

form as Hartree-Fock (HF) equations.6 But there are distinct differences between the HF and 

DFT methods, as emphasized by Becke.7  Most importantly, DFT does include electron 

correlation effects, giving results comparable to those8 based on second-order Moller-Plesset 

(MP2) perturbation theory (except where dispersion dominates).  Yet the computational cost of 

DFT calculations is of the same order of magnitude as (or even less than) HF systems, making it 

an appealing method for larger systems. 

DFT uses the term functional, which can be explained in the following way.1, 9  A function, 

f(x), associates a number with each value of the variable x.  A functional, F[f(x)], on the other 

hand, associates a number with each value of the function f(x).  For example, the expression 
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<Ψ|Ĥ|Ψ> represents a functional because Ĥ is a function.  The resulting value E is said to be a 

functional of Ψ, or equivalently written, E[Ψ]. 

The purpose of this chapter is to give a brief overview of DFT as applied to closed-shell 

systems. The next section will show the connection between DFT and traditional wave equation 

formalism, followed by a section presenting the Kohn-Sham equations. The last section will 

discuss exchange-correlation functionals, with the emphasis on the Beck3LYP functional.17

 

1.2.2. Hohenberg and Kohn Theorems 

If one uses atomic units the Hamiltonian for an atomic or molecular system can be written as: 

∑∑∑
≠

++∇−=
ji ij

2
1

i
i

i

2
i2

1

r
1)rυ(Ĥ  

Equation 1 

where 

∑=
a ia

a
i

r
Z)rυ( . 

Equation 2 

The first term of Equation 1 represents the kinetic energy operator, the second term the nucleus-

electron attraction energy operator, and the third term the electron-electron interaction energy 

operator.  This can be more compactly expressed as 

eene V̂V̂T̂Ĥ ++=  

Equation 3 

with the total energy equal to: 

E = Eke + Ene + Eee 

Equation 4 
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The total energy is a functional of the wave function and can be written as: 

∫>==< xΨdĤΨΨ|Ĥ|Ψ]E[Ψ *  

Equation 5 

where Ψ equals )x, ... ,x ,xΨ( N21  and is normalized.  ix  represents both the spatial coordinate ir  

and the spin coordinate si.   

 For an N-electron system, the ground state energy, E0, and the ground state wave 

function, Ψ0,  can be determined using the variational principle, i.e., 

]E[ΨminE
Ψ0 = , 

Equation 6 

where “ ” signifies minimization with respect to all possible N-electron wave functions.  

(The notation is from Reference 

Ψ
min

1 and references within). 

 Hohenberg and Kohn derived equivalent equations, but use the electron density instead, 

which can be defined in terms of the density matrix2 )'r,rγ( 11 , 

∑∫=
s

N2N21N21
*

11 x...dx)dx,...,xs,'r()Ψx,...,xs,r(ΨN)'r,rγ(  

Equation 7 

The diagonal matrix element of the density matrix (where 21 rrr == ) is the density )r(ρ .  

Through this definition, the wave function maps to the electron density.  The total electron 

density should be greater than or equal to zero.  Integration of the electron density over all space 

should yield the total number of electrons, N, i.e., 

Nrd)rρ( =∫  

Equation 8 
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According to the first theorem of Hohenberg and Kohn,5 Equation 4 can be rewritten in 

terms of a unique electron density: 

E[ρ] = Ene[ρ] + Eke[ρ] + Eee[ρ]. 

Equation 9 

In other words, there exists a one-to-one relationship between the electron density of the system 

and its total energy.  The external potential due to the nuclei can then be expressed as: 

∫= rd )r( υ)rρ(][ρEne  

Equation 10 

and the other two terms can be combined into a single functional: 

FHK = Eke[ρ] + Eee[ρ] = Eke[ρ] + J[ρ] + Exc[ρ]. 

Equation 11 

J[ρ] represents the classical coulombic repulsion energy, 

∫∫ −
= 21

12

21
2
1 drdr

|rr|
)r()ρrρ(]J[ρ  

Equation 12 

Exc[ρ] is a nonclassical term that includes the quantum mechanical electron exchange-correlation 

energy.  Both this and the kinetic energy functional will be discussed in the next section.   

The second theorem of Hohenberg and Kohn supports the use of the variational principle 

with Equation 9 to find the minimum ground state energy with respect to the electron density, 

i.e., 

∫+== r)dr(ρ)rυ(][ρFmin]E[ρminE HKρρ0  

Equation 13 

This is equivalent to saying that )r(ρ  is a solution of the stationary principle which can be 

written: 
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0])Nr)drρ(μ[δ(E[ρ] =−− ∫  

Equation 14 

where δ represents taking the differential of the functional and μ is the chemical potential, 

)rδρ(
][ρδF)rυ(

)rδρ(
δE[ρ]μ HK+==  

Equation 15 

Thus, the ground state energy can be determined via the ground state electron density if FHK is 

known.  

 

1.2.3. Kohn and Sham Equations 

Hohenberg and Kohn did not state how to calculate the ground state density without knowledge 

of the wave function, nor did they give an explicit form for FHK.  Kohn and Sham determined a 

useful method that goes beyond simple approximations.  

Kohn and Sham invented an indirect approach to accurately calculate the kinetic energy.  

They introduced a reference system of non-interacting electrons whose electron density is 

exactly the same as that of the system of interest.  This allows the many-body problem to be 

reduced to N independent particle problems.  

The total energy of a system in an external field )rυ(  can be written as: 

][ρE][ρE]J[ρr)dr()υrρ(]E[ρ xc
ref
ke +++= ∫ , 

Equation 16 

where J[ρ] is defined in Equation 12.   is the kinetic energy of the reference system, and ref
keE

]J[ρ][ρE][ρE][ρE][ρE total
ee

ref
ke

real
kexc −+−=  

Equation 17 

7 



 

The exchange-correlation term has a kinetic energy component. This gives a correction to 

the kinetic energy due to the approximate nature of the reference system. Also, because  

describes the total electron interaction energy, the classical portion must be subtracted, leaving 

only the quantum mechanical effects. 

][ρEtotal
ee

The minimization of Equation (16) yields: 

)rδρ(
δE

)rδρ(
δE

)rδρ(
δJ[ρ])rυ(

)rδρ(
δE[ρ] xc

ref
ke +++= , 

Equation 18 

Or in equivalent terms: 

)r(υ
)rδρ(

δEdr
)r-r(

)rρ()rυ(μ xc

ref
ke

2
21

2 +++= ∫ . 

Equation 19 

The second term is derived from Equation 12 and υxc is defined by: 

)rδρ(
)ρ(δE)r(υ xc

xc =  

Equation 20 

By combining the first, second and last terms in Equation 19, the chemical potential becomes: 

)rδρ(
)ρ(δEυμ

ref
ke

eff +=  

Equation 21 

The electron density can be obtained by solving the N one-electron equations:  

iiieff
i

2

2
1 Ψ)]Ψr(υ[ ε=+∇− ∑ , 

Equation 22 

and setting 
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∑∑=
N

i s

2
i |s),r(Ψ|)rρ(  

Equation 23 

Equation 20, Equation 22 and Equation 23 are called the Kohn-Sham (KS) equations.  

Equation 23 must be solved self-consistently due to the dependence of υeff on )rρ( .  This is 

analogous to solving for Ψ and E in the Hartree approximation,10 the main difference being that 

the exact HF exchange term is replaced by the Exc term.  One begins with a guess for the electron 

density to build υeff.  This is plugged into Equation 21 which gives a new )rρ( .  Then the new 

)rρ(  is used to construct a new υeff.  Once the convergence criteria are met, the total energy is 

given by: 

∫∫∑ −+
−

−= r)dr()ρr(υ][ρE
|rr|
)r()ρrρ(εE xcxc

12

21
2
1

N

i
i  

Equation 24 

This equation gives in principle the exact ground state energy.  However, the exact form 

of Exc[ρ] is still unknown.  Instead models of the exchange-correlation functional are used to 

approximate the exchange-correlation energy.  These will be described next. 

 

1.2.4. Exchange-correlation Functional 

1.2.4.1. Local Density Approximation 
To solve the KS equations, an explicit form for Exc is still needed.  The simplest functional is 

modeled after the uniform electron gas and is known as the local-density approximation (LDA).  

In general, the functional is written as:1
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∫= rd)(ρ)εr(ρ][ρE xc
LDA
xc

. 

Equation 25 

)(ρεxc  indicates the exchange and correlation energy per particle of a uniform electron gas of 

density ρ.  The corresponding form for υxc is: 

ρ
)(ρε)r(ρ))r((ρε

)rδρ(
δE][ρυ xc

xc

LDA
xcLDA

xc ∂
∂

+== . 

Equation 26 

)(ρεxc  can be divided into the exchange and the correlation components: 
)(ρε)(ρε)(ρε cxxc += , 

Equation 27 

where 

3
1

3
1

)r(ρ)()(ρε π
3

4
3

x −=  

Equation 28 

Vosko et al.11, 12 have constructed an accurate form of  in the local density approximation: )(ρεc

]}tan[ln-tan{ln)r(ε b2x
Q-1

Q
)2x2(b

X(x)
)x-(x

)X(x
bx

b2x
Q-1

Q
2b

X(x)
x

2
AVWN

c
0

2
0

0

0
+

+
+ ++=  

Equation 29 

where x=r1/2, X(x)=x2+bx+c, and Q=(4c-b2)1/2.  For a system with paired spins, which applies to 

most of the systems of interest in this thesis, the values for the constants are: A=0.0621814, 

x0=0.4009286, b=13.0720, and c=42.7198.  For strongly bound systems LDA gives good 

molecular structures, vibrational frequencies and charge densities, but gives poor 

thermochemical properties.3
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1.2.4.2. Generalized Gradient Approximation 
Atoms and molecules are not homogenous in their electron densities.  Therefore, to improve on 

the description used by the LDA, a density gradient dependence was incorporated into Exc.  The 

general form of the exchange-correlation functional is:3

∫ ∇= r|)d)r(ρ|),r(f(ρEGGA
xc

 

Equation 30 

where |))r(ρ|),r(f(ρ ∇  is a “suitably chosen” function of its two variables.  Like the LDA 

method, the Exc is usually split into two parts.  An example of a GGA exchange functional is one 

by Becke:13

∫∫ +
= rd

(x)sinh6bx 1
bx)r(ρ-rd)r(ρ)(-][ρE 1-

2

π
3

3
2B88 3

4
3
4

3
1

x
 

|ρ|ρx 3
4- ∇=                                   b=0.0042 

Equation 31 

The first term reproduces the exchange energy of a uniform electron gas and the second term 

introduces a correction through the gradient ρ∇ .  Becke found that the gradient correction to 

exchange was more significant than that to correlation.14, 15

 A popular GGA correlation functional is one by Lee, Yang and Parr:16

∫
−

∇+++
+

= −

−
rd}e]))r(ρt(2t-)r(ρ[C)r(bρ)r({ρ

)r(dρ1
1-a)r(E 3

1

3
5

3
2

3
1

)r(cρ-2
18
1

w9
1

wF
LYP
c . 

Equation 32 

The constants have the following values:  a=0.04918, b=0.132, c=0.2533, and d=0.349.   tw is a 

local “Weizacker” kinetic-energy density and is expressed as:16
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)r(ρ-
)r(ρ
)r(ρ

)r(t 2
8
1

2

8
1

w ∇
∇

= . 

Equation 33 

1.2.4.3. Hybrid Functionals 
Although GGA functionals have been successful at including the deficiencies of the LDA 

approach, they still only estimate the exchange energy and non-local effects.  Becke has devised 

a mixed HF-DFT functional called Becke3LYP in order to add these essential components.  This 

functional has been shown to perform significantly better than previously developed 

functionals.17  The key is the addition of the rigorously exact and non-local Hartree-Fock 

exchange.  The Becke3LYP functional can be written as:17

PW91
cc

B88
xx

LDA
x

HF
x0

LDA
xc

B3LYP
xc EaEa)EE(aEE Δ+Δ+−+=  

Equation 34 

where a0=0.20, ax=0.72, and ac=0.8.  These are semiempirical coefficients determined from 

fitting 56 atomization energies, 42 ionization potentials, 8 proton affinities and 10 first-row total 

atomic energies.17  Obviously, these fitted parameters also increase the accuracy of the 

functional.  The LDA exchange term was defined above, but the correlation functional is by 

Perdew and Wang.18  The ΔE terms are gradient corrections to the Becke88 exchange functional 

(defined above) and the Perdew-Wang 1991 correlation functional.19   
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1.3. Pseudopotentials  

 

Electronic structure problems are typically solved using the Schrödinger equation.  This equation 

makes an assumption that particles move at speeds far below the speed of light.  That is true for 

electrons in light elements, however, heavy elements in the fifth row of the periodic table and 

below present a problem.  In these atoms the core electrons move at speeds comparable to the 

speed of light, so that the Schrödinger equation breaks down.  For example, it predicts atomic 

radii to be too large.  The properties of such atoms can be successfully predicted using the Dirac 

equation.  Unfortunately, this equation is a lot harder to solve than the Schrödinger equation, 

which makes it impractical for molecular systems.  

 Pseudopotentials allow the use of Schrödinger equation for heavier elements like 

rhodium and molybdenum.  In this formalism the core electrons are replaced by a relativistic 

pseudopotential that shields the valence electrons from most of the nuclear attraction and also 

makes the wave function orthogonal to all the core states.  The reason this approach works is that 

relativistic pseudopotentials allow for the contraction of electrons.  

 An additional benefit of core pseudopotentials is that they reduce the number of electrons 

described by the Schrödinger equation.  Without the core electrons, the calculations require less 

processor time and memory. 
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1.4. Methods used in modeling surfaces 

 

In simulating surfaces using electronic structure theory researchers frequently use different 

methodology than when they are simulating isolated molecules.  One way to simulate a surface is 

to use a cluster model.  This approach has both advantages and disadvantages.  On the one hand, 

one can use high-level electronic structure calculations. On the other hand, there are edge effects 

that may introduce significant errors. 

Another way to model a surface is by means of a slab model.  In this approach one 

simulates a periodically repeating system that has a structure close to that of bulk material, 

except it is broken into slices with layers of vacuum in between.  Unlike the cluster-based 

surfaces models, the slab-based surface models are not plagued by edge effects; however, slab 

models do not allow the efficient use of high-level quantum calculations.  

Although one can use conventional Gaussian-based basis sets with slab models, today 

plane-wave basis sets are more popular for dealing with periodic systems.  Unlike the Gaussian-

based basis sets plane-wave basis sets are not centered on atoms.   

Plane-wave basis sets have both advantages and disadvantages compared with Gaussian-

based basis sets.  Plane-wave basis sets treat all points in space equally.  On the one hand, this is 

free of basis set superposition errors.  On the other hand, this means that the empty space 

between the slabs is described as well as the space inside and around the atoms, which is a waste 

of computational resources.  To achieve the same accuracy as with the Gaussian-based basis sets, 

one needs more plane-wave functions than Gaussian-based functions.  However, because plane 

waves are simpler in form than Gaussian-based basis functions, each operation involving plane 
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waves is faster.  Plane-wave basis sets compensate for the large number of basis set components 

by the speed of operations on each of these components.   

Describing nuclear cusps in the electronic wave function with a plane wave basis set 

requires a very large number of plane waves; however, these regions contribute little to the 

chemical properties.  That is why effective core pseudopotentials (ECPs) are used more in plane-

wave calculations than they are in calculations that use Gaussian-based basis sets.  ECPs used in 

plane-wave calculations not only account for relativistic effects associated with core electrons 

and reduce the number of electrons that have to be treated, but also remove the nuclear cusps in 

the electronic wave function, making it possible to use a smaller number of plane waves. 

 

1.5. Changes in Computational Methods 

 

As the research described in this dissertation was being done, we gradually switched to more and 

more sophisticated methods.  This is particularly evident in chapters 3, 4 and 5.  In Chapter 3 we 

modeled reactions by studying the minima and relying on their relative electronic energies, found 

using density functional theory with the PW91 functional.19  In Chapter 4 we switched to the 

B3LYP functional20 and instead of only considering the minima we also started to consider the 

electronic energies of transition states.  Our methods have gradually improved.  Later we started 

to consider thermochemistry.  We not only considered the electronic energies of minima and 

transition states but also their Gibbs free energies.  Finally, in Chapter 5 we have also included 

the interactions of intermediates and transition states with a polar solvent using the COSMO 

solvation model.21  
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2. DIMENSIONAL STRATEGIES FOR GLOBAL OPTIMIZATION 

 

2.1. INTRODUCTION 

2.1.1. Overview of the global optimization problem 

Minimization problems are frequently encountered in science and engineering.  Unfortunately, 

such problems are hard to solve for systems with a large number of degrees of freedom.  Often 

the number of minima grows at least exponentially with the number of degrees of freedom22,23.  

Most non-stochastic optimization algorithms can easily find one minimum, but usually it is not 

the global minimum24.  

 

Figure 1  An illustration of protein structure.  

Only three amino acid monomers are shown. 

 
 One very important global optimization problem is protein folding25.  A protein is a 

polymer made up of amino acids.  (See Figure 1)  Most amino acids have two easily rotatable 

bonds in the backbone, and many also have flexible side chains that add additional degrees of 

freedom to the protein. It is not computationally feasible to exhaustively sample all of a protein's 

configuration space, even if one considers only the torsional degrees of freedom.  

2.1.2. Genetic algorithms 

Genetic algorithms have been successfully applied to global optimization problems26, , ,27 28 29.  

These algorithms essentially simulate evolution within a population, where each member of 
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population is an alternative solution to the problem, for example a molecular geometry.  The data 

that makes up the solution is treated as genetic information.  Initially many random solutions are 

introduced.  Those with lower energy (for problems for which it is the energy that is being 

minimized) are allowed to breed and those with higher energy are discarded.  Breeding is done 

by making new solutions consisting of the parent genetic material, making a few mutations.  

Genetic algorithms have several advantages.  They do not require gradients or continuous 

coordinates, and they perform well on rough surfaces.  However genetic algorithms have trouble 

finding global minima, and require a large number of function evaluations.30, , 31 32 Another 

downside of genetic algorithms is their poor performance when dealing with problems that have 

a large number of degrees of freedom.33  

2.1.3. Monte-Carlo-based methods 

There are several Monte-Carlo34 based methods for global optimization.  One of the earliest 

methods to be successfully applied to a range of global optimization problems is simulated 

annealing35.  In this method one runs a constant temperature Monte-Carlo simulation, gradually 

lowering the temperature of the simulation in the hope that in the zero temperature limit the 

system will converge to its global minimum.  In practice, however, this method runs into trouble 

when the entrance to the “basin” leading to the global minimum is narrow. 

 A closely related Monte-Carlo approach is parallel tempering36, ,37 38.  It relies on 

conducting Monte-Carlo walks in parallel at different temperatures T1 < T2 < T3 <…< Tn.  Each 

simulation is referred to as replica and the algorithm allows for occasional exchanges of 

configurations from different replicas.  In this approach the highest temperature is chosen so that 

potential energy barriers are readily overcome.  Exchanging configurations between replicas 

provides a means for the lower temperature replicas to “get around” barriers. 
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2.1.4. Quantum annealing 

Another global minimization method is quantum annealing39,40.  Instead of treating the simulated 

particles classically, this approach uses quantum mechanical models.  Quantum mechanical 

particles can tunnel through potential energy barriers to access deeper minima.  This allows one 

to reach the global minimum.  The system can be brought back to the classical limit by either 

increasing the masses of the particles or decreasing the value of .  Unfortunately these methods 

do not scale well with increasing system size.  

h

2.1.5. Global optimization methods that modify the potential energy surface 

Some optimization methods modify the potential energy surface to make it smoother. For 

example, Stillinger and Stillinger41 changed the long-range interactions between atoms.  This 

approach is of limited utility, because the global minimum in the modified potential need not 

correspond to that in the true potential.  

 

Figure 2  Potential energy landscape used in basin 
hopping. 

It is easier to find the global minimum on the staircase-like 
potential energy surface used in basin hopping (red) than 
on the true potential energy surface (black). 
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 Basin hopping42 is another algorithm that changes the potential energy surface. It 

performs a Monte-Carlo walk, but instead of using the energy of the current atomic configuration 

at each step, it uses the energy of the inherent structure which is the potential energy minimum to 

which the current structure can be optimized.  The algorithm transforms the hill-like landscape 

into a staircase-like landscape, keeping the correct energy and geometry for the global minimum 

(Figure 2). 

2.1.6. Artificially increasing the dimensionality of the system 

Another approach to optimization involves artificially increasing the dimensionality of the 

system.  It has been known for some time that the maximum number of minima of Lennard-

Jones clusters occurs in three dimensions.47, ,43 44  Figure 3 plots the number of minima of LJ13 as 

a function of the number of dimensions.  As the number of dimensions is increased from three, 

the system gradually looses its complexity, until it has only one minimum in ten-dimensional 

space.  
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Figure 3  Number of known isomers for a (Lennard Jones)13 
cluster as a function of dimensionality.  

LJ13 has the greatest number of isomers in 3 dimensions. 
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2.1.7. The algorithm of Purisima and Scheraga 

Purisima and Scheraga45, 46 introduced an algorithm in which the global minimum is located in 

extended dimensionality space, and then the system is “compressed” back to the physical three-

dimensional “world”.  Unfortunately this approach does not work well because compression of 

the global minimum in an extended dimensional space back to three dimensions is likely to lead 

to a minimum other than the global minimum (Figure 4).  

 

Figure 4  An illustration of the algorithm of 
Purisima and Scheraga.  

Compression of many-dimensional global 
minimum to 3D puts the system into a low-
energy 3D minimum. 

 
2.1.8. The algorithm of Faken et al. 

2.1.8.1. Overview of the algorithm of Faken et al. 
Faken et al.47 took a different approach to the problem. Their algorithm is a compromise 

between basin hopping and dimensional compression.  Like basin hopping, their algorithm 

eliminates potential energy barriers between adjacent minima.  However, instead of avoiding 

them by substituting the inherent structure energy for the energy of current configuration, it 

exploits extended dimensionality to travel around potential energy barriers to other 3D minima.  

The important difference between this algorithm and that suggested by Purisima and Scheraga45, 
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46 is that it never descends to minima in the extended dimensional space, and if run long enough, 

the system arrives at the global minimum.   

 

2.1.8.2. Steps of the algorithm of Faken et al. 
Here is how the algorithm of Faken et al. works.  Suppose one wants to find the global minimum 

of a system described by a set of continuous coordinates R in D dimensions, where normally D = 

3.  

1.  Minimize the potential energy V(R) in D dimensions using a non-stochastic algorithm 

such as steepest descent or conjugate gradient.  The system arrives at a local minimum 

where V(R)=Elm. 

2. Carry out a random walk at constant energy in D+H dimensions, where H ≥ 1. At the 

beginning of the walk, the system is in D dimensions, and the extra coordinates are set to 

0.  At the end of the walk, the energy of the system is still equal to Elm, but the system is 

someplace in the D+H dimensional space.  In the algorithm of Faken et al. all atoms are 

moved simultaneously. 

3. Compress the system back to the D dimensional space, keeping the energy constant.   

4. Optimize the geometry in D dimensions, setting extra coordinates equal to zero. The 

energy of the resulting minimum will be equal to or lower than that of the previous 

minimum (in 3D).  

5. The procedure is either repeated by returning to step 2, or the current R is reported as the 

final answer. 
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Figure 5  Key steps in the algorithm of Faken et al. 

 

2.1.8.3. Compression from 4D to 3D in the algorithm of Faken et al. 
Compressing the system from D+H to D dimensions at constant energy requires a function that 

describes how far the system is from the D-dimensional world.  This function should be 

continuous, differentiable, equal to zero when the system is in D dimensions, and positive when 

the system is in more than D dimensions.  Faken et al. introduced the “width” function. 

∑ ∑
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Equation 35 
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where N is the number of atoms in the system and xi,n is the coordinate of the ith atom in the nth 

dimension.  In principle, they could have chosen another functional form for W, for example, 

 or . ∑ ∑
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 Faken et al. compressed the system from 4D to 3D at constant energy by moving atoms 

perpendicular to the energy gradient in the direction of decreasing width. In our work we used 

the same width function as Faken et al., but we tried several approaches to compression in 

addition to that of these authors. 

 

Figure 6 One way to compress the system to 3D is to move perpendicular to 
the energy gradient in the direction of decreasing width. 

 

2.1.8.4. Advantages and disadvantages of the algorithm of Faken et al. 
This algorithm has both advantages and disadvantages.  

The advantages are: 

1. Unlike the algorithm of Purisima and Scheraga45, 46, if run long enough, it is guaranteed 

to find the global minimum.  

2. The algorithm avoids barriers and high energy local minima. 

3. The longer the algorithm runs, the simpler the effective potential energy surface which is 

accessible.   
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The disadvantages are: 

1. The compression step can encounter local minima of the width function in extended 

dimensional space, which can slow the algorithm down dramatically.  

2. Since the method requires gradients, it will not be straightforward to implement for 

discrete problems like optimization of circuit board assembly48 or a regression tree-based 

QSAR engine49. 

 

2.1.9. Objectives of our work 

The objectives of our work are twofold: 

1. to determine if there are advantages to walking in greater than 4 dimensions (Faken et al. 

considered only 4D extended dimensional space.) 

2. to develop an efficient method for compression to 3D. 

 

 The first step towards reaching our objectives involved implementing the algorithm of 

Faken et al. and applying it to inert gas clusters modeled by the Lennard-Jones potential: 
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2.2. DISCUSSION AND RESULTS 

2.2.1. Our first implementation of the algorithm of Faken et al. 

We started by writing a C++ program that implements the algorithm of Faken et al.47  and tested 

it on 16, 17, 21 and 22 atom Lennard Jones clusters.  In our implementation we made a minor 
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change in the optimization algorithm of Faken et al.47 Namely, in cases that the compression step 

failed to bring the system to 3D, the system was returned to the previous local minimum in 3D 

rather to the point in 4D from which the compression was started. Our test revealed that this 

change generally resulted in a small increase in efficiency in locating the global minimum in 3D. 
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Figure 7  The performance of our first implementation of the algorithm of Faken et al. 

 
In terms of the number of cycles required to find global minima, the performance of our 

code was similar to that of Faken et al.47  The number of cycles remains small even for the 

largest cluster considered as shown in Figure 7.  We also found that most of the CPU time was 

spent in the compression step.   

2.2.2. Breaking down the improvement objective into two parts 

Based on these results, we formulated our short-term goals.  The first objective was to reduce the 

CPU time per cycle, focusing on the compression step.  The second objective was to determine 

whether the number of cycles could be reduced by “improving” the travel in the 4D step.  This is 

related to the question of what are the optimal walks into 4 (or higher) dimensions in the context 

of the “ease” of locating the global minimum in 3D space? 
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2.2.3. Two ways to speed up the compression step 

There are two possible approaches, designated “A” and “B” for future reference, to speeding up 

the compression step. A involves improving the compression step and B eliminates it altogether.  

2.2.4. Speeding up the compression step by eliminating it altogether 

2.2.4.1. A 4D walk that comes back to 3D without compression 

 

Figure 8  The algorithm of Faken et al. without the compression step. 

 

We tried approach B first.  When traveling at constant energy out of a 3D local minimum and 

into 4D, there is a possibility of walking around a width barrier and emerging on the other side of 

it, back in the 3D world, as shown in Figure 8.  If this happens, there is no need to perform the 

time-consuming compression step.  To accomplish this, we made changes to the way the walk 

was done.  Instead of undergoing random moves at constant energy, we randomly picked a 
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direction of travel in the three-dimensional world, and used the fourth coordinate to keep the 

energy constant.  Throughout this 3D→4D→3D travel the direction of the 3D components of the 

displacement vector was held constant.  

Unfortunately, there are several problems with this algorithm.  The first one is 

evaporation.  If one is dealing with a small cluster, many of its atoms are on the surface. When a 

random direction of 3D travel is picked, many atoms are “ordered” to move away from the 

cluster, leading to evaporation. (Recall that the walks have to be long enough to proceed between 

minima, which increases probability of evaporation.)  The evaporation problem can be fixed by 

changing the direction of travel periodically so that runaway atoms head back into the cluster. 

 

Figure 9  A plot of width for four 10000-step walks at constant energy.  

In all four cases at the beginning of the walk the width function is 0, 
because each walk is started from the 3D “world”.  Then the width 
function increases rapidly until it quickly reaches a peak. After that the 
width functions decreases, but it does not decrease to 0, so the system 
never returns back to the 3D “world”. 

