
 

MEASUREMENT OF SHOULDER JOINT STRENGTH AND MOBILITY IN COMMON 

COLLEGIATE AGED OVERHEAD ATHLETES 

 
 
 
 
 
 
 
 

by 

Robert Daniel Ricci 

Bachelor of Science in Athletic Training, Slippery Rock University of Pennsylvania, 2003 

 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

School of Health and Rehabilitation Science in partial fulfillment  

of the requirements for the degree of Master’s of Science 

 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2006 
 

 



 ii 

 
UNIVERSITY OF PITTSBURGH 

 
SCHOOL OF HEALTH AND REHABILITATION SCIENCES 

 
 
 
 
 
 
 

This thesis was presented 
 

By: 
 
 

R. Daniel Ricci 
 
 

It was defended on 

October 30, 2006 

and approved by: 

 John P. Abt PhD, ATC  

Craig A. Wassinger MS, PT  

 Thesis Advisor: Joseph B. Myers PhD, ATC 

 
 
 

 



 iii 

 
 
 
 
 

MEASUREMENT OF SHOULDER JOINT STRENGTH AND MOBILITY IN COMMON 
COLLEGIATE AGED OVERHEAD ATHLETES 

 

R. Daniel Ricci MS, ATC 

 

University of Pittsburgh, 2006 

 

Introduction:  Previous research has stereotyped many overhead athletes as baseball pitchers. 

Due to the different physiological stresses in each overhead sport, it may not be appropriate to 

group all overhead athletes together.  The objective of this study was to show sport specific 

physical adaptations in common overhead sports.   

Methods: Forty-three healthy, male athletes participated in this cross-sectional study; fifteen 

baseball pitchers, fifteen volleyball athletes, thirteen tennis athletes and fifteen control athletes.  

Internal rotation (IR) and external rotation (ER) shoulder range of motion (ROM), glenohumeral 

internal rotation deficit (GIRD), external rotation gain (ERG), posterior shoulder tightness (PST) 

(supine and side-lying methods), shoulder strength and scapular kinematics were assessed in a 

neuromuscular research laboratory.  ROM was assessed with a goniometer while PST was 

assessed with a goniometer (supine) and carpenters’ square (side-lying).  Strength was assessed 

with an isokinetic dynamometer and scapular kinematics with an electromagnetic tracking 

device.  

Results: Pitchers had more dominant IR ROM than tennis athletes and less dominant IR ROM 

than control athletes.  Tennis athletes had the lowest IR ROM of all groups included in this 

study.  Volleyball athletes had less dominant IR ROM than control athletes.  Pitchers and tennis 

athletes had more GIRD than control athletes had. Pitchers and tennis athletes had higher 

between limb differences with the supine method of assessing PST. With the supine assessment, 

tennis athletes had increased dominant PST compared to control athletes; additionally, all 

overhead athletes had decreased non-dominant PST.  At 90° and 120° humeral elevation, 

pitchers had the most scapular elevation, volleyball athletes had more elevation than tennis 
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athletes did, and tennis athletes had less elevation than control athletes did.  There were no 

differences in external rotation ROM, total rotation ROM, or strength measures.  

Conclusion: Not all overhead athletes had the same physical characteristics.  The differences 

between sports in each of the variables could be due to the different amount of physiologic stress 

on the shoulder in each sport. These results may help to show healthy, sport specific adaptations 

to each sport.  Clinicians should develop sport specific rehabilitation protocols and return to play 

criteria for athletes to return to play earlier and stronger.   
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1.0  INTRODUCTION 

Many prior studies have grouped overhead athletes together as one population1-8.  

Baseball pitchers have been studied as the stereotypical overhead athlete1, 4, 6, 8-13. For example, 

Wilk et al8 presents rehabilitation techniques for the overhead throwing athletes, but only discuss 

baseball.  Burkhart et al12 state that the “dead arm” can be present in the overhead athlete, but go 

on to only use baseball pitchers as examples in their review paper. The term “dead arm” is 

defined as any pathologic shoulder condition in which the thrower is unable to throw with their 

pre-injury velocity and control because of a combination of pain and subjective unease in the 

shoulder12. Using the description by Burkhart et al12 in regards to the dead arm presenting in the 

overhead athlete, there is the possibility that this etiology is capable of being present in non-

throwing overhead athletes as well.  

Physical characteristics of the shoulder in overhead athletes may differ among overhead 

sports. Shoulder internal rotation velocities may range from 6000o/sec14 to 10,000o/sec15 for 

baseball pitchers.  During the tennis serve, shoulder internal rotation velocities may reach 

1500o/sec16.  There is no literature published, to the author’s knowledge, which calculates 

angular velocities for volleyball serving or spiking.  The different degree of internal rotation 

velocity is an example of the different demands placed on the shoulder between each sport.   

Research has suggested that the forceful, eccentric contractions as well as distraction 

forces may cause microtrauma to the external rotators during the follow through/deceleration 

phase in baseball, tennis and volleyball5, 8, 10, 15, 17-20.  This may lead to a decrease in posterior 

shoulder mobility and induce a loss of range of motion5, 9, 17-19, 21-24.  This assumption may 

explain the demonstrated differences in internal rotation loss between the different sports5, 9, 18, 19, 

24, 25.   Ellenbecker et al17 hypothesize that adaptations of the posterior capsule as well as 

musculoskeletal adaptations may serve to maintain the overall stability of the glenohumeral joint 

versus a predisposing injury in elite junior tennis players. Some research suggests that an osseous 
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adaptation of humeral retroversion coupled with posterior rotator cuff tightness are the culprits 

for the arc of motion shift8, 26.   

Internal rotation range of motion of the shoulder has been shown to be less in the 

dominant limb of baseball, tennis and volleyball players when compared to the non-dominant 

limb (Glenohumeral Internal Rotation Deficit or GIRD)9, 18, 24, 27, 28.  This loss of internal rotation 

varied with baseball typically having the most decrease in motion followed by tennis and 

volleyball athletes.  When compared bilaterally, athletes in overhead sports had an increase in 

external rotation (External Rotation Gain or ERG) and a decrease in internal rotation in the 

dominant limb9, 19, 24.  Some research has shown that pitchers had a greater difference between 

dominant and non-dominant limbs for external rotation range of motion, with no differences in 

internal rotation, compared to position players5.  These results suggest that external rotation gain 

is a further adaptation from the regular overhead throw to the pitching motion. These differences 

in range of motion are a good example of Wolff’s Law that states that the tissues adapt to the 

stresses that are placed on them29. There is literature available that presents a “total motion 

concept” in that the total arc of shoulder rotation (external rotation + internal rotation) motion is 

the same when compared bilaterally8. 

Ellenbecker and colleagues28 point out that although the GIRD between tennis and 

baseball players was roughly the same, there was a significant decrease in the total rotation range 

of motion in the dominant limb of tennis players but not in the non-dominant limb or in baseball 

players.  In similar studies, results show a decrease in dominant arm internal rotation, and total 

rotational range of motion as well17, 18.  It remains debatable in the literature if there is a decrease 

in internal rotation with accompanying increases in external rotation (total motion concept), or a 

loss of total rotational range of motion.  Perhaps the differences can be associated with the 

adaptations that are dependant on the stresses placed on the involved structures (Wolff’s Law).   

The shoulder must have enough laxity to allow excessive external rotation in throwers, but also 

maintain enough stability to prevent symptomatic humeral head subluxations8.  This “throwers 

paradox” could apply to other overhead motions as well.  Each of the overhead sports included in 

this study could have their own paradox since the demands of each on the shoulder are unique. 

There is no research, to the author’s knowledge, that compares internal rotation to posterior 

shoulder mobility in asymptomatic athletes competing in tennis and volleyball. 
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Research suggest that a tightened posterior shoulder may be a precursor to injury12, 19, 24, 

30, 31. Burkhart et al12 suggest that a tight posterior capsule initiates the pathologic cascade that 

leads to a SLAP lesion.  They predict that if it is possible to prevent the posterior capsule from 

tightening, the “dead arm” could be prevented.  In order to prevent the dead arm, all throwing 

athletes should habitually stretch the posterior/inferior capsule10.  Research shows that the 

humeral head tends to migrate in an anterior and superior direction from the tightened posterior 

capsule 32.  This altered kinematic pattern of the glenohumeral joint may lead to a decreased 

subacromial space, leading to subacromial impingement32.  Fleisig et al20 concluded from their 

study that a decrease in flexibility may inhibit proper throwing mechanics in baseball pitchers.  

By altering the throwing mechanics, further adaptations to the throwing motion may develop and 

lead to injury.  This principle may apply to other overhead motions as well.  The adaptations 

would vary depending on the sport.  If it is possible to reduce the amount of posterior shoulder 

tightness, perhaps the SLAP lesion and other pathologies are avoidable.   

Tyler et al23 proposed a new method to reliably quantify posterior shoulder tightness 

(PST).  This clinical measurement allows a quick and valid method to assess posterior shoulder 

mobility.   With a larger database and more research to quantify posterior shoulder mobility in 

overhead athletes, clinicians and researchers may have a better understanding of the importance 

of this clinical measurement. 

Scapula position and orientation in asymptomatic, throwing athletes has recently been 

investigated by Myers and associates13.  The study showed that the throwing athletes (baseball 

players) have significantly increased upward rotation, internal rotation, and retraction of the 

scapula during humeral elevation compared to control subjects.  These changes in scapular 

kinematics were speculated to be a chronic adaptation to a repetitive athletic task13.   When 

interpreting the results, perhaps all overhead sports have a chronic adaptation to their respective 

athletic task.  Due to the different degrees of biomechanical stresses previously mentioned, each 

sport may have different degrees of adaptations (Wolff’s Law). If the scapular stabilizers are not 

able to perform optimally, pathologies may arise33.  It is hard for research to show whether 

adaptations lead to pathologies or pathologies cause the adaptations. Since the current study 

population will be asymptomatic and cover several overhead sports, it is possible to gain a better 

understanding of how each overhead athlete adapts to their sport. This data, teamed with 
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previous data, should help researchers gain insight on ways to possibly prevent pathologies that 

may be related to altered scapular kinematics 13, 33, 34.   

Strength imbalance between the internal and external rotators may exist in overhead 

athletes due to the associated movements used for overhead sports34-37. In general, the tendency 

is that baseball athletes have the highest degree of imbalance (increased internal rotation with 

decreased external rotation strength) between internal rotation and external rotation followed by 

tennis and then volleyball8, 9, 19, 24, 25, 34, 37, 38.  This research shows that throwers have an increase 

in internal rotation and a decrease in external rotation strength in the dominant limb when 

compared to the non-dominate limb.  A balance between agonist/antagonist (external 

rotation/internal rotation) muscle groups in athletes with posterior cuff abnormalities of 65%-

72% should provide dynamic shoulder joint stabilization8, 38. Excessive strength imbalance has 

also been suggested to be related to shoulder pathology35, 36.  If the external rotators are not 

strong enough to control the forces that the internal rotators produce, the athlete may be 

predisposed to a shoulder injury37.  When the external rotators fatigue, this could produce the 

same effects as an imbalance, potentially including glenohumeral instability and impingement 25. 

It is difficult to compare exact strength ratios from study to study due to methodological 

differences.  The proposed study will allow comparisons between the different sports populations 

included. 

Another important aspect of shoulder strength to evaluate is the protraction and retraction 

strength ratio.  Like internal and external rotator strength imbalances, a strength imbalance in the 

shoulder protractors and retractors could possibly be a predisposing factor for injury.  Research 

has demonstrated that shoulders with impingement syndrome had a decrease in protraction force 

(decreased strength ratio) output when compared to the dominant shoulder of the healthy control 

group; as well as the contra-lateral side of the patient group1, 7.  Data also show side to side 

differences in the healthy control group for the protraction/retraction strength ratios as well 

(dominant side had lower protraction values than non-dominant)7.  If the serratus anterior and 

trapezius are not able to perform optimally, the possibility of altered scapular kinematics and 

associated pathologies arises7, 33. 

This idea of assessing the protraction/retraction strength ratio is a relatively new concept.  

