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STUDY OF MESON PROPERTIES IN QUARK MODELS.

Olga Lakhina, PhD

University of Pittsburgh, 2006

The main motivation is to investigate meson properties in the quark model to understand

the model applicability and generate possible improvements. Certain modifications to the

model are suggested which have been inspired by fundamental QCD properties (such as

running coupling or spin dependence of strong interactions). These modifications expand

the limits of applicability of the constituent quark model and illustrate its weaknesses and

strengths. The meson properties studied include meson spectra, decay constants, electro-

magnetic and electroweak form-factors and radiative transitions. The results are compared

to the experimental data, lattice gauge theory calculations and other approaches.
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1.0 INTRODUCTION: QUANTUM CHROMODYNAMICS AND ITS

PROPERTIES

Quantum Chromodynamics (QCD) was proposed in the 1970s as a theory of the strong

interactions. It was widely accepted after the discovery of asymptotic freedom in 1973 as it

offered a satisfying explanation to some of the puzzling experimental results at the time.

However, understanding of the strong interactions is far from complete. One of the open

problems is the difficulty to explain much of the experimental data on the particle properties

from the first principles. Building models, which capture the most important features of

strong QCD, is one way to resolve this problem.

The main motivation for the present dissertation is to investigate meson properties in

the quark model to understand the model applicability and generate possible improvements.

Certain modifications to the model are suggested which have been inspired by fundamental

QCD properties (such as running coupling or spin dependence of strong interactions). These

modifications expand the limits of applicability of the constituent quark model and illustrate

its weaknesses and strengths.

In the next section of the introduction, different approaches to the problem of strong QCD

are discussed. After that, the most important properties of QCD are described, including

asymptotic freedom, confinement and chiral symmetry breaking. The quark models studied

here are introduced and the theory necessary for understanding our methods is explained in

Chapter 2. Our results are presented and discussed in Chapter 3 (Spectroscopy), Chapter

4 (Meson decay constants), Chapter 5 (Form-factors), Chapter 6 (Gamma-gamma decays),

and Chapter 7 (Radiative transitions). Chapter 8 gives conclusions and an outlook for the

future.
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1.1 OVERVIEW

Year after year, QCD continues to succeed in explaining the physics of strong interactions,

and no contradictions between this theory and experiment have been found yet. QCD is

especially successful in the ultraviolet region, for which firm methods from the first principles

have been developed, and some nontrivial and unexpected properties of QCD have been

well understood and confirmed experimentally (such as scaling violations in deep inelastic

scattering).

However, properties of medium and low energy QCD still present challenges to particle

physicists and remain to be understood. For instance, a rigorous proof is still lacking that

QCD works as a microscopic theory of strong interactions that give rise to the macroscopic

properties of chiral symmetry breaking and quark confinement. The main problem is that

perturbation theory (which proved to be very useful for high energy region) is not applicable

at low energy scales, and no other analytical methods have been developed so far. The

situation is well described by the 2004 Nobel Laureate David J. Gross (who received the

prize for the discovery of asymptotic freedom together with F. Wilczek and H. D. Politzer).

Gross said in 1998 [1]:

At large distances however perturbation theory was useless. In fact, even today after

nineteen years of study we still lack reliable, analytic tools for treating this region of QCD.

This remains one of the most important, and woefully neglected, areas of theoretical particle

physics.

The only reliable method of studying the physical properties of low energy QCD is the

unquenched lattice formulation of gauge theory. Unfortunately, the numerical integrations

needed in this approach are extremely computationally expensive. Even with the use of

efficient Monte Carlo methods, approximations must be done in order to obtain results

with the computational technology of today. However, unquenched lattice gauge theory

calculations are appearing and have already made an impact. They are still preliminary, but

a good understanding exists on the sources of error, and plans are in place to address them.

The only other way to proceed is to invent models that capture the most important

features of strong QCD. A great variety of models have been developed during 30 years
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of QCD. Among them are quenched lattice gauge theory, the Dyson-Schwinger formalism,

constituent quark models, light cone QCD, and various effective field theories (heavy quark

effective field theory, chiral perturbation theory and other theories).

1.1.1 Quenched lattice gauge theory

The lattice formulation of gauge theory was proposed in 1974 by Wilson [2] (and indepen-

dently by Polyakov [3] and Wegner [4]). They realized how to implement the continuous

SU(3) gauge symmetry of QCD and that lattice field theory provided a non-perturbative

definition of the functional integral. The basic idea was to replace continuous finite vol-

ume spacetime with a discrete lattice. From a theoretical point of view, the lattice and

finite volume provide gauge-invariant ultraviolet and infrared cutoffs, respectively. A great

advantage of the lattice formulation of gauge theory is that the strong coupling limit is

particularly simple and exhibits confinement [2]. Moreover, the lattice approach can be

formulated numerically using Monte Carlo techniques. This approach is in principle only

limited by computer power, and much progress has been made since the first quantitative

results emerged in 1981 [5]. However, numerous uncertainties arise in moving the idealized

problem of mathematical physics to a practical problem of computational physics. For in-

stance, an uncontrolled systematic effect of many lattice calculations has historically been

the quenched approximation, in which one ignores the effects related to particle creation

and annihilation so the contribution from the closed quark loops is neglected. It is hard to

estimate the associated error, and only in isolated cases can one argue that it is a subdomi-

nant error. As a result, it is very difficult to describe light meson properties from the lattice

formulation in quenched approximation. Certainly, additional analysis in other models is

needed to make any firm conclusions about quenched lattice QCD results.

1.1.2 Dyson-Schwinger formalism

One of the techniques that has been quite successful in explaining light hadron properties

is based on Dyson-Schwinger equations (DSEs) derived from QCD. The set of DSEs is an

infinite number of coupled integral equations; a simultaneous, self-consistent solution of the
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complete set is equivalent to a solution of the theory. In practice, the complete solution

of DSEs is not possible for QCD. Therefore one employs a truncation scheme by solving

only the equations important to the problem under consideration and making assumptions

for the solutions of other equations. Both the truncation scheme and the assumptions have

to respect the symmetries of the theory, which could be achieved by incorporating Ward-

Takahashi identities. One important advantage of this model is that it is Poincaré covariant

and directly connected to the underlying theory and its symmetries. In particular, chiral

symmetry and its dynamical breaking have been successfully studied in this model. A good

review of this approach can be found in [6]. Unfortunately, heavy and heavy-light mesons are

more difficult to investigate using this approach, as a lot can be learned from the available

experimental data for these states. This is opposite to the naive quark models, which work

surprisingly well for heavy mesons but have problems describing light particles.

1.1.3 Quark model

The quark model of hadrons was first introduced in 1964 by Gell-Mann [7] and, indepen-

dently, by Zweig [8]. At a time the field theory formulation of strong interactions was dis-

favored and many eminent physicists advocated abandoning it altogether. As Lev Landau

wrote in 1960 [9]:

Almost 30 years ago Peierls and myself had noticed that in the region of relativistic

quantum theory no quantities concerning interacting particles can be measured, and the only

observable quantities are the momenta and polarizations of freely moving particles. Therefore

if we do not want to introduce unobservables we may introduce in the theory as fundamental

quantities only the scattering amplitudes.

The ψ operators which contain unobservable information must disappear from the theory

and, since a Hamiltonian can be built only from ψ operators, we are driven to the conclusion

that the Hamiltonian method for strong interaction is dead and must be buried, although of

course with deserved honour.

Until the discovery of asymptotic freedom it was not considered proper to use field theory

without apologies. Even in their paper describing the original ideas on the quark gluon gauge
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theory, which was later named QCD, Gell-Mann and Fritzsch wrote [10]:

For more than a decade, we particle theorists have been squeezing predictions out of a

mathematical field theory model of the hadrons that we don’t fully believe - a model containing

a triple of spin 1/2 fields coupled universally to a neutral spin 1 field, that of the ’gluon’....

....Let us end by emphasizing our main point, that it may well be possible to construct

an explicit theory of hadrons, based on quarks and some kind of glue, treated as fictitious,

but with enough physical properties abstracted and applied to real hadrons to constitute a

complete theory. Since the entities we start with are fictitious, there is no need for any

conflict with the bootstrap or conventional dual model point of view.

Today almost no one seriously doubts the existence of quarks as physical elementary

particles, even though they have never been observed experimentally in isolation. It is

believed that the dynamics of the gluon sector of QCD contrives to eliminate free quark

states from the spectrum. In principle, the possibility of observing free quarks and gluons

exists at extremely high temperature and density, in a phase of QCD called the quark-gluon

plasma (QGP). Experiments at CERN’s Super Proton Synchrotron first tried to create the

QGP in the 1980s and 1990s, and they may have been partially successful. Currently,

experiments at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider (RHIC)

are continuing this effort. CERN’s new experiment, ALICE, will start soon (around 2007-

2008) at the Large Hadron Collider (LHC).

In a nonrelativistic constituent quark model, one ignores the dynamical effects of gluon

fields on the hadron structure and properties. Quarks are considered as nonrelativistic

objects interacting via an instantaneous adiabatic potential provided by gluons. One model

of the potential which proves to be rather successful in describing the heavy meson spectrum

is the ‘Coulomb + linear potential’. In the weak-coupling limit (at small distances), this is a

Coulomb potential with an asymptotically free coupling constant. The strong coupling limit

(large distances), on the other hand, gives a linear potential which confines color.

The quark model has been used to study the low-lying hadron spectrum with a remark-

able success. Moreover, as is demonstrated in the present dissertation, it is also able to

describe and predict other meson properties, for example those relevant to transitions, and

could be applied to different types of mesons, from light to heavy-light and heavy.
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However, there exist a number of phenomena for which gluon dynamics could be im-

portant, such as the existence of hybrid mesons and baryons suggested by QCD. Hybrid

hadrons, in addition to static quarks and antiquarks, consist of excited gluon fields. These

states can be studied on the lattice or in modified quark models and give important insights

on the phenomenon of confinement.

Another model that is based on the potential quark model, but with significant modifi-

cations, is a ‘Coulomb Gauge model’, which is described in section 2.1.2 of this dissertation.

The model consists of a truncation of QCD to a set of diagrams which capture the infrared

dynamics of the theory. The efficiency of the truncation is enhanced through the use of quasi-

particle degrees of freedom. In addition, the random phase approximation could be used to

obtain mesons. This many-body truncation is sufficiently powerful to generate Goldstone

bosons and has the advantage of being a relativistic truncation of QCD.

All models have been designed to reproduce certain QCD properties and have their limits.

Therefore, it is quite important to understand when and why a model can be considered

reliable.

Certainly, as we apply some model to investigate new effects and properties, that are

different from what it was designed for, necessary changes and adjustments have to be made

to reproduce experimental data. The process of improving the model can teach us a great

deal about QCD properties and show us which aspects of it are crucial for describing certain

effects and which can be neglected.

In the next few sections of the introduction the most important properties of QCD are

described, including asymptotic freedom, confinement and chiral symmetry breaking.

1.2 QUARKS, COLOR, AND ASYMPTOTIC FREEDOM

In the 1960s a growing number of new particles was being discovered, and it became clear

that they could not all be elementary. Physicists were looking for the theory to explain this

phenomenon. Gell-Mann and Zweig provided a simple idea which solved the problem - they

proposed that all mesons consisted of a quark and an antiquark and all baryons consisted of
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three quarks. It is now widely accepted that quarks come in six flavors: u (up), d (down), s

(strange), c (charm), b (bottom) and t (top), and carry fractional electric charge (up, charm

and top quarks have charge +2
3
e, and down, strange and bottom have charge −1

3
e). Quarks

also have another property called color charge which was introduced in 1964 by Greenberg

[11], and in 1965 by Han and Nambu [12]. Quarks and antiquarks combine together to form

hadrons in such a way that all observed hadrons are color neutral and carry integer electric

charge. Quarks are fermions and have spin s = 1
2
.

By analogy with Quantum Electrodynamics (QED), in which photons are the carriers of

the electromagnetic field, particles called gluons carry the strong force as they are exchanged

by colored particles. The important difference of QCD is that gluons also carry color charge

and therefore can interact with each other. This leads to the fact that gluons in the system

behave in such a way as to increase the magnitude of an applied external color field as the

distance increases. Quarks being fermions have the opposite effect on the external field -

they partially cancel it out at any finite distance (screening of the color charge occurs much

as the screening of the electric charge by electrons happens in QED). The composite effect of

the quarks and gluons on the vacuum polarization depends on the number of quark flavors

and colors. In QCD, for 6 quark flavors and 3 colors, the anti-screening of gluons overcomes

the screening due to the quarks and leads to the emergence of interesting phenomenon called

asymptotic freedom. The name of the phenomena suggests its meaning – at short distances

(high energies) strong interacting particles behave as if they are asymptotically free (effective

coupling is very small).

Asymptotic freedom was introduced in 1973 by Gross and Wilczek [13] and Politzer [14]

in an effort to explain rather puzzling deep inelastic scattering experiments performed at

SLAC and MIT. In these experiments, a hydrogen target was hit with a 20 GeV electron

beam and the scattering rate was measured for large deflection angles (hard scattering). This

experiment was very similar to Rutherford’s famous experiment, where the gold target was

hit by alpha particles and the rate of particles scattered with a large angle was measured.

Hard scattering corresponds to a high momentum transfer between the electrons and

protons in the target, so detecting a large rate would mean that the structure of the proton

is similar to that of an elementary particle. Because the hypothesis at the time was that
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the hadrons were loose clouds of constituents, like jelly, relatively low rates were expected.

However, not only was a high rate for hard electron scattering detected, but also only in

rare cases did a single proton emerge from the process. Instead, an electromagnetic impulse

shattered the proton and produced a system with a large number of hadrons. It looked

like the proton behaved like an elementary particle in electromagnetic processes, but as a

complex softly bound system for strong interaction processes.

The explanation for this phenomenon was offered by Bjorken [15] and Feynman [16].

They introduced the parton model, which assumes that the proton is a loosely bound system

of a small number of constituents called partons that are unable to transfer large momenta

through strong interactions. These constituents included electrically charged quarks and

antiquarks and possibly some other neutral particles. The idea was that when a quark (or

antiquark) in a proton was hit by an electron, they could interact electromagnetically and

the quark was knocked out of the proton. The remainder of the proton then experienced a

soft momentum transfer from the knocked out quark and materialized as a jet of hadrons.

This model imposes a strong constraint on the behavior of the deep inelastic scattering

cross section, called Bjorken scaling. The physical meaning of Bjorken scaling is basically

the statement that the structure of the proton looks the same to an electromagnetic probe

independently of the energy of the system, so the strong interaction between the constituents

of the proton can be ignored.

However, the deep inelastic scattering experiments showed slight deviation from Bjorken

scaling, suggesting that the coupling of strong interactions was still not zero at any finite

momentum transfer. This fit perfectly with the predictions of dependence of running coupling

on an energy scale calculated from the renormalization group approach by Gross, Wilczek

and Politzer. Later, more experiments were performed that confirmed this result. The

dependence of the coupling on the energy scale and the experimental data are demonstrated

in Fig. 1.

Asymptotic freedom turned out to be a very useful property for studying high energy

QCD. It allows one to treat the coupling constant perturbatively for sufficiently small dis-

tances and therefore calculate physical properties under consideration in a systematic and

controlled manner.
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Figure 1: Summary of measurements of the running coupling of strong interactions αs(Q)

and its dependence on the energy scale [17].

The property of confinement is another interesting QCD phenomenon, it is discussed in

the next section.
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1.3 CONFINEMENT

Confinement is an important property of the strong interaction that is widely accepted and

incorporated into any model claiming to imitate strong QCD. Being an essentially nonper-

turbative phenomenon, confinement still lacks a rigorous explanation from first principles

despite more than 30 years of investigation.

Quark confinement is often defined as the absence of isolated quarks in nature as they

have never been experimentally observed. Searches for free quarks normally focus on free

particles with fractional electrical charge. But the observation of a particle with fractional

charge does not necessarily mean that a free quark has been observed. For instance, there

might exist heavy colored scalar particles that can form bound states with quarks producing

massive states with fractional electric charge [18, 19].

Another definition of confinement is the physics phenomenon that color-charged particles

cannot be isolated. But this confuses confinement with color screening, and also works for

spontaneously broken gauge theories which are not supposed to exhibit confinement.

One can try to define confinement by its physical properties, for instance, the long range

linear potential between quarks. However, this requirement is only reasonable for infinitely

heavy quarks. When two quarks with finite masses become separated, at some point it

becomes more energetically favorable for a new quark/anti-quark pair to be created out of

the vacuum than to allow the quarks to separate further.

The lattice gauge approach has its own definition of confinement. Field theory is said

to exhibit confinement if the interaction potential between quark and antiquark in this

theory (which corresponds to the Wilson loop calculated on the lattice) has asymptotic linear

behavior at large distances. Wilson loop measurements of various static quark potentials in

the QCD vacuum are presented in Fig. 2. The lowest curve corresponds to the ground state

of the gluonic field in the quark-antiquark system (meson) while higher curves correspond

to the excited gluonic field (possibly hybrid states). One can see that for large distances all

the potentials show linear behavior (confinement).

Gluonic fields can be visualized with the help of the plots of the action or gluonic field

density made on the lattice (see Fig. 3 for meson (left) and baryon (right)). They clearly
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Figure 2: Wilson loop measurements of various static quark potentials [20].

show that the quarks in a hadron are sources of color electric flux and that flux is trapped

in a flux tube connecting the quarks. The formation of the flux tube is related to the self-

interaction of gluons via their color charge. There exists a possibility that a gluonic field can

be excited and, by interacting with quarks, produce mesons with exotic quantum numbers.

Studying the spectrum of the exotic mesons one can learn a great deal about the structure

of gluonic degrees of freedom and the confinement.

Since QCD is a gauge theory, it might be convenient to choose a specific gauge to study

the particular property of the theory, such as confinement. It has been shown that the

confinement of color charge could be easily understood in minimal Coulomb gauge, while,

for instance, in Landau gauge the mechanism of this phenomenon is rather mysterious [23].
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Figure 3: Mesonic [22] and baryonic [21] flux tubes.

In minimal Coulomb gauge the 0-0 component of the gluon propagator,

D00(x, t) = Vcoul(x)δ(t) + non−instantaneous, (1.1)

has an instantaneous part, Vcoul(r), that is long range and confining and couples univer-

sally to all color-charge. The data of numerical study [24] are consistent with a linearly

rising potential, Vcoul(r) ∼ σcoulr, and a Coulomb string tension that is larger than the phe-

nomenological string tension, σcoul > σ. Moreover, the 3-dimensionally transverse physical

components of the gluon propagator,

Dij(x, t) = 〈Ai(x, t)Aj(0, 0)〉, (1.2)

are short range, corresponding to the absence of gluons from the physical spectrum. This

property makes Coulomb gauge especially convenient to study nonperturbative QCD. More

details on a study of confinement in Coulomb gauge can be found in [25]. The first serious

look at Coulomb gauge and the problem of confinement there was in the paper by Szczepaniak

and Swanson [26].
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Every theory of confinement aims at explaining the linear rise of the static quark po-

tential, which is suggested by the linearity of meson Regge trajectories. However, this

phenomenon has a number of other interesting properties that a satisfactory theory of con-

finement is obligated to explain, one of them being Casimir scaling. Casimir scaling [27]

refers to the fact that there is an intermediate range of distances where the string tension

of static sources in color representation r is approximately proportional to the quadratic

Casimir of the representation; i.e.

σr =
C2

r

C2
F

σF , (1.3)

where the subscript F refers to the fundamental representation. This behavior was first

suggested in Ref. [28]. The term ‘Casimir scaling’ was introduced much later, in Ref. [27],

where it was emphasized that this behavior poses a serious challenge to some prevailing ideas

about confinement.

Figure 4 shows in a compelling way the property of Casimir scaling of confinement. The

figure was obtained by measuring the Wilson loop for sources in various representations of

SU(3). The interaction between color triplets is the lowest surface in the figure and forms

the template for the others. In the figure one sees higher surfaces with sources in the 8, 6,

15A, 10, 27, 24, and 15S representations. The curves are obtained by multiplying a fit to

the lowest (fundamental representation) surface by the quadratic Casimir, C2
r = 〈r|T aT a|r〉

divided by C2
F . The quadratic Casimir is given by (p2 + q2 + pq)/3 + p + q where (p,q) is the

Dynkin index of the representation. The agreement is remarkable and is a strong indication

that the color structure of confinement may be modelled as

∫
ψ̄T aψ...ψ̄T aψ (1.4)

where the ellipsis represents Lorentz and spatial dependence.

Chiral symmetry breaking is another interesting QCD property, it is discussed in the

next section.
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Figure 4: Casimir scaling of confinement [29].

1.4 CHIRAL SYMMETRY BREAKING

In quantum field theory, chiral symmetry is a possible symmetry of the Lagrangian under

which the left-handed and right-handed parts of Dirac fields transform independently. QCD

Lagrangian has an approximate flavor chiral symmetry SUL(Nf ) × SUR(Nf ) due to the

relative smallness of the masses of up, down and strange quarks. This approximate symmetry
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is dynamically broken to SU(Nf ) and leads to the appearance of (N2
f − 1) Goldstone bosons

in the theory (which are pseudoscalar mesons for QCD). Since chiral symmetry is not exact

(explicitly broken by small but nonzero quark masses), Goldstone bosons in QCD are not

massless but relatively light. The actual masses of these mesons can in principle be obtained

in chiral perturbation theory through an expansion in the (small) actual masses of the quarks.

The mechanism of dynamical chiral symmetry breaking is closely related to the struc-

ture of the vacuum. In QCD, quarks and antiquarks are strongly attracted to each other,

therefore if these quarks are massless, the energy cost of the pair creation from the vacuum

is small. So we expect that QCD vacuum contains quark-antiquark condensates with the

vacuum quantum numbers (zero total momentum and angular momentum). It means that

the condensates have nonzero chiral charge, pairing left-handed quarks with the antiparti-

cles of right-handed quarks. It leads to the nonzero vacuum expectation value for the scalar

operator

〈0|Q̄Q|0〉 = 〈0|Q̄LQR + Q̄RQL|0〉 6=0. (1.5)

The expectation value signals that the vacuum mixes the two quark helicities. This

allows massless quarks to acquire effective mass as they move through the vacuum. Inside

quark-antiquark bound states, quarks appear to move if they are massive, even though they

have zero bare mass (in the Lagrangian).

Dynamical chiral symmetry breaking is impossible in perturbation theory because at

every finite order in perturbation theory the self-energy of the particle is proportional to its

renormalized mass. So if one starts with a chirally symmetric theory then one will also end

up with a chirally symmetric theory, if using perturbative approaches. Therefore dynamical

chiral symmetry breaking has to be studied using nonperturbative methods.

In the many-body approach dynamical chiral symmetry breaking and momentum-dependent

mass generation of elementary excitations can be described by the Gap Equation (an exam-

ple of a gap equation will be presented in section 2.1.2). The Gap Equation allows one to

calculate the mass function of the particle which is momentum-dependent. The mass func-

tion of the quark calculated in this approach is presented in the Fig. 5. One can see that the

dynamical quark mass is large in the infrared and suppressed in the ultraviolet, this result

is not possible in weakly interacting theories.
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Figure 5: Dependence of the dynamical quark mass on the momentum calculated in Coulomb

gauge model introduced in section 2.1.2.

Another useful tool to study dynamical chiral symmetry breaking is the method based

on Dyson-Schwinger equations. In fact, the simplest Dyson-Schwinger equation is the gap

equation for the dressed quark propagator. By solving this equation one would obtain the

mass function of the quark (dependence of the quark mass on the momentum). This equation

cannot be solved exactly however since it is one of the equations of the self-consistent set of

infinite number of coupled nonlinear integral equations. Truncation schemes appropriate to

this problem have been found and the momentum-dependence of the quark mass has been

calculated. It is in excellent agreement with lattice gauge theory calculations.

In the next chapter of the present dissertation we introduce the quark models studied

and explain our methods.
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2.0 THEORY

The study of the meson sector has attracted much attention, with a great variety of different

models. The fundamental reason is that it is a very good laboratory for exploring the non-

perturbative QCD regime. ‘Composed of a quark and an antiquark’, a meson is the simplest

nontrivial system that can be used to test basic QCD properties. In particular, the meson

spectra can be reasonably understood in non-relativistic or semi-relativistic models with

simple or sophisticated versions of the funnel potential, containing a long-range confining

term plus a short-range Coulomb-type term coming from one-gluon exchange [30, 31].

Energies are not very stringent observables and to test more deeply the wave functions,

one needs to rely on more sensitive observables. Electromagnetic properties, such as decay

constants or form factors can be employed. In that case the transition operator is precisely

known. On the other hand, one can also study hadronic transitions occurring through the

strong interaction; this kind of transition is able to explain the decay of a meson into several

mesons, or baryon-antibaryon, or other more complicated channels. The hadronization pro-

cess is quite difficult to understand and model in terms of basic QCD. One reason is that,

contrary to the electromagnetic case, the transition operator is not defined precisely.
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2.1 QUARK MODELS OF HADRON STRUCTURE

2.1.1 Nonrelativistic Potential Quark Model

In the nonrelativistic potential quark model the meson is approximated to be a bound state

of interacting quark and antiquark. The meson state for such a system is:

|M〉 =
√

2EP

∑

cc̄ss̄f f̄MSML

δcc̄√
3
〈JM |LMLSMS〉χSMS

ss̄ ΞIIz

ff̄

×
∫

d3kd3k̄

(2π)3
Φ

(
mq̄

~k −mq
~̄k

mq + mq̄

)
δ(3)(~k + ~̄k − ~P )√

2Ek

√
2Ek̄

|~k, ~̄k〉 (2.1)

where ~P is the meson momentum, S, L and J are the meson spin, orbital and angular

momenta with projections MS, ML and M . XSMS
ss̄ is the spin wave function of the meson, it

depends on spin projections of quark and antiquark s and s̄ and also on the meson spin and

its projection. ΞIIz

ff̄
is the flavor wave function and it depends on the flavors of the quark

and antiquark f and f̄ and on the meson isospin I and its projection Iz. Φ is the spatial

wave function, it depends on the momenta k and k̄ of quark and antiquark with masses mq

and mq̄.