 
The other problem is more serious.  There are many non-3D degrees of freedom, which 

makes the 3D regions only a small part of the 4D space, e.g. for a n atom cluster, moving to the 
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4D universe introduces n extra degrees of freedom.  Thus, although the algorithm goes through 

many width basins, it rarely hits the small 3D regions in them. This problem is very similar to the 

problem of the fraction of the volume of a hypersphere inscribed into a hypercube.  The greater 

the number of dimensions, the smaller the ratio of hypersphere/hypercube volume.   

 

 

Figure 10  3D regions are so small in 
hyperspace that hitting them by a simple 
walk is very improbable. 

 
The above discussion identifies a potential problem with the algorithm Faken et al.  The 

motivation behind the approach is that by increasing dimensionality, the complexity of the 

potential energy surface is decreased.  However, to some extent the decrease in complexity of the 

PES is compensated by having to deal with the complexities of the width function at constant 

energy.  This problem is present for both approaches A and B for dealing with the compression 

problem. 

2.2.4.2. A walk in 3D that avoids atomic collisions 
We also explored a new procedure for optimizing directly in 3D which is related to basin-

hopping, but which we thought would be faster. Here are the steps of the algorithm. 

1. Using a non-stochastic algorithm, minimize the energy of the system.  

2. Pick a random direction U for all-atom travel. 
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3. Take a small all-atom step in the direction U. 

4. If the walk arrives at a minimum in energy on the line on which it is traveling 

a. Find the energy of the inherent structure associated with the minimum on the line 

the algorithm is traveling and use it together with the Metropolis rules to 

determine whether to accept the step.   

b. If the step is accepted, go back to 2 using the new inherent structure. Otherwise 

go to step 3. 

5. If a specified number of steps is exceeded, return to the minimum from which the current 

walk was started and continue with step 2. 

In principle, if run long enough, this algorithm will find the global minimum.  

 The basin-hopping algorithm42 requires optimizing to an inherent structure at every step, 

and frequently the resulting inherent structure is the same as that found in the previous step.  In 

the algorithm described above, optimization to an inherent structure is not carried at each step.  

Rather, initiation of a search for an inherent structure is undertaken only if a maximum is crossed 

on the line being followed. 

 
The walk 
is started 
from here

 

Figure 11  The advantage of the walk 
described here over basin-hopping. 

All configurations between A and B have the 
same inherent structure.  The advantage of 
the 3D travel algorithm described here over 
basin-hopping is that it will not spend any 
time trying to find inherent structures 
between points A and B.   
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Such an algorithm has been implemented, but there is a serious problem with it.  Very 

frequently two or more atoms come so close together that the system ends up way up on the 

repulsive wall. This obscures detecting basins.  A way to avoid such atomic collisions was found.  

One can break the direction of travel into an overall direction and a local direction of travel.  

Before conducting a walk, one selects an overall direction of travel. In each step of the walk, a 

step is done in a direction that is a sum of the overall direction of travel and a fraction of the 

direction opposite to the gradient of energy.  The size of this fraction is fixed.  When atoms are 

about to collide, the gradient adjusts the direction of motion so that the atoms just brush off each 

other.  This method of walking is illustrated in Figure 12.  In some respects, it is similar to 

elastic band methods for finding transition states.50, , 51 52   

 

Figure 12  Two alternative ways to travel in 3D  

→ Travel in a fixed direction. Unfortunately, it goes through 
the regions of very high energy. 

→ Travel where the direction is corrected at every step to 
avoid atomic collisions. 
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This method is very efficient for traveling between different energy minima.  An 

unfortunate thing is that most of the time the minima it finds are not lower in energy than the 

previous minimum.  Although this approach is inefficient for global optimization, it could find 

uses in searching for transition states. One advantage that it shares with elastic band methods is 

that it does not require second derivatives.  This method also found further use in our work, as 

will be discussed below.  

2.2.5. Improving the algorithm for 4D→3D compression 

2.2.5.1. Combining energy and width into a single function 
Because eliminating compression to 3D at constant energy did not work, we redirected our 

efforts to approach A, speeding up the computationally costly compression step.  One strategy 

explored involved combining the energy and width into a single function  

F(x) = (E(x) - E0)2 + W(x) 

Equation 37 

which describes how far a given point is from the desired point, where E(x) = E0 and W(x) = 0.  

Compressing the system to 3D at constant energy requires finding any root of F(x).  One 

advantage of this approach is that the root of this function is also located at a minimum, so the 

problem can be solved not only with root-finding, but also with minimization algorithms.   

2.2.5.2. Compression using the steepest descent algorithm 
The first minimization algorithm we tried for this purpose was steepest descent53.  This 

algorithm minimizes the value of F(x) by finding the direction of -∇F(x), and moving the system 

in that direction until a minimum value of F(x) is reached on that line. These steps are repeated 

until the algorithm comes close to a minimum of F(x). 
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Although the steepest descent algorithm53 successfully located local minima of F(x), it 

required a large number of steps.  The landscape of F(x) is reminiscent of a curved canyon.  

Optimizing this function by steepest descent is analogous to following the path along the bottom 

of the canyon.  The direction of motion has to be changed frequently to avoid running into walls.   

2.2.5.3. Compression using the conjugate gradient algorithm 
To reduce the number of steps needed we switched to the conjugate gradient minimization 

algorithm53, which resulted in an order of magnitude improvement in the speed of the algorithm. 

Our work vs. Faken's 
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Figure 13  Comparison of performance of the version of our program that uses conjugate gradient algorithm 
for compression from 4D to 3D with the program of Faken et al.   

We optimized each Lennard-Jones cluster nine times, each time starting from a different random 
configuration. We report the mean and the standard deviation in the number of cycles needed to reach the 
global minimum. 

 
 A comparison of the performance of our algorithm which uses conjugate gradient 

compression of F(x) and that of Faken et al. is shown in Figure 13.  For all cases the mean 
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number of cycles required to locate the global minimum was less with our algorithm than with 

that of Faken et al.  Both programs show similar trends in performance with increasing cluster 

size.  As the number of atoms increases from 17 to 25, the number of cycles needed to find the 

global minimum does not rise appreciably, but starting at LJ27 the number of cycles needed to 

find the global minimum starts to go up dramatically.   

We have used our program to search for the global minimum of LJ38 which is known to 

be a challenging problem.  On the potential the ‘fcc-like’ global minimum is separated by a large 

energy barrier from a family of fivefold local minima. The lowest energy ‘fcc-like’ and fivefold 

minima are very close in energy.54 The global minimum of this cluster was discovered only in 

1995.55, 56 by Doye et al., who used the basin-hopping algorithm.  On the average, it took 2000 

basin-hopping cycles to find it. 

We attempted to find the global minimum of LJ38 three times using our implementation 

of the algorithm.  One run did not find the global minimum within 10,000 cycles at which point 

the job was terminated. The other two runs located it in only 39 and 50 cycles. The paper of 

Faken et al. listed information for only one successful optimization of LJ38, requiring about 8000 

cycles.  Being able to find the global minimum of this cluster in 50 cycles or less was most 

encouraging. 
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Figure 14  For LJ38 the fcc-like global minimum is separated from a family of 5-fold local minima by a large 
energy barrier.  

Although, in terms of the number of cycles required, the algorithm that uses conjugate 

gradient compression has acceptable performance, it is still slow.  On average it took 6 min 17 s 

to optimize LJ20 to its global minimum on a computer with a 1 GHz Intel Pentium III processor.  

Further acceleration of the compression step was needed.   

2.2.5.4. Our own compression algorithm 
When we optimize F(x), the function that incorporates both the width and energy constraint, the 

system is being taken to a configuration where W(x) = 0.  This suggests that the method 

originally developed for avoiding atomic collisions might be useful.  In particular, in each step, 

the system is moved in the direction of  

)x(
)x(

)x(
)x(D

W
Wa

F
F

∇−
∇−

+
∇−
∇−

= ,   0 ≤ a ≤ 1 

Equation 38 

until the lowest point on the line is reached.  Although -∇F(x) already has a width component in 

it, it is dominated by the energy constraint term.  This is the reason that the steepest descent 

algorithm frequently changes direction and converges slowly.  The algorithm described here 

takes much larger steps.  Unlike the steepest decent algorithm, it does not accurately follow the 

lowest path in the F(x) canyon. Instead, it rapidly goes to the 3D surface.  Switching the 

compression routine from conjugate gradient to the algorithm described above with a = 0.999 

(several values of a were tried) led to a dramatic improvement in performance. The mean time 

needed to find the global minimum of LJ20 dropped from 6 min 17 s to 23 s. 
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2.2.6. Improving travel from a 3D local minimum into 4D space at constant energy 

2.2.6.1. What can be achieved by improving the 3D→4D travel at constant energy 
While working on improving the algorithm for compressing the system from 4D to 3D at 

constant energy, we also worked on ways to improve travel from a 3D local minimum into 4D 

space at constant energy.  Although this step took a well under 0.1% of the run time, it was 

hoped that 3D → 4D travel could be “designed” so as to put the system into places that are more 

likely to be compressed to low-energy 3D energy minima, thereby requiring fewer cycles to find 

global minima.   

2.2.6.2. The procedure Faken et al. used for the 3D → 4D travel step 
In each cycle, Faken et al. accomplished the 3D → 4D travel step by making 100 all-atom moves 

for Lennard-Jones clusters with 30 or fewer atoms, and 50 such moves for LJ38.  Each move 

consisted of displacing every atom by a distance of 0.1 σ in the direction, perpendicular to the 

gradient of energy.   

2.2.6.3. Improving the 3D → 4D travel step by increasing the dimensionality 
In their paper Faken et al. speculated that performance of their algorithm would be improved by 

using more dimensions for traveling out of 3D local minima, the logic being that the more extra 

dimensions you add, the easier it is to overcome barriers.  We decided to test that hypothesis.  

We ran the same test on small Lennard-Jones clusters but traveled in 5D and 6D instead of 4D. 

The results, reported in Figure 15, do not reveal a significant advantage to using these higher 

dimensionalities.  
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Figure 15  Influence of dimensionality on algorithm performance. 

Increasing dimensionality past 4D does not significantly influence the overall performance. 

 

2.2.6.4. Conducting the 3D → 4D travel step by single leap 
In the our work described above, the walk out of the 3D local minimum was done by making 

many small all-atom steps at constant energy, as was done by Faken et al.  In each step the 

direction of travel was chosen randomly, under the constraint that it is perpendicular to the 

energy gradient.  This is by no means the only way to travel out of the 3D local minimum.  One 

can instead use big leaps sized according to the central limit theorem.  A one-dimensional walk, 

consisting of N steps of length Δ  each in an independent random direction, results in a 

probability function for the final position which is a Gaussian distribution centered at the starting 

position of the walk that has a standard deviation of 

X

NXΔ  . Taking a big leap for each atom 

should give them appropriate displacement distances.  In Monte-Carlo simulations this is not 
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acceptable because the energy will most probably rise dramatically, but in our program this is not 

important.  This energy rise can be accounted for by adjusting atomic positions after the big leap 

and returning the system back to the constant energy surface, that contains the 3D local 

minimum from which the leap originated. 

 One motivation for using an algorithm like this is that the algorithm that uses many small 

steps has three disadvantages. 

1) It will always have a Gaussian-like distribution of final positions, while a single-leap can 

have any distribution of final positions. 

2) Our ultimate interest is in the optimization of polymers, for example, proteins.  A walk 

consisting of many small steps will have trouble taking one strand through another. For example, 

it will have trouble separating two threaded rings, or untying a knot. An algorithm with big leaps 

could solve this problem. 

3) In a non-random walk it is easier to favor special directions, for example, bond rotations. 

Performance for Walks Done with a Single Jump
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Figure 16  For small LJ clusters doing the walk in a single leap is somewhat less efficient 
than making many small steps. 
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We tested this walking technique. The results are shown in Figure 16.  For small LJ 

clusters doing the walk in a single leap is somewhat less efficient than making many small steps.  

As before, the number of dimensions used for walking does not seem to significantly affect the 

number of cycles needed to find the global minimum.   

 

2.2.6.5. Using the adjustable step size for the 3D → 4D travel step 
In their work Faken et al. used a fixed step size.  For Lennard-Jones clusters Faken et al. found 

reasonable ranges of displacements for 3D→4D, but adjustments will be needed for many other 

systems.  Changing this parameter on the fly would facilitate the use of the algorithm for other 

problems.  For this reason and because it could improve the efficiency we examined use of an 

algorithm in which the step size is adjusted on the fly so that approximately half of the steps are 

accepted and half are rejected.  If the 3D→4D travel step in the algorithm of Faken et al. does 

not take it far enough from the 3D energy local minimum, the compression to 3D at constant 

energy step will take the system back to the 3D local minimum and not to a lower energy 

minimum.  On the other hand, if the 3D→4D travel step takes the system too far from the 3D 

local minimum, the resulting geometry is not likely to be reasonable, and will not be successfully 

compressed back to 3D at constant energy.  We thought, it would be best to keep the 3D→4D 

travel step between these extremes, by adjusting the range of the displacements at runtime. 
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Performance for Walks Done with Steps of Adjustable 
Length
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Figure 17  Adjusting the step size during the run does not help with performance. 

 
Again we conducted walks with many small steps, but this time the step size was not 

fixed.  If the algorithm ran into a non-zero local width minimum while compressing to 3D, the 

step size was decreased.  If the algorithm either returned to the original local minimum, or found 

a better one, the step size was increased. The performance of this algorithm for small Lennard-

Jones clusters is shown in Figure 17 .  The performance was about as good as that with constant 

step size.  Again, increasing the number of dimensions used for the walk did not significantly 

influence the number of cycles needed to converge, because the fourth dimension alone is 

sufficient to go around any 3D barrier.  Although it is true that the potential energy surface for 

Lennard-Jones clusters becomes simpler when one increases the number of dimensions from 3 to 

4 to 5 to 6, the algorithm can’t take full advantage of that, because to stay at constant energy it 

has to keep the system geometry near the 3D potential energy surface.  
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2.2.6.6. Changing the magnitude of the extra dimensional components in the 3D → 4D 
travel step 

The role of the three physical dimensions is different from that of extra dimensions, suggesting 

that the physical and unphysical degrees of freedom could be treated differently.  For example, 

the extra dimensional components of the displacement vector need not have to have the same 

range as the 3D components.  If they are set to 0, and the walking is done by a single leap, the 

algorithm becomes similar to basin-hopping42 at 0 K with a somewhat unusual way of finding 

the geometry of the inherent structure.  Instead of finding it by a single non-stochastic geometry 

optimization, the algorithm at first lowers the energy to the energy of the previous local 

minimum, and only then proceeds to the energy of the inherent structure. 

 Both algorithms find the system at high energy after the jump.  Basin hopping solves this 

problem by conducting a non-stochastic geometry optimization in 3D to find the inherent 

structure, and uses its energy to determine whether to take a step, instead of using the current 

energy.  The algorithm discussed in the previous paragraph would at first lower the energy by 

using extra dimensions, then it would compress the system back to 3D at constant energy, and 

only after successful compression would it optimize the energy in 3D. 

 We conducted several runs with multiple small steps in the walk, varying the length of 

the component in the fourth dimension. It was set to 0.1, 1 and 2 times the average length of 3D 

components. The step size was adjusted to 50% acceptance ratio. The results of these 

calculations are shown in Figure 18.  The performance is not significantly affected by altering 

how far the system travels in the 4th dimension.  Here is an explanation for this phenomenon.  

The travel in 4D is done in many small steps. After each step the atomic coordinates are adjusted 

to keep the system at constant energy. This adjustment must give roughly similar ratios to the 3D 

and 4D parts of the displacement every time the program is run. 
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Figure 18 Influence of the range of 4D components of the displacement vector on performance. 

Each point in this chart represents the average of nine optimizations of a Lennard-Jones cluster.  
In all cases the travel was done by taking 100 constant energy steps perpendicular to the gradient 
of energy.  The difference between the runs in the three graphs is the range of the 4th dimensional 
component of the displacement vector.  It was set to 0.1, 1 and 2 times the range of three-
dimensional components. 

 
Unfortunately, we did not succeed in significantly improving upon the approach that Faken 

et al. used to move atoms out of a local minimum into 4D space.  We found that this step is not 

very sensitive to details.  However, this does not really concern us, because the problem with the 

compression bottleneck has been solved. 

2.2.7. The performance of our algorithm compared with the algorithm of Faken et al. 

An efficient way to carry out optimization by using constant energy walks in 4D has been 

developed.  This was achieved primarily by significantly accelerating the part of the algorithm 

that compresses the system from 4D to 3D at constant energy.  Attempts were made to improve 

the step in which the system travels from a 3D local minimum into 4D at constant energy, but 

this step was not improved significantly. 
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 Figure 19 reports the average numbers of cycles to locate the global minimum of the LJ16 

through LJ39 clusters when using Equation 38 to accomplish the compression.  The figure also 

indicates the average number of cycles to locate the global minimum for the LJ16 through LJ30 

clusters reported by Faken et al.  For all clusters for which results are available with both 

algorithms, the mean number of cycles required to locate the global minimum is smaller with our 

algorithm.  For the n ≤ 26 clusters, fewer than 20 cycles are required on average to locate the 

global minimum when compression is done with Equation 38.  For the larger clusters the 

number of cycles required to locate the global minimum can be appreciably greater, but even for 

the n = 30 cluster, only 236 cycles (10 minutes on a 1 GHz Pentium III computer) were needed 

on average to locate the global minimum. 

Our implementation of the global optimization algorithm even performed well for the LJ38 

cluster. Twenty optimizations of LJ38 starting from different random arrangements of the LJ 

atoms were carried out using our implementation of the extended dimensional algorithm.  All 

runs located the global minimum, with the number of cycles required ranging from 374 to 

20,657, with the average being 8,367 cycles.  In the course of the optimizations, fifteen runs also 

located the lowest-energy structure in the funnel containing the five-fold minima.  Faken et al.47 

listed information for only one successful optimization of LJ38 which required about 8000 cycles.  

Thus our implementation of the extended dimensional algorithm performs well even for the 

difficult case of LJ38.  Nonetheless, as is clear from Figure 19, there is an overall exponential 

growth in the number of cycles to locate the global minimum with growing cluster size.  
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Figure 19  Comparison of performance of our program with program of Faken et al.   

We optimized each Lennard-Jones cluster nine times, each time starting from a different random 
configuration.  For LJ38 we have done twenty optimizations. We report the mean in the number of cycles 
needed to reach the global minimum. 

 

2.3. CONCLUSIONS 

2.3.1. Improvements made to the algorithm of Faken et al.  

2.3.1.1. Improvements that reduced the number of cycles 
We have improved the speed of the algorithm of Faken et al. by three orders of magnitude.  One 

order of magnitude improvement was achieved because our implementation of this global 

optimization algorithm required fewer cycles to find global minima.  This is due to our 
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improvements to both the 3D→4D walk at constant energy and to the 4D→3D compression step 

of the algorithm.  

Our implementation of the 3D→4D walk at constant energy differed from that of Faken 

et al.47 in two respects.  

1) In our implementation the same number of steps was used in the 3D→4D walk at 

constant energy step for all clusters. 

2) In cases where the compression step failed to bring the system to 3D, the system 

was returned to the previous local minimum in 3D. In the algorithm of Faken et 

al.47 it was brought back to the point in 4D from which the compression was 

started. Our test revealed that this change generally resulted in a small increase in 

efficiency in locating the global minimum in 3D.  This makes sense, because 

overall the minima bear some degree of resemblance to each other, and taking the 

system further and further into 4D makes it look less like a 3D minimum.  

2.3.1.2. Improvements to the 4D→3D compression step. 
A much more significant acceleration of the algorithm of Faken et al.47 was achieved due to 

improvements made to the 4D→3D compression step.  Faken et al. compressed the system from 

4D to 3D at constant energy by moving atoms perpendicular to the energy gradient in the 

direction of decreasing width. (Figure 6)  We have been able to reduce the CPU time required 

for the compression step by two orders of magnitude by combining energy and width into a 

single function (Equation 37) and minimizing that function using the algorithm introduced in 

Equation 38.  Using this approach also increased the fraction of successful optimizations, 

because the domain of convergence for this method was greater than that for the approach of 

Faken et al.  
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2.3.2. Bottlenecks remaining in the algorithm 

2.3.2.1. The high number of iterations required for the 4D→3D compression step. 
Two bottlenecks still hinder the performance of our algorithm.  Although we have improved the 

speed of the step that compresses the system from 4D to the 3D world by two orders of 

magnitude, it still takes up more than 99% of the run time.   

2.3.2.2. Frequent failures of the 4D→3D compression step. 
 

 

Figure 20  Progress in the optimization of LJ26. 

The longer our algorithm runs the less frequently it finds new minima. 

 
The other problem with the algorithm developed is that the longer it runs, the less frequently it 

finds new minima that are lower in energy. This is illustrated by Figure 20 for LJ26 and by 

Figure 21 and Figure 22 for LJ38.  At first, the algorithm finds minima that are high in energy.  

It is very easy to find other minima that are lower in energy than those high-energy minima, so 

after the travel step the compression step frequently succeeds in finding a lower energy 

minimum.  However, as the algorithm gets close to the global minimum, there are very few 

minima lower in energy than the current minimum.  They are hard to find, so after the travel step 

the compression step usually fails, because when the function containing energy and width is 

optimized it ends up at a local minimum that is not in the 3D “world”.  Essentially this algorithm 

trades the complexity of the 3D surface for the complexity of the constant energy surface in four 

dimensions.   
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Figure 21  Progress in the optimization of LJ38. 

The longer our algorithm runs the less frequently it finds new minima. 
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Figure 22  Distribution of outcomes for LJ38 compression.  

This figure shows how frequently the compression step succeeds when the 4D walk is started from 3D minima 
of various energies.  If the 4D walk at constant energy is started from high-energy minimum, the compression 
step is likely to succeed.  The lower the energy of the minimum from which the walk is started, the more likely 
is the compression step to fail. 
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The problem associated with failures of the compression step was not introduced in our 

implem

2.3.2.3. Exponential scaling for larger clusters 
Faken et al. claimed that unlike other global optimization algorithms, their algorithm did not 

.3.3. Possible directions of future research 

2.3.3.1. Two approaches to improving the algorithm’s efficiency 
Although we have improved the performance of the algorithm of Faken et al. by three orders of 

y  

2.3.3.2. Improving the compression from 4D to 3D at constant energy  
Even after being accelerated by two orders of magnitude, the compression from 4D to the 3D 

“world” at constant energy takes up more than 99% of the run time.  This makes it the most 

entation.  It was already present in the algorithm of Faken et al.  In fact, our 

implementation has alleviated this problem to some degree by changing the way we do the travel 

and the compression step.  For every cluster we have tried to optimize, our algorithm required a 

smaller mean number of steps than the algorithm of Faken et al., meaning that the combination 

of the travel and compression steps in our implementation of this algorithm succeeds more 

frequently.  

scale exponentially with system size.  This is in fact true when the algorithm is used to optimize 

LJ16-LJ25, however for bigger clusters the mean number of cycles grows exponentially (Figure 

19). 

 

2

magnitude, that is not enough.  To be competitive with modern global optimization algorithms 

like parallel tempering36,37,38 and basin hopping,42 the present algorithm has to be accelerated 

more.  There are two wa s to achieve this.  One way is to improve individual modules of the 

present algorithm.  Another is to improve the algorithm as a whole.  
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logical step to speed up.  Although we have tried to improve this step by various means, there 

might still be better ways of carrying it out.  For example, one could experiment with changing 

the functional form of F( ) from one listed in  to   

F(x) = (E(x) - E0)  + W(x). 

Equation 39 

n the bottom in the direction of 

changing E(x), and hence make F(x

Along with improving individual modules one can try to improve the algorithm as a whole.  The 

algorithm of Faken et al. has many parallels with Monte-Carlo sampling.  The Monte-Carlo 

 t n et al. transfers it between 

minima.  In Monte-Carlo simulations each step can move the system to a new configuration or 

retain an old one.  The same is true for the algorithm of Faken et al.  If an attempted Monte-

Carlo step takes the system to a lower energy state, the step will be taken.  If the cycle in the 

algorithm of Faken et al. takes the system to a lower energy minimum, the move to that 

minimum will be made.  The important difference between the two algorithms is that in Monte-

Carlo sampling a move that attempts to take the system up in energy is accepted with a Boltzman 

probability.  In the algorithm of Faken et al. the system can never go up in energy.   

x Equation 37

4

This should make the canyon-like landscape of F(x) flatter o

) easier to minimize. 

2.3.3.3. Improving the algorithm by introducing temperature 

algorithm ransfers the system between states. The algorithm of Fake
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Figure 23  This figure illustrates the advantage of including temperature in extended dimensional 
optimization.   

Suppose one begins the search for global minimum D at a local minimum A.  In the current implementation 
of the algorithm going from A to D can only be accomplished if the 3D→4D travel step takes the system into a 
region close to D.  If this step leaves the system somewhere near B or C, the next step, which compresses the 
system to 3D at constant energy, will not succeed, because the system will be trapped in a non-zero width 
local minimum.  If temperature is introduced into the algorithm, the compression will be able to proceed to 
either B or C because they are not much higher in energy than A, and from this new position the next cycle 
might take the system to its global minimum. 

 
One could introduce temperature into the algorithm of Faken et al.  Compression to 3D 

often fails because it runs into local minima of the width function.  In the current implementation 

of the algorithm these configurations are always rejected.  One does not have to reject them.  

One can force them to 3D by setting extra atomic coordinates to 0. Then one could optimize 

these configurations to 3D local minima, and choose whether to accept these minima by using 

the Metropolis rules.  This opens up the world of Monte-Carlo algorithms, allowing one to create 

algorithms similar to simulated annealing and parallel tempering,, that use extended 

dimensionality. 
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3. Adsorption of H2 Molecules on the Si(100) Surface 

3.1. Introduction 

3.1.1. The Si(100) surface 

3.1.1.1. Reconstruction of the Si(100) surface 
The Si(100) surface is one of the most important surfaces in the semiconductor industry.  Bulk 

silicon has a diamond-like structure.  If a silicon crystal is broken along the (100) Miller pline, 

each atom of the newly formed surface will have two dandling bonds.  The Si(100) surface 

undergoes reconstruction as shown in Figure 24.  The neighboring surface atoms pair up to form 

dimers.57  Although the Si-Si bond in these dimers has some π bond character, its comparison 

with the double bond in Si2H4 indicates that the bond order in the dimer bonds is closer to one 

than two.58

 

Figure 24  Reconstruction of the Si(100) surface. 
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Images of the Si(100) surface taken using Scanning Tunneling Microscopy (STM) and Low 

Energy Electron Diffraction (LEED) show the dimers to be arranged in long, parallel rows on the 

surface.59, , ,60 61 62   

3.1.1.2. Buckling of dimers on the Si(100) surface—a controversial issue 
Although the Si(100) surface has been a subject of numerous experimental and theoretical 

studies, it is still not clear if the Si-Si dimers that form on that surface are flat as shown in Figure 

25 or buckled as shown in Figure 26.  Part of the reason for this is the very flat nature of the 

potential energy surface along the buckling coordinates.  Small variations in experimental 

conditions63, , , , ,64 65 66 67 68 and the use of different theoretical methods lead to contradictory results 

on the structure of these dimers.  

 

Figure 25  Flat dimers on the Si(100) surface. 

 

Figure 26  Buckled dimers on the Si(100) surface. 

 
 High-level multireference wave function methods predict that the dimers on the Si(100) 

surface are flat,69, , , ,70 71 72 73 while DFT and quantum Monte Carlo (QMC) predict that they are 

buckled.74, ,75 76  Jung et al. believe that the dimers on the Si(100) surface are flat at some 

temperatures and buckled at others.77  
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3.1.2. An STM and STS study of H2 adsorption by the Si(100) surface 

 

Figure 27  H2 adsorption in the Si(100) surface as observed by Buehler and Boland and a possible way to 
build linear nanostructures.  

 
Using STM and scanning tunneling spectroscopy (STS) Buehler and Boland explored how 

adsorption of H2 molecules influences the topology and reactivity of the Si(100) surface.78  

These experiments suggest that adsorption of a hydrogen molecule onto a Si-Si dimer induces 

unbuckling of nearby dimers in the same dimer row.  This dramatically changes the reactivity of 
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the dimer adjacent to the site where H2 is adsorbed, increasing the rate of H2 adsorption by a 

factor of a billion.  This means that once one H2 molecule is adsorbed onto the Si(100) surface, 

other H2 molecules will adsorb in the same row, which could provide a way to build linear 

nanostructures on the Si(100) surface. 