Therefore, few studies use a validated method to gather the data.  None of the previous studies 

has included the sport populations included in the current study.  The data from this study, in 
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addition to previous data, will help to determine the importance of not only the internal/external 

rotation strength ratios, but the protraction/retraction strength ratio as well.   

All of the variables previously mentioned in this chapter (shoulder range of motion, 

posterior shoulder mobility, scapular kinematics, and strength assessment) could be adaptations 

to each sport.  The current study employed asymptomatic athletes.  This helped to demonstrate 

what adaptations might be present in healthy overhead athletes and help to develop a knowledge 

base for the healthy adaptations to each sport.  The current research study will help to define the 

non-throwing, overhead athlete.  Data from this study may help to develop prevention programs 

to focus strengthening exercises on certain muscles as well as define some of the healthy 

adaptations that the human body makes to repetitive, athletic overhead motions. 

1.1 SPECIFIC AIMS AND HYPOTHESES 

The purpose of this research project is to compare shoulder range of motion, posterior 

shoulder mobility, strength and scapular kinematics of collegiate aged athletes participating in 

common overhead sports.  There are four specific aims to meet this purpose.  The specific aims 

and hypotheses for the current research project include: 

1.1.1 Specific Aim and Hypothesis 1 

Specific Aim 1: Evaluate glenohumeral internal rotation and external rotation range of 

motion in asymptomatic overhead athletes (15 baseball pitchers, 15 tennis athletes and 15 

volleyball athletes) and a control group (15 track and/or soccer athletes) with a standard 

goniometer. 

Hypothesis 1: Baseball, tennis, and volleyball athletes will have a decrease in 

glenohumeral internal rotation range of motion of their dominant shoulder when compared 

bilaterally (GIRD).  Pitchers will have the most GIRD followed by tennis athletes, volleyball 

athletes and the control group.  Baseball, tennis and volleyball athletes will have a subsequent 

external rotation gain (ERG) with respect to the control group. 
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1.1.2 Specific Aim and Hypothesis 2 

Specific Aim 2: Using the protocol set forth by Tyler et al23, evaluate posterior shoulder 

tightness of 15 baseball pitchers, 15 tennis athletes, 15 volleyball athletes and 15 control subjects 

(track and/or soccer athletes). 

Hypothesis 2: Baseball pitchers, tennis athletes and volleyball athletes will have 

increased posterior shoulder tightness of their dominant limb with respect to the contralateral 

limb and control group.  Pitchers will have the most tightness followed by tennis athletes, 

volleyball athletes, and the control group. 

1.1.3 Specific Aim and Hypothesis 3 

Specific Aim 3: Using an electromagnetic tracking device, evaluate scapular kinematics 

of 15 baseball pitchers, 15 tennis athletes, 15 volleyball athletes, and 15 control subjects (track 

and/or soccer athletes) during a single elevation task. 

Hypothesis 3: Baseball, tennis and volleyball athletes will have a unilateral change in 

scapular kinematics on the dominant side presenting as increased upward scapular rotation, 

increased internal rotation, and increased retraction when compared to the contra-lateral side and 

the control group. 

1.1.4 Specific Aim and Hypothesis 4 

Specific Aim 4: Evaluate shoulder internal/external rotation and protraction/retraction 

strength on an isokinetic dynamometer in 15 baseball pitchers, 15 tennis athletes, 15 volleyball 

athletes and 15 control subjects (track and/or soccer athletes).   

Hypothesis 4a:  All overhead athletes will have increased internal rotation strength with 

respect to controls to varying degrees; Baseball pitchers will have greatest internal rotation 

strength followed by tennis athletes, volleyball athletes and the control group.  All overhead 

athletes will not have significantly increased external rotation strength but will be higher than the 
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control groups.  The internal rotation/external rotation strength ratio will be highest in the 

baseball pitchers, followed by tennis athletes, volleyball athletes and the control group. 

Hypothesis 4b:  All overhead athletes will have decreased protraction strength, increased 

retraction strength and associated lower protraction/retraction strength ratio when compared 

bilaterally.  Baseball pitchers will have the lowest strength ratio followed by tennis athletes, 

volleyball athletes and the control group. 
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2.0  MATERIALS AND METHODS 

2.1 SUBJECTS 

Forty-five male overhead athletes (15 baseball, 13 tennis, and 15 volleyball) and 15 

control athletes (male, soccer and/or track athletes) participated in the study.  The control group 

of male soccer and/or track athletes as well as baseball athletes were from the same university.  

Since there are no men’s tennis or volleyball varsity teams at this university, 15 volleyball and 

13 tennis athletes who practice/compete 3-4 times a week for 1-2 hours at a time were enrolled 

from local tennis and volleyball clubs.   

Exclusion criteria for all participants included history of fracture, sprain/strain, 

dislocation/subluxation of any soft tissue or bony tissue of the upper extremity; history of labral 

injury; and history of shoulder surgery of any kind.  Further exclusion criteria included any 

injury to the spinal column, ribs, or upper arm. The control athletes were not eligible to 

participate in the study if they had a significant history of participation in any overhead sports 

(participation will be defined as 1-2 hours per practice, 3-4 times per week). The inclusion 

criteria included the demand that all subjects were male, had participated in their respective sport 

for at least the previous 5 years to the time they are tested (control subjects will have no 

significant history of overhead sports participation).  Using an all male overhead athlete 

population for this study helped to control variability between genders. 

A power analysis for the sample size revealed that through the use of previous literature13 

(mean 26.90+7.08 baseball players and 18.01+9.36 control subjects at 90o humeral elevation for 

upward/downward scapular rotation) as well as estimation, an effect size of 1.11 with an alpha 

level of .05 (two tailed hypothesis test) will require 15 subjects per group to show a power of .80.  

This enabled possible differences to be seen between each respective sport and the control group. 
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2.2 INSTRUMENTATION 

2.2.1 Goniometer 

Shoulder internal and external rotation range of motion was measured with a standard 

goniometer.  A small bubble level attached to the stationary arm ensured a horizontal reference.  

Unpublished data conducted in the Neuromuscular Research Laboratory compared range of 

motion (ROM) measurements using a goniometer to an electromagnetic tracking device39.  These 

two devices correlated moderately for ER (ICC=0.728 SEM=0.90) and good for IR (ICC=0.854 

SEM=1.02).  Intrasession reliability and precession were high for both ER (ICC=0.942 

SEM=1.72) and IR (ICC=0.985 SEM=1.51) using the goniometer39.  The tester can expect 

approximately 3o of error for both ER and IR range of motion when using a standard 

goniometer39. 

2.2.2 MotionMonitor Electromagnetic Tracking Device 

Humeral and scapular kinematics were recorded with the MotionMonitor (Innovative 

Sports Training, Chicago, IL) 6 degrees of freedom electromagnetic motion analysis 

system.  The MotionMonitor system consists of a transmitter that creates an electromagnetic 

field.  Subjects wore receivers that detect this electromagnetic field.  Program software 

calculated the position and orientation of the receivers (Local Coordinate System, LCS) with 

respect to the electromagnetic transmitter and the X,Y, and Z axes of the Global Coordinate 

System (GCS) in the transmitter.  Using the anatomical landmarks described in Table 1 and the 

digitization process described later, calculations to determine the orientation of one body 

segment with respect to another are possible.  The accuracy in determining position and 

orientation is expected to have a root mean square error of .007 meters / 0.27o respectively40.   

Measurement of the mean intrasession in-vivo scapular kinematics has been reported to have 
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high reliability (ICC=0.97+0.03) and high precision (0.99+ 0.36o)40.  The hardware used for this 

study consists of an extended range direct current transmitter and 6 receivers. Data collection 

occurs at 100Hz.  

2.2.3 Biodex System 3 Isokinetic Dynomometer 

Shoulder protraction/retraction and humeral internal/external rotation strength was 

measured on a Biodex System 3 isokinetic dynamometer (Biodex Medical, Shirley, NY).  The 

Biodex dynamometer contains strain gauges and potentiometers that are capable of measuring 

torque from many positions13.  This isokinetic system has been demonstrated to have high 

reliability and validity (ICC=0.99~1.00) for torque and position measurements up to 300o/sec41.  

Test-retest reproducibility of shoulder protraction/retraction strength assessment was reported to 

be good to excellent (ICC=0.88-0.96) for the protocol used for the current research proposal7. 
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2.3 PROCEDURES 

All testing for this research project occurred in the Neuromuscular Research Laboratory 

(NMRL) at the University of Pittsburgh.  Testing took approximately one hour to complete.  

Subjects signed the informed consent form before any testing procedures began.  The subjects 

wore shorts and removed their shirts during testing procedures. 

2.3.1 Range of Motion Assessment 

Glenohumeral rotation range of motion (ROM) was measured with a standard 

goniometer42. The subject laid supine on a treatment table.  The tester placed their shoulder in 

90o abduction with the elbow slightly off the edge of the table.  The first tester provided a 

posterior directed, stabilizing force on the anterior aspect of the shoulder (coracoid and distal 

clavicle) for both internal rotation and external rotation throughout the ROM while moving the 

limb through the range of motion.  This stabilization limited scapular motion to only allow 

glenohumeral motion43.  The second tester measured the range of motion with the goniometer.  

The movement arm was aligned with the ulnar styloid. The axis of rotation for the goniometer 

was the middle of the olecranon process of the ulna.  A small bubble level was affixed to the 

stationary arm of the goniometer to ensure a horizontal reference. A towel placed under the 

humerus ensured that both the humerus and scapula were in the same plane.  All measurements 

started with the forearm perpendicular to the floor.  The first tester provided passive external 

rotation (ER) while maintaining stabilization (Figure 1). End range of motion occurs when 

shoulder rotation ceases or scapular motion can no longer be restricted.  The same goniometer 

landmarks and stabilization techniques as external rotation were used for shoulder internal 

rotation data collection.  However, passive internal rotation (IR) range of motion was assessed 

(Figure 2).  The mean of three measurements for each limb was saved for statistical analysis.  

Bilateral measurements allow ERG and GIRD to be calculated.  
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Figure 1 Tester/subject positioning for ER ROM assessment 
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Figure 2 Tester/subject positioning for IR ROM assessment 

2.3.2 Posterior Shoulder Tightness Assessment (Side –Lying) 

Posterior shoulder tightness (PST) was measured following the protocol set forth by 

Tyler et al23.  The tester used a skin pen to mark the subjects’ medial ulnar epicodyles bilaterally.  
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The subjects lay on the contra-lateral side to that being measured.  The subjects were positioned 

on the treatment table with their hips and knees at approximately 90o angles to ensure maximum 

stability.  The tester aligned the subject so that both of the subject’s acromion processes formed a 

line perpendicular to the table.  For subject comfort, the non-testing arm (arm that is in contact 

with the tabletop) was positioned under their head (Figure 3).  This subject position helped to 

promote neutral flexion, extension and rotation of the spine23.  

The tester stood facing the subject.  With the subject’s arm in 90o of abduction with 

neutral shoulder rotation and elbow relaxed, the tester provided manual scapular stabilization in a 

fully retracted position by holding the lateral border of the subjects’ scapula.  The tester 

performed as many practice measurements as needed in order to maintain the scapula as close as 

possible to the retracted, starting position.  Once adequate stabilization occurs, the tester brought 

the subject’s arm into straight horizontal adduction without allowing humeral rotation.  It was 

imperative that the subject be able to totally relax and let the researcher have complete control of 

the extremity throughout the duration of this assessment.  If the subject was not able to relax or 

adequate scapular stabilization was not provided throughout the duration of horizontal adduction, 

that specific trial was rejected.  If neutral rotation of the arm and shoulder was not maintained, 

the trial was rejected as well.  An additional trial replaced any rejected trials. The second tester 

measured the distance from the medial epicondyle of the arm being tested to the tabletop.  A 

perpendicular measurement to the table was ensured by the use of a metal carpenters’ square.  