In the nonrelativistic approximation the mesonic wave function is the eigenfunction of a

Schrodinger equation:

ĤΨ = EΨ, (2.2)

and the Hamiltonian for the system is:

H = K + V (r), (2.3)

where K is the nonrelativistic kinetic energy and V (r) is the potential energy.

Several phenomenological models for the interaction potential exist. The simplest one

is a spherical harmonic oscillator potential. It is a rather crude approximation and doesn’t

give good description of the meson properties, for example it can’t distinguish between two

mesons with different spins. But it allows analytical calculations for most of the meson

properties and easy Fourier transformations of the wave functions, so it is useful as a simple

estimate of some physical quantities of interest.
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Another variation of the nonrelativistic potential model is ISGW [32], which is based on

SHO potential model but with an artificial factor κ introduced so that |~q| → |~q|/κ. The

κ factor was added to achieve better agreement with the experimental data for the pion

form-factor and certain heavy quark transitions.

A more realistic model of the potential is Coulomb+linear+hyperfine interaction model:

V (r) = −4

3

αC

r
+ br + C +

32αHσ3e−r2σ2

9m1m2π1/2
~S1 · ~S2. (2.4)

The strengths of the Coulomb and hyperfine interactions are taken as separate parameters.

Perturbative gluon exchange implies that αC = αH and we find that the fits prefer the near

equality of these parameters.

The Coulomb term corresponds to the quark interaction due to the one gluon exchange

and dominates at short range. The linear term describes confinement. The hyperfine term

is spin-dependent and makes it possible to distinguish between mesons of different spins.

This potential has 3 parameters (α, β and σ), and together with the mass of the quarks

they could be adjusted to describe the properties of the mesons (for examples the masses

of several meson ground states). After the parameters have been adjusted, calculations of

other meson properties could be done and compared to the experimental data to see how

the model works. Also predictions of the physical properties, potentially observable in the

future, could be made.

As will be described in the next chapter, the observables that we consider require a weaker

ultraviolet interaction than that of Eq. 2.4. We therefore introduce a running coupling that

recovers the perturbative coupling of QCD but saturates at a phenomenological value at low

momenta:

αC → αC(k) =
4π

β0 log
(
e

4π
β0α0 + k2

Λ2

) (2.5)

where k2 = |~k|2 is the square of the three-momentum transfer, β0 = 11− 2Nf/3 = 9, Nf is

the number of flavors taken to be 3. One can identify the parameter Λ with ΛQCD because

αC(k) approaches the one loop running constant of QCD. However, this parameter will also

be fit to experimental data in the following (nevertheless, the resulting preferred value is

reassuringly close to expectations). Parameters and details of the fit are presented in the
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Chapter 4.

Potential of Eq. 2.4 cannot explain P-wave mass splittings induced by spin-dependent

interactions, which are due to spin-orbit and tensor terms. A common model of spin-

dependence is based on the Breit-Fermi reduction of the one-gluon-exchange interaction

supplemented with the spin-dependence due to a scalar current confinement interaction.

The general form of this potential has been computed by Eichten and Feinberg[33] at tree

level using Wilson loop methodology. The result is parameterized in terms of four nonpertur-

bative matrix elements, Vi, which can be determined by electric and magnetic field insertions

on quark lines in the Wilson loop. Subsequently, Pantaleone, Tye, and Ng[34] performed in

a one-loop computation of the heavy quark interaction and showed that a fifth interaction,

V5 is present in the case of unequal quark masses. The diagrams that have been calculated

in addition to the tree level diagram are presented in Fig. 6.

Figure 6: One-loop diagrams of the heavy quark interaction.

The net result is a quark-antiquark interaction that can be written as:

Vqq̄ = Vconf + VSD (2.6)

where Vconf is the standard Coulomb+linear scalar form:

Vconf (r) = −4

3

αs

r
+ br (2.7)
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and

VSD(r) =

(
σq

4m2
q

+
σq̄

4m2
q̄

)
· L

(
1

r

dVconf

dr
+

2

r

dV1

dr

)
+

(
σq̄ + σq

2mqmq̄

)
· L

(
1

r

dV2

dr

)

+
1

12mqmq̄

(
3σq · r̂σq̄ · r̂− σq · σq̄

)
V3 +

1

12mqmq̄

σq · σq̄V4

+
1

2

[(
σq

m2
q

− σq̄

m2
q̄

)
· L +

(
σq − σq̄

mqmq̄

)
· L

]
V5. (2.8)

Here L = Lq = −Lq̄, r = |r| = |rq − rq̄| is the Q̄Q separation and the Vi = Vi(mq,mq̄; r) are

the Wilson loop matrix elements discussed above. The explicit expressions for Vi’s can be

found in the section 3.3 of the present dissertation.

The first four Vi are order αs in perturbation theory, while V5 is order α2
s; for this reason

V5 has been ignored by quark modelers. For example, the analysis of Cahn and Jackson[35]

only considers V1 – V4. In practice this is acceptable (as we show later) except in the case

of unequal quark masses, where the additional spin-orbit interaction can play an important

role.

2.1.2 Relativistic Many-Body Approach in Coulomb Gauge

The canonical nonrelativistic quark model relies on a potential description of quark dy-

namics and therefore neglects many-body effects in QCD. Related to this is the question

of the reliability of nonrelativistic approximations, the importance of hadronic decays, and

the chiral nature of the pion. The latter two phenomena depend on the behavior of non-

perturbative glue and as such are crucial to the development of robust models of QCD and

to understanding soft gluodynamics. Certainly, one expects that gluodynamics will make

its presence felt with increasing insistence as experiments probe higher excitations in the

spectrum. Similarly the chiral nature of the pion cannot be understood in a fixed particle

number formalism. This additional complexity is the reason so few models attempt to derive

the chiral properties of the pion. This is an unfortunate situation since the pion is central

to much of hadronic and nuclear physics.
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To make progress one must either resort to numerical experiments or construct models

which are closer to QCD. One such model is based on the QCD Hamiltonian in Coulomb

gauge [36, 37, 38, 40].

In this approach the exact QCD Hamiltonian in the Coulomb gauge is modeled by an

effective, confining Hamiltonian, that is relativistic with quark field operators and current

quark masses. However, before approximately diagonalizing H, a similarity transformation is

implemented to a new quasiparticle basis having a dressed, but unknown constituent mass.

As described later, this transformation entails a rotation that mixes the bare quark creation

and annihilation operators. By then performing a variational calculation to minimize the

ground state (vacuum) energy, a specific mixing angle and corresponding quasiparticle mass

is selected. In this fashion chiral symmetry is dynamically broken and a non-trivial vacuum

with quark condensates emerges. This treatment is precisely analogous to the Bardeen,

Cooper, and Schrieffer (BCS) description of a superconducting metal as a coherent vacuum

state of interacting quasiparticles combining to form condensates (Cooper pairs). Excited

states (mesons) can then be represented as quasiparticle excitations using standard many-

body techniques, for example Tamm-Dancoff (TDA) or random phase approximation (RPA)

methods.

There are several reasons for choosing the Coulomb gauge framework. As discussed by

Zwanziger [39], the Hamiltonian is renormalizable in this gauge and, equally as important,

the Gribov problem (∆·A = 0 does not uniquely specify the gauge) can be resolved (see Refs.

[?, 40] for further discussion). Related, there are no spurious gluon degrees of freedom since

only transverse gluons enter. This ensures all Hilbert vectors have positive normalizations

which is essential for using variational techniques that have been widely successful in atomic,

molecular and condensed matter physics. Second, an advantage of Coulomb gauge is the

appearance of an instantaneous potential.

By introducing a potential K(0), the QCD Coulomb gauge Hamiltonian [40] for the quark

sector can be replaced by an effective Hamiltonian

H =

∫
d~xΨ̄† (~x)

(
−i~α · ~∆ + βm

)
Ψ̄ (~x) +

1

2

∫
d~xd~yρa (~x) K(0) (|~x− ~y|) ρa (~y) , (2.9)
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where Ψ, m and ρa(~x) = Ψ† (~x) T aΨ (~x) are the current (bare) quark field, mass and color

density, respectively. For notational ease the flavor subscript is omitted (same H for each

flavor) and the color index runs a = 1...8.

K(0) is defined as the vacuum expectation value of the instantaneous non-Abelian Coulomb

interaction. The procedure for calculating K(0) is described in [26]. The solution is well ap-

proximated by the following expression:

K(0)(k) =
12.25

k2





(mg

k

)1.93
k < mg,

0.6588 log (k2/m2
g + 0.82)

−0.62
log (k2/m2

g + 1.41)
−0.80

k > mg.
(2.10)

To find the meson wave function, equation HΨ = EΨ has to be solved as accurately

as possible. First the ground state has to be studied, and the Bogoliubov-Valatin, or BCS,

transformation is introduced.

The plane wave, spinor expansion for the quark field operator is:

Ψ(~x) =
∑

cλ

∫
d~k

(2π)3

[
ucλ(~k)bcλ(~k) + vcλ(−~k)d†cλ(−~k)

]
ei~k·~x (2.11)

with free particle, anti-particle spinors ucλ, vcλ and bare creation, annihilation operators bcλ,

dcλ for current quarks, respectively. Here the spin state (helicity) is denoted by λ and color

index by c = 1, 2, 3 (which is hereafter suppressed). Because Ψ could be expanded in terms

of any complete basis, a new quasiparticle basis may equally well be used:

Ψ(~x) =
∑

λ

∫
d~k

(2π)3

[
Uλ(~k)Bλ(~k) + Vλ(−~k)D†

λ(−~k)
]
ei~k·~x (2.12)

entailing quasiparticle spinors Uλ, Vλ and operators Bλ,Dλ. The Hamiltonian is equiva-

lent in either basis and the two are related by a similarity (Bogoliubov-Valatin or BCS)

transformation. The transformation between operators is given by the rotation

Bλ(~k) = cos
θk

2
bλ(~k)− λ sin

θk

2
d†λ(−~k),

Dλ(−~k) = cos
θk

2
dλ(−~k) + λ sin

θk

2
b†λ(~k), (2.13)
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involving the BCS angle θk = θ(k). Similarly the rotated quasiparticle spinors are

Uλ(~k) = cos
θk

2
uλ(~k)− λ sin

θk

2
vλ(−~k) =

1√
2




√
1 + sin φ(~k) χλ√

1− sin φ(~k) ~σ · k̂ χλ


 ,

Vλ(−~k) = cos
θk

2
vλ(−~k) + λ sin

θk

2
uλ(~k) =

1√
2


 −

√
1− sin φ(~k) ~σ · k̂ χλ√

1 + sin φ(~k) χλ


 , (2.14)

where χλ is the standard two-dimensional Pauli spinor. The gap angle, φk = φ(k), has also

been introduced, which is related to the BCS angle, θ/2, by φ = θ+α where α is the current,

or perturbative, mass angle satisfying sin α = m/Ek with Ek =
√

m2 + k2. Hence

sin φk =
m

Ek

cos θk +
k

Ek

sin θk,

cos φk =
k

Ek

cos θk − m

Ek

sin θk. (2.15)

Similarly, the perturbative, trivial vacuum, defined by bλ|0〉 = dλ|0〉 = 0, is related to the

quasiparticle vacuum, Bλ|Ω〉 = Dλ|Ω〉 = 0, by the transformation

|Ω〉 = exp

(
−

∑

λ

∫
d~k

(2π)3
λ tan

θk

2
b†λ(~k)d†λ(−~k)

)
|0〉. (2.16)

Here Ω is so called BCS vacuum (later we introduce the RPA vacuum labeled |ΩRPA〉
which is required to obtain a massless pion). Expanding the exponential and noting that

the form of the operator b†d† is designed to create a current quark/antiquark pair with

the vacuum quantum numbers, clearly exhibits the BCS vacuum as a coherent state of

quark/antiquark excitations (Cooper pairs) representing 2S+1LJ = 3P0 condensates. One

can regard tan θk

2
as the momentum wavefunction of the pair in the center of momentum

system.

An approximate ground state for our effective Hamiltonian could be found by minimiz-

ing the BCS vacuum expectation, 〈Ω|H|Ω〉. It could be done variationally using the gap

angle, φk, which leads to the gap equation, δ〈Ω|H|Ω〉 = 0. After considerable mathematical

reduction, the nonlinear integral gap equation follows

k sin φk −m cos φk =
2

3

∫
d~q

(2π)3
K(0)

(
|~k − ~q|

) [
sin φk cos φqk̂ · q̂ − sin φq cos φk

]
. (2.17)
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This gap equation is to be solved for the unknown Bogoliubov angle, which then spec-

ifies the quark vacuum and the quark field mode expansion via spinors. Comparing the

quark spinor to the canonical spinor permits a simple interpretation of the Bogoliubov an-

gle through the relationship µ(k) = k tan φk where µ(k) may be interpreted as a dynamical

momentum-dependent quark mass. Similarly µ(0) may be interpreted as a constituent quark

mass.

The numerical solution for the dynamical quark mass is very accurately represented by

the functional form

µ(k) = σK(0)(k)
(
1− e−M/(σK(0))(k)

)
(2.18)

where M is a constituent quark mass and σ is a parameter related to the quark condensate.

Notice that this form approaches the constituent mass for small momenta and σK(0) for

large momenta.

With explicit expressions for the quark interaction and the dynamical quark mass the

mesonic bound states can now be obtained. The definitions of the meson creation operators

in TDA and RPA approximations are (see §59 of Ref. [41], also [42, 43]):

Q†
M(TDA) =

∑

γδ

∫
d3k

(2π)3
ψγδ(~k)B†

γ(
~k)D†

δ(−~k), (2.19)

Q†
M(RPA) =

∑

γδ

∫
d3k

(2π)3

[
ψ†γδ(

~k)B†
γ(

~k)D†
δ(−~k)− ψ−γδ(

~k)Bγ(~k)Dδ(−~k)
]

(2.20)

with B and D being the quasiparticle operators. It is worthwhile recalling that the RPA

method is equivalent to the Bethe-Salpeter approach with instantaneous interactions [44].

A meson is then represented by the Fock space expansion:

|MTDA〉 = Q†
M(TDA)|Ω〉, (2.21)

|MRPA〉 = Q†
M(RPA)|ΩRPA〉. (2.22)

Here ΩRPA is RPA vacuum, it has both fermion (two quasiparticles or Cooper pairs) and

boson (four quasiparticles or meson pairs) correlations.
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To derive the TDA and RPA equations of motion we project the Hamiltonian equation

onto the truncated Fock sector. It gives:

〈MTDA|[H, Q†
M(TDA)]|Ω〉 = (EM − E0)〈MTDA|Q†

M(TDA)|Ω〉, (2.23)

〈MRPA|[H,Q†
M(RPA)]|ΩRPA〉 = (EM − E0)〈MRPA|Q†

M(RPA)|ΩRPA〉 (2.24)

In TDA (2.23) generates an integral equation for the meson wave function ψ(~k), and in

RPA (2.24) generates two coupled nonlinear integral equations for two wave functions ψ†(~k)

and ψ−(~k).

The RPA and TDA equations include self energy terms (denoted Σ) for each quark line

and these must be renormalized. In the zero quark mass case renormalization of the TDA

or RPA equations proceeds in the same way as for the quark gap equation. In fact, the

renormalization of these equations is consistent and one may show that a finite gap equation

implies a finite RPA or TDA equation. This feature remains true in the massive case. The

RPA equation in the pion channel reads:

(Eπ − EBCS)ψ†(k) = 2 [m sin φk + k cos φk + Σ(k)] ψ†(k)−
−CF

2

∫
q2dq

(2π)3

[
V0(k, q)(1 + sin φk sin φq) + V1(k, p) cos φk cos φq

]
ψ†(q)−

−CF

2

∫
q2dq

(2π)3

[
V0(k, q)(1− sin φk sin φq)− V1(k, p) cos φk cos φq

]
ψ−(q),

(2.25)

where

VL(k, q) = 2π

∫
d(q̂ · k̂)K(0)

(
|~q − ~k|

)
PL(q̂ · k̂). (2.26)

A similar equation for ψ− holds with (+ → −) and E → −E. The wavefunctions ψ±

represent forward and backward moving components of the many-body wavefunction and

the pion itself is a collective excitation with infinitely many constituent quarks in the Fock

space expansion. These two coupled nonlinear integral equation could be solved numerically

to obtain meson spectrum and wave functions.

TDA equation may be obtained from the RPA equation (2.25) by neglecting the backward

wave function ψ−. The spectrum in the random phase and Tamm-Dancoff approximations

has been computed [45] and it has been confirmed that the pion is massless in the chiral
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limit. It was also found that the Tamm-Dancoff approximation yields results very close to

the RPA for all states except the pion. All other mesons have nearly identical RPA and TDA

masses. The complete hidden flavor meson spectrum in the Tamm-Dancoff approximation

is given by the following equations.

EψPC(k) = 2 [m sin φk + k cos φk + Σ(k)] ψPC(k)− CF

2

∫
q2dq

(2π)3
KPC

J (k, q)ψPC(q) (2.27)

with

Σ(k) =
CF

2

∫
q2dq

(2π)3
(V0 sin φk sin φq + V1 cos φk cos φq) (2.28)

and where ψ is the meson radial wavefunction in momentum space. Note that the imaginary

part of the self-energy Im(Σ) = 0, this follows from the fact that the quark-antiquark

interaction is instantaneous in the Coulomb gauge.

The kernel KJ in the potential term depends on the meson quantum numbers, JPC . In

the following possible values for the parity or charge conjugation eigenvalues are denoted by

(J) = + if J is even and − if J is odd. These interaction kernels have been derived in the

quark helicity basis (see for example Ref. [45]).

• 0++

K(p, k) = V0 cos φp cos φk + V1 (1 + sin φp sin φk) (2.29)

• J (J+1)(J) [1JJ , J ≥ 0]

KJ(p, k) = VJ (1 + sin φp sin φk) +

(
VJ−1

J

2J + 1
+ VJ+1

J + 1

2J + 1

)
cos φp cos φk (2.30)

• J (J+1)(J+1) [3JJ , J ≥ 1]

KJ(p, k) = VJ (1 + sin φp sin φk) +

(
VJ−1

J + 1

2J + 1
+ VJ+1

J

2J + 1

)
cos φp cos φk (2.31)
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• J (J)(J) [3(J − 1)J ,3 (J + 1)J , J ≥ 1]

K11(p, k) = VJ cos φp cos φk +

(
VJ−1

J

2J + 1
+ VJ+1

J + 1

2J + 1

)
(1 + sin φp sin φk)

K22(p, k) = VJ cos φp cos φk +

(
VJ−1

J + 1

2J + 1
+ VJ+1

J

2J + 1

)
(1 + sin φp sin φk)

K12(p, k) = (VJ−1 − VJ+1)

√
J(J + 1)

2J + 1
(sin φk + sin φp) (2.32)

2.2 STRONG DECAYS

The decay of a meson into two mesons is the simplest example of a strong decay. The decay

of a baryon into a meson and a baryon has also been extensively studied. Even in those

particularly simple decays, various models have been proposed to explain the mechanism.

Among them, let us cite the naive SU(6)W model [46], the elementary meson-emission model

[47, 48, 49, 50, 51] (in which one emitted meson is considered as an elementary particle

coupled to the quark), the 3S1 model [52, 53] (in which a quark-antiquark pair is created

from the gluon emitted by a quark of the original meson), the flux-tube model [54] and the

3P0 model (in which a quark-antiquark pair is created from the vacuum) [55, 56, 57, 58].

This last model (3P0) is especially attractive because it can provide the gross features

of various transitions with only one parameter, the constant corresponding to the creation

vertex. This property is of course an oversimplification because there is no serious foundation

for a creation vertex independent of the momenta of the created quarks. Even in the 3P0

model, the form of the vertex is essentially unknown.

This phenomenological model of hadron decays was developed in the 1970s by LeYaouanc

et al, [56], which assumes, as suggested earlier by Micu in [55], that during a hadron decay

a qq̄ pair is produced from the vacuum with vacuum quantum numbers, JPC = 0++. Since

this corresponds to a 3P0 qq̄ state, this is now generally referred to as the 3P0 decay model.

The 3P0 pair production Hamiltonian for the decay of a qq̄ meson A to mesons B + C is

usually written in a rather complicated form with explicit wavefunctions [59], which in the
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conventions of Geiger and Swanson [60] (to within an irrelevant overall phase) is

〈BC|HI |A〉 = γ

∫ ∫
d3rd3y

(2π)3/2
e

i
2

~PB ·~rΨA (~r) 〈~σ〉qq̄ ·
(
i~∆B + i~∆C +~PB

)
Ψ∗

B

(
~r

2
+ ~y

)
Ψ∗

C

(
~r

2
− ~y

)

δ
(

~PA − ~PB − ~PC

)
(2.33)

for all quark and antiquark masses equal. The strength γ of the decay interaction is regarded

as a free constant and is fitted to data [61].

Studies of hadron decays using this model have been concerned almost exclusively with

numerical predictions, and have not led to any fundamental modifications. Recent studies

have considered changes in the spatial dependence of the pair production amplitude as a

function of quark coordinates [59] but the fundamental decay mechanism is usually not ad-

dressed; this is widely believed to be a nonperturbative process, involving flux tube breaking.

2.3 ELECTROMAGNETIC AND ELECTROWEAK TRANSITIONS

Since the operator of electromagnetic and electroweak transitions is very well known, study-

ing these processes for hadrons could provide us with valuable information on the hadron

structure. Still these transitions are complicated enough, so that simplifying approxima-

tions are typically in use. In this section, different types of electromagnetic and electroweak

transitions are described, and approaches to study them are explained.

2.3.1 Decay constants

Leptonic decay constants are a simple probe of the short distance structure of hadrons and

therefore are a useful observable for testing quark dynamics in this regime. Decay constants

are computed by equating their field theoretic definition with the analogous quark model

definition. This identification is rigorously valid in the nonrelativistic and weak binding limits

where quark model state vectors form good representations of the Lorentz group[32, 63]. The

task at hand is to determine the reliability of the computation away from these limits.
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The method is illustrated with the vector meson decay constant fV , which is defined by

mV fV εµ = 〈0|Ψ̄(0)γµΨ(0)|V 〉 (2.34)

where mV is the vector meson mass and εµ is its polarization vector. Note that the vector

current is locally conserved for the physical vector meson.

The decay constant is computed in the conceptual weak binding and nonrelativistic limit

of the quark model and is assumed to be accurate away from these limits. One thus employs

the quark model state:

|V (P )〉 =

√
2EP

Nc

χSMS
ss̄

∫
d3k d3k̄

(2π)3
Φ

(
mq̄

~k −mq
~̄k

mq̄ + mq

)
δ(3)(~k + ~̄k − ~P )b†ksd

†
k̄s̄
|0〉, (2.35)

where mq and mq̄ are the masses of quark and antiquark with momenta ~k and ~̄k accordingly,

~P is the vector meson momentum. The decay constant is obtained by computing the spatial

matrix element of the current in the vector center of mass frame (the temporal component

is trivial) and yields

fV =

√
Nc

mV

∫
d3k

(2π)3
Φ(~k)

√
1 +

mq

Ek

√
1 +

mq̄

Ek̄

(
1 +

k2

3(Ek + mq)(Ek̄ + mq̄)

)
. (2.36)

The nonrelativistic limit is proportional to the meson wave function at the origin

fV = 2

√
Nc

mV

Φ̃(r = 0); (2.37)

which recovers the well-known result of van Royen and Weisskopf[64].

Decay constant for vector mesons with quark and antiquark of the same flavor could be

determined from the experimental data for the decay V → e+e−. In this process the vector

meson first converts into the photon and then photon becomes the electron-positron pair.

The amplitude of this process is then:

As1s2 = 〈e+e−|Ψ̄γµΨ|0〉〈0|Ψ̄γµΨ|V 〉 =
e2

q2
Qūs1(p1)γ

µvs2(p2)fV mV εµ (2.38)

where p1 and p2 are the momenta, s1 and s2 are spins of the electron and positron, Q is the

quark charge (in units of e), q is the photon momentum.
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Then the squared amplitude summed over the electron and positron spins and averaged

over vector meson polarizations is:

|A|2 =
1

3

∑
s1s2

|As1s2|2 =
e4

3q4
Q2f 2

V m2
V εµε

∗
ν

∑
s1s2

[ūs1(p1)γ
µvs2(p2)v̄s2(p2)γ

νus1(p1)]

=
e4

3q4
Q2f 2

V m2
V (−gµν)Tr[(/p2 −me)γ

ν(/p1 + me)γ
µ]

= −4e4

3q4
Q2f 2

V m2
V gµν [p

ν
2p

µ
1 + pν

1p
µ
2 − gµν(p1 · p2 + m2

e)] (2.39)

Since in this process the masses of electron and positron are much smaller than their

momenta, we can neglect me. Then:

|A|2 =
8e4

3q4
Q2f 2

V m2
V (p1 · p2) (2.40)

From the momentum conservation law q = p1 + p2 so

(p1 + p2)
2 = p2

1 + p2
2 + 2p1p2 = 2m2

e + 2p1p2 ≈ 2p1p2 = q2 (2.41)

and then p1p2 = q2/2 so

|A|2 =
4e4

3q2
Q2f 2

V m2
V =

4

3
e4Q2f 2

V (2.42)

because in the meson rest frame q = mV .