3.2. Experimental 

 

In order to address the issue of the influence of adsorption of H2 molecules on some of 

the Si-Si dimer sites on the buckling of nearby bare SiSi dimer sites, a series of DFT calculations 

using different size supercells and different hydrogen coverages were carried out.  The 

calculations were performed with the Vienna Ab Initio Simulations Package (VASP)79, , ,80 81 82 

and made use of slab models with periodic boundary conditions, the gradient-corrected PW91 

functional,19 ultrasoft (Vanderbilt-type) pseudopotentials,83,84 a plane-wave basis set with a 200 

eV cutoff, and three Monkhorst k points.85  The supercells contained two, three, or four surface 

dimers (in a dimer row) and five layers of silicon atoms.  The Si atoms in the bottommost layer 

were kept frozen in their bulk positions and terminated with H atoms to eliminate the dangling 

bonds.  The positions of the Si atoms in the top four layers and of any adsorbed H atoms were 

fully optimized.  A 9 Å vacuum layer was introduced between adjacent slabs.   
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Figure 28  The supercell used in calculations. 
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3.3. Results 

 

Figure 29 Influence of the adsorption of H2 on the energetics of buckling of bare SiSi dimers on the Si[100] 
surface as predicted by DFT calculations with PW91 functional.19

 

The results of the calculations are summarized in Figure 29 and Figure 30.  From the 

former figure it is seen that the buckling energy per surface dimer is calculated to be the same (-

0.16 eV) in the two- and four-dimer models.  (Results are not reported for the three-dimer model 

since a trans pattern of buckling of adjacent dimers cannot be attained in that case.)  For the two- 

and four-dimer models occupation of a subset of the available dimer sites by hydrogen has little 

impact at the tendency of the remaining sites to buckling, the buckling energies ranging from -

0.15 to -0.17 eV per dimer.  Interestingly, in the three-dimer model, with one dimer site occupied 

by hydrogen, the buckling energy per dimer is -0.25 eV.  The origin of the extra stability 

associated with buckling is not clear in this case. 
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Figure 30  Dependence of the energetics of H2 adsorption on the Si[100] surface on the coverage as 
determined from DFT calculations with the PW91 functional.19
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Figure 30 examines the coverage dependence of the H2 adsorption energies.  The energy 

change associated with the adsorption of an H2 molecule onto a dimer is calculated to be -1.93 

and -1.97 eV in the two-dimer and four-dimer models, respectively.  The adsorption of additional 

H2 molecules is calculated to be 0.07 - 0.15 eV more favorable than the adsorption on a bare 

surface, with the precise enhancement depending on the distance from already occupied sites and 

the extent of hydrogen coverage.   

 

3.4. Conclusions 

 

Some of our results are consistent with the experimental data of Buehler and Boland, but others 

are not.  Consistent with the experiments, the calculations predict an energetic preference for 

clustering of occupied sites in a dimer row.  However, our calculations did not verify the 

unbuckling induced by H2 adsorption reported by Buehler and Boland.  In fact, in some cases our 

calculations predicted that the presence of adsorbed hydrogen makes unbuckling less 

energetically favorable.  (See Figure 29.)  It is possible that the unbuckling observed by Buehler 

and Boland was caused by the presence of the STM tip.  

Our calculations have confirmed that building linear nanodevices could be possible by H2 

adsorption on the Si(100) surface. 
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4. Computational Insight Into the Regiocontrol of the Molybdenum and the Rhodium 

Catalyzed [2 + 2 + 1] Cyclocarbonylation Reaction 

 

4.1. Introduction 

4.1.1. The antibiotic resistance problem 

One of the major problems in modern medicine is the emergence of antibiotic-resistant bacteria.  

Normally if regular antibiotics do not work, one uses vancomycin.  Vancomycin is not a perfect 

antibiotic, though, as enterococcus bacteria are quickly developing resistance to it. According to 

the Centers for Disease Control, from 1989 to 1993 the percentage of nosocomial infections 

caused by VRE (vancomycin-resistant enterococcus) increased from 0.3% all the way to 7.9%, a 

34-fold increase in only four years.86  That is why a lot of effort is going into development of 

antibiotics that will work on VRE.  

 

Figure 31  Vancomycin  

Vancomycin is an antibiotic used in the prophylaxis and treatment of infections caused by Gram-positive 
bacteria.  It is a branched tricyclic glycosylated nonribosomal peptide produced by bacterial fermentation. 

______________________ 

All experiments described in this chapter were carried out in Prof. Brummond’s group unless 

noted otherwise.  

58 



 

4.1.2. Guanacastepene A 

 

Figure 32  Guanacastepene A, a natural product with a promising antibiotic activity. 

 
Guanacastepene A is a compound showing promising antibiotic activity against vancomycin-

resistant bacteria.87  This natural product, shown in Figure 32, was isolated by John Clardy et 

al.88  It was extracted with hexane from a Costa Rican fungus (CR115) found on the branches of 

the Daphnopsis Americana tree (Figure 33) and purified by chromatography. 

 

Figure 33  Daphnopsis Americana89 tree commonly known as “burn nose”.  

Guanacastepene A was isolated from a fungus found on the branches of a tree of this species. 

 
Professor Brummond's group at the University of Pittsburgh is trying to find a synthetic 

route to guanacastepene A and its analogs.90  The key transformation in this synthesis is shown 

in Figure 34. 
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Figure 34  An important step in the synthesis of guanacastepene A. 

 
The unique feature of this step is the simultaneous formation of the 7-5 ring system by the 

selective reaction of the distal double bond of the allene in a [2 + 2 + 1] cycloaddition reaction.  

Experiments carried out on a similar system91 indicate that other transition-metal complexes, 

such as Mo(CO)6, produce a 6-5 ring system resulting from a selective reaction with the 

proximal double bond of the allene.   

The transformation of 21 to 22 has been made possible by using rhodium biscarbonyl 

chloride dimer.  The goal of this project is to understand the unusual transition-metal directed 

selectivity. 

 

 

4.2. Discussion and Results 

4.2.1. Experimental 

4.2.1.1. Basis set and level of theory 
All calculations were performed with the GAUSSIAN03 package92 using density functional 

theory with Becke’s three-parameter hybrid exchange functional and the Lee-Yang-Parr 

correlation functional (B3LYP).20  The 6-31G(d) basis set93 was used for H, C and O atoms and 

the double-ζ quality, Hay and Wadt LANL2DZ basis set was used in conjunction with the 

LANL2 effective core potential94 for Rh.  All calculations were done in a vacuum. 
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4.2.1.2. Transition state searching 
Transition states were found using QST3,95 QST2,96 and coordinate-driven methods.  Some 

transition states seem to connect one minimum with two alternative minima.  In such cases there 

should be additional stationary points on the pathway lower in energy than the identified 

transition state.  These “missing” stationary points are not relevant for determining the overall 

activation energies. 

4.2.1.3. A comment about solvents 
Experiments were carried out in 1,2-dichloroethane and toluene.  Neither solvent is expected to 

significantly impact the reaction pathway.  Therefore solvent was not included in calculations. 

 

4.2.2. Modeling Rh-catalyzed intermolecular [2 + 2 + 1] cyclocarbonylation reaction 

We needed some information about the barriers involved in various reaction steps in order to 

know which steps we should model most extensively, so we performed a series of calculations 

on an intermolecular cyclocarbonylation reaction.  These were not intended to give us detailed 

and accurate information, but rather to aid us in planning further more accurate calculations.  

Unlike the calculations in Chapter 3, the calculations on Rh-catalyzed intermolecular [2 + 2 + 1] 

cyclocarbonylation reaction included both the electronic energies of the minima and of the 

transition states, but were less rigorous than our subsequent calculations.  They mapped only one 

reaction pathway – the one that was the most intuitive to us.  These calculations were of the 

electronic energies only, while the subsequent calculations were of free energies.  

61 



 

4.2.2.1. The choice of a model system 
 

 

Figure 35  Rh-catalyzed reactions leading to the formation of the 6-5 ring system.

 

Because rhodium-based catalysis can form both the 7-5 ring system90,97 (Figure 34) and the 6-5 

ring system97 (Figure 35), we concluded that the size of the larger ring system was not important 

to the reaction mechanism and we decided to model the reaction without the larger ring system, 

the intermolecular condensation reaction between 2,3-pentadiene, 2-butyne and carbon 

monoxide shown in Figure 36.  An added bonus was the fact that intermediate 45, shown in 

Figure 38, did not have a conformational space as large as analogous intermediates, where the 

allene and the alkyne are connected by a tether. 

 

Figure 36  The intermolecular condensation reaction between 2,3-pentadiene, 2-butyne and carbon monoxide. 

We used this as a model reaction for rhodium-catalyzed carbocyclization.  
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4.2.2.2. Assumptions about the intermolecular cyclocarbonylation reaction 
When modeling of the intermolecular cyclocarbonylation reaction was started, three important 

assumptions were made.  First was that chloride ligands were not involved in the reaction.  This 

assumption was dictated by experimental results for analogous reactions.  The addition of silver 

cations to the reaction mixture did not hinder the reaction.  In fact, the addition of silver triflate 

increased the reaction rate.  Silver cations have a very strong affinity for chloride.  The addition 

of silver triflate to the solution removed all the chloride ligands from rhodium centers via 

precipitation of silver chloride (Figure 37). 

 

Figure 37  Reaction of silver triflate with [Rh(CO)2Cl]2. 

 
It was also assumed that a monomeric rhodium species catalyzes the reaction.  This is a 

safe assumption.  If there are no chloride ligands on rhodium in this reaction, this metal center 

has an overall charge of +1.  Proximity of two positively charged centers in a non-polar solvent 

is highly unfavorable energetically because of electrostatic repulsion. 

By analogy with known mechanisms for other organorhodium reactions98 it was assumed 

that there were two carbonyl ligands bonded to rhodium.  Another reason we assumed that no 

more than two carbonyl ligands were involved in the carbocyclization step was that in analogous 

reactions99 when CO was not bubbled through the solution, the carbocyclic ring system still 

formed and there were only two carbonyl ligands per rhodium in the catalyst used. 
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4.2.2.3. Modeling individual steps of the intermolecular condensation reaction 
The first few steps of the reaction were not modeled.  It was assumed that rhodium(I) has a high 

affinity for double and triple C-C bonds, so the attachment of rhodium biscarbonyl to 2,3-

pentadiene and 2-butyne did not require overcoming significant barriers. 

 

Figure 38  Attachment of rhodium biscarbonyl to 2,3-pentadiene and 2-butyne. 

 
Modeling of the reaction pathway was started with intermediate 45.  This intermediate had 

several isomers. We started with the isomer 45c1 and converted it to 50b3 by moving C3 and C7 

together.  Overcoming the barrier for this reaction step required 18.9 kcal/mol of electronic 

energy.  The transition state was clearly an early transition state.  Structurally it resembled the 

reactant very closely.  The product of this reaction step, intermediate 50b3, had a geometry very 

different from 45c1 and the transition state.  In it rhodium no longer had a square planar 

geometry.  This reaction step was highly exothermic.  The product was 19.8 kcal/mol below the 

reactant.  Because the electronic energy barrier for the reverse reaction was 38.8 kcal/mol, we 

concluded that this step was irreversible.  
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Figure 39  The product-determining step of the Rh-catalyzed intermolecular condensation reaction.   

The transition state is an early transition state.  It resembles the reactant both structurally and energetically. 

 

In the next step of the reaction a carbon monoxide molecule from the media attaches to 

intermediate 50 (Figure 40).  It was assumed that this process does not require overcoming a 

significant barrier.  (This assumption was later confirmed by calculations on carbonyl insertion 

into 127.) 

 

Figure 40  CO adsorption by intermediate 50. 
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The geometry of intermediate 53 was obtained by adding a carbonyl group to the vacant 

position on the rhodium atom of intermediate 50b3 and optimizing the resulting structure.  The 

geometry of 53 was very similar to that of 50b3.  CO adsorption by intermediate 50 was found to 

be an exothermic process with the decrease in the electronic energy being 22.5 kcal/mol. 

 

The next step in the catalytic pathway was carbonyl insertion.  There were two possible 

positions where a carbonyl group from rhodium could insert into the ring.  It could insert 

between Rh and C8 forming metallocyclic intermediate 54, or between Rh and C4 forming either 

55 or 56, which differ energetically.  Metallocycle 56 had an η2 bond between C2, C3 and Rh.  

This bond was not present in 55. 

 

Figure 41  Three possibilities for CO insertion into the ring system.   

 

At first the formation of 54 was considered.  It was modeled by starting with intermediate 

53 and bringing C11 and C8 together.  This process required 19.6 kcal/mol to overcome the 

barrier.  The transition state for this reaction step is shown in Figure 42.  This process was 

highly exothermic.  The electronic energy dropped by 21 kcal/mol relative to 53.  The step was 

also irreversible.  It would take 40.6 kcal/mol to overcome the barrier for the reverse reaction. 
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Figure 42  Intermediate 53 converting to 54 by transferring a CO from rhodium into the ring system. 

 

 The possibility of CO insertion on the other side of the ring was also considered.  

Modeling of this process was started with 53.  Decreasing the distance between C4 and C11 led 

to the formation of intermediate 56 (Figure 41).  The height of the barrier for this process was 

25.1 kcal/mol.  This reaction step was not exothermic as with formation of intermediate 54.  

Intermediate 56 was above 53 in electronic energy by 6.9 kcal/mol.   

The formation of 54 is preferred over the formation of 56 for several reasons.  In 54 the 

double bond between C7 and C8 is conjugated with the carbonyl group; in 56 it is not.  In 54 Rh, 

C3, C7, C8 and C11 form a 5-membered ring.  In 56 the η2 bond between C2, C3 and Rh results 

in the presence of two 4-membered ring systems, Rh-C3-C4-C11 and Rh-C3-C7-C8.  Unlike 5-

membered ring systems, 4-membered rings are high-energy structures.  The η2 bond in 56 also 

turns the C2-C3 double bond at an 88.4° angle to the C7-C8 double bond.  This prevents 

conjugation between these two adjacent double bonds. 

 

67 



 

4.2.2.4. The mechanism of Rh-catalyzed intermolecular cyclocarbonylation reaction 
The proposed mechanism of the [2 + 2 + 1] intermolecular cyclocarbonylation reaction is shown 

in Figure 43.  In this mechanism rhodium has two CO ligands attached to it most of the time.  

This came from analogy with other known rhodium catalysis pathways and experiments in which 

CO was not bubbled through a solution.  Our current understanding of the energetics of most of 

this pathway is shown in Figure 44.  The rate determining step is the oxidative addition that 

leads to the formation of metallocycle 50. 

 

Figure 43  Proposed mechanism of an intermolecular cyclocarbonylation reaction.  

At first 2,3-pentadiene and 2-butyne bind to a rhodium complex, then a rhodium metallocycle forms, followed 
by a CO transfer from rhodium into the ring. This is followed by reductive elimination of rhodium from the 
ring. 

 
The existence of low-energy metallocycles 50 and 53 helps to determine the product of 

the reaction.  In these intermediates 2-butyne binds to the third carbon of 2,3-pentadiene.  We 
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also studied metallocycle 40, where 2-butyne binds to the second carbon of 2,3-pentadiene 

(Figure 45).  This metallocycle was 11.8 kcal/mol higher in energy than 50.  The energy 

difference is caused by two factors.  In 40 the organic ligand binds to the rhodium complex with 

two η1 bonds, and in 50 it binds to rhodium with one η1 and one η3 bond (Figure 45).  The other 

factor in the stability of 50 is that the organic ligand is conjugated.  In fact, in intermediate 41 

(Figure 45), which can also in principle lead to the correct products, the organic ligand binds to 

rhodium with two η1 bonds just as in intermediate 40.  It is only 6.3 kcal/mol lower in energy 

than 40.  This shows that the η3 bond is not the only important factor in determining the reaction 

outcome. 

 

Figure 44  Energetics of intermolecular condensation reaction between 2,3-pentadiene, 2-butyne and carbon 
monoxide. 
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Figure 45  Three intermediates important to our reasoning: 40, 41 and 50.  

Intermediate 40 does not lead to analogs of products observed in experiments. Intermediate 41 is more stable 
because it has conjugation. At first we thought that the reaction proceeded through this intermediate, but 
now we believe that it proceeds through intermediate 50, which leads to the correct product analog just as 41, 
but in addition to being stabilized by conjugation it is also stabilized by an η3 bond.  
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4.2.3. Modeling [2+2+1] intramolecular cyclocarbonylation reactions 

From calculations on the intermolecular cyclocarbonylation reaction we obtained an overall 

picture of the energetics of the rhodium-catalyzed [2 + 2 + 1] cyclocarbonylation reaction of 

allenes.  With this information we proceeded to study systems that closely resembled the crucial 

step in synthesis of guanacastepene A (Figure 34).90   

 

Figure 46  The model system for intramolecular [2 + 2 + 1] cyclocarbonylation. 

 
 
 Our model system is shown in Figure 46.  If the [2 + 2 + 1] cyclocarbonylation reaction 

of octa-1,2-dien-7-yne in the presence of carbon monoxide is catalyzed by a Rh(I)-based 

catalyst, a [4.3.0] bicyclic ring system is formed, but if this reaction is promoted by a 

molybdenum-based catalyst such as Mo(CO)6, a [3.3.0] bicyclic ring system is formed instead.91

Starting with our data pertaining to the rhodium-catalyzed intermolecular [2 + 2 + 1] 

cyclocarbonylation reaction, we have modeled both the rhodium-catalyzed and the molybdenum-

promoted cyclocarbonylation reactions.  

The modeling was done by analogy with the intermolecular cyclocarbonylation reaction.  It 

was assumed that the step associated with the highest-energy transition state is the oxidative 

addition step to form the metallocycle.  This step probably determines which ring system is 

formed, and thus received most of our attention.  Further steps such as the addition of an extra 

CO to the rhodium center, CO insertion and reductive elimination were modeled less rigorously, 

because they were assumed to require smaller energy barriers or follow irreversible steps.  This 
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assumption turned out to be true for the rhodium-catalyzed but not for the molybdenum-

promoted cyclocarbonylation reaction.  After this, various alternative pathways were modeled. 

By analogy with known reaction mechanisms it was assumed that through most of the 

pathway the molybdenum atom has three carbonyl groups on it and the rhodium atom has two.

 

4.2.4. Modeling molybdenum-promoted intramolecular [2 + 2 + 1] cyclocarbonylation 

4.2.4.1. The oxidative addition step 
It was assumed at the outset that the oxidative addition was the product-determining step for the 

molybdenum-promoted cyclocarbonylation reaction, so it was modeled first.  Information on 

subsequent steps was obtained using results of the oxidative addition calculations.  

Starting with intermediates 131c1, 131c2, 131c3 (Figure 47) and 126c1 (Figure 48) and 

bringing the appropriate carbon atoms together resulted in the formation of compounds 129c1 

and 132c3 (Figure 48).  In addition, attempts were made to identify more transition states by 

forcing appropriate carbon atoms apart leading back to the reactants; however, that did not yield 

any new transition states. 

 

Figure 47  Isomers of Mo-containing intermediate 131. 

 

All low-energy complexation systems involved Mo coordinated to the proximal double bond of 

the allene; compare 131c3 and 126c1 in Figure 48.  Similarly, the transition states involving the 
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proximal double bond are all lower in free energy than those involving the distal double bond 

(compare the transition state between 131c3 and 129c1 to the one between 131c3 and 132c3 in 

Figure 48).  

 

Figure 48 Energetics of the Mo-promoted oxidative addition.   

Pathways that lead to the experimentally observed product are shown in green and those pathways that lead 
to the product that is not formed are shown in red. 

 

The free energy barrier to the cyclocarbonylation process that converts 131c3 to 129c1 

was found to be 9.2 kcal/mol. (See the transition state ts131c3-129c1 in Figure 48.)  Modeling 

the Mo-promoted oxidative addition step showed that this step favored the formation of 

experimentally observed products.  The free energy barrier was found to be 14.0 kcal/mol for the 

formation of the bicyclo [4.3.0] ring system and 9.2 kcal/mol for the formation of the bicyclo 

[3.3.0] ring system.   

Modeling of subsequent steps of the Mo-promoted cyclocarbonylation reaction was 

easier and more reliable than modeling the analogous Rh-catalyzed steps regardless of the mode 
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of complexation since the oxidative addition step of the molybdenum-promoted reaction always 

resulted in the formation of either intermediate 129c1 or 132c3. 

 

4.2.4.2. The carbonyl adsorption step 
Next, adsorption of a CO molecule by 129c1 was modeled (Figure 49).  Placement of carbon 

monoxide in the vicinity of 129c1 and minimizing the energy of the system does not lead to bond 

formation between the CO and the molybdenum atom.  To get from 129c1 to 159c2 the system 

has to overcome a barrier (Figure 50). 

 

Figure 49  The carbonyl adsorption step for the Mo-promoted reaction. 

 
This reaction step, shown in Figure 49, is an example of why one should consider not 

only the electronic energy but also the free energy.  The electronic energy of the transition state 

for this step (ts129c1-159c2, Figure 50) was below that of intermediate 129c1 and a free CO by 

2.2 kcal/mol; however, immobilizing a molecule of carbon monoxide decreased the entropy of 

the system.  Therefore, the transition state was actually 8.6 kcal/mol above 129c1 and a CO 

molecule in free energy.  This might seem like a high barrier, but one should remember that the 

reaction is carried out in toluene. When a CO molecule is immobilized by 129c1, it probably 

frees up a solvent molecule, which counteracts unfavorable entropic effects associated with 

immobilizing a CO molecule.  This makes the reaction more entropically favorable, lowering the 

free energy for the transition state. 
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Figure 50  Electronic energy diagram and free energy diagram for the CO adsorption step. 

 

4.2.4.3. The carbonyl insertion step 
Carbonyl insertion into metallocycle 159c2 to give 162c1 (Figure 51) was calculated to have a 

free energy barrier of 1.9 kcal/mol. 

 

Figure 51  The carbonyl insertion step for the Mo-promoted reaction. 

 

4.2.4.4. The reductive elimination step 
Next, the reductive elimination was modeled.  The transition state between 162c1 and the 

product of this step was found using coordinate-driven methods.  The free energy barrier for this 
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process was found to be 1.8 kcal/mol.  The reductive elimination of molybdenum afforded the 

complexed enone 163c1, representing a free energy change of -42.1 kcal/mol.  

 

Figure 52  The reductive elimination step for the Mo-promoted reaction. 

 

4.2.4.5. Modeling alternative mechanisms for the Mo-promoted reaction 
There could be alternative mechanisms to the Mo-promoted reaction differing from the one 

described above.  Appendix B discusses an alternative way for CO ligation of metallocycle 

129c1.  Appendix C discusses the reaction mechanism where the ligation of molybdenum by a 

carbon monoxide molecule from the media is not the next step after the oxidative addition step. 

 

4.2.4.6. Conclusions about the Mo-promoted intramolecular cyclocarbonylation 
The free energy landscape for the Mo-promoted intramolecular cyclocarbonylation is shown in 

Figure 53.  Although the rate limiting step turned out to be the addition of a carbon monoxide 

molecule to the molybdenum center, the product was determined by the oxidative addition step.  

In the reaction path that leads to the formation of the [4.3.0] bicyclic ring system, the transition 

state for this step was 4.8 kcal/mol above that for the oxidative addition step and 2.5 kcal/mol 

above that for the CO adsorption step of the reaction path that leads to the formation of the 

[3.3.0] bicyclic ring system.  Further steps, carbonyl insertion and reductive elimination, 

encountered small free energy barriers. 
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Figure 53  Mo-promoted cyclocarbonylation mechanisms, where CO adds to the Mo center immediately 
following the ring formation.   

Parts of pathways with an extra CO present are shown in blue.  The best possible pathways found in this 
study are shown in solid lines.  Other pathways are shown in dashed lines.   

 

4.2.5. Modeling rhodium-catalyzed bicyclic ring formation 

4.2.5.1. The oxidative addition step 
For the rhodium-catalyzed intramolecular [2 + 2 + 1] cyclocarbonylation reaction the oxidative 

addition step was found to require overcoming the highest transition state, so it was assumed at 

the outset that this step was the most important one for the analogous intermolecular process, and 

it was modeled first.  Modeling this step produced information such as the structure of 

intermediate 127c6.  This information was used in the modeling of subsequent steps.  
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Figure 54  Energetics of the Rh-catalyzed oxidative addition step.   

Pathways that led to the experimentally observed product are shown in green and those that led to the 
products that are not formed in the experiment are shown in red. 

 

Complexation of rhodium biscarbonyl to the alkyne and the distal bond of the allene was 

energetically favored by 3.1 kcal/mol over the competing complexation product where the 

rhodium was coordinated to the proximal double bond of the allene, 130c1.  Other low-energy 

structures were found but they only differed by conformations of the carbon tether. 

Starting with various conformations of compounds 130 and 125 and using coordinate-

driven methods resulted in the formation of compounds 134 and 127 (see Figure 54).  Additional 

transition states and reactant isomers were identified for the carbocyclization step by using 

coordinate-driven methods, but starting with 134 and 127 and searching for reactants.  We also 

searched for transition states by modifying low-energy transition states found for the 
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molybdenum-promoted oxidative addition step.  The transition state between 125c6 and 134 was 

found this way.   

All low-energy transition states (Figure 54) showed the rhodium biscarbonyl most closely 

associated with the distal double bond of the allene.  Just as for the Mo-promoted 

carbocyclization step reactants, all low-energy structures only differed by conformational 

changes in the carbocyclic tether.  Large energy differences were observed for metallocycles 

127c6, 127c4 and 134.  Clearly the bicyclo[4.3.0] ring system found in 127c6, 127c4 was much 

more stable than the competing bicyclo[3.3.0] ring system found in 134.  

These calculations were consistent with the experimentally observed products.  The 

unexpected result was the prediction that the oxidative addition step of the rhodium catalyzed 

reactions had to overcome larger barriers than the analogous step of the molybdenum catalyzed 

reactions.  The Gibbs free energy barrier for the formation of the [4.3.0] ring system was 

calculated to be 16.8 kcal/mol for the rhodium-catalyzed reaction, which is close to 14.0 

kcal/mol, the barrier height for the analogous molybdenum-promoted reaction.  As for the [3.3.0] 

ring formation, the lowest free energy barrier for the rhodium-catalyzed reaction was found to be 

22.3 kcal/mol, much higher than the 9.2 kcal/mol free energy barrier for the analogous 

molybdenum-promoted reaction. 

 

4.2.5.2. The carbonyl adsorption step 
In the molybdenum-promoted reaction described above, the adsorption of an extra CO by the 

metal atom (Figure 49) required overcoming a 8.6 kcal/mol free energy barrier.  In the rhodium-

catalyzed reaction the energetics of this step were different.  The attachment of the carbonyl 
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group to 127c6 was found to proceed without a barrier, resulting in the formation of metallocycle 

148c1 (Figure 55).  In this process the free energy decreased by 2.5 kcal/mol.   

 

Figure 55  The carbonyl adsorption step for the Rh-catalyzed reaction. 

 

4.2.5.3. The carbonyl insertion step 
Carbonyl insertion into metallocycle 148c1 to give 149c2 (Figure 56) was calculated to have a 

free energy barrier of 1.0 kcal/mol.  Intermediate 149c2 was 14.8 kcal/mol lower in free energy 

than metallocycle 148c1.   

 

Figure 56  The carbonyl insertion step for the Rh-catalyzed reaction. 

 

4.2.5.4. The reductive elimination step. 
Reductive elimination of the rhodium center from 149c2 (Figure 57) required overcoming an 

11.5 kcal/mol free energy barrier.  This is much higher than for the analogous Mo-promoted 

reaction shown in Figure 52.  The free energy drop in this reaction step, 14.9 kcal/mol, is also 

not as large as that for the Mo-promoted reaction.  In intermediate 147c1 formed in this step, the 

metal center is attached to the ring system somewhat differently than in the analogous 

molybdenum-containing intermediate 163c1 shown in Figure 52.  In 147c1 it is attached to two 

alkene groups by η2 bonds.  In 163c1 molybdenum is attached to one alkene and one carbonyl 

group in a similar fashion.  
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Figure 57  Reductive elimination step for the Rh-catalyzed reaction. 

 

4.2.5.5. Modeling alternative mechanisms for the Rh-catalyzed cyclocarbonylation 
reaction 

There could be alternative mechanisms for the Rh-catalyzed [2 + 2 +1] intramolecular 

cyclocarbonylation reaction differing from the one described above. Appendix E discusses the 

reaction mechanisms where there is no CO adsorption immediately following the oxidative 

addition step.  Appendix D explores the oxidative addition step with three carbonyl ligands on 

the rhodium atom.  Appendix F discusses our attempts to model a mechanism where CO inserts 

into the allene or alkyne, prior to the oxidative addition step. 