The shorter side of the square remained against the table (Figure 3).  This distance represented 

the amount of posterior shoulder mobility. The mean of 3 measurements from each shoulder 

allowed the PST difference between dominant and non-dominant limbs to be calculated.   
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Figure 3 Tester/subject positioning for side-lying PST assessment 
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2.3.3 Posterior Shoulder Tightness Assessment (Supine Method) 

Posterior shoulder tightness was assessed with the subject lying supine on the treatment 

table.  The tester used a skin-marking pen to mark the lateral most border of the acromion.  This 

mark represented the joint center during horizontal adduction of the upper limb.  The subject was 

instructed to lie on his back comfortably and relax.  The first tester placed a standard goniometer 

over the superior aspect of the shoulder (superior in relation to anatomical position) with the axis 

of rotation centered over the mark on the lateral aspect of the acromion.  The second tester 

stabilized the subject’s scapula.  In order to do this, the subject was asked to raise his shoulder 

off the table so the tester could grasp his scapula.  Once the tester was able to grasp the scapula, 

the tester instructed the subject to relax his shoulder and relax once again on the table.  With the 

subject totally relaxed, the tester then passively pushed the subject’s scapula into a position of 

maximum retraction.  Once the scapula was sufficiently stabilized in this retracted position, the 

subject’s limb was placed in a position of neutral horizontal adduction/abduction (parallel to the 

table and floor).  This was the starting position for the range of motion assessment. While the 

first tester followed the limb with the movement arm of the goniometer, the second tester 

passively horizontally adducted the subject’s limb while maintaining sufficient scapular 

stabilization.  Slight over pressure was applied to the limb once an end range of motion was 

reached.  This helped to ensure that this was the anatomical end range of motion and not as result 

of the subject contracting their muscles to prevent further motion.  This arc of horizontal 

adduction range of motion represented the posterior shoulder mobility.  It was imperative that the 

subject be able to totally relax and let the researcher have complete control of the extremity 

throughout the duration of this assessment.  If the subject was not able to relax or adequate 

scapular stabilization was not provided throughout the duration of horizontal adduction, that 

specific trial was rejected.  An additional trial replaced any rejected trials.  The mean of 3 

measurements from each shoulder allowed the supine PST difference between dominant and 

non-dominant limbs to be calculated.  The tester/subject positioning is shown in Figure 4. 
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Figure 4 Tester/Subject positioning for Supine PST assessment 

2.3.4 Scapular Kinematic Assessment 

Subjects were fitted with electromagnetic tracking receivers used in conjunction with the 

Motion Monitor system to track scapular kinematics.  The subjects removed their shirts to make 

marker placement more accurate and secure.  Electromagnetic receivers were placed on the 

seventh cervical vertebrae (C7), bilateral acromia, and one on the mid-shaft of each humerus.  

Hypoallergenic tape (The Kendall Co. Mansfield, MA) as well as double-sided adhesive disks 

(3M Health Care, St. Paul, Minn.) secured all receivers. The acromion receivers were affixed to 

the flat portion of the superior, scapular spine between the acromion angle (AA) and 

acromioclavicular joint (AC).  The thoracic receiver was placed on the spinous process of the 

seventh cervical vertebrae.  Humeral receivers were attached by means of a neoprene cuff around 

the upper arm at the mid-point of the humerus. The last receiver was attached to a plastic stylus 
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to digitize bony landmarks on the thorax, scapula and humerus. This digitization process allowed 

transformation of the receiver data from a global coordinate system (GCS) to an anatomically 

based, local coordinate system (LCS)44.   

In order to develop a LCS with respect to the GCS of the research lab, each bone/region 

involved for the assessment (scapula, humerus, and thorax) must have at least three anatomical 

points included in the digitization process.  There are only two anatomical landmarks on the 

humerus, the medial and lateral epicondyle.  In order to produce an orthogonal LCS for the 

humerus, the glenohumeral joint center is determined by a least square algorithm for the point of 

the humeral head with the least movement during several short arc movements of the humerus45.  

Twenty short arc movements were adequate for this calculation. The glenohumeral joint center is 

the third anatomical landmark on the humerus and allowed calculations to create a LCS for the 

humerus.  The anatomical points are presented and in Table 1.  The anatomical landmarks that 

were used for digitization are the ones suggested by the International Shoulder Group of the 

International Society of Biomechanics46.  Figure 5 demonstrates the LCS for each respective 

body segment. For each anatomical landmark, the point was palpated and then digitized by the 

examiner.   
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Table 1 Description of antomical landmarks 

Bone 
Segment Bony Landmark Description of Landmark 

Thorax   
 Eighth thoracic spinous process (T8) Most dorsal point 
 Processus xiphoideus (PX) Most caudal point of sternum 
 Seventh cervical spinous process (C7) Most dorsal point 

 
Incisura jugularis (IJ) Most cranial point of sternum (suprasternal 

notch) 
Scapula   

 Angulus acromialis (AA) Most lateral-dorsal point of scapula 

 

Trigonum spinae (TS) 
Midpoint of triangular surface of medial 
border of scapula in line with scapular spine 

 Angulus inferior (AI) Most caudal point of scapula 
Humerus   

 Medial epicondyle (ME) Most medial point on the medial epicondyle 
 Lateral epicondyle (LE) Most lateral point on the lateral epicondyle 

  

Glenohumeral joint center (GH) Estimated with a least squares algorithm for 
the point of humerus with the least motion 
during several short arc humeral 
movements 
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Figure 5 ISG definitions of LCS for anatomical regions 

 

A PVC pipe guide kept the subjects’ arms in the scapular plane (Figure 6).  The scapular 

plane was identified as 30o anterior to the frontal plane for this study.  Shoulder rotation was in 

the neutral position. The subject maintained this position by keeping their thumbs pointing 

towards the ceiling. The subject performed 10 elevation motions at a rate of 4 seconds for one 

repetition (2 seconds raising and 2 seconds lowering) aided by a metronome.  The mean of the 

middle five elevation motions was saved for statistical analysis.  The motions that were analyzed 

during statistical analysis were scapular: protraction/retraction, elevation/depression, 

upward/downward rotation, anterior/posterior tipping and internal/external rotation and are 

presented in Figure 7. 
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Figure 6 Plastic guide tubes to keep elevation in scapular plane 
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Figure 7 ISG definitions of scapular motions that were assessed 

 

 

2.3.5 Strength Assessment 

In an effort to minimize the effect of fatigue on scapular position/kinematics that has 

been documented by Crotty and colleagues47, strength assessment was the last variable collected.   

The Biodex setup for protraction and retraction followed the protocol described by Cools 

et al48. Shoulder protraction and retraction is not an angular movement. For that reason, the close 

kinetic chain (CKC) device was attached to the Biodex and aligned in the horizontal plane.  In 

order to maintain a neutral shoulder internal/external rotation, the handgrip for the CKC device 

was set so that the handle was vertical.  The chair and the dynamometer were rotated in the same 

direction in order to place the subject’s upper extremity in the scapular plane (30o anterior to the 
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frontal plane).  The chair was rotated to 15o and the dynamometer to 45o.  Chest and waist straps 

helped to secure the subject in the chair.  A handle was also available for the subject to hold onto 

with the non-testing hand for added stability (Figure 8).  The first test speed was set at 12.2 cm/s 

(60o/s), followed by the faster speed of 36.6 cm/s (180o/sec).  The test range of motion was set by 

having the subject perform a protraction and retraction motion throughout his maximum range of 

motion.  Gravity correction was not calculated because this test will occur in the horizontal plane 

and is a linear motion.  Since scapular protraction and retraction are not common motions, the 

tester instructed the subject on the movements.  Five repetitions at minimal effort followed by 

three repetitions at the test speed allowed a familiarization period at each test speed. 

 

 

Figure 8 Biodex setup for shoulder protraction/retraction strength assessment 

 

The subject performed five repetitions at 12.2 cm/s followed by ten repetitions at 

36.6cm/s.  There was a ten second rest period between the test speeds.  There was no verbal 
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encouragement during the data collection.  For the purposes of this study, only concentric data 

was collected and analyzed for protraction and retraction strength.  Data collection occurred 

bilaterally.  The protraction/retraction strength ratio at each speed and average peak torque 

normalized to bodyweight for protraction and retraction at each speed was saved for statistical 

analysis. 

Following a five-minute rest period after the conclusion of the protraction/retraction 

strength assessment, internal/external rotation strength was assessed on the Biodex.  Proper 

patient positioning is essential in order to allow the rotator cuff to perform optimally (i.e. length 

tension relationship, least amount of constraint on the rotator cuff)34. The subject’s arm was 

placed in 45o abduction and 30o anterior to the frontal plane (scapular plane) (Figure 9).  Care 

was taken to ensure the proper positioning of the subject so that the axes of both the 

glenohumeral joint and the dynamometer were aligned.  The range of motion for internal and 

external rotation was set at 50o IR and 90o ER (160o arc of motion).  The subject then performed 

five repetitions at 60o/sec.  There was a 1-minute rest period before the ten repetitions began at 

300o/sec. The internal/external rotation strength ratio at each speed as well as average peak 

torque normalized to bodyweight was collected bilaterally at each speed and used for statistical 

analysis.   
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Figure 9 Biodex setup for shoulder IR/ER strength assessment 
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2.4 DATA REDUCTION AND ANALYSIS 

Table 2 presents all of the dependant variables for the current study that were included in 

the statistical analysis.  

 

 

Table 2 List of dependant variables 

Type of tests  Dependant Variables 
ROM    
   Internal rotation ROM (deg.) 
   External rotation ROM (deg.) 
   GIRD (IR non-dominant - IR dominant) (deg.) 
   ERG (ER non-dominant - ER dominant) (deg.) 
Strength    
   ER average peak torque normalized to bodyweight @ 60o/sec (Nm/kg) 
   IR average peak torque normalized to bodyweight @ 60o/sec (Nm/kg) 
   IR/ER strength ratio @ 60o/sec* 
   IR average peak torque normalized to bodyweight @ 300o/sec (Nm/kg) 
   ER average torque normalized to bodyweight @ 300o/sec (Nm/kg) 
   IR/ER strength ratio @ 300o/sec* 

   
Protraction average peak force normalized to bodyweight @12.2 cm/sec 
(Nm/kg) 

   
Retraction average peak force normalized to bodyweight @ 12.2 cm/sec 
(Nm/kg) 

   Protraction/Retraction strength ratio @ 12.2 cm/sec*  

   
Protraction average peak force normalized to bodyweight @ 36.6 cm/sec 
(Nm/kg) 

   
Retraction average peak force normalized to bodyweight @ 36.6 cm/sec 
(Nm/kg) 

   Protraction/Retraction strength ratio @ 36.6 cm/sec*  
PST    
   Non-dominant/dominant PST ratio 
Scapular Kinematics  
   Scapular internal/external rotation (deg.) 
   Scapular upward/downward rotation (deg.) 
   Scapular anterior/posterior tilt (deg.) 
   Scapular protraction/retraction (deg.) 
      Scapular elevation/depression (deg.) 
*The strength ratios are ratios between the peak torques normalized to bodyweight 

 

 

@ 30, 60, 90, and 120o of 

humeral elevation 
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In order to calculate the scapular kinematic dependent variables, scapular kinematic data 

was filtered with a low-pass, fourth-order, zero-phase shift, filter with a cutoff frequency of 10 

Hz.  The position and orientation data from the thoracic, humeral and scapula receivers were 

used to form local coordinate systems (LCS) in accordance with the International Shoulder 

Group (ISG) of the International Society of Biomechanics.  Figure 4 demonstrates the LCS and 

Table 3 defines the LCS.   