Now we can calculate the decay rate of this process:

ΓV→e+e− =
1

2mV

∫
dΩcm

32π2

(
2|~p1|
Ecm

)
|A|2 (2.43)

Here Ecm is the energy of the final state in its rest frame. Since me ≈ 0 then Ecm = 2|~p1|
and then the decay rate is:

ΓV→e+e− =
e4Q2f 2

V

12πmV

=
4πα2

3

Q2f 2
V

mV

(2.44)

and the decay constant is:

fV =

(
3mV ΓV→e+e−

4πα2Q2

)1/2

(2.45)
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That gives the following results for the existing vector mesons:

fρ = 217MeV (Q = 1√
2
)

fφ = 229MeV (Q = −1
3
)

fJ/ψ = 411MeV (Q = 2
3
)

fΥ = 704MeV (Q = −1
3
) (2.46)

Similar results hold for other mesons that couple to electroweak currents. A summary

of the results for a variety of models and the discussion are presented in Chapter 4. The

expressions used to compute the table entries and the data used to extract the experimental

decay constants are collected in Appendix A.
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2.3.2 Impulse approximation

The impulse approximation is widely used in studies of meson transitions and form-factors.

In this approximation the possibility of quark-antiquark pair creation from the vacuum is

neglected. The interaction of the external current with the meson is the sum of its coupling

to quark and antiquark as illustrated in figure 7. In the diagrams, M1 and M2 are the initial

and final state mesons (bound states of quark q and antiquark q̄, which are represented

by lines with arrows). In this section, our approach to the calculations of the form-factors

and radiative transition decay rates in the impulse approximation of the quark model is

presented.

Figure 7: Impulse approximation diagrams.

Form factors are a powerful determinant of internal hadronic structure because the exter-

nal current momentum serves as a probe scale. And of course, different currents are sensitive

to different properties of the hadron, so it is useful to study the form-factors when tuning

and testing models.

The technique used to compute the form factors is illustrated by considering the inelastic

pseudoscalar electromagnetic matrix element 〈P2|Jµ|P1〉, where P refers to a pseudoscalar

meson. The most general Lorentz covariant decomposition of this matrix element is

〈P2(p2)|Ψ̄(0)γµΨ(0)|P1(p1)〉 = f(Q2)

(
(p2 + p1)

µ − M2
2 −M2

1

q2
(p2 − p1)

µ

)
(2.47)
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where conservation of the vector current has been used to eliminate a possible second invari-

ant. The argument of the form factor is chosen to be Q2 = −(p2 − p1)µ(p2 − p1)
µ.

Now the matrix element on the left could be calculated in some model, for example in

the quark model, and then the result for the form-factor f(Q2) could be compared to the

experimental data (if available).

In the impulse approximation, using the temporal component of the vector current and

computing in the rest frame of the initial meson yields

fsq(Q
2) =

√
M1E2

(E2 + M1)− M2
2−M2

1

q2 (E2 −M1)
(2.48)

×
∫

d3k

(2π)3
Φ(~k)Φ∗

(
~k + ~q

m̄2

m2 + m̄2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q

(
1 +

(~k + ~q) · ~k
(Ek + m1)(Ek+q + m2)

)
.

The pseudoscalars are assumed to have valence quark masses m1, m̄1 and m2, m̄2 for P1

and P2 respectively. The masses of the mesons are labeled M1 and M2. The single quark

elastic form factor can be obtained by setting m1 = m̄1 = m2 = m̄2 and M1 = M2. In the

nonrelativistic limit Eq. 2.48 reduces to the simple expression:

fsq(Q
2) =

∫
d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

)
. (2.49)

In this case it is easy to see the normalization condition fsq(~q = 0) = 1. This is also true for

the relativistic elastic single quark form factor of Eq. 2.48.

To calculate the decay rate of the radiative transition M1 → γM2 we need to know the

electromagnetic matrix element 〈M2|Jµ|M1〉 at q2 = 0, where M1 and M2 are the initial and

final meson states. In the impulse approximation using the vector component of the current

we have:

~Aem ≡ 〈M2| ~J |M1〉 = eQq〈M2| ~J (q)|M1〉+ eQq̄〈M2| ~J (q̄)|M1〉, (2.50)

~J (q) = −u†s2
(k2) ~α us1(k1),

~J (q̄) = −v†s̄1
(k̄1) ~α vs̄2(k̄2).

where k1, k̄1, s1 and s̄1 are the momenta and spins of the quark and antiquark of the initial

state meson, and k2, k̄2, s2, s̄2 are the corresponding momenta and spins of the final state
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meson. Qq and Qq̄ are the quark and antiquark charges. The two terms of (2.50) corresponds

to the quark and antiquark electromagnetic interactions.

It is very common to consider quark and antiquark being nonrelativistic when study-

ing radiative transition. We investigate the validity of this approximation by comparing

two cases: taking the full relativistic expressions for quark and antiquark spinors and then

comparing our results to those calculated with the nonrelativistic approximation. We find

considerable differences for the decay rates, even for heavy mesons, as will be shown in

Chapter 7, and conclude that quarks should be treated relativistically.

We illustrate the technique used to study radiative transitions for the nonrelativistic ap-

proximation of the quark spinors. The treatment of the case with full relativistic expressions

for spinors is completely analogous, except for much more complicated expressions for the

matrix elements. The study of full relativistic case have been performed numerically.

In the rest frame of the initial state meson we have:

~Aem =
eQq

2mq

〈
M2

∣∣∣(2~k+~q)δs1s2−i~q×~σ21

∣∣∣M1

〉
+

eQq̄

2mq̄

〈
M2

∣∣∣(2~k−~q)δs̄1s̄2−i~q×~σ1̄2̄

∣∣∣M1

〉
, (2.51)

where ~σ21 = χ†s2
~σχs1 and ~σ1̄2̄ = χ̃†s̄1

~σχ̃s̄2 , here χs is the Dirac spinor for quark or antiquark.

Radiative transitions are usually said to be either of electric or magnetic type depending

on the dominating term in multipole expansion of the amplitude. If the initial and final state

mesons have different spins but same angular momentum then the transition is magnetic,

and the contribution of the terms proportional to δs1s2 or δs̄1s̄2 in expression 2.51 is zero.

The example of the magnetic transition is the vector to pseudoscalar meson transition 3S1 →
1S0 γ.

If the initial and final states have different angular momentum then the transition is

electric and all the terms in 2.51 contribute to the amplitude. An example of the electric

transition is P-wave state to the vector meson state transition 3P0 → 3S1γ.

Very often when considering electric transitions the second term in the square brackets

of (2.51) is ignored, which is called the dipole approximation, and also the limit ~q → 0 is

taken, which corresponds to the long-wavelength approximation. In this case the expression

for the amplitude of E1 transitions is very simple:

~Aem = 〈M2|~k|M1〉
[
eQq

mq

+
eQq̄

mq̄

]
δs1s2δs̄1s̄2 (2.52)
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Using Siegert’s theorem one can write i[H, r] = 2p/mq and then the transition amplitude is

proportional to the matrix element 〈M2|r|M1〉.
The technique described in the previous paragraph is the usual way to calculate radiative

transitions in the literature. We have tested the validity of the approximations typically

made. In particular, we have taken into account all terms in the operator of the equation

(2.51) and we have not made the zero recoil approximation. Comparing the results of

our calculations to the results with usual approximations in Chapter 7 we find significant

differences and conclude that it is important to treat radiative transitions carefully in the

most possible general way.

Matrix elements in (2.51) could be calculated using the quark model meson state (2.1).

For example, for vector meson to pseudoscalar meson transition V → Pγ in the nonrela-

tivistic approximation for the quark spinors it is:

~Aem( V → Pγ) = −2i (~q × ~εV )
√

M1E2 × (2.53)

×
[

eQq

2mq

∫
d3~k

(2π)3
Φ∗

2

(
~k +

mq̄

mq + mq̄

~q

)
Φ1(~k) +

eQq̄

2mq̄

∫
d3~k

(2π)3
Φ∗

2

(
~k − mq

mq + mq̄

~q

)
Φ1(~k)

]
,

where ~εV is the polarization vector of the vector meson, Φ(k)(1,2) are the spatial wave function

of initial and final state mesons in the momentum space, M1 is the mass of the initial state

meson and E2 is the energy of the final state meson.

As an approximation to the meson wave function, spherical harmonic oscillator wave

functions are widely in use. This approximation greatly simplifies the calculations, and most

of the quantities of interest could be calculated analytically. Thus we conclude that it is

reasonably good for the crude estimation of the ground state meson wave function and main

features of matrix elements but for qualitative studies realistic meson wave functions should

be employed. Another use of this approximation is testing the numerical methods which

then could be applied to the more complex cases.

The SHO spatial wave function for vector and pseudoscalar mesons is:

Φ(k) =

(
4π

β2

)3/4

e−k2/2β2

, (2.54)
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and then the amplitude (2.53) for V → Pγ in the SHO nonrelativistic approximation is:

~Aem = −2i (~q × ~εV )
√

M1E2

[
eQq

2mq

e−µ2q2/4β2

+
eQq̄

2mq̄

e−µ̄2q2/4β2

]
, (2.55)

where

µ =
mq̄

mq + mq̄

and µ̄ =
mq

mq + mq̄

. (2.56)

In the special case of mq = mq̄ we have µ = µ̄ = 1/2 and:

~Aem = −i (~q × ~εV )
√

M1E2
eQq + eQq̄

mq

e−q2/16β2

. (2.57)

The decay rate for a radiative transition is:

Γ(M2 → M1γ) =
1

32π2

1

2J1 + 1

∫
dΩq̂

|~q|
M2

1

∑

λ,V

|~ε ∗λ · ~Aem|2. (2.58)

In our example for V → Pγ using SHO wave functions the decay rate is:

Γ(V → Pγ) =
α

3

E2|~q|3
M1

[
Qq

mq

e−µ2q2/4β2

+
Qq̄

mq̄

e−µ̄2q2/4β2

]2

, (2.59)

The same approach could be used for any other meson radiative transitions. The results of

our calculations for a variety of models, discussion of the effects of approximations described

above and comparison to the experiment are presented in Chapter 7.
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Figure 8: Higher order diagrams in Cornell model.

2.3.3 Higher order diagrams

Higher order diagrams take into account the possibility of quark-antiquark pair appearing

from the vacuum. Studying these diagrams is important as they might give significant

contribution to the impulse approximation since there is no small parameter associated with

the quark-antiquark pair creation in low energy QCD.

One way to introduce higher order diagrams was developed by Cornell group [65], the so

called ‘Cornell’ model. In this model the mesonic state is described as a superposition of a

naive quark-antiquark state and all possible decay channels of a naive state into two other

mesons. There are two diagrams contributing to the radiative transition, shown in Fig. 8.

Mesons in the Cornell model diagrams are represented by double line. The first diagram

corresponds to the impulse approximation and the second diagram is higher order. However,

for this model to be consistent, coupling of the electromagnetic current to the products of

the decay in the intermediate state should also be taken into account, for example, diagram

shown in Fig. 9 should be considered. These kinds of diagrams have been neglected in [65].

Figure 9: Higher order diagram not taken into account in Cornell model.
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Figure 10: Higher order diagrams in the bound state time ordered perturbation theory.

We offer a different way of describing higher order diagrams in radiative transitions. In

our approach, we use 3P0 model to describe the quark-antiquark pair creation (3P0 model is

explained in section 2.2) and then employ the bound state time ordered perturbation theory

to obtain higher order diagrams. There are two diagrams which contribute to the transition

in addition to the impulse approximation, they are shown in Fig. 10. When calculating the

diagrams in the quark model all possible intermediate bound states have to be summed over.

Details of the calculations and our estimations of these diagrams are presented in Chapter

7.

2.3.4 Gamma-gamma transitions

Two-photon decays of mesons are of considerable interest as a search mode, a probe of

internal structure, and as a test of nonperturbative QCD modeling. An illustration of the

importance of the latter point is the recent realization that the usual factorization approach

to orthopositronium (and its extensions to QCD) decay violates low energy theorems[66].

It has been traditional to compute decays such as Ps → γγ by assuming factorization

between soft bound state dynamics and hard rescattering into photons[67]. This approxima-

tion is valid when the photon energy is much greater than the binding energy EB ∼ mα2.

This is a difficult condition to satisfy in the case of QCD where α → αs ∼ 1. Nevertheless,

this approach has been adopted to inclusive strong decays of mesons[68, 69, 70] and has been

extensively applied to two-photon decays of quarkonia[71].

The application of naive factorization to orthopositronium decay (or M → ggg, γgg in
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QCD) leads to a differential decay rate that scales as Eγ for small photon energies[72] –

at odds with the E3
γ behavior required by gauge invariance and analyticity (this is Low’s

theorem[73]). The contradiction can be traced to the scale dependence of the choice of

relevant states and can be resolved with a careful NRQED analysis[74]. For example, a

parapositronium-photon intermediate state can be important in orthopositronium decay at

low energy. Other attempts to address the problem by treating the binding energy nonper-

turbatively can be found in Refs. [75, 76].

Naive factorization is equivalent to making a vertical cut through the loop diagram

representing Ps → nγ[75] (see Fig. 11). Of course this ignores cuts across photon vertices

that correspond to the neglected intermediate states mentioned above. In view of this, a

possible improvement is to assume that pseudoscalar meson decay to two photons occurs via

an intermediate vector meson followed by a vector meson dominance transition to a photon.

This approach was indeed suggested long ago by van Royen and Weisskopf[64] who made

simple estimates of the rates for π0 → γγ and η → γγ. This proposal is also in accord with

time ordered perturbation theory applied to QCD in Coulomb gauge, where intermediate

bound states created by instantaneous gluon exchange must be summed over.

Figure 11: Naive Factorization in Positronium Decay.

Finally, one expects that an effective description should work for sufficiently low momen-

tum photons. The effective Lagrangian for pseudoscalar decay can be written as

L = g

∫
ηF µνF̃µν (2.60)

leading to the prediction Γ(η → γγ) ∝ g2m3
η. Since this scaling with respect to the pseu-
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doscalar mass appears to be experimentally satisfied for π, η, η′ mesons, Isgur et al. inserted

an ad hoc dependence of m3
η in their quark model computations[63, 77]. While perhaps of

practical use, this approach is not theoretically justified and calls into doubt the utility of the

quark model in this context. Indeed simple quark model computations of the amplitude of

Fig. 11 are not dependent on binding energies and can only depend on kinematic quantities

such as quark masses.

In view of the discussion above, we chose to abandon the factorization approach and

compute two-photon charmonium decays in the quark model in bound state time ordered

perturbation theory. This has the effect of saturating the intermediate state with all possible

vectors, thereby bringing in binding energies, a nontrivial dependence on the pseudoscalar

mass, and incorporating oblique cuts in the loop diagram.

Details of our calculations and the results are presented in Chapter 6.

2.3.5 Meson transitions in ‘Coulomb gauge model’

As was described in section 2.1.2, a relativistic many-body approach in Coulomb gauge

(‘Coulomb gauge model’) is a richer model of hadron structure than the nonrelativistic po-

tential model. It can explain some fundamental properties of QCD, such as chiral symmetry

breaking and dependence of the quark mass on the energy scale, in a fully relativistic way.

Until now only meson spectra have been calculated in this model, and the agreement with

the experiment is impressive. However, for testing and improving the model, other meson

properties should be investigated.

For Coulomb gauge model the same approach to the calculation of the meson properties

could be used as for the nonrelativistic potential quark model, the main difference being the

spatial meson wave functions. As was explained in section 2.1.2 in order to calculate spatial

meson wave function in RPA approximation we need to solve the system of two nonlinear

coupled integral equations. After that the formulas from appendices A and B could be used

to calculate form-factors, decay constants and radiative transitions.

The only practical exception of the statement above is the study of pion properties. In

RPA approximation the wave function of each meson is a superposition of the forward and
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backward propagating components. The backward propagating component is negligible for

all the mesons, except pion. In the pion case this leads to a change in the wave function

normalization and has a considerable effect on the pion properties. As an example, our

results for radiative transition decay rates involving pion will be presented in Chapter 7.

They have much better agreement with the experiment in Coulomb gauge model than in the

nonrelativistic potential model.
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3.0 SPECTROSCOPY

New spectroscopy from the B factories and the advent of CLEO-c and the BES upgrade have

led to a resurgence of interest in charmonia. Among the new developments are the discovery

of the η′c and hc mesons and the observation of the enigmatic X(3872) and Y (4260) states

at Belle[78].

BaBar’s discovery of the Ds(2317) state[79] generated strong interest in heavy meson

spectroscopy – chiefly due to its surprisingly low mass with respect to expectations. These

expectations are based on quark models or lattice gauge theory. Unfortunately, at present

large lattice systematic errors do not allow a determination of the Ds mass with a precision

better than several hundred MeV. And, although quark models appear to be exceptionally

accurate in describing charmonia, they are less constrained by experiment and on a weaker

theoretical footing in the open charm sector. It is therefore imperative to examine reasonable

alternative descriptions of the open charm sector.

The Ds(2317) was produced in e+e− scattering and discovered in the isospin violating

Dsπ decay mode in KK̄ππ and KK̄πππ mass distributions. Its width is less than 10 MeV

and it is likely that the quantum numbers are JP = 0+[78]. Finally, if the Dsπ
0 mode

dominates the width of the Ds(2317) then the measured product of branching ratios[80]

Br(B0 → Ds(2317)K) ·Br(Ds(2317) → Dsπ
0) = (4.4± 0.8± 1.1) · 10−5 (3.1)

implies that Br(B → Ds(2317)K) ≈ Br(B → DsK), consistent with the Ds(2317) being a

canonical 0+ cs̄ meson.

In view of this, Cahn and Jackson have examined the feasibility of describing the masses

and decay widths of the low lying D and Ds states within the constituent quark model[35].

They assume a standard spin-dependent structure for the quark-antiquark interaction (see
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below) and allow general vector and scalar potentials. Their conclusion is that it is very

difficult to describe the data in this scenario.

Indeed, the Ds(2317) lies some 160 MeV below most model predictions (see Ref.[78]

for a summary), leading to speculation that the state could be a DK molecule[81] or a

tetraquark[82]. Such speculation is supported by the isospin violating discovery mode of the

Ds(2317) and the proximity of the S-wave DK threshold at 2358-2367 MeV.

Although these proposals have several attractive features, it is important to exhaust

possible canonical cs̄ descriptions of the Ds(2317) before resorting to more exotic models. In

section 3.3 we propose a simple modification to the standard vector Coulomb+scalar linear

quark potential model that maintains good agreement with the charmonium spectrum and

agrees remarkably well with the D and Ds spectra. Possible experimental tests of this

scenario are discussed.

Below the results of our study of charmonium, bottomonium and open charm spec-

troscopy are presented and discussed.

3.1 CHARMONIUM

We adopt the standard practice of describing charmonia with nonrelativistic kinematics, a

central confining potential, and order v2/c2 spin-dependent interactions. Thus H = 2m +

P 2
rel/2µ + VC + VSD where

VC(r) = −4

3

αC

r
+ br, (3.2)

and

VSD(r) =
32αHπe−k2/4σ2

9m2
q

~Sq · ~Sq̄ +
(2αs

r3
− b

2r

) 1

m2
q

~L · ~S +
4αs

m2
qr

3
T, (3.3)

where 3T = 3r̂ · Sqr̂ · ~Sq̄ − ~Sq · ~Sq̄. The strengths of the Coulomb and hyperfine interactions

have been taken as separate parameters. Perturbative gluon exchange implies that αC = αH

and we find that the fits prefer the near equality of these parameters. The variation of this

model, as described in section 2.1.1, includes running coupling 2.5.
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The resulting low lying spectra are presented in Table 9. The first column presents the

results of the ‘BGS’ model[31], which was tuned to the available charmonium spectrum.

Parameters are: mc = 1.4794 GeV, αc = αH = 0.5461, σ = 1.0946 GeV, and b = 0.1425

GeV2. No constant is included.

The second and third columns, labeled BGS+log, makes the replacement of Eq. 2.5; the

parameters have not been retuned. One sees that the J/ψ and ηc masses have been raised

somewhat and that the splitting has been reduced to 80 MeV. Heavier states have only been

slightly shifted. It is possible to fit the J/ψ and ηc masses by adjusting parameters, however

this tends to ruin the agreement of the model with the excited states. We therefore choose to

compare the BGS and BGS+log models without any further adjustment to the parameters.

A comparison with other models and lattice gauge theory can be found in Ref. [78].

Meson spectrum is not a particularly robust test of model reliability because it only

probes gross features of the wavefunction. Alternatively, observables such as strong and

electroweak decays and production processes probe different wavefunction momentum scales.

For example, decay constants are short distance observables while strong and radiative tran-

sitions test intermediate scales. Thus the latter do not add much new information unless

the transition occurs far from the zero recoil point. In this case the properties of boosted

wavefunctions and higher momentum components become important. Production processes

can provide information on the short distance behavior of the wavefunctions since much

experimental data is available. Unfortunately, the underlying mechanisms at work are still

under debate, even for J/ψ and ψ′ [83].
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Table 1: Spectrum of cc̄ mesons (GeV).

state BGS BGS log BGS log experiment

Λ = 0.25 GeV Λ = 0.4 GeV

ηc(1
1S0) 2.981 3.088 3.052 2.979

ηc(2
1S0) 3.625 3.669 3.655 3.638

ηc(3
1S0) 4.032 4.067 4.057 -

ηc(4
1S0) 4.364 4.398 4.391 -

ηc2(1
1D2) 3.799 3.803 3.800 -

ηc2(2
1D2) 4.155 4.158 4.156 -

J/ψ(13S1) 3.089 3.168 3.139 3.097

ψ(23S1) 3.666 3.707 3.694 3.686

ψ(33S1) 4.060 4.094 4.085 4.040

ψ(43S1) 4.386 4.420 4.412 4.415

ψ(13D1) 3.785 3.789 3.786 3.770

ψ(23D1) 4.139 4.143 4.141 4.159

ψ2(1
3D2) 3.800 3.804 3.801 -

ψ2(2
3D2) 4.156 4.159 4.157 -

ψ3(1
3D3) 3.806 3.809 3.807 -

ψ3(2
3D3) 4.164 4.167 4.165 -

χc0(1
3P0) 3.425 3.448 3.435 3.415

χc0(2
3P0) 3.851 3.870 3.861 -

χc0(3
3P0) 4.197 4.214 4.207 -

χc1(1
3P1) 3.505 3.520 3.511 3.511

χc1(2
3P1) 3.923 3.934 3.928 -

χc1(3
3P1) 4.265 4.275 4.270 -

χc2(1
3P2) 3.556 3.564 3.558 3.556

χc2(2
3P2) 3.970 3.976 3.972 -

χc2(3
3P2) 4.311 4.316 4.313 -

hc(1
1P1) 3.524 3.536 3.529 -

hc(2
1P1) 3.941 3.950 3.945 -

hc(3
1P1) 4.283 4.291 4.287 -
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3.2 BOTTOMONIUM

The bottomonium parameters were obtained by fitting the potential model of Eqs. 2.4

and 3.3 (C+L) to the known bottomonium spectrum. The results are mb = 4.75 GeV,

αC = αH = 0.35, b = 0.19 GeV2, and σ = 0.897 GeV. All the calculations have been

performed as for charmonia.

Table 2: Bottomonium Spectrum (GeV).

Meson C+L C+L log C+L log PDG

Λ = 0.4 GeV Λ = 0.25 GeV

ηb 9.448 9.490 9.516

η′b 10.006 10.023 10.033

η′′b 10.352 10.365 10.372

Υ 9.459 9.500 9.525 9.4603± 0.00026

Υ′ 10.009 10.026 10.036 10.02326± 0.00031

Υ′′ 10.354 10.367 10.374 10.3552± 0.0005

χb0 9.871 9.873 9.879 9.8599± 0.001

χ′b0 10.232 10.235 10.239 10.2321± 0.0006

χ′′b0 10.522 10.525 10.529

χb1 9.897 9.900 9.904 9.8927± 0.0006

χ′b1 10.255 10.257 10.260 10.2552± 0.0005

χ′′b1 10.544 10.546 10.548

χb2 9.916 9.917 9.921 9.9126± 0.0005

χ′b2 10.271 10.272 10.275 10.2685± 0.0004

χ′′b2 10.559 10.560 10.563

Second and third columns correspond to the model with logarithmic dependence of run-

ning coupling 2.5. The parameters of the potential have not been refitted. One can see that,

as for charmonium, introducing the running coupling has a small effect on the excited states
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while considerably shifting ground state masses of ηb and Υ.
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3.3 SPECTROSCOPY OF OPEN CHARM STATES

The spectra we seek to explain are summarized in Table 3. Unfortunately, the masses of the

D0 (labeled a) and D′
1 (labeled b) are poorly determined. Belle have observed[84] the D0 in

B decays, and claim a mass of 2308± 17± 32 MeV with a width of Γ = 276± 21± 18± 60

MeV, while FOCUS[85] find 2407±21±35 MeV with a width Γ = 240±55±59 MeV. While

some authors choose to average these values, we regard them as incompatible and consider

the cases separately below. Finally, there is an older mass determination from Belle[86] of

2290±22±20 MeV with a width of Γ = 305±30±25. The D′
1 has been seen in B decays to

Dππ and D∗ππ by Belle [84]. A Breit-Wigner fit yields a mass of 2427± 26± 20± 15 MeV

and a width of 384+107
−90 ± 24 ± 70 MeV. Alternatively, a preliminary report from CLEO[87]

cites a mass of 2461+41
−34±10±32 MeV and a width of 290+101

−79 ±26±36 MeV. Finally, FOCUS

[88] obtain a lower neutral D′
1 mass of 2407 ± 21 ± 35 MeV. Other masses in Table 3 are

obtained from the PDG compilation[89].

Table 3: Low Lying D and Ds Spectra

JP 0− 1− 0+ 1+ 1+ 2+

D 1869.3± 0.5 2010.0± 0.5 a b 2422.2± 1.8 2459± 4

Ds 1968.5± 0.6 2112.4± 0.7 2317.4± 0.9 2459.3± 1.3 2535.35± 0.34 2572.4± 1.5

In addition to the unexpectedly low mass of the Ds(2317), the Ds(2460) is also somewhat

below predictions (Godfrey and Isgur, for example, predict a mass of 2530 MeV[77]). It is

possible that an analogous situation holds in the D spectrum, depending on the mass of the

D0. The quark model explanation of these states rests on P-wave mass splittings induced

by spin-dependent interactions.