 

4.2.5.6. Conclusions about Rh-catalyzed intramolecular cyclocarbonylation 
The energetics of the rhodium-catalyzed [2 + 2 + 1] cyclocarbonylation reaction, shown in 

Figure 58, are much more like energetics of the rhodium-catalyzed intermolecular 

cyclocarbonylation reaction modeled earlier than the molybdenum-promoted intramolecular 

cyclization reaction.  It was assumed that the complexation of Rh(CO)2
+ to the unsaturated 

hydrocarbon molecule does not require overcoming a significant barrier.  The step that follows, 

oxidative addition, determines both the rate and the product of the reaction.  After oxidative 

addition a carbon monoxide is added to the rhodium center from the media.  Unlike the 

analogous molybdenum-promoted reaction, which requires overcoming a significant energy 

barrier, in the case of the rhodium-catalyzed reaction this step proceeds without a barrier.  The 
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CO insertion step requires overcoming only a very small barrier.  The step that follows, the 

elimination of rhodium from the ring system, requires overcoming a significant barrier; however, 

it is not as large as the one for the oxidative addition step. 

 

 

Figure 58  Energetics of the Rh-catalyzed cyclocarbonylation.   

Parts of pathways with an extra CO present are shown in blue.  The lowest energy pathway found in this 
study is shown in solid lines.  Other pathways are shown in dashed lines. 
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4.3. Conclusions 

 

4.3.1. A comparison between the Rh-catalyzed and the Mo-promoted [2 + 2 + 1] 

cyclocarbonylation reactions of allenes. 

We found that in both the rhodium-catalyzed and the molybdenum-promoted [2 + 2 + 1] 

cycloisomerization reactions of allenes the transition states for the oxidative addition step were 

high in free energy. For the rhodium-catalyzed reaction the transition state for the oxidative 

addition step was the highest in free energy, and for the molybdenum-promoted reaction it was 

the second highest. In the case of the rhodium-catalyzed reaction, the oxidative addition step 

determined both the rate and the product of the reaction. The situation for the molybdenum-

promoted reaction was slightly different. Although the oxidative addition step determined the 

product, the rate of this reaction was controlled by the next step, the attachment of a carbon 

monoxide molecule from the media to the molybdenum atom.  

The geometries of transition states for the oxidative addition step were different for the 

rhodium-catalyzed and the molybdenum-promoted reactions.  In low-lying transition states the 

molybdenum atom was bound to the proximal double bond of the allene and was in the plane of 

the hydrocarbon ring.  Rhodium was bound to the distal double bond of the allene and was 

outside the plane of the hydrocarbon ring.  Unlike the molybdenum-containing transition states, 

the rhodium-containing transition states for the oxidative addition step were early transition 

states.  They were more reminiscent of reactants than of products both in geometry and energy. 

The free energy barrier for the oxidative addition that results in the [4.3.0] bicyclic ring 

system formation was about the same for both the Rh-catalyzed and the Mo-promoted reactions, 

16.8 kcal/mol and 14.0 kcal/mol respectively.  However, the barriers for the [3.3.0] bicyclic ring 
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system formation were very different, 9.2 kcal/mol for the molybdenum-promoted reaction and 

22.3 kcal/mol for the rhodium-catalyzed reaction.  This means that the rhodium catalysis 

produces a [4.3.0] bicyclic ring system not because it is efficient at this reaction, but rather 

because it is inefficient at producing the competing [3.3.0] bicyclic ring product. 

The [4.3.0] bicyclic ring system is more stable because in it the two alkene groups are 

conjugated with each other.  The existence of low-lying transition states for the oxidative 

addition and carbon monoxide adsorption steps of the Mo-promoted reaction leads to the 

formation of a thermodynamically unfavored [3.3.0] bicyclic ring system.  This is an example of 

a kinetically controlled reaction.  

The steps that followed the addition of a carbon monoxide molecule from the media to the 

metal atom – insertion of a CO molecule into the metallocycle and reductive elimination of metal 

from the ring system – did not require overcoming significant barriers.  For both metal catalysts 

the product is determined early in the reaction. 

 

4.3.2. Predictions 

4.3.2.1. Improving the Mo-promoted reaction 
In the case of the molybdenum-promoted reaction, the oxidative addition step is not irreversible.  

The step that follows, the addition of a carbon monoxide molecule from the media to the 

molybdenum center, requires overcoming a larger barrier than the oxidative addition step.  The 

height of the barrier for the addition of a carbon monoxide molecule from the media to the 

molybdenum center has two consequences: 

1) The reaction rate is lower. 
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2) Because the reaction rate is lower, other reactions have more time to compete with the 

formation of desired products, which decreases the yield. 

If one increases the pressure of carbon monoxide, the reaction rate and yield should both 

increase. 

 

4.3.2.2. Improving the Rh-catalyzed reaction 
Rhodium- and iridium-based catalysts are expensive.  It is preferable to replace these with a 

catalyst based on a more accessible metal, such as cobalt. However, there is a problem with 

cobalt-based catalysts – they tend to form Co-Co bonds and catalyze formation of rings of 

varying sizes.  

One might consider putting a bulky tridentate ligand on cobalt(I) and using that complex 

as a catalyst for reactions described in this chapter.  If a complex like this dimerizes by forming 

Co-Co bonds, the cobalt atoms will become shielded from the environment by the bulky 

tridentate ligands, so they will not be able to participate in catalysis and will not lead to the 

formation of undesired products.  The monomer of this complex will insert itself into the ring 

more like rhodium than like molybdenum, because the bulky tridentate ligand will prevent the 

cobalt atom from being in the plane of the hydrocarbon ring, coordinated to the proximal bond of 

the allene like the molybdenum atom. 
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5. Rhodium(I)-catalyzed allenic Pauson-Khand type reaction and mechanistic studies 
using theoretical methods. 

5.1. Introduction 

Professor Brummond’s group has explored several reactions related to the one described in the 

previous chapter.  Because Rh(I)/Ir(I)-catalyzed allenic Alderene reactions lead to the formation 

of cyclized cross-conjugated trienes in high yields and take only minutes, Professor Brummond’s 

group was interested in testing a related reaction, where intramolecular condensation of allene 

and alkene leads to the formation of heterocyclic rings. 

 

 

 

Figure 59  Intramolecular condensation reactions observed by Prof. Brummond's group. 

R1 is an electron withdrawing group.  The reaction works best in polar aprotic solvents. 

 

 

The use of alkene instead of alkyne leads to the formation of unexpected products.100 

(Figure 59)  These novel reactions can be useful in the synthesis of natural products and natural 

product-like compounds.101, 102

 

______________________ 

All experiments described in this chapter were carried out in Prof. Brummond’s group unless 

noted otherwise.  
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Figure 60  A deuterium labeling study of Rh(I)-catalyzed azepine formation. 

One hydrogen atom transfers to the other side of the ring. 

 

The mechanism of these reactions is not obvious.  To gain insight into the mechanism a 

deuterium labeling study was done (Figure 60).  It showed that in the course of the reaction a 

hydrogen atom transfers to the other side of the ring.  However, some questions remain about the 

mechanism of this reaction.  One has to do with the sequence of reaction steps.  Did the 

hydrogen atom transfer before or after the ring was formed?  Another question concerns reaction 

specificity.  In principle, the hydrogen from the other side of the ring could transfer across the 

ring leading to the formation of more stable products (Figure 61).  However, this reaction did 

not occur.  This was puzzling. 

To answer these questions various steps of this reaction were modeled using DFT.  
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Figure 61  The reaction that was not observed.   

In the product of this reaction the C-C double bonds are conjugated with 
each other, so it should be more stable than the experimentally observed 
product shown in Figure 60. 

 

 

5.2. Experimental 

 

5.2.1. Basis Set/Level of theory 

All calculations were performed using GAUSSIAN98103 and GAUSSIAN0392 using density 

functional theory with Becke’s three-parameter hybrid exchange functional and the Lee-Yang-

Parr correlation functional (B3LYP).20  The 6-31G(d) basis set93 for H, C, N, O and F atoms and 

the double-ζ quality, Hay and Wadt LANL2DZ basis set was used in conjunction with the 

LANL2 effective core potential94 for Rh and Cl.  An additional d polarization function with 

coefficient 0.6 was added to the basis set for chlorine atoms.  Transition states were found using 

the QST3, QST2, and coordinate-driven methods. 

For simplicity the electron withdrawing group was modeled by a fluorine atom in all 

calculations. 
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5.2.2. Solvation model 

All stationary points were optimized in a vacuum, and then the energies of stationary points were 

corrected for solvation in boiling THF using COSMO.21  

 

Figure 62  Tetrahydrofuran (THF) 

 
The dielectric constant used for THF was 5.44, a number found by a least squares linear fit of the 

dielectric constant of THF at 25 °C, 30 °C and 50 °C.104

 

 

5.3. Discussion and Results 

5.3.1. Hydride transfer mechanism. 

We started with compound 59 and tried to move the appropriate hydrogen atoms to rhodium. We 

obtained a surprising result.  Instead of forming compounds 80 and 120, 59 transformed into 

intermediates 86 and 89 (Figure 63).  This came as a surprise, because we did not expect the 

positive charge to be transferred form rhodium to nitrogen.  We have tried modeling this reaction 

step backwards starting with 80 and 120, but 120 minimized to 89, and 80 to 96.   
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Figure 63  Unexpected hydride transfer reactions. 

When we started with compound 59 and tried to move the appropriate hydrogen atom to rhodium, 59 
transformed into intermediates 86 and 89 instead of 80 and 120. 

 
We modeled the second step of the reaction by moving the rhodium-attached hydrogen 

atoms in compounds 86 and 89 to the appropriate carbon atoms.  This lead to the formation of 

compounds 88 and 87.  We have also tried to accomplish these reactions in one step by moving 

the hydrogen atoms directly to the appropriate carbon atoms.  These calculations went through 

only one transition state, corresponding to the transition state of the second step.  We found the 

second step was the rate determining step in this process.  The transition state on the path, that 

leads to experimentally observed products, had Gibbs free energies of 2.0 kcal/mol and 6.9 

kcal/mol relative to compound 59, while the transition states between compounds 59 and 89 and 

compounds 89 and 87 had Gibbs free energies of 9.3 kcal/mol and 10.5 kcal/mol, so the correct 

product was predicted. 
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Figure 64  Hydride transfer mechanism involving two CO ligands. 

Solid lines and arrows indicate the reaction that leads to analogs of experimentally observed products. 
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5.3.2. Modeling a reaction that can only proceed by β-hydride elimination 

The hydride transfer mechanism was unexpected; we had expected the reaction to proceed via β-

hydride elimination.  This led us to study a related system in which the reaction cannot proceed 

by hydride transfer.  To do that, we replaced the nitrogen atom in our models with a carbon atom 

with an attached fluorine atom.  The process we modeled was similar to reactions observed by 

Makino and Itoh (Figure 65).105

 

 

Figure 65  One of reactions observed by Makino and Itoh. 

 
 

The preferred pathway again led to products similar to those observed experimentally.  

However, there was a bigger energy gap between the starting compound and the transition states: 

10.8 kcal/mol and 18.0 kcal/mol for the pathway that led to the experimentally observed product 

analogs and 19.1 kcal/mol and 24.0 kcal/mol for the one that did not.  
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Figure 66  β-Hydride elimination pathways for reactions similar to reactions observed by Makino and Itoh. 

Solid lines and arrows indicate the reaction that leads to analogs of experimentally observed products.  
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5.3.3. A β-hydride elimination reaction involving a chloride ligand. 

We thought that chloride might be one of the ligands attached to the rhodium in the reaction we 

were trying to model.  Modeling a reaction where a chloride is attached to rhodium is more 

involved, because swapping a chloride and the carbonyl results in another isomer, so one has to 

model two sets of pathways depending on which side the chloride occupies.  Unlike the 

pathways beginning with compounds 59 and 91, we decided to start the modeling of chloride-

containing pathways with the intermediates, because the intermediates were easier to guess than 

the rhodium-containing compounds in the beginning of simulated reaction pathways.  We started 

with the geometries of compounds 86 and 89 and replaced one of the carbonyl groups in them 

with a chloride, making each of them into two isomers of 102 and 104.  These had somewhat 

different geometries from the square planar complexes 86 and 89, so we searched for different 

conformers, but did not find any other isomers relevant to the reaction.  
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Figure 67  β-Hydride elimination pathways involving chlorine.   

Solid lines and arrows indicate reactions that lead to analogs of experimentally observed products.  Some 
parts of the pathway are shown in grey and others in black.  The difference between these are the positions of 
chloride and carbonyl ligands. 
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Starting with the relevant isomers of 102 and 104 we have traced the reaction pathways 

both forward and backward using the methods described earlier (Figure 67).  Again, the 

modeling favored a pathway that leads to the analogs of the observed products.  However this 

time the free energy gap was greater between the staring compounds and the transition states 

than in the analogous pathway that had two carbonyls attached to the rhodium atom: 11.8 

kcal/mol and 10.1 kcal/mol for one pathway that leads to the observed product analogs and 14.0 

kcal/mol and 14.1 kcal/mol for the other.  The transition states for the other pathways were even 

higher in free energy: 13.8 kcal/mol and 17.3 kcal/mol for one pathway and 16.1 kcal/mol and 

11.8 kcal/mol for the other.  The first free energy barrier in these pathways is comparable in size 

to the second barrier. This pattern is different from the pathways where two carbonyl groups are 

bound to rhodium, where the first barrier is much lower in free energy than the second one.  

 

5.3.4. A comparison of β-hydride elimination and hydride transfer 

5.3.4.1. A calculation favoring β-hydride elimination 
To aid in understanding whether a covalently bound chloride is attached to the rhodium atom in 

the course of the reaction, we compared the free energies of the highest transition states on the 

preferred pathways.  The two - carbonyl pathway was higher in free energy by 25.3 kcal/mol in 

the tightly bound chloride model and by 43.0 kcal/mol in the infinite dilution model.  These 

results are not very reliable, though, because the calculation is very sensitive to electrostatic 

effects and small changes in solvent properties can easily make the two-carbonyl pathway lower 

in energy by better accommodating the chloride ion.  
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5.3.4.2. Experimental evidence favoring β-hydride elimination 
A piece of experimental evidence that supports β-hydride elimination mechanism is the fact that 

the reaction proceeds better when there is an electron-withdrawing group on the nitrogen atom.  

An electron-donating group would have speeded up the reaction if it proceeded by the hydride 

transfer mechanism. 

 

5.3.4.3. Solvent effects – inconclusive experimental evidence 
The solvent effects can be used be used to make arguments in favor of both the hydride transfer 

mechanism and the β-hydride elimination.  On the one hand, our calculations did not show that 

the presence of the solvent significantly decreases the energy gap between the starting materials 

and the transition states in our models, but these reactions tend to proceed better in polar aprotic 

solvents.  The role of these solvents could be to keep chloride dissolved and away from rhodium 

allowing the two-carbonyl hydride transfer reaction to take place. 

 

 

Figure 68  This reaction occurred in a non-polar solvent. 

 
On the other hand, there was one instance where the reaction was observed in toluene (Figure 

68).  It is clear that in this case the chloride could not stay in the solution as a free ion, so the 

reaction probably proceeded by β-hydride elimination.  
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5.3.4.4. Introduction of Ag+ into the reaction mixture - inconclusive experimental 
evidence  

One way to determine if chloride is critical to the catalytic pathway is to eliminate it from 

solution by precipitating it with silver cations.  This can be accomplished by adding a soluble 

silver salt to the reaction mixture.  (See Figure 37 on page 63.)  The ability of the reaction to 

proceed with silver cations in solution would be an indication that chloride is not present in the 

catalyst.  This would have been strong evidence for the hydride transfer reaction.  

 

 

Figure 69  A silver-catalyzed reaction recently discovered by Prof. Brummond’s group.   

Similar processes can compete with the rhodium-catalyzed reaction discussed in this chapter. 

 
The results of experiments where silver salts were introduced into the reaction mixture were 

inconclusive.  Although the reaction did not produce the desired products, this does not prove 

that the presence of chloride is vital, because silver cations could participate in competing 

reactions.  An example of such reaction is shown in Figure 69. 

 

5.3.5. β-Hydride elimination before cyclization 

The unlikely possibility that β-hydride elimination occurs before cyclization was also considered.  

Modeling was started with intermediate 167c1 in which the tether has not undergone cyclization 

yet.  The η2 bond between rhodium and allene can break in 167c1 and the hydrogen atom bound 

to C3 can transfer onto rhodium which leads to the formation of intermediate 166c1 (Figure 70).  

Because the free energy barrier this process was high, 30.1 kcal/mol, solvent effects were not 

considered.   
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An important feature of intermediate 166c1 was that the rhodium-bound hydrogen was 

located on one side of the rhodium atom and the allene was located on the opposite side.  This 

meant that even if this reaction step occurred successfully, it could not be followed by the 

transfer of hydrogen to the allene.  

 

 

Figure 70  β-Hydride elimination prior to carbocyclization. 
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5.4. Conclusions 

Our calculations showed that the transfer of hydrogen from one side of the ring to another occurs 

after the cyclization step.  The hydrogen transfers from the alkene and not from the allene side of 

the ring for two reasons:   

 

Figure 71  Conformations that 59 must adopt to start hydride transfer.   

Conformation A leads to the experimentally observed product. It takes 
5.5 kcal/mol to get into that conformation.  Conformation B does not lead 
to the experimentally observed products.  It takes 20.4 kcal/mol to get 
into this conformation. 

 
1) The ring is more flexible on the alkene side, so it is easier for the molecule to adopt a 

conformation where the dihedral angle between the alkene hydrogen and rhodium allows 

for hydride transfer or β-hydride elimination (Figure 71). 

2) In transition states that lead to the placement of the transferred hydrogen into the position 

on the other side of the ring, the rhodium atom is stabilized by C-C double bonds.  If the 

hydrogen is transferred to the allene side of the ring, the transition states can be stabilized 

by two C-C double bonds, while if it is transferred to the alkene size of the ring it can 

only be stabilized by one. 

 

Although there is both experimental and theoretical evidence that these reactions occur 

through β-hydride elimination (Figure 67), the calculations raised the possibility that it might 
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actually go through hydride transfer (Figure 64).  The free energy barrier for the β-hydride 

elimination step is low, only 11.8 kcal/mol, so the rate-determining step in rhodium(I) catalyzed 

allenic Pauson-Khand type reactions is probably carbocyclization.  The proposed reaction 

mechanism is shown in Figure 72. 

 

 

Figure 72  The proposed reaction mechanism.   

The hydrogen atom transfers to the other side of the heterocycle by a process that involves β-hydride 
elimination after carbocyclization. 
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Table 1  The computed energies of minima discussed in the text. 

Minimum 
Name Eel vac (au) Eel THF (au) ZPE THF (au) E THF (au) H THF (au) G THF (au) 

59 -802.518624 -802.581136 -802.375786 -802.356901 -802.355827 -802.424886
86 -802.521412 -802.582953 -802.380239 -802.360024 -802.358950 -802.432903
89 -802.518807 -802.579626 -802.376513 -802.356361 -802.355287 -802.428988
96 -802.553439 -802.622103 -802.415657 -802.395393 -802.394319 -802.469281
88 -802.578678 -802.641048 -802.433563 -802.413224 -802.412150 -802.487497
87 -802.561750 -802.623696 -802.416465 -802.396224 -802.395150 -802.469908
91 -885.800285 -885.864884 -885.654846 -885.633928 -885.632854 -885.708059
92 -885.786635 -885.850207 -885.643323 -885.622180 -885.621106 -885.697191
93 -885.799943 -885.862721 -885.653246 -885.631798 -885.630724 -885.709170
94 -885.777092 -885.840409 -885.633217 -885.611995 -885.610921 -885.687616
95 -885.813403 -885.875924 -885.665663 -885.644352 -885.643278 -885.720997

100c1 -704.405974 -704.422778 -704.223495 -704.204760 -704.203686 -704.274415
102c1 -704.392573 -704.407342 -704.212327 -704.192847 -704.191773 -704.265219
103c1 -704.423166 -704.438675 -704.239892 -704.220351 -704.219277 -704.294651
100c2 -704.407286 -704.422330 -704.223209 -704.204303 -704.203229 -704.274523
102c2 -704.397289 -704.414670 -704.219558 -704.199969 -704.198895 -704.273003
107c2 -704.405708 -704.420145 -704.222535 -704.202665 -704.201591 -704.277200
104c1 -704.396043 -704.412554 -704.217027 -704.197588 -704.196514 -704.269813
105c1 -704.413611 -704.427949 -704.229693 -704.209914 -704.208840 -704.283644
110c2 -704.389029 -704.401493 -704.204604 -704.185555 -704.184481 -704.256654
104c2 -704.390495 -704.403720 -704.209102 -704.189407 -704.188333 -704.262373
105c2 -704.431659 -704.447010 -704.247925 -704.228310 -704.227236 -704.301897

       
Minimum 

Name Eel vac (au) ZPE vac (au) E vac (au) H vac (au) G vac (au)  
167c1 -802.504649 -802.301955 -802.280170 -802.279096 -802.357387  
166c1 -802.481897 -802.281906 -802.260164 -802.259090 -802.337160  

 

Eel vac, ZPE vac, E vac, H vac, G vac, Eel THF, ZPE THF, E THF, H THF and G THF stand for electronic 

energy in vacuum, zero point energy in vacuum, energy in vacuum, enthalpy in vacuum, free 

energy in vacuum, electronic energy in THF, zero point energy in THF, energy in THF, enthalpy 

in THF and free energy in THF respectively. 
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Table 2  The computed energies of transition states discussed in the text. 

TS name Eel vac (au) Eel THF (au) ZPE THF (au) E THF (au) H THF (au) G THF (au) 
       
Hydride transfer mechanism involving two CO ligands.   
ts59-86 -802.507737 -802.571323 -802.370254 -802.350791 -802.349717 -802.421664
ts86-87 -802.500312 -802.561695 -802.360500 -802.340427 -802.339353 -802.413832
ts59-89 -802.494752 -802.557971 -802.357357 -802.337583 -802.336509 -802.410107
ts89-88 -802.494398 -802.556262 -802.354737 -802.334642 -802.333568 -802.408152
       
β-Hydride elimination pathways for reactions similar to reactions observed by Makino and Itoh. 
ts91-92 -885.779694 -885.843634 -885.638014 -885.617471 -885.616397 -885.690861
ts92-93 -885.766853 -885.830513 -885.624944 -885.603960 -885.602886 -885.679363
ts91-94 -885.765601 -885.828580 -885.623396 -885.602466 -885.601392 -885.677546
ts94-95 -885.757319 -885.820424 -885.614884 -885.593751 -885.592677 -885.669764
       
β-Hydride elimination pathways involving chloride.    
ts100c1-102c1 -704.376901 -704.395255 -704.201579 -704.182943 -704.181869 -704.252196
ts102c1-103c1 -704.377437 -704.392517 -704.198834 -704.179613 -704.178539 -704.252001
ts100c2-102c2 -704.379370 -704.397637 -704.204189 -704.185383 -704.184309 -704.255672
ts102c2-107c2 -704.385107 -704.400000 -704.205811 -704.186627 -704.185554 -704.258438
ts100c1-104c1 -704.374639 -704.393635 -704.198651 -704.180436 -704.179362 -704.248922
ts104c1-105c1 -704.382330 -704.396952 -704.202643 -704.183479 -704.182405 -704.255643
ts110c2-104c2 -704.379389 -704.392837 -704.199639 -704.180463 -704.179389 -704.252548
ts104c2-105c2 -704.373517 -704.387395 -704.193712 -704.174491 -704.173417 -704.246879
       
 β-Hydride elimination prior to carbocyclization.    
TS name Eel vac (au) ZPE vac (au) E vac (au) H vac (au) G vac (au)  
ts167c1-166c1 -802.452338 -802.255258 -802.233981 -802.232907 -802.309435  

 

Eel vac, ZPE vac, E vac, H vac, G vac, Eel THF, ZPE THF, E THF, H THF and G THF have the same 

meanings as in Table 1. 
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APPENDIX A 
 
 
 

The C++ Code Used in Chapter 2 
 

/* 
This programm reads the input file input.xyz of form 
 
NumberOfAtoms 
Epsilon Sigma 
x1 y1 z1 
x2 y2 z2 
. 
. 
It performs Energy Minimizataion asuuming 
Lennard-Jones potential between atoms. 
 
The output is to standart stream.  It has form 
 
x1 y1 z1 
x2 y2 z2 
. 
. 
 
This C++ code was tested using gcc version 2.96 20000731 (Red Hat Linux 7.1 
2.96-81) 
*/ 
 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 
#include <stdlib.h> 
#include <time.h> 
#include <limits.h> 
 
#define DIVISOR 2147483648.0 
 
int ndims=3; 
//int maxdims=3; 
 
 
struct optins_list 
{ 
 char comment[256]; 
 
 int natoms; 
 int goodcoord; 
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 int sigma; 
 int epsilon; 
 
 int dimsfortravel; 
 int dimsforquench; 
 
 int way_to_optimize; //Steepest decent 
 
 int way_to_travel; 
 int travel_length_distribution; // 1*,  sqrt(N)*, or N* 
 double travel_step_size; 
 int travel_step_unit; // 0=Gaussian(Sqrt(N)*l), 1*,  sqrt(N)*, or N* 
 int number_of_travel_steps; // const 
 
 
 int way_to_quench; 
 double quench_step_size; 
 double quench_step_unit;// 1*,  sqrt(N)*, or N* 
 double number_of_quench_steps; 
 double quench_tolerance; 
 double quench_tolerance_unit;// 1*,  sqrt(N)*, or N* 
 
 double termination_energy; 
 int reporiting_depth; 
 int random_seed; //0 makes the system use time -1 same as 0+random start 
 
 
}; 
 
optins_list options; 
 
 
 
 
 
int isqrt(int x) 
{ 
 int y; 
 for (y=0; y*y<x; y++) 
 { 
 } 
 return y; 
} 
 
double random_gaussian_number( double sigma) 
{ 
 int i; 
 double sum=-6.0; 
 for (i=1; i<=12; i++) 
 { 
  sum += ((double)rand())/DIVISOR; 
 } 
 return sum*sigma; 
} 
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/* Prints an MxN matrix a*/ 
void printmatrix(double a[], int M, int N) 
{ 
 int i,j; 
 for (i=0; i <= M -1; i++) 
  { 
   for (j=0; j <= N -1; j++) 
   { 
    cout<< a[N*i+j]<<"    "; 
 
   } 
   cout<<"\n"; 
  } 
 cout<<"\n"; 
 
 return; 
} 
 
/*The sum of the squares of extra coordinates*/ 
double Wd(double coord[], int natoms, int goodcoord, int ncoord) 
{ 
 int atom, dim; 
 double sum=0.0; 
 for (atom = 0; atom<natoms; atom++) 
 { 
  for (dim=goodcoord; dim<ncoord; dim++) 
  { 
   sum+=coord[atom*ncoord+dim]*coord[atom*ncoord+dim]; 
  } 
 } 
 
  return sum; 
} 
 
void finddellWd(double coord[], double dellWd[], int natoms, int goodcoord, 
int ncoord) 
{ 
 int atom, dim; 
 
 for (atom = 0; atom<natoms; atom++) 
 { 
  for (dim=0; dim<goodcoord; dim++) 
  { 
   dellWd[atom*ncoord+dim]= 0; 
  } 
 
  for (dim=goodcoord; dim<ncoord; dim++) 
  { 
   dellWd[atom*ncoord+dim]= 2.0*coord[atom*ncoord+dim]; 
  } 
 } 
 
  return; 
} 
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double power(double x, int y) //returns x^y, y is int >= 0 
{ /* 
 int i; 
 
 double result=1; 
 
 for ( i = 1;  i <= y;  i++) 
 { 
  result*=x; 
 } 
 
 return result;  */ 
 return pow(x,y); 
} 
 
//Returns distance between atoms at positiopns i1 and i2 
double dist(double coord[],int i1, int i2) 
{ 
 
 int dim; 
 double dcoordinate; 
 double sum=0; 
 
 for (dim=0; dim<ndims; dim++) 
 { 
  dcoordinate=coord[i2*ndims+dim]-coord[i1*ndims+dim]; 
  sum += dcoordinate * dcoordinate; 
 } 
 return sqrt(sum); 
} 
 
//vector length 
double vectorlength(double v[], int n) 
{ 
 double sum=0.0; 
 int k;//counter 
 for ( k = 0;  k < n;  k++) 
 { 
  sum+=  v[k]*v[k]; 
 } 
 return sqrt(sum); 
} 
 
//vector length 
double vectorlongestcompont(double v[], int n) 
{ 
 double longestcomponent=0.0; 
 int k;//counter 
 for ( k = 0;  k < n;  k++) 
 { 
  if (longestcomponent<fabs(v[k])) 
  { 
   longestcomponent =  fabs(v[k]); 
  } 
 } 
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 return longestcomponent; 
} 
 
 
double dotproduct(double v1[], double v2[], int n) 
{ 
 double sum=0.0; 
 int k;//counter 
 for ( k = 0;  k < n;  k++) 
 { 
  sum+=  v1[k]*v2[k]; 
 } 
 return sum; 
} 
 
//makes result = a*v 
void vectormultipliedbyscalor(double result[], double a, 
                                  double v[], int n) 
{ 
 
 int k;//counter 
 for ( k = 0;  k < n;  k++) 
 { 
  result[k] =  a*v[k]; 
 } 
 return; 
} 
 
 
//makes result = v1+a*v2 
void addvectormultipliedbyscalor(double result[], double v1[],double v2[], 
                                  double a, int n) 
{ 
 
 int k;//counter 
 for ( k = 0;  k < n;  k++) 
 { 
  result[k] =  v1[k]+a*v2[k]; 
 } 
 return; 
} 
 
 
//makes result = a*v1+b*v2 
void addvectorsmultipliedbyscalors(double result[], double v1[],double v2[], 
                                  double a, double b, int n) 
{ 
 
 int k;//counter 
 for ( k = 0;  k < n;  k++) 
 { 
  result[k] =  a*v1[k]+b*v2[k]; 
 } 
 return; 
} 
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/*Puts zeros in all n array elements */ 
void zeroarray(double a[], int n) 
{ 
 int i; 
 for (i=0;i<n;i++) 
 { 
  a[i]=0.0; 
 } 
} 
//vector length 
double furthestcoordinates(double coord[], int natoms, int ncoord) 
{ 
 double longestcomponent=0.0; 
 int atom, dim; 
 double sum; 
 
 for (atom = 0; atom<natoms; atom++) 
 { 
  sum =0.0; 
  for (dim=0; dim<ncoord; dim++) 
  { 
   sum+=coord[atom*ncoord+dim]*coord[atom*ncoord+dim]; 
  } 
 
  if (longestcomponent<sum) 
  {longestcomponent =  sum; } 
 
 } 
 
 return sqrt(longestcomponent); 
} 
 
 
void go3toN(double coord3[], double coordN[], int natoms, 
                                    int goodcoord, int ncoord) 
{ 
int atom, dim; 
 
 for (atom = 0; atom<natoms; atom++) 
 { 
  for (dim=0; dim<goodcoord; dim++) 
  { 
   coordN[atom*ncoord+dim]= coord3[atom*goodcoord+dim]; 
  } 
 
  for (dim=goodcoord; dim<ncoord; dim++) 
  { 
   coordN[atom*ncoord+dim]=0.0; 
  } 
 } 
 
 ndims=ncoord; 
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 return; 
} 
 
 
/*goes from an already uphysical system to an unphysical system of more 
dimensions*/ 
void goNtobiggerN(double coord3[], double coordN[], int natoms, 
                                    int ncoord, int newncoord) 
{ 
int atom, dim; 
 
 for (atom = 0; atom<natoms; atom++) 
 { 
  for (dim=0; dim<ncoord; dim++) 
  { 
   coordN[atom*newncoord+dim]= coord3[atom*ncoord+dim]; 
  } 
 
  for (dim=ncoord; dim<newncoord; dim++) 
  { 
   coordN[atom*newncoord+dim]=0.0; 
  } 
 } 
 
 ndims=newncoord; 
 
 return; 
} 
 
 
void goNto3(double coordN[], double coord3[], int natoms, 
                                    int goodcoord, int ncoord) 
{ 
int atom, dim; 
 
 for (atom = 0; atom<natoms; atom++) 
 { 
  for (dim=0; dim<goodcoord; dim++) 
  { 
   coord3[atom*goodcoord+dim]=coordN[atom*ncoord+dim]; 
  } 
 } 
 ndims=goodcoord; 
 
 
 return; 
} 
 
void normalizevector(double v[], int n) 
{ 
 int i; 
 double length=vectorlength(v,n); 
 
 for (i=0; i<n; i++) 
 { 
  v[i]/=length; 
 } 
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} 
 
/* Returnes true if the dot product of normalized vectors 
is smaller than tolerance. 
 