 

 

Table 3 ISG definitions of LCS 
Local Coordinate 

System Axis Definition 
   

Thorax 
yt Vector from midpoint of PX and T8 to the midpoint of IJ and C7 

 
xt 

Vector perpendicular to the plane fitted by midpoint of PX and T8, the 
midpoint of IJ and C7, and IJ 

 zt Vector perpendicular to xt and yt 
 Origin IJ 
   

Scapula xs Vector from TS to AA 

 
ys 

Vector perpendicular to the plane fitted by TS, AA, and AI (scapular 
plane) 

 zs Vector perpendicular to xs and ys 
 Origin AA 
   

Humerus 
yh Vector from midpoint of ME and LE to GH 

 
xh Vector perpendicular to the plane fitted by GH, ME, and LE 

 zh Vector perpendicular to yh and xh 
 Origin GH 

 

 

 

With the subject standing in the anatomical position, the positive Y-axis is vertical, 

positive X-axis is horizontal and positive Z-axis is posterior.  Internal/external scapular rotation 

was determined as motion about the Y-axis, upward/downward rotation about the Z-axis, and 

anterior/posterior tipping about the X-axis as chosen by the International Shoulder Group46 
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(Figure 5).  Scapula and humeral orientation with respect to the thorax was determined by Euler 

angle decompositions.  Rotation sequences of Euler angles were chosen based on standards set 

by the International Shoulder Group46.  The clavicle attaches the scapula to the thorax.  Thus, the 

position of the scapula can be described as the orientation of the vector from the jugular notch 

(IJ) to the acromion (AA) with respect to the thorax LCS since the clavicle is a rigid body with a 

fixed length.  This vector closely relates to the anatomical orientation of the clavicle.  Scapular 

protraction and retraction angles were calculated as the angle between the clavicular vector (IJ to 

AA) and the frontal plane; scapular elevation/depression angles used the same vector with 

respect to the transverse plane of the thorax.  Scapular position and orientation at the different 

humeral elevation angles (0o, 30o, 60o, 90o, 120o) were recorded.  Research has shown that above 

120o humeral elevation, data tends to be inaccurate49.  Scapular kinematic variables were 

calculated and processed using Matlab 12 (The MathWorks, Inc., Natick, Mass.). The mean for 

the variables that Matlab produced was entered into SPSS 13.0 (SPSS Inc, Chicago, Ill.) for 

statistical analysis.  

Subject demographics, PST difference, and the amount of GIRD and ERG were analyzed 

for between group differences with a one-way ANOVA.  A one-within, one-between analysis of 

variance (two-way ANOVA) was performed on range of motion, total rotation range of motion, 

supine and side-lying PST assessment data with a between factor of group and within factor of 

limb.  Strength variables were analyzed with a one-within, one-between ANOVA at each speed 

to compare between group and limb for both the slow speed (60°/sec for internal/external 

rotation and 12.2 cm/sec for protraction and retraction) and fast speed (300°/sec for 

internal/external rotation and 36.6 cm/sec for protraction and retraction).  A one-within, one-

between (two-way) ANOVA was run on scapular kinematic data at each angle for each variable 

(separate ANOVA for upward/downward rotation at 0°, separate ANOVA for upward/downward 

rotation at 30°, etc.) to compare between group and limb at each humeral elevation angle.  

Scapular kinematic data and strength variables had a between factor of group and within factor 

of limb.  A Bonferroni minimally significant difference (MSD) showed where any significant 

differences arose for the one-within, one between ANOVA.  All statistical analyses were 

performed in SPSS Version 13.0 (SPSS Science Inc, Chicago, Ill.). The level of significance was 

set at an alpha level of 0.05 a priori. 
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3.0  RESULTS 

The demographics for the subjects are presented in TABLE 4.  Fifty-eight athletes 

participated in the current study (fifteen baseball pitchers, fifteen volleyball athletes, fifteen 

control athletes (track and/or soccer athletes), and thirteen tennis athletes).  All subjects were 

college-aged, male athletes who were symptom free from any shoulder pathology with no prior 

history of a diagnosed pathology in the shoulder or upper extremity.  Statistical analysis showed 

that there was a significant interaction between sport and height (p < 0.001).  Volleyball athletes 

were taller than baseball pitchers (p = 0.016), tennis athletes (p < 0.001), and control athletes      

(p < 0.001).  There was also a significant interaction between sport and weight (p < 0.001).  

Control athletes were lighter than baseball pitchers (p = 0.001) and volleyball athletes (p = 

0.006). 

 

Table 4 Subject Demographics 

Baseball Tennis Volleyball Control 
 (n=15) (n=13) (n=15) (n=15) 
  Mean  ± SD Mean  ± SD Mean  ± SD Mean  ± SD 

Height (cm)  181.54 7.08 177.38 5.04 188.40 2.76 177.67 5.30
Mass (kg) 88.05 14.78 75.75 6.64 82.58 4.58 72.43 8.57

Age (years) 20.00 1.73 21.20 1.10 21.33 1.51 20.71 1.25
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3.1 RANGE OF MOTION ASSESSMENT 

3.1.1 Shoulder Internal Rotation Range of Motion 

Shoulder internal rotation range of motion is presented in TABLE 5 and Figure 9. The 

Minimum Significant Difference (MSD) and the mean differences between each group are 

presented in TABLE 6 and TABLE 7.   With an adjusted alpha level of p = 0.00625, a 

statistically significant group by limb interaction (p < 0.001, MSD = 3.258) was found with 

internal rotation range of motion. Post hoc comparisons revealed that baseball, volleyball and 

tennis athletes had less dominant limb, internal rotation range of motion than their non-dominant 

limb (Mean Difference = 12.6, 4.4, 11.0 respectively).  Baseball pitchers had more dominant 

limb internal rotation than tennis athletes (Mean Difference = 6.99) and less internal rotation 

than control athletes (Mean Difference = 4.62) did.  Volleyball athletes had less dominant limb 

internal rotation than control athletes (Mean Difference = 11.61). Tennis athletes had less 

dominant internal rotation than volleyball athletes did (Mean Difference = 4.92) and control 

athletes (Mean Difference = 11.61) as well.  Baseball players had more non-dominant limb 

internal rotation than volleyball athletes (Mean Difference = 10.34), tennis athletes (Mean 

Difference = 8.56), and the control athletes (Mean Difference = 6.69).  Volleyball athletes had 

less non-dominant limb internal rotation than the control athletes (Mean Difference = 3.64). 

 

Table 5 Shoulder Rotation Range of Motion 

 Baseball Tennis Volleyball Control 
  Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Dominant         

Internal Rotation (°) 41.7 5.9 34.7 7.5 39.6 7.7 46.3 13.1 
External Rotation (°) 132.0 10.4 129.6 11.5 126.1 8.4 120.3 7.0 

Total Rotation ROM (°) 173.7 10.3 164.3 12.8 165.7 8.4 166.6 14.1 
Non-Dominant   

Internal Rotation (°) 54.3 8.3 45.7 7.5 44.0 7.7 47.6 12.9 
External Rotation (°) 119.7 9.5 120.7 12.7 118.8 5.9 114.3 5.8 

Total Rotation ROM  (°)  174.0 13.9 165.4 13.6 162.8 8.1 161.9 15.5 
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Table 6 Mean Differences for Dominant Shoulder Internal Rotation 

Baseball Volleyball Tennis Control MSD = 
3.25 41.71 39.64 34.72 46.33 

Baseball 
41.71 

-----    

Volleyball 
39.64 

2.07  -----   

Tennis 
34.72 

*6.99 *4.92 -----  

Control 
46.33 

*4.62 *6.69 *11.61 ----- 

* Significant mean difference 
 

 

Table 7 Mean Differences for Non-Dominant Shoulder Internal Rotation 

Baseball Volleyball Tennis Control MSD = 
3.25 54.30 43.96 45.74 47.60 

Baseball 
54.30 

-----    

Volleyball 
43.96 

*10.34 -----   

Tennis 
45.74 

*8.56 1.78 -----  

Control 
47.60 

*6.69 *3.64 1.86 ----- 

* Significant mean difference 
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Figure 10 Shoulder Internal Rotation Range of Motion 

 

 

 

3.1.2 Shoulder External Rotation Range of Motion 

External rotation range of motion results are presented in TABLE 5.  No statically 

significant group by limb interaction was found (p = 0.103) for external rotation range of motion. 
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3.1.3 Total Shoulder Rotation Range of Motion 

The results for total rotation range of motion are presented in TABLE 5.  No statistically 

significant differences were present with group by limb interactions (p = 0.250) for total 

rotational range of motion.   

 

3.1.4 Glenohumeral Internal Rotation Deficit (GIRD) and External Rotation Gain (ERG) 

GIRD and ERG results are presented in TABLE 8 and Figure 11.  There was a 

statistically significant between group interaction for GIRD (p < 0.001). Baseball pitchers had 

more GIRD than control athletes had (p = 0.001).  Tennis athletes had more GIRD than control 

athletes had (p = 0.006) as well.  No statistically significant differences were found with between 

group comparisons (p = 0.119) for ERG.   

 

 

Table 8 Glenohumeral Internal Rotation Deficit / External Rotation Gain Measurement  

 Baseball Tennis Volleyball Control 
  Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Glenohumeral Internal Rotation 
Deficit (°) -12.6 7.9 -11.0 5.9 -4.3 7.8 -1.3 7.3 
External Rotation Gain (°) 12.3 8.1 8.8 9.1 7.3 7.0 6.0 7.4 
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Figure 11 Glenohumeral Internal Rotation Deficit 

  

3.2 POSTERIOR SHOULDER TIGHTNESS 

Posterior shoulder tightness (PST) results are presented in TABLES 9, 10, 11, Figure 12.  

The mean differences for dominant and non-dominant PST assessment with the supine method 

are presented in TABLE 10 and TABLE 11.  Post Hoc comparisons revealed that baseball 

pitchers, volleyball athletes, and tennis athletes all had more between limb difference in 

horizontal adduction than control athletes with the supine method of assessment (Mean 

Difference = 8.03, 6.15, 8.05 respectively). With an adjusted alpha level of p = 0.00625, a 

significant group by limb interaction was found for posterior shoulder tightness with the supine 
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assessment method (p = 0.002; MSD = 2.72).  Tennis athletes had less dominant shoulder 

horizontal adduction than control athletes (Mean Difference = 3.23).  Baseball pitchers, 

volleyball athletes, and tennis athletes all had more non-dominant shoulder horizontal adduction 

than control athletes (Mean difference = 6.67, 5.33, 4.66 respectively).  There was also a 

significant between group interaction (p = 0.002) for the supine assessment difference 

(dominant–non-dominant).  Baseball pitchers (p = 0.005) and tennis athletes (p = 0.008) had a 

larger difference than control athletes. No significant interactions were found for the side-lying 

assessment method (p = 0.214) or the side-lying difference (p = 0.224). 

 

 

Table 9 Posterior Shoulder Tightness Measurement 

 Baseball Tennis Volleyball Control 
  Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Dominant         

Supine (°) 105.93 5.88 103.90 7.62 106.47 5.98 107.13 6.85
Side-Lying (cm) 31.94 1.70 33.39 1.46 32.48 1.09 30.82 1.13

         
Non-Dominant         

Supine (°) 113.96 9.25 111.95 6.52 112.62 4.54 107.29 10.27
Side-Lying (cm) 29.67 1.44 31.13 1.35 31.79 1.20 30.16 1.48

         
Supine PST Difference (°) -8.02 7.08 -8.05 5.92 -6.16 3.44 -0.16 7.23

Side-Lying PST Difference 
(cm) 2.27 1.77 2.26 0.75 0.69 0.64 0.66 0.85

 

 

 

Table 10 Mean Differences for Dominant Shoulder, Supine PST Assessment 

Baseball Volleyball Tennis Control MSD = 
2.72 105.93 106.47 103.90 107.13 

Baseball 
105.93 

-----    

Volleyball 
106.47 

0.54 -----   

Tennis 
103.90 

2.03 2.57 -----  

Control 
107.13 

1.20 0.66 *3.23 ----- 

* Significant mean difference 
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Table 11 Mean Differences for Non-Dominant Shoulder, Supine PST Assessment 

Baseball Volleyball Tennis Control MSD = 
2.72 113.96 112.62 111.95 107.29 

Baseball 
113.96 

-----    

Volleyball 
112.62 

1.34 -----   

Tennis 
111.95 

2.01 0.67 -----  

Control 
107.29 

*6.67 *5.33 *4.66 ----- 

* Significant mean difference 
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Figure 12  Supine Posterior Shoulder Tightness Assessment 

  