Here we propose to take the spin-dependence of Eq. 2.8 seriously and examine its effect

on low-lying heavy-light mesons. Our model can be described in terms of vector and scalar

kernels defined by

Vconf = V + S (3.4)
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where V = −4αs/3r is the vector kernel and S = br is the scalar kernel, and by the order

α2
s contributions to the Vi, denoted by δVi. Expressions for the matrix elements of the

spin-dependent interaction are then

V1 = −S + δV1 (3.5)

V2 = V + δV2 (3.6)

V3 = V ′/r − V ′′ + δV3 (3.7)

V4 = 2∇2V + δV4 (3.8)

V5 = δV5 (3.9)

Explicitly,

V1(mq,mq̄, r) = −br − CF
1

2r

α2
s

π

(
CF − CA

(
ln

[
(mqmq̄)

1/2r
]
+ γE

))

V2(mq,mq̄, r) = −1

r
CF αs

[
1 +

αs

π

[
b0

2
[ln (µr) + γE] +

5

12
b0 − 2

3
CA+

+
1

2

(
CF − CA

(
ln

[
(mqmq̄)

1/2r
]
+ γE

))]]

V3(mq,mq̄, r) =
1

r3
3CF αs

[
1 +

αs

π

[
b0

2
[ln (µr) + γE − 4

3
] +

5

12
b0 − 2

3
CA+

+
1

2

(
CA + 2CF − 2CA
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√

π
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1
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CF CA

α2
s

π
ln

mq̄

mq

(3.10)

where CF = 4/3, CA = 3, b0 = 9, γE = 0.5772, the scale µ has been set to 1 GeV.

The hyperfine interaction (proportional to V4) contains a delta function in configuration

space and is normally ‘smeared’ to make it nonperturbatively tractable. For this reason we

choose not to include δV4 in the model definition of Eq. 3.10. In following, the hyperfine in-

teraction (V4) have been included in the meson wave function calculations and the remaining

spin-dependent terms are treated as mass shifts using leading-order perturbation theory.
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We have confirmed that the additional features do not ruin previous agreement with, for

example, the charmonium spectrum. For example, Ref. [31] obtains very good agreement

with experiment for parameters mc = 1.4794 GeV, αs = 0.5461, b = 0.1425 GeV2, and

σ = 1.0946 GeV. Employing the model of Eqn. 3.10 worsens the agreement with experiment,

but the original good fit is recovered upon slightly modifying parameters (the refit parameters

are mc = 1.57 GeV, αs = 0.52, b = 0.15 GeV2, and σ = 1.3 GeV).

Table 4: Model Parameters

model αs b (GeV2) σ (GeV) mc (GeV) C (GeV)

low 0.46 0.145 1.20 1.40 -0.298

avg 0.50 0.140 1.17 1.43 -0.275

high 0.53 0.135 1.13 1.45 -0.254

The low lying cs̄ and cū states are fit reasonably well with the parameters labeled ‘avg’

in Table 4. Predicted masses are given in Table 5. Parameters labeled ‘low’ in Table 4 fit

the D mesons very well, whereas those labeled ‘high’ fit the known Ds mesons well. It is

thus reassuring that these parameter sets are reasonably similar to each other and to the

refit charmonium parameters. (Note that constant shifts in each flavor sector are fit to the

relevant pseudoscalar masses.)

The predicted Ds0 mass is 2341 MeV, 140 MeV lower than the prediction of Godfrey

and Isgur and only 24 MeV higher than experiment. We remark that the best fit to the

D spectrum predicts a mass of 2287 MeV for the D0 meson, in good agreement with the

preliminary Belle measurement of 2290 MeV, 21 MeV below the current Belle mass, and in

disagreement with the FOCUS mass of 2407 MeV.

The average error in the predicted P-wave masses is less than 1%. It thus appears likely

that the simple modification to the spin-dependent quark interaction is capable of describing

heavy-light mesons with reasonable accuracy.

We examine the new model in more detail by computing P-wave meson masses (with

respect to the ground state vector) as a function of the heavy quark mass. Results for Qū and
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Table 5: Low Lying Charm Meson Spectra (GeV)

flavor 0− 1− 0+ 1+ 1+ 2+

D 1.869 2.017 2.260 2.406 2.445 2.493

Ds 1.968 2.105 2.341 2.475 2.514 2.563

Qs̄ systems are displayed in Fig. 12. One sees a very slow approach to the expected heavy

quark doublet structure. Level ordering (D2 > D′
1, D1 > D0) is maintained for all heavy

quark masses. This is not the case in the canonical quark model, and ruins the agreement

with experiment at scales near the charm quark mass. It is intriguing that the scalar-vector

mass difference gets very small for light Q masses, raising the possibility that the enigmatic

a0 and f0 mesons may simply be qq̄ states.

Finally, one obtains M(hc) > M(χc1) in one-loop and traditional models, in agreement

with experiment. However, experimentally M(f1)−M(h1) ≈ 100 MeV and M(a1)−M(b1) ≈
0 MeV, indicating that the 3P1 state is heavier than (or nearly degenerate with) the 1P1 light

meson state. Thus the sign of the combination of tensor and spin-orbit terms that drives this

splitting must change when going from charm quark to light quark masses. This change is

approximately correctly reproduced in the traditional model (lower left panel of Fig.12). The

one-loop model does not reproduce the desired cross over, although it does come close, and

manipulating model parameters can probably reproduce this behavior. We do not pursue

this here since the focus is on heavy-light mesons.
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Figure 12: M(P-wave) - M(vector) as a Function of the Heavy Quark Mass. D System (left);

Ds System (right).
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3.3.1 Mixing Angles and Radiative Decays

The lack of charge conjugation symmetry implies that two nearby low lying axial vector

states exist (generically denoted as D1 and D′
1 in the following). The mixing angle between

these states can be computed and compared to experiment (with the help of additional model

assumptions). We define the mixing angle via the relations:

|D1〉 = + cos(φ)|1P1〉+ sin(φ)|3P1〉
|D′

1〉 = − sin(φ)|1P1〉+ cos(φ)|3P1〉. (3.11)

In the following, we choose to define the D′
1 as the heavier axial state in the heavy quark

limit. In this limit a particular mixing angle follows from the quark mass dependence of

the spin-orbit and tensor terms, φHQ = −54.7o(35.3o), if the expectation of the heavy-quark

spin-orbit interaction is positive (negative). It is often assumed that the heavy quark mixing

angle holds for charmed mesons.

Fig. 13 shows the dependence of the mixing angle on the heavy quark mass for Qū and

Qs̄ mesons for the traditional and extended models. The effect of the one-loop terms is

dramatic: for the Qū system the relevant spin-orbit matrix element changes sign, causing

the heavy quark limit to switch from 35.3o to −54.7o. Alternatively, both models approach

−54.7o in the Qs̄ system. There is strong deviation from the heavy quark limit in both

cases: φ(Ds) ≈ φ(D) ≈ −70o. This result is not close to the heavy quark limit (which is

approached very slowly) indeed it is reasonably close to the unmixed limit of ±90o!

Mixing angles can be measured with the aid of strong or radiative decays. For example,

the D′
1 is a relatively narrow state, Γ(D′

1) = 20.41.7 MeV, while the D1 is very broad. This

phenomenon is expected in the heavy quark limit of the 3P0 and Cornell strong decay models

[78], [90], [91]. Unfortunately, it is difficult to exploit these widths to measure the mixing

angle because strong decay models are rather imprecise.

Radiative decays are possibly more accurate probes of mixing angles because the decay

vertex is established and the impulse approximation has a long history of success. Table 11

presents the results of two computations of radiative decays of D and Ds mesons. Meson

wavefunctions are computed with ‘average’ parameters, as above. Transition matrix elements
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Figure 13: D (left) and Ds1 (right) Mixing Angles. The traditional model is given by the

dashed line; the extended model is the solid line.

are evaluated in the impulse approximation and full recoil is allowed. The column labeled

‘nonrel’ reports transition matrix elements computed in the nonrelativistic limit, while the

column labeled ‘rel’ contains results obtained with the full spinor structure at the photon

vertex.

The nonrelativistic results can differ substantially from those of Refs. [90, 92] because

those computations were made in the zero recoil limit where an E1 transition, for example, is

diagonal in spin. Thus the decay D1 → D∗γ can only proceed via the 3P1 component of the

D1. Alternatively, the computations made here are at nonzero recoil and hence permit both

components of the D1 to contribute to this decay. The table entries indicate that nonzero

recoil effects can be surprisingly large.

Further complicating the analysis is the large difference seen between the nonrelativistic

and relativistic models (see, eg, D+∗ → γD+). This unfortunate circumstance is due to

differing signs between the heavy and light quark impulse approximation subamplitudes.

Employing the full quark spinors leaves the heavy quark subamplitude largely unchanged,

whereas the light quark subamplitude becomes larger, thereby reducing the full amplitude.

The effect appears to be at odds with the only available experimental datum (D∗ → Dγ).

Clearly it would be useful to measure as many radiative transitions as possible in these

sectors to better evaluate the efficacy of these (and other) models. Once the decay model
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reliability has been established, ratios such as Γ(D1 → γD∗)/Γ(D′
1 → γD∗) and Γ(D1 →

γD)/Γ(D1 → γD) will help determine the D1 mixing angle.
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Table 6: Meson Radiative Decay rates (keV).

mode qγ (MeV) nonrel rel expt

D+∗ → γD+ 136 1.38 0.08 1.5± 0.5

D0∗ → γD0 137 32.2 13.3 < 800

D+
0 → γD∗+ 361 76.0 7.55

D0
0 → γD∗0 326 1182 506.

D+
1 → γD∗+ 381 (6.34s)2 + (3.22s + 5.9c)2 (2.00s− 0.13c)2 + (0.13s + 4.23c)2

D0
1 → γD∗0 380 (27.05s)2 + (19.33s + 9.63c)2 (17.65s− 0.15c)2 + (12.28s + 6.01c)2

D′+
1 → γD∗+ 381 (6.34c)2 + (−3.22c + 5.9s)2 (2.00c + 0.13s)2 + (−0.13c + 4.23s)2

D′0
1 → γD∗0 384 (27.26c)2 + (19.35c− 9.83s)2 (17.78c + 0.15s)2 + (12.29c− 6.13s)2

D+
1 → γD+ 494 (5.49s + 4.75c)2 (4.17s− 0.60c)2

D0
1 → γD0 493 (8.78s + 31.42c)2 (5.56s + 18.78c)2

D′+
1 → γD+ 494 (−5.49c + 4.75s)2 (4.17c− 0.60s)2

D′0
1 → γD0 498 (−8.90c + 31.41s)2 (−5.62c + 18.78s)2

D+
2 → γD∗+ 413 15.0 6.49

D0
2 → γD∗0 412 517 206

D∗
s → γDs 139 0.20 0.00

Ds0 → γD∗
s 196 6.85 0.16

Ds1 → γD∗
s 322 (1.84s)2 + (0.99s + 2.39c)2 (0.18s− 0.07c)2 + (−0.44s + 2.13c)2

D′
s1 → γD∗

s 388 (2.13c)2 + (−0.87c + 3.62s)2 (0.24c− 0.10s)2 + (0.64c + 3.19s)2

Ds1 → γDs 441 (2.68s + 1.37c)2 (2.55s− 1.21c)2

D′
s1 → γDs 503 (3.54c− 1.12s)2 (3.33c + 1.52s)2

Ds2 → γD∗
s 420 1.98 3.94
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3.3.2 Discussion and Conclusions

A popular model of the Ds mesons is based on an effective lagrangian description of mesonic

fields in the chiral and heavy quark limits[93]. Deviations from these limits induce mass

splittings which imply that the axial–vector and scalar-pseudoscalar mass differences are the

same. Since the premise of this idea has been questioned in Refs. [78, 94], it is of interest to

consider this mass difference in the present model. Splittings for the three parameter sets

considered above are shown in Table 7. Evidently, the chiral multiplet relationship holds to

a very good approximation in both the D and Ds sectors and is robust against variations in

the model parameters.

Nevertheless, the near equivalence of these mass differences must be regarded as an

accident. Indeed, the B spectra given in Table 8 clearly indicate that this relationship no

longer holds. It would thus be of interest to find P-wave open bottom mesons (especially

scalars). These data will distinguish chiral multiplet models from the model presented here

and from more traditional constituent quark models. For example, Godfrey and Isgur claim

that the B0 meson lies between 5760 and 5800 MeV; the Bs0 mass is 5840-5880 MeV, and

the Bc0 mass is 6730-6770 MeV. Of these, our Bs0 mass is predicted to be 65-105 MeV lower

than the Godfrey-Isgur mass.

Table 7: Chiral Multiplet Splittings (MeV).

params M(1+(1/2+))−M(1−) M(0+)−M(0−)

D low 411 412

D avg 391 389

D high 366 368

Ds low 384 380

Ds avg 373 370

Ds high 349 346

The bottom flavored meson spectra of Table 8 have been obtained with the ‘average’

extended model parameters and mb = 4.98 GeV. As with the open charm spectra, a flavor-
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Table 8: Low Lying Bottom Meson Masses (MeV).

flavor 0− 1− 0+ 1+ 1+ 2+

B 5279 5322 5730 5752 5753 5759

expt 5279 5325 – 5724± 4± 7 – 5748± 12

Bs 5370 5416 5776 5803 5843 5852

expt 53696 54166 – – – –

Bc 6286 6333 6711 6746 6781 6797

expt 6286 – – – – –

dependent constant was fit to each pseudoscalar. The second row reports recently measured

P-wave B meson masses [95]; these are in reasonable agreement with the predictions of the

first row.

When these results are (perhaps incorrectly) extrapolated to light quark masses, light

scalar mesons are possible. Thus a simple qq̄ interpretation of the enigmatic a0 and f0 mesons

becomes feasible.

Finally, the work presented here may explain the difficulty in accurately computing the

mass of the Ds0 in lattice simulations. If the extended quark model is correct, it implies

that important mass and spin-dependent interactions are present in the one-loop level one-

gluon-exchange quark interaction. It is possible that current lattice computations are not

sufficiently sensitive to the ultraviolet behavior of QCD to capture this physics. The problem

is exacerbated by the nearby, and presumably strongly coupled, DK continuum; which re-

quires simulations sensitive to the infrared behavior of QCD. Thus heavy-light mesons probe

a range of QCD scales and make an ideal laboratory for improving our understanding of the

strong interaction.
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3.4 DS(2860) AND DS(2690)

BaBar have recently announced the discovery of a new Ds state seen in e+e− collisions

decaying to K−π+K+, K−π+π0K+ (D0K+), or D+K0
S[96]. The Breit-Wigner mass of the

new state is

M(DsJ(2860)) = 2856.6± 1.5± 5.0 Mev (3.12)

and the width is

Γ(DsJ(2860)) = 48± 7± 10 MeV. (3.13)

The signal has a significance greater than 5 σ in the D0 channels and 2.8 σ in the D+ channel.

There is no evidence of the DsJ(2860) in the D∗K decay mode[96] or the Dsη mode[97].

There is, furthermore, structure in the DK channel near 2700 MeV that yields Breit-

Wigner parameters of

M(DsJ(2690)) = 2688± 4± 2 MeV (3.14)

and

Γ(DsJ(2690)) = 112± 7± 36 MeV. (3.15)

The significance of the signal was not stated.

The discovery of these states is particularly germane to the structure of the Ds(2317).

For example, the low mass and isospin violating decay mode, Dsπ
0, of the Ds(2317) imply

that the state could be a DK molecule[81]. If this is the case, the DsJ(2690) could be a

supernumerary scalar cs̄ state. Alternatively, the Ds(2317) could be the ground state scalar

cs̄ state and the new DsJ ’s could be canonical radial excitations. Clearly, constructing a

viable global model of all the Ds states is important to developing a solid understanding of

this enigmatic sector[78].

Previous efforts to understand the new BaBar states have argued that the DsJ(2860) is a

scalar cs̄ state predicted at 2850 MeV in a coupled channel model[98] or that it is a JP = 3−

cs̄ state[99].
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Here we pursue a simple model that assumes that all of the known Ds states are domi-

nated by simple cs̄ quark content. It is known that this is difficult to achieve in the ‘standard’

constituent quark model with O(αs) spin-dependent mass shifts because the Ds0(2317) is

much lighter than typical predictions (for example, Godfrey and Isgur obtain a Ds0 mass of

2480 MeV[77]). An essential feature in such phenomenology has been the assumption of two

static potentials: a Lorentz scalar confining potential and a short range Coulombic vector

potential. Following the discovery of the Ds(2317), Cahn and Jackson[35] analyzed the Ds

states with a scalar potential S, whose shape they allowed to be arbitrary, while retaining a

vector potential V that they assumed to be Coulombic. In the limit that the mass m2 À m1

this enabled the spin dependent potential applicable to P-states to take the form

VSD = λL · S1 + 4τL · S2 + τS12 (3.16)

(see the discussion around Eq. 1 of [35] for details). For λ À τ a reasonable description of

the masses could be obtained though a consistent picture of Ds, D spectroscopies and decays

remained a problem. As the authors noted, “the ansatz taken for the potentials V and S

may not be as simple as assumed”. The more general form [100] is

VSD = λL · S1 + 4τL · S2 + µS12 (3.17)

only in the particular case of a Coulomb potential need µ = τ [100]. Direct channel couplings

(such as to DK and D∗K thresholds[81, 101]) will induce effective potentials that allow the

above more general form. Similarly, higher order gluon exchange effects in pQCD will also.

Indeed, the full spin-dependent structure expected at order α2
s in QCD has been computed[34]

and reveals that an additional spin-orbit contribution to the spin-dependent interaction exists

when quark masses are not equal. When these are incorporated in a constituent quark model

there can be significant mass shifts leading to a lowered mass for the Ds0 consistent with the

Ds0(2317)[102]. Here we apply this model to the recently discovered Ds states.
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3.4.1 Canonical cs̄ States

Predictions of the new model in the Ds sector are summarized in Table 9 (the ‘high’ param-

eters of Table 4 are employed).

Table 9: Ds Spectrum.

state mass (GeV) expt[103] (GeV)

Ds(1
1S0) 1.968 1.968

Ds(2
1S0) 2.637

Ds(3
1S0) 3.097

D∗
s(1

3S1) 2.112 2.112

D∗
s(2

3S1) 2.711 2.688?

D∗
s(3

3S1) 3.153

Ds(1
3D1) 2.784

Ds0(1
3P0) 2.329 2.317

Ds0(2
3P0) 2.817 2.857?

Ds0(3
3P0) 3.219

Ds1(1P ) 2.474 2.459

Ds1(2P ) 2.940

Ds1(3P ) 3.332

D′
s1(1P ) 2.526 2.535

D′
s1(2P ) 2.995

D′
s1(3P ) 3.389

Ds2(1
3P2) 2.577 2.573

Ds2(2
3P2) 3.041

Ds2(3
3P2) 3.431

Since the DsJ(2690) and DsJ(2860) decay to two pseudoscalars, their quantum numbers

are JP = 0+, 1−, 2+, etc. Given the known states[103] and that the energy gap for radial

excitation is hundreds of MeV, on almost model independent grounds the only possibility
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for a DsJ(2690) is an excited vector. Table 9 shows that the DsJ(2690) can most naturally

be identified with the excited vector D∗
s(2S); the D-wave vector is predicted to be somewhat

too high at 2784 MeV though mixing between these two basis states may be expected. For

the DsJ(2860), Table 9 indicates that this is consistent with the radially excited scalar state

Ds0(2P ). It appears that the Ds2(2P ) is too heavy to form a viable identification.

3.4.2 Decay Properties

Mass spectra alone are insufficient to classify states. Their production and decay properties

also need to be compared with model expectations. For example, strong decay widths can

be computed with the quark model wavefunctions and the strong decay vertex of the 3P0

model. An extensive application of the model to heavy-light mesons is presented in Ref.

[90]. Here we focus on the new BaBar states with the results given in Table 10.

The total width of the D∗
s(2S) agrees very well with the measured width of the DsJ(2690)

(112± 37 MeV), lending support to this identification. No signal in Dsη is seen or expected,

whereas the predicted large D∗K partial width implies that this state should be visible in this

decay mode. The data in D∗0(K) → D0π0(K) do not support this contention; however, the

modes D∗+(K) → D0γ(K) and D∗+(K) → D+π0(K) show indications of a broad structure

near 2700 MeV[96]. There is the possibility that 13D1 mixing with 23S1 shift the mass down

by 30 MeV to that observed and also suppress the D∗K mode. For a specific illustration,

take the model masses for the 23S1 as 2.71GeV and 13D1 as 2.78 GeV. A simple mixing

matrix then yields a solution for the physical states with masses 2.69 GeV and its predicted

heavy partner at around 2.81 GeV with eigenstates

|D∗
s(2690)〉 ≈ 1√

5
(−2|1S〉+ 1|1D〉)

|D∗
s(2810)〉 ≈ 1√

5
(|1S〉+ 2|1D〉) (3.18)

and hence a mixing angle consistent with -0.5 radians.

The results of an explicit computation in the 3P0 model are shown in Fig. 14. One sees

that a mixing angle of approximately -0.5 radians suppress the D∗K decay mode of the low
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Table 10: Strong Partial Widths for Candidate Ds States.

state (mass) decay mode partial width (MeV)

D∗
s(2S)(2688) DK 22

D∗K 78

Dsη 1

D∗
sη 2

total 103

Ds0(2P )(2857) DK 80

Dsη 10

total 90

Ds2(2P )(2857) DK 3

Dsη 0

D∗K 18

DK∗ 12

total 33

Ds2(2P )(3041) DK 1

Dsη 0

D∗K 6

DK∗ 47

D∗K∗ 76

total 130

vector (with mass set to 2688 MeV) and have a total width of approximately 110 MeV, in

agreement with the data. The orthogonal state would then have a mass around 2.81 GeV

and has a significant branching ratio to both DK and D∗K, albeit with a broad width,

greater than 200 MeV.

In summary, if the DsJ(2690) is confirmed as vector resonance, then signals in the D∗K
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Figure 14: DK and D∗K Partial Widths vs. Mixing Angle. Low vector (left); high vector

(right).

channel are expected, either in the low lying state (if the mixing is weak) or in a higher

vector near 2.8 GeV.

For the DsJ(2860), the Ds2(2P ) assignment is further disfavored. At either its model

mass of 3041 MeV or at 2860 MeV the DK mode is radically suppressed, due to the D-wave

barrier factor. BaBar see their DsJ(2860) signal in DK and do not observe it in the D∗K

decay mode, making the Ds2(2P ) assignment unlikely.

By contrast, the properties of DsJ(2860) are consistent with those predicted for the

Ds0(2P ). Within the accuracy typical of the 3P0 model for S-wave decays, the total width

is in accord with the prediction that the Ds0(2P ) total width is less than that of the excited

vectors, and qualitatively in accord with the measured 48± 12 MeV.
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3.4.3 Radiative Transitions

The meson assignments made here can be tested further by measuring radiative transitions

for these states. Predictions made with the impulse approximation, with and without non-

relativistic reduction of quark spinors, are presented in Table 11.

Table 11: Ds E1 Radiative Transitions (keV).

decay mode (mass) qγ (MeV) Non Rel rate Rel Rate

D∗
s(2S)(2688) → Ds0γ 345 12.7 4.6

D∗
s(1D)(2784) → Ds0γ 428 116 82

Ds0(2P )(2857) → D∗
sγ 648 13 0.4

Ds2(2P )(3041) → D∗
sγ 787 6.8 1.9

3.4.4 Production

The production of the radially excited Ds0 in B decays can be estimated with ISGW and

other formalisms[32, 104]. Since vector and scalar cs̄ states can be produced directly from the

W current, the decays B → D∗
s(2S)D(J) or Ds0(2P )D(J) serve as a viable source excited Ds

states. Computationally, the only differences from ground state Ds production are kinematics

and the excited Ds decay constants.

Production systematics can reveal structural information. For example, the decay B0 →
D+

s D− goes via W emission with a rate proportional to VbcVcs, while W exchange gives rise

to B0 → D−
s K+ ∼ VbcVud and B0 → D+

s K− ∼ VcdVbu. W exchange is suppressed compared

to W emission, thus the expected hierarchy of rates is

Γ(B0 → D+
s D−) À Γ(B0 → D−

s K+) À Γ(B0 → D+
s K−). (3.19)

This suppression of W exchange is confirmed by the data[103] with BR(B0 → D+
s D−) =

(6.5± 2.1)× 10−3 and BR(B0 → D−
s K+) = (3.1± 0.8)× 10−5. The decay to D+

s K− has not

been observed.
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It is therefore intriguing that the observed rate for B0 → Ds(2317)+K− ((4.3±1.5)×10−5)

is comparable to B0 → D−
s K+. Assuming accurate data, one must conclude either that this

simple reasoning is wrong, the Ds(2317)−K+ mode will be found to be large, or the Ds(2317)

is an unusual state. Searching for the process B0 → Ds(2317)−K+ is clearly of great interest.

With the previous warning in mind, we proceed to analyze the production of excited Ds

states in a variety of models. Rates with decay constants set to 1 MeV for Ds(2317) and

Ds(2860) production assuming that they are simple cs̄ scalar and excited scalar states are

presented in Table 12.