WARNONG! The way this was coded may not work on really big 
and really small vectors because of representation errors 
and overflows. It would be much safer (and slower) to 
normalize the vectors first, and then to look for their dot product. 
*/ 
 
bool vectors_are_perpendicular(double v1[], double v2[], 
                               int n, double tolerance) 
{ 
 
 return(fabs(( 
       dotproduct(v1, v2,n) 
       /vectorlength(v1,n) 
       /vectorlength(v2,n) 
       ))<tolerance); 
 
} 
 
 
void partlysupressextracomponentsandnormalize(double coordN[], int natoms, 
                                    int goodcoord, int ncoord, const double 
supressfactor) 
{ 
 
 int atom, dim; 
 
 for (atom = 0; atom<natoms; atom++) 
 { 
  for (dim=goodcoord; dim<ncoord; dim++) 
  { 
   coordN[atom*ncoord+dim]*=supressfactor; 
  } 
 } 
 
 normalizevector(coordN,ncoord*natoms); 
 
 return; 
} 
 
 
double findenergy(double coord[], int natoms, 
                  double epsilon, double sigma) 
{ 
 //double s6=power(sigma,6);//sigma^6 
 //double s12=power(sigma,12);//sigma^12 
 int k; //atom 1 
 int l; //atom2 
 
 double distance; 
 double interaction; 
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 double result=0.0; 
 
 
 for ( k = 0;  k < natoms-1;  k+=1) 
 { 
  for ( l = k+1;  l< natoms;   l+=1) 
  { 
   distance=dist(coord,k,l); 
   interaction= 4*epsilon*(power(sigma/distance,12)-power(sigma/distance,6)); 
   result+= interaction; 
  } 
 } 
 return  result; 
} 
 
 
 
 
void outputatoms(double coord[],int natoms,double epsilon, double sigma) 
{ 
 int counter;//atom number 
 int dim; 
 for ( counter = 0;  counter < natoms;  counter++) 
     { 
      cout << "                  " ; 
      for(dim=0; dim<ndims; dim++) 
       { 
         cout<<coord[ndims*counter+dim] << "  "; 
       } 
      cout <<endl; 
     } 
 
  //cout << "The energy of the interaction is "<< 
   //  findenergy(coord, natoms, epsilon, sigma)<<endl; 
} 
 
void findgradient(double coord[], double dell[], int natoms, 
                  double epsilon, double sigma) 
{ 
 double s7=power(sigma,7);//sigma^7 
 double s13=power(sigma,13);//sigma^13 
 int k; //atom 1 
 int l; //atom2 
 int i; //direction 
 double distance; 
 double interaction; 
 double dirinteraction;//interaction in one direction; 
 
 //Fills all dell with zeros 
 for ( k = 0;  k < natoms*ndims;  k++) 
 { 
     dell[k]=0; 
 } 
 
 for ( k = 0;  k < natoms-1;  k+=1) 
 { 
  for ( l = k+1;  l< natoms;   l+=1) 
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  { 
   distance=dist(coord,k,l); 
   interaction= 4*epsilon*(-
12*s13/power(distance,13)+6*s7/power(distance,7)); 
  // cout<< distance<<endl; 
   for  ( i = 0;  i < ndims;  i+=1) 
   { 
    dirinteraction= interaction*(coord[ndims*l+i]-coord[ndims*k+i])/distance; 
    dell[ndims*k+i]+=dirinteraction; 
    dell[ndims*l+i]-=dirinteraction; 
   } 
  } 
 } 
} 
 
void find_gradientE(double coord[], double dell[], int natoms, 
                  double epsilon, double sigma) 
{ 
 int k; 
 findgradient( coord,  dell,  natoms, 
                   epsilon,  sigma); 
 for ( k = 0;  k < natoms*ndims;  k++) 
 { 
     dell[k]*=-1; 
 } 
 return; 
} 
 
/*copies a to b, so 
b=a*/ 
void copyarray(double a[], double b[], int n) 
{ 
 int i; 
 for (i=0;i<n;i++) 
 { 
   b[i]=a[i]; 
 } 
 return; 
} 
 
/*Changes coord to a random coordinate on the face 
   of a dims dimentional sphere*/ 
void randompointonunitsphere(double coord[], 
                             int dims/*number of coordinates*/) 
{ 
 int i; 
 do 
 { 
  for (i=0; i<dims; i++) 
  { 
   coord[i]=((double)rand())/DIVISOR*2.0-1.0; 
  } 
 } while(0 /*vectorlength(coord,dims)>1.0*/); 
 
 normalizevector(coord,dims); 
 return; 
} 
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/* 
Moves one particle in space. 
*/ 
void randomparticlemove(double coord[], int natoms, 
                        int ncoord,double sigma) 
{ 
 int i; 
 int atom=rand()%natoms;//atom to be moved 
 for (i=atom*ncoord; i<(atom+1)*ncoord; i++) 
  { 
   coord[i]+=0.1*sigma*(((double)rand())/DIVISOR*2.0-1.0); 
  } 
 
 return; 
} 
 
/*Corrects 
 */ 
void correctpositiontochangeenergy(double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
                                    double E0,/*current energy*/ 
                                    const double E1/*the energy we want*/) 
{ 
 const int maxpossibleiterations=1000*natoms; 
 /*Because this search is newton-like, it has a possibility 
    of not converging and freezing up the programm for that reason 
    after a ceratin number of iterations it will just give up. 
    */ 
 double dellE[natoms*ncoord];  //  gradiant of enegrgy 
 double energyslope; 
 double displacement[natoms*ncoord]; 
 
 int iterations=0; //number of elapsed iterations 
 
 do 
  { 
   findgradient(coord, dellE, natoms, epsilon, sigma); 
   energyslope = vectorlength(dellE,natoms*ncoord); 
 
   copyarray(dellE,displacement,natoms*ncoord); 
   normalizevector(displacement,natoms*ncoord); 
   addvectormultipliedbyscalor(coord, coord,displacement, 
                              (E0-E1)/energyslope, natoms*ncoord); 
 
   E0=findenergy(coord, natoms, epsilon,  sigma); 
 
   iterations++; 
  }while( (fabs(E0-E1)>0.001)&&(iterations<=maxpossibleiterations)); 
  if (iterations>maxpossibleiterations) 
  {cout<<"Giving up in  correctpositiontochangeenergy after "<< 
              iterations<< 
              "  iterations."<<endl;} 
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  //cout<<"In correctpositiontochangeenergy iterations = "<<iterations<<endl; 
 return; 
} 
/* Lowers the energy and tries to go to a lower min*/ 
void lowerenergywithextradims(double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
                                    double originalenergy) 
{ 
 
 
  double Enew= originalenergy -0.1 ; 
  correctpositiontochangeenergy(coord,natoms, 
                                     goodcoord,  ncoord, 
                                     epsilon,  sigma, originalenergy, Enew); 
 
} 
/* Makes a random step with all atoms, but so that the system 
remains at constant energy*/ 
void walkinsomedirectionatconstantenergy(double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
                                    double originalenergy) 
{ 
 
 
 
 
 int maxsteps; 
 /*=50*natoms;*/ 
 //travel_step_unit;// 1*,  sqrt(N)*, or N* 
 switch ( options.travel_length_distribution) 
 { 
  case 1: 
   maxsteps=options.number_of_travel_steps; 
   break; 
  case 2: 
   maxsteps=isqrt(natoms)*options.number_of_travel_steps; 
   break; 
  case 3: 
   maxsteps=natoms*options.number_of_travel_steps; 
   break; 
 } 
 //int travel_length_distribution; // const, Gaussian 
 
 double steplength  /*0.1*sigma*/; 
 
 switch (options.travel_step_unit) 
 { 
  case 1: 
   steplength=options.travel_step_size; 
   break; 
  case 2: 
   steplength=options.travel_step_size*sqrt(natoms); 
   break; 
  case 3: 
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   steplength=options.travel_step_size*natoms; 
   break; 
 
 
 
 
 
 
 
  case 0: 
   steplength = random_gaussian_number(options.travel_step_size); 
   break; 
 } 
 
 
 
 double E1; 
 
 int atom; 
 int dim; 
 
 double dellWd[natoms*ncoord]; // here  dellWd is a direction 
 randompointonunitsphere(dellWd,natoms*ncoord/*number of coordinates*/); 
 partlysupressextracomponentsandnormalize(dellWd,  natoms, 
                                     goodcoord,  ncoord,  1.0); 
 
 
 double dellE[natoms*ncoord];  // normalized gradiant of enegrgy 
 int i; 
 double prevwidth=0.0;//width in the previous step; 
 for (i=0; i<maxsteps; i++) 
 { 
  prevwidth = Wd(coord,natoms, goodcoord, ncoord); 
  findgradient(coord, dellE, natoms, epsilon, sigma); 
  normalizevector(dellE, natoms*ncoord); 
 
  // component of gradiant of width parallel to gradiant of energy 
  double We[natoms*ncoord]; 
  double dotproductofdellEandnormalizeddellWd = 
  dotproduct(dellWd,dellE,natoms*ncoord); 
 
  vectormultipliedbyscalor(We, dotproductofdellEandnormalizeddellWd, 
                                   dellE, natoms*ncoord); 
 
  double dWd[natoms*ncoord]; 
  //makes result = v1+a*v2 
  addvectormultipliedbyscalor(dWd, dellWd,We,-1.0, natoms*ncoord); 
 
  addvectormultipliedbyscalor(coord, coord,dWd, steplength, natoms*ncoord); 
 
 
  E1=findenergy(coord, natoms, epsilon,  sigma); 
 
  //outputatoms(coord, natoms, epsilon,  sigma); 
  correctpositiontochangeenergy(coord,natoms, 
                                     goodcoord,  ncoord, 
                                     epsilon,  sigma, E1, originalenergy); 
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  //The following two lines adjust the direction of travel to prevent travel 
into atoms. 
  copyarray(dWd, dellWd,natoms*ncoord); //dellWd=dWd; 
 
  //normalizevector(dellWd, natoms*ncoord); 
 
  //When width starts decreacing again, the destination was reached. 
  /* 
  if (Wd(coord,natoms, goodcoord, ncoord)<prevwidth) 
   {i+=maxsteps/10; 
    cout<< "            
got over the hill"<< endl; 
   }*/ 
 
 } 
 //outputatoms(coord, natoms, epsilon,  sigma); 
 return; 
} 
 
/* Makes a random step with all atoms, but so that the system 
remains at constant energy*/ 
void walk_in_somedirection_at_constant_energy_for_fixed_number_of_steps( 
                                    double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
                                    double originalenergy) 
{ 
 
 const double steplength = 0.1*sigma /*0.1*sigma*/; 
 const int maxsteps=50*natoms; 
 
 double E1; 
 
 int atom; 
 int dim; 
 
 double dellWd[natoms*ncoord]; // here  dellWd is a direction 
 randompointonunitsphere(dellWd,natoms*ncoord/*number of coordinates*/); 
 partlysupressextracomponentsandnormalize(dellWd,  natoms, 
                                     goodcoord,  ncoord,  0.1); 
 
 
 double dellE[natoms*ncoord];  // normalized gradiant of enegrgy 
 int i; 
 double prevwidth=0.0;//width in the previous step; 
 for (i=0; i<maxsteps; i++) 
 { 
  prevwidth = Wd(coord,natoms, goodcoord, ncoord); 
  findgradient(coord, dellE, natoms, epsilon, sigma); 
  normalizevector(dellE, natoms*ncoord); 
 
  // component of gradiant of width parallel to gradiant of energy 
  double We[natoms*ncoord]; 
  double dotproductofdellEandnormalizeddellWd = 
  dotproduct(dellWd,dellE,natoms*ncoord); 
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  vectormultipliedbyscalor(We, dotproductofdellEandnormalizeddellWd, 
                                   dellE, natoms*ncoord); 
 
  double dWd[natoms*ncoord]; 
  //makes result = v1+a*v2 
  addvectormultipliedbyscalor(dWd, dellWd,We,-1.0, natoms*ncoord); 
 
  addvectormultipliedbyscalor(coord, coord,dWd, steplength, natoms*ncoord); 
 
 
  E1=findenergy(coord, natoms, epsilon,  sigma); 
 
  //outputatoms(coord, natoms, epsilon,  sigma); 
  correctpositiontochangeenergy(coord,natoms, 
                                     goodcoord,  ncoord, 
                                     epsilon,  sigma, E1, originalenergy); 
 
  //The following two lines adjust the direction of travel to prevent travel 
into atoms. 
  copyarray(dWd,dellWd,natoms*ncoord);//dellWd=dWd; 
 
  //normalizevector(dellWd, natoms*ncoord); 
 
  //When width starts decreacing again, the destination was reached. 
  /* 
  if (Wd(coord,natoms, goodcoord, ncoord)<prevwidth) 
   {i+=maxsteps/10; 
    cout<< "            
got over the hill"<< endl; 
   } 
  */ 
 } 
 //outputatoms(coord, natoms, epsilon,  sigma); 
 return; 
} 
/* Makes a random step with all atoms, but so that the system 
remains at constant energy*/ 
void testwalk(double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
                                    double originalenergy) 
{ 
 
 const double steplength = 0.1*sigma /*0.1*sigma*/; 
 const int maxsteps=500; 
 
 double E1; 
 
 int atom; 
 int dim; 
 
 double dellWd[natoms*ncoord]; // here  dellWd is a direction 
 randompointonunitsphere(dellWd,natoms*ncoord/*number of coordinates*/); 
 
 
 
 double dellE[natoms*ncoord];  // normalized gradiant of enegrgy 
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 int i; 
 double prevwidth=0.0;//width in the previous step; 
 for (i=0; i<maxsteps; i++) 
 { 
  prevwidth = Wd(coord,natoms, goodcoord, ncoord); 
  findgradient(coord, dellE, natoms, epsilon, sigma); 
  normalizevector(dellE, natoms*ncoord); 
 
  // component of gradiant of width parallel to gradiant of energy 
  double We[natoms*ncoord]; 
  double dotproductofdellEandnormalizeddellWd = 
  dotproduct(dellWd,dellE,natoms*ncoord); 
 
  vectormultipliedbyscalor(We, dotproductofdellEandnormalizeddellWd, 
                                   dellE, natoms*ncoord); 
 
  double dWd[natoms*ncoord]; 
  //makes result = v1+a*v2 
  addvectormultipliedbyscalor(dWd, dellWd,We,-1.0, natoms*ncoord); 
 
  addvectormultipliedbyscalor(coord, coord,dWd, steplength, natoms*ncoord); 
 
 
  E1=findenergy(coord, natoms, epsilon,  sigma); 
 
  //outputatoms(coord, natoms, epsilon,  sigma); 
  correctpositiontochangeenergy(coord,natoms, 
                                     goodcoord,  ncoord, 
                                     epsilon,  sigma, E1, originalenergy); 
 
  //The following two lines adjust the direction of travel to prevent travel 
into atoms. 
  copyarray(dWd,dellWd,natoms*ncoord);//dellWd=dWd; 
 
  //normalizevector(dellWd, natoms*ncoord); 
 
  //When width starts decreacing again, the destination was reached. 
  cout << "              i = "<<i; 
  cout << "     width = "<<Wd(coord,natoms, goodcoord, ncoord)<<endl; 
  if (/*i==(maxsteps/4) &&*/ (Wd(coord,natoms, goodcoord, ncoord)>prevwidth)) 
   { 
    partlysupressextracomponentsandnormalize(dellWd,  natoms, 
                                     goodcoord,  ncoord,  -1.0); 
 
   } 
 
 } 
 //outputatoms(coord, natoms, epsilon,  sigma); 
 return; 
} 
 
 
/* Makes a random step with all atoms, but so that the system 
remains at constant energy*/ 
void makerandomstepatconstantenergy(double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
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                                    double originalenergy) 
{ 
 const double steplength = natoms*0.1*sigma /*0.1*sigma*/; 
 
 
 double E1; 
 
 int atom; 
 int dim; 
 
 double dellE[natoms*ncoord];  // normalized gradiant of enegrgy 
 findgradient(coord, dellE, natoms, epsilon, sigma); 
 normalizevector(dellE, natoms*ncoord); 
 
 double dellWd[natoms*ncoord]; 
 randompointonunitsphere(dellWd,natoms*ncoord/*number of coordinates*/); 
 
 
 /* 
 double normalizeddellWd[natoms*ncoord];  normalizedgradiant of width 
 copyarray(dellWd,normalizeddellWd,natoms*ncoord); 
 normalizevector(normalizeddellWd, natoms*ncoord); 
 */ 
 // component of gradiant of width parallel to gradiant of energy 
 double We[natoms*ncoord]; 
 double dotproductofdellEandnormalizeddellWd = 
  dotproduct(dellWd,dellE,natoms*ncoord); 
 
 vectormultipliedbyscalor(We, dotproductofdellEandnormalizeddellWd, 
                                  dellE, natoms*ncoord); 
 
 double dWd[natoms*ncoord]; 
 //makes result = v1+a*v2 
 addvectormultipliedbyscalor(dWd, dellWd,We,-1.0, natoms*ncoord); 
 
 addvectormultipliedbyscalor(coord, coord,dWd, steplength, natoms*ncoord); 
 
 //cout << dotproduct(dWd,dellE, 
natoms*ncoord)/vectorlength(dWd,natoms*ncoord)<<endl; 
 
 E1=findenergy(coord, natoms, epsilon,  sigma); 
 correctpositiontochangeenergy(coord,natoms, 
                                    goodcoord,  ncoord, 
                                    epsilon,  sigma, E1, originalenergy); 
 
 return; 
} 
 
 
/*moves oneparticle at constantenergy 
(Well other particles also move a little.)*/ 
void make1particlestepatconstantenergy(double coord[], int natoms, 
                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma, 
                                    double originalenergy) 
{ 
 randomparticlemove( coord, natoms,ncoord, sigma); 
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 //energy after the move 
 double E1=findenergy(coord, natoms, epsilon,  sigma); 
 correctpositiontochangeenergy(coord,natoms, 
                                    goodcoord,  ncoord, 
                                    epsilon,  sigma, E1, originalenergy); 
 return; 
} 
 
void travelND(double coord[], int natoms, 
              int goodcoord, int ncoord, 
              double epsilon, double sigma) 
{ 
 
 double originalenergy=findenergy(coord, natoms, epsilon,  sigma); 
 int i; 
 for (i=0; i<1/*100*/; i++) 
 { 
  /* 
  make1particlestepatconstantenergy( coord,  natoms, 
                                    goodcoord, ncoord, 
                                    epsilon,  sigma, originalenergy); 
 
  makerandomstepatconstantenergy( coord,  natoms, 
                                    goodcoord, ncoord, 
                                    epsilon,  sigma, originalenergy); 
                                    */ 
  walkinsomedirectionatconstantenergy( coord,  natoms, 
                                    goodcoord, ncoord, 
                                    epsilon,  sigma, originalenergy); 
 
  /* 
  walk_in_somedirection_at_constant_energy_for_fixed_number_of_steps( 
                                    coord,  natoms, 
                                    goodcoord, ncoord, 
                                    epsilon,  sigma, originalenergy); 
  testwalk( coord,  natoms, 
                                    goodcoord, ncoord, 
                                    epsilon,  sigma, originalenergy); 
 
  lowerenergywithextradims( coord,  natoms, 
                                    goodcoord, ncoord, 
                                    epsilon,  sigma, originalenergy); */ 
 
 
 } 
 
 
 return; 
} 
 
 
 
/*returnes the component of the gradiant of the width function 
perpendicular to the gradiant of the energy function     */ 
void dellWdatconstantenergy(double coord[], int natoms, 
                                    double dWd[], 
                                    int goodcoord, int ncoord, 
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                                    double epsilon, double sigma) 
{ 
 int atom; 
 int dim; 
 
 double dellE[natoms*ncoord];  // normalized gradiant of enegrgy 
 findgradient(coord, dellE, natoms, epsilon, sigma); 
 normalizevector(dellE, natoms*ncoord); 
 
 double dellWd[natoms*ncoord];  //gradiant of width 
 finddellWd(coord,  dellWd,  natoms,  goodcoord,  ncoord); 
 /* 
 double normalizeddellWd[natoms*ncoord];  normalizedgradiant of width 
 copyarray(dellWd,normalizeddellWd,natoms*ncoord); 
 normalizevector(normalizeddellWd, natoms*ncoord); 
 */ 
 // component of gradiant of width parallel to gradiant of energy 
 double We[natoms*ncoord]; 
 double dotproductofdellEandnormalizeddellWd = 
  dotproduct(dellWd,dellE,natoms*ncoord); 
 
 vectormultipliedbyscalor(We, dotproductofdellEandnormalizeddellWd, 
                                  dellE, natoms*ncoord); 
 
 
 //makes result = v1+a*v2 
 addvectormultipliedbyscalor(dWd, dellWd,We,-1.0, natoms*ncoord); 
 normalizevector(We, natoms*ncoord); 
 /*cout<<"dotproduct "<<dotproduct(We,dellE,natoms*ncoord)<<endl;*/ 
 return; 
} 
 
/*(E-Eo)^2+W*/ 
double compressionfunction(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma, 
                        double E0) 
{ 
 double energypart = 
  findenergy(coord, natoms, epsilon,  sigma) - E0; 
 return ((energypart*energypart)+ 
            Wd( coord, natoms, goodcoord, ncoord)); 
} 
 
 
void finddellcompressionfunctionNUM(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma, 
                        double E0, double dellF[]) 
{ 
 const double dx=0.0001; 
 double coord2[natoms*ncoord]; 
 copyarray(coord,coord2,natoms*ncoord); 
 int i; 
 for (i=0; i<natoms*ncoord;i++) 
 { 
  coord2[i]+=dx; 
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  dellF[i]=(compressionfunction( coord2,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0)- 
            compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0))/dx; 
  coord2[i]=coord[i]; 
 } 
 
} 
void finddellenergypartNUM(double coord[], int natoms, int ncoord, 
               double E0, 
               double epsilon, double sigma, double dellEP[]) 
{ 
 const double dx=0.0001; 
 double coord2[natoms*ncoord]; 
 copyarray(coord,coord2,natoms*ncoord); 
 
 double EP1=(findenergy(coord, natoms, epsilon,  sigma) - E0) 
           *(findenergy(coord, natoms, epsilon,  sigma) - E0); 
 double EP2; 
 
 int i; 
 for (i=0; i<natoms*ncoord;i++) 
 { 
  coord2[i]+=dx; 
  EP2=(findenergy(coord2, natoms, epsilon,  sigma) - E0) 
     *(findenergy(coord2, natoms, epsilon,  sigma) - E0); 
 
  dellEP[i]=(EP2-EP1)/dx; 
  coord2[i]=coord[i]; 
 } 
 
} 
 
void finddellWNUM(double coord[], int natoms, int ncoord, 
               int goodcoord, 
               double epsilon, double sigma, double dellW[]) 
{ 
 const double dx=0.0001; 
 double coord2[natoms*ncoord]; 
 copyarray(coord,coord2,natoms*ncoord); 
 
 double W1=Wd( coord, natoms, goodcoord, ncoord); 
 double W2; 
 
 int i; 
 for (i=0; i<natoms*ncoord;i++) 
 { 
  coord2[i]+=dx; 
  W2=Wd( coord2, natoms, goodcoord, ncoord); 
 
  dellW[i]=(W2-W1)/dx; 
  coord2[i]=coord[i]; 
 } 
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} 
 
void findgradientNUM(double coord[],double dellE[], 
        int ncoord, int natoms, double epsilon, double sigma) 
{ 
 
 const double dx=0.0001; 
 double coord2[natoms*ncoord]; 
 copyarray(coord,coord2,natoms*ncoord); 
 
 double Y1=findenergy(coord, natoms, epsilon,  sigma); 
 double Y2; 
 
 int i; 
 for (i=0; i<natoms*ncoord;i++) 
 { 
  coord2[i]+=dx; 
  Y2=findenergy(coord2, natoms, epsilon,  sigma); 
 
  dellE[i]=(Y2-Y1)/dx; 
  coord2[i]=coord[i]; 
 } 
 
 
} 
 
/*Gradient of the compression function*/ 
void finddellcompressionfunction(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma, 
                        double E0, double dellF[]) 
{ 
  double energypart = 
  findenergy(coord, natoms, epsilon,  sigma) - E0; 
 
  double dellE[natoms*ncoord]; 
  findgradient(coord, dellE, natoms, epsilon, sigma); 
 
  double dellWd[natoms*ncoord];  //gradiant of width 
  finddellWd(coord,  dellWd,  natoms,  goodcoord,  ncoord); 
 
 /*makes result = v1+a*v2 
void addvectormultipliedbyscalor(double result[], double v1[],double v2[], 
                                  double a, int n) */ 
 
  addvectormultipliedbyscalor(dellF,dellWd,dellE, 
                             -2.0*energypart,natoms*ncoord); 
 /* 
 int i; 
 for (i=0; i<natoms*ncoord;i++) 
 { 
  dellF[i]=-dellE[i]*2.0*energypart+dellWd[i]; 
 } 
*/ 
 