3.3 STRENGTH ASSESSMENT 

3.3.1 Shoulder Internal Rotation/External Rotation Strength Assessment 

Internal/external rotation strength assessment results are presented in TABLE 12 and 

TABLE 13. There were no statistically significant sport by limb interactions for internal rotation 

strength (p = 0.309), external rotation strength (p = 0.968) or the external/internal strength ratio 

at 60º/sec (p = 0.275).  There were no statistically significant sport by limb interactions for 

internal rotation strength (p = 0.361), external rotation strength (p = 0.493), or external/internal 

rotation strength ratio at 300º/sec (p = 0.493).  
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Table 12 Internal/External Rotation Strength at 60º/sec 

    Baseball Tennis Volleyball Control 
    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Dominant         
 Internal rotation (N*m/kg) 0.49 0.12 0.53 0.13 0.59 0.11 0.54 0.13
 External rotation (N*m/kg) 0.37 0.07 0.36 0.07 0.41 0.06 0.39 0.04
 ER/IR ratio 0.75 0.25 0.67 0.13 0.69 0.10 0.73 0.16
          
Non-Dominant         
 Internal rotation (N*m/kg) 0.49 0.10 0.46 0.11 0.56 0.16 0.53 0.16
 External rotation (N*m/kg) 0.35 0.06 0.35 0.06 0.40 0.07 0.39 0.06
  ER/IR ratio 0.72 0.11 0.74 0.09 0.70 0.15 0.74 0.14

 

 

 

Table 13 Internal/External Rotation Strength Assessment at 300°/sec 

  Baseball Tennis Volleyball Control 
    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Dominant         
 Internal rotation (N*m/kg) 0.40 0.10 0.32 0.13 0.40 0.14 0.34 0.11
 External rotation (N*m/kg) 0.28 0.08 0.20 0.06 0.22 0.05 0.21 0.05
 ER/IR ratio 0.69 0.20 0.61 0.20 0.54 0.16 0.61 0.64
   
Non-Dominant  
 Internal rotation (N*m/kg) 0.37 0.09 0.28 0.08 0.41 0.13 0.34 0.12
 External rotation (N*m/kg) 0.27 0.08 0.17 0.06 0.22 0.05 0.21 0.10
  ER/IR ratio 0.72 0.13 0.61 0.17 0.54 0.12 0.61 0.27

 

 

  

3.3.2 Shoulder Protraction/Retraction Strength Assessment 

Protraction/retraction strength assessment results are presented in TABLE 14 and 

TABLE 15. No significant sport by limb interactions for protraction strength (p = 0.224), 

retraction strength (p = 0.642) or the protraction/retraction strength ratio (p = 0.989) for the 12.2 

cm/sec testing speed were present. No significant sport by limb interactions for protraction 

strength (p = 0.120), retraction strength (p = 0.492) or the protraction/retraction strength ratio     

(p = 0.260) for the 36.6 cm/sec testing speed were present.  
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Table 14 Protraction/Retraction Strength Assessment at 12.2 cm/sec 

  Baseball Tennis Volleyball Control 
    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Dominant         
 Protraction (N/kg) 2.46 1.06 2.09 0.63 2.30 1.05 2.40 1.00
 Retraction (N/kg) 2.24 0.87 2.05 0.73 2.56 1.16 2.47 1.05
 Pro/Re Ratio 1.10 0.30 1.02 0.34 0.90 0.30 0.97 0.36
   
Non-Dominant  
 Protraction (N/kg) 2.34 0.99 2.36 0.56 2.72 1.00 2.29 1.06
 Retraction (N/kg) 2.10 0.91 2.19 0.73 2.68 0.77 2.35 1.22
  Pro/Re Ratio 1.12 0.20 1.08 0.20 1.01 0.23 0.98 0.41

 

 

 

Table 15 Protraction/Retraction Strength Assessment at 36.6 cm/sec 

  Baseball Tennis Volleyball Control 
    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Dominant   
 Protraction (N/kg) 1.93 0.79 1.48 0.51 1.51 0.69 1.80 0.82
 Retraction (N/kg) 1.98 0.95 1.59 0.51 1.98 1.02 2.01 0.85
 Pro/Re Ratio 0.98 0.35 0.93 0.20 0.76 0.20 0.90 0.41
   
Non-Dominant  
 Protraction (N/kg) 1.70 0.68 1.69 0.65 1.80 0.64 1.73 0.58
 Retraction (N/kg) 1.73 0.72 1.56 0.52 2.07 0.91 1.97 0.86
  Pro/Re Ratio 0.98 0.18 1.08 0.18 0.87 0.26 0.88 0.16

 

3.4 SCAPULAR KINEMATICS 

Dominant scapular kinematics are presented in TABLE 16 and non-dominant scapular 

kinematics are presented in TABLE 17. The mean differences for scapular elevation/depression 

are presented in TABLES 18-21.  Scapular elevation data are presented in FIGURES 13-16. 

With an adjusted alpha level of p = 0.00625, there was a significant limb by sport interaction 

with scapular elevation/depression at 90° (p = 0.001; MSD = 1.92) and 120° (p < 0.001; MSD = 

2.25).  At 90°, baseball pitchers showed more dominant limb elevation than volleyball, tennis 

and control athletes (mean difference = 2.15, 4.61, 2.23 respectively), volleyball athletes showed 
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more elevation than tennis athletes did (mean difference = 2.46), and tennis athletes had less 

elevation than the control athletes did (mean difference = 2.31).  Volleyball athletes had more 

non-dominant scapular elevation than baseball pitchers and control athletes (mean difference = 

3.19, 2.06 respectively) at 90° of humeral elevation.  At 120° of humeral elevation, baseball 

pitchers showed more dominant limb elevation than volleyball, tennis and control athletes (mean 

difference = 3.29, 5.89, 2.29 respectively), volleyball athletes showed more elevation than tennis 

athletes did (mean difference = 2.60), and tennis athletes had less elevation than the control 

athletes did (mean difference = 3.60).  Baseball pitchers had less non-dominant scapular 

elevation at 120° humeral elevation than volleyball and control athletes (mean difference = 5.58 

and 3.08 respectively).  Volleyball athletes had more non-dominant elevation than tennis and 

control athletes did at 120° (mean difference = 3.67 and 2.50 respectively). No statistically 

significant differences were found for scapular upward/downward rotation at 0°, 30°, 60°, 90° or 

120° (p=0.190; 0.136; 0.472; 0.380; or 0.144, respectively), internal/external rotation at 0°, 30°, 

60°, 90° or 120° (p=0.026; 0.021; 0.035; 0.096; or 0.104 respectively), anterior/posterior tilting 

at 0°, 30°, 60°, 90° or 120° (p=0.384; 0.183; 0.014; 0.019; or 0.153 respectively) or 

protraction/retraction at 0°, 30°, 60°, 90° or 120° (p=0.023; 0.017; 0.022; 0.033; or 0.120 

respectively). 
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Table 16 Dominant Scapular Kinematic Results 

  Baseball Tennis Volleyball Control 
    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Scapular Upward/ 
Downward Rotation           

 0° Humeral Elevation 2.32 6.93 4.18 6.76 3.97 4.29 1.04 7.13
 30° Humeral Elevation 8.23 5.82 9.33 6.38 10.71 3.93 6.75 6.01
 60° Humeral Elevation 20.35 6.76 19.81 6.87 21.43 3.82 18.12 5.98
 90° Humeral Elevation 32.20 9.17 29.55 7.53 30.74 5.48 28.13 6.15
 120° Humeral Elevation 41.00 13.88 35.61 6.82 35.48 7.34 36.53 8.11
   

Scapular External/Internal 
Rotation  

 0° Humeral Elevation 30.72 8.22 32.28 7.53 28.27 6.90 29.02 9.34
 30° Humeral Elevation 27.70 8.41 29.79 7.60 24.77 7.98 26.21 8.53
 60° Humeral Elevation 25.88 8.90 29.04 7.09 24.90 8.54 25.13 8.22
 90° Humeral Elevation 26.09 11.89 30.57 7.78 29.14 9.55 27.85 7.28
 120° Humeral Elevation 28.67 15.07 35.96 10.07 40.70 13.21 36.47 8.02
   

Scapular Posterior/Anterior 
Tilt  

 0° Humeral Elevation -16.22 3.81 -13.95 6.88 -17.28 3.00 -15.60 5.11
 30° Humeral Elevation -12.83 4.21 -10.86 6.74 -14.05 3.79 -12.56 5.41
 60° Humeral Elevation -12.29 4.88 -8.74 8.50 -11.84 5.89 -10.30 6.68
 90° Humeral Elevation -11.86 7.12 -7.17 9.06 -10.27 8.39 -8.34 7.85
 120° Humeral Elevation -5.59 9.37 -2.89 9.29 -6.32 12.54 -3.51 8.72
   

Scapular 
Protraction/Retraction  

 0° Humeral Elevation -15.79 5.11 -15.06 7.46 -17.83 3.96 -17.30 5.72
 30° Humeral Elevation -18.70 4.65 -17.79 7.09 -21.37 5.05 -20.46 5.53
 60° Humeral Elevation -22.16 4.66 -21.13 6.81 -24.74 5.81 -24.39 5.82
 90° Humeral Elevation -26.59 5.46 -24.81 6.82 -27.53 6.05 -28.25 5.49
 120° Humeral Elevation -34.67 6.17 -32.07 7.08 -34.26 6.22 -35.14 5.00
   

Scapular 
Elevation/Depression  

 0° Humeral Elevation 6.99 4.75 5.57 5.19 7.68 4.90 6.78 4.43
 30° Humeral Elevation 9.15 4.16 7.45 5.41 10.64 4.27 8.90 4.33
 60° Humeral Elevation 15.96 3.98 12.88 5.67 16.03 4.01 14.92 4.64
 90° Humeral Elevation 23.16 4.75 18.55 5.49 21.01 4.14 20.93 4.51
 120° Humeral Elevation 30.34 5.40 24.45 6.12 27.05 5.78 28.05 4.19
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Table 17 Non-Dominant Scapular Kinematic Results 

  Baseball Tennis Volleyball Control 
    Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
Scapular Upward/ 
Downward Rotation          

 0° Humeral Elevation 1.16 7.20 6.05 7.34 -0.86 5.78 1.00 8.40
 30° Humeral Elevation 6.17 6.69 12.01 7.47 5.68 4.43 7.41 8.30
 60° Humeral Elevation 15.37 6.77 22.48 8.48 16.03 5.72 17.75 9.13
 90° Humeral Elevation 21.94 8.05 31.82 9.68 24.80 6.60 26.75 10.19
 120° Humeral Elevation 26.24 7.38 37.44 9.22 32.90 7.24 35.23 10.18
   

Scapular External/Internal 
Rotation  

 0° Humeral Elevation 29.37 8.80 24.99 7.53 24.87 4.72 23.06 7.85
 30° Humeral Elevation 26.00 7.87 22.51 7.91 22.69 4.03 19.83 6.46
 60° Humeral Elevation 23.84 6.89 21.84 7.00 23.39 3.94 19.99 7.06
 90° Humeral Elevation 24.50 6.97 23.56 7.63 26.52 5.78 23.70 9.47
 120° Humeral Elevation 30.80 10.78 28.16 10.02 35.61 10.05 33.87 16.03
   

Scapular Posterior/Anterior 
Tilt  

 0° Humeral Elevation -13.18 5.49 -11.68 6.16 -16.89 2.61 -14.87 8.88
 30° Humeral Elevation -10.26 5.62 -9.59 6.16 -14.96 2.13 -12.46 8.21
 60° Humeral Elevation -8.40 6.39 -8.35 7.34 -14.32 3.03 -10.83 7.02
 90° Humeral Elevation -6.07 7.96 -7.99 8.29 -13.26 4.48 -9.33 7.21
 120° Humeral Elevation -1.10 9.10 -3.73 7.88 -10.42 6.34 -6.37 9.07
   