Unfortunately, decay constants cannot be accurately computed at this time. We have

evaluated ratios of decay constants assuming a simple harmonic oscillator quark model, a

Coulomb+linear+hyperfine quark model, and a relativized quark model. The resulting ratio

for scalar mesons fall in the range
fDs(2860)

fDs(2317)
≈ 0.8− 1.4. The final estimates of the production

of excited scalar Ds mesons in B decays are thus

B → Ds(2860)D

B → Ds(2317)D
= 0.5− 2 (3.20)

and

B → Ds(2860)D∗

B → Ds(2317)D∗ = 0.3− 1.3. (3.21)

Decay Mode ISGW HQET - Luo & Rosner[105] Pole[105] HQET - Colangelo[106]

Ds(2317)D 2.78× 10−7 1.95× 10−7 1.91× 10−7 2.24× 10−7

Ds(2317)D∗ 1.06× 10−7 8.82× 10−8 8.79× 10−8 1.23× 10−7

Ds(2860)D 2.09× 10−7 1.72× 10−7 1.66× 10−7 1.83× 10−7

Ds(2860)D∗ 4.57× 10−8 3.61× 10−8 3.55× 10−8 4.66× 10−8

Table 12: Branching ratios to scalars in different models with decay constants set to 1 MeV

A similar analysis for vector D∗
s production is presented in Table 13.

Estimating vector decay constant ratios as above yields
fDs(2690)

fD∗s
≈ 0.7 − 1.1. Finally,
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Decay Mode ISGW HQET - Luo & Rosner[105] Pole[105] HQET - Colangelo[106]

D∗
sD 1.97× 10−7 1.33× 10−7 1.32× 10−7 1.57× 10−7

D∗
sD

∗ 4.20× 10−7 3.22× 10−7 3.23× 10−7 4.52× 10−7

Ds(2690)D 1.01× 10−7 8.06× 10−8 7.77× 10−8 8.79× 10−8

Ds(2690)D∗ 4.66× 10−7 3.55× 10−7 3.49× 10−7 4.65× 10−7

Table 13: Branching ratios to vectors in different models with decay constants set to 1 MeV

predicted ratios of excited vector production are

B → Ds(2860)D

B → D∗
s(2110)D

= 0.3− 0.7 (3.22)

and

B → Ds(2860)D∗

B → D∗
s(2110)D∗ = 0.5− 1.3. (3.23)

We note that Eqn. 3.22 agrees well with the earlier prediction of Close and Swanson[90].

3.4.5 Summary and Conclusions

Given the controversial nature of the Ds(2317), establishing a consistent picture of the entire

Ds spectrum is very important. The new states claimed by BaBar can be useful in this regard.

We have argued that the six known Ds and two new states can be described in terms of a

constituent quark model with novel spin-dependent interactions. Predicted strong decay

properties of these states appear to agree with experiment.

Perhaps the most important tasks at present are (i) discovering the Ds2(2P ) state, (ii)

searching for resonances in D∗K and DK∗ up to 3100 MeV, (iii) analyzing the angular

dependence of the DK final state in DsJ(2860) decay, (iv) assessing whether the DsJ(2690)

appears in the D∗K channel, (v) searching for these states in B → DsJD(∗) with branching

ratios of ∼ 10−3.
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3.4.6 Postscript: Belle discovery

Subsequent to these calculations, Belle[107] has reported a vector state whose mass, width,

and possibly production rate and decay characteristics are consistent with our predictions.

Specifically, their measured mass and total width are M = 2715 ± 11+11
−14 MeV and Γ =

115 ± 20+36
−32 MeV, in remarkable agreement with our predictions. The specific parameters

we have used in our analysis are contained within their uncertainties.

Belle[107] find the new state in B decays, which we have proposed as a likely source.

They report Br(B → D̄0D∗
s(2700))×Br(D∗

s(2700) → D0K+) = (7.2±1.2+1.0
−2.9) ·10−4. When

compared to the production of the ground state vector[103] which is Br(B → D̄0D∗
s(2112)) =

(7.2 ± 2.6) · 10−3, the ratio of production rates in B decay is then O(0.1)/Br(D∗
s(2700) →

D0K+). From our Table 10, and assuming flavor symmetry for the strong decay, we predict

that Br(D∗
s(2690) → D0K+) ∼ 10% , which within the uncertainties will apply also to the

Belle state. Thus the absolute production rate, within the large uncertainties, appears to be

consistent with that predicted in Section 4. If the central value of the Belle mass is a true

guide, then a significant branching ratio in D∗K would be expected (Table 10 and Fig 14).

The orthogonal vector state would then be dominantly 1D at 2.78 GeV, but hard to produce

in B decays. These statements depend on the dynamics underlying 2S-1D mixing, which is

poorly understood. It is therefore very useful that B decay systematics and the strength of

the D∗K decay channel in the excited vector Ds mesons can probe this dynamics.

Searching for this state in the other advocated modes, and improving the uncertainties,

now offers a significant test of the dynamics discussed here.
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4.0 DECAY CONSTANTS

Decay constants describe the simplest electroweak transitions, where a meson couples di-

rectly to the photon or W boson. They are often used in more complicated calculations,

for example, nonleptonic decays, gamma-gamma transitions or higher order diagrams for

radiative transitions, so it is important to know them with good accuracy. Decay constants

for some mesons could be determined from experimental data, for example from e+e− decays

for quarkonium. Comparison to the experimental data makes it possible to test the meson

wave function in different models and help us understand our models better.

In this chapter the results for the decay constants calculated in the nonrelativistic po-

tential quark model with the variety of the potentials are presented and discussed.

4.1 CHARMONIUM

Results for the decay constants of charmonium states are shown in Table 15. In the following

we will demonstrate that agreement with experimental charmonium decay constants requires

a weakening of the short range quark interaction with respect to the standard Coulomb

interaction. This weakening is in accord with the running coupling of perturbative QCD and

eliminates the need for an artificial energy dependence that was introduced by Godfrey and

Isgur[77] to fit experimental decay constants.

Since our results depend substantially on the parameters of the potential used, the global

study of this dependence is required before any firm conclusions can be made. We performed

this study of five experimentally observable quantities by varying the parameters of the

potential and minimizing the deviations between the calculated and experimental values.
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These five quantities are: the masses of the first two excited vector meson states relative to

the mass of the ground state vector meson; the spin average mass of the scalar (0++), axial

vector (1++) and tensor (2++) meson states relative to the mass of the ground state vector

meson; the decay constants of the ground and the first excited vector meson states.

We found that for usual ‘Coulomb+linear+hyperfine’ potential no set of parameters

exist that could reproduce the values of all of the five quantities better than 10%. However,

with the introduction of the logarithmic dependence of running coupling, all five calculated

quantities are not further than 5% from the experimental values. We also found that BGS

parameters [31] are very close to the best fit parameters for all of the five quantities, so we

use BGS parameters for all our calculations. Our results for the relative differences of the

calculated meson properties from the experimental data are presented in Table 14 (the full

spinor structure has been used for calculation of our results in this Table). It is very hard to

obtain the decay constant of the second excited vector meson state close to the experimental

value for both potentials (‘BGS’ and ‘BGS log’) as illustrated in the same Table.

Table 14: Relative differences between the calculated and experimental values in %.

BGS Rel BGS log BGS log

Λ = 0.4 GeV Λ = 0.25 GeV

mψ′ −mψ -2.04 -5.77 -8.49

mψ′′ −mψ 2.97 0.32 -1.80

mχ −mψ 1.64 -8.96 -14.02

fψ 32.6 2.92 -4.38

fψ′ 33.0 9.68 5.02

fψ′′ 115.5 53.4 48.3

The second column of Table 15 shows results of the nonrelativistic computation (Eq.2.37)

with wavefunctions determined in the Coulomb+linear model with BGS parameters [31]. A

clear trend is evident as all predictions are approximately a factor of two larger than exper-

iment (column seven). Using the full spinor structure (column three) improves agreement
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Table 15: Charmonium Decay Constants (MeV).

Meson BGS NonRel BGS Rel BGS log BGS log lattice experiment

Λ = 0.4 GeV Λ = 0.25 GeV

ηc 795 493 424 402 429± 4± 25 335± 75

η′c 477 260 243 240 56± 21± 3

η′′c 400 205 194 193

J/ψ 615 545 423 393 399± 4 411± 7

ψ(2S) 431 371 306 293 143± 81 279± 8

ψ(3S) 375 318 267 258 174± 18

χc1 239 165 155 149

χ′c1 262 167 157 152

χ′′c1 273 164 155 151

with experiment substantially, but still yields predictions which are roughly 30% too large.

At this stage the lack of agreement must be ascribed to strong dynamics, and this motivated

the running coupling model specified above. The fourth and fifth columns give the results

obtained from this model. It is apparent that the softening of the short range Coulomb

potential induced by the running coupling brings the predictions into very good agreement

with experiment.

Column six lists the quenched lattice gauge computations of Ref. [108]. The agreement

with experiment is noteworthy; however, the predictions for the η′c and ψ(2S) decay constants

are much smaller than those of the quark model (and experiment in the case of the ψ(2S)). It

is possible that this is due to excited state contamination in the computation of the mesonic

correlators.

The good agreement between model and experiment has been obtained with a straight-

forward application of the quark model. This stands in contrast to the methods adopted in

Ref. [77] where the authors insert arbitrary factors of m/E(k) in the integrand in order to

obtain agreement with experiment (the extra factors of m/E serve to weaken the integrand,
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approximating the effect of the running coupling used here).

It is very difficult to obtain a value for fψ(3S) that is as small as experiment. Assuming

that the experimental value is reliable it is possible that this difficulty points to serious prob-

lems in the quark model. A simple mechanism for diminishing the decay constant is via S-D

wave mixing, because the D-wave decouples from the vector current in the nonrelativistic

limit. This mixing can be generated by the tensor interaction of Eq. 3.3; however, compu-

tations yield amplitude reductions of order 2% – too small to explain the effect. Note that

S-D mixing can also be created by transitions to virtual meson-meson pairs. Unfortunately,

evaluating this requires a reliable model of strong Fock sector mixing and we do not pursue

this here.

A similar discussion holds for the e+e− width of the ψ(3770). Namely, the large decay

constant fψ(3770) = 99 ± 20 MeV can perhaps be explained by mixing with nearby S-wave

states. Again, the computed effect due to the tensor interaction is an order of magnitude

too small and one is forced to look elsewhere (such as loop effects) for an explanation.

Attempts to compute Lorentz scalars such as decay constants or form factors in a nonco-

variant framework are necessarily ambiguous. As stated above, the results of a computation

in the nonrelativistic quark model are only guaranteed to be consistent in the weak binding

limit. However the accuracy of the quark model can be estimated by examining the decay

constant dependence on model assumptions. For example, an elementary aspect of covari-

ance is that a single decay constant describes the vector (for example) decay amplitude in all

frames and for all four-momenta. Thus the decay constant computed from the temporal and

spatial components of the matrix element 〈0|Jµ|V 〉 should be equal. As pointed out above,

setting µ = 0 yields the trivial result 0 = 0 in the vector rest frame. However, away from

the rest frame one obtains the result

fV =
√

NcE(P )

∫
d3k

(2π)3
Φ(k; P )

1√
E(k + P/2)

√
E(k − P/2)

×

×1

2

(√
E(k + P/2) + m√
E(k − P/2) + m

+

√
E(k − P/2) + m√
E(k + P/2) + m

)
(4.1)

or, in the nonrelativistic limit

fV =

√
NcMV

m
Φ̃(0). (4.2)
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One sees that covariance is recovered in the weak binding limit where the constituent quark

model is formally valid.

Computations of the vector decay constant away from the weak binding limit and the

rest frame are displayed in Fig. 15. One sees a reassuringly weak dependence on the vector

momentum P . There is, however, a 13% difference in the numerical value of the temporal and

spatial decay constants, which may be taken as a measure of the reliability of the method.
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Figure 15: Temporal (top line) and Spatial (bottom line) Vector Decay Constants in Various

Frames.

4.2 BOTTOMONIUM

The study of the dependence of bottomonium spectrum and the decay constants on the

parameters of the potential has been performed in a similar way as for charmonia. We
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varied the parameters of the potential and minimized the deviations of the calculated values

of six quantities from their experimental values. These six quantities are: the masses of the

first two excited vector meson states relative to the mass of the ground state vector meson;

the spin average mass of the scalar (0++), axial vector (1++) and tensor (2++) meson states

relative to the mass of the ground state vector meson; the decay constants of the ground

and the first two excited vector meson states.

In order to find the best set of parameters we minimized χ2:

χ2 =
1

Ndof

∑
i

(f i − f i
exp)

2

σ2
i

(4.3)

where Ndof is a number of degrees of freedom: Ndof = Nf − Np where Nf is a number of

observable quantities and Np is the number of parameters we vary. In our case Nf = 6 and

Np = 3 (we vary α, b and mb) so Ndof = 3. The standard deviations of the experimental

values σ2
i have been taken from the Particle Data Group book. We calculate six quantities

f i, and f i
exp are their experimental values.

We found that it is not possible to reproduce even five out of six quantities within 10% of

their experimental value using standard ‘Coulomb + linear’ potential. However, it is possible

with the introduction of the momentum-dependent running coupling.

For the ‘Coulomb + linear’ potential with logarithmic short range behavior of running

coupling we found that ‘the best fit’ parameters for the bottomonium are: mb = 4.75 GeV,

aC = aH = 0.35, b = 0.19 GeV2, and σ = 0.897 GeV. Our results for the relative differences

of the calculated meson properties from the experimental data are presented in Table 16 (the

full spinor structure has been used for calculation of our results in this Table).

Predicted decay constants are presented here (Table 17 ). All computations we performed

as for charmonia.

One can see that agreement with available experimental data is impressive for the model

with running coupling (C+L log). We conclude that the running coupling in C+L potential

is needed to reproduce right short-range behavior of the meson wave functions, which is

probed by the decay constants.
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Table 16: Relative differences between the calculated and experimental values in %.

C+L Rel C+L log C+L log

Λ = 0.4 GeV Λ = 0.25 GeV

mΥ′ −mΥ -2.30 -6.57 -9.23

mΥ′′ −mΥ 0.01 -3.12 -5.13

mχ −mΥ 1.33 -7.59 -12.3

fΥ 25.0 1.13 -6.07

fΥ′ 20.5 2.70 -1.45

fΥ′′ 44.8 24.9 20.8

Table 17: Bottomonium Decay Constants (MeV).

Meson C+L NonRel C+L Rel C+L log C+L log experiment

Λ = 0.4 GeV Λ = 0.25 GeV

ηb 979 740 638 599

η′b 644 466 423 411

η′′b 559 394 362 354

Υ 963 885 716 665 708± 8

Υ′ 640 581 495 475 482± 10

Υ′′ 555 501 432 418 346± 50

Υ′′′ 512 460 400 388 325± 60

Υ(4) 483 431 377 367 369± 93

Υ(5) 463 412 362 351 240± 61

χb1 186 150 142 136

χ′b1 205 160 152 147

χ′′b1 215 164 157 152
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4.3 HEAVY-LIGHT MESON DECAY CONSTANTS

The results of our calculations of heavy-light meson decay constants in different models are

presented in Table 18, and then results of C+L model with running coupling are compared

to the experiment and other model calculations in Table 19.

The first two columns of Table 18 correspond to the calculations with C+L potential

with and without nonrelativistic reduction of the quark spinors. One can see considerable

difference between these results not only for light mesons (as could have been expected) but

also for heavy mesons which are usually considered being nonrelativistic (even for Bc mesons

the difference between two columns is 30-50% ).

Also, as for cc̄ and bb̄ mesons, introduction of running coupling is needed to correctly

describe short-range behavior of heavy-light meson wave functions and bring decay constant

in better agreement with experiment.

Our results for all the meson decay constants (except K pseudoscalar meson) agree quite

well both with the experimental data and other model calculations (where available). We

would like to point out that we used the same parameters of the potential for all of our

calculations in this section (global parameters: α = 0.594, b = 0.162, σ = 0.897), they have

not been refitted.

The fact that the decay constant of K pseudoscalar meson is so different both from its

experimental value and other model calculations lets us conclude that there are some effects,

important for light pseudoscalar mesons, that are missing in nonrelativistic potential quark

model. It might be related to the lack of the chiral symmetry in this model, or maybe the

absence of many-body effects. Therefore it will be of interest in the future to perform the

study of light meson decay constants in Coulomb gauge model which takes these effects into

account.
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Table 18: Decay constants of heavy-light mesons (MeV). Global parameters have been used.

Meson Nonrel wf

C+L potential C+L log potential

nonrel rel 0.4GeV 0.25GeV

K 1116 445 425 417

K∗ 332 286 261 252

K∗
0 97 30 30 30

D 489 290 269 260

D∗ 318 272 240 230

D0 221 83 82 81

Ds 627 374 337 324

D∗
s 447 388 324 306

D∗
s0 174 75 73 72

B 267 195 175 167

B∗ 232 196 169 161

B0 207 84 83 81

Bs 394 283 242 229

B∗
s 349 300 241 226

Bs0 208 98 94 92

Bc 917 623 451 415

B∗
c 886 779 497 450

Bc0 174 97 86 81
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Table 19: Decay constants of heavy-light mesons (MeV). Global parameters have been used.

Meson Lattice Light QCD CQM Bethe- Experiment

C+L quenched unquenched cone sum rule Salpeter

log [109] [110][111] [112] [113][114] [115] [116] [117][118]

K 417 152(6)(10) 152.0(6.1) 155 169 157 153± 4 (e+e−)

158± 21 (µ+µ−)

K∗ 252 255.5(6.5) 236

K∗
0 30 427± 85

D 260 235(8)(14) 225(14)(14) 205± 20 234 234 238 302± 94 [89]

222.6± 16.7+2.8
−3.4 [119]

D∗ 230 216 310 340± 23

D0 81

Ds 324 266(10)(18) 267(13)(17)(+10) 235± 24 268 391 241 246± 47 (µ+µ−)

281± 33 (τ+τ−)

D∗
s 306 315 375± 24

D∗
s0 72

B 167 216(9)(19)(4)(6) 150 203± 23 189 191 193

B∗ 161 219 238± 18

B0 81

Bs 229 242(9)(34)(+38) 236± 30 218 236 195

B∗
s 226 251 272± 20

Bs0 92

Bc 415 421

B∗
c

Bc0
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5.0 FORM-FACTORS

5.1 ELECTROMAGNETIC FORM-FACTORS

Single quark elastic and transition form factors for charmonia are considered in the following

sections. The agreement with recent lattice computations is very good, but requires that

the standard nonrelativistic reduction of the current not be made and that the running

coupling described above be employed. As will be shown, this obviates the need for the

phenomenological κ factor introduced for electroweak decays in the ISGW model[32].

5.1.1 Charmonium single quark form factors

Unfortunately elastic electromagnetic form factors are not observables for charmonia; how-

ever this is an area where lattice gauge theory can aid greatly in the development of models

and intuition. In particular, a theorist can choose to couple the external current to a single

quark, thereby yielding a nontrivial ’pseudo-observable’. This has been done in Ref. [108]

and we follow their lead here by considering the single-quark elastic electromagnetic form

factors for pseudoscalar, scalar, vector, and axial vector charmonia.

A variety of quark model computations of the ηc single quark elastic form factor are

compared to lattice results in Fig. 16. It is common to use SHO wavefunctions when

computing complicated matrix elements. The dotted curve displays the nonrelativistic form

factor (Eq. 2.49) with SHO wavefunctions (the SHO scale is taken from Ref. [90]). Clearly

the result is too hard with respect to the lattice. This problem was noted by ISGW and is the

reason they introduce a suppression factor ~q → ~q/κ. ISGW set κ = 0.7 to obtain agreement

with the pion electromagnetic form factor. The same procedure yields the dot-dashed curve
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Figure 16: The Single Quark ηc Form-factor fsq(Q
2). From top to bottom the curves are

SHO, nonrelativistic BGS, relativistic BGS, BGS log, and ISGW.

in Fig. 16. The results agrees well with lattice for small Q2; thus, somewhat surprisingly, the

ad hoc ISGW procedure appears to be successful for heavy quarks as well as light quarks.

The upper dashed curve indicates that replacing SHO wavefunctions with full Coulomb+linear

wavefunctions gives a somewhat softer nonrelativistic form factor. The same computation

with the relativistic expression (Eq. 2.48), the lower dashed curve, yields a slight additional

improvement. Finally, the relativistic BGS+log single quark elastic ηc form factor is shown as

the solid line and is in remarkably good agreement with the lattice (it is worth stressing that

form factor data have not been fit). It thus appears that the ISGW procedure is an ad hoc

procedure to account for relativistic dynamics and deviations of simple SHO wavefunctions

from Coulomb+linear+log wavefunctions.

A similar procedure can be followed for the vector, scalar, and axial elastic single quark
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form factors. The necessary Lorentz decompositions and expressions for the form factors are

given in Appendix B. The single quark χc0 elastic form factor for the relativistic BGS+log

case is shown in Fig. 17. The BGS model yields a very similar result and is not shown. This

appears to be generally true and hence most subsequent figures will only display BGS+log

results. As can be seen, the agreement with the lattice data, although somewhat noisy, is

very good.
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Figure 17: The χc0 Single Quark Form-factor fsq(Q
2).

The left panel of Fig. 18 shows the single quark J/ψ charge form factor. The agreement

of the relativistic BGS+log model with the lattice data is remarkable. The right panel of

Fig. 18 contains the magnetic dipole form factor (see Appendix B for definitions). In this

case the form factor at zero recoil is model-dependent. In the nonrelativistic limit, Eq. B.10

implies that GM(~q = 0) = MV /m ≈ 2. The model prediction is approximately 10% too

small compared to the lattice data. The lattice results have not been tuned to the physical

charmonium masses (charmonium masses are approximately 180 MeV too low); however it
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is unlikely that this is the source of the discrepancy since the ratio M/m is roughly constant

when M is near the physical mass. Thus it appears that the problem lies in the quark

model. Reducing the quark mass provides a simple way to improve the agreement; however

the modifications to the spectrum due to a 10% reduction in the quark mass are difficult to

overcome with other parameters while maintaining the excellent agreement with experiment.
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Figure 18: Single Quark J/ψ Form Factors GC
sq (left) and GM

sq (right).

Predictions for the single quark elastic electromagnetic form factors of the hc and χc1

states are shown in Figs. 19 and 20. As for the J/ψ, the charge form factors are normalized

at zero recoil, while the magnetic form factors take on model-dependent values at zero recoil.

In the nonrelativistic limit these are GM
sq (~q = 0) = M/(2m) for the hc and GM

sq (~q = 0) =

3M/(4m) for the χc1.

The presence of a kinematical variable in form factors makes them more sensitive to

covariance ambiguities than static properties such as decay constants. In addition to frame

and current component dependence, one also must deal with wavefunction boost effects that

become more pronounced as the recoil momentum increases. Presumably it is preferable to

employ a frame which minimizes wavefunction boost effects since these are not implemented

in the nonrelativistic constituent quark model. Possible choices are (i) the initial meson

rest frame (ii) the final meson rest frame (iii) the Breit frame. These frames correspond to

different mappings of the three momentum to the four momentum: |~q|2 = Q2(1 + α) where

α = 0 in the Breit frame and α = Q2/4M2 in the initial or final rest frame (these expressions

are for elastic form factors with a meson of mass M). Furthermore, as with decay constants,
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Figure 19: Single Quark hc Form Factors GC
sq (left) and GM

sq (right).
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Figure 20: Single Quark χc1 Form Factors GC
sq (left) and GM

sq (right).

it is possible to compute the form factors by using different components of the current.

We consider the ηc elastic single quark form factor in greater detail as an example. The

form factor obtained from the temporal component of the current in the initial meson rest

frame is given in Eqs. 2.48 and 2.49. Computing with the spatial components yields Eq.

B.6 with the nonrelativistic limit

fsq(Q
2) =

2M

m

∫
d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

)(
~k +

~q

2

)
· ~q

q2
(5.1)
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This can be shown to be equivalent to

2M

m

1

4

∫
d3x|Φ(x)|2e−i~q·~x/2, (5.2)

which is Eq. 2.49 in the weak coupling limit. At zero recoil this evaluates to M
2m

, which is

approximately 10% too small with respect to unity. Once again, reducing the quark mass

presumably helps improve agreement.
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Figure 21: Covariance Tests for the Single Quark ηc Form Factor.

Fig. 21 compares the various methods of computing the ηc single quark form factor.

The solid line is the result of Fig. 16, computed in the initial rest frame with the temporal

component of the current. The dashed line is the computation of the form factor in the

Breit frame. The good agreement is due to a cancelation between the different four-vector

mapping discussed above and the modifications induced by computing the quark model

form factor in the Breit frame. The lower dashed line is the form factor computed from

the spatial components of the current (Eq. B.6). It is evidently too small compared to the
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correctly normalized results by approximately a factor of 2m/M , indicating that the method

is accurate at the 10% level.

Finally, the large Q2 behavior of pseudoscalar form factors is a controversial topic. We

do not presume to resolve the issues here; rather we note that the preferred method for

obtaining the form factor yields an asymptotic behavior proportional to αs(Q
2)fPsMPs/Q

2,

which is similar, but not identical, to that expected in perturbative QCD[120]. Nevertheless,

the model is not applicable in this regime and the asymptotic scaling should not be taken

seriously.

5.1.2 Charmonium Transition Form Factors

Transition form factors convolve differing wavefunctions and therefore complement the infor-

mation contained in single quark elastic form factors. They also have the important benefit

of being experimental observables at Q2 = 0.

The computation of transition form factors proceeds as for elastic form factors, with

the exception that the current is coupled to all quarks. Lorentz decompositions and quark

model expressions for a variety of transitions are presented in App. B. The mapping between

three-momentum and Q2 is slightly different in the case of transition form factors. In the

Breit frame this is

|~q|2 = Q2 +
(m2

2 −m2
1)

2

Q2 + 2m2
1 + 2m2

2

, (5.3)

while in the initial rest frame it is

|~q|2 =
Q4 + 2Q2(m2

1 + m2
2) + (m2

1 −m2
2)

2

4m2
1

. (5.4)

An analogous result holds for the final rest frame mapping.

Computed form factors are compared to the lattice calculations of Ref. [108] and exper-

iment (where available) in Figs. 22 to 27. Experimental measurements (denoted by squares

in the figures) have been determined as follows: For J/ψ → ηcγ Crystal Barrel[121] mea-

sure Γ = 1.14± 0.33 keV. Another estimate of this rate may be obtained by combining the

Belle measurement[122] of Γ(ηc → φφ) with the rate for J/ψ → ηcγ → φφγ reported in the
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Figure 22: Form Factor F (Q2) for J/ψ → ηcγ. Experimental points are indicated with

squares.