} 
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double compressionFatlengthindirection(double coord[], double direction[], 
int natoms, 
                 double epsilon, double sigma, int goodcoord, int ncoord, 
double Eo, 
                 double l) 
{ 
 
 double newcoord[natoms*ndims]; 
 /*Extra array elements are made zero. 
 zeroextracoordinates(newcoord, natoms); 
 zeroextracoordinates(direction, natoms);*/ 
 addvectormultipliedbyscalor(newcoord, coord,direction, 
                                  l, natoms*ndims); 
 return compressionfunction( newcoord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         Eo); 
} 
 
 
void inversematrixelements(double matrix[], int n) 
{ 
 int i; 
 for(i=0; i<n; i++) 
 { 
  matrix[i]=1.0/matrix[i]; 
 } 
} 
 
void increasesmallelements(double matrix[], double bigvalue, double 
smallvalue, int n) 
{ 
 int i; 
 for  (i=0; i<n; i++) 
 { 
   if  (fabs(matrix[i]<smallvalue)) 
    {matrix[i]=bigvalue;} 
 } 
 return; 
} 
 
 
 
double optimizeFonline(double coord[], double direction[],int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma,double E0, 
                        double originaldistance, int maxcycles) 
{ 
    double movedthisfar; 
    double leftmultiplier=0.0; 
    double rightmultiplier=originaldistance; 
    double midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
 
    int ncoords= ncoord * natoms; //array size 
    double dell[ncoords]; 
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    finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        E0,  dell); 
    //finddellWd( coord, dell,  natoms,  goodcoord,  ncoord); 
 
    //find_gradientE(coord, dell, natoms, epsilon, sigma); 
    if (dotproduct(direction, dell, ncoords)>0.0) 
    { 
     vectormultipliedbyscalor(direction, -1.0, 
                                  direction, ncoords); 
    } 
 
    int i; 
    for (i=0; i<maxcycles; i++) 
    { 
     midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
     if (compressionFatlengthindirection(coord, direction ,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     leftmultiplier) 
                     > 
           compressionFatlengthindirection(coord, direction,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     rightmultiplier) 
                      ) 
     { 
       leftmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; //cout<<"moving right"<<endl; 
     } 
     else 
     { 
       rightmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; 
       //cout<<"moving left"<<endl; 
     } 
    } 
 
  return movedthisfar; 
} 
 
double biggest_extra_coordinate(double coord[], int natoms, 
                                   int goodcoord, int ncoord) 
{ 
 double result=0.0; 
 int atom, extracoordinate, currentcoordinate; 
 for (atom=0; atom<natoms; atom++) 
 { 
  for (extracoordinate=goodcoord; extracoordinate<ncoord; extracoordinate++) 
  { 
   currentcoordinate=(atom*ncoord)+extracoordinate; 
   if (fabs(coord[currentcoordinate])>result) 
   { 
     result=fabs(coord[currentcoordinate]); 
   } 
  } 
 } 
 return result; 
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} 
 
 
int cgoptWDatConstantE(double coord[], int natoms, 
                double epsilon, double sigma, 
                int goodcoord, int ncoords/*number of dimensions*/, 
                double steplength, 
                double maxgradiant /*When gradient 
                smaller than this is reached, the 
                search terminates*/) 
 
{ 
 
 const int ITMAX=20000; 
 
 int ncoord=natoms*ncoords; 
 int j, its, iter; 
 double gg, gam, fp, dgg, fret; 
 double g[ncoord], h[ncoord], x[ncoord], xi[ncoord]; 
 int n=ncoord; 
 double distancetosample=natoms*0.1; 
 double movedthisfar; 
 const double E0=findenergy(coord, natoms, epsilon,  sigma); 
 //fp=findenergy(coord,natoms, epsilon,  sigma); 
 
 fp=compressionfunction( coord,  natoms, 
                         goodcoord,  ncoords, 
                         epsilon,  sigma, 
                         E0); 
 //find_gradientE(coord, xi, natoms, epsilon, sigma); 
 
 finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoords, 
                        epsilon,  sigma, 
                        E0,  xi); 
 for (j=0;j<ncoord;j++) 
 { 
  g[j]= -xi[j]; 
  xi[j] = h[j] = g[j]; 
 } 
 
 
 for (its=0; its<ITMAX; its++) 
 { 
 
  iter=its; 
  { 
 
 
   movedthisfar=optimizeFonline(coord,  xi, natoms, 
                         goodcoord, ncoords, 
                         epsilon,  sigma, E0, 
                        distancetosample, 10); 
 
/*   movedthisfar=optimizeEonline2(coord, xi, natoms, 
                          ncoord, 
                         epsilon,  sigma, 
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                        distancetosample, 10);  */ 
 
   distancetosample=movedthisfar*10.0; 
   //cout<<"movedthisfar = "<<movedthisfar<<"   "<<flush; 
 
   addvectormultipliedbyscalor(coord, coord, xi, movedthisfar, ncoord); 
   for (j=0;j<ncoord;j++) 
   { 
    xi[j]*=movedthisfar; 
   } 
   fret=findenergy(coord,natoms, epsilon,  sigma); 
 
  } 
 
  fp=fret; 
 
  finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoords, 
                        epsilon,  sigma, 
                        E0,  xi); 
  //find_gradientE(coord, xi, natoms, epsilon, sigma); 
  /*cout<<"gradient "<<vectorlength(xi,ncoord)<< 
    ",   E "<<findenergy(coord,natoms, epsilon,  sigma)<< 
    ",   l "<<distancetosample<<endl<<flush ; */ 
 //cout<<"biggest_extra_coordinate "<< biggest_extra_coordinate(coord,  
natoms, 
 //    goodcoord, ncoords)<<endl<<flush; 
 
  if ((biggest_extra_coordinate(coord,  natoms, 
     goodcoord, ncoords)<sigma*0.05) 
     || (vectorlongestcompont(xi,ncoord)<maxgradiant)) 
   { 
    //printmatrix(coord,natoms,ncoords); 
    if (biggest_extra_coordinate(coord,  natoms, 
     goodcoord, ncoords)<sigma*0.3) 
    {return 1;} 
    else 
    {return 0;} 
   } 
 
  dgg=gg=0.0; 
  for (j=0;j<ncoord;j++) 
   { 
    gg+=g[j]*g[j]; 
    //dgg+=xi[j]*xi[j]; //Fletcher-Reeves 
    dgg+=(xi[j]+g[j])*xi[j]; //Polak-Ribiere 
   } 
 
  if (gg==0.0) 
   return 1; 
  gam=dgg/gg; 
  for (j=0;j<n;j++) 
  { 
   g[j]= -xi[j]; 
   xi[j]=h[j]=g[j]+gam*h[j]; 
  } 
 } 
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 return 1; 
} 
 
 
 
 
int  compressto3DbyTSwalk(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma) 
{ 
 cout << "                                                          E before 
compressto3DbyTSwalk = " 
      << findenergy(coord, natoms, epsilon,  sigma) << endl; 
 const double E0=findenergy(coord, natoms, epsilon,  sigma); 
 const int maxpossibleiterations=1000*natoms; 
 double dellF[natoms*ncoord];  //  gradiant of the compression function 
 double dellW[natoms*ncoord];  //  gradiant of the width function 
 double direction[natoms*ncoord]; 
 
 double Fslope, currentF, currentW; 
 int iterations=0; //number of elapsed iterations 
 do 
  { 
 
   finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        E0,  dellF); 
   Fslope = vectorlength(dellF,natoms*ncoord); 
   normalizevector(dellF,natoms*ncoord); 
 
   finddellWd(coord, dellW, natoms, goodcoord, ncoord); 
   normalizevector(dellW,natoms*ncoord); 
 
   //makes result = v1+a*v2 
   addvectormultipliedbyscalor(direction,dellF,dellW, 
                                  +0.999,  natoms*ncoord); 
 
   normalizevector(direction,natoms*ncoord); 
 
   addvectormultipliedbyscalor(coord,coord,direction, 
                                     -0.01,natoms*ncoord); 
 
   currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
   currentW=Wd( coord, natoms, goodcoord, ncoord); 
   /* 
   cout<<"F = "<<currentF 
    <<"   W = "<<currentW 
    <<"   E = "<<findenergy(coord, natoms, epsilon,  sigma) - E0 
    <<"   Fslope = "<< Fslope 
    <<endl;*/ 
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   iterations++; 
  }while( (fabs(currentF)>0.0005*natoms)&&(iterations<=maxpossibleiterations) 
                &&(currentW>0.0005*natoms)); 
 
 
 return 1; 
} 
 
 
int  compressto3DbyfastTSwalk(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma) 
{ 
 cout << "                                                          E before 
compressto3DbyfastTSwalk = " 
      << findenergy(coord, natoms, epsilon,  sigma) << endl; 
 const double E0=findenergy(coord, natoms, epsilon,  sigma); 
 const int maxpossibleiterations=1000*natoms; 
 double dellF[natoms*ncoord];  //  gradiant of the compression function 
 double dellW[natoms*ncoord];  //  gradiant of the width function 
 double direction[natoms*ncoord]; 
 
 double Fslope, currentF, currentW, prevF, prevW; 
 double maxcomponentmove=0.1*sigma; 
 
 const double sucessmultiplier = 1.2; 
 const double faluremultiplier = 0.5; 
 
 int iterations=0; //number of elapsed iterations 
 
 currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
 currentW=Wd( coord, natoms, goodcoord, ncoord); 
 
 do 
  { 
 
   finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        E0,  dellF); 
   Fslope = vectorlength(dellF,natoms*ncoord); 
   normalizevector(dellF,natoms*ncoord); 
 
   finddellWd(coord, dellW, natoms, goodcoord, ncoord); 
   normalizevector(dellW,natoms*ncoord); 
 
   //makes result = v1+a*v2 
   addvectormultipliedbyscalor(direction,dellW,dellF, 
                                  +0.999,  natoms*ncoord); 
 
   normalizevector(direction,natoms*ncoord); 
 
   addvectormultipliedbyscalor(coord,coord,direction, 
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     -maxcomponentmove*vectorlongestcompont(direction,natoms*ncoord), 
     natoms*ncoord); 
 
   prevF=currentF; 
   prevW=currentW; 
   currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
   currentW=Wd( coord, natoms, goodcoord, ncoord); 
 
   if (dotproduct(dellF,dellW,natoms*ncoord)> -0.9) 
   { 
    if (currentF<prevF) 
    { 
     maxcomponentmove*=sucessmultiplier; 
    } 
 
    else 
    { 
     maxcomponentmove*=faluremultiplier; 
    } 
   } 
   else 
   { 
    maxcomponentmove*=sucessmultiplier; 
   } 
 
 
 
   if (maxcomponentmove> biggest_extra_coordinate( coord,  natoms, 
              goodcoord,  ncoord)) 
   { 
    maxcomponentmove=biggest_extra_coordinate( coord,  natoms, 
              goodcoord,  ncoord); 
   } 
 
   /* 
   cout<<"F = "<<currentF 
    <<"   W = "<<currentW 
    <<"   E = "<<findenergy(coord, natoms, epsilon,  sigma) - E0 
    <<"   Fslope = "<< Fslope 
    <<endl;*/ 
 
  cout<<"              maxcomponentmove = "<< maxcomponentmove<<endl; 
 
   iterations++; 
  }while( biggest_extra_coordinate( coord,  natoms, 
              goodcoord,  ncoord)>maxcomponentmove); 
 
  cout<<"              iterations = "<< iterations <<endl; 
  cout<<"              maxcomponentmove = "<< maxcomponentmove<<endl; 
 
 return 1; 
} 
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/*This procedure is dimensional compression at constant energy, 
done as finding the root of a function (E-Eo)^2+W*/ 
int  compressto3DbyCG(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma) 
{ 
 cout << "                                                          E before 
compressto3DbyCG = " 
      << findenergy(coord, natoms, epsilon,  sigma) << endl; 
 const double E0=findenergy(coord, natoms, epsilon,  sigma); 
 
 /* Prints an MxN matrix a*/ 
 // printmatrix(coord, natoms, ncoord); 
 
 
 const int maxpossibleiterations=1000*natoms; 
 /*Because this search  has a possibility 
    of not converging and freezing up the programm for that reason 
    after a ceratin number of iterations it will just give up. 
    */ 
 double dellF[natoms*ncoord];  //  gradiant 
 double prevdellFsquared=1e30; //   suqre of length of previous energy 
gradient 
 
 /*Vars about the function being optimized*/ 
 double Fslope, currentF, prevF; 
 double displacement[natoms*ncoord]; 
 double d[natoms*ncoord]; 
 double prevd[natoms*ncoord]; 
 zeroarray(prevd,natoms*ncoord); 
 
 /*This variable is for constraining the distance 
  Newton's algorithm can jump. It is there, so it 
  would not diverge*/ 
 double maxdistancetomove = 0.1; 
 double maxmaxdistancetomove = 0.3*natoms; 
 int iterations=0; //number of elapsed iterations 
 
 currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
 
 double distancetomove=0.1; 
 double beta=0.0; 
 bool firstiteration=true; //true only in the first iteration. 
 do 
  { 
 
   finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        E0,  dellF); 
 
 
 
   Fslope = vectorlength(dellF,natoms*ncoord); 
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   beta=Fslope*Fslope/prevdellFsquared; 
  /*makes result = v1+a*v2 
void addvectormultipliedbyscalor(double result[], double v1[],double v2[], 
                                  double a, int n) */ 
 
 
   //addvectormultipliedbyscalor(d, double v1[],double v2[], 
   //                               double a,  natoms*ncoord) 
   if (!firstiteration) 
   { 
    int i; 
    int nelements=natoms*ncoord; 
    for (i=0; i<nelements;i++) 
    { 
      d[i]=-dellF[i] + (beta*prevd[i]); 
    } 
   } 
   else 
   { 
    int i; 
    int nelements=natoms*ncoord; 
    for (i=0; i<nelements;i++) 
    { 
      d[i]=-dellF[i]; 
    } 
   } 
 
   copyarray(d,displacement,natoms*ncoord); 
   normalizevector(displacement,natoms*ncoord); 
 
   if(distancetomove>maxdistancetomove) 
   {distancetomove=maxdistancetomove;} 
 
   double multiplier=3.0; 
 
   do 
   { 
    multiplier*=0.5; 
    /*copies a to b, so b=a*/ 
    //void copyarray(double a[], double b[], int n) 
 
   } while(currentF<=compressionFatlengthindirection(coord, displacement ,  
natoms, 
                 epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                 multiplier*distancetomove)); 
   // cout<<"multiplier*distancetomove = "<<  multiplier*distancetomove 
<<endl; 
 
    double movedthisfar=optimizeFonline(coord, displacement, natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, E0, 
                         multiplier*distancetomove, 15); 
      
     //cout<<"movedthisfar = "<<   movedthisfar<<endl; 
   /*{ 
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    double leftmultiplier=0.0; 
    double rightmultiplier=multiplier*2.0; 
    double midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
 
    int i; 
    for (i=0; i<15; i++) 
    { 
     midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
     if (compressionFatlengthindirection(coord, displacement ,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     -leftmultiplier*distancetomove) 
                     > 
           compressionFatlengthindirection(coord, displacement ,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     -rightmultiplier*distancetomove) 
                      ) 
     { 
       leftmultiplier=midmultiplier; 
     } 
     else 
     { 
       rightmultiplier=midmultiplier; 
     } 
    } 
 
   } */ 
 
 
 
 
   addvectormultipliedbyscalor(coord, coord,displacement, 
                              movedthisfar, natoms*ncoord); 
 
   //printmatrix(displacement,natoms,ncoord); 
    distancetomove=movedthisfar; 
 
   prevF=currentF; 
   currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
 
   maxdistancetomove=movedthisfar*12.0; 
 
   if (maxdistancetomove>maxmaxdistancetomove) 
    { 
     maxdistancetomove=maxmaxdistancetomove; 
    } 
 
    /* 
   cout<<"F = "<<currentF 
    <<"   W = "<<Wd( coord, natoms, goodcoord, ncoord) 
    <<"   E = "<<findenergy(coord, natoms, epsilon,  sigma) - E0 
    <<"   maxdistancetomove = "<<maxdistancetomove 
    <<"   Fslope = "<< Fslope 
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    <<"   distancetomove = "<<distancetomove<<endl;*/ 
 
   copyarray(d, prevd,natoms*ncoord); 
 
   prevdellFsquared=Fslope*Fslope; 
   iterations++; 
   firstiteration=false; 
 
 
  }while( 
(fabs(currentF)>0.0005*natoms)&&(iterations<=maxpossibleiterations)&&(Fslope>
natoms*0.05)); 
 
  //cout<<"                                                           Fslope 
= "<< Fslope<<endl; 
  if (iterations>maxpossibleiterations) 
  {cout<<"                                                          Giving up 
in compressto3DbyCG after "<< 
              iterations<< 
              "  iterations."<<endl; 
   return 0; 
  } 
  //cout<<"In correctpositiontochangeenergy iterations = "<<iterations<<endl; 
// return; 
 
 
 return 1; 
} 
 
 
/*This procedure is dimensional compression at constant energy, 
done as finding the root of a function (E-Eo)^2+W*/ 
int  compressto3Dbyfindingroot(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma) 
{ 
 cout << "                                                          E before 
compressto3Dbyfindingroot = " 
      << findenergy(coord, natoms, epsilon,  sigma) << endl; 
 const double E0=findenergy(coord, natoms, epsilon,  sigma); 
 
 /* Prints an MxN matrix a*/ 
 // printmatrix(coord, natoms, ncoord); 
 
 
 const int maxpossibleiterations=1000*natoms; 
 /*Because this search is newton-like, it has a possibility 
    of not converging and freezing up the programm for that reason 
    after a ceratin number of iterations it will just give up. 
    */ 
 double dellF[natoms*ncoord];  //  gradiant of enegrgy 
 
 /*Vars about the function being optimized*/ 
 double Fslope, currentF, prevF; 
 double displacement[natoms*ncoord]; 
 
 /*This variable is for constraining the distance 
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  Newton's algorithm can jump. It is there, so it 
  would not diverge*/ 
 double maxdistancetomove = 0.1; 
 double maxmaxdistancetomove = 0.3*natoms; 
 int iterations=0; //number of elapsed iterations 
 
 currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
 
 double distancetomove=0.1; 
 do 
  { 
 
   finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        E0,  dellF); 
 
 
 
   Fslope = vectorlength(dellF,natoms*ncoord); 
 
   //cout<<"Fslope = "<< Fslope<<endl; 
   copyarray(dellF,displacement,natoms*ncoord); 
   //printmatrix(displacement,natoms,ncoord); 
   normalizevector(displacement,natoms*ncoord); 
 
   if(distancetomove>maxdistancetomove) 
   {distancetomove=maxdistancetomove;} 
 
   double multiplier=30.0; 
 
   do 
   { 
    multiplier*=0.5; 
    /*copies a to b, so b=a*/ 
    //void copyarray(double a[], double b[], int n) 
   } while(currentF<=compressionFatlengthindirection(coord, displacement ,  
natoms, 
                 epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                 -multiplier*distancetomove)); 
 
   { 
    /*double bestmultiplier= multiplier; 
    double currentmultiplier; 
 
    for 
(currentmultiplier=0.0;currentmultiplier<=(multiplier*2.0);currentmultiplier+
=multiplier*0.1) 
      { 
       if (compressionFatlengthindirection(coord, displacement ,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     -bestmultiplier*distancetomove) 
                     > 
           compressionFatlengthindirection(coord, displacement ,  natoms, 
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                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     -currentmultiplier*distancetomove) 
                      ) 
                     {bestmultiplier=currentmultiplier;} 
      } 
    multiplier=bestmultiplier; 
 
    */ 
 
 
    double leftmultiplier=0.0; 
    double rightmultiplier=multiplier*2.0; 
    double midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
 
    int i; 
    for (i=0; i<15; i++) 
    { 
     midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
     if (compressionFatlengthindirection(coord, displacement ,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     -leftmultiplier*distancetomove) 
                     > 
           compressionFatlengthindirection(coord, displacement ,  natoms, 
                     epsilon,  sigma,  goodcoord,  ncoord,  E0, 
                     -rightmultiplier*distancetomove) 
                      ) 
     { 
       leftmultiplier=midmultiplier; 
     } 
     else 
     { 
       rightmultiplier=midmultiplier; 
     } 
    } 
 
   } 
 
 
   addvectormultipliedbyscalor(coord, coord,displacement, 
                              -distancetomove*multiplier, natoms*ncoord); 
 
   //printmatrix(displacement,natoms,ncoord); 
    distancetomove*=multiplier; 
 
   prevF=currentF; 
   currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0); 
 
   maxdistancetomove*=multiplier; 
   if (prevF<currentF) 
   { 
    maxdistancetomove*=0.5; 
 
    /* 
    addvectormultipliedbyscalor(coord, coord,displacement, 
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                              0.5*distancetomove, natoms*ncoord);//step back 
    currentF= compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         E0);   */ 
   } 
   else 
   { 
    maxdistancetomove*=2.0; 
    if (maxdistancetomove>maxmaxdistancetomove) 
    { 
     maxdistancetomove=maxmaxdistancetomove; 
    } 
   } 
 
   cout<<"F = "<<currentF 
    <<"   W = "<<Wd( coord, natoms, goodcoord, ncoord) 
    <<"   E = "<<findenergy(coord, natoms, epsilon,  sigma) - E0 
    <<"   maxdistancetomove = "<<maxdistancetomove 
    <<"   Fslope = "<< Fslope 
    <<"   distancetomove = "<<distancetomove<<endl; 
 
   iterations++; 
  }while( 
(fabs(currentF)>0.001)&&(iterations<=maxpossibleiterations)&&(Fslope>natoms*0
.05)); 
 
  cout<<"              Fslope = "<< Fslope<<endl; 
  if (iterations>maxpossibleiterations) 
  {cout<<"                                                          Giving up 
in compressto3Dbyfindingroot after "<< 
              iterations<< 
              "  iterations."<<endl; 
   return 0; 
  } 
  //cout<<"In correctpositiontochangeenergy iterations = "<<iterations<<endl; 
// return; 
 
 
 return 1; 
} 
 
 
 
 
 
 
 
 
 
 
 
void makecompressionstep(double coord[], int natoms, 
                double epsilon, double sigma, int goodcoord, int ncoord, 
double Eo, double steplength) 
{ 
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 const int maxsteps=10000; /*for both the first linier steps 
                               and the following binary search*/ 
 
 double direction[natoms*ndims]; 
 /*zeroextracoordinates(direction, natoms); */ 
 double l1=0.0; //closet point 
 double l2=0.0; //furthest point 
 double lm=0.0; // point in the middle 
 
 
 double F0 = compressionfunction( coord,  natoms, 
                         goodcoord,  ncoord, 
                         epsilon,  sigma, 
                         Eo); 
 finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        Eo,  direction); 
 //findgradient(coord, direction, natoms,epsilon,sigma); 
 /*zeroextracoordinates(direction, natoms);overkill*/ 
 
 
 
 
 vectormultipliedbyscalor(direction, -1.0, direction, natoms*ncoord); 
 //normalizeandmultiplygradient(direction, natoms, -1.0); 
 
 int step=0; 
 
 do    //Loop finds the piece of line to search 
 { 
  step++; 
 
  l1 = l2; 
 
  l2 = l2+ steplength; 
  /* 
  cout<<"Eopt="<<energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l2) <<endl; 
 
  compressionFatlengthindirection(double coord[], double direction[], int 
natoms, 
                 double epsilon, double sigma, int goodcoord, int ncoord, 
double Eo, 
                 double l) 
 
 
                 */ 
 } 
 while ((compressionFatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, goodcoord, ncoord, Eo, l2)        < 
        compressionFatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, goodcoord, ncoord, Eo, l1)) && 
(step<=maxsteps)); 
 
 
 double F1 = compressionFatlengthindirection(coord, direction, natoms, 
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                 epsilon,  sigma, goodcoord, ncoord, Eo, l2); 
 
 
 
 step=0; 
 do  //finds the root 
 { 
  lm = (l1+l2)*0.5; 
  if( 
        compressionFatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, goodcoord, ncoord, Eo, lm)        < 
        compressionFatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, goodcoord, ncoord, Eo, l2) ) 
  { 
   l2=lm; 
  } 
  else 
  { l1=lm;} 
 
  /* 
  cout<<"Rootf"<<normalizeddelldotdirection(coord,   direction ,   natoms, 
                   epsilon,   sigma, lm ) 
                   <<"   E=" 
                   <<energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, lm) 
                   <<endl;  */ 
 } 
 while (((l2-l1)>0.0000000000001) && (step<=maxsteps)); 
 
 double F2 = compressionFatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, goodcoord, ncoord, Eo, l2); 
 if (F2>F0) 
  { 
  // cout<<"E1>E0, "<<"E0="<<E0<<" E1=" <<E1 <<" E2="<<E2<<endl; 
  } 
 
 addvectormultipliedbyscalor(coord, coord,direction,l2, natoms*ndims) ; 
 
} 
 
 
 
int compressto3DbyfindingrootSD(double coord[], int natoms, 
                int goodcoord, int ncoord, 
                double epsilon, double sigma, 
                double steplength, 
                double maxgradiant /*When gradient 
                smaller than this is reached, the 
                search terminates*/ 
                ) 
{ 
 const int minsteps=1; 
 int step=0; 
 
 double dell[natoms*ndims]; 
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 cout << "                                                          E before 
compressto3DbyfindingrootSD = " 
      << findenergy(coord, natoms, epsilon,  sigma) << endl; 
 const double E0=findenergy(coord, natoms, epsilon,  sigma); 
 
 do 
 { 
   step++; 
 
   makecompressionstep(coord, natoms, epsilon, sigma, goodcoord, ncoord, E0, 
steplength); 
   findgradient(coord, dell, natoms, epsilon, sigma); 
 
   finddellcompressionfunction( coord, natoms, 
                        goodcoord,  ncoord, 
                        epsilon,  sigma, 
                        E0,  dell); 
 } 
 while((vectorlength(dell,natoms*ndims)>maxgradiant)||(step<minsteps)); 
 
 return 1; 
} 
 
 
 
 
 
 
 
 
 
 
/*This procedure is dimensional compression at constant energy, 
done as conventional minimization in the direction perpendicular 
to the energy gradient.*/ 
int  optimizeWdatconstE(double coord[], int natoms, 
                        int goodcoord, int ncoord, 
                        double epsilon, double sigma) 
{ 
 
 cout << "                                                          E before 
optimizeWdatconstE = " 
      << findenergy(coord, natoms, epsilon,  sigma) << endl; 
 const double originalenergy=findenergy(coord, natoms, epsilon,  sigma); 
 const int mininterations = 5; 
 const int maxiterations = 30000*natoms; 
 double steplength=0.001*sigma; 
 double tolerance=0.0;//0.05*sigma; 
 double direction[natoms*ncoord]; 
 double dWd[natoms*ncoord]; 
 int i; 
 double prevE=0.0; 
 double E=10e10; 
 double prevW=0.0; 
 double W=10e10; 
 
 for (i=0; i<maxiterations; i++) 
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 { 
  prevE=E; 
  E=findenergy(coord, natoms, epsilon, sigma); 
  /* 
  if (fabs(E-prevE)>(0.0001*epsilon)) 
   {steplength/=2;} 
  else 
   {steplength*=1.1;} */ 
 
  /*if (fabs(E-originalenergy)>(0.05 * sigma)) */ 
 
 
 
 
 
  prevW=W; 
  W=Wd( coord, natoms, goodcoord, ncoord); 
  if ((W<(steplength*10.0)) /*|| (W<tolerance)*/) 
  { 
   cout << "                                                          E after 
optimizeWdatconstE = " 
   << findenergy(coord, natoms, epsilon,  sigma) << endl; 
   cout << "                                                          Width 
is " << W<< endl; 
   cout << "                                                          after " 
<< i<<" iterations."<< endl; 
 
   return 1; 
 
  } 
 
  /*cout << " E = " << findenergy(coord, natoms, epsilon, sigma) 
       << ",  Wd = "<< Wd( coord, natoms, goodcoord, ncoord) 
       << ",  steplength = "<<steplength<<endl; */ 
 
  dellWdatconstantenergy(coord,  natoms, dWd, 
                                     goodcoord,  ncoord, 
                                     epsilon,  sigma); 
  copyarray(dWd,direction,natoms*ncoord); 
 
  normalizevector(direction,natoms*ncoord); 
 