Scapular 
Protraction/Retraction  

 0° Humeral Elevation -18.92 6.71 -21.00 4.64 -16.72 4.38 -20.79 5.48
 30° Humeral Elevation -22.22 6.09 -23.91 4.64 -20.17 4.88 -24.82 4.79
 60° Humeral Elevation -25.94 6.05 -27.06 4.18 -22.86 5.04 -28.13 4.74
 90° Humeral Elevation -30.64 6.44 -30.54 4.17 -25.38 5.53 -31.23 5.59
 120° Humeral Elevation -38.20 6.64 -36.73 3.76 -32.37 5.74 -37.35 6.53
   

Scapular 
Elevation/Depression  

 0° Humeral Elevation 6.90 4.40 7.50 4.94 7.72 4.31 6.77 3.51
 30° Humeral Elevation 8.65 4.32 9.58 4.85 10.60 3.48 9.32 4.06
 60° Humeral Elevation 14.10 3.89 15.10 5.42 16.60 3.61 14.99 4.64
 90° Humeral Elevation 19.49 3.99 21.22 5.73 22.68 3.90 20.62 5.31
 120° Humeral Elevation 25.31 5.43 27.22 5.90 30.89 4.88 28.39 5.93
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Table 18 Mean Differences for Dominant Limb Scapular Elevation at 90° Humeral 

Elevation 

Baseball Volleyball Tennis Control MSD = 
1.92 23.16 21.01 18.55 20.93 

Baseball 
23.16 

-----    

Volleyball 
21.01 

*2.15 -----   

Tennis 
18.55 

*4.61 *2.46 -----  

Control 
20.93 

*2.23 0.08 *2.38 ----- 

* Significant mean difference 
 
              

 

Table 19 Mean Differences for Non-Dominant Limb Scapular Elevation at 90° Humeral 

Elevation 

Baseball Volleyball Tennis Control MSD = 
1.92 19.49 22.68 21.22 20.62 

Baseball 
19.49 

-----    

Volleyball 
22.68 

*3.19 -----   

Tennis 
21.22 

1.73 1.46 -----  

Control 
20.62 

1.13 *2.06 0.06 ----- 

* Significant mean difference 
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Table 20 Mean Differences for Dominant Limb Scapular Elevation at 120° Humeral 

Elevation 

Baseball Volleyball Tennis Control MSD = 
2.25 30.34 27.05 24.45 28.05 

Baseball 
30.34 

-----    

Volleyball 
27.05 

*3.29 -----   

Tennis 
24.45 

*5.89 *2.60 -----  

Control 
28.05 

*2.29 1.00 *3.60 ----- 

* Significant mean difference 
 

 

Table 21 Mean Differences for Non-Dominant Limb Scapular Elevation at 120° Humeral 

Elevation 

Baseball Volleyball Tennis Control MSD = 
2.25 25.31 30.89 27.22 28.39 

Baseball 
25.31 

-----    

Volleyball 
30.89 

*5.58 -----   

Tennis 
27.22 

1.91 *3.67 -----  

Control 
28.39 

*3.08 *2.50 1.17 ----- 

* Significant mean difference 
 



 45 

14

16

18

20

22

24

26

28

30

Baseball Volleyball Tennis Control

Sc
ap

ul
ar

 E
le

va
tio

n 
(d

eg
re

es
)

Dominant
Non-Dominant

 
Figure 13 Between Limb Scapular Elevation at 90° Humeral Elevation 
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Figure 14 Between Limb Scapular Elevation at 120° humeral Elevation 
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Figure 15 Dominant Scapular Elevation 
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Figure 16 Non-Dominant Scapular Elevation 
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4.0  DISCUSSION 

4.1.1 Range of Motion  

All athletes participating in overhead sports in the current study exhibited less dominant 

internal rotation ROM than non-dominant internal rotation ROM.  This result has been reported 

by many previous studies on overhead athletes5, 17-19, 24, 26-28, 50-52.  Although the exact mechanism 

is unknown, the loss of internal rotation may be caused by tightening in the posterior aspect of 

the shoulder5, 8, 10, 15, 17-20 or an osseous adaptation of the humerus17, 19, 27, 53, 54.   

 A significant decrease in internal rotation was present in overhead athletes, while there 

was no significant difference for total rotation range of motion in all groups. However, there 

were slight variations in the difference between GIRD and ERG.  Tennis athletes had 2.2° more 

GIRD than ERG.  Volleyball and control athletes had more ERG than GIRD (3.0° and 4.7° 

respectively), while baseball pitchers had an equal amount of GIRD and ERG (0.3° difference).  

This result may suggest that different sports have a decrease in internal rotation ROM for 

different reasons (contribution of bony versus soft tissue adaptations). 

 When the total arc of motion is roughly the same bilaterally, an osseous adaptation most 

likely is the cause for any altered ROM8, 26, 28, 53-55.  Humeral retroversion is an osseous 

adaptation of the humerus17, 19, 27.  Humeral retroversion can be defined as the angle between the 

axis of the elbow joint and the axis through the center of the humeral head53.  This angle 

demonstrates the degree to which the humeral head is shifted more inward and backward53.  

Compared to the contralateral limb, having a higher degree of humeral retroversion will allow 

more external rotation ROM with the same amount of humeral head motion.  The cost of having 

increased external rotation is a decrease in internal rotation ROM with the same amount of 

glenohumeral rotation as the contralateral limb.  Since humeral retroversion is an osseous 

adaptation, the total arc of motion (internal ROM + external ROM) should remain equal when 
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compared bilaterally.  Since there were no significant differences in total shoulder rotation ROM 

between any sports, osseous adaptations may be the cause for the decrease in internal rotation.  

Borsa et al26 suggest that pitchers develop this retroversion at a young age from the high humeral 

torques that occurs with pitching.  The possibility remains that humeral retroversion occurs at a 

young age due to the adaptation of the body to the stresses of overhead motion. Researchers have 

suggested that bony adaptation occurs before the athlete is skeletally mature53, 55, 56. This shift in 

humeral orientation should help to reduce the stress at the glenohumeral joint while allowing the 

athlete to achieve the relatively high amount of external rotation needed during the late cocking 

phase of the throwing motion26, 53, 57.  This adaptation may spare the anterior capsule from 

increased stresses and possible failure.   

On the other hand, research has suggested the forceful eccentric contractions of the 

shoulder external rotator muscles during follow through cause tightening in the posterior aspect 

of the shoulder5, 8, 10, 15, 17-20.  This increased posterior shoulder tightness may cause an associated 

decrease in internal rotation ROM5, 9, 17-19, 21-24.  The results of this study support this theory.  

Baseball pitchers and tennis athletes have been shown to have this associated decrease in internal 

rotation ROM from a tightened posterior shoulder not only the current study, but previous 

studies as well23, 51.  Tennis athletes have been shown to have increased dominant internal 

rotation ROM deficits as their years of play increase58.  In the study, Kibler et al58 did not 

address the age at which their population began participating in tennis, only the total number of 

years played.  As other researchers19, 27, 56 have hypothesized, both bony and soft tissue 

adaptations may occur and contribute to the decrease in internal rotation ROM. As it is difficult 

to pinpoint a specific structure that tightens in the posterior shoulder, it is probably difficult to 

state whether an internal rotation ROM loss is strictly bony adaptation or soft tissue adaptation.  

Due to the nature of the throwing motion, both mechanisms likely play a role.  The contribution 

of one theory relative to the other may be highly sport specific and warrants further research. 

When a volleyball athlete strikes the ball midway through the hitting motion, the majority 

of the internal rotation torque that is produced during the acceleration phase could be transferred 

to the ball.  Although transferring energy to an object is the goal of the overhead throwing 

motion, the amount transferred in volleyball may be larger than other sports. The transfer of 

energy might help to slow the limb to the point that there is little overload to the posterior 

shoulder structures, and therefore, limited tightening of those structures occur. According to 
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Wolff’s law, if there is a lower amount of stress, there will be less adaptation to that stress, in this 

case less tissue tightening 29. Further research is needed to determine the amount of energy 

transferred to sport specific objects during the throwing motion.  If the posterior shoulder 

structures of volleyball athletes’ are not as tight as those in other overhead athletes, there should 

be less internal rotation ROM lost in volleyball athletes.  However, the total arc of motion was 

the same bilaterally for volleyball athletes.  As stated previously, when the total arc of motion is 

the same bilaterally, humeral retroversion is thought to be the cause for the shift in the rotational 

ROM. Volleyball athletes may have humeral retroversion as the primary cause for the altered 

ROM since their total ROM was the same bilaterally.  These different mechanisms (bony versus 

soft tissue adaptations) of internal rotation ROM alterations help to show that the mechanisms 

may be highly sport specific.  

The role of the tennis racket affecting the forces during follow through must be 

examined.  Using a tennis racket to hit the ball increases the lever arm of the upper limb and may 

alter the torque at the shoulder when hitting a tennis ball.  This increase in torque may cause the 

soft tissues to adapt accordingly by tightening the posterior structures more so than with baseball 

pitching.  The increased lever arm, along with the increased joint torque accompanying the 

increased lever arm, may possibly explain the greater amount of posterior shoulder tightness in 

tennis athletes compared to the baseball pitchers despite the slower rotational velocities.  Krahl et 

al59 suggested that there were bony adaptations of the humerus as a result of the “constantly 

strained extremity” in tennis athletes.  This adaptation may be a result of the increased stresses, 

but further research is needed to identify the exact cause of the adaptation. 

 Although none of the differences were statistically significant, it should be noted that the 

difference between GIRD and ERG for tennis and volleyball athletes were not the same as 

baseball pitchers (2.2°, -3.0° and 0.3° respectively).  This result may be due to different 

mechanisms of GIRD.  There is no research on volleyball kinetics, but the forces and energy that 

are required during tennis16 and volleyball do not appear to be similar to that of pitching15, 20, 57.  

Due to Wolff’s law, if there is not enough stress on the tissue to cause an adaptation, the tissue 

has no reason to adapt to that stress29.  Volleyball and tennis do not require the velocity needed 

for baseball pitching and therefore impose less stress to the shoulder.  However, the stresses that 

are encountered in volleyball and tennis may stress only the soft tissues of the shoulder instead of 

the bony tissue.  Performing any kind of forceful overhead, internal rotation activity as a young 
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child and through development may allow the humerus to adapt slowly over time to the 

increased stresses.  As previously pointed out, researchers suggest that this bony adaptation 

occur before the athlete is skeletally mature53, 55, 56.  Since there was only a significant difference 

with GIRD and not with ERG for tennis and volleyball athletes, the cause of the internal rotation 

ROM loss is most likely a result of a more tightened posterior shoulder rather than humeral 

retroversion.  Future research should analyze the contributions of both humeral retroversion and 

a tight posterior shoulder to ROM alterations and see if there are differences between overhead 

sports. 

4.1.2 GIRD/ERG 

The results for the GIRD measurements show that baseball and tennis had a larger deficit 

than the control group.  These results are in agreement with many prior studies that show the 

same results5, 17, 18, 26-28, 51.  In a study of professional baseball athletes there was a significant 

difference in internal rotation ROM between dominant and non-dominant limbs5.  Other research 

reports GIRD values of between 9.7°26 and 12.0°27 for baseball pitchers.  The current study’s 

GIRD measurement of 12.6º in baseball pitchers is similar to previously reported data.  

Ellenbecker and colleagues28 compared professional baseball pitchers to elite junior tennis 

players and found tennis players to have higher values of GIRD than the pitchers (11.8º vs. 

10.9º).  Others18 have looked at professional tennis players and showed a mean GIRD value of 

17º.  The current study found that tennis athletes have a mean GIRD value of 11º, which is 

slightly lower than previous reports.  However, the results for tennis athletes and baseball 

pitchers in the current study tend to agree with previous literature28.  More research should be 

performed in order to collect normative data for GIRD values in tennis athletes, and possibly 

determine the contribution of bony and soft tissue adaptations to the range of motion alteration in 

tennis athletes. 