PDG[89]. One obtains Γ(J/ψ → ηcγ) = 2.9 ± 1.5 keV[108]. Both these data are displayed

in Fig. 22.

Two experimental points for χc0 → J/ψγ are displayed in Fig. 23. These correspond

to the PDG value Γ(χc0 → J/ψγ) = 115 ± 14 keV and a recent result from CLEO[123]:

Γ(χc0 → J/ψγ) = 204± 31 keV.

Finally, the experimental points for the E1 and M2 χc1 → J/ψγ multipoles (Fig. 27) are

determined from the decay rate reported in the PDG and the ratio M2/E1 = 0.002± 0.032

determined by E835[124].

Overall the agreement between the model, lattice, and experiment is impressive. The

exception is the E1 multipole for χc1 → J/ψγ. We have no explanation for this discrepancy.

Note that the quenched lattice and quark model both neglect coupling to higher Fock states,
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which could affect the observables. The agreement with experiment indicates that such effects

are small (or can be effectively subsumed into quark model parameters and the lattice scale),

thereby justifying the use of the quenched approximation and the simple valence quark model

when applied to these observables.

Predictions for excited state form factors are simple to obtain in the quark model (in con-

trast to lattice gauge theory, where isolating excited states is computationally difficult). Two

examples are presented in Fig. 28. The agreement with experiment (squares) is acceptable.
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Figure 23: Form Factor E1(Q
2) for χc0 → J/ψγ. Experimental points are indicated with

squares.
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Figure 24: Form Factor C1(Q
2) (right) for χc0 → J/ψγ.
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Figure 25: Form Factors E1(Q
2) (left) and C1(Q

2) (right) for hc → ηcγ.
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Figure 26: Form Factor E1(Q
2) for χc1 → J/ψγ. Experimental points are indicated with

squares.
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Figure 27: Form Factors M2(Q
2) (left) and C1(Q

2) (right) for χc1 → J/ψγ. Experimental

points are indicated with squares.
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Figure 28: Form Factor F (Q2) for ψ(2S) → ηcγ (left). Form factor E1(Q
2) for ψ(2S) → χc0γ

(right). Experimental points are indicated with squares.
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5.2 ELECTROWEAK FORM-FACTORS

Electroweak form-factors are measurable experimentally for a variety of processes, so study-

ing them in a particular model can help greatly in improving the model and learning about

its applicability. In this section we present the results of our calculations of electroweak

transition form-factors and compare them to the experiment (if available) and to other

model calculations. The details of the derivation of the expressions for the form-factors are

presented in the Appendix C.

Results for the dependence of the form-factors on the momentum transfer for B̄0 → D+

and B̄0 → D∗+ decays are presented in the figures 29-34. In the ISGW model SHO wave

functions are used as an approximation for the meson wave functions, and an artificial factor

κ = 0.7 is introduced (|~q| → |~q|/κ). The formulae for this model are taken from their paper

[32].

Results for the form-factors of the transitions to the excited states B̄0 → D+(2S) and

B̄0 → D∗+(2S) are presented in the figures 35-40. As expected, for the transitions to the

excited states, form-factors for different models of the potential are more different from each

other than for ground state transitions. It happens mostly because the wave functions start

to differ more between the models as we go to the higher states. Also, in the SHO and

ISGW models the pseudoscalar and vector meson wave functions are the same, while the

Coulomb+linear+hyperfine potential model has a spin-dependent term that can distinguish

between them, and difference becomes even larger for the excited states. And as we consider

transitions to the excited vector meson states it becomes very important to take that spin

dependence into account as one could see from our results for the form-factors: SHO and

ISGW model form-factors are significantly different from the Coulomb+linear+hyperfine

potential model.

Results for the pseudoscalar to scalar meson transition form-factors are presented in the

figures 41 and 42. The form-factors with the full relativistic expressions of the quark spinors

taken into account are quite different from the completely nonrelativistic model results, so

we conclude that the relativistic corrections can be significant.

To compare to the experimental data presented in [105] we have to calculate FV (w) (for
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B̄0 → D+), FA(w) and F ∗
V (w) (for B̄0 → D∗+) which are defined by (these are decompo-

sitions of the matrix elements in the heavy quark limit, so they are not the most general

expressions):

V µ = 〈D(v′)|V µ|B(v)〉 =
√

M1M2FV (w)(v + v′)µ,

Aµ = 〈D∗(v′, ε)|Aµ|B(v)〉 =
√

M1M2FA(w)
[
(ε∗)µ (1 + v · v′)− ε∗ · v(v′)µ

]
,

(V ∗)µ = 〈D∗(v′, ε)|V µ|B(v)〉 = −i
√

M1M2F
∗
V (w)εµναβε∗νvαv′β. (5.5)

where v = P1/M1, v′ = P2/M2 and

w =
P1 · P2

M1M2

=
M2

1 + M2
2 + q2

2M1M2

. (5.6)

In the B(v) rest frame we have:

V 0 =
√

M1M2FV (w)

(
1 +

E2

M2

)
,

~V = ~q

√
M1

M2

FV (w),

A0 =





0 if MV = ±1,

|~q|
√

M1

M2
FA(w) if MV = 0,

~A =





√
M1M2FA(w)

(
1 + E2

M2

)
~ε ∗ if MV = ±1,

√
M1M2FA(w)

(
1 + E2

M2

)
êz if MV = 0,

(V ∗)0 = 0,

~V ∗ = |~q|
√

M1

M2

F ∗
V (w)MV~ε ∗. (5.7)
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Now there are two different expressions for FV (w) and FA(w) form-factors (one from the

zero component of the matrix element and one from the vector components):

FV (w)0 =

√
M2

M1

V 0

M2 + E2

,

FV (w)vec =

√
M2

M1

~V · ~q
|~q|2 ,

FA(w)0 =

√
M2

M1

A0

|~q| , MV = 0,

FA(w)vec =





√
M2

M1

~A·~ε
M2+E2

, MV = ±1,√
M2

M1

~A·êz

M2+E2
, MV = 0,

F ∗
V (w)vec = MV

√
M2

M1

~V ∗ · ~ε
|~q| . (5.8)

The two expressions for each of the form-factors FV (w) and FA(w) should be equivalent to

each other if our model is covariant and the heavy quark approximation is good enough.

In the nonrelativistic approximation for SHO wave functions:

FV (w)0 = e−q2µ2/4β2

,

FV (w)vec = e−q2µ2/4β2

M2

(
1

m2

− µ

2

(
1

m1

+
1

m2

))
,

FA(w)0 = e−q2µ2/4β2

M2

(
1

m2

− µ

2

(
1

m1

+
1

m2

))
,

FA(w)vec = e−q2µ2/4β2

,

F ∗
V (w)vec = e−q2µ2/4β2

M2

(
1

m2

+
µ

2

(
1

m1

− 1

m2

))
. (5.9)

It follows from the formulas above that FV (w)0 = FV (w)vec and FA(w)0 = FA(w)vec if the

heavy quark limit is satisfied: m̄1 ¿ m1, m̄2 ¿ m2 and M2 ≈ m2.

The results of our calculations of FV (w) and FA(w) for different models of the potentials

are compared to the experimental data in figures 43 and 44. Coulomb+linear+hyperfine

interaction potential model works better for both FV (w) and FA(w) as expected. Also from

FA(w) results it is obvious that taking into account relativistic corrections for quark spinors

is important for consistency with the experimental data.

Our results for F ∗
V (w) are presented in figure 45.
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We also want to compare our results to the heavy quark symmetry calculations. In

this context h±(w) form-factors are introduced for P1(
1S0) → P2(

1S0) transition which are

related to the previously calculated form-factors:

h±(w) =
M1 ±M2

2
√

M1M2

f+(Q2) +
M1 ∓M2

2
√

M1M2

f−(Q2). (5.10)

Our calculations give:

h±(w) =
1

2
√

M1M2

(
V 0 − (E2 ∓M2)

~V · ~q
|~q|2

)
. (5.11)

In the nonrelativistic approximation for SHO wave functions:

h+(w) = e−q2µ2/4β2

, (5.12)

h−(w) = e−q2µ2/4β2

[
1−M2

[
1

m2

− µ

2

(
1

m1

+
1

m2

)]]
. (5.13)

In the limit of infinitely heavy quark it follows from the heavy quark symmetry that:

h+(w) = ξ(w), (5.14)

h−(w) = 0, (5.15)

where ξ(w) is the Isgur-Wise function.

Our results for h(w) form-factors for B̄0 → D+ are presented in figures 46-47. For all

our calculations h+(1) ≈ 1 just as it is supposed to be in the heavy quark limit. h−(w) is

consistent with zero in our calculations using Coulomb + linear + hyperfine potential but

not SHO potential. In summary, our calculations are consistent with the heavy quark EFT

calculations of the form-factors for B → D decays.

The results for h(w) form-factors for D̄0 → K+ are presented in figures 48-49. Again we

get h+(1) ≈ 1 for all the models. But h−(w) is significantly far from zero for Coulomb +

linear + hyperfine potential model, which means that finite mass corrections are important

for this case (as was expected since K consists of light quarks). It is interesting to note

that for SHO and ISGW models h−(w) is quite close to zero for D → K transitions while

being significantly different from zero for B → D transitions, and it should be opposite since

B mesons should be closer to the heavy quark limit than K mesons. It means that SHO
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potential is not very good approximation for the quark interaction since the form-factors

calculated with SHO potential don’t approach heavy quark limit behavior as they should.

In the heavy quark symmetry limit the matrix elements for P (1S0) → V (3S1) transition

could be written as [127]:

V µ = 〈V (~PV )|q̄γµq|P (~PP )〉 = i
√

mP mV εµναβ
(
ε∗MV

)
ν
v′αvβξ(w), (5.16)

Aµ = 〈V (~PV )|q̄γµγ5q|P (~PP )〉 =
√

mP mV

[(
ε ∗MV

)µ
(v · v′ + 1)− v′µ

(
ε∗MV

· v)]
ξ(w).

Comparing (C.24) with (5.16) one finds that

lim
m→∞

hg(w) = lim
m→∞

{
2
√

mP mV g(Q2)
}

= ξ(w),

lim
m→∞

hf (w) = lim
m→∞

{
f(Q2)

2
√

mV mP

}
= ξ(w),

lim
m→∞

ha−(w) = lim
m→∞

{−√mP mV

(
a+(Q2)− a−(Q2)

)}
= ξ(w),

lim
m→∞

ha+(w) = lim
m→∞

{
a+(Q2) + a−(Q2)

}
= 0. (5.17)

Our results for hg(w), hf (w), ha−(w) and ha+(w) are presented in figures 50-53.
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Figure 29: Form-factor f+(Q2) of B̄0 → D+. From top to bottom at Q2 = 0 the curves are

SHO, ISGW, relativistic C+L, nonrelativistic C+L and C+L log.
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are ISGW, SHO, C+L log, relativistic C+L and nonrelativistic C+L.

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

-7 -6 -5 -4 -3 -2 -1  0

g’
 (

Q
2 )

Q2
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Figure 48: Form-factor h+(w) of D̄0 → K+. From top to bottom at w = wmax the curves

are relativistic C+L, C+L log, SHO, ISGW and nonrelativistic C+L.
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Figure 49: Form-factor h−(w) of D̄0 → K+. From top to bottom at w = wmax the curves

are relativistic C+L, C+L log, nonrelativistic C+L, SHO and ISGW.
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Figure 50: Form-factor hg(w) of B̄0 → D∗+. From top to bottom at w = wmax the curves

are SHO, ISGW, nonrelativistic C+L, relativistic C+L and C+L log.
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Figure 51: Form-factor hf (w) of B̄0 → D∗+. From top to bottom at w = wmax the curves

are relativistic C+L, C+L log, ISGW, SHO and nonrelativistic C+L.
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Figure 52: Form-factor ha−(w) of B̄0 → D∗+. From top to bottom at w = wmax the curves

are SHO, nonrelativistic C+L, relativistic C+L and C+L log.
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Figure 53: Form-factor ha+(w) of B̄0 → D∗+. From top to bottom at w = wmax the curves

are SHO, nonrelativistic C+L, C+L log and relativistic C+L.
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6.0 GAMMA-GAMMA TRANSITIONS

In this chapter the details and the results of our calculations of gamma-gamma transition

decay rates are presented and discussed.

The general amplitude for two-photon decay of pseudoscalar quarkonium can be written

as

A(λ1p1; λ2p2) = ε∗µ(λ1, p1)ε
∗
ν(λ2, p2)Mµν (6.1)

with

Mµν
Ps = iMPs(p

2
1, p

2
2, p1 · p2) εµναβ p1αp2β. (6.2)

The total decay rate is then Γ(Ps → γγ) =
m3

Ps

64π
|MPs(0, 0)|2.

Before moving on to the quark model computation, it is instructive to evaluate the

amplitude in an effective field theory that incorporates pseudoscalars, vectors, and vector

meson dominance. The relevant Lagrangian density is

L = −iQmV fV VµA
µ − 1

2
QF (V )ηF̃µνV

µν (6.3)

where F̃ µν = 1
2
εµναβFαβ and V µν = ∂µV ν −∂νV µ, Q is the charge of the quark 1. Evaluating

the transition Ps → γγ yields

MPs(p
2
1, p

2
2) =

∑
V

mV fV Q2

(
F (V )(p2

1)

p2
2 −m2

V

+
F (V )(p2

2)

p2
1 −m2

V

)
. (6.4)

1The vector meson dominance term is not gauge invariant. Why this is not relevant here is discussed in
Sect. 15 of Ref. [135].
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Hence the pseudoscalar decay rate is

Γ(Ps → γγ) =
m3

PsQ
4

16π

(∑
V

fV F (V )(0)

mV

)2

. (6.5)

Notice that the desired cubic pseudoscalar mass dependence is achieved in a simple manner

in this approach (see the discussion in section 2.3.4).

The application of this formula is complicated by well-known ambiguities in the vector

meson dominance model (namely, is p2
V = m2

V or zero?). The time ordered perturbation

theory of the quark model suffers no such ambiguity (although, of course, it is not covariant)

and it is expedient to use the quark model to resolve the ambiguity. We thus choose to

evaluate the form factor at the kinematical point |~q| = mPs/2, appropriate to Ps → γγ in

the pseudoscalar rest frame. Applying Eq. 5.4 to the virtual process ηc → J/ψγ then implies

that the argument of the form factor should be Q2 = 2.01 GeV2.

A simple estimate of the rate for ηc → γγ can now be obtained from Eq. 6.5, fJ/ψ ≈ 0.4

GeV, and F (V )(Q2 = 2 GeV2) ≈ 0.7 GeV−1 (Fig. 22). The result is Γ(ηc → γγ) ≈ 7.1 keV,

in reasonable agreement with experiment.

Finally, the predicted form of the two-photon ηc form factor is shown in Fig. 54 in

the case that one photon is on-shell. The result is a slightly distorted monopole (due to

vector resonances and the background term in Eq. 6.4) that disagrees strongly with naive

factorization results. This prediction have been successfully tested by lattice computations

[136], and this leads us to the conclusion that the factorization model should be strongly

refuted.

As motivated above, the microscopic description of the ηc two-photon decay is best

evaluated in bound state time ordered perturbation theory. Thus one has

ANR =
∑
γ,V

〈γ(λ1, p1)γ(λ2, p2)|H|γ, V 〉 〈γ, V |H|Ps〉
(mPs − EγV )

(6.6)

The second possible time ordering requires an extra vertex to permit the transition 〈Ps, V |γ〉
and hence is higher order in the Fock space expansion. Thus the second time ordering has

been neglected in Eq. 6.6.

The amplitudes can be written in terms of the relativistic decompositions of the previous
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Figure 54: The Two-photon Form Factor MPs(p
2
1, p

2
2 = 0) for ηc → γγ.

sections. One obtains the on-shell amplitude

MPs =
∑
V

Q2

√
mV

EV

fV
F (V )(q)

mPs − EγV (q)
. (6.7)

We choose to label the momentum dependence with the nonrelativistic q = |~q| in these

expressions 2.

The total width is evaluated by summing over intermediate states, integrating, and

symmetrizing appropriately. Form factors and decay constants are computed as described in

the preceding sections. As argued above, form factors are evaluated at the point |~q| = mPs/2.

Table 20 shows the rapid convergence of the amplitude in the vector principle quantum

2The naive application of the method advocated here to light quarks will fail. In this case the axial
anomaly requires that MPs = iα

πfπ
, which is clearly at odds with Eq. 6.7. The resolution of this problem

requires a formalism capable of incorporating the effects of dynamical chiral symmetry breaking, such as
described in Refs. [45, 137].
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number n for the quantity 4
√

2
Q
√

mηc
A++. Surprisingly, convergence is not so fast for the Υ

system and care must be taken in this case.

Table 20: Amplitude for ηc → γγ (10−3 GeV−1).

n BGS BGS log

1 -211 -141

2 -34 -30

3 -10 -10

Table 21 presents the computed widths for the ηc, η′c, η′′c and χc0 mesons in a variety

of models. The second and third columns compare the predictions of the BGS model with

and without a running coupling. Use of the running coupling reduces the predictions by

approximately a factor of two, bringing the model into good agreement with experiment.

This is due, in large part, to the more accurate vector decay constants provided by the

BGS+log model. In comparison, the results of Godfrey and Isgur (labeled GI), which rely on

naive factorization supplemented with the ad hoc pseudoscalar mass dependence discussed

above, does not fare so well for the excited ηc transition rate. Similarly a computation

using heavy quark spin symmetry (labeled HQ) finds a large η′c rate. Columns 6 and 7

present results computed in the factorization approach with nonrelativistic and relativistic

wavefunctions respectively. Column 8 (Munz) also uses factorization but computes with

the Bethe-Salpeter formalism. The model of column 9 (CWV) employs factorization with

wavefunctions determined by a two-body Dirac equation. With the exception of the last

model, it appears that model variation in factorization approaches can accommodate some,

but never all, of the experimental data, in contrast to the bound state perturbation theory

result. However, more and better data are required before this conclusion can be firm. The

experimental rate for η′c is obtained from Ref. [125] and assumes that Br(ηc → KSKπ) =

Br(η′c → KSKπ). This assumption is supported by the measured rates for B → Kηc and

Kη′c as explained in Ref. [126]. Our predictions for the bottomonia are presented in Table

22.
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Table 21: Charmonium Two-photon Decay Rates (keV). For BGS log model Λ = 0.25 GeV.

process BGS BGS log G&I[77] HQ[128] A&B[129] EFG[130] Munz[131] CWV[133] Experiment

ηc → γγ 14.2 7.18 6.76 7.46 4.8 5.5 3.5(4) 6.18 7.44± 2.8

η′c → γγ 2.59 1.71 4.84 4.1 3.7 1.8 1.4(3) 1.95 1.3± 0.6

η′′c → γγ 1.78 1.21 – – – – 0.94(23) – –

χc0 → γγ 5.77 3.28 – – – 2.9 1.39(16) 3.34 2.63± 0.5
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Table 22: Bottomonium Two-photon Decay Rates (keV). For BGS log model Λ = 0.25 GeV.

process BGS BGS log G&I[77] Munz[131] HQ[134] A&B[129] EFG[130] Experiment

ηb → γγ 0.45 0.23 0.38 0.22(0.04) 0.56 0.17 0.35 –

η′b → γγ 0.11 0.07 – 0.11(0.02) 0.27 – 0.15 –

η′′b → γγ 0.063 0.040 – 0.084(0.012) 0.21 – 0.10 –

χb0 → γγ 0.126 0.075 – 0.024(0.003) – – 0.038 –
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7.0 RADIATIVE TRANSITIONS

Meson and baryon radiative transitions deserve a lot of investigation since they are easily

produced and the transition operator is very well known. Since they belong to the non-

perturbative regime of QCD they cannot be described from the first principles. One of

the theories which had a number of successes in describing nonperturbative part of QCD

is the constituent quark model. In particular, quark models work quite well for the meson

spectrum, as was demonstrated in Chapter 3. But one needs to consider other observables

(such as electromagnetic transitions) since very different potentials can lead to the similar

mass spectra. Radiative transitions between various mesons are very sensitive to the inter-

quark potential, and can provide significant help in testing various meson potentials and

wave functions and show us ways to improve the models.

In dealing with radiative transitions some typical approximations are usually in use.

Some of them are impulse approximation, dipole approximation for E1 transitions [90, 142,

143], long wave length approximation [142, 90, 143], non relativistic approximation [65, 90,

140]. Also spherical harmonic oscillator (SHO) wave functions are widely used to represent

the meson wave functions [138]. And almost in all the cases the study of radiative transitions

is performed only for the particular sector of meson spectra (for example only heavy or only

light mesons) [141, 142, 143, 144].

Most of these approximations are taken from atomic and nuclear physics where they

describe radiative transitions rather well. But when applied to mesons they are not always

justified. For example, long wave length approximation is defined by condition kγR ¿ 1

where kγ is the photon momentum, and R is the size of the source. For the meson radiative

transitions typically kγ = 0.1 ÷ 0.5 GeV and R = 0.5 ÷ 1 fm = 2.5 ÷ 5 GeV−1 so that the

long wave length condition is not always true. Also the long wave length approximation
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leads to neglecting the recoil of the final meson, and in reality the momentum of the final

meson is often comparable to its mass. We conclude that not only recoil should not be

neglected but the nonrelativistic approximation is not suitable in this case. To preserve

gauge invariance both transition operator and meson wave functions should be relativistic.

Some attempts have been made to take the relativistic effects in radiative meson transitions

into account but other approximations have been used which can have a larger effect on the

result [142, 65, 77, 139].

The motivation for this work was to perform a detailed study of meson radiative tran-

sitions and investigate the effects of different approximations in the quark model. We used

wave functions calculated from the realistic potentials as well as SHO wave functions (for

comparison). Relativistic corrections in the transition operator as well as in the wave func-

tions have been taken into account. Higher order diagrams (beyond impulse approximation)

have been estimated. Decays rates have been calculated for all the transitions for which

experimental data are available from the Particle Data Group book.

7.1 IMPULSE APPROXIMATION

7.1.1 Nonrelativistic constituent quark model

In Tables 23, 24 and 25 results calculated in the nonrelativistic potential model for SHO

(’Gaussian’) and realistic Couolomb+linear+hyperfine potentials are presented for cc̄, bb̄

and light mesons. Radiative decay rates have been determined for both nonrelativistic

approximation and full relativistic expressions of quark spinors (‘nonrel’ and ‘rel’ columns)

in the impulse approximation. Detailed description of our method and formulae for the

decay rates are presented in section 2.3.2.

From the results in the tables 23 and 24 one can conclude that cc̄, and even bb̄, mesons

should not be considered nonrelativistically as relativistic corrections just in the transition

operator make a big difference for the decay rate. Taking into account relativistic corrections

in the wave functions will change the results even more.
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Table 23: cc̄ meson radiative decay rates (keV)

SHO Coulomb+linear Experiment

γ(MeV) nonrel rel nonrel rel PDG [103]

J/ψ → γηc 115 2.85 2.52 2.82 2.11 1.21± 0.41

χC0 → γJ/ψ 303 194 167 349 276 135± 21

χC1 → γJ/ψ 389 221 193 422 325 317± 36

χC2 → γJ/ψ 430 137 114 352 260 416± 46

Ψ(2S) → γηc 639 5.95 3.21 8.15 1.41 0.88± 0.17

Ψ(2S) → γχC0 261 23.4 16.8 13.6 7.0 31.0± 2.6

Ψ(2S) → γχC1 171 54.5 40.3 36.0 20.4 29.3± 2.5

Ψ(2S) → γχC2 128 77.4 59.2 55.4 33.8 27.3± 2.5

hc → γηc 496 189 162 497 363 seen

Also, our results show that inter-quark potential has a considerable effect on the decay

rates, see for example χc0 → γJ/ψ for SHO and Coulomb+linear potentials.

In each case, for some of the transitions the results show agreement with the experiment

while for the other transitions they are far off. This shows the importance of studying the

whole range of different mesons and quark-interquark potentials and also gives us a hint that

some important effects might be missing in a nonrelativistic quark model.
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Table 24: bb̄-meson radiative decay rates (keV). Parameters fitted to known bottomonium

spectrum are employed (see section 3.2).

SHO Coulomb+linear Experiment

γ(MeV) nonrel rel nonrel rel PDG [103]

χb0(1P ) → γΥ(1S) 391 11.2 10.9 33.7 30.8 seen

χb1(1P ) → γΥ(1S) 423 10.7 10.4 35.2 32.1 seen

χb2(1P ) → γΥ(1S) 442 7.79 7.53 33.5 30.3 seen

Υ(2S) → γηb(1S) 559 0.028 0.020 0.005 0.001 < 0.016

Υ(2S) → γχb0(1P ) 162 0.77 0.73 0.54 0.43 1.22± 0.24

Υ(2S) → γχb1(1P ) 130 1.98 1.87 1.45 1.17 2.21± 0.32

Υ(2S) → γχb2(1P ) 110 3.02 2.87 2.37 1.95 2.29± 0.31

χb0(2P ) → γΥ(2S) 207 8.47 8.00 16.0 14.2 seen

χb0(2P ) → γΥ(1S) 743 0.24 0.18 13.3 10.6 seen

χb1(2P ) → γΥ(2S) 230 9.03 8.50 17.4 15.4 seen

χb1(2P ) → γΥ(1S) 764 0.19 0.15 12.8 10.2 seen

χb2(2P ) → γΥ(2S) 242 8.53 8.02 17.5 15.4 seen

χb2(2P ) → γΥ(1S) 777 0.08 0.07 11.07 8.77 seen

Υ(3S) → γχb0(1P ) 484 0.025 0.029 0.196 0.256 0.061± 0.030

Υ(3S) → γχb0(2P ) 122 1.16 1.06 0.80 0.64 1.20± 0.24

Υ(3S) → γχb1(2P ) 99 3.03 2.77 2.16 1.77 2.97± 0.56

Υ(3S) → γχb2(2P ) 86 4.75 4.37 3.54 2.92 3.00± 0.63

Υ(3S) → γηb(1S) 867 0.005 0.003 0.006 0.001 < 0.009

Υ(3S) → γηb(2S) 343 0.006 0.003 0.001 0.000 < 0.013
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Table 25: Light meson radiative decay rates (keV).