  //makes result = v1+a*v2 
  //void addvectormultipliedbyscalor(double result[], double v1[],double 
v2[], 
    //                               double a, int n) 
 
   addvectormultipliedbyscalor(coord, coord,direction, 
                                  -steplength, natoms*ncoord); 
   correctpositiontochangeenergy(coord,natoms, 
                                  goodcoord,  ncoord, 
                                  epsilon,  sigma, E, originalenergy); 
 
 } 
   cout << "            
optimizeWdatconstE FAILED E = " 
   << findenergy(coord, natoms, epsilon,  sigma) << endl; 
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   cout << "                                                          Width 
is " << W<< endl; 
 
 return 0; 
} 
 
 
 
/*  dell = multiplier*dell/||dell||  */ 
void normalizeandmultiplygradient(double dell[], int natoms, double 
multiplier) 
{ 
 int k; //atoms 
 int dim; 
 
 double sum=0; 
 for ( k = 0;  k < natoms;  k++) 
 { 
  for (dim=0; dim<ndims; dim++) 
  { 
     sum+=dell[k*ndims+dim]*dell[k*ndims+dim]; 
  } 
 } 
 double length=sqrt(sum); 
 
 for ( k = 0;  k < natoms;  k++) 
 { 
  for (dim=0; dim<ndims; dim++) 
  { 
   dell[k*ndims+dim]=dell[k*ndims+dim]/length*multiplier; 
  } 
 } 
 return; 
} 
 
/* 
double normalizeddelldotdirection(double coord[], double direction[], int 
natoms, 
                 double epsilon, double sigma, 
                 double l) 
{ 
  double dell[natoms*3]; 
  double newcoord[natoms*3]; 
  addvectormultipliedbyscalor(newcoord, coord,direction, 
                                  l, natoms*3); 
 
  findgradient(newcoord, dell, natoms,epsilon,sigma); 
  return dotproduct(dell,direction, natoms) 
            /vectorlength(direction,3*natoms) 
            /vectorlength(dell     ,3*natoms); 
} */ 
 
/*Returned enegry of the system if it is moved from coordinates coord 
in direction direction l units of length. 
*/ 
 
/*Puts zeros in dimentions not used */ 

143 



 

void zeroextracoordinates(double coord[], int natoms, int maxdims) 
{ 
 int i;  // atom number 
 int dim; 
 
 for (i=0;i<natoms;i++) 
 { 
  for (dim=ndims; dim < maxdims; dim++) 
  {coord[i*maxdims+dim]=0.0;} 
 } 
} 
 
double energyatlengthindirection(double coord[], double direction[], int 
natoms, 
                 double epsilon, double sigma, 
                 double l) 
{ 
 
 double newcoord[natoms*ndims]; 
 /*Extra array elements are made zero. 
 zeroextracoordinates(newcoord, natoms); 
 zeroextracoordinates(direction, natoms);*/ 
 addvectormultipliedbyscalor(newcoord, coord,direction, 
                                  l, natoms*ndims); 
 return findenergy(newcoord,natoms, epsilon,  sigma) ; 
} 
 
void makecgstep(double coord[], int natoms, 
                double epsilon, double sigma, double steplength) 
{ 
 
 const int maxsteps=10000; /*for both the first linier steps 
                               and the following binary search*/ 
 
 double direction[natoms*ndims]; 
 /*zeroextracoordinates(direction, natoms); */ 
 double l1=0.0; //closet point 
 double l2=0.0; //furthest point 
 double lm=0.0; // point in the middle 
 
 
 double E0 = findenergy(coord,natoms, epsilon,  sigma) ; 
 
 findgradient(coord, direction, natoms,epsilon,sigma); 
 /*zeroextracoordinates(direction, natoms);overkill*/ 
 
 normalizeandmultiplygradient(direction, natoms, 1.0); 
 
 int step=0; 
 
 do    //Loop finds the piece of line to search 
 { 
  step++; 
 
  l1 = l2; 
 
  l2 = l2+ steplength; 
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  /* 
  cout<<"Eopt="<<energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l2) <<endl;  */ 
 } 
 while ((energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l2)        < 
        energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l1)) && (step<=maxsteps)); 
     /*(normalizeddelldotdirection(coord,   direction ,   natoms, 
                   epsilon,   sigma, l2)>=0.0); */ 
 
 double E1 = energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l2); 
 
 /*if (E1>E0) 
  { 
   cout<<"E1>E0"<<endl; 
  } 
 */ 
 
 step=0; 
 do  //finds the root 
 { 
  lm = (l1+l2)*0.5; 
  if( 
        energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, lm)        < 
        energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l2) ) 
  { 
   l2=lm; 
  } 
  else 
  { l1=lm;} 
 
  /* 
  cout<<"Rootf"<<normalizeddelldotdirection(coord,   direction ,   natoms, 
                   epsilon,   sigma, lm ) 
                   <<"   E=" 
                   <<energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, lm) 
                   <<endl;  */ 
 } 
 while (((l2-l1)>0.0000000000001) && (step<=maxsteps)); 
 
 double E2 = energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, l2); 
 if (E2>E0) 
  { 
  // cout<<"E1>E0, "<<"E0="<<E0<<" E1=" <<E1 <<" E2="<<E2<<endl; 
  } 
 
 addvectormultipliedbyscalor(coord, coord,direction,l2, natoms*ndims) ; 
 
} 
 
double optimizeEonline(double coord[], double direction[],int natoms, 
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                         int ncoord, 
                        double epsilon, double sigma, 
                        double originaldistance, int maxcycles) 
{ 
    double movedthisfar; 
    double leftmultiplier=0.0; 
    double rightmultiplier=originaldistance; 
    double midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
 
    int i; 
    for (i=0; i<maxcycles; i++) 
    { 
     midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
     if (energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, 
                     leftmultiplier) 
                     > 
         energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, 
                     rightmultiplier) 
                      ) 
     { 
       leftmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; //cout<<"moving right"<<endl; 
     } 
     else 
     { 
       rightmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; 
       //cout<<"moving left"<<endl; 
     } 
    } 
  //cout<<ncoord<<endl<<flush; 
  return movedthisfar; 
} 
 
double optimizeEonline2(double coord[], double direction[],int natoms, 
                         int ncoord, 
                        double epsilon, double sigma, 
                        double originaldistance, int maxcycles) 
{ 
    double movedthisfar; 
    double leftmultiplier=0.0; 
    double rightmultiplier=originaldistance; 
    double midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
 
    double dell[ncoord]; 
    find_gradientE(coord, dell, natoms, epsilon, sigma); 
    if (dotproduct(direction, dell, ncoord)>0.0) 
    { 
     vectormultipliedbyscalor(direction, -1.0, 
                                  direction, ncoord); 
    } 
    /* 
    int j; 
     dotproduct(double v1[], double v2[], int n) 
     void find_gradientE(double coord[], double dell[], int natoms, 
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                  double epsilon, double sigma); 
 
      */ 
 
    int i; 
    for (i=0; i<maxcycles; i++) 
    { 
     midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
     if (energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, 
                     leftmultiplier) 
                     > 
         energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, 
                     rightmultiplier) 
                      ) 
     { 
       leftmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; //cout<<"moving right"<<endl; 
     } 
     else 
     { 
       rightmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; 
       //cout<<"moving left"<<endl; 
     } 
    } 
 
  return movedthisfar; 
} 
 
 
double optimizeEonlineSafe(double coord[],int natoms, 
                         int ncoord, 
                        double epsilon, double sigma, 
                        double originaldistance, int maxcycles) 
{ 
    double direction[ncoord]; 
    double movedthisfar; 
    double leftmultiplier=0.0; 
    double rightmultiplier=originaldistance; 
    double midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
 
 
    findgradient(coord, direction, natoms, epsilon, sigma); 
    double longestcomponent=vectorlongestcompont(direction, ncoord); 
 
    vectormultipliedbyscalor(direction, (1.0/longestcomponent), 
                                  direction, ncoord); 
 
    int i; 
    for (i=0; i<maxcycles; i++) 
    { 
     midmultiplier= 0.5*(leftmultiplier+rightmultiplier); 
     if (energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, 
                     leftmultiplier) 
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                     > 
         energyatlengthindirection(coord, direction, natoms, 
                 epsilon,  sigma, 
                     rightmultiplier) 
                      ) 
     { 
       leftmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; //cout<<"moving right"<<endl; 
     } 
     else 
     { 
       rightmultiplier=midmultiplier; 
       movedthisfar=midmultiplier; 
       //cout<<"moving left"<<endl; 
     } 
    } 
  //cout<<ncoord<<endl<<flush; 
  addvectormultipliedbyscalor(coord, coord, direction, 
                                  movedthisfar, ncoord); 
 
  return movedthisfar; 
} 
 
 
void sdoptSafe(double coord[], int natoms, 
                double epsilon, double sigma, 
                double steplength, 
                double maxgradiant /*When gradient 
                smaller than this is reached, the 
                search terminates*/) 
{ 
 const int minsteps=1; 
 int step=0; 
 int ncoord= natoms*ndims; 
 double dell[natoms*ndims]; 
 /*zeroextracoordinates(dell, natoms);*/ 
 double originaldistance=sigma; 
 
 
 do 
 { 
   step++; 
   originaldistance=optimizeEonlineSafe( coord, natoms, 
                          ncoord, 
                         epsilon,  sigma, 
                         originaldistance, 5); 
   /*optimizeEonline(double coord[], double direction[],int natoms, 
                         int ncoord, 
                        double epsilon, double sigma, 
                        double originaldistance, int maxcycles) */ 
//   makecgstep(coord, natoms, epsilon, sigma, steplength); 
   findgradient(coord, dell, natoms, epsilon, sigma); 
//   cout<<"gradient"<<vectorlength(dell,natoms*ndims)<< 
//    ",   E"<<findenergy(coord,natoms, epsilon,  sigma)<<endl ; 
 
 } 
 while((vectorlength(dell,natoms*ndims)>maxgradiant)||(step<minsteps)); 
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} 
 
void sdopt(double coord[], int natoms, 
                double epsilon, double sigma, 
                double steplength, 
                double maxgradiant /*When gradient 
                smaller than this is reached, the 
                search terminates*/) 
{ 
 const int minsteps=1; 
 int step=0; 
 
 double dell[natoms*ndims]; 
 /*zeroextracoordinates(dell, natoms);*/ 
 
 
 
 do 
 { 
   step++; 
 
   makecgstep(coord, natoms, epsilon, sigma, steplength); 
   findgradient(coord, dell, natoms, epsilon, sigma); 
//   cout<<"gradient"<<vectorlength(dell,natoms*ndims)<< 
//    ",   E"<<findenergy(coord,natoms, epsilon,  sigma)<<endl ; 
 
 } 
 while((vectorlength(dell,natoms*ndims)>maxgradiant)||(step<minsteps)); 
 
 
} 
 
 
 
void oldcgopt(double coord[], int natoms, 
                double epsilon, double sigma, 
                double steplength, 
                double maxgradiant /*When gradient 
                smaller than this is reached, the 
                search terminates*/) 
 
{ 
 const int minsteps=1; 
 int step=0; 
 int ncoord=natoms*ndims; 
 double displacement;//how far to move in each step; 
 double dellE[ncoord]; 
 double normalizeddellE[ncoord]; 
 /*zeroextracoordinates(dell, natoms);*/ 
 double prevdellElength=1e30; 
 double Direction[ncoord]; 
 double prevDirection[ncoord]; 
 zeroarray(prevDirection, ncoord); 
 double beta=0.0; 
 double distancetosample=natoms*0.1; 
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 find_gradientE(coord, dellE, natoms, epsilon, sigma); 
 
 do 
 { 
   step++; 
 
  //cout<<1<<endl<<flush; 
 
 
   if (step>1e20) 
   { 
    //cout<<2<<endl<<flush; 
 
    beta=vectorlength(dellE,ncoord)/prevdellElength; 
    prevdellElength=(vectorlength(dellE,ncoord)); 
    //makes result = a*v1+b*v2 
    addvectorsmultipliedbyscalors(Direction, dellE, Direction, 
                                  -1.0/prevdellElength, beta*displacement, 
ncoord); 
   } 
   else 
   { 
     //cout<<3<<endl<<flush;dsdf1hgsdh1ffghGHGHGGGGGGHGGHGHGaaaAAA 
     //makes result = a*v 
    vectormultipliedbyscalor(Direction, -1.0, 
                                  dellE, ncoord); 
    //copyarray(Direction,dellE,ncoord); 
 
    normalizevector(Direction,ncoord); 
   } 
 
   prevdellElength=(vectorlength(dellE,ncoord)); 
   //cout<<4<<endl<<flush; 
 
   //find displacement here 
   displacement=optimizeEonline(coord,  Direction, natoms, 
                          ndims, 
                         epsilon,  sigma, 
                         distancetosample,  50); 
   distancetosample=displacement*9.0; 
 
   //cout<<5<<endl<<flush; 
 
   addvectormultipliedbyscalor(coord, coord, Direction,displacement, ncoord); 
 
   //cout<<6<<endl<<flush; 
 
   copyarray(Direction,prevDirection, ncoord); 
 
   //cout<<7<<endl<<flush; 
 
   find_gradientE(coord, dellE, natoms, epsilon, sigma); 
 
   //cout<<8<<endl<<flush; 
 
   cout<<"gradient "<<vectorlength(dellE,ncoord)<< 
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    ",   E "<<findenergy(coord,natoms, epsilon,  sigma)<< 
    ",   l "<<distancetosample<<endl<<flush ; 
 
   //cout<<9<<endl<<flush; 
 } 
 while((vectorlength(dellE,ncoord)>maxgradiant)||(step<minsteps)); 
cout << step << " steps"<<endl<<flush; 
} 
 
void cgopt(double coord[], int natoms, 
                double epsilon, double sigma, 
                double steplength, 
                double maxgradiant /*When gradient 
                smaller than this is reached, the 
                search terminates*/) 
 
{ 
 const int ITMAX=20000; 
 
 int ncoord=natoms*ndims; 
 int j, its, iter; 
 double gg, gam, fp, dgg, fret; 
 double g[ncoord], h[ncoord], x[ncoord], xi[ncoord]; 
 int n=ncoord; 
 double distancetosample=natoms*0.1; 
 double movedthisfar; 
 
 fp=findenergy(coord,natoms, epsilon,  sigma); 
 find_gradientE(coord, xi, natoms, epsilon, sigma); 
 
 for (j=0;j<ncoord;j++) 
 { 
  g[j]= -xi[j]; 
  xi[j] = h[j] = g[j]; 
 } 
 
 for (its=0; its<ITMAX; its++) 
 { 
  iter=its; 
  { 
   movedthisfar=optimizeEonline2(coord, xi, natoms, 
                          ncoord, 
                         epsilon,  sigma, 
                        distancetosample, 10); 
 
   distancetosample=movedthisfar*10.0; 
   addvectormultipliedbyscalor(coord, coord, xi, movedthisfar, ncoord); 
   for (j=0;j<ncoord;j++) 
   { 
    xi[j]*=movedthisfar; 
   } 
   fret=findenergy(coord,natoms, epsilon,  sigma); 
  } 
 
  fp=fret; 
  find_gradientE(coord, xi, natoms, epsilon, sigma); 
  /*cout<<"gradient "<<vectorlength(xi,ncoord)<< 
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    ",   E "<<findenergy(coord,natoms, epsilon,  sigma)<< 
    ",   l "<<distancetosample<<endl<<flush ; */ 
  if (vectorlength(xi,ncoord)<maxgradiant) 
   return; 
 
  dgg=gg=0.0; 
  for (j=0;j<ncoord;j++) 
   { 
    gg+=g[j]*g[j]; 
    //dgg+=xi[j]*xi[j]; //Fletcher-Reeves 
    dgg+=(xi[j]+g[j])*xi[j]; //Polak-Ribiere 
   } 
 
  if (gg==0.0) 
   return; 
  gam=dgg/gg; 
  for (j=0;j<n;j++) 
  { 
   g[j]= -xi[j]; 
   xi[j]=h[j]=g[j]+gam*h[j]; 
  } 
 } 
 return; 
} 
 
/* 
void findnewtondisplacement(double coords[], double displacement[],int 
natoms, 
                  double epsilon, double sigma) 
{ 
 double dell[natoms*ndims]; 
 findgradient(coords, dell, natoms, epsilon, sigma); 
 zeroextracoordinates(dell, natoms); 
 int k; 
 for ( k = 0;  k < natoms*3;  k++) 
 { 
     displacement[k]=-coords[k]/dell[k]; 
 } 
} 
 
 
 
void makenewtonstep(double coord[], int natoms, 
                double epsilon, double sigma, double steplength) 
{ 
 double displacement[3*natoms]; 
 findnewtondisplacement(coord, displacement, natoms, epsilon, sigma); 
 if (vectorlength(displacement,natoms*3)>steplength) 
 {normalizeandmultiplygradient(displacement, natoms, steplength);} 
 int k; 
 for ( k = 0;  k < natoms*3;  k++) 
 { 
     coord[k]=coord[k]-displacement[k]; 
 } 
 
 
 return; 
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} */ 
 
 
/*Returnes the distance of atom atomnumber to the closest atom. 
   Pre:  natoms > 1      */ 
double mindistancetootheratoms(double coord[], int natoms, 
                                    int goodcoord, 
                                    int ncoord, 
                                    int atomnumber) 
{ 
    // atom to which the distance is being measured 
    int atom; 
    //We will return this. Now it is set to a very high value 
    double mindistance=1e20; 
    for(atom=0;atom<natoms;atom++) 
    { 
     if (atomnumber!=atom) 
     /*The distance to itself is 0. 
       We do not want that for an answer.*/ 
     { 
       if (dist(coord, atomnumber, atom)<mindistance) 
       { 
         mindistance=dist(coord, atomnumber, atom); 
       } 
     } 
     //cm3d[dim]=cm3d[dim]+coord[ncoord*atom+dim]; 
    } 
 
    return mindistance; 
} 
 
bool atomic_crashes_exist(double coord[],int natoms,int ndims, 
                        double sigma) 
 
{ 
  bool squizzedatomsexist=false; 
  double squizzeddistance=0.50*sigma; 
  int atom; 
  for(atom=0;atom<natoms;atom++) 
  { 
   if (squizzeddistance>mindistancetootheratoms(coord, natoms, 
                                    ndims, 
                                    ndims, 
                                    atom)) 
   { 
    squizzedatomsexist=true; 
   } 
  } 
  return squizzedatomsexist; 
} 
 
 
/*Does one tunneling step through extra dimensions 
returnes true if successful.*/ 
 
/*The glitch is here*/ 
int oneNDtravel(double coord3[],int natoms, 
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                                    int goodcoord, int ncoord, 
                                    double epsilon, double sigma) 
{ 
 const double faluremultiplier = 1.0; 
 const double successmultiplier = 1.0; 
 
 
 double coord3backup[natoms*goodcoord]; 
 
 copyarray(coord3,coord3backup,natoms*goodcoord); 
 
 double originalenergy=findenergy(coord3backup,natoms, epsilon,  sigma); 
 
 double coordN[natoms*ncoord]; 
 
 go3toN(coord3, coordN,  natoms, goodcoord,  ncoord); 
 
 travelND(coordN,  natoms, 
               goodcoord,  ncoord, 
               epsilon,  sigma); 
 
 
 bool foundsomeminimum = false; 
 
 double E=findenergy(coordN, natoms, epsilon,  sigma); 
 if ((-1e5<E)&&(E<0)) 
 { 
  /*foundsomeminimum= optimizeWdatconstE( 
                       coordN, natoms, goodcoord,  ncoord, 
                         epsilon,  sigma); */ 
 
  foundsomeminimum = compressto3DbyTSwalk( 
                       coordN, natoms, goodcoord,  ncoord,epsilon,  sigma); 
 
  /*foundsomeminimum = cgoptWDatConstantE( coordN, natoms, 
                 epsilon,  sigma, 
                 goodcoord,  ncoord, 
                sigma, 
                0.001 When gradient 
                smaller than this is reached, the 
                search terminates);*/ 
 
 
 
  /*  foundsomeminimum = compressto3Dbyfindingroot( 
                       coordN, natoms, goodcoord,  ncoord,epsilon,  sigma); 
 
  foundsomeminimum = compressto3DbyfindingrootSD( 
                       coordN, natoms, goodcoord,  ncoord,epsilon,  sigma, 
0.02*natoms,1e-1*natoms 
                         ); */ 
  //outputatoms(coordN,natoms,epsilon, sigma)  ; 
 
 
  if (foundsomeminimum) 
  { 
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   goNto3( coordN,  coord3,  natoms, goodcoord,  ncoord); 
 
   bool no_atomic_crashes=!atomic_crashes_exist(coord3, 
natoms,goodcoord,sigma); 
 
   if (no_atomic_crashes) 
   { 
    cgopt(  coord3,natoms,epsilon, sigma, 0.0002*natoms,1e-3*natoms); 
   } 
 
 
   if (no_atomic_crashes && 
       ((originalenergy+0.03*epsilon)< 
       findenergy(coord3,natoms, epsilon,  sigma))) 
   { 
 
    foundsomeminimum=0; 
    cout<<"                                                               
Minimized to high E = "; 
    cout<<findenergy(coord3, natoms, epsilon,  sigma)<<endl; 
    if (options.reporiting_depth>4) 
    {outputatoms(coord3,natoms,epsilon, sigma);} 
    copyarray(coord3backup,coord3,natoms*goodcoord); 
    options.travel_step_size*=faluremultiplier; 
   } 
 
 
   //outputatoms(coord3,natoms,epsilon, sigma)  ; 
  } 
  else 
  { 
   cout<<"                                                               Ran 
into multidimensional local minimum"<<endl; 
   options.travel_step_size*=faluremultiplier; 
  } 
 } 
 else 
 { 
    cout<<"                                                              Ran 
into a crazy place on PES, no compression done"; 
    cout<<endl; 
    options.travel_step_size*=faluremultiplier; 
 } 
 ndims=goodcoord; 
 
 E=findenergy(coord3, natoms, epsilon,  sigma); 
 if ((-1e5<E)&&(E<0.0)) 
 { 
  options.travel_step_size*=successmultiplier; 
 } 
 else 
 { 
  copyarray(coord3backup,coord3,natoms*goodcoord); 
 } 
 return foundsomeminimum; 
} 
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double known_global_minimum(int natoms) 
{ 
 switch (natoms) 
 { 
  case 1: return (0.0+0.001); break; 
  case 2: return (-1.0+0.001); break; 
  case 3: return (-3.0+0.001); break; 
  case 4: return (-6.0+0.001); break; 
  case 5: return -9.10385; break; 
  case 6: return -12.71206; break; 
  case 7: return -16.50538; break; 
  case 8: return -19.82148; break; 
  case 9: return -24.1133; break; 
  case 10: return -28.42253; break; 
  case 11: return -32.7659; break; 
  case 12: return -37.967; break; 
  case 13: return -44.32680; break; 
  case 14: return -47.84515; break; 
  case 15: return -52.32262; break; 
  case 16: return -56.815; break; 
  case 17: return -61.317; break; 
  case 18: return -66.530; break; 
  case 19: return -72.659; break; 
  case 20: return -77.177; break; 
  case 21: return -81.684; break; 
  case 22: return -86.809; break; 
  case 23: return -92.844; break; 
  case 24: return -97.348; break; 
  case 25: return -102.372; break; 
  case 26: return -108.315; break; 
  case 27: return -112.873; break; 
  case 28: return -117.822; break; 
  case 29: return -123.587; break; 
  case 30: return -128.286; break; 
  case 31: return -133.586; break; 
  case 32: return -139.635; break; 
  case 33: return -144.842; break; 
  case 34: return -150.044; break; 
  case 35: return -155.756; break; 
  case 36: return -161.825; break; 
  case 37: return -167.033; break; 
  case 38: return -173.928; break; 
  case 39: return -180.03318; break; 
  case 40: return -185.24983; break; 
  case 41: return -190.53627; break; 
  case 42: return -196.27753; break; 
  case 43: return -202.36466; break; 
  case 44: return -207.68872; break; 
  case 45: return -213.78486; break; 
  case 46: return -220.6803; break; 
  case 47: return -226.01225; break; 
  case 48: return -232.19952; break; 
  case 49: return -239.09186; break; 
  case 50: return -244.54992; break; 
  case 51: return -251.25396; break; 
  case 52: return -258.22999; break; 
  case 53: return -265.20301; break; 
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  case 54: return -272.20863; break; 
  case 55: return -279.2484; break; 
  case 56: return -283.64310; break; 
  case 57: return -288.34262; break; 
  case 58: return -294.37814; break; 
  case 59: return -299.7380; break; 
  case 60: return -305.87547; break; 
  case 61: return -312.00889; break; 
  case 62: return -317.35390; break; 
  case 63: return -323.48973; break; 
  case 64: return -329.62014; break; 
  case 65: return -334.97153; break; 
  case 66: return -341.11059; break; 
  case 67: return -347.25200; break; 
  case 68: return -353.39454; break; 
  case 69: return -359.88256; break; 
  case 70: return -366.89225; break; 
  case 71: return -373.34966; break; 
  case 72: return -378.63725; break; 
  case 73: return -384.78937; break; 
  case 74: return -390.908; break; 
  case 75: return -397.49233; break; 
  case 76: return -402.89486; break; 
  case 77: return -409.08351; break; 
  case 78: return -414.79440; break; 
  case 79: return -421.81089; break; 
  case 80: return -428.08356; break; 
  case 81: return -434.34364; break; 
  case 82: return -440.55042; break; 
  case 83: return -446.92409; break; 
  case 84: return -452.65721; break; 
  case 85: return -459.05579; break; 
  case 86: return -465.38449; break; 
  case 87: return -472.09816; break; 
  case 88: return -479.0326; break; 
  case 89: return -486.05391; break; 
  case 90: return -492.43390; break; 
  case 91: return -498.8110; break; 
  case 92: return -505.18530; break; 
  case 93: return -510.87768; break; 
  case 94: return -517.26413; break; 
  case 95: return -523.64021; break; 
  case 96: return -529.87914; break; 
  case 97: return -536.68138; break; 
  case 98: return -543.66536; break; 
  case 99: return -550.66652; break; 
  case 100: return -557.0398; break; 
  case 101: return -563.41130; break; 
  case 102: return -569.36365; break; 
  case 103: return -575.76613; break; 
  case 104: return -582.08664; break; 
  case 105: return -588.26650; break; 
  case 106: return -595.0610; break; 
  case 107: return -602.0071; break; 
  case 108: return -609.03301; break; 
  case 109: return -615.4111; break; 
  case 110: return -621.7882; break; 
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  case 111: return -628.0684; break; 
  case 112: return -634.8746; break; 
  case 113: return -641.7947; break; 
  case 114: return -648.833; break; 
  case 115: return -655.7563; break; 
  case 116: return -662.8093; break; 
  case 117: return -668.2827; break; 
  case 118: return -674.7696; break; 
  case 119: return -681.4191; break; 
  case 120: return -687.0219; break; 
  case 121: return -693.8195; break; 
  case 122: return -700.9393; break; 
  case 123: return -707.8021; break; 
  case 124: return -714.9208; break; 
  case 125: return -721.3032; break; 
  case 126: return -727.3498; break; 
  case 127: return -734.4796; break; 
  case 128: return -741.332; break; 
  case 129: return -748.4606; break; 
  case 130: return -755.2710; break; 
  case 131: return -762.4415; break; 
  case 132: return -768.0422; break; 
  case 133: return -775.0232; break; 
  case 134: return -782.2061; break; 
  case 135: return -790.2781; break; 
  case 136: return -797.4532; break; 
  case 137: return -804.6314; break; 
  case 138: return -811.812; break; 
  case 139: return -818.9938; break; 
  case 140: return -826.1746; break; 
  case 141: return -833.3585; break; 
  case 142: return -840.5386; break; 
  case 143: return -847.7216; break; 
  case 144: return -854.9044; break; 
  case 145: return -862.0870; break; 
  case 146: return -869.2725; break; 
  case 147: return -876.4612; break; 
  case 148: return -881.0729; break; 
  case 149: return -886.6934; break; 
  case 150: return -893.3102; break; 
 } 
} 
 
void centeratomsin3d(double coord[], int natoms, 
                                    int goodcoord, 
                                    int ncoord) 
{ 
 int atom; 
 int dim; 
 double cm3d[goodcoord]; 
 for(dim=0;dim<goodcoord;dim++) 
 { 
   cm3d[dim]=0.0; 
 
   //Find the center of mass in this dimension 
   for(atom=0;atom<natoms;atom++) 
    { 
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     cm3d[dim]=cm3d[dim]+coord[ncoord*atom+dim]; 
    } 
   cm3d[dim]=cm3d[dim]/natoms; 
 