 The current results tend to support the idea of a total arc of motion concept around the 

glenohumeral joint as proposed by other researchers17, 18, 26-28.  Baseball pitchers tend to have the 

same amount of total arc of motion when compared bilaterally26, 27, 50, 51, 54, whereas tennis 

athletes are usually reported to have a decreased total arc of motion on their dominant limb of 

about 10° compared bilaterally17, 18, 28. There was no significance with total rotation ROM in the 
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current study between any of the groups.  However, there was a slightly smaller arc of motion for 

tennis athletes than baseball pitchers. The subject population may explain why there was no 

significance with total rotation ROM.  The majority of previous research has been conducted on 

either semi-professional or elite tennis athletes.  The current study used competitive college 

athletes.  The decreased internal rotation ROM may not have had a chance to manifest in the 

college athletes as opposed to the higher-level athletes.  The demands of a higher level of 

competition require an athlete to hit harder and serve faster.  In order to achieve this, the athlete 

needs to develop a higher amount of torque to swing the racket harder and faster.  The external 

rotators must still decelerate this increased torque.  The increased demand on the external 

rotators may cause an increased amount of posterior shoulder tightness; therefore decreasing the 

internal rotation ROM and subsequently the total rotation ROM. Soft tissue adaptations in the 

posterior shoulder may explain why tennis athletes had a higher degree of GIRD as well as lower 

total rotation ROM in the shoulder.  Further research should help to determine why the GIRD in 

tennis players tends to be higher than in other overhead throwing sports as well as whether the 

decreased rotational ROM is due to bony or soft tissue adaptations. 

4.1.3 Posterior Shoulder Tightness 

 Posterior shoulder tightness has received a lot of attention lately in research.  Many 

previous studies suggest that having increased posterior shoulder tightness leads to shoulder 

pathologies12, 19, 24, 31, 32, 51, 52, 60.  Research states that with a tightened posterior shoulder capsule, 

the humeral head tends to migrate in an anterior/superior direction32.  This altered position will 

decrease the subacromial space and possibly lead to injury.  Once the posterior structures tighten 

and alter the humeral head position, a pathological cascade begins that ultimately may lead to a 

SLAP lesion12.  Many researchers believe that during the follow through phase of throwing, the 

eccentric contractions of the external rotators overload the tissue and cause an adaptive 

tightening of the tissue5, 8, 10, 15, 17-20, 51. This tightening has been shown to correlate well with a 

decrease in internal rotation ROM23, 51, 61, and it is suggested that it alters scapular upward 

rotation62, 63. 

 A pilot study to the current study has suggested that assessment of the posterior shoulder 

tightness can be performed with higher accuracy and precision when the assessment is done with 



 54 

the subject lying supine64, instead of side-lying as described previously by Tyler et al23.  

However, there is a question about where to stabilize the scapula.  Laudner et al65 suggest 

stabilizing the scapula in the resting position when the athlete lays supine.  Myers et al64 suggest 

using a retracted scapula as the starting point.  Although both methods are new and should be 

researched further, beginning the measurement in a retracted position may allow for a more 

repeatable measurement as this will help to normalize a starting point. 

 Baseball pitchers, volleyball athletes, and tennis athletes had less dominant horizontal 

adduction than the control group.  This was not surprising as they are all overhead sports and all 

have a follow through phase in their respective sporting activities.  Baseball pitchers and tennis 

athletes had about the same bilateral difference while volleyball athletes had a slightly lower 

value, which indicated that there was less of a decrease on the dominant limb compared to the 

non-dominant limb.  The fact that the results are not all the same can relate to their sport specific 

activities as well.  Baseball pitchers have very high joint velocities during pitching.  Although 

tennis athletes do not perform their respective motion as fast, they perform with a racket, which 

may increase the momentum of the arm and increase the amount of torque that the external 

rotators must decelerate.  According to Wolff’s law, if there is increased stress, the tissues must 

adapt to that stress29.  If there is more stress present during the follow through in tennis than in 

baseball, tennis athletes should be expected to have a greater amount of dominant posterior 

shoulder tightness compared to baseball pitchers.  The fact that tennis athletes had significantly 

less horizontal adduction than control athletes did, should not be a surprise then.  This result 

should help to back up the idea that tennis athletes have more stress to the dominant posterior 

shoulder than baseball pitchers, possibly due to the fact that tennis players use a racket in their 

overhead motion.  This increased stress may cause a decreased amount of horizontal adduction 

 Volleyball athletes had the least amount of between-limb difference (with the exception 

of control athletes) for posterior shoulder tightness. This may be due to their sport specific 

activity.  As discussed previously, hitting a volleyball in the middle of the hitting motion may 

decrease the amount of momentum and torque of the limb and thus decrease the amount of stress 

to the external rotators during follow through.  Volleyball athletes are not allowed to hit the net 

while hitting the volleyball.  Although this may increase the stress on the external rotators to 

decelerate the limb faster, the distraction forces at the glenohumeral joint may not be as high as 

they are with baseball pitching since the volleyball athletes do not perform as much of a follow 
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through as pitchers do. There is no research that quantifies the kinetics or kinematics in the 

shoulder while hitting a volleyball.  This idea, along with the idea of performing this activity in 

the air versus on the ground, should be analyzed further in future research.  When an athlete 

jump serves or hits the ball in the air, he does not have a stable base to push off of to generate 

more energy.  This may affect the amount of energy that the athlete can exert during the hitting 

motion and possibly decrease the amount of torque and momentum in the limb to decelerate.  

This would decrease the amount of stress on the shoulder compared to tennis athletes and 

baseball pitchers and possibly not cause as much tightening in the posterior structures.  

 An interesting result of this study is that of the non-dominant posterior shoulder tightness.  

Baseball pitchers, tennis athletes and volleyball athletes all had more horizontal adduction than 

control athletes did. This has not been reported in previous literature.  Each of the overhead 

motions needs to be performed with as much torque as possible in an effort to throw faster or hit 

harder.  Biomechanically, if an athlete were to use their entire body to increase the momentum 

they could exert on the ball, they would be able to increase the shoulder torque and hopefully 

increase their pitching speed or hit the ball harder.  Each of the motions in these sports begins 

roughly the same way, with a wind up.  During that wind up, the non-dominant shoulder moves 

from a horizontally adducted position and then begins to horizontally abduct in an effort to start 

the athlete’s momentum moving towards where they are throwing or hitting.  This repetitive 

horizontal adduction of the non-dominant shoulder may maintain or possibly increase posterior 

shoulder mobility.  Compounding that fact, since the non-dominant limb usually does not 

perform a forceful internal rotation motion, there is no stress to the external rotators to adapt to.  

Research should continue to look at both dominant and non-dominant posterior shoulder 

tightness values in the supine position in order to develop normative data of posterior shoulder 

tightness values. 

4.1.4 Internal/External Rotation Strength 

 No statistically significant differences were found for internal rotation strength, external 

rotation strength or external/internal rotation strength ratio.  Compared to previous literature, this 

result was not expected.  The majority of the research available states that overhead athletes 

(baseball, tennis, volleyball and handball) tend to have lower external rotation strength and 
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increased internal rotation strength when compared bilaterally19, 24, 25, 34, 37, 38.  Most overhead 

sports require forceful internal rotation in order to accelerate their arm to throw a ball, spike a 

ball or swing a racket to hit a ball.  Previous research that shows external rotator strength lower 

than internal rotation strength for overhead athletes usually state that the decrease is due to 

tensile failures and possible pathologies related to repetitive, eccentric contractions of the 

external rotators during the follow through stage24, 25, 34, 37, 66.  Further, some of that research 

states that when isokinetically assessing external rotator strength concentrically, differences may 

not arise24, 37, 38.  Since the external rotator muscles perform mostly eccentrically during the 

overhead motion, if eccentric external rotator strength was assessed, significant differences 

might have presented.  

 Due to many methodological differences between studies, direct comparisons of results 

are difficult to make for each strength variable.  Some studies include male and female subjects 

as one group19, 37.  Some studies use older athletes18, 24, 38, 58 while others use younger athletes17, 

19.  This study is the first study that included only male subjects in baseball, tennis and volleyball 

and compared them to a control group.  For that reason, direct comparisons could have been 

made between sports.  Unfortunately, no statistically significant differences were found with the 

average peak torque normalized to bodyweight variable. Perhaps other strength variables would 

have been more sensitive to differences showing agreement with previous studies. 

4.1.5 Protraction/Retraction Strength 

 Assessing isokinetic scapular protraction and retraction strength is a relatively new 

assessment with little research available to compare.   Cools et al1, 7 have studied this variable on 

healthy subjects as well as pathologic subjects.  For healthy overhead athletes, their research 

shows decreased protraction/retraction ratios on the dominant side versus non-dominant side at 

both 12.2 cm/sec and 36.6 cm/sec7.  Caution must be taken when interpreting their results 

because their subject population consisted of males and females as well as a mix of overhead 

athletes as one group (volleyball, tennis and other).  When looking at the protraction/retraction 

strength ratio at both testing speeds, both of Cools et al1, 7 study’s as well as the current study’s 

strength ratios were lower on the dominant limb at both testing speeds (although not significant 

in the current study).  Wilk et al8 assessed isometric scapular protraction and retraction strength 
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with a hand held dynamometer.  Their results show roughly the same values as the current study.  

Both studies show that the dominant limb tends to have a lower strength ratio than the non-

dominant limb.  Since both the between group and between limb differences were statistically 

insignificant, it is hard to compare all studies (Cools et al, Wilk et al and current study).  

Dominant ratios are lower than the non-dominant ratios across all studies, however. 

 These strength ratio results make sense when considering the stresses that are applied to 

the shoulder during the overhead throwing motion.  During the follow through phase, the 

external rotators and scapular retractors must contract eccentrically to control the deceleration of 

the scapula and the throwing limb.  The external rotator muscles must slow the humerus from the 

extremely high internal rotation torque.  The scapular retractor muscles must decelerate the 

scapula from protracting during follow through.  There may be more stress on the external 

rotator muscles due to the larger lever arm of the entire limb as opposed to only the scapula 

during protraction and retraction.  This difference may affect the amount of force on the muscle 

during follow through.  The force on the external rotator muscles, coupled with the high amount 

of overhead activity, may overtrain the tissue and cause atrophy if there is not an adequate 

recovery period67.  Decelerating the scapula from protraction during follow through may not 

cause the high amounts of stress to the scapular retractor muscles and thus would not approach 

the physiologic limits.  If the retractor muscles are not overtrained, they can adapt to the overload 

stress that is placed on them to decelerate the scapula. Since the baseball pitchers tend to perform 

the most overhead activities in this study’s sample population, it makes sense that the ratios are 

the lowest (higher retraction strength) in the dominant limb of pitchers.  Wilk et al68 showed 

baseball pitchers and catchers to have a larger between limb difference (larger values on 

dominant than non-dominant) in protraction strength than position players.  The authors did not 

speculate as to this cause of these differences; however, the volume of throws per game as well 

as the velocity of those throws could be a possible cause for the differences between pitchers and 

catchers and all other field players.  As previously speculated, hitting a volleyball may decrease 

the shoulder torque, and thus, decrease the stress on the posterior aspect of the shoulder as well 

as the scapular retractors.  If the limb has less torque, the retractors would not have to contract as 

forcefully to control scapular protraction.  The muscle would not adapt as much as it would 

during the pitching motion.   
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4.1.6 Scapular Kinematics 

 Researchers have suggested that an overhead athlete may need more scapular upward 

rotation than other people in an effort to maintain the subacromial space at higher levels of 

humeral elevation13, 62, 69. Myers et al13 have shown that asymptomatic throwing athletes have 

significantly more upward rotation, internal rotation and retraction of the scapula with humeral 

elevation.  Since there were no differences found in the current overhead athlete population, it is 

difficult to apply that theory to this study.  In the study by Myers et al13, the subjects raised a 

predetermined amount of weight for their humeral elevation task.  Having the subject lift weight 

may require different muscle recruitment and possibly change scapular kinematics.  Prior 

research has suggested that fatigue in the external rotators may alter scapular upward rotation as 

well63, 70, 71.  More research is needed to establish normative data for scapular upward rotation in 

overhead athletes.   