SHO Coulomb+linear Experiment

γ(MeV) nonrel rel nonrel rel PDG [103]

ρ0 → γπ0 376 51.1 20.9 41.6 13.1 87.8± 12.5

ρ± → γπ± 375 50.9 20.9 41.5 13.1 65.9± 7.8

ρ → γη 195 55.9 26.1 41.7 14.9 43.2± 4.8

w → γπ0 380 470. 192. 384. 121. 756± 30

w → γη 200 6.64 3.09 4.97 1.78 4.16± 0.47

η′ → γρ0 165 114. 54.2 84.5 31.2 59.7± 6.7

η′ → γw 159 11.5 5.51 8.55 3.16 6.15± 1.16

f0(980) → γρ0 183 518. 233. 591. 256.

f0(980) → γw 178 55.8 25.1 63.8 27.6

a0(980) → γρ 187 59.3 26.6 67.4 29.2

h1 → γa0(980) 171 28.3 10.5 28.4 10.4

h1 → γf0(980) 175 3.35 1.24 3.36 1.22

h1 → γη′ 193 24.2 10.3 42.8 13.0

h1 → γη 457 30.5 11.1 63.9 17.0

h1 → γπ0 577 459. 152. 1097. 266.

φ → γη 363 43.0 27.1 44.5 21.4 55.4± 1.7

b1 → γπ± 607 50.5 16.2 124.5 29.5 227± 75

f1(1285) → γρ0 406 1066. 459. 1216. 489. 1331± 389

a2(1320) → γπ± 652 324. 144. 93.4 64.4 287± 30
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7.1.2 Coulomb gauge model

In Tables 26, 27 and 28 results calculated in the Coulomb gauge model are presented for cc̄, bb̄

and light mesons and compared to the experiment and nonrelativistic potential model (col-

umn 2). Column 3 corresponds to TDA approximation and column 4 is RPA approximation

for the pion wave function (for details on Coulomb gauge model see section 2.1.2).

One can see a remarkable improvement in our result for the transitions involving pion

ρ → γπ and w → γπ as we consider pion in RPA approximation of the relativistic model.

Let us also point out better agreement with experiment for some of the decays of bb̄

mesons in the relativistic model. It is quite unexpected to observe such a big difference in

the decay rates calculated in nonrelativistic and relativistic models for bb̄ mesons as they are

usually considered heavy. We conclude that relativistic corrections and many-body effects

are important even for bb̄ mesons.

For cc̄ mesons we would like to point out that our results for Coulomb gauge model

differ substantially from nonrelativistic potential model results, for some of the transitions

agreement with experiment is better and for some it is worse. The conclusion is that effects

taken into account in Coulomb gauge model are important and require additional study.

Table 26: cc̄-meson radiative decay rates (keV)

Coulomb+Linear Coulomb gauge Experiment

potential TDA PDG [103]

J/ψ → γηc 2.11 4.15 1.21± 0.41

χC0 → γJ/ψ 276 358 135± 21

χC1 → γJ/ψ 325 412 317± 36

χC2 → γJ/ψ 260 278 416± 46

Ψ(2S) → γηc 1.41 0.92 0.88± 0.17

Ψ(2S) → γχC0 7.0 33.9 31.0± 2.6

Ψ(2S) → γχC1 20.4 67.8 29.3± 2.5

Ψ(2S) → γχC2 33.8 77.0 27.3± 2.5
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Table 27: bb̄-meson radiative decay rates (keV)

Coulomb+Linear Coulomb gauge Experiment

potential TDA PDG [103]

χb0(1P ) → γΥ(1S) 30.8 26.9 seen

χb1(1P ) → γΥ(1S) 32.1 27.0 seen

χb2(1P ) → γΥ(1S) 30.3 23.6 seen

Υ(2S) → γχb0(1P ) 0.43 1.27 1.22± 0.24

Υ(2S) → γχb1(1P ) 1.17 3.09 2.21± 0.32

Υ(2S) → γχb2(1P ) 1.95 4.16 2.29± 0.31

χb0(2P ) → γΥ(2S) 14.2 15.4 seen

χb0(2P ) → γΥ(1S) 10.6 2.19 seen

χb1(2P ) → γΥ(2S) 15.4 16.8 seen

χb1(2P ) → γΥ(1S) 10.2 2.34 seen

χb2(2P ) → γΥ(2S) 15.4 16.5 seen

χb2(2P ) → γΥ(1S) 8.77 1.91 seen

Υ(3S) → γχb0(2P ) 0.64 1.72 1.20± 0.24

Υ(3S) → γχb1(2P ) 1.77 4.05 2.97± 0.56

Υ(3S) → γχb2(2P ) 2.92 5.82 3.00± 0.63
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Table 28: Light meson radiative decay rates (keV)

Coulomb+Linear Coulomb gauge Experiment

potential TDA RPA PDG [103]

ρ0 → γπ0 13.0 39.3 85.3 87.8± 12.5

ρ± → γπ± 13.0 39.3 85.3 65.9± 7.8

ρ → γη 14.2 95.5 43.2± 4.8

w → γπ0 121. 356. 771. 756± 30

w → γη 1.77 11.1 4.16± 0.47

η′ → γρ0 33.4 220. 59.7± 6.7

η′ → γw 3.18 22.7 6.15± 1.16

f0(980) → γρ0 263. 583.

f0(980) → γw 27.7 62.3

a0(980) → γρ 29.8 66.6

h1 → γa0(980) 11.3 31.6

h1 → γf0(980) 1.33 3.69

h1 → γη′ 13.1 14.9

h1 → γη 17.0 10.6

h1 → γπ0 267. 121. 173.

b1 → γπ± 29.8 264. 508. 227± 75

f1(1285) → γρ0 492. 823. 1331± 389

a2 → γπ± 63.4 275. 549. 287± 30
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7.2 HIGHER ORDER DIAGRAMS

We would now like to estimate the effect of higher order diagrams on radiative transitions

(see section 2.3.3 for definition and description of higher order diagrams). We choose to

describe them in the time-ordered bound state perturbation theory. As an example we

consider radiative transition of cc̄ vector meson J/ψ to pseudoscalar meson ηc.

In our approach impulse approximation is considered the leading order in perturbation

theory. The higher order terms take into account the possibility of quark-antiquark pair

creation (for example, through 3P0 model) and could be written as:

AHO =
∑
V

〈γηc|H|V, ηc〉〈V, ηc|H|J/ψ〉
mJ/ψ − EV ηc

+
∑

S

〈γηc|H|S, ηc, γ〉〈S, ηc, γ|H|J/ψ〉
mJ/ψ − ESηcγ

. (7.1)

The two terms in 7.1 describe different time-orderings of 3P0 and electromagnetic inter-

actions and correspond to the two diagrams in Fig. 10. Here we would like to analyze the

first diagram; the second diagram could be calculated in a completely analogous way.

The first diagrams has two stages:

1. J/ψ decays into ηc and some other intermediate state meson V . This corresponds to the

matrix elements 〈V, ηc|H|J/ψ〉 of the above formula.

2. Intermediate state meson V transforms into the photon, which corresponds to 〈γηc|H|V, ηc〉.

To calculate the amplitude of the process in perturbation theory we multiply the am-

plitudes of two parts of the transition and then divide by the energy denominator. The

energy denominator is the energy difference between the initial state meson J/ψ in its rest

frame and the intermediate state consisting of ηc and V . We also have to sum over all the

intermediate bound states V which could be formed. Since in the second part of the process

meson V transforms itself into the photon, it must have the same quantum numbers as the

photon (S=1, L=0). Only vector mesons have this set of quantum numbers, so we sum over

all possible vector mesons in the intermediate state. In case of cc̄ mesons these are ground

state J/ψ and all its excited states.
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The amplitudes for the first part of the diagram have been estimated in the 3P0 model

using SHO wave functions. In this case they can be calculated analytically:

〈J/ψ, ηc|H3P0
|J/ψ〉 = γ

(
4π

β2

)3/4
16q

27
e−q2/12β2

〈ψ′, ηc|H3P0
|J/ψ〉 = γ

(
4π

β2

)3/4
32
√

6 q

243

(
1− q2

12β2

)
e−q2/12β2

, (7.2)

〈ψ′′, ηc|H3P0
|J/ψ〉 = γ

(
4π

β2

)3/4
8
√

30 q

729

(
1− 4q2

15β2
+

q4

180β4

)
e−q2/12β2

.

for the first three excitations of the intermediate vector meson state. Here q = |~q| is the

magnitude of the vector meson (and photon) momentum, β is a parameter for SHO wave

functions.

To find x for the amplitudes above we first need to find the intermediate vector meson

momentum ~q from the energy conservation law for the whole process:

EJ/ψ = Eη + Eγ.

In the initial state meson rest frame: EJ/ψ = mJ/ψ, Eγ = |~q|, Eη =
√

m2
η + |~q|2, and

then:

|~q| =
m2

J/ψ −m2
η

2mJ/ψ

≈ 0.115 GeV.

The values of the parameters for cc̄-mesons are: γ = 0.35, β = 0.378 GeV for cc̄-mesons [78],

then x ≈ 0.305 (we also take ~x ‖ OZ), and the amplitudes of (7.2) are:

〈J/ψ, ηc|H3P0
|J/ψ〉 ≈ 0.681 GeV−1/2,

〈ψ′, ηc|H3P0
|J/ψ〉 ≈ 0.368 GeV−1/2,

〈ψ′′, ηc|H3P0
|J/ψ〉 ≈ 0.067 GeV−1/2. (7.3)

The amplitude of second part of the process, transformation of the vector meson into

the photon, is proportional to the vector meson decay constant (as it was defined in Section

2.3.1):

〈γηc|H|V, ηc〉 =
eQq√
2mV

(ε∗λ)µ√
2q
〈0|Ψ̄γµΨ|V 〉 =

e Qq

2

√
mV

q
fV εµ

V (ε∗λ)µ =
eQq

2

√
mV

q
fV δλV

(7.4)
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where ε∗λ and εV are the photon and vector meson polarization vectors.

To estimate the higher order diagram we take the experimental values of ψ decay con-

stants:

fJ/ψ = 0.411 GeV,

fψ′ = 0.279 GeV,

fψ′′ = 0.174 GeV.

Then the first higher order diagram is (the first term of eqn.7.1):

AHO1 = A
(0)
HO1(1 + a′ + a′′ + ...) (7.5)

where A(0) corresponds to the ground state vector meson (J/ψ) in the intermediate state:

A
(0)
HO1 =

〈γηc|H|J/ψ, ηc〉〈J/ψ, ηc|H|J/ψ〉
mJ/ψ − EJ/ψηc

≈ 0.049 GeV−1/2 (7.6)

and the coefficients are:

a′ =
〈γηc|H|ψ′, ηc〉
〈γηc|H|J/ψ, ηc〉

〈ψ′, ηc|H|J/ψ〉
〈J/ψ, ηc|H|J/ψ〉

mJ/ψ − EJ/ψηc

mJ/ψ − Eψ′ηc

≈ 0.334,

a′′ =
〈γηc|H|ψ′′, ηc〉
〈γηc|H|J/ψ, ηc〉

〈ψ′′, ηc|H|J/ψ〉
〈J/ψ, ηc|H|J/ψ〉

mJ/ψ − EJ/ψηc

mJ/ψ − Eψ′′ηc

≈ 0.036,

... (7.7)

One can see that the sum in (7.5) converges rather fast, mostly because of the decrease

in the decay constants and increase in the energy denominator for the excited states. So we

have:

AHO1 ≈ A
(0)
HO1(1 + 0.334 + 0.036) = 1.37 A

(0)
HO1 ≈ 0.067 GeV−1/2. (7.8)

To compare to the leading order diagram (impulse approximation) we need to compute

higher order amplitude in the relativistic convention:

A
(rel)
HO1 =

√
2mJ/ψ

√
2Eη

√
2q AHO1 = 0.197 GeV. (7.9)
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The value of the leading order diagram is (see eqn. (2.57)):

Aimp = |~q|
√

M1E2
eQq + eQq̄

mq

e−q2/16β2 ≈ 0.095 GeV. (7.10)

We conclude that higher order diagrams can be very significant (our estimated value is

larger than the impulse approximation amplitude) and should be studied further.
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8.0 SUMMARY

An investigation of meson properties in constituent quark models has been reported in

the present dissertation. The first chapter contains general introduction to QCD and its

most important properties including asymptotic freedom, confinement and dynamical chiral

symmetry breaking.

The rest of the dissertation is divided into two main parts: ‘Theory’ part (Chapter 2),

in which detailed description of our approach is given, and ‘Applications’ part (Chapters 3,

4, 5, 6, 7), in which our results are presented and discussed.

Chapter 2 explains the theory necessary for understanding our approach. First, the

nonrelativistic constituent quark model for mesons is introduced. In this model a meson

is approximated as a bound state of a quark and an antiquark, and the presence of the

gluon is only taken into account through its effect on the instantaneous interaction potential

between the meson constituents. The basic potential for quark-antiquark interaction consists

of three terms: Coulomb term is motivated by one-gluon exchange, linear term represents a

phenomenological model for color confinement and a hyperfine term is spin dependent. This

model of the potential can describe the heavy meson spectrum with great accuracy, which

means that it contains all the features important for the masses of the low lying states of

heavy mesons. However, as we move away from heavy meson spectroscopy to study other

mesons or other meson properties, the ‘Coulomb+linear’ potential has to be modified as it

is not powerful enough.

We suggest two main modifications of the potential, which were inspired by fundamental

QCD properties and then verified by the experiment. The first is making the interaction

potential more powerful in explaining complicated spin structure of hadrons by adding terms

calculated in perturbation theory with one-loop corrections included. The second modifica-
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tion is including momentum-dependence of the QCD coupling in the Coulomb term of the

potential.

The first modification was motivated by the puzzling heavy-light meson spectroscopy

which has been discovered in the last few years and generated a lot of interesting theoretical

insights and new exotic models. It has been shown, in particular, that masses of some par-

ticles detected do not fit in the canonical picture of nonrelativistic constituent quark model,

with the usual ‘Coulomb+linear’ potential. We suggest that the problems in explaining new

states do not necessarily need new approach but could be solved within the naive model

by including spin-dependent terms in the potential. These terms have been calculated in

perturbation theory with one-loop corrections included. It is demonstrated that they do not

destroy the agreement of experimentally known charmonium and bottomonium spectra but

can be especially important for mesons with unequal quark masses. We show that the set

of parameters for the improved potential can be found to reproduce the masses of puzzling

P-wave heavy-light meson states in Chapter 3 on Spectroscopy.

Second modification of the potential (taking into account the momentum dependence

of the coupling) is inspired by the fundamental property of asymptotic freedom in QCD.

Interaction between quark and antiquark is supposed to become weaker for high energy

(small distances) and this is not what ‘Coulomb+linear’ potential gives. The fact that this

naive form works so well to explain heavy meson spectroscopy tells us that the momentum

dependence of the potential for small distances is not particularly important for meson

masses. Of course, it can be important for other meson properties. We show that some of the

observables are very sensitive to the introduction of running coupling, in particular, meson

decay constants and gamma-gamma transitions. We suggest that the behavior of the running

coupling should imitate the one of perturbative QCD at small distances and saturate to a

phenomenological value at large distances. This assumption allows us to investigate meson

properties sensitive to the high energy scale and explain experimental data on charmonium

decay constants and gamma-gamma transitions.

After that the relativistic approach to the mesons based on QCD Hamiltonian is intro-

duced. This approach takes into account many-body effects and powerful enough to generate

the description of dynamical chiral symmetry breaking and the emergence of the pion as a
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Goldstone boson in the theory.

Next the main points of our approach to the meson transitions are introduced. To

describe strong meson decays a phenomenological 3P0 model have been used. Investigation

of strong decays is not the main goal of the present dissertation but the results of 3P0 model

calculations are important for the study of the effects of pair creation on the electromagnetic

transitions. For that reason, a short introduction to 3P0 model has been presented.

The main points of our description of electromagnetic and electroweak transitions and

definitions are presented in Chapter 2 ‘Theory’. These transitions can provide us with

valuable information on the hadron structure since the transition operator is very well known

and much experimental data exists on the subject. Still, the calculation of the observables

is complicated enough that numerous approximations are widely in use, which are typically

taken from nuclear physics and not justified to use for hadrons. Our main motivation was

to study the relevance of this approach to hadrons by investigating meson transitions both

with and without making simplifying approximations. By comparing results one can see the

importance of the effects that have been neglected and relevance of the effects to certain

meson properties.

One of the approximations investigated is the nonrelativistic approximation for quark

spinors which is widely used especially for heavy quarks. We find that including full rela-

tivistic expressions for quark spinors in the description of the meson transitions makes a big

difference, and therefore relativistic corrections should not be neglected, even for the heavy

mesons.

The impulse approximation is another simplification taken from the nuclear physics, it

completely ignores the possibility of quark-antiquark pair creation and annihilation. The

description of the transitions in this approximation includes two diagrams corresponding

to the coupling of the external current to quark and antiquark independently. We present

the formalism for calculation of the meson electromagnetic and electroweak form-factors

in this approximation. Our results have been compared to the quenched lattice results for

charmonium electromagnetic form-factors, and they are in almost perfect agreement. It leads

us to believe that the impulse approximation is a good description of the electromagnetic

transitions for charmonium.
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One would like to study, however, other possible diagrams which appear when we go

beyond the impulse approximation and include the possibility of the pair creation from the

vacuum. Our description of these diagrams is presented in section 2.3.3 of the Chapter 2

‘Theory’. Quark-antiquark pairs are assumed to appear from the vacuum with 3P0 quantum

numbers (this model has been quite successful for the description of strong meson decays).

They can interact with the constituents of the initial state meson and might form bound

states, which eventually transform to the final state of the process. The time-ordered bound

state perturbation theory is used to calculate the amplitude of the transition. Our estimation

of the higher-order diagram for J/ψ → ηcγ transition gives rather unexpected result: the

value of the amplitude for higher-order diagram is larger than that of the impulse approx-

imation amplitude. However, we know that the impulse approximation works well for the

charmonium transitions from our study of the form-factors so including higher-order diagram

of comparable value might ruin the agreement with lattice results. We also know that the

3P0 model gives a good description of the charmonium strong decays and the time-ordered

bound state perturbation theory is well justified. We conclude that this situation has to be

studied further and might lead us to discovering some interesting phenomena not taken into

account in this approach.

Time-ordered bound state perturbation theory is important ingredient in our approach

to gamma-gamma transitions. Our method is quite different from the perturbation theory

calculations of this process as it takes into account the infinite gluon exchange between

quarks. We find that this is rather important for a successful description of gamma-gamma

decays of charmonium, together with the momentum dependence of the running coupling

for short distances and relativistic expressions of quark spinors. If we include all of this

effects then our results for gamma-gamma transitions of charmonium states are in very good

agreement with experimental data.

Finally, we explain the main differences of the nonrelativistic constituent quark model

and Coulomb gauge model in their application to the study of radiative transitions. We find

that the Coulomb gauge model works particularly well for transitions involving pions. This

gives us hope that effects important for the pion behavior (and absent from the nonrelativistic

model) might have a reasonable explanation in the Coulomb gauge model.
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Overall, our results show that the quark model gives a satisfactory description of meson

properties. Modifications of the model, suggested in this work, improve the limits of model

applicability and allow us to describe meson structure in a transparent way.

It has been demonstrated that the disagreement of the model predictions with the exper-

iment does not necessarily mean that the formalism is wrong or the model is not applicable.

It might be possible that the important effects (which in principle can be incorporated into

the model) have been ignored. Investigation of these effects and the ways they present them-

selves might give us valuable information about fundamental QCD properties and hadron

structure in a simple framework.

The approach described in the present dissertation can be applied to the investigation

of the variety of interesting phenomena of low energy QCD. Some of them can be studied

by analyzing processes for which experimental data is available, such as spectrum of excited

states of mesons and baryons, semi-leptonic and non-leptonic decays of heavy-light mesons,

hadron production and others. To investigate the properties of light hadrons (and possibly

the structure of the nucleus) Coulomb gauge model can be applied. Hybrid hadron properties

can also be investigated after certain assumptions are made about the hybrid structure in

the model.
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APPENDIX A

DECAY CONSTANTS

Decay constant definitions and quark model expressions for vector, scalar, pseudoscalar,

axial, and 1P1 meson decay constants are presented here.

A.1 VECTOR DECAY CONSTANT

The decay constant fV of the vector meson is defined as

mV fV εµ = 〈0|Ψ̄γµΨ|V 〉 (A.1)

where mV is the vector meson mass, εµ is its polarization vector, |V 〉 is the vector meson

state. The decay constant has been extracted from leptonic decay rates with the aid of the

following:

ΓV→e+e− =
e4Q2f 2

V

12πmV

=
4πα2

3

Q2f 2
V

mV

. (A.2)

Following the method described in the text yields the quark model vector meson decay

constant:

fV =

√
3

mV

∫
d3k

(2π)3
Φ(~k)

√
1 +

mq

Ek

√
1 +

mq̄

Ek̄

(
1 +

k2

3(Ek + mq)(Ek̄ + mq̄)

)
(A.3)
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The nonrelativistic limit of this yields the well-known proportionality of the decay con-

stant to the wavefunction at the origin:

fV = 2

√
3

mV

∫
d3k

(2π)3
Φ(~k) = 2

√
3

mV

Φ̃(r = 0). (A.4)

A.2 PSEUDOSCALAR DECAY CONSTANT

The decay constant fP of a pseudoscalar meson is defined by

pµfP = i〈0|Ψ̄γµγ5Ψ|P 〉 (A.5)

where pµ is the meson momentum and |P 〉 is the pseudoscalar meson state. The pseudoscalar

decay rate is then

ΓP→l+νl
=

G2
F

8π
|Vqq̄|2f 2

P m2
l mP

(
1− m2

l

m2
P

)2

. (A.6)

The quark model expression for the decay constant is

fP =

√
3

mP

∫
d3k

(2π)3

√
1 +

mq

Ek

√
1 +

mq̄

Ek̄

(
1− k2

(Ek + mq)(Ek̄ + mq̄)

)
Φ(~k). (A.7)

In the nonrelativistic limit this reduces to the same expression as the vector decay con-

stant.

A.3 SCALAR DECAY CONSTANT

The decay constant fS of the scalar meson is defined by

pµfS = 〈0|Ψ̄γµΨ|S〉, (A.8)

which yields the quark model result:

fS =

√
3

mS

√
4π

(2π)3

∫
k3dk

√
1 +

mq

Ek

√
1 +

mq̄

Ek̄

(
1

Ek̄ + mq̄

− 1

Ek + mq

)
R(k). (A.9)

Here and in the following, R is the radial wavefunction defined by Φ(k) = YlmR(k) with
∫

d3k
(2π)3

|Φ|2 = 1.
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A.4 AXIAL VECTOR DECAY CONSTANT

The decay constant fA of the axial vector meson is defined as

εµfAmA = 〈0|Ψ̄γµγ5Ψ|A〉 (A.10)

where εµ is the meson polarization vector, mA is its mass and |A〉 is the axial vector meson

state. The quark model decay constant is thus

fA = −
√

2

mA

√
4π

(2π)3

∫
k3dk

√
1 +

mq

Ek

√
1 +

mq̄

Ek̄

(
1

Ek̄ + mq̄

+
1

Ek + mq

)
R(k). (A.11)

A.5 HC DECAY CONSTANT

The decay constant fA′ of the 1P1 state meson is defined by:

εµfA′mA′ = 〈0|Ψ̄γµγ5Ψ|1P1〉 (A.12)

where εµ is the meson polarization vector, mA′ is its mass and |1P1〉 is its state. The resulting

quark model decay constant is given by

fA′ =
1√
mA′

√
4π

(2π)3

∫
k3dk

√
1 +

mq

Ek

√
1 +

mq̄

Ek̄

(
1

Ek̄ + mq̄

− 1

Ek + mq

)
R(k). (A.13)
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APPENDIX B

ELECTROMAGNETIC FORM FACTORS

A variety of Lorentz invariant multipole decompositions (see Ref. [108]) and quark model

expressions for these multipoles are presented in the following.

Each transition form-factor is normally a sum of two terms corresponding to the coupling

of the external current to the quark and antiquark. For quarkonium these two terms are

equal to each other, so in the following we only present formulas corresponding to the single

quark coupling. In general both terms have to be calculated.

B.1 PSEUDOSCALAR FORM FACTOR

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between two pseudoscalars is:

〈P2(p2)|Ψ̄γµΨ|P1(p1)〉 = f(Q2)(p2 + p1)
µ + g(Q2)(p2 − p1)

µ (B.1)

To satisfy time-reversal invariance the form-factors f(Q2) and g(Q2) have to be real.

The requirement that the vector current is locally conserved gives a relation between two

form-factors:

g(Q2) = f(Q2)
M2

2 −M2
1

Q2
. (B.2)
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Thus the matrix element can be written as:

〈P2(p2)|Ψ̄γµΨ|P1(p1)〉 = f(Q2)

(
(p2 + p1)

µ − M2
2 −M2

1

q2
(p2 − p1)

µ

)
(B.3)

In case of two identical pseudoscalars the second term vanishes.

Computing with the temporal component of the current in the quark model formalism

yields (for quarkonium)

f(Q2) =

√
M1E2

(E2 + M1)− M2
2−M2

1

q2 (E2 −M1)
(B.4)

×
∫

d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
1 +

(~k + ~q) · ~k
(Ek + mq)(Ek+q + mq)

)
.