   //Center all atoms 
   for(atom=0;atom<natoms;atom++) 
    { 
     coord[ncoord*atom+dim]-=cm3d[dim]; 
    } 
 } 
 
 
 return; 
} 
 
 
 
 
/* 
 Sets the initial position of all atoms an 
 approximatly spherical formation. 
*/ 
void initrandomdata(double coord[],int natoms,int ndims, 
                       double epsilon, double sigma) 
{ 
 int atom,dim; 
 
 /*The whole point of using this variable is to make sure atoms 
 only go into a phere, not into a cube, inscribed around it.*/ 
 double sum; 
 
 
 for (atom=0; atom<natoms; atom++) 
 { 
  //This loop initializes one atomic position 
  do 
  { 
   sum=0.0; 
   for (dim=0; dim<ndims; dim++) 
   { 
    coord[atom*ndims+dim]=1.0-2.0*((double)rand())/DIVISOR; 
    sum+=coord[atom*ndims+dim]*coord[atom*ndims+dim]; 
   } 
  } while (sum>1); 
 
 } 
 
  cout<< "atomic positions initialized at random"<<endl; 
  correctpositiontochangeenergy(coord,  natoms, 
                                     ndims,ndims, 
                                     epsilon,  sigma, 
                                    findenergy(coord, natoms, epsilon,  
sigma),/*current energy*/ 
                                    0.0/*the energy we want*/); 
  //optimizes the cluser 
  //cgopt(  coord,natoms,epsilon, sigma, 0.2,1e-3); 

159 



 

  /*compressto3Dbyfindingroot(coord, natoms, 
                         ndims, ndims, 
                         epsilon, sigma) */ 
  cout<< "energy has been driven to 0"<<endl; 
  //sdoptSafe(  coord,natoms,epsilon, sigma, 2.0,1e-2); 
  sdopt(  coord,natoms,epsilon, sigma, 0.2,1e-3); 
 
 
  cout<< "optimization done"<<endl; 
  /* 
  Optimization of a random cluster often leads to 
  strayaway atoms. This block of code checks for 
  that. 
  */ 
  bool strayatomsexist=false; 
  double straydistance=2.0*sigma; 
  for(atom=0;atom<natoms;atom++) 
  { 
   if (straydistance<mindistancetootheratoms(coord, natoms, 
                                    ndims, 
                                    ndims, 
                                    atom)) 
   { 
    strayatomsexist=true; 
   } 
  } 
 
  /*If stray atoms were found in the optimized cluster, 
  the whole procedure has to be repeated again.*/ 
  if (strayatomsexist) 
  { 
   initrandomdata( coord, natoms, ndims, 
                        epsilon,  sigma); 
  } 
 
  else if (findenergy(coord, natoms, epsilon,  
sigma)<=known_global_minimum(natoms)) 
  { 
   cout<<"                                                          
Accidentally initialized to global minimum: Reinitializing"<<endl; 
   initrandomdata( coord, natoms, ndims, 
                        epsilon,  sigma); 
  } 
  return; 
 
 
 cgopt(coord,  natoms, epsilon, sigma, 
                0.2, 
                0.01/*When gradient 
                smaller than this is reached, the 
                search terminates*/); 
 return; 
} 
 
void skiptonextline(ifstream &ifs) 
{ 
  char buffer[255]; 
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  ifs.getline(buffer,255); 
} 
 
 
void set_known_global_minimum_energy() 
{ 
 if(options.termination_energy==0) 
 { 
  options.termination_energy=known_global_minimum(options.natoms); 
 } 
 return; 
} 
 
int main(int argc, char *argv[]) 
{ 
 // cout<<INT_MAX<<endl; 
 
 
 
 ifstream ifs(&(*argv[1])); 
 if(!ifs) 
 { 
  cerr<<"Error: unable to open file" << endl; 
  return 1; 
 }; 
 
 ifs>>options.comment; 
 skiptonextline(ifs); 
 
 ifs>>options.natoms; 
 skiptonextline(ifs); 
 
 
 ifs>>options.goodcoord; 
 skiptonextline(ifs); 
 
 ifs>> options.epsilon>> options.sigma; 
 skiptonextline(ifs); 
 //cout<<a<<"   "<<b<<endl;   //debug 
 
 int n=options.goodcoord*options.natoms; 
 /*Vector containing the coordinates 
 of all LJ atoms positions 0,1,2 contain 
 x1, y1, z1 etc. 
 */ 
 double coord[n]; 
 zeroarray(coord, n); 
 
 
  ifs>>options.dimsfortravel; 
  skiptonextline(ifs); 
  ifs>>options.dimsforquench; 
  skiptonextline(ifs); 
  ifs>>options.way_to_optimize; 
  skiptonextline(ifs); 
  ifs>>options.way_to_travel; 
  skiptonextline(ifs); 
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  ifs>>options.travel_length_distribution; 
  skiptonextline(ifs); 
  ifs>>options.travel_step_size; 
  skiptonextline(ifs); 
  ifs>>options.travel_step_unit;// 1*,  sqrt(N)*, or N* 
  skiptonextline(ifs); 
  ifs>>options.number_of_travel_steps; 
  skiptonextline(ifs); 
  ifs>>options.way_to_quench; 
  skiptonextline(ifs); 
  ifs>>options.quench_step_size; 
  skiptonextline(ifs); 
  ifs>>options.quench_step_unit;// 1*,  sqrt(N)*, or N* 
  skiptonextline(ifs); 
  ifs>>options.number_of_quench_steps; 
  skiptonextline(ifs); 
  ifs>>options.quench_tolerance; 
  skiptonextline(ifs); 
  ifs>>options.quench_tolerance_unit;// 1*,  sqrt(N)*, or N* 
  skiptonextline(ifs); 
  ifs>>options.termination_energy; 
  skiptonextline(ifs); 
  ifs>>options.reporiting_depth; 
  skiptonextline(ifs); 
  ifs>>options.random_seed; //0 makes the system use time 
  skiptonextline(ifs); 
 
 ndims=options.goodcoord; 
 int linecounter; 
 
 for ( linecounter = 0;  linecounter < options.natoms;  linecounter++) 
     { 
 
         ifs>>coord[linecounter*ndims]>>coord[linecounter*ndims+1] 
             >>coord[linecounter*ndims+2]; 
          skiptonextline(ifs); 
  } 
 ifs.close(); 
 
 set_known_global_minimum_energy(); 
 
 long randomseedtime=time(NULL); 
 
 if ((options.random_seed==0)||(options.random_seed==-1)) 
 { 
  srand ( randomseedtime ); 
  cout <<"Random seed set to "<<randomseedtime<<endl; 
  if (options.random_seed==-1) 
   { 
 
    initrandomdata(coord,options.natoms, options.goodcoord, 
                        options.epsilon, options.sigma); 
 
    outputatoms(coord,options.natoms,options.epsilon, options.sigma); 
    cout<<endl; 
   } 
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 } 
 else 
 {srand ( options.random_seed );} 
 
 //ndims=1; 
 //cgopt(  coord,options.natoms,options.epsilon, options.sigma, 0.2,1e-3); 
 sdopt(  coord,options.natoms,options.epsilon, options.sigma, 0.2,1e-3); 
 /*optimizeWdatconstE( coord,  natoms, 
                         2,  3, 
                         epsilon,  sigma) ;*/ 
 
 outputatoms(coord,options.natoms,options.epsilon, options.sigma); 
 
 long runnumber; 
 
 double currentenergy, previousenergy; 
 currentenergy=findenergy( coord, options.natoms, 
       options.epsilon, options.sigma); 
 previousenergy=currentenergy; 
 
 for (runnumber=1; runnumber<=1000000; runnumber++) 
 { 
  oneNDtravel( coord, options.natoms, options.goodcoord,  
options.dimsfortravel,options.epsilon,  options.sigma); 
 
  currentenergy=findenergy( coord, options.natoms, 
       options.epsilon, options.sigma); 
 
 
  if ((options.reporiting_depth>3) || 
    (fabs(currentenergy-previousenergy)>0.05*options.epsilon)) 
  {outputatoms(coord,options.natoms,options.epsilon, options.sigma);} 
 
  previousenergy=currentenergy; 
 
  cout <<runnumber<< "     "<< currentenergy <<endl; 
 
  //when the known global minimum is reached, the program stops. 
  if (currentenergy<=options.termination_energy) 
  {return 0;} 
 } 
  //outputatoms(coord,natoms,epsilon, sigma); 
 return 0; 
} 
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APPENDIX B 
 
 
 

An Alternative Way for CO Ligation of Metallocycle 129c1 
 
In the carbonyl adsorption step of the Mo-promoted reaction metallocycle 159c3 could form 

instead of 159c2.  Although there is no energy preference for the formation of one of these 

intermediates over the other, 159c3 does not lead to a very different reaction path because it fails 

to transfer the carbonyl group into the metallocycle.  Instead it rearranges into 159c2 after 

overcoming a 1.9 kcal/mol free energy barrier.   

 

 

Figure 73  Two ways intermediate 129c1 can adsorb a CO. 
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APPENDIX C 
 
 
 

A Mechanism for the Mo-Promoted Reaction Where There Is No CO Adsorption 
Immediately Following the Oxidative Addition Step 

 
Because adding a CO from the media to metallocycle 129c1 required overcoming a 8.6 kcal/mol 

free energy barrier, we considered a pathway where CO insertion immediately followed the 

oxidative addition step.  

Starting with metallocycle 129c1 and using coordinate-driven methods, we found 

transition states leading from that minimum to metallocycles 155c2 and 155c3 (Figure 74). The 

height of the free energy barrier to get to 155c2 was 32.4 kcal/mol relative to 131c3.  The barrier 

that led to 155c3 was slightly higher, 34.0 kcal/mol.  

 

Figure 74  CO insertion into the metallocycle in an alternative mechanism of the Mo-promoted reaction. 

 
Because the barrier that led to 155c2 was slightly lower in free energy than the barrier 

that led to 155c3, we decided to explore what happens after the formation of metallocycle 155c2.  
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Therefore attempts were made to find the transition state between 155c2 and 157c1.  However, 

we discovered that this was a two-step process.  The first step required only 2.9 kcal/mol of free 

energy.  It did not change the connectivity but only the geometry around the molybdenum center 

leading to the intermediate 155c4 (Figure 75).  This was essentially a rearrangement of trigonal 

bipyramidal molybdenum center to octahedral geometry.  The free energy dropped from 20.0 

kcal/mol to 14.4 kcal/mol relative to 131c3.  

 

Figure 75  The two-step conversion of 155c2 to 157c1. 

 

In the next step, also shown in Figure 75, molybdenum is reductively eliminated from 

the ring system 155c4 via a transition state which is only 3.9 kcal/mol above metallocycle 155c4 

to form 157c1.  

Alternatively, instead of rearranging, 155c2 could react with a carbon monoxide.  The 

transition state for this reaction was not located, because placement of a carbon monoxide 

molecule in the vicinity of 155c2 followed by an energy minimization led to the formation of 

156c1, with no transition state.   
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Figure 76  CO adsorption by 155c2. 

 
We mapped parts of several pathways of the Mo-promoted reaction in which CO does not 

attach to the metal center immediately following the oxidative addition step.  All of these are 

shown in Figure 77.  They required overcoming free energy barriers much higher than the 

barrier between minima 129c1 and 159c2, so they do not contribute significantly to the reaction. 

 

 

Figure 77  Mo-promoted cyclocarbonylation mechanisms, where CO does not add to the Mo center 
immediately following the oxidative addition.   

Parts of pathways where there is an extra CO present are shown in blue and green.   
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APPENDIX E 
 
 
 

Mechanisms of the Rh-Catalyzed Reaction Where the Next Step After the Oxidative 
Addition Is Not Ligation of Rh By a CO 

 

Starting with 127c6, a pathway was determined for the remaining steps of the rhodium-catalyzed 

reaction: CO insertion into the ring system and reductive elimination of rhodium.  Insertion of 

CO cis to C1 between Rh and C1 to form 140c1 had a free energy barrier of 9.5 kcal/mol.  

Insertion of CO trans to C1 between Rh and C8 that led to the formation of 142c1 had a much 

higher free energy barrier, 26 kcal/mol.  Both of these processes are shown in Figure 78.  The 

large energy difference between the transition states leading to 140c1 and 142c1 was attributed 

to the carbonyl being in conjugation with the diene in 140c1.   

 

Figure 78  An alternative way to insert a CO into the metallocycle. 

 

Finally reductive elimination of rhodium from 140, shown in Figure 79, was found to 

require overcoming a 36.4 kcal/mol free energy barrier, which is 9.4 kcal/mol above the free 
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energy of 125c4.  These calculations were not consistent with experimental observations, so 

alternative intermediates were investigated. 

 

Figure 79  Reductive elimination of rhodium from 140c1. 

 

A carbon monoxide molecule could ligate rhodium in 140c1 before the reductive 

elimination. This two-step process, shown in Figure 80, requires overcoming a smaller free 

energy barrier than the one-step reductive elimination process described above.  The attachment 

of the carbonyl group to 140c1 was found to proceed without a barrier, resulting in the formation 

of metallocyclic intermediate 146c1.  In this process the free energy decreased by 16.3 kcal/mol. 

The next step, the reductive elimination of rhodium from 146c1, required overcoming a 21.9 

kcal/mol free energy barrier. 

 

Figure 80  Reductive elimination of rhodium from 140c1 preceded by ligation of rhodium by CO. 

 

Energetics of the Rh-catalyzed cyclocarbonylation pathways described in this appendix 

are shown in Figure 81.  The 125c4-127c6-140c1-146c1-147c1 pathway matches the 
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experimental observations.  However, the 125c4-127c6-148c1-149c2-147c1 pathway shown in 

Figure 58 is the preferred pathway. 

 

 

Figure 81  Energetics of the Rh-catalyzed cyclocarbonylation pathways described in this appendix.   

Parts of pathways with an extra CO present are shown in blue.   

 

Resonance structures are important to key minima in this appendix: 127c6, 140c1 and 

146c1 (Figure 82).  Based upon the bond lengths listed in Table 1, in 127c6 and 140c1 the bond 

between Rh and C8 has more η1 character and in 146c1 it has more η3 character. 
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Figure 82  Resonance structures of intermediates 127c6, 140c1 and 146c1.   

In 127c6 and 140c1 the bond between Rh and C8 has more η1 character and in 146c1 it has more η3 
character. 

 

 

Table 3  Selected bond lengths (in Å) for Intermediates 127c6, 140c1 and 146c1. 

Intermediate C6-Rh C7-Rh C8-Rh 

127c6 3.462 2.425 2.128 

140c1 3.149 2.375 2.039 

146c1 2.555 2.220 2.135 
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APPENDIX D 
 
 
 

Oxidative Addition of Rh+(CO)3
 

 

Figure 83  Oxidative addition in the Rh-catalyzed reaction, involving three CO groups. 
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We considered the possibility that three carbonyl groups ligate rhodium in the oxidative addition 

step.  The molybdenum-promoted reaction had three carbonyl groups involved, so we decided to 

start with the transition states we found for the molybdenum-catalyzed reaction. We replaced the 

molybdenum atom with a rhodium cation, fixed the distance between the carbon atoms that were 

supposed to make a bond and minimized the energy for all other degrees of freedom.  We 

searched for saddle points beginning with the resulting structures.  We also searched for 

transition states using coordinate-driven methods. 

One pathway we found led from 152c1 to 154c1. The transition state for this reaction was 

29.8 kcal/mol above 125c4 in free energy, which was somewhat high even for a five-membered 

ring formation.  The other transition state led from 151c2 to 153c1.  Its free energy was only 15.1 

kcal/mol above 125c4.  The lowest transition state we found for this reaction was 14.5 kcal/mol 

above 125c4.  It led from 151c1 to 148c1.   

Most of the three-carbonyl transition states and minima associated with the rhodium-

catalyzed ring closing step were closer in structure to the two-carbonyl-containing counterparts 

than to their molybdenum-containing cousins.  Rhodium atoms were not in the plane of the ring 

system.  The exception was the transition state between 152c1 and 154c1.   

 

 

Figure 84  A rhodium-catalyzed cycloisomerization reaction. 
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Although these transition states were low in energy, we decided to dismiss them for the 

following reasons: 

1) In known catalysis cases, the rhodium atom usually has only one or two carbonyl ligands.  

2) If a reaction is done without pumping CO through the solution, the six-membered ring system 

still forms (Figure 84), which indicates that the third CO ligand is not needed. 

3) We performed calculations without a solvent.  Toluene would have had a more favorable 

interaction with a system that had only two carbonyl groups. 

4) In analogous reactions, bulky steric groups attached to the carbons of the forming ring system 

speed up the reaction.  If the reaction proceeded through a three-carbonyl intermediate, the bulky 

groups would have slowed it down due to steric hindrance. 

That is why on the grounds of experimental evidence we decided that three-carbonyl 

pathways were not important in the ring forming step of rhodium-catalyzed cyclocarbonylation. 
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APPENDIX F 
 
 
 

A Mechanism for the Rh-Catalyzed Reaction Where CO Inserts into the Allene or Alkyne 
Prior to Oxidative Addition 

 

The two-CO pathways 
 

A mechanism involving CO insertion into the allene or alkyne, prior to oxidative addition, was 

considered.  The carbons of carbonyl groups of 125c4 were inserted between either C1, C7 or C8 

and Rh.  Only carbonyl groups cis to the carbon to which they were about to bond were used.  

The insertion of the carbonyl group between the rhodium and C7 was dismissed due to a very 

high electronic energy barrier of about 37 kcal/mol.  Insertion of the carbonyl group between C8 

and Rh gave a somewhat unexpected result.  In addition to the carbonyl insertion, a bond was 

formed between C7 and C2, leading to the formation of metallocyclic intermediate 142c3, which 

contained a six-membered ring.  The free energy barrier for this reaction was found to be 23.6 

kcal/mol.  

When we started with 125c4 and tried to move the carbonyl carbon towards the terminal 

carbon in the alkyne group, intermediate 125c4 rearranged into intermediate 160c1, forming a 

four-membered ring that includes the carbonyl carbon, the allene and the rhodium.  Intermediate 

160c1 is a high-energy structure.  We found it to be 17.7 kcal/mol higher in free energy than 

125c4.  The free energy barrier for the conversion from 125c4 to 160c1 was also high, 30.4 

kcal/mol.  
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Figure 85  Energetics for transferring a CO out of two from the Rh center to the hydrocarbon chain. 

 

Overall, we found that transferring a CO from the rhodium on 125c4 requires overcoming 

greater free energy barriers than the oxidative addition converting 125c4 to 127c6.  That is why 

we decided not to study the remainder of the pathways that begin with the conversion of 125c4 

to 142c2 and 160c1. 

 

The three-CO pathways 
 

Structures in which rhodium is ligated by two or three carbonyls tend to be lower in energy than 

those in which rhodium is ligated by only one carbonyl.  We tried to transfer one carbonyl, 

leaving the rhodium center with one other carbonyl group.  If rhodium could be left with two 

carbonyls, the products and the transition states for this carbonyl transfer might be lower in 

energy.   
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Figure 86  Energetics for transferring one CO out of three from the Rh center to the hydrocarbon chain. 

 

We decided to test this hypothesis.  To end up with two carbonyls on rhodium after 

transferring one carbonyl, we started with 151c1 (Figure 86), which is very similar to 125c4 

except that it has an extra carbonyl ligand on rhodium.  We started with compound 151c1 and 

looked for transition states and intermediates formed in this reaction step using coordinate-driven 

methods.  The transfer of the CO group to the middle allene carbon was not modeled because the 

barrier was too high for the analogous reaction beginning with 125c4.  As in the case of the 

reaction with two carbonyl groups, we considered only the CO groups that were cis to the site 

where they were about to transfer; however, for each such site there were two such carbonyl 

groups, not just one, as with 125c4.   

When we tried inserting the CO group that was trans to the empty site between the alkyl 

group and the rhodium, we got an unexpected result.  The bond between the rhodium and the 
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carbonyl group broke completely.  The carbonyl attached itself instead to the alkyl group. The 

nature of the rhodium-alkyl bond also changed from η2 to η1.  The product of this reaction, 

intermediate 164c1, had a surprisingly low free energy.  It was 6.2 kcal/mol below 125c4 (13.2 

kcal/mol below 151c1).  The free energy barrier for this reaction was 18.7 kcal/mol.  When we 

tried to transfer the other carbonyl group to a position between the rhodium and the alkyl group, 

we found the energy barrier to be over 22 kcal/mol relative to 151c1. 

Inserting a carbonyl between the rhodium and the allene also required overcoming large 

energy barriers.  The same transition state and product resulted whether we tried to transfer the 

CO that is cis or the one that is trans to the empty site.  The free energy barrier height was 22.1 

kcal/mol relative to 151c1 (29.1 kcal/mol relative to 125c4).  The product, 165c1, was similar to 

160c1. Just like 160c1, intermediate 165c1 contained a four-membered ring that included the 

carbonyl carbon, the allene and the rhodium.  Intermediate 165c1 was also high in free energy, 

9.2 kcal/mol relative to 125c4. 

Transferring the carbonyl group from rhodium before oxidative addition requires 

overcoming higher free energy barriers than closing the metallocyclic ring and then transferring 

the CO.  The system has to overcome a 23.6 kcal/mol free energy barrier to transfer a CO in the 

first step, while the barrier for the oxidative addition in the first step is only 16.8 kcal/mol.  So 

the ring must close in the oxidative addition step, as expected. 
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APPENDIX G 
 
 
 

Tables of Energies for Stationary Points Discussed in Chapter 4 

179 



 

Table 4  The computed energies of minima. 

Minimum Eelectronic (au) ZPE (au) E (au) H (au) G (au) 

CO -113.30691 -113.30188 -113.29900 -113.29785 -113.32598 
125c1 -646.73695 -646.56666 -646.54546 -646.54431 -646.62297 
125c4 -646.74257 -646.57261 -646.55138 -646.55023 -646.62921 
125c6 -646.74475 -646.57448 -646.55335 -646.55220 -646.63050 
126c1 -718.31909 -718.14123 -718.11740 -718.11625 -718.20101 
127c4 -646.75278 -646.57896 -646.55985 -646.55870 -646.63230 
127c5 -646.77145 -646.59759 -646.57849 -646.57734 -646.65197 
127c6 -646.77423 -646.60019 -646.58121 -646.58006 -646.65406 
129c1 -718.33146 -718.15099 -718.12873 -718.12758 -718.20967 
130c1 -646.74426 -646.56549 -646.54220 -646.54105 -646.62428 
130c2 -646.74528 -646.56613 -646.54306 -646.54191 -646.62470 
131c1 -718.33106 -718.15230 -718.12901 -718.12786 -718.21109 
131c2 -718.33382 -718.15467 -718.13160 -718.13045 -718.21324 
131c3 -718.33432 -718.15555 -718.13235 -718.13120 -718.21430 
132c3 -718.36439 -718.18225 -718.16074 -718.15959 -718.23905 
134 -646.74153 -646.56907 -646.54941 -646.54826 -646.62437 
140c1 -646.79667 -646.61982 -646.60197 -646.60082 -646.67221 
142c1 -646.75073 -646.57588 -646.55742 -646.55627 -646.62965 
142c3 -646.76223 -646.58644 -646.56830 -646.56715 -646.63954 
145c1 -646.78401 -646.60608 -646.58865 -646.58750 -646.65738 
146c1 -760.14521 -759.97037 -759.95190 -759.95075 -760.02413 
147c1 -760.16167 -759.97528 -759.95449 -759.95334 -760.03138 
148c1 -760.10647 -759.92487 -759.90212 -759.90097 -759.98400 
149c2 -760.13302 -759.94967 -759.92794 -759.92679 -760.00759 
151c1 -760.05911 -759.88205 -759.85696 -759.85581 -759.94404 
155c2 -718.30862 -718.12654 -718.10535 -718.10420 -718.18247 
155c3 -718.30183 -718.11988 -718.09852 -718.09737 -718.17642 
156c1 -831.64329 -831.45367 -831.42874 -831.42759 -831.51539 
157c1 -718.34609 -718.16106 -718.14082 -718.13967 -718.21617 
158c1 -718.31823 -718.13529 -718.11420 -718.11305 -718.19142 
159c2 -831.66536 -831.47658 -831.45096 -831.44981 -831.54001 
159c3 -831.66183 -831.47402 -831.44811 -831.44696 -831.53766 
160c1 -646.71859 -646.54607 -646.52637 -646.52522 -646.60098 
162c1 -831.68391 -831.49226 -831.46793 -831.46678 -831.55281 
163c1 -831.75401 -831.56005 -831.53667 -831.53552 -831.61993 
164c1 -760.08523 -759.90483 -759.88152 -759.88037 -759.96510 
165c1 -760.06103 -759.88130 -759.85785 -759.85670 -759.94060 

 

Eelectronic, ZPE, E, H and G stand for electronic energy, zero point energy, energy, enthalpy and 

free energy respectively. 
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Table 5  The computed energies of transition states. 

TS Eelectronic (au) ZPE (au) E (au) H (au) G (au) ImagF  
      (cm-1) 
Oxidative addition step Mo      
ts131c3-129c1, 
ts131c2-129c1 -718.32126 -718.14170 -718.11978 -718.11863 -718.19966 217.2i 
ts126c1-129c1 -718.25723 -718.08168 -718.05909 -718.05794 -718.13980 359.9i 
ts131c1-132c3 -718.31370 -718.13519 -718.11320 -718.11205 -718.19191 377.2i 
ts131c3-132c3 -718.31006 -718.13168 -718.10966 -718.10851 -718.18858 393.5i 
ts126c1-132c3 -718.27768 -718.10010 -718.07787 -718.07672 -718.15990 345.3i 
       
Carbonyl insertion and reductive elimination steps Mo    
ts129c1-159c2, 
ts129c1-159c3 -831.64192 -831.45572 -831.42961 -831.42846 -831.52190 39.3i 
ts159c2-162c1 -831.66386 -831.47463 -831.45008 -831.44893 -831.53695 169.8i 
ts162c1-163c1 -831.68172 -831.49050 -831.46699 -831.46584 -831.55000 194.6i 
ts159c3-159c2 -831.66044 -831.47263 -831.44767 -831.44652 -831.53465 56.2i 
ts129c1-155c3 -718.28172 -718.10160 -718.08021 -718.07906 -718.15920 415.3i 
ts129c1-155c2 -718.28589 -718.10571 -718.08448 -718.08333 -718.16259 406.5i 
ts155c2-158c1 -718.30508 -718.12299 -718.10273 -718.10158 -718.17775 142.0i 
ts158c1-157c1 -718.31301 -718.13031 -718.11015 -718.10900 -718.18510 215.1i 
       
Oxidative addition step Rh      
ts125c4-127c6, 
ts130c2'-127c6 -646.71824 -646.54822 -646.52861 -646.52746 -646.60236 314.8i 
ts125c4-127c4 -646.71452 -646.54486 -646.52504 -646.52389 -646.59981 416.5i 
ts125c6-127c5 -646.71482 -646.54482 -646.52521 -646.52406 -646.59896 307.5i 
ts130c1-127c6 -646.71327 -646.54304 -646.52345 -646.52230 -646.59704 465.0i 
ts130c2-127c5 -646.70883 -646.53909 -646.51929 -646.51814 -646.59377 474.8i 
ts130c1-134 -646.70862 -646.53882 -646.51906 -646.51791 -646.59368 277.8i 
ts125c1-134 -646.70796 -646.53811 -646.51856 -646.51741 -646.59217 281.1i 
       
Carbonyl insertion and reductive elimination steps Mo    
ts148c1-149c2 -760.11170 -759.93039 -759.91116 -759.91009 -759.98248 221.6i 
ts149c2-147c1 -760.11639 -759.93283 -759.91214 -759.91099 -759.98927 334.5i 
ts127c6-140c1 -646.76036 -646.58675 -646.56879 -646.56764 -646.63897 268.1i 
ts140c1-145c1 -646.73662 -646.56191 -646.54438 -646.54323 -646.61418 456.9i 
ts127c6-142c1 -646.73227 -646.55968 -646.54133 -646.54018 -646.61265 350.9i 
       
Carbonyl insertion into allene or alkyne prior to carbocyclization Rh    
ts125c4-142c3 -646.70595 -646.53676 -646.51677 -646.51562 -646.59154 385.3i 
ts125c4-160c1 -646.69499 -646.52534 -646.50537 -646.50422 -646.58075 389.1i 
ts151c1-164c1 -760.03152 -759.85437 -759.83081 -759.82966 -759.91416 389.2i 
ts151c1-165c1 -760.02623 -759.84891 -759.82525 -759.82410 -759.90884 404.0i 
       

Eelectronic, ZPE, E, H and G have the same meanings as in Table 4.  ImagF stands for imaginary 

frequency. 
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