 Following statistical analysis, the only scapular kinematic variable with a significant 

interaction was elevation.  Although there is little research on scapular kinematics in healthy 

overhead athletes, none of the previous literature has reported this result.  As stated previously, 

athletes did not raise any weight in this study.  This may have changed the kinematics and caused 

the different result as compared to Myers et al13. Between limb differences were significant for 

baseball pitchers at 90º and 120º of humeral elevation and volleyball athletes at 120º of humeral 

elevation.  Baseball pitchers showed more scapular elevation on the dominant side than non-

dominant at both 90º and 120º while volleyball had less dominant scapular elevation than non-

dominant at 120º.  This may related to the motions that each of the respective athletes perform 

for each sport.  Baseball athletes must hold their humerus near 90º of humeral elevation 

throughout the majority of the pitching motion.  Perhaps the increased scapular elevation is due 

to increased muscle tone/activity of the deltoid, trapezius and levator scapulae muscles in order 

to maintain the limb (scapula and humerus) at roughly a 90º abduction angle throughout the 

pitch.  Wilk et al68 present data that show baseball pitchers and catchers to have significantly 

more scapular elevation strength than position players.  Perhaps their subjects had increased 

strength because they must maintain the subacromial space by elevating the scapula throughout 
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the throwing motion.  Volleyball athletes must get their hand over their shoulder in order to 

make quick corrections before they hit the ball.  This way they can place different spins on the 

ball, similar to the different pitches in baseball.  Baseball pitchers can use their wrist and fingers 

to alter the spin on the ball.  Since a volleyball is larger than a baseball, the volleyball athlete 

must use their entire hand and upper limb to alter the spin on a volleyball.  Performing the hitting 

motion at the extremes of humeral elevation may cause the body to make adaptations 

accordingly and elevate the scapula to maintain the subacromial space. 

 At 90º and 120º of humeral elevation, baseball pitchers had significantly greater elevation 

than all other groups.  It is also worth pointing out that tennis and volleyball athletes actually had 

more non-dominant scapular elevation than dominant.  Perhaps the baseball pitchers have 

increased muscle development of the deltoid, trapezius and levator scapulae on the dominant side 

and that is why they possess more dominant limb scapular elevation.  Since all subjects were 

healthy, further research should be performed to confirm the fact that tennis and volleyball 

athletes actually had less humeral elevation than baseball pitchers.  Having less dominant 

elevation must be an adaptation to sport as none of the tennis or volleyball athletes had an injury 

or complained of pain.  Another possibility relates to external rotation gain and scapular 

elevation.  In sports that have an increased amount of external rotation gain compared to control 

athletes, perhaps there is an increased demand to maintain the subacromial space.  Maintaining 

this space could help to prevent damage to the structures (supraspinatous/rotator cuff, and 

subacromial bursa) that pass through that space as well as prevent the greater and lesser tubercles 

of the humerus from contacting the acromion.  Compression in the subacromial space could 

damage the subacromial bursa and cause injury to the rotator cuff.  When the posterior shoulder 

structures are tightened, the humeral head tends to migrate posteriosuperiorly with abduction and 

external rotation due to the cam effect12.  Wilk et al68 showed that baseball pitchers have 

significantly more scapular elevation strength than position players.  With excessive external 

rotation, perhaps the body adapts to this altered humeral position by having the scapular elevator 

muscles (upper trapezius, levator scapulae) contract to elevate the acromion and maintain the 

subacromial space. This adaptation could be a preventative measure for subacromial 

impingement during external rotation at 90° of humeral elevation.   

 The fact that there were differences between overhead sports for some of the variables 

included in this study was a goal of the study.  If all overhead athletes were the same, as the 
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majority of the research tends to stereotype, then there should not have been any difference 

between the overhead groups.  There has only been limited research that has compared variables 

between overhead sports.  Differences in shoulder kinetics and kinematics during tennis strokes/ 

serves and pitching should be explored as a possible reason for some of the differences between 

overhead athletes and tennis athletes found in the current study.  The possibility that striking a 

volleyball during the hitting/serving motion should be explored as well as a possible explanation 

for some of the differences between volleyball athletes and other overhead athletes.  Variability 

in the kinematics, lever arm length, humeral rotation velocity, weight of the sport specific 

equipment may have resulted in different stress at the shoulder joint, which lead to the difference 

in physical characteristics between groups. 

 Another possible explanation for the differences between volleyball athletes and the other 

overhead athletes may relate to the fact that the majority of the spiking motion is performed 

entirely in the air.  At the higher levels of participation, even the serving motion is performed 

with a jump serve.  Perhaps this detail could explain some of the differences between overhead 

sports.  Once the athlete is in the air, they cannot push against the ground unlike pitching a 

baseball or hitting a tennis ball.  If the athlete is in the air, they can only use the energy in their 

body to place on the ball.  According to Kibler72, when the athlete is on the ground, the athlete 

funnels the energy from the ground, through the body and out through the ball.  Further research 

should look at the difference between performing the volleyball spike/serve on the ground as 

opposed to performing it in the air. 

This study is the first to compare baseball, tennis, and volleyball athletes to a control 

group all in the same study using the same methods.  Although there has been at least some 

research on each of these overhead sports, few studies have been completed using the same 

methodology to allow direct comparisons.  There has been no research, to the author’s 

knowledge, performed on scapular kinematics for tennis or volleyball athletes.  For that reason, 

there are many questions that arise from this research study.  Performing the forceful, overhead, 

internal rotation motion with different loads to the limb (swinging a tennis racket versus pitching 

a baseball versus striking a volleyball) may prove to have differing effects on physical 

characteristics of the shoulder.  Further research should be performed on these overhead sports to 

determine the kinetics at the shoulder joint during the respective overhead motion of each sport.  
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This information may shed light on some of the differences between baseball pitching and other 

overhead sporting activities.   

  

4.2 STUDY LIMITATIONS 

The methods used to measure posterior shoulder tightness are relatively new when 

compared to other ROM measurements (i.e. shoulder internal/external rotation ROM).  Holding 

the scapula in a firm position throughout the entire measurement is subjective.  However, pilot 

work shows low clinician error64. Those results also show that stabilization of the scapula is 

possible in a retracted starting position64.  Some controversy exists as to whether a fully retracted 

measurement starting position or a “neutral” starting position (stabilizing wherever the scapula is 

when the subject lies supine) produces a more meaningful measurement.  A retracted position 

was used as the starting point in the current study as the reliability of the measurement had 

already been established64. 

The position of internal and external rotation strength assessment was not in a functional 

position.  Although the testing protocol for the current study is an accepted one, perhaps the 

results would have been different if the testing position was in an overhead position.  The 

protraction and retraction strength assessment was an uncommon position and motion for the 

athlete.  Many subjects had trouble learning the movement for the test.  Even after sufficient 

practice repetitions with minimal resistance, subjects often needed instruction during testing.  It 

should be noted that overhead athletes appeared to learn this motion faster than the control 

group.  Some of the limitations with this motion relate to arm position.  During the testing 

protocol, the subjects must keep their arm straight.  Sometimes the subject would slightly flex 

the elbow as an accessory movement to help pull the dynamometer into the retraction position.  

Perhaps future studies that employ this strength protocol could use an elbow brace locked at full 

extension to help eliminate the contribution of the elbow flexors during the retraction strength 

measurement 

Karduna and collegues49 show that scapular kinematic data collected above 120º of 

humeral elevation has been shown to have decreased accuracy.  Although their research states 
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that the most accurate measurements occur below 120º, their research shows that as humeral 

elevation angles increase, the root mean square values increase as well.  The authors also point 

out that increased errors may be due to different skin movement patterns in different subjects49.    

The current method of assessing scapular kinematics is generally accepted and has been used in 

previous research13, 44, 49, 64, 73.  As with the strength assessment, the scapular kinematic 

assessment was not completed during a functional motion.  Furthermore, the subjects were not 

holding their respective sport specific equipment (i.e. baseball or tennis racket).  Incorporating 

both of these aspects may produce different results.   

4.3 FUTURE RESEARCH 

Future research should begin with including more overhead sports.  Many sports that are 

not traditionally thought of as “overhead” include overhead motions.  Throwing the javelin, 

many motions in water polo and throwing a football are a few examples of overhead motions that 

should be taken into consideration for future research.  Although this study used a generally 

accepted protocol to assess shoulder strength, perhaps performing the internal and external 

rotation strength assessment in a functional position (90º humeral abduction) may produce 

different results.  Including a pathologic group to the study might shed some light on some of the 

adaptations that the body makes when pain or pathologies are present in the overhead athlete’s 

shoulder.  

Research that looks at the distraction forces at the shoulder during sport specific activities 

(baseball pitching vs. volleyball spiking/hitting vs. tennis serving/spiking) might help to explain 

the between group differences found for GIRD.  It might also help to explain why volleyball 

athletes do not exhibit this deficit even though they perform roughly the same motion.  

Determining the distraction forces may help to explain some of the scapular kinematic 

adaptations as well since there is some research that suggests that tightened posterior shoulder 

structures may alter scapular kinematics62, 63, 74. Research performed in these sports should also 

analyze the respective sport specific motions while the subjects are using their respective 

equipment, i.e. throwing a baseball, swinging tennis racket and spiking a volleyball.   
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Future research should also determine if there is a difference in kinetics and kinematics of 

the volleyball spike between standing and jumping.  As discussed earlier, when the subject is on 

the court hitting, they can push against the ground to generate more torque.  On the other hand, 

when they perform a spike in the air or a jump serve, the athletes can only use whatever energy is 

in their body to hit the ball.  This may reduce the amount of force they can produce against the 

ball and therefore alter shoulder characteristics.  Further research is necessary to determine if this 

decrease in torque occurs between standing and jumping.   

Research shows that there is increased upward rotation in the scapular plane compared to 

the sagittal plane in healthy shoulders during an elevation task62.  The limb does not usually 

perform strictly in the scapular plane in overhead motions.  It may be a better assessment to 

measure in the sagittal, frontal and scapular plane (or a combination of) and compare between 

them to somewhat replicate the throwing motion.  By the time the throwing limb is in the 

scapular plane, the external rotators are eccentrically contracting to decelerate the limb during 

follow through.  The possibility that muscle adaptations in the scapular plane may alter scapular 

kinematics compared to other planes should be researched in the future. 

4.4 CLINICAL RELEVANCE 

The current research study shows a difference between overhead sports.  Baseball 

pitchers tend to exhibit different characteristics than tennis, volleyball and the control group, 

although some of those differences were not significant.  In the future, overhead athletes should 

not be stereotyped as one “overhead athlete” group; instead, they should be subdivided into their 

respective sports.  This subdivision will allow the sports medicine clinician to administer and 

prescribe a better treatment and rehabilitation plan.  Rehabilitation protocols should be tailored to 

the specific demands of each sport.   A sport specific return to play criteria will possibly allow a 

healthier and faster return to sport. 
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5.0  CONCLUSION 

The current study of 58 subjects (15 baseball pitchers, 15 volleyball athletes, 13 tennis 

athletes, and 15 control athletes) measured shoulder rotation ROM, posterior shoulder tightness, 

internal/external rotation strength, protraction/retraction strength, and scapular kinematics during 

an elevation task.  The results show that not all overhead athletes posses the same shoulder 

characteristics.  The exact explanation for some of these results is not possible as there is little 

research available on tennis and volleyball athletes’ shoulder characteristics.  However, the 

majority of these differences may be due to the stresses that are placed on the structures and how 

the body adapts to those stresses (Wolff’s Law). 

The main goal of this study was to compare the characteristics of common overhead 

sports.  The results show that the overhead sports in this study are not the same in healthy, 

college aged, male athletes.  Many previous research studies have stereotyped the overhead 

athlete as a baseball pitcher/player.  The results of this study suggest this may not to be the case. 

When reviewing the results, baseball, tennis, and volleyball athletes do not have the same 

characteristics for all variables.  For this reason, sport specific rehabilitation programs should be 

developed in order to not only return the athlete to sport as soon as possible, but to regain the 

necessary physical characteristics specific to the respective sport.  In the future, researchers 

should not group all overhead athletes together as one stereotypical “overhead athlete” group, but 

subdivide that group into the respective sports.  Only with more research in this area will these 

subgroups be able to be thoroughly understood and defined.   
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