In case of identical pseudoscalars in the non-relativistic approximation the formula above

simplifies to

f(Q2) =
2
√

M1E2

E2 + M1

∫
d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

)
. (B.5)

Similar expressions occur when the computation is made with the spatial components of

the electromagnetic current:

f(Q2) =

√
M1E2

1− M2
2−M2

1

q2

~q

|~q|2 ·
∫

d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
~k

Ek + mq

+
~k + ~q

Ek+q + mq

)
.

(B.6)

In this case the nonrelativistic approximation for the single quark form factor is

f(Q2) =

√
M1E2

m|~q|2 ~q ·
∫

d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

)
(2~k + ~q). (B.7)

Covariance requires the same expression for the temporal and spatial form factors. Com-

paring the formula above to the expression for the temporal form factor (B.5) shows that co-

variance is recovered in the nonrelativistic and weak coupling limits (where M1 +M2 → 4m).
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B.2 VECTOR FORM FACTORS

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between two identical vectors is:

〈V (p2)|Ψ̄γµΨ|V (p1)〉 = −(p1 + p2)
µ

[
G1(Q

2)(ε∗2 · ε1) +
G3(Q

2)

2m2
V

(ε∗2 · p1)(ε1 · p2)

]

+G2(Q
2) [εµ

1(ε∗2 · p1) + εµ∗
2 (ε1 · p2)] (B.8)

These form-factors are related to the standard charge, magnetic dipole and quadrupole

multipoles by

GC =

(
1 +

2

3
η

)
G1 − 2

3
ηG2 +

2

3
η(1 + η)G3

GM = G2

GQ = G1 −G2 + (1 + η)G3 (B.9)

where η = Q2

4m2
q
.

Quark model expressions for these are:

G2(Q
2) = −

√
mV E2

|~q|2
∫

d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
~k · ~q

Ek + mq

−
~k · ~q + |~q|2
Ek+q + mq

)
(B.10)

and

G1(Q
2) =

√
mV E2

mV + E2

∫
d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
1 +

(~k + ~q) · ~k
(Ek + mq)(Ek+q + mq)

)

(B.11)

or

G1(Q
2) =

√
mV E2

|~q|2
∫

d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
~k · ~q

Ek + mq

+
~k · ~q + |~q|2
Ek+q + mq

)
.

(B.12)

G3 can be expressed in terms of G1 and G2 in two different ways:

G3 =
2m2

V

|~q|2
(

1− E2

mV

)
G1 +

2mV

E2 + mV

G2 (B.13)

or

G3 =
2mV (mV − E2)

|~q|2 (G1 −G2). (B.14)

One can establish that G3 → G2 −G1 as |~q| → 0 from either equation.
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B.3 SCALAR FORM FACTOR

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between two scalars is:

〈S2(p2)|Ψ̄γµΨ|S1(p1)〉 = f(Q2)(p2 + p1)
µ + g(Q2)(p2 − p1)

µ. (B.15)

As with pseudoscalars, this can be written as

〈S2(p2)|Ψ̄γµΨ|S1(p1)〉 = f(Q2)

(
(p2 + p1)

µ − M2
2 −M2

1

q2
(p2 − p1)

µ

)
. (B.16)

In the case of identical scalars the quark model calculation gives

f(Q2) =

√
M1E2

E2 + M1

∫
d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
1 +

(~k + ~q) · ~k
(Ek + mq)(Ek+q + mq)

)
.(B.17)

In the nonrelativistic limit this reduces to

f(Q2) =

∫
d3k

(2π)3
Φ(~k)Φ∗

(
~k +

~q

2

)
. (B.18)

B.4 VECTOR-PSEUDOSCALAR TRANSITION FORM FACTOR

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between vector and pseudoscalar is:

〈P (pP )|Ψ̄γµΨ|V (pV )〉 = iF (Q2)εµναβ(εMV
)ν(pV )α(pP )β. (B.19)

Computing with the spatial components of the current then gives

F (Q2) = −
√

EP

mV

1

|~q|2
∫

d3k

(2π)3
ΦV (~k)Φ∗

P

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(
~k · ~q

Ek + mq

−
~k · ~q + |~q|2
Ek+q + mq

)
.

(B.20)

In the nonrelativistic approximation in zero recoil limit ~q → 0 this reduces to

F (Q2)|~q→0 =
1

mq

√
mP

mV

. (B.21)
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B.5 SCALAR-VECTOR TRANSITION FORM FACTORS

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between scalar (3P0) meson state and vector (3S1) is

〈V (pV )|Ψ̄γµΨ|S(pS)〉 = Ω−1(Q2)

(
E1(Q

2)
[
Ω(Q2)ε∗µMV

− ε∗MV
· pS(pµ

V pV · pS −m2
V pµ

S)
]

+
C1(Q

2)√
Q2

mV ε∗MV
· pS

[
pV · pS(pV + pS)µ −m2

Spµ
V −m2

V pµ
S

]
)
(B.22)

where Ω(Q2) ≡ (pV ·pS)2−m2
V m2

S = 1
4
[(mV −mS)2 −Q2] [(mV + mS)2 −Q2], and takes the

simple value m2
s|~q|2 in the rest frame of a decaying scalar.

E1 contributes to the amplitude only in the case of transverse photons, while C1 con-

tributes only for longitudinal photons. Quark model expressions for the multipole form

factors are

C1(Q
2) = −2

√
Q2

|~q|

√
EV mS

4π

∫
d3k

(2π)3
RS(~k)RV

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

×
(

cos Θ +
k2 + |~k| · |~q|

(Ek + mq)(Ek+q + mq)

)
(B.23)

C1(Q
2) = 2

√
EV mS

4π

√
Q2

|~q|
∫

d3k

(2π)3
RS(~k)RV

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

×
(

k

Ek + mq

+
q cos Θ

Ek+q + mq

+
k cos 2Θ

Ek+q + mq

)
. (B.24)

The first(second) expression for C1(Q
2) is calculated from the temporal(spatial) matrix ele-

ment of the current.

E1(Q
2) = −2

√
EV mS

4π

∫
d3k

(2π)3
RS(~k)RV

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

[
k

Ek + mq

− k cos Θ + q

Ek+q + mq

]
.
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B.6 HC-PSEUDOSCALAR TRANSITION FORM FACTOR

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between 1P1 meson state and pseudoscalar (1S0) is

〈P (pP )|Ψ̄γµΨ|A(pA)〉 = Ω−1(Q2)

(
E1(Q

2)
[
Ω(Q2)εµ

ML
− εML

· pP (pµ
ApA · pP −m2

Apµ
P )

]

+
C1(Q

2)√
Q2

mAεML
· pP

[
pA · pP (pA + pP )µ −m2

P pµ
A −m2

Apµ
P

]
)

.(B.25)

Quark model expressions for the form factors are

E1(Q
2) =

√
3mAEP

8π

∫
d3k

(2π)3
RA(~k)RP

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(B.26)

×k sin2 Θ

(
1

Ek + mq

+
1

Ek+q + mq

)

and

C1(Q
2) = −

√
3mAEP

4π

√
Q2

|~q|
∫

d3k

(2π)3
RA(~k)RP

(
~k +

~q

2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q

(B.27)

× cos Θ

(
1 +

k2 + kq cos Θ

(Ek + mq)(Ek+q + mq)

)
.
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B.7 AXIAL VECTOR - VECTOR TRANSITION FORM FACTOR

The most general Lorentz covariant decomposition for the electromagnetic transition matrix

element between axial vector (3P1) meson state and vector (3S1) is

〈V (pV )|Ψ̄γµΨ|A(pA)〉 =
i

4
√

2Ω(Q2)
εµνρσ(pA − pV )σ ×

×
[
E1(Q

2)(pA + pV )ρ

(
2mA[εMA

· pV ](ε∗MV
)ν + 2mV [ε∗MV

· pA](εMA
)ν

)

+M2(Q
2)(pA + pV )ρ

(
2mA[εMA

· pV ](ε∗MV
)ν − 2mV [ε∗MV

· pA](εMA
)ν

)

+
C1(Q

2)√
Q2

(
− 4Ω(Q2)(εMA

)ν(ε
∗
MV

)ρ (B.28)

+(pA + pV )ρ

[
(m2

A −m2
V + Q2)[εMA

· pV ](ε∗MV
)ν + (m2

A −m2
V −Q2)[ε∗MV

· pA](εMA
)ν

])]
.

Quark model expressions for the form factors are

E1(Q
2) = −

√
3mAEV

8π

∫
d3k

(2π)3
RA(~k)RV

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(B.29)

×
(

k(3− cos2 Θ)

Ek + mq

+
k(1− 3 cos2 Θ)− 2q cos Θ

Ek+q + mq

)
,

M2(Q
2) = −

√
3mAEV

8π

∫
d3k

(2π)3
RA(~k)RV

(
~k +

~q

2

) √
1 +

mq

Ek

√
1 +

mq

Ek+q

(B.30)

×
(

k(1− 3 cos2 Θ)

Ek + mq

− k(1− 3 cos2 Θ) + 2q cos Θ

Ek+q + mq

)

and

C1(Q
2) =

√
3mAEV

2π

√
Q2

|~q|
∫

d3k

(2π)3
RA(~k)RV

(
~k +

~q

2

)√
1 +

mq

Ek

√
1 +

mq

Ek+q

(B.31)

×
(

cos Θ +
k2 cos Θ + 1

2
kq(1 + cos2 Θ)

(Ek + mq)(Ek+q + mq)

)
.
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APPENDIX C

ELECTROWEAK FORM-FACTORS

C.1 PSEUDOSCALAR-PSEUDOSCALAR TRANSITION

The most general Lorentz covariant decomposition for the electroweak transition matrix

element between two pseudoscalars is:

V µ − Aµ = 〈P2(~p2)|Ψ̄γµ(1− γ5)Ψ|P1(~p1)〉 = f+(Q2)(p1 + p2)
µ + f−(Q2)(p1 − p2)

µ. (C.1)

Here P1 is the initial state meson with the mass M1 which consists of a quark with the mass

m1 and an antiquark with the mass m̄1. Similarly, final state meson P2 has the mass M2

and consists of a quark and an antiquark with the masses m2 and m̄2.

The matrix element is parity invariant. To satisfy time-reversal invariance the form-

factors f+(Q2) and f−(Q2) have to be real.

Axial matrix element is equal to zero for this case:

Aµ = 〈P2(~p2)|Ψ̄γµγ5Ψ|P1(~p1)〉 = 0, (C.2)

so

V µ = 〈P2(~p2)|Ψ̄γµΨ|P1(~p1)〉 = f+(Q2)(p1 + p2)
µ + f−(Q2)(p1 − p2)

µ. (C.3)

In the P1 rest frame we have: p1 = (M1, 0, 0, 0), p2 = (E2, 0, 0, |~q|) and then:

V 0 = f+(Q2)(M1 + E2) + f−(Q2)(M1 − E2), (C.4)

~V = ~q
(
f+(Q2)− f−(Q2)

)
. (C.5)
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Now we can express the form-factors in terms of V 0 and ~V :

f+(Q2) =
V 0

2M1

− E2 −M1

2M1

~V · ~q
|~q|2 , (C.6)

f−(Q2) =
V 0

2M1

− E2 + M1

2M1

~V · ~q
|~q|2 . (C.7)

Matrix elements V 0 and ~V could be calculated in the quark model:

V 0 =
√

M1E2

∫
d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(C.8)

×
(

1 +
(~k + ~q) · ~k

(Ek + m1)(Ek+q + m2)

)
,

~V =
√

M1E2

∫
d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(C.9)

×
(

~k

Ek + m1

+
~k + ~q

Ek+q + m2

)
.

Then the general expressions for f+(Q2) and f−(Q2) are:

f±(Q2) =
1

2

√
E2

M1

∫
d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q

(C.10)

×
(

1 +
(~k + ~q) · ~k

(Ek + m1)(Ek+q + m2)
− (E2 ∓M1)(~k · ~q)

|~q|2
(

1

Ek + m1

+
1

Ek+q + m2

)
− E2 −M1

Ek+q + m2

)
.

In the nonrelativistic approximation m/Ek ≈ 1:

V 0 = 2
√

M1M2

∫
d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

)
, (C.11)

~V =
√

M1M2

∫
d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

) (
~k

m1

+
~k + ~q

m2

)
. (C.12)

If we use SHO wave functions as an approximation for the meson wave functions, then

form-factors could be calculated analytically. The SHO wave function for a ground state

pseudoscalar meson is:

Φ(k) =

(
4π

β2

)3/4

e−k2/2β2

. (C.13)
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Then the matrix elements are:

V 0 = 2
√

M1M2e
−q2µ2/4β2

, (C.14)

~V = ~q
√

M1M2e
−q2µ2/4β2

[
1

m2

− µ

2

(
1

m1

+
1

m2

)]
(C.15)

and the form-factors are:

f+ =

√
M2

M1

e−q2µ2/4β2

[
1− M2 −M1

2

[
1

m2

− µ

2

(
1

m1

+
1

m2

)]]
, (C.16)

f− =

√
M2

M1

e−q2µ2/4β2

[
1− M2 + M1

2

[
1

m2

− µ

2

(
1

m1

+
1

m2

)]]
, (C.17)

where

µ =
m̄2

m2 + m̄2

. (C.18)

If we consider transition of the ground state pseudoscalar meson to the first excited state

pseudoscalar meson then the decomposition of the current matrix elements will of course be

the same. The only difference will be the wave function of the final state meson. In the SHO

basis the wave function of the first excited state is:

Φ(k) =

(
4π

β2

)3/4
√

3

2

(
1− 2k2

3β2

)
e−k2/2β2

. (C.19)

Then the matrix elements are:

V 0 = −
√

M1M2

6

µ2|~q|2
β2

e−q2µ2/4β2

, (C.20)

~V = −~q

√
M1M2

6
e−q2µ2/4β2

[
µ

(
1

m1

+
1

m2

)
+

µ2|~q|2
2m2β2

]
(C.21)

and the form-factors are:

f ′+ =
1

2

√
M2

6M1

e−q2µ2/4β2

[
µ(M2 −M1)

(
1

m1

+
1

m2

)
− µ2|~q|2

β2

(
1− M2 −M1

2m2

)]
, (C.22)

f ′− =
1

2

√
M2

6M1

e−q2µ2/4β2

[
µ(M2 + M1)

(
1

m1

+
1

m2

)
− µ2|~q|2

β2

(
1− M2 + M1

2m2

)]
. (C.23)

145



C.2 PSEUDOSCALAR-VECTOR TRANSITION

The most general Lorentz covariant decompositions for the electroweak transition matrix

elements between a pseudoscalar and a vector are:

V µ = 〈V (~PV )|q̄γµq|P (~PP )〉 = ig(Q2)εµναβ
(
ε∗MV

)
ν
(PP + PV )α (PP − PV )β , (C.24)

Aµ = 〈V (~PV )|q̄γµγ5q|P (~PP )〉 = f(Q2)
(
ε∗MV

)µ
+ a+(ε∗MV

· PP )(PP + PV )µ + a−(ε∗MV
· PP )(PP − PV )µ.

In the rest frame of the decaying pseudoscalar: PP = (mP , 0, 0, 0), PV = (EV , 0, 0, |~q|).
If MV = ±1 then:

ε∗MV
= ε∗±1 =

(
0,∓ 1√

2
,

i√
2
, 0

)

and

V 0 = A0 = 0, (C.25)

~V = 2MV g(Q2)|~q|mP~ε ∗MV
, (C.26)

~A = f(Q2)~ε ∗MV
, (C.27)

so

g(Q2) = MV

~V · ~εMV

2|~q|mP

, (C.28)

f(Q2) = ~A · ~εMV
. (C.29)

If MV = 0 then:

ε∗MV
= ε∗0 =

( |~q|
mV

, 0, 0,
EV

mV

)

and

V 0 = ~V = 0, (C.30)

A0 = f(Q2)
|~q|
mV

+ a+(Q2)|~q|mP (mP + EV )

mV

+ a−(Q2)|~q|mP (mP − EV )

mV

, (C.31)

~A = f(Q2)
EV

mV

~ε0 + a+(Q2)|~q|mP

mV

~q − a−(Q2)|~q|mP

mV

~q, (C.32)
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so

a− = A0 mV

2m2
P |~q|

− f(Q2)

2m2
P

− (mP + EV )mV

2m2
P |~q|2

(
~A · ~q
|~q| − f(Q2)

EV

mV

)
, (C.33)

a+ = A0 mV

2m2
P |~q|

− f(Q2)

2m2
P

+
(mP − EV )mV

2m2
P |~q|2

(
~A · ~q
|~q| − f(Q2)

EV

mV

)
. (C.34)

In the quark model:

V 0=
√

EV mP

∫
d3k

(2π)3
ΦP (~k)Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q


 MV

(
~k · ~ε ∗MV

)
|~q|

(Ek + m1)(Ek+q + m2)


=0,

A0=
√

EV mP

∫
d3k

(2π)3
ΦP (~k)Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q

(
~k

Ek + m1

+
~k + ~q

Ek+q + m2

)
~ε ∗MV

,

which is consistent with (C.25) and (C.30), and

~V= i
√

EV mP

∫
d3k

(2π)3
ΦP (~k)Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(
~k

Ek + m1

−
~k + ~q

Ek+q + m2

)
×~ε ∗MV

,

~A =
√

EV mP

∫
d3k

(2π)3
ΦP (~k) Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(C.35)

×

~ε ∗MV

+

(
(~k + ~q) · ~ε ∗MV

)
~k +

(
~k · ~ε ∗MV

)
~q − (~k · ~q)~ε ∗MV

(Ek + m1)(Ek+q + m2)


 .

Since ~q is the only vector in the first integral above, ~V is proportional to (~q×~ε ∗MV
). Then

for ~q ‖ OZ we have ~V = 0 if MV = 0, which is consistent with (C.30).

We can now write down expressions for the form-factors in the quark model:

g(Q2) = MV

~V · ~εMV

2|~q|mP

= MV
i~εMV

2|~q|

√
EV

mP

∫
d3k

(2π)3
ΦP (~k)Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(
~k

Ek + m1

−
~k + ~q

Ek+q + m2

)
× ~ε ∗MV

= − 1

2|~q|

√
EV

mP

∫
d3k

(2π)3
ΦP (~k)Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(
k cos Θk

Ek + m1

− k cos Θk + |~q|
Ek+q + m2

)
,(C.36)
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f(Q2)=
√

EV mP

∫
d3k

(2π)3
ΦP (~k)Φ∗

V

(
~k + ~q

m̄2

m̄2 + m2

)√
1 +

m1

Ek

√
1 +

m2

Ek+q

(
1 +

1
2
k2 sin2 Θk − k|~q| cos Θk

(Ek + m1)(Ek+q + m2)

)
,(C.37)

a+ = A0 mV

2m2
P |~q|

− f(Q2)

2m2
P

+
(mP − EV )mV

2m2
P |~q|2

(
~A · ~q
|~q| − f(Q2)

EV

mV

)
, (C.38)

a− = A0 mV

2m2
P |~q|

− f(Q2)

2m2
P

− (mP + EV )mV

2m2
P |~q|2

(
~A · ~q
|~q| − f(Q2)

EV

mV

)
. (C.39)

In the nonrelativistic approximation with SHO wave functions we have:

V 0 = 0,

~V = |~q|√mV mP e−q2µ2/4β2

(
1

m2

+
µ

2

(
1

m1

− 1

m2

))
MV~ε ∗MV

,

A0 = |~q|√mV mP e−q2µ2/4β2

(
1

m2

− µ

2

(
1

m1

+
1

m2

))
δMV 0,

~A = 2
√

mV mP e−q2µ2/4β2

~ε ∗MV
, (C.40)

and then

g(Q2) =
1

2

√
mV

mP

e−q2µ2/4β2

(
1

m2

+
µ

2

(
1

m1

− 1

m2

))
,

f(Q2) = 2
√

mV mP e−q2µ2/4β2

,

a+(Q2) = − 1

2
√

mV mP

e−q2µ2/4β2

[
1 +

mV

mP

− m2
V

mP

[
1

m2

− µ

2

(
1

m1

+
1

m2

)]]
,

a−(Q2) =
1

2
√

mV mP

e−q2µ2/4β2

[
1− mV

mP

+
m2

V

mP

[
1

m2

− µ

2

(
1

m1

+
1

m2

)]]
. (C.41)

For the transition to the first excited state of the vector meson the matrix elements are:

V 0 = 0,

~V = |~q|
√

mV mP

6
e−q2µ2/4β2

[
µ

(
1

m1

− 1

m2

)
− µ2|~q|2

2m2β2

]
MV~ε ∗MV

,

A0 = −|~q|√mV mP e−q2µ2/4β2

[
µ

(
1

m1

+
1

m2

)
+

µ2|~q|2
2m2β2

]
δMV 0,

~A = −
√

mV mP

6

µ2|~q|2
β2

e−q2µ2/4β2

~ε ∗MV
, (C.42)
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and then

g(Q2) =
1

2

√
mV

6mP

e−q2µ2/4β2

[
µ

(
1

m1

− 1

m2

)
− µ2|~q|2

2m2β2

]
,

f(Q2) = −
√

mV mP

6

µ2|~q|2
β2

e−q2µ2/4β2

, (C.43)

a+(Q2) =
1

2
√

6mV mP

e−q2µ2/4β2

[
µ2|~q|2
2β2

(
1 +

mV

mP

− m2
V

m2mP

)
− m2

V µ

mP

(
1

m1

+
1

m2

)]
,

a−(Q2) = − 1

2
√

6mV mP

e−q2µ2/4β2

[
µ2|~q|2
2β2

(
1− mV

mP

+
m2

V

m2mP

)
+

m2
V µ

mP

(
1

m1

+
1

m2

)]
.

C.3 PSEUDOSCALAR-SCALAR TRANSITION

The vector matrix element vanishes for pseudoscalar to scalar transition:

〈S(~p2)|Ψ̄γµΨ|P (~p1)〉 = 0, (C.44)

and the most general Lorentz covariant decomposition for the axial matrix element is:

〈S(~p2)|Ψ̄γµγ5Ψ|P (~p1)〉 = u+(Q2)(p1 + p2)
µ + u−(Q2)(p1 − p2)

µ. (C.45)

Here P is the initial state meson with the mass M1 which consists of a quark with the mass

m1 and an antiquark with the mass m̄1. Similarly, final state meson S has the mass M2 and

consists of a quark and an antiquark with the masses m2 and m̄2.

The matrix element is parity invariant. To satisfy time-reversal invariance the form-

factors u+(Q2) and u−(Q2) have to be real.

In the P rest frame we have: p1 = (M1, 0, 0, 0), p2 = (E2, 0, 0, |~q|) and then:

A0 = u+(Q2)(M1 + E2) + u−(Q2)(M1 − E2), (C.46)

~A = ~q
(
u+(Q2)− u−(Q2)

)
. (C.47)

Now we can express the form-factors in terms of A0 and ~A:

u+(Q2) =
A0

2M1

− E2 −M1

2M1

~A · ~q
|~q|2 , (C.48)

u−(Q2) =
A0

2M1

− E2 + M1

2M1

~A · ~q
|~q|2 . (C.49)
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Matrix elements A0 and ~A could be calculated in the quark model:

A0 =
√

M1E2

∑
MLMS

〈00|1ML1MS〉
∫

d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q

×
(

~ε ∗MS
· ~k

Ek + m1

+
~ε ∗MS

· (~k + ~q)

Ek+q + m2

)
,(C.50)

~A =
√

M1E2

∑
MLMS

〈00|1ML1MS〉
∫

d3k

(2π)3
Φ1(k) Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

) √
1 +

m1

Ek

√
1 +

m2

Ek+q

(C.51)

×

~ε ∗MS

+

~k
(
~ε ∗MS

· (~k + ~q)
)

+
(
~k × (~q × ~ε ∗MS

)
)

(Ek + m1)(Ek+q + m2)


 ,

where

~ε ∗MS
=





(0, 0, 1) MS = 0,(
− 1√

2
, i√

2
, 0

)
MS = 1,(

1√
2
, i√

2
, 0

)
MS = −1.

(C.52)

In the nonrelativistic approximation m/Ek ≈ 1:

A0 =
√

M1M2

∑
MLMS

〈00|1ML1MS〉
∫

d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

) (
~k

m1

+
~k + ~q

m2

)
· ~ε ∗MS

,

~A = 2
√

M1M2

∑
MLMS

〈00|1ML1MS〉
∫

d3k

(2π)3
Φ1(k)Φ∗

2

(
~k + ~q

m̄2

m2 + m̄2

)
~ε ∗MS

. (C.53)

If we use SHO wave functions as an approximation for the meson wave functions, then

form-factors could be calculated analytically. The SHO wave function for a ground state

pseudoscalar meson is:

Φ(k) =

(
4π

β2

)3/4

e−k2/2β2

, (C.54)

and for a ground state scalar meson it is:

Φ(k) =

(
4π

β2

)5/4
√

2

3
ke−k2/2β2

, (C.55)
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Then the matrix elements are:

A0 = −β

√
3M1M2

2

(
1

m1

+
1

m2

)[
1− µ2|~q|2

6β2
+

µ|~q|2
β2

m1

m1 + m2

]
e−q2µ2/4β2

,

~A = −
√

2M1M2

3

µ|~q|
β

e−q2µ2/4β2

~ε0 δMS0. (C.56)

and the form-factors are:

u+ = −1

2

√
3M2

2M1

e−q2µ2/4β2

[
β

(
1

m1

+
1

m2

)[
1− µ2|~q|2

6β2
+

µ|~q|2
β2

m1

m1 + m2

]
− (M2 −M1)

2µ

3β

]
,

u− = −1

2

√
3M2

2M1

e−q2µ2/4β2

[
β

(
1

m1

+
1

m2

)[
1− µ2|~q|2

6β2
+

µ|~q|2
β2

m1

m1 + m2

]
− (M2 + M1)

2µ

3β

]
,

where

µ =
m̄2

m2 + m̄2

.
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