Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Spatial Updating in the Lateral Intraparietal Cortex

Heiser, Laura Madeline (2005) Spatial Updating in the Lateral Intraparietal Cortex. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

Primary Text

Download (2MB) | Preview


Recent experiments in neurophysiology have begun to examine the active nature of our perceptual experience. One area of research focuses on the impact of eye movements on visual perception. With each eye movement, a new image is presented to the brain, yet our perception is that the world remains stable. This phenomenon, termed spatial constancy, depends on a convergence of information about our eye movements with sensory information from the visual system. Neurons in the lateral intraparietal cortex (LIP) contribute to the construction of an internal representation of space that is updated or "remapped" with each eye movement. Although the basic phenomenon of remapping has been described, many questions remain unanswered. Here we describe two experiments designed to gain a greater understanding of spatial updating in the primate brain. First, we hypothesized that spatial updating would be equally robust throughout the visual field. We tested this by monitoring the activity of neurons in LIP while varying the direction over which a stimulus trace must be updated. We found that individual neurons remap stimulus traces in multiple directions, though the strength of the remapped response is variable. Across the population of LIP neurons, remapping is effectively independent of saccade direction. These findings indicate that the activity of LIP neurons can contribute to the maintenance of spatial constancy throughout the visual field. Second, to begin to understand the circuitry underlying remapping, we studied a special case: when a stimulus must be updated from one visual hemifield to the other. We hypothesized that the forebrain commissures provide the primary route for this across-hemifield remapping. We tested this by comparing the signal related to within- and across-hemifield remapping. We predicted that in split-brain monkeys, across-hemifield remapping would be abolished while within-hemifield remapping would remain robust. Surprisingly, we found that in split-brain monkeys, LIP neurons can remap stimulus traces across hemifields, though this signal is weaker than that associated with within-hemifield remapping. This finding implies that while the forebrain commissures are likely to be the primary route for the interhemispheric transfer of visual information, they are not the only route available. This indicates that a distributed network of brain regions supports spatial updating.


Social Networking:
Share |


Item Type: University of Pittsburgh ETD
Status: Unpublished
CreatorsEmailPitt UsernameORCID
Heiser, Laura Madelinelmhst47@pitt.eduLMHST47
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairColby,
Committee MemberGrace, Anthonygrace@bns.pitt.eduGRACEAA
Committee MemberOlson, Carlcolson@cnbc.cmu.eduOLSONC
Committee MemberSimons, Danielcortex@pitt.eduCORTEX
Committee MemberLee, Tai
Committee MemberPasternak,
Date: 31 January 2005
Date Type: Completion
Defense Date: 7 October 2004
Approval Date: 31 January 2005
Submission Date: 8 November 2004
Access Restriction: No restriction; Release the ETD for access worldwide immediately.
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Neuroscience
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: single unit recording; spatial perception; primates; eye movements
Other ID:, etd-11082004-172529
Date Deposited: 10 Nov 2011 20:04
Last Modified: 19 Dec 2016 14:37


Monthly Views for the past 3 years

Plum Analytics

Actions (login required)

View Item View Item